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CHAPTER I 

INTRODUCTION 

Preliminary Remarks 

The occurrence of natural semiconducting diamond and the growth of 

synthetic diamonds has greatly increased the interest shown in this ma­

terial that is usually found to be an insulator with a large energy gap 

(5.5 eV). Silicon and germanium, both of which crystallize into the 

diamond structure, have received extensive theoretical and experimental 

investigations resulting in the existence of detailed information about 

the electronic energy level structure of these semiconductors. Tn con­

trast, the exact nature of energy levels in diamond remains incomplete 

although considerable information has been obtained on natural diamonds. 

The basic difference concerning the state of knowledge lies in the fact 

that impurities in diamond are extremely difficult to control when grown 

synthetically, and natural diamond may contain numerous unknown impuri­

ties or imperfections in varying concentrations. Therefore, in order to 

obtain a reasonably accurate and detailed knowledge of the energy levels 

in diamond, it is necessary to make an analysis using several different 

methods that can determine the parameters that give information con­

cerning the electronic levels. 

1 



2 

Electron spin resonance (~SR) 1 is one of the many methods that has 

contributed considerable information toward the understanding of the 

electronic energy levels of defects within semiconductors (1). It is 

advantageous to investigate the paramagnetism of semiconductors by the 

ESR method from several aspects. First, ESR absorption can be observed 

only if an unpaired spin is associated with the defect. This allows 

paramagnetic impurities to be detected in the presence of other types of 

impurities or imperfections that do not possess an unpaired electron. 

Second, very minute amounts of impurities can be detected because of the 

high sensitivity of the method. Third, hyperfine interaction may allow 

the identification- of the impurity nucleus with which the unpaired elec-

tron is associated. 

The purpose of the present research is to investigate the electron-

ic energy level structure associated with defects in diamond through the 

application of the electron spin resonance method. The study will also 

include a review of the theory of magnetic resonance and the development 

of experimental techniques for the determination of the ESR parameters 

associated with the observed spectra in diamond. 

Basic Ideas in Electron Spin Resonance 

As previously mentioned, electron spin resonance is useful only when 

unpaired electrons are present in the solid under investigation. In the 

formation of various substances the chemical bonds result in the pairing 

of electron spins, such as the filling of electronic shells in the ionic 

1 
Electron spin resonance is usually referred t o as ESR for brevity. 

This notation will be adopted and used where appropriate. 
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bond or the sharing of electrons in the covalent bond (2). Therefore, 

most solids are diamagnetic and will contain no unpaired electrons unless 

defects are introduced into the lattice in the form of impurities or im-

perfections . Electron spin resonance can be observed in such systems as 

donor and acceptors in semiconductors, color centers in the alkali halides, 

free radicals, irradiated materials, chemical reactants, charred organic 

substances (such as dextrose), and carbon black (1, 3, 4). 

The electron spin resonance phenomena can be initially discussed by 

considering the simple system in which an unpaired electron is associated 

with an atom or ion within a solid. Before the external magnetic field is 

applied the unpaired electrons will have the same energy, i.e., the energy 

levels in zero magnetic field are degenerate in electron spin. Upon appli-

cation of the external magnetic field the degeneracy will be removed and 

each degenerate level will split into two levels. Classically this means 

that in a magnetic field the unpaired spins are oriented either parallel 

or antiparallel to the applied magnetic field. The interaction energy be-

tween the spin center having a magnetic momentµ and the magnetic field H 
...... 

is given by -µ•H; hence, the Hamiltonian of the system is of the form 

or using the relationµ 

[H] = -µ·H 
... 

= -yfiS · in (1.1) we have 

[ J ....... 
H = "'(n.S • H 

(1.1) 

(1. 2) 

where y is the gyromagnetic ratio, n is Planck's constant divided by 2TI, 

... 
and hS is the electron spin operator. For a magnetic field, H, a, applied 

0 

in the z-direction 

[H] = ·yfiH S 
0 Z 

The eigenvalues of nS for this simple case are :i:%n, and the energy 
z 

levels of the unpaired electrons in the magnetic field are given by 

(1. 3) 



with an energy separation 

= ±~yllli 

LiE = yFi.H 
.o 

4 

(1.4) 
0 

(1. 5) 

Figure 1-1 shows the energy levels of the unpaired electron in a static 

magnetic field. The+ sign denotes the case when the spin is oriented 

parallel to the magnetic field. It should be noted that the magnetic 

~ ~ 

momentµ is oriented opposite to the spin vector S because y is negative 

for the electron. 

µ 

I 

/l+j 
-----' LIB = yri.H 

\ 0 
H = 0 

\\ I ,__1__ _ t 
H=H 

0 

A 

H 
0 

H 

Figure 1-1. The energy levels of the unpaired electron are separated in 
a magnetic field by LIB= ynH0 • When the resonance condition.w = yH0 is 
satisfied the electron system will absorb energy from the microwave 
field. 

Radiation of energy 6E can cause transitions between the parallel and the 

antiparallel orientations, i.e., cause a "spin flip". From the classical 

point of view, as will be discussed in chapter II, the magnetic moment 

vector precesses about the direction of the applied magnetic field with 

an angular frequency w = yH01 so that the frequency of precession is seen 

to correspond .to the frequency of the radiation required for a spin flip. 

This is the resonance phenomena which, for electrons, usually involves a 



frequency lying in the x=band region of the microwave spectrum and re-

quiring rr~gnetic fields of several thousand gauss. In ESR the g-factor 

is of primary importance and is defined by the expression 

vM 
g = s (1. 6) 

where Sis the Bohr eli. magneton .·~· , 
kmc 

Using equations (1.6) and (1.5) the 

fundamental equation for el'ectron spin resonance takes the form 

bu= gSH (1.7) 

5 

where v =~is the microwave frequency. The deviati.on of the g- factor 

from .the free electron value of 2.0023 is a measure of the brbital con-

tribution to the magnetic moment. 

The spin system is assumed to be in thermal equilibrium before the 

microwave magnetic field is applied with the equilibrium distribution of 

the spins between the two levels given by the Boltzmann expression, 

. -6E 
n 

exp -kT (1. 5) 

where n+ is the number in the upper level, n is the number in the lower 

level, k is Boltzmann's constant, and Tis the absolute temperature. Under 

the condition of equilibrium a. net absorption of energy can occur until the 

two levels become equally populated. 'l'wo equally populated spin levels 

result in just as many spins taking part in stimulated emission as there 

are in absorption and,.consequently, no resultant energy absorption takes 

place. Thus, if a net absorption of energy from the microwave field is to 

continue the system of spins must be in thermal equilibrium. Spin-lattice 

relaxation is one mechanism by which thermal equilibrium can be re-estab-

lished. Coupling between the lattice and the spin system results in.the 

spins losing energy to the lattice and a restoration of thermal equilibrium. 

This form of relaxation process is characterized by a "spin-lattice 
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relaxation time". Long spiI).-lattice relaxation times iI).dicate weak 

coupling to the lattice,. short times. to strong coupling. For.· long spi1J.­

lattice relaxation times sufficient microwave power can be introduced to 

cause "saturation" of the resonance line. 

In addition to the external magnetic field the unpaired electron may 

be associated with a nucleus possessing a magnetic moment. Thus, the 

electron will see an internal field due to the magnetic moment of the 

nucleus. Th.ere will be an interaction between the unpaired electron and 

the nucleus and the simple energy levels will split into several components 

depending on the spin of the nucleus. For a nucleus of spin I there will 

be (2I + 1) component levels. A simple example can be given for I =,l/2. 

For such a nucleus there are two possible ori'entations; hence, the electron 

will see.a magnetic field slightly greater and one slightly less than the 

applied field. The electronic levels will split into two components and 

ESR absorption will show two peaks. This hyperfine interaction allows the 

possibility of identifying the nucleus around which the electron moves, 

and the magnitude of the hyperfine splitting yields information regarding 

the interacting nucleus and the extent of the electronic orbit. 

The simple picture of an unpaired. electron, even including the hyper­

fine interaction, can be further complicated by crystalline field effects 

resulting in fine structure, and quadrapole interactions. 

Some Properties of Diamond 

Classification of and Impurities in Di&mond 

_Diamonds have been classified into two principal types depending pri­

marily on tlleir infrared and u.ltraviolet absorpt'itm spectra (5). Type I 

diamonds llave a rapidly increasing absorption coefficient for wavelengths 
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shorter than 3300.R and infrared absorption bands occurring in the 3-6µ and 

6-13µ region,s. Type II diamonds do not absorb strongly in the ultraviolet 

until the wavelength is n,ear 2200R and, in general, show no absorption in 

the 6-13µ region of the infrared, although the 3-6µ. absot'ption bands due 

to lattice vibrational modes remain the same as in Type I. 

This simple separation of diamond into two kinds is not completely 

satisfactory,.and additional information concerning the optical ab~orption 

_and other:_ physical properties has been found useful in describing defect 

centers in diamond. Type I diamonds show infrared bands corresponding to 

different absorption centers. Two of these centers have been designated 

A and B; the infrared bands being correlated with observed absorption in 

the ultraviolet near the region of optical cut-off (6,7). 

_ Grmip A 

Infrared absorption peaks: 7.8, 8.3, 9.1, and-20.8µ,. 

Ultraviolet: Cut-off wavelength moves to longer wavelength and in­

tensity of 3155R line increases with increasing infrared abijdrption. 

Group B 

Infrared absorption peaks: 7.0, 7.3, 7.5t 8.5, 10,. 12.9, and 30.5µ. 

Ultraviolet: Correlated with 4155R line intensity which is the origin 

of the blue fluorescence. 

Nitrogen.has been found to be present in Type I diamonds in a high concen­

tration (8). A lip.ear relationship was found between the ~itrogen conceIJ,­

tration and the infrared absorption _at 7.8µ,e From this work nitrogen was 

considered to enter the diamond lattice substitutionally and give rise to 

C-N molecular vibrations resulting in the group A bands. liowever, there 

has been _some question as to the exact nature of the nitrogen defect 
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structure in diamond (16, 17, 18). Another impurity, manganese, has been 

attributed to the optical absorption .at 5500i resulting in mauve or pink 

diamonds (9, 29). The absorption due to manganese has been found to occur 

in . some brown diamonds. 

The apparent absence of the group A and group B bands in Type II dia-

monds indicates that the impurities or imperfections (or aggregates of these 

defects) are radically different than in Type I. '.the investigations of 

Custers (10, 11, 12) provided information leading to a further division and 

characterization of diamonds belonging to the Type II classification. Such 

unusual properties as a phosphorescence showing maxima at 4665, 5310, and 

572oi when excited with ultraviolet light of short wavelengths, and semi-

conductivity led to the subdivision of Type II diamonds into IIa and I!b 

categories. Type I!b diamonds are semiconductors and show characteristic 

absorption in the infrared at 1.85, 2.35, 2.43, 3.40, 3.56, 4.07, and 4.23µ 

that does not occur in insulating diamonds of Type I and !Ia (7, 13). 

