THE ORGANIZATION OF COMMERCIAL CATTLE RANCHES IN SOUTH CENTRAL
 OKLAHOMA FOR PROFIT AND STABILITY: STATIC
 AND DYNAMIC ANALYSIS

By
WOLFGANG MARTIN SCHULTZ
DiplommLandwirt
Justus Liebig Universitaet
Giessen, Germany
1954
Doktor der Landwirtschaft Justus Liebig Universitaet

Giessen, Germany
1956

Submitted to the Faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSDPHY
May, 1965

THE ORGANIZATION OF COMMERCIAL CATTLE RANCHES IN SOUTH CENTRAL oklahoma for profit and stability static

AND DYNAMIC ANALYSIS

PREFACE

More often than not an investigation raises more questions than it answers. Yet there is a time when even intermediate results must be summarized and presented to the scrutiny of collegues and, when the work is in the area of management, to the acid test of practical usefulness.

This is a theoretical study of a practical problem. The author is aware that he often used language that is not the language of the practitioner, and dwelt on questions that might have been sattled on the basis of experience. Still he found it gratifying that the results obtained by a "theoretical" approach could be compatible with the recommendations of practicioners (88). If this study has added little that is new to the knowledge of ranching, it should be encouraging to see that both experience and analysis can arrive at common conclusions from widely separated initial positions. This study can contribute toward the improvement of the systematic analysis of ranch operations, and the subsequent development of dynamic management in this field.

The author gratefully acknowledges the help, support and encouragement received by many persons:

The members of his Advisory Committee, Doctors James 5. Plaxico, chairman; Ceoffrey P. Collins, Carl Marshall, Kermit Bird (until 1963), Odell L. Walker, John Klein (until 1961), and L.B. Warner;

Dr. Leonard F. Miller, formerly head of the Department of Agricultural Economics, O.S.U., who supported my application for an assistantship;

Dr. W. Granet, director of the D.S.U. Computing Center, and the personnel of the center;
my fellow graduate students, especially Dr. Alfred Barr and Paul Andrilenas, whom I joined on the same project;

Dr. Arnold 8. Nelson of the Animal Husbandry Department, who straightened out some of my notions on cattle feed requirements;

Dr. R. Leftwich and Dr. J. Bradsher, who straightened out my economics;
the farmers and ranchers whose informations provided body to our analysis;
my collegues and friends at South Dakota State University, the members of the Great Plains Farm Management Committee, among them Don Bostwick, R.M. Finley, C. Jensen, L. Loftsgard, J. Muehlbeier, F. Orazem, and K.R. Tefertiller, and the agricultural economists of the U.S. Department of Agriculture, Warren Bailey, W.F. Lagrone, E.L. Langsford, and E.O. Ullrich, jr., who provided encouragement, moral support and many ideas which have been put to use in this publication;
finally my teachers, collegues and fellow students of the Justus Liebig University in Giessen, Germany, who helped launch my professional career; first among them Dr. Max Rolfes, director emeritus of the Department of Farm Management, and Rector of the University in crucial years of its rebirth, whose sincerity and dedication has inspired his students, and whose activities aroused my curiosity in the worldwide socio-economic problems of agriculture.

Lastly it was my wife who made this possible through her willingness to take upon her the risks and hardships of setting out upon an uncertain future, who held the family together while my mind wandered, and who typed and retyped this dissertation. To her I dedicate it.
Chaptar Page
I. THE PROBLEM AND THE PLAN OF THIS STUDY 1
A. The Study Area 1
B. Management Concepts 3
C. Cattla Price Ratios 6
D. Objectives of the Study 9
E. Analytical Mathods Usad in the Static Analysis 10

1. Linear Programming Principlas 12
il. specifications of the static ranch model 19
A. A Description of the Production Processes in the Static Ranch Modals 20
2. Partial Budgats and the Inputmutput Matrix 20
3. The Matrix of Input, Dutput, and Contributions Coefficients 34
B. A Qualitative Description of Management Decisions Simulated by the Models 35
4. Primary Decisions 36
5. Secondary Decisions 35
6. Subsidiary Decisions 38
C. The Resources Allocated to the Model Ranches 40
iII. RESULTS: THE STATIC MODEL 46
A. Notes on the Interpretation of the Data 46
B. The Basic Situation (Static Model S1) 49
C. Land Productivity and Valuation 54
D. Hay Price Sensitivity of the Basic Situation $(52,3)$ 57
E. Effect of an Alternative Way of Computing Capital Charges (54) 58
F. Dptimal Solutions if Choice of Activities is Restricted 63
7. Stocker Cattle Purchases Eliminated (55,6,7) 63
8. Choices Restricted to Cow-and-Calf Activities $(58,10)$ 68
G. Effect of Changes in Tenure and Size of Operation 69
9. Tenant-Operated Ranch Model (S11) 69
10. A Small Dwner-Operated Ranch (S12) 72
H. Land Mix Variants. 72
11. Four Land Mix Variants, all Production Activities Permitted 72
12. Land Mix Variants, Production Choices Restricted to Raised Cattle 77
13. Range Only, Production Choices Restricted to Breeding Herd (\$21) 78
I. Four Section Ranch Variants with Option to Rent an Extra Section 78

TA日LE OF CONTENTS (Continued)
Chapter Page
IV. SOME GENERALIZATIONS PERTAINING TO THE MANAGEMENT OF CATTLE RANCHES DERIVED FROM THE STATIC ANALYSIS 83
V. PLANS FOR DIFFERENT PRICE LEVELS AND PRICE VARIATIONS 88
A. Description of Resources and Relationships in the "Four And Four" Model Ranch 88
B. Ranch Organizations as Influenced by Price Levels and Price Changes 89

1. Classes of Organizations Covered by the Price Map 89
2. Dptimum Organization for Constant Prices 93
3. Dptimum Organizations if the Price Level Changes During the Period of Production 93
C. The Influence of Price Upon Profit and Overhead Contribution 95
D. The Effect of Erroneous Price Estimates 100
E. Expected Values of the Contribution to Profit and Overhead 104
VI. AN INTERTEMPORAL RANCH MODEL 111
A. Introductory Considerations 111
4. Price Changes Follow a Cyclical Pattern 113
5. Long-Run Plans as Part of a "Dynamic Management" Routine 115
6. Specifications of the Model 116
B. Results 124
7. Price Changes Only 124
8. Beef Prices and Costs Varied 137
9. Some Implications of the Dynamic Model 140
VII. SUMMARY AND IMPLICATIONS OF FINDINGS 145
BIBLIOGRAPHY 150
Appendices 157

LIST OF TABLEES

Table Page
I. Characteristics of Budgeted Cow-Calf Dperations 22
II. Voluma of Beaf Salas, Averaga Pricas Obtained, and Gross Returns per Cow in Budgeted Cow-Calf Dperations 23
III. Direct Costs, Contribution to Profit and Ovarhead, and Input Requirements: Budgeted Cowmand-Calf Aetivities, per Cow 24
IV. Total and Seasonal Labor Requirements for Budgeted Cow- Calf Operations 25
V. Characteristics of Budgeted Stocker Cattle Operations 20
VI. Gaine, Purchase Value, Sales Value, and Gross Revenue per Steer; Budgeted Stocker Steer Dperations, per Stear 29
VII. Direct Cash Costs, Contribution to Overhead and Profit, and Non-Cash Requirements, Budgeted Stocker Steer Dperation, per Stear 31
VIII. Total Labor Requirement and Seasonal Distribution, Budgeted Stocker Steer Operations, Manmours per Staer 32
IX. Forage Budgets 33
X. Resource Situations of Model Ranches 43
XI. Land Valueations and Rental Rates 44
XII. Constraints Set Initially to Zaro 45
XIII. Characteristics of Variants of Static Ranch Model 47
XIV. Accounting Price and Capitalized Value of Classes of Land, Various Interest Rates and Corresponding Optimal Levels of Dperating Capital, no Stocker Cattle Purchases, Full Capital Charges 67
XV. Contributions to Profit and Dverhead, Optimal and Suboptimal Plans for Model Cattla Ranch 98

LIST OF TAgLES (Continued)

Table Paga
XVI. The Effect of a Difference between Buying and Selling Price on Contribution to Profit and Quarhead in the Four and Four Ranch Modal. 99
XVII, Contribution to Profit and Overhaad for Various Anticipatad and Roalized Salling Friees 102
XVIII. The Cost of Imperfect Priee Extimatea 103
XIX. The Diffarance of the Cost of Overestimating and Underestimating Beaf Selling Prices 105
XX. Transition Probabilitias of Calf Priees (Yaar-to-Year Changes 107
XXI. Compounded Expectad Contribution to Profit and Ovarhaad 109
XXII. Intartemporal Ranch Model; Dbjactive Function and Constraints of the Block Submatrix of Year k, Price Level $=100$. . . 12
XXIII. Intertamporal Ranch Model; Ralative Changes in Contribution to Profit and Overhead, Sals of Steer Calves with Assumed Changes in Buef Prica, Cost and Productivity 124
XXIV. Intertamporal kanch Model; Ralative Contribution to Profit and Overhead, with Assumed Changse in Beaf Price Leval 125
XXV. Intartemporal Ranch Modal; Avaraga Eontribution, and Activity Levels - Price Changes Dnly 127
XXVI. Intartamporal Ranch Model; Avarage Contribution and Activity Levels, Price Changes Only. 自y Price Level 120
XXVII. Intertamporal Ranoh Model; Summary of Resulte, Normal Run, Variatale Price Run Averages 130
XXVIII. Intertemporal Ranch Model; Shadow Prices Capital Transfer Activity; Beef Prices Vary. By Year of. Run 133
XXIX. Intertemporal Ranch Model; Shadow Prices, Rangeland, Geef Prices Vary. By Price Level 134
XXX. Intertemporal Ranch Model; Shadow Prices of Rangeland, 期f Prices Varied; Average of Rung ovar a Price Cyola Versus "Normal Run" Data 137

LIST OF TABLES (Continued)

Table Page
XXXI. Intertemporel Ranch Model; Average Contribution and Activity Levels . Price and Cost Changes. By Year of Run 139
XXXII. Intertemporal Ranch Model; Average Contribution and Activity Levels, Price and Cost Changes by Price Levol. 141
XXXIII. Intertamporal Ranch Model; Shadow Prices, Capital Transfer Activity, Prices and Costs vary 143
Figure Page

1. The Study Area 2
2. The Relation of the Price Index of Slaughter Steers, Chicago, and the Price Index of all Farm"Products, 1925m62 7
3. The Relation Between Stocker/Fe日der and Slaughter Cattle Prices, 1925-62 B
4. Contribution to Profit and Overhead and Organizational Characteristics, Basic Four Section Ranch Model 50
5. Demand for Capital and Accounting Prices, Basic Four Section Ranch Model 51
6. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Capital Charged for Months of Use only 59
7. Demand for Capital and Accounting Prices, Four Section Ranch. Capital Charged for Months of Use only 60
8. The Effect of Methods of Capital Procurement on the Relative Profitability of Cows and Steers 62
9. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Raised Cattle only 64
10. Demand for Capital and Accounting Prices, Four Section Ranch. Raised Cattle Only 65
11. Contribution to Profit and Overhead and Organizational Characteristics, Tenant-Dperated Four Section Ranch. Capital Charged for Months of Use only 70
12. Demand for Capital and Accounting Prices, Tenant-Dperated Four Section Ranch. Capital Charged for Months of Use only 71
13. Contribution to Profit and Overhead, Organizational Characteristics, Demand for Capital and Accounting Prices, Small Ranch Model 73
14. Contribution to Profit and Dverhead and Organizational Characteristice, Four Section Ranch. Range Only, Capital Charged for Months of Use only 75

LIST DF FIGURES (Continued)

Figure Page
15. Demand for Capital and Accounting Prices, Four Section Ranch. Range Dnly, Capital Charged for Months of Use only 76
16. Contribution to Profit and Dverhead, Drganizational Characteristics, Demand for Capital and Accounting Prices, Four Section Ranch. Range only, Breeding Herd only 79
17. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Option to Rent an Additional Section of Range 81
18. Demand for Capital and Accounting Prices, Four Section Ranch, with Option to Rent an Additional Section of Range 82
19. Price map: Calf Buying Price Versus Calf Selling Price 90
20. Price Profit Map of the Four and Four Ranch Model 96
21. Prices Received by Oklahoma Farmers for Calves, 1909-63 114
22. Decisions Incorporated into the Intertemporal Ranch Model 121
23. The Hypothetical Beef Price Cycle of the Intertemporal Ranch Model 123

CHAPTER I

the problem and the plan of this study

A. The Study Area

A four-county area in SouthmCentral Oklahoma (Pontotoc, Johnston, Murray, and Carter Counties) is commonly designated "Hereford Heaven" (fig. 1). Shallow limestone soils, rich in organic matter and calcium, provide excellent cattle pasture yet limited possibilities for crop production. This area is the home of many well-known cattle breeders, but the mainstay of the agriculture of this region is commercial calf prom duction. Topography and soils have been described by Gray and Galloway (1).

