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CHAPTER I
INTRODUCTION

In recent years engineers have become vitally concerned with mak-
ing betﬁer mathematical models for use in the analysis and synthesis
of control systems. This concern is obviously an outgrowth of the gen-
eral performance requirements and accuracies of modern technology. To
the present much of analysis and synthesis has been based upon the
powerful tool of linear systems theory with results which have proved
nothing short of spectacular. It has become evident, however, that for
wide ranges of operation some improvement is needed over the predictions
of linear theory. In addition, it has been demonstrated that system
response may be maximized according to some criteria such as rise time
or steady state error through the purposeful introduction of non-
linearities (1). Investigations of such improvements have proceeded in

only a limited manner, however, since in general the resultant ordinary

nonlinear differential equations describing these systems do not have
closed form solutions in terms of elementary functions.

This difficulty has been largely circumvented by usiﬁg.approximate
solutions achieved through the partial sums of infinite series or through
some numerical techniques. Indeed, the advent of high speed, high accu-
racy digital and analog computers has drastically modified the eﬁgineer-
ing .concept of solutions for control systems described by such equations

{(2). In many cases the functional expression has been replaced by



continuous curves or even digitalized data and solution methods which
heretofore have been considered too laborious to pursue, are now within
practical grasp.

This thesis presents the results of a study based upon a method of
linearizing certain nonlinear mathematical models of control systens;
The solution obtained by this method is only approximate but the differ-
ence between this approximation and the actual solution is maintained |
within a specified tolerance.

Thére are several advantages to this method over some of the linear-
ization techniques presently in wide use (3). Not the ‘least of these is
the possibility for the inclusion of arbitrary driving functions. 1In
addition there is considerable similarity between the analysis of linear
and nonlinear control systems as described here, resulting in a unifi-
cation of approach,

The advantages mentioned are, however, not without sacrifice. 1In
order to maintain reasonable accuracies the process of linearization
must be repeated a great many times. The number being directly influ-
enced by the degree of nonlinearity of the system under study and the
time duration for which the solution is desired. Fortunately, this
repetitious task may be relegated to the digital computer. Under these
circumstances the sequential solution assumes many of the aspects of
other numerical solution methods.

Of particular interest are the sections .dealing with operational
methods as applied to the linearized system. From consideration of the
linearized equations it is possible to manipulate the block diagram
equivalent of the nonlinear system provided that certain restrictions

are adhered to unconditionally.



Transformation of the linearized equation into the complex fre-.
.quency domain allows the characterization of the nonlinear system in
terms of transfer function pole locations. It is demonstrated that non-
linear systems, unlike the ‘linear counterpart, can have describing poles
in the right‘half of the s-plane without having an unstable solution.

Consideration is also given to the operation of nonlinear systems
as plants in closed loop .control. The well known root locus technique
is utilized to point the way toward obtaining desired response charac-

teristics from these monlinear devices.



CHAPTER II
SEQUENTIAL LINEARIZATION

The systems under investigation will be characterized by the uni-
versality of the-model used for their representation., This mathematical
description is assumed to be that of a nonlinear ordinary differential
equation with canonical form (chosen for reasons soon to become apparent)

as illustrated by equation II-1,

n n-1
d'x d X
- + f (%) )

dx _ -
o n-1 ” + ... + fl(x) at + fo(x) x = F(t) II-1

having initial conditions at t = t, of

with functions fn_l(x), fn-Z(X)’ caaey fo(x) and F(t) all of class
11 '
- < - < T
C for ‘x XlOl— ﬂgand ‘t tOL’ .
Often it will be convenient 'to represent equation II-1 in terms

of an equivalent system of n first-order ordinary differential equa-

tions (4,5) as shown by II-2 with x replaced by Xy

1A function of a number of variables, f = f(x,, Koy oeeX ), is
said to be of class C! in some region R when all o% the derivatives

2
o} R 02¢ -++.. of orders 1, ***  n exist and are continuous on R.
ox, dﬁaxj




dx

=

[a PR oW
Xt
N

"= X II""Z
T T fo(xp) - R () £ Go) + F(E)

n n=1

The system of II-2 has the normal form

dx1
at T G (g Xps ey B
B I T B - - - II-3
dx
It =G (xl, Xps eees xn, t)
since there are n functions Gl’ GZ""’Gn of the ntl variables X1 %o,

e X and t. These can be concisely written in terms of vector nota=-

tion as

=- =g (x,t) II-4

where it is understood that x is an n-tuple, x = (xl, KpseeesX ).

In addition the symbolism

— = é II_S

shall be interpreted as

= =x' = (&', X5,..0x0) II-6



while G is a vector valued function of a vector variable and the real

variable t as illustrated by equation II-7.

G(x,t) = ( Ql(gl,xz,...,xn,t), Gz(xl,xz,...,xn,t),...

II-7
""Gn(XI?XZ""’Xn’t) )

 Comparison of equations II=2 .and II-3 shows that each of the func-
tions- Gl,Gz,...,Qn and hence -G is:of c'lass-C1 in any closed region, R,
.established such that |x1 —‘glo|5;[3 and ‘t - tolS;T" G then satis-

fies a Lipschitz condition on R and for some finite constant, L
Je.t) - e@.t)| < L|x - x| 11-8

if (x,t) and (y,t) are in R..

The continuity of the derivative of G implies through equation
II-8 that the vector differential equation II-4 defines a ”well--set"2
initial value -problem. Thus there is the assurance that a solution to
the -system of equations exists which can be used to uniquely predict
the future behaQior of thé~modei. This behavior in turn depends con=-
tinuously upoen the initial valdes;

A solution of II-4 shall be designated as X and will be associated

with an initial condition point or vector

g = (XIO’XZO"'°’ O) II1-9

0

tion II-1., The continuous nature of the vector function G(x,t) with

whose elements are simply the conditions specified at t = t, for equa-

2Garrett Birkhoff and Gian-Carlo Rota, Ordlnarz,leferentlal
Equations (Boston, 1962), pp. 102-104.




respect to x and t implies that a solution x(t) of the vector integral

equation

t
x(t) = C +f§(z<_(r),r)dr I1I-10

o

is a solution of the vector differential equation II-4 which satisfies
the initial condition §(to) = G, and conversely.3 Here the meaning of
the integral 6f a vector valued function is analogous to equation II-6.

b b b
J ey, ndr = (f6,(x(x),0)dr, [ 6,&(r),r)dr,...
a a a II-11

b
...,j.Gn(ﬁ(r),r)dr)
a

The Linear Model

Now suppose it happens as it often does in systems analysis, that
the solution of II-1 is desired at a time, t = T, where

tO§T<T . II-12

Frequently it is necessary and sometimes perhaps even desirable to
accept an approximate answer if the accuracy of such a value can be
specified,

To generate an approximation of this nature, t, is assigned the

0

specific value t, = 0 without loss of generality. If m and K are posi-

0
tive integers, K<€m, let Pm be a partition of the closed interval [@,I]

such that the subinterval l}K;l’tk] has length T/m. Construct a linear-

ized system of equations for the subinterval corresponding to K = 1 such

3bid., p. 111.



that
dy1 )
dt bp)
dy2 ~
dt 73 1I-13
dyn

I T V1f07Y2%1 T Vet TE(E)

In the system II-13 it is assumed that the constants ayge 8170 cee

a14-1 have been determined in accordance with II-14. The system may be

represented

apg = Folxp)s 8y = £1(x0)5 819 = £y0eg005 +0n s

a1 = fn_l(xlo) II-14

in vector form as

dxl

P El(xl,t). _ II~-15

El(ll,t) is continuous and satisfies a Lipschitz condition on the inter-

val 0<t<t, for all ¥;. Then the solution of II-15 which satisfies the

1

initial condition, C, of II-9 on this subinterval is

t
y =t B e I1-16

For subintervals corresponding to K22, linearized systems similar

to II~13 may be established. Thus for tK-1< t<t, the system becomes



dyl
dt

i
<
N

Y2
dt I3

dy
n = - - L - .
ar T 7V1%0 Y2%1T YnPkn-1 T F()

where each of the constants Ao’ 2g1° ]

is formed in accordance

with II-18. The value, yl(tK-l)’ is taken to be that obtained at the end

Ao = Fo Pl ]s o £ [ (D] gy = =
11-18
point of the (K~1)th interval, [?K-Z’tK-i]' The system II-17 may thus

be written vectorially as

de

= <t<
Tr EK(XK,t) for tK_l__t__t

K II-19

The intended task requires use of the unique solution of II-19 satis-

~fying the initial condition

Ty (tg-1) = Tgo1 (g1 11-20
as illustrated by II-21.
Yo = XK?l(rtK“l). +f§K"(¥K~(r),r)dr tk_-lg;tgtK 11-21

~ e

Equation II-2]1 may be written in terms of the initial condition at t = to
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as
K-1 /7 :
X + [ H ( dr . -
Y -G+ Zf Hj(lj(r),r)dr fk%((xl((r),r) r I1-22
j=L "'_ t
tj"'l‘ K-l
The first two terms of II-22 represent the initial condition at
tg-1 and might properly be.termed the 'hereditary influences' of the Kth

subinterval. These terms play a more significant role than that usually
associated with initial conditionsz however; since the first component
of these "hereditary" terms is employed through equations II-18 to
determine the linearized vector integrand, EK’ of the remaining term
on the right'side of II-22.

