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CHAPTER I 

INTRODUCTION 

Historical Background 

H. Lebesgue's thesis Integrale, .Longueur, Aire, appeared 

in 1902 .. In his thesis, Lebesgue framed a.new integral which, 

as Van Vleck states 

... is identical with the integral of Riemann.when 
the latter is applicable but is immeasurably-more 
comprehensive. This new integral of Lebesgue is 
proving itself a wonderful tool. I might compare 
it with a modern Krupp gun, so easily does it pene­
trate barriers which before were impregnable.l 

In view of the wide applicability of Lebesgue's theory, 

it would not be unreasonable to assume that further research 

in this area might be fruitless. This however has not been 

the case. As Bell remarks, 

We hasten to add that the integral calculus did.not 
come to a sudden and glorious end in 1902. Quite 
the contrary; integration just began to thrive. 
Lebesgue's generalization of Riemann integration was 
but a beginning.2 

There were perhaps, many factors that led· mathematicians 

to devise even more general theories of integration than that 

lE. B .. VEtn Vleck,!ITendencies of Mathematical Research," 
Bulletin, American Mathematical Society, Vol. 23, 1916, pp. 6,7 . 

. 2E .. T. Bell, The Development of Mathematics, McGraw Hill, 
New York, 1945, pp~48. 
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presented by Lebesgue. E.G. Bliss states his views concern-

ing the motivation for continued research in this area as 

follows: 

In the field of integration the classical integral 
of Riemann, perfected by Darboux, was such a con­
venient and perfect instrument that it impressed 
itself for a long time upon the mathematical public 
as being something unique and final. The advent of 
the integrals of T. J. Stiltjes and H. Lebesgue 
has shaken the complacency of mathematicians in this 
respect, and, with the theory of linear integral 
equations, has given the signal for a re-examination 
and extension of many of the types of processes which 
Volterra calls passing from the finite to the 
infinite.3 

One of the first men to develop a general integral was 

P. J. Daniell.4 In Daniell's work, a linear functional is 

postulated on a given class of functions. The functional 

is then extended to a larger class of functions in such a 

way that certain desireable properties such as additivity 

and homogeniety are preserved. 

A significant aspect of Daniell's theory is that no 

special properties are assumed on the domain space of the 

functions. Also, the Lebesgue integral is a special case 

of Daniell's theory. 

Various theories of integration have been developed 

subsequent to Daniell's work in 1918. Generally speaking, 

these integrals can be classified either as integrals that 

JG. A. Bliss, "Integrals of Lebesgue", Bulletin, American 
Mathematical Society, Vol. 24, 1917, pp.l. 

4p, J. Daniell, "A General Form of Integral", Annals of 
Mathematics, 19 (1918) pp. 279-294, 



have been devised for a special purpose, or as integrals 

· that have beeh devised to increase the generality of the 

process of integration. In the latter category, the 

integrals developed by M. H. Stone5 and E. J. McShane6 

respectively are of special interest because of the wide 

applicability of their theories, and also because each of 

these men was motivated by the work of Daniell. 

Plan and Limitation of the Study 

This paper presents a study of the definition and 

fundamental properties of general integrals as framed by 

3 

P. J .. Daniell, M. H .. Stone, and E .. J. McShane respectively. 

The original publications of Daniell and.Stone have 

been followed rather closely, but in somewhat more detail. 

In particular, the original works have been supplemented 

with specific examples of the theory, elaboration and 

proof of assertions, and some original theorems of the 

writer. The discussion here proceeds at a slower rate 

than the original, for a sincere effort has been made to 

present the study of general integrals at a. level appro-

priate to an undergraduate mathematics major. 

5M. H. Stone, "Notes on Integration I, II, III, IV II 
Proceedinffs Nati?nal Academy.of Science 34 (1948) pp. 336"".'342, 
447-455, 83-489, 35 (1949) pp. 50.,.58. 

6E. J. McShane, "Order Preserving Maps and Integration 
Processes'', Annals of Mathematics Studies No .. 31 Princeton 
University Press, Princeton, 1953. ~ 
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The integrals of Daniell and Stone possess a number of 

additional properties analogous to the classical results of 

Lebesgue and Riemann integration, but these properties are 

in general not within the scope of this paper. 

E. J. McShane 1 s approach to a general integral is evolved 

in a rather abstract setting. For this reason his theory is 

presented on a purely expository basis. 



CHAPTER II 

THE DANIELL INTEGRAL 

Postulates 

This chapter presents the definition and elementary pro­

perties of a general integral as developed by P. J. Daniell. 

The reader is .referred to Appendix A for an explanation of 

symbols used in this study. 

In this chapter the following two symbols will be used: 

(f v g)x = max [f(x), g(x)}' x E Drn Dg. 

(f I\ g)x = min (f(x), g(x)J' x E Drn Dg. 

Let X be an arbitrary non-void set of elements and A a 

non-void class of real valued functions defined on the ele-

ments of X such that: 

a-1 . . f E A and a E R ~ af E A . 

a -2 . f\ , f z E A ::;> ; fl + f z E A , fl v f z E A and 

r 1 I\ f 2 E A. 

a-J. If f E A, there exists Kr E R such that lr(x)I < Kr 

for all x E X. 

Let Ebe a mapping of A into the real numbers such that: 

b~l. f EA and c ER~ E(cf) = cE(f). 

b-2. f1, f2 EA=> E(f1 + fz) = E(fl) + E(fz). 

b.,. 3 • f n E A, n = 1 , 2, . . . and [ f n} t O => 1 im E ( f n) = 0 . 

. b-4. f E A and f ~ 0 ~ E ( f) ~ 0. 

5 
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b-:5 .. There exists a.functional M for all functions of 

the form lf l,. where f E A, .such. that if f1 ~ f2, 

M(f1) ~ M(f2) and.such that !R(f) [ ~ M( If f) for f EA . 

. The symbol O will. be used to indicate either the zero 

function or.the real number zero. The context will make it 

clear which use is intended. Note that the zero.function-is 

in A by a-:1 . 

. DEFINITION 1.1. . An !"':'integral is a linear functional on 

A satisfying b-1, b-2, b-:3 and b.-4 . 

. DEFINITION 1 ~ 2. An ~"":integral is a. linear functional on 

A satisfying b-1, b-:2, b73 and b.,..5. 

EXAMPLE. As an illustration of the theory, it will be 

shown that the Riemann integral is an I-integral on the class 

of continuous functions defined.on a closed interval . 

. Let X be the closed interval ~'~ and. let A be the class 

of continuous functions defined on X ... From. elementary calculus 

it is clear that A satisfies a-1, a-:2, and a.,..3. 

Let E be the Riemann integral J: . Again. from the eletnen­

. tary. calculus it is clear that J:.b satisfies b-1, b-2, and b-4 

on A. To show that b-3 is satisfied two results from Riemann 

integration will be needed. 

1 .. If {fn} J, 0 on [a,b], fn continuous on [a,tj, 

. n 1, 2, . . . then { f n} converges uniformly. to O on (a, b] 

Proof: Let~> 0 and x E ~,b] .. Since (fn} JO there 

exists a.positive integer Nx (dependent -0n x and~) such that 

fN is continuous at x, hence there x 



exists an open set ON containing x such that t E ONx => 
x 

lfNx(t)I - !fNx(x)I < (fNx(t) - fNx(x)\ < ~/2. That is, 

7 

jfNx(t)I < E;;2 + ~/2 ::: E:. [fn]J,. therefore lfn(t)I < E; for 

t E ONx and n ~Nx, Since this is for arbitrary x in [a,bJ 

the set of all such ONx, x E [a,b] , are an open covering for 

[a, b] . Thus by the Borel Covering Theorem, a finite number 

of these open sets, say ONx·' i = 1, ... , k are a covering 
l 

for [a,b] . Let No = max {Nxi' ... ,Nxk]. Then [r n(t)j < ~, 
for n > N0 and for all t E [a,b] . That is, [rn} converges 

uniformly to O on [a, b J . 
2. If fr nl 

[a, b] converging 

J: f(x)dx. 

is a sequence of continuous functions on 

uniformly to f on [a,b], then limJafn(x)dx = 

Proof: First, it is well known that uniform convergence 

preserves continuity, thus the limit function f is a contin-

uous function. It follows that for all n, 

J: f n ( x) dx - J~ f ( x) dx = J: [r n ( x) - f ( x )] dx 

and therefore I farn(x)dx - J~r(x)dxj = I I~n(x) - f(x)] dxj 

~ )a If nCx) - f ( x) j dx. 

Let~~ 0. Since [fn} converges uniformly to f(x) there 

exists a positive integer N such that n > N ~ lfn(x) - f(x)f 

<b~a for all x E [a,b]. Hence for n > N, Ja [fn(x) - f(x) j dx 

< Ja b~a dx = E:. That is f J:.rn(x)dx - f r(x)dx f < E:, which 

by definition, proves 2. 

From 1. and 2. it is immediate that if [r n} J O on [a,bJ, 

f n continuous on [a,b] , n = 1,2, ... then lim J: fn(x)dx = 

r: 0 dx = 0. That is, b~3 is satisfied. 
v 
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Thus the Riemann integral is an I-integral on the class 

of continuous functions defined on a closed interval. The 

general theory is now continued. 

THEOREM 1.3. If f, g EA and f < g, then I(f) < I(g). 

Proof: Let f, g E A and f ~ g. Then O < g - f and g - f 

EA. Therefore I(g-f) > 0 by b-4. But I(g-f) - I(g) + I(-f) 

= I(g) - I(f) by b-2 and b-1, therefore I(g) .~ I(f). 

THEOREM 1.4. If f E A, [fl E A. 

Proof: Let f EA. Then -f EA and f v (-f) EA by ~-1 

and a-2. However, (f v -f)(x) = max [f(x), -f(x)J = jf(x)I 

and so the theorem is proved. 

THEOREM 1.5. If r e A, lr(r)I < I( Ir!). 

