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CHAPTER I 

INTRODUCTION 

1. 1 Description of the Problems 

Many articles have appeared in the literature concerning the 

problem of determining optimal designs with respect to certain 

criteria once a particular rnodel has been assumed; however~ 

hardly any work has been devoted to determining designs that are 

optimal. for general sample size N. In determining optimal. designs 

for an experiment, it is usually assumed that the number of design 

points N can be divided in any desired manner. This assumption 

can not always be met. Thus, we are faced with the f)roblem of 

selecting the design points so that the design remains optimal in 

the sense of certain criteria for all values of N. Chapters II and 

III will be devoted primarily to this problem. Specifically, chapter 

II deals with the problem of trying to determine the design that 

will minimize the maximum variance of the estimated re_sponse 

when we assume the model 

where £ 
. 2 

(0, c; ), and we only have three design points. Chapter 

III deals with determining exact optimal de signs for general sample 

size N. 

Another problem in the area of response relationships which 
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is of major importance is the problen, of deciding which model 

should be assumed. There are usualiy several risks involved in 

the selection of a model. In chapter IV some function of the bias 

is used as the risk function. A model is then selected from a 

particular class of models which will minimize this risk function. 

Chapter V will consider some methods of detern1ining an 

average variance of the estimated response in the two-dimensional 

case for any distribution of the total probability mass to the region 

of interest when we assume the mod.el 

Y - B .!.. P· .· xr + p -v· "· - ' 1.,,_1. t-l:-.._.,i'~--'1-'o _.._ ·e,,:.: 

If we have reason to believe that the va.:rl2..nc8 of response ·,vill be 

different in one particular subregion than in another, we may want 

to as sign a larger proportion of the probability mass to this region. 

The average variance of the estimated response over both a square 

region R and a circular region R will. be derived in this chapter. 
C 

The minimum average variance of the estimated response with 

respect to the division of R and R and the distribution of the 
C 

total probability mass to these subdivisions is also determined, 

Other results concerning the average variance of the estimated 

response are obtained. 

1.,2 Definitions. and Notation 

The design points are the points in a p-dir~ensional space 

where the observations are to be taken. The p-dimensional space 

consisting of all possible de sign points will be called the factor space. 

An experimental design will be defined as a procedure which indicates 

2 



where the design points are located and ho-,.v rnany observations are 

to be taken at each design point. 

In this thesis we shalt consider only one and two-dimensional 

models. In the one-dimensional case, the response will be given by 

y = 
K 
l: 
i= 1 

a £1.. 'x) .,.. -•• \ - ' .. f 
1 l 

3 

where -1 < x < 1 and f.(x) is a real valued function of x. The 
l 

design matrix for N observations will be denoted by 

L,(x.1 ) 
~ J, 

X = 

Let u be a variable point in the one-dimensional factor space, Alsot 

let the vector U = [f 1(uJ.) fz(uJ.). , . L,.(u.}] be the j-th row of X • 
.J:'._ J 

In the two-dimensional casei the response will be given by 

k £ m 
y = :E a.f.(x 1) + .'E a.f.(x2} + ~ a.f.(x 1, x 2} +· £ , 

i=l 11 i=k+i 11 i=£+J. 11 

where -1 ~ x 1 < l, £. ( x ) is a real valued 
1' k 

function of xk (k = 1, Z)J and f 1(x 1, x 2) is a real valued function of 

xl and Xz· Let 

be the f-th row of X, where 



r·- - . 
1 fl (xll)fz(xll) • • • \_(x 11 )\_+ 1 (xl 2) • • · ~(xl 2)1+ 1 {xl P xl 2) • • • fm (xl I'~ 2) 

If • " • Ill ·• 

X= fl (11)£ i11) • • • fk(xjl)~+ 1 (~ 2>· • • fixj 2)£.e+ 1 (xj l' xj zl • · · fm (xj l' xj 2) 

• • • • " Ir 

fl{xNl)fj~f. -~~l)fkti~t· .• £_txN2)f1+1 (~p ~z)' •• fm("f~1' ~2) 
i 

The model in either case is given by Y = Xl3 + E, where 13 is a 

vector of the ai1s. The response at any point u in the factor space 

is estimated by 

y (u) = U 13 

= U (X 8X)-l xty~ 

where 13 is the least squares estimate of 13. 
-The variance of the estimated response, denoted by va.r y (u}, is 

given by 

· " -1 2 
vary (u) = U(X'X} uicr • 

2 
In this thesis er will always be considered equal to unity. The 

absolute value of the bias of the estimated response, denoted by 

J bias (u) I , is defined to be 

I bias (u) = I E[;(u)] - E[y(u)] I 
where y(u) is the response at u. 

The following.optimality criteria will be considered. We will 

want to find the design that will: 
.,.. 

1) minimize the maximum variance of y (u), cltmoted by 
.,.. 

m4n ~ax vary (.u) 

.... 
. 2) . minimize the average variance of y (u), denoted by 

.... 
~n JR var y(u) [f(u)] du 

4 



3) minimize the maximum absolute value of the bias of y(u) 

which arises from fitting the wrong. model, denoted by 

rn4n nwx I bias cu) I 
4) minimize the average absolute value of the bias of y (u), 

denoted by ~in JR lbias (u)I f(u) du 

5) · minimize the average bias of y (u) squared, denoted by 

~in JR [ bias 2 (u)] f(u) du. 

5 

1.,..3 Review of the Literature 

In the area of response relationships* a rather detailed review 

of the literature through 1958 has been presented by Folks (3). Since 

1958 a number of articles have appeared which approach the optimal 

design problem from a probability measure standpoint. Such is the 

case in articles by Kiefer (4), (5), Kiefer and Wolfowitz (6), (7), and 

Aitchison ( 1). Further work in the area of optimal designs has 

been presented by Box and Draper (2). 

Although much work has been done to try to determine optimal 

designsv usually one of the following conditions is assumed: 

1) the number of design points can be divided in any 

desired manner 

2) the optimal design. obtained is only optimal to within a 

given approximation of the true theoretical optimal design. 

The latter is the case in the articles by Kiefer (4), (5), Kiefer and 

Wolfowitz (6), (7), and Aitchison ( 1). In contrast, Folks (3), approaches 

the problem of determining optimal experimental designs for various 

criteria by considering two cases; namely, the case where the number 



of design points N is even and the case where N is odd. By this 

procedure, exact optimal designs were determined in the one-dirnen-

sional case for the following criteria: 

(i) min max var y (u} 
X U 

(ii} min ave var y (u) 
X U 

(iii) min gen var y (u) , 
X 

6 

where var y (u) is the variance of the estimated response at u. Also, 

exact optimal designs for bias and. :r:nean squa.re error C;onsiderations 

in the one-dimensional case and for variance and. bias considerations 

in the two-dimensional case were determined whe11 the number of 

design points was a certain multiple of four, 

In the past few years, considerable effort has been put .forth by 

Kiefer (4), (5), and Kiefer a.nd Wolfowitz. (6) 1 (7), to determine optimal 

designs for existing criteria and to determine new criteria of goodness. 

In order to present a summary of their work, it will be necessary to 

introduce some definitions and notation. Until specified, aU work will 

be concerned with the one .. dimensionai case, In the following situa-

tions the model is assumed to be 

y = 
X 

k 
:F= 1 a/i (x) + e, 

where f 1, •.. , fK are linearly independent 1·eal - valued functions. 

A design is a discrete probability measure wJ:,.ich assigns to each point 

in the sample space a measure equal to an integ:rai multiple of N- 1• 

It was established by Kiefer and Wolfowitz (7) that the criteria of 

optimality 

( 1) min max var y (u), and 
X U . 



( 2} 
.,_ 

min gen var y {u) 
X 

are equivalent when ail probability measures are considered rather 

than just integrai multiples of N- 1• Optimal designs in the sense 

of ( l) and ( 2) above were determined when the inference about the 

regression coefficients concerned S of the K coefficients~ where 

S = l, 2t •.• , K® and when the inference concerned the entire 

regression function, Necessary and sufficient conditions £or a 

design to be optimal were established when the inference concerned 

the whole regression function. Still in the one-dimensional caset 

two other criteria of optimality were presented and were shown to 

be equivalent to criteria ( 1) and ( 2) a.hove,. In the q=dime,nsional 

case~ Kiefer (4) considers optimal. designs for quadratic regression. 

The following are a few e~.;::amptes of the optimal designs deter-

mined by Kiefer and Wolfowitz. Con.sider first the case where the 

inference concerns S of the K regression coefficients. For S= l, 

let 
I< . l 

1-= :Z:: a. 1x +r::. 
i= l l-

=l < X < l. 

The unique optimal de sign d, in the sense of ( 1) and ( 2) above. is 

given by 

d( .. 1) = d(l) = 1/2 (K - 1) 

d[cos (j If(K-l})J = 1/(K-l) 

where d(x) denotes the probability mass as signed to the design point 

x by the design d. For S = K, !.et 

K 
I; a.f. (x) + 

i = l 1 l 
£ • 

7 



For the sampie space consisting of K points,, the unique optimal 

design dt in the sense of (1} and (2) above is given by 

d(x) = 1/K. 

Consider next an example where the whole regression function is 

estimated. Let 
K 

y = I: a.f. (x)+e 
X i:: l l l 

K 
= :!: 

i= 1 

i..,l_ 
a. .x +£ I) . ~ l < 

1 .. 1 
X < 1. 

The unique optimal designt in the sense of (1) and (2) above, assigns 

mass equal to 1/K to the points x = 0~ l. x = lt and foe roots of 

8 

L'h (x) = 0, where L'h(x) is the derivative of the Legendre polynomial. 

In the q-dimensional case$ assume the inference concerns the 

estimation of the whole regression function rathe:r tha.n just S out of 

K regression coefficients. For quadratic regression vvith q = l, an' 

optimal de sign d~ in the sense of ( 1) and ( 2} above, is that measure 

which puts equal weights on the points :x: = -1, O, l. For q = 2, 3f 

4t 5, optimal designs are given by Kiefer (4), A fact worth noting 

is that when q == 2, the design which assigns measure 1/9 to each 

of the nine points designated by the optimal design, yields a general-

"' 
ized variance of y {u) which is 15% larger and a :maximum variance 

of y (u) which is 21% larger than does the optimal design. 

Aitchison ( l} constructed optimal designs which concentrated 

on the detection of certain specific effects while aHowing at least 

the inspection of a wider class of effects. All of his -work was done 

in the framework of a one-way classification model 

where 

(j = 1, 2, • • . ~ t; k = 1, 2 f ••• n), 

Z.kAJ N(Q., 
J J 

2 
er 



Box and Draper {2) considered the problem of fitting a first 

degree polymonial f(X} over the region Ri when the true function 

g(X) is quadratic@ where X is a K-dimensiona1 vector. There 

are two types of error which occur; nanrnly~ variance error, that 

due to sampling errort and bias error~ the failure of f(X) to 

represent g(X).. In the cases they considered" the optimal design 

in which variance error and bias error both occurred. was almost 

identical to the design that would have been obtained if variance 

error were ignored completely and the experiment designed to 

minimize bias error alone. Also~ :i.t was proved that if the method 

of least squares is used to fit a polynornial of any degree d 1 over 

a region R when the true function is a polyi-nornial of degree dz >d 1t 

then the bias averaged over R is minimized for all values of the 

coefficients of neglected terms by xnaking the moments of order 

9 

d 1 + d 2 and less of the design points equal to the corresponding 

moments of a uniform distribution over R. Box and Praper further 

indicated that the variance should be minimized if it is rather definitely 

known that the true function is iinear. Conversely, the bias alone 

should be minimized if the assumption of linearity can not be made 

and observational errors are negligible. Another result obtained 

was that if bias alone had to be considered while nothing .whatever 

were known about the true function other than it could be represented 

by a polynomial with infinitely many terms, then we would do best 

by spreading the de sign points evenly over the region R. 



