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PREFACE

The study of a plane shock wave emerging into both still and super-
sonic streams was completed as a part of the research contract sponsored
by the Sandia Corporation, Albuquerque, New Mexico, This study was
conducted to determine the possible conditions under which a shock tube-
on-wind tunnel arrangement may be used experimentally to simulate a
blast loading of a model. This dissertation considered the transient
interaction of a shock wave and a supersonic crossflow., A companion
dissertation by Mr. W. N, Jackomis considered the transient flow field
resulting from a blast wave intercepting a stationary cone.

A number of investigations are presently being conducted by Ph.D.
candidates at Oklahoma State University in various areas of blast wave
interaction, Mr, W, F, Walker is concerned with establishing a numer-
ical technique to represent a turbulent jet mixing region and also with
the interaction of a blast wave and a jet mixing region, Mr. Rusi J,
Damkevala is studying experimentally the interaction of a blast wave
with free flight models, Mr, R. R. Eaton is to study the phenomena
associated with a missile emerging from a blast sphere, These investi-~
gations, with present work, should help gain an understanding of the
complex phenomenon of blast-body interactions,

The author wishes to express his appreciation to Dr, G, W, Zumwalt,
Associate Professor at Oklahoma State University, for the help and
advice given as my thesis adviser and for adding this advisement posi~

tion to his already large workload,
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A special expression of appreciation is given to Professor L, J.
Fila for his patience and helpful suggestions on many of the problems
which arose during the course of this analysis, Also, I extend my
gratitude to my Ph,D. committee members, Dr, J, H, Boggs, Dr, J, D.
Parker, and Dr, O, H. Hamilton for their instructive assistance.

Thanks is also given to the U. S. Government and its taxpayers
for the award of a National Defense Education Act Fellowship which gave
the much needed financial aid for my continued education. The assist-
ance given by Sandia Corporation is greatly appreciated and especially
the assistance of Mr., H. R. Vaughn for sponsoring this research project
at Oklahoma State University and making available the Sandia Corporation's
computer’ facilities, A special thanks is given to Mr, Jim Smith of Sandia
Corporation for his voluntary help in running the computer programs, I
am very grateful to Mrs, Lynn Bowles for her patience and skill in typing
this manuscript, particularly the many difficult equations, and to Mr,
Larry Lowcock for his genuine effort under the pressures of his school
work in preparing the fine figures presented in the text., I feel also
that my association with Mr. W, F, Walker and Mr, Glenn Lazalier has
been very beneficial during the past few years.

Finally, because of the love and understanding given by my family,

I wish to dedicate this thesis to my wife Janet and my children, Lynn,

Jr,, Pamela, and Tommy.
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CHAPTER I
INTRODUCTION

In the past several years missiles containing explosive warheads
have been designed as defensive weapons against aircraft and missiles,
The energy release from an explosion has two primary destructive features:
heat generation and a pressure wave, The hot gas region is confined to
the air in the immediate vicinity of the explosion and is due to the
sudden release of a large quantity of energy. The pressure disturbance
(blast wave) also results from the release of energy, but spreads more
rapidly to the surrounding atmosphere, This study is concerned with a
method for testing the effects of a blast wave on a bedy at some loca-
tion outside the region of the fire ball.

When a blast wave intersects a body, it may cause structural fail-
ures or flight path changes from excessive pressures or accelerations,
The interaction of a blast wave with a body is a very complex phenome-
non and has created a great deal of interest, Both analytical and
experimental studies are necessary to determine the proper formulation
of the methods of solution to this pehnomenon. Many of the analytical
approaches are references in the literature- survey (Chapter III). The
experimental studies may be either full scale tests or model simulation,

This study was conducted for a particular model simulation test model,



2

An experimental arrangement has been proposed by Pierce [ 1]* which uses
both a shock tube and a high velocity wind tunnel for blast simulation,
The shock tube is the blast-producing device and is‘mounted on the side
of the wind tunmnel (Figure 1), This appears, at first, to be a very
prdmising means of simulating the interaction of a blast wave with a
moving body (Plate I). However, the properties of the blast are not
known after the blast has propagated into the high velocity crossflow,
The blast is deformed by the crossflow and may not be uniform in strength
or direction of propagation., Thus, the deformed blast could fail to
represent properly the free-air blast. Therefore, some knowledge is
needed of the interaction between a blast (shock) wave and a high veloc-
ity crossflow, The shock-crossflow interaction problem is the subject
of this study,

The study was conducted on an analytical basis with qualitative
experimental support, Two problems were considered:  a shock emerging
from a round or slit-like opening into a still medium, and the shock-
crossflow for a slit-like opening. Both problems were solved by a
finite difference scheme on a CDC** 3600 computer and supported by

hydraulie analogy results,

*Numbers in brackets refer to references in the Bibliography.

**Control Data Corporation,
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PLATE I

SCHLIEREN PHOTOGRAPHS OF A SHOCK TUZE FIRING
INTO A WIND TUNNEL

FREE STREAM MACH NO. 2.0
BLAST WAVE MACH NO. 2.9
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CHAPTER II
DESCRIPTION OF THE PHYSICAL PHENOMENA
General Shock Diffraction

Because the phenomenon of shock reflection and diffraction is com-
plex, some physical definitions of general shock behavior are needed,
Therefore, the concepts of shock reflection and diffraction are described
below,

The oblique reflection . of a shock occurs when the shock impinges on
a body (or shock) at some arbitrary angle, Oblique reflections are
divided into two basic types: regular reflection and Mach reflection,
Regular reflection is the simplest shock configuration and is shown in
Figure 2, A shock OA, with shock velocity U, strikes a bouﬁdary at a
point O -at an angle 8. The shock OB is the reflected wave, which
moves away from the boundary at a shock velocity U'. - A normal shock
reflection (Figure 3) is a special case of regular reflection, For a
given Mach number of the incident shock a maximum incidence angle,

g = éﬁ, exists for which regular reflection may occur (Figure 4), For
an angle. 6 greater than em’ shock reflection occurs as a Mach reflec-
tion (Figure 5). The incident shock OA has a velocity ‘U and an angle
g > em. A Mach stem OC is formed, which becomes perpendicular to the
boundary, The Mach stem moves along the boundary while the reflected
shock»OB moves away,ffom the boun@ary. The intersection of the shocks

OA, OB, and OC at O 1is called the triple point. A contact discontinuity
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is formed at O behind the shock system., This discontinuity is due to
the difference in the entropy rise of the flow through the shocks OA
and OB, and of the flow through . .the Mach stem.OC, A plane shock encoun-
tering a concave corner (Figure 6) provides an example of a Mach reflec-
tion, In all cases of shock reflection the movement of the shock is
confined or restricted in some manner, In each case, the wave is said
to be diffracted (i.e., the shock shape is altered).

A shock may also be diffracted by allowing more freedom of move-
ment, An example of this type diffraction is a plane shock encountering
a convex corner (Figure 7). The corner O causes a disturbance to be
propagated. outward along the line OB after the shock passage., The dis-
turbance causes the shock from A to B to be diffracted, The diffrac=-
tion process occurs gfadually as the shock BC moves downstream; therefore,
the properties behind the diffracted shock are not uniform, and rota-
tional flow exists even though there is -a uniform field in front of the

shock,
Propagation of a Plane Shock Wave Into a Still Medium

The first phase of this study pertains to the propagation of a
shock from an opening in a plate into a still medium, Two openings
are considered, circulaf and rectangular (Figure 8). For the rectan-
gular opening, the-length 4 1is assumed to-be much larger than the
width w, which allows the phenomenon to be essentially two-dimensicnal
except close to the ends, The sh&ck diffraction resulting from these
two openings is qualitatively similar, The shock encounters a 90° con-
vex corner at the edges of the opening and is symmetrically diffracted

(Figure 9 - profile A). At some time  later, the whole shock is
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. Figure 9,

Shock Profile After Emerging From an
Opening Into a Still Medium,

¢1



1k

diffracted (Figure 9 - profile B); the disturbance is reflected; and
the reflected disturbance is propagated outward along the shock., After
a large number of disturbance reflections, fhe moving shock. front
approaches a cylindrical shape for the rectangular opening and a spher-
-ical shape for the circular opening.
Propagation of a Plane Shock Wave Into a Perpendicular
High Velocity Crossflow
The shock-crossflow interaction was studied for a plane-shock

-emerging from a rectangular opening, A large z/W»-ratio (Figure 8 ;
is assumed so the .solution could be obtained in a plane. . To gain
insight into this phenomenon a preliminary water table study was made,
leading to several observations,

As the shock emerges from the opening, a number of events occur;
and the interaction may appear at some arbitrary time as shown in Figure
10, The portion of the shock labeled AB is moving into the stream.and
BC is a nearly stationary oblique shock which is formed because of the
interaction of the two streams, A'B'C shows the shock position at some
later time, At D the stream from the shock tube (2) and the crossflow
field (1) meet to form.a stagnation condition., As stream (2) emerges
from the slit, it passes through an expansion region E and separates
at F downstream of E, In some cases, where the total pressure of
the crossflow.is sufficiently greater than that of the fluid emerging
from the slit, an internal shock appears at G,

This flow field can be seen to contain a number of quite complex
phenomena. Analysis by resortingnté shock-expansion theory, appears
hopeless, leading the investigators of such problems to numerical field

solution methods,
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CHAPTER III
LITERATURE SURVEY

Mathematical treatment of shock waves had been restricted to steady
state phenomena up to the early 1940's when investigators became inter-
ested in the pressures produced by a shock wave colliding with an
obstacie. The development of more powerful explésives was probably
the primary reason for this interest. Most of the early investigations
were done by linearizing the governing equations in some manner and
using analytical techniques to obtain a solution, Finite difference
schemes began to be developed for the nonlinear equations for shock
propagation in the early 1950's, due to increased use of large digital
computers, In recent years most investigations have employed a differ-
ence scheme to solve complex problems,

The literature has been divided into three categories for review,
The literature on mathematical studies is divided into analytical and
numerical investigations to compose two categories. The third categoxry
is the literature on the experimental studies of a shock tube firing
into a high velocity wind tunnel. The discussion will follow chronolog-

ical order.
Analytical Investigations

One of the first investigators of the principles of shock reflec~

tion and diffraction was John von Neumann [5]. Von Neumann conducted an

16
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experimental and theoretical study of head-on and. oblique shock reflec-
tions from solid boundaries and observed that regular reflection gave
way to a more complicated type reflection when the angle between shock
and wall become large. This type of reflection is termed '"Mach reflec=-
‘tion", The phenomena of regular reflection, Mach reflection, and the
"triple point" were described by von Neumann [3],

Lighthill gave an analytical solution for two problems, [4] and
[5], that involved the reflection of a plane shock of arbitrary strength
from a plane wall which had a sharp but small change in direction, The
first paper gave the solution for a shock propagating parallel to the
wall and the second paper perpendicular to the-wall, The basic equa~
tions were linearized on the assumption that the small change in wall
direction produced only small perturbations in the uniform flow behind
the -shock,

The diffraction of a shock at a convex corner was studied by Parks
[6] and applied to a shock tube of diverging cross-section, An analy-
sis similar to that used for nonstationary, one-dimensional, wave
interaction problems was presented along with an experimental study,

Ting and Ludloff [7] considered the effect of a small lump on a
blast which propagated along a flat surface, This problem is similar
to Lighthill's problem [4], but a different technique was used to obtain
the solution,

Chester used Lighthill's technique to solve three linearized prob=
lems, One paper [8] investigated the disturbance produced behind a
plane shock that propagated through a channel in which the width
:possessed small variations, The shock strength was arbitrary and a

relation was developed for the pressure change behind the shock along
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a channel variation, A second paper [9] extended Lighthill's work to
consider the interactibn of a shock wave with an infinite, yawed, thin
wedge. Chester [10] extended his own work of the first paper to the
propagation.of a shock along a tube of arbitrary cross sectional shape
but with small variations in the cross sectional area,

A theoretical study was conducted by Laporte [11] on the passage
of a shock along a channel possessing a constriction or sudden area
reduction, The purpose of the study. . was to present the diffraction
theory for a shock encountering head-on a flat plate on which a regular
array of perpendicular spikes or wedges was mounted.

In 1956, Whitham [12] presented a method to treat weak shock prop-
agation problems of three independent variables, - A large number of
ray tubes was éssumed to compose the flow field, For a single tube the
energy was assumed to be conserved as a shock propagated along the tube,
Geometrical acoustic theory was applied with the additional assumption
that a shock wave moved at a speed appropriate to its local strength,

A number of examples were given to demonstrate the use of the theory.
The examples included unsymmetrical explosions and sonic boom problems.

Chester's work on shock propagation along a slowly varying channel
was extended by Chisnell [13], A first order relation between changes
in area and in shock strength was developed in which reflected waves
wefe neglected and the average shock strength was conserved along the
channel,

Ting [14] considered the problem of the diffraction of a small
disturbance caused by a convex right angle corner, The primary appli-

cation for this work was wing-body interference,
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Whitham. [15] extended his previous work to give an approximate
theory for two-dimensional problems of diffraction and stability of
shock waves, The theory was based on the ray tube concept and on the
relation for area and shock strength changes developed by Chisnell,
Reflected waves were neglected and the average shock strength was
assumed to be conserved along the tube., Disturbances to the flow
were represented as wave propagating along the shock. This wave car-
ried changes in shock angle and Mach number. Discontinuities of the
disturbance wave were considered so that the shock could be diffracted
on a way similar to the diffracted part of a Mach reflection. Whitham
applied the theory to a number of diffraction problems,

In 1958, a péper [16] was presented by Whitham which referred to
the work of Moeckel on the interaction of an oblique shock wave with
a shear layer and to the work of Chester and Chisnell on the propaga-
tion of a shock down a nonuniform tube. - Whitham obtained the same
results as the above authors, but by a simpler method. The discussion
by Whitham was mainly to gain a better understanding of the results
given by his method,

Sternberg [17] gave a general discussion of the triple-point
. region of Mach reflections. An unsuccessful experimental attempt was
made to define the angles between the shocks at the tripie point, Also,
a mathematical model was suggested which might be used to gain a better
understanding of the problem,

In 1959, Whitham [18] extended his earlier work to apply his theery
for shock propagation in three dimensions, An analqu between the pre-

sented theory and steady supersonic flow was found.



The diffraction of a shock wave by a small wedge-like deflection
was treated by Bezhanov [19]. The method of solution of the problem
made possible solution of more general physical conditions than
Lighthill's approach to the problem, Solutions for the flow could be
found when the wall deflected as a result of the oncoming shock and in
the presence of unsteady disturbances ahead of the shock front which
are generated by wall motion,

The diffraction of plane strong shocks by a cone; a cylinder, and
a sphere was studied experimentally by Bryson and Gross [20]. Whitham's
theory of shock diffraction was applied to the same physical models
and gave very good results,

The diffraction problem of a plane weak shock wave by wall contours
of arbitrary shapes was considered by Filippov [21], A number of two-
dimensional shapes were considered, The problems were solved in a lin-
earized formulation and no consideration was given for nonlinear regions,

Smyrl [22] obtained a solution for the pressure field behind an
arbitrary plane shock after the shock has encountered a thin airfoil
moving at supersonic speed, The problem was linearized and a closed
form solution resulted. Several examples were given to illustrate the
effects of shock strength, airfoil speed, and yaw angle,

Whitham's method of diffraction of blasts by stationary bodies was
applied by Miles [23] in 196% to the problem of a blast diffracted by
a thin supersonic wedge. Results by Whitham's method tended to the
exact results for weak shocks but were unsatisfactory for strong shock,

A discussion and bibliography concerning reflection and diffrace
tion of shock waves was presented by Pack [24]. A particularly good

discussion of shock . reflections is given,
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Wolff [25] has presented a study of the head-on intérception of‘a
flying conical body.with blast waves of various strengths, Two flight
conditions were analyzed: a stationary body at sea level and a cone
with a velocity of 19,000 ft./sec. at 40,000 feet altitude. The invis-
cid flow fields, shock-on-shock interaction phenomena, and non-
equilibrium effects were determined. Some discussion was given for a
body flying out of a blast., The analytical method employed was a
co-ordinate transformation to make shock waves steady. Real-gas effects
were included, and estimates of pressure distribution on the body as a
function of time resulted.

Lee [26] discussed some aspects of the 1aboratory;siﬁulation of
strong blast waves on flying projectiles by means 6f a shock tube dis-~
charging into a wind tunnel. Lee conjectured that for strong shocks
(i.e., Mach number >4) that the gas behind the shock from the shock
tube projected from the tube as a column, He observed that if this
were true the test time would be very short, Lee also discussed the
use of the shock from a shock tube as a blast wave through which a
hypervelocity model could be fired.

The majority of the analytical methods reviewed used some means
of linearization to obtain solutions. The nonlinear shock diffraction
methods were limited in that the flow field. behind the shock was not
defined. Therefore, there are no- analytical procedures available to

treat a complex nonlinear shock propagation problem.
Numerical Investigations

In 1950, a finite difference scheme was introduced by von Neumann

and Richtmyer.[27] in which a mathematical “viscosity" term was added
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to the Lagrangian equations, The "viscosity" term allowed a shock to

be represented as a steep continuous gradient of properties, rather than
a discontinuity, Using this representation the difference equations
were written explicitly and the shock was treated as-a steep gradient
interior to the field and not as a discontinuity boundary. Require-
ments for defining the mathematical "dissipative” term were given and
are presented in Chapter IV of this study.

