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NOMENCLATURE 

Symbols are defined throughout the text as they are used to 

describe physical or mathematical quantities. The most important 

symbols and the quantities they represent are as follows: 

a . . . . . . . System parameter or constant coefficient appearing in 
a differential equation. 

C • . . 
c(y). . 
f(t) . 

k(y). . 
m. 

s 

t . 
x, x(t) 

. .. 
x, X . 
y, y(t) 

. 
y, y 

w. 

A. 

B. 

F(s) 

F(w) 

. 

. 

. 

. 

. 

. 

. . . 

. . . 

. . . 

Exponential series coefficient. 

Damper force function, dependent on y. 
Arbitrary time dependent function. 

Spring force function, dependent on y . 

Mass term. 

Laplace transform variable. 

Independent variable, time. 

Time dependent system input variable. 

Time derivatives of the system input. 

Time dependent system output variable. 

Time derivatives of the system output. 

Relative weight of a residual1 

Smoothing operator. 

Differentiating operator. 

Error in the bracketed function, f(t). 

Laplace transform of the function, f(t). 

Fourier transform of the function, f(t). 
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G(a) •• 

p 

R. 

w. 
s 

A Ill G G 0 

a . . . o 

T 

w e O ii O D 

D., 6t . 

Sum of the squares of the residuals or errors. 

Differential equation operator. 

Residual or error. 

Linear differential equation operator. 

Scale factor. 

Exponential series coefficient. 

Real part of the complex variable s. 

Particular value of the independent variable time. 

Imaginary part of the complex variable s. 

Independent variable time increments. 
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CHAPTER I 

INTRODUCTION 

1-1. Sta tern ent of the Problem 

The primary objective of this study is concerned with the 

determination of an appropriate mathematical description of an un-

known dynamic system, linear or nonlinear, subjected to time varying 

inputs. Applicable systems include those which are mathematically 

modeled by ordinary differential equations and classified by the 

descriptive words as lumped parameter time invariant systems. The 

method described herein utilizes input-,output relationships which are 

experimentally measured in the form of continuous or discrete plots 

versus the independent variable time. 

The problem may be symbolically represented by the single 

input-output system shown in Figure 1-1. 1. ~~ 

x(t) y(t) 

Input 
System 

Output 

Figure 1-1. 1. Single Input-Output System. 

The system is subjected to the prescribed input x(t) while simulta-

* The case of multiple inputs and outputs will be treated in 
Chapter II. 

1 



neously observing the output variable y(t). The fundamental pr0blem 

is then, what set of operations are present such that the system may 

be characterized by an ordinary differential equation of the form 

w[ x(t) , y{t)] = o (1-1.1) 

2 

where W represents a sum of differential and multiplicative operations 

on the variables x(t} and y{t). For example. the operational equation 

( 1- 1. 1) might take the form 

where the dot notation implies time derivatives. This thesis presents 

a method by which the system parameters or constant coefficients a 1, 

a 2 and a 3 in equation (1-1. 2) may be determined with the associated 

implication that should any of the parameters vanish, the correspond­

ing operation is a non-contributory relation between the input and out­

put. In brief, the method concentrates on the numerical evaluation of 

the differential and multiplicative operations in the operational equa­

tion,. i.e., y. yy and xy in equation (1-1. 2). at a sufficient number of 

independent time values such that the problem is reduced to the solu­

tion of a set of linear simultaneous equations for the parameters. 

Because the operations can only be approximately evaluated, numerous 

evaluations are made and the parameters determined in a minimal or 

least squares sense. 

1-2. Existing Methods ~f Determination 

The vast majority of past effort associated with this problem 

has been confined to systems which are identified as linear. a linear 
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system being one which is completely characterized by a set of linear 

ordinary differential equations. With very little exception, past effort 

has been centered on the determination of the system transfer function. 

In linear system theory, a very powerful and elegant relationship is 

obtained by resorting to the notion of a transfer function. This is 

accomplished by a mathematical transformation, the most popular 

being the Laplace transformation. This transformation is a mathe­

matical operation indicated symbolically by r~(t)], where the 

associated operation is 

cl, [f(t) J = rXJ f(t) e -st dt = F(s) 
0 

(1-2. 1) 

and s is the complex variable s "' o- + jw with j = Fi. The symbolic 

representation of Figure 1-1. 1 is identified as a block diagram in 

linear system theory and the associated set of linear differential 

equation operations is called the system or Laplace transfer function 

W(s). The relation between the transformed input X(s) and output Y(s) 

then takes the form 

Y{s) = W(s) X(s) (1-2. 2) 

and 

Y~l-X(s) - W(s) (1-2. 3) 

Another transformation ideally suited to the experimental 

identification problem is the Fourier transform J[f(t)] , where the 

associated mathematical operation is 

] ~(t)]"' J 00 f(t) e -jwt dt = F(w) (1-2. 4) 
-oo 
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Utilizing this transformation, the system function becomes the Fourier 

transfer function 

~Jc.0) = W' ) 
X(w) \w 

(1-2. 5) 

The Fourier transfer function is general complex and is usually 

resolved into its real and imaginary pa,rts 

W(w) - A(w) + jB(w) (1-2. 6) 

which are identified as the magnitude and phase components respectively. 

The most obvious method for experimentally determining the 

Fourier transfer function of a given system is to subject the system to 

a sinusoidal input, x(t) "'x sin wt, and measure the magnitude and phase 

output components. This is termed a frequency response .test and 

yields the Fourier transfer function di:cectly and intuitively. The prime 

disadvantage of this test is its length and cost because of the numerous 

input frequencies w required to develop the system frequency spectrum. 

The magnitude and phase eomponent:s of the Fourier transfer function 

are dependent only on the forcing frequency and not on the input ampli-

tude. The fact that l\.{w) and B{u)) are independent is a condition for the 

linearity of the system. If A :;nd B do depend on the input amplitude x, 

the experimental functions A(x·, w) and B(x, w) constitute a kind of 

generalized transfer function, which is called the describing function. (l )'1~ 

The describing function in general yields very little information re­

garding the differential equation behavior of the system. Gibson( 2) 

-1, Numbers in parentheses refer to references in the Bibli­
ography. 
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presents an analytic approach to the inverse describing function; 

however. the system or block diagram is restricted to a single non-

linear element. 

