OPTIMUM N-STAGE PRODUCTION POLICIES
UNDER A LEARNING EFFECT

By
BOBBY CARROLL SPRADLIN

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1961

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1963

Submitted to the Faculty of the Graduate School
- 'of the Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
DOCTOR OF PHILOSOPHY
May, 1965






—— — T

STK?‘UN&WW¢FY
LIBRARY

SEP 22 1965

OPTIMUM N-STAGE PRODUCTION POLICIES
UNDER A LEARNING EFFECT

Thesis Approved:

fQ %&:‘554

sis Adv1s .
W&@ n/ Fat el

()/M#./M%//

N\ 4
De 5; tée Graéﬁi%e School

587736



PREFACE

This investigation is based upon the assumption that
a learning effect is present in a production system. The
primary objective of this dissertation is to show that
dynamic programming can be used as an effective techniqus
to cope with the effects of learning as it pertains to an
operational system. By the use of this teohnique9 optimum
N-stage production policies are derived that span a pre-
determined planning period and take into account variable
regression on the manufacturing progress function. The
nunmber of stages need not bevspecified beforehand since
the technique also determines the optimum number of pro-
duction quantities,

The text of this study is somewhai theoretical and a
basic knowledge of dynamic programming is helpful for its
understanding. The Appendix contains a non-computer exam-
ple that is also helpful in understanding the actual
mechanics of the procedures presented in the text. For a
rigorous development of the mathematical technigques used
in this analysis, it is suggested that the reader consult
references (1) and (2) of the Bibliography.
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CHAPTER I
INTRODUCTION

The derivation of optimum production policies under a
learning effect gives rise to a multi-stage decision proc-
ess which may be described as follows. A system exists
whose state at any time may be specified by a vector. The
components of this vector may be the prbduction quantities
of a multi-stage decision process. Over a period of time,
the variables describing the system may undergo a transfor-
mation., If the transformation may be chosen, then a deci=-
sion process exists. If a sequence of decisions are %o be
made, the decision process may be called a multi-stage
decision process.

Multi-stage decision processes are encountered in
inveétment programs in production operations, and in mili-
tary operations. In production operations, these processes
may be found in the specific areas of sequential testing,
inventory control, or production scheduling. A large num-
ber of these problems are of a degree of difficulty that
precludes formal analysis. In these cases, the required
decision must be based entirely on intuition and Jjudgment:

a few may be analytically treated by classical procedures.
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Each decision of a multi-stage decision process may
be thought of as a choice of variables that will have a
particular effect on the system. A sequence of such
choices constitutes a policy. If all of these choices are
considered together, a multi-stage decision process is re-
duced to a classical problem of determining the maximum or
minimum of a specific function. This function, which is
developed in the course of measuring some quantitative
property of the system, serves as a means for evaluating
policies.

To maximize or minimize a well behaved function does
not seem too overwhelming as it merely encompasses taking
partial derivatives and, hence, the solution of a set of
equations. However, as the number of equations increases,
the difficulty in obtaining a solution increases very
rapidly. In addition, if the solution is a boundry point
in the region of variation, then the calculus is not a
sufficient method of analysis. This is a result of the
fact that certain decision processes have an all or notbiﬁg
characteristic about them. The result of these falacies in
traditional analysis for the purpose of multi-stage deci-
sion processes forces the use of combinations of analytic
and search techniques to obtain solutions.

Any procedure which employs a search technique can
only become more difficult as the number of variables and
equations become larger. Also, any solution that simply

employs enumeration is not satisfactory in that it dces



not provide insight into how sensitive a system is to
change. In modeling the particular production systems with
which this work is concerned, a method of analysis“termed
Dynamic Programming by Richard Bellman (1) is used. Ac-
cording to Bellman (1), it is the structure of the polic
which is essential, This means that instead of determining
the optimal sequence of decisions from some fixed state of
the system it is desirable to determine the optimal deci-
sicn to be made at any state of the system. This formula-
tion allows a reduction in the dimensicon of the decision
to one}that is acceptable; that is, a particular stage at
a time. “

To illustrate this principle; a particular problem of

maximizing the function,
P(X19 o a ey Xn) = fl(Xl) + fz(Xz) + oe00 + fm(er_)

over the region X, > O g X, = X is discussed. To treat
this prob_lem9 it is imbeded within a family of allocation
processes. Instead of considering a particular quantity
of resources and a fixed number‘of activities, an entire
family of such problems, where X will range over a grid of
positive Values and n may be any positive integer, is
considered. The problem is given a timelike quality by
requiring that resources be allocated toc each of the ac-
tivities fi(Xi) one at a time. A dynamic n stage alloca-

tion process is created by starting with fn(Xn) and
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proceeding to fl(Xl);
The dependence of the maximum of P(X19 ceos Xn} on X
and n is specified by introducing a sequence of functions

{g,(X)} defined for D=1y 2y oooy X2 0. Let

i

max
gn(X) {Xi} P(Xl 9y oso g Xﬂ)

over the same region

n
Xi2092;Xu:X

as above. |
The function gn(X) is the maximum return from an allo-
cation of X resources to n activities. It is easily seen
that
gn(o) = 0 = 1g 25 ooccocoooy

since it is true that fi(O)

]
@]
o

i
j=a
&0
PO
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i
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also, gl<X) = fl(X) » X > 0,

It is now desirable to have a recurrence relatiocn
connecting gn(X) and gnul(X) for an arbitrary n and X.
Let Xn, 0 < Xn < X be the amount of the resource lent to

the nth

activity. Disregarding the exact wvalue of an it
is known that the remaining quantity of resources is used
to obtain a maximum return from the remaining (n- 1)
activities.

By definition, the maximum return from (n=1) activi-

ties starting with X-Xn resources is gnal(X“”Xm>9 and ,

thus, a total return resulting from allocating}&lresources
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th

to the n activity is

(a) £,(X) + g (X-%),

s

It is clear that the optimal choice ofanis one thasp

maximizes (a). This leads to the basic functional equatiom

e LA

!

- max
Sn(i) T 0X <X [fn(xn) M gnml(XBQXHDJ

for 7 e

i
s
pe-]
o
@
©
o

The Principie of Optimality (2), which is used to cbe
tain the previous functional equation, is now stated.

An optimal policy has the property that, whatewer

the initial state and initial decision are, the

remaining decisions must constitute an optimal

policy with regard to the state resulting from

the first decision.

A direct derivation of the preceding functicnal equa-
tion is as follows:s

(a) observing that
23

max =  WMax max ]
X1+Xé+ co +Xn=X OaniX )C1+X2+ooo +Xﬁml:Xu-Xﬂo
X, 20 X, >0

(b) It can be written

max
l+X2+ © o 0 + X:{J‘_

X, 20

gn<X) =X

- s '\_-
[Lm(xa)'+fmwl<xn=1>'*°°°'+f1(Xl/J



&

il

) rs N 7 S \ ) 4 .
max [max (fnaXn/+fnwl(Xﬁml,+.nﬂ+fl£X£)]
OSXnSX Xl+ X2+ o o +Xn‘="1::X-‘XIl
X,20

_ max [fn(Xh)4—max(fnml(xn_1)+,°°+fl(Xl))]
OS.XnSX X1+X2+v ¢ °+Xn“"‘1: "}{Il

= otxcx [fnn) + 8 (FE) ] 5(2).

All of the models derived in this dissertation are

based on this property of multi-stage decision processes.



CHAPTER IT

AN OPTIMUM PRODUCTION SCHEDULE
UNDER THE LEARNING EFFECT

Basically, the situation which exists under the
learning effect is a variable production rate. Leoking at
the situation from the viewpoint of raw materials supply.,
there is, of course, a variable demand rate. This is an
equally important problem but is not considered here. A
major problem exists in determining a prcduction schedule
even if the demand for the finished product is constant.
It is desirable frequently to produce until an inventory
is built up and then terminate production until this inven-
ventory reaches a certain minimum level, at which time +%the
cycle is repeated. In the more usual situation where the
potential production rate 1s constant, this problem is
merely a one dimensional one which consists of finding an
economic order quantity. This technique is the classical
introduction to total value analysis and is presented in
many basic texts on economic analysis (4).

When the potential production rgte is affected by
manufacturing progress, however, the'determination of an

economic lot size is more difficult. TIirst,. the unit costs



of production are higher at the beginning of the produc-
tion run. More important; however, is the fact that
whenever production is terminated for a periocd of time,
the learning function regresses toward its ignorant state.
It stands to reason that there must also be a balance be-
tween the cost of carrying higher inventories and the cost
of regression in learning. The smaller the production
lots, the lower the average ilnventorys; but, then the proc-
ess must be interrupted more often causing a greater 'loss
of learning.”

Before going further into the analysis of this par-
ticular problem, it is pointed out that this is only one
of the many operational problems which are Qreatéd by the
learning effect. There are problems associated with raw
materials supply, manpower requirements, research and
training programs., and many other facets of operaticnal
systems. In subsequent chapters, the production scheduling
preblem is expanded to include probabilistic demand, alter-
native demand for facilities, and the problem of invéntory
supply.

