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CHAPTER I 

IN'J;'RODUCTION 

For the past twenty years, a large portion of engineering emphasis 

has been placed on the problems associated with the development of suit

able vehicles for the exploration of space. Since immediate solutions 

to these problems are desired, the devices conceived must be constructed 

of existing materials whose thermal properties are generally dependent 

upon temperature. In such applications, these materials are subjected 

to extreme temperature conditions. For example, consider the widely 

varying boundary temperatures imposed upon insulating materials around 

rocket nozzles and upon heat shields of re-entry vehicles. To obtain 

the optimum engineering design, an accurate prediction of the temperature 

distribution and energy transfer rates within these materials must be 

made. 

With few exceptions, the present analysis of such problems makes use 

o-f previously derived solutions based upon constant thermal properties. 

The constant conductivity used in these solutions represents the average 

of the thermal conductivity of the material in question over the range 

of temperatures encountered. Although this technique has been found to 

be sufficiently accurate for small temperature differences, the results 

obtained for large differences leave much to be desired. The few specific 

solutions now available which do account to some degree for the variation 
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of material properties with temperature are so complex in form that their 

contribution is often slight when compared to the energy expended in 

attempting to make them applicable. Hence, there does exist a real need 

for a simple, yet accurate, method of analysis for these problems. 

The objective of this study was to develop a general, straight

forward, analytical procedure for accurately describing the transient 

temperature distribution within materials whose boundaries are subjected 

to known temperatures, either varying or constant. These materials have 

been assumed to have thermal conductivities which vary linearly with 

temperature while their volumetric specific heats are taken to be constant. 

Such property variations are characteristic of most engineering materials 

which are presently available. 

Although the major part of this study was directed toward problems 

involving one spatial, cartesian dimension, a two-dimensional analysis 

is also included. The method used can quite easily be extended to 

problems of three dimensions. Both the one- and two-dimensional solu

tions have been programmed for use on an IBM 1620 digital computer. 

For the specific class of one-dimensional problems described by the 

conditions of uniform initial temperatures with constant and equal step 

function boundary temperatures, charts are presented in dimensionless 

form which enable an immediate evaluation to be made of the transient 

temperature at any spatial position. 



CHAPTER II 

REVIEW OF PREVIOUS INVESTIGATIONS 

The engineer concerned with the problems of energy transfer by con

duction is well aware of the complications involved in attempting to 

apply even the solutions which are based on constant thermal properties 

to a specific problem. Such solutions normally have the form of an in

finite series and are, therefore, quite difficult to employ for accurate 

results. The infinite series solution presented by Chen (4)* for a one

dimensional problem with an arbitrary heating rate is a typical example. 

In addition, the present interest in space exploration has required that 

problems of variable thermal properties be treated. For such problems, 

the governing equation is non-linear and the familiar mathematical methods 

fail to yield exact solutions of even the series type. For these reasons, 

two general paths for investigating heat conduction problems have been 

followed. 

The first is well represented by the analysis of certain constant 

thermal property solutions by Erdogan (8). The objective of his study 

was to develop sufficiently accurate solutions which were easier to apply 

than the exact solution. Although the solutions obtained were indeed 

simplified, they were in the form of finite series which are still diffi

cult to employ. This simply illustrates that a continuation of such an 

* Numbers in parentheses refer to references in the Bibliography. 
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investigation would be of engineering value. The other research path was 

directed toward the development of simple accurate solutions of the prob-

lems in which the variations of the thermal properties were important and 

had to be considered. Since this study is concerned with such a develop-

ment, no further mention will be made of the available solutions for the 

problems of constant thermal properties. 

A general discussion of the various techniques which have been used 

to approach the variable property problems will be presented accompanied 

by a brief outline of the specific problems which have been treated. As 

very little work was done along this line until 1957, primary concern will 

be given to the techniques which have been employed since that time. The 

research accomplished previous to 1957 is described quite well in Fried-

mann's dissertation (9) and paper (10). Also, emphasis is placed on the 

techniques which have been applied to problems of finite dimensions. 

Integral Transformation Techniques 

Perhaps the first attempt to provide a general procedure for generating 

solutions to the problems with variable thermal properties was made by 

Friedmann (9)(10). Using the integral transformation (see Ref. 7), 

where 

t 

u = R(A) dA 
t M . 

0 

t = temperature 

t = constant reference temperature 
0 

k = thermal conductivity 

~= constant va.lue of thermal conductivity which is either 
evaluated at a specific temperature or assumed to be the 
arithmetic average for the temperature range considered 

(II-1) 
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and A= integration variable 

Ft'\~dmann showed that the one-dimensional Fourier heat conduction equa-

tion [Appendix A,· Eq. (A-10)) could be written as 

(II-2) 

where !i)C (t) denotes the variable volumetric specific heat. From this 

form, approximate and perhaps some exact solutions could be generated by 

choosing particular functions for the volumetric specific heat and the 

thermal conductivity. Regardless of the specific functions assigned to 

represent these quantities, the form does lend itself to numerical and 

analog approaches. 

Friedmann employed an analog computer to generate solutions for two 

problems which were characterized by energy transfer in only one dimension. 

Both problems were considered to involve materials whose thermal properties 

varied as linear functions of temperature, 

k = k (1 - at) 
0 

!i)C = (fl)c) (l+bt) 
0 

The initial and boundary conditions which defined the problems were 

chosen to be 

(1) t(0,9) = ti (2) k ot 
G!x (0,9) = -q 

t (£, 9) = to t (£, 9) = to 

t (x, 0) = to t (x, 0) = to 

The solution was obtained by approximating the spatial derivative of 

(II-3) 

(II-4) 

Eq. (II-2) by a finite difference quantity and by using function generators 

to approximate the desired property variations. Hence, the analog was 



continuous in time. At that time, according to his literature survey, 

these were the only available solutions which assumed reasonable func

tions for the thermal property variations. 

6 

After Friedmann's analysis, Roy and Thompson (19) made use of a 

similar transformation to solve two more problems of f i nite dimensions. 

These problems were characterized by periodically varying boundary con

ditions. Although the investigators assumed linear property variations, 

they also assumed that the variations were small. Moreover, they defined 

the system as being in a quasi-steady state which permitted them to define 

the time dependence of the solution as equal to that of the boundary 

conditions. 

Another solution now available which employs such a transformation 

is discussed by Chu and Abramson (5). They used numerical techniques to 

solve, the transformed equation for the specific case of constant but un

equal energy transfer rates at the ends of a rod of finite length. The 

thermal diffusivity and conductivity of the rod were both assumed to vary 

linearly with temperature. Even though they did not present a complete 

set of results, the accuracy and simplicity of their method was clearly 

indicated. 

Integral Equation Techniques 

A second procedure for solving problems of the variable property class 

was mentioned by Goodman (11)(12)(13)(14) shortly after the integral trans

form technique was presented. As summarized by Costello (6), Goodman inte

grated the one-dimensional Fourier heat conduction equation to obtain the 
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heat balance integral 

(II-5) 

He then assumed for the temperature distribution a polynomial expression 

in the spatial variable x which involved arbitrary time dependent coeffi-

cients. To arrive at the final solution, this assumed distribution was 

forced to satisfy the imposed boundary conditions and the heat balance 

integral. Therefore, the number of time dependent coefficients which were 

employed was limited to the sum of the boundary conditions plus the single 

condition of the integral equation. 

To increase the number of coefficients and hence the accuracy of the 

solution requires that the solution be forced to satisfy the Fourier 

equation either at specific points within the region considered or aver-

aged over subdivisions of that region. Koh (15) suggests another possible 

means for improving the accuracy of the technique. He argued that a 

refinement can be made if an exponential function rather than a poly-

nomial is first assumed to represent the general distribution. Again, 

the number of coefficients considered must be determined by the number 

of constraints available. 

Although most of "the problems which have been approached by employ-

ing this technique are of the semi-infinite type or have incorporated a 

constant property assumption (11)(12)(13)(14)(18), the method is appli-

cable to problems of finite dimensions which involve variable properties, 

For example, Koh considered the problem of one-dimensional conduction 

with variable properties and arbitrary heating rates. The wall in 



8 

question was assumed to be insulated on one surface and forced to accept 

a certain energy flow at the other surface. Unfortunately, the solution 

was only carried to the point where the property variations had to be 

specified before completing the analysis. Hence, the actual value of the 

technique is somewhat uncertain. 

Other Approaches 

Although primarily concerned with th~ phenomena of diffusion, 

Philip (17) has developed a method by which exact solutions of the one-

dimensional Fourier equation can be generated for general property varia-

tions. This particular method employs the Boltzmann transformation of 

the independent variables, ~ = (x9-\), to reduce the partial differential 

equation to one of ordinary derivatives. The problems treated are limited 

to those with initial and boundary conditions described by the relations, 

t(x,O) = 0 

t(0,9) = 1 
(II-6) 

Using the same transformation, Yang (24) obtained an integral solu-

tion for the semi-infinite solid with a constant surface temperature. 