In 1958 a field survey of the area was initiated by the Department of Agricultural Economics, Oklahoma State University, in order to obtain the basic information for a detailed study of the management practices and alternatives for the region. This study is part of a systematic investigation of management problems, adjustment opportunities and income potentials of various types of farms in Oklahoma.

Fig. 1. Location and Soil Resources of the Study Area

B. Management Concepts

A farm or a ranch ${ }^{1}$ generally is understood to be production unib, i.e. the array of land, buildings, chattel, and ethere physical and nonm physical assets set up and operated under one management. The function of management is to organize and operate the farm so as to maximize a desired objective. The manager of a farm usually sets the objective, and on the great majority of the farms and ranches the manager also supplies the labor.

The operation of a business, or a farm, is the sum of all dayatom day dispositions. From the viewpoint of the farm management scientist operation includes all those decisions and actions which can be done without much delay, without change in the asset structure, and which can be altered on short notice (3, p. 8).

Tha organization of a business, by contrast, includes all longrun dispositions; dispositions that take time to implement, that change the asset structure, and are difficult or impossible to reverse. Organization includes intangibles too, namely the general framework for action in a contingency, the strategy of management.

Strategy, a term borrowed from the military, is the plan of a campaign or war. It is concerned with the long-run course of action. The associated term, tactics, describes the plan of action in the battlefield,

[^0]the short-run plan, the disposition on short notice. Usually amy fomalatad strategy includes a list of alternative tactics that may be employsd in certain anticipated situations (which does not prepare for the unexpected, though).

A strategy frequently employed in farming is to take no positive action, in the hope that difficulties will run their course before reserves are exhausted. Another strategy is to anticipate turns of the market, and perhaps of nature, and prepare ahead as far as possible. This strategy re. quires (a) some notion of the course of events that influence farming, (b) advance knowledge of outcomes of alternative plans under various circumstances, (c) operational skill to do well under a variaty of organizations, (d) a willingness to make organizational changes where indicated, ${ }^{2}$ Here we will be concerned with both approaches to the organization of a ranch.

A third approach is the truly "dynamic" strategy which considers each decision as one step in a long succession of moves (6×7). Dynamic planning requires that all decisions be based on long-run plans. Yet longrun plans are frequently modified as new information changes the outlook (chapter VI).

Production economics and farm management science often appear to be preoccupied with organization at the neglect of the daily operation of a

[^1]farm. This is partly due to the fact that the ever changing newsa of operation are hard to categorize. Furthermare, farm and ranch "operators" appear to be heavily preoccupied with the problems of daily operation, rarely stopping to concern themselves with the often much more consequential problems of how to organize their business and adapt to changing circum stances.

The reason farmers tend to concentrate on problems of operation rather than problems of organization are not hard to see:
(i) Haynes (8, p. 528) says it aptly:

The owner-managers of small firms often appear to be so involved in day to-day affairs ... that thay have little time to think about the larger decisions. When routine activities compete with the nonprogrammed, imaginative search for investments, the routines take priorities - a sort of 'Gresham's Law' of management that most of us observe in our dally lives.

Haynes and Solomon noted this attitude in small commercial firms. There can be little doubt that it holds true for farmers and ranchers who spend a great deal of their time with the dally chores. Habituation makes routine matters appear most important.
(ii) The knowledge and skills of running a farm are often acquired within a given organization. Most farmers are familiar only with a limited range of farming setups. Rightly or wrongly they are afraid to fail under a changed organization. Even more important, alternative forms of organiz ation are not widely known and farmers find it difficult to judge alters native organizations on their merits alone.
(iii) Once established, an organization is by itself an obstacle to change. A given plan represents a certain investment, part or all of which may be lost if the plan is changed. The operator of a small farm who sells and moves to town may not get the capitalized value of benefits he derives
from it in its currant stata. Potentlal buyars may not have any uae for the farm buildings. Their offers are determined by what the farm is worth to them in their organization. Asset specialization and asset fixity make some organizational changes costly (9),(10, p. 78), (11).

While the third cause is inherent in the given state of the arts, factors (i) and (ii) can be influenced by providing information on organizw ational change and its consequences by stimulating debate on and pres occupation with organizational change. This thesis contributes to the pool of information. It is to be hoped that it may stimulate some debate on and preoccupation with organizational change.

C. Cattle Price Ratios

The forces that shape the market for agricultural products in this country favor the beef industry. Increased per capita income continues to raise the demand for beef relative to other farm products. ${ }^{3}$ If there is no corresponding shift in supply, the increased demand is generally met by increases in output as well as price. Fig. 2 demonetrates how the market price for slaughtar stears has improved its position relative to the price received by farmere for all farm products. In epita of wide cyclical swinge the gain has averaged $3 / 4$ of a percentege point par year.

In addition to ganerally favorable development for tha beaf industry as a whole, the prioe of atockar and faedar ataers and calvea has gained relative to slaughtar beaf prices, as ililustrated in fig. 3 and appendix A. While eyciical price variation is evident, particulariy
$3_{\text {Ses }}$ for instance G.E. Brandow (12).

Fig. 2. The Relation of the Price Indax of Slaughter Steers, Chicago, and the Price Index of All Farm Products, U. S. A., 1925-62. Data from (61)(85).

Fig. 3. The Relation Between Stocker-Feeder and Slaughter Cattle Prices, 1925-62. The Price of Stocker and Feeder Calves, and Stocker and Feeder Steers in Kansas City, Expressed as a Percentage of the Price of Slaughter Steers, all Gracies, in Chicago. See Appendix A for source of data and method of computation.
in feeder calf priees, the trends are eonsistent, and there are no aigns of a slowdown. The calf price is now normally higher than the slaughter steer price. It tands to gain $3 / 4$ of a percentege point par year, while the stocker and feeder steer price gains almost $\frac{1}{2}$ per cent per year, relative to the slaughter steer price.

Higher prices for calves and stocker and feeder steers narrow the profit margin for the cattlemen who stock steers. Increased competition from an expanding cattle feeding industry probably accounts for the longe term rise in feeder prices. Since it is more attractive to sell feeder calves, many have shifted to cow-calf herds. The trend toward cowmandcalf operations has been evident in Oklahoma and other Plain States for many years.

The changing feeder/slaughter price ratio has had an effect in the traditional feeding and traditional dairy areas as well. Thus the marginal feeders and the marginal dairymen may gradually find a beef herd more attractive than their traditional operation.
D. Objectives of the Study

This study was undertaken to deduce general principles and specific recommendations of management of ranches in the Southern Plains from a formal, but empirically rooted model ranch seen, in turn, in a static, stochastic-static, and dynamic conceptual framework.

The affect of changes in the cost of capital is investigatad in static models reflecting a variety of circumstances and extraneous conditions. The static model is further evaluated by applying a historical frequency distribution of beef prices to alternate ranch plens. This narrows down the choices to be recommended. Finally ranch operating plans
for several consecutive years are selected, given certain assumptians about the course of prices and production in future years. Repeated use of such plans based on explicit forward planning constitutes "dynamic management."

While attention is paid to the premisses - empirical data, objectives, constraints of the model - and to the consistency of the deductions, the ultimate proof of any social science research which suggests action must await the outcome of the action taken as the ultimate proof of its correctness.

E. Analytical Methods Used in the Static Analysis

The planning objective usually assumed for the farm or ranch is to find the organizational forms that maximize the returns to the operator with a limited number of production processes, limited by the quantity of resources on hand. For many years, farm planning and farm budgeting were virtually synonymous words (3, p. 606 ff), ($13, \mathrm{p} .328$). This is no longer the case, owing to the advance of "mathematical programming." especially linear programming. ${ }^{4}$

[^2]Linear programing is a method of maximizing a functional or an objective, (a) which is in itself a function of a number of interdependent processes or activities, linked to the objective by means of 'value transforms,' each of which is in turn dependent upon the availability of other variables, and (b) the value of which may ultimately be limited by conme straints on the sum of the values of the constraining variables. It is natural that agricultural economists soon turned to this tool as a means of improving farm planning over the tried and proven if somewhat inelegant and inexact tool of budgeting. In fact agricultural problems were the first ones tackled by those economists who had "popularized" linear programming as a tool of economic analysis. ${ }^{5}$

Linear programming has advantages over budgeting (33, p. 28):
(a) there is a unique optimal solution;
(b) it forces the user to state explicitly his assumptions (this quality it shares with other formal and rigorous methods!);
(c) it is a tool for simulating real life decisions before their actual commission; specifically it allows analysis of the involved causemand-effect relations of real farms.

5The earliest applications to agriculture were published in 1951 by Dorfman (1日), C. Hildreth and Reiter (19), Waugh (20), followed by publications in 1953: Fisher and Schruben (21), Fox (22), Freund and King (23), Judge and Fellows (24), and 1954: Heady (25), MoCorkle and Boles (26). After 1954 the agricultural studies using linear and other mathematical programming have become too numerous to mention. The first theses using linear programming were those by Babbar (27), Bowlen (28); 1955 Kottke (29), Freund (30), and Dixon (31). See privately circulated bibliography by Reisch and Eisgruber (32).

1. Linear Programming Principles

In this paper the "objective" to be maximized is called "contribution to profit and overhead" or "contribution" for short, to signify that this objective is neither a strict net revenue figure nor just gross revenue. It is a concept similar to what Woermann (34) calls "gross revenue adm justed for specific costs!

a. The Basic Model

The general profit function of any firm may be stated
(1.1) $\Pi=F\left(x_{m+1}, \ldots x_{m+n}\right)=H$
where Π is the total net profit of the firm, x_{m+1} to x_{m+n} are the output quantities in individual production ventures, and H the overhead cost, not affected by the volume of $x_{m+1} \ldots x_{m+n}$. It is convenient to bring H to the left side, and rename the sum $T+H=P(=$ contribution to profit and overhead). The total value P of (1.2) is to be maximized.
$(1,2) P=F\left(x_{m+1}, \ldots x_{m+n}\right)$
In linear programming it must be assumed for formal reesons that each x is indopendent of all other x^{\prime} es. Therefore, (1.2) in this case is simply a summation of n subfunctions $f_{m+1}\left(x_{m+1}\right), \ldots f_{m+n}\left(x_{m+1}\right)$. Each of these functions is a production function. It must be further assumed that these individual functions $f_{j}\left(x_{j}\right)$ are homoganeous and linaar in x_{j} : a doubling of x_{j} doubles the value of $f_{j}\left(x_{j}\right)$ etc. (35, p. 315). A venture thus defined is called a "process."

The objective function of a linear programming model can now be written in specific forms
(1.3) $p=\sum_{j=m+1}^{m+n} c_{j} x_{j}=\max$
or, in matrix notation:

$$
(1.3 a) P=C X=\max
$$

where the weighing factors ("value transforms") c_{j} are the contributions to profit and overhead of individual processes, x_{j} are any quantities of output (or input) chosen as the enumerator of the $\mathrm{j}^{\text {th }}$ process. In any situation the quantities, x_{j}, are likely to be limited, because the resources needed in their production are limited. ${ }^{6}$ To facilitate resource allocation it is necessary to specify (a) the input requirements per unit of output in each process, (b) the quantities of each resource available and (c) a system of inequalities or equations relating available resources to requiremants of all potential processes (constraints).

Resource requiramente of process j for resources 1 ... mare specified by an array of input coefficients
(1.4) $a_{1 j}, a_{2 j}, \ldots a_{i j} \ldots a_{m j}$. Because the production function of the process is homogeneous, the input coefficiente-athe transformation or productivity rates in marginal analysis--thus specified are independent of the level of x_{j}, and completely specify the production process.

Coefficients x_{i}... x_{m} specify the quantity of each resource available.

The m constraints are of the form
(1.5) $x_{i} \geqslant \sum_{j=m+1}^{m+n} a_{1 j} x_{j}(i=1,2 \ldots m)$
${ }^{\text {If }}$ some value of x turns out to be infinite, this usually indicates an economically trivial solution. The existence of such an "unbounded" x-value calls for reexamination of the model specifications.
or, in matrix notation:
$(1.5 a) X^{1}=A X^{2}$
where x_{i} are given, x_{j} unknown. While the total amount of resource x_{i} is limited, it may be allocated in any wey desirable to each of the n pros casses.