_From II-22 it is apparent that Yy is a continuaus functionvwithin
each subinterval for 1<K<m. The union of the y for 1<K<m is con-

tinuous and is defined throughout the interval

tOS t<T. II-23

It will be convenient from this point to designate this union of Ix

as y. .The use.of this symbol will henceforth be restricted to the

¥ = 8% II-24

solutions, Yy for 1€ K<m of the system of equations represented by
II-17 and II-19 provided that the "hereditary terms'" are used to con-
.stitute the initial conditions in each case. In addition it is noted

that y will be referred to as a sequential solution of the nonlinear

system II-2 which satisfies the initial condition (. Finally the
sequential solution, y will be said to be based upon the systems of

equations II-19.



11

If the sequential solution, y, is to be of utility, it will possess

the same initial condition, C, at tO

linear system II-4.  Furthermore for every t where

as the solution, x, of the non-

tOS t<T : 11-25

the solutions must differ to oﬁiy a"slight extent.

,The»sequential solutions formed from the union of Ix for integer
values of m constitute a sequence of functions. This sequence converges
uniformly to x on the interval of II-25 since for every € >0, there exists
an M depending only on € such that m>M implies

m
x- U yg|< € - I1-26
K=1 )
To verify this uniform convergence -consider the following development.

Let y and x satisfy the differential equations
dy = H ( “t) and ax _ G(x,t) 11-27
dt EK L dt == .

respectively on the Kth subinterval of II-25. G satisfies a Lipschitz
condition on this subinterval. Let L be a Lipschitz constant associ~-
ated with this vector function.. Form a real valued function,O (t), de-

fined on the identical subinterval such that
2 :
o) = |x - x| II-28
The functionO(t) is differentiable and its derivative can be written as

et E ] DO -S> Sl II-29
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or
do

dt 2 3‘5"1:] [Q(.}S’t)'_lil((z,t):]
2 [x-y][6(x, £)-C(x, )] 130

+ 2 5-1] [g(_y_,t) -EK(z,t)]

The factor [?(Z’t) -»BK(X,ti] of II-30 is defined only on the domain
common to both functions. .Since the domain, D, of EK is by its very
definition a subset of the domain of G it follows that if Z is in.D

there exists a[XK)O such that
G(z,t) - -_gl((g,t)lg Dy - 1I-31

Application of the Lipschitz condition which G satisfies along with

1I-31 yields

|42 2 1faeef + 28,Jn]
or
g—tgl < 2LO(t) + 20 Jo(t) . II-33

Now comparison4 of II-33 with a Bernoulli5 differential equation such .

having a solution

. L(t-t A L(t-t

. _1) 1)
Ju@ Jae e P e Ey e KU, s

which satisfies the initial condition u(tK—l) = O (t , results in

K—l)

ABirkhoff and Rota, pp..106-107

5E. L. Ince, Ordinary Differential Equations (Dover ed., 1956),

p. 22,
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the inequality

L je-t A L [t-t
x(6) - 1(0)|< |mlhe ) - xCee e 2 E | K-.l.LJ
1I-36

At the end point of the Kth subinterval then this difference may be ex~

pressed as
Kt )y (e <5 (e, ) - 3t Lt/n’ =4 I:L:'/'T'f"" 1]
)L Kl—l3‘- x-1) " 2(Ep)|e REETHN S 11-37

The difference, l§(tK) - l(tK)l, can .be related to preceding subintervals

through the factor,l §(tK_1) - z(tK_l)

, in the manner of II-37 as

1T /m Dk ]
lz(tK-l') - l(tK-l');IS '_}g(t;K_z) - l(tK_z)leLT/m.;.' '-ISL—l-[eLT/m_.l—‘ 11-38

Letlktﬂes%gnate the -largest of the set of differences,{?ki}, encountered
in any of the subintervals. Then repeated application of II-38 allows
II-37 to be written as

x(ty) - X(tK)‘S Z —-AEELT/“‘-;I e(mHLT/m | II-39

i=1

Each of the terms of the summation on the right side of 11I-39 is greater
than zero and hence the greatest difference can occur at t = T.  This
.corresponds to the subinterval K = m so that inequality II-39 may be

written as

m o .
2D - (D[ < 2 [éLT/m-lJ ) B -

i=1

From II-40 it then is apparent that

'g(T) - y(D| < AIE [eLT/m’-_-lj LT TI-41
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The right side of II-41 has the factor

£ =m [e'LT/m - 1] - l:eLT/m-l:l/—;nl-i; LT >0 TI-42

which for positive integer: values of m forms a monotonic decreasing

sequence. The infimum of the sequence is

IT = inf { fm} T1-43

while the supremum is

]

It becomes convenient to replace -sup {fm} with the upper bound éLT and

sup {fm} . I1-44

.write the inequality II-41 as

2LT
e

L

|x(m) - y(D|< A 11-45

Thus it may be concluded from II-45 that the maximum difference (hence-
forth denoted as the maximum sequential solution error) between‘the-
solution,yﬁ,_of the nonlinear equation and the sequential solution, y,
within the time interval

0=t <t <T 1I-46

does net exceed[&(éZLI

7ﬁ). As.might be expected for any nonlinear
differential equation with canonical form illustrated by IIfl,_the
maximum sequential solution error iﬁcreases with the length of the
t-interval under consideration. For any pérticular differential equa-
'tion having this canonical form, however, a finite Lipschitz constant

greater than zero exists and hence for finite values of T the factor,

(eZLT/L), exists.



15

It remains .to be shown that A can be made arbitrarily small by
simply incregsingbthe total number of subintervals, m. This.is accom~-

‘plished from consideration of the quantity

R wia

This relationship reduces to

II-48

5
KM

Y1180 '-, fo(y15]+ Yo [:aKl_-fl(yl):l+. ..t v [:aKn"fn(y']_)] ,

which at the beginning of the Kth interval (t = tK) has a value E%M =0,
by virtue of the defining relation for each of the -constants, g

Within this interval Yy is a continuous function of the scalar wvariable

t and so, too, is each of the factors

EﬁKl - fi(y.l)} . 11-49

The derivative-.of this factor is

d E‘Ki - ‘fi(y-l)]= 4 0Gy)
dt dyl b

II-50

where i is an integer such that 1< i < n.
Let the maximpm magnitude of the absolute value .of this derivative
with respect to Y1 for any i as exists on the region of definition, R,

be designated as

df ., (v.)
t __1_1._. T1I-51
max »dyl
From this then it is clear that
s fi(yl-)__H <€ . yZ‘ . T/m II-52
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at any point of the subinterval of length T/m. Application of the

triangle inequality to II-48 yields

Sou< -

axh'-fn%)l |
I1I-53

o = LoD F|Ya | [y - fl(yl)|+"'+’yn"
For m =M through the utilization of II-52 the inequality II-53 becomes

8 < ' . ‘ ! 1
KM—lyll . Iyzl Enax T/M +!y2l . !y2| Fpay TM ot |yn‘.|yzlfmaXT/M .
II-54
The values of the vector variable, y, are a subset of the closed region

R and hence there exists some positive value Q such that
lx¢'< Q. II-55

Each of the components of y is less than Q as is symbolized in II-56

with i an integer such that 1<i<n,
‘|-Y-i|< Q. II-56
Consideration of II-54 and II-56 leads to

BKM < nQ7g!__(T/M). 1I-57

Furthermore it is recognized that A is the maximum value of E%Od as ‘K

is . allowed to range from 1 to M and so it may be written that
A< nQ%E!  (T/M) 11-58
“max '

Clearly for m>M this leads to

A< nQ%s! (T/m) < nQZfI;aX("T/M) . 11-59
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In accordance with II-26 let

e = AL, 1I-60

7

Then the sequential solution converges uniformly on the  interval of

II-25. 1In addition it is noted that the limit function is x, the solu-
tion of the nonlinear differential equation under consideration. Thus
it can be said that the sequential solution differs by less than € from

the actual solution as is .depicted by equation II-61.