As the integral involved in the solution could not be directly solved, 

results could only be obtained by using some approximate technique to 

evaluate the integral. A more convenient analysis of a similar problem 

is the numerical solution by Luke (16). Luke directly approximated the 

solution by applying finite difference techniques to the governing differ-

ential equation which he had transformed in a way similar to that used by 

Friedmann. 
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Tsang (23) assumed a general trigometric series solution and approxi

mated a solution to the finite solid problem characterized by the conditions 

t (x, 0) = 1 

t(0,6) = 0 

t(.t,9) = O • 

The method Tsang used appeared to be quite similar to a small perturbation 

technique. 

Methods incorporating the use of variational calculus, successive 

approximations and least squares have been appliedto give results similar 

to those obtained by the heat balance integral method (6). The accuracy 

of these solutions depends not only on the assumed temperature distribu

tions used as a first approximation but on the degree to which the solu

tions are made to satisfy the governing equation. 

Other techniques have been considered by different investigators (7) 

(9). For example, a separation of variables approach was mentioned by 

Friedmann (9) as having been employed for certain problems. However, due 

to the development of the procedures discussed here, these remaining tech

niques are not currently considered to be of engineering interest. 

In regard to the problems which have been di scussed, the solutions 

generated from the heat balance integral are of closed form but are only 

as accurate as the distribution assumed in the analysis. The remaining 

solutions, because of their complexity, must rely on digital and analog 

computers to complete the analysis. Hence, no clos ed form solutions of 

guaranteed accuracy have been found for the problems of general engineering 

interest. 



CHAPTER III 

ANALYTICAL APPROACH 

The following discussion pertains to the development of numerical 

solutions for transient heat conduction problems of one and two rectangu

lar dimensions with variable thermal conductivity. The solutions are 

general inasmuch as they enable problems of any known realistic initial 

and boundary temperatures to be solved. They are, however, limited in 

application to problems which involve materials which closely approxi

mate the assumed conditions of constant volumetric specific heat and 

linear variation of thermal conductivity with temperature. 

Arguments for a Numerical Approach 

Certain conclusions concerning a possible analytical program for 

solving transient heat conduction problems with variable thermal con

ductivity were evident after the review of the previous methods of in

vestigations had been completed. Considering the objectives of this 

present work, a continuation of the various transformation techniques 

used by several investigators did not seem worthwhile. Although these 

techniques allowed the non-linear partial differential equation which 

governed the problem to be written as an ordinary non-linear equation or 

in a more convenient non-linear partial differential equation form, the 

solutions obtained were generally complicated and unhandy to employ . 

10 
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Moreover, the assumptions made in grouping the variables to be transformed 

might conceivably limit the problems which could be solved through such an 

analysis. For example, application of the transformation (x9-~) to a 

problem of finite dimensions with boundary conditions different from each 

other and different from the initial condition would be quite difficult 

since only two arbitrary constants are present in the integral solution. 

Similar difficulties were present with the heat balance integral 

technique developed by Goodman (11)(12)(13)(14). Although this technique 

appears to be applicable to many problems, the solutions which were 

relatively simple and convenient were also undesirable because their 

accuracy seemed questionable. 

The separation of variables method which was briefly mentioned in 

Chapter I was extensively considered in the course of this study because 

of the simplicity of its application. However, the study only assured 

this investigator that the solutions which might be obtained would indeed 

be complicated. Also, the method would only yield particular results and 

could not be used on all problems. This is due to the non-linearity of 

the governing equation. 

A method involving the use of an analog computer would certainly 

yield valuable results but would require a separate analysis of each 

specific problem. Such an analysis on an analog device would consume a 

considerable amount of time and still would not directly yield the exact 

information desired. The elimination of these techniques reduced the list 

ef the present methods of approach to that of the numerical class. 

Numerical solutions written for one and two dimensions would enable 

problems involving the classical boundary conditions to be immediately 
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analyzed. Such problems are characterized by constant boundary tempera-

tures or by boundary temperatures which vary according to some known func-

tion of space, tim~ or both. For these problems, the engineer would need 

only to define the specific problem in question and supply this informa-

tion with the progrannned solution to a digital computer. The results 

received from the analysis would directly represent the problem considered. 

Also, with reference to the classical problems, numerical solutions would 

conceivably enable graphical solutions of certain classes of problems to 

be d~veloped without great difficulty. These solution charts could then 

be used to provide the engineer with an innnediate indication of the tempera-

ture distribution histories which should be expected. As numerical solu-

tions represent the general governing equations, the engineer could easily 

modify the existing solution so that problems with unusual boundary con-

ditions could be treated. 

The above advantages offered by a numerical approach provided a more 

than sufficient reason for developing an analytical program based upon 

that technique. 

General Considerations 

As derived in Appendix A, the general heat conduction equation for 

systems which do not generate energy internally can be written as 

- at s ( OD, o c· at) o ( ?it ) pie - = - k - · + - k - + - k -oe ax s oy oy oz oz (III-1) 

where ~c = volumetric specific heat (Btu/ft3 °F) 

t = temperature (°F) 



13 

e = time (hrs) 

k = thermal conduct i v ity (Btu /hr ft °F) 

x,y,z = spatial variables (ft) 

Assuming the volumetric specific heat i s constant and t he thermal con-

ductivity variation with temperature can be approximated by the relat i on 

where 

k = k ( 1 + t3 t) 
0 

k = thermal conductivity at 0°F 
0 

t3 = thermal conductivity temperature coefficient (°F)-l 

allows Eq. (III-1) to be transformed into a relation involving a new 

variable. This variable, g, is defined by the equation, 

.k 
g = ~c 

In this form, Eq. (III-1) becomes 

which appears to be considerably more convenient to handle. 

(III-2) 

(III-3) 

(III-4) 

Although both Eqs. (III-1) and (III-4) govern problems which i nvolve 

materials with thermal conduct iv ities that vary l inearly with temperature, 

only Eq. (III-1) can be used when the materials considered have constant 

conductivities. This is true because the variable g of Eq. (III-4) 

assumes a constant value in such cases and a trivial solution resul~s. 

Therefore, numerical programs developed from the non-transformed equation 

would enable a larger class of problems to be treated. Also, these pro-

grams could be checked by comparison to the available solutions for the 

constant conductivity case. For these reasons, the convenience of form 

offered by Eq. (III-4) was not used and the solutions were generated from 

Eq. (III-1) . 
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One Dimensional Solution 

By considering only one spatial dimension and by applying the assump-

tions stated above, Eq.(III-1) can be reduced to 

1 
a 

0 

(III-5) 

where the symbol a represents the ratio of constants k and pc. To solve 
0 0 

this equation numerically requires that each derivative be approximated by 

a finite difference quantity. Employing the technique discussed in Ref. 

(20), the time derivative can be approximated to the order of the time 

increment A0 by a forward difference. The space derivatives can be approxi-

mated to the order of the square of the spatial increment, Ax, by central 

differences. These finite differences are defined by the relation~ 

at _. 
ae 

c,t -> 

OX 

tn1 0+1- tnz9 
e Ae = 

tn+l z e..:tri.-1 z 9 
e = 28x 

tn+lze+ tn-lze-2 tn,9 

(Ax) 2 

O(Ae) 

0 (Ax2 ) (III-6) 

In the above relations, n denotes th~ spatial location of the point 

whose temperature is being considered and 9 specifies the time at which 

the evaluation is made. The order of magnitude of the errors involved in 

these approximations is indicated to the right of each definition. 

Substituting these quantities into Eq. (III-5) yields the finite 

d~fference equation, 

2 
d":tn+1,e- tn-1,~ 

+ P\-. 28x -) • 

(III-7) 
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Since the second term on the right hand side of this equation contains a 

square of the finite difference derivative approximation, the error 

associated with that term is doubled~ However, the order of error for 

this term is not changed •. Hence, Eq. (III-7) is in error to O(A9) or 

0 (A~) depending upon which term is the larger.· 

Solving Eq. (III,-7) for the temperature tn, e+l indicates that 

(III-8) 

· Equation (III-8) defines the temperature at node n for a time (9 + A9) 

as a function of the temperatures of nodes n • 1, n, and n + 1 at the 

time e. Hence, if the initial temperature distribution and the imposed 

boundary temperatures are known, the temperature distribution can be_ ob-

tained for each time after an elapsed period of A0. This equation is, 

therefore, the numerical solution of the one•dimensional heat conduction 

equation with constant volumetric specific heat and linear variation in 

thermal conductivity with temperature. 

Stability of the One-Dimensional Solution 

Although Eq. (III-8) does represent the one-dimensional numerical 

solution, some consideration IrnJst be given to its stability and accuracy 

before attempting to apply it to a problem. 

The errors which are inherent in any numerical analysis due to the 

· finite difference app~oximations have already been mentioned. Equation 

(III-8) was said to be in error to O(A9) or O(Ax2 ) depending upon 
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which one is the larger. Regardless of the particular governing order, 

the accuracy of the; solution is always improved when smaller values of 

both /l0 and Ax are taken. Hence, care should be taken in specifying 

these quantities. 

