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PREFACE 

The study of a plane shock wave emerging into both still and super­

sonic streams was completed as a part of the research contract sponsored 

by the Sandia Corporation, Albuquerque, New Mexico. This study was 

conducted to determine the possible conditions under which a shock tube ­

on-wind tunnel arrangement may be used experimental ly to simulate a 

blast loading of a model. This dissertation considered the transient 

interaction of a shock waye and a supersonic crossflow. A companion 

dissertation by Mr. W. N. Jackomis considered the transient flow field 

resulting from a blast wave intercepting a stationary cone. 

A number of investigations are presently being conducted by Ph.D. 

candidates at Oklahoma State University in various areas of blast wave 

interaction. Mr. W. F. Walker is concerned with establishing a numer ­

ical technique to represent a turbulent jet mixing region and also with 

the interaction of a blast wave and a jet mixing region. Mr. Rusi J. 

Damkevala is studying experimentally the interaction of a blast wave 

with free flight models. Mr. R.R. Eaton is to study the phenomena 

associated with a missile emerging from a blast sphere. These investi­

gations, with present work, should help gain an understanding of the 

complex phenomenon of blast-body interactions. 

The author wishes to express his appreciation to Dr. G. W. Zumwa lt, 

Associate Professor at Oklahoma State University, for the help and 

advice given as my thesis adviser and for adding this advisement posi ­

tion to his already large workload. 
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CHAPTER I 

INTRODUCTION 

In the past several years missiles containing explosive warheads 

b,ave been designed as defensive weapons against aircraft and m.issiles. 

The energy release from an explosion has two primary .destructive .features: 

heat generation and a pressure wave. The hot gas region is confined to 

the air in the immediate vicinity of the explosion and is due to the 

sudden release of a large quantity of energy. The pressure disturbance 

{blast wave) also results from the release of energy, but spreads more 

rapidly to the surrounding atmosphere. This study is concerned with a 

method for testing the effects of a blast wave on a body at some loca­

tion outside the region of the fire ball. 

When a blast wave intersects a body, it may cause structural fail­

ures or flight path changes from excessive pressures or accelerations. 

The interaction of a blast wave with a body is a very complex phenome­

non and has created a great deal of interest. Both analytical and 

experimental studies are necessary to determine the proper formulation 

of the methods of solution to this pehnomenon. Many of the analytical 

approaches are references in the literature survey ( Chapter III). The 

experimental studies may be either full scale tests or model simulation. 

This study was conducted for a particular model simulation test model. 
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[ * An experimental arrangement has been proposed by Pierce 1 ] which uses 

both a shock tube and a high velocity wind tunnel for blast simulation. 

The shock tube is the blast-producing device and is mounted on the side 

of the wind tunnel (Figure 1). This appears, at first., to be a very 

promising means of simulating the interaction of a blast waye with a 

moving body (Plate I). However, the properties of the blast are not 

known after the blast has propagated into the high velocity crossflow. 

The blast is deformed by the crossflowand may not be uniform.in strength 

or direction of propagation. Thus, the deformed blast could fail to 

represent properly the free-air blast. Therefore 1 some knowledge is 

needed of the interaction between a blast (shock} wave and a high veloc-

ity crossflow. The shock-crossflow interaction problem is the subject 

of this study. 

The study was conducted on an analytical basis with qualitative 

experimental support. Two problems were considered: a shock emerging 

from a round or slit-like opening into a still medium, and the shock-· 

crossflow for a slit-like opening. Both problems were solved by a 

** finite difference scheme on a CDC 3600 computer and supported by 

hydraulic analogy results. 

*Numbers in brackets refer to references in the Bibliography. 

**Control Data Corporation. 
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PLATE I 

SCHLIEREN PHarOGRAPHS OF A SHOCK TUBE FIRING 
INTO A WIND TUNNEL 

FREE STREAM MACH NO. 2. 0 
BLAST WAVE MACH NO. 2 .9 
30° CONE, NOSE RADIUS I. I INCHES 
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CHAPTER II 

DESCRIPTION OF THE PHYSICAL PHENOMENA 

General Shock Diffraction 

Because the phenomenon of shock reflection and diffraction .is com-

plex, some physical definitions of general shock behavior are needed. 

Therefore, the concepts of shock reflection and diffraction are described 

below. 

The oblique reflection of a shock occurs when the shock impinges on 

a body (or shock) at some arbitrary angle. Oblique reflections are 

divided into two basic types: .regular reflection and Mach reflection. 

Regular reflection is the simplest shock configuration and is shown in 

Figure·2. A shock OA, with shock velocity u, strikes a boundary at a 

point O at an angle e. The shock OB is the reflected wave, which 

moves away from.the boundary at a shock yelocity U'. ·A normal Shock 

reflection (Figure 3) is a special case of regular.reflection. For a 

given Mach number of the incident shock a maximum incidence angle, 

e = e~, exists for which regular reflection may, occur. (Figure 4). For 

an angle e greater thane, shock reflection occurs as a Mach reflec-m . 

tion (Figure 5). The incident shock 0A has a velocity . · U and an. angle 

e > e. A Mach stem OC is formed, which becomes perpendicular to the . m 

boundary. The Mach stem moyes along the b,oundary while the reflected 

shock OB moves away, from the boundary. The inter.section of the shocks 

OA, OB, and OC at O is called the triple point. A contact discontinuity 

5 



6 

Reflecied.Shock Waye 

8 Incident Shock Wave 

A 

Figure 2. Regular Reflection. 

·Shock Waye 

7777777777777777 777777777777777 
Before Reflection A:her1 Reflection··· 

Figure 3. Normal Reflection. 
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is formed at O behind the shock system. This discontinuity is due to 

the difference in the entropy rise of the flow through the shocks OA 

and OB, and of the flow through the Mach stem OC. A plane shock encoun­

tering .a concave corner (Figure 6) provides an example of a Mach reflec­

tion. In all cases of shock reflection the movement of the shock is 

confined or res.tric.ted in some manner. In each case, the wave is said 

to be diffracted (i.e., the shock shape is altered). 

A shock may also be diffracted by allowing more freedom of move­

ment. An example of this type diffraction is a plane shock encountering 

a convex corner (Figure 7). The corner O causes a disturbance to be 

propagated outward along the line OB.after the shock passage. The dis­

turbance causes the shock from A to B to be diffracted. The diffrac­

tion process occurs gradually as the shock BC moves downstream; therefore, 

the properties behind the diffracted shock are not uniform, and rota­

tional flow exists even though there is a uniform field in front of the 

shock. 

Propagation of a Plane Shock Wave Into a Still Medium 

The first phase of this study pertains to the propagation of a 

shock from an opening in a plate into a still medium. Two openings 

are considered, circular and rectangular (Figure 8). For the rectan­

gular opening, the · length .R, is assumed to be much larger than the 

width w, which allows the phenomenon to be essentially two-dimensional 

except close to the ends. The shock diffraction resulting from these 

two openings is qualitatively similar. The shock encounters a 90° con­

vex corner at the edges of the opening·and is symmetrically diffracted 

(Figure 9 - profile A). At some time later, the whole shock is 



Shock Wave 
e>em 

Reflected 
Shock 

Incident Shock 

Triple Point 

Before Reflection After Reflection 

Figure 6. Wave Reflection at a Concave Corner. 
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Figure 7. Waye Diffraction at a Convex Corner. 
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Figure 9. Shock Profile After Emerging From an 
Opening Into a Still Medium. 
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diffracted (Figure 9 - · profile B); the disturbance is reflected; and 

the reflected disturbance is propagated outward.along.the shock. After 

a large number of disturbance reflections, the moving shock front 

approaches a cylindrical shape for the·rectangular opening and a spher-

-ical shape for the circular opening. 

Propagation of a Plane Shock Wave Into a Perpendicular 
High Velocity Crossflow 

The shock-crossflow interaction was studied for a plane shock 

. emerging from a rectangular opening. A large t/w ratio (Figure 8 

is assumed. so tQe solution could be obtained ina plane. To gain 

insight into this phenomenon a preliminary. water .table study was made, 

leading to several observations. 

As the shock emerges from- the opening, a number of even.ts occur; 

and the interaction may appear at. some arbitrary _time as shown in Figure 

10. The portion of the shock. labeled AB is moving into the stream .and 

BC is a nearly stationary oblique shock which is formed becal.lse of the 

interaction of the two-streams. ~'B'C shows the shock position at some 

later time. At D the stream.from the shock tube (2) and the cr.ossflow 

field (1) meet to form.a stagnation.condition. As stream (2) emerges 

from the slit, it passes through an expansion-region E and separates 

at F downstream of E. In some cases, where the total pressur~ of 

the crossflow.is sufficiently greater than that of the fluid emerging 

from. the s li.t, an internal shock. appears at G. 

This flow field can beseen·to contain a number of quite complex 

phenomena. Analysis by resorting to shock-expansion theory, appears 

hopeless,. leading.the inyest:igators of such problems to numerical field 

solution methods. 



··~-" 1 
" " \ \ 

\ 
I ---------
l iliE~-----...... __ . 

£ \'\ ~'°" ... , --- \'\. ,,....... . 

/ '\' .... ... .... - ,,, .................. 
© . '\ .... .... .... 

?-"/ I __... -~ 

' '-

0 

t 1 t 

Figure 10. Sbock-Gros:sflow Phenomenon at 
an Arbitrary Time. 

t 

f 

f 

t 

..... 
\J1 



CHAPTER III 

LITERATURE SURVEY 

Mathematical treatment of shock waves had been restricted to steady 

state phenomena up to the early l940's when investigators became inter­

ested in the pressures produced by a shock wave colliding with an 

obstacle. The development of more powerful explosives was probably 

the primary reason for this interest. Most. of the early investigations 

were done by linearizing the governing equations in some manner and 

using analytical techniques to obtain a solution. Finite difference 

schemes began to be developed for the nonlinear equations for shock 

propagation.in the early 1950 1s, due to increased use of·large digital 

computers. In recent years most investigations have employed a differ­

ence scheme to solve complex problems. 

The literature has been divided into three categories for review. 

The literature on mathematical studies is divided into analytical and 

numerical investigations to compose two categories. The third category 

is the literature on the experimental studies of a shock tube firing 

into a high velocity wind tunnel. The discussion will follow chronolog­

ical order. 

Analytical Investigations 

One of the first investigators of the principles of shock reflec­

tion and diffraction was John von Neumann [3]. Von Neumann conducted an 
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experimental and theoretical study.of bead-on and oblique shock reflec­

tions from solid boundaries and observed that regular reflection gave 

way to a more complicated type reflection when the angle between shock 

and wall become large. This type of reflection is termed "Mach reflec­

tion". The phenomena of regular reflection, Mach reflection, and the 

"triple point" were described by von Neumann. [3]. 

Lighthill gave an analytical solution for two problems, [4] and 

[5], that involved the reflection of a planeshock of arbitrary strength 

from a plane wall which had a sharp but· small change in direction. The. 

first paper gave the solution for a shock propagating parallel to the 

wall and the second paper perpendicular to the wall. The basic equa­

tions were linearized on the assumption that the small change in wall 

direction produced only small perturbations in the uniform flow behind 

the ·shock. 

The diffraction of a shock at a convex corner was studied by Parks 

[6] and applied to a shock tube of diverging cross-section. An analy­

sis similar to that used for nonstationary, one-dimensional, wave 

interaction problems was presented along with an experimental study., 

Ting and Ludloff. [7] considered the effect of a small lump on a 

blast which propagated along a flat surface. This problem is similar 

to Lighthill's problem [4], but a different technique was used to obtain 

the solution. 

Chester used Lighthill's technique to solve three linearized prob= 

lems. One paper [8] investigated the disturbance produced behind a 

plane shock that propagated through a channel in which the width 

possessed small variations. The shock strength was arbitrary and a 

relation was developed for the pressure change behind the shock along 
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a channel variation. A.second paper [9] extended Lighthill's work to 

consider the interaction of a shock wave with an infinite, yawed, thin 

wedge. Chester [10] extended his own work of the first paper to the 

propagation of a.shock along a tube of arbitrary cross sectional shape 

but with small variations in the cross sectional area. 

A theoretical study was conducted by Laporte [11] on the passage 

of a shock along a channel possessing a constriction or sudden area 

reduction. The purpose of the study was to present the diffraction 

theory for a shock encountering head-on a flat plate on which a regular 

array of perpendicular spikes or wedges was mounted. 

In 1956, Whitham [12] presented a method to treat weak shock prop­

agation problems of three independent variables. A large number of 

ray tubes was assumed to compose the flow field. For a single tube the 

energy was assumed to be conserved as a shock propagated along the tube. 

Geometrical acoustic theory was applied with the additional assumption 

that a shock wave moved at a speed appropriate to its local strength. 

A number of examples were given to demonstrate the use of the theory. 

The examples included unsymmetrical explosions and sonic boom problems. 

Chester's work on.shock propagation along a slowly varying.channel 

.was extended by Chisnell [13]. A first order relation between changes 

in area and in shock strength was developed in which reflected waves 

were neglected and the average shock strength was conserved along the 

channel. 

Ting [14] considered the problem of the diffraction of a small 

disturbance caused by a convex right angle corner. The primary appli­

cation for this work was wing-body interference. 



Whitham [ 15'] extended his previous work to give an approximate 

theory for two-dimensional problems of diffraction and stability of 

shock waves. The theory was based on the-ray tube concept and on the 

relation for area and shock strength changes developed by Chisnell. 

Reflected waves were neglected and the average shock strength was 

assumed to be conseryed along the tube. Disturbances to the flow 

were represented as wave propagating along the shock. This wave car­

ried changes in shock angle and Mach number. Discontinuities of the 

disturbance wave were considered so t.hat the shock could be diffracted 

on a way similar to the diffracted part of a Mach.reflection. Whitham 

applied the theory to a number of diffraction problems. 

In 1958, a paper [16] was presented by Whitham which referred to 

the work of Moeckel on the interaction of an oblique shock wave with 

a shear layer and to the work of Chester and Chisnell on the propaga­

tion of a shock down a nonuniform tube. Whitham obtained the same 

results as the above authors, but by a simpler method. The discussion 

by Whitham was mainly to gain a better understanding of the results 

given by his method. 

Sternberg [17] gave a general discussion of the triple-point 

region of Mach reflections. An unsuccessful experimental attempt was 

made to define the angles between the shocks at the triple point. Also 3 

a mathematical model was suggested which might be used to gain a better 

understanding of the problem. 

In 1959, Whitham [18] extended his earlier work to apply his theory 

for shock propagation in three dimensions. An analogy between the pre­

sented theory and steady_supersonic flow was found. 
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The diffraction of a shock wave by a small wedge-like deflection 

was treated by Be.zhanov [ 19]. The method of solution of the proble.m 

made possible solution of more general physi.cal conditions than 

Lighthi 11 's approach to the problem. Solutions for the flow could be 

found when the wall deflected as a result of the oncoming shock and in 

the presence of unsteady disturbances ahead of the shock front which 

are generated by wall motion. 

The diffraction of plane strong shocks by a cone, a cylinder, and 

a sphere was studied expe:rime.ntall.y by Bryson and Gross [20]. Whitham' s 

theory of shock diffraction was applied to the same physical models 

and gave very good results. 

The diffract.ion problem of a plane weak shock wave by wall contours 

of arbitrary shapes was considered by Fi.li.ppov [21]. A number of two·~ 

dimensional shapes were considered. The problems were solved in a lin­

earized formulation and no consideration was given for nonlinear regions. 

Smyrl [22] obtained a solution for the pressure field behind an 

arbitrary plane shock after the shock has encountered a thin airfoil 

moving at supersonic speed. The problem was linearized and a closed 

form solution resulted. Several examples were given to illustrate the 

effects of shock strength, airfoil speed; and yaw angle. 

Whitham's method of diffraction of blasts by stationary bodies was 

applied by Miles [23] in 1963 to the problem of a blast diffracted by 

a thin supersonic wedge. Results by Whit.ham's method tended to the 

exact results for weak shocks but were unsatisfactory for strong shock. 

A discussion and bibliography concerning reflection and diffrac­

tion of shock waves was presented by Pack [24]. A particularly good 

discussion of shock reflections is given. 
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Wolff [25] has presented a study of the head-on interception of a 

flying conical body with blast waves of various strengths. Two flight 

conditions were analyzed: a stationary body at sea level and a cone 

with a velocity of 19,000 ft./sec. at 40,000 feet altitude. The invis­

cid flow fields, shock-on-shock interaction phenomena, and non­

equilibrium effects were determined. Some discussion was given for a 

body flying out of a blast. The analytical method employed was a 

co-ordinate transformation to make shock waves steady. Real-gas effects 

were included, and estimates of pressure distribution on the body as a 

function of time resulted. 

Lee [26] discussed some aspects of the laboratory,simulation of 

strong blast waves on flying projectiles by means of a shock tube dis­

charging into a wind tunneL Lee conjectured that for strong shocks 

(i.e., Mach number> 4) that the gas behind the shock from the shock 

tube projected from the tube as a column. He observed that if this 

were true the test time would be very short. Lee also discussed the 

use of the shock from a shock tube as a blast wave through which a 

hypervelocity model could be fired. 

The majority of the analytical methods reviewed used some means 

of linearization to obtain solutions. The nonlin~ar shock diffraction 

methods were limited in that the flow field behind the shock was not 

defined. Therefore, there are no analytical procedures available to 

treat a complex nonlinear shock propagation problem. 

Numerical Investigations 

In 1950, a finite difference scheme was introduced by von Neumann 

and Richtmyer. [27] in which a mathematical "viscosity" term was added 
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to the Lagrangian equations. The "viscosity" term allowed a shock to 

be represented as a steep continuous gradient of properties,.rather than 

a discontinuity. Using this representation the difference equations 

were written explicitly and the shock was treated as a steep gradient 

interior to the field and not. as a discontinuity boundary. Require-

ments for defining the mathematical "dissipative" term were given and 

are presented in Chapter IV of this study. 

Courant et. al. [28} presented a difference method for solving 

nonlinear hyperbolic equations in which the order of magnitude of the 

accuracy was the same as the order of magnitude of the net width. A 

scheme for curvilinear and rectangular nets was given. The sufficient 

condition given for convergence of the scheme was that the domain of 

dependence of any point in the net as given by the·difference equations 

may,not be less than the domain of dependence determined. by the differ-

ential equation. Shock waves and other discontinuities were treated 

as boundaries. 

In a report written by Lax [29] a very general discussion of 

mathematical conservation laws was given and a difference scheme was 

presented for shock propagation problems. By defining the time deriv-

ative as 

fmt-k 1 + fk .• 
2 m-1) 

Lax showed that a shock may be handled as a steep gradient, similar to 

the representation give~ by van Neumann and Richtmyer. By rearranging 

the terms of Lax's difference equation, it has been. shown [30] that the 

equation could actually represent a differential equation in which a 



"dissipative" term had been added. One.-dime.nsi.onal problems were pre·· 

sented to compare the results of the scheme with those by classical 

moving shock theory. 

Ludford et. al (31] presente.d a difference method using a ndi.s··· 

sipative" term based on a viscosity law of physically proper form. How·· 

ever, to obtain reasonable results, unrealistically large. values of the 

physical viscosity were used. 

