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CHAPTER I

INTRODUCTION

1.1 Description of the Problems

Many articles have appeared in the literature concerning the
problem of determining opiimal designs with respect to certain
criteria once a particular model has been assumed; however,

&

hardly any work has been dévoted to

ing écs*gns that are
optimal for general sample size N. In determining optimal designs
for an experiment, it is usually assumed that the number of design
points N can be divided in any desired manner. This assumption
can not always be met. Thus, we are faced with the problem of
selecting the design points so that the design remains optimal in
the sense of certain criteria for all values of N. Ché.pters I and
I1I will be devoted primarily to this problem, Specificérlxiy, chapter
II deals with the problem of tryiné to determine the design that

1

will minimize the maximum variance of the estimated response

when we agsume the model
= - X, +B,x,+ £,
EAL PSS b T
2 ' ; . . .
where ¢ {0, ¢ ), and we only have three design points. Chapter
III deals with determining exact optimal designs for general sample

size N.

Another problem in the area of response relationships which



is of major importance is the problem of deciding which model
should be assumed, There are usually several risks involved in
the select_ion of a2 model. In chapter IV some funétion of the bias
is used as the risk functién@ A model is then selected from a
particular class of models which will minimize this risk function.
Chapter V will consider some methods of deﬁé_rmining an
average variance of the estimated response in the two-dimensional
case for any distribution of the total probability mass to the region

of interest when we assume the model

f we havé reason to believe that the sfa.ria.zlce of :fféspgnsa will be
different in one particular subregion than in ansther, we may want
to assign a larger proportion of the probability mass to this region,
The average variance of the estimated response over both a square
region R and a circular region Rc will be derive& in this chapter.
The minimum average variance of the estimated response with
respect to the division cf. R and RC and the dist.ributioh of the
total probability mass to these subdivisions is also determined
Other results concerning the average variance of the estimated

response are obtained.

1,-2 Definitions and Notation

The design points are the points in a p~dimensional space
where the observations are to be taken. The p-dimensional space
consi.sting of all possible desigrﬁ points will be called the factor space.

An experimental design will be defined as a procedure which indicates



where the design points are located and how many observations are

to be taken at each design peint.
In this thesis we shall consider only one and two-dimensional

models. In the one=-dimensional case, the response will be given by

< x < 1 and f.(x) is a real valued function of x. The

where =1

design matrix for N observations will be dencted by

-
fl(x,i} f;{xg) . £K(x1)

X = fl(xj} fZ:“ZJ} N 'EK{Xj)
f. {x, =) . o . (x
) by fpcbxpg)

Let u be a variable point in the one-dimensional factor space. Also,
iet the vector U = {fl(uj) fz(uj) . e e fK’uj)} be the jeth row of X.

In the two-dimensional case, the response will be given by
£ m -

k
= = , 1. 1. .
y z alf (xl) + i;EkH alfl(xz) + ijﬂ alfl(xlk XZ) + g

Y= ! Mo (X, . %
U [fl(uj l)fz(ujl), . °fk(uj 1)£k+1(“1j2)” . 'fﬂ(ujz}f. -i-l‘xj 1e sz)m . °fm(xj 1? sz)]

be the j-th row of X, where
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The model in either case is given by Y = X8 + ¢, where B is a
vector of the ai"s,' The response at any point u in the factor space
is estimated by

y = Up

U (XK %y,

where [S is the least squares estimate of §.
The variance of the estimated response, denoted by var 1; (u), is
given by
var v (u) = UXX)" Ul
In this thesis 0‘Z will always be considered equal. to unity. The
absolute value of the bias of the estimated response, denoted by
! bias (u) { , 1s defined to be
| bias (w) | = |E[y()] - Ely]] ,
where y{u) is the response at u.
The following optimality criteria will be considered. We will
want to find the design that will:
1) minimize the maximum variance of ;:’ (u), denoted by

-~

min max var u
in m: y (u)

-~

2) - minimize the average variance of y (u}, denoted by

min o var y(u) [£f(u)] du



3} minimize the maximum absclute value of the bias of y{u)
which arises from fitting the wrong model, denoted by

min max | bias (u)]
X u N

-~

4) minimize the average absolute value of the bias of y {(u},
denoted by min [p jbias (u}} f(u) du

-~

5) minimize the average bias of y{u) squared, denoted by

rr}}{in fR [biasz (u}] £{u) du.

1.3 Review of the Literature

In the area of response relationships, & rather detailed review
E2

2}
63
J

%

of the literature through 1958 has been preswﬁ:ei by Folks (3), Since
1958 a number of articles };La.ve appeared which approach the optimal
design problem from a probability measure standpoint, Such is the
case in articles by Kiefer (4), (5), Kiefer and Wolfowitz (6}, (7}, and
Aitchison (1). Further work in the area of optim-ai designs has
been presented by Box and Draper (2).
Although much work has been done to try to determine optimal
designs, usually cne of the following conditions is assumed:
1)  the number of design points can be divided in any
desired manner
2} the optimal design obtained is only optimal to within a
given approximation of the true theoretical optimal .design.
The latter is the case in the articles by Kiefer {4}, (5), Kiefer and
Wolfowitz {6), (7), and Aitchison {1). In contrast, Folks (3), approaches
the problem of determining optimal experimental designs for variocus

criteria by considering two cases; namely, the case where the number



of design points N 1is even and the case where N is odd. By this
procedure, exact optimal designs were determined in the one-dimen~=

.

Qs

sional case for the following criteri

(i} min max var y {u)

where var y(u) is the variance of the estimated response at u. Also,
exact optimal designs for bias and mean sgusre error considerations
in the one-dimensional case and for variance and bias considerations

3 ‘
3

hen the number of

o
8
t=2o
&
[
o

in the two~dimensional case were deter:
design points was a certain multiple of four.
2
In the past few years, considerable eifort has been put forth by

Kiefer (4}, (5}, and Kiefer and Wolfow

termine optimal
designs for existing criteria and to determine new criteria of gocdness,

In order to present a summary of their work, it will be necessary to

introduce some definitions and notation, Until specified, all work will

be concerned with the cone~dimensional case, In the following situa-

tions the model is assumed to be

where fl” e . ey are linearly independent real - valued functions.

£
A design is a discrete probability measure which “smgns to each point

in the sample space a measure equal to an inte al multlple of N 1.

It was established by Kiefer and Wolfowitz (7) that the criteria of
optimality

-

(1 min Iax Var 4 {u), and
X u



(2} m}%n gen var ; {u)

are equivaient when all probability measures are considered rather
than just integral multiples of lee Optimal designs in the sense
of (1) and {2) above were determined when the inference about the
regression coefficients concerned 35 of the K coefficients, where
S =1, 2, . . . , K, and when the inference concerned the entire
regression function. Necessary and sufficient conditions for a
design to be optimal were established when the inference concerned
the whole regression function, 5till in the one~dimensional case,
two other criteria of optirnality were presented and were shown to
be equivalent to criteria (1} and (2} above. In the qsdimensional
case, Kiefer (4) considers optimal designs for quadratic regression.

The following are a few examples of the optimal designs deter-

ot

mined by Kiefer and Wolfowitz. Consider first the case where the

o

inference concerns 5 of the K regression coefficients. For 5=1,

let
K K i1
Y= z aifi(x)+E =% a; 1% te, =1< x < L
Toi=1 7 i=1

The unigue optimal design d, in the sense of (1)} a;ﬁd (2) above, 1is
given by
d(-1) =d(1) = /2 (K - 1)

dfcos (j W(X-1))] = 1/(K-1)  (j=1, 2, .. , K-2),

where d(x) denotes the probability mass assigned to the design point

x by the design d. For S = K, let

K
Ve = .2 aifi(x) + €.
i=1



For the sampie space consisting of K points, the unique optimal

design d, in the sense of (1) and (2Z) above is given by

dix) /K.
Consider next an example where the whole regression function is
estimated. Let
i=1,

K » 24
y.=Z a/f (x)s =Z a; ¥ e, ~1< x < 1,
i= i= ) - -

The unique optimal design, in the sense of {1) and (2) above, assigns

mass equal to 1/K to the points x = =1, x = 1, and the roots of

L“h (x) = 0, where L*h(x) is the derivative of the L.egendre polynomial.
In the g~dimensional case, assume the infierence concerns the

estimation of the whole regression function rather than just § out of

K regression coefficients. For quadratic regression with g = 1, an

optimal design d, in the sense of {1} and {Z} above, is that measure

which puts equal weights on the points x = =1, §, i. For q=2, 3,

4, 5, optimal designs are given by Kieifer (4). A fact Worth noting

is that when g = 2, the design which assigns measure 1/9 to each

of the nine points designated by the optimal design, yields a general=-

ized variénce of ;r {(u) which is 15% larger and a maximum variance

of ;r {(u) whichis 21% larger than does the optimal design.
Aitchison (1) constructed optimal designs which concentrated

on the detection of certain specific effects while allowing at least

thevinspec:tion of a wider class of effects. All of his"work was done

in the framework of a one=way classification model

ij:“+yj+ejk G =1, 2, « - ., t; k = 1, 2, ...n)

he Z..~ N8, o
W re Jk ( Jﬁ )



Box and Draper {2) considered the problem of fitting a first
degree polymonial i{X)} over the region R, when the true function
g{X}) is quadratic, where X is a K-dimensional vector.  There
are two types of error which occur; namely, variance error, that
due to sampling error, and bias error, the failure of {(X) to
represent g(X). In the cases they considered, the optimal design
in which variance error and bias error both occurred was almost
identical to the design that would have been obtained i variance
error were ignored completely and the experiment designed to
minimize bias error alone. Also, it was proved that if the method

of least sgquares is used to {it a polynomial of any degree d., over
q ) 3

1
a region R when the true function is a polynornial of degree >d,
Y 1

then the bias averaged over R is minimized for all values of the

5

B

g the moments of order

coefficients of neglected terms by making

dl + dz and less of the design points equal to the co.r'responding
moments of a uniform distribution over R. Box and Draper further
indicated that the variance should be minimized if it is rather definitely
known that the true function is linear. Conversely, the bias alone
should be minimized if the assumption of linearity can not be made

and observational errors are negligible. Ancther II'es.ult obtained

was that if bias alone had to be considered while noth\ing whatever

were known about the true function other than it Céﬁld be represented
by a polynomial with infinitely many terms, then we would do best

by spreading the design points evenly over the region R.



CHAPTER II
THREEX POINT FPROBLEM

Exact optimal designs have been determined by Folks (3) in the
two=dimensional case for several criteria when the number of design
points N is expressible as some multiple of four. Thusg.it is
desirable to determine optimal designs for ali values of N. TIn this

chapter we shall choose N equal to three and assume the model

YR HByx v By x, + o

where e~ (0, 1). Let
R = [(ulg uZ)% -1 < u

be the region of experimentation. We are justified in using such a
region without loss of generality, due tc invariance properties of
optimal designs which were proved by Folks (3). The response at

any point u is estimated by

y{ = UB
= U(XfX)‘“IXHY,
where Uv= (1 ulu.z)p and

-~

f is the least squares estimate of ;3;

The expected value of y (u) is given by

)

Ely (u) ]

E[U i ]
U?’@

10



11

and the variance of y {u} is given by

~

var jr(u) = Var{Ué]
= U(:y:?}{)"1 U’
where
1 *11 xiz.m
Xo= b %, X0
L s T2

Expanding the variance of v {u), we have

-~ Z - -

var y(u) = var. +u Zvar% +u, var §,+ 2u, cov s B
y o M1 P 2 "

o
foed
[»]

[

“ S

4 Zuz cov (%30:‘ {SZ) + Zuluz cov (;"3-1,5,3 ) .

As an initial investigation of optimal properties, consider the
problem of trying to find the design that will minimize the maximum
variance of 3; (u}. It has been shown by Folks (3) that the min max
var ; (1) is achieved by taking N/4 pointé at each cornerof the
square region R; however, this is an impossible task with N equal
to 3. Thus, we shall investigate further to try to determine the
min max var ;f (u) design for N equal to 3. As an aid in our investi~
gation, consider some relevant theorems.