ZLT/L

l X - -}_/_I < Ae T, II-61



CHAPTER IIIL
OPERATIONAL METHODS AND THE .SEQUENTIAL SOLUTION

The preceding -chapter has established .a method. for linearizing a
nenlinear oerdinary differential equation of the form shown in II-1.
In additioen it has :been demonstrated that. the maximum errer encountered
through this procedure cannot only be calculated but also regulated
simply by the selection of the number of subintervalé,ﬁm, upen .which
the sequential selutien is based.

The benefits to be derived from use of the sequential selution are
- many. It becomes immediately apparent that the solution.of nonlinear
-engineering systems as described by II-1 (and there are a great many)
has been reduced to the repeated solution of linear ordinary differ-
-ential equations of the same.order as the original nenlinear equation;
The disadvantage -encountered in this technique is alse readily observed
in that the solution accuracy is. inversely propoertional te the number
of subintervals involved. Such repeated calculations are well suited
to manipulation on a digital computer and are limited in accuracy only
by the inherent accuracies .of the computing machine.

.The operational methods of analysis described here -are restricted
to the-extensién of the-well known linear system methods .involving the
‘Laplace Transformation. This is of importance since the incremental

system of II~17, repeated here as III-1 for convenience, can be

18
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dyl
dt

1
«
N

dy,

It = Y4 : o III-1

dy
T3t T Vi%ko T Y2%1 Tttt T Ynfga-1 tF(E)

rewritten in terms of the equivalent nth order linear equation III-1 be-

comes
dn dn-l dnm2 _
—Zzﬁ— +~aKn_l ;;E:% + a2 ;;;:% R aKOy = F(t) . II1-2

where‘yl has been replaced by y. The transformation of this equation in
‘terms of the complex variable, s, is accomplished by letting t = u + tK-l
and yields™

n n-1 n-2 ‘
Y<S)[§ + an-1° + A28 +...+.aK1s + aKé]

n-1 n-2 ; n-3 !
sy (tgg) + s [%2<tK~l) + aKnF1y1<tK-1i]+ s E;(tK,l)t+

n-1 Yn-1(0g-1) * oo F ""‘K1Y1<t1<—1):} '+f{F<“ + tK—l)}

Solution of III-3 for Y(s) can be considered as consistingrof two com-
ponent parts. ;The first‘df these, designated Yl(s), is specified by
II¢-4 and is due to the initial condition terms. The secend cdmponent,
| N(s)
Y(e) =4 T n-1 n-2 | I1I-4

+ + o+
5 n-15 T %p.08 7 toags T oagy
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Log

where R A

RACTIEE . (720510 * no1y1 (e ]+ oo

N(S)= S:n

vt [Tnre) F agae Y () e a-1<1y1(t1<-1):l -

Yz(s),_is a result of the forcing function and may be written as

of{f(u t o))

He) ) s+ s Ly % L ta s ta, e
n-1 7 #kn-2 B a1 K0
The~solﬁtion for Y(s) in terms of the components is
Y(s) = Yl(s) + YZ(S) III-6

Thus .in the Kth subinterval thé-solugion of the nonlinear .equation .and

the inverse .transform of III-6 are such that

2LT

lx = y| < A(&£777/L) ITI-7

where here it is assumed that x =-x1\and y =y are -components :0f the

vectors X »and\.y_ which satisfy the inequality II-61 with t <t T,

0
From II1I-4 and. III-5 the importqnce.of the characteristic poly=-

nomial

5"+ St St e T ags F ag I1I-8
.is,quite~evident. The inverse transform of the component Yl(s) is
wholly dependent upon the roots of tﬂ?s'polynomialvfor its form. The
second component, Yz(s), has an inverse which alsoe depends in large
part upoen the characteristic polynomial roets but it reliés in additien
upon the roots of the factors found in the denominater of the tranéférm

of F(t).
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The Root Ensemble

Because of their position of importance it becomgs expedient to
investigate the characteristic roots in soﬁe detail. This will. be
accomplished in part by considering the locations of the roots on the
-complex or s=plane. These-locationé.depend upon the various coefficients,
gy which.are generally contingent upon thg‘value,of K. To alleviate
vthe'problem of describing the root locations in a sequential fashion it
is useful to simply show all of_ﬁhe‘foot»locations possible for the
-region, R. .Since this with all such roots taken together provides a
description of thegnonlinear.différeﬁtial‘equation,‘it is convenient
to designate them as the root ensemble.

The root ensemble possessés.certain definitive ‘qualities which are
outlined here. The first of these is a consequence of the canonical
form chosen for -the mathematical model of the nonlinear systems under
invesfigation. In accordance with equation II-1, the coefficient of
thevhighést derivative ‘is unityo‘ﬂltmfollows therefore that although

.the linear system coefficients, ~from the base of the sequential

éKi’
solutidn may vanish, there will always be an nth derivative present.
The fransformed equation within each subinterval then has.n roots.
These are nof necessarily distinct and so it is,required that a roet of
multiplicity, r, be included as r roots.

The n roots which exist may either be real or .complex. SihceAeach
of the i is restricted to ?eal‘values, the complex roots .which do
occur must appear in complex cénjugaﬁe pairs. Furthermore as the value

of y is allowed to vary throughout the region of definition of the co-

-efficient.functions,vfi(x),nof II-1 the root locations will be altered.
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The path which each root traces will be denoted a branch so that the
nonlinear equation II-1 will have associated with it a root ensemble
of n branches. .Obviously, for each branch or section of branch located
above the-real axis in the s=-plane there is a corresponding branch or
portion of a branch below the axis. In short, the root ensemble pos+ .
sesses symmetry about the real axis as the branches appear in complex
conjugate pairs. At the beginﬂing;of the Kth subinterval where =+ -

y =—y(tK_1) a set of n root locations can be determined which in trans-
fer function form represent the ratio of the quantities Yé(s) and the
.transformed driving function, Ji{?(u + tK-lﬂ" If, in addition, the

initial conditions at t = u = 0) are inserted properly, this

tg-1 ¢
. transfer function may be utilized during the Kth subinterval for the
purpose of block diagram manipulation .and system analysis. Figure 1
shows a Kth subinterval linearized nth order system with the appropriate
initial conditions.
Practical applicdtion of the root ensemble to the analysis of con=-
trol systems requires that y =90 bé included within the region, R,
almost without exception. This in turn implies that x = 0 is contained
in R. If ¥(t) =0 for éll t such that ‘t_— tols T then x =40 is a
singular point of II-2, This.situation is of pafticular interest since
it is generally desirable to approach zero output, x =0, for iarge
values of t when F(t) = 0. According to linear theory this represents
a stable system. In order to maintain this desirable operating mode it
is essential that the derivatives of x also tend to zero.
Unless otherwise specified, root ensembles will be - shown with

branches eminating from the root locations corresponding to y = 0.

Arrows will be directed away from these points and are merely intended
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to illustrate the progression of the characteristic roots upon which
the sequential solution is based as y increases or decreases. It can-
not be overemphasized that the arrow directions do not imply anything
with regard to the location of the roots for increasing values of time.
The root ensemble is independent of time and the sequential manner in
which root selection is made depends entirely upon the system response
to the initial conditions and forcing function associated with each of

the subintervals.

I\{F(U+5Ka1)} __ _ 1 ' Y(s)

s + aKn»ls +aKn=ZS +. .+aKls + aKO
_____ + y ( K“l)
+ +
4
| stay 1 “‘__:fyn-l(tK=l)
[ 4
'y
[ ]
-]
.
n=2 n=3
JE R Yy, (t
] +aanls +...t+ a9 feet—— 2( le)

n=1 . n=2
_ ot
ST bagn S Theetagys g Y ()

Figure 1. Block Diagram Representation of the 'Nonlinear System Within
the Kth .Subinterval , :
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A cursory glance at a root ensemble:leaves the impression that it
greatly resembles the conventional linéar system root locus. . Indeed
there is considerable similarity, but the likeness is more -predominant
in outward appearances than in actuality.

In direct contrast to the root locus, the root ensemble is not re-
stricted to clésed leop system analysis. It is equally applicable to
bpen loop control provided only that the system being investigated has
-a mathematical model as described by equation II-1.

This endeavor will_concenﬁrate on the closed loop aspect since self-
correcting,methods are usually deemed superior to other available tech=
niques of controel. Two major categories immediately manifest themselves.
The first of these  (category 1) is.characterized by a closed loop systeﬁ
equation of the form of II-1. The second and equally interesting case
(category I1I) is that in which tﬁe forward transmission is governed by
this. same relationship.

Figures -2 through 10 illustrate three nonlinear-systems and their
root ensembléﬁ. The first two of these systems .are distinguished by
the fact that only the closed loop equations are of the prescribed form.