Actually, the increments are not entirely independent of each o~her 

but are related through the stability criteria for the solution. Since 

the solution is admittedly in error to. some degree, a criteria must be 

found which will guarantee that for certain conditions this error will 

not increase as a function of time. 

Through an analysis similar to that presented on page 298 of Ref. 

(21), the necessary stability criteria for Eq. (III-8) is found to be 

represented by the inequality 

In the above, µ denotes a ~onstant which depends upon the increment 

Ax and the number of nodes considered. The term (l+/3tM) nrust always be 

greater than or equal to unity. Hence, for problems which involve a 

negative /3, the temperature tM should be taken equal to zero. For 

problems of positive /3, tM sllould be set equal to the highest temperature 

encountered. The remaining quantities have been previously defined •. 

A sufficient condition for stability which is of simpler form can be 

determined by maximizing the right hand side of Eq. (III~9). This con-

dition is represented by the inequality, 



which indicates that t:o insure stability, all terms of Eq, (III-8) 

must be positive when all temperatures involved are positive. In thi$ 

study, Eq. (III-10) was taken as the required stability condition. 

17 

To summarize, the accuracy·of the numerical results is directly de

pendent on the size of the Ax and 89 increments which are used. The sta

bility of the solution is guaranteed when Eq. (III-10) is satisfied. 

Applications of the One-Dimensional Solution 

With the above definition of the required conditions for stability, 

the one~dimensional solution can now be applied to a specific problem. 

However, since small increments of" time and space must be assumed if 

accurate results are to be obtained, the great effort involved in carry

ing out the analysis does not allow the solution as presented t() repre

sent a useful tool. In fact, before a problem can be conveniently solved, 

the solution must be programmed for analysis by a high speed digital com

puter. Hence, a program of the one-dimensional. solution' was .develo:ped for 

use on an IBM 1620 computer. As such a program represents only a con

venient way of providing information to the computer, no discussion will 

be made about its development. For the reader's convenience, the com

plete program is outlined in Appendix B. 

With reference to this program, only problems of known initial and 

boundary temperatures can be treated. These temperatures can be constant 

or varying with space and time. The thermal properties of the materials 

considered should closely approximate the assumed material properties 

used in the development of the solution. The density, p, and the specific 

heat, c, when averaged: for the temperature range of the problem should· 
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indicate for the volumetric specific heat a value which is characteristic 

of that property at any temperature within that range. In addition, the 

thermal conductivity of the material should be closely approximated by 

a linear function of temperature. Although the solution as represented 

by Eq. (III-8) can be applied to walls of infinite thickness, the program 

described in Appendix B will only allow problems with finite thick walls 

to be treated. 

The actual application of the program to a particular problem was 

quite simple when certain considerations were made before attempting to 

obtain actual results. These considerations and the resulting application 

of the solution can be best explained by means of an example problem. In 

Appendix C, such an example is described in detail. 

When properly employed, this specific program of the one-dimensional 

solution enables the transient temperature distribution within a wall 

characterized by the conditions previously defined to be obtained for 

virtually any desired time. The results indicate the total.time elapsed 

since the wall was in its initial state, the temperature and thermal con

ductivity at each node for that time, and the exact location within the 

wall of each node, By plotting this information, a complete history of the 

temperatures within the wall can be determined. This history would enable 

energy transfer rates to be specified. Hence, a general analysis of the 

problem can be.obtained. 

The solution can be conveniently used to generate solution charts 

for problems of a particular type which may frequently occur in one 

specific area of research. Such a class of problems was considered in 

this study. This problem and the solution charts which were obtained 
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are discussed in Chapter V. 

Two-Dimensional Solution 

By employing the same assumptions as made in the one-dimensional 

analysis but considering two spatial dimensions, Eq. (III-1) reduces to 

(III-11) 

· This equation can be approxi~ated by finite difference quantities which 

are exactly equivalent to those defined by Eq. (III-6) and written as 

{ Ca 0 A9 a0 t:.~ } 
t e 1= 1 .. 2 --a + --a (l+i3t 9) t e. n, m, · + flx fly . n, m, n, m, 

t 0 A9 
+ (l+i3t 9) ~ (t +1 e+ t 1 e) n,m, l.lX n ,m, n- ,m, 

a e:.e } 
+ - 0- (t + t . ) Aya n,m+l, e n,m-1, e (III-12) 

+ ~ rr3_oA~ {t - t }a 
4 \..-1::.xi) n+l,m,9 n-1,m,e 

+ f (:~;~ {tn,m+l,9- tn,m-1,0}
2 

• 

In Eq. (III-12), n denotes the x spatial variable, m represents the 

y variable and 9 corresponds to the time variable. Therefore, Eq. 

(III-12) defines the temperature.at node (n,m) for a time (9 + A9) as a 

function of the temperatures at the nodes (n-1,m), (n,m-1), (n,m), (n+l,m) 

and (n,m+l) for the time 9 . This enables a new distribution to be calcu-

lated for times after integral periods of M have elapsed if the initial 

and boundary temperatures are known. Hence, just as Eq. (III-8) repre-

sented the one-dimensional solution, Eq. (III-12) represents the two-

dimensional solution of the heat conduction equation for the same property 
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assumptions previously defined. 

Stability of the Two .. Dimensional Solution 

With reference to the accuracy of Eq. (III-12), the finite difference 

approximations have ma.de that equation in error to the order of the largest: 

of the terms 0(!9), O(Ax2 ) and O(Ay~), Since uniform spatial accuracy is 

desired, the magnitude of the product of Ax and the over-all temperature 

gradient in the x direction should be comparable to that product for the 

y direction. Moreover, both Ax and Ay should be small compared to their 

corresponding total dimension. Both these conditions may be relaxed 

somewhat when the imposed conditions on the specific problem being analyzed 

are considered. 

The time increment £9 which will allow this accuracy to be maintained 

can then be determined from the stability d:riteria for the solution. With-

out deriving the exact stability relations, a sufficient condition can be 

defined in the same manner as was applied in the one-dimensional analysis. 

Hence, by forcing all the terms of Eq. (III-12) to be positive- for posi-

tive temperatures, the inequality 

(III-13) 

must be satisfied. This inequality is then a sufficient condition for 

stability of Eq. (III-12). 
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Applications of the Two-Dimensional Solut;ion 

Since the same assumptions were made in developing Eq •. (III .. 12) as 

were made in obtaining Eq. (111-8), the two-dimensional solution is limited 

in application to the general problems described for the one~dimensional 

solution. The same is true of the program for the two-dimensional solu

tion which is presented in Appendix B. An example problem illustrating 

the application of the two-dimensional program can be found in Appendix C. 

The information received from the two-dimensional program corresponds 

exactly to that received from the one-dimensional solution. 



CHAPTER IV 

EXPERIMENTAL PROGRAM 

The use of numerical techniques in generating the general analyti

cal solutions described in Chapter III suggested that some means for 

verifying the results from these solutions· should be found. Since the 

available solutions obtained by previous investigations were e:i,.ther 

approximate or dependent upon computers to complete the analysis, they 

did not present a desirable comparison datum. For this reason, an ex

perimental program was developed. 

The results obtained from the experimental program were compared 

directly to the corresponding results obtained from the one-dimensional 

numerical analysis. The two-dimensional numerical solution was not con

sidered. This was believed to be sufficient because both numerical 

solutions were based on the same assumptions. Hence, a verification of 

either solution would imply a verification of the other. 

The general development of the experimental program and the.com

parison made are the supject of this chapter. 

General Considerations 

The numerical solutions were developed for materials with a rela

tively constant volumetric specific heat·and_a. thermal conductivity 

which varied linearly with temperature. Hence, in order to allow the 

22 
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experimental results to be compared to the numerical results, the 

material chosen for the experimental tests had to have thermal proper-

ties which resembled those assumed in the numerical solutions. Using 

Ref. (22) as a gaide, a search was made for a readily available material 

of engineering importance whose thermal properties were extremely repre-

sentative of the assumed. The choice of k-monel for the test material 

was the result of that consideration. 

The thermal conductivity of k-monel at temperatures between O and 

1200°F can be expressed quite exactly by the relation 

k = 9.5(1+0.00093 t) Btu/hr ft °F 

where t represents the temperature in °F. The relatively high value 

of the thermal conductivity temperature coefficient (~ = 0.00093/°F) 

insures that the effect of variable conductivity is appreciable for 

most boundary temperature differences. This coupled with the fact 

that the representative thermal diffusivity of k-monel for that range 

of temperatures (~ = 0.16 fts/hr) characterizes many other engineering 
0 

materials, was sufficient reason for justifying the use of k-rnonel. 

Having found a suitable material, the next step was to define 

more exactly the problem which was to be treated. Some degree of ex-

perirnental simplicity could be achieved if the initial and boundary 

temperatures which were to be used might be obtained experimentally 

without difficulty. 0£ course, these conditions also had to be of such 

· a nature that the objective of the program could be correctly achieved. 