Every design determines the unique family of variance contours

vary (u) = UX'X)TUr = K,
which are ellipses, The variance contour with K equalto 1 passes

through the three design points. This is pointed out in the following

theorem.

Theorem 2.1 For any cheice of 3 design points in the square region




12

u, < 1y i=1, 2],

R :“U’l* uz)gl ;

1A

such that X is of full rank, the variance of the estimated response at

ig,

o

each of the design peints is 1. Tha

var ';(u) = U(X*X)QIUG = 1.

Proof: Consider the covariance matrix of the vedtor of predicted

1}

responses at the design points, denoted by
cov ¥ =x(x%)"1 %,
Since X 1is square and of full rank
cov 3} = 1.

Therefore,

var y (x,) = 1.

-~

As a further aid to establishing the m"}n mMax var y (u) design for

the three~point problem, consider the following theorems."

Theorem 2.2. ¥or any choice of design, the maximum variance of

-~

the estimated response, vy(u), occurs at one or more corners of the
square region

R=[(upu)| -1 € u < 13i=12],

- 1

in the three~-point probliem.

Proof:
var 3: (u) = var éo + ul‘Z var ﬁl + uz/; var BZ + Zul cov (50, él)

~

+ 2 u, cov (60” ﬁz) + Zuluz cov (ﬁl, ﬁz),



Let
A, = var e, (i =0, 1, 2)
D =2 cov (ﬁog él)
E = 2cov ({gés .62)
.F = 2 cov (5’1, :éa)'.

Let(l= ¢, 1 = £) be the point in R at which wvar y (u} attains its

maximum, where 0< ¢ < 2, and 0 < ¢ < 2, Consider the

class of designs specified by the signs of D, E, and F.

Casge 1 D, E, F > 0

vary (1 ~¢, 1-14) = Ao-i-(lms.)dA =0 %A+ (Lee D410 E+(1=e ) 1-0)F
raqs- 2 7 i Z‘.

(2. 1) = A _+A $AFDIESF - [{2e = ¢ A 12458 4 £ D

+LE+ (e +L =) F] .
Let ¢ = 1+ a, where =1 < a < 1, then

e + £ -¢f

i

1 + a2 + 2 =(L+ajd
= 1 + a(l-1g).

Now =1 < a < 1 and =~1 < (1 =£) < 1 implies =1 <a(l-f)< 1,

which implies 0 < 1 + a(1=~2) < 2. Thus e+f -t > O,

Also, since O < e < 2 and 0 < £ < 2, we have

2¢ -eZ = e(2=-¢) >0

20 -2% = 42-0 > o,

Therefore, since all quantities in the brackets of (2. 1) are positive

or zero, and zero only when ¢ =£ = 0, we have that the var y (u) is

13
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maximum only when ¢ = £ = 0, which implies

max var 'y (ul, uz) =var vy {1, 1}.

Case 2: D, E > 0, F o< 0

In (2.1) consider the quantity

(2. 2) y=eD +LE + (e +2=-cl)F.
(i), If D and E are greater than gFg , then
vy = eD + IE +{(et+il-¢4) F

eD + ¥ 4+ LE +4F = efF

i

e(D=IF}) + £(E « |F|) +et |F]|

> 0.
Thus, the minimum value of y occurs when ¢ = f£ = 0, which
implies
max var y (ul,, uz) = varvy (1, 1).

(i) ¥ E < D < |F| or E < |F| < D, the
minimum value of ¥ occurs when ¢ = 0 and £ = 2, which
implies

max vary (ul, uz) =var y {1, =1},

(ii) ¥ D < E <|F| or D <|[F| < E, the minimum

value of y occurs when ¢ =2 and £ = 0, which implies
max vary (uy, uz) = var vy (=1, 1).

Case 3: D,FEO, Ei 0

(1) If D a.nd\’ F are greater than I E ! s the minimum
value of vy in (2.2) occurs when ¢ = £ = 0, which implies

max vary (ul, uZ) = var vy (1, 1).



© which implies

(iii)

which implies

e

max var y(uiE uz) =var y{=1, =1}.

¥ F <D < |E}] or F < |E}] <D,
min vy (e, £} = y{0, 2},
£, 8

e

max var y (ulg uz) =var y {1, =1}.

Case4: D > 0; E, F< 0

which im'p lies

Case 5: E, F 2>

(1)

which implies

(ii)

which implies

(iii)

which implies

min y{e, £} = {0, 2},
e,

TAK VAT 1,5 U} = VAr v =1},
max var y (ugs u, v (1, =1)

0, D < 0

¥ E >{D} anda F > D} ,

"min y (e, £) = (0, 0),

€4

@

max var y(ul, u_ ) =var vy (1, 1).

2
¥ E <F <|Dlor E < |D]| < F,

min Y(Esﬂ) = Y(Zv 2)s
€,1

&

max vary (ul, uz) =var vy (=1, «1}.

If F <E < |p| or F < |D| < =&,

min y{e, £} = (2, 0),
£,

15



max var y (u,, U..Z) =var y (=1, 1).

Case b: E > 0; D, F <0

min y(e, £) = v (2, 0),

€.l
which implies

max Vary(ulﬂ uZ) = var y (=1, 1).
Case T: F,Z 03 DﬁEiO

min vyie, £) = y(2,2),

€, d
which implies

max var Y(ul” uz) = var y (=1, =1},
Cage 8: D, E, F < 0

) |p| < {E| < [F] or D] <{F| < B,

min y{e, £} = {0, 2};

e 4
which implies

max var y (ul,D uz) = vary {1, =1} .

@) ¥ |El < || <|F|or[E| <|F[ < [D],
min vy (e, £} = vy {2, 0),
e; L
which implies

max var y {uy, uz) = var y (=%, 1).

(iii) ¥ |F| < [p] < |E] or |F} < |E]| < |D] .
min y{e, £) = vy {2, 2},
£yd

which implies

max var y (u;, uZ) = var y {=1, =1) .

~

Therefore, var y (u) always attains a maximum at one or more of the

corners of R.




Theorem 2.3 For the two~-dimensional three=point problem,

e

. . S |
min max vary (w} > min tr (X'X)

%

Proof:

) e *

var y (1, 1) = var ﬁo + var 61 + var -BZ + 2 cov (Eog ﬁ.l)

Y

—I—Z*Ecov([?»oE )%—Zcov(ﬁwﬁsh

i

var y(=1, 1} = var 5@ tvar 'Bi T var '62 - 2 cov !‘gé’ }31}
- 7 < 7 ,:-:; & m &
+Zcov({30s |32) & SOV AR 4s -ﬁ'z)
var y (1, «1) = f’ var 51-2«var 5Z %:Zcov(ﬁos ﬁi}
-2 cov(ﬁ *_) = 2cov (BB}
var y (=1, -1) = var @O + var !31 + var &Zs Z cov ‘(}301;%“3 }L)

K\J

,8 [3 )4+ 2 cov (B 5 ,) .

The average over the corners of R is given by

~ ~

ave var v (u} = var ﬁo t+ var B, + var B,
; ¥ \&1
= trace (XX} .
Rut,
a by theor .
max vary (u) = ggr%eraﬁ v by theorem 2.2

> average var
- corne%* y(u),

which implies

max var y (u) > tr (X,‘X)sl .

Thus,
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This completes the precof.

Although it could not be shown algebraically, it x{rasﬂfeit that the
design points for the ng{in max var ; {u) design should be on the boun=-
dary of the square region R. Under the asswmwption that the design
points should fall on the boundary, an empirical investigation using
the IBM 650 computer produced a design which is believed to be the

-~

min max var y {(u} design; namely, the design
(2.3) d = [(~1, =1), (=0. 364656, 1}, (1, =0,364656)],

which has maximum variance equal to 1.420048, The following
procedure was used to determine this design.
Initially, all designs of thes form

} (a‘za ba)f 5a’3* b:‘s}]i

where «1 < Dl < 0, -1 < a5 a3, bZ, b3 < 1, and a;e b. take

on multiples of 0.5, were investigated. It was determined that the pos-

sible candidates for the n;:in max var 'y {u) design when all three points

were taken on the boundary, were of the form

where =0.4 < a < =0.3 and 0.4 < b < ~0.3. Further investi=-
gation of these designs when a and b took on multiples of 0.000001

yielded the design d  in (2.3). If it could be shown that the three
design points of a min max var y (u) design must fall on the ‘boundary

S

st

of R, then d” would be the m}i’n max var y (u) design; This could
not be shown however.

It was thought that the vertices of the largest equiiateral triangle
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inscribed in the square region R had possibilities of being the
m}:’in rn%x var ; (u) design; that is, the design
d, = [(=1, =1), (3= 23, 1), (1, 3= 2+3)].

This design was of interest because it is a rotatable design. It was
found however, that dl yielded a maximum variance of 1,57774,
which is somewhat larger than the maximurn variance obtained by
using the design d* in {2.3). Thus, the design dl was rejected,

Although a detailed investigation was not conducted, all designs
of the form

d=1{ (=1, b,)s (aZi ba)ﬁ (af}” b3) 1.

where =1 < b, < 0, =1 < a_j,a.,hb

) <7 and a. . 1
< by < a, 3 2 = 1 and s b1 take on

multiples of 0.1, were considered to try to deterrnine the design

$

which minimizes the average variance of v {u} and the design which
minimizes the generalized. variance of ; {u}. The design which
minimized the ave var ; {u) was given by

dz =[(=1, =1}, {=.5; 1), {1, ~ %)
with average variance of ; (u) equal to 2.66569 and EX’X‘: 13.69.

The design which minimized the generalized variance of y (u) was

given by
d3: [("lv "1)9 (’ls l)t (lw Y> ]ﬁ

where -1 < y < 1, with}‘X'Xg‘: 16 and average variance of y(u)

equal to 2. 66666, This investigation gave rise tc the following theorem,

Theorem 2.4 Consider the design

d = [ (-1, -1), (1, a), (Ly)]
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in the three-point problem, where a is a fixed constant and y is a
variable such that «1 < y < 1, then §X“X§: K ior every value

of y, where K is a constant,

Proof:
B 3 =1 a»;—ymlb—i
lxx| = -1 3 ena-!-y‘%i 3
aty=1 =aty+l azﬂ—yz%a 1 %

T Lr a2 2 .
= 33 +y +1)~=(wa+y+1}‘?‘}~g~gm(a2

-%-yZ%- 1)«;{ma+yl~j Maty=1)]
+(aty= 1) «l=aty+1)=3(aty~1)]

2 2 ‘ 3
8(a "+ y 4 1)e3(catyti) e 2(-atyti)(aty = V-3aty-1)

;} 3 > ? -
8a2'-}*8y2+8~»3a“w3y£'@3+6ay+éa;~:6y~i~2azm4am2y"‘ $+2 - 32°

=3y~ = 3 =bay + ba + by

(8 = 342 =3)a’h(8=3-2-3)y 4 (b=b)ay(6-4+6)a

+ (=6 + 6)y + (8=3+2~3)

i
NN
[
.-k
&
&
+
N

Thus, since ]X’X? is independent of y, the theorem is proved.