‘A more detailed consideration of these systems as presented in Appendix A
indicates a considerable difference between the first and second of

these in spite of the previously described similarity. Thus category I
systems may be further subdivided into those with mathematical models

of the form of II-1 only -if no driving function (similar to the. one
illustrated in Figure 2) is present and those possessing this matﬁé=
matical model without regard for the presence of the driving function

(similar to that shown in Figure 5).
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Figure 8 is representative of a forward transmission path of a
category II system since this open loop amplifier-motor combination is
described by an equation of the fo;m_of II-1. It should be pointed out
here that category I systems of the second variety may serve as forward
transmission paths for category II systems. A discussion of the further
properties of category II systems will be delayed until Chapter V.

This is in order that some of the more general characteristics of both
category I and II systems may be developed.

In future references to category I systems it will in general be
clear from the context of the material under consideration whether or
not both varieties are intended to be included. 1In those few places
where some question exists an explicit statement will be incorporated

as to its essence,
Block Diagram Algebra

Figure 1 suggests that many of the problems of nenlinear systems
theory might be handled through the use of conventional block diégram
techniques. The ultimate goal of any such scheme would be to provide
methods for not only analyzing but also synthesizing systems having
certain desired qualities. Unfortunately the use of block diagram
algebra falls far short of these goals. Even so, some benefit is de-
rived from the conceptual aspects of block diagram representation.

From the beginning it ié convenient to separate .the process of
analysis from that of synthesis. The reason for this sharp division
becomes evident after consideration of some of the fundamental block

operations encountered in analysis. Without exception the intent of

these -operations is to simplify and thus find an equivalent configuration
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which may be handled with greater ease.

There are two requirements whiéh a manipulation must meet if it
is to result in a suitable equivalent system diagram. First, the
driving points for the nonlinear portion or portions of the diagram
must remain unaltered throughout the simplification and second, the out=
put point or points from these same monlinear segments must be kept as
distinct locations. Both of fhese conditions arise from the nature of
.the linearized system of Figure 1. Clearly any alteration in the
driving points results in a modification of the actual forcing function
involved in the nonlinear system equation. 1In view of the dependent

nature of the linearized system's coefficients, a upon the response
y » Up P

Ki
vy, regulation of this input to only proper values is critical.  Further
the output value, y, must be known so as to provide for the correct
linearized model during succeeding:subintervalsu

Figure 11 represents a nonlinear system (either category I or II)
cascaded both to the left and righﬁ with several linear devices each
having transfer functions as shown. These linear elements have been
combined in Figure 12 in accordance with the necessary conditions. The
implications are clear from these figures. Normal block diagram manipu-
lation may occur in a system contaghing nonlinearities while still main-

taining equivalence provided that

1. linear elements are combined in the proper and well
known manner,

2. each nonlinear portion of the system along with its
input and output stations is maintained as an entity,
and

3. the succession of linear and nonlinear elements is pre-
served.
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The conditions set forth above preclude the possibility of rearranging
the blocks whenever one of them is nonlinear. Another restriction
immediately apparent is that summing and/or pick-off junctions may not

be moved past any nonlinearity.:

G Category 1 or II i e . e
1 2173 [ 7] Nonlinear System | 4 5

Figure 11. A Control System Consisting of Cascaded Linear and Non-
linear Segments ’

r Category I or 11 - c
'—""'"""GlGZG3 ™1 Nonlinear -System ™ 6,64

Figure 12. -Simplified Equivalent of Preceding System Made Possible
Through .Combination of Linear Elements

All of these limitations seriously restrict the usefulness of block
diagram algebra in the reélm of nonlinear systems analysis. In direct
contrast is its utility in the proéess of system synthesis. The mathe-
matical goals inv?lved in synﬁhesis are somewhat different than those

|

of analysis. It will be assumed for present purposes that certain

system characteristics are desired and that these must be achieved with
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nonlinear plants. These plants in turn will be restricted either to
category I or IIL. Under these circumstances the synthesis procedures
actually reduce .to the techniques of compensation. From this point in-
vestigations :proceed naturally toward closed loop methods.

The condition of manipulation associated with analysis are not
directly applicable in synthesis since system simplification and equiva-
lence are -not the primary intent. Linear and nonlinear components may
‘be interchanged at will while summing and/or pick-off points may be lo-
cated at any desired station. Of course an awareness must be kept of
consequences of such modifications.

Unlimited combinations of linear and nonlinear elements exist which
may be bfought together possibly resulting in a system conformable to
the ‘specifications. However, practical considerations such as power
handling,cépabilities and overall fange-of operation narrow the place-
ment of linear compensating devices to feedback paths and positions pre-
ceding the monlinear plant. .

Figures 13 and 14 represent such a compensation scheme. In each
diagram the block designated G(s) or H(s) is a linear system transfer
function consisting of polynomials (N(s) and D(s)) in s with real co-

efficients in both numerator and denominator. G(s) may be written as

S(s) = KlNl(s)
Dl(s) =
\"4 w-1 w=2 .
K S + C S + C S + ... +C.S+C
_ 1 w=1 w=2 -1 0
= ; II1T-9
v v=1 V=2

S +.bv_18 + bVQZS + ... + bIS +-bO
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£ Category I or II c
'G(S) . Nonlinear -System

_Figure 13. Forward Transmission Compensation of A Non~
linear Feedback System

r Category I or II c
Nonlinear System

H(s)

Figure 14, _Compensation in the Feedback Path of A Non-
linear -Closed Loop Control System

and H(s) as
aCs) = KZNZ(S)
D,(s)
K Eq + e sqml+ e sqm2+ veo T e,8 + e}
_ 2 g-1 q=2 1 0,
= > ool 52 ITI-10
st + dpm1 § + dpm2 s + ... F dl s + dO

Consider the system of Figure 13. During the Kth subinterval let

t=u+t The input driving function to the nonlinear portion of

K-1°
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this system is

F(u+ te ;) = ;f“l {FK(S)G(S) - y(s)c(s)}. III-11
where [ + “SUgy +1s7 s + 9% |t
RK(s) = r(u tKﬂl) e u +<s l(tK_l) s [Z(thl) +
u=0

b, f(tK_ljJ oo F [;v(tK_l)+ b £ (te) *
i1

III-12
Tt by fl(tKal):[}
d

and fi = ——Ej§—_is the i-1 derivative of the output of the linear compen=
dt

sating device. Transformation of the incrementally linearized equation
of the nonlinear portion of the system results in the relationship III-3

with F(u + tKnl) replaced by III~11. The solution for ¥(s) is.then

Y(s) = Yl(s) +-Y2(s) III-13
where
- N(s)
Y108 T TR G(HT () 1I-14
where

N(s) = TK(s)‘{%nulyl(thi) + "2 [?z(th1> + aKnmlyl(th1{]+ e

.ot [yn (tK‘"l) + coo + aKlyl(tle):l}

and R, (s)G(s)T, (s)
YZ(S) = RK — K II1-15
1+ G(s)TK(s)

Here the netation TK(S) is in agreement with III-16.
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i
=
-
=)
~
4]

~

Te(s) =

= - III~16
KO

The denominators of both III~14 and III-15 have a common polynomial

factor and the characteristic roots may be found from

1+ G(s)TK(s) =0 III-17

or

D, (s)D(s) + KN, (s) = 0. I11-18

The‘product Dl(s)D(s) of equation III-18 will in general be:-of gréater
degree than Nl(s) and hence .the degree.of‘the polynomial denominator of
Yl(s) (gquation III-14) and Yz(s) (equation I1I-15) will be determined
as the sum of the number of poles of the compensating block, G(s), and
the number of poles of TK(S)°

Similar consideraﬁion of the system of Figure 14 with t = u + t

within the Kth subinterval yields a solution for Y(s) as

¥(s) = ¥, (s) +~Yéxs) TII-19

where
¥ () = EﬁngK(S) I11-20

where

n-2

N(s) = TK(s) {snmlyl(tKul) + s [?Z(thl) + aKnmlyl<th1%}+°°°

ot t Es g o+ i |
[?n( k-1 Bno1ne1 (g e« o %K1 yl(tKal{J}
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and :
. R, (8)Tp(s)
Yz(s) = T{-—WS) III-21
with co
R[((s) =fr(u + tK_l) eus du - Spalfl(tK.,l) + spmz[fz(tK“l) +

u=0

dpwlfl(tK_l)] + ..+ [fp(tKﬂl) Fd g f (6 ) L TITN22

.:.+ dlfl(thl):l} H(s).