It seems that the first thing to be attacked in this
problem is, "What are the characteristics of the regression
in learning?'" With some reflection, it is seen that the
regression is not a constant value each %Hime the process
is interrupted. This is because the learning per unif
diminishes with the number of units made. For constant

regression, the total learning curve including regressions



reverses itself after a certain number of units are msade.

It is assumed, therefore, that the regression is re-
lated to the absolute rate of learning at the point ath
which the interruption occurs. It is assumed that the re-
gression is equal to the amount learned during the produc-
tion of the last M units.

By ""the amount learned’ is meant the change in the
ordinate on the manufacturing progress function. The ap-
propriate value for M is qhosen to reflect the particular
situation to which this snalysis is being applied,

The next immediate problem is whether the cptimal lot
sizes are equal, resulting again in a one dimensional
problem, or if they are wvariable, resulting in an n dimen-
sional problem -- n being the number o¢f production ruuns.
It is believed that since the regressions in learning are
variasble, the optimal lot sizes are alsc wvariable.

In order fo solve the prcblem for a variable lot
size, some predetermined finite time pericd is chosen over
which to plan production. The approach to this variable
lot size problem is to determine a wvector, (Q19 ng 600
Qn)sof lot sizes which fulfill the requirements for the
interval being filled, both the QiQS and n being
unknown.

Bellman (1) points out that in this type of problem
there exists a choice of solving cone n dimensional problem
or n'@ne (or two) dimensional problems. Since the compu-

tations involved in solving a programming problem usually
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increase exponentially with dimension, the alternative of
solving n one dimensional problems is nearly always more
feasible, This alternative, termed dynamic programming,
is used here. Note also that if the problem is approached
as an n dimensional one it 1s required to determine n
beforehand. It is found that in using the dynamic pro-
gramming approach, the optimum value of n as well as the
Q vector is determined.

An outline of the dynamic programming approach to
this problem is as follows:

Let the production quantities be Qi(is:n9 Nely eceog 1)o

X Dbe the number of units made since the
initial unit of production.
Y be the total number of units for which
production is being planned.
fn(X) be the cost of an optimal policy in
wh?ch n orders are placed beginning
Qn with unit X and finishing Ql with
unit Y.
GX(Qi) be the cost of producing and storipg
Qi units beginning at unit X until
they are sold.
Note that the first order quantity is Qn9 the next
Qnml9 and so on until Qlo It is assumed that producticn
is wvery rapid relative to consumption and the producti@n

of lot Qiml does not begin until lot Qi is depleted.
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Appiication of the Principle of Optimality gives:
min . N
= { 3 i . = TL = 2 : PRPES
£, (0 OSQniYwX{CX“Qn"&inml(X'an w>}(ﬂ 2 Do )

fl(X) = GX(‘.‘EQX)u

This functional relationship can best be ezplained_by g
turning to the example under consideration.

The first step is to determine an optimal two-sbage
policy spamning from any unit X until the end of the
planning period. These optimal policies are denoted by
f2(X)o They consist simply of the best combination of Q
and Q2 which meets the demand from any point in the plane-
ning periocd until the end of the planning period. When
starting within the planning periocd., it is assumed for
purpceses of the learning curve thabt encugh units are
already made to meet the requirements from the beginning
of the period up until that time.

The next step is to determine the optimal three-ghagse
policies. These policies likewise span from any peint in
the planning period until the end ¢f the pericd. This
determinétion of three-stage policies is effectively re-
duced, however, to the determination of two=-stage policies
because of the valuesg of fz(X) already determined and +the

principle of optimality. This ie done as follows:

nin , 51
£5(X) = OsQB;;YmX{CX(QB) #2500 + Q=10



The only variasble which needs to be manipulated is Qag
since once it is determined the remaining ¢ptimal policy
.'«f.,’g(;X-i-Q,§==l"l)<J is already known and tabulated.

Using the general relationship:

£, = ogaigxmy{cx(%) vE,  (XeQ -}

This procedure is continued until fngl(l)_<g=1‘3’n(1)‘J which
means that the cost of the policy is not reduced by adding
ancther stage. An optimal n stage policy is now determined
which spans from the first unit produced until the end of
the planning period.

The best, although seldom possible, technique for de=

terming the optimal pelicies at each stage is as follows:

Set v
6f2(X) ) @{CX(Qg)‘hf1<X-+Q2caM)} o
0Q, ° 04, )

to minimize fg(X) with respect to Q,. This expression is

then used to solve:

0f . (X) _ B{Cq(Qz) + (X +Qy =MD} e
Lo . 5%

in order to minimize f3(X> with respect to ng

This procedure is carried out for larger wvalues of n
until the noted termination occurs. The eguations obtained
when the derivatives are set equal to zerc nearly always

become unmanageable, however, leading one to use a search
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technique to find the mninimum of the functions. The prom'
cedure is as follows. Try values of Q2 for a given X
until f2(X) is found. Repeat this process for a grid of

values of X and tabulate all these values. Then ff(X) for

the grid of X values is found from the relationship:

2500 = oquer-x{x(¥y) + T2 +a5 10}

by trying different values of QB and the tabulated wvalues
of f2(X). This procedure is carried out until termination
as described above.

The specific method for solving the problem at hand
ié now outlined. The equation for the exponential learn-

ing function was derived in Appendix A and is:

. n
TX = KX
where TX = time to make unit X
K = time to make unit one
n =

logldQ/logloE

where N is the rate of time to make unit J to the time to
make unit 2J for any Jj.

Since the direct labor costs are approximately pro-
X is replaced
with Cy, the direct labor cost of unit X, and the K is the

portional to the production time per unit, T

direct labor cost of the first unit. For this analysis,

all other productidn cost will be assumed constant and



neglected. The costs which will be included are the
direct labor costsy setup costs, and inventory storage
costs.

The direct labor costs for a lot size of Qn are cost

per unit times the number of units or

s}
. ZK-XndX
X

where X is the number of the first unit in the lot.

The storage costs per unit time are expressed as a
percentage of the average number of units stored during
that unit of time. If this per cent is noted by C, the
storage costs for a lot of size anfrom the time it is

received until the time it is depleted are:

2

- Il
CoF°73 =C37

where 4 is the demand rate per unit time, assumed to be.
constant here. The setup costs are S dollars per order.
As discussed before, the regression in learning from
the time production is stopped on one order until it is
begun again on the next is taken as the amount learned on
the last M units. This is accounted for in the algorithm
by moving back M units toward the origin the integral
representing direct labor cost every time production is

interrupted.



f2(X) is now found as follows:

Ce

vy _ min n g x4
£,(X) = 0<Q, <Y-X{S+ 54 Z KX+ 8+ ' }

which simplifies to:

£1+1 X+Q =M KX +1 X+Q1+Q,.-=M}
min 2 A2 KX 12
(%) % 0 <x- x{28+0(4+@)/2a+ Hpy by T o
2
which is solved for a series of X values by using a search
technique.
Now to solve for fB(X):
X =M
+Q,3

0.
1
£5(X) = o<c§n g{ X{S+ Xgm KX+ £5(X+ Q- M)}

C-Q2 n+l X+Q,-M
o min {S! 3 + KX i 3

~ 0<Q5<Y-X nTl + £ (X4Q5 =10 }

which is also solved for a series of X values by using the
values of f2(X) that are already tabulated. This procedure
is carried out until the termination noted before occurs
(see Figure 1). _
Ihe equations fn(X) do two things in this analysis.
They:
1. Obtain the total production cost from the
first unit produced to the end of the
planning period, and
2. They are used to obtain the values of fnwl(X)

that are used in the functional equations.
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The following derivations and illustrations serve to_

establish the role of the previous functional relationship.

time/unit

| | — -
X X+Qn X+Qn+Qmu1 Y
Units Made

Figure 1. Obtaining Structures of Optimal n=1
Stage Policies From Any Point in the
Planning Period
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{ { ‘. -
1 QL U1t U1t Y t

Figure 2. The Total Direct Labor Cost From
the First Unit of Production

To obtain the total direct labor cost from the first

unit of production:

1?Qn %+anQnP1‘M
f-n(l) =Z £(X) +Z F(X) + .00 +
' 1 1+Q,-M

l+?'n'+Q‘n-l+ coot Qn-(K+1)_(K+1)M

2

1+Qn4-...-+Qn_K-(K+l)M

£(X)

where O < K < n-1, Now to obtain fnol(X)9 only the di-
rect labor cost 1s considered to illustrate how_to obtain

fnsl(x) from any point X in the planning period.
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-M+Q
£.(X) = mi;{z (f X)+ 5, ,(X+Q, -1"1)}
X-M
X+Q M X+Q+Q ;-2
= mln{z £(X) +Z £(X) +
’ X-M X+Q, ~2M

X+Q,.n+Q n~1+Q'n¥2;=3M e
+ Z £(X) 4000 +
X+Q’n+Qn=1m5M

X+Q+.,.,.,+Q Kel =(K+2)M
L e £(X).