Courant et, al, [28] presented a difference method for solving
nonlinear hyperbolic equations in which the order of magnitude of the
accuracy was the same as the order of magnitude of the net width, A
scheme for curvilinear and rectangular nets was given. The sufficient
condition given for convergence of the scheme was that the domain of
dependence of any point in the net as given by the difference equations
may not be less than the domain of dependence determined‘by the differ-
ential equation, Shock waves and other discontinuities were treated
as boundaries.,

In a report written by Lax [29] a very general discussion of
mathematical conservation laws was given and a difference scheme was
presented for shock propagation problems. By defining the time deriv-

ative as

k k .

o _ 1 <fn+1 o En t fm-1>
At At m 2

Lax showed that a shock may be handled as a steep gradient, similar to

the representation given by von Neumann and Richtmyer. By rearranging

the terms of Lax's difference equation, it has been shown [30] that the

equation could actually represent a differential equation in which a
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"dissipative'' term had been added. One-~dimensional problems were pre=
sented to compare the results of the scheme with those by classical
moving shock theory,

Ludford et, al [31] presented a difference method using a ''dis-
sipative” term based on a viscosity law of physically proper form, Howe
ever, to obtain reasonable results, unrealistically large values of the
physical viscosity were used,

Lax presented in Reference 32 the work that had been done for the
report discﬁssed above, The paper was obviously required to be con-
densed, leaving out some details the report contained,

In 1955, Lax's difference scheme was extended to two-dimensions
by Ludloff and Friedmann [33], The problem of reflection and diffrac-
tion of strong shocks around corners of arbitrary angle was solved by
an elliptic method and by a hyperbolic method (Lax's extended method).
For the elliptic method conical coordinates were introduced and the
basic equation became elliptic in nature, A difference approach was
required to solve the equation and all discontinuities were treated
as boundaries requiring an iterative procedure, The second method used
was essentially Lax's technique for two dimensions in which the dis-
continuities were represented b? steep gradients,

Ludloff and Friedmann [3&] discussed the difference equation used
in the hyperbolic method applied above and pointed out the general
characteristics of the method for shock diffraction problems.

Lax's difference method was used by Payné [35] to solve the equa-
tion of motion for the cylindrically symmetric flow of a compressible
gas., A converging cylindrical shock was found to increase in strength,

in agreement with the relation obtained by Chisnell [13], The presence
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of the "dissipative!” term caused the pressure to remain finite at the
axis and a reflected diverging shock was observed,

Godunov [56] presented a difference scheme which was similar to
the methods of von Neumann and Richtmyer and of Lax. One~dimensional
experimental problems were presented to illustrate the scheme.

A discussion of systems of conservation laws was given by Lax and
Wendroff in Reference 37. Also, a new difference technique was presented
in which an arfificial "yiscosity'" was used., One-dimensional problems
were used to demonstrate the results of the technique.

A difference method was presented by Rusanov [38] in 1960, This
scheme also utilized a "dissipative" term to obtain solutions for shock
diffraction caused by a number of different geometries, These geome-
tries are shown in Figure 1l where the dashed lines represent the inie
tial shock positions, -Problem A involved a regular reflection and B
involved a Mach reflection, Diffraction of a shock at a right convex
corner is shown in C,; and a head-on encounter of a shock with a right
convex corner is shown in D. Geometries E and F are, respectively,
a shock wave propagating from an annulus into a circular pipe and a
shock propagating along a pipe into an annulus,

The "dissipative’” difference method of von Neumann and Richtmyer .
was applied by Makino [39]. The scheme was used to obtain numerical
calculations of the-interaction of two spherical blast waves in air,

The Particle-in~Cell method of the Los Alamos Laberatory Computer
Center was discussed by Harlow [40O], This method uses features of both
Lagrangian and Eulerian meshes for compressible f£low problems.

A report by Crocco [41] gave a new numerical apprecach for solving

the Navier~Stokes equations. The technique was applied to a one-~



A B
l
: _ A -~
. A A
- _ A
7 A
A
| 7 4
A ' P
' c b

Figure 11, Shock Diffraction Problems Presented
by Rusanov- [38],



26

dimensional problem in which the unsteady equations were solved to
obtain a steady state solution,

Burstein [42] applied the Lax-Wendroff method to obtain numerical
.results for oblique and Mach reflections in air. The Mach reflection
calculations agreed with experimental photographic data obtained from
wind~tunnel tests,

At the 1965 A.I,A.A. meeting, a two part paper was presented by
Bohachevsky -et. al. [43] in which Lax's [32] and Godunov's [36] methods
were described and extended to include Lighthill's ideal disso;iating
diatomic gas model., In the first part of the paper, the two methods
above were applied to plane flow-abqut.a rectangular body,. axisymmetric
flow about a flat faced cylindef, supersonic flow.in the afterbody
~section of a cylindrical body, and axisymmetric flow about a sphere,
The second part of the paper was devoted to a discussion on the develop-
ment of techniques for computation of three~dimensional flow field.
Also included in the second part of the paper were results for an
Apollo-type body at an angle of attack in an ideal gas flow,

From the review of the above techniques and applications to shock
propagation problems it appears that the only approach available to a
complex nonlinear problem is a finite difference scheme of the types

developed by Lax, Gudonov, and Rusonov,
Experimental Investigations

To date only three .experimental studies on wind tunnel simulation
of blast wave phenomena using a shock tube have appeared in the liter-

-ature. The first work reported was by Pierce [1] in 1960, He had

mounted a shock tube on the side of a wind tunnel with the driven end
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of thé tube well into the flow field of the tunnel, A reflection plate
was placed on the end of the tube to minimize the interference by the
flow around the tube. Shadowgraph photographs of blast waves passing
over a number of simple shaped models were studied for tunnel Mach num-
ber of 1,87. The initial blast wave‘Mach number was 2,38, Pierce con-
cluded that local increases of pressure due to a blast acting on a body
were several times the pressure behind the blast, He also observed
that the duration of this high pressure was very short,

In 1964, a second experimental investigation was conducted by
Bingham and Davidson [44] at Ohio State University. The wind tunnel
was a hypersonic free-jet tunnel and was operated at Mach 7.3, Shock
tubes were installed at angles of 30°, 60°, 90°, and 120° with respect
to the tunnel centerline. The shock tube was a déuble diaphragm tube
which was capable of generating shock velocities from 3,600 to 13,500
feef per second, Pressure measurements and Schlieren photographs were
taken of the interaction of the bow shock of a hypersonic body with an
obliquely moving shock wave, From this study it was concluded that this
type of simulation of the interaction of a_pody shock wave and a moving
shock was a feasible method,

The most recent study was reported by Merritt and Aromson [2] in
January, 1965, Attempts were made to conduct a side-on blast study
using a shock tube discharging into a Mach 5 flow. The shock tube
extended into the stream and had a reflection plate on the end, The
side-on study was abandoned because the complex wave patterns defied
analysis, and no theoretical solution was available for comparison.

The shock wave was highly curved and attenuated rapidly, and it was

very difficult to get clear pictures at Mach 5. A study was then done
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for a head-on blast interaction, A small shock tube was mounted a
short distance upstream of the throat of the tunnel nozzle and was dis-
charged in a downstream direction, A Schlieren study was made for a
hemisphere-cylinder and a wedge model, There was good agreement between
the predicted and me asured overpressures at the stagnation point of a
blunt body and on the surface of a wedge.

From the literature presented, it may be seen that the blast sim-
ulation technique using a shock tube and wind tunnel possesses some
difficult experimental problems. Even though these difficulties are
present and the technique may not accurately simulate the blast problem,
no better alternative has been presented. Merritt and Aronson have
presented a technique for a special case (i.e., head-on interactionm),
but a technique must be developed to obtain a general side-on blast
simulation, To date there has been .no technique given to determine the
variation of shock strength and direction of propagation along the

shock.



CHAPTER IV

MATHEMATICAL ANALYSIS

Geometric Models

Plane Geometry - Still Medium

A shock emerging from a rectgngular opening into a still medium
spreads in a symmetrical manner about-a plane which is perpendicular to
the ends and includes the centerline A-A {Figure 12). For a large jg/w

.ratio, the shock shape is affected by the end wall only in the immediate
vicinity of the end. Therefore, the model is taken as an infinite slit,
allowing the problem to be formulated in two Cartesian dimensions, x
and y, plus the time dimension, t. Since symmetry exists about a
plane that includes A-A, any disturbance felt on this plane is reflected
as if the plane were a wall, Thus, the center plane may be replaced by
a wall (Figure 13). At all walls, a shock is considered to propagate

in a direction parallel to the wall. The model may now be stated as

the propagation of an initially plane shock from an opening, bounded on

one side by a plane wall and on the other side by a.90° convex corner.,

Axisymmetric Geometry - Still Medium

Symmetry exists about the centerline D-D (Figure 14) for a plane
shock emerging from a circular opening, In cylindrical coordinates; the
solution.does not depend on the angular direction €@ because of this

symmetry., Therefore, an arbitrary r, z plane may be used to obtain the

29



Figure 12,

Geometry for a Rectangular Opening.
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Still Medium,



Figure 1k,

Geometric Model for a Circular Opening,
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solution, For flow along the axis of symmetry, the gradients in the
radial direction of pressure, density, and z-direction velocity must
vanish., Also, the radial velocity must vanish at the axis due to the
symmetry, As in the plane - still medium model, shocks are considered

to propagate parallel to all walls,

Plane Geometry - Crossflowing Medium

The shock-crossflow interaction is considered for a plane shock
propagating from. a rectangular opening in a wall into a medium flowing
parallel to the wall, If the ratio g/w (Figure 12) is large, then,
as in the plane - still medium model, the opening may be taken to be an
infinite slit, which allows the problem to be formulated in the two
Cartesian dimensions, x and y,  and the time dimension t., Because
the shock is distorted by the crossflow, no other symmetry exists,
Therefore, thé model is a plane shock emerging from.an infinite slit
' (Figure 15) into a semi-infinite flowing field., As in the other models,

shocks are considered to propagate parallel to the bounding walls,
Governing Equations

The conservation forms of the general fléw equations are derived
in Appendix A and are presented here, The fluid is assumed to be a gas,
which is inviscid and ideal (i.e., the internal energy. and enthalpy are
functions of the absolute temperature, only). The general equations
are:

Continuity,

§~§+»7~(pi7) = 0 (1)
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Momentum,
( Vz -
aai + 7 p[VV] + 7p = 0; (2>
Energy,
oe + [( + \7] = . iz )
3t Ve L€ p) = 03 i3
where p = density,
p = pressure,
v o= velocity vector,
e = fluid energy per unit volume
- 2
\Y
_ el . >
2 k-17
7 = divergence vector operator,

The above equations are first order, quasi-linear, partial differential
equations with dependent variables e, g, V, and p., Equation (2) is
a tensor equation which represents a system of equations for orthogonal
momentum components, These equations are also said to be in conservation
form (i.e., af/at + 7. F = 0), The p}operties of quasi-linear
conservation equations are discussed in a later section of this chapter,
The equations needed to describe the phenomena for the defined mathe-
matical models are dependent on time and two space variables,

The equations which describe the phenomena in the still and cross-

flow media plane models are given in Cartesian coordinates (x, y). The

velocity and the divergence operator are defined respectively as

V = ui + VE
and
- o e
7 = 1 + =
¥x Iy’
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where i = x.direction unit vector,
j = y-direction unit vector,
u . = X veloecity component,

v = vy velocity component,

The flow.equations are then:

Continuity,
30 4 alew) oalpvy) | g, ()
at fo2.8 oy
Momen tum,
x~direction
aPy) 3 2 2 -
Bl 2 (e p) 2 () = 0 (5)
y~direction
o - (P = 0:
5c (ev) + 35 (euv) + =2 (pv" + p) 0; (6)
Energy,
-l Q[ , - =
S(e) + e+l + S letp)vl = o (7)
The fluid energy is
_ p(u2 +’V2) p
e 5 v P (8)

The flow equations (4}, (5), (6}, and (7) may be written as a single

equation:

X y
of , ¥, F L

ot % y % (5)

where £, FX, F’ are treated as four component vectors:
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P pu pv

£ = F;: s F = 1;:’ pe ; A R S
e (e + p)u (e + p)v

The equations for the axisymmetric, circular model are given in the
cylindrical coordinates, z and r. The velocity and the divergence
operator are defined respectively as
V = vh + uk

and

AR (IR

where h = r direction unit vector,
k = z direction unit vector,
u .= z velocity component,
v = r velocity component,

The flow equations are now:

Continuity,
'gI(p) + %;(pu) + g?(pv) + -9% = 0; (10)
Momentum,
z~direction
2 Puv -
%(pq) + g;(pu +p) + g?(puv) + —;—- = 0 | (ll)
r-direction
3 2 p 2
v
%g(p") + %z“(pu-v} + 5 v te) + T = 0 (12)

gEnergy,

2(e) + Tl(e+pul + Ll(e+p)v] + F(e+p) =0
Z or °r (15}
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The fluid energy is

o(u2 + v°) p ‘
5 + e gt (14)

The flow equatiomns (10), (11), (12), and (13) may be written as a single

equation

Z r
AR S L A (15)

; . r
by . considering £, FZ, F°, and ¢ as four component vectors:

P Py,

£ = pu : Fz - pu + p .
pV ,puv
e (e + p)u

]
Ril<

pv p

r = QUV . pu

F pV2 +p (’ v pv
(e + Py e+ p

The dependent variables (p, u, v, e, p) of Equations (9) and (15)
are made dimensionless with respect to soﬁe reference state, which for
this study is the state in front of a moving shock wave, The non-
dimensionalizing method, Appendix C, gives the static properties, p
and p, .in front of‘the shock a value of unity and behind the shock a
value equal to the property ratio across a normal shock as given by a
standard compressible flow table [45], Velocities are non-dimensionalized

with respect to the quantity Vp/p in front of the shock,
Mathematical Conservation Laws Applied to Gas Dynamics

The mathematical properties of conservation laws presented in this
section are only those which pertain to nonlinear wave propagation in

gas dynamics, For a general discussion of the mathematics of conservation
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laws, the reader is referred to the books, Non-Linear Wave Propagation

by Jeffery and Taniuti [46] and Methods of Mathematical Physics, Volume

II by Courant and Hilbert'[u7]. A discussion of the properties is
given here with references for required proofs,
The differential form of a mathematical conservation law is expressed

as

af CF o=
St + 7 F o (16)

where f and F‘ are not independent, Equation (16) is said to be in
divergence form and expresses the divergence free character of the field
(£, F), (i.e., the divergence of the field vanishes),

If jump discontinuities of £ and F are present.across-a surface
o, certain conditions must be satisfied to represent properly the dis-

continuity, The generalized Rankine-Hugoniot relation (461,
Alel = [F - &l, (17)

must be satisfied for the discontinuity surface ¢g. The brackets here
denote changes in the quantities, f and f, across the suyface O

and A is the local velocity of propagation of ¢, along the unit
normal of g, n. In gas dynamics the conservation equations-of the form
of Equation (16) are statements of the conservation laws for mass, momen=
tun, and energy, Equations (1), (2), and (3). The jump discontinuity

g 1is gas dynamics, described by the generalized Rankine-Hugoniot rela-
tion, Equation (17), is a shock wave where A is the shock speed. For

a stationary shock, the shock speed would be zero, which gives the more
familiar Rankine-Hugoniot relation., One additional cbndition must be

satisfied to determine a physically relevant state across a shock because

the direction of the change of entropy must be defined, Therefore, the
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entropy condition (i.e., the second law of thermodynamics) must be
satisfied to emnsure the supersonic character of shocks,

The solutions for the conservation léws are of two types: genuine
and weak., A genuine solution is a function which satisfies the differ-
ential equation and is Lipschitz continuous (i.e., a solution which is
continuous and has a bounded first derivative). The concept of a weak
solution (also called a generalized solution) allows the solution to
be discontinuous, Therefore, the weak solution may possess jump dis-
continuities, such as the discontinuity surface g mentioned above,

The general theory of weak solutions has been. discussed in mathematical
journals [29], [37], (48], and [49]. It has been shown that a genuine
solution is a special case of a weak solution; that is, a weak solution
with continuous first derivatives is a genuine solution, The flow of

a gas in a two-dimensional space R may serve as an. example of the

two types of solutions, Let a shock surface ¢ separate the region R
into two subregions 1 and 2, The solution for region 1 1is a gen-
uine solution _fl because the flow is uniform and possesses no discon-
tinuities, Likewise, the solution _f2 for region 2 1is a genuine
solution, The generalized or weak .solution of region ‘R .is formed by
taking fl and £, together if the Rankine-Hugoniot relation, Equation
(17), is satisfied across . A weak solution, as defined,.is not
unique because in physical phenomena certain quantities require a defined
direction of change across discontinuity surfaces, Entropy is a quan-
tity which must. always increase écross a shock discontinuity (the second
law of thermodynamics).  Therefore, the entropy condition must be satis-
fied by a weak solution before the solution may represent.a physical

shock problem,
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A shock discontinuity is an irreversible process involving viscous
and heat conduction effects while the conservation equations, (1), (2),
and (3), are derived for an inviscid gas and describe reversible proc-
esses, A method of obtaining physically relevant weak solutions for
the conservation equations, (1), (2), and (3), involving irreversible
processes has been suggested by a number of mathematicians {27], [48],
[50], [51], and [52}. The method is to introduce mathematical terms
with small coefficients which are analogous to the "dissipativée'terms of
viscosity and heat conduction, It is then postulated that weak.solu-
tions for physical phenomena may be obtained from the limit of mathe-
matical '"dissipative' solutions as the coefficients of the ''dissipative”

terms tend to zero, Studies, [50] and [52], of the equation

_a_g_i_Fxtf:}\@gf
at fo28 =z
ax
have established that solutions of the equation with given initial con-

ditions tend to a weak solution of

%§+ -xaxtf =0 | (18)

with the same initial conditions. Olejnik [52] has proved the existence
of the weak solution for Equation (18) obtained by this method. In a
study of continuous dependence of solutions upon their initial condi-
tions, Douglis [53] rederived Olejnik's results as a special case.