Again denominators of both Yl(s) and Y?(s) have common polynomial factors

and the characteristic roots may be found from
1+ H(s)TK(s) =0 III-23
or

Yy = TT=24
D2(§)D(s) + KZNZ(S) 0. IIT~24

Through the use of block diagram algebra it is possible to make the
following important observations. Forward transmission or feedback path
compensation of a nonlinear category I or II system results in a category
II system described by an equation of the form of II-~l1. The order of
this nonlinear equation depends upon the sum of the number of poles of
the incrementally linearized function, TK(S)S and the number of poles
of the linear compensating transfer function. For forward transmission
compensation the driving function is obtained froméfT{RK(si} and for

feedback path compensation the driving function isj??%K(s)Dz(si} .



CHAPTER IV
RESPONSE OF AUTONOMOUS - SYSTEMS

The system on n linear first order equations upon which the se-
quential solution is based are said to be autonomous when the functions
'EK of I1-19 are time-independent or stationary. These equations take

on the form

d
Frie EI:_IK(XK) for tK~1S t < tK. Iv-1

The corresponding constant coefficient linear ordinary differential

equation is

n-~1

n
dy d v dy = o
o toa 2 e Fag gotoagey =0, IV-2

and the solution, y(t), is simply dependent upon initial conditions of
the Kth subinterval. The solution of equation IV-2 is: well known and
it is both interesting and instrucgive.to use this information for de-
scribing the response of the nonlinear systems.

It has already been demonstrated that the sequential solution con-
verges uniformly to the solution, x, of equations with canonical form
as shown by IImio If, in fact, every possible type.of linearized so-
lution is investigated, then the component parts .of the sequential so-
lution are wholly determined and as a result the solution of the non-

‘linear system is well characterized.

39
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Figure 15 illustrates. a nﬁmber of possible root ensemble branch
locations. Some or all eof these~maj.represént branches from which roots
are te be selected for establishing tﬁe Sequential solutionvof a non-
linear system. In any event the total sequential solution within any
suﬁinterval‘may be considered as thé sum of the individual solutions
associated with each branch (from Heaviside's partialvfraction,exﬁansién)
provided that this sum satisfies the appropriate initial conditions and
remains within the region of existence of the nonlinear equation.

The branch labeled "A" in Figﬁré 15 is representative of all branches
of root ensembles which oeccur on the real axis totally'in the left half
of the s-plane. The orientation of the arrow has been selected arbi-
trarily and does not alter tHe type of autonomous system time response

associated with this branch. This response has the form

at

YA(t) = KAe where a > 0. IV-3
™
€y D,
A B
S o
. RE
€y D,

Figure 15. Some Possible Root Ensemble
Branch Locatians
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Within any particular subinterval the constants KArand a are -determined
by the initial conditions of that interval. It is apparent, however,
that for finite wvalues of KA the solution yA(t) tends to zere for large
t. It may, therefore, be concluded that if a nonlinear system is
operating within the region -of existence of its mathematical model and
has a branch ef its root ensemble wholly‘on the negative real axis, then
there is a term in the sequential solution that tends té zero with large
t.

The branch 1abé1ed "B" in Figure 15 is intended to represent all
branches of root-eﬁsembles which occur on the real axis totally ‘in the
right half of fhe»é- plane. .Again the arrow orientation is meaningless

when considering the form of the associated time response. The form of

the response corresponding to this branch is

yB(t) ='KB ébt where b>0. IV=4

For any subinterval the constants K_ and b are determined by the initial

B
conditions ef that interval. Ekcépt for ‘the trivial case where KB =0
for all subintervals it is evident ﬁhat lyB(t)l becomes arbitrarily large
for large t. The presencéfof é term such as -that of .equatien IV-4 in
the -sequential selution leadsﬂto the overall solution magnitude becom~
ing exceedingly 1arge»ana eveﬁtually of sufficient size to exceed the
‘allowable output.

Branches "Cl” and ”Cz” ére=comp1ex.conjugate. Each is in the left
half of the s=plane and each has a time response within any subinterval

that -can be -expressed as an exponential. By virtue -of the :complex con=-

-jugate mature :of these root ensemble branches it is convenient teo
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combine these time functions into

‘yC(t) =K é-Ctsin(wt-+qb), where ¢, w>0: IV-5

c

Although the parameters K ahd ¢ vary from subinterval_fo subinterval,

C
the function, yC(t), has a magnitude which tends to zero for large .t.
The»fihal pair of cemplex conjugate branches in Figure ‘15 are de-~

noted as "Dl” and "D.'"'. The terms in a sequential solutien correspond-

2 c
»iﬁg te these branches may be combined in a manner similar to that em=

ployed for the previous functidns.“ Here .the resultant term acquires

the form
v (t) =X e ‘sin(ut +¢) where d,w>0 IV-6

Equation IV-~6 is composed of fhe product of thevincreasingzreiation
KDédt and the bounded periodic funéfion, sin(wt +Qb). The resultant
product is escillatory but of arbitrarily large -amplitude for increasing
t. i

In summary it may be\said-fhat terms in. a sequential Sdlution;whihh
are paired with ensemble!branéhes entirely in the -left half of the s~plane
‘represent stable portions~of—the-réspoﬁse~of a noenlinear system to ini-
tial conditiens. On the -other hand any term in a sequential selutien
which corresponds .te a branch (of'complexjconjugate‘branches) totally
in the right half of the s-plane represents an unstable portion of the
-response.‘ From this it fellews that. any nenlinear control system is
stable if it has a root ensemble méﬁe»up of branches confined to the

left half of the plane. 1If, however, one or more branches are totally

in the right half plane the -system is unstable.
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In Figure 15 each of theib;anchéS'is shewn with an arrow. FIhis
'is:of course in keeping with ghe=c$hvention-éstab1ished in Chépter IIIL..
The y = 0 point may or may not be located at the\extremettail.end of
éach»branch} It is ‘highly possible that the root locatiens fer Values
of 'y where y >0 and these for y<;0 are mot the -same, However, it'wili
often be found fer physical devices that the roet lecations .depend enly
upon |y| and not upon the -algebraic sign. Under these circumstances
the-Branches:of the -root ensemble will eminate from a y = 0 point at
an -end of the~ensemble4branchegi -

There are several additienal foot‘ensemble»branch locations de-
‘picted in Figure'16} Here the symmetry with regard to |y| is presumed
to-eﬁist although the~concluéions drawn are mnot necessarily based upon
this property. The branches of this-figure-all cross‘thevﬁnaginary
axis from one half plane.fo the -other,. The arrow orientations become
extremely important when conéideriﬂg-these-configurations. The -complex

conjugate branches labeled "ElV_and "E

2” indicate that for small |y| the

form of the subinterval solutieon is
ot . R
yE(t) = -KEe sin(wt +q5), whereo > 0. Iv-7
For larger values of |y| the subinterval response is
-t . : R
yE(t) = »KEe_ sin(wt +¢), where o¢>0. “1V-8

If for any particular system the initial conditiens at t = tO are such
that the sequential solution roots are on portions -of the ensemble
‘branches, E, in the right half of the plane then the corresponding

solution is of an oscillatory nature but with growing amplitude. .Even=

tually this results in the total selution amplitude reaching a point
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-so ‘that fhe-response«term correspondimg,to,these»branches'has the form
of IV=-8., If all ether branchESréf the xoot ensemble are in the left
half plane,,the»resultaht'séquential éolution exhibits a "limit cycle'.
-Any initial conditions whidhvéauéejthe~solutiop roots to begin in the

N

‘left half plane alse cause -the -overall response\te diminish until the
A

:limit.cycle»condition is again reached.

M

g
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Figure 16. Additional Root Ensemble
Branch Locations

The conjugate pair of branches, F, cross .the vertical axis from
left to right with increasing [yl . For small magnitudes the subinterval

response -corresponding to these branches is of the form
=ft ‘ '
yF(t) = KFe sin(wt + gb)s where £>.0. IV=9

For increases in t this term will be oscillatory with decreasing

amplitude, Unless some other portion of the sequential selution forces
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thevtotal_requnse.to become-sufficiently great in size sso as te ne=
cessitate thé\selectien-of réotsvfrom‘those-segments:of the branches

in thé-right plane, it is evident that IV;9 will tend to zero foer large
t. If by virtue of the~initiél conditions 0r some other term.in the
‘sequential selutien, the-rbots are;selected‘from the right half plane
'portioniéf the F branch, then the corresponding subinterval response

is :of the form
yF(t) =-KFeftsin(wt +qb), where £>0. IV-10

Inispitetof the fact that IV510 has a divergent amplitude, its oscil-
latery néturetimplieS;that there is the possibility of the total so- |
1ution‘diminishing“Sufficiently tébgause'the»root selection to.be.made »
from the left hélf plane segments of F. If then the amplitude decays
sufficiently it may never again assume.the‘fofm'of IV-10. The ensemble
‘branch cressing frem .left. to right.doeS‘not necessarily imply insta-
bility. It will indicate a highly escillatery response, however, and
points strongiy toward regions of nonlinear system operation which. are
unstable, - In any case, good design procedures will generally dictate
that a system be 'limited te eperation as far reﬁoved to the left of the
vertical axis as is feasible.