X+Q’n+Qn-—>l+ o ° 0 + Qanu(K-*-z)M

(X=M) is substituted for (1) in the equation fm(l)
to see if the total direct labor cost equation works for

every X as well as for X equal one.

If (X~-M) is used in fn(l) instead of (1), ene obtains

X+Q -M X+Q,.n+Q.n_1n=-2M X+Q-n+Q'nx1+Qn»2“3M .
£, (X-M) Z 2(X) + £2(X) + £(X)
- X=M X+Qn~M X+Q +Q -1~ = 3M

X+~Q.n+ coe + Q‘nm(K+1)"(K+2>M

4+ e o'a + o f(X) F ooee

X+Qn+Q‘.n.~1+ oea + thKca(K+2)M

This is the result obtained from the functional equaticn

using ,fn(X) to obtain i‘n_l(X)o
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Now the functional equation in which fn(X) is used to
obtain fn_l(X) for any X in the planning period is checked
to see il it gives the total direct labor cost starting
with the first unit produced and spanning the entire

planning period. |

To do this, substitute (1) for (X) in the functional

equation,
X-—M+Qn
_ min )
0 = QMY e gy (e}
X-M

Substituting (1) for (X) gives

: 1+Q,.n
_minf® ‘
£(1) = %{§ D)+ 2y, (1+Q1}
1+4Q, 1+QntQp 1M '
B %;1 { z (X)) + 2. £+ £y H1+QrQy 210
1 1+4Q,-M |
L L@t M 1R, 49 +0, o2
SRR D i
1 . 1+Q -M 1+Qn+anW“2M

Since this is the total direct labor cost obtained by
suﬁming the entire learning function from unit one toc the
end of the planning period, it is clear that the functional
equation gives the desired total direct labor cost.

A short numerical example of the optimizing process
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described in this chapter is presented in Appendix B. The
purpose of this example is to demonstrate the manner in
which the process is carried out. For ease of pomputationg
the summation notation is replaced by integrals.

- In Appendix C, a computer program for this procedure,
along with optimum policies that arise when various loss

of learning and storage cost are applicable, is presented.



CHAPTER IIT

AN OPTIMUM PRODUCTION SCHEDULE
UNDER THE LEARNING EFFECT
WHEN DEMAND VARTES

In some production processes; it is reasonable to
assume that demand is constant. An example of this is the
aircraft industry where a contract specifies the number of
aircraft to be manufactured. However, there are industrial
situations where a learning effect is clearly present and
the demand for the product is a random variable. A situa-
tion of this nature is exemplified by the automobile
industry. »Formulation of this problem into the framework
of a functional equation and a recurrence relationship is
somewhat analogous to that of the preceding chapter exceph
thaﬁ now expected values ére used.

The assumption of stochastic demand makes it neces-
sary to redefine some of the equations and symbols pre-
viously used in the following manner:

Let X ©be defined as in the previous chapter

Y be defined as in the previous chapter

CxﬁQi)} be the expected cost of producing and

storing Qi units beginning at unit X

until they are sold.

21
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fn(x) be the optimum expected cost of a pelicy in
which n orders are placed beginning Qn with
unit X and finishing Ql with unit Y.

The assumption is made that after a production lot is
completed, the process will shut down and begin again upon
depletion of that lot.

The amount of regression Mig i=1y 25 6609 n is
assumed to be a function of the demand over a time period
and the amount of product produced to be used or sold in
that period. This is reasonable sincegif the producticn
gquantity is large and the demand small, a long Wait is re-
quired before beginning the next production lot. This
causes a greater regression toward the ignorant state as =z
result of having been away from the process longer. There-
fore, let

Mi = [._d—i- . l‘,m-\lg,gg 000 g I,

where di is the demand over a period of time, p is some
proportionality constant and Qi‘is the production lot to
be dispensed during this period.

The bracketed quantityv[%ﬁi means that M, is actually
the greatest integer less thanjbr equal to this amount.
This is so that the value (X + Qi - Mi) in the functional
equation fi_l(X + Qi - Mi) will coincide with one of %he

grid values of X for i = 2, 3, 4, oo . ©See Figure 3.



IG?QZdn’ Mn.f{ M, = \\/\ N—
J A

G( Qn-=ldn-=1 )& Qndn) _
X xhQ, | X+q_+q_, N A

Figure 3, An Illustration of Regression in Learning
When Demand is a Random Variable

The one-stage policies are formed as follows:

C.Q X+Q, -M X+Q,1~>M
£,(X) =E{S + =5+ ;{% Kxn} {s " &a) +E Z
!
sl AT« a0

My

n+l B[ (X4Qq 1) - (X))}

Letting A = (X+Q1), B=X,C=0N.

n+l

- N+1 o _
(4= 0P o302 2 3 (F]1) atnyei-ignelnt
' i=0
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nt+l A
_ Z (nﬂ)Bj(al)mlijn«»laj

n+l

Z(nd‘)(A B)K(- 1)n+l=-kcl,+luk
k=0

Ce Q' E(]Vd) N m E[ z<n+i>(QJ.k>( l)n+uj_«—k

£,(X) s,{s +

k=0 (M )Il+_L k]}
C‘ ™ n+l - .
z{S+ E( /d)+n+l[2<n )Q yirl-%
PQ.n+1-k
=55 ]
Co n+l
a{s+—= B(7Q) + 2y G“”) Qi (pyrtik

E( /d>ﬂ+l T{} .

These one-stage policies are used to compute the

optimal two-stage policies.

X+Q 1
. CoQ2 oMo
min S
R =7 E{s + e+ KX® + £, (X+Q,-M,) }
X1, -
. min 1, K . n+l el
&% {s + E( L/ 3) +§l--+1E[(X+Q,2e=M2) - (X-11,) ]

+ i‘l(X+Q2=M2)}°

M., B =X

Again letting: (X+Q2) = A, C 5
_ : n

2 +1
: C-Q v L :
. min 2 oyl X n+1N A .ﬂ+lukPn+1=k
(1) &) s+ 50+ 5 1, o< ML
o o




V]
A%z}

QI ER(Y @)K 4 £ (Reqpmm,) )

‘- . C Rl ‘n+i n+l~k
L] 2 l K e ’ )
£ & Bfs 22 5¢va) + Ky kZ_O( ) (=P

QELE(YOTE 4 £ (Xequ1,))
Proceeding in the same manner, the two-stage policies

are used td determine the three-stage policies.

coq Xl
i‘B(X) = mln E{s + =gz Z KXn+f2(X+Q3mM3)}
=
mln{s -—-—7’-0on (Ya) + A E[(X MO (e, )ml]
ol T G * T gty (X

+ f2(X+Q,3=M5)}

n+l

A e 8w £ 2 (Dagears

f 1=k
(M) MK 4 £ (X4Q 11,0 }

’ Q,2 n+l . .
£ & mm{s +__2_§ B( /d) . n+1z <n+l‘>Q D+l _pyn+l-k

E(vl/’d)?l‘*l”k + i‘g(X+Q,5mMB)},

Proceeding again in this same manner, the optimal n

stage policies are determined from the functional squation:
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[#)]

Z+Qp =,
0 eQR nn
min QN

B {g 4+ —N Bor L (XeQ -l
£,(X) = OSQ,ng_Y_.XE {S T +X ' BXT £ 4 (X0 Mfﬂr
= n :

The procedure is continued until fnml(l) < fm(l) which
again means that the expected cost of the pelicy is notb
reduced by adding another stage. An optimal n stage policy
is now determined which spans the entire production pericd.

There are certain distributions which, if applicable
as eilther the demand distribution or an approximation %o
it, will make the actual computations of these expected
values and, hence, the optimal policies much simpliex,

If the demand distribution is approximated by the log
normal distribution,; then %ﬂi where 4 ~ (log normal), is
distributed as (~log normal). Then E(%ﬁj = =E{d) slso the
higher moments may be readily found.

Frequently, if the demand is distributed as a Poisson
variable, then T, the time between demand, is distributed

exponentially.

Mi is expressed as the sum of m of the independent

variables, Ty therefore:
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MGF(M, ) = [MGE(T)1™,

The higher moments that are required in the functional
equations are then found.

As a final example, if the demand distribution is ap-
proximated by some form of the E distribution, that is if
a ~rF(nlyn2), then %anF(nzgnl), In this case, the ex-
pected values in the functional equations are found from
the generating function of a particular F distribution.