That is to say that the boundary conditions should not offer any com-

plications to the general analysis! With these thoughts in mind, the 
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problem was defined to be that of uniform initial temperature with 

constant step function boundary temperatures. The problems involved 

in realizing such boundary temperatures experimentally were thought to 

be slight when compared to the theoretical simplicity which they pro-

vided in the analysis. 

To obtain an indication of what boundary temperature difference 

should be imposed, the one-dimensional numerical solution was employed. 

Problems involving k-monel walls were considered with boundary tempera-

ture differences of 200, 400, 600 and 800 °F. The steady state distri-

butions obtained were then compared to the distributions predicted by 

assuming constant thermal properties. This comparison indicated that 

a boundary temperature difference of 600°F was sufficient to cause a 

substantial difference between the results. For such boundary tempera-

tures, the assumption of constant conductivity would yield temperatures 

which were different from those predicted by the variable conductivity 

numerical solution by up to 26°F. Thus, for k-monel, a boundary tempera-

ture difference of 600°F would clearly illustrate the effect of variable 

conductivity, 

Consideration of the energy input required to maintain one surface 

at 600°F indicated that a circular rod of 0.5-inch diameter would be 

the most convenient size to use for a specimen. As eleven thermocouple 

positions were thought to be adequate for defining the temperature dis-

tribution within the specimen considered, a rod of 0.5 ft" in length 

was chosen. This allowed a thermocouple to be mounted flush at both ends 

of the rod and nine thermocouples, equally spaced 0.05 feet apart, to be 
' 

attached internally along the center axis of the rod, Figure 1. Hence 



-· ,-1 

t 

25 · 

L 3.0 .. ±0.001 
Formed Asbestos Pipe Insulatiqn 
6,5" O.D., 0.5''" i.D. 

3,5" 

NOTE: Drill eleven No. 56 holes along radial line 

to depth of 0;25"~8:8°1 at following locations: 

With first hole on centerline, 
A= 0. 611±0.001 

B = 1.2 ;,±0. 001 

C = l. 811±0.001 

D = 2 •411±0.001 

E = 2.968"±0.001 

Figure 1. First Test Section Design 



26 

the problem was reduced to that of designing a device which would ena~le 

the de$ired boundary temperatures to be imposed on the test specimen. 

First Apparatus 

The apparatus thus conceived was quite simple in principle and 

application, Figure 2. Two large copper rods, one. maintained at approxi

mately 600°F by a controlled calrod heating element and the other maintained 

at approximately 32°F by an ice bath, were simultaneously brought into 

contact with the opposite ends of the k-monel test specimen illustrated 

on Figure 1. The specimen was initially at the uniform temperature of 

the ambient air, approximately 76°F. To insure that both sources simul

taneously made contact with the ends of the test rod, a positive displace

ment mechanical linkage of the Scotch Yoke type was employed. Also, in 

order to approximate one-dimensional axial heat flow, the k-monel rod 

was insulated against radial heat flow. A startdard asbestos pipe insu

lation, three inches thick, was used. Iron-constantan thermocouples 

(30 gage), mounted along the center axis of the test specimen at the 

positions previously described and attached to strip chart recording de

vices, provided a history of the temperature at each of the. stated posi

tions. These thermocouples were mounted in the rod by applying the tech• 

nique described on pages 142-166 of Ref. (1). 

The first runs made while calibrating the control and recording 

instruments indicated that ·the step function boundary conditions which 

had been desired were not going to be obtained. !he large contact re

sistance between the copper rods and the k-monel rod would not allow such 

an instantaneous change of temperature to be achieved. In an effort to 
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improve these conditions, a high temperature grease was applied to the 

ends of the test rod before the boundary temperature sources were im

posed. This insured much better contact between the k-monel and the 

copper but was still not sufficient to achieve the ideal boundary con

ditions. The effect of having time dependent boundary temperatures 

results in complicating the input data used in the analytical solution. 

After completing an experimental test, the temperature histories 

recorded for the boundaries of the rod were specified as the boundary 

temperatures of a k-monel wall, 0.5 ft. thick, which was initially at 

the same temperature as the experimental rod. The transient temperatures 

were then obtained for this theoretical wall by employing the one-dimen

sional numerical solution. This allowed the experimentally determined 

temperature histories to be compared with the corresponding temperatures 

predicted by the analytical solution. If the two histories compared 

favorably, a strict verification of both methods would be obtained. 

Results From First Apparatus 

Unfortunately, the comparison of e~perimental and analytical data 

did not indicate any degree of correlation. For,a particular point at 

a particular time, the two methods suggested temperatures which differed 

by up to 70°F. The continuous, smooth temperature distributions obtained 

from the analytical solution indicated that the numerical method was 

basically correct. Since continuous distributions were also obtained 

from the experimental results, no large error due to faulty thermocouples 

was apparent. Hence, in order to isolate the difficulties involved, the 

steady state temperature distributions indicated by both the numerical 
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solution and the experimental tests were compared to the steady state 

distribution described by the exact steady state solution (see Appendix A). 

This indicated that the analytic solution was at least valid for the 

final condition of steady state. For the experimental data, however, 

this comparison suggested that a large radial heat flow existed along 

the length of the test rod. Such a loss would violate the assumption of 

one-dimensional heat transfer and the objective of the program cou·ld not 

be achieved. 

Second Apparatus 

To correct the experimental apparatus required that.the test speci

men be modified in such a way as to reduce the radial heat loss from 

the surface of the rod to zero. This could be achieved by placing a 

guard heater around the surface of the specimen. However, because such 

a heater would be extremely difficult to control in lieu of the transient 

situation, another means for eliminating the loss was employed. The 

test rod was shielded by a one-inch diameter stainless steel tube having 

approximately the same cross sectional area as the test rod. The ends 

of this tube were soldered to copper pieces which were attached to the 

test rod, Figure 3, This insured that both the shield and the rod would 

have identical boundary conditions. As the average thermal conductivity 

of stainless steel is nearly equivalent to that of k-monel, both the 

shield and the rod would have approximately the same axial temperature 

distribution at any one time. This would then reduce the possibility 

for a radial temperature grac;lient to exist and in so doing would also 

greatly reduce the heat loss. The new specimen was insulated as shown 
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in Figure 4. The air gap between the insulation and the shield was used· 

to reduce the radial loss from the shield. Reducing this loss would 

improve the axial distribution of the shield. 

Results From Second Apparatus 

In reality, the stainless steel shield did not completely eliminate 

the radial loss. This is indicated by the comparison of the analytical 

and experimental results illustrated on Figure 5. The curves presented 

there define quite well the effect of such a loss. At small times, 

agreement between the analytical and experimental methods is observed 

for all values of 
X 
.R, • However, for large times, the two methods com-

pare less favorably as the center position is approached from either 

boundary. Since the effect of the radial loss on the temperature of 

any particular point is time dependent, these observations are precisely 

what should be expected. 

Assume that for small times the axial distribution of temperature 

in the shield is slightly different than that in the rod. This is to 

be expected because of the radial loss from the shield to the ambient 

air. Hence, a small radial gradient will exist and there will be a 

small radial heat flow. Because the flow is small, the temperature dis-

tribution in the rod is only slightly affected. This accounts for the 

agreement between the analytical and experimental data at small times. 

H:owever, at large times, a larger radial gradient between the rod and 

shield will exist due to the increase in the temperature difference be-

tween the shield and the ambient air. This gradient gives rise to a 

radial heat flow which has an appreciable effect on the temperature 
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distribution of the rod. Hence, the numerical and experimental results 

fail to agree. The large differences observed at points near the center 

of the rod simply illustrate the fact that the temperature at a position 

for a specific time is dependent upon the total radial loss which occurred 

along that portion of the rod separating the point in question from the 

controlled boundaries~ 

Since the analytical results did compare favorably with the experi

mental at small times and with the exact steady state solution at a 

sufficiently large time, no further attempt was made to improve the ex

perimental program. However, impl;'."ovement is certain if care is taken to 

construct the test specimen so that the shield completely encloses the 

rod. This would help reduce any axial temperature distribution differ

ences between the shield and the rod. Also, this difference could be 

further reduced by constructing the shield from the same material as the 

rod. In the case considered, the cost of such a shield did not justify 

its use. 

-· 



CHAPTE;R V 

GRAPHICAL ~SULTS 

Due to the generality of the solutions which have been developed, 

a complete graphical presentation of the problem types which can be 

solved was quite impossible. However, a specific class of· one-

dimensional proble~s was considered to demonstrate how these solutions 

might be employed to generate practical solution charts.· 

Thi~ class of problems is best defined by its characteristic 

initial a~d boundary conditions. Initially, the material which forms 

the wall of consideration, Figure 6, is at a uniform temperature. At 

some instant in time, both surfaces of the wall are raised to constant 

and equal temperatures~ The temperature at any point within the waJl 
·., 

for any specific time is to be determined. 

\\\\\\ 
k = k (l+p3t) 

0 

(pc) = const. 