Proof: Let f EA. Then jrj EA by 1.4 and -!fl~ f < jfl~ 

I(-jrj) = -I( jr!) < I(f) < I( lrl) by 1.3. That is, 

jr(r)I < I( lrl ) . 
• From the preceding theorems, it is clear that the 

functional I defined on A satisfies the conditions imposed 

on the functional M of b-5. Since I also satisfies b-1, b-2, 

and b-3, the following theorem has been proved. 

THEOREM 1.6. Any I-integral on A is an S-integral on A. 

To show that an S-integral is not necessarily an I-inte-

gral, it will suffice to display a functional satisfying b-1, 

b-2, and b-3 but not b-4. Thus consider the following 

example. 

EXAMPLE. Let A be the set of all constant functions. 

Clearly, a-1, a-2, and a-3 are satisfied. If f(x) = c 

define U(f) = -c. 



If a ER then U(af) = aU(f), for let f EA, a ER and 

f(x) = c. Then af(x) = ac hence U(af) = -ac = a(-c) = 

aU(f). That is, U satisfies b,-1. 

f 1 (x) = c1, f 2 (x) = c2, Then (f1 + f2)x= c1 + c2 hence 

U(f1 + f2) = ,.. ( 01 + c2) = .,.c1· + (-c2) = U(f1) + U(f2 ). 

. Thus u satisfies b-2. 

9 

. Finally, if fn E A, {f n1 1 O then lim U(fn) = 0, for let 

f1(x) = c1 , f2(x) = c2,· .. fn(x) =en,···. Since [fn} JO 

it is clear that c1 2 c2 L ... ~en~ ... , Cj 2 0 for all j 

and lim en= 0. It follows that -c1 ~ -c2 S:. ••• s._ -en~ 

-cj ~ 0 for all j and lim (-en)= O. That is, lim U(fn) = 0. 

Thus U satisfies b-3. 

U does not satisfy b-4 however, since for the constant 

function f = 1, U(f) = -1. 

The above example illustrates a functional that satisfies 

b-1, b-2, and b-3 but does not satisfy b-4 .. Thus an S,-integral 

· need not be an I-integral. 

Definition.of an I-Integral 

This section illustrates one procedure for defining a 

functional on A, given any S-integral on A. It is then 

shown that the defined functional is in fact an !.,-integral. 

DEFINITION 2.1 .. If f E A and f 2 o, 1-ii-(f) = sup [s(g)I 

g E A and O S g ~ . f} . 

I* is called the positiv~ integral associated with S. 
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That I*(f) exists for all f EA, f ~ O, is proved in the 

following theorem. 

THEOREM 2.2. If f EA and f > 0 then I 1:-(f) exists. 

Proof: Let f EA, f ~ O, and g EA be such that O S.g ~ f. 

By b-5, S(g) < M( lg I) = M(g) ~. M(f) .. Tb.us M(f) is an upper 

bound for all such S(g) and so the supremum of all such S(g) 

exists. 

The following theorems will show that I* is an I-integral. 

THEOREM 2.J. If f EA and f 2 O, then I 1:-(f) ~ 0. 

Proof: Let f EA. S(f) = S(O + f) = S(O) + S(f) 

therefore S(O) = O, but O serves as a g function in 2.1 

therefore I*(f) 2 O. This shows that I* satisfies property 

b-4 . 

. Before proceeding to show that 1* satisfies the remaining 
• 

postulates for an I-integral, some preliminary results will be 

presented in the form of lemmas. 

LEMMA 2.4. If f EA, f ~ 0 and c ER, c > 0 then I 1:-(cf) 

= cI,:-(f). 

Proof: Let f E A, f ~ 0 and c E · R, c > 0. Then 

[g I g E A and O < g < f] = [ g [ O ~ cg ~ cf}. Thus 

I 1:-(cf) = sup [s(cg) \ O < cg < cf] 

= sup [ cS ( g) I O < cg < cf} 

= c sup [ S ( g) I O < g < f ] 

= cI,:-( f). 

LEMMA 2.5. If r 1 , r 2 E A, f 1 > O, r 2 > 0 then 

1*(r1 + r 2 ) = r*(r1 ) + r*(r2 ). 
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Proof: Let f 1 , f 2 E A, f 1 ~ 0 and f2 '> 0 . 

. First, I-i~(f1 + f2) ~ r-i~(f 1 ) + I-i~(f2 ). For suppose O ~ g 1 $. f 1 

and O < g2 ~ f2, Then O < gl + g 2 s f 1 + f 2 so I-i~(f1 + f2) 2 

S(g1 + g2) = S(g1) + S(g2), . Since this is true for all g 1 , 

g2 such that Os g 1 < f 1 and O < g 2 ~ f2, it follows that 

I-i:-(f1 + f 2 ) ?: I,i~(f 1 ) + 1-i:-(f2). 

Second, I*(f1 + f2) ~ I*(f1) + r*(f2), Suppose O < g < f 1 + f2, 

Then g - f 1 :::; f 2 , o < g "f1 s f1 and O < [(g - f 1 ) v o] ~ f 2 . 

Thus S(g A f 1 ) ~ r*(f1), S((g - f 1 ) v 0) 5 r*(f2 ) from which 

S(g A f 1 ) + S((g - f 1 ) v O) < r*(f 1 ) + r*(f2 ). However, 

S(g A f1) + S((g f1) v 0) = S(g) because (g A f 1 ) + (g f1) 

v O - g. For if g(x) > f1(x), [(g A f1) + ((g - f 1 ) v o)] 
(x) = f 1 (x) + (g - f 1 )(x) = g(x), while if g(x) < f1(x), 

(g /\f1)(x) + ((g - f1)(x) v O(x)) = g(x) v O = g(x). 

Thus S(g) < r-i:-(f1) + I-i~(f 2 ) whenever g < f1 + f2, therefore 

I*(f1 + f2) ~ I*(f1 ) + r*(f2). With the first result above, 

the lemma is proved. 

LEMMA 2.6. f 1 , f 2 EA:;} (f1 v f2) +(fl!\ f2) = f1 + f2 

and -f1 v -f2 = -(f1 A f2), 

Proof: Let f1, r 2 EA and assume f 1 (x) < f2(x). Then 

(f1 v f2)(x) = f2(x) and (f1 A f2)(x) = f1(x). In the same 

fashion, the first result holds if f 1 (x) > f2(x). The second 

result is proved analogously. 

NOTE. By definition, I,i~( f n) = sup [s ( gn)lgn 6 AJ O < ,gn < 

fnJ, where fn E A .. Thus if E; >O,. there exists a gn E A, 

Os gn ~ fn such that I-i~(fn) < S(gn) + 2.,-nE:. 
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LEMMA 2.7. If I-3:-(fn-1) < S(hn-l) + E:n-l' E:i > O, i = 

2,3, ••• , r~:-(f n) < S(gn) + 2""".nE;, E: > O, f n ~ fn-l' 0 s hn-lS. 

fn-l and O < gn< fn, then I~:-(f6) < S(hn_,..i/\ gn) +~n-l+ 2"'"nE;. 

Proof: 0 < hn-l < fn-1 and O < gn~ fn < fn,...l' therefore 

0 < :(1 h n .,.1 v g n ) < f n -1 ::;> S ( h n -1 v . g n ) < I-3:- ( f n -1 ) < S ( h n -1 ) 

+,~ n,-l• . Since hn-l /\ gn: = (hn-1 + gn) - (hn-l v gn) by -2~6, 

S(hn.,.l A_ gn) = _S(hn-1) + S(gn) - S(hn-l v gn) 

> S(hn-1) + S(gn) - S(hn_,.1) - E; n-1 

· = S(gn) - €in,..1 · 

. By hypothesis I~"(fn) < S(gn) + 2-n E; therefore I-3:-(f n) < 

S(hn,..1 A_gn) + e.n,..1 + 2-n E; which was to be proved . 

. THEOREM 2.8 •. If ffn} i O then lim I-i:-(fn) = 0. 

Proof: Suppose {f n1 t O. Let E: > 0, and for each f n, 

choose gn as :in 2. 7 •. That is choose gn so that ri:-(f n) < S(gn) 

+ 2-ne.. 

Let hi~ gland hn = hn-1 /\ gn n = 2,3, ... 

~ 1 = G/ 2 and E: n = ~ n ,... 1 + 2 - n E\ , n = 2 , 3 , ..• 

Now all the conditions of 2.7 are satisfied, therefore 

I-i:-(f n) < S~hn.,..l /\ gn) + E: n.,-1 + 2.,..n E; 
1 1 1 = S(hn) + E: n <. S(hn) + ~ since Eln = E;(2 + 4+ ... + 2n). 

Since O < hn < gn < fn and lim fn = O, necessarily lim.hn = 0. 

Also [hn} ~ _so by b,-3, lim S(hn) = O, so lim I-ii.(fn) < ~. 

E: was arbitrary and therefore lim I-i:-(f ) = 0. This prove.S: _· n 

that I* satisfies property b.,..3. 

LEMMA 2.9. If f EA, then f = g - h, where g, h EA 

. and g ~ O, h ~ O . 
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Proof: Let f EA. Then O v f and O v -fare non-nega-

tive functions in A .. Since f = (0 v f) (o v -f) the lemma 

.is proved . 

. DEFINITION 2.10. If f = g - h, where g > 0,. h 2 0 then 

I-ii- ( f ) = I-ii- ( g ) - I-ii- ( h) . 

. It is necessary to show that this definition.of r* is 

independent of the representation for· f, and also that it is 

consistent with r* on non-negative functions. Thus suppose 

negative. Then gl + h2 = g2 + h1 and 1-l!-(gl + h2) = 

1-l!-(g2 + h1)' thus I-ii-( gl) + 1-ii-( h2 ) = I-ii-( g2) + I-ii-( h1 ) by 2.5. 

. Therefore I-ii-( f) = I-ii- ( gl) I-ii- ( h1 ) = 1-l!-( g2) . I 1:-( h2 ) and 

so the definition is independent of the representation. 

If f ~ o then f = f - o whence r*(f) = I*(f) - r*(o) = r*(f). 