This investigation would certainly be strengthened if it could be
established that the design points for the n;{in max var y (v} design,

the m}i{n ave var vy {u) design, and the rr_;{in gen var vy (u) design must



fall on the boundary of the square region

irection produced no resulits however,
d t prod d esulits howev

1

n

£

All efforts in this

21



CHAPTER III
SOME EXACT OPTIMAL DESIGNS

Optimal designs in the sense of several criteria have been deter=
mined by Kiefer (4) for the general polynomial model
: p i
y=f8_+ 2 B.x + .
o} . i
i=1
However, since he developed optimal designs from a probability
measure standpoint, many experirments with sample size N only
have optimal designs which are "'within O{(N_ l}" of being optimal,

For example, if the model

y:ﬁ.—i—ﬁlx-i-s n-='1_<__x-<_l

o
is'.aLssurned!7 then according to Kiefer, the unique optimél design in the
sense of minimizing the maximum variance of ;; (u) assigns probability
mass equal to 1/2 to the points x ==1 and x = 1. Thus, if the sample
size N is even, the optimal design assigns N/2 poiﬁts to x = =1
and N/Z points to x = 1, However, if N is odd, where should we
put the odd observation? This question is not answered by the unique
optimal design offered by Kiefer (4). It is answered however, by

-Folks {3) for the above model. That is, for N odd, put

LN—-—Z’LH_ points at x = -1
1 point at x= 0

22
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o
1
=
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far
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H
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®

With this example in mind, it appears reasonable to examine certain
polynomial models to try to determine exact optimal designs for all
values of N.

The criteria of optimality that will be considered in this chapter

are as follows:

e

(1 min max var y {u)
X u
{2) min -max ibias {uj} E
(3) min ave sbias {u} |
b4 F
(4) min ave bias ™~ {u} .
Exact optimal designs using criterion {1) have been determined by
Folks (3) for the model
{3, 1) y::,fioi-;filx-f-e ~l< x < 1,

In this chapter, we shall determine exact optimal designs using criteria,
(2), (3), and (4) for the model in {3. 1}. Also, exact optimal designs

will be determined using all of the criteria for several other models.

x+e, =1< x

3.1 Assumed Model: v = bo +b

A
1A
ot

1

Consider the bias that will arise if the true model is

y=d0+dx+d2x2\+s ulf_xf_ 1.

1

The bias function is given by

Ibias (u})| = |u” =

Since bias functions will be needed throughout this chapter, consider



the following general derivation

Asgsume the relationship

i
N
$re
o
™

when the true relationship is

YT:XIYE%XB\‘[?}%EQ

where X

nts the ¥ DT > 1Y
1Yy represents the k terms common te both YA ‘anﬁ Lope
out of the p possible terms in Y% and the g possible terms in Y _.
Then,
£ = (2'Z) :i*/: W o= Ul UZJ
v, (W)= WE
E[Y, (w)] = W(2'2) " 2'E(Y )
= wi(z'z) "tz K, v+ Koy
U1 YL 7373
r = ,
E[YT(W)] U,v; tUzv;

- TR r Ve 1T 7
= iW(Z Z) Z (z(lyl+}a3°y3,. Llyl - U3y3]
-1 -
- T(7 8 ; e I
= [[w(z'2) 2 SRS
It YA and Y

: i '
Ty Hw(z'z) Z'X3f—-U3]y3§,

T have no commeoen terms,

Xl: b
Yy 7 o
W o= UZ
Z =X
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which implies that

» &1 :
[bias (u) | = [U,("X,)7 "X, "%, = Usl ]y, | -

If Y contains all of the terms that are in Y

T ) AF
.XZ = ¢
v, = 4
W = U1
Zz = Xlg

which implies that
. -1 3 3
| bias () f= [[U (X% )% K <UL Ty #1{U (XK ) &1’X3°*U3]'\'3‘

w i . o
- 1 3 o U i,
= lUl(Xlxl) X1X3 L’3§3Y3l s

3..1. 1 min max | biag (u) ijdeS?gli

It has been established by Folks (3) that the n;s{in.m&x ‘bias (u)fdesign
is one which has Zx = 0 and sz = N/2. When N = 4K oné such

design has

N/4 points at x = -1

1
=)

N/2 points at x

N/4 points at x = 1.

 Certainly the min max |bias (u)| design is not unique, Thus, consider
-a design that minimizes the maximum bias when N = 4K + 1, 4K + 2,

and 4K + 3.
Case 1! For N = 4K+ 1 {(K=1 2, . « » ), choose

K points at x = ~1,0



1 pointat x = =0.5

(2K ~ 1) points at = = 0,0

1 peintat x = 0,5

K points at x = 1.0,

Case 22 N = 4K+ 2 (K = 1, 2, . . . ), choose

K points at x = <i,8

2 points at x = =0,

(2K = 2) points at % = 0,0

Z points at x = 0,5

K points at x = 1.0,

Case 3: N = 4K + 3(K = 0, 1, 2, « « « }s

K poiants at x = «1.0

1 pointat x = «0,86H

{2K + 1} peints at x = 0,

1 point 2t x = 0,866

1. G,

X points at x

3.1.2 m}%n ave ibias {u) ! design

It has been determined by Folks (3} that the m}i{n ave gbia.s () !

design is ocne which has Zx = 0 and zx? = N/4. For N

such design has
N/8 points at x = -1,0
3N/4 points at x = 0.0

N/ 8 points at x = 1,0,

However, exact optimal designs have not been established for N

&K one

not

26



a multiple of 8. Consider then the following exact optimal designs

for all values of N,

Case 1:
(1) N = 4K (K odd), choose
gizi_il points at x = «1,0

1 pointat x = =0.707

(3K = 1) points at x = 0.0

1 pointat x = 0,707
-(-E-i%—«ll points at %= = 1,0,

{(ii) N = 4K (K even}, ¢hoose
%{m points at x = =1,0

3 K pointsat x = 0.0

}2{»- points at x = 1,0,
Case 2: N=4K +1 (K = 1, 2, .. . )y choose
(K = 1) points at x = =0, 707
2 points at x = 0.559
(2K -~ 1) points at == 0,0
2 points at x = 0,559

(K = 1) points at x = 0,707,
Case 3: N=4K +2 (K = 1, 2, . » - }Js choose

K points at x = «0.707
1 pointat x = -0.5

2K points at x = 0.0

27
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lpointat = = 0.5

1.0,

t

K points at - x

Case 4: N = 4K+ 3(K=0, 1, 2, . « . }, choose

Y

1 point at x = 0,935
(K = 1} points x = =0,707

(ZK + 3} pointsat x = 0,0
(K = i) points at x = 0,707

1 pointat x = 0,935,

3.-1. 3 m;'in ave bia.s2 (u) design

2 4 s . . -
and Tx"~ = N/3. The following are optimal designs for all values of
N.

Case 1: N = 4K (K=1, 2, . . « }y choose

K points at x = «0.816
2 ¥ points at x = 0,0
K points at x = 0,816,
Case 2% N=4K + 1 (K=1, 2, - « « )o choose

l pointat x = =0,913

(K -~ 1) points at x = =0.816
(2K + 1) points at x = 0,0
(K = 1) points at x = 0,816

1 pointat x = 0.913,

Case 3: N=4K + 2 (K=1, 2, . . . ), choose

1 pointat x = =1,0
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(K - 1} points at x = =0,816
(2K + 2) points at x = 0.0
(K = 1) points at x = 0,816

1 pointat x = 1.0,
Case 4: N=4K + 3 {=0,1, 2, . - . ), choose

K points at x = =0.816

1 pointat x = =0.707
(2K + 1) points at x = 0.0
1 pointat x = 0,707

K points at x = 0,816,

2 .
3,2 Assumed Model; yzco-lrc.,x ¥ e, =1 < x < 1

Consider the variance function for this model,

7
L

1
iX’XiZ N Zx i
__sz Zx4_,
-1 1 Sx* - zx’
(XX}~ = T s 5
[NZx -« (Zx)7] L-zx N
- -1
var v (u} = U(X'X) " U?
P 2
[Nub2(Zx®) u® ¢ zxi
[N Zx-(zx%) %]
Reétrict the design points to x = -1, x =0, and x =1, then
~ [N u? - 2(zx%) u® + £x7]
var v {u) = > 5—>
INZx" - (Zx )" ]
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-~

3.2.1 mxin max var y {u) design
Let
2 ’ '
Zx = N-K (K=1 2, .. ., N-1).
(i) Consider N > 2K, where K = 1, 2, . . .,[N/2].

(By [N/2] we will mean the largest integer smaller than N/2). Thus,

N. > 2K implies that

N-2K > 0

K(N - 2K) > 0

2K (N - K) > NK

2/K > N/K(N - K) .
‘This is true for K = 1, 2, . . . , [N/2], which implies
=x% = N-[N/2], ..., N- 1. Now
[Nu4 - Z(Zx;) uz-i- Zx"]

var;r(u) = -
[ZXZ (N - Exz) ]

[Nu4-2uZ(N—K)+(N-K)],
[(N - K)N - N +K)] '

4 2

(3.2) _ Nu _ 2u + 1
K(N-K) K K
But
uZ > L:L4 for -1 < u < 1
and

2/K > N/K(N - K),

which implies that

20%/K > Nu¥/R(N-K),



which implies

~

Thus, the m}iin max var v (u) is achieved by the

2 . .
2 x  1is-as small as possible under the

N 1. That is,

-~

min max var u
in mz y (u)

31

design for which

.- - L -
condition Zx" =N - [N/2],...,

i

/[N «(N-[/2])]

= 1/iN/2) .
(ii) Consider N < 2K (K =[N/2} + 1, . . N-1j, then
N < 2K implies
N - 2K < 0
2K (N -~ K}y < NK
(3.3) 2/K < N/K(N - K).
This is true for K = [N/2] + 1, , N -1, which implies
T x% = 1, 2, ., N-[N/2] -1. From {3.2) we see that
- : Nu2 Zuz 1
var y (u) = RIN-K) 7 + 7
Since
—I‘{—(_I\TIS-—KY_ > i{ from (3. 3)
~ and
114:_<_uZ for—lf_uf_l,
we have that the max var 3; {u) is achieved when u = Foa,
Thus,
max var 3; {u) = var 3; (’_!: 1).
- I
R(N-RY K 7 K

i

(N =
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- 1
MaX Vvar y {u) = e
u b o=

-~

Hence, to achieve m}i[n m'uax var v {u), choose & x~ as large

“J

as possible under the condition Zx =1, 2, . .., N~ [N/2] - L.

That is,

m‘{in max var y {w) = !
‘ (N - [N/2] -1)

Consider a min max var y (u) design when N is odd. A n}’i{i!l max

S

var y (u) design is one which has = xz = {N-1)/2 or Z x2 = (N + 1)/2,

for which

S 2
max var y () = e
(N~ 1)

-~

One r}?in max var y(u) design has

(N- 1)

) ~~ points at x = -1.0
_LIEZ_"_'__I_)_ points at x = 0.0
-(-1\5-4;-1—)- points at x = 1.0.

Consider a rxg{in max var y (u) design when N 1is even. A m‘i{n max
- C o C 1 2 .
var y (u) design is one which has Z x” = N/2, for which

_ 2
max var y {(u) = <~

-~

One rr;cin.mgx var y (u) design has
N/4 points at x = ~1.0
N/2 points at x = 0.0

N/4 points at x 1. 0.