CHAPTER II 

, THREE POINT PROBLEM 

Exact optimal designs have been determined by Folks (3) in the 

two-dimensional case for several criteria when the number of design 

points N is expressible as some multiple of four. Thus, it is 

desirable to determine optimal designs for all values of N •. In this 

chapter we shall choose N equal to three and assume the model 

y = j3 0 t j3 l X l t j3 2 X2 + £ ~ 

where · e..., (0, 1). Let 

be the region of experimentation. We are justified in using such a 

region without loss of generality, due to invariance properties of 

optimal designs which were proved by Folks (3). The response at 

any point u is estimated by 

y (u) = U 13 

= U(X 1X)- 1X 1Y, 

where U = ( 1 u l uz), and 

13 is the least squares estimate of l3. 

The expectep. value of y (u) is given by 

- -
E [ y (u) = E[ U p] 

10 
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... 
and the variance of y (u) is given by 

... 
var y (u) = var [ U ~ ] 

= U(X 1X)-l U 5, 

where 

r xll xl2 

X = I 1 
x21 x22 

c x31 X32; 
~ 

Expanding the variance of y (u}, we have 

2 Z ... ... 
var y(u) = var f3 0 t u 1 var f1 1 + u.2 var p 2 + 2u 1 . cov ( ~ 0 , f3 1) 

- A + 2uz cov (130, 132> + 2ulu2 cov (\3p l'z) • 

As an initial investigation of optimal properties, consider the 

problem of trying to find the de sign that wi 11 minimize the maximum 

variance of y (u). It has been shown by Folks (3) that the ~n !l'\fx 
... 

var y (u) is achieved by taking N/ 4 points at each corner of the 

square region. R; however, this is an impossible task with N equal 

to 3. Thus, we shall investigate further to try to determine the 

min max var y (u) design for N equal to 3. As an aid in our investi-

gation, consider some relevant theorems. 

Every design determines the unique family of variance contours 

vary (u) = U(X'X)- 1U 1 = K, 

which are ellipses. The variance contour with K equal to 1 passes 

through the three design points. This is pointed out in the following 

theorem. 

Theorem 2. l For any choice of 3 design points in the square region 



such that X is of full rank, the variance of the estimated response at 

each of the design points is 1. That is, 

var y(u) = U(X 1 X) .. 1 U 1 = 1. 

Proof: Consider the covariance matrix of the ve\;or of predicted 

responses at the design points, denoted by Y. 

.... • l I· 
cov Y =X(X 1X) X. 

Since X is square and of full rank 

Therefore, 

cov Y = I. 

vary (x.) = 1. 
l 

As a further aid to establishing the min max var y (u) design for 
X U 

the three-point problem, consider the following theorems.' . 

Theorem 2. 2. For any choice of design~ the maximum variance of 

the estimated response, y (u), occurs at one or more corners of the 

square region 

in the three-point problem. 

Proof: 

<· u. < + 1 
l i = I, 2], 

~ .... .... 
+ 2 u 2 COV (f:'10 t [32) + 2u1u 2 COV (j3 1, j3 2). 

12 
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Let 

A. = var ~. 
l l 

(i = · o, 1, 2) 

D ::: 2 cov ( 13 ' 131) 0 

-·. ... 
E = 2 cov ( 13 ' 13 ) 

0 2 
... 

F = 2 cov (f31• 13 2 }'. 

... 
Let ( 1 - £, 1 - J. ) be the point in R at which var y (u) attains its 

maximum, where O ~ £ ~ 2, and O < l. < 2. Consider the 

class of de signs specified by the signs of D, E, and F. 

Cae.e 1: D, E, F > 0 

( 2. 1) 

+ 1 E + (£ + £ - t: £} F] • 

Let £ = 1 + a, where -1 < a < 1, then 

e + P. "' £ i = 1 + a + 1. - ( l + a) 1 

= 1 .. + a ( l - 1}. 

Now -1 < a< 1 and -1 ~ (1-P.) < 1 implies -1 ~a(l-1) ~ 1, 

which implies 0 ·< l + a(l-.O < 2. Thus e:+1.-d. > o. -
Also, since 0 < £ < 2 and 0 < .R. < 2, we have 

2 £ 
2 

(2 - £) > 0 
-· £ = £ 

21 -12 = 1( 2 .. 1) > o. 

Ther,efore, since all quantities in the brackets of (2. 1) are positive 

or zero, and zero or;i.ly when e: = 1 = O, we have that the var y (u) is 



· maximum only when £ = 1 = O, which implies 

Case 2: D, E > 0, F < O 

In (2. 1) consider the quantity 

( 2. 2) 

(i) 

'V = £ D + 1 E + ( £ + J. ... t 1) F. 

If D and E are greater than ( FI , then 

y = £ D + 1 E + (t + J. "" t 1) F 

- t D + t F + 1E + 1F ... £IF 

> o. 

Thus, the minimum value of y occurs when t = 1 - O, which 

implies 

(ii) If E < D < IF I or E ~ IF I < D, the 

minimum value of y occurs when £ = 0 and 1 = 2, which 

irnplies 

14 

(iii) If D ~ E < IF I or D ~ I FI ~ E, the minimum 

value of 'V occurs when £ = 2 and 1 = o, which implies 
... .. 

mJ-x vary (ul' u2) = var y ( -1, 1). 

Case 3: D, F > o, E < 0 -
(i) If D and: F are greater than I E I , the minimum 

value of y in (2.; ~) occurs when £ = J. = O, which implies 
.... .... 

~axvary(u1, u 2) = var y(l, 1). 



(ii) Ii D s_ F S. I E I or D < I EI < F, 

min y (ti' .t) = y(2, 2), 
r.',1 

which implies 

max var y(up u 2) = var y{ .. 1~ ... 1). 

(iii) If F < D < IE I or · F s_ f .EI _:: D, 

:tQin y (e, £} = -y(O, 2), 
€ ,'J. 

which implies 

Case 4: D > 0 ; E, F < 0 

which implies 

min y(t, 1) = "((0~ Z}lii 
£;1 

"" ... 
P!ftX vary (u 1~ u 2) =vary (1, "'l) • 

Case 5: E, F > 0, D < 0 

(i) 

which implies 

If E > I D I and F 

· min 'V (r.~ 1) = -y(O, 0), 
t,1 

> lni 

(ii) If E < F < I D I or E ::_ I D I < F, 

which implies 

min y(e,1) = y(2, 2), 
£ ,'J. 

(iii) If F < E < ID j or F ::_ ID I < E, 

which implies 

min y (r., 1) = y( 2, 0), 
£,1 

15 



Case 6: 

which implies 

Case 7: 

which implies 

(i) 

which implies 

A • 

mfx var y (up u 2) = var y ("'l, 1). 

E > O; D, F < 0 

min y(t, £) = y (2, 0), 
£ 'P. 

F > 0; D, E < 0 

min 
£,1 

... 

D, E, F < 0 

min y(t, £) = y(O, Z}, 
£,1 

... 

... 
~ax vary (u 1, u 2) = vary ( 1, -1) . 

(ii) If I E I :::_ I D I < I F I or I E I :::_ I F I < I D I , 

which implies 

min 'V (t, 1) = y (2, 0), 
qi. 

(iii) If I Fl < ID I < IE I or IF I :::_ IE I < ID I ,. 

which implies 

... 

min y (£, £) = 'I (2, 2), 
E 'i. 

Therefore, var y (u) always attains a maximum at one or more of the 

corners of R. 

16 



Theorem 2~ 3 For the two-dimensional three .. point problem, 

n1in max var y (u', > · t (v 1X)-J x u _ m 1n r -'~ ,., ~ 

Proof: 

.,. 
vary ( 1,, 1) = var 130 t var 13 1 + var 13 2 + 2 cov (!3 0 , 13 1) 

&",. ~ 

+ 2 cov ( 13 Ii 13 2) + 2 cov ( (3 1 t 13 .... ) • 
' 0 i t:. 

var y (- lt 1) = var ~o + var f) 1 + var B - 2 cov t !3 , 13 1··.) I 2 \ Q . 

..,i,,, <"'ii, 

+ 2 cov (f3 0 ,, 13 2) - 2 cov (13 1~ ~ 2). 

vary (l, -1) = var f3 t var p1 + var 132 + 2 cov ((3 , \3 1J 
0 - · 0 

... ~. 
-2 cov (f3 0 ~ r, 2) = 2 cov <f3r ~ 2) ., 

~. ~ ... ~ .,,.., 

Val·y(-1, -1)-v·arf._-\ +· >r-:.yC! ·'·""'rs -7rov'p,.. 1::t 1 
- i- o · ' ,~ f..> l ·i • ~· · ,- 2 ~ - .\ ov ,., 1' 

A - .,,._ -

-2cov([3 0 , !3 2)+ 2cov(!3 1, ~ 2). 

The average over the corners of R is given by 

ave var y (u} = var f3 0 + var 13 1 + var 13 2 

But, 

which implies 

Thus, 

= trace (X 1X) - l 

> ,a veraQ'e )var y (u) t 
- l corne'Ts 

max var 
u 

y(u) >tr(X 1X)- 1 • 

by theorem 2. 2 

· ( ) > m1·n tr 'X.'X)= l min max var ·y u x \- ·'- • 
X ll 

17 
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This completes the proof. 

Although it could not be shown algebraically~ it was felt that the 

design points for the min max var y (u) design should be on the bounx u 

dary of the square region R. Under the assumption that the de sign 

points should fall on the boundary, an empirical investigation using 

the IBM 650 computer produced a design which is believed to be the 

min max var y (u) design; namely, the design 

( 2~ 3) * d = [(-1, -1), (-0. 364656, l}, (1, .. o. 364,656)], 

which has maximum variance equal to l. 420048. The following 

procedure was used to determine this design, 

Initially, all designs of the form 

where -1 < b 1 < O, and a., b. take 
1 1 

on multiples of O. 5, were investigated. It was determined that the pos-

sible candidates for the min max var y {u) design when all three points 
X U 

were taken on the boundary, were of the form 

d = [(-1, -1), (a, 1), (1, b)] , 

where -0. 4 < a < -0. 3 and -0. 4 < b < -0. 3. Further investi .. 

gation of these designs when ~ and b took on multiples of O. 000001 

* yielded the design d in (2. 3). If it could be shown that the three 

design points of a min max var y (u} design must fall on the boundary 
X U 

* of R, then d would be the min max var y (u) design. 
X U 

This could 

not be shown however. 

It was thought that the vertices of the largest equilateral triangle 



inscribed in the square region R had possibilities of being the 

"' 
min max var y (u) design; that is, the design 

X U 

This design was of interest because it is a. rotatable design. It was 

found however, that d 1 yielded a maximum variance of 1. 57774, 

which is somewhat larger than the n1aximum variance obtained by 

* using the design d in (2, 3). Thusf the design d 1 was rejected. 

Although a detailed investigation was not conducted, all designs 

of the form 

-1 < azw a.3' b.,. b3 < l and a., b. take on t., _,_ 1 l 

multiples of O. 1, were considered to try to deten~oine the design 

which minimizes the average variance of y (u} and the design '\'Vhith 

minimizes the generalized variance of y (u), The design which 

minimized the ave var y (u) \vas given by 

..... 
with average variance of y (u) equal to z. 66569 and j X'X j= 13. 69. 

The design which minimized the generalized variance of y (u) was 

given by 

d3 = [ (-1, ~ 1), (-1, 1), ( 1, y) ] ~ 

where -1 ~ y < 1, with j X 1X I = 
"" 16 and average variance of y(u) 
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equal to 2. 66666. This investigation gave rise to the following theorem. 

Theorem 2. 4 Consider the design 

d = [ (-1, -1), (-1, a), (l,y) J 



in the three-point p:roblemi where a is a fixed constant and y is a 

variable such that -1 < y < lv then IX 11X I = K for every· value 
! ' 

of- y, where K is a constant. 

Proof: 

I X'X I = 

= 

-1 

3 

-a+y+ l 

a+ymll 
. I 

=aty+l ! 
2 2 I 

a +y + l 1 
_J 

+(a+y~ l) ( =(=aty+ l)-3(a+y- l)] 

2 2 .._ 2 2 1. , • 2 . 2 ,- ., 2 
= Sa +8y +8-,a ..,3y -3+oay+oa~6yi·2a -4a-2y -i-Z .. .,a 

2 
-3y - 3 .. 6ay + 6a + 6y 

+ (-6 + 6)y + (8-3+2-3) 

= 4a 2 + 8a + 4 

= 4 (a + l} 2 • 

Thus, since I X'X I is independent of y. the theoren1 is proved. 