Thus the definition is consistent. 

THEOREM 2 .. 11. . I 1!-(cf) = cI1:-(f). 

Proof: Let f EA. Then f = g - h,.where g ~O, h ~O. 

. Case I. c > 0. 

Case 2. c < 0. 

I-i'" (cf) = 

·-

= 
Case 3. c·= 0. 

I 1:- (cf) = I 1!-( cg ch) 

= 11:-(cg) I~!- (ch) by definition 

.- cI-i'"( g) . cI1:-( h) by 2.4 

= cI1:-( f) . 

cf= ~ch - (-cg) therefore 

I-l'"(-ch,) - 11'"(-cg) by definition 

-cI*(h) + cI*(~) by. 2.4 

cI-i'°(f) 

I.1'".( 0 •·f) = .)' ( ) I'~ 0 = O = Thus I.,'" sat-

isfies property. b~l. 



THEOREM 2.12. 

PrQof: Let r1 ,.r2 EA, and r1 = g1 

where gi, hi> 0, i = 1,2. 

(f1 + f2) = (gl + g2) - (h1 + h2) 

14 

therefore 

r::-( r 1 + f2) = .I;:-(g1 + g2) - I;:-( hl + h2) by definition 

= Ii(-(g1) + I;:-( g2) -[I;:-{ h1 ) + I* ( h2 ) J by 

= I* ( ) gl .. I;:-( hl) + I-i:-(g2) - . I-i:-( h2) 

= * ( ) I r 1 · + I;:-( f 2) . . Thus Ii} satisfies 

· property b"'."2 . 

. Theorems 2.3, 2.8, 2.11 and 2.12 show that I* is an 

I-integral. 

. Extension of the Mapping 

2.5 

Given an I~integral on A the next objective is to extend 

I to a larger collection of functions, which if possible, 

contains A as a proper subset. At the same time it is desired 

that I preserve the properties b-1, b-2, b,...3,.b-4in so far 

as possible on the larger class of functions . 

. DEFINITION 3.1. If fr n} t, fn E A,. n = 1,2, ... then 

lim fn exists (in the extended reals) and the function.f 

defined by f = lim fn .is said to be a function of class A*. 

. THEOREM 3 • 2 • A C A;:- . 

Proof: Let f E A and define fn = f, n = J.,2, ... 

Then [ f n1iand so lim fn .- f E p;~ 
.,(. 

~ E: A;:-' THEOREM 3. 3.: . If f,g E A" and a ER, a o, then af 

* K ~ f + g E A , . f v g E A", and f /\ g E A' • 
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Proof: Only the proof that f v g EA* will be given, 

" as the other proofs are similar. Let f,g E Ai\. There exists 

ffn} t f and fgn} t g where f n' gn E A,. n = 1,2,.... Let x E 

X and € > 0. Assume f(x) > g(x). There exists a positive 

integer Nx such that n > Nx => fn(x) ~ gn(x), for if not, g(x) = 

lim gn(x) ~ lim fn(x) = f(x). Also there exists a positive 

integer NE;,x such that m > N~,x => I fm(x) - f(x)l<E:. Choose 

N = max [Nx, NE;,x1 · Then n >N ~ l(f n v gn)(x) - (f v g)(x)I 

= [fn(x) - f ex) I< ~ . Thus lim (fn v gn) = f v g. . Since 

f n v gn E A, n = 1, 2, . . . and ,::r n v gn} t, . f v g E A~f. If 

f(x) = g(x) the proof is obvious, while if f(x) < g(x) merely 

interchange the roles off and g in·the above argument. This 

completes the proof. 

LEMMA 3,4, If ffn}t, fn EA, n = 1,2, ... and if lim fn 

· ~h where h E A, then lim I(fn) > I(h). 

Proof: Let gn = fn Ah. Then gn EA and since lim 

fn ~ h, lim gn = h. fn ~ fn+l therefore gn < gn+l, thus 

[ g n1 l h , or equiv a 1 e n t 1 y , { h - g n} ,!, 0 . . For a 11 h , ( h - g n ) E A , 

so by b~3 lim I(h - gn) = 0. That is I(h) = lim I(gn). 

However fn ~ gn ~I(fn) > I(gn) for all n, therefore lim I(fn) 

~lim I(gn) = I(h). 

LEMMA 3,5, If ffn11' and fgn1t, fn, gn EA, n - 1,2, ... 

and lim fn > lim gn, then lim I(fn) ~ lim I ( gn). 

Proof: lim fn > lim gn and f gn} t the ref ore lim fn ~· 

m.= 1, 2, .... Thus each gm plays the role of the function 

in 3.4 so lim I(fn) ~ I(gm)' m = 1,2, ... , and therefore 

1 im I ( fn ) ~ 1 im . I ( g n ) . 

gm, 

h 
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THEOREM 3.6. If f fn1 ,t and {gnJ t, fn,- gn E A, n = 1,2, •.. 

and lim_fn = lim,_gn then lim I(fn) = lim I(gn). 

· ··, Proof: It is immediate frorn.3 • .5 that lim I(fn) > lim I(gn) 

and lim I(gn) > lim I(fn), which proves the theorem. 

DEFINITION 3.7. If f EA-ii- and f = lirn_fn where [fn1f, 

fn E A, n = 1,2, ... then I(f) = lim I(fn). 

From 3.6 it is clear that the value of I(f) is independent 

of the sequence converging to f ... Further,_ if f E A, _ the value 

of I(f) by definition 3.7 is consistent with the original 

value since f = lim_fn where fn = f,_ n = 1,2, .... 

THEOREM 3.8 .. If f E A-ii-, and_f > O, then I(f) ~ 0. 

Proof: Let f E A-ii-, f ~ 0. There exists {ln1f, fn E A, 

_ n = 1,2, ... such that lim.fn = .f 2:: 0, hence by 3.4 I(f) = 

lim I(fn) ~ I(O) = 0. 

THEOREM 3.9. If f, g EA-ii-, and f ~ g then I(f) ~- I(g). 

Proof: Let f, g EA-ii- and f ~ g. There exist (fn} t f 

and {gn} t g, f n' gn E A,_ n = 1,2, .... __ Now f = lim f n ~ 

lim gn = g, therefore I(f) = lim I(fn) ~ lim I(gn) = I{g) by 

3 .. .5. 

THEOREM 3 .10. . If f, g E A-ii-, I ( f + g) = -- I ( f) + I ( g) . 

Proof: Let f, g E A-ii-. . There exi_s t (f n1 t f and fgn} lg 

~n, gn EA, n = 1,2, ... and lim (fti + gn) = ~ + g EA by 3.3. 

_ Now I(fri + gn) = I(fn) + I(gn),. n = 1,2, ... and therefore 

I(f + g) = lim I(fn + gn) = lim I(fn) + lim I(gn) 

= I(f) + I(g) • 

. From this theorem an .immediate result by mathematic-al 

_induction is: 
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COROLLARY 3.11. . If ft E, A{~,. i = 1,2, ... ,. n, then 

n n 
I ( L f i ) = L I ( f i } . 

i=l i=l 

THEOEEM 3.12. If f EA{~ and c ~ O.then-I(cf) ·= cI(f). 

Proof: Let f E A{~ and .c ~ O. There exists ffn1 t f, fn 

EA,. n = 1,2, •.• therefore [cf nJ 'f' cf since c ~· O. Thus 

I ( cf ) = 1 im I ( c f.n ) = c 1 im I ( f n ) = c I ( f ) . 
,H. 

The preceding theorems show that I on A" satisfies 

b-1 (when c is a. non~negative constant), b-2, and b-4 . 

. THEOREM. 3 .13 ... If [ f n1 t where f n E A{~,, n = 1, 2, . . . then 

lim.fn-= f EA* and I(~).= lim I(fn). 

Proof: For each n, there exists a. sequence [ gnk] such-,· 

that {gnk} 1 fn, where gnk EA, k.= 1,2, .... Let hnk = 

glk v g2k v ·•· v gnk· A is closed ~nder the operation v, 

so hnk EA. Now fork >n,. gnk ~ hnk~··hkk ='. f 1 v f2 v ·•· v 

fk.= fk therefore f n l~m gnk <· l~m hkk < l~m fk = f and 

f. = l~m fn s l~m hkk ~ f. Clearly {hkk} 1' so f is the limit 

of a non-decreasing sequence of functions of A. That is, 

{hkk1 t_ f, thus by definition f E A{~ and. I (f) = lim I (hnn) . 

. hnnS fn therefore I(hnn) < I(fn) n 1.,2, ••• by 3.9 ::;> I(f) = 

],im I(hnn) < lim.I(fn) .. From above f ~ fn, n:::: 1,2, ... 

so I ( f ) ~ I (f n) n = 1, 2, • . . by 3 . 9 · :;> . I ( f ) 2: 1 im. I ( f n) 

therefore I(f) = lim I(fn) . 

. In the preceding section, A was extended to a.larger 

class of. functions A* .. This new class of functions consisted 

of limits of non-decreasing sequences of functions from.A. 
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Furthermore, the linear functional I, originally assumed on 

A, .was shown to inherit certain important properties on A,l~, 

. namely; b-,-1 (for non-negative c), b..,.2, and b"""4· 

What is desired however, is a class of functions that 

includes A and a linear.functional on this class that agrees 

with the original I-,.integral on A and also has the properties 

of b-1, b..,.2, b..,.3, and b-4~ 

Upper and Lower Integrals 

DEFINITION 4.1 ... Let f be. any real valued function defined 

on the elements of X. Then U(f) = inf {I(g)I g E A,l~ and g > f} 

is said to be the upper semi-integral off .. If there is no 

g EA* such that g ~· f then define U(f) = +~. 

THEOREM 4,2, If c > O, U(cf) = cU(f). 

Proof: Let c > 0 .. Then 

[gjg E A,l( and g ~ f] = fglc g E A,l( and cg~. cf} 

Thus U(cf) = inf (I{cg) I cg E A,l( and cg > cf} 

= inf [ cl (g) I g E A1( and g ~ f } 

= cU(f). 