3.2.2 min max Ibias (u) i design
b u

Consider the bias that will arise if the true model is
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y = bg + bl“ ¥ g
{I\Ex‘a@x ] erx‘*.,(zX

Restrict the class of designs to those which have design points onlv at

x==1, x=0, andx = 1, then

™

|5 Loz 2
l' L““}LX)’J

bias (u)i = ) ~u+ 0 !bll
x (N - Zx )
P
=" Bx/Ex" - u b |
To show that the ng{in max gbias {u) ! design has
max §bias (u)g = 553_:. § R
u A 2
consider the following cases.
Case 1: Ex=20
|bias (a)| = |~ufip,|
Pq . , Cda
max jbias (\u)i = %nlﬁ.
Case 2: Zx < 0
The maximum bias occursat u = 1 or u = Z XZ/ZZ X.
| bias ()] =|Zx/Zx“ - 1] N
2
(3.4) = {1 - ZEx/Ex") 1;.
|bias (2x%/22x) | = |-=x*/43x|[b ]
(3.5) = x“ /4T x) §b1| .

Let A = EX/EXZ, then from (3.4) and (3. 5)

1-A = -1/4A.
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Since A must be negative, (£ x < 0}, A = 1/2{(1 = ~NZ).

Thus, for A = 1/2(1 - N2}, we have that

Ebias (1)5 = g"'ﬁ.as (z XZ/Z Z x) i

(i) For A > 1/2{1-N2)
max {bias (u) | = |bias 'ExZ/zz %) |

1
(ii) For A < 1/2{(1 -+~2 )
max gblas (u){ = ibla:s (l)!
> r@}g
Case 3: Ex > 0
The maximum bias occurs at u = =1 or u = Z xZ/ZZx.,

In either case,
max lbias (ua) i > ibli
Therefore, the design such that Z x = 0 achieves m}i{n max bias (u)g,
which has
o o
max Iblas () I ib
Consider a nr;(in max ibias (u) l design when N is odd. One
min max lbias (u)| design has
X

A(Nul)/«i- points at x

1!
1
e
(@]

(N+1)/2 points at x = 0.0
(N ~ }1)/4- points at x = 1. 0.

Consider a ng{in max Ibias (u.)l design when N is even. One

min max Ib1a.s (u)! design has
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/ . . -
N/4 points at x = =~1.0

fl
o)
<

N/2 points at x

N/4 points at x = 1.0

3.2.3 rr;{in ave bia52 (u) design

As in section 3. 2.2, consider the bias that will arise if the true

model is
= b b,x + E o
y o T 1 £
When we consider the designs which have design points only at x = 1,
x = 0, and x = 1, we have
2 ! 2.2 .2, 2
ave bias (u) = [ [Ex/Ex%n"~u] bl du
2. 2
= b1 [2/5(Ex/Zx7Y" + 2/3
Thus,
. .2 2
min ave bias (u) = Zblé/Bg“
x

since (EX/ZXZ)Z is minimum when Z x = 0. Designs for N both

even and odd are given in section 3. 2. 2.

3.3 Assumed Model: vy :glx-],-gzxzi- e, -l<x<1

_~

3.3.1 i’r}:{in max var y (u) design

-~

The variance of y(u) is given by

. . . . . 3
Consider the maximum variance for the different values of Zx".

Case 1: TxT < 0



max vary (u} = var v {1}
4 2
[Ex™ «2Zx” +Zx |
2 4 5,2
[Zx” Ex «(Zx7)7]
Case 2: Ex” = 0
max var yla) = vary (; i}
1 N 1
oL 4 & 2
i ¥ La K
-3
Case 3: Z x > 0

- .

« > {i ~ Y A
max var .y {u} = var v (=1}

ISP 2
_PExTR2ExT Dx]

- 7 3 3
FONUSOE S J—Z
ExTEx -{Ex7)]

[

Consider a mjn max var y {u} design when N is odd. As would

be expected, the n;{in max var y (u} design is not unique.

b -~

(i) If we take Ex” = 0, then min max var y (u) is achieved
by the design such that EXZ =N~ 1 and Zx4 = N = 1, for which

2

m&n var vy {u} = ™o

Cne ng{in max var 'y (u} design has

(N -~ 1)

points at x = =1.0
[+

1 pointat x = 0.0

-(-lig—»ﬂ_ points at x = 1.0.
(ii). If we take Ex3 = ’j’: i1 and = XZ = Zxéc = N,
- 2
max var v {u) = .

(N -~ 1)
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One m%n WAX Var y {u} design has

5 points at x = =1.0
W(Ng 1) points at x = 1.0,

-~

Consider a rr}}{in max var 'y (u) design when N is even. Choose
2 4

hoel

Zx3 =0 and ZXZ as large as possible; thatis, Zx~ =Zx = N. The

design which minimizes the maximum variance of v (u) has

max var ;(u} = »—-%m—
u : N

One such design has
N/2 points at x = =1.0

N/2 points at x = 1.0.

3.3.2 min max |b1as (u}{ design

The bias that arises when the true model is

[ A
b
1A
-

Y:bo+blx+ £ -1

is given by

‘[ Ex’ ) = ZxEx ] u? + [ZXEX -ZxTx
l[zx Txo <(Ex")° ] [Zx“Ex (T

!bias {u)

3]

Consider only the class of designs which have design points x = -1,

x =0, and x = 1, then
2

[bias (u)] =[u” - 1{[p_|.
max Ibias (u) i = ibias (O i
1
= ||

Since ibias (u.)l is independent of the design points, any design in the

37
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restricted class of designs achieves mki:n max §b"~as (u)!, OCne such
design has

1 pointat x= -1.0
N - 2 points at x = (.0

1 pointat x = 1.0,

2
The same design achieves min ave !bias (u) g and min ave bias (u).
S
For this design

min ave !bias (U_)! = 4/3 ib %
X / o
. .2 ‘s 2
min ave bias {u) = 16/15 bo"i

Several other exact optimal designs were derived; hewever‘, due to
the similar results that were obtained, it was felt that the exact
optimal designs that have been presented weould be sufficient to intro-
duce the problem of finding exact optimal

1 s .
G.vblgnf: .



CHAPTER IV

CHOOSING A MODEL

In order to determine optimal designs, we must first assume

" a model which we think will best represent the data. This is not

an easy task, however. Of course there is always a risk involved

in the selection of a model, but this risk can usually be reduced

by selecting from a particular class a model which is optimal in

the sense of some optimality criterion. The sericusness of fitting

a model which is not the true one is certainly dependent upon what

we use for a risk functicn.

In this chapter we shall use some function

of the bias as the risk function and shall determine which model

should be assumed in order to minimize this risk.

Consider the particular class of models C consisting of

(1)
(2)
(3)

where =1 < x <

10

y:hl(x) + e

y

y

it

1

1

1}

hz(x) +‘ £

=2
(o)}
X
o
.

Let us fit the model hi(x) +e inC

39

= a + ¢
o)

i

’co+c2

1l

e, x4+ ¢

1

2
fo + e

b +bh,x+c¢
o) 1

XZ-!-s

d +d.x+4d Xz-i-e
o] i 2

= g.x+ gaxz-i- £,

(i arbitrary).

A bias will arise if
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the true model h{x} + & in C(j # i) contains terms not in hi(x)-i.- £,
: J
Choose the design that will min maax j'bias (u}§ ¢ then for this design,
® .
let M {i, j} be the maximum bias which arises from f{itting hi(x) + €
h)

in C when hj(x) + ¢ in C 1is the true model. The problem will be

to select the model in - C that will

min max M{i, 3} .
(assumed model} {true model}

Since no bias will arise when we assume the model.
y:h4(x)-§—s =d +d.x+d,x +¢

regardless of which model in C is the irue model, we shall disregard
model h4(x) + ¢ as an assumed model.
In order to select the model in € that will achieve

min max M(i, i},
pd a R

we shall first determine M (i, j} for every value of i and j except

i=3j and i = 4.

4.1 Assumed Model: y = ao+ es ~1 < x < 1

4.1.1 True model: y = bo+b x+e

linear term.

O
Q
ol
w
e
o
)
H
[
=
)
o
.
)
n
g..
Q
ot
)
e
o,
0
™
w
Py
H
o}
2
3
o
t]e]
i
)
O
4
o
[n]
o
ot
o)
1)

!bias ()| = iua EX/Nig'b]E .

Eg.se 1: Zx < 0

max ibias (u)i |bias (1) i

it

|1 - 2/N b, |

>1b,



Case 2: Zx = 0

Case 3: Zx > 0

< ]
max lblas (u} |

il
o
o}
)
w

[
f—

et

Therefore, rr}liin max ib‘ias {u) i is achieved by the design such that

Zx = 0, and

M (i, 2) = §bl
4.1.2 True Model: y = <, + c7x2 ¥ oz
2 'ﬂ
Case 1: Ex"/N < 1/2
max !bias (uH: ibias (j: l)i
= |1 -=x%/N]le
= gczi /2.
.2
Case 2: Zx /N = 1/2
max ibias (u)i = [bias (O)i

it

ibias (¥ 1) ]

iczi/ Z,

Case 3: EXZ/N > 1/2

[bias (0) |

max (bias (u) |

I

!»ZXZ/Nchg



[ge)

®

i . . /
max |bias (u} | = g"z% /
Thus, min max {b.&as {u} g is achieved by the design such that Ex =N/2,

and

M(1, 3) = e,/ 2

-2
4.1,3 True Model: v = d_ +d,x+d,x +¢
o i 2

= * R
Assume dl = d and d,=Kd (K > 0;.

[bias (0] = |(@x + KEx®)/N = u - Ku®| |a"]

> .
= {Ku® & u - (3x+ KES)/N]ja
| 2
Case 1: (Ex+KZx) < 0

max Ibias {u} E

1

|bias {1}}

i

4 K - (Zx+ K3k

\vl

(14 %) Jal

NS}

Case 2: (=X +KZx"} = 0

Ibias (1)}

max |bias {u) |
U

ke

= (1+K)|a |.
- 2
Case 3: (X +Kzx) > 0
2 2
Let flu) = Ku™ + uv=-(Zx + KZx 3/ N,
then the minimum of f{u} occurs at u = =1/2K. In what follows, let

(ZTx+ K ZXZ)/N :

(1) P > K
For this condition, we have two possibilities

w = -1 |bias (=) |= |K - 1P|’}



N b
. ®

bias (-1} = (P + 1~ K)|d |

b
v = =1/2K:  {bias (~1/2K)l= (P + 1/4K)[d

i.,
To determine which bias is the largest, assume
P+ 1-K > P+ 1/4K, then
1~K > 1/4K
4K - 4K® > 1
4.KZ - 4K + 1 < 0
(2K - 1)° < 0.
Thus, we have a contradiction, which implies
P+ 1/4K >P+1-K for every P and K.
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Now, to minimize P + 1/4K with respect to ¥, choose P = K. That

is, under the assumption that P > K, min nplaxibias (u)lis achieved
: — s [ : .

by making P as small as possible; namely, P = K. Then for this

g

design

max bias (u)|= [bias (-1/2K)|

2

4K+ 1, g, ¥
S (L
4K

(i1} P < K
Similarly, for this condition we have two possibilities

=1 |bias (]=|x+1-Pila’]

u
(4. 1) S (®+1-ma’].

u = -1/2K: |bias (~1/2K)}=|{~14K)- Plja’|
(4.2) = (P + 1/4K) |a’]

Equating the coefficients of 4" in (4. 1) and (4. 2)

P+ if4K= K+ 1P



we have

ibias {~1/2ZK) |

Y

T
M
W
s4]
o~
bend
)
i

2 ;
= [(4K" + 4K + 1)/8K] | a |-

H
2
For 0 < P < [4K" 4 4K ~1}/8K

2
K+ 1=«P>K+1=4K"+4K - 1)/8K
= (4K“+ 4K + 1)/8K

= (4K“ ¢ 4K ~ 1}/8K + 1/4K

which implies

301?G(L}§ > {bias {«1/2K) | .
-~ 7 2 v/
For P > (4K + 4K - 1}/8K
. , Y A N
P+ 1/4K > (4K™ + 4K =1}/8K + 1/4 K
5 .