This investigation would certainly be strengthened if it could be 

"" established that the design points for the ~in mJx var y (u) design, 

"" 
the min ave var y (u) design, and the min gen var y (u) design must 

X X 

20 



fall on the boundary of the square region R. All efforts in this 

direction produced no resuits however. 

21 



CHAPTER III 

SOME EXACT OPTHJf..AL DESIGNS 

Optimal designs in the sense of several criteria have been deter-

mined py Kiefer (4) for the general polynomial model 

y = ~ '+ 0 

p i 
I: ~.x+,. 

,i= 1 1 

Ho-wever, since he developed optimal designs from a probability 

:measure standpoint, many experiments with san)ple size N only 

have optimal designs which are. "within O(N"" 1) 11 of being optimal. 

For example, if the model 

-1 < X < 1 

is assumed, then according to Kiefer, the unique optimal design in the 
... 

sense of minimizing the maximum variance of y (u) as signs probability 

mass. equal to 1/ 2 to 'the points x =-1 and x = 1. Thus, if the sample 

size N is even, the optimal design assigns N/2 points to x = -1 

and N/ 2 points to x = 1~ However, if N, is odd, where ·should we 

put the odd observation? This question is not answered by the unique 

optimal design 0ffered by Kiefer (4). It is answered however, by 

· Folks ( 3) for the above model. That is, for N odd, put 

(N - 1) 
2 

1 

points at x = -1 

point at x = 0 

22 



(N-1} -z- points at x = 1. 

With this example in mind~ it appears reasonable to examine certain 

polynomial models to try to determine exact optimal .designs for all 

values of N. 

The criteria of optimality that wiU be considered in this chapter 

are as follows: 

( 1) 

( 2) 

( 3) 

( 4) 

""" 
min max var y (u) 

X U 

min-max 
X U 

min ave 
X 

min ave 
X 

I bias (u) I 

I bias {u} I 
2 

bias {u) @ 

Exact optimal designs using criterion {l) have been determined by 

Folks (3) for the model 

( 3. 1) = l < X < 1. 

23 

In this chapter, we shall determine exact optimal designs using criteria, 

(2), (3), and (4) for the model in (3. 1). Also, exact optimal designs 

will be determined using all of the criteria for several other models. 

3.1 Assumed Model: y = b 0 + b 1x + e:, =1-:_ x < 1 

Consider the bias that will arise if the true model is 

The bias function is given by 

lbias(u)I =·lu2 

I 

-_l < X < 1. 

u 

Since bias functions will be needed throughout this chapter, consider 



the following general derivation. 

Assume the relationship 

y 
A 

when the true relationship is 

= zs + e: f 

24 

where x 1 y 1 represents the k terms common to both YA .and YT' 

out of the p possible terms in YA and the q possible terms in YT. 

Then, 

... 
Y_A (w) = W s 

Z ~Y .. "' 
l. 

- _1 
E[YA(w)] = W{Z 1Z} ,. Z 1E(YT) 

-1 
= W(Z 1Z) Z'(Xl 'Y1 + X3Y3) 

E[YT(w)J= U 1 y 1 +U 3 y 3 

I bias (u)!= jE[YA(w) 1 - E[YT(w)] I 

= lw(Z'Z)-1 Z'(Xl 'V1 + X3Y3) - U 1Y1 - U3Y3l 

= l[W(Z 1Z)-l Z'X1 ... U 1lY1+['W(Z'Z)- 1Z 1X3-U~y3I• 

.If YA and YT have no common terms, 

X = cp 
l 



which implies that 

IL y T contains all of the terms that are in YA"' 

X z = <I> 

·Yz = <I> 

w =· u1 

z = x1, 

which implies that 

I bias (u) I= I [ U l fXJ~X /" 1xl 'X 1 ·U l] ~ 1+[ U l (X 1 'X lr 1xl 1 ~ .. u 3] Y3 I 

= 1°1<X1'X1>"" 1 x1'x3 .. u3IIY3I" 
min max I bias (u) I design 

X U , 

25 

It has been established .by Folks (3) that the min, max lbias (u} !design 
X U . 

2 . -· 
is one which has Ex= 0 and Ex = N/2. When N = 4K one such 

design has 

N/4 points at x= .. 1 

N/2 points at x= 0 

N/4 points at x= 1. 

Certainly the mJn mfx jbias (u) I design is not unique~ Thus, consider 

· a design that minimizes the maximum bias when N = 4K + l, 4K + 2, 

and 4K + 3. 

Case 1: For · N = 4K + 1 (K = 1, 2, ••• ), choose 

.K points at x = -1. 0 



Case 2: 

Case 3: 

3. lw 2 

l point at X = -0.5 

(2K .. 1) points at X = o. 0 

l point at X = 0.5 

K points at x= 1. 0~ 

N = 4K + 2 {K = 1~ 2, • . ~ ). choose 

N = 4K 

K points at X - -1. 0 

2 points at X - ... o. 5 

(2K - 2) points at J{ = o .. 0 

2 points at X = o. 5 

K points at X = 1. Oe 

+ 3 (K = o, 1, 2@ . ~ }, 

K points at x = -1. 0 

1 point at x = .. o. 866 

(2K + 1) points at x = O. 0 

l point at x = O. 866 

K points at x = 1. O. 

min ave !bias (u) I design 
X 

choose 

It has been determined by Folks (3) that the ~nave jbias (u) j 
2 . 

design is one which has. ~x = 0 and l;x = N/4. For ·N = 8K one 

,such design has 

N/8 points at x = -1. 0 

3N/ 4 points at x = Oa 0 

N/ 8 points at x = 1. O. 

However, exact optimal designs have not been established for N not 
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a multiple of 8,, Consider then the following exact optimal designs 

for ali values of N. 

Case 1: 

(i) N = 4K (K odd)i choose 

lK i l). points at x :::: ""1. 0 

1 point at x = -0,, 707 

(3K - l) points at x = 0., 0 

l point at x = O. 707 

· (K; l) points at x -· LO. 

(ii) N = 4K (K even)t choose 

-~. points at x - ~· L 0 

3 K points at x ::: O. 0 

K T points at x = LO. 

Case 2: N::: 4K + l (K = l~ 2t )~ choose 

(K - l) points at x :::: -0. 707 

2 points at x = O. 559 

(2K - 1) points at x = O. 0 

2 points at x = 0,, 5 59 

(K = 1) points at x = 0$ 707 Q 

Case 3: N = 4K + 2 (K = 1, 2~ • • )~ choose 

K points at x = -0. 707 

l point at x = -0. 5 

2K points at x = 0~ 0 



Case 4: 

3 •.. 1. 3 

1 point at x = 0., 5 

K points at · x = 1. O. 

N = 4K + 3 (K = O, 1, 2, • 6 0 }, choose 

1 point at x = -0. 935 

(K - 1) points x = .,,Q~ 707 

(2K + 3) points at x = Oe 0 

(K - l) points at x = O. 707 

1 point at x = O. 935. 

min ave bias 2 (u) design 
X 

The min ave bias 2(u) is achieved by the design such that !ix= 0 
X 

and. 2 
:Ex = N/3. The following are optimal designs for all values of 

N. 

Case 1: 

Case 2: 

Case 3: 

N = 4K (K = 1, 2, ••• ), choose 

K points at x = -0. 816 

2 K points at x = O. 0 

K points at x = O. 816~ 

N = 4K + 1 (K = 1, 2, ••• ), choose 

1 point at x = -0. 913 

(K - 1) points at x = -0. 816 

(2K + 1) points at x = O. 0 

(K - l) points at x = O. 816 

l point at x = O. 913. 

N = 4K + 2 (K = 1, 2, ••• ), choose 

l point at x = -1. 0 
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(K - 1) points at x = -Oe 816 

(2K + 2) points at x = O. 0 

{K .. 1) points at x = o. 816 

1 point at x = l. O. 

C-ase 4: N = 4K + 3 (K = 0 0 1, 2, • . . ), choose 

3~.2 

K points at x = ..,Q. 816 

1 point at x = -0. 707 

{2K + l} points at x :::: O* 0 

1 point at x = O. 707 

K points at x = O. 816® 

2 
Assumed Model: y = c + c.,x + e, ... 1 < x < l 

0 L, 

Consider the variance func~ion for this model. 

(X 'Xf l = ---.-1 __ ,......,.,_.. 
[ N Ex4 - (E}/] 

.,.. -1 
vary (u) = U{X 1X) U' 

Restrict the design points to x = -1, x = O, and x = 1, then 

... 
var y (u) 

4 2 2 . 2 
= [ N u - 2( E x ) u + E x ] 

[ N E x 2 - ( I: x 2 ) 2 ] 

' ,' 
,' 
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3. 2. 1 min max var y (u) design 
X U 

Let 
2 . 

~x = N - K (K = 1, 2, . , N-1). 

(i) Consider N > 2K,. where K = 1, 2, . . . , [ N/2]. 

(By [ N/2] we will mean the Largest integer smaller than N/2). Thus, 

N. > 2 K implies that 

N - 2K > 0 

K(N - 2K) > 0 

2K (N - K) 2: NK 

2/K > N/K{N -·K) , 

This is true for K = 1, 2, . , [ N/2] 1 which implies 

~x2 = N - [N/2), , N - l. Now 

... 4 2 2 2 
var y{u) = [Nu - 2(~x) u + ~x] 

2 Z 
[ ~x (N - ~x ) ] 

4 2 
= [Nu -2u (N-K)+(N-K)J 

[ (N - K){N - N + K) ] 

( 3. 2) 
Nu 4 2u2 1 --+--

K(N-K) K K 

But 

2 4 
u > u for -1 . < u < 1 

and 

2/K > N/K(N - K) , 

which implies that 

4 
> Nu/K(N-K), 



which implies 

max vary {u) 
u 

... 

A 2 
::: var y ( 0) = 1/K= 1/ (~ - I: x _) 

Thus, the mJn muax var y (u) is achieved by the design for which 
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2 2 -
~ x is ·as small as po:ssible under the condition :Z:: x = N - [ N/2], ... 1 

N - 1. That is, 

min max vary (u} = 1/[N -(N-[1'¥'2])] 
X U 

= 1/[ N/2] 

(ii) Consider N < 2K (K = [ N/2] + 1, . . . , N-1), then 

N < 2K implies 

( 3. 3) 

This is true for K 

:E X 
2 = 1, 2, . I 

Since 

and 

N - 2K < 0 

2K (N - K) < NK 

2/K < N/K(N - K}. 

= [N/2] + 

N - [N/2] 

var y ( u) 

N 
K(N- Kf 

2 
u 

l, 

-1. Fron1 

Nu 
2 

= K(N-K) 

> 
2 
K 

N - 12 which implies _ 

( 3. 2} we see that 

2u 
2 

l 
K + I{ 

from ( 3. 3) 

for -1 < u < 1, 

we have that the max var y (u) is achieved when u = J 1, 
X 

Thus, 

max var y (u) = var ; (~ 1). 
u 

N = K(N-K) 

l 
= 

{N - K) 

2 
+ 1 

I{ I{ 



mJ"x var y (u) = 

2 
Hence 1 to achieve ~n ~ax var y (u)i choose ~ x 

2 
as possible under the condition 1: x = 1~ 2, . . , 

That is, 

min max var y (u) = 1 

as large 

N - [ N/2] - 1. 

X U . 
{N - [N/2] ~l} 

... 
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Consider a min max var v (u) design when N is odd. A min max 
X U ' ~ X U 

2 2 
var y ( u) design is one which has E x = (N-1)/2 or :E x = (N + 1)/2, 

for which 

Ir\fx var y (u) = 
2 

(N - 1) 

One ~in m8'x var y ( u) de sign has 

( N - l) points at x = -L 0 --4--

(N + 1) 
2 

(N - 1) 
4 

points at x = 0, 0 

points at x = L 0. 

Consider a min max var y (u) design when N is even. A min max 
X U X U 

2 
var y (u) design is one which has ::E x = N/2, for which 

max var y (u) 
u 

One min max var y ( u) 
X U 

design has 

N/4 points at 

N/2 points at 

N/4 points at 

2 
= ~ 

x=-1.0 

X = 0.0 

X = 1. 0. 