Semiconducting diamonds are usually blue (12); the blue being due to 

optical absorption in the red and near infrared (14). The nature of the 

impurity or imperfection that produces the infrared absorption peaks, the 

semiconductivity, and the blue color of IIb diamonds is still uncertain, al-

though boron is known to produce a blue coloration and semiconductivity in 

synthetic diamond (15). 

In general, no direct correlation has been found between the observed 

optical and electrical properties of diamond and the amount or type of im-

purities known to be present (with the possible exception of nitrogen). 

Type !Ia and IIb diamonds both contain Si, Mg, and Al in similar concen-

· f · 1 1015 h ' . . . d trations o approximate y atoms per cc as t e maJor i mpur ities e-

tected by spectrographic methods (19). Impurities commonly found in Type 
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I are Si, Ca, Mg, Al, Fe, Ti and Cu in concentrations as large as 1018
a 

19 10 atoms per cc. Also, there is no apparent relationship between color 

and impurity content. 

It is possible that the properties of semiconducting diamonds are 

due to lattice defects such as vacancies, interstitials, and dislocations. 

Imperfections in Type I and II diamonds have 'been found using the tech-

nique of transmission .electron microscopy (20). The presence of nitrogen 

platelets on [100} planes and small dislocation loops on [111} planes near 

the platelets appeared in Type I diamonds but were not found in Type II 

diamond. 

Electron Spin Resonance Studies in Dia~ond_ 

The presence of nitrogen in diamond has been detected using electron 

spin resonance, which supports the results of optical studies (2).). By this 

method it was found that nitrogen is a common paramagnetic impurity acting 

as a donor in diamond. Nitrogen enters the diamond lattice substitution-

ally with the donor electron occupying an antibonding orbital formed with 

a particular carbon nearest neighbor. Three equally spaced lines occur 

for the magnetic field parallel to the [001] direction. The symmetry axis 

14 for the hyperfine interaction with N was found to be along any one of 

the four nearest neighbor directions. Also, hyperfine interaction with 

13 C was detected. The g-value for the nitrogen donor was isotropic and 

equal to 2.0024. The line width between points of maximum slope was 0.3 

gauss for most diamonds. 

The lattice defects produced by neutron and electron irradiation give 

rise to paramagnetic resonance absorption. These centers have been studied 

by several investigators (22, 23, 24, 25). The observed spectra are 
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usually composed of a single isotropic line with more complex spectra 

superimposed. Explanation of the ESR spectra includes the interaction of 

vacancies with impurities, interstitials, single vacancies, and aggregates 

of defects. 

Electron spin resonance has been detected in diamonds for various 

other defect centers, but the exact nature of the structure has remained 

uncertain (26, 27, 28). 



CHAPTER II 

ELECTRON SPIN RESONANCE 

Classical Interpretation 

Magnetic Resonance and Rotating Coordinates 

In an electron spin resonance experiment the sample containing 

.... ..... 
electron paramagnets is subject to a magnetic field H (H may be time de-

.... .... 
pendent) and a microwave field Hi perpendicular to H and of constant fre-

..... 
quency. To describe the motion of the electron spins S when placed in 

these fields the classical ideas of Bloch (30) concerning nuclear mag-

netic resonance are useful and according to which the nuclear paramag-

nets execute a Larmor precession in a magnetic field. 

Initially the angular momentum of the electron is assumed to consist 

of the spin only component, although in the practical case one must con-

sider the orbital contribution. The spin angular momentum nS of the 
_, 

electron is associated with the magnetic momentµ through the expression 

given previously - ..... µ. = .'."'ynS. (2.1) 

In the fixed laboratory system the z-axis of a rectangular coordinate 

.... 
system x, y, z is taken so that the magnetic field,H is along the z-direc-

tion (Fig. 2-la). According to classical electromagnetic theory a torque 

.... -> .... 

T-= µ. x H acts on the electron. This torque is also equal to the time rate 
.... 

of change of the electron angular momentum, 11: 3 resulting in the follow-

ing classical equation of motion in the fixed coordinate system: 

11 
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.... 
.2l:!!. - ..... ... 
dt - yH x µ. (2, 2) 

A solution to this equation can be obtained by transforming to a ro= 

tating coordinate system (31). The rotating system is shown in Fig, 2dla 

where the z-axis, denoted by zr, of the rotating coordinate system coin-

cides with the z-axis of the fixed laboratory system. The axes x and y 
r r 

-, 

rotate about the common z-axis with an angular frequency w. In the ro-

tating system (!t denotes the time rate of change of µ that an observer 

rota ting with x would see, and w .x µ gives the rate of change due to the 
r 

rotation of the axes, The equation of motion in terms of the rotating 

system is 

so that 

l~) = (~ X µJ. 
\dt 

Using eq. (2.2) and rearranging gives 

(!ill) = dt 
r 

-> 

Y(H' - ~) X µ. 

(2. 3) 

This is the equation for µ, as seen from the rota ting coord.ina te sys tern. 

It is of the same form as the equation of motion in the stationary co .. 

ordinate system with the difference being that i is replaced by the effec-

tive field 

..... 
ti 

e 

_, 
= H 

(!j 

y· (2, 5) 

If H is equal to a constant field H along the. z.-axis then H will dis-
o e 

w 
appear if H = ~y' i.e., if 

.o 
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Figure 2-1. · Tha rotating coordinate system and t~e motion of the mag­
netic momentµ in the effective magnetic field H. 
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13 
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dl . = yH 
0 0 

(Z.6) 

Thus, (~) = 0 and for an observer rotating a.'bout the z-axis with ang­
r 

ular frequency w given by eq. (2. 6) the magnetic moment remains un­
o 

changed. In other words, the individual electron magnetic moments (hence, 

their spins) precess about the direction of the external magnetic field H 
0 

with a frequency w called the ''Larmor frequency". Figure 2.2 shows the 
0 

motion of S in the magnetic field 1\,· The change of S is perpendicular 

to both Sand H with the angle 9 remaining constant. 
0 

Figure 2-2. 

X 

-> 
Precession of S i.n a magnetic fi.eld H. 

0 

The transformation just carried out is purely mathematical, and the 

precession of the individual electron spins could not be o~served. In 

order to observe magnetic resonance an additional alternating magnetic 

field ~ must be introduced which is circularly polarized in the x-y 

plane and having components 

H = H1 cos Wt, H = H1 sin Wt. 
X y 

(2. 7) 

The "i\ field rotates about the z-axis with an angular frequency w = Wk. 
--> 

The magnetic field His now no longer just a constant field H, but 
0 

has an additional time-dependent field perpendicular to the field H. 
. . 0 

The total magnetic field is now represented in the fixed laboratory system 

by 
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~ ~ ~ ~ 

H = (H:i. cos tut) i + (Hi sin Wt) j + H0 k (2.8) 

. ~ ~ ~ 

where i, j, and k are the usual unit vectors along x, y, and z. 

A transformation to the rotating coordinate system (r-system) may al-

so be used to treat the case of the combined fields with the r-system ro-

...... ...... . 
tating about the z-axis at the same angular frequency as,,\:· ~. is taken 

in the direction of the x-axis, see Fig. 2-la. Equation (2.4) holds in 
r 

the case where H is composed of two parts with the effective field 

H = H 1'. + (H - i!;:) k . 
e -1. r o y' r (2.9) 

The physical situation correspondiqg to eq. (2.9) is shown in Fig. 2-lc. 

The effective field H, as viewed from the r-system, qCts as a constant 
e 

magnetic field and the magnetic moment initially in the z-direction will 

precess in a cone about H at an angular frequency w =.yH. 
e e e 

The same results could have been arrived at by introducing a second 

rotating coordinate system (rr-system) and requiring that.~ rr = 0, 

...... 
which means thatµ, would remain unchanged in the doubly rotating system. 

The complete motion ofµ when observed from the laboratory system is the 

precession about H plus the rotation of the x-axis about th~ comstant 
e r 

field H. Such a motion of the magnetic moment vector under the influence 
0 

of both H1 .and H0 is shO",m in Fig. 2-ld. 

...... 
In order to gain some insight into the motion ofµ, under the influm 

ence of H, now a time-dependent field, consider the situation when w =yH 
0 

and the motion is observed from the rotating system. The magn.etic field 

components in the r-system are shown in Fig. 2-lb where the angle 9 is 

given by 
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H 
w 

I\ - ·-
e 0 y e cos _, sin =~ 

H ' H 
(2.10) 

e e 

.· and th,e magQ.itude of the effective field is 

H = [(H - !.£,Z + H2]\ 
.e o y1 1 

(2.11) 

When.w = yH0 we would expect, on the basis of the preceding discussion, a 

precession ofµ about the xr-axis (He direction) with an angular frequency 

UJi = yH1 • From consideration of the rr-system and r-system one can arrive 

at the following expressions for the components of the ma~etic moment, in 

the r-system, with w = yH and H = H1 : 
o e 

µ.x - 0 
r 

µ.y = -µ. sin. W:i. t (2 .12) 
r 

Therefore, .in the r-system.the magnetic moment vector precesses in a plane 

perpendicular to the effective field and periodically changes its orienta-

tion along the z~axis a.t a frequency U\ = yH 1 (see Fig. 2-le). The cont-

plete reorientation of the magnetic momentµ in the magnetic field H0 when 

w0 = .yH0 is the magnetic resonance phenomena. One thing to note is that 

the magnetic momentµ; executes many more Larmor p:r.ecessions in the field 

H0 compared to the number in the field ~ (~ << w0 ), i.e.,, a slow tipping 

-> 
of the vectorµ. .occurs as it precesses rapidly around H. 

0 

.Phenomenological Description of Magnetic Resonance with Relaxation Effects 

For the case of interact'ing spins the relaxation times and equations 

of motion obtained by Bloch for nuclear spins are applicable. Bloch (30) 

assumed the following form to describe the magnitude of the ":longitudinal 
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"-fl- ..;...., 

magnetization" at time t (M = :E _µ.) 

M = M (1 - exp (-!. ) ] 
.Z O Tl 

(2.13) 

where M = X H is the equilibrium magnetization at temperature T; X is 
0 0 0 0 

the static magnetic susceptibility and H the static magnetic field. T1 
0 

is generally referred to as the II spin-lattice relaxation time". The rate 

of change of M is then given by 
z 

• dM M - M 
M z 0 z (2 .14) =-= 

z dt T l 

As a result of the application of the rotating magnetic field H1 a 

second relaxation time T2 is introduced des.cribing the decay of the trans-

verse magnetization. The relaxation time T2 involves the process of energy 

exchange within the spin system and is called the "spin-spin.relaxation 

time". The components of the transverse magneti.zation M and M decay in 
X y 

the following manner: 

A 
X "' - = - (2.15) 

The equation of motion in.the absence of relaxation.effects 

.... dM .... ._. 
dt = yH X M (2.2) 

becomes for the interact!ng electrons with H1 << a0 

.... .... 
4 M i + M j M - M dM .... ... X y z 0 .... 
-= yH x M - k dt 

Ta Ti 
(2 .16) 

-ti -+ ·-+ -> 
Since H = (H1 cos wt) i + (H1 sin wt) j + H0 k the components Mx, M and M 

y z 

change with time according to the equations 

M 
M = y(M H1 sin.wt - M H) - ....! 