b

Olejnik also has given conditions for the use of nonlinear ''dissipative'

terms (i.e.,

SRCE-2D)
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The use of nonlinear terms has also been suggested by-GodunOV'[48], 511,
The addition of the "dissipative" terms causes the equation to be para-

bolic in nature, Therefore, the solution of the parabolic equation

o, Eaied o2 2t ]
St + = A - Alx, t) - (19)
with the initial condition f£(x, o) = ¢g(x), gives as a limit, for

A = O, the weak solution of the hyperbolic equation

£ t, f
%E + xax = 0. (20)

When a system of equations in the form of Equation.(19) is written
for the conservation equatioms (1), (2), (3), a finite difference
technique must be used to obtain a solution because of the nonlinear
character of the equations, A number of different "dissipative" terms
have been defined to represent moving shock waves [27]3 [36]j [37],
[38]. 1In numericél calculations the '"dissipative" terms allow the
shock to be smeared over a narrow region in which flow prdperties are
represented as very steep continuous gradients, Von Neumann and
Richtmyer [27], who were the first to apply the mathematical "dissipa-
tive" method to shock propagation, have given four requirements that
must be met in defining a coefficient for the "dissipative' term:

1, The equations with '"dissipative" terms must possess solutions

without discontinuities,

2. Theithickness of the shock must be of the same order as the

length Ax wused in numerical calculations, independent of the
shock strength and of the condition of the flow into which the

shock is propagating,
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3. The effect of the '"dissipative'" terms must be negligible out-
side the shock region,
4, The Rankine-Hugoniot equations must be satisfied across the
shock for a distance greater than the shock thickness,
It has been observed also that the addition of the "dissipative" terms

has the effect of adding stability to the difference equation.
Difference Technique

The solutions of the conservation laws for the plane geometry,
Equation (9), and axisymmetric geometry, Equation (15), are obtained
by using the'"dissipative” method previously -described. The difference

scheme of Rusanov {38] is developed below, including important details

omitted in the original paper, for the nonlinear 'dissipative" equation

. X y
af F L F _ 3 af 3 f )
+ + [A(x.vy’t) ax + 3y |:B(X3Yyt) 3y (21)

ot ox oy ox

for plane geometries and

zZ r ' ’
%% + -SEZ— +§§-— + oy = -%Z-[C(z,r,t) -gf +%;|:D(Zyr:t) "aa';f‘:] (22)

for axisymmetric geometries, The coefficients A; B, C, and D are
determined by applying the Fourier stability technique to the difference
equations for Equations (21) and (22).

The Equations (9) and (15) are written in the form of Equations
(21) and (22), respectively; and, using a square net, the difference
scheme for a general field point is derived in Appendix D. The square
net (Figure 16) has steps Ax = Ay = h_, At = f in the (x,y,t) space.

1

The coordinate of any quantity at a net intersection point is (mhl,
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Figure 16, Net Point Nomenclature for Plane Geometry.

? (m?ﬂl‘“l)

" Figure 17, Net Point Nomenclature for Axisymmetric
' Geometry,
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_zhl, nt) and a quantity a, at this point, is denoted by‘,a;yz .
The increments h, and 1 are related through the angle X, which

is between the diagonal h of a net and the x increment hl (Figure

16). These hl and + relations are

/21
h 7

~
th
[=p
")
~
]
-1

= h//E., for a square.net;

>
I

where hl = h cos

SOk o= Kl./e—.

The difference equation corresponding to Equation (21) is

gl o gm -E[FX - ¥ + 57 Fy ]n+
m,4  m,4 2 mtl, 4 m-1,4 m, 4+1 m,z 1
Al ]
= - + -
2 ém%:z ém-%,j, ém, 3 ém,ﬂ,-% (23)
where:
- an Cfn _ fn >
) ) mrl, 4 m,4 )’
_ n n n
B2, 4 %n-%, 4 < fmw@ fm"lﬁf' > ’
n - <°[m+1 I, %m, 4 >
%wtg, g T

These definitions may be applied to the £ direction by interchanging

-the roles of m and 4. The relation for is determined by the

n
[c4
m, 4

stability condition derived in Appendix E,

n
n = m sz£
Q’m,,e 2

where w = constant
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and o = K(w+ c); P (Courant. Number).
1,

The condition required for the equation to be stable is

ot 2 ot
< < 1
<:°h,£.> ) ?

where
n
s 1.
Gm,f,
, n n 1 . . .
With e, = max o, PR the stability condition gives the require-
m, 4 ’
ment for ¢ as
n 1
< g
c, W = (2k)
%
and
n
< 1.,
%

If 02 is allowed to be a constant for all time planes, the value of
K" (and therefore of Tn) may be determined from

n

g
n [o)
K =

‘[ max (w + C)m,z,]n .

Therefore, only the constants gz and ¢, which satisfy condition (2L),

are needed to insure the stability of Equation (23) in a computer calcu=
lation,

The difference equation corresponding to Equation.(22) for axial

symmetry 1is
K n
nt+l n 1 [ z Z r r ] n
f = f - == |F - F + F - F -
m, 4 m,f 2 mtl, 4 m=1,4 m, 4+1 m,4-1 T wm,z
l[@ 8 + 3 -3 :] (25)
2 L “mtg, L m-35, 4 m, 4+ m, 4~% 7
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where the square net (Figure 17) has steps Ar = Az = h_ , At

in
1 T

the (r, z, t) space, and the coordinate of a net intersection point is
(wh,, #h,, nr). The definitions for  and K, in Equation (23)
and condition (24) may be used for Equation (25),

The difference equations, Equétions (23) and (25),.are for net
points which are interior to a flow field. The boundary difference
equations for flow along a wall, which is parallel to either of the
coordinate axes, are develop;d in Appendix F. Also derived in Appendix
F is the difference equation for a net point on an axis of symmetry at

r = 0. The plane boundary difference equation for a point (m,4) on a

wall parallel to the x axis is

A = [ P P ]n F K ,:Fy ]n +
m, 4 m,4 2 mrl, s “m-1l,4 1 [m, Ll
2 L %md, 0 7 Om-d,0 -39

where the upper and lower signs are, respectively, for flow above or

n+1l

below the wall., Only the first, second, and fourth components of fm 2
J

are calculated by Equation (26). The third component (pv);+i is zero
3
from the boundary condition v = O at the wall, Similarly, for a wall

parallel to the y axis, the equation is

o+l n % Tl Kl y y n
f = f ¥ : - = [ F - F ] +
m, 4 m, 4 Kl[Fmil,z] 2 m, 4+1 m, 4-1

1
2 [ Sty T %myu-d :] (27)

gives the value of the first, third, and fourth components of fn.+l

m,4 °

where the uypper and lower signs are, respectively, for flow to the
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right or left of the wall. The second component (pu)n+i is zero from
m,

the boundary condition, The axisymmetric boundary difference equations

are
K n n
nt1l n ! [ z z r n
e e e Ta [ T
m, 4 m,4 2 mkl, s~ Tm-1,4 Ky m, =+l T 11‘m,,z
* 1 [ $ a1 - % 1 ] (28)
2 L %m+L, e m-%, 4
for a wall parallel to the z axis and
n n
nt+l n [ z ] 1 [ T T ]" n
f = F - — - F -
mt - Tmye T %a L Fmat, 2 L w1, " Foo,g TV,
+ l[ 3 - 8 ] (29)
2 m, 4+% m, b-%
for a wall parallel to the r axis. The sign convention and f;+i com-
2

ponent conditions for Equations (28) and (29) are, respectively, the
same as for Equations (26) and (27). For a point on the axis of sym-

metry r = O, the difference equation is

n+1 n Kl z z i r . n
fm,o - fm,o T2 [ Fm+.1,o B Fm—.l,o ] -k, [ Fm,l ] T 14Jm,o
+ l‘[ 3 - 3 +.2% ]  (30)
2 m+%,o m-%,o m:%‘

A

where the quantity v/r in w;,o is taken at the point (m,1)..

To solve a flow problem by a finite difference method, the defined
field of the problem must be represented by a net of points at which
.the difference equations apply. Also, the solution obtained by a finite

difference technique is an. approximate solution and only approaches the

true solution of the differential equation as the net point spacing
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approaches zero, These two facts, plus the condition that the shock
‘thickness must be of the order of the net point spacing, require that
a large number of points must be defined to represent the flow field,
Therefore, shock propagation problems considered here, using the differ-
ence equations established above, must be programed for a high speed
digital computer. A CDC 3600 computer was used for the programs pre-
sented in the following sections,

Application of the Difference Technique to Shock

Propagation Into a Still Medium

"For shock propagation into a still medium, a computer program was
developed which gave solutions for both the plane and axisymmetric geom-
etries. The sample net in Figure 18 will be used to explain the appli-
cation of the difference equations to the two geometries,

Consider, first, the plane geometry. The points on the lines A,
B, and C represent points along the boundary walls and all other
points are interior field points, The walls A .and B are parallel
to the x axis and flow is in the x direction; therefore, the difference
equation (26) is applied along these lines. Along the wall C, which is
parallel to the y axis, the flow is in the y direction which requires
the difference equation (27) to be used. The general field equation (2%)
is applied to all interior points,

The initial conditions for the field may be defined by considering
the three regions of Figure 18, 1In Region 1 the field is uniform
with a pressure P, and is said to be still (i.e., velocity is zero).
The flow in Region 2 is uniform with a velocity u, in the positive

‘X direction and a pressure P, greater than. P, The Shock Region
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divides Regions 1 and .2 and is the region in which a shock is defined,
It has been observed that for an initial shock defined over one space
interval (Figure 19) a small ripple disturbance is propagated away from
the shock, similar to the disturbance shown by Lax and Wendroff [37] in
Figure 20, The disturbance is formed because the initial conditions at
these points do not satisfy the conservation eqﬁationsa To eliminate
this disturbance, a new method has been developed in which the shock
is initially defined over two intervals, This is discussed in detail
in Appendix G,

The axisymmetric geometry.is now considered, using again Figure
18, The ppints on the A 1line represent an axis of symmetry at 'r = 0;
therefore;‘the difference equation (30) is applied to these points.
The points along the lines B and C represent walls which are,
respectively, parallel to the z and r axis, The difference equations
applied to these walls are Equation (28) for line ‘B and Equation (29)
along line C, The difference equation (25) for a‘point in an axi-
symmetric. field is applied to all interior points. |

The initial condition for the axisymmetric field, also, may be
defined by considering the three regions of Figure 18 1In Region 1,
as in the plane geometry, the field is still and has a pressure P,
The flow in Region 2 1is uniform with a velocity 92 in the positive
x direction and a pressure p2 greater than p1° A shock, which
propagates in x direction, is defined in the Shock Region by the same
method used for the plane geometry shock, The computer program for the

above application is discussed in Appendix H.
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Figure 19. Initial Pressure Distribution for a Shock
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Figure 20, Shock Velocity Profile Showing a Small
Ripple Disturbance [37].
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Application of the Difference Technique to the Shock
Propagation Into a Crossflowing Medium

To obtain solutions for the propagation of a shock:into a perpen-
dicular crossflow a computer program has been developed and is discussed
in Appendix H, A sample net of points (Figure 21) is used to descfibe
the application of~the difference technique for the crossflow., The
points on the lines A and B represent boundary walls which are
parallel to the x ‘axis and points along the lines C and D replace
boundary walls that are parallel to the y axis. Flow is considered
to be parallel to all of the boundary walls; theréfore, the difference
equations (26) and (27) are, respectively, applied to the lines A and
B and to the lines C and D. The general field equation (23%) for
plane geometries is used at all interior points,

The initial conditions for the flow field are defined in three
basic regions of the field, The flow in Region 1 is uniform with a
pfessure p:L ‘and velocity v, in the positive y direction. Region
2 1s also a uniform flow field with a pressure pg, greater than pl,
and a velocity _u2 in the positive x direction., The two gniform
fields, Regions 1 and 2, are separated by a Shock Region in which a
shock wave is defined. The shock propagates in a positive x direction
and is defined, as stated before, over two net intervals to eliminate

ripple disturbances on either side of the shock (Appendix G).
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CHAPTER V
"RESULTS FROM THE COMPUTED PROBLEMS

The results obtained from the computer programs are presented in
the second and third sections of this chapter, In the first section a
discussion is given on the procedure for obtaining dimensional values
from the dimensionless results, The results of g shock.propagating into
a still medium, for both the plane and axisymmetric geometries, are
presented in the second section, The final section contains the results
for a shock propagating into a crossflowing medium,

Procedure for Obtaining Dimensional Quantities
From Computer Results

All quantities used in the computer programs were made dimension-
less by the method described in Appendix C. To have dimensional thermo-
dynamic properties and velocities requires only that the nondimension-
alizing technique be reversed (i.e., p' = ppl‘ and u' = u P, pl°) .

The time increment T was not a constant but varied from time
plane to time plane, The value of Tn for a given time plane was com-
puted by using the relation given on page L6

g

n [¢]

[max (w + c)m,z]n

*¥The prime denotes dimensional quantities and the subscript 1 refers
to the initial condition in front of the shock,

25
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where K =

The quantities o, and hl were chosen to be constant for all time

intervals, Therefore, the values of " depended on the maximum value

of (w+ c)m 4 for each time plane n, requiring that K" be computed
J

for each time plane., The total dimensionless time was given by

o
t = e
h “n
=.__J=ZK
/2

or
h

n
P E: %
S|

n L
max (w + c)m L]
2

-

To obtain a dimensional time from this relation requires that the veloc-
ity terms in the numerator be multiplied by the quantity p.' pJ
and that the net spacing hl be replaced by the ratio of the charac-
teristic length to the number of net spacing along that length (i,e.}
L‘/N). Using this information, dimensional time may be given as

L' Vk %

1

Nec /2 [max (w + C>m,z]n

t' =

or 0
R

where

=3
]
=
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The parameter 71 1is a dimensionless quantity which is used to desig~
nate the time for the results in the following sections,
Numerical Results of Shock Propagation
Into a Still Medium
The results of a shock propagating into a still medium were

obtained for both plane and axisymmetric geometries. Two sets of ini-
tial conditions were computed for the plane geometry. and one set for
the axisymmetric. The initial data are given in Table I. The results

*
for the pressure ratio pg/pl = L4,0 for the plane geometry were com-

pared with results reported by Rusanov [ 38].

TABLE I

INITIAL CONDITIONS FOR STILL MEDIUM PROBLEMS

. Plane Axisymmetric
Properties —
Geometry Geometry

K 1.k 1.k 1.k
P 1.0 1.0 1.0

1

0, 1.0 1.0 1.0

u 0.0 0.0 0.0

1
P, 4.0 10.0" _ 10.0

Py 2.5 3,81 3,81

u 1,34 2.57 2.57

2

o, 0.50 0.50 0.50

w 1.345 1,345 1. 345

¥Subscripted notation is defined in Figure 20 page 52 .
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The characteristic length used to determine the 7 values was the ini-
tial length of the emerging shock, R (Figure 18), and the number of
net spaces N was 29, The results from the initial conditions of
Table I are given in Appendix A in the form of plots of the flow field
with constant velocity modulus. and constant pressure lines. Also given
with each set of results is a plot of N versus Time Plane. The
approximate shock location is denoted by a dashed line in the pressure
and velocity figures. The shock location was taken as the location of
the average pressure of a concentrated pressure region. A history of
the approximate shock locations is given in Figures 22, 23, and: 2k, for
the three initial shock conditions., Also plotted on these figures is
a line along which a weak disturbance would theoretically propagate from
the corner behind the shock. For a given shock position the shock prop-’
erties begin to vary along the shock front from the disturbance line to
the vertical wall, as would be expected, A water table (Plate II) which
‘was equipped with a shock channel (Plate II) was used to obtain photo-
graphs bf hydraulic wave forms, The wave forms in Plate III correspond
to the initial pressure ratio of 10.0 for the plane geometry and compare
well in shape and movement with the shock positions of Figure 23, The
particle vector field for the three initial conditions are shown in
Figures 25, 26, and 27 for a time when the shock has progressed approx-
imately a distance R into region 1.
Numerical Results of Shock Propagation Into a
Crossflowing Medium

-Two sets of initial conditions were computed for the crossflow

problems. In both sets of conditions the properties of the shock emerg-

ing into the flow were the same, but the crossflowing stream had Mach
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PLATE III

A HYDRAULIC BORE (CORRESPONDING TO A SHOCK PRESSURE RATIO
OF 10.0) EMERGING INTO A STILL MEDIUM
FROM A SHOCK CHANNEL
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numbers of 2,0 and 5.0 in the two cases, The initial conditions are
given in Table II where the subscripts are defined according to Figure
21 on page 5k .