3. 2. 2 min max I bias (u) I design 
X U 

Consider the bias that will arise if the true model is 



I bias (u) I 

Restrict the etas s of designs to those which have de sign points only at 

x = - 1, x = 0 1 and x = 11, then 

I - 7 

lb. ~t·)1_1Ex(N-Ex!.)u- -u-'-O 
1ao ,u 1-1: z -. z , 

12-' X {N -~ ~ X ) 

I 2 
= u 

I 

_ 2 11 I 
~ x/":Bx = u I i b 1 ! 

To show that the ~in mix I bias (u) I design has 

consider the following cases. 

Case 1: 

I I 'I • 
lbias(u) = -ul1bil· 

n13.x lbias (u) I = lo 1!. 

Case 2: 2; X < 0 

-;, ' 
The maximum bias occurs at u = l or u = :E x.., / 2 ~ x. 

( 3. 4) 

( 3. 5) 

Let A 
2 = Ex/::Ex , 

I bias ( l) I = I :£x/~x2 - l j j bl I 
2 

= ( l - :Ex/Ex ) I b il-
l bias (:£x2 /2:£x) I = !-:Ex2 / 4:Ex I lb 11 

z I = -{:Ex /4~x) I b 1 

then from (3. 4) and (3. 5) 

1 - A = - l/4A. 

4A 2 -4A-l = 0. 

A = 1/2 { 1 + r-, 
- ''" 2 ) . 
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Since A must be negativer (::E x < 0), A == 1/2( l = ,Jz). 

Thus, for A = 1/2(1 - ,IT). we have that 

Case 3: 

I bias (1) I = jbias (:E x 2/z !: x) I 
(i) For A > 1/2( 1->Jz ) 

rrt.i_ax !bias (u) I = jbias (:Ex 2 /2'E, x) I 

= -(:E x 2 / 4 I: x) I bl I 

> lb1 I 

(ii) For A < 1/2 (1 = a..r'r} 

max !bias (u) I = !bias (l) I 
u 

~ X > 0 

The maximum bias occurs at u = -1 or u = :E x 2 /2 ;Ex, 

In either case f 

34 

Therefore, the design such that E x = 0 achieves m4n ~ax I bias (u)I, 
which has 

Consider a mJn ma,x I bias (u) I design when N is odd. One 

min max I bias ( u) I design has 
X u 

(N-1)/4 points at X = -1. 0 

(N+ 1)/2 points at X = 0.0 

(N - 1)/4 points at x = l. 0. 

Consider a min max I bias ( u) I de sign when N is even. One 
X U 

min max lbias (u) I design has 
X U 
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N/4 points at .,. 
.h ·- -1. 0 

N/2 points at X ·- 0.0 
I 

N/4 points at X = L O 

3.2. 3 min ave bias 
2 

( u) design 
X 

As in section 3. 2. 2 11 consider the bias that wiU arise if the true 

model is 

When we consider the designs which have design points only at x = 1, 

x = 0, and x = 1, we have 

l 
? 

ave bias-(u) 
- -,2-, 2 

= J [::E x/Ex'"')u -u] £, b 1 du 
-1 

Thus, 

b 2r.., ;,.(~ /::8 z)z .L - l a. Lt/ :, _ X X s 

min ave bias 2 (u) 
X 

-, 
b [,,, J 

- 2 l I 3,. 

S l·nc e (...,x11...,x 2) 2 · · · h "" 0 .,_,, -'" 1s m1n1n1um w en -'" x = . Designs for 

even and odd are given in section 3. 2. 2. 

3. 3 2 
Assumed Model: y =g 1x+g 2x + e:, - l<x< l 

3. 3. 1 min max var y (u) design 
X U 

The variance of y(u) is given by 

N both 

24 33 42. 
[(~ x )u -(2::E.x ~ var y (u) = 

[:Ex2 _:E x4 _ (:l:x3) 2 ] 

3 
Consider the maximum variance for the different values of :Ex . 

Case 1: 
3 

:Ex < 0 



Case 2: 

Case 3: 

mtfx var y (u) = var y ( I} 

4 · 3 2 
_ [::Ex -21:x +~x ] 
-- Z 4 · 32 

[:Ex :Ex -(:Ex ) ] 

var y(u) 
... -t• 

l) max = var v ( · 
u 

, , _ 

1 + l 
::: --·-4 T 

Ex :£ X 

:l;: X 
3 

> 0 

maxvar y(u) = var y(-1) 
u 

Consider a ~n ruax vary (u.) design when N is 0¢1.d. As -would 

be expected, the min max var y (u) design is not unique. 
X U 

(i) If we tp.ke 'Ex 3 = o. then min max var ; (u} is achieved 

by the design such that Xx2 = N - l and I:x4 = N - lt for whiGh 

mjn var y (u) = 

One min max var y (u) design has 
X U 

2 

(N - 1) 
2 points at x = -1. 0 

l point at x = 0. 0 

(N - 1) 
2 

points at x = 1. 0. 

(ii).. If we take ~x3 = ~ l and :E x 2 = :Ex 4 = N, 

me:x var y (u) = 2 

(N - 1) 
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One min max var y (u} design has 
X U 

(N - l) points at x. = -1. 0 ~-y-= 

(N + 1) 
2 

points at x = 1. 0. 

Consider a min max vary (u) design when N is even. Choose 
X U 

3 2 ? 4 
~ x = 0 and ~x as large as possible; that is, :Ex&, = :Ex = N. The 

de.sign which minimizes the maximum variance of y (u) has 

One such design has 

2 
max var y (u} = u ,r 

N/2 points at x -- -1. 0 

N/2 points at x = l. 0. 

3. 3. 2 111:in mtfx lbias (u)j design 

The bias that arises when the true rno<lel is 

is given by 

-1< X < 1 

Consider only the class of designs which have design points x = --1, 

x = 0, and x = 1, then 

j bias ( u) j = I u 2 ~ l 11 b j . 
0 

mfl:x jbias (u) I= I bias (0) I 

= lb I . 
0 

Since lbias (u} I is independent of the design points, any design in the 
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restricted class of designs achieves r~n ~ax lbias (u)I. One such 

design has 

l point at x = -1. 0 

N-2 points at x = 0.0 

l point at x = l. 0, 

? 
The same design achieves min ave !bias (u) I and min ave bias- (u). 

X X 

For this de sign 

min ave bias 2 (u) = 
X 

:, 
16/15 b .. , 

' 0 
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Several other exact optimal designs were derived; however, due to 

the similar results that were obtained, it was felt that the exact 

optimal de signs that have been presented wouid be sufficient to intro-

duce the problem of finding exact optimal de signs. 



CHAPTER IV 

CHOOSING A MODEL 

In order to determine optimal designs, we must first assume 

a model which we think will best represent the data. This is not 

-· 

an easy task, however. Of course there is always a risk involved 

in the selection of a model, but this risk can usually be redu.ced 

by selecting from a particular class a model which is optimal in 

the sense of some optimality criterion. The seriousness of fitting 

a model which is not the true one is certainly dependent upon what 

we use for a risk function. In this chapter we shall use some function 
I 

of the bias as the risk function and shall determine which model 

should be assumed in order to minimize this risk~ 

Consider the particular class of models C consisting of 

{ 1) y = h 1 (x) + E = a + E 
0 

{ 2) y = hz(x) + £ =b O + b 1x + E 

( 3) y = h 3(x) + E 
2 

= C o + c2x + e: 

( 4) y = h 4{x) + E 
2 

=d +d 1x+dx +E 
0 2 

(5) y = h 5 (x) + £ = e 1x + £ 

(6) y = J;i.6(x) + ·e: 
2 

= f 2x + E 

( 7) y = h 7 (x) + £ 
2 

;= g l X + g 2X + £ t 

where -1 < x < 1. 

Let us fit the model h. (x) + e in C (f arbitrary).- A bias will arise if 
l . 
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the true model hjx) + c in C(j =/:- i) contains terms not in h .(x) + £. 
J 1 

Choose the design that will min max I bias (u} 11 , then for this design, 
X U ' 

let M (i, j) be_ the maximum bias which arises from fitting hi (x) + £ 

in C when h.(x} + £ in C is the true model. The problem will be 
J 

to select the model in· C that will. 

min 
(assumed model} 

n:iax 
(true model} 

Since no bias will arise when we assume the model 

"I - 2 
y = h4(x} + c ::: d + a ,X ·j- d-X + £ 

0 L t. 

regardless of which model in C is the true model: we shall disregard 

model h 4 (x) + £ as an assumed modeL 

In order to select the mode 1 in C that will. achieve 

we shaU first determine M (i~ j) for every value of i and j except 

1 = j and i = 4 , 

4, l Assumed Model: y = -1 < X < l 

4. l. l True model; y -- b 0 + b 1x + £ 

Consider the bias that arises from neglecting the linear term. 

Case l: ::Ex < 0 

!bias (u) I = !u = Ex/Ni I b 1 i 

max I bias (u) I - I bias (1) I 
u 

= I l - :Ex/ N II b 1 I 
! ! > ,bl i . 



Case 2: :E:x = 0 

Case 3: :Ex > 0 

m,fx I bias (u} I = I bias (! l) I 

m&'x lbias (u) I= jbias {-1) I 

= 1-1 - ~x/N I I b 11 

> I b 1l . 

Therefore, ~in max lb,ias (u) I is achieved by the design such that 

:Ex = O, and 

4. 1. 2 True Model: y = 
2 

C + C X f £ 
0 2 

Case 1: :Ex2 /N < 1/ 2 

~ax I bias (u) I = I bias (: 1) I 

Case 2: 
2 

:Ex /N = 1/2 

= I 1 - :Ex 2 / N I le 21 

-- lc2I I 2 • 

max lbias (u) I = [bias (0) I u 

= i bias (-! 1 > I 
= lc2I / 2. 

2 
__ Case 3: :Ex /N > 1/2_ 

max lbias (u) I = I bias (0) I 
u 

= l-::E.x2 /N 11 c zl 
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-,,--v ib1·~ s i,·u) 11::: ~~rt"' 1 a. 1 

Thus, 92-n m&x jbias (u) I is achieved by the design such that ::Ex2=N/2i 

and 

') 

4. 1. 3 True Model: y - d +d,x+d2x'~+z 
0 .i. 

>',< 
Assume d 1 * = d d d K 1 ·~r an 2 = .. a {l"- > O} ~ 

I I I 2 2 I I d,:, I bias {u) 1 = , (:Ex+ I:<.:~x )/N = u - Ku 

= ! Ku2 + u - (~x + K~x2)/NI ldi. 

Case l: (Zx + K~x2) < 0 

~ax I bias (u) I = I bias ( 1) I 
1 2 ~ ~ * = jl + K - (Th:+ KTh )/N Ii d I 

> (l + K) I d *I. 

Case 2: 
2 

( Ik + K:Th: } = 0 

max jbias (u} I= jbias ( l) j 
u 

2 2/ Let f(u} = Ku + u ·~ (2:: x + K Ex ) N, 

thcen the rninimum of f(u) occurs at u = -1/ 2K. In what foUows, let 

(i) P > K 

For this condition, we have two possibilities 

' * 
u = - l: j bias ( - l} I = ! K - l - P II d I 



43 

' >'.<l !bias (=l) j= (P + 1 - K)jd 1• 

u = -1/ 2.K: !bias (-1/ZK) I== (P + l/4K)jd*I· 

To determine which bias is the largesti assun:ie 

P + l - K > P + 1/ 4Kt then 

l ~· K > i/4K 
I 

2 
4K - 4K > l 

4K 2 = 4K + l < 0 
? 

( 2K - l)'"' < O. 

Thus, we have a contradiction, which implies 

P t 1/ 4K > P + l - K for every P and K. 