THEOREM 4 .. 3 .. U(f1 + f2) 5. U(f1)+ U(f2). 

Proof: Let g1 ,g2 E A,l( such.that f1 ~ g1 and f 2 ~ g2 . 

Then f 1 + f2 S g1 + g2 therefore 

U(f1 + f2) < I(g1 + g2 ) = I(g1) + I(g2) by3.10. 

For fixed g1 and for all g2 > f 2 , the inequality holds. Thus 

U(f1 + f 2 ) < I(g1 ) + U(f2 ). Since this inequality holds for 

all g1 2 f 1 it follows that U(f 1 + f 2 ) < U(f1 ) + U(f2 ). 
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THEOREM 4,4, If f ~ g then U(f) ~ U(g). 

Proof: Let h E A-3:- and h ~ g. Then h > f so [h lh E A-ii. 

and h > f} .:J [h lh E A-ii- and h > g}. The theorem follows from 

the defin\tion qf U. 

DEFINITION 4,5, . L(f) = -,U(...,f). L(f) is called the lower 

semi-integral off. 

THEOREM 4,6; L(f) < U(f) for all f. 

Proof: 0 = U(O) = U(f - f) < U(f) + U(~f) by 4.3 but 

U(-f) = -,L(f) by definition. Thus, L(f) < U(f). 

THEOREM 4,7, U(f v g) + U(f Ag)< U(f) + U(g). 

Proof:' Let h1, h2 EA~, h1 > f,. h2 > g. Then 

h1 v h2 > f v g and h1 /\ h2 > f /\ g. Therefore 

U(f v g)_ + U(f /\ g) < I(h1 v h2) + I(h1 /\ h2 ) 

= I(h1 ) + I(h2 ) since 

(h1 v h,2) + ( h1 /\ h2) - ~l + h2. By the same argu,rnent as 

in the proof of 4~j the theorem follows. 

COROLLARY 4.8. · U( If! ) - L( If I ) < U(f) - L(f). 

Proof: !fl= f v (-:-f) and-lfl = f A (-f). 

Thus U( ltl) .+ U(-jij) < U(f) + U(...,f) by 4,7, .That is, 

u ( I fl ) - · L ( If I ) < u ( f ) - L ( f ) . 

Definition and Properties of the Integral 

This section deals with a class of functions called the 

summable functions and a linear.functional on this class 

called the Dani'eil integral. 

DEFINITION 5.1. f is said to be summable if and only if 
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U(f) is finite and U(f) = L ( f) . .. In this case define ff by: 

fr= U(f) = L ( f) • Jr is called the . Daniell integral . 

THEOREM .5. 2. . If. f is sumrnab le,. and f ~. 0 then Jr > 0. 

Proof: Since O < f, 0 = U(O) < U(~) by 4.4 .. Therefore 

Jr = U(f) ~ 0 • 

. THEOREM 5.3 . . If c is a real number and f is .summable, 

. then cf is summable and J cf·= cf f. 

Proof: Let c > 0 .. By4.2 U(cf) = cU(f) = cff. /Note 

that. L~ .• 2 holds f.or c = 0 when U(f) is finite,. as is the case 

here. Also, --L(cf) = U(-cf) = cU(-:f) = -cLf = -cff. There­

fore L(cf) = cff, and so for c > O, j(cf) = U(cf) = L(cf) =1 

cf r. Let c < o .. Then U(cf) = U(-c)(..if) = PcU(-:·f) = cL(f) t 
cf/ and .,-L(cf) = U(-cf) = -cUf = -cff. That is, L(cf) = cff . 

. Thus for all real c, fer= L(cf) = U(cf) = c]f . 
. ~ 

THEOREM 5.4. If f 1 and f2 are su:rr.imable,.so is f 1 + f2 

and j(f1 + f2) = J f1 + Jr2. 

Proof: U(f1 + f2) < U(f1) + U(f2 ) by 4.3 

= I r1 + J f2 ·. 

-L(f1 .+ f 2 ) = U(.,..f 1 - f 2 ) ~ U(-f1 ) + U(.,..f2 ) by4~3 

·= -ff1 -,_ff2 by 5 .. 3 

therefore L(f1 + f 2 ) ·> ff 1 + f f2. However by. 4.6 

U(f1 + f2) > L(f1 + f 2 ) ::;> 

U(f1 + f 2 ). = f f 1 · + f t 2 , and also 

L(f1 + f 2 ) = Jf1 + f r 2 , 

therefore f1 + f 2 is .. summable and 

f(f1 + f2) = f f1· + ff2· 
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THEOREM. 5. 5. . If f 1 and f 2 are sumrru,i.ble, so are f 1 v f 2 

and·f1 Afz. 

Proof: Suppose fl and f2 are summable. Then 

U(f1 v f2) + U(fl A fz) ~ U(f1 ) + U(f2 ) 

= J f1 + J f2, 

and U(-f1 v -fz) + U(-f1 A -fz) $ U(-f1) + U(-f2) by 4.7. 

Now "'.'f1 v -f2 = -(f1 A f 2 ), and -f1 A -f2 = -(f 1 v f 2 ) · 

therefore "'.'L(f1 A f2) -L(f1 v fz) < -L(f1 ) ~L(f2 ) by 4.5 

- -Jr1 - Jr 2· 

Hence L(f1 A f 2 ) + L(f1 v f2) > frl + f r2. 

> U(f1 v f2) + U(f1 A f 2 ) . 

. That is [u(f1 v r 2 ) - L(f1 v r 2 )] + [u(r1 /\ f2) - L(f 1 A f 21] ~o . 

. Since each of these differences is non-negative, each must be 

zero, and so the theorem.is proved. 

THEOREM 5.6. If f is summable, If I is summable and lfrl$ 

J Ir I· 
Proof: u(lrl) - L(lrl) <U(f) -· L(f) by 4.8 

= J f - ff. "= 0 but 

u ( If I ) - 1 ( If I ) > 0 by 4. 6 thus 

u(lr·I) = L(lfl) and lr\ is summable . 

. Since - If I < f < If I 

-Jlrl<Jr <flrl. 

That is, If f I < f \r \ . 

. THEOREM 5.7. If [rn1 t f, where fn is summable, n = 1,2, ... 

and if lim J f n is finite, then lim. f n = f is summable and 

J f = 1 im J f n. . If 1 im J f n = + o0, 1 ( f) = + ~ 



Proof: frnJ t f, so fn ~ f,. n = 1,2, ... ~ -f ~ -fn, 

hence U(-f) < U(-:-fn) by 4.4 or -L(f) $ -L(fn) = -frn,· n.= 

1,2, ..... Thus (l) L(f) ~ lim f rn which proves the last 

part of the theorem. 

Note that for any summable function. f E!,nd for any E; > O, 

there exists a. function g E A.~t such that g ~f and I(g)< 

fr + €, for if no such g existed, ff = U(f) 4 inf 

[I(g)lg EA{} and g > f] . . Since fn is summable for each 

n, fn - fn,..l is summable for.each n·by 5.3 and 5.4. 
Let E! > O, and le[t gn E A~\ n = 1,2, ... such that g1 ~ r 1 

and I(g1 ) < f r 1 + Ey2, 
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gn > fn - fn.,.l and I(gn) < j(rn -.fn""."l) + 2""."n€. for n > 2 • 

. It is clear from the above remark that such gn exist. 

n 
:frnJt so gn ~ fn - f n.,.l > O. Let hn = L g .. 

i=l l 

Then hn E A{} by. 3 .. 3 .. Clearly {hnJ t, therefore 

and I(lim hn) = lim I(hn) by 3.13 • 

. n n 
hn .. = L g. > r 1 + L ( f. - f. _1· ) = fn . l i . 2 i i l~ . i= 

so lim .. hn ~.lim f = f .. Thus . n 

U(f) ~ I(lim.hn) = lim I(hn) by 4.1 • 
. n n 

= I( L. g.) = L · I(g.) by·3.ll 
i=l l .i=l l 

<Jr1-+ 

= J ff + i . (ff i - J f i., l ) + i' ~-n 1 2 - i E: 
.i=2 

<Jr ri + E; •. Thus 

{} 
lim .h E A n 



23 

lim , I ( hn) s 1 im ff ri + E; • That is 

U(f) < lim Jrri + ~ .. Since E; is any. positive number, 

L(f) ~ • U(f) < lim frn. _ However, from (1) abc;we, U(f) ~ L(f) ~ 

lim Jrn therefor_e L(f) - U(f) = lim f fn .. Hence if lim fr n 

is finite, f is .summable and J f = lim Jr n. 

In Lebesgu~ integration, 5,7 is called the Leb~sgue 

Monotone Convergence .Theorem. 

THEOREM 5.8 .. If lim fn = f, where fn is summable, 

n = 1,2, ... and. if there exists a summable function j such 

that jrnl < j for all n, then f is' summable,. limf rn exists 

and lim fr n =Jr. 

Proof: .Let gr,s = fr v fr+i v , , , v,f + . r s . Then gr,s ~ 

gr ,s+l < f n is summable· for all n, so gr, s · is summable 

by. 5.5. · Also fn < j so gr,s < j 9Jgr.,s< Jj = finite, 

since j is summable. Thus l~m J gr, s is f.i.ni te. Letting 

gr·= l~m gr,s,gr is summable by 5,7, _Now.gr~ g,r+l~ ... 

. and .liin gr = f since __ lim. fn = f .. For let ~ > 0 .. There 

exists an N · such that n > N, ::;> If n - f I < <s:;2. . Since gn 

1 im [f f f ·J - · > s . n v n+l v ··· v n+s there exists an m -.n such 

that lgn - fml < E:;2. Thus for all, n > N, 

lgn - f I < lgn - fm I + lfm - f I < ~/2 t E:;2 = E;. 