The ease with which these functional equaticns are
evaluated will depend on such things as the length of the
planning period and the applicability of assuming a demand
distribution G(d) that simplifies the finding of higher

moments of the distribution of %Vd,



CHAPTER IV

OPTIMUM POLICIES UNDER LEARNING FOR INVENTORY
AND PRODUCTION SCHEDULING SIMULTANEOUSLY

In this phase df the study, the problem of obtaining
an optimum policy for ordering inventory simultaneously
with an optimum production schedule ié considered. The
method of attack is that of reducing the dimension of the
problem. This time, instead of reduction from an n dimen-
sional problem to n one dimensional problems, n two dimen-
sional problems are considered.

A single commodity raw material is assumed, and it is
suggested that if the dimension were increased at each
stage more raw materials could be included. Situations do
exist where a certain raw material used in a production
process is of such importance costwise when compared %o
other raw materials used in the process that it justifies
application of an optimizing process on its behalf. Also,
the instant filling of raw material orders and a con-
stant demand on production items is assumed. :The costs
associated with raw materials aré procurement cost and
holding cost. |
| In this particular study, shortage cost is neglected.

This is due to an assumption about raw materials in the

28
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cost model that is made later on.

As a result of having two dimensions, instead of one
at each stage, the funptional equation differs somewhat
from the previous ones.

The following notation is used:

Let ;n(X,Z) be the cost of an optimal policy
given (1.) a location X on the
learning curve and (2.) a raw
material inventory.

X Ybe the location on the learning
curve.

2 be the given amount of raw
material inventory.

Pi(i=5l9 2, 005 n) be the raw material order

o quantities.

Qi(i:=l, 24 ++o3 n) again be the production
quantities. |

It is assumed that the raw material concerned is con-
nected to the production unit in such a manner that one
unit of production requires one unit of raw material. The
following schematic diagrams are helpful in describing the
situation as 1t is assumed.

For a one stage policy, there is but one choice for a
production gquantity and only one choice for the inventory

lot other than O (see Figure 4).
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Figure 4. A One Stage Policy for
Production Illustrating Alter-
natives for Ordering Inventory

Figure 5. A Two Stage Policy for Production
Illustrating Alternatives for Ordering
Inventory
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X x-;iz3 X+SB+Q2 Y=X+Q3+Q2+Ql
Py = W * Q +Q, Py=0Py =0
P3=Q3+Q2,P2=O _JP1=
F3= % QPQ""%J% Py=0
Py=Qy Py=Q P =0
- - -
Figure 6. A Three Stage Production Policy

Illustrating the Alernatives for Ordering

Inventory

These figures indicate the fact that the order gquan-

tity of raw materials is restricted to be such that it

coincides itemwise to the sum of a portion or all of the

- production lots.

The given amount of raw materials in the functional

equation is under a similar restriction.

be of the following nature:

4 is required to

1y 2y «ouy N for Zef (X,Z) orZ=
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For example, if Ze:fB(X92)9 then % = Q§.+Q2.+Q19
Q5+Q29 QB, or O, This eliminates shortage cost on raw
n
materials. Y Q. 1is taken to be equal to Q..
i=n 1 n
The holding cost for raw materials is a constant times
the average amount‘of inventory on hand for the pericd
during which a particular batch of inventory is being used.

th

If A is the constant, the holding cost for the 1 stage

of the production schedule is

where f(Qi) is the average amount of raw material on hand

for the ith

production period.
In addition to this, if Zesfi(XQZ) > Qi9 there is the

additional holding cost of
Ae[Z - Q]

th

for the i production period, since the entire amocunt

h

[Z-Q,] is cerried for the 1"® period.

The procurement cost is D dollars per order. The

following rule is implemented for procurement cost:
if Zefn(X,Z) =0, then D=D for De:fn(XgZ)
if Zsfn(X,Z) #0, then D=0 for Dsfn(X?Z)o

The algorithm is begun by finding the one stage

policies in the following manner:



’ C-q
fl(XQZ) = {D‘*‘A[Zle] +A0f(Ql) +=-=2-=amm+
Q,1=Y-X
Pl={Q1
0 X+Q1-M
KXn}
- X=M

where % ¢ fl(X’ Z) = Q’l’ 0.

These policies are used to determine the optimum two

stage policies:

L C.Q2
min 2
£,(X,2) = O§Q2§Y=X{D+A[Z=Q’21 bho£(Qy) +8 +—mgo+
[ X+Q -1
Q2+Q1 Q.2 K}(n+f(X+Q n Z+qu)}
2 1 2~ 2™ R
P, ={ % o
0

where 2 ¢ £2(X s &) =Q2+Q,l, Q,2, 0.

~

Using the optimal two stage policies, the three stage

policies are found as indicated below:

C-Q2

min R '
fB(X‘J 2) = OSQ;Y"X{D +A-[Z -Q.BJ + Ao i(Q5) +8 +-—§a-_-§+
Qr +Q+Qy  X4Q,-M
37 %2 ™ % n
py={ %% D7 K g,(X+ Qs -1,
Qz XM .
0 | 1%+ Py - Qz) b

where 2ef (X,2) = £ Q soey L 0.
5( 9 i:l 19 gimBQj'?

The general formulation is now seen for any number of

gstages.
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: min ' “ C . Q2
£ (X,2) = os%sy_x{b *R[Z-Q ]+ A £(Q) +8 4 oyt

r_Q,n+Q,n.__1+..i.+QIL :
Qe+ Qg xiqnwm

P =4 | K%+ g (X+Q -M,
é::1‘“";”11--1 -1 |
g'n | L Z+P - Qn)}

-
where Zsfn(X, Z) = ingi, iggQi’ veos ixz:nQi’ 0.

Although it seems at first that the grid of wvalues
for 24 is rather coarse, with some reflection bne sees that
Z actually takes on all values. This is because as X
moves from Y td the value 1 in the planning period., the
production quahtities Qi take on all integer values and Z,
defined as a sum or partial sum of a production schedule
from X to the end pi‘ the planning period, also takes on
all integer values.

This procedure is again caﬁried out until
fn_l(l, Z) < fn(l, Z) ~ 1.

At this point, thennumber of stages n is determined alsoc a
vector of production quantities and, in addition, a vectom
of order quantities for raw materials, all which span the
plannipg period from any point X within the planning
period.



CHAPTER V

OPTIMUM PRODUCTION SCHEDULES UNDER LEARNING
. FOR TWO PRODUCTION FACILITIES

The incorporation of a second production process into
the operational situation greatly enhances the reallism of
the problem of production scheduling. This means that
facilities and manpower do not lie idle waiting for deple-
tion of a previous production quantity, but instead go
directly to producing a different item.

The analysis of this particular problem is carried
out by reducing.an n dimensional prcblem to n three dimen-
sional problems. In this problem, it is assumed that both
processes have a learning effect present. In addition to
working from a point X to the end of the planning perloed
under one manufacturing progress function, work is also
started at a point W and proceeds to the end of the plan-
ning period uﬁder a second function. Both progress funce—
tions are assﬁmed to be exponential functions of the type
previously used and derived in Appendix A, The process
containing the point X is called process A and the process
containing the point W, process B.- The assunption is made
that there is sufficient demand for the production units

of both procesSes to keep them both busy for the length of

25
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the planning péripdg and that the work crew can run either
production system.

A new conéern in this problem is that of running
short or over with one product while engaged in the pro-
duction of the other. A way to overcome this is to éet up
the rule that the work crew will begin on process A, pro-
duce a certéin quantity of product and then switch to
process B while this quantity produced on A is being de-
pleted. Also, it is assumed that the demand and produc-
tion rates of the two processes are known. The main
~problem with the rule for disallowing shortages and over-

ages 1s that once the production quantity for the nth

stage
is set, this automatically determines the size of the pro-
duction quantities in each of the successive stages for
both processes. (see Figure 5). With some reflection, it

is evident that depending on the nature of the demand on
production rates for the two processes, this does not nec-
essarily allow- the desired balance between loss of learning
and storage ofvfinished product to be obtained. A&nother
problem that results from the production quantities being
determined for all the successive stages of production is
that in determining the optimum policy at the nth stage
for a particular value of Q,, all of the cptimum (n=1)
stage policies for this Qn are noﬁ necessarily computed.
This fact renders the method of analysis used on the prew~
vious problems useless. Therefore, in addition to a bal-

ance between loss of learning and storage of finished
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product, the shortages and overages are incorporated into

the scheme of things to obtain a satisfactory over-all

balance of cost,

The notation used in determining this algorithm is as

follows. Let:
PA be the production rate
PB be the production rate
dA be the demand rate for
product of Process A
p be the demand rate for
product of Process B
X be the location on the
curve of Process A
W be the location on the

curve of Process B

for Process A

for Process B

finished

finished

learning

learning

Qi(i==l, 2, «+sy, n) be a production quantity, which if

begun on either process, determines

the schedule on both processes for

the entire planning period.

Di(i==l, 2y 4oy n) be the production'quantities for

Process A

Qi(i:l9 2, ..y n) Dbe the production gquantities for

Process B

fn(X9 W, Qn) be the cost of an optimal policy,

when shortages and overages are

allowed, given a point

X in the plan~

ning period for Process A, a point W
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in the planning period for Process B;
and a beginning production quantity
Qn for Process A that fixes subse-
quent production quantities of both
processes 80 as to prevent shortage
or overage.(Figure 7).