Now, to minimize P + 1/ 4K with respect to x~ choose P = K. That 

is, under the assumption that P _;: K. min max !bias (u) jis achieved 
X U · 

by making P as small as possible; namel:y-$ P = K. Then for this 

design 

(ii) 

maxjbias (u)!= !bias (-l/2K) I 
u 

= 

p < K 

i *1 jd • 

Similarly, for this condition we have two possibilities 

( 4. l) 

( 4. 2} 

I ' ! I -·, u = 1: I bias ( 1) = jK + l - PI 1d ,, 

= l, K + l = P) I d ,:, l 
I , • 

u = -1/ 2K: I bias (-1/ ZK} I= I( .. 1/4K}'- P !Id *I 
= ( p + 1/ 4K) I d ,:1. 

~:< 
Equating the coefficients of d in (4. l) and ( 4. 2} 

P + l/4K = K + 1 - P 



2P = K + l "" 1/ 4K 

P = (4K 2 + 4K - 1)/SK, 

we have 

I bias (l) I = I bias ( .. 1/ ZK) I 
= [(4K 2 + 4K + l)/8K] I d*1. 

For O < P < (4K 2 +4K-1)/8K 

which implies 

? 
K + 1 - P >K + 1 - (4K- + 4K ... l)/8K 

= (4K 2 + 4K + l)/8K 

= (4K 2 + 4K - 1}/8K + l/4K 

> P + .1/4Kj 

I bias ( 1) I > !bias (-1/ 2K) I ~ 

For P > (4K 2 + 4K - l)/8K 

which implies 

P + l/4K > {4K 2 + 4K ... 1)/8K + 1/4 K 

= (4K 2 t 4K + 1)/SK 

= (K + 1) - (4K2 + 4K -l)/8K 

I bias (-1/ZK) I > lbias (l) I . 

Hence, for O < P < (4K 2 + 4K - l)/8K 

mif'x lbias (u) I = I bias ( 1) I 
= (K t 1 - P) I d i ~ 

2 ' and for P > (4K + 4K -l}/8K 
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Thus, for P < 

design for which 

and for this design 

rr{rx I bias (u) I= I bias (-1./ 2K) I 
= (P + 1/ 4K) Id j 

the min max jbias (u) j is attained by the 
X U 

m&x I bias (u) I = [ (4K2 + 4K + 1}/8K] I d *I . 

The next task will be to compare the maximum bias which arises 

when we use the mJn ri_ax lbias (u) j design in (i} and the maximum 

bias which arises when we use the mJn rn,r-x jbias (u} I design .in (H )~ 

In part (i) 

and in part (ii} 

Assume 

then 

2 i max I bias (u) I = (4K + 4K + l}/8K Id 
u 

(4K 2 + l)/4K < (4K 2 + 4K +l}/8K, 

2 Z 
8K + 2 - 4K - 4K - l < 0 

4K 2 - 4K + 1 < 0 

{2K - 1) 2 < O • 

Thus. we have a contradiction, which implies 

"(4K 2 + l)/4K ~ (4:t<2 + 4K + l)/8K for every K. 

2 
Hence, for (:Ex + K :Ex ) > O, min max I bias (u) I is achieved by 

X U 
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and for this design 

(4. 3) 

lb. maxi 1as 
u (u> I 

--, 

= {4K'' + 4K -1};8K~ 

lb. = I 1as 

I ,;.. 
u I 
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Next, we must compare this rnaxh:rn:i.m with the rnaxirnum obtained 

in case 2: narnelyr-

( 4 •. 4) * mftx I bias (u) I = ( l + K) Id j • 

Equating the coefficients of * d 

( 4.K 2 + 4K + 1)/ 8K - 1 + K 

K ::: (,fl: = 1)/ 2 • 

The results of this section can be sl:;.rnmarized as foilows. For 

min max '!bias {u) j is attained by the design 
X U . 

such that 

for which 

:M(l,4)=m:xlbias(u)!=(l+K) Id*!. 

For K > ( "12 - l}/ 2., m~ rr1x I bias (u) I is attained by the design 

such that 

for which 

M(l, 4} = mg-x I bias (u) ! = [ (4K 2+-4K+l)/8K] j d 11 . 



4.L 4 True Model: y::: e 1x + £ 

Results are the same as those obtained. in section 4. l. l. That is,, 

-, 
{., 

4. L 5 True Model: y::: f 2x + s 

, ·-; 

I b . ( ) i I L, ,.,. ,_ 'NI'~ ' . 1as u 1 = u = l, x / IL:; I • ... 

Results are the same as those obtained in. section 4. l. 2. That is~ 

4. l. 6 
2 

True Model: y = g ,x + g 2x + £ 
.l ~ 

* Assume g 1 = g - ii ug {K an~ gz = .L>. ' > 0). 

Results are the same as those obtained in section 4. l. 3. That is~ 

for O < K ::_ ( ,Jz - 1)/2, min max I bias (u) I is attained by the 
X U 

de sign such that 

for which 

7 
(:z;x + K :Ex,..) / N = O, 

I *1 M(l,?)=(l+K) g ;• 

47 

For K > (tfz - 1)/ 2, . m~ mJ-x jbias (u) I is attained by the design such 

that 

2 · 2 
(:Ex+ KEx )/N = (4K + 4K ..;J)/8K~ 
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for which 

f (4K2 .l 4u• + 1)/oK] I ,:cl M( 1~ ?) = ,. - ,· . J;'l,. "" 1 O~'>. g i 

--·-------
If the true model contains only a constant terrnw only a linear term$ 

or only a constant term and a l.inear terme then 

I bias (u) j = 0, 

If the true model contains a quadratic termi then we have 

where 13 is the coefficient of the quadratic term. It has been shown by 

Folks (3) that the min max !bias {u) I, is achieved by the design such 
X U ' 

that 

:Ex= 0 

2 
Ex = N/2 p 

for which 

M(Z, . ' J, ·- I t3 I I z (j = 3, 4, 6, 7) • 

Thus, 

M(2, 3) = !c31 /z 
M(2, 4) = lcizl /2 

M(2, 6) = 1£2 I I 2 

M(29 7) = I gzi/ 2 . 

4. 3 Assumed Model: 
2 

-1 < X < l y = C + c 2x + £5 
0 

If the true model contains only a constant term, only a quadratic 



term, or only a constant term and a quadratic term, then 

i bias (u) I = 0 • 

I£ the true model contains a Linear term, then 

where 13 is the coefficient of the linear term.. Although a min max 
X U 

I bias (u) I design could not be obtained in general, a solution ~as 

determined by restricting the design points to x = -1 11 x = O, and 

x = 1. Under this restriction, the bias is given by 

j bias (u) I = lu 2 "Zx/'71,r.2 "'u II f:, I. 

For this bias, we see in chapter 3 that the min max !bias (u) ! is 
X U I 

49 

achieved by the design such that :Ex = 0~ for which ~ax lbias (u} I= l.131-

Thus, we have 

M ( 3, 2) = I b 1 I 

M(3, 4) = !d 1l 

4. 4 Assumed Model: y = e 1x + £, -1 < x < 1 

4. 4. 1 

Case 1: 

True Model: y = a + £ 
0 

I bias (u) ! 
:Ex < 0 

max I bias (u) I= I bias (l} I 
u 



Case 2: Ex = 0 

Case 3: :Ex > 0 

:max !bias (u)!. =lbias(!l)I 
u 

== j bias (0) I 
= I a I 

I 0 

mux I bias (u)! = lbias (-1)1 

= I -I; x/ Dt 2 - l ii a I 
0 

Therefore, the min max !bias (u) I is achieved by the design such 
X U 

that Ex = O, for which 

4.4.2 

M(S, 1) = i a I . . 0 

True Model: y = b + b 1x + E 
. 0 

!bias (u)I = lu:Ex/Ex2 -1llb I. 
0 

Results are the same as those obtained in section 4. 4. 1. 

M(5, 2) = I b 0 I 

4.-4. 3 True Model y = c 0 + c 2x 2 + t 

* * Assume c 0 = c and c 2 = Kc (K > 0). 
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Case 1: 

I bias (u) J = jKu 2 - [(Ex+ KEx3)/Ex2 ] u + 111 c *I . 
3 

(Ex+ K Ex ) < 0 

max I bias (u) I = I bias ( 1) I 
u 



n~x l bias (u) I -- l K = [ (?-k+KDc3)/lk2] + l I Jc '~l 
I *i > ( l + K) IC i· 

j .J... . lb. ( \I lb' ,, 1\1 max 1a s u = 1a s , ~· J. 1 I U ' I J \ . 

' :!.,:;. 
::: { l + K) I c · 1 \ ' l i 

Case 3: (~x + K z;x3) > 0 

mfx J bias (u} I = !bias (·d) I 
I 3 I ? -11 ::,, = K + [(:.Th:+Kik') :E.x'"'] + 1. ! c l . 

>(l+K) !c,I 
I • 

Therefore, the niin mz1x jbias (u) I is achieved by the design such 

3 
that ~x + K ~x = 0~ for which 

M(5, 3) = ( l + K) 

4.4.4 True Model: y 

* ::'jZ 
Assume d0 = d and d 2 = Kd (K > 0) • 

2 3 2 2 >:·· 
loias (u) I = IK u = [(Lx+KEx )/~ ]u +1 j Id l . 

Results are the same as those obtained in section 4. 4, 3. 

4.4.5 

Case 1: 

M(5, 4) = ( l + K) 

2 
True Model: y = £ 2x + £ 

>:< 
d I . 

I bias (u)I = lu ~x3/Ex2 - u 21 l£ 2 1 

:E x 3 < 0 

mJ-x I bias (u) I= I bias ( 1) I 
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Gase 2: 

-Case 3: 

max i bias (u) I::: j::E x 3/:E x 2 - l u . 

3 
:Ex = 0 

max l bias (u) I = I bias (! J} l u . 

maxjbias (u)!= !bias (·-l)I 
u 

I l. f l 
-zl 

= !:Ex3/Ex2 + 111 £2 1 

> ! £2 l 

Thus~ the rnJ:n ~ax I bias (u) I is achieved by the design such that 

3 
:Ex = O, for which 

4. 4. 6 True Model: 
2 

y ::: g l X + g 2x + E 

Results are the same as those obtained in section 4. 4. 5 

M(5, 7) = I g2 I . 

4.5 
2 

Assumed Model: y = £2x + e, -1 < x < 

4. 5. l True Model: y = a + £ 
0 

1 
J, 

I bias (u) I = I u 2 :E x2/EK 4 - 1 l I a 0 l, 

Case 1: ~/ /"DI:. 4 > 2 

max jbias (u) I -- jbias C: 1) I 
u 
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mJ-x !bias (u) I::: l~x2/l;x4 - 1 I la0 I 

> I ao I • 

max lbias {u) I = !bias (0) I 
u 

= la I . 
0 

To min max lbias (u)I, choose the design such that 
X U 

~x2 < 2 ~x4 , 

then 

M(6, 1) = I a 0 j • 

4.5.2 TrueModel:y =b +b 1x+e: 
0 . -

* * Assume b0 = b and b 1 = Kb (K > 0). 

I bias (u) I= lu2(~x2 + K Ex3)/Zx4 - Ku -1 j lb* j • 

Case 1: (E x 2 + Kl:: x 3) < 0 

Case 2: 

Let 

mJ-x !bias (u} I = I bias ( l) I 

2 3 (~ + K Ex ) = 0 

= I 1 + K -(lk2 +KEx3)/E x 4 1 I b *I 
* > (l+K) I b I . 

mftx lbias (u) I= I bias (1) I 
. * 

= ( ! + K) lb I . 
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Let 

f{u) = A u 2 .. Ku - 1, 

then the minimum of f(u) is attained at u = K/2A. 

(i} 0 < A < 1 • 

For this condition, we have 2 possibilities 

u = 1: I bias (1) I =IA - K - 1 l I b *I 
= ( 1 + K - A) I b *1 . 

u = K/2A: jbias (K/2.A) I= (K 2/4A + 1), jb *I . 
To determine which bias is the largest& assume 

2/ K 4A + l = 1 + K - A. 

K 2 - 4 A K + 4A z = 0 

2 
(K - 2A) = O, 

then 

mfx !bias (u) I = jbias (K/2A) ! 

= (K 2/4A + l) jb *I for every K > O. 

min max I bias (u} I = <¥,. 2 / 4 + 1) I b *I . 
O<A< l u 

(ii) A > 1 

Consider the two possibilities 

Suppose 

u = -1: I bias ( -1) I = I A + K - 111 b *I 
= (A + K -1) lb *j. 

u = (K/2A): I bias (K/2A)I = (K 2/4A + 1) lb j . 