The branch "G" of Figure '16 has a clearly defined point of inﬂ:
:stability. If for any-reason;fhe.total sequential solution requires
selection of pointSVfrom.this-ensémble‘branchito the right of thétorigin,
then.the‘corresponding time:response-is-unstable;’.Consider-thé»ferm»of

the time respense., It is

gt
- yG(t) = -KG.-eg where g>0. Iv=11
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»,0bViously-yG(t> increasés mpnotoniéally,and.adds~to the tetal sequen=-
.tiél solutien makinglit arbitrérily large.

Figures:17“through 26 illustrate some of the autonomous system
characteristics describéd in this éhapter. Figure ‘17, itself, depicts
a triode»dscillator with é.tuned grid circuit (see Appendix B) having
a symmetri_c.nonlinearity° ,Mﬁtual_goupling;between‘the“plate and grid

provides feedback so that the~mathematica1 model of this network is

2 - .
—-51—%- - 0.8(1-y2) L4y = 0, TV-12
dt » de

where .y represents a constant multiple of the incremental grid voltage,
eg, in ratio te the saturation voltage, Esf, This saturation veltage
is shown in Figure ‘18 wherevarplot'of incremental grid veltage versus
ACfplate‘current illustrateS»éhe-nonlinearity of the electron tube,
Figure '19 is;thé root ensemble -of this circuit and shows .the locatioens
of the ‘linearized systems roets from !y| =0 to |y| = 2., The -vertical
axis crossings from.right to left half planes is indicative of a limit
cycle, .Figure 20 illustratesba phase plane plot for thrée-initial con-
ditions and the cerresponding time responses are shown in Figure 21 (see
‘Appendix C). . |

Fiéures 22 through 26 aré ass6;iated with a series resistance-
inductance network. The inducéaﬁcé.is assumed nénlinear and dependent
upon .the -current flow asvillﬁétraté& by’Figure-ZZ. The input is assumed
to be .the voltage applied to thiétﬁetwork and the voltage -acress .the re-
sistor (R =10 ohms) is taken. as ﬁhe\outpuﬁa ;The-eQuation relating .the

input veoltage .te ‘the current is

I  ndi
&y = 10i + f(l)dt Iv-13
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where | 6.293 |i] > 10/3
£(i) = | 10 ~- 312 -0.8i° -10/3<i<0
.2 .3 .
10-3i"~ + 0.81 0< 1<10/3
The solution of IV-13 in conjunction with the auxiliary equation, e. = iR,

0

provides the -input-output relationship. Figure 23 shows the root en-
semble and it is interesting to note the overlapping nature of the branch.
Figure 24 is the phase plane plot obtained from the. sequential solution
while Figure 25 shows a time plot for the same initial condition. Equa-
tion IV-13 is directly integrable and the solution is shown in Figure 26

for the sake of comparison.,
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CHAPTER V
THE LOCUS OF THE ROOT ENSEMBLE

The block diagram manipulations of Chapter III have indicated a
écheme-of éompensation~based upon the closed loop .operation of category
I or IT systems. .From this investigation it was discovered that within
each of the subintervals [?j—l’ tj] the nonlinear system's sequential

solution is characterizediby the denoeminator polynomial
1+ P(s) V-1
where P(s) can be.written as
P(s) =:G(s)Tj(s) ' V-2

for forward transmission compensation while for feedback path compen-

sation it is
P(s) = H(s)Tj(s). . V-3

The quantity, P(s), in linear analysis is known as the open-loop trans-
fer function and it will be convenient to continue this designation.
The .characteristic pelynomial of V-1 may have either a forward transfer

function of the form of V-2 or V-3 without materially altering the type

of closed loop response. As a result it is possible to combine the pro-
cedures for characterizing the responses while reserving an enumeration

of the slight differences until later. To accomplish this P(s) will be

-55
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assumed of the form of V-~2. One change in nomenclature results in con-
siderable additional convenience. Henceforth G(S) will be replaced by

KG'(s). The characteristic equation then becomes
1+ -KG'(sv)Tj(s) =0 | V-4

and is written explicitly in terms of the .static loop sensitivity, K.
Consideration of V-4 under the circumstances that G'(s) and Ij(s)

are rational functions of s as outlined in Chapter III leads to V-5 as

an alterﬁate form of V-4 where D(s) is the denoeminator polynomial of

T.j(S),
D(s)DI(s) + KN (s) =0 V-5

Dl(s) is the denominator polynomial of G'(s) and Nl(s) represents the
numerégér polynomial'of G'(s). The product D(s)Dl(s) is also assumed
to befof-g?eater degree‘than the polynomial Nl(s) and hence the deg;ee
of V-5 is established by this product. There are then as many char-
acteristic roots as the degree of the product of D(s) (degree m) and
Dl(é) (degree v). Since for every integer valﬁe-of‘j such that 1< j<€m
the functions'Tj(s) have denominators'with fixed degree, the prodﬁgts
.D(s)Dl(s) which result will have éxactlyrthe~same'number of rooets. If
now K is allowed to assume values such that 'K>0, there are n + v roots
of the characteristic equation in the jth subinterval for each K. Eaéh
‘of thesevroots appea?s on a constant gain, K, branch.of\a root ensemble

from which m roots (not necessarily distinct) are to be selected for

the sequential solution. -An illustration of.the variation ef the root
ensemble with K on the s-plane will be called a locus of the root

ensemble or more concisely an ensemble locus.
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Equation V-4 will be used to establish some of the properties of
the ensemble locus. The problem is simply that as K varies, values of

s must be obtained which satisfy
KG'(s)Tj(s) = ~1. V-6

Equation V-6 is generally encountered in linear system theory where-
upoen it is .decomposed into the well known magnitude and angle conditions.
In terms of present functioens this may be accomplished by replacing the

left side of V-6 with its polér equivalent.
KG'(s)Tj(s) = Fel?, V-7

The right side of V-6 may be rewritten in its polar form as

éj(l + 2z)TT

=1 = where z = 0, *1, *2 ... . V-8

so that V-6 has .the polar form

relfe 131+ 22)T V-9
From V-9 the magnitude condition is
'KG'(S)Tj(s)| =F =1 V-10
and the angle «condition is
)/KG'(s)ij(s) =£3= (1 + 2z)ﬂ’whereiz =0, + 1, i2, ee. V=11

From V-10 and V-1l it is observed that roots which correspond to the

same value of y on the .ensemble can be treated in the conventional root

locus manner, After several typical root loci are plotted adjacent

points representing the same gain may be connected. The result is a
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branch of the closed loop system,roof ensemble.

.Some of the interesting‘features:of the -ensemble ‘locus are easily
traced through the application of root locus rules .te corresponding y
roots on the -ensemble. These closed loop ensemble properties lend them=~

selves readily to system analysis and synthesis.
Properties .0f the Ensemble Locus

‘The following is a listing of some of the pertinent ensemblevlocué

properties,

| 1.) The number of branches of the ensemble locus is exactly equal
to the order, n, of the‘nonlinear.éystem equation (either category 1 or
I1) and the number of poles, v, of the linear compensating device.

2.) The locus of thelcloséd loop ensemble branches for:increasing
values .of the static sensitivity,uK, begins at the open loob ensemble
branches and ends at an‘open\loop zero or infinity. Linear system poles
in the open loop .case represent degenerate branches:of,the»ensemble
having nendistinct root locations. The zeres .of the .open:loep system
are -fixed in location and are attributed to the linear device only.

'3.) A point on the real axis is a point on the ensemble locus if
fhe number of zéros_and branches (ér branch segments) to the right of
that point is -odd. |

"4.) Each point of an ensemble branch approaching infinity for

large values of K does so along an asymptote-with-angle

y - {1+ 2)180°

n+yv-=w » k=0,

1, -2, ... V=12

where n is the .order of the .original nonlinear system equation, v is
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the number of poles and w the number of zeros of the compensating de-
vice.

5.) The real axis ihtercept point, CB, for each of the asymptotes

previously described is determined from

: "Z: @) - ;Z (2,)

1

OB n+v ~-w ) v-13
n+v : ;
The -summatien, :E (PC), represents the sum of the poles from the open
loop .root ensemb§;¥branches.corresponding to the same y as the .one of
interest on the closed loop ensemble. The sum, éél(zd),is.the sum of

the open loop zeros and n, v, and w are as indicated in property 4.
Properties 4 and 5 indicate that as an ensemble branch moves toward

infinity for large gain values .the points on each ensemble branch approach

parallel asymptotes. The angle of these asymptotes is calculated from

4 while 5 determines the real axis crossing_points,

| Figures 27, 28, and 29 illustrate the locus principles as applied

to typicai third, second, and first order nonlinear systems respectively.