Since the actual policy will be to allow shortages
and overages, Figure 8 will illustrate how the schedule
appears. |
. for Process

1
A and 82 for Process B. The storage cost for Frocess & is

The setup cost for the two processes is S

D

| | -
c av--D/dA_ e Do 0o Pa,

and the storage cost for Process B is

| 2
HeYag+ V2= 8- %2uy,

where H and C are constant cost per unit for each pf the
twq Processes B and A, respectively.
The cost associated with the shortages and overages
is as follows:
G 'dollars per unit for units over demand for
EToc;ss A.
~D dollars per unit for units short of demand
for Process A.
E dollars per unit for units over demand for

Process B.
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(L : PROCESS A

(2) PROCESS B

Figure 7. Illustration of How an Arbitrary Producticn
Quantity FPixes the Entire Producticn Schedule for
a Three Sta&ge Process When Shortages and Overageu
are not Allowed
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+D

3 3 zHoptq

PROCESS B
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|
:
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Figure 8. Illustration of How Loss of Learning and
Storage of Finished Items are Incorporated With
Shortages and Overages to Obtain an Over-all
Balance of Cost
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~F dollars per unit for units short of demand for
Process B.

The symbol 5i(i = 1, 2) is defined as follows:

61=G‘if (Di"“Qi)>O i=13. 29 eoogn
= "‘D if <Di==Qi) < O i = lg 29 s 0y n
Q. « P
62 =K if (Oi_ ldA""B']>>O i= 19 29 eeoa g Il
| Q : F o
= =F if (Oin[‘}"'&l"":‘B"]><o i = 19 23 v00y I

The formulation of the algorithm is begun by finding

one stage policies.

C - D2
1°Fp 1
£(X, W, Q) = {8,(D; - Q) + 8,(0; - [ ]>+5 +Sp
H foﬁ X+DlsM . W+OlaN N
+ T +z KX #Z W }o
B xX-M W-N

Where L and N are defined for the learning function

of Process B in a similar manner that X and M are for the

Q
learning function of Process A, and the quantity ~;§fr§
A -
is taken to mean the greatest integer less than or egqual
0, - P
£ 1 B
0—"-&-——-.
A

The one stage policies are used to cobbtain the cpbvimal

two stage policies.

QP

min 2 B

£2(Z, W5 Qo) = oop <Y~ 181(Do-ay) + & (0, - dA’”‘])*
ouog_gx-w



X+D., =M

C.D H- 02‘2 2 n
+SA+SB+ 2dA + 2dB +z KX +
X-M :
W+02—N
: 1
Z W™ + £,(X+D =M, W+0,-N, [ dAdB _J)}
Wl

which are now used to obtain the optimal three stage

policies as follows:

£5(X, W, Qz) ~O<Dm‘;§ £161(D5~ Q) + 505~ méi@]}s +85g
0<05§me
C.OD% Xi]) WwaN i
28y " = K g T

Ze B}

<X+D M, W+05

The general form of the algorithm is now stated as

follows:

£.(X,W, Q) =, 5D221§-X{51(Dn“%) + 62(011{%]) +8, +8p +

0<0_ <Y-W

c D; q qa X+anM W+OnaN

24 + 24 + Z KXn + ‘ me +
A B X-M W-N

Q.P,P
fn-l<X+Dn'°M s W+0y =N [ I:i;d B:D }

The process is continued until J‘.‘__ﬂml(':L..J 1, Qm) ;gfn(lg 1, Qn)

for each wvalue of Qn The value that will be of interest
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is then the %in{fn(lgiL,Qn)}o This value is associated
with the desi;;d n stage schedule for both processes; ’
which is the optimal policy in light of the cost considered.
It is noted that if the wvalue of Qn is such that the
schedule determined by it does not span the planning period
for the two processes, then this lends weight to the
shortage and overage cost, since the actual schedule does
span the period and is compared stage_bymstage to the
schedule predetermined By Qn° In effect, this wouldvrule
out a particular value of Q for the %i?{fn(lﬁil,Qm}o For
this reason, the only values of Qn that are instrumental
in determining the optimal schedule for the two processes
are those values which cause the predetermined schedule e

closely approximate the planning period for both processes,



CHAPTER VI
SUMMARY AND CONCLUSIONS

This dissertation employs an énalytical technique
called dynamic programming to make possible the optimiza-
tion of n-state production systems under the effect of
learning with variable regression. Classical optimizatioh
procedures,except,direct-enume;:‘ation9 have teen unsuccess-—
ful in dealing with the learning effect where variable
regression is present. Four specific production situations
are modeled to indicate the range of applicabilitj of the
algorithm,

Chapter II deals with a constant demand production
situation with setup cost and storage cost incorporated ‘
into thé model as well as thé cost due to loss of learning.
The model presented in this chapter permits an optimum n-
:stage_production policy on behélf of these production
costs.

In Chapter III the same basic model presented in
Chapter II is expanded to include stochastic.demandvan the
productién item. The parameters of the model are again
setup cost, storage cost, and cost due to loss of learning.,
In this model it is assumed that the demand distribution

is known. Certain examples of distributions that might be

v
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§n

applicable as demand distributions or approximabtions of
demand distributions are presented. These examples serve

to simplify the actual numerical work of the algorithm in

this chapter.

Chapter IV expands the basic constant demand model to
includé raw materials supply. The new cost introduced to
the optimizing process by this expansion include cordexr
cost and inventory storage cost. The algorithm presented
in this chapter produces an coptimum n-stage producticn
policy simultaneously with an optimum n-stage inventory
. schedule for a single commodity, raw material. Both of
these policies span a predetermined planning period.

Finally, in Chapter V a model is presented to obtain
optimum n-stage production policies for alternate produc-
tion facilities. In the derivation of this model, ¢verage
and shortage costs are incorporated so the optimum sched-
ule for the two production facilities includes the desired
balance of loss of learning cost on two facilities -~ %wo
different setup costs, storage cost for two different pro-
duction items, and at last overage and shortage costs for
two production items. In this derivation the progress
function of the two processes need not be the same.

Fach model developed encompasses a portion of the
total operational system; that is, each m@del defines a
system bounded by the assumptions stated. The underlying
common link in the models developed is the manufacturing

progress function, as derived in Appendix A, with variable



regression. The variable regression is accomplished by
moving back a constant M units on the abgcissa each tinme
the process is interrupted. This causes a variable amount
of regression on the ordinate.

Appendix B presents a non-computer example to illus-
trate the actual mechanics of the procedure presented in
Chapter II. The procedures presented in the remaining
chapters are carried out in a similar manner. The example
in Appendix B is a simple case for a planning period of
five units. For the épecifi@ parameters chosen Lo wWork
the exampie, the result wés & three-stage policy with two
units each in the third and second stages and one unit in
the first stage.

Appendix C presents computer solutions te & number of
examples, the first being the séme as the example of
Appendix B. BSubsequent examples are presented for more
realistic planning periods. The computer program pre-

- sented may be used for further experimentation.

A general conclusion from this investigation is that
dynamic programming provides a feasible means for solution
of an n-stage production policy under a learning effect
with variable regression.

A special feature of the technique presented here is
the sensitivity analysis that is inherent in it. For
example should it be decided to shorten the length of the
planning period, optimal policy structures have already

been determined for the shortened period. In this same
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manner for a longer planningvperiocl9 it is not necessary
to rework the entire problem.

After working an example by hand using integral ap-
proximations, 1t was noted that while a computer solution
using summation notation results in a generally lower
optimum policy cost, the policy structures are exactly the
same. The numerical computations verify the intuitive
conclusion that with high storage cost relative to direct

labor cost more production stages result that when the

converse is true.
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APPENDIX A
THE MANUFACTURING PROGRESS FUNCTION

The manufacturing progress function rests on the
assumption that the direct labor man-hours required to
complete a unit of production decreases by a constant per-
centage each time the production quantity is doubled.

This empirical relationship between direct labor man-hours
per unit and the quantity of units produced was first
noted and accepted by the aircraft industry. It was rec-
pgnized that the labor hours required to build an airplang
declined quite regularly as more such airplanes were built.

A typical rate of improvement in the aircraft indus~
try is twenty per cent between doubled quantities. This
is expressed as an eighty per cent progress curve and
- means that the direct labor man-hours required to build
the second aircraft are eighty per cent of those required
to build the first. The fourth aircraft requires eighty
per cent of the man-hours that the second required, the
eighth requires eighty per cent of the fourth, and so
forth. ©Since the production quantity is doubled in each
case for the giﬁen percentage improvement to occur, the
rate of improvement, in relation to time, is actually

diminishing.

51
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The development of the unit formula (3) for a prog-

ress function is begun by assuming that the following

relationship is applicable: As the guantity of units pro-

duced is doubled, the number of direct labor man-hours

reguired to produce each of these units is reduced by a

constant percentage.