The problem of maximizing P may now be restated as the problam of determining the "lavels" of process variables x_{j} in such a way that the value of the objective function (1.3) is maximized, subject to constraints (1.5) or (1.5a). Because production processes are directed processes, the process variables may not be negative: dalves may be produced with certain amounts of land, breeding stock etc. But it is impossible to make land, breeding stock etc. from calves. Therafore, another set of conditions speoifies

$$
\begin{aligned}
(1.6) \quad x_{j} & \geqslant 0, \quad(j=m+1 \ldots m+n), \\
x_{1} & \geq 0, \quad(1=1, \ldots m) .
\end{aligned}
$$

Any allooation plan or solution which violates any equation of (1.5) or (1.6) is called "infeasible".

Equations (1.3), (1.5), (1.6) togather specify the inear prom gramming model. The combination of x values in the optimal solution is achieved in an iterative prooess, applying essentially economic and accounting principlea. Tha commonly used selaction method is celled the "Dantzig algorithm" or simplex algorithm.

While the systam of equatione (1.3, 1.5, 1.6) is solved for a maximum valug of the functional, simultaneously a solution is obtained for a "dual" or orthogonal set of equations:
(1.7) $\quad K=\sum_{i=1}^{m} \quad b_{i} y_{i}=m i n$
subject to n constraints
(1.8) $y_{i}=c_{j} \sum_{i=1}^{m} a_{i j} y_{i} \quad(j=m+1 \ldots m+m)$
and
(1.9) $y \geq 0$

The b_{i} equal the initial x_{i}. The system utilizes the same coefficient matrix (B, A, C) as the original program. Yat thay are joined by "vertical" equations.

In economic terms the $y^{\prime} s$ are values of either outputs ($y_{j}=c_{j}$) already given, or values of inputs (y_{i}) which have to be imputed. They are called variously "shadow prices," "calculatory prices," "accounting prices,"
"imputed values," "use values," They should not be nagative (1.9). The resources should be fully imputad. Hence the aggregate value of the resources amployed in any procese should not be lase than the markat price ef of the procese product (1.8). On the other hand, tha aggregate value of all rasources, K, must be equal to the maximum contribution D, in (1.3).

Linear programming theary proves that a maximum solution for (1.3) is also a solution to (1.7) gatisfying all constraints (36) 14)(16). The solution which maximized P is also the only one which imputes the value of output complately to the reeources. The maximum contribution solution is also the lsast-cost solution if the resources were priced near their imputed valuse.

b. Parametric Programming

Graves (37) has succinctly stated the effect of varying the contri. butions factor of an activity. In a linear programming problem and its dual, "(a) there exists a finite connected set of closed intervals
[of the cost factor varied_7 (some of which may be points) on which the problem has a solution. The set of intervals may include $[$ the range of cost factor values from $-\infty$ to $\infty \overline{]}$. Outside the set of intervals, the problem has no solution.
(b) On each interval the L values of the variables x_{i} in the primal solution 7 are constants.
(c) On each interval the [accounting prices] are linear functions of [the varying cost factor].
(d) On each interval [the functional value of the primal solution] is a linear function of $\times[$ the varying cost factor $]$.
(e) The [objective] function is convex. ${ }^{7} 7$

In parametric programming an interval of a cost factor is determined within which one optimum solution obtains, then the value of the cost factor is changed so that it falls into a new interval with a new optimum solution, and the process repeated until the value of the cost factor reaches a stated limit (17, chapter 8). This method can be very useful "in eash budgeting where the amounts of funds available as well as the cost coefficients depend on the intereat rate." Ths method of parametric contribution factors "permits a sophisticated sensitivity analysis (37)."

It is well known that economic plans for the firm are not drawn up with just a market rate of interest. Firms are generally operated as if thair interest rate were considarably higher than the market rate of interest. In allocating sapital, managers appear to discount for the
${ }^{7}$ If a constraint instead of a eost factor is varied, the statement abova is correct if "value of the variables in the primal solution" is substituted for "accounting price," and "negative functional value" for "functional value (37, p. 201-2)."
varying degres of uncertainty ${ }^{B}$ in the pparation by adding siak diecount rate to capital. Further modifications are more subjective in neture, only partly accountable for by such objective factors as nat worth and measures of "reaction to uncertainty." knowledge of cradit sources, attitude towards using credit (42).

Programing over a range of capital costs presents a number of signifieant advantages over point estimates of optimum solutions:
(1) Statements can be mede on what oonatitutas an afficiont organization ovar a range of market ratas of intarest plus risk disa counting rates. This presupposes that astimates of actual risk rates are available independently.
(2) By comparing the outcomes with various capital ooste, statem mente may be made on the opportundty cost to the manager of arring in the "target rate of interest" which affectivaly governs his organization.
(3) An interesting use of this technique has been little exploreds

By seaking out the model orgenization thet comes closest to the organization found in real life, it should be possible to arrive at an

[^3]estimate of the target rates of interest that actually govern the rarms be it the representative farm of an aggegate, or a single farm for which organizational improvements are sought.

Of course, uses (1) and (3) are mutually exclusive, because jointly they lead to circular reasoning.
(4) With a parametric sories of solutions, a 'normative demand" function for operating capital can be constructed as with a series of variable capital constraints.
(5) The capital demand curve permits the analysis of optimum solutions for the effect of (a) interest rates, and (b) the amount of capital available to a firm. The steeper (less elastic) the capital demand curve, the less will the firm respond to changes in the omarket or subjec-tive- interest rate, or to changes in the supply of money available. The more horizontal the curve, the sooner do we expect expansion as more capital or cheaper capital becomes available. This kind of comparison is called sensitivity or stability analysis in operations research publi. cations.

CHAPTER II

specifications of the static ranch model

Plans for farm (and ranch) organizations are commonly drawn up as budgets for a year. The practice is, however, to consider a budget the managerial blueprint over a period of years. ${ }^{1}$ The budget commonly describes the "stationary state" of the farm, the farm as a "homeostatic process (44)." The usual budgeting approach makes a number of implicit assumptions: that the environment, the resources available, and the objectives of the planning unit remain essentially the same. Because of this aesumption we tend to con.e clude that it is desirable to keep the organization of the farm constant as well. This is, of course, circular reasoning. The "normalcy" assumptions are, at best, first approximations. Therefore, the "normalcy" plan of a farm or ranch too, is a first approximation.

In spite of this limitation the static approach to farm planning is useful as long as it is understood that the "normal" results of the plans obtained are approximations, tools of analysis and demonstration. The method has the advantage of simplicity and is widely understood.

The method of ilnear programming has been described in the preceeding chapter. This chapter will deal with
A. the production processes or activities considered as alternatives, including the partial budgets for each, price levels, and related assumptions,

[^4]B. the structure of the decision system implied by the model,
C. the limited quantities of classes of land, labor, capital, which together form the resource bundie of the model ranches and serve as the constraints in the computing models.
A. A Description of the Production Processes in the

Static Ranch Models

1. Partial Budgets and the Input-Output Matrix

Since the processes or activities in linear programming are by assumption linearly homogeneous they may be readily defined by partial budgets expressed on a per unit basis (per cow, per acre). Requirements are expressed in terms of the constraining inputs as well as in monetary costs, and the "contribution." the difference between direct costs (of all but the constrained - fixed - inputs) and gross revenue per unit is calculated.

No two ranches will have exactly the same production situation and the same productive potential. The budgets presented here should be considered estimates for a representative firm, managed with just above average efficiency; productivity and price data being an average over recent years. The budgets have been published in detail slsswhere (45), and are briafly describad hare and in appendix B.

a. Cow-and-Calf Activities

This study considers only commercial cow-and-calf operations, not specialized breading.

Of the major alternative cow-andwcalf systems, one based on considerable silage feeding was left out, because in preliminary budgets it had scored considerably below others. This left for consideration primarily
(a) the choice of a calving date epring, fall, or both, with a saving on the costs of bulls, (b) the choice of wintering supplements, - protein concentrate, alfalfa hay, or more extensive winter feeding, either in the form of hay, or winter pasture, (c) a choice to creep feed or not to creep feed. To accomodate all these alternatives would have required 24 activities. Since the computing facilities were limited, only the ten combinations of table I were selected.

Differences in gross returns between the ten alternative cow-andcalf activities result from diffarences in physical productivity as well as seasonal price differences, as indicated in table II. Information on weaning weights, number of animals sold, and sales values per animal are to be found in appendix B, table III. It is worth noting that among the activities listed physical production varies more widely, thus influencing gross returns more, than seasonal sales price.

Table III summarizes direct cash outlay, contribution to overhead and profit, capital, pasture and other requirements that may be satisfied with resources or intermediate products of the ranch. Note that sales costs are included in direct costs, but not in operating capital requirements. A comparison of tables II and III shows that high gross revenues of the creapmeed systems ars more than compensated for by higher eash outlays. Their contribution per cow is lower than for any other system. This apparent inefficiency is not compensated for by savings in any other requirements. They were included in the comparisons only to demonstrate their opportunity coste under various alternatives.

Profit contributions per cow as presented in table III cannot be compared directly between activities. The profit contributions are not comparable at this point because no charge has been made for the physical

TABLE I
CHARACTERISTICS OF BUDGETED COW.CALF OPERATIONS

Budget Number	Calving Season		Average Marketing Date	Calves Creep Fed?	Winter Fead Supplaments (lbs. per animal unit per day)	
	Det.-Dec.	Feb.-Apr.				
1.1		yes	Oct. 10	no	Cattonseed cake	1.5
1.2		yes	Oct. 10	no	Alfalfa hay	6.0
1.3		yes	Oct. 10	yes ${ }^{\text {a }}$	Cottonseed cake	1.5
1.4	yes		Jul. 20	no	Cottonseed cake	2.5
1.5	yes		Jul. 20	no	Alfalfa hay	8.0
1.6	yes		Jul. 20	yes ${ }^{\text {b }}$	Cottonseed cake	2.5
1.7	yes		Jul. 20	no	Prairie hay	12.0
					\{Cottonseed cake	1.5
1.8	yes		May 31	no	$\left\{\begin{array}{l}\text { Dats-vetch grazing; }{ }^{\text { }} \\ \text { Prairie hay }\end{array}\right.$	$\begin{gathered} 4 \text { A.U.M. } \\ 4.0 \end{gathered}$
					Cottonseed cake	0.5
1.9	yes	yes	$\left\{\begin{array}{l}\text { Jul. } 20\end{array}\right.$			
			20ct. 10	no	Cottonseed cake	2.0
1.10	yes	yes	$\left\{\begin{array}{l}\text { Jul. } 20 \\ \text { Oct. } 10\end{array}\right.$	no	Alfalfa hay	7.0

a 4.2 cwt. of creep feed per calf to provide for 35 lbs . of extra grain.

```
    b 0.4 cwt. of creep feed per calf to provide for 70 lbs. of extra
grain.
c Hay and cottonseed cake substituted for failing oats-vetch pasture one third of the time.
```

TABLE II

> VOLUME OF BEEF SALES, AVERAGE PRICES OBTA INED, AND GROSS RETURNS PER COW IN BUDGETED COW CALF OPERATIONS

Act./ Budget Number	Salable Beaf per Cow (Cwt.)	Average Sales Price (\$ per Cwt.)	$\begin{aligned} & \text { Gross } \\ & \text { Return } \\ & \text { per Cow }(\$) \end{aligned}$
$\left.\begin{array}{l} 1.01 \\ 1.02 \end{array}\right\} \text { Spring calves, not creepafed }$	4.61	21.72	100.15
1.03 Spring calves, creep-fed	4.86	21.86	106.25
$\left.\begin{array}{l} 1.04 \\ 1.05 \end{array}\right\} \text { Fall calves, not creep-fed }$	4.40	22.31	98.15
1.06 Fall calves, creep-fed	4.88	22.53	109.95
1.07 Fall calves, not creep-fed; high winter feed rations	4.47	22.34	99.84
1.08 Fall calves, not creepmed; wintered on small grain pasture	4.23	22.95	97.09
$\left.\begin{array}{l} 1.09 \\ 1.10 \end{array}\right\} \text { Fall and spring calves, }$	4.51	21.99	99.15

TABLE III
DIRECT COSTS, CONTRIBUTION TO PROFIT AND DVERHEAD, ANO INPUT REQUIREMENTS: BUDGETED COW-AND=CALF ACTIVITIES, PER COW