The -compensating device is restricted te an adjustable -gain enly. Figure

.27 is the -ensemble locus made possible by placing a feedback path around

the system of Figure 5. .With increasing gain the complex conjugate

bréhches.of the ensemble move into the right half plane and reveal an

instability at moderate Values;of K. There are no zeros and so the

-engemble branches must approach asymptotes with angles given by

Y = (1 + 2k)60° for k =0, 1, 2. V-14



l o [ ] |
S~ PLANE J'Z/ k=
7
s
y
/
7
131
=
/
I {
16 R =0
-3 ~ -2 -1
1
\ ,
K =0 ‘\\
V|-l
\
\
A
\
_jz
2 X

Figure 27. ..Ensemble Locus for'a Third Order System




m -
S-PIANE ip K = 24
| S
1 —1
el K = 15
e S —
LI el K =8
i s
etk = 3
F A {20 e Hmae e San Saadl
el K =0
//'
1
-4 | -3 __-2;1\ 1.2 |3 | 4 | RE
\'.?A,.O K:O —
SEALL A
o K= 3
] I}
1
St K < 8
s
e K = 15
-3
A —
o K = 24

Figure 28. Root Ensemble Locus for Second Order System with
a Limit Cycle

61



S-PLANE

v
L]
=
o
~
]
(en)

-16 |-14 _l-:l

N
1
i—l
(o]
)
e
i
e
~
oo

110 | 12

JRE

Figure 29, .Ensemble Locus of Motor Speed Control System

62



63

In each case the corresponding y-value poles have a summation,

ntv
2. () =3 - v-15
c=1
while
w .
> (zg) = 0. V-16
a=1

From V-15 and V-16 it is apparent that every asymptote associated with
an ensemble branch intersects the real axis at o; = -1,

Figure 28 is the ensemble locus of a system having a plant which
exhibits a limit cycle. Branch locations are altered only in the verti-
cal direction and so the corresponding category II system also displays
a limit cycle characteristic,

Figure 29 is the ensemble locus of the motor speed control system
of Figure 8. The single ensemble branch moves along the negative real
axis for increasing K. In so doing it maintains its length and repre-
sents closed loop time constants of decreasing magnitude.

The ensemble locus shows the locations of the réots to be selected
for use in the sequential solution of the nonlinear closed loop system.
There are certain differences between feedback path compensation and
forward transmission compensation, however. These differences exist
only with regard to the numerator terms of equations TII-14, LIII-15,
III-20, and ITI-21. Thus the transform of the output, Y(s), is in each
of these arrangements characterized by the -same type of ensemble
branches but the sequential selection of roots is effected by the dif-

ference in numerators.
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-Shaping the Ensemble Locus

It is often desired to produce certain response characteristics.
The ensemble locus is well suited for not only the determination of the
response but also for its shaping through alterations in ensemble branch
locations. . This is usually accomplished by the introduction of poles
and zeros. .Each additional pole adds a branch to the closed leop system
ensemble and increases the difficulty of calculating the time response..

The -effects of compensating pole and zero locations are essentially
the same .as encountered in the linear system case. .Added zeros to the
‘left of the plot tend fo bend the locus to the left while poles added
to thé left have the opposite.effect. As an illustration of an adjust-
ment scheme, a zero has been introduced into the open loop root ensemble
plot of the third order system of Figure 27. The result is shown in
Figure 30. The branches which previously had crossed the vertical axis
into the right half plane now remain entirely within the left half plane.
The system has been compensated for the instability which it had exhib-
ited,. |

This has not been intended as a discourse on the methods and reasons
for the need of compensation. Instead, it has been meant to show the
Acomplete-carry—over of the techniques of linear system theory to the
synthesis of feedback systems having nonlinear plants described by

equations of the form of II-1.



l-o\\ ™
| 1A 32
S-PLANE L\ B
. y=4\ \\\
|\ pR=2
\ \
1N \> il
\\ \J
\ 1)
\k:o
0 3\ 403y =4 c ]
RE
R,
-3 I K=0-2K=24{~1- 1
K=0
//
7 <
B\
/.—' //\t ji
&\/, ’/
NI/
[T Kk=2
y=4_ 4 |/
3 7 .
/
0

Figure 30. .Root Ensemble of Nonlinear System Compensated by
a Zero at =1,



CHAPTER VI
SUMMARY AND CONCLUSIONS

A method has been achieved for linearizing the mathematical model
of certain control systems described by equations of the form

n n-1
d x d X
+ fn—l(x)

ac” ae? !

dx _
+ .. + fl(x)dt f fo(x) x = F(t) VI-1

with initial conditions at t = t_ of

0
n-1
— . ._.__.-—-d x . - d X = -
X = xlO’ at X20’ 0ve; dtn"I XnO VI-2

where the functions fn-l(x)’ fn_z(x), cees fo(x) and F(t) are all of
class C'1 in some region, R. The approximate solution, y, is déveloped
around a property of differential equations which physical scientists
and engineers have utilized to considerable advantage for some time,
In a ménﬁef of speaking, this property indicates that the solution of
a differential equation depends continuously upon the differential equa-
tion for given initial wvalues.

The function, y, has been designated the sequential solutioen and
approxﬁnatés,the solution, x, to the desired degree of accuracy. The
maximum error in the .sequential solution 6n the interval O0,T has been

~shown to have a value such that

2LT

lx -3 ‘< Ae™ /L VI-3
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whéreAéxdepends inversely upon the number, m, of subintervals of the
partition{ Pm, of [O,T] . It was concluded that y and the first (n-1)th
derivatives of y are continuous functions defined on this interval in

a manner as to converge uniformly to x and its first (n-1)th derivatives
with increases in the‘number of subintervals.

Considerable importance has been placed upon operational methods
made available through the use of the ‘linearized system. A bleock
diagram representation of the nonlinear system was made possible through
the transformation of the .analysis into the frequency domain. In spite
of the fact that actual response computations are quite lengthy when
using this representation, the block diagram proves to be of value from
a conceptual staﬁdpoint in both analysis and synthesis.

Reférence is made to the root ensemble throughout this thesis.
The -ensemble is an important consequence of the block diagram repre-
sentation and is an aggregate of all the characteristic roots belong-
ing to the linearized system's transfer functions. The ensemble is
constructed without knowledge of the solution of the nonlinear equation,
but réquires_that the region of definition of the solution be well de-
fined. The root ensemble is itself time independent and describes the
nonlinear system for both fofﬁed and autonomous responses.

Close examination of closed loop control systems reveals two
natural divisions. The first of tﬁese (category I) is characterized
by a closed loop equation of the form of II-1. The second case
(category II) is that in which the forward transmission is governed by
this same relationship.

Characterization of the response of autonomous systems is .greatly

facilitated through the use of the root ensemble. Here .it has been
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demonstrated that:

1.) branches of the ensemble which lie wholly in the left half
plane représent stable terms in the total solution,

2.) branches of the ensemble which are totally confined to the
right half of the s-plane represent unstable terms in the total solu-
tion and consequentially the total solution is unstable,

3.) complex conjugate branches which cross the vertical axis from
right to left with increasing solution magnitudes characterize a 1imit
cycle 1f all other branches are confined to the left half plane,

4.) complex conjugate branches which cross the vertical axis from
left to right represent highly oscillatory and perhaps even unstable
"solution terms, and finally

5.) a branch on the axis of reals which crosses the vertical
axis from left to right leads to an unstable term in the total solution
for values of y causing the root selection to be made to the .right of
the origin.

Further use is made of the root ensemble for category II systems
by first demonstrating that these have characteristic roots which are
related to the root ensemble branches in the same manner that the open
.and closed loop poles of a linear system are connected. In view of
this, rules for constructing ensemble branch loci are presented with
indications of possible methods of compensation.

The nonlinear systems theory presented herein has been based upon
ﬁhe use of the sequential solution and associated operational methodé.

‘Although this tool has proven valuable in the investigation of non-~
linear systems there are soﬁe notable omissions in its description.

Among these is the solution of nonlinear systems (both category I and



I1) in the presence of forcing
the cases in which the driving
"Root ensemble characterization
resonance, entrainment as well
multiplication are believed by

investigations are undoubtedly

69

functions. Of particular interest are
functions are sinusoids, steps, and ramps.
of such nonlinear phenomena as jump

as frequency multiplication and de-

the author to be a possibility. These

subjects for continued research.
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APPENDIX A

DETERMINATION OF THE MATHEMATICAL MODEL OF

TYPICAL NONLINEAR SYSTEMS

The root ensembles of Figures 4, 7, and 10 are a direct result of
the mathematical models used to describe the associated nonlinear systems.