X ·· Z yo -~ 
(a) 



M 
M = y'H M - M 'J.l cos Wt) - ...:t. y ~ o x z"".l. T2 

18 

(b) (2.17) 

(c) 

In the rotating coordinate system the components of the transverse magnet-

ization M and M are related to M and M by 
U V X y 

M = M cos wt + M sin . Wt 
U X Y 

(2.18) 

M = M cos Wt• M sin wt 
V y X 

solving for M and M 
X y 

M = M cos Wt - M,. sin wt 
X U v 

(2.19) 

M = M sin wt + M cos wt 
y u 1' 

Equations (2.17 a,b,c) transformed to the rotating system using (2.18) 

and (2.19) are as follows: 

M 
II ( ) . U M + w0 ~w M - -u V - - T2 

• - M + (w - w) M - Wi M 
U O U Z 

~ -IDiM = 
. z V 

M - M 
0 ... Z 
Ti . 

M 
= ....ll 

Ta 

(a) 

(b) 

(c) 

(2.20) 

where w0 = jylH0 and WJ. = IYIH1 . The solutions to these equations are ob­

tained by using an approximation utilizing slow passage through the reso-

nance line. The condition of slow passage relates the scanning rate of 

the magnetic field H, 
0 

dH 
---2,, to the relaxation times. 
·dt 

Specifically, the 

time of passage through.the resonance line must be long compared to the 

relaxation times so that the magnetization can be considered to have its 



equilibrium value. • Therefore, the condition M 
X 

e = M y 
" ""M = 0 is con-

z 

sistent with the slow passage requirement. Under this condition the 

algebraic relations between equations (2.20) give the three components 

of the magnetization in the rotating coordinate system: 

M °'J. T~ ( (J) - w) 
M 

0 . 0 
= 

u [1 2 rr:a (w 2-
+ w.i_ T1 T:a + - w) J -i,l 

0 

(a) 

M w, T3 
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M 
0 ":. 

::::: 
1) 2,.,, T w) 2 

(b) (2 .21) 
[1 + tll 11 2 + T~ ( (Jj -0 

M [1 + T~ ( (1) - w)2] 
M 

0 0 
= 

z [1 u}T1 'r;a Tj 2 
+ + (m .. UJ) J 

0 

(c) 

~ . 2 
Assuming a weak alternating field H1 (O\ T1 'I':-a << 1) the equations (2.21a) 

and (2.21b) can be graphed yielding M and M as functions of T2 (w - w). 
U V 0 

Such a plot, as indicated in Fig. 2-3a, shows that the curves are repre• 

sentative of the dispersive and absorptive modes of a harmonic oscillator, 

The end point of the transverse magnetization vector Mt is found to move 

(a) (b) 

Figure 2-3. Transverse magnetization; (a) dispersive and absorptive modes, 
(b) vector relationship in rotating frame. 
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in a circle as shown in Fig. 2-3b. It should be noted that at resonance 
.... 

the transverse magnetization is shifted in phase with respect to~- by 90° 

and equal to the maximum value of M. 
1) 

If the high frequency susceptibility X = X' - ix' is introduced and 

Mx is taken to be the real part of the complex quantity X [21\_ exp (iwt)] 

M = X' 2fii cos Wt + x" 2-ai sin wt 
X .. 

(2.22) 

Comparing this equation with equation (2.16) shows that 

M 
XI .. U • vii = 2}\ . i\, 

(2.23) 

where X' gives the dispersion curve and X" is responsible for the absorp-

tion of energy from the high frequency field, The power absorbed by the 

spin system is given by 

so that 

where 

p = 
2 w H1 X• uil':a ___ o ____ .. ----

[ l + T~(w0 - w/J 

2 = TIX WW H1 L(w) 
0 0 . 

L(w) =- 1 
TT 

1 + Tj (w - w/ 
0 

(2 .24) 

is the Lorentzian line shape function. The width of the resonance line 

at half, intensity, /iw = 2 (w0 - w), is given by 

Aw=L 
Ta 
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or written in magnetic field units 

2 
tiH = -vra (~. 25) 

To obtain the resonance line· experimentally the magnetic field is slowly 

. varied as the· high _frequency field is held C<;)nstant. A Ill.Ore detailed 

account of the Bloch method can.be found in. the book by Abragam (32) • 

. Remarks on the Observation of Electron Spin Resonance 

The value of the applied magnetic field H0 determines tl::ie frequency 

. at which. ESR will be. observed. A.desirable frequency_ occurs in the micro-

wave region; and,tllerefore, the sample is.usually PtAced in a microwave 

cavity. The ESR effect produces an increase in.the resistive losses.of 

the cavity and, in.addition,.changes the characteristic reactance of the 

cavity. The out-of-phase compop.ent of the susceptibility, x", is respon-

sible for the absorption of microwctve energy with the dispersion given by 

the in-phase component x'. The ESR apparatus must be capable of measuring 

and recording x" and X' • Once the signal is obtained .the theoretical .ex-

pression for this signal is the _solution to Bloch's equations •. 



CHAPTER III 

ELECTRON SPIN RESONANCE INSTRUMENTATION 

Electron ~pin Resonance Spectrometer 

General Description of ESR Spectrometers 

.The instruments used inESR spectrometers perform the same basic 

functions as those used for nuclear magnetic resonance, although micro-

wave techniques are generally used for electron spin resonance in con-

trast to the radiofrequency circuits of nuclear resonance. The frequency 

region for ESR arises from the fact that the gyromagnetic ratio of the 

electron is approximately, 2.80 megacycles per gauss compared to 4.26 kilo-

cycles per gauss for proton resonance. Although the operating frequency 

for a particular experimental situation may be optimized (with regard to 

sample size, saturation, available magnet, etc.), the most common ESR 

spectrometers operate in the x-band region of the microwave spectrum near 

9.5 kMc. This requires a magnetic field of approximately 3400 gauss for 

the free electron resonance. 

Basically, there are .two common types of electron spin resonance 

spectrometers;.one form utilizes the reflection cavity, the other a trans-
·, 

mission cavity. The reflection cavity is the most versatile and is used 

extensively in the usual bridge spectrometer. To detec.t ESR signals the 

sample is placed in a reflection cavity in the magnetic field of an elec-

tromagnet with incident microwave energy. Since it is inconvenient to vary 

22 
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the microwave frequency the magnetic field is scanned so that the resonance 

condition, hv = geH, is satisfied. The field configuration of the cavity 

is selected so that the microwave magnetic field is perpendicular to the 

applied polarizing field H. If the resonance condition is satisfied then 

energy is absorbed from the microwave field and the additional instrumen­

tation associated with ESR spectrometers must detect this absorption. 

The basic electron spin resonance spectrometer usually consists of 

the following components (see Figure 3-1): 

(1) An electromagnet providing a sufficiently homogeneous magnetic 

field, with its associated power supply, and a method by which the field 

can be linearly swept through the resonance line. 

(2) A source of microwave energy, usually a reflex klystron, that 

is frequency stabilized and has a power output near 100 milliwatts. 

(3) A magnetic field modulation system that introduces a small alter­

nating component to the linear sweep of the constant magnetic field. This 

modulating field is added to the constant field by the use of modulation 

coils mounted on the cavity; dewar system, or magnet pole pieces. Also, 

the modulation .oscillator provides a reference voltage for the phase­

sensitive detector used in a narrow-band detection system. 

(4) A microwave circuit that allows microwave energy to be intro­

duced into the cavity and permits the monitoring of the reflected energy 

from the cavity. The usual circuit configuration includes a magic "T" 

as the bridge element, but other forms are possible that use a directional 

coupler or a microwave . ferrite circulator. The microwave detection system 

can incorporate either crystal diodes or bolometers (barretters) in the 

circuit. 
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(5) An ESR signal amplifier and a phas e~ sensitiv e detector operating 

at the frequency of the magnetic field modulation. The output of t he phase 

detector is recorded graphically by using a pen recorder or an oscilloscope. 

(6) A sample cavity in which the sample is placed. It is imperative 

that the Q and the coupling of the CqVity to the waveguide be optimized so 

as to obtain maximum detectibility from the instrument. 

Description of the ESR Spectrometer Used in Th is I nvestigation 

Magnet System 

An x-band ESR spectrometer operating at 9.5 kMc requires (for g = 2) 

a magnetic field of 3400 gauss with a homogeneity of slightly better than 

3 0.1 gauss over a minimum volume of 1 cm (3). These requ irements are based 

on ESR work in solids where line widths are not as narrow as those found in 

liquids or in nuclear resonance and are usua l ly not less than 100 milligauss. 

Since the magnet system is probably the most expensive single system in the 

ESR spectrometer, it must be chosen partly from the economic view; however, 

when possible a magnet of sufficient homogeneity for very narrow lines 

should be obtained. The magnetic fie ld must be swep t over a large range 

and the magnet power supply, in addition to being highly regulated, shoul d 

have a provision for sweeping the magne tic f ield. Other fac tors in t he 

selection of a magnet includes consideration of t he gap geomet ry so as to 

allow for various cavity shapes and for cryogen i c equipment. 

Initially the magnet system consisted of a Varian 4" magnet and a 

battery power supply. Batteries are inconvenien t to use since t he vo l tage 

decreases with time and the magnet resistance changes because of tempera-

ture fluctuations; therefore, an electronic regulation system was con-

sidered necessary. In such a current regulating system the usual procedure 
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is to monitor and compare the voltage generated across a standard resistor 

e . with a reference voltage e f (see Fig. 3-2). o re 

Magnet 

Unregulated 

Power 

Supply 

II 
Ref. 

Resistor 

Control Element 

e 
s 

Figure 3-2. Regulation of the magnet current. 

Any difference in the voltages e .. and e f' designated e (de error volt.-o re s 

age), is amplified and fed back to the magnet current control element in 

such a way as to make e = o. The control element becomes a variable 
s 

series resistance controlled by the amplified error signal. Such a con-

trol element is shown in Figure 3-2 as a vacuum tube, but power transistors 

can also be used when appropriate. In fact, vacuum tube control elements 

require highly regulated voltages and the system can become quite complex 

and inefficient. 

The Varian 4" magnet coils can be connected in a parallel arrange-

ment yielding a fairly low impedance system and the use of power transis-

tors was considered as the control element for the magnet current. Articles 

describing transistor current regulators for magnets have been published 

(33, 34, 35). Use was made of the transistor regulator described by Garwin 

(35), although for an integrated compact system the design of Johnson and 

Singer (34) has desirable characteristics. The articles adequately de-

scribe the circuit used and only a few comments of practical importance 

will be menti oned. First, the control of the main power to the magnet 



TABLE I 

OPERATION OF VARIAN 4" MAGNET USING 
A TRANSISTOR CURRENT REGULATOR 

A. Turn on Procedure 

1. Set Variac to approximately 10-15 volts input to magnet. Magnet 
switch is in off position until indicated below. 

2. Turn on: (a) Null Indicator, set at full gain 

3. Adjust 

4. Turn on 

(b) Water to oower transistors, magnet, and reference 
resistpr 

(c) Transistor amplifier 

(d) Reference voltage and sweep control. 

reference voltage by using coarse adjustment to O. 20. 

switch to supply power to the magnet. 
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5. Monitor collector-emitter voltage on power transistors and maintain 
at least 6-10 volts bias. 