Active ity or Budget No.	Direct Costs (\$/Cow)	Contribution to Overhead and Profit (\$/Cow)	Operating Capital		Range A.U.M. per Animal Unit	Other Requirements ${ }^{a}$
			Livestock (\$/Cow)	$\begin{aligned} & \text { Operating } \\ & (\$ / \text { Cow }) \end{aligned}$		
1.01	18.77	81.38	192.00	15.06	12.0	-
1.02	9.45	90.70	192.00	5.74	11.5	Alfalfa hay
1.03	28.25	78.00	192.00	24.42	12.0	-
1.04	24.88	73.27	192.00	21.28	$12.5{ }^{\text {b }}$	
1.05	9.35	88.80	192.00	5.74	11.5	Alfalfa hay
1.06	42.97	66.98	192.00	39.13	$12.5{ }^{\text {b }}$	
1.07	18.70	81.14	192.00	15.06	10.5	Prairle hay
$1.08^{\text {c }}$	12.35	84.74	192.00	8.85	8.0	$\begin{aligned} & \text { Dats-vetch } \\ & \text { grazing } \\ & \text { Prairie hay } \end{aligned}$
1.09	21.25	77.90	177.50	18.12	$12.25{ }^{\text {b }}$	-
1.10	8.97	90.18	177.50	5.86	11.5	Alfalfa hay

${ }^{\text {a }}$ The exact quantities required are listed in appendix C table IV. ${ }^{\mathrm{b}}$ Includes browse for older calves.
${ }^{\text {C Excludes }}$ the establishment costs of pasture.
input requirements listed in subsequent colums of tho table,
Spring and fall calving operations differ little in their total labor requirements. They differ, however, in the seasonal distribution of their labor needs. The labor peaks occur during the celving season. Balancing the labor requirements with available labor is ona of the problems of managing the cattle ranch. This has been recognized in the model by specifying labor requirements for three periods. Table IV contains the total and seasonal labor requirements of the cow-and-calf systems.
table IV
TOTAL AND SEASONAL LABOR REQUIREMENTS
FOR BUDGETED COW-CALF OPERATIONS ${ }^{\text {a }}$

Budgat Number	Labor Requirements (man hours per eow)			
	Det-Dec.	Jan-Apr.	May-Sept.	Total
1.01	0.79	4.05	0.74	5.50
1.02	1.00	4.76	0.74	6.50
1.03	0.89	4.05	1.74	6.68
1.04	2.67	1.74	1.02	5.43
1.05/7/8	2.89	2.47	1.02	6.38
1.06	2.67	2.54	1.52	6.73
1.09	1.73	2.89	0.88	5.50
1.10	1.94	3.62	0.88	6.44

${ }^{\text {a Based on survey results. }}$

b. Stocker Cattle Activities

It is fairly well recognized that young stock catto make particularly good use of lush, young pasture, rich in protain and short in raw fibers. This feed produces rapid gains without excessive fat production. Range pasture in Oklahoma and in most of the plains states remeins in this condition normally only for a faw spring and early summer months. One of the consequences is that feeder calf and feeder steer prices rise in the spring and continue high until signs of pasture deterioration caution prospective buyers. Later in the year, the bulk of weanling calves; whether born in the fall or in the spring, hits the market causing prices to drop sharply and to remain low until after Christmas. If calves are to be rew tained to atook the ranges the next apring, the priog differential batween fall and spring prices must be euch that on incentive ramains far either the calf producer, or the stock eattle operator, or a third party to winter the calves through the cool season, approximately from Dotober 1 to April 1.

Nine oalf wintering and stocker cattla aotivitiaa ware salactad for comparison. Budgets 2.01 and 2.04 cover the wintering of weanling calves and determine the price differential necessary to provide an incentive to retain the calf crop on the ranges. The first provides for the "roughing" of the calves on range with a protein concentrate, the other entails wintering in a small pasture or trap with free choice prairie hay plus protein supplement.

A third wintering alternative exists under the climatic conditions of wide areas of Oklahoma. Calves allowed to graze a small grains pasture will gain rapidly and are ready for market as stocker feeder or light weight slaughter cattle early in May (budget 2.07). Because small grain
pastures do fail occasionally, budget 2.07 includes an ample feed allowance for trap wintering in one out of three years.

The level of wintering of cattle influences the gains that can be obtained during summer grazing (48). Budgets 2.02 and 2.03, covering the summer phase of yearling production, have been developed around roughed yearlings. Budgets 2.05 and 2.06 , covering the same period, make use of trap wintered cattle which in the summer phase gain somewhat less rapidly than do the roughed ones. A further distinction was made between cattle sold off range pasture in August (budgets 2.02 and 2.05) and cattle which, after grazing heavily on nativa range in the spring, are transferred to a sudan grass pasture. These are to be marketed around the first of September (budgets 2.03 and 2.06).

The last two stocker budgets concern the wintering and subsequent summer grazing of 18 month-old cattle to be sold one year later. The only distinction between these budgets lies in the kind of winter feed: Budget 2.08 assumes a cottonsead cake supplement, budget 2.09 alfalfa hay.

The stocker cattle budgets cover subsequent stages from weanling to long twowyear olds. At each stage a choice is open to aither sell the cattle produced in the previous stage, carry them on through the next stage, or buy additional animals for the next stage. Marketing charges have to be paid whenever cattle are sold or bought, but not when cattle are merely transferred from one production period to another.

No specifications were set for the type of animal produced. It has bsen assumed that the operator has sufficient freedom and oversight to market cattle either as slaughter or as stocker-feeder cattle, whichever xeturns the better prices. Prices used have been reported in tables I and II, appendix B.

TABLE V

CHARACTERISTICS OF BUDCETED STOCKER CATTLE OPERATIONS

Budget Number (1)	Ave. Date to		Weight		Components of Ration	
	Buy	Sella	Buy	$5 \mathrm{sl1}{ }^{\text {a }}$	Winter	Summer
	(2)	(3)	(4)	(5)	(6)	(7)
2.01	Oct. 10	April 1	475	525	C.S.C., Range	-
2.02	April 1	Aug. 10	525	750	-	Range
2.03	April 1	Sept. 1	525	790	-	Range, Sudan
2.04	Oct. 10	April 1	475	575	C.S.C., Hay	-
2.05	April 1	Aug. 10	575	785	-	Range
2.06	April 1	Sept. 1	575	815	-	Range, Sudan
$2.07{ }^{\text {b }}$	Oct. 10	May 10	475	740	Datsmetch Pasture, Hay	\bullet
2.08	Aug. 10	Aug. 10	750	1,025	C.S.C., Range	Range
2.09	Aug. 10	Aug. 10	750	1,025	Alfalfa Hay Range	Range

[^5]Gains and gross revenue of the stocker cattla operations may be found in table VI. Both gains in weight and seasonal price difference affect gross returns. The price margin may be positive as for the wintering operations, or negative as for the summer period, or neutral, as for the small-grain wintered yearlings and the older steers kept for a full year. (See appendix B, table II). The gross returns listed in table VI are not comparable unless differences in the time periods covered and in their nonpriced requirements are taken into account.

On a per year basis, a combination of 2.04 and 2.06 yields the highest gross returns of all combinations with $\$ 66.83$ per steer, while 2.01 and 2.02 combined yield lowest with $\$ 54.25$ per steer. The small
table VI
GA INS, purchase value, sales value, and gross revenue PER STEER; BUDGETED STOCKER STEER OPERATIONS, per steer

Activ- ity or Eudget No.	Activity	Total Gain ${ }^{\text {a }}$ (Cwt)	Purchase Value (Sales Value (\#)	Gross Returns (\#)
2.01	Weanling calves roughed $x-10$ to $\mathrm{IX}-1$	0.45	115.24	136.43	21.19
2.02	Roughed yearlings on range IV-1 to VIII-10	2.21	137.81	166.05	28.24
2.03	Roughed yearlings on range and sudan, IV-1 to IX-1	2.61	137.81	172.53	34.72
2.04	Weanling calves trap wintered $\mathrm{x}-10$ to IV-1	0.94	115.24	150.94	35.70
2.05	Trap wintered yearlings on range, IV-1 to VIII-10	2.06	150.94	173.79	22.85
2.06	Trap wintered yearlings on range and sudan, IV-1 to IX-1	2.36	150.94	178.40	27.46
2.07	Weanling steers wintered on oats-vetch, $\mathrm{x}-10$ to $\mathrm{V}-10$	2.58	115.24	177.66	62.42
2.08/9	Long yearlings wintered and grazed, VIII-10 to VIII-10	2.65	166.88	225.78	58.90

afinal weight less initial weight less death loss.
grain wintering operation is attractive since it takes only sevan manthe to achieve this result.

Table VII lists direct costs, contribution to profit and overhead. and nonpriced requirements like operating capital and range A.U. M_{M}. Specified costs include marketing charges for both the purchase and sale of the animal. A death loss of from onemalf per cent (summer grazing) to one per cent of the sales value (all other stocker stear budgets) is included in the cost totals. The livestock capital required equals the purchase value of the stocker (see table VI). Table VII lists the requirem ments for other working capital. The capital for stocker operations often is not required for the full year. Depending on the credit arrangem ments this may result in a saving of interest payments, or, if the capital is owned by the operator, the capital may be used to finance other operations part of the time.

Stockar steer operations require less labor than cowmcalf operations on the range, while considerable lebor is required for winter feeding (tabla VIII).
c. Forage Production

Table IX lists the budgeted forage enterprises. Alfalfa hay may be sold or fed. For simplicity it has been assumed that the entire hay crop is harvested by custom operators. A breakdown of costs and seasonal labor requirements may be found in appendix B, tables V and VI.
table VII
DIRECT CASH COSTS, CONTRIBUTION TO OVERHEAD AND PROFIT, AND NON \sim CASH REQUIREMENTS, BUDGETED STOCKER STEER OPERATIONS per steer

Budget or Activity Number	Priced Specific Costs ${ }^{\text {a }}$ (\$)	```Contribution to Profit + Overhead ($)```	Operating Capital ${ }^{\text {a }}$ (\$)	Range A.U.M.	Other
2.01	17.86	4.64	14.01	3.0	-
2.02	7.90	23.61	3.44	3.0	-
2.03	8.14	30.53	3.44	1.2	Sudan grazing 2.0 A.U.M.
2.04	16.73	19.27	12.00	0.5	Prairia hay 1.0 ton
2.05	8.37	17.94	3.69	3.0	-
2.06	8.55	22.29	3.69	1.2	Sudan grazing 2.0 A.U.M.
2.07	12.81	43.52	6.80	0.5	Oats-vetch pasture 2.8 A.U.M., rairia hay .33 tons
2.08	26.42	37.83	21.13	12.0	-
2.09	12.16	52.08	6.88	10.0	Alfalfa hay 0.67 tons