The frequency response test has given way in recent years to a 

controlled transient test in which the input signal is a simulated .im-

pulse. An impulse or unit pulse is an input signal x(t) which exists 

during the small time interval between t = 0 and t = 6. During this 

time interval the value of x(t) jumps from zero at t = 0 to the large 

1 constant value x(t) = 6 and then returns to zero at t = 6. If such an in-

put signal can be physically implemented without damaging the system, 

the output is identified as the system impulse response and the Fourier 

transfer function takes the particularly simple form 

I 00 • t 
W(w) = y(t) e-Jw dt (1-2. 7) 

0 

This integral is easily resolved into its real and imaginary parts, such 

that magnitude and phase characteristics can be established. The ideal 

unit pulse is extremely difficult to achieve in practical situations. For 

such cases, an approximate pulse is utilized which raises certain 

practical considerations in the determination of the transfer function. (3, 4 ) 

It is important to recognize that the frequency response and 

impulse tests only yield the Fourier transfer function. The technique 

of determining the system parameters and/ or linear differential 

equation behavior from the frequency or impulse response is identified 

as a synthesis problem in linear system theory. Sanathanan and 

Koerner(5) have described a method of curve fitting a ratio of two 

complex polynomials to the Fourier transfer function as an approxi-



mation to the transformed differential equation. Kardashov and 

Karniushin(6) have presented a method of parameter determination 

utilizing a complex-plane plot of the system frequency response. 

6 

A method for obtaining the impulse response of a linear system 

by using white noise as the input and obtaining the cross-correlation 

between the noise input and system output has been described by 

Truxal. (7) The white noise input signal is defined as a random signal 

with a flat frequency spectrum over all frequencies. The practical 

difficulties in achieving such an ideal signal are similar to the ideal 

unit pulse simulation. 

Recent efforts in the parameter determination problem which 

pursue solutions in the time domain rather than the transform domain 

include the work of Potts. Ornstein and Clymer(S) who used a steepest 

descent method to establish the parameters in a mathematical model 

simulation of a human operator for an airplane. The required deriva­

tives were obtained on an analog computer for an essentially error free 

output. Kumar and Sridhar(9) have presented an identification method 

for systems possessing a state model description, i.e .• described by 

a set of first order differential equations. They adjoin to the state 

model an auxiliary set of first order differential equations in which the 

derivatives of the desired constant parameters are set equal to zero. 

Then by observing the state variables at some value of time, the method 

treats the adjoined state model as a boundary value problem and 

iteratively determines the parameters by a computational procedure 

discussed by Bellman, Kagiwada and Kalaba. (lO) Published accounts 

thus far have been confined to completely noise free systems. 

The above discussion briefly summarizes the past concentration 
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of effort on the problem of system identification. As noted earlier. 

this concentration has been largely directed towards the determination 

of the system transfer function. The transfer function concept. is most 

appealing; however, it appears limited like transform methods in 

general to linear system bebavior. The method of this thesis concen­

trates on the differential equation form relating input and output in the 

time domain, utilizes no variable transformations and addresses itself 

to either the linear or nonlinear problem. It is believed that by attack­

ing the problem in this manner, while utilizing the best of present day 

technology and machinery, a more than adequate solution to the problem 

can be obtained. 



CHAPTER II 

PRESENTATION OF THE METHOD 

2-1. Determination of System Parameters 

In this section., the method of parameter determination for 

multiple input-output systems is presented. In Figure 2-1. 1, 

x 1(t) y 1 (t) 

-
x 2(t) Y2(t) 

-. . . . . System . 
X. (t) 

J 
y ,e,(t) 

- -
·-

• . . . . 
X (t) q Yr(t) 

-

Figure 2-1. 1. Multiple Input-Output System. 

the set of inputs x}t) and outputs y ,e,(t) constitute a measured set of 

variables in the dynamic process. A measured set of variables is 

defined as that set which will permit the system to be completely 

described by a set of ordinary differential equations of the form 

P[ak' xj(t). Y,e,(t)]= 0 

j = 1. 2, . . . q 
' (2-1.1) 

t ::: 1, 2, . . . r 
' 

k = 1, 2, . . . m • 
8 
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The set of equations (2-1. 1) will be hereinafter referred to as simply 

the system equation. The operator P appearing in the system equation 

. represents a sum of operations on the measured variables x .(t) and 
' J 
y i(t). admissible operations include derivatives, integrals and pro-

ducts of the measured variables. A constant parameter ak is associ­

ated with each of the m distinct operations included in the system 

equation. 

The unknown operations in the system equation are then deter-

mined by either differentiating or integrating the measured variables 

a sufficient number of times, such that each of the m operations in-

eluded in the system equation may be numerically represented as a 

function of the independent variable time at a discrete number of 

points n. i~ The system equation then takes the form 

i = 1, 2, . . . , n, (2-1.2) 

where n represents the number of distinct evaluations of each of the 

m operations in the system equation. 

Consideration of the following illustrative example will aid in 

fixing ideas at this point. Let the system equation be represented by 

the following nonlinear ordinary differential equation 

(2-1.3) 

where the coefficients a 1, a 2, a 3, a 4 denote the unknown parameters 

which are to be determined. Integrating the system equation once 

i} The subject of obtaining derivatives and integrals from 
experimental data is discussed in Chapter III. 



yields 

(2-1. 4) 

In many cases, the value of y 1 (70 ) is only approximately known and if 

its value is subject to question, the system equation may be alter-

nately written 

+ a 5 + J 7 
x 2 dt = 0 

7 
0 

(2-1.5) 

Thus the problem is now to determine the five parameters in the 

above equation. Each of the derivatives and integral operations of 

10 

equation (2-1. 5) are then evaluated at a discrete number of points by 

performing the indicated operations on the measured time series data. 

The only task remaining is to select five values of 7 along the time 

series in such a way that the indicated operations constitute an inde-

pendent set, insert the numerical values of these operations in the 

system equation (2-1. 5) and solve the resulting set of five linear 

simultaneous equations for the desired parameters. 

In the general problem, the numerical values of the operations 

are only approximately known; hence, numerous evaluations are made, 

some of which may be dependent. The basic problem is then to deter-

mine the parameters akin equation (2-1. 2) such that the system 



equation is satisfied for each of the n discrete evaluations in a 

minimal sense. In general, the n linear simultaneous equations rep-

resented by equation (2- L 2) are highly overdetermined, i.e. , n, 

the number of equations is greater than m, the number of unknown 

parameters, The most popular technique used in obtaining solutions 

for overdetermined sets is the method of least squares, This is 

accomplished in the present problem of parameter determination by 

defining a weighted residual R. associated with each of the n discrete 
1 

equations (2-1. 2) 

i = 1, 2, . . . , n, (2-1.6) 

where w. denotes the relative weight of the residual R.; and then 
1 1 

minimizing the sum of the squares of the weighted residuals 

by 

n 

G(ak) = l R~[ak, xj(t), y t(t)] 

i=l 

oG 
aak 

= 0 k"' 1, 2, , . , , m 

(2-1. 7) 

(2-1. 8) 

The residual weight w. is generally restricted to a number between 
1 

zero and one, and associates with the residual R. a relative value in 
1 

the formulation of G{a). For example, if near dependent entries are 

included in the formulation, they can be weighted accordingly or if 

the numerical value of an evaluated operation is subject to question, 

it could be assigned a reduced weight. 