These models are investigated and their root ensembles determined.

The Closed Loop Positional Control System
" with Saturating Amplifier

The mathematical model of this system (see Figure 2) is achieved
from two essential relationships. This first is a consequence of the

summing device and may be written as

while in terms of the transform variable s the second is

*u

C(s) = By(s) " STty A2
M
Substitution of equation A-2 into A-1 leads to
R(s)(sﬁﬁ + 1)s = KMEZ(s) = El(s) s((M s+1) A=3

Now if this system is restricted to have zero input, the corresponding

mathematical model is the differential equation

d e1 del
Ty dt2 + It + KMe2 = 0. A4

The output, e, of the saturating amplifier is related to the
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input by the equation
e, = (a =~ bez)e A=5
2 1771

and substitution into A-4 yields

d7e de1

+ a.e. =0, A-7

within each of the subintervals. The characteristic roots of A-7 are

calculated from

= x /.2 . -
s = al/2 1/2 a; 4a0 , A-8

If these roots are plotted for all possible values of a; and a, the

result is the root ensemble. Since a; is a constant given by

a; = 1/ TM A-9

the only variation in root location is due to a For the ensemble of

0°

Figure 4 values of y have been selected such that

2
430 > a; A-10

1, b

with a 0.5, and T, = 0.5.
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The Third Order System with Nonlinear
Feedback Element

In accordance with the block diagram configuration the system of

Figure 5 has the relationships

r - h(y) = e A-11
and
Y(s) _ K
E(s)  s(T st1)(T,s+l) A-12

Equation A-12 may be rewritten as
Y(S)-S(Tls+l)(Tzs+l) = KE(s) "A-13

from which it is apparent that

4> iy 4
T.T, et (T,+T.) =L + <L = ge, A-14
172 dt3 1 72 dtz dt

The function h(y) has the form
- 2 '
h(y) = y(1 + cy™). A-15

From equations A-15, A-11 and A-14 the mathematical model becomes

diy +<T]_+T2>d2y 41 gz_*_y(nl( 4 X y2>=_____
: : S o R

K
dt Tsz dt2 Tsz dt ’Tsz Tsz Tsz r(t)
' ‘ A=16

which is of the form of II-1.
The constants in equation A-16 were selected so that the equation

under investigation is

4> a2 d
g + 3 z + 2 dz
dt dat

+ 3y(1-0.05y2) = 3r(t). A-17




The dependent variable, y, is assumed to range in magnitude between
0 and 4. The corresponding coefficients of y are tabulated for some

typical values.

TABLE I

TYPICAL COEFFICIENT VARIATIONS

v coefficient
0 3.
1/ 2.9625
I 1 2.85
L3 2.6625
Ly 2.4
t s/ 2.0625
t 3 1.65
Ty 0.6

In each case the cubic equation was factored by a digital computer

with roots as shown. These roots lie on the root ensemble which is

TABLE II
CHARACTERISTIC ROOTS OF THE LINEARIZED EQUATIONS

y 51 2 53

0 -2.6717000 - . 1641+11.047 - . 1641-11.047
s -2.6510980 - .1744+1.022 - .1744-11.022
*) -2.5854778 -.2073+] .9409 | -.2073-1 .9409
%3 -2, 4596040 -.2702+1.,7732 | -.2702-1 .7732
A -2.2211968 -.3894+] .3442 | -.3894-4 .3442
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illustrated by Figure 7.
Nonlinear Speed Control System

The nonlinear speed control system of Figure 8 represents a commonly
encountered forward transmission device. The motor is assumed to have a

polar moment of inertia, Jm’ which in combination with load inertia, Jl’

results in a total inertia of

J=J +J. A-18
m 1

Friction is considered to be of the viscous variety. The speed-torque

curves of Figure 9 illustrate a speed=-torque relationship of
= (-1/20° + B A-19
The equation of motion is then
T = (-1/2)&)2 +E =7 S—‘;‘:-)+ BLO A-20

where B is the viscous friction constant. Equation A-20 may be re-

written in terms of Ei as
KE, = J 4 (J(B-1/20). A-21
i dt
For purposes of illustration the constants have been selected so that
dw
Ei = 1/2 “‘a‘t-:—-!-w(B—l/Qw) A-22

The root ensemble is shown in Figure 10.



" APPENDIX B
THE NONLINEAR OSCILLATOR

The circuit of Figure 17 is assumed to have a nonlinearity in the

electron tube which is described by the relationship

e - L > e3 B-1
23 3Es 8

where gm is the transconductance of the tube and ES is the saturation

voltage. This equation is plotted in Figure 18. The Kirchhoff voltage

'law equation of the grid circuit is

di ) di
I, —&— + Ri +——fi;dt-M-—-P-—-—=0. B-2
g dt g c g dt

The voltage across the capacitor is

lfi:dt=e B-3
c g g

Combining equations B-1l, B-2, and B-3 the result is
2 3]

d7e de deg 1 d(eg )
L ¢ —=f— 4+ Re —E—+ ¢ = Mg - = 0,
g dtz dt g m | dt 3g 2 dt B4

If u = eg/Es equation B-4 may be rewritten as

afa (Mn  m\aw M o2 aw 1o L.
2 LC L dt Lc ~% T4t L ¢ B
d g g g
or
d2u du 2 d
- b + P u = -
dtz it d -+ 3u Frs + au 0. B-6
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Equation B-6 may finally be simplified by letting x = (~/3d/b ) u to

dzx

dt2

2, dx _
- b(1-x7) it + ax = 0. B-7
For the particular example of Chapter III the values of b and a are
b =0.8 and a = 1. The root ensemble is shown in Figure 19,
Appendix C presents a Fortran listing of the program used to com-

pute autonomous response of the oscillator. The results of the calcu-

lations are presented as Figures 20 and 21,



APPENDIX C

AUTONOMOUS RESPONSE PROGRAM FOR NONLINEAR OSCILLATOR

READ,T1,DIV,X,DX,N

SUM1=0.

ERR=0.

T=T1

DEL=0.

DX 1=ABS (DX )

L=0

TYPE, SUM1T,X, DX, SUM1

RAD=L , ~0. 6475 (1. -X**2)**%2)

L=l 41
RE=0.4%(1.-(X*%2))
IF(RAD)250,200,50

OMEGA=0.5%SQR (RAD)

DEN=( (DX/X)-RE)
PHI=ATN(OMEGA/DEN)
|F(DEN)70,75,75

PHI=PHI+3. 1415926
A=(X/OMEGA)*SQR(OMEGA**2+DEN**2)
ANG= (OMEGA* (T/DIV)+PHI)

DXOLD=DX

XOLD=X
X=A*EXP(RE*T/DIV}*SIN(ANG)
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93
95

110
115

130
135

160

200

N
i
(]

DX=A*EXP(RE*T/DIV)*(OMEGA*COS(ANG )+RE*S I N(ANG))
IF(X)95,300,95

SUM1=SUM1+T/D1V

DX2=ABS(DX)

T=T1

I|F(DX1-DX2) 110,115, 115

DX 1=DX2 ‘

DEL 1=DX 1% (ABS (0. 8% (1.~ (X**2))-2.*RE))

R=k .8 |

IF(DEL-DEL1) 130,135,135

- DEL=DEL1

ERR=ERR*EXP (R*T /D |V )+(DEL/R)*(EXP(R*T/DIV)-1.)
M=L /N

|F(M)160, 35, 160

L=0

TYPE,SUM1,X,DX, ERR
|IF(SUM1-T1)35,5,5

XOL D=X

DXOLD=DX |
B1=X*(1.+(DX/X+1.)*T/DIV)
B2=(DX~(DX+X}*T/DIV)
X=B1*EXP(~T/D!V)
DX=BZ*EXP (~T/DIV)

GO TO 93

RAD=~RAD
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RE2=SQR (RAD)

A1=RE+0.5*RE2

A2=RE-0.5%RE2
A3=(A2*X/(A2-A1))*(DX/X-2.*RE+A2)
Ab=(X/(A1-A2))*A1*(DX/X~2.*RE+A1)
A5=(X/(A1-A2))*(DX/X~2 .%RE+A1)
Ab=(X/(A1-A2) )% (DX/X=2.*RE+A2)
DXOLD=DX

XOLD=X

DX=AU*EXP (AT*T/DIV)+A3*EXP(A2*T/DIV)
X=AS*EXP(A1*T/DIV)-A6*EXP (A2*T/DIV)
GO TO 93

X=XOLD

DX=DXOLD

T=2.*T1
GO TO 35
END
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