Lax presented in Reference 32 the work that had been done for the. 

report discussed above. The paper was obviously required to be con­

densed, leaving out some details the report contained. 

In 1955, Lax I s difference scheme was extended to two--dimensions 

by Ludloff and Friedmann [3_3]. The problem of reflection and diffrac­

tion of strong shocks around corners of arbitrary angle was solved by 

an elliptic method and by a hyperbolic method (Lax's extended method). 

For the elliptic method conical coordinates were introduced and the 

basic equation became elliptic in nature. A difference approach was 

required to solve the equation and all discontinuities were treated 

as boundaries requiring an iterative procedure. The second method used 

was essentially Lax's technique for two dimensions in which the dis­

continuities were represented by steep gradients. 

Ludloff and Friedmann [34] discussed the difference equation used 

in the hyperbolic method applied above and pointed out the general 

characteristics of the met.hod for shock diffraction problems. 

Lax's difference method was used by Payne [35] to solve the equa­

tion of motion for the cylindrica.lly symmetric flow of a compressible. 

gas. A converging cylindrica.l shock was found to increa.se i.n strength;, 

in agreement with the rela.tion obtained by Chisnell [13,]. The presence 
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' 
of the "dissipative" term caused the pressure t.o remain finite at the 

axis and a reflected diverging shock was observed. 

Godunov [36] presented a difference scheme which was similar to 

the methods of von Neumann and Richtmyer and of Lax. One-dimensional· 

experimental problems were presented to illustrate the scheme. 

A discussion of systems of conservation laws was given by Lax and 

Wendro.ff in Reference 37. Also, a new di.fference technique was presented 

in which an artificial "viscosity" was used. One~·dimensional problems 

were used to demonstrate the results of the technique. 

A difference method was presented by Rusanov [.38] in 1960. Thi.s 

scheme also utilized a "dissipative'' term to obtain solutions for shock 

diffraction caused by a number of different geometries. These geome·-

tries are shown in Figure 11 where the dashed lines represent the ini·~ 

tial shock positions. Problem A involved a regular reflection and B 

involved a Mach reflection. Diffraction of a shock at a right convex 

corner is shown in c, and a head-on encounter of a shock with a right 

convex corner is shown in D. Geometries E and F are, respectively, 

a shock wave propagating from an annulus into a circular pipe and a 

shock propagating along a pipe into an annulus. 

The "dissipative" difference method of von Neumann and Richtmyer 

was applied by Makino [39]. The scheme was used to obtain numerical 

calculations of the-interaction of two spherical blast waves in air. 

The Particle-in-Cell method of the Los Alamos Laboratory Computer 

Center was discussed by Harlow [4o]. This met.hod uses features of both 

Lagrangian and Eulerian meshes for compressible flow problems. 

A report by Crocco [4(t gave a new numerical approach for solving 

the Navier-Stokes equations. The technique was applied to a one-
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Figure 11. Shock Diffraction Problems· Presented 
by Rusanov [38]. 
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dimensional proplem in which the unsteady equations were solved to 

obtain a steady state solution. 
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Burstein [42] applied the Lax-Wendroff method to obtain numerical 

results for oblique and Mach reflections in air. The Mach reflection 

calculations agreed with experimental photographic data obtained from 

.wind-tunnel tests • 

. At the 1965 A.I.A.A. meeting, a two part paper was presented by 

Bohachevsky et. al. [43 l in w_hich Lax' s [32] and Godunov's [36] methods 

were described and extended to include Lighthill's ideal dissociating 

diatomic gas model. In the first part of the paper, the two methods 

above were applied to plane flow- about a rectangular body,. axisynunetric 

flow- about a flat faced cylinder, supersonic flow.in the afterbody 

section of a cylindrical body, and axisynune.tric flow about a sphere. 

The second part of the paper was devoted to a discussion on the develop­

ment of techniques for computation of three-dimensional flow field. 

Also included in the second part of the paper were results for an 

Apollo-type body at an angle of attack in an ideal gas flow. 

From the review of the above techniques and applications to shock 

propagation problems it appears that t~e only approach available to a 

complex nonlinear problem is a finite difference scheme of the types 

developed byLax, Gudonov, and Rusonov. 

Experimental Investigations 

To date only three ,experimental studies on wind tunnel simulation 

of blast wave phenomena using a shock tube have appeared in the liter­

ature. The first work reported was by-Pierce [1] in 1960. He had 

mounted a shock tube on the side of a wind tunnel with the driven end 
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of the tube well into the flow field of the tunnel. A reflection plate 

was placed on the end of the tube to minimize the interference by the 

flow around the tube. Shadowgraph photographs of blast waves passing 

over a number of simple shaped models were studied for tunnel Mach num­

ber of l.87. The initial blast wave Mach number was 2.38. Pierce con­

cluded that local increases of pressure due to a blast acting on a body 

were several times the pressure behind the blast. He also observed 

that the duration of this high pressure was very short. 

In 1964., a second experimental investigation was conducted by 

Bingham and Davidson [44] at Ohi.o State University. The wind tunnel. 

was a hypersonic free~jet tunnel and was operated at Mach 7.3. Shock 

tubes were installed at angles of 30.,, 60°, 90°, and 1.20° with respect. 

to the tunnel centerli.ne. The shock tube was a double diaphragm tube 

which was capable of generating shock ve.loci.ties from .3 7 600 to 13 ,500 

feet per second. Pressure measurements and Schli.eren photographs were 

taken of the interaction of the bow shock of a hypersonic body with an 

obliquely moving shock wave. From thi.s study it was concluded that thi.s 

type of simulation of the interaction of a body shock wave and a moving 

shock was a feasible method. 

The most recent study was reported by Merritt and Aronson [2] in 

January, 1965. At.tempts were made to conduct a side-on blast study 

using a shock tube discharging into a Mach 5 flow. The shock tube 

extended into the stream and had a reflection plate on the end. The 

side-on study was abandoned because the complex wave patterns defied 

analysis, and no theoretical solution was available for comparison. 

The shock wave was highly curved and attenuated rapidly, and it was 

very difficult to get clear pictures at Mach 5. A study was then done 
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for a head-on blast interaction. A small shock tube was mounted a 

short distance upstream of the throat of the tunnel nozzle and was dis­

charged in a downstream direction. A Schlieren study was made for a 

hemisphere-cylinder and a wedge model. There was good agreement between 

the predicted and ireasured overpressures at the stagnation point of a 

blunt body and on the surface of a wedge. 

From the literature presented, it may be seen that the blast sim­

ulation technique using a shock tube and wind tunnel possesses some 

difficult experimental problems. Even though these difficulties are 

present and the technique may not accurately simulate the blast problem;, 

no better alternative has been presented. Merritt and Aronson have 

presented a technique for a special case (i.e., head-on interaction), 

but a technique must be developed to obtain a general side-on blast 

simulation. To date there has been no technique given to determi.ne the 

variation of shock strength and direction of propagation along the 

shock. 



CHAPTER IV 

MATHEMATICAL ANALYSIS 

Geometric Models 

Plane Geometry - Still Medium 

A shock emerging from a rectangular opening i.nto a still medium 

spreads in a symmetrical manner about· a plane which is perpendicular to 

the ends and includes the centerline A-A (Figure 12). For a large 1.,/w 

ratio, the shock shape is affected by the end wall only in the inunediate 

vicinity of the end. Therefore, the model is taken as an infinite slit, 

allowing the problem to be formulated in two Cartesian dimensions, x 

and y, plus the time dimension, t. Since synunetry exists about a 

plane that includes A-A, any disturbance felt on this plane is reflected 

as if the plane were a wall. Thus, the center plane may be replaced by 

a wall (Figure 13). At all walls, a shock is considered to propagate 

in a direction parallel to the wall. The model may nowbe stated as 

the propagation of an initially plan,e shock from an opening, bounded on 

one side by a plane wall and on the other side by a 90° convex corner. 

Axisynrrnetric Geometry - Still Medium 

Synrrnetry exists about the centerline D-D (Figure14) for a plane 

shock emerging from a circular opening. In cylindrical coordinates;i the 

solution does not depend on the angular direction e because of this 

symmetry. Therefore;i an arbitrary. r.;1 z plane may be used to obtain the 
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Figure 12. Geometry for a Rectangular Opening. 
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Figure 13. Geometric Model for Plane Geometry -
Still Medium. 
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Figure 14. Geometric Model for a Circular Opening. 
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solution. For flow along the axis of symmetry, the grac;lien.ts in the 

radi_al d,irection of pressure, density, and z-direction yelocity must 

vanish. Also, the radial velocity must vanish at the axis due to the 

synnnetry. As in the plane - still medium model, shocks are considered 

to propagate parallel to all walls. 

Plane Geometry-- CrossflowingMedium 

The shock-crossflow.interaction is considered for a plane shock 

propagating from a rectangular opening.in a wall into a medium flowing 

parallel to the wall. If the ratio t/w (Figure 12) is large, then, 

as in the plane - -still medium model, the opening may be taken to be an 

infinite slit, which 1:1llows the problem to be formulated in the two 

Cartesian dimensions, x and y,. and the time dimension t. Because 

the shock is distorted by the crossflow, no other synnnetry exists. 

Therefore, the model is a plane shock emerging from.an infinite slit 

(Figure 15) into a sell).i-infinite flowing field. As in the other .models, 

shocks are considered to propagate parallel to the bounding walls. 

Governing Equations 

The conservation forll).s of the general flow equations are derived 

in Appendix A and are presented here. The fluid is assumed to be a gas, 

.which is inviscid and ideal (i.e., the internal energy.and enthalpy_ are 

functions of the absolute temperature, only). The general equations 

are: 

Continuity, 

.Q.Q. + 7 • ( pv) == o at (1) 
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Figure 15. Geometric Model for the Shock-Crossflow 
Interaction (Plane Geometry). 



Momentum, 

o( PV} + 7 • p[vv] + 7p = ot 

Energy, 

.QE:. + 7 . [(e + p)v] = 0; 
at 

where p = density, 

p = pressure, 

v = velocity vector, 

e = fluid energy per unit volume 

= 

- 2 

P IY I 
2 + p 

k - 1 ' 

7 = divergence vector operator. 

0 ; 
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(2) 

(3) \ . 

The above equations are first order, quasi-linear, partial differential 

equations with dependent .variables .e, v, and p. Equation (2) is 

a tensor equation which represents a system of equations for orthogonal 

momentum components. These equations are also said to be·in.conservation 

form (i.e., 0f/ 0t + 7 • F = 0). The properties of quasi-linear 

conservation equations are discussed in a later section of this chapter. 

The equations needed to describe the phenomena for the defined mathe-

matical models are dependent on time and two space variables. 

The equations which describe the phenomena in the still and cross-

flow media plane models are given in Cartesian coordinates (x, y). The 

velocity and the divergence operator are defined respectively as 

v ui + vj 

and 

7 



where i = x direction unit vector, 

j = y direction unit vector, 

u = x velocity component, 

v = y velocity component. 

The flow.equations are then: 

Continuity, 

Momentum, 

x-direction 

o( Pu) 
at 

y-direction 

ac Pul + 
ax 

+ .Q_ ( pU2 + p ). oX 

g( pv) -
oY o; 

}t- ( pv) + } ( puv) + ~ ( pv2 + p) 

Energy, 

0 

= 

..Q.... ( e) ot + ·a_. [ ( e + p )u] + .Q_ [ ( e + p )v] = ox oY 

The fluid energy is 

e = 

( 4) 

( 5) 

( 6) 

o. ( 7) 

(8) 

The flow equations (lJ.), (5), (6), and (7) may be written as a single 

equation: 

o, 

where f, pY are treated as four component vectors: 
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{
pu 2 } Fx = p + pu 
puv 
(e + p)u 

tiv } puv 
·2 p + pV • 

e + p)v 

The equations for the axisymmetric, circular model are given in the 

cylindrical coordinates, z and r. The velocity and the divergence 

operator are defined respectively as 

V = vii + uk 

and 

7 • ( ) - ii [} + ~ c )] + 

where ii = r direction unit vector, 

.... 
k = z direction unit vector, 

u = z velocity component, 

v = r velocity component. 

The flow equations are now: 

Continuity, 

t: ( p) 

Momentum, 

z-direction 

}t (p14) + 

r-direction 

}t ( pv) + 

. Ene.rgy 
' 

+ .Q..... ( pu) 
c)Z 

.a__ ( pu 2 + p ) 
oz 

}z (puv) + 

+ .Q..... (pv) 
or 

+ .Q.Y. = 
r 

+ }r- ( puv) + Puv 
r 

2 

L 2 .£Y_ ( pV + p) + or r 

o; 

= 0 

= 0. • 

_g_ (e) 
ot 

+ .Q..... [ ( e + p )u] + _g_ [ ( e + p )v] + v ( e + p) 
c)Z . or . r 

( 10) 

(11) 

( 12) 

=·, o. 
( 13) 



The fluid energy is 

e = + k - 1 • 
p ( 14) 

The flow equations ( 10), ( 11)' ( 12), and ( 13) may be written as a single 

equation 

M. + .£ + £ + iv = 0 ( 15) 
ot oz or 

by.considering f, 
z Fr and iv as four component vectors: F ' ' 

{]~ Gu J 2 

f = Fz = l:)U + p • 
' pv (:)UV 

e (e + p )u 

Gv J CuJ Fr (:)UV • iv 
v = fi)v2 + p ' = r pv 

( e + p)v e + p 

The dependent variables (p, u, v, e, p) of Equations (9) and (15) 

are made dimensionless with respect to some reference state, which for 

this study. is the state in front of a moving shock wave. The non-

dimensionalizing method, Appendix c, gives the static properties, p 

and p, .in front of the shock a value of unity and behind the shock a 

value equal to the property ratio across a normal shock as given by a 

standard compressible flow table (45]. Velocities are non-dimensionalized 

with respect to the quantity /p/ (.i) in front of the shock. 

Mathematical Conservation Laws Applied to Gas Dynamics 

The mathematical properties of conservation laws presented in this 

section are only those which pertain to nonlinear.wave propagation in 

gas dynamics. For a general discussion of the mathematics of conservation 
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laws, the reader is referred to the books, Non~Linear ~ Propagation 

by Jeffery and Taniuti [461 and Methods of Mathematical Physics, Volume 

II by Courant. and Hilbert· [47]. A discussion of the properties is 

given here with references for required proofs. 

The differential form of a mathematical conservation law is expressed 

as 

( 16) 

where f and F are not independent. Equation ( 16) is said to be in 

divergence form and expresses the divergence free character of the field 

(f, F), (i.e., the divergence of the field vanishes). 

If jump discontinuities of f and F are presentacross a surface 

a, certain conditions must be satisfied to represent properly the dis-

continuity. The generalized Rankine-Hugoniot relation [46], 

(17) 

must be satisfied for the discontinuity. surface cr. The. brackets here 

denote changes in the quantities, f and F, across the surface a, 

and h is the local velocity of propagation of a, along the unit 

normal of cr, n. In gas dynamics the conservation equations of the form 

of Equation (16) are statements of the conservation laws for mass, momen-

tun, and energy, Equations (1), (2), and (3). The jump discontinuity 

a is gas dynamics, described by the generalized Rankine-Hugoniot rela-

tion,. Equation ( 17), is a shock wave where 11. is the shock speed. For 

a stationary shock,the shock speed would be zero, which gives the more 

familiar Rankine-Hugoniot relation. One additional condition must be 

satisfied to determine a physically relevant state across a shock because 

the direction of the change of entropy must be defined. Therefore, the 



entropy condition (i.e., the second law of thermodynalllics) must be 

satisfied to.ensure the supersonic character of shocks. 

40 

The solutions for the conservation laws are of two types: genuine 

and weak. A genuine solution.is a function which satisfies the differ­

ential equation and is Lipschitz continuous (i.e., a solution which is 

continuous and has a bounded first derivative). The concept of a weak 

solution ( also called a generalized solution) allows the solution to 

be discontinuous. Therefore, the weak solution may. possess jump dis­

continuities, such as the discontinuity surface r:r mentioned above. 

The general theory of weak solutions has been discussed in mathematical 

journals [29], [37], [48], and (49]. It has been. shown that a genuine 

solution is a. special case of a weak solution; that is, a weak solution 

with continuous first derivatives is a genuine solution. The flow of 

a gas in a two-dimensional space R may serve as an.example of the 

two types of solutions. Let a shock surface a separate the region R 

into two subregions 1 and 2. The solution for region 1 is a gen­

uine solution f 1 because the flow is uniformand possesses no discon­

tinuities. Likewise, the solution f2 for region 2 is a genuine 

solution. The generalized or weak solution of region R is formed by 

taking f 1 and f 2 together if the Rankine-Hugoniot relation, Equation 

(17), is satisfied across g. A weak solution, a~ defined, is not 

unique because in ph.ysical phenomena cer.tain. quantities require a defined 

.direction of change across discontinuity surfaces. Entropy is a quan­

tity which must.always increase across a shock discontinuity (.the second 

law of thermodynamics). Therefore, the entropy condition must be satis­

fied by a weak solution before the solution may represent.a physical 

shock problem. 
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A shock discontinuity is an irreversible process involving viscous 

and heat conduction effects while the conservation equations, (1), (2), 

and (3), are derived for an inviscid gas and describe reversible proc-

esses. A method of o.btaining physically relevant weak solutions for 

the conservation equations, (1), (2), and (3), involving irreversible 

processes has been· suggested by a number of mathematicians [27], [48], 

(50], [51], and [52]. The method is to introduce mathematical terms 

with small coefficients which are analogous to the "dissipative'term.s of 

viscosity and heat conduction. It is then postulated that weak.solu-

tions for physical phenomena may be obtained from the limit of mathe-

matical "dissipative" solutions as the coefficients of the "dissipative" 

terms tend to zero. Studie~,.[50] and [52], of the equation 

0F(x 2 t, f) 
0X 

= 

haveestablished that solutions of the equation with given initial con-

ditions tend to a weak solution of 

.of + aF(x, t, f) = 0 
at ax ( 18) 

with the same initial conditions. Olejnik [52] has prov~d the existence 

of the weak solution for Equation (18) obtained by this method. In a 

study of continuous dependence of solutions upon their initial condi-

tions, Dougli.s [53] rederivecl. Olejnik 's results as a special case. 

Olejnik also has given conditions for the use of nonlinear ''dissipative" 

terms (i.e., 
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The use of nonlinear terms has also been suggested by Godunov [48], [51]. 

The addition of the "dissipative" terms causes the equation to be para-

bolic in nature. Therefore, the solution of the parabolic equation 

oF(x 1 t 1 f) 
ox = ( 19) 

with the initial condition f(x, o) = t(x), gives as a limit, for 

A~ o, the weak solution of the hyperbolic equation 

c,F(x, t 2 f2 
ox = 0 0 (20) 

When a system of equations in the form of Equation (19) is written 

for the conservation equations (1), (2), (3), a finite difference 

technique must be used to obtain a solution because of the nonlinear 

character of the equations. A number of different "dissipative" terms 

have been defined to represent moving shock waves [27];1 [36L, [37L 

[38]. In numerical calculations the "dissipative" terms allow the 

shock to be smeared over a narrow region in which flow properties are 

represented as very steep continuous gradients. Von Neumann and 

Richtmyer [27], who were the first to apply the mathematical 11 dissipa-

tive" method to shock propagation, have given four requirements that 

must be met in defining a, coefficient for the "dissipative" term: 

1. The equations with "dissipative" terms must possess solutions 

without discontinuities. 