Let:

X

I

A general

follows:

and thus,

il

i}

the number of units produced, counting from
the first unit.

the number of direct labor man-hours re-
quired to produce the X'B unit.

the number of direct labor man-hours re-
quired to produce the first unit. (YxszK
for X = 1, the 1°% unit.)

the per cent improvement expressed as a
ppsitive rather than a negative slope,
€.8., for an‘eighty per cent progress

curve, N = 0.80.
N ;
loglo/iogloz.

equation for Y and X may be developed as

KNO where X = 20
KNl where X = 21
KN2 where X = 22

KN3 where X

i
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Y, = KNt where X = 2t.

X
Taking the common logarithms of both equations gives

log YX = log K + t log N and log X = t log 2.

Solving both equations for t,

log ¥y - log K
t = X and t = ;ngg .
log N log 2

Equating the result gives

log YX - log K log X
log N ~ log 2

(log Yy - log K)(log 2) = log X log N

: _ _log X log N
log YX log X = Tog 2 o

By definition, n = %%gmg; therefore,

log YX - log K = n log X
YX '
log % =1 log X.
Taking the antilog of both sides,

Y, = KX2.

X

This progress function is used for the analysis pre-
sented in this dissertation. It is mentionéd9 however,
that this presents no loss of generality as there is
nothing unique about this function that restricts the

techniques applied here to it in particular.
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APPENDIX B
A NON-COMPUTER SOLUTION

The following example serves to illustrate the mamner
in which the algorithm described in Chapter II is carried
out. For ease of computation; integral approximations are
used lnstead of summation. The planning pericd is chosen
to be five units long and an eighty-one per cent expu-
nential manufacturing progress function is assumed.

The variables previously described in Chapter Il are
assumed to have the fcllowing values: B = i09 C = 10,
K=2,M=1;4d =1, n = =~.3. The optimizing process is
begun by finding the optimal two stage policies from each
point in the planning period to the end of the planning
period. The only quantity that is manipulated is Q2, The

quantity Ql is automatically set when Q2 is chosen,
min ‘ '
£(4) = 05Q252{04(Q2>*’f1(4*'Q2“1)}°
The quantity 04(Q2) is the cost of producing and storing

Q2 units beginning at unit 4 until they are scld. It is

found in the following manner:

c.qg T
04(Q2)_=S +""’2—°—‘&" + KX dx -
y Y
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10-Q 4+Q2w1

5 ¢

= 10 + m~§—é + 2 X~°7ax,

£l

The quantity f1(4+Q2ml) is the cost of a cne stage

policy from the point (4+Q2) to the end of the planning

period. It is found as follows:

O»Qﬁ X+Q1mM i}
£1(4+Q,-1) = 8 + 2°5'+X.M KXdX

but X = (4~+Q2==1); therefore,

| coqy 44Q,+Qq =2 .
f(4+Q-1) = 8 + g +f KX~ ° 74X
b+Q=2
weq  pRete T
) 10'+“§%E£ + 2 X~° 23X,
4+Q2“’2

f2(4) is now found by manipulating ng

X~°2ax = 32.8

8
Q=1 |
. i+l
10 + 5,12 +,2f X~ 3ax
4.1
- 4l+le?
+ 10 + ‘5¢12 "{" 2
£,(4) = ming Lplo?
LQE = 2
. Gt P=1. )
10+5.22 +2f X~ °2ax
41
o . 44202 _
+ 10 + 5.0 + EJé 04X = 42.66
L_ ‘ , G42=2
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r_
Q2 =0
) 4401
10 + 5.0 +2f x~3qx
‘ 4.7
f2(4) = min . 440422 _ 5
+lO+5°22+2f XT°“4X > 40

4+40=2

ThiS means that fg(/“l") ='52.8,vQ‘2 == 19 Q,l = la
The two stage policies are now found from the point
X = 3, or the third unit of production until the end of

the planning period.

£,(3) = 055‘225{05(%) + 21 (3+Q-1)} -

—

Q.2 = 0
3+0=1 - 3+0+3=2 :
10+O+f f(X)dX+lO+5052f f(X)aX = 69,2
3=l X 32
Q2~=_£
i . 3+1=] . 3+1+2=2
f2(5) = min{ 10 + 5,12 +f fF(X)AX +10+ 5.2 + £(X)ax
31 3+1-2
= 49,60
Q.2 = 2
3+2=1 L B3+2+41-2
10+ 5.22 +f f(X)ax + 10+5.1+f £(X)ax
5=1 342=2.

= 490?6
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Q2 = 3
3431 - 34340=2
. - 10+ 5.7 +f £(X)dX + 10+ 5.0 +f. f(X)a&x
£,(3) = min 3=1 3+2=2
> 50.

This means that f2(3) = 49.26, Q, = 2, Q = 1.

The same procedure is carried out from the points

X =2 and X = 1, and yields the results

f2(2) 65.0 Q2 = 2 Ql = 2

[}

f2<1) 91030 Qé = 3 Q‘j. = 2o

fz(l) is now compared to fl(l) to see if the additional

stage is feasible.

i

+5

fl(l) = 10+ 5.5% + £(X)ax = 141.85.

;g".

Since fg(l) < fl(1)9 a two stage policy is more
desirable than a one stage policy. The cost of a three
stage policy is now computed from each point in the plan-

ning period.

min “
£5(3) = O_<.Q5_<_5{C5(Q5) + 25(3+Q-1)} .
QE = 0
3+0=1 . Z2+0+2=2
10 + 5.0 +f Cf(X)AX + 10+ 5,22 +f £(X)dax
3-1 34+0-2
2+0+2+1=3 _
+1‘O+5,12f f(X)dX = 59.6
2+0+2=3

fB(B) = min{




—~
Q§ = 1
’ . 3+1-1 ] 341412
10+ 5,12 +f £(X)aX + 10 + 5,12 +f F(X)dx
3=1 Bl
' 54+0+2+1=3 _
+10 + 5,12 +f’ £(X)aX = 49.6
3+0+2=3
f5(5) = ming
Qz = 2
S N
2+2=1 L 3+2+1-=2
10 + 5.22 +f £(X)AX + 10 + 5.1+ £(X)ax
Bl . B2
3+2+1=3% ,
+ 10+ 5,12 +f £(X)ax > 50.
_L 3+2+1=3

This means that f5(5) = 49,6, QB = 1, Q2 = 1, Ql = La
The optimum three stage policy is now computed fron

the point X = 2 to the end of the planning periocd.
_ min e |
£5(2) = O.<_Q§_<_4{C2(Q5) v £,(24 D}
This iS .found. tO be .fB (2) = 660559 QB = 29 Q2 =2 19 Q]_ = j..o

;t is noted that the only quantity that is manipulated
is Q5° For instance, in the preceding calculationS'wheﬁ )
Q5 is set equal to 1 this sets X = % in the planning pericd
and the structure of the optimal two stage policies from
X = 3 determines that Q2 = 2 and Ql = 1

In this same manner f5(l) is determined.
f5<l) = 820659 Q5 = 2.&3 Q2 = 23 Ql = lo

Since f5<1) < :fi‘2(1)‘ﬁ this means that a third stage is

feasible.



The four stage policies are computed in a similar

mnanner and found to be:

1() Q1 = 10

£,(2) = 66 Qp =1, Q5 =1, Q =
fq_(,l) = 85055 Qq_ = 29 QB = l') Qg = Ly Q’:L = 1.

Since f4(1) > fa(l)‘J this means that an cptimal policy
spanning the production period consist of three stages and
is now dete:z'mzllneci° The policy is Q5 = 2, Q2 = 2,4 Ql = 1
and fB(l) = 82,65,
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APPENDIX C
SOLUTIONS BY A DIGITAL COMPUTER

A Fortran program for the algorithm derived in
Chapter II is presented in this Appendix. The program is
compatible to any IBM 1410 digital computer that uses the
PR-155 operating system. This program was written for an
eighty-one per cent progress function. To revise it to"a
specific function entails changing the statements (AX%#%3)
to (AX##¥n) where n reflects the desired manufacturing
progress function. Also, the constant amount M that is
moved back on the abscissa each time the process is inter-
rupted is chosen to be one in this program. This may be
revised to a suitable M by changing the limits of the do
loop after statement 00041 from ISA = Q(2,X)-V-1 to ISA =
Q(2,X)-V~-M and 1ST = Q(2,X)+Q(I,INT)~V-1 to IST = Q(2,X)+
Q(I,INT)-V-M. The statements 1SA and 1ST after statement
00039 are changed in a similar manner. 4

The statements ISA = X-IV and 1UP = A(N,X)-V after
statement 00021 may be changed to ISA = X-IV(M) and 1UP =
A(N,X)-V(M) to be compatible to a chosen M. Also, after
statement 0051, ISA = K1+1 and IST = IST+X-(X1l+l) may be

changed to ISA = (K1+1)M and IST = IST+X-(X1+1)M for a

general M.
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Format statement 00100 refers to the input and indi-
cates ten columns with four decimal places for each param-
eter. Format statement 00300 is a carriage control
statement and brings the carriage back to the beginning of
a page for the print out of each solution. Format stétea
ments 00301, 00302, 00303 are print out statements and
result in a print out of the type shown in the following
examples. Format statement 00310 results ip the print out
of parameter values preceding each solution.