6. Increase Variac, but do not exceed 25 volts on power transistors 
for 2 amps. current. In fact, do not exceed 25 volts under any 
circumstances to be safe. Initially set the collector-emitter 
voltage at 10 volts; then increase the Variac in steps of about 
15 volts until desired current is reached. 

B. Turn off Procedure 

1. Reduce magnet current by adjusting reference voltage. On reaching 
collector-emitter voltage of 25 volts reduce Variac by 15 volts 
until magnet current is minimum. 

2, Open Magnet switch. 

3. Turn off: (a) Transistor amplifier. 

(b) Null Indicator 

(c) Water 

(d) Reference and sweep voltages. 
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should be convenient for manual control with a form of automatic (servo 

system) control incorporated into the system to hold the power transistors 

below their rated power dissipation when initial adjustments are made or 

when large sweeping currents are required. S~rvo controlled Variacs are 

now available and would be useful in this respect. A set of operating 

instructions is given in Table I for the control system used. Table I is 

given merely as a guide for the particular system that was used, The main 

power to the magnet was controlled from a panel located in an adjacent 

room, hence, the reason for such an operating procedure. Second, a vari­

able voltage for sweeping the magnetic field can be placed into the sys­

tem at the junction between the reference resistor and the reference volt­

age source; this sweep voltage should be variable from(+) to(-). The 

operation of the system seemed adequate after a reasonable warm-up time. 

Further refinements or changes in the circuit were not undertaken since a 

Varian 6" rotating magnet with ring shim pole pieces was purchased with 

its own regulated power supply. 

The Varian 6" rotating magnet, Model 4007-1, can be turned about its 

vertical axis (a f ull 200° on the pedestal base) to allow single crystal 

orientation studies to be performed without disturbing the sample in the 

microwave cavity. Two problems arise on rotating the magnetic field: (a) 

the microwave magnetic field must always remain perp~ndicular to the mag­

netic field, and (b) the modulation field must remain in the direction of 

the magnetic field. A more complete discussion of these problems will be 

included in the section on microwave cavities and in connection with the 

modulation system. 

The magnetic field contour is shown in Fig. 3-3 for the Varian 6" 

magnet with ring shim pole pieces. A gap of 2.875" accommodates the double 
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Fig. 3. 3 Magnetic Field Plot of Varian Model V4007-I Electromagnet 
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dewar liquid helium system manufactured by Varian Associates. 

Klystron Frequency Stabilization 

In a sensitive ESR spectrometer it is necessary to stabilize the 

frequency of the klystron over the period of time required to record the 

spectra. Stabilization not only increases the signal-to-noise ratio, but 

prevents the admixture of the real X' and imaginary X" parts of the sus­

ceptibility with a simplification of the recorded data. The stabilization 

system proven to be satisfactory for resonance work is the Pound i.f. cir­

cuit (36, 37) or its modified form (38, 39). The modified or "equal arm" 

microwave discriminator is shown in Fig. 3-4. The circuit utilizes a 

magic-T with the reference cavity and the modulating crystal in the com­

parison arms of the "T". Microwave power from the klystron is coupled to 

the discriminator through the 20 db directional coupler into arm 1 (Harm). 

The carrier frequency entering arm 3 is modulated at 30 me, and the two 

generated sidebands return to the junction on reflection. Part of this 

modulated wave returns to arm 1 and is dissipated while the wave entering 

arm 4 (E arm) is mixed with the wave reflected from the reference cavity . 

Any difference in the frequency of the klystron and the resonance frequency 

of the reference cavity will introduce a reactive compdnent into the re­

flected wave from the cavity. The phase of the reflected wav e differs by 

180° on either side of the resonance frequency. At the detector crystal 

the unmodulated wave reflected from the cavity mixes with the 30 me modu­

lated wave to give a 30 me signal with an amplitude proportional to the 

frequency deviation of the klystron and a phase that differs by 180° on 

either side of the cavity resonance. The error signal is then amplified 

in a 30 me i.f. amplifier and compared with a reference signal from the 
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30 me oscillator in a crystal diode phase detector. The output of the 

phase detector is a± de voltage with a magnitude determined by the 

frequency deviation .and the sign depending on the phase of the 30 me 

signal. The de error signal is amplified and applied to the reflector 
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of the klystron.in such a manner as to correct for the frequency deviation 

and locks the ~lystron frequency to that of the reference cavity. This 

method of stabilization requires the isolation of the phase detector circuit 

from ground since the klystron reflector is at a high negative potential. 

A 30 me phase detector using crystal diodes was constructed and is shown 

in Fig. 3-5. The output of the phase detector is amplified by a transistor 

de differential amplifier and then applied to the klystron reflector. 

Figure 3-6 shows the circuit of the de amplifier that was designed for use 

in the klystron stabilizer. The transistor amplifier is mounted directly 

on the back of the microaI!flleter. 

In addition to the electronic frequency stabilization, . the klystron is 

thermally protected by immersion in a silicone oil bath that is water 

cooled. All microwave components are mounted on a vibration free support 

to reduce the effects of microphonics. Also, since power reflected back to 

the klystron affects its frequency, there should be a device to isolate the 

klystron from its load. Such isolation devices take the form of simple 

resistive attenuators or, better still, a ferrite isolator that passes 

energy in the forward direction with no attenuation but reduces any 

reflected energy. A ferrite isolator is used in this ESR spectrometer. 

The power supplied to the electrodes of the klystron is well regul&ted 

using a commercial power supply, and the klystron filament current is 

supplied by the transistorized de supply of Fig. 3-7. All these precautions 

tend to reduce the noise in the spectrometer system and provide better 
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over-all performance. 

Magnetic Field Modulation 

In order to avoid the inherent instability of de signal amplifiers 

the magnetic field is usually modulated as it is swept through resonance 

so that ac methods may be used. The modulation of the magnetic field can 

be accomplished by mounting coils on the sides of the sample cavity, the 

magnet pole pieces, the dewar system, or rigidly supporting loops inside 

the cavity when high frequency modulation is needed. The line width and 

shape of ESR lines vary considerably, and it is necessary for maximum sen-

sitivity to include an amplitude contra:\- for the modulation so that very 

small (approximately 0.01 gauss) as well as large (over 10 gauss} modu-

lating fields are available. 

If a crystal rectifier is used to detect the ESR signal, then the 

crystal noise limits the available sensitivity depending on the modulation 

frequency. The noise power of a crystal rectifier varies as 6.f/f, where 

!:,f is the bandwidth at the modulation frequency f. 'Therefore, the noise 

voltage is inversely proportional to~and is shown graphically in Fig. 

3-8. This means at some low frequency, 

(I) 
Ul 

•r-1 
0 z 

Frequency - f 

Figure 3-8. Characteristic noise spectrum of crystal diode detector •. 
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k 
for instance 100 cps, the noise voltage is (f/100) 2 times that at f. At 

f = 100 kc the noise voltage is approximately 1/30 that at 100 cps for the 

same bandwidth L!.f. Thus,. the signal-to-noise ratio can be improved by a 

factor of 30 considering only this source .of noise. Another advantage in 

high modulation frequencies is that it pe:rmits, for the same signal-to-

noise ratio, an increase in the bandwidth by almost.1000 in the above case. 

This allows, through the reduction of the time constant of the circuit 

(1/1000), an increase in the scanning rate assuming no other factors are 
_1 

involved. Bolometer detectors do not have the f dependence of the noise 

and may be used advantageously at low frequencies. 

One of the difficulties which restricts the use .of extremely high 

modulation frequencies is the need to obtain fairly large modulation ~mp-

litudes at the sample location within the cavity. The cavity walls attenu-

ate the high frequency fields considerably, and at 100 kc the wall must be 

metallic plated glass or ceramic, or the modulating coils must be placed 

on the inside of the cavity. Also, the modulation frequency must be kept 

small with respect to the line width (in frequency units) because the pro-

cess of modulation broadens the absorption line with the broadening being 

proportional to tlie modulation frequency (41). It should be noted that 

eddy currents induced in the microwave cavity wall interact with the large 

magnetic field. The forces on the walls produced by the interaction cause 

wall vibrations that are proportional to the magnetic field and results 

in a synchronous periodic change in the cavity frequency at the modulation 

frequency. This signal is passed through the detection system as unwanted 

noise. 

The high frequency modulation system used in this investigation is a 

Varian 100 kc control unit consisting of a tuned amplifier, phase detector, 



38 

100 kc crystal oscillator, and a modulation amplifier to drive the modu­

lation coils on the sides.of a ceramic cavity. The Varian 100 kc cavity 

will accommodate a variable temperature apparatus but has the disadvantage 

that the magnetic field can not be rotated when using this system. 

The low frequency modulation system has several interesting features. 

First, bolometers are used to detect the ESR signal which can be modulated 

at 28, 400, and 1000 cps. Second, a .low-noise transistor amplifier is used 

in conjunction with the bolometer bridge circuit. Third, the phase-sensi­

tive detector utilizes a low noise Bristol synchroverter capable of being 

driven.at any frequency from zero to approximately 1800 cps. Thus, the 

synchroverter can.be used over the useful range of the low frequency re­

sponse of the bolometers. 

Microwave C ircu.i t 

A basic ESR spectrometer using a re.flection cavity and microwave 

bridge circuit is illustra.ted in. Fig. 3-1. The four-arm junction is the 

so-called magic-T structure that forms the basis for the bridge circuit at 

microwave frequencies. The theory of such bridge circuits is well described 

in .the literature (36), and only a brief description.will be given here in 

connection with its function in the ESR spectrometer. Power. that is intro­

duced into arm 1 is divided equally between the arms 2 and 3 if these arms 

.are terminated with matched loads. No power reaches arm 4 as long as arms 

2 and 3 remain matched. In practice, arm 2 is terminated with the sample 

cavity, and a slide screw tuner followed by a matched load is placed in 

arm 3. In the absence of a resonance signal the bridge is balanced, and 

no signal reaches the detector in arm 4. However, wh.en the resonance con­

dition is satisfied and the sample in the cavity absorbs energy from the 
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system, then the bridge becomes unbalanced with a resultant energy flow 

into arm 4. It should be pointed out that the condition of complete 

bridge balance is not the condition of optimum sensitivity and a small un­

balance is usually introduced. Thus, the slide screw.tuner is adjusted to 

introduce into arm 4 the desired amount of power. Another very important 

reason for having a slight amount of unbalance is that either the disper­

sive X' or absorptive X" component of the magnetic susceptibility may be 

selected by proper adjustment of the bridge which simplifies data analysis. 