The above problem is identified by different descriptions in 

11 
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several disciplines. To the statistician, it represents a problem in 

linear regression analysis; to the numerical analyst, a best solution 

to overdetermined linear equations or the hyper-plane of best fit in 

the m-dimensional vector space and to the systems analyst, the 

integral error squared problem. The problem is well documented in 

the literature. (ll., 12 • 13 ) The least squares description will suffice 

for this discussion, primarily because it provides the weighted re-

sidual concept and the statistical parameter G(a) given by equation 

(2-1. 7) to aid in the selection of a mathematical model of best fit. 

For example, if the system equation has several alternate forms, 

that form which possesses a minimum sum of the squares of the re-

siduals will constitute tp.e solution of best fit in a least squares sense. 

This point will be demonstrated in Chapter N. 

2-2. Exponential Curve Fitting and Linear System Theory 

Quite often concurrent developments ar;i.d research occur in 

the physical sciences. in seemingly divorced disciplines when in 

actuality the identical mathematical problem is being attacked, It is 

this writer's observation that this is precisely the case in the fields of 

linear system identification and the problem of exponential curve fit-

ting, The necessity of exponential curve fitting has received the atten"" 

tion of investigators in the fields of radio active decay and the bio-

logical sciences, The basic problem is to observe a process which 

has been disturbed by some external influence and then to fit a curve 

of the form 

n A.t 
f (t) =I l c.e 

1 
(2-2. 1) 

i= 1 



to the measured data. Perl (1 4 ) summarizes some preliminary 

attempts to fit exponential functions and Worsley and Lax(l 5 ) present 

an extensive bibliography associated with the problem. 

13 

The physical analogy of the linear system identification problem 

and exponential decay problem is quite simple. If the linear system 

has been subjected to an input disturbance, the resulting output be-

havior. being the solution of a linear ordinary differential equation, 

can be completely characterized by the exponential series given by 

equation (2-2. 1 ). The value of f(t) would constitute the system output 

y(t) and the coefficients c. and A. would in general be complex. However, 
l 1 

because y(t) is real, the constants c. and exponential coefficients A. 
1 1 

must occur in conjugate pairs such that the resulting sum is real. 

The exponential curve fit problem in general represents a decay 

phenomenon and the exponential coefficients A. are ordinarily restricted 
1 

to real negative numbers. It is well known that a linear time invariant 

system may be des,e;Jtl,ihed by a linear ordinary differential' equation 

with constant coefficientsP) of the form 

dm dm-1 d 
a 3-X+ a t + + a ~ + a .·· y "" x 1 2 - • · · m dt m~-1· dtm dtm ., 

(2-2.2) 

Either problem, i.e. , linear system identification or exponential 

curve fitting, can be reduced to the determination of the constant co­

efficients in equation (2-2. 2). Hudson P 5 ) noted this similarity while 

engaged in an investigation of the exponential curve fit problem. Once 

these coefficients are known, the Laplace or Fourier transfer function 

can be easily established. If the differential equation (2-2. 2) is 



Laplace transformed, the zeros of the resulting characteristic 

equation are precisely the exponential coefficients of the correspond-

ing exponential series (2-2.1). The coefficients c, of the exponential 
1 

series depend upon the particular input signal x(t) and/or the initial 

conditions of the system. 

The differential equation (2-2. 2) represents the most general 

form of the system equation (2-1. 1) for the case of a linear system, 

The linear system equation, unlike the nonlinear case may be inte-

grated as many times as necessary to completely circumvent the 

necessity of estimating derivatives. For example, integrating equa-

tion (2-2. 2) once yields 

+ am+l J T ydt + am+2 = J T xdt (2-2. 3) 
T T 

0 0 

where a L 2 denotes a constant of integration and is given by m-, 

m-2 
d y(T) 

0 - a 
2 dtm-2 

- a y(T ) m o 

(2-2.4) 

The derivatives appearing in this equation are rarely known; hence, 

the coefficient am+2 must be treated as an additional unknown para­

meter in equation (2-2. 3). Performing the integration m successive 

times yields 

14 



m-1 
'T 

+ am+2 (m-1 )! + · · · + a2m 7 + a2m+l = f 7 f' 
To 

15 

(2-2. 5) 

Thus if the indicated integral operations and power terms are numer-

ically evaluated at a sufficient number of discrete values of T along the 

time series, the problem is again reduced to the best set of para-

meters in a least squares sense. The numerical evaluation of the 

integral operations is far superior to the estimation of derivatives 

from the standpoint of accuracy; however, in most cases the additional 

parameters am+2, am+3 , .. , , a 2m+l must also be determined in 

the minimization process. Hudson(lG) noted the advantage of the 

finite range of integration associated with the integral operations in 

equation (2-2. 5) as opposed to the infinite range when using the Fourier 

transform, equation (1-2, 7). 

Certain nonlinear differential equations can be successively 

integrated to yield forms which also circumvent the need of estimat-

ing derivatives, For example, the well known van der Pol equation 

(2-2, 6) 

may be alternately written 

a •• • , 2 d 3 
y + a 1 y -.- 3 cf[ (y ) + a3y = 0 {2-2,7) 

Integrating the alternate form once gives 
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• a2 3 I y + a 1 y + 3 y + a 3 ydt + a 4 = 0 (2-2. 8), 

and by a second integration the final desired mathematical model is 

obtained 

(2-2~ 9) 

2-3. Determination of System Operations 

Quite often the exact form of the system equation is unknown 

to the systems analyst. For such cases, the method presented herein 

may in some instances prove to be a valuable aid in selecting the 

correct mathematical model for the system. To demonstrate this, 

suppose the system of Figure 2-1.1 is exactly characterized by a 

system equation of the form 

(2-3. 1) 

If, however, the system equation had been erroneously assumed as 

(2-3. 2) 

then each of the parameters akl in the assumed differential equation 

must be identically zero if the system is to be exactly described by 

equation (2- 3. 1 ). 

In this connection, if the method described herein is to be used 

effectively for the purpose of operation identification, it is absolutely 

necessary to assume the most general differential equation behavior 

possible to insure that the correct set of operations given by equation 

(2-3. 1) is included in.the assumed set of operations. Recognizing that 
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the numerical evaluation of system operations, depends heavily on 

approximated derivatives and integrals, which are in turn obtained 

from experimental data; it is not advocated that the method described 

herein will identically determine the contributory operations in an 

assumed general differential equation. However, quite often the 

analyst has some apriori knowledge of the dynamic process and in 

many cases merely wishes to assess the contributory effect of cer­

tain restricted operations, which are superimposed on a mathemati­

cally derived system model. It is felt that the method presented here­

in satisfies this need. 