The data is punched on standard eighty column IBM

cards in the following manner:

Variable Columns
S 1-10
C 11-20
Y - 21=-30
D 3140
K 41-50.

Four decimal places are allowed_in each field and a deci-
mal place occupies one position, |

The following illustration is a flow diagram that
demonstrates the general logic of the program.

Four computer solutions to examples are presented,
with Example One being the non-computer example presented
in Appendix B solved by the program in this Appendix. The
particular set of variables to which a solution gpplies is

listed above the columns headed F(NX), Q(NX), Ql.



Stop

X=Y

Y

Find and Store

fn(x)

Flow Diagram of Algorithm

Find and Store
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=Y -
i
Find and Store
fn(l)
£ (>f Q) |
£.(0<f, (1)
|
- A=X=-AX
X>1 =1




00100
00300
00301
00302
00303
00310
00312
00313
ol1d¢00

00005

0coo0l

00039

" FURTRAN: LlSTlNG ‘1410-F0=-970

INTEGERX s AY ¢ XNQ3 X J
REALK

DlMENSlONY2(6|ll).Y3(6'll'7) Al6y llva(b-ll)
FORMAT(F10.44Fl0444E10.49F10.4,F10.4) :

FORMAT(1H1)

FORMAT (10X, 16.3X.1PEZO 8)
FORMAT(10X,16,3X,1P2E20.8)
FORMAT(10Xy16,3X,1P3E20.8)

FORMAT{3H S=,F8.2,3H C=yFBe2,3H Y=,FB8.2,3H D3,FB8.2,3H K=,F8.2) -

FORMAT( 5X,2HN=,14)
FDRMAT(//15X lHX.lBX.SHF(NX).lSX.SHQ(NX) 15Xe3H Ql,/)

WRITE(3,300)

READ(1,100)5+CysYsDsK
IF(SEQ.999. JCALLEXIT
WRITE(34310)S,C,Y40yK

WRITE(3,313)
Y2(l.l)~$+((C0(Y l.
N=2

HRITE(3.312)N

X=Y

J=0

VZ(Z'X)-IOOOO 0
Al24X)=J

AX=X

)!'2)/(2.'0))+(K/.632)I((Vf'.632)—1.)

AlLyX)=Y=(A(2,X)+AX)

V=1l."
IFIX.EQe1)V=0.0
Tv=v

ISA=X-1V
IST=A(NyX)~V
IST=IST+X
SUMz0.0.

IX=X
DO39X=ISA,IST
AX=X
SUM=SUM+(1l./{AXe23)
CONT INUE

X=1X

SUM1=0.0
ISA=A{24X)-V-1l.
ISA=ISA+X

IST=A(2,X)+A(L,X)-V~1.

IX=X

' DC40X=ISA,IST

00040

AX=X

SUML=SUML+(1. /(AX"B))

CONTINUE
X=1X

65

Y3(2yXyd¢l)= S+(C'(A(2.X)0A(2.l))/(2 'D))OK'SUHOSO(CO(A(I|X)0A(1 X))/(Z.'D))0K0$UH1
O EFUY3(29X9J41) oGELY212,X})G0TOLL
S Y2(29X¥=Y3(24Xyd+1)

QU24X1=A(2,X}

]
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FORTRAN LISTING 1410-F0-970
INT=QU2:X)
INT=INT+X
QU1, INTI=A(1,INT)
AY=Y
00004 IF(J-{AY~X).GE.0)GOTOB
J=d+l
60101
00011 Q24X)=A{2,X)~1.
AX=X
INT=Q(2,X)
INT=INT+X
QU1 INTY=Y- (ntz.xnonx)
00008 V=1. :
IF(X.EQa11V=0.0 :
V=V :
ISA=X-1v
15T=Q(2¢X)-V
IST=IST+X
SUM=0.0
IX=X
DO41X=1SA,IST
AX=X
_ SUM=SUM+ (1. / (AXe83))
00041 CONTINUE -
X=1x
SUM1=0.0
1SA=Q(2,X)-V-1,
ISA=ISA+X
INT=Q{2,X)
INT=INT+X
IST=0(2,X)4Q(1, INT)-V-1.
IX=X
DO43X=1SA,IST
AX=X -
SUML=SUML+{1./(AX®#3))
00043 CONTINUE
X=1x
Y202,X)=S+((Ce1Q(2,X)#QU12,X)11/(2.%D) ) +K=SUMIS+{(C{QUL,INTI®QUL, INT)))/(2.9D) ) +KoSUN]
WRITE(35303)X,Y2(25X15Q(2,X) Q{1 INT)
X=x-1
IF(X.LE.D)GOTOL2
6aTos
00012 IF(Y2(2,1).LT.Y2(1,1)16GOTO15
WRITE(3,301)X,Y2(1,1)
60701000
00015 N=N+1
WRITE(3,312)N
x=Y
00024 J=0
Y2(NyX)=10000.0
00021 AIN,X)=J
IXX=X



00037

00051

00046

ooo1ls

FORTRAN LISTING 1410-F0-970
SUMBN=0.0 )
NA=N
XJ=X+J
V=l.

IF(X<EQel)V=0.0
SUM=0.0

lv=v

ISA=X=~1V
TUP=AINy X}~V
IST=IUP+X

IX=X
DO37X=ISAIST .
AX=X
SUM=SUM+{ 1./ (AXse3))
CONTINUE

X=1IX

BN=S+{Co (AN, X)#A(NyX}))/{2.%D)+K#SUM
SUMBN=SUMBN+BN
INT=A(NyX)
X=X+INT

N=N-1

IK=K

Kl=1V

ISA=K1+1
ISA=X-1SA
SUM=0.0

X=X :
IST=Q(N,X)
IST=IST+X~-(K1+1}
DO46X=1SA,IST
AX=X

‘SUM=SUM+(1./(AX##»3)}

CONTINUE :
X=1X
BN=S+{(Co{UINsX)I#QINyX)))/(2.4D))+K#SUM
SUMBN=SUMBN+BN

INT=Q(N, X}

X=X+ INT

N=N-1

Kl=Kl+1

IF(N.GE.1)GOTOS1

N=NA

X=1XX

Y3(NyXeJ+1)=SUMBN
IFIY3({NyXoJ+1)GE.Y2IN,X)1)6GOTOL8
Y2(NsX)=Y3{NyXsJ+1)

QINyX)=AINX)

AY=Y

IF(J-(AY-X1.GE.0)GOTO20

J=J+l

GoT021

QINgXI=AINIX)-1s
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00020

'00022

00023

00025

00028

FORTRAN LISTING 1410-F0-970
CONTINUE :
WRITE(3¢302)XsY2{NsX),Q(NX)
IFIX~1.LE.D0)GOTO23
X=X=1
GOT024
IFIY2{Ny 1J.LT.Y2(N=1,1))G0TO25
WRITE(34302)X9Y2(N-141)4QIN-1,41)

GOT01000

AY=Y

IF(N-{AY-1).LY.0)G0TO28
WRITE{3,302)X,Y2(Ny1),4Q(N,s1)
60701000

N=N+1

WRITE(34312)N

X=Y

GOT024

END
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. S= 10.00 C=

N=

N=

=NWwHno

~NWwsumo

- hN)W SN

6.00 D=
E(NX)

2.00849890E
2.51162390E
3.01793980E

* 4454293980E

6.25740740E

| Ba.7460648B0E

3.01213240E
3.51525740E
4.02847220E
4.59722220€
6.29722220E
1.77847220E

4.03713240E
4.54025740E
5.05347220€
5.62222220¢

6.90000000E

7.82962960E
1.77847220E

EXAMPLE ONE

.01

0l
o1
ol
01
o1

01
o1
ot
01
o1
o1

o1
01
01
131
0l
01
01

1.00 K= 2.00

QUNX}

«00000000E~00

1.00000000E 00 -
1.00000000€ 00

2.00000000E 00
2.00000000€ 00
3.00000000E 00

«00000000E-00
1.00000000€ 0O
1.00000000€ 00
1.00000000€ 00
2.00000000€ 00
2.00000000€ 00

+«00000000E-00
1.C00C000Q0E CO
1.00000000E 00
1.00000000E 00
1.0C000000E 00
2.00000000E 00
2.00000000E 00

Q1

«00000000E=-00
«0000C000E-00
1.0000CC00E 00

. 1+00000C00E 00

2.00000000E 00

2.00000000E QO
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EXAMPLE TWO

S=  10.00 C=  5.00 Y= ' 11.00 D=

X

N= 2

-
—

—
_NWPNEC DO O

[
—

—

N= 4

~
—

B —
—=NWSE VMO N® OO

N= 5

-
g

) -
=N WHENOND OO

. '._._
=ENWANON® OO~

F(NX)