[^6]```
TOTAL LABOR REQUIREMENT AND SEASONAL DISTRIBUTION, BUDGETED
 STOCKER STEER OPERATIONS,
 MAN-HOURS PER STEER
```

| Activity | Labor Requirements (manmhours per steer) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Dct.-Dac. | Jan.-Apr. | May-Sept. | Total |
| 2.01 | 0.58 | 0.75 | - | 1.33 |
| 2.02/5 | - | 0.28 | 0.48 | 0.76 |
| 2.03/6 | 6 | 0.28 | 0.62 | 0.90 |
| 2.04 | 1.00 | 1.23 | - | 2.23 |
| 2.07 | 0.38 | 0.50 | 0.44 | 1.22 |
| 2.08 | 0.60 | 0.73 | 0.98 | 2.31 |
| 2.09 | 1.00 | 1.43 | 0.98 | 3.41 |

## d. Accounting Activities

Two activities are included in the model to account for quantity and value of production accrued in the production activities. These are the row vector (23) - marketable livestock production in tons liveweight, and (24) - gross revenue accrued by the end of the production period. They have been included to have these two measures of production automatically summarized as the model data are computed (see "Production" charts in chapter III).
tAble IX
forage budgets.

| Act./ <br> Budget <br> Number | Crop | Land Requirements | Yiels per Acre |  | Costs ${ }^{\text {a }}$ |  | Labor (Man-Hour) ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Unit | Amount | \$/Acre | \$/Yield Unit | per Acre | per Yield Unit |
| 3.1 | Alfalfa Hay | Class A | Ton | 2.75 | 30.45 | 11.07 | 4.65 | 1.59 |
| 3.2 | Prairie Hay | Meadow | Ton | 1.10 | 9.92 | 9.02 | 0.0 | 0.0 |
| 3.3 | Oats Hay | Upland | Ton | 1.45 | 16.86 | 11.63 | 4.42 | 3.05 |
| 3.4 | Sudan Hay | Upland | Ton | 1.25 | 13.92 | 11.14 | 2.92 | 2.34 |
| 3.5 | Dats-Vetch Grazing | Upland | A.U.M. | 3.20 | 11.89 | 3.72 | 2.28 | 0.71 |
| 3.6 | Sudan Grazing | Upland | A.U.M. | 2.66 | 2.92 | 1.10 | 2.70 | 1.02 |

aDoes not include a land change. For details see Appendix C, Table VI.
${ }^{\mathrm{b}}$ Harvest labor is provided by custom operators.

## e. General Management Activities

A number of general management activities are neaded to complete the economic ranch model: renting, borrowing, purchasing feed, purchasing cattle, and selling cattle.

All classes of land may be rented out at rental rates five per cent below the rates for renting in. Capital may be borrowed against collateral. Capital borrowed against real estate at a variable rate may be used to finance cattle purchase; capital borrowed against more liquid forms of assets, such as cattle and cash, at a rate of three per cent above the rate for livestock loans may be used to finance any capital Meeds, including operating expenses.

Feed may be purchased and some choice has been provided in the marketing of cattle. Though the marketing dates are specified by the particular method of production,separating the production and marketing activities parmits keeping young animals for further production.
2. The Matrix of Input, Output, and Contributions Coefficients

Once the enterprise budget has been formulated, it is an easy matter to establish the equations that relate activities, constraints, and contributions to the operating objective in a formal system for linear programming. The relations are expressed in input-output, and contributions coefficients attached to the unknown activity variables. The coefficient matrix is presented in appendix C. Further explanation is provided in the next section.

日. A Qualitative Description of Management Decisions

## Simulated by the Models

In order to simplify the presentation of farm organizatiomal models obtained by linear programming the following decision tres presentation has bean devised. It should be helpful also when setting up linaar programming tablaaus: Each alternative to be dacided upon is represented by an arrow to indicate the directions a decision may turn. ${ }^{2}$ This illustrates well the qualitativa aspect of decisions that may be taken, the choice between one activity rather than another. The quantitative specification - how many units of each - will be represented in the conventional way by means of tables and charts.

Deaisions to be taken may be grouped into primary, sacondary, and subaidiary decisions. Primary decisions are those that determins the general direction of the farm organization - beaf breading herd versue stocker stears, calf wintering, and expansion decisions. Secondary decisions involve a choice between alternative modes of operation, like fall or spring calving, calf pasturage on small grain pasture, or roughing etc. Subsidiary decisions are those that follow from primary and secondary decisions. Here belong such quastions as choice of roughages, hiring of labor, and land use.

Choices described by pairs or bundles of arrows are not necessarily exclusive choices. Whether it is an 'either -or' or an 'as well as' is determined by the shadow price and constraint relations of the model
${ }^{2}$ This arrow scheme should not be confused with the rather well known arrow scheme by Tinbergen (43) where arrows are used to indicate the intertemporal causative relationships.
only. Numbers in parentheses are the identification numbers of activities in the static model.

1. Primary Decisions

rent out range
cow-and-calf
wintering calves stock cattle
2. Secondary Decisions


Note: All fall calves to be sold at waning; spring calves may be either sold at weaning or transferred to wintering phase. See (c) below.

3. Subsidiary Decisions
a. Land Use and Roughage Purchase
(i)

(1i1)


Note: Alfalfa hay is required for activitiles $1.02,1.05,1.10$, and 2.09 ; alfalfa may be substituted freely for prairie hay in all other uses.
a Used in cattle activities as indicated.
b Class A cropland may be selected for any use permissible for general cropland.
(i)
Operator's Working Time ${ }^{3}$

| Overhead labor |
| :---: |
| not restricted to |
| any particular |
| season |

(ii)


Note: Spring and Summer seasonal work loads may be performed in like manner by either operator or hired labor (activities 4.23 and 4.24).
c. Capital Use and Credit Disposition
(i)

Livestock Capital
operator's capital livestock capital (original constraint)


All Other Operating Capital
operator's operating transfer from livestock capital capital stock at additional
$3 \%$ interest charge

all operating expenses prior to sale with the exception of livestock purchase

$$
3_{\text {See }} \text { appendix } \mathrm{B} \text {, table VII. }
$$

## C. The Resources Allocated to the Model Ranchas

The resources of the firm ultimately limit ite productive capacity and its ability to generate income for the owne.. The major resources of a farm or ranch are the operator, the land he controls, and capital, in its physical form - breeding stock, buildings, equipment - as well as in the form of operating capital, 日ither owned or as a line of credit.

To fully define the resources of a firm, it is necessary to state the quantity as well as the quality of the resources available. Some of the qualitative aspecte of resources to be used have already been discussed. Land quality was specified by defining the carrying eapacity of range, labor quality by the man hours needed for the various enterprises, and managerial ability by the total of the requirements specified.

It remains to define the quantity of resources which together complete the description of a particular ranch situation. Since the results are considered primarily for the use of managers of individual ranches, it was not necessary to define resources for "average" or "representative" units. The choice of the resource bundles selected for the computational phase was based on three considerations believed impore tant: they should(a) reflect the variety of ranch units as they exist now, and as they are likely to develop in the future, (b) be modular, i.e. they should be given in multiples of quarter sections, family labor should be defined in full-time persons ate and(c) demonstrate the principles that govern the relations between changes in resources and management results.

The typical or "normal" situation selected is a four-section ranch with ninety-three per cent of the acreage native pasture, one per cent prairie hay, five per cent suitable for cropland, one per cent of
which could be used for alfalfa hay production (isrigated or bottom land). The operator may work as many as 2700 hours annually. One third of the operator's labor is reserved for overhead work and the remainder is available for work directly related to the various enterprises (49). The maximum time available per month is 240 hours, of which 40 hours again had to be reserved for non-deferrable overhead jobs ${ }^{4}$ (see appendix B, table VII).

Dperating capital to finance the purchase of livestook and other current expenditures was available freely. The quantity of operating capital used was determined by parametric programming, the price of operating capital being the parameter to be varied. By varying the price of operating capital ("target rate of return"), a series of organizational plans was generated.

The computing facilities permitted calculating of the range of interest rates for which a particular program would remain optimal. ${ }^{5}$ This procedure has the advantage that it generates results for any capital and credit situation. The reader of the following chapter merely needs to form an estimate of the amount of owned or borrowed capital he is able to or wishes to commit (in addition to the real estate already specified), enter the diagrams presented in the following chapter at

[^7]the appropriate value on the horizontal axis, read off the deserpption of the optimum setup, the rate of return to the operating capstal. committed, and the amount of contribution generated to pay for overhead and profits (which also must cover service on additional real estate loans).

The resource situation has been modified in several ways (table $X$ ): In addition to the "normal" situation, resembling an operator owned four-section ranch ( $A$ ), an alternative was a tenantmoperated ranch of like size ( $B$ ), an option to rent an additional section to the four al. ready operated ( $H$ and $I$ ), and a "small" raneh limited to six quatars of land (C). Anothar series of modifications was designed to demonstrate the effect of other land capabilities. For example by eliminating land suitable for forage crops the choice of productive activitias avallable becomes more limited. Valuation and rental rates used in this study are given in table XI. The remaining constraints of the model facilitate the transfer of physical quantities of resources or products between activities (table XII).
table $X$
resdurce situations of model ranches

| L $i$ n e | Resource | Unit | $\begin{gathered} A \\ S 1-10 \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ 511 \end{gathered}$ | $\underset{5-12}{c}$ | $\begin{gathered} D \\ 513 \\ 517-19,21 \end{gathered}$ | $\begin{gathered} E \\ \\ \\ \hline 14 \\ 520 \end{gathered}$ | $\begin{gathered} F \\ 515 \end{gathered}$ | $\begin{gathered} G \\ 516 \end{gathered}$ | $\begin{gathered} H \\ 520-24 \end{gathered}$ | $\begin{gathered} I \\ 525-27 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dperater labor, all year ${ }^{\text {a }}$ | man-hr | 1800 | * | * | * | * | * | * | * | * |
| 2 | of which Dct.-Dec. | man-hr | 600 | * | * | * | * | * | * | * | * |
| 3 | Jan.-Apr. | man-hr | 800 | * | * | * | * | * | * | * | * |
| 4 | June-5apt. | man-hr | 1000 | * | * | * | * | * | * | * | * |
| 5 | Land owned ${ }^{\text {b }}$ | acre | 2550 | 0 | 950 | 2550 | 2550 | 2550 | 2550 | 2550 | 2550 |
| 6 | of which cropland | acre | 125 | 0 | 60 | 0 | 0 | 125 | 125 | 125 | 0 |
| 7 | class A cropland | acre | 25 | 0 | 10 | 0 | 0 | 0 | 0 | 25 | 0 |
| E | prairie hay | acre | 25 | 0 | 10 | 0 | 25 | 0 | 25 | 25 | 0 |
| 9 | Rent option, range | acre | 0 | 2400 | $0 \cdot$ | 0 | 0 | 0 | 0 | 640 | 640 |
|  | Rent option, cropland ${ }^{\text {c }}$ | asre | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Rent option, class A cropland | acre | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Rent option, prairie hay | acre | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Capital value of real estate ouned | \$ 2 | 221350 | 0 | 83250 | 21760021 | 217975 | 219475 | 219800 | 221350 | 217600 |

*Same value as in preceeding column.
aplus 900 haurs for overhead labor. The sum of hours available per season exceeds by one third the total man hours available per year. Thus a heavier than normal workload can be performed if necessary, provided this is compensated by a lighter workload during another season.
 the parts which are suitable for other uses.

TABLE XI
LAND VALUATIONS AND RENTAL RATES
ASSUMED

| Class of Land | Valuation \$ per acre | Rental \$ per rent in | Rate acre rent out |
| :---: | :---: | :---: | :---: |
| Range | 85.00 | 2.50 | 2.38 |
| Cropland | 100.00 | 6.50 | 6.50 |
| Class A cropland | 160.00 | $\frac{1}{2}$ share | 6.50 |
| Prairie hay meadow | 100.00 | 6.50 | 6.50 |

TABLE XII
CONSTRAINTS SET INITIALLY TO ZERD

| Row No. | Name of Constraint | Unit |
| :---: | :---: | :---: |
|  | Capital Control |  |
| 09 | Livestock Capital, annual or fall ${ }^{\text {a }}$ | $\$$ |
| 10 | Other working capital, annual or fall ${ }^{\text {a }}$ | \$ |