2-4. Adequacy of the Determined Parameters 

The above sections have presented a method of determination 

for system parameters and operations; in general, the method will 

always yield a solution to either problem. In some cases, the sum 

of the squares of the residuals will serve as a criterion for the 

acceptance or rejection of the established mathematical model. The 

most critical test of the validity of the derived model is obtained by 

solving the system equation using the parameters and/ or operations 

established by the least squares solution. A comparison of the differ­

ential equation solution to the experimentally obtained solution in 

general will provide a very strong criterion for acceptance or rejection .. 



CHA:PTER III 

DAT A ANALYSIS 

3-1. Smoothing and Differentation 

The definition of the derivative as the limit of b.y/ b.t is of 

little value if the dependent variable y represents experimental data. 

It is well known that the ratio b.y/ b.t becomes extremely sensitive if 

b.t becomes very small.; particularly if the values of y contain even 

small errors. The problem is generally resolved by resorting to a 

least squares method. (3 ) Two approaches are in current use to 

establish the derivative of an empirical function; they are approxima­

tion in the large and approximation in the small. 

Approximation in the large refers to the concept of approxi­

mating the entire set or a large portion of the data by an empirical 

differentiable function and then differentiating this fitted function. 

Some of the most popular empirical functions are the Fourier series. 

power series, and, in particular, the orthogonal polynomials. 

Personal experience, as well as the reported experiences of 

other investigators,P,. 1 ?) has led the author to favor approximation in 

the small or the so called neighborhood technique. Approximation in 

the small utilizes data only in the neighborhood of a point where the 

derivative is desired. By considering only local data, the computa­

tional problem is considerably reduced both from the standpoint of 

machine time and storage requirements. In general, it is first 

18 



necessary to apply smoothing techniques to raw digital data before 

differentiation is attempted. However, it is possible to integrate 

standard numerical differentiation methods with smoothing formulas 

to yield a single set of formulas for a combined smoothing and differ-

19 

entiation operation. This technique is called a moving arc method and 

is employed in this thesis to obtain derivatives where required. The 

method is fully documented by several authors(3• lS) and only general 

formulas are given here. 

It is desired to approximate the derivative y of the empirical 
n 

function shown as discrete equidistant data in Figure 3-1. 1. 

~-----.----

-----Yn-3 Yn-2 Yn-1 Yn Yn+l Yn+2 Yn+3 

t .1~ = ~tj n 

Figure 3-1. 1. Equidistant Discrete Data. 

Thi-s is accomplished by fitting a least squares low order polynomial 

to the data in the neighborhood of the point and using the derivative of 

the approximating polynomial as an approximation to the derivative. 

Two popular functions are a second order polynomial fitted to five 

points in the neighborhood of -t and a third order polynomial fitted to n . 

seven adjacent points. If the neighborhood is taken to each side of t , . n 

the approximating function will yield symmetric centrally weighted 

coefficients. 



The second order polynomial may be written 

. 2 
y =A+ BT+ CT 

fitted to the following data points 

T = -2A 

.., = -A 

'T = 0 

7= A 

T = 2A 

y = Yn-2 

y = Yn-1 

y=y 
n 

y = Yn+l 

y = Yn+2 .. 

20 

(3-1. 1) 

The coefficient A in the above equation is called a smoothing operator 

(3-1. 2) 

and the coefficient B a differentiating operator 

• 1 [ . J B = =- 2 + - - 2 Yn lOA Yn+2 Yn+l Yn-1 Yn-2 (3-1. 3) 

Second derivatives are obtained by applying equation (3-1. 3) to 

the approximated derivatives 

•• - l '2 • + • . - • ·_ 2 • . J 
Yn - TI>i.r ~ Yn+2 Yn+l Yn-1 Yn-2 (3-1.4) 

When this formula is expanded, the following result is obtained 

Yn = 1 2 [4(Yn+4 + Yn-4) + 4(Yn+3 + Yn-3) + (Yn+2 + Yn-2) 
lOOA 

- 4 (y + y ) - 1 Oy J n+l n-1 n (3-1. 5) 
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The corresponding formulas for a third order polynomial fitted to seven 

points are 

(3-1.6) 

(3-1. 7) 

y = l 2 [484(y +6 + y -6) - 2948(y +5 + y -5) + 1937(y +4 + y -4) n (252 L).) n n n n n n 

(3-1. 8) 

. 3-2. Integration and Scaling 

This section considers two other requirements necessary for 

the numerical implementation of this study. These are numerical 

integration and operation scaling. Numerical integration involves the 

determination of the area under a given curve where in most cases the 

curve is a set of discrete data. This subject is amply discussed in 

most any reference dealing with numerical analysis. Numerical inte-

gration unlike differentiation tends to smooth data which contains 

error; however, it is advisable to first smooth the data before actu-

ally performing the integration. The technique used in this study was 

the well known Simpson formula which determines the area under the 

second order polynomial uniquely fitted to three points. 

The problem of operation scaling can best be described by 



means of a simple example. In the differential equation 

(3-2. 1) 

it is assumed that the values of y, y and x have been determined for 

n data points, Thus equation (2-L 7) takes the form 

n 
• • 2 2 G(a) = (a 1y. + a 2y.y. + a 3y. "'x.) 

l 1 l 1 1 

i= 1 

for the assumed case of equal weights, Le., w. = L 
1 

(3-2, 2) 

When this ex-

pression is minimized with respect to the unknown parameters al' 

22 

a 2 and a 3, the following set of linear simultaneous equations is obtained 

n n 

L·2 y. 
l 

I·2 y.y. 
l 1 

i= 1 i= 1 

n n 

I·2 y. Y· 
l l 

L·2 2 Yi Yi 
i= 1 i= 1 

n n 

L· 2 y.y. 
1 1 

L· 3 ?1.Yi 
i= 1 i= 1 

n 

L· 2 y.y. 
l 1 

i= 1 

n 

2· 3 _/iYi 
i= 1 

n I4 y. 
1 

i= 1 

n 
~. 
L y.x. 

I l l 

i=l 

n 

"'y· .y.x. L 1 1 1 

i= 1 

n 

vv~x ... f_i1 1 1 

i=l 

If the magnitude of y is considerably different from that for y, which 

is generally the case, the resulting matrix equation (3-2. 3) is poorly 

conditioned for inversion, due to the large variations in the matrix 

elements. This problem can be partially obviated by introducing 

scale factors, Replacing y by y/ S 1 and y by y/ S2 the differential 

equation becomes 



If the scale factors S 1 and S2 are properly chosen, the resulting ma­

trix equation will be reasonably well conditioned, 
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CHAPTER IV 

NUMERICAL APPLICATIONS 

4-1. Second Order Quasi- Linear System 

Determination of the parameters for a second order quasi­

linear system is demonstrated in this section. The system studied is 

shown in Figure 4-1. 1. 
---. y(t). 

m x(t) 

n»m7777777l7 

Figure 4-1. 1. Second Order Quasi-Linear System. 