The electron spin resonance spectrometer constructed and used in the· 

initial investigations was a conventional x-band microwave bridge. Later 

modifications of the bridge spectrometer included the use of a ferrite 

circulator (42) and the inclusion of a balanced bolometer detection system 

(43). Figure 3-9 shows the block diagram of the various components com­

prising the bridge spectrometer. The x-band microwave energy is obtained 

from a Varian klystron, VA-201B or V-262, which has voltages supplied by a 

well-regulated power supply. The frequency of the klystron is stabilzed 

by coupling a small amount of microwave power into the modified Pound sta­

bilizing circuit utilizing a high-Q invar cavity as the reference element. 

The klystron and klystron frequency stabilizing system are isolated from 

the rest of the bridge circuit by using a unidirectional ferrite isolator. 

The microwave frequency can be measured accurately with a Hewlett-Packard 

transfer oscillator and electronic counter. The electronic counter is also 

used to monitor the frequency of the nuclear resonance signal for magnetic 

field measurements. An adjustable precision attenuator permits the micro­

wave power incident upon the sample bridge to be varied. The bridge itself 

is comprised of a matched magic-T with the reference arm consisting of a 

slide screw tuner and matched load. The arm containing the sample cavity 
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incorporates a bidirectional coupler and an.aqjustable ferrite isolator, 

The directional coupler in the sample arm allows one to monitor tl:w re­

flected power from the sample cavity and to measure the power incident on 

the cavity by using a microwave power meter. Also, the microwave frequency 

can be measured to the accuracy of a cavity wave meter. The resonance sig­

nal is detected in the fourth arm of the bridge using a crystal detector. 

The signal is then amplified, demodulated in a phase detector; and reqorded 

on a graphic recorder. 

The sensitivity of the spectrometer was increased by at least a factor 

of two by replacing the magic "T" with a microwave ferrite circulator (44). 

The modified spectrometer is shown in Fig. 3-10. The homodyne circuit c.on­

figuration _is used in order to obtain the correct bias power for the de­

tectors (either bolometers or crystals may be used) (43). 

Microwave Cavity 

T:he sample cavity is a very important element in the microwa.ve 

structure of· the ESR spectrometer. The choice between several different 

cavity structures is dictated by the space available in.the magnet gap. 

(low temperature dewars being considered), the size and sh.ape of the sam­

ple, the desired Q of the cavity, and the desired microwave magnetic field 

configuration. Several different cavity structures are shown.in Figs. 3-11 

and 3-12. Probably the simplest cavity to construct and design is the rec­

tangular TE102 cavity. The sample is introduced into the region of maximum 

microwave magnetic field which is located at the center of the cavity as 

illustrated in Fig. 3-11. The rectangular cavity h.as the disadvantage that 

the microwave magnetic field is in.the horizontal plane when placed in_ the 

magnet gap, and in studies involving the rotatioriof the large magnetic 
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field the angle between the large field and the microwave magnetic field 

is va.ried which reduces the signal amplitude. In. this respect the cylin­

drica,l cavity operating in the TE011 mode, with its microwave field in the 

vertical plane, would be more satisfactory. When the Q. of the cavity is 

required to be a maximum .the cylindrical structures should be usec!.. Every 

different sample usually requires a particular cavity structure to satisfy 

a.11 the measurement requirements; therefore, in most cases, m,ore than .one 

cavity is advantageous. Glass or ceramic cavities have special advantages 

when high frequency modulation techniques are employed (5). In some of the 

in.itial measurements a Varian 100 kc rectangular TE102 cavity was used. 

This Varian cavity allows irradiation. of the sample but has the clisadvan­

tage of requiring that the sample be rotated instead of allowing the magnet 

to be rotated. Therefore, we have found that it is n,ecessary to have a 

variety of cavities available and have constructed a rectangular TE102 high 

frequency cavity with quartz walls and a cylindrical TE011 mode cavity made 

of pyrex with gold plated walls. It should be noted that the TE011 cylin­

drical cavity has a minimum radius of approximately 2 centimeters for x­

band operation. 

Magnetic Field Measurement 

The determination of the magnetic field strength is accomplished using 

a n.uclear resonance detector. The transistor NMR detector of Fig. 3-13 was 

used initially, but higher sensitivity was obtained from a vacuum tube cir­

cuit (45, 46). The transistor circuit is essentially a grid-dip oscillator 

conveniently reduced in size so it can be mounted directly on the magnet. 

The NMR. probe is rigidly supported with a clamp to the magnet pole piece. 

The frequency of the NMR. oscillator is measured with a h/p 524 D,electronic 



To Electronic Counter 

15ppf 

2N 384 I Samolel 30µµf IN95 
, + ' --, • • 1 I • N ' ' I I 1 

10 }.JJJ f 

b I ® 
'! 0 

IOOK ---50,uµf 0 

.01 

.01 

1~11 
9v 

FIG. 3-13 Nuclear Magnetic Resonance Oscillator- Detector .;p. 
Vl 



46 

counter. Using the relation wp - ypH the magnetic field at the probe is 

given by 

2TTV 

H=~= 
yp 

2. 34868 x 10-4 v (gauss) 
p 

where y = 2.67530 x 104 rad sec-l gauss-l is the gyromagnetic ratio of 
p 

the protron (47). 

Low Temperature Apparatus 

The low temperature apparatus consists mainly of the Varian variable 

temperature and liquid helium equipment. The variable temperature appara-

0 tu.s utilizes the gas flow technique to vary the temperature from -180 C to 

approximately 300°C. The small quartz dewar fits inside the 100 kc micro-

wave cavity and has the disadvantage of restricting the sample si.ze. Also, 

the use of the variabie temperature apparatus requires the rotation of the 

sample since the magnet cannot be rotated with the 100 kc cavity in place. 

'The Varian liquid helium system consists of an inner helium dewar and 

an outside nitrogen dewar with the stainless steel waveguide and cavity. 

The waveguide can be evacuated, and a port is available by which the pres-

sure above the liquid helium can be reduced. With proper precautions the 

temperature of the liquid helium can be reduced below that of the A -point, 

but extreme care must be exercised when the system is allowed to warm-up. 

Below the A -point the liquid helium creeps into the sealed cavity and a 

violent explosion can occur if the pressure is not released on raising the 

temperature. Actually, one should observe this precaution if only liquid 

nitrogen is used since condensed gases may collect inside the waveguide if 

a leak occurs. In addition to the Vari.an system we have the following 

accessories for liquid helium work: 



(1) 25 liter storage dewar (Superior Air Products) 

(2) helium transfer tube (Superi.or Air Products) 

(3) helium level indicator (53) 

(4) Cartesian manostat (54) 

(5) Vacuum system (300 liters/min. free air capacity) 

(6) vapor pressure manometer 

Summary on.the ESR Spectrometer 
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The microwave ESR spectrometer described is capable of detecting ap­

proximately 1012 spins (8H = 1 gauss and time constant of 10 sec) when used 

with the Varian 100 kc detection system. The microwave system utilizes a 

modified Pound discriminator to stabilize the klystron frequency to better 

6 than 1 part in 10 • 'rhe magnet system used in the ESR measurements is a 

Varian 611 rotating magnet with ring-shim pole pieces; however, a current 

regulating system is described for use with the Varian 4" magnet. Several 

circuits are given that were constructed for use with the spectrometer. 

Included in these special circuits is a 30 me crystal diode phase detector 

with a de amplifier, a transistor klystron filament supply, and a low-noise 

transistorized bolometer amplifier. The ESR spectrometer is capable of 

being operated at the lower modulation frequencies of 28, 400, and 1000 

cps. The magnetic field ne:cessary to produce ESR absorption is measured 

using a nuclear resonance probe. Accurate frequency measurements of both 

the microwave frequency and the NMR frequency can be accomplished using a 

h/p 524 D electronic counter. 



CHAPTER IV 

RESULTS AND DISCUSSION OF ELECTRON SPIN RESONANCE IN DIAMOND 

General Remarks 

.Remarks on Observations of ESR Parameters to be Discussed 

The electron spin resonance spectra of semiconducting diamonds and 

several insulating diamonds were investigated. The experimental para­

meters determined from the measurements on semiconducting diamonds in­

clude the g-factor, line width, and number of unpaired spins. In the 

measurements on.semiconducting diamonds the temperature was varied from 

108°K to approximately 370°K and some experimental work was done at 4.2°~. 

A diamond was crushed and exhibited an ESR line similaJ;" to that observed 

in semiconducting . diamonds. Changes of the ESR absorption in . th.e crushed 

diamond were observed upon heat treatment. The colored diamonds investi­

gated exhibited complex ESR.spectra,. and the resolution of structure was 

extremely directional dependent in ~ome specimens. Optical transmission 

measurements in the infrared were made on most of the diamonds investigated 

by the ESR method. 

Description of the Diamonds 

The semiconducting dia~onds used in this investigation .are a natural 

blue color, sometimes referred to as st~el-blue, with the exception of 

48 
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DS-5 which has a brownish tinge added to the usual blue color2. The dia-

mond DS-1 has an irregular shape with some natural (111) faces that are 

easily identifiable; DS-1 is one of the better semiconductors (P fit 50 

ohm-cm at room temperature),and was referred to in earlier work as the 

''Chip". Diamond DS-2 had been cut and polished in the shape of a rectan-

3 gular parallelepiped measuring 2.5 x 3.5 x 6.5 mm. This particular dia-

mond has received a more intensive investigation of its properties than 

the other semiconducting diamonds (48). One end of DS-2 is blue, extend-

ing about 1.4 mm into the diamond, and the other end is clear as distint 

guished with the ·eye. The third semiconducting diamond is a gem stone with 

a marquise cut and is referred to as DS-3. DS-3 is perhaps the bluest of 

the diamonds investigated. A fourth diamond, DS-4, was only available for 

a short time, and vety little data were obtained on it. The largest of the 

semiconducting diamonds, DS-5, has two parallel (111) faces that make it 

convenient for optical transmissi9n measurements. The semiconducting dia-

monds have the following weights: 

.Diamond 

DS-1 
DS-2 
DS-3 
DS-5 

wt. (gms) 

0.0787 
0 .1726 
0 .1130 
0.7375 

The insulating diamonds investigated were mostly Type I, but a Type 

Ila was found among the diamonds in our collection of triangular flats. 

Some of the diamonds are visibly colored; the colors being a clear yellow, . 

2semiconducting diamonds herein.are denoted by DS; whereas, ordinary 
insulating diamonds are designated using the letter D. Clarification of 
this notation with that used in earlier work on the same diamonds will be 
noted where it is necessary. 
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yellow, green, brown, and yellow-green. The insulating diamonds vary in 

weight from 0.1 gm to approximately 0.01 gm. The series of five diamonds 

D-62 to D-66 are colored yellow to dark brown and exhibited a cubic growth 

habit. Most or the diamonds have recognizable natural faces. 