| 11 | Livestock capital, spring ${ }^{\text {b }}$ | \$ |
| 12 | Other working capital, spring ${ }^{\text {b }}$ | \$ |
|  | Feed Transfer |  |
| 17 | Prairie hay (or equivalent) | ton |
| 18 | Alfalfa hay (high protein roughage) | ton |
|  | Cattle Transfer |  |
| 19 | Weaned spring calves, October 10 | head |
| 20 | Roughed yearlings, April 1 | head |
| 21 | Trap wintered yearlings, April 1 | head |
| 22 | Long yearlings, October 10 | head |
|  | Dutput Accounting |  |
| 23 | Marketable Production - liveweight | ton |
| 24 | Sales Volume | \$ |
| $a_{\text {Fall requirements }}$ in static models no. 1, 2, 3, 5-10 and 17-24. Annual requirements in other models. <br> $b$ This constraint is waived in those static models which have an annual requirement in rows 09 and 10. |  |  |

## results: the static model

A. Notes on the Interpretation of the Data

The results of the various models (table XIII) may be compared diractly in a series of graphs and tables. The charts show, as calcum lated, (a) the contribution to profit and overhead; ${ }^{1}$ (b) production volume and organization: quantity and value of beef sales, acres of range used, number of head of cows and other cattle; (c) the demand function for operating capital; (d) the accounting prices or marginel productivity values of land; (e) the accounting prices or opportunity costs of the non-basis beaf production activities. The data have been plotted against a scala of working capital required to achiave the desired results. ${ }^{2}$

The tables of appendix D contain information on critical points of the capital cost - amount curve; namely (1) the 0-point, character ized by the highest rate of interest which would justify beef production, i.e. the highest marginal productivity of capital to be achieved by the ranching activities compared; (2) point $G$, where the cost of capital is low enough to permit the use of all owned grazing land allotted the

[^8]TABLE XIII
CHARACTERISTICS OF VARIANTS OF STATIC RANCH MODEL

| No. | Resource Mix | Cholce of activitios | Capital chargad | $\begin{aligned} & \text { Hay } \\ & \text { prica } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| S 1 | $A^{\text {a }}$ basic 4-saction ranch | . ${ }^{\text {all }}$ | full year | normal |
| S 2 | A ditto | ditto | ditto | up 20\% |
| 53 | A ditto | ditto | ditto | up 40\% |
| 54 | A capital charge formula relaxad | all | for manthe in use | normal |
| 55 | A raised cattla only | raiagd cattle | full year | normal |
| $5 \cdot 6$ | A ditto | ditto | ditto | up 20\% |
| 57 | A ditto | ditto | ditto | up 40\% |
| 58 | A braading hard only | breeding herd | full year | narmal |
| 59 | A ditto | ditto | ditto | up 20\% |
| 510 | A ditto | ditto | ditto | up 40\% |
| 511 | B tenant-operated 4maction ranch | all | for monthe in use | normal |
| 512 | C Emall ownermoperated ranch ${ }^{\text {b }}$ | all | for monthe in ues | normal |
| 513 | D land mixi range only (I) | all | for monthe in ues | normal |
| S 14 | $E$ land mix: ranga and prairia hay (I) | all | for months in ues | normal |
| 515 | F land mixi range and eropland (I) | all | for months in uee | normal |
| S 16 | G land mixy all but clees A cropland | all | far monthe in uee | normel |
| S 17 | D land mixs range only (II) | ralsed oattla | full year | normel |
| S 18 | D ditto | ditto | ditto | up 20\% |
| S 19 | D oitto | ditto | ditto | up 40\% |
| S 20 | $E$ land mixi range and prairia hay (II) | raisad cattla | full year | normel |
| S 21 | D land mixi ranga only (III) | braading hard | full yaer | normal |
| S 22 | $H$ rent option, beaic land mix | raised cattle | full year | normel |
| S 23 | H ditto | ditto | ditto | up 20\% |
| S 24 | H ditto | ditto | ditto |  |
| S 25 | I rent optioni rangaland only | ralsed eattle | full year | normal |
| S 26 | I ditto | ditto | ditto | up 20\% |
| 527 | 1 ditto | ditto | ditto | up 40\% |

${ }^{\text {a }}$ letters rafer to columns of table $X$.
$b_{\left.960 \text { acres ( } 1 \frac{1}{2} \text { section) }\right) ~}^{\text {a }}$
model ranch; (3) point C , indicating the limit of efficient use of operating capital with associated resources and activities, i.e. the capital input where marginal productivity of capital falls to zero; and, for models which make provision for renting in some land, (4) point $R$, where full use is made of the allotted rented land.

Figures 4 and 5, and table $I$ in appendix $D$ exhibit the traits of the basic model for a four section ranch, consisting primarily of range land, with some cropland, prairie hay and alfalfa acreage (static model 1). Interest is charged for a full year. However, two activities which use capital at different seasons may use the same capital.

The effect of adding operating capital to the existing four section unit may be read off the charts from left to right. The characteristics of one and the same organization lie on a single vertical across all diagrams. In the interest of legibility most curves have been drawn continuous, rather than as step functions. ${ }^{3}$

In addition to the true "lean" objective function obtained by calculating optima for the capital cost that are in equilibrium with the amount of capital used (top diagram), contributions curves have also been drawn for capital costs or "external rates of interest" of zero, 10 and 20 per cent.

3 If the amount of capital is allowed to vary, resource use and objective function curves will be smooth (even though their direction may change) while the dual accounting prices have discontinuous changeover points, which leads to step functions. If the price of capital is allowed to vary, the accounting prices will vary continously, while resource use and objective function will change at vertex or breakeven prices, resulting in step functions for the basis variables.

## B. The Basic Situation (Static Model 1)

The first ranching activity has a marginal productivity of copital in excess of 39 per cent. Thus, as long as the internal interest rate exceeds 39 per cent, land will be rented out. Naturally no operating capital is needed, Rental income is $\$ 6600$ (zero solution).

Up to $\$ 11,000$ working capital ( $\alpha$ in fig. 4,5 ) will be employed at a cost of 34 to 39 per cent, principally to utilize the cropland by wintering 80 calves on a small grain pasture ( 2.07 ), and 69 yearlings grazed through the summer (2.02). The stand of prairie hay is used, plus 83 acres of range. Beef sales (not adjustad for the cost of the livestock purchased) amount to nearly $\$ 27,000$.

The contribution to profit and overhead (i.e. the value of the objective function) for this organization depends on the assumed magnitude of the external interest rate. If the full target rate of interest (here 39 per cent) were charged off, the contribution would be only slightly better than the zero solution $-\$ 6,600$. If a oherge of 10 per cent on all working capital is made, the contribution available to meet overhead costs and operation profit (residual) jumps to $\$ 9,800$, and to $\$ 11,000$ if no charge for working capital is made. The latter figure may represent the earnings and overhead to the operator who owns all the working capital himself. Prairie hay is used throughout. Fall-and-spring cows with an alfalfa hay supplement are the next best alternative, though they reduce income by $\$ 7$ per cow.

Below the 34 per cent internal rate of interest, a cow herd is profitable (fig. 4), the combination of spring and fall calving with alfalfa hay as the principal supplement (activity 1.10). However, because


Fig. 4. Contribution to Profit and Dverhead and Drganizational Characteristics, Basic Four Section Ranch Modal (Model No. S1). Explanatory letters refar to the text, p. 49 ff .


Fig. 5. Demand for Capital and Accounting Prices, Basic Four Section Ranch (Model No. S1).
additional labor and alfalfo hay must be purchesed, there is e tandency to increase the proportion of spring-calvers (activity 1.02) beyond the 50 per cent ratio ( $\beta$ ).

As more capital is made avaflable and more cows are kept, more range is brought into production. The full complement is reachad at $G$ with 255 cows, 96 grazing yearlings, 114 calves wintered on smalj. grains, and $\$ 65,000$ invested in livestock and operating expenses ( $\$ 26$ per acre). At this point some labor is hired, primarily in the fall. Prairie and alfalfa hay are produced to the ilmit of the land capacities. In addition 165 tons are bought (priced at $\$ 25$ per ton).

Beef production stands at 83 tone or 86 pounds per aere. Sales velue is $\$ 49,000$ or $\$ 19$ per acre. Contribution to profit and overhead at a 10 per cent market rate of interest amounts to $\$ 20,800$. The average rate of return to operating capital, disregarding all capital costs, is about 42 per cant. The avarage rate of raturn to tatal capital is almost 10 per cent before capital, operator labor, and other overhead is charged. Onily small opportunity costs are associated with the competing cowmandcalf activities 1.01 and 1.09 (which differ prom the selected activities 1.02 and 1.10 only in that protein concentrates are used instead of alfalfa). If alfalfa hay must be bought, there is little difference betweon the two sources of winter protein.

Enough calves to utilize small grain pasture are kept over winter. It is assumed that calves for summer grazing may be bought each spring. If that is not possible, wintering the calves on the range or lot (activiw ties 2.01 and 2.04) will cost an additional $\$ 25$ per calf. Another way of looking at this is to say that, other things being equal, one may pay up to $\$ 25$ mora per calf than was budgeted here, and still do as well as or
better than if calves were wintered at the ranch.
Stocking long yaarlings for sale as two year olds would reduce income by as much as $\$ 60$ per head (activities 2.0日, concentrate feed wintering), or $\$ 50$, if alfalfa hay is used as the winter feed. Provided the enterprise budgets are approximately correct, one could hardly afford to stock this type of cattle.

In general the basic cow-and-calf activity coupled with some further cattle grazing is very otable. Once the range capacity has bean reached, a shift of the internal interest rate from 26 par cent to less than five per cent is required before any organizational changes will take place.

For most operatora, a five per cont marginal rate of roturn would not justify additional investments. There may be instances, though, where no other suitabla outlat for investmente exists, or where tax considera.. tions make investment in beef production more attractive than other opportunities. If marginal rates of return of under 5 per cent appar justified, additional operating capital may be invasted by gradually replacing cows with yearling atocker staers. Simultansousiy as many calves as possible are wintered on amall grain. With $\$ 103,000$ invested (point $\gamma^{\prime}$ ), cows are raduced to 159 , making room for 500 yeariling stears. This reduces the need for purchased hay and for hired labor. Operating capital per acte for this orgenization now is raised to $\$ 48$, beef output is 83 pounds per aere, value of besf sales $\$ 42$ per eers, net ravenuss $\$ 10$ par acre, and an avarage return of $2 \theta$ per cent on operating capital is obtained.

Further expansion within the realm of the activities specified may be achieved by buying up to 255 tons of hay, with 350 calves wintered,
and 1140 yearling summer stockers (point $C$ ). No more than $1 \frac{1}{2}$ per cent return on investment may be expected on the additional $\$ 66,000$ that are needed to finance this final expansion step. This brings operating capital to nearly $\$ 67$ per acre. Since additional feed is being purchased, 119 pounds of beef are produced per acre. Total contribution to profit and overhead amounts to $\$ 30,000$ with near zero capital cost, still 18 per cent average return on operating capital.

Even at this point the opportunity cost of the next best cowmande calf activities (using alfalfa hay supplement) is only about $\$ 4$ per cow. Not much is gained by a full conversion to a stock cattle operation.

Such narrow profit margins are actually too low. A $\$ 1$ price change in the sales or purchase price will more than wipe out the profit of the additional $\$ 100,000$ capital required. Similarly, only a small change in summer gain will have the same effect. The problem of changing price and productivity will be investigated in chapter $V$.

## C. Land Productivity and Valuation

There is a close relationship between the amount of capital available (the internal rate of interest), and the accounting price or marginal productivity value of land. When land is not completely used - the range is used up when $\$ 26$ per acre of operating capital are invested a the accounting price will be just equal to the next best alternative, namely
renting out. ${ }^{4}$