4 A z + 4(K - 2) A = K 2 =: O. 

Then 

A (K 2, I- · [ ,-:~K~4K-' 4, ]' /-. 
=: - ' ' - }/ I,., + "~ L._, -· + - i t:.~ 

which implies we must consider which of the two possibilities is 

maximum when 

,-~' 
1 < A < - ( K - 2) / 2 + [ ,,J 2K . = 4K t 4] / 2 ~ 

and when 

r "'·- --
A > - ( K - 2) / 2 + [ ;'I 2K.... - 4K + 4] / 2. 

For l < A < = ( K - 2) + [ J~-::-:;,K + 4] / 2, 

max r K2/4A + u l . 

which is minimum when 

c~a··---·-·-· 
For A >-(K=2)/2 +[•v2Kt:.=4K+4]/ 2~ 

, 2 I 

lj=K/4A+l1 

') 

max[K""'/4A+l, A+K=l]=A+K-1. 
u 

which is minimum when 

To summarize, we have 

(i) A < 0 

~1.fx I bias (u) I > ( l + K) ! b >:<J, 

(ii) A = 0 

(iii) 0 < A < l 

. I , . 
min max l bias 

A u 
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(iv) A > 1 

min max I bias (u) I= ( K/ 2 +(.J2K 2 - 4K + 4)/ 2 Jib >:<J • 

A u 

Comparing these four quantities we find that for O < K < 8~ the 

mJ_n mu.3-x I bias (u) I is achieved by the design such that 

2 3 4 . t ~ ·2 ~. . · 
(::EX + Kk X } I ::EX = -(K - 2) I 2 + (· 2K - 4K + 4) I 

for which 

For K > 8, the min max !bias (u) I is attained by the design such 
X U 

that 

for which 

4. 5. 3 

I . >',<l 
M(6, 2) = ( 1 + K) b l • 

2 
True Model; y = c 0 + c 2x + £ 

Results are the same as those obtained in section 4. 5. 1. 

M(6, 3) = l c j • 
I 0 

4.5.4 

Assume d0 = <l 1 = d\ then 

I bias (u) l = lu2(::Ex 2 + ::Ex3)/:Ex4 = u - 1J ld*J. 

Results are the same as those obtained in section 4. 5. 2 with K = l. 

M(6 ~ 4) = [ ( l + 1\(2 )/ 2] l d * j • 



4. 5~ 5 True Model: y :::: e 1x + t: 

Case 1: :Ex3 < 0 

3 
·· Case 2: :Ex = 0 

3 
Case 3: ~ x > 0 

max lbias (u) I = jbias (1) \ 
u 

= jl - Ex3/:Ex4 ! jeiJ 

> Jed • 

rnfl'.x I bias (u) I = jbias (! 1) I 
= I e 1 I ~ 

mJ-x jbias (u) j ;: ibias (=1) I 

= I - 1 - :E x 3 / :Ex 4 11 e 1 I 
> I e i l . 

Thus, the rn;n rn8'x I bias (u) j ,is achieved by the design such that 

3 
~ x = O, for which 

4. 5. 6 

Results are the same as those obtained in section 4. 5~ 5. 

M( 6' 7) = I g l I . 
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If the true model contains only linear and, or quadratic terms, 

then 

I bias (u) I = O. 

If the true model contains a constant term, then we have 

I b' I 1as 

where 13 is the coefficient of the constant term. Consider only the 

class of designs which have design points x::: -1, x = O, and x=l, 

then 

I bias (u) I= I u 2 - l 1113 I . 

Since the bias function is independent of the design points, every 

design achieves the min max fbias (u) j. for which 
X U 

M(7, 1) = I a I o' 

M(7, 2) = Ibo I 
M(7, 3) = lcof 

M(7, 4) = Id 1· 0 

4. 7 Determining the Min Max Model 

We now have the maximum biases that arise when we assume the 

wrong modei. Before we can compare these n1aximurn biases, we 

must express each of the coefficients of the various models in terms 

of some common element. Suppose then that we know that the true 

model has a function vlaue of a 0 + £ at x = o(-1<6<0; 0< 6 ~ 1) 
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Under the assumption that K = 1$ we have 

,•, ,-
b -- bl 0 

b = 

:,:.: 

C - c2 0 
= C 

;}: 

d = dl 0 
- d2 -- d 

Expressing each of the coefficients in terms of a common elen1ent~ 

we have 

( l) b = 
0 

( 2) C = 
0 

{ 3) d = 
0 

( 4) el = 

(5) £2 ·-

(6) 

a 

bl 
0 = -

( 1 + o) 

a 
0 

C,., = -"I""'--= 
t. 

( 1 + 0 C,} 

a 
dl d 0 = = ---·""T' 2 l + 6+ 0~ 

a 
0 ----

6 
a 

0 

02 
a 

0 
= -----,-

6+ 6""' 

We wiH now compare the maximum biases that arise for each of 

the assumed models. 

4. 7. l As surned mode 1: y = a + £ 
0 

a 
M( ls 2) jb 11 0 

= = 
h + 0 

M(l, 3) -· 
a 

! ! 0 

1/2 !C2! ~l + 021 
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;, ! 9 i a I 
M( 1~ 4) 9/8 Id . 0 = I ::: 

8 I 1+0+0 2 I 
la I 

M( 1, 5) I e 1 I ! 01 
::: = -·----

Io I 

M( 1~ 6} 1/2 Ir 21 
laoi 

= = 
2 I 0·21 

9 1a I 

M( 1, 7} = 9/8 Jg*I = 
ol 

~ 
Case l: Compare M( 1, 2} with M( l, / \ 

0 i • 

Assume M( l, 2) = M( lt 6)~ then 

l l 
. 26 2 --

J. + 6 

6 = 

For = l < 6 < = 1/ 2 

la j 
I o, 

> 

M( l, 2) > M( l, 6) . 

For -1/2 < 0 < 0 and 0 < 6 < l 

jao I 
> 

I a I ol 

z 102 I 11 + al 

M( 1, 6) > M( 1, 2) 

Case 2: Compare M( l, 3) with M( l, 6). 

Since o2 < l + 6 2, we have 



Case 3: 

la I . 0 

-z-1--·~-
' O I ' ' 

> 
!a ' 
1 ol -·---

2 jl + o2! 

M(l, 6) > M(l~ 3) 

Compare M(l, 4) with M(l, 6}. 

Assume M(l, 4) = M(li, 6)i then 

2 I 1:,.~ ... 2 .. 26 = 8 9 ( l + () + 0 } 

2 
So - 46 -4 = O 

o = 2/ s ( 1 : "n ) . 
For 6 >2/5(1-,../6) 

lao I 
7j?j-

q la i 
' I o l 

M( l, 6) 

For o < .2/5 ( l ~, 1\/b} 

> M( 1, 4) , 

Case 4: 

Assume 

For 0 < 

For 1/ 2 

9 I a j 
I ol > 

M(l, 4) > M(l, 6). 

Compare M( li 5) with M( 1, 6) • 

(i) O < 6 < l 

M(l, 5) = M( 1, 6). then 

20 2 = 6 

6 = 0, 1/ 2. 

6 < 1/2, M( 1, 6) > M(l, 5). 

< 6 < 1, M( 1, 5) > M( 1, 6). 
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for every 6 • 



(ii) -1 < 6 < 0 

Assume M( l~ 5) = M( 1, 6), then 

6 = o, -1/ 2 • 

For -1. < 6 < -1/2, M(l, 5) > M{l~ 6). 

For -1/2 < 6 < O, M(l, 6) > M(l~ 5). 

Case 5: Compare M{ 1, 6) with M( 1, 7) • 

(i} 0 < 6 < 

Assume M(l, 7) > M(lt 6), then 

6 > 4/ _fj • 

For 0 < 6 < 4/5, 1V1( l, 6) > M(l~ 7) . 
For 4/5 < 6 < 1, M(l, 5) > M(lf 

, \ 

IO J • 

(ii) =l < 0 < o. lo + 021 

Assume M(lf 7) > M(l, 6), then 

2 o2 > -8/9 (6+ 6 2) 

o < .. s/13. 

-

For -1 < 6 < -8/13, M(l, 7) > M(li 6) • 

. For -8/13 < 6 < O, M(lf 6) > M(l, 7). 

-(o + 62} 

Case 6: Compare M( 1, 2) and M( l, 5) in the interval 

-1 < 6 < -1/2. 

Assume M(l, 2) > M(l, 5), then 

- 6 > l + o 

6 < -1/ 2 • 
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Therefore 1v1( 1$ 2) > M( 1; 5) for -1 < ci < -1/2, 

Case 7: Compare M( l, 2) with M( 1, 4) in the interval 

= l < 6 < -1/ 2. 

Assume M( 1, 2) = M( 1, 4). then 

') 

8 o"' .•. o - 1 = o 

6 = 1/ 16 ( l ~ ). 

Thus. for 6 < 1/ 16 ( 1 - "133 ) • M( lf 2) > M( l, 4) which implies 

M(l, 2) > M( l, 4) for -1 < 6 < -1/2, 

Case 8: Compare M( l, 2) with M( 1, 7) in the interval -1< o <-8/ 13. 

Note that 

which implies 

Therefore 

M(l, 7} > M(l, 2). 

Case 9: Compare M( 1, 5) with M( 1, 7) in the interval 4/5 < 6 _:: l. 

Assume M( l, 5) > M( 1, 7), then 

8/9 (6+ o2) > o 

6 > 1/8. 

which implies that M( 1. 5) > M( l. 7}. 

To sumrnarize, the maximum bias which arises when we assume 

the model 

is given by 

y = a + e: 
0 
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M{l, 7) in the interval -1 < 6 ~ -8/13 

M(l, 2) intheinterval -8/13<5<-l/2 

M(l, 6) in the interval -1/2 < o < O; 0 < 6 < 1/2 

M( l, 5) in the interval I/ 2 < 6 _::: 1. 
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Similar results can be obtained using the other assumed models in C. 

The following table gives the maxim,um bias that arises for each 

assumed model. The maximums are indicated for the various values 

of 6. 

TABLE I 

MAXIMUM BIAS THAT, ARISES FOR EACH ASSUMED MODEL 

~I 8 .8 1 l 1 1<6<.Jz ,n.<6< l -l<o<- - -r<a<-- I - .!... <o<o 0<:6< 2 - 13 :) - 2 I z. 2 - 2 2 -

hl (x) t E 9/8 lg *1 lbll 1/21£21 l/Z lf 2 I I e1 I i.:.eJI 
h-2(x) + .E 1/2 jg 2l 1/ 2 j gzl 1/21£ 21 1/21£21 1/2if2i l I 1/ 2,£2, 

** 

h 3(x) + E \gil I g 1 I I 
lg1 I I e1 I I e 1 i le 11 

h 5(x) + E \gzl lg2 I 1£21 :1£2 I If 2 l 1£2 I 
h 6 (x) + E lg1\ lg1 I lg1 I I e i 1 I e ii I I e 1 l 

h 7(x) + E lb I lb I lb! la I I a I I a I I I 
0 **o >!::tro **o **o 0 

YA denotes the assumed model. 

** denotes the min max model for that particular value of o. Recall 
X U 

that 6 is a point where the function value of the true model. is known to 



be a + 
0 

- b I ' y - -z\X} 

y - h 7 (x) 

y = h...,(x) 
I 

y = h 2(x) 

Thus~ for K ::: l, the min max model is given by 
X U 

+ € ::: b 0 +b 1x+E for -1 < 6 < -8/13 

-l· glx + 2 + for ,~8/ 13 < 0 < 0 £ ::: g2x £ 

+ £ g X + 2 
for 0 < 6 ,n. I 2 = g2x + £ < l 

+ £ = b + b X + £ 
0 l for ,.[z I 

I 
2 < 6 < l ,, 

Similarly~ if only the assumed models with one term are consid -

eredt the min max model is given by 
X U 

for every o • 

For K > 0, the min max models were determined for O < 6 < 
X U 

however, because of the large number of speci.al cases involving 

different values of K and 6~ the solutions will not be given here. 