\ \\\ \\\\ 
~~ 

t(x,O) = constant= t. 
l. 

t(O,~) = t(l,9) % constant= tb 

tb > ti 

Figure 6. Problem Definition fo~ Solution Charts 
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The reader will no doubt recognize this problem as one of the 
I 

types presented on various charts for materials of constant thermal 

conductivity. The Heisler cp.arts presented on page 258 of Ref. (21) 

are representative of such work. Indeed, this available analysis of 

the constant conductivity problem was one reason for conside.ring that 

particular class of problems. The Heisler charts provide a convenient 

means of checking the accuracy of the one-dimensional numerical solu-

tion for those situations where the materials involved have constant 

thermal conductivities (~ = 0.0). In addition, since the reader is 

already familiar with the constant property solution presented within 

those charts, the effect of variable conductivity on the temperature 

distribution will be immediately more meaningful. 

In an attempt to follow Heisler's work as closely as possible, the 

charts on Figures 7 and 8 present the dimensionless centerline temperature, 

as a function of the dimensionless time, 

for various values of the parameter 

The symbols used in these expressions are defined below: 

~ = thermal conductivity temperature coefficient (°F)-l 

ti= initial temperature of wall (~F) 

t = center temperature of wall (°F) 
C 
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tb = boundary temperature of wall (°F) 

0 = elapsed time of analysis (hrs) 

l = thickness of wall (ft) 

.! 

a = representative thermal diffusivity (ft2 /hr). ·o 
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The term a is calculated for each problem from the ratio of the thermal 
0 

conductivity at ·0°F and the characteristic value of the volumetric 

specific heat for the particular temperature range considered. 

A position correction chart, Figure 9, provides a means of evaluating 

the temperature at other points within the wall. On this chart, the di-

mensionless temperature 

is plotted as a function of the dimensionless group, (w/®), for various 

values of the dimensionless location, (j). The symbol t is used to 
X 

define the temperature within the wall at location x. 

The centerline temperature charts and the position correction chart 

are empirical in that they employ correlation parameters which approx:i,.-

mate the variations indicated by the results obtained for a variety of 

problems from the numerical solution. For example, the dimensionless 

centerline temperature is weighted by the factor 

(1 + 0.4 l3t.) 
. 1 

and is plotted as a function of the dimensionless time for various values 

of the parameter W . The w group was found to correlate almost exactly 

the results obtained for problems concerning totally different materials 

with different boundary temperatures as long as the initial temperature 
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characterizing the entire group of problems was taken to be O~F. Actually 

this parameter illustrates the observed tendency that a material of 

~ ~ 0.0005/°F whose bo~ndary temperature is 1000°F will experience the 

same dimensionless temperature variation with dimensionless time as 

another material of~= 0.001/°F whose boundary temperature is 500°F. 

On the other hand, the weighting factor- for the centerline tempera-

ture is not as exact. A detailed study of problems which involved 

different initial temperatures as well as different boundary temperatures 

and different materials indicated that such a termmight be employed. 

This was observed by plotting the ratio of the dimensionless centerline 

temperature for initial temperatures different from zero to the dimen-

sionless centerline temperature for an initial temperature of zero as a 

function of ~t. for each material and boundary temperature cons.idered. 
1 

The ratio was found to be nearly independent of dimensionless time and 

to depend almost linearly on ~t .• This allowed the weighting group to 
1 

· be specified. 

The results from additional problems revealed that the correlation 

was justly accurate for only certain initial temperatures. Indeed, . for 

centerline temperatures as accurate as the readability of the charts do 

permit, only problems which involve initial temperatures within the limits 

defined below can be considered. These limits are: 

0 ·~ ti s:: 600°F for 1lT between -2. 5 s:: 1lT S:: 0.0 

0 s:: t 1 s:: 800°F for ,jr between 0.0 s:: ,jr s:: 14.0 

Under these conditions, a maximum error of four percent exists in the 

dimensionless centerline temperatures obtained from the charts. This 

error occurs when t. ~ 600°F and ,jr = -2. 5. Also, it is important to 
1 
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note that the charts are valid only for problems which involve an in-

crease in temperature. In fact, to assure accuracy, only problems of 

t ::::: t. + 200°F 
b 1. 

should be considered. However, problems where (tb- ti) is less than 

200°F can be treated by assuming a constant conductivity equal to the 

average conductivity of the material for the temperature range considered. 

The limitations which have been discussed should be considered as an inte-

gral part of the charts. 

The position correction chart is in some ways even more limited than 

the centerline temperature charts. The problem study indicated that the 

temperature at one location not only varied with time, boundary tempera-

tur~ and material properties but depended as well on the initial tempera-

ture. Since the dependence of temperature on time, boundary temperature 

and material properties was obviously quite larger than its dependence 

on the initial temperature, the (t/®) grouping was formed and the average 

correlation curves developed. These curves provide correction readings 

within four percent of the exact as long as the problem of consideration 

satisfies the above conditions and the dimensionless time is larger than 

or equal to 0.32. 

Within the limits described above, the charts offer a rapid solution 

to many problems of the class considered. A similar analysis of other 

general classes may yield very useful charts. However, one should always 

remember that when extreme accuracy is desired or when a problem of un-

usual boundary temperature variation is considered, the numerical solu-

tion should be employed, 
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CHAPTER VI 

CONCLUSIONS 

A general, straightforward, analytical procedure has been presented 

for accurately describing the transient temperature distribution within 
I 

materials whose thermal condubtivities vary with temperature. The pro-

cedures developed are applicable to problems of one and two rectangular 

dimensions which are cqaracterized by known boundary temperatures. 

These temperatures, however, can be both constant and varying. Although 

only the one- and two-dimensional solutions are developed, the same 

technique can be applied to yield a solution for three~dimensional 

problems. 

To insure. extreme accuracy, the materials considered should have 

thermal conductivities which can be closely approximated by a linear 

function of temperature for the range of temperatures considered. They 

should exhibit the character of having a relatively constant volumetric 

specific heat within that range of temperature. These conditions do not 

severely limit the solutions because most materials available today do 

satisfy such requirements. 

Since the solutions are numerical, careful consideration should 

also be given to the stability and convergence c.riteria as discussed in 

the text of this report. These conditions are indeed an integral part 

of the solution. In addition, a digital computer must be available for 

.43 
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the analysis if the solutions are to be of significant value. As pre

sented, the solutions are il)ll1lediately applicable for analysis by machines 

which will accept the IBM 1620 Fortran notation without Format. However, 

no great problem exists in rewriting the solutions so that other com

puters can be employed. 

The study includes a graphical presentation of a particular class 

of one-dimensional problems. The problem type considered is characterized 

by a uniform initial temperature with constant and equal step function 

boundary temperatures. Solution charts involving dimensions parameters 

were developed by employing the analytical solution. These charts enable 

a rapid analysis to be made of the transient temperature at any position 

within a wall whose boundaries are subjected to such conditions as 

described on Figure 6. As the correlation parameters u~ed in constructing 

these charts are not exact, certain additional limitations nrust be placed 

on the problems which can be COI)-Sidered. Only problems which involve 

an increase in temperature, tb> ti, and which sattsfy the conditions 

defined on page 41 of Chapter V can be accurately solved. Regardless of 

the problem considered, the charts will enable the engineer to gain an 

understanding of the effect a material with variable conductivity will 

have· upon the temperature distributions and the energy transfer rates 

thus encountered. 

To conclude this study, a brief discussion of possible future in

vestigations follows~ 

With reference to the techniques employed in this study, problems 

of cylindrical and s.pherical coordinates should be considered in future 

studies. The solutions developed should be extended to include problems 



of general convective boundary conditions and the variation of the 

volumetric specific heat with temperature should be included within 

45 

the analysis. The techniques developed might then be used to construct 

solution charts for the classes of problems which are frequently en

countered. With such solutions, the majority of the problems which 

are of concern could be treated. 

However, an effort should be made to use this information to 

develop more convenient analytical solutions of all particular problems. 

Indeed, the technique employed here represents only a beginning step 

toward the optinrum analysis of problems involving materials of variable 

thermal properties. 
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APPENDIX A 

DERIVATION OF GOVERNING EQUATIONS 

To provide the reader with a complete description of the general 

equations which are related to this study, a detailed derivation of the 

heat conduction equation for solid bodies is presented below. The trans-

_ ... formation of this equation to one involving the thermal conductivity 

function is also considered, and an exact steady state solution is generated 

for one-dimensional problems. 

Derivation of the Heat Conduction Equation ' 

With reference to th~ following diagram, the principle of conservation 

of energy ynplies that the net rate at which energy is added to the differ• 

ential mass must be exactly equal to the net rate at which the internal 

energy of that mass is increased. 

q 111 dV 

k ~t Ax 
eX 

k - A,· - k ~ A·· z ~ ot ) o ( ot- ) sz z. oz oz z 
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k ot A' + ...Q.. ck ot A '\.,y 
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· st · 
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ot k-- A·: oz z 
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There are two possible ways by which the element· can receive energy. 