2. The thickness of the shock must be of the same order as the 

length ~x used in numerical calculations, independent of the 

shock strength and of the condition of the flow into which the 

shock is propagating. 



3. The,effect of the "dissipative" terms must be negligible out-

side the shock region. 

4. The Rankine-Hugoniot equations must be satisfied across the 

shock for a distance greater than the shock thickness. 

It has been observed also that the addition of the "dissipative" terms 

has the effect of adding stability to the difference equation. 

Difference Technique 

The solutions of the conservation laws for the plane geometryJ 

Equation (9), and axisymmetric geometry, Equation (15L are obtained 

by using the "dissipative" method previously described. The difference 

scheme of Rusanov [38] is developed below, including important details 

omitted in the original paper 7 for the nonlinear "dissipative" equation 

oFX + oFY 
ox oY 

L [ ( ) ¥-xf .J + ox A x,y,t o (21) 

for plane geometries and 

.Q_ [c. ( z .:, r., t) .Qf J + _Q_ [o( z ;, r' t) of J oz oz ar or (22) 

for axisymmetric geometries. The coefficients A, B, C, and D are 

determined by applying the Fourier stability technique to the difference 

equations for Equations (21) and (22). 

The Equations (9) and (15) are written in the form of Equations 

(21) and (22), respectively; and, using a square net, the difference 

scheme for a general field point is derived in Appendix D. The square 

net (Figure 16) has steps /}.x=(l!,y=h, 
1. 

At= T in the (x,y,t) space. 

The coordinate of any quantity at a net intersection point is (mh, 
J.. 
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Figure 16. Net Point Nomenclature for Plane Geometry. 
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Geometry. 
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and a quantity a, at this ~oint, i~ denoted by 

The increments hi and T are related through the angle X , 

n 
a n • m..,..t1 

which 

is between the diagonal h of a net and the x increment h 
i 

(Figure 

16). These h 
i 

and 

K 
i 

T relations are 

..'.L. 
h 

i 

K 

where hi = h cos X = h/./2 , for a square net.: 

K = K ~ i c: • 

The difference equation corresponding to Equation (21) is 

= 

where: 

x 
Fm+l 1, 

. ' F~,£-1 J 

; [ ~m+},£ - ~m-},£ + ~m,t+} - ~m,£-} ] 

= 

n 

+ 

(23) 

These definitions may be applied to the 1, direction by interchanging 

the roles of m and £. The relation for 

stability condition derived in Appendix E, 

where 

n 
0! m,£ 

w = constant 

n 

= 
W qm,£ 

2 

n 
0!m 1, is determined by the 

:; . 
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and ( Cour ant Number). 

The condition required for the equation to be stable is 

C ,t )2 
m,.t 

n 
$wcr s:1, 

m,..e 

where 

:s;; 1 • 

With 
n 

Er 
0 

= max 
m,.t 

the stability condition gives the require-

ment for w as 

and 

n 
C1 

0 

n 
Er :S: 1 • 

0 

1 
n 

(J 
0 

(24) 

If 
n cr is allowed to be a constant for all time planes, the value of 
0 

n ( ~n) K . and therefore of , 

= 

may be determined from 

n 
G1 

0 

[ .Jn 
. max (w + c)m,..e 

Therefore, only the constants a: and w, which satisfy condition (2~·), 

are needed to insure the stability of Equation (23) in a computer calcu-

lation. 

The difference equation corresponding to Equatiori.(22) for axial 

symmetry is 

= 



where the square net (Figure 17) has steps t!,r = t,z. = h 
J., 
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t,t = T in 

the (r, z, t) space, and the coordinate of a net intersection point is 

(mh1 , th1 , nr). The definitions for cp and K1 in Equation (23) 

and condition (24) may be used for Equation (25). 

The difference equations, Equations (23) and (25),.are for net 

points which are interior to a flow field. The boundary difference 

equations for flow along a wa~l, which is parallel to either of the 

coordinate axes, are developed in Appendix F. Also derived in Appendix 

Fis the difference equation for a net point on an axis of symmetry at 

r = O. The plane boundary difference equation for a point (m,t) on a 

wall parallel to the x axis is 

= x 
Fm+l,t 

(26) 

where the upper and lower signs are, respectively, for flow above or 

below the wall. Only the first, second, and fourth c;omponents of fn+l 
m,t 

are calculated by Equation (26). n+l The third component ( pv )m,t is zero 

from the boundary condition v = 0 at the wall. Similarly, for a wall 

parallel to they axis, the equation is 

= 
K 
21 [ 

i [ cpm,t+f if1m,,t-! J (27) 

gives the value of the first, third, and fourth components of fn+l 
m,t :J 

where the 4pper and lower signs are, respecti.vely, for flow to the 
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right or left of the wall. The second component n+l 
(pu)m,J, is zero from 

the boundary condition. The axisymmetric boundary. difference equations 

are 

= Jn - T 

+ 1 [ ~m-!,£ J (28) 2 'm+.1. ,R, 2, 

for a wall parallel to the z axis and 

fn+l 
:,:: Kl [ r- Kl [ 

n 
= fn Fz Fr Fr J - T W:,J, m,J, m,J, m±l,J, 2 m+l,J, m-1,,R, 

+ ~ [ ~m n+.1. 
. JJfJ 2 

for a wall parallel to the r axis. 

(29) 

The sign convention and com-

ponent conditions for Equations (28) and (29) are, respectively, the 

same as for Equations (26) and (27). For a point on the axis of sym-

metry r = o, the difference equation is 

= 
K 
21 [ 

+ ~ [ (30) 

where the quantity v/r in 
~n 
1j, is taken at the point (m, 1)., 
m,o 

To solve a flow problem by a finite difference method, the defined 

field of the problem must be represented by a net of points at which 

the difference equations apply. Also, the solution obtained by a finite 

difference technique is an approximate solution and only approaches the 

true solution of the differential equation as the net point spacing 



approaches zero. These two facts, plus the condit,ion that the shock 

thickness must be of the order of the net point spacing, require that 

a· large number of points must be defined to represent the flow field. 

Therefore, shock propagation proble~s considered here, using the differ-

ence equations established above, must be programed for a high speed 

digital computer. A CDC 3600 computer was used for the programs pre-

sented in the following sections. 

Application of the Difference Technique to Shock 
Propagation Into a Still Medium 

·For shock propagation into a still medil.lil1, a computer program .was 

developed which gave solutions for both the plane and axisynunetric geom-

etries. The sample net in Figure 18 will be used to explain the appli-

cation of the difference equations to the two geometries. 

Consider, first, the plane geometry. The points on the lines A, 

B, and C represent points along the boundary walls and all other 

poin~s are interior field points. The walls A .and B are parallel 

to the x axis and flow.is in the x direction; therefore, the difference 

equation (26) is applied along these lines. Along the wall c, which is 

parallel to the Y, axis, the flow is in the y_ direction which requires 

the difference equation (27) to be used. The general field equation (23) 

is applied to all interior points. 

The initial conditions for the field may be defined by considering 

. the three regions of Figure 18. In Region 1 the field is uniform 

with a pressure p1 and is said to be still (i.e., velocity is zero). 

The flow in Region 2 is uniform with a velocity u 
2 

in the positive 

x direction and a pressure p2 greater than p1 • The Shock Region 
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divides Regions 1 and 2 and is the region in which a shock is defined. 

It has been observed that for an initial i;;hockdefined over one space 

interval (Figure 19) a small ripple disturbance is propagated away from 

the shock, similar to the disturbance shown by Lax and Wendroff.. [37] in 

Figure 20. The disturbance is formed because the initial conditions at 

these points do not satisfy. the conservation equations. To eliminate 

this disturbance, a new method has been developed in which the shock 

is initially defined over two intervals. This is discussed in detail 

in Appendix G. 

The axisymmetric geometry.is now considered, using again Figure 

1a The points on the A line represent an axis of symmetry at r = O; 

therefore, the difference equation (30) is applied to these points. 

The points along the lines B and C represent walls which are, 

respectively, parallel to the z and r axis. The difference equations 

applied to these walls are Equation (28) for line B and Equation (29) 

along line C. The difference equation (25) for a point in an axi-

symmetric field is applied to all interior p9ints. 

The initial condition for the axisymmetric fielq, also, may be 

defined by considering the three regions of Figure 18. In Region . 1, 

as in the plane geometry, the field is still and has a pressure p1 • 

The flow in Region. 2 is uniform .with a velocity u in the positive 
2 

x direction and a pressure p 
2 

greater than p • 
1 

A shock, which 

propagates in x direction, is defined in the Shock Region by the same 

method used for the plane geometry shock. The computer program for the 

aboye application is discussed in Appendix H. 
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Application of the Difference Technique to the Shock 
Propagation Into a Crossflowing Medium 
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To obtain solutions for the propagation of a shock into a perpen-

dicular crossflow a computer program has been developed and is discussed 

in Appendix B. A sample net of points (Figure 21) is used to describe 

the application of the difference technique for the crossflow. The 

points on the lines A and B represent boundary walls which are 

parallel to the x axis and points along the lines C and D replace 

boundary walls that are parallel to the y axis. Flow is considered 

to be parallel to all of the boundary walls; therefore, the difference 

equations (26) and (27) are, respectively, applied to the lines A and 

B and to the lines C and D. The general field equation (23) for 

plane geometries is used at all interior points. 

The initial conditions for the flow field are defined in three 

basic regions of the field. The flow in Region 1 is uniform with a 

pressure and velocity v 
1 

in the positive y direction. Region 

2 is also a uniform flow field with a pressure p, greater than p, 
2 ' 1 

and a velocity u 
2 

in the positiye x direction. The two uniform 

fields, Regions 1 and 2, are separated by a Shock Region in which a 

shock wave is defined. The shock propagates in a positive x direction 

and is defined, as stated before, over two net intervals to eliminate 

ripple disturbances on either side of the shock (Appendix G ). 
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CHAPTER V 

RESULTS FROM THE COMPUTED PROBLEMS 

The results obtained from the computer programs are presented in 

the second and third sections of this chapter. In the first section,a 

discussion is given on the procedure for obtaining dimensional values 

from the dimensionless results. The results of a shock.propagating into 

a still medium, for both the plane and axisynupetric geometries, are 

presented in the second section. The final section contains the results 

for a shock propagating into a crossflowing medium.. 

Procedure for Obtaining Dimensional Quantities 
From Computer Results 

All quantities used in the computer programs were made dimension-

less by the m.ethod described in Appendix c. To haye dimensional thermo-

dynamic properties and velocities requires only that the nondimension-

alizing technique be reversed (iie.,. p' =pp' 
1. 

The time increment n was not constant 'T a 

and u' = u J-p-1 '-/~p-1 -1 )*. 

b~t varied from time 

plane time plane. The value of n for given time plane was to 'T a com-

puted by using the relation given on page 46 

O'o 
= 

*The prime denotes dimensional quantities and the subscript 1 refers 
to the initial condition in front of the shock. 
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where 

The quantities a0 and h were chosen to be constant for all time 
1. 

intervals. Therefore, the values of n 
T depended on the maximum value 

of (w + c) n for each time plane n, requiring that Kn be computed 
m,..ti 

for each time plane. The total dimensionless time was given by 

or 

h 
t = 1.' 

12. 

r) 
\ .,.n 

t = LI 

= 

n 

I 
[ max (w + c)m,..eJ 

To obtain a dimensional time from this relation requires that the veloc-

ity terms in the numerator be multiplied by the quantity J p1 '/p1 ' , 

and that the net.spacing h be replaced by the ratio of the charac-
1. 

teristic length to the number of net spacing along that length (i.e., 

L'/N). Using this information, dimensional time may. be given as 

t I = 

or 

Tl = 

where 

Tl = 

n 

I [ max 

t I C I 

1. 
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The parameter T] is a dimensionless quantity which is used to desig..; 

nate the time for the results in the following sections. 

Numerical Results of Shock Propagation 
Into a Still Medium 

The results of a shock propagating into a still medium were 

obtained for both plane and axisymmetric geometries. Two sets of ini-

tial conditions were computed for the plane geometry and one set for 

the axisyillll_letric. The initial data are given in Table I. The results 

* for the pressure ratio p2/p1 = 4.0 for the plane geometry,were com-

pared with results reported by Rusanov [38]. 

TABLE I 

INITIAL CONDITIONS FOR STILL MEDIUM PROBLEMS 

Properties 
Plane Axisymmetric 

Geometry Geometry 

k 1.4 1.4 1. 4 

p 1. 0 1.0 1.0 
J_ 

Pi 1. 0 1.0 1. 0 

u o.o o.o o.o 
1 

p2 4.o 10.0"'·- 10.0 

P2 2.5 3.81 3.81 

u 1.34 .2.57 2.57 
2 

cro 0.50 0.50 0.50 

w 1.345 1.345 1.345 

*Subscripted no.tation is defined in Figure 20 page 52 • 



The characteristic length used to determine the T] values was the ini.-

ti.al length of the eIUerging shock, R (Figure 18), and the number of 

net spaces N was 29. The results from the initial conditions of 

Table I are given in Appendix A in the form of plots of the flow field 

with constant velocity modulus and constant pressure lines. Also given 

with each set of results is a plot of T] versus Time Plane. The 

approximate shock location is denoted by a dashed line in the pressure 

and velocity figures. The shock location was taken as the location of 

the average pressure of a concentrated pressure region. A history of 

the approximate shock locations is given in Figures 22, 23, and 24, for 

the three initial shock conditions. Also plotted on these figures is 

a line along which a weak disturbance would theoretically propagate from 

the corner behind the shock. For a given shock position the shock prop-· 

erties begin to vary along the shock front from the disturbance line to 

the vertical wall, as would be expected. A water table (Plate II) which 

. was equipped with a shock channel (Plate II) was used to obtain photo-

graphs of hydraulic wave forms. The wave forms in Plate III correspond 

to the initial pressure ratio of 10.0 for the plane geometry and compare 

well in shape and movement with the shock positions of Figure 23. The 

particle vector field for the three initial conditions are shown in 

Figures 25, 26, and 27 for a time when the shock has progressed approx-

imately a distance R into region 1. 

Numerical Results of Shock Propagation Into a 
Crossflowing Medium 

Two sets of initial conditions were computed for the crossflow 

problems. In both sets of conditions the properties of the shock emerg-

ing into the flow were the same, but the crossflowing stream had Mach 
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PLATE III 

A HYDRAULIC BORE ( CORRESPONDING TO A SHOCK PRESSURE RATIO 
OF 10.0 ) EMERGING INTO A STILL MEDIUM 

FROM A SHOCK CHANNEL 
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numbers of 2.0 and 5.0 in the two cases. The initial conditions are 

given in Table II where the subscripts are defined according to Figure 

21 on page 54 • 

TABLE II 

INITIAL CONDITIONS FOR CROSSFLOWING PROBLEMS 

Properties M = 2 0 M = 5.0 l. • l. 

k 1.4 1. 4 

pl. l.O 1.0 

pl. 1. 0 1. 0 

ul. o.o 0.0 

v 2.37 5. 92 l. 
* 29.5 29.5 poi 

p2 10.0 10.0 

P,, 3.81 3.81 
.::: 

u 2.57 , 2.57 
2 

v o.o o.o 
2 

Po2 7.8 529. 10 

(J 
0 

0.50 0.50 

w 1.345 1.345 

The characteristic length used to determine the Tl values was the 

channel width W , (Figure, 21), and the number of net, spaces N was 29. 

Constant yelocity modulus and cons,tant pressure line figures are given 

in Appendix A with a plot of Tl versus Time Plane Number for each,set 

*Subscript o denotes stagnation condition. 
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of initial conditions. The approximate shock position is defined by a 

dashed line in the same manner as for the still-medium problems. 

The Mach 2 and 5 crossflows give two qualitatively different 

conditions for the crossflow stream.with an initial shock pressure ratio 

of 10. O. This can be seen by considering values of p /p the ratio 
02 01' 

of stagnation pressure of the shock tube flow to that of the main stream. 

For the Mach 5.0 stream the ratio is 0.056, and for. the Mach 2.0 stream 

it is 3.76. For a stagnation pressure ratio p02/p01 less than unity 

the flow energy of the crossflowing stream is greater than that of the 

shock stream; and, therefore, the crossflow stream would tend to domi-

nate the flow from the shock channel. The Mach 5 flow represents the 

crossflow domination condition. For a stagnation pressure ratio p /p 
02 Ol. 

greater than unity the comparative energies of the two streams are 

reversed and the shock channel flow dominates the crossflow, as in the 

Mach 2.0 condition. 

In considering both of these conditions, it is well to note that 

the primary concern is to establish whether or not this arrang·ement of 

a shock emerging into a crossflow can represent a blast wave interacting 

with a flying body. 

The results of the crossflow domination of the Mach 5.0 stream is 

considered first. From the constant pressure figures in Appendix A, 

it is seen that the shock emerging into a high energy stream appears 

to seek a fixed location a short distance upstream of shock channel. 

The fluid location along the vertical wall (x/w~ 0.0) is found by exam= 

ining the pressure distributions along the exit plane (x/W = 0.0) of 

the shock channel for various times. Such a plot is given in Figure 28, 

and the fixed shock position is at y/W = - 0.67. The expansion along 



the downstream wall at y/W = 0.50 is also seen to be steady. The 

approximate shock position history in Figure 29 gives some understanding 

of the propagation of the shock while the particle vector field in 

Figure 30 gives an insight to the particle flow. The approximate shock 

shape and movement of Figure 29 seems to compare well qualitatively with 

the corresponding hydraulic waves in the water table photographs in 

Plate IV. It appears in the latter photographs that the hydraulic waves 

have also reached a fixed position a short distance upstream. From the 

water table pictures, it appears that the moving hydraulic wave has 

become a fixed curved wave at a distance x/W along the centerline of 

1.5. To investigate the possibility that a uniform portion of the shock 

exists, the pressure distributions along the y/W lines of 0.0 and 0.5 

were considered. From the extrapolation of the envelope of the pressure 

distribution curves, no connnon pressure values seem to exist for the two 

y/W locations at a connnon distance x. By considering the water table 

photographs, the extrapolated envelope appears to have extended beyond 

the position at which the shock becomes fixed. It appears, therefore, 

that for the condition where the crossflow stream possesses a greater 

energy than the shock stream there is no apparent way to obtain a uni­

form blast wave simulation. 