That is l~m gn = f. fn ~ -j, n = 1,2, .... so gr,s .z -j or 

- . gr., s < j =? - gr < j thus j ( ... gr) < j j = finite. . Since 

-,-gr < -gr+ 1 < · · · and lim (.,-gr) = -.-f !II .,.f is summable and 

· lim J ( -gn). ,; f (-. .f) by 5. 7. -.-f is summable, so f is summable 

by. 5,3 and lim Jgn = J f ... Let E: > 0. There exists an r 1 
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. such that J gr< Jr + ~1 whenever r > r 1 .. Now fr < gr, s < 

gr therefore fr r < f· gr< fr + E: •.. Let h = fr A fr+l r,s 

/\ "· /\fr+s· . Then hr,s > hr,s+l~ "·. _ Let lim hr,s = hr. 

By an argument similar to that above, it can be shown that 

hr is summable, hr < hr+l < · · ·, lim. hr = f B:-nd limf hr = 

ff . . Hence there exists an r 2 such that J hr> J f - ~ when 

. r > r2. . Since fr ~ hr, s ~ hr, Jr r > f hr >ff -~. , Thus let r -

max f r1, r21 • Then tfrn -Jr I< E. when n > r. That is lim 

frn=fr. 

Theorems 5.2 through.5.8 show that the summable functions 

form.a vector lattice. Furthermore, J is a linear.functional 

satisfying b-1, b-:-2,.b-:-3, and,b-4 on.tb.e class of summable 

functions. It should be noted that. b-:-3 follows as a special 

case of 5.8. 

·A natural question is whether the class of summable 

functions includes all the functions of A* .. From.the defini­

tion of J it is clear that if f EA~:- and I(f) = +oo, then 

f is. not summable .. However,. if I (.f) is finite, f is summable. 

THEOREM. 5. 9. _ If f E A~:- and I ( f) is finite, f is summable. 

( ) { ( ) I E A~:- > ] Proof: U f = inf .I g g and g _ f . Since f E A~:-, 

I(f) ~ I(g) for all g EA* auch that g ~ f by 3,9, It 

follows that U(f) = I(f) •. Thus U(f) is finite if and only if 

I(f) is finite. f E f!- so there exists [fnJ t .f, fn E -AC A~\ 

n = 1,2, ... and lim I(fn) = I(f) .. For ·all n, I(fn) is finite 

and I(fn) < I(f), thus -I(fn) = I(-fn) ~ -I(f). Let E: > o· . 

. There exists an N such that n > N ·:::;> I(fn) > I(f) - ~ .. That is 
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.,. I ( f n ) = I ( - fn ) < - I ( f ) + E: • He n c e -I ( f ) S I ( - f n ) < - I ( f ) 

+ E: . € was . arbitrary, therefore lim I ( -fn) = -I(f). Since 

[-f n1 i - f it follows from the defini ti.on that U( .,.f) = 

-I(f). Thus, .,.L(f) = -I(f). Therefore L(f) = U(f) = I(f) 

is finite and f is summable. Since I is finite on A, and 

AC A*, the following corollary is proved . 

. COROLLARY 5.10. The class of summable functions in-

eludes A. 

McShane7 uses Daniell~s approach to introduce the 

Lebesgue integral .. The set Xis a closed interval while A 

is the class of continuous f~nctions on X. The functional 

I is taken as the Riemann integral over A. A* is defined 

as the class of lower semi-continuous functions on X that 

are bounded below. I is extended to A* by I(u) = sup 

[I(g)I g E A and g ~ u}. For arbitrary f defined .on X, 

U(f) is defined by U(f) = inf {I(u) iu E A-i:- and u > f } . 

. Lis defined in an analogous way so that U(f) = -L(-f) is a 

theorem in McShane's treatment rather than a. definition. 

f is then said to be Lebesgue integrable if a6d only if 

U(f) = L(f) and U(f) is finite. Thus the Lebesgue integral 

is a special case of the Daniell integral. 

7E. dward James McShane., Inteffra tion, ·. Princeton 
University Press, Princeton, 194. pp. 52-75, 
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Summary 

Chapter II details the construction of a linear.function-

al called the Daniell integral. A vector space A of bounded 

real valued functions defined on an arbitrary set X was post-

ulated. In addition, A was assumed closed under the oper-

ations v and A. An order preserving linear functional I, on 

A into the reals was also postulated with the additional con­

dition that I(f n) converges to zero where {fn1 is a non-

increasing sequence of functions of A whose limit is zero. 

A class of functions, A*, was then defined as the limit 

functions of non-decreasing sequences of functions of A. The 

functional I was then extended to A~"" in a natural way, that 

is, if (rn1 ff,. I(f) = lim I(fn) . 

.. For arbitrary real valued functions f having X as domain, 

an upper integral U was defined as U(f) = inf~{g)[g EA* and 

g ~· f], . A lower integral L was defined as L(f) = ..,.U( ..,.f). 

f was said to be summable if U(f) = L(f) and U(f) was finite. 

The Daniell integral J was defined on summable functions by 

Jr= U(f) = L(f). It was shown that the Daniell integral 

satisfies the following conditions: 

i) The class of summable functions is a linear 

lattice space on the set X. 

ii) The Daniell integral is an order preserving 

linear functional .on the class of summable 

functions. 

iii) An analogue of the Lebesgue Monotone Convergence. 



.· Theorem (for.Lebesgue integrals) exists for 

the Daniell integral .. over . the summable 

functions . 

.. Finally, it was .observed that the Daniell integral 

includes the Lebesgue integral as i special case. 

27 



CHAPTER III 

A GENERAL INTEGRAL DEFINED BY A NORM 

This chapter presents the definition and elementary pro-

parties of a general integral as developed by M. H .. Stone. 

Postulates 

A is a non-empty class of real valued.functions called 

elementary functions, defined on an arbitrary non-void domain 

X, such that for all real numbers a, and for all f and gin A: 

a-,-1, af in A, 

a-2. f +gin A, 

a-3. \f\ in A. 

Eis a real valued linear functional defined.on A. 

That is, for all real numbers a, and for all f, gin A: 

b,-1, E{af) = aE(f), 

b-2. E(f + g) = E(f) + E(g), 

b-3 .. E(lf\) 2:: 0. 

The following additional condition is also assumed: 

b-4, If f and f n are in A and [f \ < 2. \f n~ then 

E ( If \ ) < 2. E ( \f n \ ) • 

Let B be the set of all extended real valued functions 

defined on X. In B such expressions as O·f, f + g and f - g 

could be awkward in view of the fact that +"°and - o0 are 

28 
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perrnissable function values .. For the moment it will be 

assumed that O·f, .f + g and f - g is any function in A that 

assumes the respective values O··f(x),.f(x) + g(x), .f(x) - g(x) 

for all x where the latter quantities are defined. It is 

admitted that this convention 1;tllows·ambiguity, but it will 

be seen later that this situation raises no serious obstacles • 

. DEFINITION Ll ... For·each fE B, letN·be the extended 

real valued function defined by 

N ( f) = inf [ g I g = L E ( I f n I) , I f I ~ L If n I , f n E A] . 
.. If the inequality If I s L If n I cannot be realized, or 

the series L E( I fn I) diverges, let N(f) = + 00 • 

. Some of the principal properties of·N.will. nowbe obtain-

ed. Unless stated otherwise, all functions in this section 

are assumed to be in B • 

. THEOREM 1 .• 2 • .. If f E B, 0 S N ( f ) S + 00 • 

Proof: E (If n I) > 0 for all f n E A therefore L E (If n I ) ~ 0. 

THEOREM 1.3. If a ER, and f EB, then N(af) = lalN(f) 

unless a.= 0 and N(f) - + 00 • 

Proof: Let a·= 0 and N(f) be finite. Then N(O·f) = N{O) 

= 0 = O·N(f) which disposes of this case .. Thus. as.sume a.=1: 0. 

N ( af ) = inf [ g I g = L E ( l af n I ) , I af I ::; 2. I af n J , f n E A} 

· · - inf { g I g = I a I L . E ( I f n I ) , I a I I f 1· < I a I L I f nb f n E A} 

= I a I inf (g I g = L E ( I f n I ) , I f I < L I f n I , . f n E A} 

la! N(f) . 

. THEOREM 1.4. If Ir I < 2. I fn I· then N(f) < 2. N(fn). 

Proof: For each n, 
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N(fn) = inf (gn jgn = i E( lhnJ· I), .!fn I ~ ? lhnj I, h . EA} 
J . J nJ 

. hence L N ( f n ) = inf [2, g n I L g n . = L L E ( I hn j I ) , 
n . n n j 

~ If n I <_ 1 r I hnj I, hnj E A J • 

. but If I < L I f n I< L ~ I hnjl 
n n J 

so N(f) < ~ ! E(!hnjl) where L jrnl < L L hnj• 

That is, N(f) < L N(fn). 

COROLLARY 1. 5. N ( f + g) < N ( ·f) + N (g ) . 

Proof: For all f, g, If +.gl ~!fl+ lgl, thus by 1.4, 

N(f + g) < N(f) + N(g). 

COROLLARY 1.6. N(f) < N(g) whenever !fl < jg j. 

Proof: Direct application of 1.4. 

The following theorem is an immediate re.sult of the 

definition • 

. THEOREM L 7 . N ( I f I ) . = N ( f ) • 

. THEOREM 1 • 8. If f E A, N ( f ) = E ( If I) . 

Proof: . Since lrl < I fl and f E· A, N(;f) < E( Ir I) by the 

definition of N. . Since E ( If I) :5. L E ( Ir ri I) whenever 

fn E ·A and If I < ! lfn I, it follows that E( If.I)< N(f) = 

inf [ g I g = L E ( I f n I ) , f n E A , I f I < L [ f n I] . . Thus 

N(f) = E(f). 

. Properties of the. Norm 

Before defining the generalintegral,.an important sub-

set of B will be considered. 
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DEFINITION 2 .. 1 .. F = (flf EB and N(f) <+ 00 }. 

N restricted to Fis a pseudo-norm on F, as is evident from 

1.2, 1.3, and 1~5, however, N does not induce a metric since 

N(f - g) = 0 does not imply that f = g. The usual procedure 

for overcoming this difficulty is displayed below. 