ESR Parameters Associated with Paramagnetic Defects 

The g-factor is defined by the fundamental relationship hu = gf:3ll, 

An e~pression.that is used in the determination of the g-factor, using 

an organic free radical as a reference, can be deduced from this relation-

ship. The desired expression is obtained from h6i., = gS6H + (3H6g for 6u = 0, 

i.e., at a constant microwave-frequency. The g-factor of the unknown dia-

mond sample is given by 

6H 
g = g (1 - --2) 

s f Hf 
(4.1) 

where f refers to the known value of g and H for the free radical, and 6H 
0 

is the magnetic field interval between the observed resonance lines. The 

free radical diphenyl-picryl-hydrazl (DPPH) has a g-factor equal to 2.0036 

± 0.0003 (1). The unknown g-factor is determined by measuring the magnetic 

field scanning rate and the microwave frequency. The magnetic field for 

the DPPH free radical resonance is given by 

1) f 
H = -----f 2.80724 gauss (4. 2) 

where uf is the microwave frequency, measured in megacycles using a cavity 

wavemeter. The reference g-marker is usually inserted into the sample cav-

ity with the diamond in place so that the microwave frequency is not 

changed during the measurement. The magnetic field interval is determined 

by measuring the scanning rate of the magnetic field. As the magnetic 
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field is scanned it is monitored using a nuclear resonance probe, with 

markers being placed on the recorder chart at regular intervals. The 

frequency of the nuclear resonance oscillator is determined with an elec-

tronic counter and the corresponding magnetic field is calculated as 

described in the section on magnetic field measurements. 

The width of the ESR absorption line can be conveniently measured be-

tween points of maximum and minimum deflection on the derivative curve if 

a modulation detection system is used. If the modulation amplitude is 

very small compared to the line width, H ~ 0.1 6H, then the width can .be m . 

measured directly. Microwave power to the sample must be small so that 

saturation of the resonance line does not occur during this measurement. 

However, under extremely low signal-to-noise ratios the condition of small 

modulation amplitude is very difficult to obtain, and the amp l itude of 

modulation must be increased to improve the signal strength. Over-modu-

lation of the resonance line has a broadening effect that can be corrected 

for by extrapolation to zero modulation amplitude provided the condition 

H < 6H is observed (49). If H. >> 6H the peak-to-peak distance on the m m 

derivative curve becomes equal to 2H (50). 
m 

Another parameter that has proven to be useful in the interpretation 

of paramagnetic defects in the solid state is the total number of unpaired 

spins or the spin concentration. The total number of unpaired spins in 

the diamond specimen can be determined using DPPH as a standard. Such a 

determination involves the measurement of the first moment M1 of the 

derivative curve since it is proportional to the intensity of absorption 

I o: J: g' (h) hdh (4. 3) 
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where g' (h) is the approximate derivative--of the ab~orption curve as re-

corded, and th_e integral is the definition of the first moment. !t is 

necessary to evaluate the irttegral graphically or by using an analogue 

technique. The method used involves the determination of the first moment 

of a reference sample under the same experimental conditions as used to ob-

tain _the first moment of the ESR line in diamond (52). In case the same 

experimental conditions are not observed, the following corrections need to 

be considered: (a) changes in the cavity matching, (b) degradation of the 

cavity Q, (c) micr_owave power level variations, (d) modulation amplitude, 

and (e) amplifier gain. The DPPH reference sample was inserted into the 

cavity with the diamond so that the simple expression 

(4.4) 

could be used to determine the number of unpaired spins, Ns, in the diamond 

specimen. M and M fare the measured first moments from the diamond and 
ls 1 

free radical resonance curves, respectively. In general, only the gain of 

the amplifier was changed and th_is is corrected for in equation (4.4) by 

the ration A/As • Nf is the total number of spins in the free radical DPPH 

(mol. wt.= 394). 

Results of Measurements on Semiconducting Diamonds 

g-Value, Line Width, and Numper of Unpaired Spins 

A single electron spin resonance line was observed in all the semicoJ;J.-

ducting diamonds investigated. Figure 4-1 shows-a typical curve character-

istic of these diamonds. The g-factor, line width, and number of spins 

was determined for the diamonds DS-1, DS-2, _ and ps .. 3, but only limited 

measurements were obtained onDS-4 and DS-5. The ESR parameters were 
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calculated using the techniques as described in the preceding section. 

The g-factor of the diamonds investigated varied from 2.0014 to 

2.0040 at room temperature, with semiconducting diamonds having the 

larger positive g-shift (Ag) from that of the free electron (g=2.0023). 

Measurements of the g-factor were taken at lower temperatures, but no 

significant changes took place until the temperature was reduced to that 

of liquid helium • 0 The g-factor of DS-5 was measured at 4.2 Kand found 

. to be 2.01. In general, the g-factor did not change with crystal orienta-

tion. Table II shows the measured g-factor for the different semiconduct-

ing diamonds. All measurements were taken at room temperature except where 

noted. 

TABLE. II 

g-VALUE OF ESR LINE IN SEMICONDUCTING DIAMONDS 

Diamond 

DS-1 

DS-2 

DS-3 

DS-4 

DS-5 

g (±0.0003) 

2.0028 

2.0031 

2.0030 
2.0031 (131 °K) 

2.004 

2.0027 
2.01 (4. 2°I<) 

4 Ag x 10 

+5 

+8 

+7 

+4 

The width of the resonance line in semiconducting diamond varied from 

0.3 to 8 gauss for different specimens when measured at room temperature. 

The line width.decreased when the temperature was lowered indicating a 

fairly strong temperature dependence. Saturation measurements could not 
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be made because of insufficient microwave power; however, an estimate of 
_9 

the spin-lattice relaxation of 10 seconds was obtained for the diamond 

DS-3 at 108°K. As in the measurements on the g-factor, the line width was 

.found to be isotropic. Table III lists the line widths and the temperature 

at which they were measured. Also listed in this table is the total number 

of unpaired spins in three of the semiconducting diamonds. 

TABLE III 

LINE WIDTH AND NUMBER OF UNPAIRED SPINS IN SEMICONDUCTING DIAMONDS 

Diamond 

DS-1 

DS-2 

DS-3 (a) 

Ds .. 4. 

DS-5 

(a) 

Line Width (L\H) in gauss Total Number of 
298°K 140°K Unpaired Spins 

8.3 6.9 4.1 X 1014 

2.7 2.0 5.1 X 1013 

1.0 0.2 3.4 X 1013 

1.6 

0.3 

0 'I'he line width of DS-3 is 1.8 gauss at 370 K 

(N) s 

The total number of unpaired spins rather than the density of spins 

is listed for the semiconducting diamonds DS-1, DS-2, and DS-3 because the 

distribution of spin centers is unknown. With this point in mind the to-

tal number of spins is considered the more important factor. If a uniform 

distribution is assumed the spin density is 2 x 1016 , 1 x 10 15 , and 

1 .x 1015 spins per cc for DS-1, DS-2, and DS-3; respectively. The para-

magnetic susceptibility was found to vary as 1/T in the temperature range 

108°K - 298°K for the diamond DS-3. 



0 ,ESR Meas~rements at 4.2 K 

Electron spin res.bnan,_ce was detected in only one of the semiconducting 

diamonds, ni;, ... 5 ,- at 4. 2°~. The res_onance absorption was dete_;eted unde;r 

rapid passage conditions (57) and is shown.in Fig. 4 .. 2. Unresolved struc-

ture appears on.the sides of the main resonance line due to interaction 

with a nucleus of noI).-zero magnetic rqoment, presumably cl 3 • A slight re-

orientation of the diamond gave better resolution of the side peaks and the 

splitting from the central line was found to be approximately 5 gauss. The 

splitting is close to th,e value_ obtained by Baldwin (24) who investigated 

the ESR spectrum of an electroI1,-irradiated Type !Ia d;i.amond. Tb,e splitting 

was interpreted as the interaction of the unpaired sp;i.n with 'the vacancy 

second-nearest-neighbor C13 nuclei. There is doubt as to the exact_ orien-

tation of the specimen, consequently the question of anisotropy is unanswer­
- 0 

ed at the temperature of 4.2 ~. A resonance line was not detected in D/i,-1, 

DS-2, or DS-3; howeve~ further work at liquid helium temperature is needed 

in order to verify this result. 

__ Infrared Transmission Measurements 

_Infrared transmission measurements were made at room temperature on 

the diamonds DS-1, DS-2, DS-3,. and DS-5 using a Beckman IR-7 spectrop_lloto-

meter. 'The infrared optical properties of the diamonds iii.re characteristic 

of semiconducting diamonds, i.e., absorption occurs at 3~42, 3.57, and 4.07 
_l 

µ. In addition, the diamonds show absorption at 7.5 µ. (1332 cm ) and 7.8 

µ.. Also, several absorption peaks occur in D~-5 and DS-3 that are not de-

tected in the other semiconducting diaJ;I1onds. The peaks that occur in semi-

conducting diamonds and are considered unusual for this type of diamond 

include the following: 
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_6.07µ. broad line 

6.85µ. weak 

7.50µ. fairly strong (B) 7. 50µ. weak (B) 

7.80µ strong (A) 7.80µ. weak, broad (A) 

8.63µ. weak, broad (B) 8. 6 µ. weak (B) 

9.0 µ. weak (A) 9.0 µ. very weak (A) 

11. 9 µ. (B) 

13.4 µ. (B) 

The absorption coefficient could not be accurately determined on these 

diamonds; however the detectable differences in the 7.8µ. region are shown 

_in Fig. 4-3. The 7.8µ band has been previously detected in semiconducting 

diamond (55, 56), but no indication of the 7.5µ absorption appeared. The 

A and B absorption peaks refer to the impurity centers found in ordinary 

diamond (6) • 

ESR in Diamond Due to M:echanical Damage 

Effects of Heat Treatment 

Paramagnetic centers were produced in a Type I diamond by mechanically 

crushing the specimen in.a steel mortar. The diamond, D-17, was selected 

for this experiment because it was clear in color and s~owed no spin 

resonance absorption before crushing. The diamond has an easily detectable 

absorption at 7.8µ, an ultraviolet cut-off near 300 mµ., and displayed a 

strong lumine~cence on irradiation with ultraviolet light. 3 

3Tbe ultraviolet cut-off and luminescence was determined by C. c. 
Johnson.in a survey of fifty triangular flat diamonds at OSU. 
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After crushing,, the diamond was cleaned in warm aqua fortis (2/3 H2 S04 

and 1/3 HN03 ) for thirty minutes followed by a similar treatment in 

nitric and hydrochloric acid. The acid was removed and the crushed dia-

mond was rinsed in distilled water. The crushed diamond was then.trans-
_s 

£erred to a quartz tube and evacuated, to a pressure of 10 mm Hg. 

The ESR absorption observed in crushed diamond is similar to that 

.observed in the semiconducting diamond$. The g-factor is 2.0029, and the 

line width of the crushed diamond before heat treatment was 2.9 gauss. 

The effects .of heat treatment in.a vacuum are negligible for a temperature 

0 below.500 C. However, the intensity of the original line is reduced con-

siderably after heating for just one hour at 600°c. The signal continued 

to decrease as the temperature was raised to 780°c. The resonance absorp-

tion did not continue to decrease with heat treatment but reached a con-

0 stant value and remained after heat treatment at llOO C for 4 hours. The 

line width decreased to 1.6 gauss after a heat treatment to 960°c. In 

addition to the narrow line, a broad line occurred after a heat treatment 

temperature of 870°c for one hour. 