TABLE II

INITIAL CONDITIONS FOR CROSSFLOWING PROBLEMS

ProEerties Ml = 2.0 Ml = 5,0
k L.k L.k
P, 1.0 | 1.0
0 1.0 1,0
u, G.0 0.0
v C2.37 5.92
p01* 29.5 29,5
P, 10.0 10.0
o, 3,81 - %.81
u_ ' 2.57 2.57
?2 0.0 0.0
Pos 7.8 529, 10
O 0.50 0.50
W 1,345 1.3L5

The characteristic length used to determine the 71 values was the
channel width W (Figure 21), and the number of net spaces N was 29,

Constant velocity modulus and constant pressure line figures are given

in Appendix A with a plot of 1 versus Time Plane Number for each set

*Subscript o denotes stagnation condition,



68

of initial conditions, The approximate shock position is defined by a
dashed line in the same manner as for the still-medium problems,

The Mach 2 and 5 crossfiows give two qﬁalitatively different
conditions for the crossflow stream with an initial shock pressure ratio
of 10,0, This can be seen by considering values of pog/pol’ the ratio
of stagnation pressure of the shock tube flow to that of the main stream,
For the Mach 5.0 stream the ratio is 0.056, and for the Mach 2.0 stream
it is 3,76. For a stagnation pressure ratio pog/p01 less than unity
the flow energy of the crossflowing stream is greater than that of the
shock stream; and, therefore, the crossflow stream would tend to domi-
nate the flow from the shock channel, The Mach 5 flow represents the
crossflow domination condition, For a stagnation pressure ratio poa/p01
greater than unity the comparative energies of the two streams are
reversed and the shock channel flow dominates the crossflow, as in the
Mach 2,0 condition,

In considering both of these conditions, it is well to note that
the primary concern is to establish whether or not this arrangement of
a shock emerging into a crossflow can represent a blast wave interacting
with a flying body,

The results of the crossflow domination of the Mach 5.0 stream is
cdnsidered first. From the constant pressure figures in Appendix A,
it is seen that the shock emerging into a high energy stream appears
td seek a fixed location a short distance upstream of shock channel,

The fluid location along the vertical wall (x/W = 0,0) is found by exam-
ining the pressure distributions along the exit plane (X/W = 0,0) of
the shock channel for vafious times, Such a plot is given in Figure 28,

and the fixed shock position is at y/W = - 0.67. The expansion along
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the downstream wall at y/W = 0,50 1is also seen to be steady, The
approximate shock position history in Figure 29 gives some understanding
of the propagation of the shock while the particle vector field in
Figure 30 gives an insight to the particle flow., The approximate shock
shape and movement of Figure 29 seems to compare well qualitatively with
the corresponding hydraulic waves in the water table photographs in
Plate IV. It appears in the latter photographs that the hydraulic waves
have also reached a fixed position a short distance upstream., From the
water table pictures, it appears that the moving hydraulic wave has
become a fixed curved wave at a distance x/W along the centerline of
1,5, To investigate the possibility that a uniform portion of the shock
exists, the pressure distributions along the y/W 1lines of 0,0 and 0.5
were considered. From the extrapolation of the envelope of the pressure
distribution curves, no common pressure values seem to exist for the two
y/W locations at a common distance =X, By considering the water table
photographs, the extrapolated envelope appears to have extended beyond
the position at which the shock becomes fixed. It appears, therefofe,
that for the condition where the crossflow stream possesses a greater
energy than the shock stream there is no apparent way to obtain a uni-~
form blast wave simulation,

For the case in which the shock stream dominates the phenomenon
(i,e., crossflow of Mach 2), it is observed that the shock wave emerges
from the channel and propagates upstream at a fairly constant rate
along the vertical wall, This would be expected since the total energy
behind the shock is greater than that of the crossflow stream. The
progress of.the shock along the wall may be seen by considering ‘the

pressure distribution in Figure 3% for various times along the exit
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PIATE IV

A HYDRAULIC BORE (SHOCK PRESSURE RATIO OF 10.0)
EMERGING FROM A SHOCK CHANNEL INTO A
CROSSFLOWING MEDIUM (MACH 5 FLOW)
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plane of the shock channel (i.e., x/W = 0,0). The approximate shock
locations for various times are given in Figure 34 and provide a better
understanding of the shock shape as the shock emerges into a Mach 2
crossflow, The particle vector field in Figure 35 may also aid in
understanding the flow field behind the shock, It can be seen that some
particles do move upstream, The shock shapes and propagation direction
seem to compare qualitatively with the corresponding hydraulic waves in
Plate V . The hydraulic waves are seen to propagate faster normal to
the stream than the corresponding M = 5 condition but not as fast
downstream. These results should be expected since the energy behind
shock is greater than the energy of the stream. Since the wave does
propagate well into the crossflow, it seems worthwhile to check the con-
ditions along the shock for possible blast testing simulation. From

the hydraulic wave pictures it appears that a fairly uniform wave exists
downstream of a line through the center of the shock channel. Therefore,
the pressure distributions on the y/W lines of 0, 0.5, and 1.0 (Figures
36, 37, and 38) for different times are given to compare the shock pro-
gress along these lines, By extrapolating the envelope of the pressure
distribution on these curves and comparing them (Figure 3%9), at an x/W
value of 2,0 the y/W lines of 0.0 and 0.5 have approximately the same
peak pressure value; but this does not give the time at which the shock
reaches this x/W point on the two y/W lines, By considering the
plot of constant pressure lines on a time versus x/W diagram for the
same two y/W positions (Figures 40 and 41 ), the rate at which the
pressure wave moves in the x/w direction is seen to be fairly uniform;
and, by comparing the diagrams for the two y/W positions, the veloc-

ities of the pressure waves along the two lines are approximately the
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PIATE V

A HYDRAULIC BORE (SHOCK PRESSURE RATIO OF 10.0)
EMERGING FROM A SHOCK CHANNEL INTO A
CROSSFLOWING MEDIUM (MACH 2 FLOW)
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same, Again considering that the hydraulic wave moved far into the
stream, the constant pressure lines are extrapolated, The extrapolated
values indicate that the shock would reach the x/W = 2 position at
approximately the same time for both y/W planes, From the discussion
thus far, a portion of the shock wave appears to be fairly uniform,

For blast simulation the pressure history at a point must also be con-
sidered, 1In Figures 42 and 4% the pressure histories at a number of
locations along the two y/W lines are shown and indicate that the
pressure history at a point tends to be similar to that expected for a
blast wave.

From the above discussion of the two crossflow conditions, it
appears that the blast simulation arrangement of a shock tube firing
iEFO a crossflowing stream may be possible within some definite limits,
There seems to be no possible way of simulating a blast if the stagna-
tion pressure of the crossflow stream is greater than that of the shock
stream, For the case where the shock stream dominates the crossflow,
there appears to be a given x/W position for which a portion of the
shock is uniform and may be expected to give a reasonable blast simu-

lation.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

There are two primary conclusions that may be made from this study.
The first conclusion pertains to the numerical technique used to obtain
the solutions for the various problems given in this study, and the
second concerns the applicability of the shock tube - wind tunnel
arrangement for blast simulation,

By considering the results given, the difference technique,
described in Chapter IV, has been used very satisfactorily for a complex
nonlinear interaction problem, There were two types of transient inter-
actions considered: the interaction of a shock wave with a crossflowing
stream, and the interaction of two supersonic streams., To the author's
knowledge, no similar application has been made for such a difference
technique, and no other technique is available for this problem.

From the results given in Chapter V, the conditions were estab-
lished for which the shock tube - wind tunnel combination would simulate
a blast, The results indicated that only for a stagnation pressure
ratio (i.e., shock stream to crossflow stream) greater than unity is a
blast simulation possible. For the stagnation pressure ratio greater
than unity, there exists a given location at which a portion of the

shock is approximately uniform and may be used for blast simulation,
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Recommendations for Future Work

Three recommendations are given below for future investigation of
problems connected with shock propagation from openings.

A double diaphragm shock tube has been constructed by a co-worker,
Mr, Glen Lazalier, to be used as a blast producing device., Using the
blast tube, an experimental study of shock propagation from both rec-
tangular and axisymmetric openings into a still medium could be com-
pared with the numerical results presented in this thesis,

The results presented for the two crossflow cases demonstrated the
effect on given shock of a change in the crossflow condition, An addi-
tional study to determine the effect of various strength (pefpl) shock
waves on a given crossflow condition may be valuable and helpful in
determining test conditions for an experimental investigation, It would
also be helpful to obtain results for the conditions given in this the-
sis at greater times to establish better the shock simulation conditions
and the flow fields,

It has been conjectured by Lee [26] that the contact discontinuity
follows the shock closely for a strong shock, If this were true, the
region directly behind the shock might be too small for desirable test-
ing. Therefore, additional work should be done to define the flow
field between the shock and contact discontinuity as they emerge from a
shock tube. In connection with this work there is a need to develop a
numerical technique in which a contact discontinuity is acceptably repre-
sented, In most difference schemes this type of discontinuity is too
greatly diffused to define contact surface loactions,

The suggestions presented above are considered to be very impor-

tant by the author. These additional studies would help to establish
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additional conditions for the experimentalist to use in conducting blast

simulation tests,
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APPENDIX A
PLOTTED COMPUTER RESULTS

The results from both the still and crossflow computer programs are
presented in this appendix as field graphs. The still program results
are given for constantlpressure and constant velocity modulus lines,

For each initial pressure condition, the results are presented as a
set containing an T} versus time plane number graph with constant pres-
sure line and constant velocity modulus line plots. The crossflow
.results are presented similarly with the addition of a constént density
. line graph at the end of each set of results, The results for the
different initial conditions are presented in the following order:
Still Problem Results
1, Plane Geometry - Shock Pressure Ratio 4,0
2. Plane Geometry - Shock Pressure Ratio 10,0
3, Axisymmetric Geometry - Shock Pressure Ratio 10,0
Crossflow Problem Results
1, Mach 5,0 Crossflow.

2., Mach 2.0 Crossflow,
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Figure 58. Constant Velocity Modulus Lines for T} = 0.310 in
Axisymmetric Geometry, Initial Shock Pressure
Ratio - 10.0.
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APPENDIX B

DERIVATION OF THE CONSERVATION FLOW.EQUATIONS

The general flow equations are the continuity, momentum, and
energy. The equations are derived using vector notatién in conserva-
tion form. The conservation of quantities through a control volume v,
which is fixed in space, . is considered; The control velume is enclosed
by a surface ¢ on which a unit normal n is defined as positive in
an outward direction, The figure below.is used for the derivation of

the flow esquations,

Surface ¢

Continuity Equation

The continuity equation expresses the conservation of mass for a

fluid flowing through the volume +. The mass balance for + may be
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expressed in the form

[Net flux of mass crossing c] = [Rate of change of mass in ylﬂ

The conservation form of the continuity equations is the familiar equa-

tion
-gg + 7. (pF) = o, (B-1)

which is derived in many books [54}, [55].
Momentum Equation

The momentum equation, which describes the conservation of momen-

tum, may be expressed as

[Net force acting on the fluid in y] =
[Rate of change of momentum of the fluid in vl +

[Flux of momentum crossing c] (BmE)

Only the force due to pressure acting on ¢ 1is considered (iwe., the
viscous and body forces are neglected). The total force acting on ¢

is

- f p do , (B-3)

g
with d5 = ndg .
The total momentum contained in Y is
I pVdy P
v

and the rate of change of this momentum is

%E I p{;d‘y . {B-—i'k:)
¥
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The total flux of momentum crossing o 1is
| ol991 - as (3-5)
g

where [9?] is defined as the dyadic product of two vectors V Substi -

tution of (B-3), (B-4), and (B-5) into (B-2) gives
- I p do = %E‘ I p\-7dy + j p[(";] « dg .
o v o}

The divergence theorum applied = to the surface integral gives

«f 7p dy = j =§-(—lagv dy + j 7« (pl¥¥])dy
Y Y

‘\j

or

M+ve[\7i7]+~7p dy = 0.
v St p Y

This integral vanishes for an arbitrary volume; therefore, the integrand

also vanishes,
aaW) oL L]+ m = 0 (8-6)
at P " ‘
Equation (B-6) is the conservation form of the momentum equation,
Energy Equation

The energy equation derived considers the conservation of energy
in vy under the following conditions:

1. Gravity and viscous forces are neglected,

2. There is no heat addition to the fluid in .

3., The only work is the "flow work",

4, The fluid obeys the ideal gas equation of state,



The energy of a fluid particle per unit volume is noted as e and

defined as the sum of the internal emergy and kinetic energy,

-
p|V]
e = pe + 5 .
Using the ideal gas equation of state (p/p = RT) and the internal

energy relation (¢ = CVT), the fluid energy is expressed as

pC
v 1 -
e s o zelil
or
. 1 - 2
e = g+ 5l (8-7)

where k is the specific heat ratio (Cp/cv)' The conservation

of the fluid energy per unit volume is

[Net energy of the fluid crossing ol + [Rate of "flow work" at g} =

[Rate of change of the fluid energy in wl. (B-8)

The net energy crossing ¢ 1is

The rate of "flow work' per unit volume acting on ¢ 1is
j pV « d§ . {B-10)
(e}

The energy contained in the total volume vy is

J .edy

y

and the rate of change of this energy is
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2. [ .ay, (B-11)

This rate is negative due to the defined direction of n, Substitution of

(B-9), (B-10), and (B-11) into (B-8) gives

f eV + dg + f pV e dg = - %z f edy .
g o) Y
The divergence theorum applied to the surface integrals gives
[ 2oy + [ 9. (elay + [ 7+ (p0ay = o
Y Y Y

or

j { %%= + 7 [(e+ p)V] } dy = 0.
Y

Since the integral vanishes for an arbitrary volume, the integrand also

vanishes to
—g% + 7. [(e+p)¥l = o | (B-12)
which is the conservation form of the energy equation,

The Conservation Equations

The system of conservation equations may be summarized:

1, Continuity,
%%+ 7 (V) = 0; (B-1)

2., Momentum,

’

-aé-z.ﬂ+v-p[s7s71+7p=o- (B-6)



3
. DBne
gy
b

Qe
At + 7 [
(e+p)‘§7] =
0
(B-12)



APPENDIX C

METHOD OF NONDIMENSIONALIZING DEPENDENT VARIABLES

The-properties on both sides of a normal shock wave which propa-

gates to the right are:

Py p - (Pressure)
1
L .
p v, U, Jl g (Density)
2 — | I—— —_— 1
T T  (Temperature)
2 1
P, Py
C = k —= C1= k —
a Py Py
where U = shock velocity,
C = speed of sound,
k = sgpecific heat ratio,

The properties of the gas are made dimensionless with respect to the
properties in front of the shock (i,e,, state 1), The velocities Ul,
U2, and ‘US are made dimensionless with respect to the quantity

vbl /pl . The new state defined in front of the shock by x and

behind as y gives the dimensionless properties on either side of a

-moving shock,
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Py px
mca—— 2 ——— o Cm————
Ty Tx
p P
c = [k c. = [k-E
P
where p. = =
y Py U2
U =
Py Y In /s
p.=—="10 1T
X p,
e . U
Py o = :
7R o
2
b, = — = 1.0 U
pl Ux T e
T / p_.L/pl
2
Ty = E-.. »
1
T, c = /k
Tx'= -'f:= 1.0

A transformation made to a coordinate system relative to the shock gives

(let V denote velocity quantities in the transformed system)

Py Py
0 V =D -0 V. =D-1U p

y y y X X X

e e

T T

y X
c c .
"y -

The static properties in state x have a value of 1,0, In the y
state the static properties have the value of the property ratio across

a normal stationary shock wave,



APPENDIX D
DERIVATION OF THE DIFFERENCE EQUATION FOR A FIELD POINT (m,Z)

The difference equation corresponding to the partial differential

equation

af , 3 _ 3 af] L 2l af
3t * % * dy };x [A(x’y’t) ax] * 3y LB(x;y,t) ay}

is obtained by using a forward difference for the time derivative and
a central difference on the space derivatives, The time derivative is,

then, defined in difference form. as

ntl n
2 _ fme mu
dt T *

The central difference for the first order space derivatives is defined

over a double net space, 2hl, -and is in the form

. n
X X
FX <F.m+1,z - Fm-l,l)

3% 2hl
and
y y .
Yy _ (7 1~ Fayl)
y 2h, :

The second order space derivatives are also defined by a central differ-

ence over a double net space, 2hl, and are given as
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1
- . D 2 ] -
[A(ij9 ) aX] h [Am_{_%y < Am=%,£ < 3 y
E=24
- n o
1 n _ _ D s N
1

and

n

3 [ po S A [ n . N
ay LB0ys8) 55 1= =2 [By g <fm,z,+1 ,g) B g1 <m Ry,

hy

With the above difference definitions, the difference equation has the

form
ntl n y y '\?
WY CFnﬁ-l 4 Fool z) . <Fm,1,+1 P, g-1/
- 2h 2h
1
1 N I n n
— (f - f - £ - £ :
h 2 [Ami-%‘)z <Hﬁ'l’£, m,4ﬂ> Am"';é',z <m,,€, m-l,,@>
1 n n o
L |8 £ - £ D - B <f - £ > ]
h 2 [m,£+%<m,£l+l m, m,f/'% m,f; m,f,'l
1
or
. K n
ntl _ .o .1 [ X _pX y . WY ] +
fm, 2 fn,e ™ 2 Ui, " T, o ¥ Foyrl ™ oy -1l

n n
A LN SR Y P G
hZ [Am*'%ffe wtl, 4 m, Am_%,z m, 4 m-1,
1

n

n
f - f
B, 44k ( m, £+1 m,E)

. n
n
L"%‘ (m,L m,f/"‘l ©

Y
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From Appendix E, the coefficients A" and B" are defined, in the
m; 4 m, {

development of the stability condition, as

h 2 o!1‘1
AR = 2 m,l
m,E 21‘
and
2 n
Bn = El_._EH.LL& .
m’z 2T

With these definitions applied to the difference equation, thé final
form of the difference equation for a plane geometry is

nt+1l n Kl X b4 A4 y N
= - =] .- + - +
tne = Tmyy 3 [ P10 " Toe1,0 7 Pt Finyge1 ]

n ' n
1 n n
= - - £ - +
> ["‘m%,z (fm+1,z - fm,L) “n-%,4 (m,z fm—l,x&)

n n
n n
f - - f - :
Bm,ﬁﬁ’%( m,Z”’l fm,t) Bm,Z‘% (myz fm’fl-]-) ]

(D-1)

. For axisymmetric geometry, the partial differential equation

z r
Y N - ] o2 af
at + az ar +¢ az C(Z’r’t) az + ar D(Z7r7t) ar‘
is represented by a difference equation which uses the same difference-
derivative and coefficient definitions as are used above for the plane

geometry, The additional term | is defined at the point (m,4) for-

the time n (i.e., w; Z)' Therefore, the difference equation for
: ’

an axisymmetric geometry is



=

= . i 4 - Z
fm,z fm,z 2 [Fm+l,£ Fm-lyz

n

2L ofeps Conryn ™ %)
2 L %mrd, e \Umel, g 7 Tm,4

0
n
Bm,z+% (fm,1,+1 - fm,gD -

140

n
r r n
MR s Fm,zd] "t

n
n
%n-2, 4 <%m,£ B fm-1}é> *

22

n .