In this section, all functions are assumed to be in F 

unless otherwise noted . 

. THEOREM 2. 2. N ( f - g) is a pseudo-metric on F. 

Proof: Let f, g, and h E F. 

1. N(f g) = 1-11 · N(g - f) ·= N(g - f) by 1.3 and 1. 7. 

2. N(f f) = N(O) = 0. 

3. N(f g) = N( ( f h) + {h -1 g)) < N(f - h) + N(h -

by 1.5 . 

g) 

. THEOREM 2.3. The relation N(f - g) = 0 is an equivalence 

relation on F. 

Proof: 1 .. Reflexivity follows from 2.2, part 2. 

2. Symmetry is a special case of 2.2, part 1. 

3 . . Suppose N(f - g) = 0 and N(g - h) = 0 

Then N(f - h) ~ N(f - g) + N(g - h) = O by 2.2, part 3. 

but N(f - h) :z O by 1 .. 2. . Thus N(f - h) ::: 0 . 

The relation N(f - g) = 0 thus partitions F into equiva-

lence classes. 

DEFINITION 2.4. Let A, B be equivalence classes of F. 

Then N(A - B) = N(a - b) where a EA, b EB. 

THEOREM 2 .. 5. N(A - B) is a uniquely defined distance 

function on the pairs of equivalence classes of F. 



Proof: Let a,. a1 E A, b, b 1 E B, where A and B are 

equivalence classes of F . 

. N(a - b) < N(a - a1) + N(a1 - b). = N(a1 - b) 

N(a1 - b) < N(a1 -.b1) + N(b1 - b) = N(a1 - b1). 
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Thus N(a - b) < N(a1 - b1 ). This inequality can be reversed 

by the same argument, thus N(a - b) = N(a1 - b1 ). 

It is the usual practice to refer to N(g) where g E.F, 

when,.properly speaking, N(G) is meant,. where G is the equiva-

lence class containing g .. Adopting this practice, it is now 

clear that N(f - g) = O if and only if f = g .. Thus, it is 

permissible to say that N(f - g) is a.metric on'.F . 

. As was. stated -before, the functional N · is a pseudo-norm 

on F. It is now appropriate to discuss some properties of 

the so called "null functions" and 11 riull sets". 

_ DEFINITION 2. 6. _ f E F is called a. null function if 

N(f) = 0. 

DEFINITION 2. 7 •.. Let C C. A. . Then C is said to be a null 

set if and only if the characteristic-function of C,.Xc, i~ 

a null function. 

{
l if x E C 

Note, Xc(x) = J 
O if x 'l C. 

It will be convenient to use the phrase "almost every­

where'', to signify "with the exception of the. points of a 

certain null set". 

__ THEOREM 2. 8 .. f E F is a null function_ if and only if 

f(4) = 0 almost everywhere. 
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Proof: First, suppose f(x) = 0 almost everywhere. 

Then N(Xc) = O where C = [xlf(x)-;/: o}, and N(nX0 ) = .0, 

n = 1,2, •... by 1.3 .. ~ince lfl < ~ .nX0 , N(f) < 2. N(nX0 ) = o 

by 1~4· Thus f is a.null function. 

Next, .suppose N(f) = O, and let C = f xlf(x) -:/: o} . 

. Then Xe< ~ n jfl hence by 1.4 N(X0 ) < 2.N(n (f)) =2.nN(f) = o. 

Therefore C is a null set and.f(x) = 0 almost everywhere. 

THEOREM 2. 9. If G C A is covered by a countable family 

of null sets, G is a null set. 
c,e 

Proof: Let nYl Gn be a covering of G, where N(Xan) = O, 

. n = 1, 2, . . . . Clearly Xa < ~ XGn, therefore by 1.. 4 

N(Xa) < 2. N(XG ) = 0. Thus G is a null set. n . n 
THEOREM 2.10 .. If f E F, f is finite almost everywhere. 

Proof: Let f E F, and C = [xi lf(x)I. = + 00 ]. 

Clearly Xe<~ jfl, n = 1,2, ... hence, 
1 ··· M 

N ( Xe ) < n N ( f ) = n, n = 1, 2 , ... , where 

N(f). =Mis finite since f E F.' 

It follows that N(X0 ) < l~m ~ = O, so 

C is a null set, and f is finite almost everywhere. 

Properties 2.8, 2.9, and 2.10 indicate that the null s~ts 

here play a role analogous to the sets of measure zero in the 

Lebesgue theory. 

At this point it should be noted that such expressions 

as O·f, f + g, and f - g are not ambiguous since, in view of 

2.10, each of these expressions is finite almost everywhere. 

That is, if two functions in Fare equal to one of the above 
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expressions, .. the two functions differ at most on a. null set, 

and therefore both functions are in the same equivalence class . 

. Clearly,.F is a,vector space over the. reals, indeed, 

.using the norm N, the following important result will be 

established. 

THEOREM.2.11. The normed vector space F.is complete. 

r-roof: Let ffn} be a Cauchy sequence of functions of·F. 

Then there exists an n such that m > n •N(fn - fm) < 2'.'" 1 . 

Since the positive integers are well~ordered, there is a 

smallest such n, say. n1 such that this inequality holds. Let 

gl = fni· In general let gp = 
index such that m > np::;>N(fn 

p 

Let g = lg1I + L lgn+l - gn I· 

fn, where np is the smallest 
p 

- f) < 2-P. m 

Then 

N(g) s. N(lg1 I)+ L N(jgn+l - gnl) by.1.4 

,= N(g1 ) + L N(gn+l - gn) by 1.7 

< N(gl) + L 2'.'"n < +oo . 

. Thus g E F and so g is finite almost ever;ywhere by 2.10 .. That 

is the series I g1 I· + L I gn1 - gn I converges almost everywhere, 

and thus so does the series gi + L · (gn+l - gn) · 

= { O if g (x). = oo 

Let f (x). 
· g1 (x) + L (gn+l(x) - gn{x)) if g(x) is finite. 

Then lrl ~ g = lgl and so N(f) $ N(g) <+~by 1.6 and 

therefore f E F. That is, f = g1 + L (gn+l - gn) almost 

everywhere, ~nd· f - gk .. = 
00 

2. (g;n+l - gn) almost everywhere. 
n=k 
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so N(f - gk) ~ I N(gn+l - gn) = 2-k+l by 1.4 .. That is, 
n=k 

l~m N(f - gk) = O almost everywhere . 
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. From the definition of gn, and the fact that [f n)is a· Cauchy 

.. sequence it is clear.that~;~ N(gk -.fn).= 0. 

Since N(f - fn) < N(f - gk) + N(gk - fn) by 2 ..• 2 it follows 

that 1 im N ( f - f n) = 0 as n ( and k) ~ o0 • 

Now N(f) = N(f - fri + fn) < N(f - fn) + N(fn) by L.5 

therefore N(f) - N(fn) < N(f - fn). The other inequality 

needed to conclude that IN(f) - N(fn) IS N(f - fn) can be 

obtained. in the same way. Therefore 

1 im I N (f) - N ( fn) I < 1 im N ( f - f n) = 0. That is, 

lim N(fn) = N(f) .. Thus the Cauchy sequence {fn] 

converges. to f E F,. and so F is complete. 

Note: In view of 2.11, t~e normed vector space Fis a 

Banach space . 

. DEFINITION 2.12. r+ = }(I fl + f), f-.= i( If I - r), 

where f E F. It is clear that f+ and f- are b-0th non-nega­

tive, and that both are in F if f E F. 

DEFINITION 2.13 •. If. f E F, G(f) = N(f+) - N(f-) . 

. An interesting result that will be needed l~ter is the 

fact that G is a continuous mapping. To prove this, the 

following two lemmas are needed. 

LEMMA 2 . 14. I N ( f+ ) - N ( g + ) I < N ( f+ - g + ) and 

jN(f-) - N(g-)1 < N(f~ - g-); 

Proof: Only. the first statement will be proved, as the 

proof of the second is identical. 



N(f+) = N(f+ - g+ + g+) ~ N(f+ - g+) + N{g+) by 1.5. 

That is, 1) N(f+) - N(g+) < N(f+ - g+) 

Similarly N(g+) - N(f+) < N(g+ -

= N(f+ Thus 
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-N(f+ - g+) < N(f+) - N(g+). This result with 1) completes 

the proof. 

LEMMA 2.15. Ir+ - g+I < Ir - g\ and Ir- - g-1 < Ir - g I. 
Proof: Ir+ - g+ I= lt[lrl + f - (jg! +.g)]j. By taking 

cases the proof is easily finished. Similarly for the second 

statement. 

THEOREM 2.16 .. G is a continuous mapping of F into R. 

Proof: Let f E F, and E, > 0. Then for all g such that 

N(f - g) < E:/2, 

I G ( r) - · a ( g ) I = I N ( r+ ) N ( r- ) - N ( g + ) + N ( g- ) I 
~ I N ( ;r+ ) - N ( g + ) I + I N ( f- ) - N ( g- ) t 

< N(f+ - g+) + N(f- - g-) by 2.14 

< 2 N(f - g) by 2Al5 and 1.6. 

< €. 

An important consideration is whether the functional G 

is consistent with Eon those functions in An F. Thus the 

following theorem. 

THEOREM 2. 1 7. AC F, and if f E A, G (f) = E (f) . 

Proof: Let f EA. By hypothesis E(f) is finite for all 

f EA, and since E(.f) = N(f) by 1.8, f E F. It is also 

clear from the hypotheses on A, that r+, r- E A when f E A. 

Thus G(f) = N(f+) - N(f-) = E(f+) - E(f-) 
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= E(f+ -.f~) by b~2 

= E(f) .. This completes the proof . 

. Definition of the Integral 

DEFINITION J.1 .. Let A-l} be the closure of A in: F, and 

L the contraction of G to A-l}. If f E· A-l}, f is said to be 

integrable, and its general integral is taken to be L(f) = 
N ( r+) - N ( r-) . 