Th~ first is by the condµction of energy in the form of heat through the 

faces of the element and the second is by the generation of energy by 

the mass of material within the element itself. With regard to the conduct-

ed energy, ... t~e Fourier-Biot Law states that the rate of energy flow by 

conduction, q, in any specific direction, n, is defined by the expression . n 

(:kA ot:\ 
~ =-· n ~)n (A-1) 

where k represents the thermal conductivity of the material, A denotes 
n 

the cross sectional area perpendicµlar to the direction 
. st 

n and -r is the on 

temperature gradient taken with respect to the direction n. Denoting 

the net flow of energy into the element in the x direction by Qx, the 

Fourier-Biot Law applied to the element face at x and x + dx yields 

" [ st] [ < otJ ~x= .. k(dydz)ai x- -k dydz)sx x+dx (A-2) 

For mathematical convenience, the second term on the right hand side of 

Eq. (A-2) can be written as a function of the first by employing Taylor's 

Series Expansion, 

f (x+dx) = f (x) + of (x) dx ++ s2 fsx) {dx) 2 
ox 2. ox + . . • (A-3) 

Considering terms of the order dx or larger allows Eq. (A-2) to be 

written as 

which reduces to 

,., a c of\ ~x~ sx k ~ dxdydz (A-4) 
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A similar treatment of the remaining directions wUl:yield the relations 

· o (· st) 0 = - k - dxdydz -y oy oy. . · {A-5) 

and (A-6) 

Defining the net flow of energy into the element by conduction as Qc, 

it is clear that 

. ::: {-2.. (k sf\ + ...! ck ot). + ..£. ck 2£.'\ l dxdydz • 
Qc sx ix.J. ay oy sz .. oiJJ (A .. 7) 

If the mass of material within the element has the ability to 

t th t f I 1-.I h • h • d • f generate energy a era e o q w ic. is expresse in terms o 

(Energy/unit time/ unit volume) then the net rate at which the element 

receives generated energy, %, is defined by the equation, 

% = q 111 dxdydz (A-8) 

and hence the element receives both generated and conducted energy at 
. . 

the net rate of Qc + %· 
At any particular time, the internal energy of the elemental mass 

can be expressed as 

where EI represents the internal energy per unit'volume of the material. 

Hence, the rate of increase of internal energy is equal to 

where the symbol@ is used to denote time. If EI is assQmed to be a 

function of temperature which implies that the density, ~, and the 



specific heat, c, are also functions of temperature, then 

and 

which defines the rate of increase of internal energy as 

ot 
pc ae dxdydz 

Therefore, by the principle of conservation of energy, 

or 

at 
pc -a dxdydz = 0 

. ot o Gk at) + o ck st) s (k OB , , , pc-.-. = - ~ - - + - -· + q . oe . ox ox oy oy oz s 

which is the Fourier heat conduction equation. 

Transformation of the Heat Conduction Equation 
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(A-9) 

(A-10) 

It has been mentioned that the thermal conductivity of most engineering 

materials depends linearly upon the temperature, This means that k can 

be expressed as 
k =· k (1 + f3t) 

0 

where k is the conductivity at t = 0°F and 13 is a weighted constant 
0 

which is proportional to the slope of the k versus t curve. 

Considering the change i-p. k with respect to some independent variable, 

say n, indicates th~t 

or st= (....L) ok 
on k 13 on 

0 

(A-11) 
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Assuming that the material in question cannot generate heat, the above 

relation is substituted into Eq. (A-10), 

~ fils = _1 {-2. (k ck) + ..2. (k ck) + i (k E!, 1. • 
k ~ o@ k ~ ox ox oy oy: oz ozJJ 
,o O · 

By recognizing that 

this equation can be written as 

Taking ~c as constant allows a new variable g to be define~ as 

k g :::i:-

fDC 

which reduces the form of the equat ic;m to 

Although the heat conduction equation as defined by Eq. (A-12) 

(A-12) 

(4\-13) 

(A-14) 

is generally considered, Eq. (A-14)·may offer some mathematical simpli-

fication in the grouping of the variable conductivity and the constant 

volumetric specific heat into one variable. 

Steady State Solution--One Dimension 

Under the condition of steady state, Eq. (A-12) reduces to the very 

familiar Laplace equation, 

(A-15) 

for which a general solution is known. The assumption of one-dimensional 
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energy transfer permits the equation to be written in yet simpler form 

as an ordinary differential equation, 

(A-16) 

Integration of this equation yields the general solution, 

which can be written in terms of temperature by substituting k (1+13t) 
0 

for k, 

a ( a k 1 + l3t) = C1X + Ca 
0. 

(A-17) 

Specifying the value oft at x = 0 and x =£allows the evaluation of c1 

and ca to be made. Hence, 

= ka(l + At )a Ca O I-' 1 

and ka (1 + l3t \a - k2 (1 + 13t ) 2 
0 :;a; 0 !I. 

cl = £ 

where t 1 = boundary temperature at x = 0 

ta= boundary temperature at x = £. 

This enables .the temperature equation to be written as 

Therefore, 

(A-18) 

represents the one-dimensional steady state temperature distribution in 

a material having a thermal conductivity which varies linearly with 

temperature. 



APPENDIX B 

PROGRAM OF ONE- AND TWO-DIMENSIONAL SOLUTIONS 

In the following sections, complete listings of the programs for 

both the one- and two-dimensional solutions are presented in IBM 1620 

Fortran notation without Format. Each listing is supplemented with 

physical definitions of the quantities called for as input data and 

those received as output data. For a detailed description of the 

problems which can be solved by either one of these solutions, the 

reader should refer to Chapter III. 

Program of the One-Dimensional Solution 

Before reference is made to the ptogram listing which follows.i the 

Fortran quantities defined below should be carefully studied. 

(a) 

(b) 

(c) 

(d) 

RHO = density of the material (lb /ft3 ). 
m 

SPHT = specific heat of the material (Btu/lb °F). 
m 

CONDO = thermal conductivity of the material at 0°F (Btu/hr ft °F). 

BETA = thermal conductivity temperature coefficient (~F)-1; -

(Note: See Appendix A.i pag'e: 51.). 

(e) DIM = thickness of wall or length of rod considered (ft). 

(f) DELT = elapsed time between temperature calculations (hrs). 

(g) TEMPM = maximum temperature experienced by the material during the 

transient process (°F); (Note: TEMPM should be taken 
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(h) J 
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equal to 0°F when BETA is negative). 

::; number of spatial nodes considered by assuming the first 

node, node 1, is at one boundary; :j_.e., counting the nodes 

from unity instead of zero. (J is a fixed point number; 

i.e., it is presented without a decimal), 

(i) RUTIM = number of time increments to be taken before the machine 

(j) UM 

(k) BC 

(1) TIMO 

provides a record of the temperature distribution and other 

desired quantities. 

= number of output data sets desired. 

== type of boundary conc;litions involved (BC = 0.0 refers to 

variable boundary temperatures while BC = 1.0 denotes 

constant boundary temperatures) •. 

= actual time at which the material experiences the tempera

ture distribution which characterizes the beginning point 

of the run (hrs). 

(m) STAB == stability condition of the numerical solution (nrust be 

greater than two or machine will refuse the input data). 

(n) ETlME ::; exact time which has elapsed since the beginning initial 

temperature distribution at TIMO = 0.0 hrs" was considered 

(hrs). 

(o) TEMP(N)= temperature of nodal points at some specific time (?F) .~ 

(Note: The read statement inv6lving TEMP(N) calls for 

the distribution at time TIMO). 

(p) DIST = location in (ft) of Node (I) where TEMP(!) occurs (referenced 

to Node (1) whose spatial dimension has been assumed equal 

to zero). 



56 

; 

(q). COND ..., actual therm,al conductivity at Node(!) where TEMP(!) 

occurs (Btu/hr ft °F). 

With· the ex~eption o:f; item {h), all of the above quantities mus't 

be defined with a decimal point. To gain a better understanding of 

how the input data should appear and what to expect as output, please 

re.fer to Appendix C where a sample problem is discussed. 

In Yortr,an notation, the one•dimensional solution is as follows 

~m page 57. 

Program of t;he Two-Dimension~.l" Solution 

With the exception of the following quantities, the definitions 

given in the ·first section of this appendix are valid in the program 

of the two .. dimensional solution. 

~ length of wall in the direction of x, (ft). 

= length of wall in the direction 0£ y, (ft). 

(a)· DlMX 

(b) D1l1Y 

(c) J ~ number of divisions in the x•dimension used to define 

the nodal system. (Note: J is determined by counting 

the divisions from unity instead of zero). 

(d) K = number of divisions in they-dimension used to define 

the nodal system. (Note: K is determined in the same 

manner as J). 