B;,z-é <fm,!, - fm,z-1> J

(p-2)

Because a square net is used, the stability development gives

n n
o = B

m, 4

m,4 .

This simplification is used to record the equations in the text,



APPENDIX E
STABILITY STUDY OF THE DIFFERENCE EQUATIONS

The difference equations derived in Appendix E are nonlinear equa-
tioné for which no general method has been developed to determine
stability, The common approach to a stability study of nonlinear equa-
tions is to linearize the equations and use the methods for stability
analysis of linear equations, mnamely, deterﬁine the effect on the solu-
tion of small changes in the coefficients [30, p. 2231, Therefore, a
stability study for the plane geometry is made by linearizing the general
field equation and applying the Fourier stability technique, as outlined
by Rusanov [38].

The general field equation (D-1) for the plane geometry (from

Appendix D)

K n
nt+l n hY [ X X y y ]
= - == - + - +
fooe T fmye T F UFmrl,e " Tmel,e T Fmyerl T Tmye-l
T n ‘ n ~
- £ - £ D - A <f - f D +
b 2 [Anrf%,z <m+1,/& m,. m-%,4 \m,4 m-1,
1 .
n - n
- - £ _

(E-1)
is linearized by assuming all dependent variables (p, u, v, e, p)

depend on a function ¢; 2 at a point and by referring the coefficients
, .

n - n .
. s int. d .
of the variations of @m,z to one point If 6¢m,£ enotes the
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. . n .
variation of ¢ 4» eduation (E-1) becomes
>

.

g£6n+1..,dfn~§?_l.;d_F;"< . N
dp %m,z T dp m,s 2L dp \SPmr1,e ™ %no1 g

dFy o -
EE,T@"Pm,zﬂ ) 5<Pm,z-1> :] *

g_<_1_f_<5 | - 25 + I)n+
2 dp \OPmr1,g " 00y g T S0p1)

n

az - o =
2 do <}¢m,£+l aéﬁm,z * 6¢m,£o£> (E-2)

where
n An
am,!c - i m, 4
- 2
2 h
1
and
n n
B
5m,z = T m, 4
2 2 *
hl

A stability criterion may now be obtained for the linearized equa-
tion (E-2) by using the Fourier technique. The technique considers the
propagation effect of a set of errors at time zero, which on the initial
plane are represented by a Fourier series. The series is finite and the
number of terms is equal to the number of net points in the initial
plane. The propagation effect of a single term with an initial error

o . .
5¢0’0 which is represented by

i +
n - gn el(¢1@ ¢2£) o
éwm,z acPo,o ’
may be considered if ¢l and ¢2 are any real numbers, The propagated

error 5¢2 P must be bounded for equation (E-1) to be stable; therefore,
>



143
the condition

aggsl

must be satisfied, Applying the relation for 5¢2 P
>

to equation (E-2
gives
X
ar?

df . daF dar’ . 7
do (g - 1) + i Kl [ 3 sin §_ + o sin wz J +

fes]
§

Q[Qrsinz(;}')-!- 5sing<-§§'>]%= 0. (

With the definitions of £, ¥ and ¥’ in Equation {£-3}, four equa-

WM
S

tions are developed and solved simultaneously to give an equation for

€ in the form

2

o [gz + & Klz. (sin2 q;l + sin q;z)] =0 {E-4)
where

C=€-1+iK, (usin y, + v sin ¢2) + 2[& sin® <i§5:>-+ B sin® <:§g :ﬂ

¢ = speed of sound.

Solving equation (E-4) for the roots of & gives

§S = l~2[asin2<-ii> + SSin2<-éqf‘a>] -

= = , .
. : + , + ; + si =
1Kl [u sin wl v sin ¢2 sc Véln ¢l sin ¢2 ] {E=5)

where s may have the values -1, O, and 1.

The roots of §S for ¢l = w? =1 reduce to

E = l-2(atp).
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Substitution of the relation into the condition

|§|s1

gives

0 £ g+ s 1 ' (E-63

where

N [1-2(a+p)T

H

£ [1-2(a+8)] .

When considering the roots of §s for small values of wl and § ,

equation (E-5) becomes

e = 1- % (o le + 8 ¢22) _ iKl [u¢l + v¢2 + sc o ¢12 + 2 ] .

s 2
Substitution 6f the relation into the condition
1 - |2 =2 0

gives

a¢2+5¢2-Klz[u¢l+v¢r2+sc’\/\p12+¢22:,2 =2 0,

1 2

This inequality may be put in the form

2
o cos? g + Bgsin®g 2 g-
with | *l
cos § = —
2 2
Wl ¥,
¥
. - 2
sin § = = R s
Wz Wl

and



1L5

g = K(ucos g+ v sin g + sc)

= K(w+ c) (Courant Number).

1f the net spacing is square; the '"dissipative" terms should have an
equal effect in the x and y directions; therefore, the '"dissipative"
coefficients are taken to be equal (i.e,, ¢ = B). With this conditionm,

the inequality becomes
2
@ = 3 | - (E-T)
The two conditions (E-6) and (E-7) give
2
g S 2¢ = 1
as the bounds on the "dissipative"” coefficients for which stability

will exist, If o is defined to be the straight line

= .@9_'
@ o

where ¢ 1is a parameter, the condition ]gl <1 1is satisfied for all
¥ and ¢ if the condition
1 2
c £ w £ -
o

is satisfied. This is the stability criterion specified by Rusanov

and stated in the text of Chapter IV,



APPENDIX F
DERIVATION OF THE DIFFERENCE EQUATIONS FOR BOUNDARIES

The boundary difference equations may be derived from the general
field difference equation by using a reflection principle., For flow
along a wall, the equations must insure that no steep gradients perpen-
dicular to the wall exist due to the addition of the “dissipative"
terms. The difference equation for a point representing a solid bound-
ary will first be derived for the plane geometry and then extended to
the'axisymmetric geometry, Also, the difference equation will be
derived for an axis point for the axisymmetric geometry.

For the plane geometry, the general field equation is

nt+1 n Kl X X y y &
= - =2 - + - +
4 fm,e ™ 2 [Fm'l'l,ﬂ, Fo-1,0 7 o a1 Fm,z-l:l

[ ]
= - + - (F-1)
2 Lom+d, 0 7 %m-d,0 0 Cm,uvd: T %mu-id . T

The yveflection principle may be applied to a wall parallel to the x
axis by constructing a line of virtual points within the wall. The

point (m,4) is considered on such a wall with flow above.
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The conservation variables are defined at the virtual point (m,4-1) by

the reflection rule

P, e+l = Pm,g-1° Vm, bl T T Vm,g-1

“m, g+l T Ym,g-1 ®m, 4+l ~  Sm,g-1°

Also, to insure that the effect perpendicular to the wall of the "dis-
"
sipative" mechanism is eliminated, the terms Qm,£+1 and qm,z-l which

are the difference terms that approximate the derivative

Sleh

are removed from the field equation, With & the above change in Equation

(F-1), the boundary difference equation for flow along a wall parallel

to the x axis is

g0k o EONRL Ell:}s'x -7 ]n F K I:Fy ]n +
m, 4 m, £ 2 m+1l, 4 m-1,2 1 [ m,exl

%’ [%ﬂ-i,z & *m-i,z]

where the sign convention is the same as that used in the text.
For flow along a wall that is parallel to the y axis, the reflec-
tion rule for the density and energy variables is the same, but the role

of the velocity variables is interchanged. Therefore, the reflection

rule is now
Purt1,2  Pm-1,4° 1,2 | ‘m-1,4

w1, © " Ymel,2 0 Smrl,p T Cm-1,
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for a point (m,4). The and g terms, which correspond

@m'"%) 4 - %ﬁ 4

to the derivative
.Q_[A.a.f.
ox ax h)

are neglected to remove the "dissipative' effect perpendicular to the
wall, With application of these conditions to (F-1), the difference

equation for flow along a wall parallel to the y axis is

n

o+l n : X & K y y 1
= £ ’ - -t - .
fm,ﬂ, “m, 4 i Ky [ Fmil,ﬁ ] 2 [Fm,ﬁ+l Fm,zalg *

[§m5£+% } @m;!}“%_' °

N =

The reflection principle and condition on the "dissipative"” terms

may also be applied to the axisymmetric geometry field equation

K n

nt+1 n 1 z z r T n
= - —— - + - - +
fo,e = fmyy 3 I:Fm+1,,¢, Fo-1,2 7 T, g1 Fm,,@—l] T Vo, g
1 [ . + - J (F-2
2 L%, 7 %m-d,0 7 %moptd T Bmyu-d

to obtain the difference equations for boundary points. In a manner
similar to that used for the plane geometry, the difference equation
for points on a wall parallel to the =z axis is

n n
nt+1l n z r

K
1 zZ
= - = | F - F F
fm,z fm,z 2 [ ml, 4 Fm—l,z ] Kl [ m, f+1 J

n 1
T wm,ﬁ; + 2 [Qn‘r'-%,i' - Qm_’%);@]

and on a wall pafallel to the r axis is
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ntl n Kl r

18] e}
o z P B S r @
fm,z B fm,z a5 [ Fmil,z ] 2 I:Fm-l-l,,e Fm-l,z]

n 1
<+ -— -
T ¢m,z 2 [Qm,z+% Qm,z-%] .

For the axis of symmetry, only the reflection principle is applied to
the field equation (F-2), because shock waves may impinge on the axis.

The difference equation for an axis of symmetry at r = 0 is

n ,
n+l n 1 [ z b4 ] . [ r ] o
fm,o fm,o 2 Fm+l,o Fm-l,o Ky Fm,l T Wm,o '

1 - ]
2 [?nﬁ-%,o ém—-ﬁ-,o * E@m.ﬂ‘%’J °

. ' ~0 . . .
The element v/r in the term wm o 18 approximated by its value at
J

(m,1) because of its indeterminacy at r = O,



APPENDIX G

INITIAL CONDITIONS FOR THE CENTER OF A MOVING SHOCK WAVE

In the finite difference calculation of a moving shock wave, the

wave has

Pressure

an initial thickness of two mesh spaces,

o}

q
ot

distance between
net points

Distance

The pressure at the shock center is calculated as the arithmetic mean

of the pressure in front of and behind the wave.

Various ways of deter-

mining the remaining properties at the shock center have been investi-

gated, but only one method has proved satisfactory.

described below,

This methed is

The basic parameters on both sides of a shock wave propagating into

a still medium are assumed to be known,
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The properties at the center of the shock wave are -evaluated by assum-

ing the shock .is divided into two shock waves (I and II).

Shock I
Py _______g_._ pS'
U v,
Py —_— L S P
Cy Csl
Shock II
Pgn P,
U
Pgr — 8 e b Px Ux = 0,0
C n c,

The pressures Py and pgu are given by

) (et p)
P v o P T 2.0 .

The two shock waves are now transformed to a coordinate system relative

to the respective shock wave,

Shock. T
Py PSv
py vV =d - Uy VS' =d - US‘ pS,
—— e e ———
Cy CS,
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Shock II
psu Px
Pgh VS" =b - US" Vx =b px
Cgr

Tables (NACA 1135) may be used to obtain the values of density and tem-

perature in states s and s'. Also found in the tables are the Mach

number values MV R MV P MV , and Mv . The particle velocity U ,
% g! y " S

is found from
where d = V + U = MV cC +U
y y y y y

and the particle velocity US" is

'where b = V = M, C

\'
g

]

F

o
.

The properties at the shock center are the average of the properties in

states s' and s,

pg = (p,*+p,)/2
pg = (pgr * pgn)/2
U, = (U +U)/2
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The s wvalues are the initial conditions at the shock center, This

method 1is shown on the temperature-entropy diagram below,

Temperature

Entropy

The following numerical example may be helpful in understanding
the method for obtaining the initial shock center properties, Consider
a plane shock propagating into a still medium. From compressible flow

Table [45], the conditions for a shock of strength py/px = L,0 is

= = 1,

py 4,00 ‘ Py 0
- U= 1.34 D= 2,24 _

py = 2,50 y Py = 1.0 |
= = -

Cy 1,50 Cx vk 1.18

where the values are dimensionless according to the method of Appendix
C. For shocks I and II in a coordinate system relative to the shock

the properties are found from the flow tables.

Shock I
P, = L.oo Pt = 2.5
py = 2.50 VX =7 B Vsl =7 Pgr = ?
= = ?
Cy‘ 1,50 CS, 7
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For a pressure ratio of

the compressible flow tables give

; -
2L = 1,39, M, = 0.82, M, = L.

Ps! y s

Therefore, the unknown quantities are determined, giving

pgr = L.79,

Vy = ny Cy = 1,23
Cy = 1.0

Vg = My cs, = 1,72,

Similarly for Shock IT the properties become

Shock II
pS" = 2'5 px = 1.0
pgn = 188 Ven 7 P =L p, = 1.0
CS" = 1,37 cX = 1,18 ,

Transforming Shock I and II to a coordinate system relative to state

x gives for Shock I

Py = k.00 " — Pgr = 2.5
py = 2,50 U_= 1,34 a=1_ Ugr =2 pgr = LT9
c, = 1,50 Cgr = LLo,



where the velocities d
d
" and
Us'
and for Shock II gives
Peu = 2.50
Un = 0,83
pS” = 1.88 -
Con = 137

The properties for the state s

1,23 + 1,34

2.57 - 1,72

b= 1,79

= 2.57

i

0.85

are then given to be

2.5

L]

1.0
1.0

1.18
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APPENDIX H
COMPUTER PROGRAMS FOR STILL AND CROSSFLOW SOLUTIONS

In the following sections complete listings of the programs for
both the still and crossflow problems are presented in Fortran IV nota-
tion for use on a CDC 3600 computer. Definitions for quantities called
as input and for those received as output are given before each listing,

The geometry of the still case was divided into three spaces

//{////////{////////4//
1 |

b) 1

J77T77 7777774 T T

—————de

S
I

L !

|

|

]

] i !
) ! :
|3 | 1 |
i | |
| | ]
/ !

2

|

|

______ d
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The épaces 1, and 2 for the still solution and spaces ‘1, 2, and
4 for the crossflow soiution'represent the field in front of‘the ini-
tial shock which is located along the right most column of net points
in space 3., The remaining points of space % represent the uniform
field behind the shock,

Both programs are designed to initialize the entire flow field,
compute the unknown quantities for the following time plane, inter-
polate constant property lines, and print the coordinates of the con~
stant property lines, Also, a technique in both programs allows the
entire field for a given time plane to be stored on a designated tape
which may be used at a later date as input conditions to compute field

values for subsequent time increments,
Still Solution Computer Program

:Before presenting the program listing, the following input and out-
put variables are defined.

(i) JUMP = a number which is defined to indicate the source of
input data. (For JUMP = 1,0 only card input is used:
and calculations begin at the first time plane., JUMP
= 2,0 denotes use of storage tape and card input for
calculations of subsequent time planes, )

(2) DP = density for the field in front ofvthe shock,

(3) DN density of the field behind the shock.

(&) vup = x- or z-velocity in front of the shock for the respec~
tive plane or axisymmetric geometry.
. (5) UN = x- or z-velocity behind the shock.
(6) VP = y- orvrnveloéity in front of the shock.for the respec~-

tive plane or axisymmetric geometry,
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(7) VN = y- or r-velocity behind the shock,

(8) pp = pressure in front of the shock,

(9) PN = pressure behind the shock.

(10) DS = density at shock center,

(11) wus = x- or z-velocity at shock center,
(12) vs = y- or r-velocity at shock center,

(13) PS = pressure at shock center,
(14) VAR = number of time increments to be computed before a set

of output data is recorded. This number is also used
to determine the number of subseguent time increments
to be computed for storage tape input,

(15) 2 = a numbér to denote type of geometry (Z = 0.0 refers to

a plane geometry and Z = 1,0 to an axisymmetric),

16) GAM = gpecific heat ratio.
17) SIG = Courant number (g), used for the stability condition. -
18) OMEG = the stability parameter w.

19) TMAX = the number of time increments to be computed for an
input number for JUMP = 1,0, and the number of time
increments that has been computed for JUMP = 2.0. TMAX
as an output number is the total number of time incre-~

ments computed.

(20) M = the number of the storage tape unit and is a fixed point
number, A value ;f this variable is read out on the
last line of output and shoqld correspond to the input
value,

(21) L = a number assigned to a scratch tape for use during compu-

tation.