= (4K" + 4K + 1}/8K

= (K + 1) - (4K7 4 4K -1)/8K

which implies

Hence, for 0 < P < (4}{Z + 4K - 1}/8K

H

max 5bias ()] = ibias (1}5

I
~

3=
=t

H

g

[a
—F

and for P > (4K2 + 4K -1)/8K

44



§ 5 / o &
:»,M:?mag (=1/ 2K} |
P
= (P + 1/4K) jd | .

Thus, for P < K, the min max ibias {u}| is attained by the
design for which

\ a1l o g
ExTY/N o= (4KT 4 4K -1)/8K,

and for this design

Y IR T L . y / *
max {bias (u)| = [(4K" + 4K + 1)/8K] | d .
The next task will be tc compare the maximum bias which arises

when we use the m;zn max !bias {u} { design in {i}) and the maximum
o L4 )

bias which arises when we use the min max
s

In part (i)

i Z %

m%xéble,s (u)i = (47 + 1)/4K jd'g »

and in part {(ii)
i { ol 1 / 7

max [ bias ()| = (4K° + 4k + 1/8K | .

Assume
Z / L < -

(K" + 1)/4K < (4K®+ 4K +1) 8K,

then

4KZ@4K+1 < 0

(2K - )¢ < 9,

Thus, we have a contradiction, which implies

bag’
@
a1

(4K% + 1)/4K > (4K + 4K + 1)/8K every K.

?

2

-t - H . s . -
Hence, fer {(Zx + K Zx } > 0, min max {bias (u” is achieved by



making

(4. 3)

Next, we must compare this maximum wit

in case 2: namely,

(4. 4)

max%blas (a}i :ibia‘a {(~1/2K} |
- 4_!/“2 L A /ol 1 a
- i:( I OIS T 4§/ bhj i a @

max [bias (u){= (1+ K) |d

o

#quating the coefficients of 4 in (4.3} and {4, 4)

The results of

(4K2' T 4K + 1)/8K = 1+ K

prasguren

K = (N2 - 1)/2.

this section can be summarized as follows., For

0 < K < (N2 -1)/2, m}%n max é'bias (u} ] is attained by the design

such that

for which

"For K> (NZ - 1)/

such that

for which

. 2y 1o
(Zx + KZx)/N =0,

M(1, 4) = max |bias ()] = (1+ K) [a]

*

. i . [ L. .
2, min max Ibias (u}|is attained by the design

1

(Zx+ K Zx")/N ={4K°+ 4K ~ 1)/8K,

M(1, 4)' = max | bias (u)] = [(4K2+4K+1)/8K] |d

%
{
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ibias (u}aé = iu - Z‘-x/NHeli .

Results are the same as those obtained in section 4. 1. 1. That is,

Do

4. 1.5 True Model: y = ‘.EZX + €

|bias (u)]

i

2 2 pette
o™ - zx"/Njif, |,
et

Results are the same as those obtained in sectien 4, 1. 2. That is,

M{1, 6) =l£,}/2

P
[#

-

4.1.6 True Model: y = g, x + gZX" + ¢

b4 ¥
e

~Assume g, = 8 and g, = Kg (K > 0).
|bias (u)]= [Ku? + u- (Zx+ KSx4)/N|lg™] .

Results are the same as those obtained in section 4. 1. 3. That is,

for 0 < K < (NZ - 1)/2, m}%n max bias {(u) iis attained by the

design such that

for which

M(l, 7) = (1+K) |g |.

For K > (N2 - 1)/2,. min max |bias (u}| is attained by the design such
that

P

7,
(Zx + K2x")/N = 4K” + 4K «1)/8K,
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for which

M1, 7) = [(4K° + 4K + 1)/8K] g ] -

4,2 Assumed Model: y=b_ +bx+te, ~1< x < 1

If the true model contains only a constant term, c¢nly a linear term,

or only a constant term and a linear term, then
| bias (uj{= 0.
If the true model contains a guadratic term, then we have

: { - 3 2"\ Z . 3‘
; 2 > TR DK | M) =3I
I ias (u) i 2 INSx -~ZxZx ‘ L‘Zav D T

Z 2 ) i1
[N 2x°=(39°] [NZx=(m°%]

where $ is the coefficient of the gquadratic term. If has besen shown by

Folks (3) that the m}gn max ibias {u} ! is achieved by the design such

that

Zx= 0

5x’ = N/2,
for which

M(2, §) = |B|/2 G =3 46 7.
Thus,

M(2, 3) = ;c3|/z

M(2, 4) = [dZ}/z

M(2, 6) = |f2|/z

M(2, 7) = Igzl/ 2.

2
x 4+ g, =1< x<1

4.3 Assumed Model: y = c:o~§-cZ 1< x <

If the true model contains only a constant term, only a quadratic



term, or only a constant term and a quadrailic term, then

Nz omxmd Pt [Bencs 5

21

2 24

DI

4 2o
3] [NZx - (]
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el

where B is the coefficient of the linear term. Although a m}i{n max

i bias (u}) jdesign could not be obtained in general; a solution was

+

determined by restricting the design peints to x = «1, % = 0, and

%x 2 1, Under this restriciicn, the bias is given by

2

| bias (u) [ = [n® Z};:/";‘&»:Z = u i

o

. . . . 1
For this bias, we see in chapter 3 that the min max |
achieved by the design such that Zx = U, for which max |

Thus, we have

M(3, 4) = |d,]
M(3, 5) = |e,]
M(?)s 7) = igl{ .

4.4.1 True Model: vy = a_ + ¢

o
. é g 2 1 ;
‘blas (u) | = fu Zx/ =" -1 ]ao‘ .
Case 1: Zx < 0
ma*cfbias (u)[: !bias {lH

a3



! 2 :
max Ibias (b}% = |Zx/Zx a}ilag
U O
L.
> iaé B
o
Case 2: Zx = 0
max Ibias (u}g‘ :gbms (T
= |bias (0} |
= la | .
5 O‘
Case 3: Zx > 0
max | bias (u)l= | bias {~1}]
L2
= imEx/E’x leag
> la |
i OE

Therefore, the m}ién max }bias (uH is achieved by the design such

that Zx = 0, for which

4.4.2 True Model: y=bo+blx + €

ibias (u)' = !u ZX/EXZ«- Hiboi

Results are the same as those obtained in section 4. 4. 1.

4,4,3 True Model v = <, + CZX.Z + €

% %

Assume ¢, = ¢ and CZ:KC (K> 0}.
. L2 3 2 |

Ibla.s (u)§ =1Ku” - [{(Zx + K=Zx )/Z)x]u-!- l“c

Case 1: (Z}x+K2x3) < 0

max ibias (u)l = ibias (1)

50
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‘m&:{;bias (u}él:: IR - {(E,-F'KE};3}//2'}<Z]-§- i §fc ;}
. %
> (L+ K} jc i
3
Case 2: (I +KZx") = 0
max !bias (u)} = ’bias §Z 1y
= (i+K)} |c 415
3
Case 3: (Zx+ K Zx™)y > 0
m&xgbias (w)| = [bias (-1}

2 b
) /2] w1 e

Therefore, the n}u{in max Ibias (u}g is

that Zx + K Ex3 = 0, for which

il

M(5, 3) = (1+XK) |c

4.4.4 True Model: vy = do +d,x dzxz + e

s
R

Assume d_ = d and d, = Kd (K >0).

bias (u) | = |K u®

- -[;(Exi~KEx3)/2kz]u2+1 Hd""g .
Results are the same as those obtained in section 4, 4. 3,

M(5, 4) = (1+K)[d].

4.4.5 True Model: vy = fzxZ + €

bias (u)] = ju ZXB/Z‘meuZHf .
i 2

Case 1: Zx3 < 0

max |bias (u)|=|bias (1) ]



> gfzg .
3
Case 2: ZxT = 0
. ~ .y + gy
m&xx!bws {u)i = |bias (I 1)1
= H
£

Lase 3: Zx3 >0

max ibias (u)i !bias {=1} E
u

i

i

it

iEx’}/Zxé%— 1 23{23

— . \ i. . . . "
Thus, the mjn max lblas (u){is achieved by the design such that
3 .
£2x = 0, for which
M = % — g e i
[ b) = !izg s

: 2
4,4.6 True Model: y = gyx + gZX"’ + e

[‘Dié.s {u) , :iu Zx3/2x2 - uzi [ gzl,
Results are the same as those obtained in section 4.4, 5

»

M({5, 7} = !gz

4.5 Assumed Model: y:f2x2+e, =< x< 1

4,5.1 True Model: y = a  + ¢

l bias {(u)| = iuz EXZ/E;L - }.H aoi

Case 1: Z‘xZ/Ec4 > 2

max ibias (u)l = ibi@s ("}; 13 I
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Case 2 ZZXZ/ZX4 < 2
ma.x ibias (u}g = Ebias (0)5
- fal

To ngcin max |bias (u)is choose the design such that

4
Exz < 2Zx ,

then

M(6, 1) = |a

-

ol

4.5.2 True Model:y = bO thyx4e

Assume b_ = b" and by = Kb (K > 0).

{bias (u)]= §u,2(2x2 + K zx3)/2x4 - Ku -1§§b*§ .
Case 1: (EXZ+KZ}x3) < 0
max Ibias (u)| =|bias (1)]
=14 K (=2 rrEO) /25 (b
> (1K) b] .
Case 2: (Zx +KZx7) = 0
max ibias (u)] = | bias (1) |

(1+K) [b7] .

i

Case 3: (sz-l— K Ex3) > 0
Let

A = ("ZXZ +K2x3)/zx4.



f(ﬁ ::Auzu-Ku -~ 1,
then the minimurm of f(u} is attained at u = K/2A.
(1) 0 <A < 1.
For this condition, we have 2 possibilifies

1: |bias ()] =]a -K~1]]b"

e
1

= {(1+X-A)[b].

‘ . > ‘
K/2A: {bias (K/2A) = (K“/4A + 1) {b ] .

u

To determine which bias is the largest, assume

2
K°/4A +1 = 1+K -4,

189

széAK-i-éA = 0

(K - 24)% = 0,

then

bias (K/2A) |

max ébias (u}[

H

(K%/4A + 1) [b7] for every K > 0.

min  max |bias (u) = ®%/4+ 1) |b7] .

(i) A > 1

Consider the two possibilities

w= -1 | bias (=1 = |a+ K- 1{]p7]

(A +K-=1)|p].

o
1

(K/2A): |bias (K/2A)] = .(KZ/4A + 1) §b*[ .

Suppose ,
K2/4A +1 = A + K -1



Then

A=«(K~2)/2+ | nf 2KS - 4K 4 4 1/2,

which implies we must consider which of the two possibilities is

maximum when

. ] 2 .0
1< A < S (K - 2)/2 % [NZK® < 4K + 4] /2,

and when

W 7 ; 2
A > -{K=~2/2+ K -~ 4K + 4] /2.

For 1< A < - (K-2)+ [V2K"-4K+4]/ 2

max [K&/4A + 1, A +K - 1] =K/4a + 1,

which is minimum when

A = (K -2)/2 +[VZK" - 4K + 4] /2.

For A > «(K = 2)/2 +{ NZKS - 4K 4 4 1/ 2
>
nl)lax[K"/%%-l, A+K-1]=A+K-1,

which is minimum when

A= =(K-2)/2+ [N 2K?