For the case in which the shock stream dominates the phenomenon 

(i.e., crossflow of Mach 2), it is observed that the shock wave emerges 

from the channel and propagates upstream at a fairly constant rate 

along the vertical wall. This woulq be expected since the total energy 

behind the i;hock-is greater than that of the crossflow stream. The 

progress of the shock along the wall may be seen by considering ·the 

pressure distribution in Figure 33 for various times along the exit 
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PLATE IV 

A HYDRAULIC BORE (SHOCK PRESSURE RATIO OF 10.0) 
EMERGING FROM A SHOCK CHANNEL INTO A 

CROSSFLOWING MEDIUM (MACH 5 FLOW) 
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plane of the shock channel (i.e., x/W = 0.0). The approximate shock 

locations for various times are given in Figure 34 and provide a better 

understanding of the shock shape as the shock emerges into a Mach 2 

crossflow. The particle vector field in Figure 35 may also aid in 

understanding the flow field behind the shock, It can be seen that some 

particles do move upstream. The shock shapes and propagation direction 

seem to compare qualitatively with the corresponding hydraulic waves i n 

Plate V • The hydraulic waves are seen to propagate faster norma l to 

the stream than the corresponding M = 5 condition but not as f ast 

downstream. These results should be expected since t he energy behind 

shock is greater than the energy of the stream. Since the wave does 

propagate well into the crossflow, it seems worthwhile to check the con­

ditions along the shock for possible blast testing simulation. From 

the hydraulic waye pictures it appears that a fairly uniform wave exists 

downstream of a line through the center of the shock channel. Therefore , 

the pressure distributions on the y/W lines of O, 0.5, and 1.0 (Figures 

36, 37, and 38) for different times are given to compare the shock pro ­

gress along these lines. By extrapolating the envelope of the pressure 

distribution on these curves and comparing them (Figure 39), at an x/W 

value of 2.0 the y/W lines of 0.0 and 0.5 have approximately the same 

peak pressure value; but this does not give the time at which the shock 

reaches this x/W point on the two y/W lines. By considering the 

plot of constant pressure lines on a time versus x/W diagram for the 

same two y/W positions (Figures 40 and 41 ), the rate at which the 

pressure wave moves in the x/W direction is seen to be fairly uniform ; 

and, by comparing the diagrams for the two y/W positions, the veloc­

ities of the pressure waves along the two lines are approximately the 
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Figure 35. Particle Vector Field for a Mach 2 Crossflow. 



PIATE V 

A HYDRAULIC BORE (SHOCK PRESSURE RATIO OF 10.0) 
EMERGING FROM A SHOCK CHANNEL INTO A 

CROSSFLOWING MEDIUM (MACH 2 FLOW) 
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same. Again considering that the hydraulic wave moved far into the 

stream, the constant pressure lines are extrapolated. The extrapolated 

values indicate that the shock would reach the x/W = 2 position at 

approximately the same time for both y/W planes. From the discussion 

thus far, a portion of the s.hock wave appears to be fairly uniform. 

For blast simulation the pressure history at a point must also be con-

sidered. In Figures 42 and 43 the pressure histories at a number of 

locations along the two y/W lines are shown and indicate that the 

pressure history at a point tends to be similar to that expected for a 

blast wave. 

From the above discussion of the two crossflow conditions, it 

appears that the blast simulation arrangement of a shock tube firing 

into a crossflowing stream may be possible within some definite limits. 

There seems to be no possible way of simulating a blast if the stagna-

tion pressure of the crossflow stream is greater than that of the shock 

stream. For the case where the shock stream dominates the crossflow, 

there appears to be a given x/W position for which a portion of the 

shock is uniform and may be expected to •give a reasonable blast simu-

lat ion. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

There are two primary conclusions that may be made from this study. 

The first conclusion pertains to the numerical technique used to obtain 

the solutions for the various problems given in this study, and the 

sec<nd concerns the applicability of the shock tube - wind tunnel 

arrangement for blast simulation. 

By considering the results given, the difference technique, 

described in Chapter IV, has been used very satisfactorily for a complex 

nonlinear interaction problem. There were two types of transient inter­

actions considered: the interaction of a shock wave with a crossflowing 

stream, and the interaction of two supersonic streams. To the author's 

knowledge, no similar application has been made for such a difference 

technique, and no other technique is available for this problem. 

From the results given in Chapter V, the conditions were estab­

lished for which the shock tube - wind tunnel combination would simulate 

a blast. The results indicated that only for a stagnation pressure 

ratio (i.e., shock stream to crossflow stream) greater than unity is a 

blast simulation possible. For the stagnation pressure ratio greater 

than unity, there exists a given location at which a portion of the 

shock is approximately uniform and may be used for blast simulation. 



Reconnnendations for Future Work 

Three reconnnendations are given below for future investigat ion of 

problems connected with shock propagation from openings. 

A double diaphragm shock tube has been constructed by a co-worker , . 

Mr. Glen Lazalier, to be used as a blast producing device. Using t he 

blast tube, an experimental study of shock propagat i on f rom both rec­

tangular and axisynnnetric openings into a still medium could be com­

pared with the numerical results presented i n this thesis. 

The results presented for the two crossflow cases demons trated the 

effect on given shock of a change in the cros s f low condition. An addi­

tional study to determine the effect of various strength (p2 /p1 ) shock 

waves on a given crossflow condition may be valuable and helpful in 

determining test conditions for an experimental investigation. It would 

also be helpful to obtain results for the conditions given in this the­

sis at greater times to establish better the shock simulation condi tions 

and the flow fields. 

It has been conjectured by Lee (26] that the contact discontinuity 

follows the shock closely for a strong shock. If this were true, the 

region directly behind the shock might be too small for desirable tes t­

ing. Therefore, additional work should be done to define the flow 

field between the shock and contact discontinuity as they emerge f r om a 

shock tube. In connection with this work there is a need to develop a 

numerical technique in which a contact discontinuity is acceptably r epre­

sented. In most difference schemes this type of discontinui t y is t oo 

greatly diffused to define contact surface loactions. 

The suggestions presented above are considered to be very impor ­

tant by the author. These additional studies would help to establish 
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additional conditions for the experimentalist to use in conducting blast 

simulation tests. 
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APPENDIX A 

PLOTTED COMPUTER RESULTS 

The results from both the still and crossflow computer programs are 

presented in this appendix .as field graphs. The still program results 

are given for constant pressure and constant velocity modulus lines • 

. For each initial pressure condition, the results are presented as a 

set containing an ~ versus time plane number graph with constant pres­

sure line and constant velocity modulus line plots. The crossflow 

results are presented similarly with the addition of a constant density 

. line graph at the end of each set of results. The results for the 

different initial conditions are presented in the following order: 

Still Problem Results 

1. Plane Geometry - Shock Pressure Ratio 4.0 

2. Plane Geometry - Shock Pressure Ratio 10.0 

3. Axisynunetric Geometry - Shock Pressure R~tio 10.0 

Crossflow Problem Results 

1. Mach 5.0 Crossflow. 

2. Mach 2.0 Crossflow. 
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Figure 44. 11 Versus Time Plane Number for Still-Plane 
Geometry. Initial Shock Pressure Ratio -
4.o. 
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Figure 45. Constant Pressure Lines for TI= 0.247 in Plane 
Geometry. Initial Shock Pressure Ratio - 4.o. 
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Figure 46. Constant Pressure Lines for TI= o.485 in Plane 
Geometry. Initial Shock Pressure Ratio - 4.o. 
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Figure 47. 
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Constant Velocity.Modulus Lines for Tl= 0.247 in 
Plane Geometry. Initial Shock Pressure Ratio -
4.o. · 
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Figure 48. Constant Velocity Modulus Lines for 'fl = o. 485 in 
Plane Geometry. Initial Shock Pressure Ratio -
4.o. 
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Figure 50. Constant Pressure Lines for~= 0.157 in Plane 
Geometry. Initial Shock Pressure Ratio - 10.0. 
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Figure 51. Con~tant Pressure Lines for 11 = O. 311 in Plane 
Geometry. Initial Shock Pressure Ratio - 10.0. 
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Figure 52. Constant Velocity Modulus Lines for T] = O. 157 in 
Plane Geometry. Initial Shock Pressure Ratio -
10.0. 
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Figure 53. Constant Velocity Modulus Lines for n = 0.311 in 
Plane Geometry. Initial Shock Pressure Ratio -
10. o. 
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Figure 54. ~ Versus Time Plane Number for 
Axisynnnetric Geometry. Initial 
Shock Pressure Ratio - 10.0. 
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Figure 55. Constant Pressure Lines for 1 = 0.157 in 
Axisymmetric Geometry. Initial Shock 
Pressure Ratio - 10.0. 
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Figure 56. Constant Pressure Lines for~= Q.310 in 
~xisymmetric Geometry. Initial Shock 
Pressure Ratio - 10.0. 
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Figure 57. Constant Velocity Modulus Lines for 11 = O. 157 in 
Axisymmetric Geometry. Initial Shock Pressure 
Ratio - 10. o. 
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Figure 58. Constant Velocity Modulus Lines for~= 0.310 in 
Axisymmetric Geometry. Initial Shock Pressure 
Ratio - 10. O. 
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1. 5 

x/w 
o.o 0,5 1, 0 

Figure 60. Constant Pressure Lines for~= 0.145 in 
Mach 5.0 Crossflow. 
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Figure 61. Constant Pressure Lines for TJ = 0.238 in 
Mach.5.0 Crossflow. 
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Figure 62. Constant Pressure Lines for~= 0. 328 in 
Mach 5.0 Crossf low. 
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Figure 63. Constant Velocity Modulus Lines for~= 0.145 in 
Mach 5.0 Crossflow. 
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Figure 64. Constant Velocity Modulus Lines for~= 0.238 in 
Machj.O Crossflow. 
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Figure 65. Constant Velocity Modulus Lines for~= 0.328 in 
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Figure 66. Constant Density Lines for~= 0.328 in 
Mach 5.0 Crossflow. 
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Figure 69. Constant Pressure Lines for~~ 0,297 in 
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Figure 70. Constant Pressure Lines for~= o.439 in 
Mach 2.0 Crossflow. 
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Figure 71. Constant Velocity Modulus Lines for Tl= 1.54 in 
Mach 2.0 Crossflow. 
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Figure 72. Constant Velocity Modulus Lines for il = 0.297 in 
Mach 2.0 Crossflow. 
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Figure 73. Constant Velocity Modulus Lines for 11 = o.439 in 
Mach 2.0 Crossflow. 
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APPENDIX B 

DERIVATION OF THE CONSERVATION FLOW EQUATIONS 

The general flow equations are the continuity, momentum, and 

energy. The equations are derived using vector notation in conserva­

tion form. The conservation of quantities through a control volume y, 

which is fixed in space, is considered. The control volume is enclosed 

by a surface a on which a unit normal n is defined as positive in 

an outward direction. The figure below is used for the derivation of 

the flow equations. 

Volume y 

Surface a 

Continuity Equation 

The continuity equation expresses the conservation of mass for a 

fluid flowing through the volume y. The mass balance for y may be 
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expressed in the form 

.[Net flux of mass crossing al = [Rate of change of mass in y]. 

The conservation form of the continuity equations is the familiar equa-

tion 

.Q.Q + 7 • ( pv) at = 

which is derived in many books [54], [55]. 

Momentum Equation 

0 ' (B-1) 

The momentum equation, which describes the conservation of momen-

tum, may be expressed as 

[Net force acting on the fluid in y] = 

[Rate of change of momentum of the fluid in y] + 

[Flux of momentum crossing cr] (B-2) 

Only the force due to pressure acting on a is considered (i.e., the 

viscous and bod~ forces are neglected). The total force acting on cr 

is 

I p dcr , 
CJ 

with dcr = ndcr • 

The total momentum contained in y is 

I pVdy ' 
y 

and the rate of change of this momentum.is 

I pVdy • 
y 

(B-3) 

(B-4) 



The total flux of momentum crossing cr is 

J ~[vvJ O a& 
Cl 

where [vvJ is defined as the dyadic product of two vectors 

tution of (B-3), (B-4), and (B-5) into (B-2) gives 

The 

or 

J p do = 
cr 

t- I pVdy + 
y 

divergence theorum applied to the 

I 7P dy = J g( i,v) 
dy + ot 

y y 

I + 7 • p[vv] + 
y 

f p[W] , dcr o 

CJ 

surface integral gives 

I '? . ( p[vv])dy 
y 

7P } dy = 0 • 
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(B-5) 

\l 
c • 

This integral vanishes for an arbitrary volume; therefore, the integrand 

also vanishes, 

o( ov) 
ot + 7 • p[vv] + 7p = 0 . (B-6) 

Equation (B-6) is the conservation form of the momentum equation. 

Energy Equat:Lon 

The energy equation derived considers the conservation of energy 

in y under the following conditions: 

1. Gravity and viscous forces are neglected. 

2. There is no heat addition to the fluid in y. 

3. The only work is the "flow work". 

4. The fluid obeys the ideal gas equation of state. 
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The energy of a fluid particle per unit volume is noted as e and 

defined as the sum of the internal energy and kinetic energy, 

e = pe + 

Using the ideal gas equation of state (p/p = RT) and the internal 

energy relation (e = CvT), the fluid energy is expressed as 

e = 

or 

e = e . + 1 ... 1v 12 • 
k - 1 2 P ' 

(B-7) 

where k is the specific heat. ratio (c /c ). The conservation 
p v 

of .the fluid energy per unit volume is 

[Net energy of the fluid crossing a]+ [Rate of "flow work" at er]= 

[Rate of change of the fluid energy in y]. 

The net energy crossing a is 

J eV • d& 
(1 

The rate of "flow work" per unit volume acting on a is 

J pv · da 
a 

The energy contained in the total volume y is 

I .edy 
y 

and the rate of change of this energy is 

(B-8) 

(B-9) 

(B-10) 
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t: J edy. 
y 

~ 

This rate is negative due to the defined direction of n. Substitution·of 

(B-9), (B-10), and (B-11) into (B-8) gives 

I eV • da + 
a 

I pV • d& = 
a 

- }t J edy , 
y 

The divergence theorum applied. to the surface integrals gives 

J : dy + J 7 • (eV)dy + J 7 • (pV)dy = O 
y y y 

or 

I { 
y 

7 • ((e + p)v]} dy = 0 • 

Since the integral vanishes for an arbitrary volume, the integrand also 

·vanishes to 

~ + 7 • [(e + p)v] = o at 

which is the conservation form of the energy equation. 

The Conservation Equations 

The system of conservation equations may be summarized: 

1. Continuity, 

~ . + 7 • ( r,v) = o 

2. Momentum, 

a(PV) + 7. p[vv] + at 7P = 0 

(B-12) 

(B-1) 

(B-6) 



3. Energy, 

~ + 7 ° [(e + p)v] = o . ot (B-12) 



AP;E>ENDIX C 

METHOD OF NONDIMENSIONALIZING DEPENDENT VARIABLES 

The properties on both sides of a normal shock wave which propa-

gates to the right are: 

P2 

u u 
P2 2 s 

T 
2 ... jk p2 c 
2 p 

2 

where U = shock velocity, s 

C = speed of sound, 

u 

k = specific heat ratio. 

p 
J. 

(Pressure) 

l pl. (Density) 

T 7reerature) J. 
pl 

c .. k-
l pl 

The properties of the gas are made dimensionless with respect to the 

properties in front of the shock (i.e., state 1). The velocities U, 
1. 

U, and U are made dimensionless with respect to the quantity 
2 S 

/.p /p The new state defined in front of the shock by x and •,/11 ·1 • 

behind as y gives the dimensionless properties on either side of a 

moving shock. 
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Py PX 

Py 
u D 

y 
u Px x 

T T y x 

c =Jk:z 
y Py 

= c Pi x 
x Px 

where 
P2 

Py =-
Pi u 

Pi 
1.0 p . = -= 

x Pi 

u 2 = y J pi/ Pi 

P2 
p = y Pi 

u 
D 

s 
"' J P1 / Pi 

p .1 
1. 0 Px = -= 

Pi 

T 
T 2 ·=-

y Ti 

u 
u = 1 

x 
JP/pi 

T 
Ti 

1.0 .• -= 
x T 

c = lk x 

1 

A transformation made to a coordinate system relative to the shock gives 

( let V denote velocity quantities in the transformed system) 

Py PX 

Py v = D u v = D - U Px y y x x 

T T 
y x 

c c x • ·y 

The static properties in state x have a value of 1.0. In ~he y 

state the static properties have the value of the property ratio across 

a normal s~ationary shock wave. 



APPENDIX D 

DERIVATION OF THE DIFFERENCE EQUATION FOR A FIELD POINT (m,t) 

The difference equation corresponding to the partial differential 

equation 

is obtained by using a forward difference for the time derivative and 

a central difference on the space derivatives. The time derivative is, 

then, defined in difference form as 

.ar = 
fn+l - fn 
m,t m,t 

I o ot · 

The central difference for the first order space derivatives is defined 

over a double net space, 2h1 , and is in the form 

and 
n 

(FY FY ) 
\'. m,t+l - m,t-1 

The second order space derivatives are also defined by a central differ·-

ence over a double net. space, 2h, .. l 
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and are given as 



.a_ [ M.J ox A(x,y, t) ~ 

C . n J n - A f - f m-1,.R, m,1 m-1,J 

and 

n n 

~y [B(x,y, t) ..ai.J = _l [Bn _L_l cf /1.J..l - f J -Bn l (f - f l'\) l o oY h 2 m,~ m,~· m, m,1- ~m,1 m,t-. ~. 
1 

With the above difference definitions, the difference equation has the 

form 

or 

fn+l _ fn 
m,1 m,1 

.,. 

n 
l [An · (f f J 

hl.2 m+-i,1 ~m+l,1 - m, 

_1 [Bn cf - f \ -
h 2 m,.t+i m,.t+l m,.R,) 

1 

Bn f - f C Jn 

m,t-.i m,t+l m, 

n 
- An cf -f J + m-i,1 m,1 m-1, 
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From Appendix E, the coefficients and are defined, in the 

deyelopment of the stability condition, as 

h 2 n 
1 Q' II m, x, 

and 

With~ these defiriiti.ons. applied :to. the· difference equation,. the final . 

form of the difference equation for a plane geometry is 

= 
K 

21 [.F:+i,t - F:-1,J, + F~,J,+l FY Jn + 
m,J,-1 

n ( Jn Q' f - f .+ 
m-i,t m,t m-1, 

n 

13n cf .,. f J m,t+i · m,J,+l m, 

n 

13:,t-i (fm,J, - fm,1,-1) ] · 

( D-1) 

.. F:or, axisymmetric geometry, t;:he partial differential equation 

= a.. [ .ci] .a.. [ _gf] ~~ C ( z, r, t) oz + or D( z, r, t) or . 

is represented by a difference ~quation which uses the same difference-

derivative and coefficient definitions as are used above for the plane 

geometry. The additional term . ,jr is defined at the point (m,J,) for· 

the time n (i.e., n 
,jr II)• m,x, 

Therefore, the difference equation for 

·an axisymmetric geometry is 



fn+l ... 
m, .t 
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K n 

21 [F~l,t - F:-lj).t + F:,.t+l - F:,.t-1] 

1 [ n ( Jn - 0( f - f 
2 m+i,.t mt-1,.t m, 

n ( Jn 0( 1 f - f + 
m-2 ,.t m,.t m-1, 

n 

f3n cf f J m,.t+! m,.t+l - m, ~mn ~-i (fm ~ - fm,~-1Jn ]. 
Jh ~ ,x, x, v 

(D-2) 

Because a sq~are net is used, the stability development gives 

n n 
Q'm, .t = f3m, .t 

This simplification is used to record the equations in the text. 