(22)

(2k)

(25)

CONST

PPCH

PVCH

TIME

2

CAP

AXY

PA

AAY

DIR

All quantities

items (20) and
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the maximum value of the quantity (w + c) for JUMP =

1,0 and for JUMP = 2,0 the value is given by the output
from the previous computation run,

the difference in pressure between two constant pressure
lines,

the difference in velocity between two constant velocity
lines.,

an input value only for JUMP = 2.0 and is the next time
to be computed, This value is given on the last line

of output data from the previous run, The value of TIME
read out in statement 226 corresponds to time number for
the given output data.

the space number.

the quantity K.

an assigned coordinate for a constant pressure value,

an interpolated coordinate for a constant pressure value,
an assigned coordinate for a constant velocity value,

an interpolated coordinate for a constant velocity value,
a value of the sine of the angle between the velocity

vector and the x direction,

defined above must be defined by a decimal value except

(21). The program listing is given on page 160,

Program for the Crossflow Solution

With the exception of the following quantities, the definitions

given in the first section of this appendix are valid in the program of

the crossflow solution,



PROGRAM LISTING OF THE STILL SOLUTION

PROGRAM STILL .
MAIN PROGRAM=-<=STILL=~TW0D DIMENSION AND AXISYMMETRIC
INTERFR X
DIMENSION DFDE3n,30) DFDA(30230)sDYD(3()sDXO0(3g)»UFBt3In230)UFDACT
10,303 QYD (I UXOEI) 2 VFD(IN2a3n) s VFDALIGs303,YY04302,VY0C30),EFDL
200300 EFDALIRs 30, EYDIIg).EXD(30)
§ FORMAT{RF10.5)
3 FORMAT(4F{10.5¢213.,F10.51}
5 FORMAT(10H TIME NO= ,F10.5.9HSPACE NQ=.14,6HCAPA= ,Fi0.5,3HZs iF1yp
1.5)
109 FORMAT( 13H PRESSUREE ,Fip.5.316H VEL MODULUS= ,F10-5)
163 FORMATI 46K Y X Y X SINE)
107 FORMAT(1X,1gHINPUT DATA)
105 FORMATC 13)
109 FORMAY (41X, 7H THMAX=2 ,F10+5,1Xs4H M= ,73,1X:8H CONS= AF195531K97H Tt
1"‘23 17‘-1[\.5) :
100 READ(1,10%)JUMP
IF (EDF,1) 555,557
567 READ(1,1)DP,DN,YP,UN,VP,VN,PF, BN
READ(].])DSDUSJVS.‘JSWVAREZ)
REAU(4,3YGAM,SIG.OMEG, TMAX , M. L, CONST
READ(41,1)PPCHsPVCH:
ID=3p —
GO0 18(548:550) s JUMP
5540 READt1,1)TINME
REWIND L
PO 568 N=91,3 -
READ(MY C(DFDCI LK) UFDCTLK),VFDEL KYLEFDCTLK)oI=151D)uK=11D)
GO T0i(568,57¢»572), N
579 00 562 K=1,10
DXO(KY=NFD1,K)
UXD(RY=UFDL1,K)
VXO(KYSVFDUL,.K)
562 EXpD(«)=FFD(1,K)
GO TO 568
572 DO 564 K=1,1D
DYQ(KY=DFD(K,IN)
UYO(K) =UFDIK.,INY
VYD(KY=VFDUEIK,IN)
564 EYD(KI=EFD(K,IM
G0 TO 568
568 WRITE(L)Y (LUDFICILK),UFDCT,KY W VFRLTLK) L EFDUT, K151, ID),K=1,1D)
REWIND L
REWIND M
D0 566 N=z1,3
“R‘TE(I_)((DFD(IDK)DUFD(]IK)AVFD(‘]K))EFD(!JK)II=1’[D)lKglﬂln)
READ (MY ((DFD(I,KY,UFD(T, ), VFDeT . KYLEFDCT,K),121,1D),K=1,1D)
566 CONTINYE
REWIND L
DELT =THAX+VAR
THMAX=2.,0*VAR +TMAX
60 1D 553
548 DELT=VAR
553 xs={D-1
GO 70(556,558), JUMP
556 PP=DPs(UPPUP+VPeVP)/2.,0+PP/(GAM™1.0}

160
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PROGRAM LISTING OF THE STILL SOLUTION (Continued)

ENSDN* CUN*UNSVN®VN)I/2.0*PN/(GiM"1.0)

ES=DS»(US*US+VS*VS)/2.0*PS/(GAH1.0)

DO 21=21.1D

DyYecly=aps

uyptryzus

VYQ{T)=VS

EYD(1)=ES

DXQt1y=DP

Uxgeryayp

vXot1yavP

2 Exo(1)=EP
REWIND M
REWIND L

2002 00 2pnpJd=1,3

GO T0(208,208,210),J

208 DO1gT=1,1D

DO 10 K=1,1D

DFN(t,xk)=DP

UFDLT,K)=UP

VFB(l,K)avpP

10 EFDUY,K)SEP

80 YD 248G0

210 DO 141=21,]D

DEDCT,ID)=DS

UFpLY, ID)=Us

VFD(I. 1n)=vs

GFDY1,1D)=ES

DO 14K=s1.X

UFD(1,K)=DN

UFDLY,K)=UN

VEDLT,K)=VM

14 EFD(1,K)=EN
?000 MR'TE‘N)‘(DFD(IlK)’UFD(I'K)IVFD(IIK)IEFD‘llK)'l=1llD)lKuilID)

TIME=1.9

558 REWIMD M

AFTX=g,0

16 DO 2004N=1,3

READ (MYCU(DFDCILKYLUFDCTI KL VENLLLK)EFD(I,K)»T21,1D),K=1,1D}

CAP=31G6/CONST

GO T0(214,216,218),N _

214 CALL FIELD(DFDA(L,1),UFDACL,1),.VFDA(1,1),EFDA(L,1),CAP,QOMEG,GAM,OF
10¢1,1)3,0Y0(1) SDFD(1,2),DF0(¢2,1),DY0C1),UFDCL,1),UYQ(1) LUFD(1,2
2),UF D25 1),UYD(1Y, VFD(1a1).VYQeL)  LVFDC1,2), VFD(2,12,VY0(1),EFDLY
Is1V,EYQ{1)  LEFD(1,2),EFD(2,1),EY0(1),3:1,2)

CALL FIELD(DFDACIN,1),UFBACID,1),vFDACID,1),EFDACID,1),CAP,OMEG,GA
2M, DFDCIN, 1), DFD(X. 12 DFDCID, 2). DX0(1),DYOCIDILUFDEID, 1), UFD(X,1),U
TFDIN,2),UXO(1),UYOLIDI, VED(ID,. 1), VFDU(X, 1), VFDCIN, 2),vx0(1),VYO(In
4),EFNCIDL 1), EFDUIX, 1) EFDCID,2)  EX0(1),EYOUID)»1,1Ds2Y

PO 181=2,X

CALL FYELD(DFDACT, 1).UFDA¢I.1) VFDACI,1),EFDACI,;1).CAP,OMEG,GAM,DF
101,43, DFDC1-1,4),DFD(T,2).DFBel+4,1),0YQ01),UFDCE.1),UFDEI~1,1),U
PFDCl, oY, UFD(T+1., 1) UYQCIY o UFD(To4) o VFNCTlag,4)sVFDCTL2), VFD(I*+1.1),
SVYYO(TY,EFDCT 1), EFDUI=q,1)  EFNtL,2),EFD(TI%1,1),EYD(1),451,2)

CALL FIELD(DFDACIN, 1Y,UFNACID, 1) .VFDACID, 1), EFDACID, 1) ,CAP,OMEG,GA
SHLDFDCID, T, NFD(X, 1) DFDCT0, Le4) . DXOCTISDFDCID, I~4 ), UFDCID, 1), UFDY(
33X, 1), urn(Iu.l+1).uXD(l)aUFp(1n l-1>.VFD(ID l):VFD(X.l).VFD(ID:I+1>



PROGRAM LISTING OF THE STILL SOLUTION (Continued)

162

4;VYO¢l);VFD(lD.I-1)pEFD(lU.l’.EFD(X.I);EFD(anl*l)oEXO(l).EFD(!D,l.

Br13s1,10,2)
G0 Yo 37
18 CONTINUF
60 10 212 .
37 CALL FIELD(DFDACY, 1), UFDACYL,1Y ., VEDAC1, 1) EFDACy,1),CAP,OMEG,GAM:DF

2D(4: 1), DFDC1,1),DFDC1, 741}, DFDC2.1)5,DFD{1, 1), UFD(1,. 13, UFD(L. 1)U

3FDC1, 144 UFD(2, D)L HFDUL s 11 o WFDLgs D)o VFDUL, 1) VFDCL, 141D ¥FD(2, |
4‘;VFD(‘1:' 1)5EFD(1:])»EFU(1;!) EFD(1» 1*1)JFFD(9OI)IEFD(1’1 =13,3,1.
52)
GO 70 (18,32,44),N

246 NO=IDey

CALL FTELD(DFDACy.1),UFDAC1,13,VFDAL1,1)sEFDAL],1),CaP,0MEG,GAN,OF
100109 3,DX0OC1)sDFDL19s2)sDFDE2e4 s DFD{11) 2 UFD(151),UXDE4) 2 UFDL020,
QUFD(2,4),UFDCL,4) s VFD(109) UXDC1)VFDL1s2) s VFD(2,5 0 o VFBdisgds EFB«1
Io1)EXOU4) L EFD(1+2)2EFDI2s3)+FFD(1,43,22N0,2D

DO 321=2.,X

95 NO=]p+1

CALL FYELD(DFDACI.1) UFDACE, 43, ¥ DACT,1)EFDACI,1)+CAP,OMEG,GAM, OF
100Ls4),DFDC1=1,4).DF0CT:2Y,0FDEI+1,4),DFD(L,1,UFNDCL, 1) UFD(TI=1,11
2oUFDET,2) s UFPLT49,1 3 UFDET. 4o VFO(L,1) s VFDUI~1,1), VFD(T22) 5 VFD( T o1
3.1).vro(1.1).Ern(l.1\.EFD(1-1.1J.EFD¢1'2),Ern(l+1.1).5r0(1.1).2.No

4,2)

NO=1D+1

32 CALL FIELD(DFDAC1, 1), UFDACY, 1) ,VFDAL1, 1), EFDA(l.l).CAP OMEG, GAM,DF
1001 1),DXOCIY s DFD(12T+1)0FD(2 D)L DFDCLs [=1) L UFDCL, D)L UXOCT) s UFD LY
2o 1+ 1)L, UFDE2, DL UFDULs 1=1) s VFDBlLs D)L VXOUII L, VRN, T+1), VFD(2, 1Y, VFD(
J1s1=1),EFNC1 1)LEXOUT) L EFD(L» T+4 VL EFD(22 1)L EFD(L,1~13,1,N0O,2)

60 10 212
218 CAtL FIELDC(DFDAC(1.10),UFDAt1,1DY.VFDACL,ID),EFDAC1,»1D),CAP,OMEG,GA

2HIDFBE1, 1DV, DFD1, 1DV DYO(1) o DFDI2, 10 s DFDCL. X)L UFD(1,1D),UFOC(L,1D
I1oUYAE1)LURD(2, 1)L UFDL X)) VFPlL, 1D L VFDUL, ID), VYO (1), VFDU(2,1ID) Y
AFD 1, XYL, EFDBC1 IMLEFNC1, INILEYOU1),EFN(2,ID)LEFD(1,X),3,1,2)

CALL FIELD(DFDACID, 1M UFDACID,ID)SVFDACID,IN),EFDACID,ID),CAP.OME
1GsGAMLNFDCIN IDYLDFO(X, 10),DYDeID),DFRCID, IDYSDFDCID, X)» UFD(ID, ID)
SHUFNIX, ID)sUYOCID) L UFDCIDIDYLUFDCID X)) VFDCID, IDYAVFD(X,IDY, VYO (!
ID)L,VFRCID,ID) L VFD(TID XY, EFDCID,ID)LEFD(X,1ID), EYO(ID) EFU(ID.ID) EF
4DCIN,XY:4,1D,2)

DO 4a1=2,X

CALL FIEID(DFDA(ID.I).UFDA(ID 1Y.VFDACID. 1), EFDA(!D;I).CAP NMEG,GA
IMSBFBCIDN, 1Y, OFDEX, D)L DFDUID, Te4) DFDCID D) LDFDCID, I=4)  UFDCID, 1), 1
PFD(X, D)L UFDCID, T+ ) UFDNCID, D LUFDCID, I=1), VFRUIDL 1) 2 VFDUX, 1), VFD (]
IN, 144, VFDCIDS DY, VFDUID, 1)L EEDCIN, DILEFDIX, 1) LEFDCID, I+4),EFDCID

ll)lErD(lD)l'l)l4 10, Z) .

G0 Tn 37

44 CALL FIELD(DFDACI.ID),UFDACTID),VFDACISID),EFNDACLSID),CAP,OMEG,GA
2M,DFDCIL D), DFDCT=1,1D),DYQCI)Y,DFDCI«1,ID),DFDCT»X)sUFDCTLID) L UFDL
Bleq, 1D, UY0CD)LUFNUI+1,ID) UFDIL X)L VFDULLID)SVFD(LI=1,1D),VYOLT),Y
AFNtI+1,1D),VFDCT, Y).EFn(l.ln) EFN(I=1, 1D}, EYQUI)LEFDC(I+1,1D)LEFDCT
5aXYe121,2)

212 JJ=2

DO 241=22,X

no 23Kk=2,X

GO 10(542,%54p), .44

540 60 TO(300530253000 N
300 NO=1



o302
544

542 IF(DFDALTLKY  NE.DFDALT,E=1))GO TN
IFCUFDALT LK) . NE.UFDACTI,K=1)360 TN
IFCVEDACT,K) NELVFDAL],K=4))}080 TO
IFCEFDA(T,K) NE.EFDACT ,K=13)60 T0

546

538
23
24

8o
'31
82
89

229

30
222

38

PROGRAM LISTING OF THE STILL SOLUTION (Continued)

GO Y0 544
NO=1e¢]D .

CALL FTELDC(DFDACI,K),UFDALT,K) ,VFDALL, K} ,EFDACT,K)2CAP,OMEG, GAH, DF
1DC1, )Y, DFDET=4,K)  NFNCT,Keq)aNEDCT+1,K) e DFDCT,K=1) o UFDE LK) UFD( L=
21, UEDCIH K1) UFDIT+4, XL UFDET K=}, VED(TRI,VFDEl g, KD VFDUI,Ke
S1)LVEDCI+1, Ko VFDUTsKe1) L EFDET KL EFDII~1, K} EF DI -Ked bsEFDCIo1,KY

4, EFDUT,K*1),12ND,2)

KIN = K

UO 546 KY=SKIN,X

DEDACT,KY)aDFD(Y,KY)

UFNALT,KY)3UFDCY,KY)

VEFNALT,KY)=RVFD(I,KY?

EFNACILKY)=SEFDCY,KY)
GO T0O 24

JJd=2

CONTINUE

CONT I MUE

D0 B9 Is1,1D

G0 TN (BO:BQ:BQ)DN
DFNACT,IDY=DFDCI,ID)

UFPACT, IDI=UFDCL, 1D
VERACT, ID)=VFDC(T, 1D}

EFNACI, IDY=SEFDCYLID)

GO Th (89,81.,82),N
VEDACTID, 1) =VFDUID, )

EFNACIN, I)=EFDCIND, 1)
0 10 R9

DFPACI,1)=DFOCL1)

UFDACT,1 I=UFD(T,1 )
VFDALL,4 D=VFDCI,q )

EFBACT,1 Y=EFD(1,1 )
Gn TQ a9

CONTINUE

G0 T (220,222,2243,N

no 3pl=1.100
DXnery=DFRCINL 1)
NYnety=nFDLL,4)
UXOETystiFDeINL Iy
uYn(1y=urondr, 1)
VXneiysVFRUEN, )
VYn(1y=vFNC(l,1)
EXOCTYy=EFDCLIN, 1Y
EYO(1)=EFDI],1)
GO TN 226

no 3RI=z1,1D
DXO(1Y=DRFDAC1, 1)
UX0{1Y=UFDALL, 1)
VXN(1)y=VFDAC(1,1)
EXO(1)=EFDACL, 1)
GO T 226

538
538
538
538

163



224

28

10000

10b

118
120
124
122

. 126

132
. 134

PROGRAM LISTING OF THE STILL SOLUTION (Continued)

DO 5nplz4ID

-DYNET13=DFRALLID)

HYDBLT3I=UFDACT, ID)
VYNEiY=VFDACTI, I
EYRLTI=EFDACTS ID)
NR'TE‘:’.S)T!HE;N;C&F&Z
FIXMY=q,.( .