Class A cropland, used primarily to produce alfalfa hay, becomes a very valuable asset: at the $\$ 40,000$ capital mark ( $\delta$ ) its accounting price exceeds $\$ 50$ per acre (per year). Compared to the alternative of buying hay it pays to rent alfalfa land, even on a half share. Under low capital/high interest rate conditions regular cropland and meadow rate accounting prices between $\$ 10$ and $\$ 16$ per acre. That is enough to make renting at the going rate attractive even if compared with the alternative uses of operating capital in the model, which at this point returns from 30 to 26 per cent. It is quite clear, however, that under such conditions it would not be advantageous to buy land. The highest price justified is given by the ratio marainal productivity value per year .5 Here it rate of return on alternative investment amounts to $\$ 16 / 0.26=\$ 61.50$. This certainly is lower than the going market price for land in the area, even after due allowance is made for the value of mineral rights.

As soon as the range capacity is reached, however, the accounting price of cropland goes up rapidly, to reflect the additional earning capacities available if lower returns to operating capital are required. Assuming an internal interest rate of 9 per cent on operating capital,
${ }^{4}$ The model presumes a perfectly elastic demand for land: the operator may rent out all the land he wants at the same price. This holds if only a few operators wish to rent out. Obviously, this assumption breaks down if there were a general slump in the cattle market and more people wanted to rent out than rent in. There may be willing renters for quite a while, but only at lower prices! - This emphasizes the fact that these models are useful now for individual operators, but not as a blueprint for action for the industry, or all ranchers in the area as a whole.
${ }^{5}$ The formula for capitalizing a perpetual rent over an infinite period of time.
the marginal productivity value of regular cropland is $3 \% .50$, the capitalized value as much as $\$ 350$ per acre. This is mors than the merket prices for land of this kind. We may conclude, therefore, that a rancher with a land mix as in our model, i.e. with a very low proportion of crop and hay land, is likely to be a strong contender in the market for crop and hay land.

The pressure to expand by buying land becomes stronger as more capital is available. The precesding applies, of course, only if additional land will not add appreciably to overhead costs; and if the price level assumed in the model holds over the long run.

The accounting price of rangeland rises above the floor provided by rental rates. With certain internal rates of interest annual and capital. ized marginal productivity values of rangeland are as follows:

| internal rate of interest | 23\% | $9 \%$ | $5 \%$ | $3 \%$ |
| :--- | :--- | :--- | :--- | :--- |
| operating capital per acre | $\$ 26$ | $\$ 25$ | $\$ 26$ | $\$ 40$ |
| annual accounting price | $\$ 3.05$ | $\$ 6.22$ | $\$ 7.20$ | $\$ 7.87$ |
| capitalized valua ${ }^{6}$ | $\$ 13$ | $\$ 57$ | $\$ 90$ | $\$ 197$ |

The current market price for rangeland in the area (after allowing for the value of mineral righte) lies in the range of $\$ 60$ to $\$ 90$, the price range corresponding to a 9-5 per cent diecount factor in the model. This would indicate that the assumptions in the model seem to agree closely with the judgement of ranchars in the area who buy rangeland.

[^9]$$
c=\frac{A}{i}\left(1-\frac{1}{(1-i)^{20}}\right) \cdot(50, \text { p. 466) }
$$

The preceeding indicates that it is more advantageous to buy range land at prices up to $\$ 100$ than using the available land more intensively.

The accounting prices for land apply for an increment of 300 acres to the four section ranch. Beyond that point additional labor must be hired and the residual economic rent left for land decreases.
D. Hay Price Sensitivity of the Basic Situation ( $\$ 2,3$ )

Increases of 20 to 40 per cent in the hay price wers simulated in model S1. A 20 per cent increase eliminated alfalfa purchases, and some changes in the kind of cow-and-calf activities selected occurred. Protein concentrates replace alfalfa hay (activities 1.01, 1.09). Where hay must be purchased the corner points are shifted to the left almost impercep. tably. The capital demand curve is shifted upward by less than one per m centage point, if the hay price increasee by 20 per cent. A hay price increase of $40 \%$ still did not require organizational changes, though it did impinge upon the profit and overhead contribution. The $40 \%$ variant ( $\$ 3$ ) is reproduced in appendix D, fig. 1 and 2 .

Up to a point, we may expect a highly elastic demand for hay because of the ready substitute of concentrate (several times unity). However, a residual amount of hay will be needed, virtually unaffected by price. The residual amount must be covered, even if own hay sources are insufficient. The incentive to buy hay and use the own land for grazing ateers and calves becomes greater as the internal interest rate decreases.

The graph of opportunity costs (appendix D, fig. 2) presents a patchwork even more diverse than in the basic model. Generally, the distance between the best choice and other alternatives has shrunk, but
there are no systematic changes in relative profitabillty.
As expected, higher prices of hay tend to raise the value of land, especially hay land. With a cow herd to utilize the grazing capacity the accounting price of hay land is about $\$ 5$ higher per acre than in the basic model; in the 40 per cent hay price variation the accounting price of hay land increases even more.

## E. Effect of an Alternative Way of Computing <br> Capital Charges (54)

Many lending institutions offer credit with interest payable only for the time in which credit is actually used. If ownad capital is used, the owner may have alternate uses for his capital in slack oapital price periods. Thus, interest need only be charged for the period that cattle are actually in the possession of the ranchar. This doss not change the capital cost of a breeding herd, but it cute the capital cost of atocker cattle in half.

The effect of such a change in capital costs is clearly esen by comparing figures 4 and 6. Enough calves are retained to utilize small grain pasture. The caw herd will be a straight 50-50 combination of spring and fall calvere (activity 1,10). No labor need be hired. The most con spicuous change, perhaps, is the modification found in the demand curve for capital. There is no longer a sharp break at the point where the capacity of the range has been reached with a cowmandecalf activity. Substitution of stocker steers for cows may now take place gradually. A drop of only three percentage points in the internal interest rate of capital suffices to set in motion the process of substituting steers for cows. Even with the highest capital intensity - $\$ 69$ per acre - there


Fig. 6. Contribution to Profit and Dverhead and Orgamizational Characteristics, Four Section Ranch. Capital Charged for Months of Use Dnly (Model No. S4).


Fig. 7. Demend for Capital and Accounting Prices, Four Section Ranch. Capital Charged for Months of Use Only (Model No. 54).

A upward shift of the demand curve for capital. Land is brought into prom duction now at ate of 40 per cent; at a given rate of return now $\$ 3-5000$ more are being invested in livestock; the most conspicuous shift taking place at high capital intensities.? In spite of the liberalis zation of capital conditions the contribution to profit, overhead and capital service remalns essentially the same as in the basic model.

The more liberal credit conditions of this model variant make stockers apper practical alternatipe to a cow herd. Yet, unless we change our assumptions total beef production will not expand beyond the maximum of $\$ 1$.

In the schematie of figure 8 no production is possible beyond the afficiency frontier GAIC regardess of the incentive which is provided by any of the isompevenue curves ( $g, h$ atc. $), G$ and $C$ are the grazing capacity and capital limit points as defined on page 46. H and $I$ are some intermediate points. The efficiency frontier is defined by all resources available sede operating capital. A change in the cost of capital will not change the location of GHIC. A fall in the effective price of capital will. however, decrease the slope of the isomevenue curves in figure 8 (from $g$ to $h$ to $h^{t}$ ). A fall in the effective cost of barrowing for money borrowed for less than a year will favor the shorteterm enterprises, grazing steers or wintering calves, withowt affecting the profitability
${ }^{7}$ The abscissa in all charts is the gratest sum of operating capital invested, whereas interest is paid only for the fractional period of a year for which the capital is used.


Fig. 8. The Effect of Methods of Capital Procurement on the Relative Profitability of Cows and Steers.
of the cownand-calf herd, thus shifting the equilibrium away from the latter. Yet in no case will the equilibrium be shifted beyond $C$. The distance $O C$ still determines the maximum production level of beef stears.
$S_{G}$ etc. are dual capital restrictions which produce the same activity combination as the associated interest rabes embodied. im the slopes of the isomrevanue lines.

The accounting prices and valuation of land in 54 are as follows:
internal rate of interest $\quad 23 \% \quad 11 \% \quad 8 \%$
operating capital per acre \$45 \$67
accounting price of range, per acre \$ 3.60 \$ 7.24 \$7.89
capitalized value, per acre \$15 \$58 \$77
Land accounting prices are somewhat higher at the same rate of interest than in the basic model (cf. page 56). Now it is profitable to use more
operating capital per acre (by shifting from cows to steers) before the purchase of land becomes an equally or more profitable alternative at present land prices. Under conditions prevailing in this model there will be a tendency to substitute more capital for land. More liberal credit conditions do not tend to be capitalized in higher land prices because of higher derived demand for land.

## F. Optimal Solutions if Choice of Activities <br> is Restricted

## 1. Stocker Cattle Purchases Eliminated (55,6,7)

Calves and stocker cattle are now limited by the number of calves reared by stock cows (fig. 9 and 10). Expansion finds an end, therefore, at a much lower level than in the models discussed previously, with $\$ 78,000$ ( $\$ 31$ per acre) operating capital. This amount is invested in a maximum of 256 stock cows, 114 calves wintered essentially on small grain pasture, 70 wintered on prairie hay in the feedlot, and 69 grazing yearlings. All the prairie and alfalfa hay that can be produced at home will be produced. Purchased prairie hay brings the total hay supply to 220 tons. There is a deficit in the labor budget in the summer, requiring 460 hours of hired help. Beef production is 84 tons ( 66 pounds to the acre), gross receipts $\$ 36,000$ ( $\$ 14$ per acre), contribution to profit, overhead and capital $\$ 27,500$ ( $\$ 11.80$ per acre)。

Marginal return to capital (internal interest rate), now obtainable only with cows, reaches a maximum of only 33 per cent. From its maximum the capital demand curve slopes gently to a point representing 26.5 per cent interest, a $\$ 27$ per acre investment, and full use of grassland.


Fig. 9. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Raised Cattle Only. Left: Normal Hay Price (Model No. S5). Right: Hay Price up 40 per cent (Model No. 57).


Fig. 10. Demand for Capital and Accounting Prices, Four Section Ranch. Raised Cattle Only.
Left: Normal Hay Price (Model No. S5).
Right: Hay Price up 40 per cent (Model No. S7).

Some calves are wintered to utilize available mall grain pastures
Once the grazing capacity has been exhausted ( $G$ ), shatp trep occurs in the capital demand curve down to the 5 per cent lavel. In order to bring in stocker cattle, enough calves must first be wintered (previously raised calves were sold, then grazing steers bought back in the spring). No return would be expected from investments exceeding \$31 per acra.

Alternative cow-and-calf enterprises rank in nearly the same order as in the basic model. Again there is little difference between the alfalfa and protein concentrate versions; creep feeding reduces income contribution $\$ \theta$ per cow; fall calving alona is not very promising. A change occurs in the calf-wintering enterprises (2.01, 2.04). Because wintering has become the necessary prerequisite to summer grazing, and no longer competes with the purchase of yearlings, the opportunity costs of wintering are drastically reduced. "Rough" wintering of calves plus summer grazing costs about $\$ 5$ per calf in income foregone in comparison to the combination of trap-wintering with summer grazing, even though the summer gains of the well-fed calves stay a little below those of the roughed calves. Twoyear stock cattle continue to rate rather poorly (\$24-30 per head opportunity costs).

Limiting profitable income opportunities reduces the marginal value of other resources, including land. With land fully utilized, the marginal productivity values and capitalized present values are as given in table XIV.

The calf-wintering activity requires a large amount of hay. Never theless, it is still advantageous to buy hay after a $20 \%$ rise in price.

TABLE XIV