The governing differential equation for this system is 

my+ c(y) + k(y) = x(t) (4-1.1) 

where x(t) denotes a known input or excitation and y(t) the system out­

put. The variables and components will be referred to in general 

system terminology as follows: 

y = displacement or output, 

y = velocity, 

y = acceleration, 

x = input, 

m = mass. 

c(y) = damper force, 

k(y) = spring force. 

24 
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In order to obtain data for the problem, values of the para-

meters and input were arbitrarily selected as follows 

m = 0, 051813 

@ • ., 3 
c(y) = 0, 5(y + 0, 005y ) 

~ ~ .. 3 
c (y) = y + 0, 01 Oy 

2 k(y) c= 30{y - 0, lOy ) 

x{t) = 60 sin 4Tit 

y s 0 

yzO (4- L 2) 

Plots showing the above force vs, velocity and force vso displacement 

relationships for the damper and spring are displayed in Figures 

4-1. 2 and 4- L 3 respectively, Data representing the output y(t) was 

obtained by numerically solving-I~ the differential equation (4- L 1) with 

the following initial conditions 

y(O) = 0 y(O) "' 0 ( 4- L 3) 

These data will hereinafter be referred to as the exact or observed 

data. Plots of the displacement y, velocity y, and acceleration y are 

shown in Figures 4- L 4, 4- L 5 and 4- L 6, Digital data resulting from 

the numerical solution is given in Appendix A, The calculated values 

of the output y are rounded to two significant decimals and constitute 

the exact or observed data used in all subsequent computations, The 

differential equation solution was not carried past one second as the 

system, being heavily damped, essentially demonstrates steady state 

behavior past O. 82 seconds as evidenced by the phase plane portrait 

displayed in Figure 4- L 7, 

i~ Numerical solutions in this study were obtained by the 

fourth order Runge-Kutta method, P 9) 
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Figure 4- L ''lo Phase Plane Portrait" 
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In order to gain some appreciation of the accuracy of approxi-

mated derivatives and their corresponding effect on parameter deter~ 

mination, two values of the independent variable time increment were 

studied. These two values were b. = 00 010 seconds and b. ::: 0, 02 0 

seconds, and correspond to fifty and twenty-five data points per period 

of oscillation respectively. Dividing a typical oscillatory wave into 

twenty-five to fifty increments is fairly common practice in engineer-

ing applications and serves as the basis for the selection of the above 

two time increments. First and second derivatives for the two time 

increments were obtained in accordance with the differentiating oper-

a tors (3- L 7 and 3- L 8), i. e o, third order polynomial fitted to seven 

data points. 

Error curves for these approximations are given in Figures 

4- L 8 and 4- L 9o In this study, error E[f(t)] is defined 

E [f(t)] = observed f(t) - approximated f(t) 

and percentage error as 

%E [±f{t) J = observed ffn - ar~:eroxirm~.te_d :!lt) 

observed 1±f(t)] . , l: max, 

(4-L4) 

(100) (4- L 5) 

Percentage error as defined by equation (4- L 5) yields a relative 

quantity for comparative purposes onlyo This form was adopted over 

the more conventional definition 

% error = 
observed - approximated 

observed 
(100) ( 4- L 6) 
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because this study deals with very small and even zero values of the 

observed quantity. For example, comparing an approximated second 

derivative error of E lJ] = 1. 0 to an observed value of y = O. 1 gives a 

1000% error. However, an error of E[y] = 1. 0 is indeed very small 

when compared to the errors shown in Figures 4-1. 8 and 4-1. 9. 

Maximum percentage errors for the approximated derivatives as de-

fined by equation (4-1. 5) are noted in Figures 4-1. 8 and 4-1. 9. The 

following maximum values were used as divisors in calculating these 

percentages. 

. 
-ymax. = 24.2 15. 6 

•• 
-ymax. = 488 492 

Examination of these error curves reveals both a posit:ive and nega­

tive distribution of errors. When using a least squares method in 

the presence of error. such a distribution is intuitively more bene-

ficial than an error distribution of similar signs, 

No attempt was made to smooth the approximated derivatives 

nor evaluate them in the region O :s: t < T O • where T O denotes one 

half of the neighborhood associated with the previously mentioned 

differentiating operators. i.e .• T O = 3afl and a is the order of the 

desired derivative. It must be recognized that a simple plot of the 

approximated derivatives would reveal the more obvious larger 

errors, such that these could be corrected before proceeding further 

in the analysis. 
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The following apriori knowledge was assumed in connection 

with the parameter determination problem; the mass term m was 

considered a constant, the damper c(y) and spring k(y) were assumed 

to be continuous functions in each of their regions of definition, i. e,, 

positive and negative regions, To determine a functional relationship 

for c(y) and k(y), a sixth order approximating polynomial was 

selected in each region as follows: 

, -25 < y ::,; 0 

(4-L 7) 

0::,; y <2 

It is not uncommon in engineering systems to encounter components, 

i. e,, springs, dampers, etc., which exhibit characteristics as 

shown in Figure 4-1. 10. 

k(y) "' ay , y > 0 

y 

k(y) = by , y < 0 

Figure 4- L 1 O. Typical Quasi-Linear Springo 
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The polynomial forms, equation (4~ L 7), express the most general 

behavior possible such that the condition implied by Figure 4-L 10 can 

easily be determined by merely eliminating the parameters a 14, a 15 , 

. . . , a 18 and a 2 0, a 21 , . . . , a 24 from the analysis. 

The general differential equation ( 4- L 1) may then be written 

(4-L 8) 

where it must be explicitly understood that when 

y<O c2(Y) "' o 
• 

C 1 (:y) = y>O 0 
(4~ L 9) 

y<O k2 (y) "' 0 

y>O kl (y) = 0 

The above four regions are precisely the four quadrants of the phase 

plane (Figure 4-1. 7). The approximate values of time associated with 

each quadrant are noted on the phase plane portrait and aids in the de-

termination of the total number of independent data points for which 

equation (4- L 8) may be formed. As noted earlier, the solution es-

sentially exhibits steady state behavior past 0, 82 seconds; thus, the 

total number of independent data points n associated with each time 

increment is 

0, 82 - 3aA 
n = A + l (4-LlO) 

where a denotes the order of the highest approximated derivative, 

i.e., a= 2. The total number of data points and the approximate 

number occurring in each of the four phase plane quadrants is given 

in Table 4-L L Each of these data points was assigned a residual 

weight of unity, 
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Table 4-1. 1 

Distribution of Independent' Data Points 

Quadrant A= 0."010 A = O. 020 

I, y>O I y>O 30 12 

II, y<O I y>O 15 8 

III, y<O I y<O 13 7 

IV, y>O I y<O 21 9 

Total n 77 36 

Thus the task is to select among the twenty-five parameters 

in equation (4-1. 8) the best set in a least squares or minimal sense. 