(e) TEMP(N,M) ~ temperature at nodal point where N defines the x displace~ 

ment from the origin and M represents they displacement 

for some specific time (°F). (Note: The read statement 

involving TEMP(N,M) calls for 'the distribution at time 

TIMO)~ 



PROGRAM LISTING OF THE ONE-DIMENSIONAL NUMERICAL SOLUTION 

START 
DIMENSION TEMP!lOll, TEMPN(lOll 

1 READ, RHO, SPHTt CONDO, BETA, DIM, DELT, TEMPM, J 
READ, RUTIM, UM, BC, TIMO 
ACT=J-l 
FACT=l.O/ACT 
DELX=<DIM*FACT 
CONDM•CONDO*lieO+BETA*TEMPMl 
ALPHA=CONDO/IRHO*SPHTI 
STAB=IIDELX**21*CONDOI/IALPHA*DELT*CONDMl 
PUNCH, STAB 
IF4STAB-2.Dll,3,3 

3 CNSTl•CALPHA*DELTI/IDELX**21 
J1MJ=UM*RUTIM 
JI=O.o 
ETIME=Tl*DELT+TIMO 
PUNCH• ETIME 
:N= 1 

,5 :DIS=N-1 
,D;l SJ=.DI S*DELX 
,R.£.AD.t TEMPINl 
COND=CONDO*lloO+BETA*TEMPINII 
PUNCH, DIST, TEMPINI, COND 

· N=N+l 
IF<N-J15,5,10 

10 Tl=Tl+leO 
ETIME•Tl*DELT+TIMO 
N=2 

15 PARTl=TEMPINl*ll,0-2,0*CNSTl*ll,O+BETA*TtMPINl)l 
PART2=CNSTl*ITEMPIN+ll+TEMP(N-lll*ll,O+BETA*TEMPINII 
ULTl=ICNSTl*BETAl/4 1 0 
ULT2=1TEMPIN+l1**2l-2eO*TEMP(N+ll*TEMPIN-ll+ITEMPIN-ll**21 
iEMPNINl•PARTl+PART2+1ULTl*ULT21 
N•N+l 
IFIN-Jll5,20,20 

20 IFtBC-1•0125,30,30 
25 READ, TEMPlll, TEMPIJI 
30 N=2 
35 TEMPINl•TEMPNINI 

N=N+l 
IFIN-J135,40,40 

40 DO 60 l=l,50 
ENC=I 
IFITI-ENC*RUTIMl60t45,60 

45 PUNCH, ETIME 
N•l 

50 DIS=N-1 
DIST=DIS*DELX 
COND=CONDO*ll,O+BETA*TEMPINII 
PUNCH, DIST, TEMPINI, COND 
N=N+l 
IFIN-Jl50,50t60 

60 CONTINUE 
IFITJ-TIMTll0,65,75 

65. PUNCH, ETIME 
N=l 

70 PUNCH, TEMPINI 
N•N+l 
IFIN-Jl70,70t75 

75 CONTINUE . 
GO TO l 
END 
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(f) DI STX = X location of \lOde in question (ft). 

(g) DIS TY = y location of node in question (ft): 

Since items (c) and (d) are fixed point 1;1umbers, they must not. be 

defined with a decimal point. All of the remaining quantities discussed 

above must be' defined in dec;imal notation. 

In Fortran notation, the two-dimensional solution is as follows 

on pages• 59 and 60 



PR<X;RAM LISTING OF THE TWO-DIMENSIONAL NUMERICAL SOLUTION 

START 
DIMENSION TEMPC15,151, TEMPNC15tl51 

1 READ, RHO, SPHT, CONDOt BETA, DIMX, DIMY, DELT, TEMPM, J, K 
READ, RUTIM, UM, BC, TIMO 
ACTl=J-1 
FACTl=l eO/ACTl 
DELX=DIMX*FACTl 
ACT2=K-l 
FACT2=le0/ACT2 
DELY=DIMY*FACT2 
CONDM=CONDO*CleO+BETA*TEMPMI 
ALPHA=CONDO/CRHO*SPHTI 
TABl=CIDELX*DELY1**21*CONDO/CCONDM*DELTl 
TAB2=ALPHA*IIDELX**21+1DELY**211 
STAB=TAB1/TAB2 
PUNCH, STAB 
IFISTAB-2.011,3,3 

3 CNSTX=CALPHA*DELTI/CDELX**2l 
CNSTY=(ALPHA*DELTI/IDELY**2l 
TIMT=UM*RUTIM 
TI=O.O 
ETIME=Tl*DELT+TIMO 
PUNCH, E Tl ME 
N=l 

5 M:;:l 
10 DISX=N-1 

DISTX=DISX*DELX 
DJSY=M-1 
DISTY=DlSY*DELY 
READ, TEMPIN,Ml 
COND=CONDO*ll•O+BETA*TEMPIN,MII 
PUNCH, OISTX, DISTY, TEMPIN,Mlt COND 
M=M+l 
IFIM-Kll0,10,15 

15 N=N+l 
IFIN-Jl5,5,20 

20 tI=Tl+leO 
ETIME=TI*DELT+TIMO 
N=2 

25 M=2 
30 PARTl=ll.0-2eO*ICNSTX+CNSTYl*Cl.O+BETA*TEMPCN,Mll)*TEMPCN,MJ 

PART2=lleO+BETA*TEMPIN,Mll*CNSTX*CTEMPCN+l,Ml+TEMPIN-l,MJ) 
PART3=CleO+BETA*TEMPIN,Mll*CNSTY*ITEMPCN,M+ll+TEMPCN,M-lll 
ULTl=(BETA*CNSTXl/14.0I 
ULT2=CTEMPCN+l,M1**21-2•0*TEMPIN+l,Ml*TEMPCN-l,Ml+ITEMPIN-l,Ml**21 
ULT3=CBETA*CNSTYI/C4•01 
ULT4=(TEMPINtM+l1**21-2.0*TEMPIN,M+ll*TEMPIN,M-ll+ITEMPIN,M-11**21 
TEMPN(N,M)=PARTl+PART2+PART3+1ULTl*ULT2)+1ULT3*ULT4J 
M=M+l 
IFIM-K130,35,35 

35 N=N+l 
IFIN-J)25,40t40 

40 IFIBC-le0145,65,65 
45 M=l 
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PR(X;RAM LISTrNG OF THE TWO-DIMENSIONAL NUMERICAL SOLUTION (Continued) 

50 READt TEMPfl,Ml, TEMPfJ,MI 
M=M+l 
IF(M-Kl50,50,55 

55 N•2 
60 READ, lEMPfN,11, TEMPfN,KI 

N•N+l 
IFfN-Jl60,65;65 

-65 N.,2 
70 M•2 
75 TEMP(N,Ml=TEMPNfN,Ml 

M•M+l 
IFCM-Kl75,80,80 

80 N=N+l 
IF<N-Jl70,85,85 

85 DO 110 I=l,50 
ENC=J 
JFllJ-ENC*RUTIMlll0,90,110 

90 PUNCH., ETIME 
N=l 

,95 M=l 
100 DJSV=M-1 

DISXsN-1 
DISTX=DISX*OELX 
DJ STV=DI SV,*DELV 
COND=CONDO*lleO+BETA*TEMPlN,Mll 
PUNCH, OISTX, DISTV, TEMPIN,M), COND 
M=M+l 
IFfM-Kll00,100,105 

105 N•N+l 
IF<N-Jl95t95,110 

110 CONTINUE 
JFITI-TJMT120,115~135 

115 PUNCH, ETJME 
N=l 

120 M=l 
125 PUNCH, TEMPIN,MI 

M=M+l 
IFIM-K>l25,125,130 

130 N=N+l 
IffN-Jll20,120,135 

135 CONTINUE 
GO TO l 
END 

' 



APPENDIX C 

REPRESENTATIVE CALCUIATIONS 

As a supplement to the discussion of the analytical solutions and 

their subsequent programs, two examples are considered. The first illus

trates the use of the one-dimensional numerical solution and the second 

represents an application of the two-dimensional solution, 

One-Dimensional Example 

With reference to the discussion presented in Chapter III and 

Appendix B, consider the problem of describing the temperature distri~ 

bution which exists at certain spec;i.fic times with;i.n a wall whose sur

face temperatures are known functions of time. Assume that the wall is 

a k-monel slab, 0.5 ft, thick, and is initially at a uniform temperature 

of 400°F. At some time, 0 = O, one surface of the wall is instantaneously 

lowered to a constant temperature of 0°F while the other surface is main

tained at a temperature defined by the relation 

(C-1) 

where e is given in hours. The temperature distribution within the wall 

for times froin 0=0 to e = 0.4 hours separated by increments of 0.02 

hours are to be specified. 

To begin the analysis, notice that the temperature range co1;1sidered 

is from 0°F to 800°F. Therefore, the thermal properties of k.,.monel for 

61 



... .,,,.· 

this range can be found from Ref. (22) to be 

Ill = 523.0 lb /ft3 
m 

c = 0.1075 Btu/lb °F m 

k = 9.5 [cl+( 0.00093/°F)t]Btu/hr ft °F 
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(C-2) 

where p and c are presented as averaged values. If the volumetric 

specific heat at the end temperatures are compared to the average value 

defined by the above Ill and c, a difference of approximately 10 percent 

will be found. Hence, the condition that the volumetric specific heat be 

constant is sufficiently satisfied,, The variation in conductivity as des-

cribed above does closely represent the actual variation.· This satisfies 

the remaining requirement of the solution and indicates that the results 

can be employed with confidence. 