APPENPIX E 

STABILITY STUDY OF THE DIFFERENCE EQUATIONS 

The difference equations derived in Appendix E are nonlinear equa-

tions fqr which no general method bas been developed to determine 

stability. The connnon approach to a stability study of nonlinear equa-

tions is to linearize the equations and use the methods for stability 

analysis of linear equations, namely, determine the effect on the solu-

tion of small changes in the coefficients [30, p. 223]. Therefore, a 

stability, study for the plane geometry is made by linearizing the general 

field equation and applying the Fourier stability technique, as outlined 

by R.usanov [38]. 

The ~eneral field equation (D-1) for the plane geometry (from 

Appendix D) 
n 

y . J 
F m,,t-1 + 

n 

[An cf -f J m+i,.t m+l,.t m, 

. ·n 
- An (f - f J + 

m-i,.t \'.m,.t m-1, 

n 

Cf - f ) m,.t+l m,.t n ·cf B -m,.t-1 m,.t fm,t-0 J 
(E-1) 

is linearized by assuming all dependent variables (p, u, v, e, p) 

depend a function n on 
%i,.t 

at a point and by referring the coefficients 

ot£ the variations of n one point. lf 
n .. 

den.otes the cpm,.t 
to 6cpm,.t 
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variation of 

where 

and 

n 
C?m,V equation {E-1) becomes 

n 

O!Ill, .t = 
2 

n 
13m,..t = 

2 

n 
TA II 

ffl~A, 

h 
1 

T Bn 
m,.t 

h 2 
1 

142 

(E-2) 

A stability criterion may now be obtained for the linearized equa-

tion (E-2) by using the Fourier technique. The technique considers the 

propagation effect. of a set of errors at time zero, which on the initial 

plane are represented by a Fourier series. The series is finite and the 

number of terms is equal to the number of net points in the initial 

plane. The propagation effect of a single term with an initial error 

0 
~rn which is represented by 
I.ITQ O 

' 

may be considered if t 1 and t2 are any real numbers. The propagated 

error 6~,.t must be bounded for equation (E-1) to be stable; therefore, 
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the condition 

must be satisfied. Applying the relation for n 
ocpm,.t to equation (E-2) 

gives 

df ( s ~ 1) 
x dFY J + i K [ dF sin 

111 l. + sin 111 + 
dq, l. dq, dq, 2 

2 [a . 2 c :l.) + " 
. 2 (?) J df = 0 . (E~j) Sl.n Sl.n 

dq, 

With· the definitions of f, Fx and FY in Equation (E-3), four equa-

tions are developed and solved simultaneously to give an equation for 

~ in the form 

[ 
2 2 2 2 , , + c K ( sin V + l. l. 

where 

c = spe~d of sound. 

Solving equation (E-4) for the roots of $ gives 

s = s 
[ 2 ( 2Vi) + 1 - 2 a sin 

,2 
l3 Sl.n Ct) J 

where s may have the values -1, o, and 1. 

The roots of ss for 1j,1 = v2 = n reduce to 

j:' = 1 .. 2(a + i:i) 
':>s ""' 

(E-4) 

(E-5) 



Substitution of the relation .in.to the condition 

,~, s 1 

gives 

O s Q' + S s 1 

where 

= ± J [ 1 - 2 ( Q' + 13 )]2 

= ± [l - 2(a + s)] 

When considering the roots of SS for small values of 1lr and, 
'l 

equation (E-5) becomes 

1 2 2 
SC~ 1jl ·2 + 2 

l;s = 1 - - (rl' 1jl + s v2 ) - iK [uv + v,jl + v2 2 . l. l. l. 2 l 

Subs ti tut ion of the relation in.to the condition 

gives 

rl''''. 2 + Q,I, 2 - K 2 [u·'· + vii, + SC ~ v 2 + v 2 r ~ 0 • 
vi ~'2 i 'i '2 i 2 

This inequality may be put in the form 

a cos2 8 + S sin2 0 

with v 
. l. 

cos e = 

j v12 + 

sin e = 
v2 

J v22 + 

and 

2 
Q_ 

~ 2 

2 , 
V2 

2 

v l. 
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(E-6) 

v "'' <:. 

J . 
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a = K(u cos e + v sine+ sc) 

= K(w + c) (Courant Number). 

If the net. spacing is square, the "dissipative'' terms should have an 

equal effect in the x and y directions; therefore, the "dissipative" 

~oefficients are taken to be equal (i.e,, QI= a). With this condition, 

the ineq~ality becomes 

(E-7) 

Th e two condi ti ans (E -6) and (E -'7) give 

as the bounds on the 11dhsipative' 1 coefficients for which stability 

will exist. If QI is defined to be the straight line 

°' :;:: 

where w is a parameter, the condition 11;1 ~ 1 is satisfied for all 

and if the condition 

1 
(J 

is satisfied. This is the stability criterion specified by Rusanov 

and stated in the text of Chapter IV. 



APPENDlX F 

DERIVATION OF THE DIFFERENCE EQUATIONS FOR BOUNDARIES 

The boundary difference equations may be derived from the general 

field difference equation by using a reflection principle •. For flow 

along a wall, the equations must insure that no steep gradients perpen-

dicular to the wall exist due to the addition of the 11 dissipative 11 

terms. The difference equation for a point representing a solid bound-

ary will first be derived for the plane geometry and then extended to 

the axisymmetric geometry. Also, the difference equation will be 

derived for an axis point for the axisymmetric geometry. 

For the plane geometry, the general field equation is 

(F-1) 

The ~eflection principle ~ay be applied ~o a wall parallel to the x 

axis by constructing a line of virtual points within the wall. The 

point (m,.t) is considered on such a wall. wi:th flow. apove. 
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The conservation variables are defined at the virtual point (m,.t-1) _ by 

the -reflection rule 

Pm,.t+ 1 • Pm,.t-1 v .. - v m,.t+l m,.t-1 

u • u ; e - e . m,.t+l m .t-1 m,.t+l m,.t-1 . ,, 

Also, to insure that the effect perpendicular to the wall of the "dis-

sipative" mechanism is eliminated, the terms ~m,.t+l and 
~m,.t-1 which 

are the di~ference terms that approximate the derivative 

are removed from the field equation. ,With ; the above change in Equation 

(F-1), the boundary difference equation fov flow along a wall parallel 

to the x axis is 

• 
K n 
__J. [Fx Fx J 
2 mtl,.t - m-1,.t + 

where the sign convention is the same as th~t: used in the text. 

For flow along a wall that is parallei to the y axis, the reflec-

tion rule for the density and energy variables is the same, but the role 

of the velocity variables is interchanged. Therefore, the reflection 

rule is now 

Pnrt-1, .t 
= 

= = 

v 
m-1,.t 

e . 
m-1,.t 
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for a point (m,i). The and terms, which correspond 

to the derivative 

are neglected to remove the "dissipative" effect perpendicl.flar to the 

wall. With application of these conditions to (F-1), the difference 

equation for flow along a wall parallel to the y axis is 

:,: Kl [ Fx Jn 
m±l,i + 

The reflection principle and condition on the 11 dissipative" terms 

may also be applied to the axisynunetric geometry field equation 

fn+l fn 
Kl 

[F:r+-1.,t -
Fz Fr - Fr Jn - n 

= + ,.. 
iJrm,.R, + 

m,i rn, 1, 2 m-1,.R, m.,.R,+l m,.R,-1 

to obtain the difference equations for boundary points. In a manner 

similar to that used for the plane geometry, the difference equation 

for points on a wall parallel to the z axis is 

= K2l [ z - Fz Jn 
F rn+ 1, .R, m-1, i 

n 
,- iJrm,t + 

1 -

2 L 41rn+t,..e 

and on a wall parallel to the r axis is 

Fr 
m,.R,±1 

Jn 



.... [ Jn 
=f K1 Fz · m::l,L 

For the axis of symmetry, only the reflection principle is applied to 

the field equation ( F.-2), because shock waves may :impinge on the axis. 

The difference equation for an axis of symmetry at r = 0 is 

fn+l 
m,o 

= 

The element v/r 

(m, 1) because of 

K 
-1. 
2 

1 
2 

in 

its 

n 

[ Fz Fz J 
m+l,o - m-1,o 

[ ~m+i,o -
"l 

cpm-},o + 2f I m,iJ 

the term ~n is approximated by its value at 
m,o 

indeterminacy at r = O. 



APPENDIX G 

INITIAL CONDITIONS FOR THE CENTER OF A MOVING SHOCK WAVE 

In the finite difference calculation of a moving shock wave, the 

wave nas an initial thickness of two mesh spaces. 

~ 
I 
I 
I 
I 
I 

11. h1 

Distance 

h -
l 

d:Lstance between 
net points 

The pressure at the shock center is calculated as the arithmetic mean 

of the pressure in front of and behind the wave. Various ways of deter-

mining the remaining properties at the shock center have been investi-

gated, but only one method has proved satisfactory. This metj:lod is 

described below. 

The basic parameters on both sides of a shock wave propagating into 

a still medium are assumed to be known. 

Py p 
x 

u u = o.o 
p ' y D x Px y 

c c 
y x 
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The properties at the center of the shock wc1ve are evaluated by assum-

ing the shock is divided into two shock waves (I and II). 

Py 

Py 

c 
y 

c " s 

The pressures 

u 
y 

u II s 

and 

.... 

= 

Shock·r 

d 

Shock II 

b 

are given by 

ps" = 

u 
SI 

.PS, 

Ps, 

c SI 

c 
x 

u = o.o 
x 

The two shock waves are now transformed to a coorclinate system relative 

to the respective shock wave. 

Shock.I 

Py PS, 

Py v = d - u v I == d - u Ps' y y .S SI 

c c 
SI y 



C II s 

V s11 

Shock II 

=b·U 11 s 
v 

x 
= b 

PX 

p x 

c x 
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Tables (NACA 1135) may be used to obtain the value;. of density and tern-

perat1,1rE1 in states s' and s 11 • Also found in the tables are the Mach 

number values ~' x ~' SI ~' y 
and ~ .. · s 

is found from 

u "" d - v SI s' 

where d = v + u = ~c + u y y y y y 

v = ~ c SI 
s' 

SI 

and the particle velocity u " :ts s 

u II = b - v II s s 

where b = v = ~ ell; x 
x 

v " = ~ c II s s11 s 

The particle velocity lJ I s 

The properties at the shock center are the average of the properties in 

states s' and s". 

PS = (p + p )/2 
.x y 

Ps = (ps, + Ps")/2 

u = (Us·' + U .. )/2 s s . 
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Th~ s values are the initial conditions at the shock center. This 

method is shown on the temperature-entropy diagram below. 

I 
I 

I 

1 

I 
I 

I 

Entropy 

p 
2 

The following numerical example may be helpful in understanding 

the method for obtain'ing the initial shock center properties. Consider 

a plane shock propagating into a still medium. From compressible flow 

Table [45], the conditions for a shock of strength 

Py = 4.oo 
I 

u = 1.34 D = 2. 24 
Py = 2.50 y 

c "" 1.50 y 

p /p = 4.o 
y x 

PX = 1. 0 

Px = 1.0 

is 

c = lk= 1.18 
x 

where the values are dimensionless according to the method of Appendix 

c. For shocks I and II in a coordinate system rela~ive to the shock 

the properties are found from the flow table~. 

Shock I 

Py = 4.oo PS, = 2.5 

= 2.50 v = ? v = ? = ? Py y SI Ps' .. 
c ·= 1.50 c = ? 

s' . 
y 



For a pressure ratio of 

1.6 

the compressible flow tables give 

1. 39, ~ 
y 

= 0.82, ~. s 
1.23. 

Therefore, the unknown quantities are determined, giving 

v = 
y 

v, = 
s 

= 

~ 
y 

c, 
s 

~ s' 

1. 79, 

c "" 
y 

1.23 

= 1.40 

'9 c = 1.72. s' 

Similarly for Shock II the properties become 

p s" = 

Ps" = 

C II = 
s 

2.5 

1.88 

1.37 

v .. =.95 s 

Shock II 

v = 1. 79 x 

PX 

Px 

c 
x 
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= 1.0 

= 1.0 

= 1.18 

Transforming Shock I and II to a coordinate system relative to state 

x gives for Shock I 

Py = 4.00 PS, = 2.5 

Py = 2.50 u = 1.34 u = ? Ps' = 1.79 y d = ? SI ... 
c = 1.50 c = 1. 40 , 

y SI 



where the velocities d and U , are 
s 

d ... v + u y y 

= 1.23 + 1.34 

and 

u = d - v SI s i 

= 2.57 - 1.72 

and for Shock II gives 

p s" = 2.50 
u = 0.83 b = 1. 79 

Ps" = 1.88 s" 

C II = 1.37 s 

= 

The prop~rties for the state s are then 

ps = PS, = p s" 

( Ps, + Ps.,) 
Ps = 2 

(U I + u ,,) 
u = s s 

s 2 
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2.57 

= 0.85 

PX = 1.0 
U. = o.o x 

Px = 1.0 

c = 1. 18 • x 

given to be 

= 2.5 

= 1.84 

= o.84. 



APPENDIX H 

COMPUTER PROGRAMS FOR STILL AND CROSSFLOW SOLUTIONS 

In the following sections complete listings of the programs for 

both the still and crossflow problems are presented in Fortran IV nota-

tion for use on a CDC 3600 computer. Definitions for quantities called 

as input and for those received as output are given before each listing. 

The geometry of the still case was divided into three spaces 

ll(lll!llll<llll!lll~II 
I I I 
I I l I 
I 3 I I 
I I I 
I I I 
I I I 

-~----i 
I 
I 

2 I 
I 
I _____ J 

and the crossflow geometry was divided into four spaces. 

------, 

4 
I 
I 
I 
I 
I 
I 

......,.....,_......_.,_... ........ ....,_ ___ ---~ 

3 1 

I 
I 
I 
I 
I 
I -'r-r-r-rr-r--r-r-..,.._ _ - - - - - , 

2 

I 
I 
I 
I 
I ______ J 
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The spaces 1, . and 2 for the still solution and spaces .1, . 2, and 

4 for the cro·ssflow solution represent the field in front of the ini­

ti~l shock which is located along the right most columnof net points 

in. spac~ 3. The remaining points of space 3 represent the uniform 

field behind the shock. 

Both programs are designed to initialize the entire flow field, 

compute the unknown quantities for the following time plane, inter­

polate constant property lines, and print the coordina.tes of the con ... 

stant property lines. Also, a technique in both programs allows the 

entire field' for a given time plane to be stored on a designated tape 

which mc;1y be used at a .later date as input conditions to compute field 

values for subsequent time increments. 

Still Solution Computer Program 

Before presenting the program listing, the following input and out­

put variables are defined. 

(1) JUMP = a number which is defined to indicate the source of 

input data. (For JUMP= 1.0 only card input is used 

and calculations begin at the first time plane. JUMP 

= 2.0 denotes use of storage tape and card input for 

calculations of subsequent time planes.) 

(2) DF 

(3) DN 

(4) UP 

(5) UN 

(6) VP 

= density for the field in front of the shock. 

= density of the field behind the shock. 

= x- or z-velocity in front of the shock for the respec­

tive plane or axisymmetric geometry. 

= x- or z-velo6ity behind the shock. 

= y- or r-:velocity in front of the shock for the respec­

tive plane or axisynnnetri.c geometry. 



(7) 

(8) 

(9) 

( 10) 

(11) 

( 12) 

( 13) 

( 14) 

VN 

l'P 

PN 

DS 

us 

vs 

PS 

VAR 

( 15) Z 

( 16) 

. ( 17) 

( 18) 

( 19) 

GAM 

SIG 

OMEG 

!MAX 

(20) M 

(21) L 

= 

= 

= 

= 

= 

= 

= 

= 

y- or r-velocity behind the shock. 

pressure in front of the shock. 

pressure behind the shock. 

density at shock center. 

x- or z-velocity at shock center. 

y- or r-velocity at shock center. 

pressure at shock center. 

number of time increments to be computed before a set 

of output data is recorded. This number is also used 

to determine the number of subsequent time increments 

to be computed for storage tape input. 

= a number to denote type of geometry (Z = 0.0 refers to 

= 

= 

= 

= 

= 

a plane geometry and Z = 1.0 to an ~xisymmetric). 

specific heat ratio. 

Courant number (a), used for the stability condition.'~ 

the stability parameter w. 

the number of time increments to be computed for an 

input number for JUMP= 1.0, and the number of time 

increments that has been computed for JUMP= 2.0. TMAX 

as an output number is the total number of time incre­

ments computed. 

the number of the storage tape unit and i~ a fixed point 

number. A value of this variable is read out on the 

last line of output and should correspond to the input 

value. 

= a number assigned to a scratch tape for use during compu­

tation. 
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(22) CONST = the maximum value of the quantity (w + c) for JUMP= 

1.0 and for JUMP= 2.0 the value is given by the output 

from the previous computation run. 

(23) PPCH 

(24) PVCH 

(25) TIME 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

N 

CAP 

AXY 

PA 

AAY 

XAA 

DIR 

= the difference in pressure between two constant pressure 

lines. 

the difference in velocity between two constant velocity 

lines. 

= an input value only for JUMP= 2.0 and is the next time 

= 

= 

= 

= 

= 

= 

= 

to be computed. This value is given on the last line 

of output data from the previous run. The value of TIME 

read out in statement 226 corresponds to time number for 

the given output data. 

the space number. 

the quantity K. 

an assigned coordinate for a constant pressure value. 

an interpolated coordinate for a constant pressure value. 

an assigned coordinate for a constant velocity value. 

an interpolated coordinate for a constant velocity value. 

a value of the sine of the angle between the velocity 

vector and the x direction. 

All quantities defined above must be defined by a decimal value except 

items (20) and (21). The program listing is given on page 160. 

Program for the Crossflow Solution 

With the exception of the following quantities, the definitions 

given in the first section of this appendix are valid in the program of 

the crossflow solution. 