There are included in the twenty-four polynomial coefficients a multi­

tude of choices. In order to narrow these choices, several repre-

·sentative combinations were selected as a basis for the parameter 

determination problem. These selected combinations are listed in 

Table 4-1. 2. Parameters were then determined for these eight com­

binations for each of the two aforementioned time increments. Using 

these determined parameters, the sum of the squares of the residuals 

G(a) was evaluated for each of the eight combinations. These re­

siduals are also listed in Table 4-1. 2. 



39 

Table 4-1. 2 

Selected Polynomial Combinations and Residuals G(a) 

I 

Combination t::. = 0. 010 I>.. c: o. 020 

Odd order polynomial 73 16 

Even order polynomial 480 261 

First order polynomial 1874 815 

Second order polynomial 154 119 

Third order polynomial 74 23 

Fourth order polynomial 90 17 

Fifth order polynomial 1286 24785 

Sixth order polynomial 62616 164132 

Quite often the notion of standard errori~ is used to select a 

mathematical model of best fit in lieu of the residual function G{a). 

This is a perfectly acceptable criterion when applied to data from the 

same set. For example, the standard error for the odd order approx­

imating polynomial for the two time increments is 

t::.=0.010 

t::. = 0. 020 

-i~ Standard error =~Gia) 

standard error = 0. 97 

standard error == 0. 67 
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This does not mean that the fitted parameters associated with the 

larger time increment constitute a better solution to the problem, but 

rather that the b,,, = O. 020 solution fits its data set better than that for 

the case of b,,, = O. 01 O; the two data sets being essentially independent. 

The polynomial combination for a particular time increment with the 

minimum residual function G(a) serves as a criterion for selection 

with the primary goal being how well the elements of the differential 

equation, m, c(y) and k(y) are reconstructed. The large G(a) associ-

ated with the higher degree approximating polynomials is partially 

attributed to a loss of accuracy in the matrix inversion routine. The 

machine utilized, IBM 1620, has a fixed word length of eight decimal 

digits and roundoff error in the higher order inversions becomes ex-

cessive. The required order of inverse for the sixth degree polyno-

mial being twenty-five and for the fifth degree, twenty-one. 

The odd order polynomial, possessing a minimum sum of the 

squares of the residuals G(a), was selected as the function of best fit 

for c(y) and k(y) for both time increments. The odd order approxi­

mating polynomials c 1 (y), c 2 (y), k 1 (y) and k 2 (y) were then evaluated 

over their regions of definition and compared to the original functions 

c(y) and k(y). Error curves for these comparisons are given in 

Figures 4-1. 11 and 4-1. 12. The following maximum values were used 

as divisors in calculating the maximum percentage errors noted in 

Figures 4-1. 11 and 4-1. 12 in accordance with equation (4-1. 5). 

c(-y) = -51. 6 
max. c{+y) == 57. 0 max. 

k(-y)max. = -72. 0 k(+y)max. = 48. 0 
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A critical observation of these error curves will reveal that 

the damper and spring characteristics are substantially reproduced 

by the odd order approximating polynomials. This is further sub-

stantiated by examining Figures 4~ 1. 13 and 4-1. 14 which show the odd 

order approximating polynomial superimposed on the exact damper 

and spring functions for the time increment containing the greatest 

error, A = 0, 020. No attempt was made to plot the approximating 

spring and damper functions for the time increment t:. = O. 010 due to 

the almost exact correspondence between the exact and approximating 

functions. The numerical value of the determined mass parameter m 

and the corresponding percentage error for each time increment was 

A = 0.010 m = 0.050850 %E[m J = L 9% 

A :: 0.020 m ::: 0.055993 %E[m J ~ 8. 1% 

Remarkably good agreement was obtained for both time incre-

ments; however, it cannot be overemphasized that the odd order 

approximating polynomials are, only valid for the fitted regioµs, i. f., 

-25 < y < 16 and -2 < y < 2. As in any nonlinear problem, extreme 

caution must be exercised in attempting to predict general behavior 

from the information established in a single test. To test the adequacy 

of the above determined parameters, the differential equations inc or-

porating the odd order approximating polynomials were solved for the 

output y(t)and compared to the original data. The maximum error en­

countered was E~] = O. 03, Le., %E~] = L 5fo, and occurred for the 

larger time increment A = O. 020. It is felt that this extremely small 

error for the essentially "worst" case investigated demonstrates the 

practicality of the method described herein. Error curves for the out­

put are not included due to the trivial variations in E~]. 
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A second solution for this problem was obtained by integrating 

the differential equation (4-1. 8) once to obtain the following form 

my(T) + J 7 c 1 (y)dt + J T c 2(y)dt + J T k 1 (y)dt 
70 To ro 

(4-1.11) 

This particular form circumvented the necessity of estimating the 

second derivatives and yielded correspondingly greater accuracies. 

The damper and spring v1rere replaced by sixth order polynomials as 

before, with the odd order function again producing a minimum error 

squared G{a) for both time increments. The residuals G(a), together 

with the mass parameter and the maximum deviations in the evaluated 

damper and spring fun.cti.ons, are summarized in Table 4-1. 3. Exam-

ination of these errors reveals a.n almost exact reconstruction of the 

elements m, c(y·) and k(y) of' the differential equation. 

--
Ts.ble 4-L 3 

Parameter 1.:1.nd Error Comparisons 
----~- JE-6_" o.oJ- %~- f _6 

o. 020 

%E 
G(a) 0.44 - 0.36 -

m o. 051 'l'82 o. 1 0.051805 o. 1 
... ·--~-~· 

E[c(-y)] max. -0. 40 0.8 3.43 6, 6 
.. ... .. ---- ... -- - -· - . ·--- .-

E[c(+y)] max. -o. 91 1. 5 4. 16 7, 3 
- ----·· .. . . .. . ... -.... ~ 

E[k(-y)] maxo Oo 75 1. 0 -2 0 94 4. 1 

E[ k(+y>Jmax:. +0.39 0.8 ~2,68 5. 6 
------ .. .. ... .. -·· -



4-2. Dynamics of a Chemical Process, 

The dynamic behavior of a chemical process is presented in 

this section and is symbolically represented by the block diagram of 

Figure 4- 2, 1. 

x(t) 

,---- ---, r----- --, Y1(t) 
I ~ l--1..-----1!-
II I I Recording I 

--.,
1 

Process 1

1 
1
1 

1

1 System 
I I I ;i----i----.... 

y 2 (t) 

L ______ _J L ______ J 

System 

Figure 4-2. 1. Block Diagram for the Chemical Process. 