In this chapter, we assumed a model h~ (x) + £ (i arbitrary), 
J.. 

1 • 
.!. ' 

when the true model was h.(x) + £ 
J 

. . _/. . ' 
(1 T JJ • For this combination we 

determined the min maxlbias (u) J design and the maximum bias M(i, j) 
X U 

for this design. This was done for each it j = 1, 2, ••• , 7s except 
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for i= j and i = 4. Then for each assumed model hk(x) + £ k arbi-

trary) we obtained the maximum M(k. j) with respect to j. Thus, 

we obtained six M(i~ j) values. The assumed model associated with 

the smallest of these M(ii j) values was determined to be the min 
X 

max model. 
u 



CHAPTER V 

AVERAGE VARIANCE OF THE ESTilv1.ATED RESPONSE 

In this chapter we will be concerned with determining the average 

variance of the estimated response y (up u 2), in the two-dimensional 

case, for any distribution of the total probability mass to the region of 

interest; namely, the square region 

and the circular region 

R 
C 

In either case, assume the model 

Although the average variance of y (u 1, u 2) has been determined 

previously by Folks (3), it was determined under the assumption that 

every point in the region of interest was assigned equal probability 

mass. That is, the density function of (up u 2) in the square region 

R was given by 

f(u 1,u2) = 1/4 

= 0 otherwise. 

In the circular region R , the density function was given by 
C 
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otherwise. 

Suppose, however, that we are more interested in making predictions 

in one subregion of R or R than in others. It may be that we 
C 

suspect the response will vary greater in one particular region; in 

which case, we might want to assign a larger proportion of the 

probability mass to this region. As: an example, assume the design 

points can be chosen anywhere in the square region R, but we are 

more interested in making predictions in the region about the origin, 

say the region 

Thus, we might assign probability mass equal to 1/2 to this region 

and probability mass equal to 1/ 2 to the region 

where R - R 1 denotes the points of R which are not in R 1• Hence, 

we would have 

f(u 1, u 2) = mass/area, 

= ( 1/ 2)/ 1 

= 1/2 

f(u l' u 2) = (1/2)/3 

= 1/6 

f(u 1, u 2) = 0 otherwise. 
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Consider now some questions which might arise in connection with 

the distribution of the probability mass. How does the distribution of 

the probability mass to R or · R c effect the average variance of y(u1, u2)? 

Can the average variance of y(ul' u 2) be minimized or maximized with 
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respect to the distribution of the probability mass to subregions of R 

or Rc? Is the minimum average variance of y (u 1, u 2} with respect 

to the choice of design a function of the distribution of the probability 

mass? These and other questions wil.l be of interest in this chapter. 

To answer the question of how the distribution of the probability 

. mass to. R and Rc effects the average variance of y(u 1, u 2), con

sider the following theorems and corollaries. 

5. 1 Average Variance of y(u,1, ~} in the §guare Region 

R= [(u 1, u 2) I -1 _; ui s_ l; i = l, 2] and in the 

Circular Region Re=[ (ul'u 2) lu1
2+u 2 

2::. l] 

Theorem 5. 1 If the total probability mass M = 1 is assigned to the 

n subregions 

< u. < a.; j = l; 2) - R. l 
- J - l . ; 1-

1 

(i = 1, 2, . . . , n; R = cp, a = 0), 
0 0 

of the region R ~ then the 
j. 

average variance of y (ur u 2) over R is given by 

n 
ave var; (u 1,u2) = var ~ 0 +((1/3)(var ~1+var ~2)] :E M.(a. 2+a; 1

2), 
i= l l l 1- . 

n 
where M. denotes the probability mass assigned to R. and ~ M. = 1. 

l l i= l l 

Proof: Let 

be the area of R. (i = 1, 2, • . 
l 

, n; a = 0), then 
0 

= M./A. 
l l 

= K. 
1 

= 0 

(u l' u 2) E 

otherwise 

R. 
1 



is the density function of (u 1, u 2) in R. Thus, 

n a. ai ,.. 
ave vary (u 1, u 2) = _E [ f 1 f var y(u 1, u 2)fi(ul' u 2} du 1du 2 

1= 1 -a ... a. 
l l. 

n 
=·EK. 

i=l l 

n 

i=l 

n 

K. 
l 

A ~ ~ ~ 

+2u2 cov (130 ,(3 2) + 2 u 1u 2 cov (131,(3 2)] du 1du 2 

~ A A ~ 

+2 u 2 cov (130 ,(3 2) + 2u1u 2 cov (131~13 2)] d.u 1du 2 

...... 

2 - 4 ... 4 ... -,' 2 ... 
= :E K. [ 4a. var j3 + (4/3)a. var 13 1+ (4/3)a. var [3 2]- [ 4a. 1 var ~ 

i= 1 l l O l l 1- 0 

4 ... 4 ... 
+ (4/3}ai_ 1 ·var 13 1 + (4/3)ai-l var f3 2] 

= ~ K. [ 4 var [3 (a. 2- a. ··12) + ( 4/3)(var ~l + var [3 2)(a. 4 - a-. 1
4)] 

i=l l O l 1- l 1-
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n 
= l: 
i= 1 

M. ... 2 2 , .... -... 4 4 
2 1 z [ 4 var f3 (a. -a. 1 )+(4/ 3)(var 13 1+var (3 2)(a. ~a .. 1 )] 

0 l 1- 1 1-
4(a. - a. 1 ) 

1 1-
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n ... .... "' 2 2 
= ~ M. [var !3 + (l/3)(var [3 1 + var f3~)(a. + a_. 1 )] 

i=l 1 0 t:, l . 1-

=( ~ M.)(var ~ ) + (l/3)(var ~l + var !3z) ~ M 1 (a/,+ ai_ 1
2} 

i= 1 1 0 i= 1 

"' "" . "" n .. 2 2\ 
ave vary (u 1, u 2) = var 13 + (l/3)(var [3 1 + var 13 2) ~ M. (a. +a. 1 1 • 

0 i= 1 1 l 1-

This completes the proof. 

Corollary 5. 1. 1. For any subdivision of the region R and for any 

distribution of the total probability mass to these subdivisions, the 

the minimum average variance of y(u 1, u 2) ''.'vith respect to design is 

attained by taking N/ 4 points at each corner of R:~ 

Proof: From theorem 5. 1, 

"" ,, "' ... n 2 2 
ave var y (u 1, u 2) = var [3 + ( l/3J(var [31+var 132) ~ M(a. +a. 1 ). 

0 - i= 1 ,1 1 1-

To minimize this expression with respect to design, the quantity 

n 2 2 
E M.la. + a. 1 ) can be regarded as a constant. Thus, the average 

i= 1 
1' 1 1-

var y (u 1, u 2) is minimized by the design which gives simultaneous 

maximum precision on the [31s; that is, one which simultaneously maxi-

mizes all of the diagonal elements of X 1X and makes the off-diagonal 

elements zero. Proof of this is found in Tocher (8). Such a design is 

given by Folks ( 3). That is, take N/ 4 points at each corner of R. 

n 
Since ~ M.(a. 2 + a. 1

2) is a constant with respect to determin-
i= l 1 1 l-

ing the design which minimizes the average variance of y (u 1, u 2), the 

corollary is proved. 
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Theorem 5. 2 If the total probability mass M = 1 is as signed to the 

n subregions 

· (i = 1, 2, ... , n; a = 0), of the region R , then the average 
0 . C 

variance of y (u , u 2) over R is given by 
1 C 

~ ~ ~ n 2 2 
ave vary (u 1, u 2) = var 13 + [ ( l/4)(var 13 1+ var 13 2)] 2; M.(a. -I-a. 1 ), 

0 i= 1 1 1 1-

where M. denotes the probability mass assigned to R. 
1 1 

Proof: Let 

2 2 
A. = II (a. - a. 1 ) 

1 1 1-

be the area of R., then 
1 

= M./A. 
1 1 

::: K. 
1 

n 
and ~ M. = 1. 

i= 1 1 

= 0 otherwise 

is the density function of (u 1, u 2) in R c. Thus, 

2 2 
n a. "1a. -u 2 

n 

- ~ 
i= 1 

4K. 
1 

[ 1 1 = :E 4 I I £.(u l' 
i= 1 0 0 1 
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Make the following transformation to polar coordinates. 

Let 

u 1 = r cos a 

u2 = r sin s 

[au/a r au/a e lcos e -r sin e 
J = = 

3 u2/a r a u 2/a e1 !sine· r cos e 

2 + sin 2e) = r( cos e 

= r. 

Then we have 

n ZIT a. .,. ,, 2 ... 
ave var y (u 1, u 2) = ~l Ki f f 1 [ var 130 + r~ cos El(var 13 1) 

o a. 1 1-

= 

= 

n 
1: 

i=l 

n 
'l: 

i= l 

2 2 ... "' · .... 
+ r sin e (var 13 2) + 2 r cos e {cov (13d ·'3i))+Zr sin ~cov(l30 , 13 2)) 

2 ... ~ 

+ 2 r COS 8 sin 9 ( COV (l31,J3 2})] r dr d 9 

K. 
1 

ZIT 2 ... 4 2 ""' 4 -:, "" J [ (r /2)(var j30 )+{r /4) cos e(var 13 1)+(r /4) sin.:. S(var 13 2) 
0 

3 ... ... 3 -- ... .,.. 
+ {2r /3) cos e (cov (!3d~l))+(2r /3) sin 9 (cov (~,13 2)) 

K. 
1 

ZIT .... 2 2 .... · 4 4 2 
f [ (1/ 2) var f3 (a. -a. 1 )+( 1/ 4) var 131 (a. -a. 1 ) cos 9 

0 1 1- 1 l= 
0 

... 4 4 2 ... ,,. 3 3 
+ ( 1/ 4) var !3z(a .. -a. l ) sin 9 +( 2/ 3) cov rn ,f3.)(a. -a. l ) cos e 

1 1- o I 1 1-



.n- 2 2 .... 4 4 "' "" = 'E K. [IT(a. -a. 1 ) var 13 +(II/4)(a. -a. 1 )(var 13 1 + var 13 2) ] 
. ' 1· l 1 1"" 0 l 1-
1:;: 

n 2 2 2 2, ... 2 -Z 2 2 = :E (M./IT(a. -a. 1 ) )[ II(a. -a. 1 )var j3 +(n/ 4){a. -a. 1 ){a ta. 1 ) 
i= l 1 1 1- 1 1- 0 1 1- 1 1-

.... 
(var 13 1 + var (3 2) ] 

... ... n ... ... n 2 2 
ave var y(u 1,u2) = var j3 E M.t(l/4)(var !\+var 132) ~ M.(a. +a. 1 ) 

0 i= l 1 ' i= 1 1 1 1-

... n 2 2 
= var j3 + ( 1/ 4){var t\+ var 13 2) ·:% M.{a. +a. 1 ) 

0 i= 1 1 1 1-

Thus, the proof is established. 

A 

Consider now an upper bound on the average variance of y{u 1, u 2) 

with respect to the distribution of the probability mass .. 

... 
5. 2 Upper Bound on the Average V.ariance of y (up uz} in the 

Square Region R and the Circular Region Rc 

Theorem 5. 3 . For any division of R into subregions 

R. = [ (u 1, u 2) I -a. < u. < a. ; j = 1, 2] - R. 1 l 1 - J - l 1-

( i = 1, 2, . . • , n; R = cj>, a = O}, and for any distribution of the 
0 0 . 

total probability mass to these subregions, 

max ave var ; (u 1, u 2) < var ~o + (2/3)(var ~l + var ~2}, 
M. . 