PROGRAM LISTING.OF THE STILL SOLUTION 

PROGRAM STILL 
HAIN PROGRAN··STJ~L••TWO DIMENSION AND AtlSYMHETRJC 
JNTF~FA )( 
DIMENSION nroCJo,Jol,OFOA(3o•Jn>·DY0(3o>,DX0(3o>,UFDCJn•Jo>,UFDA(3 

10•30l,OY0(Jo),UXOC3o>,vroc3o•Jnl,VF'DA(3013Q),VYO(JQ),Vx0Clo>,EFD«3 
20•Jo>,EF0A(Jn•Jo>·EYO(Jo>,eX0(3Q) 

1. F"ORHAT f 8F'lO. r; I 
3 FO~MATC4F'1Q,5•~Y3,F10,51 
5 ro~MATftOH TIM~ NO= ,Fto,5,9HSPACE NQ:,l4,6HCAPA= ,Fto,5,JHZ~ iFlO 

t ,~n 
101. F'O~t-lAT( 13H PRES~IIRfc, ,F'1o.5oi6H V6L MODULUS= ,Ft0•5> 
103 F'ORMATI 4~H Y )( y X SINE> 
107 FOR~ATf1X,to~INPUT DATA) 
105 FO~MATf 131 
109 FOD~ATf1X,7~ TMAX= ,r10,5,1X,4N M: ,Y3,1X.8H CONS= ,r10,5.1x.7H TY 

1NF: ,Hn,51 
100 READlt~ig51JUMP 

IF IEOf,11 555,557 
557 PEAD! 1 d. l OP, ON• UP, 11111, VP, VN, Pf ,?Ill 

RE~Df1,1IOS,US,VS,PS,VAR,Z_ 
R~ADl1,JIGAH,SJG,OHEG,TMAX,M,L,CONST 
R'·E~Ot 1, 1 lPPCH, PVC~ 
ID:3r, 
GO TQt,48,5,o>.JUMP 

5;0 RfAOl1,1>TIME 
REYINO L 
DO 56S 111=1 • 3 · -
~EADl~)((Drn11.K>,UFOCJ,K),VFDll,K>,EFD(J,K>,l=1·ID>,K=1•ID) 
GO TO<S68,S7o,572>,~ 

570 00 562 K=i,10 
OXOCK>=DF0(1,K> 
.UXOtl():UFOf1,Kl 
VXO(Kl:VF'OC1,Kl 

56~ EXO(C):FF'DC1,K> 
GO TO 568 

57? DO 56~ K=1,10 
DYO(Kl~DFD(K,ln> 
IJY O < K > = UF D ( I< , I O > 
VYOIIC):VFIHl<,11'1> 

564 fYO«~>=EFDCK,10> 
r.o TO 568 

5t- 8 WR I TE f LI I t nr l C I , K > , Ul='tH I , K > , VF\') ( i , 10 • E FD C I , K > , I:;: 1, ID) , K = 1, IO> 
REWIND L 
kHI I ~,n M 
00 5()() N"'l,J 
wR, TE n., 1 < nr o c 1. K,. urn c 1 , 1<,. vr D CT , K > , E F'D I I , K >, r = t • ID,, K = 1, ID> 
REA!),~,< 1 DF'D I I, K >, Uf"O CI, K >, vro I I, K >, E.FD Cr, I(>, I =1 •ID>, K =1 •IO I 

566 CONTTNUE 
REYINO L 
DE:.L T :Tf1AX+VAR 
THAX=2,o*VAR +TMAX 
GO TO 553 

54£! DE-LT=VAP. 
5!:>3 X: I D·1 

GO TOl,56,,,8),JUMP 
556 PP:OP•CUP•UP+VP•VP)/2,o•PP/(GAH•1.o> 
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PROGRAM LISTING OF THE STILL SOLUTION (Continued) 

EN=DN•fUN*UN+VN•VN>l21Q+PK/CGAH•t.Q) 
~S=Dt•CUS•US!VS•VS)/2.o+PS/(GAH•t,o) 
00 21•1, ID 
DYOCl>•DS 
UYQfl>•US 
VYQfl>•VS 
EYQCJ>•ES 
DXOCl>=DP 
UXQCl)•IJP 
VX0(1hVP. 

2 EXOCl>=EP 
REWINO M 
REWINO L 

2002 oo 2000J•1,J 
GO .TOt:?oB,2oe,210>,J 

208 D01 O 1:1,1, ID 
DO 10 K11t,JD 
DF!Ht,K)lilDP 
IJFDCl,K>•UP 
VfO(l,tO•VP 

10 eF'O(l,K)•fP 
GO TD 2000 

2:1 O DO 141 •1 • ID 
DFO( I, JO>=DS 
UFOtl,JD>•US 
VFOCl,tn>1:VS 
liFO< I• IDl•ES 
no 111<=1,)( 
UF' D ( ',I(> II ON 
UF'DC f ,K)•UN 
IIFD(J,1<):VN 

l4 EFOCl,K>=EN 
2 O O O ~IR YT E 00 C C OF O C I , I< I •UFO C I , " > , VF' DC I , K) , EF' D ( I , I<> , I= 1 • I J) > , K • 1, ID I 

TJME:1.0 . 
r;r;e Rewrtto H 

AF tx•o,o 
16 no 2004N=1,3 

PEAD CH>CCDFOCl,K>,UFPCJ,K>,VF'nCl,K),EfDCl,K>,1•1,ID>,K•1,ID> 
CAP:;5 IG/CONST 
GO TOt214,216,2181,N 
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214 CALL FttLDCDF'DA(l,t),UF0Af1,1>~VF'DAC1,1),fFDAC1,1>,CAP,OMEG,GAM,DF 
1oc1,1>,0YOC11 ~DFD(1,2),DF0(2~1>,0Y0(1),UFDC1,1l,UYQ(1) ,UFPC1,2 
P),LJF0(?,1),UY0(11,Vroc1,1>.vVot1> ,VFDC1,~).VF0<2,1),VY0(1),EFPC1 
J,1l,EVOC11 ,EFDC1,2>,eFoc2.11~EY0(1),3,t,Z) 

CALL FlfLDCDFDAtln,11,urOAtlO.~).VFOA(ID,11,EFDACID,1,.cAp,oMEG,GA 
~~.oro,1n,11,DFD(X,1>,DrOc10.~1~DX0(11,DYO(ID),UfD(.ID,11,UFDCX,l),U 
~,o,1n,?t,uxa111.uvocro1,vrocto,11.vFotx,11.vroc10,2,,vxo~11,vvot1n 
41,EFOCT0,1),EFOtX,t),fFDCI0,21,EXOC11,EYOCJD>,1,ID,?, 

DO 181 =2, )( 
CALL FIELDCOFDACl,1>,UtDA(f,ll~VFDACJ,1),EFDACl,1>,C4P,0MEG,GAH,OF 

1D<T,11,nroc1-1,1>,PFD(t,2>,D'D'l+1~1>,DYO(l),UFDCl,1>,UFD(l-t,1>,~ 
2FPfl,2t,UFD(I+1,1>~UYOtll~VFOCt,1>,VFOCl•1,11,vFDCI,~>.VFO(l+1,1>, 
JVYO(ll,EFDCl,1>,EFOtl-1,1>,E'ntl,2>,EFO<l+t,1>,EYOCJ>,1•1,Z> . 

C~Ll fYELDCDFDAflt~l),UFn-,10.,,.vrDACID,J>,eFDACIO,J),CAP,OMEG,GA 
21-1, oro t ID, I I , llFD ()t, I I , DF'O I 10, 1 + 1 > , 0 ICO ( l > , l)FO C ID, 1-1 > , UF (). C ID, I I , Uf O C 
3x,,,.u~nr1n.1+1>,U~O(J),UFp<IO~l-tl,VFD(lD,J>,VFD(X,l>,VFO(tD,I+1) 

. . v . 



PROGRAM LISTING OF THE STILL SOLUTI'ON (Continued) 

4, V ltO f I t, VF D c ID, I• 1 > , EF"D C ID • J I , EF DO<, I > , f: F"D C IO, I+ 1 > , El( 0 c I > , EF DC ID• I 
5"1 > ,1, tD,Z) 

GO TO 37 
18 CONT !HUF 

GO TO 212 
37 CALL FIELDCDF"DA(1,J>,UFDAf1,l)~VFDAf1,l>,£FDAC1,l),CAP,OHEG,GAM.or 
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?. D f 1 • J > , DF' DC 1 • I > , PF"D C 1., I+ 1 > • OF' 0 t 2 , I > , or O C 1 • 1-1 > , UF' DC 1 , I I • ur DC 1, I > , U _ 
3 f' D q , I+ 1 > • UF DC 2 • I > , I JF' D ( :t , J • t I , \l'F O C 1 • ! > • VF' 0 C 1 • I I , VF D h, I+ 1 > • VF' DC 2, I 
4 I , VF D t 1 , I • 1 > , EF"O C 1 • I > , E F !JC 1 , t > ·• EF" 0 c 1 • I + 1 > • EF DC:>, I > , E F' DJ 1 • I· 1 > , '3, t, 
!S z.) 

GO TO Ct&,32,44.1,N 
23 6 NO: I0+1 · 

CALL Fl!LDfOF'DAf1,1>,UFOAf1,1>~VF"O~Ct,1>,EFtiAC1,1>,CAP,OHEG,GAH,DF 
1 [}( 1 • 1 I , DX Of 1 > , OF DC 1 • 2 > • OF' D t 2 • 3., • DF O C 1 • 1 > • 1.IF D t 1 • 1 I • U xo C 1 > • UF D « 1 • 2 » • 
2 ur o c 2 , 1 > , ur D , 1 , 1 , • v r o c 1 , 1 > • v x o, 1 , • _v r ll c 1 , :;z > , v r o < 2. 1 > • v r o « 1 • 1 > • er o « i 
3,t>•EXOC1>,EFDC1,2>,fF012•1>•EfDC1,1>,2,NO,Z, 

oo J.21=2,)( 
95 NO=ID+I . 

CALL ~,eLDCDFDA(l,1>,UFDACl,t)~VrDACJ,1),ff:'DACJ,1>,CAP,OHEG,GAM,OF 
1DC1,1>,0FO(J-1,1>,oro«1,2>,oro,1+1,1>,DFDCl,1>,UFOCl.1>,UFD(l~t,1> 
2,u~o,r,2>,ur,c1+1,1>,UFDfl,tl,VFD(l,1>,VFO<l-1,11,VF'DCl•2>,VF'Q{J+t 
3 • l I , vr !) C I • t > , E F' D < I • 1 ' • E F' 0 C T .. t , 1J , E F' D < I • 2 I., E F n ( I + 1 , 1 > , EF' D C I , 1 I , 2 • NO 
4,ZI 

NO:J0+1 . · 
32 CALL F"IELOtOF'DAft, 11,UF'OA(1, I I ,VF'OACt, I >,E'F'DAC1, I );CAP,OHEG,GAH,OF' 

:t O Cl , P , 0 XO C I ) , DFD r 1 • I+ 1 > • or: Df 2, I I , DF' DC 1 • I· 1> • UF'O C 1 • I I , U lC O C I I • Uf' D ( t 
2,1+11,UF'D(2,f),UF'D(1•l-1>,VF'D(t•l>,VXO(l),VFnC1,l+1),.VrOC2,l),VFO( 
·~ 1 , T • 1 I , E F' IH 1 , I > , E lt O « t > , f F"D t 1 • I + 1 I , E F' I) C 2 • I > , E.F D C 1 • J • 1 I , 1 , NO, Z > 

GO TO 212. 
218 CALL FtELDCDFDAt1,tD>,UFDAr1,ro>,VFDACl•ID),EFOA(1,10,.cAP,OMEG,GA 

2~,oro11~10,,oro<1,ro,,o~oc11,oro,2,10>,Droc1,x1~uroc1,ro>,uroc1,10 
3 I , UY f}.C 1 > , UF n C 2, ID> , UF' 0 ( 1 , X I , VF I) Ct , ID I , VF D C1, ID> , VY O Ct > , VF' DC 2, I D > , V 
4 F' fl t 3 , )( , , E.F O C t , I n > , EF 11 C 1 , I fl I , E YO t 1 I , F. F' n ( 2, J D > , ..E FD C 1 , X > , J, 1 , Z > 

CALL FJELD(OF'DA(IO~ID),UrDACID,IO>,VFDA(ID,1n>,EFDACID,lD),CAP,OMF. 
1G,GA~.n~DCID,IO>,nF'tt(X,JO),DYOtlD>,DFD(1D,IDl•DfDCl0,x1,UFDCID,JD1 
p,UFO<X,IO>,UYOCIO>,UFDlJD,tO>,uFDCID,X>,VFDCID,10>,VF"DiX,1Dl•VYOCI 
301,VFDCIO,JD>,VrD<TO,X),!~OCtO~IO>,EFD(X,1~>,EYOCIO),EFCCID,IDl,fF 
4DC,u,x,.4,JD,Z1 , 

no 44t=2,x 
CALL FJiLDCOFD~flO,l>~u~DA<tD.1>.vFOACID,l>,EFDA(ID,1>,CAP,O~EG,GA 

H'I • ~FD ( lO, I > , OF Ill lt , I > , pr D t ID, I+ 1 I • oro C ID, I ) , DF ll C I Il, 1-1 ) , UF DC I D, I > , U 
:? FD< X. 1 > , IIF n C 1.0, I + 1 > , urn I ID; I t , Uf' DC ID, I -1 I , VF O C ID, I > , vr DC X, I > , VF[) C I 
3 n, T + 1 > , VF" 0 C 1 D, I > , VF' D ( ID, T -1 ) , Er:' D t In, T > , E: F () C X, I > , EF O C ID, I+ 1 > , HD ( In 
4,l>,ErDCID,1•1>,4,I0,11 

~OT~ 37 - . . 
44 CALL flELOCDFDA<t.JOt,UFDAtl,tD),VFDACl,ID>,EFOACI,ID>,CAP,OMEG,GA 

2M,OFO( .I, ID) ,.DFO( 1-t., ID> ,.ovoc I I·. OF"DC I +1, ID> ,DFD( I, X > ,uroc I, ID> ,UFlll 
31•1,TD),UfO(l),UFO(t+1,ID>,UFO<l,X>,VFDCl,ID>•VFDCl•1,tD>,vvoc1,.v 
4F()t1+1,ID>,v~oc,.~,,Ernc1,tn>,ff'n(l•1,ID>,EYO(l).EFDcJ•1·1Dl,EF'OtI 
5,ll),1,t,:l> . . . 

112 JJ:=.2 
DO ~41=2,X 
11n 231<=2,X 
tiO l0('54:?,54o),,IJ 

540 ~o Toc100,Jo~iJoo>,N 
loo NO:I . 



PROGRAM LISTING OF THE STILL SOLUTION (Conti~ued) 

r.O. Tl'! s;44 
: __ ~.0.2 NO: I :t- ID.. -··· .. _ . . . , . . 

544 CALL FIELDtDFDAtl,K),lJFDA(l,K),VFDACI.K>.EFDACJ,K>,CAP,OHEG,GA~,DF 
1P(J,K),DFD(l·1,K),nFn(l,K+1),niD(l+1,K>•ijFnC1,K•1>,UFD(l,K),UFDCI· 
n, K , .11r n < J , K +1 , • urn< 1 + 1 , 1< > • u, n t I • 1< • 1, • VF n < 1 , 10. v ro c I· 1 • K,, VF o c 1 , K + 
31>,VF'D(J+1,K>,vrnc1,1<~1>,erot1~K),EFD(l•t,K).EFDCl~K+i)•EFDCl+1,KD 
4,EFDtl,K•t>,t,NO,Z> 

:~42 lrfDF'PAC1,IO.NF..DFOA<l,11"1)tGO Tn 538 
n,u·FTJACl,IO.NF..IIFOA(l,l<·1nr.n Tn 53A 
IFCVFD~CJ,K>.NE.VF'OA<J,l<•t>>~O TO 53R 
IF'CfFOACl,K),NE.EFOA(l,1<-1,,r.o Tn 538 
KJtJ = K 
lJO 54t, .KY=K IN, X 
DFOAtl,KY>•DFDCl,KY) 
UFnA<l,KY>•UFDCl,KY> 
VFnA<l,KY>•VFD(l,KY> 

546 EFnA<l,KY>•EFDll,KY) 
GO TO ?4 

538 .JJ:2 
. 23 COMT INUF. 

24 r.OMT HHIF 
00 BQ J:;;1, ID 
GO Tn <Ao,80,82),N 

80 urnArt.JD>=DFD(l,ID) 
ornA(!,JD>=UFD(l,JO) 
VFrA<l,ID>=VFDCl,10) 
£FOA<l,10):fFD<l,ID> 
GO TO (89,Rt,82),N 

81 DFnAtlO,l>=OFDnn.n 
UFnAr Jn, I >=llf'.D( Tn, 1 l 
VFnA(Tn,l>=VFO(ID,ll 
EF n A ( In. I ) = EF D ( ID. I ) 
(;O TO R9 

82 DFOA<l,1>:DFO<I.1> 
UFOA<T,1 >=UFD(l,1 
1/FDA<l,1 >=VFD(l,1 
EfOA t I, 1 > =EF"D < I ,.1 

Gn TO 89 
89 COtJT JNIJF. 

GO TO <2~o,2?.2,224>,N 
220 no 3nI=1,Jo 

UXn(f):nFP(ID,l) 
nvn< t >=nr:nc 1,1 > 
uxn< r >=UF'Dt rn, 1, 
UYn<t>::UFUCl,1> 
vxnc I ):VFIH IO, I l 
1/Yn( 1 )::VF()( 1,1> 
FXOC I ):FF'll< 111, I l 

30 fYO<l>=EFpf~,1> 
BO Tn 226 

2n no 3RJ=1, 1n 
llXnc 11:DFUA<t• I> 
uxn «, > :uF"DA ct• 1 > 
vxnc I )::VFDA( 1, I l 

38 .EXOCl):EFDA(td> 
GO Tn ?:?6 



PROGRAM LISTING OF THE STILL SOLUTION (Continued) 

224 DO 5n 1=1., ID 
nvn«t):l)F'DA«l,ID> 
ll'HH I ):UrDA( J, ID> 
VYn«r>=VFDA(t,1n, 

5o EVO(l>=EF'DA(l,10> 
226 WRtTE<J,~)TJME,N,CAP,2 

F'lltM\1110.0 
no :>Rl:1,10 
DO 2RK:t,10 
UF n C t, 10 =SORTF UIF'DA ( I, I< hUF'DA ( Ta IC hVF'D AC I, K >*VF'DA C I, K > > 
nrnc,.~,-vrnACl,K)/UFDCl,M> 
FFn<t,K>=<GAM·1.o>•(FFDA(l,Kt-nFnA(I.K)*UFOCl,t<)•UFD(J.K)l2.ot 
SS:S~RTF'IGAM•EF'D<J,K)/DFOA(I•~\) 
VFnCt,K):UFD<l,K)/SS 
SS=S~+UF'Ol l,10 
IFIS~,L~·flX~X>r.O TO 2A 
~· 1 llMll:SS 

28 COMTINUE 
lffFfXMY.,LE,AF'IX>r.O TO 10000 
AFJX:F'fXHX 

10000 IFtTIME.NE,DELTI GO TO 2no4 
PPV:PP+PPCH/2•0 
VPV:FIVCHl2,r, 
PA :IIAA:AXY=AAY=o-o 

106 WRYT£<1,101>PPV,VPV 
WRllE<J,103> . 
001121=-1, ID 
D01 O 'IK=t, I B 
0011 ~.J=t • 2 
lftPFIV,GT.PN>GO TO 13? 
r,o Tn 111A,120>,J 

118 lf<K.F0,1)GO TO 132 
A=EFO(J,K) 
e=ern< 1,K-1> 
r,o 1n 124 

120 lf<K.FO.l)GO TO 132 
A= EF D ( K. I ) 
a=erntK ... 1., 1 > 
r;o To 124 

124 Ir<A.r.T,PPV>r.O TO 12?. 
1Ff0.r.T.PPV>r.O TO 126 
GO Hl 132 

122 IFtS.GT,PPV>r.O TO 132 
12Ei AXlt=I< 

hXY= 1 
AX:K•1 
PA:Alt+CAXX•AX)•fPPV•~>I<~·~> 

13~ IFCVPV,GT,UN)GO TO 114 
RO TO <134,116),J 

-134 IFtK.fQ,1>GO TO 114 
A A= ll r n ( I • K , 
HB:IH'Jl( t, IC.•1) 
CC:Vi:'flAC 1,K> · 
DD:Vf:flA ( 1, K·t > 
HO TO 1:sij 