.. It is evident from the definition,. that the integrable 

functions are those functions that can be approximated by 

. elementary functions in the sense of the norm.for F. 

In this section it will be shown that A* and L,enjoy the 

properties assumed.for F and E respectively,.in a~l, a~2, a,..3, 

b~l, b~2,. and b~3. 

THEOREM 3 .. 2. A-l} is a.normed subspace of F with norm 

L(lfl). 

Proof: . Let f EA* •. Then 

L( If I) = N( If 1+) N( 1r1-) 

= N(!( lfl + lrl)) N(!(lfl - 1r p) 
- N ( Ir I) = Ntr ) . 

Since N has been shown to be a norm -0n F,. it follows 

that L( Ir I) is a. norm on A-:} .. 

THEQREM,3.3. f E A* and a E R ~ af E · A-l}. 

Proof: Let f E A-:}, a E R, a.f:. O, and E; > 0. By 3.1 it 

follows that there. exists a function h EA .such t~at N(f - h)< 

E; • Now ah EA by a-1 and N(af - ah) = ·1alN(f - h) < ~,. :; 
Fi 
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· thus af E A-::-. 

THEOREM,3.4 .. f,g E A-ll-~f + g E·A-::-. 

Proof: Let E > 0. There exists hi, h2 EA-such that 

' N(f - h1) < E!;2 and N(g - h2) < E:;2 •.. Now h1 + h2 E A by a-2, 

and N(f + g - (h1 + h2)) < N(f -h1 ) + N(g - h2 ) by 1.5 

<y2 + e.;2 = E: 

thus f + g E A-::-. 

THEOREM 3 • 5. · . If f E A-::-, r f I E A-::-. 

Proof: Let E: > 0 •. There exists a,n h EA such tha,t 

N(f - h) < E;. Also lhl EA by a"'."3 •. Now flfl - lh!I < jr -hi 

therefo~e N( lrl - lhl) = N( llrl - lhl·\) by 1.7 

$N(lf - hi) by 1.6 

= N(f - h) by L.7 

< ~. 
the ref ore f E A • I I -l} 

. THEOREM 3.6. If f E A-l\ and a E .R, L(af) = aL(f). 

Proof: L ( af) = N ( ( af) +) N ( ( af )- ) 

- N[i( larl + af)] - N [t(lafl - af)] 

= N[}(lal lrl + af)] - N{i( !al I fl - ar)] 

The remainder of the argument will be for a< O. 

as above. 

= N [!( -a ( If I - f))] - N [!( -a ( If I+ f) ) ] 

= . I-a I N {i ( If I - f ) ] - I-a I N [ i ( If I + f ) ] 

= a{N[t( jrl + r)] - N[t( Ir I -.r)]} 

= aL(f)~ The argument for a >o is exactly 

THEOREM 3 • 7 . _ If f , . g E A -i:-, L ( f + g ) . = L ( f ) - + L ( g ) . 
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Proof: . 1 is continuous at f + g · therefore if E; > O there 

exists a 81 > 0 .such that N( (f + g) -h) < 81 :::;> IL(f + g) -

L ( h ) I < E: • . That i s , 1 ) 1 ( h ) - E: < 1 ( f + g ) < 1 ( h ) + E: • 

Also 1 is continuous at f and g, therefore there exists 

b 2 , 8 3 such that N ( f - h 1 ) < 8 2 , N ( g - h2 ) < 8 3 ~ 
2) IL(f) - L(h1 ) I< E:;2 and IL(g) - L(h2 ) I< E:;2 . 

. Let 8 = min [8 1 , 82 , 83]. . Since :f, g are in the closure of 

·· A there exists h3, h4 E A such that 

N ( f - h3 ) < 8 /2, N ( g - h4) < 6 /2. . Thus 

N ( ( f + g) - l(lh3 + h4)) < N ( f - h3 ) + N( g - h4 ) · by. 1 . .5 

< 8;2 + 8 /2 = 8 . Therefore 

h3 + h4 serves as an h function in 1) .. Th.at is, 

3 ) 1 ( h3 + h4) - €. < 1 ( f + g ) < 1 ( h3 + h4) + (; . 

Also h3 ~erves as an h1 , and h4 serves. as an h2 in 2) 

thus L(h3 ) + L(h4) - (; < L(f) + L(g) < L(h3 ) + L(h4 ) + E:. 

That is,. E(h3 ) + E(h4 ) -E: < L(f) +. L(g) < E(h3) + E(h4 ) + E; 

by 2.17 •. Therefore 

E(h3 + .h4) - E: < L(f) + L(g) < E(h3 +· h4) + E; by. b-2 • 

. thus 4) L(h3 + h4 ) - E; < L(f) + L(g) < L(h3 + .h4.) + (; • 

. Since E: is arbitrary,.it follows from 3) and-4) that 
-

L(f + g) = L(f) + L(g). 

TEEOREM 3 . 8. If f E A-l},. L ( If I ) > O. 

Proof: . If f E A1i-, !fl E A1}, and. 1 is continuous at If I , 
the ref ore if E: > 0 there exists a 8 > 0 such that 

11( lfl) - L(g) I< E; whenever N( If I - g) < 8. 
From the proof of 3 .. .5 it is evident that there exists a 



ft1.nction I h I in A .such that N( !fl - lhl) < 8, 
thus IL ( If I r - L ( I h I ) I < E: 

therefore L( If· I) > L( lh P - E: 

= E( I h I) - E: . by 2 .17 

> - E: since Eq~) > 0 .. That is, 

L(lfj) > -€ .. S.ince E: was arbitrary,> it-follows that 

· L(jfl) > O. 

LEMMA J.9. If f E A{} and .f > 0,. L(f) - N(f). 

Proof: L(f)::: N(f+) - N(f~) 

= N(}( lfl + f)) N(}( lfl - f)) 

= N ( f) • 

THEOREM 3. 10. If f == L f n,, f n E ··A{}, f n ~ 0,. n = 1, 2, ... , 

then f is integrable if and only. if 2.· L(f n) converges and 

. in this case L(f) = 2. L(fn). 

Proof: Suppose f is integrable where f · = L f n' 
{} 

_fnE A, and fn > O, n = 1,2, •••. . _Necessarily, f E F so 

N(f) < + 00 • 

m m 
. Now L L(f n) 

. n=l 
= L( 2. fn) by a generalization of 3.7 

n=l 
m 

- N( 4 fn) by 3,9. 
n=l 

m m 
Let lgj·= I I fn I= 2. f < f = jfj. Then 

n=l n=l n 
m 

N(g) < N(f) by 1.6 .. That is, N( L fn) <· N{f). 
n=l ·· 

m 
.. Thus for all m, L L(fn) < N(f) < + 00 • It follows that 

.. n=l 

L L(fn) is a convergent series. 



Suppose now that S = 2. L(f) <o0, n where f = 2. fn, 

fn E 
{} 

f n ~ O, 1,2, .... A ' n = 

Since lrl < L lrnl 

N(f) ~ 2. N(fn) by 1.4, 

= LL(fn) < + 00 by 3,9 

and so f E F. 

m Ir - L f nl = 
n=l 

I oD f nl < f Ir I and so 
n~+l n=m+l n 

m eo 

1) N(f - L fn) < L N(f n) by 1.4 
n=l n=m+l 

00 

= 2. L(fn) by 3.9. 
n=m+l 

00 m 00 

Since L L(f ) = s - I L(f ) ; lim 1 L(f ) = 
n=m+l n n=l n m~oo n=m+l n 

and therefore 2.fn converges in A-3:- to f. That is f E A 

m * m 
Now O < ( f - L f n ) E A , so 1 ( f - L f ) ~ O by 3 . 8 . 

n=l n=l n 

m 
Also N(f - L fn) = L(f -

. n=l 

m 
2. f) by 3. 9 

n=l n 

m 

0 

-3} . 

= L(f) - 2_ L(fn) by a generalization 
n=l 

qf 3.7. Thus is view of 1) above, 

m oo 

0 < L(f) - L L(fn) < L L(f n). Since in the 
n=l . n=m+l 

limit the right member is zero (see above) it follows that 

L(f) = L L(f ). This concludes the proof of the theorem. 
n 



CHAPTER IV 

A GENERAL INTEGRAL DEF.INED ON PARTIALLY ORDERED SETS 

E. J .. McShane's treatment of integration theory is closely 

. related to that of Daniell's, however; McShane develops the 

integral in a far more general setting then did Daniell and 

as a result his theory finds conijiderably wider application. 

For example, a special case of. McShane's theory yields 

the Lebesgue - Stieltjes integral, while another case results 

tn an integral similar to the Perron integral, and perhaps 

identical with it. 

In this section, McShane's approach to a general integral 

will be discussed briefly .. The details, although not particu­

larly difficult, are lengthy because of the generality. of the 

setting. Thus a mathematical presentation of the theory will 

. not be included; rather a statement of the problem will be 

followed by a closer look at the important concepts involved. 

Let F and G be two partially ordered sets, and Ebe a 

subset of F. Let I be an order preserving mapping of E into 

G. What conditions are necessary on E, I, F and G to allow 

I to be extended to a larger subset of F, in such a way that 

I, on the extended domain, has certa!n desireable properties 

of an integral? 

To simplify the theory, Fis assumed to be a lattice . 

. 42 
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This is actually a weak restriction, for every partially 

ordered set can be embedded in a lattice. Then if the exten­

sion of I yields a domain containing points of the lattice 

not in the original F, these points may.be ignored. 

G, however, is not assumed to be a lattice, and this fact 

constitutes one of the chie( differences between McShane's 

treatment and others that have preceded it. In view of the 

generality of G, it is necessary that a theory of closure, 

completeness,.and convergence be developed for partially 

orde.red sets. Al though the detc!:l,ils .of these concepts are of 

fundamental importance in a mathematical presentation of the 

theory, .a few definitions will suffice for this discussion. 

A lattice F is g-- complete if every countable non-empty 

subset of F has a supremum and infimum in F. 