1 

where Mi is the. probability mass assigned to the region Ri and 

n 
2; M. = 1. 

i= 1 1 
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Proof: By theorem 5, 1~ we have 

- "" = ""n 2 2 
ave var y(up u 2) = var j30 +(l/3)(var 1\+var 13.:!) 1: M.(a. +a. 1 ) • 

i= l l l 1-

In order to maximize the average var y (u 1 t u 2)~ we must maximize 

n 
2 2 

E M.(a. + a. 1 } with respect to M .• 
i= 1 1 l 1- 1 

Thus 1 the proof will consist 

of showing that 

max 
O<M.< 1 

- 1-

:EM.= l 
l 

n 2 2 .. 
[ ~ M. (a. + a. 1 i] < 2. 

i= l 1 1 1- ' 

Since each a. < 1, we have 
l 

2 2<2" . l? a. +a. 1 :torevery1::: i ... ,.,.,n. 
l 1-

Let 

, 2 , 2 
rnax ,a. -i- a~ 1 }i 

l<i<n 1 .. --

· f ~ ""'( 2 · ;\. . db . then the maximum o .~1 .m. a. + a. 1 , 1s atta1ne · y as signing 
1::: 1 l 1-.t 

probability mass equal to 1 to MK and probability mass equal to 0 
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to each M.(i =/: K), since every convex combination of a set of numbers 
1 

is less than or equal to the largest number in the set; that is, 

Thus, 

Corollary 5. 3.1 

max [ 2: M. (a. 2 + a. 1
2)) :5._ bK < 2. 

O<J\A.<l i=l 1 1 1 = 
- 1-

.. - .... 
max ave var y (u1,, u 2) < var f3 J(~3)(var 13 1+var {3 2) • 

M. 
l 

There exists no subdivision of the region R or 

distribution of the total probability mass to these subregions such 

that 

ave vary (u 1, u 2) = var f30 + var [3 1 + var 13 2 



Proof: Assu:me 

ave var y (u 1 ~ u:J 
J. "° 

-1 = trace (X iX) , 

then by theorem 5. 1, this implies that 

or 

n 
(l/3} :I: 

i= 1 
M . \1 a 2 + a 2) :::: 1 

1 i i-1 

; M. {a. 2 + a. 1 
2) = 3, 

l = l l l 1= 

But by theorem 5. 3 
n 2 2 

max [ ~l M. (a. +a., 1 )] < 2. 
O<M.<l 1- 1 1 1-

- 1-

Hence, we always have 

I -1 
=f trace (X 0X) 

Theorem 5. 4 For any division of the region Re into subregions 

(i = 1, 2; ... , n; a 
0 

= 0), and for any distribution of the total 

probability mass to these subregions 
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max ave vary (u 1, u 2) < var ~ d( l/2)(var ~l +var p2), 
M. 

1 

where Mi denotes the probability mass assigned to. Ri and ~Mi= 1. 

Proof: The proof of this theorem follows directly from the proof of 

theorem 5. 3 after noting in theorem 5. 2 that 

"" - n 2 2 
ave var y (u 1, u 2) = var !30 +( 1/ 4}(var !3 1+var 132) Z M. (a +a. 1 ) 

for the circular region R . 
C 

~ . l 1 1 1-
1= 
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Corollar;:· 5...: ~· l There exists no subdivision of the region R or ,_ 

distribution of the total. probability mass to these subregions such 

that 

( ) t-race (~'..: """-")- 1• ave vary ul, Uz, = V. ~VA."· 

Proof: The proof of this corollary follows from the proof of corollary 

5. 3, L 

Consider now the minimum average variance of y (upu2) with 

respect to the division of the region of interest and the distribution 

of the total probability mass to these subdivisions. 

5. 3 Lower Bound on the Average Variance of y (u 1, u 2) in the 

Square Region R and the Circular Region R 
C 

Theorem 5. 5 For the square region R, there exists a division of 

R into subregions 

(i = 

R . = [ ( u 1• u,) I -a. < u. < a. ; j = 1, 2] - R . 1 1 . (... 1 J - 1 1-

1, 2, ••. , n; R = 0), and a distribution of the tdtal probability 
0 

mass to these subregions such that 

where M. 
1 

min ave var y (up u 2) = var (30 , 

M. 
1 

denotes the probability mass as signed to R. and 
1 

n 
:E M. =l. 

i = 1 1 

Proof: From theorem 5. 1, we have 

- - - - - n 22 
ave vary (u 1, u 2) = var (3 +(l/3)(var !\+var (32) ~ M(a. +a. 1 ). 

0 i= 1 1 1 1-

The proof will consist of showing that there exists a division of R and 

a distribution of the probability mass to R such that 



Let 

n 
2_; 

i=l 

u. < £; 1 = lt 2; £ > 0 ] 
1 -

then a 0 = O, a 1 = £~ and a 2 = L 

Assign mass M 1 = l - t to R 1~ and mass M 2 = £ to R 2 . Theni 

Thus, 

which implies 

2 
:E 
i=l 

2 

= e(ltt)@ 

2 Z 
lim .l:1 M.(a. + a. , ) = 
£·-0 1= 1 1. l=.!. 

lin1 
£-0 

= 0~ 

min ave var y (u 1, u. 2) = var 
M. 

1 

t (l+e) 
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Theorem 5. 6 For the circular region R , there exists a division of 
C 

R into subregions 
C 

2 
a. ] • 

l 

and a distribution of the total probability mass to these subdivisions 

such that 

min 
M. 

l 

where M. denotes the probability mass assigned to R. and 
1 l 

Proof: From theorem 5. 2~ we have 

n 
E M. =l. 

i= 1 1 
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... ... ... n 2 2 
ave vary (u 1, u 2~ = var 130 +( l/4)(var 13 1+ var ~2) _E" Mi(\ +a. 1 ). 

1=1 l-

The proof follows from the proof of theorem 5. 5. 

Although we have established several properties of the average 

variance of y (u 1, u 2) for any distribution of the total probability 

mass to the region of interest, everything was done under the as sump"' 

tion that the true mode 1 was 

However, similar results for more con1plicated models can be 

obtained rather easily. 



CHAPTER VI 

SUMMARY 

Determining optimal experimental designs for particular assumed 

models and choosing an optimal model represent the essence of this 

study. Although optimal designs had already been determined by 

Kiefer (4) for a ge.neral polynomial model. the designs were only 

"within O{N~ 1) 11 of being optimal. Therefore, in Chapter III several 

different polynomial models were assumed, and using each assumed 

model, exact optimal designs were determined for each value of N. 

For the models which were assumed, the :i.~in mfi.x var y(u) design 

always yielded a maximum variance of y (u), say M 1, that was the 

same for all multiples of N when N is odd and a maximum variance 

of y {u); say M 2, that was the same for all multiples of N when 

N is even. That is, for N even 

and for N odd 

max var y (u) = 2/N, u 

max vary (u) = 2/(N-l}. 
u 

When N was even, the min max var y (u) design was always the 

same;namely, take N/2 points at x = -1 and N/2 points at 

x = 1. However, for N odd the min max var y (u) design was not 

always the same. 

Since the bias function depended upon the true model, there were 
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many designs which achieved rrin mZix lbias (u) I. Usually. for a 

given assumed model and a given true model~ various multiples of 

N produced different min max !bias (u) ! designs, 
X U 

Since only a small number of models were assurned, deterrDining 

exact optimal designs for an expanded number of model.s would be 

worthy of future work. 

Chapter II was devoted. to the specific problem of trying to 

determine the min max vary (u) designt the min ave vary (u) design, 
X U X 

and the ~n generalized var y (u) designi using the assumed model 

y :: 130 + \3 lx' + \3 .,xz + s l ,., 

x. < l; i ::: l ,, 2] f with N e qua 1 
1 

to 3. It was determined that the variance of the estimated response 

at each of the design points is L Also determined was the fact that 

the maximum variance of the estimated response occurs at one or n-1ore 

corners of the square region R. However, there still remains the 

problem of showing that the 3 design points must be on the boundary 

of the square region R in order for the design to achieve min rnax 
X U 

vary (u). Under the assumption that the design points had to be on 

the boundary of R. an empirical investigation yielded a de sign that 

achieved min max var y (u), with 
X U 

max var y (u) = l. 42. 
u 

The design consisting of the 3 corners of the largest equilateral 

triangle inscribed in the square region R yielded a maximum 

-variance of y (u) equal to l. 57, Thus, this design was rejected 

in favor of the design which produced a maximum variance of y (u) 
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equal to L 42. 

Since there is always some sort of risk involved in choosing a 

rnodelt an attempt was made in Chapter IV to try to determine which 

model should be fit in order to minimize some form of the bias. A 

restricted class C of models was assumed and for each of these 

models, the maximum biases were determined using the other models 

in C as the true model, For each of the assumed models, one of the 

true models had the largest maximum bias. These maximum biases 

were compared to determine the minimum one. The assumed model 

associated with this bias was chosen as the min max model.. Certain 
X U 

assumptions had to be made in order to compare the maximum biases. 

The first assumption was that we knew that the true model had. a 

function value equal to a + E 
0 

at x = i'f) where -1 <fl <O; O<i!. < 1. 

The second assumption was that the coefficients in each assumed 

model could be expressed as a multiple of one another. Under the 

as surnptions 

l) ~l < P. < O; 0 < i!. < l 

2) coefficients in assumed model are equal, 

the details of determining the min max model were shown. Also, under 
X U 

the assumptions 

l) 0 < P. < l 

2) coefficients in assumed model. can be expressed as 

a multiple of one another! 

the details of determining the 13tin :rwx model were worked out but 

not shown due to the large number of special cases created by £ and 
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K, the constant involved in expressing the coefficients of the assumed 

model as multiples of one another. The details were also worked out 

for aU but a few cases when -1 < i. < O, 0 < i < 1, and the 

coefficients in the assumed model were expressed as a multiple of 

one another. It appears feasible that future work could produce a 

more reali.s.tic min max model by increasing the number of models 
X U 

in the class C and by relaxing the assumptions somewhat. 

In chapter V several properties were determined concerning the 

average variance of the estimated response in the two-dimensional 

case. The model 

was assumed. The first property established was the average variance 

of ihe estimated response over both a square region R and a circular 

region R for any distribution of the total probability mass to n sub
c 

regions of R and Rc. Next, the min ave var y (u) with respect to 
X 

design was. determined for any division of R and for any distribution 

of the total probability mass to these subdivisions. It was shown that 

the min ave var y (u) is achieved by taking N/4 points at each corner 
X 

of R. Also determined was an upper and lower bound on the average 

variance of y (u 1, u 2) with respect to the distribution of the probability 

mass. For the square region R 

m~: ave vary (u) < var ~ 0 + (2/3)(var (3 1+var (3 2) 

min ave var y (u) = var (3 0 
Mi 

where Mi denotes the probability mass as signed to R. . For the . 
1 

circular region Rc 



~:x ave vary (u} < var 13 0 +(1/Z)(var ~ 1+var ~ 2} 

min ave var y (u) = var 13 0 
Mi 

Since an properties established were under the assumption that the 

true model was 

future work could be devoted to establishing sin:iilar properties for a 

larger class of models. 

Kiefer (4} indicates that for the two-dimensional case, the min 
X 

m,&-x var y (u} de sign as signs measure a. to each corner of the square 

region R, .measure 13 to the midpoint of each of the 4 edges of 

R, and measure y to the center of R, where 

a ::: O. 1458 

13 == o. 0802 

y ::: 0.0962. 

Since ·it would be an impos sibie task to divide up the sample in this 

manner for reasonable sample size, an investigation was made to 

determine how to divide up the sample among the 4 corners of R 

in order to achieve min max var y (u), min ave var y (u), and min 
X U X X 

generalized vary (u). All of these optimality criteria are satisfied 

by the foll.owing designs. For sample size N=4K(K = 1, 2, .•. ) , 

K points should be at each corner of R. For sample size N == 4K + l 

(K::: 1, 2, ... ), K points should be at any 3 corners of R, and 

(K + 1) points should be at the remaining corner of R. For N = 4K+2 

(K = 1, 2, •.. ), one design indicates that K points should be at 
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x. = (-1, 1) and x = (lt -1}, and (K + 1) points should be at x=(-1, -1) 

and x=(l, 1). For N = 4K+3(K=0, 1, 2, .,.), (K+ l)points 

should be at any 3 corners of R and K points should be at the 

remaining corner. Relaxing the restrictions somewhat, an attempt 

was made to determine optimal designs using the 4 corners of R, 

the midpoint of the edges of R, and the center of R as design points, 

but no results could be obtained. 



( 1) 

( 2) 

( 3) 

(4) 

(5) 

( 7) 

(8) 
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