136 IFtK.E~,1)GO TO 114 

164 



PROGRAM LISTING OF THE STILL SOLUTION (Continued) 

0::UF'OCK, It 
_,B8:1JF'JHK•1, U. 
CC:VJ'f\A(K, I) 
DD=VF'nA I K•1., I) 

tJR fF(AA.~T.VPV)GO TO 140 
IFIBS.GT.VPV>GO TO 142 
GO TO 114 

140 iFfBS.GT,VPV)GO TO 114 
142 AA)(;:I( 

AAY:f 
XA=t< ·1 
XAA=XA+CAAX·~A>•«VPV•BB)/(AA•BB) 
UU:Dn+(XAA•XA>•tcc-DO)/(AAX•XAI 
fllR=UUIVPV 

114 IF(PA.NE.o.o>GO TO t48 
lft)AA.Ni •. o.o>GO TO 148 
GO T n 11.6 

148 RO 10 <t5Q,1~2),J 
150 Wfl!TE<J,1 >AXV,PA,AAV,)10,lllR 

r;O TO 1 54 
152 WRTT£(J,1)PA,AXV,XAA,AAY,DYR 
154 PA=o.o 

xAA=o.o 
U6 COMT T NUE 
1 O 4 CO t,.IT I NUF 
112 CO'vTlt,HJE 

VP\l:VPV+PVCH 
PPV=PPll+PPC!-

15b IFcVPll,LE.UN>GO TO 106 
IF<PPV,LE.PNIGO TO to• 

2004 WfflTE(L)((DFnA<T,K),UFOA(f,Kl,VrOA(l,K>,ernA(l,K),1~1,ID),K:1,ID> 
lf(TJHE.GT.T~AXIGO 1056 
lFtllltE,NE.DELTIGO 10 5~ 
DELhD(LT+VAR 

56 TJ.ME:TTHE+1,IJ 
IHM.GT,L>GO TO f,,2 

60 M::1 
L =1"·1 
GO TO 6~ 

62 L=~ 
H=l,.•1 

64 ~FWHID L 
~~WINI' H 
CONST=AFIX 
IF t TI ME ,GT. Tt~Al( > GO T0.55'1 
AF'TX=n.o 
{i.0 TO 1ll 

554 WPJTF<~,107) 
w PI re: ( ~, 1 O 9 > J HA)( , M, C Ml ST, T I ME 
GO Ti) 1 llll 

555 r:o~·r r ~11JE 
F. N r, 

165 
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PROGRAM LISTING OF TliE STILL SOLUTION (Continued) 

SURROIIT I NE FI ELn C 01(:i, U18, 1118, FtB, CAPA, OMEGA, SPMT, D1• D2, 03, 04, 05, u1 
__ 1,112.,1!3,U~, U5, \11, V~, VJ, Y4, V'i,Et ~e,, E3,E4,S5,K ,NO, ZJ. 

Ye NO . 
T1 •U1*U1 +111 •111 
T2=U:'1•112+112•V2 
T3:U3•UHV3.,.V3 
T4:l14•U4+VhV4 
T5:lJl;•11,+V5• 115 
P1=(~PHT•1.0)*CF1•D1•T1/2.n) 
P2=C~PHT~t.o)*(F2·D2*T2/2.n> 
P3=C~PHT~1.o,•CFJ-DJ•TJ/,.n, 
P4=C~PHT•t,o)tCF4·04•T412.n, 
P5=CSPHT•t.o>•cF,-ns•T512.n) 
T1~SQijTf~SP~T*P!/01>•SOfiTFCTl> 
T2:S~RTFCSPHT*Pp/02l+SORTFcT,> 
TJ=S~RTF C SPMHP~/03 > +SOPTF f TJ > 
T4:S~RTFCSPMT*P4/n4»+SO~TFtT4> 
T5~SQRTFCSPMT.,.P,ID5>+SO~TFfT'> 
GO TOC3ot,3o2,3t2,302>·~ 

.312 lffZ .• NEe1•0>G0 TO 302 
3Q1 R=?•O 

BO TO ~OJ 
302 'R•4.n · 
3o3 GO TncJo4,3o5,3o6,J07>,K 
3o4 01. n 

e=1 • o 
C;:1- n 

.0=1.0 
£1111 • o 
n=1.o 
s=1. n 

... H-=1. • D 
GO T03n8 

305 A=1.o 
O•o·O 
c=1.n 
n=n.o 
! 11 1.n 
J:"=?.o 
G=1 • O 
ti=o.o 
<iO Tn ~OR 

306 A::n.o 
e=1. o 
I F t 2 • NE• i • O > Q;O T n 31 J 
c1112.. o 
Y•1 • 0 
V1:V4 
GO Tn :H4 

.. :U.3 C•n.r1 
314 0•1·0 

E=n.n 
F =1 • o 
G=2.o 
1-1=1 • n 
GO Tn 11)8 



307 A•O•O 
··· Bi:1 • n · 

ci:o.n 
oc1. n 
E= :> • 0 
F•i•O 
G•o·O 
H•1·0 

PROGRAM LISTING OF THE STILL SOLUTION (Continued) 

308 IF<1.NE.1•0>~0 TO 315 
E=·E 
G=·G 

167 

315 SUM:1.o•OHEGA*CAPA•CT1/R+«A•T,+B•TJ+C•T4+D•T5)/8.b) 
01~=n1•SIIH+O~EGA•rAPA•(A•T2•D2+A•T3•n3+C•T4•n4+0•T5•n5+CA•D,+B•DJ• 

1c•n4+n•05>•Tt)/P..o-CAPA*(E•D'-•V2+F•D]•U3-G•D4*V4•H*D5•u5112.S2842~ 
2CAPA•Z•V1•Dt/CY•t.414214) 

u1e=t~1•Ul•StJH+OMFGA*CAPA•(A*T~•n2•U?+8•TJ•D3~UJ•C•14•n4•U4•D•T5•D 
1~*U5+tA•D2•U:>+B•n~•lll+~*D4•U4+n•n5•U~>•Tt»l8.0·CAPA•«E•D2•U2•V2+r• 
~ C P :'II+ O:l•UJ*U'3 > ·G•n4 •_U4*V4 ·t,• C ?i;+OllieU5°U5 ! »I~. A2S42-CAPA * V 1 *D1 •Ut •l I 
3CY•t.4t42j4))/01A 

v1e=<n,•V1•SUH+OMFGA•CAP~•«A•T,•n2•V2+B*T3•DJ*V3+C*T4•1l4*V4+0•T5•D 
15•v5+<A•n2•V:,+q+nJ•Vj+~+n4•V4+n•n5•V5>•T1>1e.o-CAPA•(E•CP2+D~•V?•V 
22>+r·»~·v3•IJJ·G•CP4+n4•VdtV4!-~•n5•V~•U5)/~·~2842•CAPA•V1•01•V1•ZI 
JCY•1.414?14))/D1R 
~18=~1•SIJM+O~EGA•CAPA•CA*T?•F?+B•T3•F3+C*T4•E4+D•T5*E5+CA•E2+B*fJ+ 

1~·~4+n•F~>•T1>IA.n-CAPA•fE•Ci?+P?>•V2+r•c~3+PJ>•U3•G•CE4+P4>•V4·~· 
:? C £i:;+ P5 > •U5) /,? • 82R42•CAPA•-Z.•V!. * t E1 +P1 > I< Y •t • 41 4?14 > 

GO TnfJo9,J10,J11,J1t>,~ 
310 01.R=Ut 

GO TO Jo9 
311 vie="• 0 
309 RETURN 

ENO 
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( 1) PDCH = the difference in density between two constant density 

lines. 

(2) PPM = the pressure of the maximum constant pressure line. 

(3) PVM ;:: the velocity of the maximum constant velocity line. 

(4) PDM = the density of the maximum constant density line. 

(5) ADY = an assigned coordinate for a constant density line. 

(6) DDX = an interpolated coordinate for a constant density line. 

All of the aboye quantities are defined in decim1;1l notation. The pro"". 

gram is given on page 169 in Fortran IV notation. 



PROGRAM LISTING OF THE CROSSFLOW SOLUTION 

P~OCHIAH CROSS 
C HAIN PAOGRAM••CAOSSFLOW DIFFRACTION 

INTEGF.A X 
INTEGER Y 
DIMENSION DF0(3~·50),DFDACJo,5n),DYOIJO),DXOC5o>,UF0(3Q,50J,UFDlCJ 

10,so,~UY0(3o),UX0(50t,VFOCJo,5o),VFD~C30,50),VYOC30J,VxOC5o),EFDCJ 
20,so,,e,nAcJo,sn>,evoc30,,exoc,o,,Dzoc5o,,uzocso,,vzoc5o>,ezocso, 

1 FORMAT18Flo,r;) 
3 FORHATC4F10,5•213,F10,5) 
5 FORMAT(tOH TIME NO= ,F10,5,9MSPlrE N0:,14,6HCAPA• ,Fto.S> 

101 FORMAT CtJM PPESSURf= ,Fto.5,16H VEL MODULUS• ,F10,5,12H n 
1ENSITY• ,Fto,5) 

103 FORMAT C65M Y X Y X SINE 
1 .., )(, 

105 FORHATC 13> 
107 FORMATCtX,1~MINPUT DATA) 
109 FORMATC1X,7H TMAX= ,,to,5,1X,4M M• ,13,1C,7H CONS• ,F10i5,1X,7H Tl 

tME= ,Fto,s, 
100 REAOC1,t05)J1JMP 

l F CF. OF, 1 Hi55, 515 7 
557 READCl,ttDP,ONiUP,UN,VP,VN,PP,PN 

READC1,l)DS,US,VS,PS,VAR 
AFAD(1i3)GA"~S1A,OMEG,TMAX,M,L,CONST 
READ(l,1>PPCM,PVCH,PD~H,PPM,PVM,PDM 
10=30 
KD='SO 
GO T0(548,55~),JUHP 

550 RfADCt,ilTIM~ 
REWINO L 
DO 568 N•1,4 
REAO(M)(CDFD(l,K),UF'nCI,K),V,o<l,K),FF'OCl,K),1=1,JD),K=1·KD) 
GO TOc568,57u,51j,574),N 

570 DO 56? K•1,KO 
DXO CK> •DF'D U, K) 
UXOC I<) •UF'D C1, K) 
VX0Cl()•VF'OC1,K) 

562 EXO(l'()a.EF'PU,K) 
GO TO IJ68 

572 DO 564 l•ljJO 
OYOfl>•DF'D(J,KOI 
UYOC I >•UF'DC l ,KOt 
VYOc I >•VFDC I ,KO> 

564 ~YOCl>~EF'DCI,KO> 
GO TO 1H,8 

574 DO 576 K•1,KO 
DZO(K>•OF'flC 10,Kt 
U20(!<>•UFDC 10,K) 
VZO(K)•VFllC ID,!O 

576 ElOCK>•EFDC10,K) 
GO TO 568 

568 WRITf(L)((DFnCJ.~).UF'Dtl~~,,vrnc1,K),EFDrl,K),l•1,lD),K•1,KD) 
"EWINn L 
REWIND l'I 
DELT =THAX•V'4R 
T~AX=2,1*VAR •TMAX 
GO TCI 553 



PROGRAM LISTING OF THE CROSSFLOW SOLUTION' ( Continued) 

'50 'DELT•VAR 
553 X.ID•1 

Y•KD·1· 
GOT0(556,558),JUHP 

556 EP•DP•CUP*UP+VP•VP)/2.~+PP/CGAM•t,0) 
EN=DN•CUN*UN+VN•VN)/2,0•PN/(GA~wt,O) 
ES=OS•CUS•US+VS•VS)/2oO+PS/CGAM•1,0J 
DO 21=1,ID 
OYO(l>•OS 
UYOCJ>•US 
VYOCl>•VS 

2 EYOtJ)•ES 
DO 4 0 •JI• 1, KD 
0)(0 CT> 110P 
UXOt I> •UP 
VXOCl>•VP 
EXOCl>•EP 
DZOtl>110P 
UZOCl>aUP 
VZOCl>•VP 

4100 EZO<l>=EP 
REWl'IIO H 
REWI'JO L 

2002 DO 2000J•1,4 
GO TDC2J8,2~ij,210,20A>,J 

208 00101•1,lD 
00 10 K:=;1,1(0 
DFD<l,K>•DP 
UFO<l,K>•UP 
IIFnl I ,K>•VP 

10 EFn<l,K>=EP 
GO TO 2'JU0 

210 DO 141•1,ID 
OFn <I, Kn> =OS 
UFO( I ,KD)=IJS 
VFDC I ,Kll>=VS 
EF'oc 1,KD>=ES 
DO 141<111,Y 
OFn< 1,l<>•DIII 
IJFn c I , I() =UN 
VFOC I ,l<)•VN 

14 EFOll,K>•EN 
2 0 0 0 1-1 R T H 011 C C DF O C I , K > , tJI=' D C I , K. > , VF' n C I , K ) , EF D ( I , K > , I • t, ID > , K • 1, KO > 

TJMF:i1,r1 
558 HEWINL) M 

Af'JX=G,:l 
16 DO 211,·,<01=1,4 

HEAn (Mt(COFO(l,K>,U~DCl,K>,VFn(J.K),EFOCl,K>,J=1,ID>,K•1,KD> 
· CAP=•1~/CONST . 

GO T0C214,216,218,22~),N 

170 

214 CALL FIELD(DrDA(1,t),UF'DA11,1>,VFDACt,1>,EFDAC1,1),C4P,OHEG,GAH,OF 
1D(t,1>,020(1) ,OFOC1,2t.nFOC2,1>,0YnC1),UFDC1,1>,UZOCtt ,UFDC1,? 
?>,UFD<2,1),UYOC1).VFnCt,1),V20C1> ,VFDC1,2l,VFD(2,1>,VYOC1t,EFD<1 
3,1>,FZO<t> .EFOC1,2l,EFnt2,1),EVOC1l,1) 

CALL FtF.LU(DFDACI0,1),U,OACJD,1t,VFDlCID,1t,EFDACJ0,1>,CAP,O~EG,G4 
~M,OVDilD,l>~OFO(X.i~,DFO<I0,2>,D~OClt,DYOCID>,UFDCID,1>~UFDCX,1>,U 



PROGRAM LISTING.OF THE CROSSFLOW SOLUtION (Continued) 

3FD(10,2),UX0(1).UYOC1D>,VFDCID,1>,VFDCX,1,.vrD(ID,2),VXOC1),VYO(ID 
4>,FFOCID,1>,FFOCX,t),EFDCTO,~),EXOC11,EY~ClD>•1> 

DO Hlt•2,X 
CALL FIELDCDFDA(l,1),UFDACl,i),YFDACl,1>,EFOA(l,1>•CAP,OHEG,GAM,DF 

1oc1.1,.ar:o,1-1.1,.or:nc1,2,,0Fo11+1,1,,ovoc1,.uroc1.1,.uFoc1-1.1,.u 
2FD ( J • 2) , UF"n C t • 1 .1 > • uvo « I ) , VF' ti ( I , 1 > , V PD ( 1 .. 1, 1 > , VF DC I , 2) , VF DC I• 1, 1 > , 
3VVOCl>,EFOCI,1>,EFD(l-1,,,.e~D«l,2),eFDCt+1,1),EYOCl>,l> 

18 CONTINUE 
00 4021:c2,Y 
CALL FIELDCDFDACID,J),U~DACID,i,,VFDA(ID.I»,~FOACID,l),CAP,OHEG,G4 

2H,OFO(JD,l>,nFocx.1,,DFDCIO,l+tl,DXOfl),DFDCID,l•1),UFDCID.1,.uro« 
3 )(, I > , urn C ID, I+ 1 > , II )((JC I > , UF D < ID, 1-1 ) , VF' DC to, I > • VF D < X, I I , V FD C ID• I+ i t 
4 • V XO C I ) , VF O C IO, I •1 ) , lff DC ID• I t , i;Fn ()(, I ) , H·n C If), I+ 1 >, E XO ( I >. EF' I)« HI• l 
5•1> .1) 

CALL FIELDCDFDA(1,l),UF'DAC1,l>,VFDA(i,1>,EFDA«1eli•C'P•OMEQ,GAMoOr 
10 < t • I > , DZ O C I > , 0 rn c 1 , I + 1> , CF D f 2 , I ) , !l F' D U • I ~ 1 ) , IJF iH :I.a ! I • ii l O « I l • U F' D ct 
? • I +1) • UF'D C 2 •I), urn H • 1-1 >, VF'IH t, 1 > • 111.(H I)• VF"n h • hi I• VFD C 2, I», VFD ( 
31,l-1),EFDC1,lt,E7f)(l),~FD<1•1•1>.~Fn«2•l»•EFDC1,1•1>,1> 

402 CONTINUE 
GO TO 212 

37 CALL FIELDCUFDAC1,1~,UF'DAC1,l),VFDAC1,l>,EFDA(1,l),CAP,OMEG,GAM,OF 
2uc1,l>,DFDC1,l),DFnC1,1+1),0'D<2,l),nFD(l,l-t),UFDC1,ll,UFD(1,l>,u 
3FD<1,1+1),UFn<,.1,.UFD<1,1-11,vrnc1,~>·VFDC1,l>,VFD(1,1+1>,VFD(2,I 
4),VFOC1,1•1>,EF0(1.1>,EFnc1.1>.eFD(1,1+1),EFnC2,l),EFD(1,l-1l,J) 

GO TO C18,32,44,0o>,~ 
216 CALL FIELOCDFDAC1,1),UFDA(1,i>,VFDAC1,1>,EFDA<1,1),CAP,0MEG,GAM,OF 

1D(l,1),0X0(1>,nFDCt,~>.DFDC2,1l,nFD(t,1),UF'DC1,1>,UXO(t),UFD<1,2), 
PUFo<i,1>,UF'DCl,t>,VF0<1,1>,VXOC11~VFOC1,1>,VFD<2,1l,VFOC1,1),EFDCt 
3,1>,FX0fl),EFD<1,?>,P.FDC2,1),E~D<l,1),2, 

DO ~~lm2,X . . 
GO TO 95 

32 CONTINUE 
DO 4061•2,Y 

,06 CALL FIELD(DFDAC1,l),UF'UAC1,l>,VFDAC1,l>,EF'DA<1,ll•CAP,OHEG,GAH,nF 
10 ( 1, I >, oxo < I >, nFD < 1, I+ 1) • l)FO l 2, I > , DFIH 1. 1-u , UFO C 1, I , , ll)(O C I > , UFO (1 

2, l + :U , IIF IH?.. 1 > • UFn u, I• 1 1 , v F IH 1., r > , v itO < I > • VF o Ci, I+ 1 > • vr o c 2, 1 > , VF ll f 
31,1•1>,EFDC1.l>,EXO(l),EFD(1,1+11,eFnc2.r,,eFD(1,I-1),1) 