- 4K + 4]/2.
To summarize, we have
(1) A < 0
max | bias (u})| > (1+K) [v ]
(ii) A = 0
max bias {u)j = (1+K} gb 15 .
(iii) 0 < A < 1

min max | bias {u} i = (K'd/'é + 1) Ib’r:% .
A u ’ )



{iv}) A > 1

56

min max [bias (u) | = [K/2 +(W2K® - 4k + 4)/2 ] 7] .
A .

u
Comparing these four quantities we find that for ¢ < K < 8, the

m}%n max lbias (u) i is achieved by the design such that

, | | ,
(2x®+ K2x) /[ Bxt = oK -2)/ 2+ W2k - 4K+ 4) / 2,

for which

M(6, 2) = [K/2 + (\/ZKZ ~ 4K + 4)/ 2] %b*] .

For K > 8, the m%{n max !bias (u)! is attained by the design such
~ that
(Zx%+ K Sx°) / Zx = 0,

for which

4.5.3 True Model: v = c, * czxz + s

. {2 2 4 '
’blas (u)'=lu =x"/ =x alilcoi .

Results are the same as those obtained in section 4,5, 1.

M(6, 3) = icoi .

4.5.4 True Model: y = do + dlx + dzxz + &

Assume d = d, = da:, then
o 1

ibias (w) ] = }uZ(sz + ZX3)/EX\4‘ = u mvl] ]d’FI .
Results are the same as those obtained in section 4.5.2 with K = 1,

e

M6, 4) = [(L+~7Z)/2] fa”] .



; 3 I '
§bia,s (u)g: gumuZZX /Z‘x4; §e1‘ .
3
Case I: Zx <0
max ibias (u) § = bbias (1 %
w_ Sy &
=il =2x"/%x Heli
>§eli

1}
o

Case 2: Zx

1
o
=
o
(7]

——
g
[2

max fbias (u} |

Case 3: ZTx > 0

{e.: ‘ by s a1
max |bias (u)} = lbias {-1}}

t

3, 4 _
!ml - ax ) Ex Hel%

| .

> g el=
Thus, the n}zin max gbias {u) { is achieved by the design such that

2}_(3 = 0, for which

M(6, 5) = ie” .

3

4.5.6 True Model: vy = g%t gZXZ e

2 4 i

EXB//ZX -?gli .

gbias (u) § = Iu !
Results are the same as those obtained in section 4, 5, 5.

M6, 7} :‘ gli .
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4.6 Assumed Model:y = g,x + gyx te, =1< x< 1

If the true model contains conly linear and, or guadratic terms,
then

ibias (uw) | = 0,
If the true model contains a constant term,; then we have

! 3. i .
by X ax ] Cod
i bias (u)éz Zit -i-ug 5z N sl!gﬁé,

H

uZ [(Z XZ)ZF‘ZXEX
[ 2 n-(2)

where £ 1is the coefficient of the constant term. Consider only the

{
£
-

#
|
<
Q
o
joR
by
|
ot

class of designs which have design points x =

then
| bias (u) |= PLEY
< LY a—;a = .L§

ba i
i (B
Since the bias function is independent of the design points, every

i
design achieves the min max {bias (u) 5, for which

M(7, 1) = fa_]
M(7, 2) = {b_|
M(7, 3) = e}
M(7, 4) = §d0;e

4,7 Determining the Min Max Model

We now have the maximum biases that arise when we assume the
wrong model. Before we can compare these maximum biases, we
must express each of the coefficients of the various models in terms
of some common element. Suppose then that we know that the true

model has a function viaue of a, + ¢ at x = §(-1<8<0; 0<0< 1) .



Under the assumption that K = 1, we have
bo = bl = b*
¢, = &y = ¢ "
do = dl = d, = d
g, =g = g

€31
0

Expressing each of the coefficients in terms of a cormmon element,

we have
aO
(1) b =b.,=
o 1 iy
a
(2) [ = C 4 = —*——-—-9"-*'—2':-“-
¢ ¢ (1465
a
G
(3) d =4, =4, = W
o loeyps st
a’0
(4) €4 = mow
1 5
aO
(5) £, =
2 62
aO
(6) gy % & = o———3
&+ &

We will now compare the maximum biases that arise for each of

the assumed models.

4.7.1 Assumed model: v = a + ¢

&)
aO
M(L, 2) = bl = LA
o+ 6
L a
M(1, 3) = l/zgczi 2




e 9 ;a
M(i, 4) = 9/81d = , 922
8 lirs+8°]
i gaOi
M{1, 5) = j‘e}! = e
* |6 |
ML, 6) = 1/2 {fl = %ol
T 7 Z Zléég
:« LN
M(1, ) = 9/8 |g | = O
8 |6+6°]
Case 1: Compare M(1, 2) with M(i; &} .
Assume M 1, 2) = M(1i, 6), then
1 _ i
25° 146
26% -5 -1 =0
& = i/at 3/4
For =1 < & < =-1/2
Rl 2]
O > [ I I
. 2
i+ 5] iz 5°|

M(1, 2) >  M(1, 6)
For -1/2 < § <0 and 0 < § < 1

Bl

2 6]

M(1, 6) > M(L, 2)

Case 2: Compare M(1l, 3) with M(1, 6).

Since 62' < 1+ 62, we have

60



M1, 6) > M(1, 3)
Case 3; Compare M(1l, 4) with M(1, €}.

Assume M(Ll, 4) = M(L, %), then

26% = 8/9 (14 6+ 8%

552 . 45 -4 = 0
5 = 2/5(1 T NE ),
For & >2/5 (1 ~~B)

{a | 9 la i
—_—l > o
2 5% 8 {1+6+57)
M(1, 6) > M(L, 4).
For &< 2/5 (1 - ~b)
R N 2]
8|1+6+ 6°] 2 8]

M(1, 4) > M(L, 6) .
Case 4: Compare M(1l, 5) with M(1l, 6)
(i) 0 < & < 1

Assume M(1, 5) = M(1l, 6), then

For 0 < & < 1/2, M(1, 6) > M(1, 5).

For 1/2 < & < 1, M(1, 5) > M1, 6).
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(ii) wl

Assume M(1, 5} = M(L, 6), then

& = 0, =1/2.

For -1 < & < =1/2, M(1, 5) > M(1, é).

For =1/2 < 6 < 0, M(l, 6} > M(1, 5.
Case 5: Compare M(L 6) with M{1l, 7} .

(i) 0 <6 < 1,l6+8

Assume M(1l, 7) > M(1, 6), then

5
26% > 8/9 (6 + &%)

5 > 4/5.
For 0 < & < 4/5, M{l, 6) > M{i, 7).
For 4/5 < & < 1, M(1, 5) > M{l, &).

(i) =1 < 6 <0, |&§+ 6% = «(6 + &9

Assume M(1l; 7) > M(1, 6), then

2
2 5% > =8/9 (6 + 87)
5 < =8/13,
For -1 < & < =8/13, M(l, 7) > Mil, 6).

For =8/13 < &6 < 0, M(l, 6} > M(l, 7).

Case 6: Compare M(1l, 2) and M(l, 5} in the interwval
-1 < &6 < =1/2.
Assume M(l, 2) > M(1, 5}, then

-5 > 1+ 6

65 < =1/2.
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Therefore M{l, 2} > M1, 5) for -1 < & < -1/2.

Assume M(1, 2) = M{l, 4}, then

8/9 (1+6+ 6% = 146

86%2-85-1 = 0
8§ = 1/16 (1 - N33 1.

o

Thus, for & < 1/16 {1 -+~33), M{1l, 2) > M{i, 4} which implies

M(1, 2) > M(l, 4) for -1 < & < =-1/2.

Case 8: Compar.e ML, 2) with M{l, 7} in tne interval -1<8<=8/13.
Note that
(L+8) ~[8/9(6+ 8] >0 for =1 < & < 0,
which implies | |
(148 > ~8/9(6 + 55,
Therefore |
ML, Ty > M1, 2).

Case 9: Compare M(1l, 5) with M(1, 7) in the interval 4/5 <& < L.

Assume M(1, 5) > M(1l, 7}, then

8/9 (6 + 8% > &
& > 1/8,
which implies that M(1, 5) > M(1, 7).

To sumimarize, the maximum bias which arises when we assume

the model

is given by
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M(i, 7) in the interval =1 < & < -8/13
M{1l, 2) in the interval =8/13 < &< =1/2

M(1, &) in the interval =1/2<8§<0;0<6< 1/2

Similar results can be cobtained using the cther assumed models in C.
The following table gives the maximum bias that arises for each

assumed model. The maximums are indicated for the various values

of o.

TABLE I

MAXIMUM BIAS THAT ARISES FOR EACH ASSUMED MUDEL

N9 b mlﬁia’% “%Qi”f“ M:; <6<0 ksi% %<6‘__"’% “‘%<6§__1
hy(x)+ e f| 9/8 |g | ol | /2l 1/2)6,1 e i,i;;g
ho{x) + e 1/2 iizi /2 |g,] 1,/2§.£2§ /21511 /2]5) | 1/ 2ls]
b e | jy I P B P B O PO
ho(x) + ¢ e, | 2, | NEEARERREEN
helx) +e &1 &y 2] eyl | legl | Loy
SR RN A AR

YA denotes the assumed model.

*% denotes the m}jin max model for that particular value of 6. Recall

that 6 is a point where the function value of the true model is known to
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be a 4+ ¢. Thus, for K = 1, the min max model is given by

o % u

y:hz(x‘;+e = bo -%»blx%-s for =1 < & < =8/13
2 . ;

= } e = x+tg.x +¢ r=8/13<86 <

v h7(x + g Xt gt for =8/ 1 5 0
2

y=ho(x)+e =gx+gx +e for 0 < & < ANZ/2

y:hz(x)-i-s :bo+blx+s for &J*Z’;"/2<‘ & < 1.

Similarly, if only the assumed models with one term are consid -
ered, the m}irn max model is given by

y = bhelx)+e = fzxz + e for every 6.

For K > 0, the m}i{n max models were determined for 0 < & < 1;
however, because of the large number of special césss involving
different values of K and &, the solutions will not be given here.

In this chapter, we assumed a model hi.{x) + ¢ (i arbitrary),
when the true modél wa s hj(x) +e (i # 3}, For-this combination we
determined the rr};{in m&xibias (u)! design and the maximum bias M(i, j)
for this design. This was done for eachi, j=1, 2, . . . , 7, except
for i=j andi = 4. Then for each assumed medel h,k(x) + ¢ (k arbi=
trary) we obtained the maximum M(k, j) with respect to j. Thus,
we obtained six M(i, j) values. The assumed mod;ﬁl associated with

the smallest of these M(i, j) values was determined to be the n‘;{in

m&x moedel.



CHAPTER V
AVERAGE VARIANCE OF THE ESTIMATED RESPCNSE

n this c T i ncerned with determining the average
In th hapter we will be concerned w

variance of the estimated response y {u,, u=2)§ in the two=dimensional

.

case, for any distribution cof the total probability mass to the region of

interest; namely, the square region

Rl ) =1 € s b oimL, 2],

and the circular region

in either case, assume the model

y- = ©O+ﬁlxl+ﬁzxz + £ s

Although the average variance of vy (ul, w,)

5 has been determined

previously by Folks (3}, it was determined under the assumption that
every point in the region of interest was assigned egual probability

mass. That is, the density function of {1,y u,) in the square region
. o5

2)

R was given by

£u g, u,) = 1/4  (upuy)e R

= 0 otherwise,
In the circular region Rc’ the density function was given by

f(uy, w,) = /1 (s u.z) e R_

2
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f{a,, U‘Z} = 0 otherwise.,

Suppose, however, that we are more interested in making predictions
in one subregion of R or Rc than in others. It may be that we
suspect the response will vary greater in one particulé.r region; in
which case, we might want to assign a larger proportion of the
probability mass to this region. As an example, assume the design
points can be chosen anywhere in the square region R, but we are
more interested in making predictions in the region about the origin,

say the region

foud
~.

f25 i=1, 2] .