A nodal system for the wall must now be specified. Since the wall 

is 0.5 ft thick, increments of 0.05 ft which define eleven nodal points 

are convenient. With this information, a time increment can be determined 

which will allow the stability condition, 

to be satisfied. 

__ _,(,_IJ_x) .... 2 __ ii.: 2. 0 
o:0 (A9) (1+13tMJ ' 

Solving this expression for the time increment indicates that 

or more specifically 

Ae :s; . (O.OS)a hrs 
· (9. 5) [ 

(2.0)(523) (0.1075) 1 + .. 0.00093(200)] 

Ml :S: 0.00424 hrs • 
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Since the temperatures at time intervals of 0.02 hour1;1 are desired, a 

A@ of 0.004 hours is convenient. This means that the temperatures should 

be obtained after consideration of groups or runs of five-time incre

ments A9 are completed. Also, as the solution is only to be carried to 

0.4 hours, twenty of these five interval runs IIlllSt be made. 

Before writing this information in the form of input data for the 

programmed solution, the time dependent boundary temperature should be 

considered. This time dependent temperature requires that the boundary 

temperatures which occur at each A@ increment considered be supplied to 

the machine. Equation (C-1) should be used in determining these tempera

tures. For this particular problem, one hundred increments are considered 

and therefore one hundred boundary temperature cards should be supplied. 

With this understanding, the input data can now be fornrulated. For 

the reader's convenience, the Fortran notation defined in Appendix Bis 

given above the actual input values. Hence, for this problem, the in

put data should appear as follows: 

Card 1 

RHO SPHT CONDO BETA DIM · DELT TEMPM J 

5~3.0 0.1075 9.5 0.000'.93 0.5 0.004 800.0 11 

Card 2 

RUT IM UM BC TIMO 

5.0 20.0 o.o 0.0 

Card 3 (temperatures at time TIMO) 

TEMP(l) TEMP(2) TEMP(3) TEMP(4) TEMP(5) TEMP(6) 

0.0 400.0 400.0 400.0 400.0 400.0 

TEMP{7) TEMP(8) TEMP(9) TEMP(lO) TEMP(ll) 

400.0 400.0 400.0 400.0 400.0 



Boundary Temperature Cards (100 Total) 

TEMP(l) 

o.o 
o.o 
o.o 

o.o 

TEMP(J') 

404.0 

408.0 

412.0 

.. 

800.0 

64 

By the definition of t;he tel;'lll BC, if constant boundary temperatures had 

been specified, BC would equal 1.0 and only the temperatures on Card 3 

would be required as input data. Also, notice that all the data except 

that defining the number of nodes, J, are written in decimal notation. 

This nrust be followed if the machine is to interpret the data correctly. 

The actual locations, in feet, of the nodal points are defined with 

reference to the node defined by TEMP(l). For this problem, the surface 

at spatial location x :,:; 0 is def;i.ned to be at a temperature of 0°-F. 

Therefore, the remaining nodes are located with reference to that surface. 

For example, the temperature at spatial location x ~ 0.5 ft. is t;hat 

defined by Eq. (C-1). 

When this input information is supplied to the mach~ne,. the first 

set of data which will be received defines the stability condition used 

and reproduces the initial distribution. If a mistake has been made and 

the stability condition is not satisfied, after looking at the first data 

card, the machine will punch the value of the stability condition and will 

call for new data. If the condition is satisfied, the computer will punch 

that value, the time TIMO, and the initial distribution. These distribution 
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cards will give the location of the node, the temperature at that node for 

the time TIMO, and the corresponding conductivity. 

The next series of data sets will each be defined by a time card 

followed by distribution cards which give, for this new time, the same 

information as the distribution cards defined above. When the final time 

is reached, a set of cards will be obtained which defines that time and 

the corresponding temperatures at each node. These temperatures are 

punched on separate cards in the numerical order of the nodes; i.e., 

TEMP(l), TEMJ>{2), etc. This last set of data is only included in the 

program because of the convenience it offers when an extension of the time 

of ,analysis is desired. As should be expected, all output quantities 

are specified in terms of the same units used in defining the input 

information. 

A study of the listing of the program as presented in Appendix B 

should now clarify any detail which may be of concern to the reader. 

Two-Dimensional Example 

To exemplify the application of the two-dimensional solution and 

program, consider the problem of specifying the temperature history of 

a long rectangular bar whose sur:faces are maintained at constant tempera

tures.· Assume that the bar is k-monel with an x-dimension of 0,4 ft and 

a y-dimension of 0.6 ft. At some time, 9:;::: O, when the bar is at a uni

form temperature of 800°F, the surfaces defined by x = 0 and y = 0 are 

instantaneously lowered to a constant temperature of 0°F. At the same 

time, the surfaces at x :;::: 0.4 ft and y = 0.6 ft .. are forced to maintain 
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the constant initial temperature of 800°F. The temperature distribution 

of the bar at times from e = 0 to$= 0.5 hrs. separated by increments of 

0.05 hrs. is to be determined. 

Since the same material and the same temperature range as considered 

in the one-dimensional example are in question here, the first part of 

the analysis is identical to that of the one-dimensional problem. The 

two .. dimensional nodal ~ystei:n can be specified by considering the geometry 

of the bar and the imposed boundary temperatures. As the temperature 

difference from boundary to boundary is the same for both the x- and y~ 

dimensions, th.e accuracy of the solution will depend more on the spatial 

increment chosen to represent the x-dimension than that used for the 

y-dimension. This is because the x-dimension is the smaller of the two. 

However, the geometry of the bar indicates that an increment of 0.05 ft 

magnitude for both the x- and y-dimens ions would be convenient:. Because 

this particular increment is still quite small compared to the x-dimension 

of the bar, the accuracy of the solution will not be severely reduced by 

choosing /Ax= Ay = 0.05 ft. With these increments, the x-dimension of 

the bar is broken into 9 nodes while the y~dimension is separated into 

13 nodes. 

To determine a convenient time increment, the two-dimensional 

stability criteria 

(Ax) 2 (Ay) 2 ____ __....,_ ...... ....._ ....... ________ ~ ~ 2.0 
(::Xo&0 (&,13 + Ay2 ) (1 + (3tM) 

is employed. Substituting for the known quantities and solving for &9 

yields the condition, 

A9 ·s;: 0.00212 hrs. 



Since the temperatures at times separated by intervals of 0.05 hrs_. are 

desired, a convenient value of A9 would then be 0.002 hrs. This would 

require the temperatures to be defined after each series of twenty-five 

time increments A9 are completed. The total number of these twenty

five interval runs is governed by the final time considered which for 

this specific problem indicates that ten of these groups must be 

obtained. 
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As the boundary temperatures involved in this problem are constant, 

no additional calculations must be made. If the conditions were time 

and space dependent, a procedure similar to that used in the one-dimensional 

example would be followed in generating the input data. For this example, 

the input data should appear as follows.. Please note that the Fortran 

notation has been presented above the specific values of the quantities 

involved. 

Card 1 

RHO SPHT CONDO BETA DIMX DIMY DELT TEMPM 

523.0 0.1075 9.5 0.00093 0.4 0.6 0.002 800.0 

J K 

9 13 

Card 2 

RUT IM UM BC TIMO 

25.0 10.0 LO 0.0 

On Card 3 the choice of the temperatures specified for the corners of the 

bar, defined by (1,1), ().,13), (9,1), and (9,13), is an arbitrary one since 

these never enter into the calculations. Hence, 



Card 3 

TEMP{l, 1) 

o.o 

TEMP{2, 1) 

o.o. 

TEMP(3, 1) 

o.o 

TEMP{8, 1) 

o.o 

TEMP{9, 1) · 

. 800.0 

(temperatures at time TIMO) 

TEMP(l,2) 

0.0 

TEMP{2,2) 

800.Q 

TEMP{3,2) 

800.0 

TEMP{8,2) 

800.0 

TEMP{9,2) 

800.0 

TEMP(l, 12) 

o.o 

TEMP{2, 12) 

800.0 

TEMI? (3, 12) 

800.0 

TEMP{8, 12) 

800.0 

TEMP{9, 12) 

800.0 
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TEMP(l, 13) 

o.o 

TEMP(2, 13) 

800.0 

TEMP(3, 13) 

' 
800~0 

TEMP{8, 13) 

800.0 

TEMP{9; 13) 

800.0 

As in the one-dimensional program, the actual locations, ip. feet, of 

the nodal points are defined with reference to the node defined by TEMP{l,1). 

This node is always to be located at one corner of the bar so that all the 

coordinates which describe the locations of the other nodes will have posi-

tive values. To follow the standard right hand coordinate system, the lower 

left hand corner of the bar should be taken as :r:;Iode (1, 1) .• 

· ·• .The results obtain~d from this program are of exactly the same form 

as those specified by the one-dimensional program. Of course, to locate 

a node in this case requires two coordinates. Hence, on the·temperature 

distribution cards, the first value indicates the x-coordinate, the second 

value denotes they-coordinate, the third defines the temperature of that 

node and the fourtq provides the corresponding thermal conductivity. 

The two-dimensional program listing provided in Appendix B should 

be referred to if any further explanation of the program is desired. 
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