GO TO 212 
95 CALL FIELD<DFDA(l,1),UF'DA<l,1),VFDA(l,1>,EFDA(l,1),CAP,OHEG,GAH,DF 

10(1,1>,0FO(l-i,1,,o,n<t,~).OFOCl+l,ll,DF1(1,1>,UFDCl.1),UFD(l-1,1, 
2 , U_F o < 1 , :n , UF n c 1 + 1 • 1 > • u F o < 1 , 1 > • 11 F n < 1 • 1. > • vi:- n c 1 -1. 1 , • v ,.. o c 1 , 2 > • v r o , 1 • 1. 
3,1>,VFOCl,l>,EFD(I,1),EFncl•i,t),FFDfl•2l,EFD(l+1,1,,EFD<l,1l,2) 

GO T0(1.8,32,44,4UA>,N 
228 CALL FlELD(OFDACln,1,,urnActn.1),VFOA<lD,1),EFDA(ID,1>,CAP,OHEG,GA 

1H,ornc1n,1>.nFo<tn-1.1,,nrocro,2,.oz~c1,.oroc10,1,,uFocro.1,.u,oc1 
2 D• 1 , 1 ) , UF' D < J Tl• 2 > , 11 Zr)( 1 > , UF n ( ID, 1 l , VF 11 ( ID, 1. ) , VF D ( I 0-1. 1 > , VF DC IO, 2 > , 
3VlOC1>,VFDCln,t>,FFOCIO,t>,EFDCI0·1,1>,E,o<Jn,2),EZOC1>,EFDCID,1l, 
42) 

no 90 1=2,v 
90 CALI. FIELDCDFDACID,ll,UFUACID,l),VFDA<ID,l),FFOA(ID,l),CAP,OMEG,GA 

1 M, OF O C ID, I l , IJF n ( In..; 1 • I > , n FD C i D, I+ 1 ) , n 2 0 ( t > , OF D < ID, I • 1) • UF D ( I D, I > , II 
2FDCI0-1,l),UFD<ID,l~t),U20(l),ijFO(I0,1·1),VFD(ID,l>,vFnc10-1,I>,VF 
~0(1~,J+l>,VZO(I),VFO(ID,1·1),EFDCID,1),E~D(IO•l,l),EFDClD,1+1>,Eln 
4(1>,F.FOCID,1·1>,1> 

DO 4C!A 1•2,X 
GO TO 95 



PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued) 

408 CONTINUE 
QO TO 212 
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218 CALL FIELD(nFDA(1,KU),UFDAlt,Kn),VFDAl1,~D>,~FOA(1,KD),CAP,O~EG,GA 
2M,OFO(t,KD),nFn(1,KO),OYnc1,,o~D<2,Kn>,DFOC1,Y),UFDC1,KD),UFDC1,~n 
3>,UY011),UFD<2,KD)iUFD<1,Y>,VFDC1,KD>,VFOC1,KD>,VY0(1>,VFDC2,KD)~V 
4FDC1,Yt,EF0(1,KD),EFnC1,~a,.~vnc1,,eFD(2,KD,.EFDC1,Y),3) 

CALL FIELD<DFDA(ln,Kn),LJFDACID.Kn,.v,nA<tD,Kn>,EFDACID,KO>,CAP,O~e 
lG,GAM,OFOCJD,Kn>,nFOCX,~n,.ovo,1n,.o,oc10.KD>,OFO(lD,Y>,UFO(tD,KO) 
2, UF IH X, K D > , U YO ( ID> , IJFD C J n, KO> , I If' 11 C ID, Y> , \IF DC I D, K D) , VF D c X, KO> , V YO« t 
3D),VFnCtD,KD>,VFDCJO,Y),FFO(IO,KO),Erocx,Ko>,EYOCID>.EFD(l0,KDt,er 
4DCID,Y>,4> 

00 44J=2,Y 
CALL FIELDCD~DAIIO,l>,UFnActD,1,,VFOA(ID,l>,FFOACID~J,.CAP,O~EG.~a 

1H,OFO<JD,l),OFOCX,J),DFOtlD,1+1),DFDClD,J),D~O(lD.I•l),UFD<!D,l).u 
2 F'D ex, I > , UF DC ID, I +1 > , IJF D l 11), I > , I IF' n t ID, I· 1 , , VF n C ID• I > • VF' n C X • i t • VF D « T 
30,1+1>,VF'DCln,1,,vrocro,1·1),EVD<ID,l),Erpcx.1,iEFD«ID,l+1),EF'D(IO 
4,l>,EFD(ID,J·1>,4> . 

GO TO 37 
44 CONTINUE 

00 4041•2,X 
404 CAlL FIELO(DFDA<l,KO),U,DACl,KO),VFD4C(,KD),EF'DACJ,KD>~CAP,OMEG,GA 

PM,DFO(l,KO),nFnc1-1,KDl,nYO(l),DFO(I•1,Kn),DFDC),y),UFD(l,KD),UFDC 
31•1,Kn>,UYO(T),UFn(l+t,~n,.u,o,1,Y>,VF'D(l,KD>,vFDCl•t,KD),VYOCl),V 
~F'D(l+1,KO>,VFOCl,Y>,EFO(J,KD),~Fnc1-t,KP>,EYO(l),EFD(l+1,KD),EFDCI 5,Y>,1> . , . . . . . . 

212 JJ:2 
DO ::>4J112,X 
DO 2lK•2,Y 

540 CALL FIELDCDFDACl,K>,UFDACl,K>,VFOACl,K>,FFDACI,K>,CAP,OMEG,GAM,DF 
1DCl,K>,DF'DCl·1,K),OFOCl•K+1),0FDCl+1,K>,nFOCl,K•1),UFDCl,K>,UFDCl­
?l,K1,UFDCl,K+1>,UFD(l+1,K),UrDtJ,K•1>,VFn<J,K),VFDCl·1,K>,VFOCl,K+ 
31),VFO(l+1,K>,VFD<l,K•11,EFOCl,K>,EFOCl-t,K>,EFDCl,K+1>,EFD(l+1,K> 
4,EFfHJ,K•U,t> ' . . ,· · 

23 CONTINUE . . 
24 CONT ltHJE 

GO TO (80,8~.e~.an,,N 
80 00 891st.lO, 

DFOACl,KD>~DFDCl,Y ) 
UFOACl,KD>~UFDCJ,Y > 
VFOA ( I ,KnhVFD( r. y ', 

89 EFDACI,KD)•EFDCl,Y ) 
GO TO <416,8t,A2,9a),N 

81 DO 4101=1,Y 
DFDAfl0,1):DFDCX ,I) 
UFnAtJO,llsUFD<X ,!) 
VFDAIIO,IJ:VFDCX ,I) 

410 ~FDAtln,l>•EFDCX ,JJ 
GO TO 416 

82 DO 41.21•1,JU 
OFOACt,t):OFOCl,2> 
UFOAil,1 )mUFD(l,?) 
VFDA(J,1. ):V(DCl,P ) 

412 EFDA(l,1 >•~FDCl,P ) 
GO TO 416 

92 DO 4141-1,Y . 
DtDAtt,I>=nro<i.1, 



PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued) 

UFDA(t,t)•UF'DC2,l) 
VFDA<t,l>=VFOC2,I> 

414 EFDAlt,l>=EFnC2,1, 
416 GO TO c220.222.224,232)oN 
220 00 30J•t,KD 

· DZOl I )11DFD(1, I) 
l))(O< I >•DFDC 10, l) 
UZO< I >•UFDH, I> 
UXO< I ):aUFD< In, 1, 
VZO< I >=VFD<t, I> 
V)(O( I ):sVFD< Ill, I) 
EZO< I >•HD<l, I, 

30 EXO<l>=EFDCJn,I) 
00 41Rl=1,ID 
OYO<l>•nF'Dll,1> 
uvnc 1 >•UFDc 1.1 > 
VYO<l>=VF'OCl,1) 

418 EYO<J):aEFnCl,1> 
GO TO ?26 

222 oo 3s1•1,1<n 
OXOC l )cOF'Dtd t, I) 
UXOC I ):aUFDACt; I> 
VXOI I )aVF'OACt, I) 

38 EXOCl>•EF'D4Ct,l> 
(,0 TO 226 

232 no 23G t=1,KD 
OZOC I >•DF'DAC ID, I> 
UZO<l>=UFDA<JD,1> 
VZOCl>:aVF'DA<ID,I) 

230 EZOCl>=EF'DACID,l) 
GO TO 2?.6 

224 DO 501=1,ID 
OYO< r >•OF'l)A( I ,Kn> 
UYOCl>•UF'DA«t,KD) 
VY O < I > =VF'D A< I, KD) 

50 EYO<l>=F.FDA<l,KD) 
226 WRlTFC~,5>TI~f,N,rAP 

rJXMX:0,0 
no :?8Id, IO 
DO ?£\1<::111,KO 
lJF'D c 1, K > :SQRTF ( IJF'OA (I, K) •UF'OU t, K hVF'DA CI, lO •VF'DA C 1, K) > 
EF'OCl,K)a(GAM-t.O)•CEF'DA(t,K>-nFnA(l~K>•UFD(I,K>•UFD<l,K)/2.0t 
IF<FF011JK).GE.1.n> AO TO 302 
SS = r. IJ 
GO TO J!)4 

302 SS=SORTF(GAM•EFDCl,K,/DFOAClaK\) 
304 SS=~~+UFOCl,K) 

IF<SS.LE,FIXMX)GO TO 28 
FIXMX:SS 

28 CONTINUE 
IFCFIXMX.LE.AFJX)GO TO 10000 
AF' IX =Ft XMX 

10000 IF<TlMf.NE.D~LT) r.O TO 2004 
PPV=-rJ.5 
VPV=PVCH 
DPV=•o,25 
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued) 

PXA=VVX=DDX=APY•AVY• ADY=DIR•o.o 
106 WRITE(J,101> PPV,VPV,DPV 

WRITF (3,103> 
00112 Id, ID 
00104 l<d,KD 
00116 J:1,2 
IF«PPV.GT.PPM)GO TO 132 
GO TO <118,1?0),J 

118 IFCK,F0,1 JOO TO 132 
A=EFDCl,I<) 
Bt:FFO <I, 1<•1) 
GO TO 124 

120 IFlT,F0.1 >GO TO 132 
Al:FFO(l,K) 
B•HO( 1•1,10 
GO HI 124 

124 IF<A,r,T,PPVIGO TO 122 
IFCR.r.T,PPV)GO TO 12b 
GO TO 132 

122 IF<B.GT.PPV>GO TO 1~2 
126 GO TO <5Dd,5n2>,J 
500 APX=K 

APV=I 
O=K ·1 
no rr1 5 ·14 

502 APX=I 
APV=r< 
AX=I-1 

504 PXA=AX•CAPX-~X>•(PPV•B>ICA•ij) 
132 lFCVPV,GT,PV~)GO TO 114 

GO TO (134,136>,J 
134 IF<~.F0,1 >AO TO \14 

AA=UF'fl( I, K > 
BB:IIJ:'DC l ,K-1 > 
CCi:VFOA(l,K> 
DD=VF'D4 (I, K·t > 
r.o rn 1Js 

136 I F C I • F O , 1 > r, 0 TO 11 4 
AA:llF'OC l ,K> 
F3R:UfD<f•1,K> 
CC:VF'[)A CI, K > 
OD: VF f"I A C I • 1 , 10 

138 IFCAA,GT,VPV>GO To 140 
IFCBR.GT,VPV>GO TO 142 
CiO TO 114 

(40 IFCB8.nT,VPV>GO TO 114 
142 GO TO (506,,u8>,J 
506 AVX=K 

AVV=I 
VX=K·t 
GO TO 53.0 

508 AVX=l 
AVV=K. 
VX=l•1 

51~ VVX=VX+(AVX•VX>•<VPV•BB)/CAA•BR) 
IJU:DD+CVVX•Vl()•<Cr.-110)/<AVX-VX> 



PROGRAM.LISTING OF THE CROSSFLOW SOLUTION (Continued) 

DIR=UU/VPV 
114 IFCDPV,GT,PDM)GO TO 522 

GO TO (512,514),J 
512 lfCl<.FD.1 )QO TO 522 

A•DFDAC I ,I< J 
B•DFOACl,1<•1> 
GO TO 1516 

514 IFCl,F0,1 >GO TO 522 
hDFDAC I ,I<) 
9•DFDAC 1 .. 1,10 

516 IFCA.GT.DPV>GO TO 518 
JFCB,GT,DPV)GO TO 520 
GO TO 522 

518 IFCB,GT.DPV>GO TO 522 
520 GO TO C524,5?.6>,J 
524 ADX=t< 

ADY=I 
nX=l<•l 
GO TO .528 

526 ADX:J 
ADY=t< 
DX=l .. 1 

528 DDX:O)(+CAOX·DX>•COPV•B>l<A-B> 
522 lF<PXA.NE,Q,~)GO TO ~30 

)rcvvx.Me,o.o>Gn 10 530 
IFCDDX,NE.o.oJGO to ,3o 
GO TO 116 

530 GO TO .(532,514),J 
532 W~ITEC3,1>APY,PXA,AVV,VVX,OJR,ADY,DDX 

GO TO 536 . . 
534 WRIT~C3,1JPX~•APY,VVX,AVY,DIA,nDX,AD~ 
536 PXA=O,O 

VVX=O.O 
DDX=O,O 

116 CONTINUE 
104 CONTINUE 
U 2 CON TJ NIJE 

VPV=IIPV•PVCH 
f;iPV=PPV+PPCl-i 
DPV=OPV+PDCt.i 
IFCVPV~LE,PVM>GO TO 106 
IFCPPV,LE,PPM>GO TO 106 
IFCD~V~LE.PDM)GO TO 106 

2004 WAJTEfl)(CDFDA(l,t<),UFDA(J,K),VFnACl,1<),eFDACl,K),I•1,1Q),K•l,KD) 
IFCTJ~E.GT,TMAX>Gn T056 
IFCT1NE.Nf~n~LT>GO TO 56 
DEL T•DEL T+VAR 

56 TIMF•Th4F.+t.o 
IFCM.GT.L>GO To 62: 

60 McL 
L•M·1 
GO TO lt4 

62 L•M 
Mc:L·l 

64 REWIND L 
REWIND M 
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued) 

CON.ST=AFIX 
!f(TIME.GT.HIAX)GO T0'554 
AF'IX•o.o 
GO TO 16 

554 WRITE(3,1071 
WRJTF<3,109)TMAX,M,CONST,TIM~ 
GO TO 100 

555 CONTINUE 
END 
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued) 

SUBROIITJNE FJELD(D19,U1B,V1B,E18,CAPA,0MEGA,SPHT,D1,D2,D3,D4,D5,Ut 
1,U2,U3,U4,U5,V1,v,.v3,v•.vs.G1.E,,EJ,E4,~5.K) 

T1=U1 •lJ1.+VHV1 
T2:U?•U2+V2•V2 
T3:U3•UJ+VJ•V3 
T4=U4•U4+V4•V4 
T5:US•IJ5+V5•V5 
P1=<SP~T-1,D>*(F1-n1•T11?.o) 
P2:ISPHT•1.~>*(F2·02•T2/P.O) 
PJ=rSPHT-1,P)*(F3-o&•T31?.o) 
P4:(SPHT•1,G>•(F4-D4•T4/?.ot 
P5:(SP~T·1,t>*(F5·0~•T5/~,0) 
IF(Pl.LT,O,r> GO TO 312 
T1:SQ~TF(SPHT*P1101)+SORTF(T!> 

312 IF(P?.LT,o.r, GO,~ ~13 
T2:SQ~TF(SPHT*P2/D2>+SORTF(T~> 

313 lr(P3.LT,o.o, GO TO 334 
T3:SO~TF(SP~T*P~/OJ>+SO~TF(T3) 

314 IF(P4.LT.o.n, GO TO 315 
T4:SORTF(SPHT*P4/041+S0~1F(T4) 

315 IF<P5,LT,0,0> ~OTO 316 
T5:SQPTF(SPHT•p,1ns,+SORTF(T!) 

316 CONT HIIJE 
AO rn,~01,J~2.JD2,30?),K 

301 R::?,O 
GO rn:rn3 

302 Q;:4.0 
303 AO T013r4,JC5,3D~.307),~ 
3(14 A:1, 0 

11=1.o 
ci=1.n 
Jt:1 • 0 
F. s l , 0 
F=1.Ci 
G=l. O 
Hait.0 
G.O 10~08 

3o5 .h1.o 
B:ao.o 
C:1.0 
U=o, 0 
E:=1.0 
F:2.0 

. G=1. 0 
Hc=o.o 
QO TO J(ifl 

306 A=o.o 
B=j. o 
c=o.o 
0=1.0 
E=0,11 
F111.o 
G:i:2. Cl 
Ii: 1, 0 
AO TO Jl)8 

307 A=O,(l 



PROGRAM LISTING OF THE CROSSFLOW SOLUTION. ( Continued) 

B•1.0 
C•o.o 
D•1..0 
&•2.0 
P•1.o 
G•o.o 
H•1. 0 

308 SUM=1.0•0HEG4*CAPA•CT1/~+(A•T2+B•T3+C•T4+D•T5,/8.0) 
D1R=n1•~UH+O~ERA•CAPA•<A•T2•D2+B•TJ•n3+C•T4•n4+D•T5•D5+CA•D2+B•D3+ 

1C•04+D•DS,•T1,1A.o-CA~A*CF.•D~•V2+F•D3•U3~G•D4*V4-H•D5•u5,12.82842 
U1B•fD1•U1•StJH+OHF~A•CAPA•<A*TP*02•U~+B•T3•D3•U3+C•T4•D4•U4+D•T5•D 

1'*115+(A•D2•U2+R•nJ•U3+C•04•U4+n•n5•U5,•T1>1a.o-CAPA•CE•D2•U2•V2+F• 
2 ( P3+D3•1Jl•U3, •G•D4 •U4*V4 ·M• ( P5+D5•U5•U5, '12 • A2842 > /DtB 

V1R=<nt•V1•SUH+OMFGA•CAPA•<A•T?•ni•V2+B•T3•D3*V3+C•T4•04•V4+0•15•D 
35•V5+(A•D?.•V~+B•D3•VJ+c•n4•V4+n•n5•v,,•Tt>l8.o-CAPA•«E•«P2+D2•V2•v 
?.2)+F•03•V3•UJ•G•(P4+D4•V4•V4)•M•n5•V5•U5>12,A2842)/Dt9 

F.1B=F1•SUM+O~ERA•r.APA*(A•TP•F2+B•T3•F3+C•T4•F4+D•T5•E5+CA•E2+B•EJ+ 
1C*E4+0•F~>•Tt)/8.n·C~PA•IE•CR2+P2>•V2+F•tE3•P3>•UJ•ij•CF4+P4t•V4•H• 
2CE5+P5l•U5)/?,A?842 

GO T0<3o9,31o,311,311).K 
310 U1R=Ut 

GO TO 309 
311 V1R=Vt 
309 RETU~N 

END 
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