N0 2R1=1,1D

0 28K=1,1D

UFNET,KYeSORTFUUFDALTI s KISUFDA( T+ KISYFDALT,K)eVFDACIsKI Y

NFRET,k)=VFDACT,KYZUFDET 10

FFPEI,K)S(BAH=1 . )Y (EFDACT K =nFNALT - KIPUFDLI»XK)I*UFDE] . KIF2. 4%
SS=SNRTF(GAMREFN(T,K)/DFNACT kYD

VENR(1,kysUFDNEl,K) /88
§S=SS+UFDLT,K)
IF(SS.LEFIXHXIRO TO 28
FlxMx=8S

CONT tNUE

IF(FIXMY LE.AFIYYRO TO Sagno
AF I X=FTXMX

IF(TIMECNELNELTS 60 TO 2004
PPV=PP+PPCH/ 2.4
VPYIPVYCH/ 240

PA =Y AAZAXY=AAY=E(,.)
WRYTE(3,101)PPV.VPV

CWRITE(3,103)

D0yq21=1s1D
N04g4K=1+1D

R NES Py
IF(PPV, . GT.PNIGO TN 132
GO YN (118,120),0
IF(K.FO,1)6G0 T0 132
AZEFN(T,K)
B=EFN(Y,K~1)

GO TN 124

1F(K.,Fn.,1)60 To 132
A=EFD(N, 1)
BESEFD(K=1,1)

G0 YD 124 ,
IFtA.AY . PPYIGO TO 122
IFtB.GT.PPVIGO YO 126
GO TN 132
IF¢B.GY.PPVIGO TO 132
AXX=K

AXY=1{

AX=K =g

PA=AY ¢ (AXX=AX)IX(PPV~B)/tA-R)
IF(VPV, 6T UNIBD TN 114
G0 TD (134,136),4
IF(K.ER.11GO TO 114
AA=UFNTsK)
RB=UFN(]sK=1)
CC=VFDALTI,K)
DD=VFNA{l:K=q)

GO Th 43R

IFiK.EQ.17GO T0 114

16k



PROGRAM LISTING OF THE STILL SOLUTION (Continued)

AA=UFDIK, 1)

L BB=UFDCK=1,1)

138

. 140
142

114

148
150

152
154

116
104
112

156
2004
56

60

62

64

554

555

CC=VFNA(K, 1)

DD=VFNAIK=1,1)

1F(AART.VPVIGO TN 14g
1IF(BB.GT.VPV)GO Tn 142

GO 10 444

lF(BB.GT VPV)IGO T0 114

AAys

AAYE l

XKAzKe=q

XAAZXA+ (AAX=XA)# (VPV~ FH)/(AA-BB)
UU=DRe (XAA=XA) #(CC=DN)/Z7(ARAX=XAY
DIR=LU/VPY

IF(PANE.G.NIGD TN 148
IFtXAAMELO0.0)GD TO 148

GO TN 116

GO TN (150,152),4

NPITE(3.1)AXV:PA;AAY.XAA.D!R
GO Tn 154

WRITE(3,1)PA,AXY, XAA;AAV,DYR
PA= 0-0

XAA=Z(,

CONT!NUE

CONT I NUE

CONTINUE

VPV sVPV+PVCH

PPV=PPV+PPCH

IFevev ,LELUNIGO TO 406
IF(PPV,.LEPNIGO TO 106

WRITECL)C(DFNACT,K),UFDACT, K),VFDALL,K)SEFDACIE, K)al=1alD)aK 1,10

IF(TIME.BT.TMAXIGO TN64
1FETIMELNELDELTYIGO TO 56
DELTsNELT+VAR
TIME=TIME+1 .1
1IF(M.GT,L)GO TO &2

ME|

LsMey

GO 70 ¢4

LsM

M=p -t

REWIND L

REWIND M

CONST=AFIX

IF(TIME.BY. THAX)IRO TOHB54
AFIY=n.0

GO TO 16

WRITF(%,107)
WRTITE(3,109) TMAX, M, CONST, TIME
50 TQ 1an '
CONT TNIE

END
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PROGRAM LISTING OF THE STILL  SOLUTION (Continued)

SURROUTINE FIELD(DiB ULB,V1BsF1B.CAPA,OMEGA,SPHT.D1,D2, 03 D4,D3,U4
1aU2,03,444,U5,V1,V2,V3,V4,V5,E4,E2,E3,E4+E5,K,N0,2)
YeNO

C TiztgweligeViwvy

T2=U2wli2¢V2ey2

TI=U3eUJevVIeyd

T4=Ldwii44V4eV4

T6=Ukwli5+YSey5
P12(SPHT=1,0)%(F1=D1+T1/2.0}
P2=(SPUT=1,n)*(F2=-D22T2/2,.p)
P3=(SPHT 1,0 )*(F3=-D3+T3/2.q)
PAa=(SPHT=1.0)2lF4-D4*T4/2,.q)
PSe(SPHT*1.n)"(FB=N5#T15/%,4)
Te1=80RTF (SPHT*P4 /N1 1+SORTF(T1 Y
T2=SRRTF(SPHT*PD/N2)1+SORTF (T2}
T3zSARTF(SPHT*PI/N3I+SAFTF (T}
TA=zSQRTF(SPHT*PA/N4i+SORTF(T4)

 T5=SQRTF{SPHT*PE/NG)+SAORTF (TS}

312
301

3p2
303
3p4é

305

306

313
314

OTOMMTO O LN =D T MMM

GO TO(301:302,312,302),
1F(Z.NE.1.0)G0 TO 3g2
R=2,p

60 TN 3p3

Rsd,p '

GO T0(304,305+306.307),K
Azf,.0

a=1,n

C=1.0

D=1.n

E=1.0

FS1.0

G=1.0
~H=1.0

(0] TD!nH

A=1.0

B=p.n

C=1.n

=S

NE,1.0)G0 T0O 313

HBTID e OO DDIDIDODO 3D
-
[~3
x

#nHNOHEnNMNMERBORY

- Ay 4D D

onn
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308

315

PROGRAM LISTING OF THE STILL SOLUTION (Continued)

Azgap
.- BEYag-

C=p.n

D=1.0

E=2.n

FRisp

6=0.8

HEY.p

IF(Z.NEJ.1.0)60 YO 315

E=-E

-6

StMzq . neOMEGAYCAPAW(TI/R+A¢TO:B2T34CwT4¢NeT6) /8,0

DIA=NY #SUMSOMEGAwC AP AR (AsT2eDZsReTINNI+CvTAeNd4D2TEe05+4(A2D2¢B*DT0
JCHN4SN*DSI*T{) /R n-CAPAL(EwD2#V2+F eN3#U3=EoD42V4-HoDSenB}/2,02842<
2CAPAXZ#VI*N1/(Yw1,414214)

U1B=iDy*U1 #SHMFOMEGA*CAP AR (A*TO*N2wU2+B¥T34D3I*UICoT4endoydsDeT5eD
15805+ (ANN2 ey +BaNINUT N DAwUdenENEHYBI ¥V {18, n-CAPASIED2#U2¢V24F w
2(PXeDI+UI*YSI~RoNA*UavVa e (PE5-DEcUSeUSI I/ 2. B2842~CAPARV AN YU %2/
J(Yey,414214))/D94R

VIBZ(Nq*V{*#SUMAOMFBA*CAPADfA®To#N2eY2+B ¥ TIeDIAVI¢CeT4aN40Y44DeTS D

‘4 15%VS e (A*N2OVR+RLNTwY S0P NAeV4+N*NGHVE)#T )48, 0=CAPARLES(P2eN2sVpay

02V +F4DIPVIN|j3~ G'(p4+n4*va-V4!-utnStVStUSl/p.aeaqy-CAPAtV1tD1'V1tZ/

. 3tYw%9,494214))/D48B

310

311
399

b1B-F1tSUM#OH&GA*CAPA*(A*TotFpoﬂtTjiFK*C'T4*F40D'T5'ESO1A*Ez*B'EIO
1O*FaeN*ES)IWT 1) /R, =CAPANIEw(Eo+Po) Vo +F* (EJ+P3)IWUI~G(E4+PI)eVdnHe
2(ER+PS)wUS) /0. B2842=CAPAYZ*VIwIE1+P1) /(Y ¥4 ,414214)

GO TNE3a9,31n2311,311),K

U1R=U1

G0 10 3p9

ViB=g.q

RETURN

END



(1) PDCH
(2) PPM
(3) PVM
(L) pDM
(5) ADY
(6) DDX
All of the

Ui

168

H

the difference in density between two constant density
lines,
= the pressure of the maximum constant pressure line,

the velocity of the maximum constant veloccity line,

.= the density of the maximum constant density line.

L}

an assigned coordinate for a constant density  line,

an interpolated coordinate for a constant density line.

above quantities are defined in decimal notation., The pro-

gram is given on page 169 in Fortran IV notation,



PROGRAM LISTING OF THE CROSSFLOW SOLUTION

PROGRAM CROSS
MAIN PROGRAM-=CROSSFLOW DIFFRACTION
INTEGER X
INTEGER Y
DIMENSION DFO(30,50),DFDA(3I050),DY0¢30),DX0(50?,UFDt30,50),UFDA(S
10:500,UY0(30)oUXD(SO)VEDLIN 50)-VFDA(I0,50),VYO(30),VXO(50),EFD(3
20,50).,EFDALIN-53),EY0(30), EXO(Sa)oDZO(SF).UZO(SO)»VZO(SO)aEZOQSQ)
1 FORMAT(AF10.5})
3 FORMATU4F10,5+213,F10.5)
5 FORMAT(10MH TIME NOz ,F10.5,94SPACE NO=,14,8HCAPAT ,F10.%)
10 FORMATY (13H PRESSURE= ,F10,.5.16H VEL MODULUS® ,F10.5,12H n
1ENSITY® ,F10.5)
103 FORMAY (65H Y X Y X SINE
1Y X)
105 FORMAT( 13) .
107 FORMAT(IX,19HINPUT DATA)
109 FORMAT(LX,7H TMAX= ,P10:5,1Xs4H Ma , 13,14, 7H CONS=s »F10.:5,1%,7H T1
1ME= ,F10.5)
100 READC(1,105)JiMp
IF(FOF,1)555,557
557 READ(]51’DanN;UP.UNIVPDVNJPPIPN
"READ(1,1)DRS,US,vS,PS, VAR
READ(1,3)GAM,SIR,OMEG, TMAX,MsL »CONST
READ(1,1)PPCH,PVCH,PDCH,PPM,RPVM,PDM
ID=30
KD=%0
GO T0(548,550),JUMP
550 READ(1,1)TIME
REWIND L
DO 568 Ne1,4
READ(MY(C(DFD(I,K) UFDCI K, VFD(L.K),FFD(1,K),121,1D),K=1,KD)
GO TO(568,57;,572,574),N
570 DO 562 K=1,KNn
. DXOt(K)sDFDLL1,K)
UXO(K)nFD(1,.K)
VX0(X)sVFD(1,K)
562 EXO(K)sEFD(1,K)
G0 TO 568
572 N0 5864 1=1,1N
- DYOC1)YsDFDCI,KD)Y
UYo(I)=2UFDCI.KD)
VYD C(IYsVFD(L LKD)
564 EYQO(])aEFD(I, KDY
GO TO 8548
574 DO 576 K=1,KDN
DZO(K)Y=NFDCINSK)
UZn(x)=UFNEIN,K)
VZO(K)SVFD(IN,K)
576 EI0(KHYBEFDLINIK)
GO TO 548 :
568 WRITE(LYC(DFN(ILI),UFDLL, K).VFn(!-K).EFD(I.K):Iil:lD)oKtl KD)
REWIND L
REWIND o
DELT =TMAX#VAR
TMAX=2.,0%"VAR $THMAX
GO TO 553
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548
553

55¢&

400

2002
208

10
210

214

PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

DELTaVAR

XefD~-1
YsKD-1.

BOT0(556,558) » JUMP ,

EPZNPa(UP*UP+VPeVP)/2,0¢PP/(GAM=1,0)
ENzDNw (UN*UNSVN®VN)/2,06PN/ (BAM®T , 0}
ES=DS«{USwWUS+VSaVS) /2. 0¢PS/(BANM=1,0)

DO 21=1,1D
0Yoncly)=ns
uyoc1)=ays
VYO (Iyravs
EYO(])aES

D0 4041=1,KD

DXn¢tyapP
Uuxocl)syp
VXD (1)aVvP
EX0(T)agP
D20(I1)anP
UZo(1)auP
V20(l)asVvP
E20(1)=EP
REWIND M

REWIND L

D0 2000J=1,4
GO T0(218,2%4,210, 208) J

D0101=4,1D

DO 10 K=1,KD
DFED(I,K)=DP
UFDC1,K)=Uup
VED(1,K)=VP
EFDCT,K)=EP

GO YO 29460

DO 141a21,1D
DFNCL,KB)=DS
UFDUL, KD =US
VFDCI,KN)=VS
EFDCT,KD)=ES

DO 14Kka1,Y

DFNCL,K)SUN
UFnel,Ky=UN
VED(1,K)=VN
EFDtT. @) =EN
BRITE(MIC(DENCT MY DFDCL,K) L VFDCL, K} L,EFDCL,K)s121,1D),Knl,KD)

TIMFz1,.4
REWIND M
AFIXEi,

BO 20°4N=1,4

READ (MYCUDFDCTKYLUFDCTK)LVFNLT KYEFD(ILKY»E=1,1D),Kal,KD)
- CAP=STH/CONST

GD T70(214,216,218,22R),N

170

CALL FIELD(DFDA(L,1),UFDA(1,1),VFDA(L,1),EFDA(L1.,1),CAP,0MEG,GAN, DF

1D(1,1),020(1)
Pr,UFDC2,1),UY0C1), VFN(1,1),VZI0L)

3,1),F720¢1)  LEFD(1,2),EFN(2,1),EY0(1)Y,1)

SJDENC1,2).0FD(2,1),DY0(1),UFD(1,1),UZ0(1)
.VFD(I.2);VFD(Z:l!.VYD(l).EFD(l

CALL FIELD(DFDACIN,1),UFDACID,1)Y.VFDA(CID,1),EFDACID,1).CAP,OMEG,(4A

?M.DFD(ID.I):HFD(X.;).DFD(]D;?).Dlo(ib.DYO(!D):UFD(ID.i))UFD(X;l)-U
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PROGRAM LISTING. OF THE CROSSFLOW SOLUTION (Continued)

SFD(‘D'Z):UXO(i).UYO('D)OVFD(’Do1)nVFD(Xl1))VFD(an23;VXO(1)sVY@€EQ
A)SEFDCIDL 1YL EFDUIX.1),EFDCID,2) ,EXOCLY,EVYN(ID)I»1?

DO 1R132,X

CALL FIELD(DFDACT, 1), UFDACI,4),VFDACT 1), EFDALI.1)-,CARP,OMEG,GAM,DF
I0CI, 1), DFDCI-1,1),DFN(1,2),DFDCI+1,18,DYQ0C1),UFD(E-11, UFDEiel,1),u
2FD(I» 2)nUFD(!‘1:1);“70(]),VFU(tc\):VPD(!°331)DVFD(iJZD;VFD(§¢111)‘
SVYDUI)LEFDCL L) EFD{T =101, EFDCT .20, 8FDIT1+1,1),EV04I0,1)

18 CONTINUE

DO 4021!=s2,Y

CALL FIELDU(DFDACID. 1Y, UFDACED 1) . VFDACID I3, FFOACIDS1),CAP,OMEG,GA
PH,DFDCID D)L DFDUX. 1), DFDCID, T+4 3. DXOEI) s DEDCID, L=1),UFDCID-§ ) UEDY
X, D) tFNCID. T+ 1)L UXOCIY S UFDCID I=4 ) s VEDUID 1) s VFDU(X, 13, VFDCEDL I21 3
A VXO0LTY,VEDUID, 1=1)BFDEID- [ 2-5FNEX, 1) »EFPDEINs I+3EXOCI - EFNEED,
5=31),1)

CALL FIELDU(DFDA(L, 1) UFDACL,1),VFDALL-1) EFDACL,E3.04P,0MER,GAM,DF
1001, 1, 02001 NFD(L,T1+1) . FD(2, 8, DFDBEL, 1= UFDEL- 11,2063, UFDBCY
2o I#1) UFD(2, 1) LUFD(L s T=d ) L VFDE4 a1 Do VEOCT Do YFDNCLo R+, VFD(2, 1) .VFD¢
J1,1=1),EBFDLL, 1)L EZD8 ) s bFD(LcT60 ) BFNI2:10-EFB{L,I~1),1)

402 CONTINUE
GO 10 212

37 CALL FIELDC(DFDACL, 1Y UFUA(L.Y),VFDACL, 1) EFDA(1,19.CAP,OMEG,GAM,NF
201, 1), DFD L, 1Y DFR(L, T+1),DFD(2. 1)L, DFDC1, I=1 ), UFDCL, 1Y, UFD(1, 1)U
3FD(1.!01).UFD(7.!).UFD(1:1-1).VFD(1.l).VFD(1.l).VFD(1.l¢1).VFD(2.I
4)HLVFN(L, T=D)LEFDC1L DI EFNCLL 1)L, EFD(L, I+1)LEFN(2, 1) EFD(1,1-1),3)

60 TO (18,32,44.90),N

216 CALL FIELD(DFDA(L,1),UFDAC1,1),VFDA(L,1),EFDA{1,1),CAP,0OMEG,GAM,DF
1DC1L, 1)L, DX0C1)>NFD(1,2)HDFD(2,: 1) DFD(L, 1), UFD(L, 1), UXOC1)UFD(L1,.2),
ZUFD(2,1),UFD(L, 1), VFNL1, 1), VX0 VFNLL1,2),VFDL2,14)H,VFD(1,1),EFD(1
3e1),FX0C1)L,EFD(1,2),EFD(2,1),EFD(1,1),2)

Do I2132,X

GO TN ¢5

32 CONTINUE

DO 406122,Y

406 CALL FIELD(DFDACYL, DL UFDACL, 1), VFDAC(L, 1), EFDACL, 1),CAP,OMEG, GAM,NF
1DC1, 1), DX0 (Yo NFDCL, T+1)L.RFD(2, 13, DFN(1, 1-1) UFD(L, 1), UX0¢ 1), UFDL1
2al+1) L URDE2, 1YLUFRNCL, =1 L VFD (4, 1)L, VXO(CTY . VFDGL, T+1),VFD(2, 1), VFDY¢
21, 1=1),EFD(1. D)LEXOCI)LEFN(1, 1411, EFND(251),EFD(1,1-1),1)