Another diamond (D-39), exhibiting a single resonance line, was used 

as a control specimen for the heat treatment experiments. No change of 

this line occurred during the heat treatment, nor was there any change in 

the infrared spectrum. D-39 had a very slight absorption in the infrared 

at 7.8µ and an ultraviolet cut-off of 225 mµ. 

ESR in Type I Diamond 

Nitrogen Resonance in Type I Diamond 
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4 In the present investigation a 3-line spectrum was observed in a 

series of five Type I diamonds exhibiting the cubic growth habit: D-62 

through 0~66.' The .. 3.~line .spectrum has. been attributed to. nitrogen ,(21) with 

the intensity ratio of 1:1:1 and a splitting between the outer lines of 

approximately 70 gauss. The same ESR line is observed in the cubic dia-

monds with the intensity of absorption increasing as the color of the dia-

monds varies from yellow to dark brown. The resonance line due to nitro-

gen is more easily saturated then the ESR line in semiconducting diamond. 

Also, no evidence for exchange narrowing t>f the nitrogen resonance line is 

observed. The line width, 6H, of two of the cubic diamonds was measured 

and are listed below along with the concentration of spins, N. The con­
e 

centration of spins was calculated assuming a dipolar broadening and a 

uniform distribution of spins (2). 

Diamond fiH (gauss) N .. c (per cc) Color 

D-63 0.8 4 X 1019 yellow-brown 

D-66 2.8 1.4 x-10l 9 dark brown 

In addition to the nitrogen resonance, we have observed a 3-line 

spectrum in a yellow diamond, D•SlB, having an i~tensity ratio: of 1:2:1. 

The resonance lines are sh_own in Fig. 4-4, where·.the. splitting between th_e 

outside lines and the central line is 34.4 gaus~ when the (100) direction 

is parallel to the magnetic field. The angular dependence of the spectrum 

is the same as observed for the nitrogen resonance (21). It should be 

noted that extremely sharp infrared absorption occurs in this diamond at 

4 The 3-line spectrum occurs when the (100) direction is parallel to 
the applied magnetic field. 
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3. 2 and 7 .1 µ (3107 and 1405 cm;..;1 ). The g-factor of this ESR line is 

2.0023 and the line width. is O .1 gauss, Extra. lines occur in D-51B, as 

shown in Fig. 4-4a, near the central line. The particular spectrum .found 

in D-51B has been observed in one other diamond, D~58 • 

. c'omplex Es·R spectra in Brown, Yellow, and Green Diamonds 

A complex ESR absorption spectrum.occurs in several colored diamonds. 

Figure 4-5 shows a typical spectrum .observed in a green diamond, D-57. 

There appear to be 13 lines with a splitting between the lines of approx-

imately 1. 6 gauss when the <_100> direction is parallel to the magnetic 

field. The angular dependence and an accurate analysis would be difficult 

because of overlapping lines. In a light yellow-green. diamond, D-52A, 

the spectrum of Fig. 4.6 is observed; the major difference from that ob-

served in D-57 being in the extra lines split off from the main spectrum 

by about 34 gauss. The outer lines in D-~2A are single when the mag11etic 

field is parallel to the (100) or the (110) direction, but splits into two 

components when the <111) axis is parallel to H0 • The g-factor has not 

been accurately determined but lies very close to the free electron value. 

In brown diamonds the spectrum of Fig. 4-7 is observed at g = 2.0024. 

In addition to the complex spectra obtained from measurements of ESR in 

yellow and green diamonds, there appears a very sharp central resonance 

line and, also, two lines occur when the magnetic field is parallel to the 

<100) direction. The total splitting between the outside lines is 70 gauss, 

with each line being approximately 35 gauss from the center line. The in-

. tensity of the side lines decreases in the {111) direction (rotation in 

the (110) plane) and is zero when H is parallel to the (110) direction, 
0 

as shown.in Fig. 4-7. This spectrum is not an isolated case, but is 
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observed in other brown.diamonds having similar physical characteristics 

(D-54A and D-60). The diamonds were probably grown under similar environ-

mental conditions that accounts for their apparent similarity. 

Infrared Transmission of Type I Diamonds 

The infrared transmission. of the insulating. diamonds was measured, 

as in the case of the semiconducting diamonds, with a Beckman IR.-7 spectro-

photometer. Figures 4-8 and4-9 show the results obtained for several of 

the Type I diamonds. 

The diamond cubes D-62 through D-66 have a.characteristic infrared 

transmission spectrum as shown for D-66 in Fig. 4-8. The sharp absorption 

peaks at 2.87, 3.02, 3.18, 3.22, 6.07, 7.12, 7.34, 7.40 and 7.43 µ seem to 

be associated with the ESR line, although a quantitative relationship was 

not determined. Noticeable structure is covered by the continuous absorp-

tion from 7.5 to 9.1 µ. 

The diamonds D-50B, D-51B, and D-52B could be separated according to 

their yellow color; however, significant differences occur, not only in 

the ESR spectra, but in their infrared characteristics as shown.in Fig. 

4-8 and Fig. 4-9. D-51B is a relatively clear yellow diamond and h,as 

very sharp absorption peaks at 3.2, 7.1, and 6.07 µ (3107, 1652, and 1405 
_1 

cm ) • The absorption at 3.2 µ .is readily detectable in the diamonds show-

ing these peaks, even if the long wavelength peaks are covered by other 

absorption maxima. 

All, the diamonds showing strong absorption at 7. 3 µ have similar com-

plex ESR spectra; these include the yellow, brown, and green diamonds. 
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DISCUSSION 

. Nature of the Paramagnetic Centers in Semiqonducting Dia,mo.:ods 

The ESR spectrum of all.the p-type semiconducting diamonds investi-

gated consisted of a single resonance peak at room temperature. The 

resonance line found in these diamonds has the following general properties: 

(1) The g-factor is isotropic and has a value of 2.0030 at 298°K. 

(2) The total number of spin.s is of the order of 1014. 

(3) The line width varies from O. 3 to 8 gauss at 298°K for various 

diamonds. The width is isotropic and decreases with lower temperatures. 

(4) The spin center is associated with the infrared absorption at 

7. 8 µ,. 
. 9 

(5) The spin-lattice relaxation time (T1 ) is approximately 10-

seconds. 

(6) Resolved structure at 4.2°K is probably due to the interaction 

.with cl 3 nuclei. 

Table IV gives a summary. of the inforrr~tion obtained from measurements 

on semiconducting diamonds at room temperature. 



TABLE IV 

SU:.!VJJf.J.1.R--Y' OF RESULTS ON SEMICONDUCTING DIAMONDS 

Diamond 
N 

s 

DS-1 4.1 X 1Ql.4 

DS-2 5.1 X 101::i 

DS-3 3.4 X 1.Ql 3 

DS-4 

us .. s 

Notation: ND - not detected 
W - weak 

g 

2.0028 

2 .0031 

2.0030 

2.004 

2,~0027 

6H 
(gauss) 

8~3 

') 1 
L;,,,;, ..... 

LO 

L6 

Cl. 3 

7.8 µ 
Absorpti.on 

ND 

w 

FS 

FS - fairly strong for semiconducting diamonds. 

The g-factor was found to be independent of the orientation o:f the 

diamonds in the applied magnetic field. In addition, as noted in Table 

71 

IV, the value of the g-factor is larger than th8.t for the free electron. 

The positive g-shift indicates that the resonance absorption may be caused 
r.: 

by a defect center containing holes rather than electrons.-' The g-factor 

isotropy and the symmetry of the resonance line suggest that the defect 

center is one of highly synm1etrical properties. In the diamond lattice 

one would expect that such a resonance could originate from an isolated 

vacancy or from an interstitial atom. 

The paramagnetic center described above and characterized by the 

5The criterion of attributing a positive g-shift to holes must be 
used with caution. See reference (61) for further comments, p. 214. 
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properties outlined inTable IV is quite similar to the resonance line 

found in neutron-irradiated diamond (22). The most prominent feature of 

the ESR spectrum in neutron-irradiated diamond is a single isotropic line 

with a g-factor equal to 2.0028. The line width in neu.trot).~irradiated dia-

mond for 10 hours exposure was 20 gauss. Both the intensity and line width 

increased with increased irradiation time but were found to decrease rapid-

ly upon .heating the diamond. In experiments on crushed diamond we have ob-

tained a g-factor of 2.0029 for a single resonance- line; furthermore, the 

intensity and line width decreased on heating the crushed diamond above 

S00°c. Tl).erefore, in irradiated and crushed diamond it is thought that 

the single resonance line is due to the paramagnetism associated with gen-

erated vacancies. 

In addition to the ESR measurements, it is possible to estimate the 

number of acceptors responsible for the p-type conductivity of DS-1 and 

DS-2. From the measured resistivity of these semiconducting diamonds and 

using a hole mobility of 1300 cm'a/volt-sec (48)~ a calculation yields the 

following number of acceptors (NA): 

Diamond 

DS-1 
DS-2 

1 x lQ'-4 
6 X 1013 

Comparing the number of acceptors with the number of spins in Table IV 

shows an extremely fortuitous result that appears to be significant in 

analyzing the electronic properties of semiconducting diamonds. Thus, with 

the above information, it is considered highly probable that the electron 

spin resonance signal is due to the acceptor center in p-type diamonds, 

and the unpaired spin of the hole is located at a vacancy in the diamond 
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lattice. 

It is interesting to note at this point that the irradiation of dia­

mond with electrons and neutrons has not produced any semiconducting dia­

monds, although the conductivity of natural semiconducting diamonds is 

usually reduced upon irradiat.ion (62). 

Perhaps the most interesting characteristic of the ESR line :l.n semi-

conducting diamond is th.e decrease of the line width as the infrared ab= 

sorption at 7.8 µ. increases. In order to explain this particular feature 

it is assumed that donors are present and that a small degree of compensa­

tion occurs. The occurrence of both acceptors and donors in these diamonds 

is consistant with Hall data (48). The 7.8 µ absorption band is considered 

to be a measure of the number of uncompensated ,.:;.cceptors. Therefore, as 

the 7 .8 µ. absorption increases the if.tensity of the ESR signal should de­

crease. Table IV shows that this is the case for DS-1 and DS-3. The na­

ture of the donors is not known; hrrwever, nitrogen is known to be a common 

donor in diamonds. 

The ESR line may also be narrowed through the mechanism of an exchange 

interaction via the compensated acceptor. The exchange narrowing of a res­

onance line depends critically on the magnitude of overlap of the wave 

functions belonging to the respective spin centers (63). Exchange narrowed 

lines have a characteristically narrow central portion with broad wings on 

.the resonance curve. In principle, the exchange interaction should be 

effected by the process of compensation in semiconductors containing both 

donors and acceptors. The presence of an electron at an acceptor center has 

the effect of attracting the positively charged holes and to increase the 

overlap of the wave functions of the spin centers closest to the compen­

sated center. This mechanism of line narrow{ng could account for the 
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decreased line widths in the diamonds DS-3 and DS-5. The 7.8 µ, absorption 

occurs in the semiconducting diamonds where compensation is present, and 

is due to the excitation of an electron from a compensated to an uncompen­

sated acceptor site. 