£ .
Ry = [{ape uy) t«1/2 < w, <
Thus, we might assign probability mass sguai to 1/2 to this region

LS.

and probability mass equal to 1/2 to the regicn

R, = R - Rl v
where R = Rl denotes the points of R which are not in Rl._., Hence,
we would have
f(us u,) = mass/area.
= (1/2)/1
= 1/2 (u;p u,} ¢ Ry
f(uy uz) = (1/2)/3
= 1/6 (uls U’Z) £ R2
f(ulg qz) =0 ctherwise.

Consider now some questions which might arise in connection with
the distribution of the probability mass. How does the distribution of

the probability mass to R or -RC effect the average variance of y{u s,U.Z)‘?

Ll
Can the average variance of y{u,, uz) be minimized or maximized with
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1 s

respect to the distribution of the probability mass to subregions of R

or RC? Is the minimum average variance of vy (ulg, u,) with respect

2

to the choice of design a function of the distributicn of the probability

[l

mass? These and other questions will be of interest in this chapter,
To answer the question of how the distribution of the probability

mass to R and Rc effects the average variance of y(ul, uz), cone

sider the following theorems and corollaries.

5.1 Average Variance of Y(u'l’ uz) in the Sguare Region

R=[(u), u,) | -1 < u < 15i=1, 2] andin the

. . i 4, 2.
Circular Region Rc:[(ui’u2> jul o, < 1}

Theorem 5.1 If the total probability mass M = 1 is assigned to the

n subregions

R. = [uls U} % -2, < u < ai »j =1, 2] = Riul

(i=1,2, .. .,n R =¢, a_ =0}, ofthe region R, then the

o o}
average variance of y (u15 uZ) over R is given by
Cald ) N L o~ n 2 2
( = { r = G
ave var y (ul,uz) var SO+{(1/3}(var Bl+va~ {32)] Z Mi(ai va. . ),
n
where Mi denotes the probability mass assigned to Ri and Z Mi = 1,
Ci=l
Proof: Let
A = (22.)° - (2a. °
i i=1
be the areaof R {i=1, 2, . . . , n; a, = 8}, then
fi (ul, uz) = Mi/Ai
= Kl (ul,; le) € Rl

= 0 otherwise
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is the density function of (ul’ uz) in R.

Thus,
~ n a, 8
ave var y( e U ) Z—][ [ fva.r y 1e uZ)fi(ul” uZ) duldu.Z
izl =~a -2,
i
a: g ml "
- f f var y (ul, uz) £, (ul, u )du duz}
=3. -3
i=1 "i=1
n ai a - 2 -~ Z < -~ A
= :Z K. J fﬁvar 60%111 var ﬁl-i-uz var ;32-’-"11 cov(ﬁo,ﬁl}
i=1 -a.~a,
i
t2u, cov (B:f,) + 2 uju, cov (BB, 1] du 199,
3j.125] - I S - =
_-:ra {a[var B +u, “var ﬁlﬁ u,” var Pyt 2uy cov(gbgﬁl)
il "1
E] -~ , . <> Eel 1 i .
+2 u, cov (Bo,ﬁz) + ZL.luZ cov ({519.52)} duldu
== I 2 : ; = K .
iL—,l K, :j:a [2a var B_+( /3)aLi var B t2a.u, " var ﬁZHaiuzcov(%pBZ)]dlz
i
ai"‘} > 3 i o
- {a [Zai-lvar Bo+(2/3)aiwl varf,+22, u,var 8,
i=1
+4a,i_1u2 cov (ﬁo 2 ] duL2
n

- 4 = 4 - 2 -
Z K [4a” var B_+ (4/3)‘"1 var61+(4/3)ai var B,]-[4a, ;" var B

+ (4/3)a,

4 = 4 =~

.y var B+ (4/3)ai_1 var B,]

2 -2 - - 4 o4
—lZlK [4 var {3 (3,2, 1)+ (4/3)(var B, +var [32)(21i -a )]

n M .
i 2 2 ' a 4 4

= - 1 [4 var B ( -a. YH(4/ 3)(var ,Bl+var BZ)(ai -a g )]
i=1 4% -a,_, 2 |
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i v A { 3 2 VAT A 3 3 b
1Mi pvar 50 +{1/3)(var ﬁl + var Szj(ai +a i

it
WM B

n -~ ~ -
=( ZHMi)(var ﬁo) + (1/3){var ﬁl + var @2)

i=1 i

.2 2
M. (ai_ + a; 1 )

1 1

=

nMe

i

: n
_ 5 2 PO 2
s uz) = var ﬁc + (1/3)(var ﬁl + var ;32) E‘l Mi (ai +ai_=

o~

2
ave var y {u

1 1)

This completes the proof.

Corollary 5.1. 1. For any subdivision of the region R and for any

distribution of the total probability mass to these subdivisions, the
the minimum average variance of y(ul9 uz} with respect to design is

attained by taking N/4 points at each corner of R,

Proocf: From theorem 5.1,

- - - - 0
ave var 'y (ul, uz) = var [30 +(1/ 3)(var (:‘sli-var (32) .ZlMi(aiZ%-aian);
i=1 >

To minimize this expression with respect to design, the quantity

n
b Is./i’ti(aiz + aiulz) can be regarded as a constant. Thus, the average
i=1

var y (ul, uz) is minimized by the design which gives simultaneocus
maximum precision on the f's; that is, one which simulfaneously maxi=-
mizes all of the diagonal elements of X'X and makes the éff-diagonal
elements zero. Proof of this is found in Tocher (&), Such a design is
éiven by Folks (3). | That is, take N/4 points at each corner of R.

> 2

Since X Mi(ai + ai-—lz) is a constant with respect to determin-
i=1

P

ing the design which minimizes the average variance of y '(ul, uz), the

corollary is proved,
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Theorem 5.2 If the total probability mass M =1 is assigned to the

n subregions

; 2 2 2 2
Ri-[(ul, u2)5ai-l< u” o tu "< ay ],

(i=1, 2, ..., n; a = 0), of the region Rc’ then the average

variance of y (u , uz) over R _ is given by
1

- - ~ - n
ave var y (ul, uz) = var ﬁo + [(1/4)(var {31+,var ﬁz)] = Mi(aiz-l-ai_lz),
i=1
n
where M, denotes the probability mass assigned to R, and Z Mi = 1.
i=1
Proof: Let
a 2 2
Ay = (a7 -3 1)
be the area of Ri’ then
fi(up, u)) = My/A,
= Ki (ul, uz) € Ri
= 0 otherwise

is the density function of (ul, uZ) in Rc' Thus,
—2 2

. n a. Na,%-u
. ! i 2
ave var y (u;, uZ) = Z 4] I

- fi(ul’ ‘uZ) var y(ul, uZ) duldu2
1 o o

,_.
H

2 2
23 Nayp g ~
S R fluy, u,) var y (u;, u,) du,du,]
o )
n ai '\/alz"uzz -~ 2 -~ 2 -~ ~ A
= i,?l 4K, jc‘) 6[‘ [var ﬁo +u " var B +u," var B, +2u) »cov(ﬁdﬁl)

+ 2 u, cov ([36,52) + Zu.lu2 cov (ﬁl,ﬁz)] dul du2

2 2

21 &1 Y2 - 2 . 2 " sz
-f £ [var ﬁo tu”var f; +u,” var §,+2u,covB,B,)



EC S Ed e
+ 2, cov (609!6,;3 t 2uu, cov Sﬂﬁ }j duy du,

Make the fcllowing transformation te polar coocrdinates.
Let
Uy =1 cos §

u, = v sin 8

ul/Br 8\11/8 el

cos § «~r sin O

Joo=y o
;SU.Z/S r 8uz,l'b' 3 Esxu 8 r cos e;
2 Z_.

= r(cos 6 + sin 8)

= r.
Then we have

N n 211 a. - - 5 -
ave var y(u, w,) = Z, K. [ 7 {var B, * r” cos  Bvar 'Bl}
o a
=1

+ rz -sinz 8 (var (32) + 2 r cos 8 {cov ﬁ 3))+Z* sin acov(ﬁ ﬁ ))
2
+ 21 cos 8 sin 8 (cov (pl,, 3] rdrda

n 2o ~ 4 2 ~ g 2 -
= Z K f [(r°/2)(var B (T /4) cos” 8({var BylH(x /4) sin® g(var B,
i=1 o

o~ -~

- (2r°>/3) cos @ {cov (sdgl))+(2,r3/3) sin 0 (cov (%,52))

- o a.
+ (2:%/4) cos 6 sin 6 (cov (BpB)I] © 4 @
I a
i=1
n YAl
2 -~ 4 4 2
= zzl K, f [(1/2) var [3 2. 4 }4(1/4) var By (@, =a, ;) cos” ®
4 4 2 3

(1/4) var éz(ai ~a, ;) sin” @ +(2/3) cov (BB)(a,

1

+ (2/3) cov(fgo,éz)(aizaiwf) sin G+( l/Z)cov(gPEg(ava A‘)cosesme

72

~a “13) cos 8

Jde



n
- 2 = 4 - o
= f p - / a. = - ar
ifl' .t{i L2, "2, y var B_+(11/4)( R Yvar Pyt var 62) ]
> 2 2 2 - 2 2,, 2 2
- . - [4 - 5 wr /4\.._ .
= i](i‘d,/l'[(a.i a;.1 ) \[}I(ai a; j jvar ,6’0 +(I1/ e -2, 4 )(a,1 ta, )

(var Bl + var [32) ]

-~ ~ n - - n
ave var y{(u,,u.) = var B_ % M, +(1/4)(var B.dvar B,) Z M.(a.z-l-a. 2)
1" 2 0.y | 1 2 jop b4 i-l
= 4+ ya :
var [30 + (1/4)(var ﬁls var {32) Z Mi(ai +ai~l ).

i=1
Thus, the proof is established.

Consider now an upper bound on the average variance of y(ul,uz)

with respect to the distribution of the probability mass.

5.2 Upper Bound on the Average Variance of y {uj, uz) in the

Square Region R and the Circular Region RC

Theorem 5.3 For any division of R into subregions

R, = [(ups w) f-a, < u <a s j=1, 2] - R, _

] 1

(i=1, 2, . . ., n; Ro =d, a = 0), and for any distribution of the

total probability mass to these subregions,

max ave var y (u;, u,) <var {So-l- (2/3){var By + var B,),
M. -

1
where Mi is the probability mass assigned to the region Ri and

n .
P Mi =1,
i=1

73
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Proof: By theorem 5.1, we have

-~ ot

. 2 2
ave var y(u,, u,) = var B

r / - a ¢y e - v
o}‘(l/3)(Va.r ﬁal-rva.L 8.} & Mi(aLi +aiml Y.