Certain details concerning the interrelationship between the process 

and recording system were not available; hence, the process and re-

cording system are combined and will be hereinafter referred to as 

simply the system. The system was subjected to a single input x(t), 

and two output variables y 1 ft) and y 2(t) were recorded as discrete 

digital data in o.75 minute intervals. Plots of the input and outputs 

are displayed in Figures 4~2~2, 4-2, 3 ttnd 4-2. 4. ~• 
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* The data for this problem was donated by the Phillips 
Petroleum Company, Bartlesville, Oklahoma. In order to preserve 
propriety for the industrial donor 1s research efforts. the recorded 
variables as presented herein have been translated so as to disassoci­
ate the variable magnitudes with any particular chemical process. 
However, in the interest of a later discussion concerning error, the 
recorded variables fall in a general range of two hundred to four 
hundred units of magnitude. 
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The basic problem was to determine suitable parameters such 

that the system could be described by the set of linear differential 

equations 

(4-20 1) 

Ordinarily. the input-output data. would be smoothed before attempting 

the determination o:f parameters; however. in this case the raw data 

was used directly to gain some appreciation of the method of this 

thesis when applied to data containing random errors. Due to the 

small variations in the output variable y 2(t), the following substitu­

tion was made to render equation (4,-2, 1) more amenable to data 

analysis 

Y1 = alyl + a2~2..; Y2{0)]+ a3x + ag 

Y 2 '" a 5 Y 1 + a 6 ~· 2 - Y 2 ( O) J + a 7x + a 1 0 

(4-2, 3) 

Integrating the above differential equations yields the desired mathe-

ma tical model for the problem 

(4-2, 4) 

Y2(-r) - Y2(0) o: a5 J'T Y1 dt + a6 JT [Y2 - Y2(0) ]dt + a7 J'T xdt + al OT , 
0 0 0 
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The indicated integral operations were evaluated for fifty-seven 

values of T along the time series, i. e,, .6.t = 1. 50 minutes, The un-

known parameters were then determined from this set of fifty-seven 

overdetermined equations, The results of this determination are 

. 
Y1 = - 0.169520 Y1 - 0, 150604 Y2 - 0, 013276 x + 7. 607216 

{4-2, 5) 

. 
Y2 = - 0, 166036 y l - 0, 170566 y 2 - 0, 001100 x + 8, 578805 

The numerical solution of this set of differential equations was 

next obtained and is shown superimposed on the data in Figures 4-2, 5 

and 4-2. 6, Error curves for the output variables y 1 and y 2 are shown 

in Figure 4-2, 7, together with the arithmetic mean and standard error 

for the total number of data points considered, n = 115, The maximum 

error in y 1 is 0, 28 and represents a 6, 1% error when compared to the 

total deviation of the system variable y 1; similarly, the maximum 

percentage error in y 2 is 7. 8%. As noted earlier, the output variables 

have a general range of two hundred to four hundred units of magni-

tude, If percentage errors in y 1 and y 2 are calculated on the basis of 

variable magnitude, they are indeed very small, approximately 0, 1%, 

which is more than well within the accuracies of present day recording 

instruments. 

The set of determined parameters was judged to be quite 

satisfactory, particularly those for the variable y 1. It is believed 

that the discrepancy in y 2 can be partially attributed to the incomplete 

knowledge of the relati.onship between the process and recording 

system. An examination of the error curves, Figure ( 4- 2. 7). reveals 

a generally random distribution of positive and negative error which 



tends to further substantiate the adequacy of the determined para­

meters. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A method for determining the parameters in lumped para­

meter linear or nonlinear time invariant systems is presented in 

this study. The method depends on the successful evaluation of the 

integral. differential and multiplicative operations contained in the 

differential equation governing the behavior of the system. By an 

application of the general method of least squares. the system para­

meters are determined in an optimal sense by solving overdetermined 

sets of linear algebraic equations. In this manner errors in the 

evaluated operations are minimized such that the differential equation 

parameters constitute a best set consistent with the numerically 

evaluated operations. 

The method essentially demands the use of automatic com­

puting machinery because of the rather extensive numerical labor in­

volved; however, the required computer routines are not particularily 

difficult to establish. The successful implementation of the method 

is only limited by the accuracy of the numerically evaluated opera­

tions. contained in the differential equation; the most difficult and un­

certain being that of differentiation. Once these operations are suit­

ably determined, the method is extremely straightforward. For this 

reason it seems justifiable for an investigator to spend a suitable 

amount of time in the approximation of the required operations, 
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particularily that of differentiation, 

The observed data, being continuous time histories or dis­

crete digital data representations of the system input and output, may 

be selected either from the transient and/ or steady state behavior of 

the process. No restrictions are imposed on the form of the input 

signal so long as it is recordable in a physical sense. It is note­

worthy to mention that the parameters established by the method of 

least squares are entirely consistent with the recordings of the dy­

namic process. If extreme care has been exercised in the recording 

process, one can be assured of a reasonable set of parameters. In 

this connection, the selected form of the input disturbance for a 

particular system being tested should be one that produces the 

smoothest output possible, as well as an output which lends itself to 

numerical differentiation or other such required operations contained 

in the differential equation. 

It is extremely difficult to predict expected error when using 

the method of this study. The numerical examples· of Chapter IV 

demonstrate that final errors in the determined parameters are con­

siderably less than the errors in the data which was used to develop 

the parameters. This in general will always be the case when apply­

ing the method of least squares to data which contains random er­

ror. (2 O) Co:i:nparing the observed output of the example problems to 

the output obtained by solving the determined differential equation is 

particularly noteworthy· from the standpoint of error, and in the 

author's judgment fully demonstrates the practicality of the method 

presented in this thesis. 

The method of parameter determination presented herein can 



59 

very easily be extended to systems characterized by time varying 

parameters provided the parameters are slowly varying. This would 

be accomplished by determining the parameters in a local neighborhood 

with the assumption that the time varying parameters remain essen-

tially constant in this region. Assuming that the method would yield 

the mean values of the parameters in the neighborhood under consider­

ation, this extension appears to have application in the field of adaptive 

process identification. A most interesting and promising extension in 

the field of process control is described by Hove. <21 ) He employs the 

least squares identification concept to establish the parameters in a 

set of control operations. which are superimposed on a fixed plant, so 

as to achieve a predetermined desired output response. 