Concerning the ESR Absorption in Insulating Diamonds 

In addition to the studies on semiconducting diamonds, the ESR absorp­

tion spectra of several insulating diamonds was investigated. The diamonds 

studied included both Type I and Type Ila. Most of the diamonds showed 

ESR absorption, with the more complex spectra being observed in colored 

diamonds. S.evet1:1l' diamonds among the 67 in the Oklahoma State University 

collection are of interest; in particular, a serie·s of five diamonds 

which have a cubic growth habit and show the ESR hyperfine spectrum gener­

ally attributed to nitrogen. Some of the diamonds have the same fine yel­

low color but have different ESR spectra, with measurable differences in 

their infrared and birefringence properties. A relatively simple 3-line 

ESR spectrum occurs in a yellow diamond exhibiting little or no bi­

refringence and no infrared absorption at 7.3 µ; whereas, a more complex 

spectrum is observed i~ the other yellow diamonds with these properties. 

A complete study of the resonance spectra in colored diamonds was not 

attempted in this investigation. 

ESR Spectrum of Nitrogen.in Diamond 

The spin I of the nitrogen isotope Nl 4 is equal to 1, and the natural 

abundance is about 99.6%. Thus, the ESR spectrum of atomically dispersed 

Nl 4 in the diamond lattice would be expected to consist of one or more sets 

of three equally intense hyperfine lines. For the nitrogen resonance in 

diamond there are four types of impurity centers with the symmetry axis 



75 

along (111> directions (21.). In case the magnetic field is parallel to 

the (100) direction a three-line spectrum.similar to Figure 4-6c is ob­

tained. This nitrogen resonance has been detected in five diamonds ex­

hibiting a cub:i.c growth habit. In addition, the infrared spectra of D-66 

shown in Figure 4-8 is characteristic of these cubes. Several absorption 

lines occur in the region around the peaks at 3.2 and 7.1 µ. The absorp­

tion at 7.3 11, which is usually found in yellow diamonds, is absent in the 

diamond cubes (D-62, 63, 64, 65, and 66), as well as D-SlB. In diamonds 

where the 7.1 µ band rr.ay be covered by strong abso:rption in that region, 

the absorption peak at 3.2 µ. can be readHy distinguished if the abscrption 

center is present. 

In a. particular diamond, D-51B, the meas1ir,,;,d intensity ratio of the 

three-line spectrum of Figure 4-6c is l:2rl rather than ltl;.1. as one would 

expect for the nitrogen resonance. The 1:2!1 ratio could result from an 

unpaired spin located at a carbon atom on which two hydrogen atonIB are 

attached, but no further proof of this model was obtained. Since no 

correlation between the nitrogen resonance intensity and the infrared 

absorption at 7 .8 µ has been found, it is possible that the infrared ab­

sorption at 3.2 µ and 7.1 µ (see Fig. 4-8) may be associated with the ESR 

signal in the diamond D-SlB. 

Complex ESR Spectrum in Type I Diamonds 

The complex ESR absorption thatis observed in several Type I diamonds 

of various colors (brown, yellow, and green) appears to arise from the 

overlapping of at least two spectra. The complex spectra appear in these 

diamonds in conjunction with infrared absorption at 7.3 µ,. 

A green diamond (D-57) has the. ESR absorption spectrum of Fig. 4-5. 
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D-57 shows no infrared absorption at 3. 2 p,, as shown in Fig,,, 4-8, and 

does not have the ESR lines split off by 34 gauss from the central group 

which are observed in D-.52A and D-55. Also, one should note the apparent 

collapse of the hyperfine lines into a single line when. the magnetic field 

is parallel to the (110; direction. 

Th 1 t • • d • 11 '.I• ' (·I)· - 1':·) t!.) but e comp.Lex spec rum 1.s toun • 1.11 a ye "'ow-green a.1.amono , .., __ ..• 

with different orientation dependence and additional lines. The collapse 

of the hyperfine structure in this diamond occurs ,,vhen the magnetic field 

is approximately parallel to the (111) direction. An investigation of the 

infrared absorption shows a small peak at 3. 2 µ (Fig. 1+-9). In add:Lt:l.on, 

there are ESR lines occurring at app:roxim,,.tely 3£,_ gauss from the central 

group, 

The ESR spectrum of a brown diamond (D-61) is shown in • l,.- 7. The 

prominent feature of the resonance curve :Ln this diamond is the sharp line 

superimposed upon the complex spectrum and the occurrence of lines when 

the (100) direction is parallel to the magnetic field. The side lines are 

separated from the center by about 35 gauss and disappear when the magnetic 

field is parallel to the (110> direction. The particular defect giving 

this type of resonance has a symmetry axis parallel to the (110) direction. 

There was no significant difference in the infrared spectrum of D-61 and 

D-57, although D-61 is brown and D-57 is green, Both diamonds show strong 

infrared absorption at 7.3 µ as shown by Fig. 4-8. 

The resonance spectrum of diamond D-55 is not shown, but this diamond 

has a complex spectrum with side peaks. In the infrared D-55 shows, what 

might have been predicted from the ESR spectra, absorption at 3.2, 7.1, 

and 7.3 µ. 
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Summary a.nd Conclusions 

The electron spin resonance absorption in semiconducting diamonds 

was found in this investigation to be associated with the acceptor center 

in the p-type diamonds studied. :Five semiconducting diamonds were available 

for study, and experimental results were obtained on the g-factor, line 

width, and the number of unpaired spins contributing to the resonance. 

The g-factor and number of unpaired spins are two of the measured pat'a-

meters used to identify the spin center as an acceptor site. The g--factor 

in all the semiconducting diamonds is close to the value 2.0030; the posi-

tive g-shift from the free electron value of 2,0023 may be associated with 

the electronic state corresponding to a hole rather tl1an an electron (58). 

In addition to the positive g-shift, the number of unpaired spins was found 

to agree quite closely with the determined number of acceptors in two of 

the semiconducting diamonds investigated. The temperature variation of 

the magnetic susceptibility was measured, and it was found to follow the 

0 0 
Curie law from 108 K to 370 K. 

The width of the resonance line varies from 0.3 to 8 gauss for dif .. 

ferent semiconducting diamonds at room temperature. The diamond having 

the more narrow line width, 0.3 gauss, exhibited a fairly strong infrared 

absorption at 7.8 µ. The 7.8 µ infrared absorption is assumed to be influ-

enced by the degree of compensation; Le., a stronger absorption at 7.8 µ, 

would indicate a larger concentration of donors which could supply elec-

trons for the compensation of the acceptor centers. The compensation of 

acceptor spin centers by electrons would have the effect of diluting the 

spin concentration and, if dipolar broadening is predominant, would 
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effectively narrow the resonance line. Also, if the concentration of spins 

is large or compensation is present, the mechanism of exchange narrowing 

could be effective in :reducing the line width. Dipolar broadening probably 

makes the major contribution to the l:Lne width of DS-1 which is 8 gauss. 

The width of the resonance line in DS-2 :i.s 2.7 gauss and, since the 7.8 µ, 

band is absent in the diamond DS-·2., the reduced line width could he due 

simply to the smaller concentration of acceptor spins, The narrower lines 

of DS-3 and DS-5, with the occurrence of the infrared absorption at 7,8 µ,, 

indicate that compensation of the acceptors available donors is present, 

The resonance lines a.re narrowed by the exchange interaction between. spins 

located near a compensated accepto:;:·. In &dditLon, the spin-lattice inter-

action contributes to the line width in.th,";ss:' di&,,-"n-is. Saturation measure-

ments could not be made; however, a.n estimate of the spin-lDtti.ce relaxation 

time of 10 seconds wa.s obtained, The 11ne width is isotropic w·ith respect 

to the orientation of the magnetic field. 

The measurements at liquid helium temperature include the determina-

tion of the g-factor (g=2.0l) and the resolution of the hyperfine structure, 

which is presumed to be due to the interaction with the C13 nucleL 

The experimental results suggest that the acceptor spin center is a 

vacancy in the diamond lattice. Although the exact distribution of the 

acceptors remains uncertain, it is possible that the defects responsible 

for the p-type conductivity lie in thin layers parallel to the (111) plane. 

The high concentration of spin centers in the impurity layers could par~ 

tially account for the measured line widths in the semiconducting diamonds, 

Simple considerations of the line width indicate that the acceptor density 

is probably as high as 1021 per cc in impurity layers, with the thickness 

0 
of the layer being of the order of 100 = 1000 A., 
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In summary, the following conclusions derived from the present in­

vestigation on electron spin resonance seem important in describing the 

electronic levels in semiconducting diamonds: 

(1) The spin resonance absorption i,s associated with the acceptor 

center in p-type diamonds. 

(2) The acceptor center is probably associated with a vacancy. 

(3) The acceptor defects are distributed in thin layers that lie on 

(111) planes. 

(4) .. The concentration of acceptors may be as high as 1021 per cc. 

(5) Exchange interaction between acceptors is possible via the 

compensation of acceptors. 

ESR and Infrared Studies of Type I qiamop.~ 

Diamonds that are colored usually have a complex ESR spectrum which 

is difficult to analyze because of overlapping lines. The.orientation 

dependence of the observed 13-line spectrum is complicated and apparently 

variable from specimen to specimen. Studies of the infrared absorption 

indicate that the 7.3 µ peak (B center) is associated with the defect cen­

ter responsible for the complicated ESR spectrum in colored diamonds. It 

is possible that impurity-defect association or impurity clustering is pre­

sent in these diamonds to give the observed ESR and infrared spectra. 

The unusual spectrum observed in a brown diamond (D-61) could be 

associated with the (110) luminescent center studied by Elliott, et. al., 

(65). The defect center could possibly involve a vacancy and an impurity; 

the model they suggest involves a vacancy bound to an impurity in a next­

nearest-neighbor position. 

The usual nitrogen resonance is observed in a series of diamond cubes; 



however,. an unusual 3-line spectrum was obtained in a clear yellow diamond 

with an intensity ratio of 1:2:1 when.the (100) direction.is parallel to 

the magnetic field. A plausible explanation could include the possibility 

of the interaction of the unpaired electron with two hydrogen.atoms attached 

to a carbon atom. Associated with the 3-line ESR spectrum is the infrared 

absorption at 3.2 and 7.1 µ. 

Suggestions for Further Study 

The results of the present investigation .suggest several possibilities 

for further research on.the electron spin resonance properties of diamond. 

Future s.tudies should include the following: 

(1) A determination of the spin resonance absorption of semiconduct­

ing diamonds in the temperature range 4.2°K to 77°K. 

(2) 
. 0 

Further studies on semiconducting diamonds in the range 1.3 K to 

0 4.2 K. 

(3) A study of the effects of monochromatic light on the electron 

spin resonance spectrum of semiconducting diamond. 

(4) Study the ESR spectrum of diamonds under the application of 

uniaxial stress. 

(5) Investigate the temperature dependence of the ESR spectra in 

colored diamonds. 
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