G0 70 212

9% CALL FIELD(DFDACI., 1)’UFDA(I;13 VFDACY,1) ,EFDACT,1),CAP,OMEG, GAM, NF
IDCTLL,V)LDFD(T-1,1),DFDCL,2), DFDET+1, 1Y . DFI(T, 1), UFDCI,21Y,UFD(I=1,1)
2sUFDCI, 2, UFDCT4L, 1) UFNCT. 1 VFNCIL W)L VRNCT~1,1),VFDC1,2),VFD (L e
Sodd s VFNCIL L)L EFNCIL1)HSEFD(I=1,4),EFDET-2)L,EFDCI+1,1),EFD(1,1).,2)

GO T0¢(18,32,44,49R),N

228 CALL FIELD(DFDACIN, 1}, UFDA(CID, 1) . VFDACID,1),EFDAC(ID,1),CAP,OMEG,GA
TML,DFDCINL, 1) LNFDCIN=1,1) L, NFENCEID, 2),DZNCL) L, DFDCIN, )L UFDCID, 1), UFDIL Y
D=1, 1), UFDCINL2), U200 L UFDCID, L)L VFNCID, 1), VFDCID=1,1),VFD(IN,2),
IVZOLR) L VFDUIN ILEFDLID, 1), EFD(IN~- 1:1)1&?0(‘nt?):EZO(l);EFD(lD 1),
429

DO 906 1=2.Y

90 CALt FIELD(DFDACID, 1Y, UFDACID, 1), VFDACID,1),EFDACID,1),CAP,OMEG,GA
1HIDFD([D:l)tUFD(ln;lol)anD(anI¢1):DZO(I).DFD([D;l'l);UFD(ID:H):H
ZFDCID-1, 1), UFDCID, 1e1), U200}, HFN(IDLI=-1Y, VFOUID, 1) VFDNLID=-1.1),VF
IDCINL T+ VZ0LD)LVFDLIDT=1)EFDCID, DILERDEIN=1,1),EFDCID, 1+13,E2Z0
4¢I),EFDCID,T-1),1)

DO 408 [=2,X

G0 70 95
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

408 CONTINUE
80 TO 212

218 CALL FIELD(DFDA(L,KN)LUFNDALL,KD),VFDA(L,XKD),FFDA(L1,KD),CAP, DMEG GA
2HM,DFD(L,KD) S NFNCLL.KNINYNEL) e DFDC2, KD DFNEL,Y)»UFD(1,KD),UFNEL,KD
JV,UYND(1LYLUFD(2,KDY L, UFDCL,Y),VEDC1, KDY, VFD(1,KDIVYOLi),VFD(2, KD)A
GFDC1,¥), EBFD(L,KD),EFN(1,KD)LEYN(1),EFD(2,KD},EFD(1.Y), )

CALL FIELD(DFDACIN,KN}LUFSACID.KN) ,VFDACID,KN),EFDACID,XKD),CAP,OME
1G, GAM,DFDCID KM LNFDU(X,KDN)LDYOCIN),DFDCIDLKD)SDFDCID,Y), UFDCTIDLKD)
2 UFDIX,KDYLUYQCID)Y L UFDBUID KDY HFNCIDY)H VFDCID, KDY VFDIX,KD)Y VYO (1}
S LVFNCIDLKD) S VFDCID, Y)Y FFNCIDL KNI LEFD(X,KD) . EYOU(ID), EFD(ID.KD):EF
4n{Iin,y),4)

DO 441=0,Y

CALL FIELD(DFDACIN, 1Y, UFDACID, 1), VFDACID,I3,FFDACID,1),.CAP,OMEG, A
IMLDFDCID, DL OFDIX, 1YL DFDNCID, 141 ) . DFDCID, 1Y, DFDCID, 1=13 ,UFDII0sE3.00
2FDUX, D)LUFDCID, 1), UFDCIN. 1YL UFNCID, I=-1), VFDNEID I s VFDEXo 13- VEDC T
IDs T+ )L, VEDUINS 1) VFDCID 1 =1),EFDUID, 1) EFDIX, I EFDCID, I+13,EFD(ID
4, 1),EFD(IN,T1-1),4)

GO 10 37

44 CONTINUE

PO 404122,X

404 CALL FIELD(DFDACT,KD)HLUFDACI LKD) .VFDACILKD)Y,EFDACILKD)Y,CAP,»OMEG, GA
PHMLDFNCLL, KDY, DENCT-1,KD) ) DYO(T),DFDCLe1, KM, DFDCILY)LUFDCILKDYUFDY
Fled, KMLUYBCT) LUFDCI+1, KM, UPDCLLY)LVFDCELKDY» VFD(I=1,KD),VYO(]1),V
A4FDUT+1, KDY, VFDCTLY)LEFDITI L KDYSFFN(I~1,KD),EYO(I),EFD(1+1,KD),EFD(1
5:Y),1)

212 JJd=2

DO 24fa2,X

DO 23Kk=2,Y ‘ '

540 CALL FIFLD(DFDACT.K},UFDACI,K),VFDA(T,K) ,FFDALI,K)-CAP,OMEG, GAM,DF
10CT,KYLNFDCI=1,K) . DFD(TsK+1)sDFDUTI+1,K),DFDCT,K=1),UFD(L,KY,UFD(]~
Pl L UFNCILK+1) ,UFD(T+1,K), UFDEL . Km1) , VENUL,K),VFD (L1 ,K),VEDCI,Ke
SVILVFRCE+L, K)o VED (T, K~1) EFD UL, KDY L,EFNCI-1,K)LEFDC(Y K¢1):EFD((#1 K}
4,EFDCT,K=1),1) ‘

23 CONTINUE
24 CONTINUE i
GO TO ¢80,82,82,80),N
80 NO B89[=1,1D. :

DFDALT,KD)aDFD(I,Y )}

UFDACTLKD)=UFDC(T,Y )

VFDACT, KD aVvFDLT,Y )

89 EFDACILKD)ZEFDCI,Y )
GO TO (416,81, 82:9)):
81 DO 41al=1.,Y

DEDACID, T)=DFD(X

UFDALIND, Ia=UFD(X

VFDACED, 1) sVvRDULX

410 EFDACIN, I)3EFD(X

GO TO 416

82 N0 4121=31,1D

DFDACT,1)=DFNDC1,2)

UFDATT,1 )SUFD(I:?:)

VFDACLY,1 VaVED(L.,2 )

412 EFDACT,1 V=2EFD(1,2 )

GO T0 416 .

92 DO 414a131,Y
DFDACL, IYsDFD{2, 1)

N

. - —

}
)
)
)

.- e % s



414
416
220

30

418
222

38
~232

230
224

50
226

302
304

28

10000

PROGRAM LISTING OF THE CROSSFLOW SOLUTION-(Continued)

UFDA(1,13=UFD(2,1)
VFDAC(1,1)=VFD(2. 1)
EFDAL1,I)=EFN(2,1)

GO T0 (220,222,224,232),N
DO 301=1.,KD

DZ0C1)=DFD(1,1)

NXOCTY=DFD(INSIY
UZ20C1yaufFD(1, 1)
UXo(I)y=auFDCIns. 1)
VZotiy=vFD(L, 1)
VXOC(I)avFDeIn, 1)
EZ0CI)=EFD(1, 1)
EXO(IY=SEFD(IN, Y1)

DG d41Rrl=1,1D

BYOU(I)Y=RFD(I,1)
UvyocIysyrD(l,1)
VYOC(ly=VFD(1,1)
EYO(1)3EFD(], 1)

GO TO 226

DO 381=21,KD

DXOCI)=sNFDACL, I
UXO(T)aUFDA(1,1)
VXO(TYaUFDAL1L, 1)
EXO(I)aEFDA(1,1)

G0 T0 226

Do 232 I1=%1,KD
DZO(I)anFDACID, 1)
U20C(TYaufFpRACID, 1)
VZD(1YyavFDACID, 1)
EZ0C1)Y=sEFDACID, 1)

G0 TN 226

DO 501=1,1ID .
DYQCT)y=DFDACT LKD)
UYO(Ty2zyFDACT LKD)
VYB(1)y=VFDA(T,KD)
BYNCT)2EFDACTSKD)
WRITE(3,5)TIME, N, PAP
FIXMXz0,0 - :

DO 281ai,Ip

DO 2R8K=z1,KD

UFD (T ,KY=SQRTFCHFNAC I KI*UFDALYT, K)tVFDA(l:K)iVFDA(IaK))
EFN(T,KYR(GAM=1 . 0y w(EFNACIL,K)=NFRACI,K)eFDETK)UFDCT,K}/2,0)
IF(FFD(I K)Y.GE.2.n) GO TO 32
S8 = 0,8

GO TO 304
SE=SORTF(GAMYEFD(I,K)/DFNALT KD
§S=S88+UFD(1,K)
IF(SS.LE.FIXMX)RO TO 28
FIXMX=88

CONTINUE

IF(FIXMX.LE,. AFIX)CO ¥0 100060
AF IX=F 1 XMX

[FC(TIME.NEDFLT)Y GO T0 2004
“PV=.{,"5

VPV=PVCH

DPV='G .25
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106

118

120

124

122
126
500

502
504
132

134

136

138

140
142
506

508

510

PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

PXA=zVyX=DDX=APY=AVYs ADY=NIR30,0
WRITE(3,101) PPV,VPV,DPV
HRITE (3,103)

D0112 1s1,1D

D0104 Ksi,KD

DO136 JU=1,2
IF(PPV.GT.PPMIGDO TO 132
GO TD (118,120),J
IF(K.EDO.1 )0 YD 132
A=EFDC(T,K)

BREFD(I,K-1)

GO TO 124

IFCT.FO,1 G0 TO 132
AREFD(L,K)

BEEFD(TI-1,K)

B0 TO 124
IFCA.GT.PPVIGO TO 122
IFIR.AT.PPVIAO TO 126
GO0 TO 132 .
IF(B.GT.PPV)IGO TO 132
GO TO (500,%n2),J

APX=K

APY=1

AX=H -

G0 TN 834

APX=1

APY=nx

AX=]=1 _
PXAzAX« (APX=AX)w (PPV=B)/(A-R)
IF(VPV.GT.PYMIGO TO 114
GO TO (134,136),4
IF(K,FO.1  YGO TO 114
AA=UFDCT K}
BBR=UFD(I,K=1)
CCrVFDACTILK)
DD=VFDA(),K=-1?

GO THh 138

IFCI.FR.1 )60 TO 114
AASUFDCT LK)
BRUFNUTI=1,K)
CC=VFDACI,K)
DD=VFNA(EI~1,K)}

JFCAA.BT.VPVIGO TN 140
1F(RAR.GT.VPVIGO Y0 147

GO TD 114
[F(BB.6T.VPVIGO TO 114
GO TD (506,%4,8),J

AVX =K

TAVY =]

VXzK=1

G0 TO 510

AVX=1

AVY =K

VX=z]~1

VUX=VX+ (AVX~UX)w (VPV«BR)/ (AA=BR)
HU=DD+ (VVX=\VX)) # (Cn=DDY /7 CAVX=VX)

,
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114
512

514

516

518
520
524

526

528
522

530
532

534
536

116
104
112

2004

56

60

62

64

PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

DIRsUU/IVPY

IF(DPV,GT.PDMIGO TO 522

G0 70 €512,514).J
IF(K.FO.1 160 1O 522
AEDFDACLT LK)
B=DFDALE,K=1)

GO TN 516

{F(l1.FO,1 )GO 7O 522
ASDFDALEK?
B=DFDACL=1,K)
IF(A,GT.DPV}GO TOQ 518
IF(B.GT.DPVIRO TO 524
GO 10 522
IF(B.GT.DPV)GO TO 522
GO TO (524,526),4
ADX=xK

ADY=1

DX=Kk~1

G0 TN 528

ADX=1

ADY=K

DX=]=-1

DDX=0x+ (ADX-NX)w{DNPV=B)/ (A-B)
IF(PXAJNE.0.0)GO TO B30
IF(VVX.NE.Q.0)GO TO 530
IF(DDX.NE.O.0)GO TO 530

GO 1D 116
GO 7O (532,534),J

WRITE(3,1)APYPXA, AVY,VVX,DIR,ADY,DDX

GO 1D 536

WRITEC3,1)PXAsAPY,VVXsAVY,DIR,NDX, ADY

PXA=0.0
VVX=0,0
DOX=0, 0
CONTINUE
CONT INUE
CONT I NUE
VPV=VPV+PVCH
PPV=PPV+PPCH
DPV=DPV+PDCH

1F(VPY,LE.PVMIGO TO 106
IF(PPVY.LE.PPMIGD TO 106
IF(LPV.LE.PDMIGD TO 106
WRITE(L)IC(DFNACT,K) ,UFDACT,LK),VFDACT,K),EFDACI,K), 121, ID) Kn1,KD)
FF(TIME.GY . . THAX)IGN TN56
IF(TIME.NELDELTIGO TO 56

DEL T=DELT+VAR
TIME=TIME+L . 1)
IF(M.GT.LIGO To 62 -
Mel

LeM-1
GO TO 44
LeM

=i -1
REWIND L

REWIND M
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

CONST=AF IX
IF(TIME.GT,THAX)GO T0554
AFIX30.0
60 T0 16
554 WRITE(3,107)

WRITF(3,109) TMAX,M, CONST, TIME
60 10 100

555 CONTINUE
END



312
313
314
315
316
301
302

303
364

305

306

307

L7

PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

SUBROUTINE FIELD(D1B,U1E,V1B,E1B.CAPA,OMEGA,SPHT,D1,D2,D3,D4,D5,U1
1.U2,U3,U4,U5,V1,Vo,V3,VA,V5,R1,E?2,E3,E4,E5,K)
Ti=zUlwUleViwvi

T2zU?«UU2+4V2+y2

T3=U3«1J3+VInyY

Td=UawlUd+V4wy4

T52U51)54V5wy5
PL=(SPHT~1.0)*(F1-N1+T1/72.0)
P2=tSPHT =1, )% (F2-D2+T2/2,()
PI=2tSPHT~1, )% (F3-D3«T3/2,0)
Pa=(SPHT=1.019(F4-N4eT4/7 1)
PS=(SPHT=1,: )W (ES5-D5eT5/2,))
IF(P1.LT.C.0) GO TO 3312
T1=SORTF(SPHT*P1/D1)+SORTF(TY)
IF(P2.LT.3.7) GO TN 313
T2=SORTF(SPHT*P2/D2)+SARTF(T2)
IF(FILTW0.0) GO TD 3314
TI=SORTF(SPRT*PI/NIISSOQFTF(TS)
IF(P4,LT.0.0) GO TO 315
TA=SORTF (SPHTWPA/NAY+SORTF(TA)
IF(PS .TD.7) RO TO 316
T5=SNRTF (SPHT*PS/NS)+SORTF(TS)
CONTIMUE .

GO0 TN¢301,322,3n02,302),K

R=2.0

GO TNIN3Z

R4, §

GO TO(324,30:5,306,307),k

A=s1.0)

R=1,0

ce1.0

=1,

E=1.0

F=1.6

521.0

Hel,0

GO 1n3g8

As1.0

Ht[]Ou

C=1.06

D=g.0

E=1.0

Fz2.0

631.0

H2(.0

G0 TO 3¢K

A=q.10

B=1.0

C=¢.,0

D=1.10

E=0.0

Fei.,0

G=2.0

Hz1.0

G0 TO 318

A=p.0
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PROGRAM LISTING OF THE CROSSFLOW SOLUTION (Continued)

B=1.0
Ceg.0
Dz1.0
532-0
F=1,0
Ge0,.0
H=1,0
308 SUM=1,0<0MEGAACAPAXITI/R+(AnT2+B#T3¢C#T44+D#T5)/8,0)
DLR=N1 wSUMGOMEGARCAPAN (A#T2¢N2+R+TANI+C+#T44D4+D*T5¢D5+ (AwD2+BeDI s
1C#NA+NaDS)IWT1) /8. 0-CAFAN(F*D2WV2+F #DN3IwU3~GoNNd*yd=-HeD5w)5)/2,82842
U1B=(N1vUL*SUM+OMFRA*CAPAn (AT *N2wU2+B*TIwDI*UI+CHT4wD4wU4eD*TS50ap
15015+ (AWD2#U2+ReNINUI+CIN4eAsNeNEwiS)*T1 ) /8, 0~CAPA®(E«D2#U2%Y24F &
2(P3+DI 13w Y )=GoD4wlideVd-Ka(PS5+D5eUS»US5)3/2,82842)/D1B
VIR= (NI wVI*SUN+OMFGAYCAPAw (A#TOMN2# V2 4BETED3IwYI+C*T4xDN4eV42DeT5ep
15%VS+ (AN %V I+ eDIwVI4CINA*VALNINEwVE)*T1) /8. 0=-CAPARIE2{P24D24V20Y
P2)+F+NIwVInT=Go(P4+NaAnyaaV4)=HaDN5»VE#US)Y /2 ,52842)/D18
F1B=F1 #SUM+OMEGAYCAPA® (AT wE2 4B« TIRFI+C+T4#E4+DaTERES+ (AREQ+BYES
1CRE4+NeEBIRT{) /A, 1 ~-CAPARIEN(R24P2 ) aVR4F W EI4PI ) wUI~Ge(F4+P4)wVduhnw
P(EF+PS)wU5) /2 .82842
G0 YO(309,31G,311,3123:K
310 UiB=U1
GO TN 399
311 ViR=V1
3069 RETURN
END
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