A set G is directed by a partial ordering> if for each 

pair of elements a,b in G, there exists an element c in G 

such that c ~ a and c ~ b . 

. A partially ordered set G is Dedekind complete if for 

every non-empty subset S of G which is directed by~ and has 

an upper bound in G, the supremum of Sexists in G,.and for 

every non-empty .subset S of G which. is directed by< and has 

a.lower bound in G, the infimum.of Sexists iri G. 

In this definition, the restriction to directed subsets 

of G is significant, for without this restriction, every two 

elements of G would have a supremum and an infimum. That is, 

. G would necessarily. be a lattice. 
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The concepts of convergence and closure in partially 

ordered sets are not used in the theory leading to the defini-

tion of the integral. However, these ideas play. a major role 

in developing certain properties of the integral such as the 

Lebesgue dominated convergence theorem, Fatou's lemma,.and 

others. Thus the following definitions are included for their 

own interest. 

If f is a function which assigns to each element b of a 

directed set A a functional value f(b) in a set M, then f is 

called a net of elements of M. 

A net is a generalization of a sequence; a sequence being 

a function g which assigns to each positive integer n a func­

tional value g(n). See McShane 8 for a discussion of nets and 

convergence in partially ordered sets. 

Let f(b) (bin a directed set A) be a net of elements 

of a partially ordered set F. The net f is Q-convergent if 

there exists subsets M, N of F such that: 

1. M is directed by ~ and N is directed by<; 

2. sup M.and inf N exist and are equal; 

3. for each m in M and n in N.there exists a b 1 in A 

such that m< f (b) < n whenever b > b1, b in A. 

In this case, f is said to be 0-convergent to sup M. 

A type of closure can be associated with o~convergence 

BE. J .. McShane,"Partial Orderings and Moore - Smith 
Limits", American Mathematical Monthly, 59 (1952) pp. 1-11. 
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in a natural way. 

Let S be a subset of a partially ordered set F. Then 

Sis said to be closed under a-convergence if it is true 

that whenever f is a net of elements of S which is a-conver­

gent to an element f of F, f belongs to S. 

For convenience, the following notation will be used in 

the remainder of this discussion. 

Let S be a subset of a partially ordered set F. Then 

/\ S denotes the infimum of S and 

v S denotes the supremum of S, when they exist. 

If S consists of just two members, say S = [a,bJ then /\S 

will usually be denoted by a/\ b, and v S by av b. 

In applications of the general theory of integration, it 

is sometimes useful to consider a "strengthening" of a given 

partial ordering. Even in the case of the real numbers there 

is often an advantage in considering, along with the ordering 

2, the stronger ordering> .. Note that in a general setting, 

if > is a partial ordering of a set, so is 2, where a > b is 

defined to mean a> b or a= b. 

The postulates needed to develop the general integral are 

the following: 

1. . F is a 0--complete lattice under the partial 

ordering >. 
2. G is a Dedekind complete partially ordered set. 

3. I is an order preserving mapping of E into G, 

where Eis a subset of F. 



4. If s1 and s2 are countable subsets of E directed 

by> and < re spec ti vely, and having v s1 > /\ s2 

and if v I(S1 ) and A I(S2 ) both exist in G, the 
- -

inequality v I(S1 ) > I\ I(S2 ) holds. 
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As an instance of these postulates; F could be taken as 

the class of all real~valued functions defined on an arbitrary 

set A, Gas the real numbers,. Ea subset of F, and I an order 

preserving mapping of E into the real numbers. The partial 

ordering of Fis the natural one induced by the reals, whereas 

the partial ordering of G is the usual ordering for the reals. 

Since this instance includes the assumptions of Daniell it is 

apparent that Danielljs postulates are a special case of 

McShane's postulates. 

As was mentioned previously, the objective is to extend 

the domain of I to a larger subset of F, in such a way that I, 

on the enlarged domain,. has the desired properties of an inte-

gral. As a first step in the extension procedure, two new 

subsets of F will be defined. 

An element u in Fis a U-element if there exists a 

countable subset S of E, directed by 2, such that v S = u. 

Each such set Swill be said to be associated with u. If 

such a set exists for which it is also true that I(S) = 

[I(x)\ xE SJ has an upper bound in G, 1.i; is a summable 

U-element. 

An element h in Fis an L-element if there exists a 

countable subset S of E, directed by<, such that I\ S = h. 
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Each such set Swill be said to be associated with h. If such 

a set exists for which it is also true that I(S) has a lower 

bound in G, his a summable L-element. 

A mapping of the U-elements and L-elements into G is 

defined in the following way: 

If u is a summable U-element, and Sis associated with 

u, then I 1 (u) = v I(S). If his a summable L-element and S 

is associated with h, then I 1 (h) = A I(S). 

The existence of v I(S) and A I(S) is assured since G 

is Dedekind complete, Furthermore, the following theorems 

can be established, thus proving the consistency of the defi­

nition if I 1 . 

If u is a summable U-element and s1 and s2 are associated 

with u, then v I(S 1 ) = v I(S2), A similar result holds for 

summable L-elements. Thus the definition af r 1 is consistent. 

If f is both a summable U-element and a summable L-element, 

the value found for I 1 ( f) when f is r-egarded as a summable 

U-element is the same as the value found when f is regarded 

as a summable L-element. That is, the symbol I 1 (f) is not 

ambiguous. 

Two important properties of the mapping I 1 are the 

following: 

If f 1 is a summable U- or L-element and f 2 is a summable 

U- or L-element, and f 1 ~ f 2 , then I 1 (f1 ) < I1(f2), 

If K is a countable collection of summable U-elements 

directed by>, then v K is a summable U-element if and only 
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if the set r 1 (K) has an upper bound in G, and in that case 

Definition of the Integral 

If f is in F, U [-:? f} is the class of all summable U­

elements u satisfying u > f and L f< f} is the class of all 

summable L-elements h satisfying h <.f. 

If f is in F, and both U [>r} and L (5::f} are non-empty: 

fr= /\I1 (U (>f)) 

fr= v I 1 (1 {<r}) 

ft and j f are said to be the upper and lower . integrals 

off respectively . 

. Some properties of these integrals are the following: 

If f is in F and Jr and fr exist, then Jr <Jr. 
If r1 and r 2 are in F, and both have upper and lower 

integrals, and if r 1 < f2, then f r 1 < Jr 2 and J r 1 < Jr 2 . 

If f is an element of F for which fr and J f are defined 

and equal, the integral off, Jr is defined to-be: 

Jr = fr = Jr. 
In this case f is called a summable element. 

The word "summable" was also used in connection with 

certain U- a.nd L-elements, but since the following statement 

can be shown true, there is no contradiction between the 

two uses. 

If f is in F and is a U- or L-element, it is a summable 

U- or L-element if and only if it is a summable element, a.nd 
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in this case J f .. ::: I 1 (f) . 

. The following result is irnmediate·from the order·preserv­

ing property of}'. 
If f 1 and f 2 are summable, and f 1 < f 2 , then ff 1 < ff 2 • 

In view of the generality of both the domain and range 

spaces,. the .properties of the integral are limited. It is the 

case however.that a. number of additional results can be ob-

tained.under slightly stronger hypotheses. 

For example, suppose the range space G is a commutative 

group under addition. Generalizations of Lebesgue's dominated 

convergence theorem and Fatou's lemma may now be obtained. In 

addition certain lattice properties hold on the class of sum-

mable elements. By way of illustration, one such result is 

cited. 

If f 1 and f 2 are summable elements of F such that I(f1 ) 

and I(f2 ) have a common bound, then f 1 v f 2 and f 1 I\ f 2 are 

summable and I(f1 v r 2 ) + I(f 1 A f 2 ) = I(f.1 ) + I(f2). 

As a final example, suppose that both F and Gare com-

mutative groups under addition, that both are closed under 

scaler multiplication by reals and that for all f, gin E, 

and for each real number c, I(f + g) = I(f) + I(g) and I(cf) 

=cI(f). Then J has the following properties .. If f 1 and 

f 2 are summable elements of F,.andc is areal number, then 

f1+f21::1.nd. cf1 are summable and 

I( f 1 + . f2 ) = J f 1 + J f 2 

fcf1 = cff1. 



CHAPTER V 

.SUMMARY AND CONCLUSIONS 

This paper presents the definition and elementary pro­

perties of a general integral as framed by P. J. Daniell, 

M. H. Stone, and E. J. McShane respectively. 

The general integrals as defined by Daniell and McShane 

depend almost entirely on order properties, with McShane 1 s 

theory evolving in a more general setting than Daniell's. 

Stone, on the other hand, uses order properties only to de­

fine a norm on the class of elementary functions; the general 

integral then being defined in terms of this norm. 

In each of the three developments, a functional is 

assumed on a certain class of elementary functions. The 

functional is then extended to a larger class of functions 

so as to possess the desireable properties expected of a 

functional that is to be called an integral. 

An important consideration in each of the theories is the 

fact that the domain of the elementary functions are arbitrary 

sets, and thus no underlying properties of the domain space 

are involved. This, as well as the fact that each of the in­

tegrals include such classical theories as Riemann and Lebes­

gue integration, justifies the name "general" integral. 

Presently, most of our undergraduate mathematics students 
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learn little of the theories that have developed since Lebes-

gue's work in 1902. However, with the continuing trend to-

ward teaching more advanced topics in the undergraduate pro-

gram this writer feels that it is not unreasonable to expect 

that such topics as an introduction to general integrals may 

soon play a part in the training of our undergraduates. 
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R 

x EA 

p ::;> q 

Df 

f > g 

APPENDIX A 

Index of Symbols 

the set of real numbers 

.x.is an element of the set A 

the proposition p implies the proposition q 

domain of the function f 

a non-dacreasing sequence of functions, that is 

f n < f n+ 1 n = 1, 2, ... 

lim fn . n~oo 
a non-decreasing sequence of functions having f 

as a limit 

(f nJ t f a non-increasing sequence of functions having f 

as a limit 

co 

· L fn 
• n=l 

AC B the set A is a subset of the set B 
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