200592930E

2.25935860E

2e51319490E

3.26946000E
4.03103410E
5.30043670E
6.58949920€
8.43209170E
1.05073030€E
1.52645910E
1.75229030E

3.01081210E
3.26424140E
3.52150700€E
3,78651420E
4,54808830E
543314T7090E
6.13324470E

“7.47583730E
9.07853700€

1.29011290E
1.45692540E

4.01810070E
4.27153000E
4.52879560E
4.79380280E
5.07545080E
5.84545080E
6.64722460E
7.54272820E
8.70530920E
1.24553080E
1.36699910€

5.029674 70
5.28310400E
5.54036960E
5.80537680E
6.08702480E
6.40787000E
7.19693250¢

"8.06701350E

9.22959450E
1.28806010E
1.36104010E

6.049674 T0E
6.30310400E
6.56036960E
6.82537680E
7.10702480E
7.42787000€
7.85437500€
8.69696750E
9.83206000E
1.34280890€
1.41346870E

"1436104010E

1.00 K=

25.00
QINX)

-«0C000000E-00
1.00C0000CE 00
1.00000000E 00

"1.00000000€E 00

2.000C0000E 0O
2.00000000E 00
3.00000000E 00
4.00000000E 0O

4.00000000€ 00

5.00000000E 00

5.00000000E 00

«00000000E-QO0
1.000CC000E 00
1.0C000000E 00
1.0000C000E 00
2,000CCO0CE 00
2.0000C000E 00
2.0C000000E 00
3.00C00000€E 00
3.00000000€ 00
3.0C000000€ 00
4.0C000000E 00

«0U000000E-GO

- 1.C60000000E 00

1.00000000E 00
1.C0000000E 00
1.0000C000E 00
2.00000000E 00
2.00000000€ 00
2.000C0000UE 00
2.0C000000E 00
3.0000C000E 00
3.00000000E 00

«0000C000E~Q0
1.0000C000E 00

*1+CC000000E 00

1.000CCO00E 00
1.0000CCO0E 00
1.000C0000E 00
2.000C0000E 00
2.000CCO0CE 00
2.0C000000E 00
2.00000000E 00
2.00000000€ 00

+0000C000E~00
1.00000000E 00
1.00000000E 00
1.00000000E CO
1.00000000E 00
1.00000000E 00
1.00000000E 00
2.0C000000E 00
2.000CC000E 00

-.2.0C000000E 00

2.00000000E 00

2.00C0CO0QE 00

Q1

«00000000E-00

+«00000000E~CO

1.00000000€ €O

2.000C0000E 00
2.00000000€ €O

"3.00000000€ 00

3.00000000E 00
3.0000C0C0E 00
4.0000CCO0E 00
4.0000C000E 00
5.000CC000E 00
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S= 10.00 C=

: s
=W S VNN OO e

——
—NWS NN~ O

X
N= 2
N= 3
N= &

11

10

9

8

7

6

5

4

3.

2

1
N= 5

. : ——
T NWSNONND OO -

5.00 Y=

EXAMPLE THREE

11.00 D=
F(NX}

2.01185870E
2.26871740E
2.52638990E
3.28892000E
4.06206820E

- 5435087350E

6.67899850E
8.61418360E
1.10146060E
1.82791830E

2.05458070E

3.02162430E

3.27848300E -

3.54301420E
3.82302840E
4.59617660E
5.41294180E
6.26648550E
1.70167470E
9.65707420E
1.60522590E
1.76385090E

4.03620150E
4.29306020E
4.55759140E
4.83760560E
5.15090160E
5.94090160E
6.79444930E
71.83545670E
9.41061870E
1.56606180E
1.68399840E

5.05934960¢
5.31620830E
5.58073950E
5.86075370E
6.17404970E
6.56574050E
7.39386550E
8.38402750E
9.95918950E
1.62091890E
1.69737660E
1.68399840E

1.00 K=

50.00
Y QUNX)

«00000000E~-00
1.00000000E 00
1.00000000E 00
1.0000C000E 00
2.00000000E 00
2.0C000000E 00
3.00000000E 00
4.00000000E 00
4.00000000E QO
5.00000000E 00
5.00000000E 00

«00000000E-00 -

1.00000000E 00
1.00000000E 00
1.00000000E 00
2.0000000CE 00
2.00000000E 00
2.0C000000E 00
3.00000000E 00
3.000C0000E 00
3.0C000000E 00
4.00000000E QO

-00000000E~0QO
1.00000000E 00
1.00000000E 0CO
1.00000000E 00
1.000C0000E 00
2.00000000€E 0O
2.00000000E 00
2.0C000000E 00
2.00000000E 00
3.00000000E 00
3.00000000E €O

«0000000CE-00
1.0C0CCO0CE 00
1.0C000000E 00
1.00000000E 00
1.00CCCO00E 00
1.000C0000E 00
2.00C00000€ 00
2.00000000E 00
2.0C0C0000E 00
3.00C00000E 00
3.00000000€ 00
3.0C000000E QO

Q1

+«000C0000E-00

«00000000E-CO
1.00000000E 00
2.0C000000E 00
2.00000000E 00
3.00000000E 00
3.00000000E 00
3.000C0CC0E 00
4.00000000E 00
4.0000C000E 0O
5.000CCCO0E 0O



S= 10.00 C=

-
—

L b -
=AW DN ND OO - =W SR OO e N WHsNO~NE OO

-
-

L
—-—_NWsNONE OO

10.00 Y=

EXAMPLE FOUR

©11.00 D= -

FINX)

2.11858710E
2.68717420¢
3.26389950€E
4.88920130¢
6.62068280E
9.50873540E
1.27899850E
1.81418370E
2.81460630E
8.27918340E
8.74580770E

3.21624330E
3.78483040E
4.43014280€
5.23028640E
6.96176790E
9.12941830E
1.16648950€E
1.60167470E
2.55707420E
7.90707410€E
8.13851010€E

4.36201580E
4.93060290€
5.57591530€
6.37605890E
7.50901600€
9.40901600E
1.19444930E
1.62963450€
2.51045670E
7.86045660E
7.99479950€

5.59349720E

6.16208430E
6,80739670E
7.60754030E
8.74049740E
1.06404970E
1.29386560E
1.68402760E

- 2455902750€E

7.90902740E
8.02275930E
7.99479950E

1.00 K=

5C0.00
Q(NX)

«00000000E~-00
1.300CUOOVE U0
1.00000000€ 00
1.00000000E 00
2.00000000E 00
2.00000000€E 00
3.00000000E 00
4.00000000E 0O
4.00000000E 00
5.00000000€E 0O
5.00000000€E 0O

«00000000E-00
1.0000C000E 00
1.0C000000E 00
1.0000C000E 0O
2.00000000E 00
2.00000000E 00
2.0000C000E 00
3.00000000€ 0O
3,00000000€ 00
4.00000000E 00
4.00000000€E 00

+00000000E~00
1.00000000E 00
1.00C00000E 00
1.00000000€ 00
1.00000000E 00
2.00000000E CO
2.00000000E 00
3.0C000000E 00
3.0C000000E 00
4,00000000E 00
4.0000C000E 00

+~00000000€E-00
1.00000000€ 00
1.00000000E 00
1.00000000E 00
1.00000000E. 00
2,00000000E Q0
2.00000000E 00
2.0000000CE 00
3.00000000E QO
4,0C0C0000E 00
4,00000000E 00
4,00000000E 00

Ql

+«00000000E-00
«QU000000E~00
1.00000000€E 00
2.00000000E 0O
2.00000000E 00
3.00000000E QO
3.00000000€E 00
3.00000000E 00
4.000CC0O00E 00

4.0000CCO0E 00 -

5.00000000E 00

~3
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The solutions are under these headings. The numbers
noted by N in the left hand column refer to the number of
a given stage, and the numbers listed under the column
headed X refen to particular units in the planning period.

The last value under the column headed F(NX) is the
optimum N stage policy. To find the value of N, search
the F(NX) column at the points where X = 1 until this num-
ber is found; N is then read from the left hand column.

The number listed under the column QNX is the produc-
tion quantity for the Noh stage. In the solution for
Example One where the inputs are 8 = 103 C = 103 Y = 63
D=1; K = 2, the optimum production policy is found as
follows: N is found to be 3, and Q(B,l) = 2, This sets
X = 3 in the planning period and N = 2;"Q(25) = 23 QL is
read directly across from Q(23), Ql = 1. This gives a
production policy of Q(31) = 2, Q(23) = 2, Q(1) = 1, which
spans the planning period of five production units. The

cost of this policy is F(3,1) = 77.784.
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