In conclusion. the method will in general always yield a set of 

parameters for the differential equation under study~ The correctness 

of this set of parameters is, to a large extent, dependent on the quality 

of sound engineering judgment used to generate the solution. Some 

factors which are considered influential in determining as well as aid-

ing individual judgment include: the type of system under study, the 

selected input signal and the variables to be measured, the accuracy of 

the experimental measurements, the selection of the mathematicai 

model which best portrays the dynamic system, and the all important 

judgment associated with the accuracy of the numerically evaluated 

operations contained in the mathematical model. 
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APPENDIX A 

Input-Output Data for the Second 

Order Quasi-Linear System 

y(t) y(t) y(t) 

.I@ . II .. , .,, .67 130.6 

.02 2.49 226 .. 6 

.15 5.13 272.8 
• 12 7.71 252.8 
.21 9.90 188+. 1 
.JU 11.JS 112.3 
.. 4.3 12.24 62.4 
.56 12.70 .32.t .,, 12.92 12.2 
.82 12.96 -J .. I 
.. 94 12 .. 86 -16.9 

L17 12.62 -Jl.6 
L?O 12.28+ -45. 1 
1..31 11.. 71 -6LI 
1.43 H .01 ~19.1 
1. 58' Ut .. 12 -11CLS 
1.63 8.99 -126.6 
1 .. 71 7.56 -159.8 
L78 5 .. 75 -212.9 
1..8.3 3 0 /45 -258.9 
L85 0 53 -.325.1 
L~ -3. U! -11+10., 
L78 -1.ss -11+6, .. 7 
L68 -12.23 -459 .. 5 
L5llt -16 .. ~6 -381 .. 1 
1 .. .36 -u, .. 71 -265 .. 8 
L15 -21..83 -164 .. llt 
.,3 -2.3. 10 -,a. .. o 
.69 --23 .. 81 .· ... a.a.a 
.45 -24 .. 13 -18.C 
.:n -214. U9 6.0 

-.IJ -24.02 27 .. 8 
-.2.7 -23.64 49 .. 2 
.:.. 59 -23.03 7LS ··o 

-.73 -22.29 95.4 
- .. 95 -21.. 12 121..7 

.-L US -19 .. 75 151 .. 2 

62 

x(t) 

.,, 
7.51 

18+.92 
22.08 is.,, 
35.26 
41 .07 
4'6.23 
50.65 
s1t.2s 
57 .. 06 
58.93 
59 .. 81 
59.88 
S8 .. 93 
57 .. 06 
54 .. 28 
50 .. 65 
46.23 
41.07 
35.26 
28.91 
22.18 
18+.92 
7.52 .,, 

-7.51 
-1'4.92 
-22 .. 98 
-%8.90 
-35.16 
-41.17 
-46 .. 23 
.:..50.65 
.:..54.28 
-57 .. 86 
.:..58.,9.3 

· -59. 81 
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.38 -1.34 -U8.18 185.0 -59 .. 88 

.39 -l.51 -16.13 22'+ .. 5 -S8.93 

.Atl -1..,, -13.56 l7L! -57.06 

.411 -1.78 -111 .. 57 326., -54 .. 18 
• 42 -11 .. 87 -6.98 J9U .. 5 -51 .. 65 
.Dt3 -Lg? -2.73 459.6 -46.23 
• 44 -11.,2 2 .. 1111 4911. 9 -0.L07 
.. 6'5 -L88 6.76 4lt .. J -35.26 
.46 -11.79 Hl.21 262.9 ~is.go 
0 &+7 -L.68 UL.112 l3LI --22.18 
.'48 -'L55 · 113.17 ,,.s -u4.,2 
.-'19 -1 .. 42 13.61 43 .. 7 -7.52 
.so -11 .28 n\ .. 11 J6. 11 -.,, 
.. 511 -L114 114.34 .32 .. 7 7.511 
• 52 -.. ,, 114 .. 66 29.6 114 .. 92 
.. 53 -.85 114.93 25.8 2%.18 
.54 -.70 115. 117 2L2 28 .. 90 
.55 - .. 514 115 .. .36 115.9 JS .. 26 
.. 56 -.39 115.~9 , .. , '4L07 
.57 - .. 23 115.55 3.3 46.23 
.. 58 - .. 08 15 .. 55 -3.7 50 .. 65 .s, .18 15.47 -11.5 54.28 
.60 .23 115.32 .;..119.8 57.06 
.611 .. 38 115 .. 07 -2,.1 58.93 
.62 .53 114.73 -38 .. 9 59.,88 
.63 .,a 114 .. 29 -SI.I 59 .. 88 
.614 .82 l3. 7.3 -62.5 58.93 
.65 .,s t3.13 -76.8 S7.06 .. ,, LOS 12. t8 -,3 .. 7 sa..is 
.. 67 11.10 tL t~ -11114 .. t 51 .. 65 
.. 68 L.31 9 .. 88 -1139.8 146.23 .. ,, t .. .39 8.32 -171 .. , 41..17 
0 70 11.47 6.38 ~2t6.9 35.!6 
.71 11.52 , .. ,1 -!75 .. t is.,, 
.72 11.514 .83 -.345 .. 11 22 ,s . . 
• 73 11.53 -J.1'4 -.\32 .. 3 ta. .. ,2 
.74 L~8 -7.68 ~88.2 7.52 
.75 t .. 38 -12 .. 514 -47Ll .,, 
• 76 t. 23 -116 .. 82 =J77.3 =7 .. 51 
.11 LIS -19.97 =151 .. '4 .. -t.\.9! 
0 78 .. 8.3 =!t .,s -=11.\6. 9 -22 .. ,a 
• 79 .,n -23.0\ -76.1 =28 .. 90 
.. 80 .,38 -23.S7 · =31 .. 8 -JS .. 26 
.St 0 114 -23 .. 71 .3 -4l.17 
.82 -.111 -23 .. 58 25.3 -46.23 
.. 83 -.33 -23.2 t 148 .. 6+ -se .. ,s 
.84 - .. 56 -12.61 71.6 -514.28 
.85 - .. 78 .... 21.,77 96.11 -57 .. 06 
.86 -t .,, -io .. 68 122., -58.,3 
.87 -t .20 -19.30 1152 .. , -s, .. as 
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.88 ;;..1.38 ;;.;17 .. 61 187 • .3 ,:;.;;59.88 .a, ;..1.55 ·.;..15.54 227.4 :;.;;58.93 .. ,, ... 1.69 ... 1,3.1.3 274.8 ;;.;57.16 

.,1 ... 1 .. 81 -10 .. ,u 33LI ;;..54.28 

.92 -1.s, -6 .. 38 395.5 ;;..50.65 

.93 --L93 -2.·09 461.8 .:..46.23 

.94 .:..1 .. 93 ,. 0 72 481., -i.1.cn 

.95 .-L88 7.21 398 .. 5 ;;..35.26 

.96 .~l.79 10.\2 242.1 :..zs.,, 

.97 -L67 12 .. 18 120.14 ... 12 .. ,a 

.98 -1.55 1:3.07 63.1 -14 .. 92 .,, -1.41 13.58 42.8 -7.52 
LIi -L28 13 .. 97 36.U -.,, 
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