S

In order to maximize the average var y (ula u,}, we must maximize

n
E I\/Ii(a.i2 + aimlz) with respect to M. . Thus, the proof will consist
i=1 |
of showing that
n 2 2 .
max [ 2 M (a,"+ta, 1)‘] < 2,
0<Mgl i=) PP

ZM.=1
i

Since each a, < 1, we have

2 2 . .
a, + a; 4 < 2 foreveryi=1, 2, ..., n.
Let
b, = max 2, a 2}
s = Y3z a, T« i &
K ydi<n i-d

e 2, . . "
then the maximum of i‘g I\.’Ii(ai ta; 12} is attained by assigning
= b 5

1
prebability mass equal to 1 to MT{ and probability mass equal to 0

L
to each Mi(i =# K), since every convex combination of a set of numbers

is less than or equal toc the largest number in the set; that is,

S 2 2
max [Z M, (a. + a,
iY77 iel

0<M<1 i=l

)]f_}$K<2_w

max ave var y (ul, u
M,

1

< var 5(—)3—('2/3)(var él+var é

Z) 2) )

Corollary 5.3.1 There exists no subdivision of the region R or

distribution of the total probability mass to these subregions such
that

ave var y (uy, u,) = var 8+ var B, + var {32
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~ . gy ™ 1
ave var y {ul* u,) = trace (X0 7,
Proof: Assume
- R ~ oy = 1
ave var y (u,, u,} = trace (XX} 7,
i i

then by theorem 5. 1, this implies that

n
(1/3) T M. (a.%4+a, .5 =1
. 1Y i=1
i= 1
or
n
= M ’+a % = 3
it i=1
i=1
But by theorem 5.3
n > 2 :
max [ Z, M (a"+a, ;7] < 2
o<M,<t TRt e
Hence, we always have
ave var vy {(u,, u,) # trace (XT’X)“}'

| A

Theorem 5.4 For any division of the region R_ into subregions
i

B 2 2 2 2
Ry =l wpfay ("< wi®+u,"< a7,

(i=1 2, . . . , 1} a, = 0), and for any distribution of the total
probability mass to these subregions
max ave var y (u,, u,) <var § +(1/2)(var 8, +var @
M 1 & o] 1 !

i
where M.1 denotes the probability mass assigned to - R, and ZMi = 1.

s

Proof: The proof of this theorem follows directly {rom the proof of

theorem 5.3 after noting in theorem 5.2 that
- n

ave var y (ul, uZ) = var [So-l-( 1/4){(var ﬁl-i-var [32) ;lMi(aiZ-!-ai«-lZ)
1=

for the circular region RC,
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Corollary 5.4, 1 There exists no subdivision of the region R or
S

-

distribution of the total probability mass to these subregions such
that

- , . oyl
ave var y (ul,, 1,) = trace (X'X})

Proof: The proof of this corollary follows from the proof of corollary

5.3. L.

-~

Consider now the minimum average variance of vy (ulguz) with
respect to the division of the region of interest and the distribution

of the total probability mass to these subdivisions.,

o~

5.3 Lower Bound on the Average Variance of v (ulg u in the

5)

Square Region R and the Circular Region RC

Theorem 5.5 For the square region R, there exists a division of

R into subregions

< a3z j=1, 2] - R,

R. = {(ul, uz) {wai < u, : el

1 J

i= 1 2, ..., n; Ro = 0), and a distribution of the total probability

mass to these subregions such that

min ave var y (uy, uz) = var Bo”

M.
- n
where Mi denotes the probability mass assigned to R, and Z Iin:l,
- i=1

Proof: From theorem 5.1, we have

- - - - - 2, 2

ave var y (ul, uz) = var [30+(1/3)(var Bl-!-var BZ} = Mi(ai +ai='rl Y.
i=1

The proof will consist of showing that there exists a division of R and

a distribution of the probability mass to R such that



n
. 2 2,
.211 Mi (a-] + alﬂl ) Qa
i=41
Let
Rl = [(uly uz)fna < u < oegi= I, 2;¢e >0 ]
RZ = R le
then a = 0, a1 = ¢, and a, = 1,
Assign mass Ml = ]l ¢ to R-lg, and mass MZ = ¢ to RZ' Then,
2 2 2 2 2,
z M.(a.” + a, Vs {(l=e)(eV+e(l+ter)
; iti i=]
i=1
= g{l+e},
Thus,
2 3 .
im B, M.(a.“4a, ,”) = lim ¢ {14¢)
_Fol-—-]. iti. i=1 ——
= 0,
which implies
min ave var-y (u,, u,} = var B .
M., 1 2 o
1
Theorem 5.6 For the circular region ch there exists a division of
Rc into subregions
2 2 2 2

= 7 oL
Ri [(ul,j uZ) i a._ < uy ot u, < a ]
and a distribution of the total probability mass to these subdivisions

such that
min ave var y (u
M.

1

-
= var ;30,

1* uZ.)

, n
where Mi denotes the probability mass assigned to R, and z 'Mi =1.
- i=1

Proof: From theorem 5.2, we have
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~

ave var y (ul,w U.Z)i = var [30 +{1/4){var ﬁﬁ» var ‘BZ)

The proof follows from the proof of theorem 5.5,

Although we have established several properties of the average

~

variance of y (u.l9 u,)} for any distribution of the total probability

5)
mass to the region of interest, everything was done under the assump=
tion that the true model was

y = ;30 + ﬁlxl +§32x2 + €.
However, similar results for more complicated moedels can be

obtained rather easily.



CHAPTER VI
SUMMARY

Determining optimal experimental designs for particular assumed
models and choosing an optimal model represent the essence of this
study. Although optimal designs had already been determined by
Kiefer (4) for a general polynomial model, the designs were only
"within O(N- 1.) " of being optimal. Therefore, in Chai)tef III several
different polynomial models were assumed, and using each assumed
model, exact optimal designs were determined for each value of N,
For the models which were assumed, the ngin max Vvar };(u) design
always yielded a maximum variance of ';: {u), say Mlg that was the
same for all multiples of N when N is odd and a maximum variance

of y (u), say M,. that was the same for all multiples of N when

N is even, That is, for N even

-~

max vary {u) 2/N,

and fer N odd

max var y (u) = 2/(N=1).

" When N was even, the min max var ;; {u) design was always the
same; namely, take N/2 points at x = -1 and N/2 points at
x = 1. However, for N odd the min max var ;; {u) design was not
always the same.

Since the bias function depended upon the true model, there were

79
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many designs which achieved min max Ebias (u) § Usually, for a
given assumed model and a given true model, various multiples of
N preduced different m}i{n max ébias (u) g designs.

Since only a small number of models were assumed, determining
exact optimal designs for an expanded number of moedels would be
worthy of future work.

Chapter II was devoted to the specific problem of trying tec

determine the m%{n max var y {u) design, the min ave var y (u) design,

and the min generalized var y (u) design, using the assumed model

y = B +§1x1+ﬁ.’,x + e

o 2

in the region R = [(xl, x,) § =l < o x < pi=l 2]. with N equal
to 3. It was determined that the variance of the estiimated response

at each of the design points is 1. Also determined was the fact that

the maximum variance of the estimated response occurs at cne or more
corners of the square region R. However, there still remains the
problem of showing that the 3 design points must be on the boundary
of the square region R in order for the design to achieve n}'x{in max
var {; (u}.. Under the assumption that the design points had tc be on

the boundary of R, an empirical investigation yielded a design that

-~

achieved min max var y (u), with

-~

max var v {u) = 1.4Z2.

The design consisting of the 3 corners of the largest equilateral
triangle inscribed in the square region R vyielded a maximum
variance of y (u) equalto 1.57. Thus, this design was rejected

A

in favor of the design which produced a maximum variance of vy (u)
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equal to 1.42,

Since there is always some sort of risk involved in choosing a
model, an attempt was made in Chapter IV to try to determine which
model should be fit in order to minimize some form of the bias. A
restricted class C of mocdels was assumed and for each of these
models, the maximum biases were determined using the other models
in C as the true model. For each of the assumed models, one of the
true models had the largest maximum bias. These maximum biases
were compared to determine the minimurmn one. The assumed model
associated with this bias was chosen as the z}r{:in max model. Certain
assumptions had to be made in order to compare the maximum biases,
The first assumption was that we knew that the true model had a
function value equal to a, + e at x =7, where ~-1<f<0;0<4< 1,
The second as surﬁption was that the coefficients in each assumed
model could be expressed as a multiple of one another. Under the
assumptions

1 -l < < 0 0 < ¢ < 1

2) coefficients in assumed model are equal,

the details of determining the n}*x{in max model were shown. Also, under

the assumptions

1) 0 <4 < 1

2) coefficients in assumed model can be expressed as

a multiple of one another,

the details of determining the mgin max model were worked out but

not shown due to the large number of special cases created by £ and
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K, the constant involved in expressing the cosfficients of the assumed
model as multiples of one another. The details were also worked out

for ali but a few cases when -1 < £ < 0, 0 < f < 1, and the

coefficients in the assumed model were expressed as a multiple of

b

one another. It appears feasible that future work could produce a
more realistic min max model by increasing the number of models
in the class C and by relaxing the assumpiions somewhat.

in chapter V several properties were determined concerning the
average variance of the estimated response in the iwo-dimensicnal

case. The model

y = Byt Byxy OB, o

>
[

was assumed. The first property established was the average variance

of the estimated response over both a square region R and a circular

region Rc for any distribution of the total probability mass to n sub-

regions of R and Rc' Next, the ggin ave var y {u) with respect to
design was determined for any division of R and for any distribution

of the total probability mass to these subdivisions. It was shown that

-~

the r§in ave var y {u) is achieved by taking N/4 points at each corner

of R. Also determined was an upper and lower bound on the average

-~

variance of y (U'].’ uz) with respect to the distribution of the probability

mass. For the square region R
max ave var y {u) < var B _+ {2/3)(var B ,+var B.)
. s} ) 1 2
Mi .
min ave var y (u) = var BO .
Mi

where Mi denotes the probability mass assigned to R]. . For the

. reoi
circular region R,



o
max ave var v (u) <var § +{1/2j{var 8
Mi

min ave var vy {u) = var $ .
iy 0
Mi

Since all preoperties established were under the assumpticn that the
true model was
v o= {30-5- ﬁlxl-!- ‘BZXZ + g,

future work could be devoted to establishing similar properties for a
larger class of models.

Kiefer (4) indicates that for the two«dimensional case; the ﬁ}él"l
max var ; (u) design assigns measure a to each corn.er of the square
region R, measure B to the midpeint of each of the 4 edges of

R, and measure v to the center of R, where
» Y

a = 0,1458
B8 = 0,082
vy = 0.0962,

Since- it would be an impossible task to divide up the sample in this

manner for reascnable sample size, an investigation was made to
ermine how to divi p the : le among the orners o

deter h to divide up the sample am the 4 ¢ f R

- -

in order to achieve rrg‘:in max vary {u} » n}r;:in ave var y (u), and rgin
generalized var '; (u). All of these optimality criteria are satisfied
by the following designs. For sample size N=4K{K =1, 2, ...},

K points should be at each corner of R. For sample size N=4K + 1
(K=1, 2, ...), K points should be at any 3 corners of R, and

(K+ 1) points sheculd be at the remaining corner of R. For N=4K+2

(K=1, 2, ...), one design indicates that K points should be at
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x={-1, Dand x={1, -1}, and (K + 1} points should be at x=(=1, ~1)

f~

and x=(3, 1}. For N = 4K +3(K=0, 1, 2, .

should be at any 3 corners of R and K points

a1
[l

remaining corner. Relaxing the

was made to determine optimal design

wn
o
n
pri
o

t1ed
[ !
o
D

the midpeoint of the edges of R, and the center of

but no results coul e obtained,
but 1t uld b htained

co s (K + 1) points

should be at the

estrictions scmewhat, an attempt

4 corners of R,

R as design points,



(1)

(2}

{3)

(4)

(5)

(6}
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