```
ACCOUNTING PRICE AND CAPITALIZED VALUE` OF CLASSES OF LAND, VARIOUS INTEREST RATES AND CORRESPONDING OPTIMAL LEVELS OF OPERATING CAPITAL, NO STOCKER CATTLE PURCHASES, FULL CAPITAL CHARGES
```

| Description | Unit | Internal Rate of Interest |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 21\% | 8\% | 4\% |
| Operating capital | \# per acre | --- 27 | --m* | 31 |
| Range |  |  |  |  |
| Accounting price | * per acre | 3.66 | 4.39 | 7.45 |
| Capitalized value ${ }^{\text {a }}$ | \$ per acre | 17 | 43 | 101 |
| Cropland |  |  |  |  |
| Accounting price | \$ per acre | 13.40 | 19.05 | 32.40 |
| Capitalized value ${ }^{\text {a }}$ | \$ per acre | 62 | 187 | 440 |
| Class A cropland |  |  |  |  |
| Accounting price | \$ per acre | 47.90 | 46.70 | 40.75 |
| Capitalized value ${ }^{\text {a }}$ | \$ per acre | 224 | 460 | 550 |
| Prairie hay land |  |  |  |  |
| Accounting price | \$ per acre | 12.37 | 12.04 | 10.68 |
| Capitalized valuea | \$ per acre | 58 | 118 | 145 |

${ }^{a}$ Accounting price compounded over a period of 20 years at a discount rate which corresponds to internal rate of interest.

A 20 per cent rise in the price of purchased hay has much the same effects on ranch organization as in the basic model (S1). Where possible, hay-using activities will be replaced by protein concentrate activities (1.09 for $1.10 ; 1.01$ for 1.02 ). A 40 per cent rise in the price of hay (figure 10,57 ) reduces the maximum level of operating capital to $\$ 71,000$. Calf-wintering, and thus range steers are eliminated. The organization at the highest profitable investment level now consists of 270 cows, and 114 calves on small grain pasture. The income contribution is reduced.

## 2. Choices Restricted to Cowmandelalf Activities ( $\mathrm{Se}_{s} 10$ )

Eliminating the option to buy stocker cattle reduces the total contribution only moderately, while saving a great daal of operating capital (fig. 3,4, appendix D). The contribution to profit, overhsad* and capital tops out at $\$ 23,400$ ( $\$ 9.10$ per acre). $\$ 50,000$ operating capital (\$23 per acre) are required to bring about this operating. income. Annual beef production is 67 tons ( 52 pounds per acre), valued at $\$ 29,500$ ( $\$ 11.50$ per acre). It is necessary to hire 480 man-hours of labor in the fall season.

Because of the restricted choice of activities, the organization of the model ranch is now highly specialized. Over the entire range of internal rates of interest and associated amounts of perating capital there is always the same activity, a combination of springand fall-calving, with alfalfa hay as the protein supplement (1.10). Cow numbers ars increased to 298 by converting all but class A cropland into grazing land. Additional alfalfa hay is bought (at. $\$ 25$ per ton) to bring total hay consumption to 151 tons.

The productivity value of rangeland is $\$ 5.94$ per year. Capitalized at $5.5 \%$ this adds up to $\$ 71$ per acre. This is less than the best that could be made from grazing land with a combination of cows and stock cattle. The productivity value of class A cropland is maintained at $\$ 44$ per year, or capitalized at $5.5 \%$ over 20 years, $\$ 525$.

A 40 per cent increase in the price of hay ( 510 ) eliminates hay purchases. There will be some native hay cut instead, and the number of cows drops to 289 spring-calvers fed with protein concentrate supplements (1.01, 1.09). Contribution to income drops by about two per cent
from the level of the previnus model.

## C. Effect of Changes in Tenume and 5iz of uperation

Up to now variations of the basic model always stasted with the premisse that the operator ouns four sections of land. We shall now sese what suggestions for organizing the ranch will follow from a change of the original premisse.

## 1. Tenant--Oparated Ranch Model (\$11)

No land is assumed owned, The operator may rent the same amount of land that was available to the owner-operator in the basic model. The income floor that was present in previous models because the land owned could always be rented out, is absent here.

The resultant organization (fig. 11,12) is comparable to 54. Differences are; the maximum demand for aperating capital exeeeds the demand of the ownersoperated ranch under otherwise identieal circumm stances (S4); because rent payments must be made, the contribution to profit, overhead, and capital for a given amount of operating capital is reduced; the largest number of beef cows kept is 150 , thus avaiding hiring any labor and reducing the quantity of hay to be purohased. Prefitable operation starts at a lower rate of interest.

The following characteristics are similar to model 54: a relatively smooth demand curve for capital; use of small grain pasture for wintering calves even before it pays to buy cows (2.07); substitution of stocker cattle for cows as the internal rate of interest is lowered and land is in ifmited supply; similarities in the relative advantage of altemate activities.


Fig. 11. Contribution to Profit and Dverhead and Organizational Characteristics, Tenant-Dperated Four Section Ranch. Capital Charged for Months of Use Only (Model Si1).


Fig. 12. Demand for Capital and Accounting Prices, TenantDperated Four Section Ranch. Capital Charged for Months of Use Only (Model No. S11).

## 2. Small Dwnes=Opexatad Raneh (sfe)

This modal (fig. 13) is a scaledadom vartiom of 44 , but the amount of operator labor was left unchanged. In sptit of this change in the patio of avaliable land and labow the smal zanch model shows the sama pattern of psoduction as 54 : The Dopetht 15 lecated at the 39 per cent rate of intarest, production commences at high oupital cogte with a smallmatin wintering operation, complemented by a bueding havd with fall as wall as sping calving, replaced gradually by purchased stocker steors if all land is fuliy utilized and capital la avalable

There are faw differences the target rate of intereat must fall balow 16 per cent before stocker etears mill be oubstitutad and thare is a tendency for higher accounting paices of land. This is eansistent with theosatical coneldarations. Undar mere rigid bapital eost ragimens stocken ste日rs mey be eliminatod entirely from the program of small ranch undes, slnce no saved wages campensate fos the high capltal costs. This auestion has not bean ansuarad hare.

## H: Land Mix VarLanta

1. Four Land mix Vaniants; ali greduetion Actut itus peridetad
 to demonstate the affocts of aliminating abme as ail of the mere prem ductive classes of land. It will be sean that a loes of fiakiblity is the principal change. This serias ( 313 to eff) is comparabie to Operating capital is chargad only for the monthe in which it ls getusily invested in cattle and all activities are parmittod. Numbrial dita ara presented in appendix $D$, tables IV and $V$ 。


Fig. 13. Contribution to Profit and Overhead, Organizational Characteristics, Demand for Capital, and Accounting Prices, Small Ranch Model (Model No. S12).

Bange Only (513). The systems in this garies show aimpla mod easily discernible patterm (fig. 14 and 15). As compared to 34 theme principal differences are moteds production will begin with breeding herd, at a rate of interest of 29 per cent. As captal is imereased, the breeding herd is supplemented by stockers, oven before all land avallable. is brought into production. Because all hay must now be purchased, contribution to profit and overhead are below the level obtained in 54; raising the highest efficiently usable level of operating capital from $\$ 69$ to $\$ 70$ per acre. The lower productivity of rangeland shows up in lowar physical beaf output per acre.

Range and Prairie Hay (515). The organization of this variant is for all practical purposes the same as that of the preceeding resource combination. The addition of 28 tons of hay raised at home makes ilttie difference on a unit this size. The slight saving in the cost of hay is simply added to the revenue contribution, but does not affect substi-e tution rates onough to induce organizational changes.

Bange and Cropland (515). With the addition of exopland wa imne. diately see activity 2.07 (ealves wintered on smadugrain pasture) anter the pieture (appendix $D$, figures 5, 6 , and table V). The Dopoint is moved back once again to the 3 per eent maxginal rate of return on aperating capital. The maximum revenue contribution is vintually as high as in 54 . This happens through a substitution of stesrs for gome marginal breeding oows and wintered calves which cost more than in $\mathrm{S}_{\mathrm{A}}$, beenuse the hay they require must be purchased.

Range, Brairie Hay, and Cropland (516). Save for the absance of Class $A$ land this land mix equals the one of the basic four Section Ranch. The organization is virtually the same as in 54 (see appendix $0_{0}$


Fig. 14. Contribution to Profit and Dverhead and Organizational Characteristics, four Section Ranch. Range Only, Capital Charged for Months of Use Only (Model S13).


Fig. 15. Demand for Capital and Accounting Prices, Four Section Ranch. Range Only, Capital Charged for Months of Use Only (Model S13).
table V). However, alfalfa hay must be bought. The additional cost is not sufficient to cause any substitution of protein concentrata far alfalfa hay.

## 2. Land Mix Variants, Production Choices Restrieted te Raised Cattle

Range only (S17 to S19). To appraise the effect of restricting the land capabilities under more constraiming oparating conditions this series should be compared to 55 to 57 . The changes will of course parallel the changes from 54 to 513. The general pattern of organizetion is considere ably simplified, the contribution to profit, overhead, and capital reduced, and more hay is purchased. In 517 (appendix D, fig. 7, B) the efficient level of operating capital per acre is lower than for the varlant with the full complement of quality land. This is contrary to the observation in 513.

A rise in the price of hay by either 20 or 40 per cent (S19) will curb the hay purchases, substitute protein concentrates for alfalfa hay ( 1.09 for $1.10 ; 1.01$ for 1.02 ), and reduce the contribution that may be obtained with the given resources. At the ferty per cent price level the Copoint is reached with a margimal rate of returm to operating capital of only 1.3 per cent. The precesding step yields 8 per cemt at the margin for up to $\$ 60,000$ operating capital, and 36 per cent for up to $\$ 56,000$. This may be a more realistic expansion limit under adverse conditions (appondix D, fig. 7,8). No calves will be retained until all available land is utilized by cows. This is because the winteringostocking operam tion. since it requires a large quantity of hay, is not competitive with calf raising until more capital becomes available. This contrasts with

S13 where purchased stocker yearlings come in even at high target zetes of interest, and in direct competition for the availabla land with the calf raising activity.

Range and Prairie Hay Land (S20). Results for this variant beax the same relation to 517 as $\$ 14$ bears to 513 . This is substantially the same kind of operation, except that some hay is cut at home, saving operating capital for the purchase of hay, and providing slightly better marginal yields on capital (appendix $D$, table VI).

## 3. Range Only, Production Choices Restricted to Breeding Herd (\$21)

In the preceeding series cows were replaced only beyond the Gapoint. Therefore, an artificial limitation to breeding herd activities takes affect beyond this point. As appendix D, table VI shows, the restriction to cow-calf activities cuts off the production opportunities beyond the Grpoint. It pushas this limit a little further out, requiring a little more hired labor than S17, without, however, adding anything to the level of contribution.

## I. Four Section Rench Variants with Option to Rent an Extra Section

The last group of variations on the "Four Section Ranch" is comm cerned with the effect of renting additional land. It will be shown that under the assumptions made the addition of one more section of land increases other inputs in near proportionate amounte. The small deviations from the proportionate ratio - as in capital requirement and labor hire -


Fig. 16. Contribution to Profit and Overhead, Organ= izational Characteristics, Demand for Capital and Accounting Prices, Four Section Ranch. Range Only, Breeding Hard Only (Model No. S21).
are hardly significant.
The series ( 522 to 524 ) is based on 55 to 57 , the variant whtoh limits activity choices to raised cattie only. 8

In this Five Section plan (fig. 17, 18) the activities are the same as in the original Four Saction plen. Thare ie simply more of every thing - more cows ( 354 ), more hay bought, more money invested ( $\$ 100,000$ ), more labor hired during fall and sumer seasom, more calves wintered (as many as 225). At the new maximum, provided there is a ready supply of 'easy' capital, the number of cows is reduced to accomodate a IImited number of stocker yearlings. The number of calves mindered is predeter. mined by the number of cows accomodated. Physical beef production per acre is unchanged from system 55.

A 20 per cent rise in the price of hay ( 523 ; fig. 0,10 in appendix D) eliminates the alfalfa purchases. Protein concentretes are substituted as winter supplement (activities 1.01. 1.09 for 1.02, 1.10). Otherwise the organization ramains unchanged from S22. Because of the highar praw curement costs for hay the marginal raturn to capital is lowared to 2.5 par cent. It is doubtfal if thia is conaidered a worthwile investment.

A 40 per cent price rise in this series ( 524 ) oliminetes wintexing activities, hence, by assumption, summer grazed yearlings. The nem cutoff point $C$ will be at a much lower capital level, whth a marginal rate of return of 12 per cent.

[^10]

Fig. 17. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch, With Dption to Rent an Additional Section of Range (Model No. S22).


Fig. 18. Demand for Capital and Accounting Prices, Four Section Ranch, With Option to Rent an Additional Section of Range (Model No. S22).

CHAPTER IV

## some generalizations pertaining to the manacement <br> OF CATTLE RANCHES DERIVED FROM THE <br> STATIC ANALYSIS

The obvious products of the results reported in the preceeding chapter are descriptions of ranch organizations that bring forth the highest contribution to profit and overhead, provided the specific conditions of the model and its modifications - resource mix, productivity, prices - are met. In a strict sense very few ranches meet the specifications precisely at any one time, or even in the average over a longer period. In order to make the results useful for a large number of ranches it is necessary to generalize the findings. ${ }^{1}$

1. Among the ten options of organizing cow-and-calf enterprise, only four were ever selected. The twobreading-season (1.10) alternative proved to be the favored one in the majority of cases. Where either land or the supply of labor in the fall became a critical limiting factor, spring calving was preferred. The difference between the profit contributions of both twombresding season and spring-calving was always small so as to make the choice between these two alternatives more a matter of individual circumstances and preference than of economic necessity.
${ }^{1}$ The points that follow will be presented only to establish conclusions from this model, whether they represent restatements of well known facts or new findings.
2. The rejected cow-and-calf alternatives: fall calving (with alfalfa or cottonseed cake) costs rarely less than $\$ 10$ per cow in income foregone; creep feeding costs from $\$ 5$ to 1.0 more than the non-creep alternatives; a prairie hay supplement in place of alfalfa hay generally proved costlier, compared to other alternatives; putting cows with fall calves on small-grain pasture (1.08) was particularly costly, resulting in more than $\$ 30$ per cow in terms of income foregone. 2
3. The break-even point for alfalfa and cottonseed cake supplement for brood cows was definitely above the price of $\$ 25$ per ton (cottonseed cake \$3.80 per cwt). Depending on circumstances the break-even point varied between roughly \$28 and \$34 per ton. 3
4. Wintering of calves on small-grain winter and spring pasture (activity 2.07) was always profitable and had the highest rate of return in capital. Only when purchase of short yearlings was deliberately restricted did other calf wintering alternatives emerge. Trap wintering with moderate gains was then chosen in preference to a rough-wintering alternative in order to provide the stocker cattle in instances where grazing appeared advantageous. Thus a wintering practice which puts on about 100 pounds per calf from weaning to April 1 is generally more profitable than a "survival" ration of cottonseed cake supplemented by
${ }^{2}$ Creep feeding may be justified in case of a sudden, severe drought, in purebred breeding, where it is desireable to push calves to take advantage of a favorable market or to get them ready before an expected price break, or finally if calves are to be prepared for feedlot finishing by the breeder himself.
${ }^{3}$ If the operator has the time to feed hay, no extra costs arise. If he hires extra help, wages have to be added to the cost of feeding hay, bringing down the break-even point.
winter range, allowing for but 50 pounds of gain. The advantage continues even though the summer gain (activity 2.05) on grass (which alone justifies the cost of wintering the calf), is reduced somewhat by increasing the winter gains.
5. Grazing yearlings. If purchased yearlings are to be grazed, it is more advantageous to buy lean, range-wintered yearlings (activity $2.02,2.05$ ) rather than trap wintered animals bearing an extra 50 pounds (2.03, 2,06). Yearlings raised at home should be trap wintered.
6. In the models investigated, steer grazing on range alone was always a better choice than a combination of range and sudan grass pasture. Sudan grass, in a ranch with limited cropland, would be considered an emergency crop if drought curtails range grazing, not a regular feature.
7. It was not profitable in any case to carry long yearlings cver into a second year of grazing. The opportunity cost of this strategy was generally more than $\$ 30$ per animal.
8. Throughout the variations of the ranch model the competitive position of cow-and-calf enterprises and yearling stocker enterprises remains the same. Cows are more advantageous as long as capital is scarce (hence costly), and land is easily available at the going rental rate. If land is limited and capital is in sufficient supply, i.e., oheaply obtainable, cows will be successively replaced by grazing yearlings. Underlying this is the fact that the (marginal) productivity of capital is assumed to be relatively high, the (marginal) productivity of land relatively low for a cow herd. The reverse hold for yearlings: Relatively high productivity per unit of land, low productivity per dollar invested in livestock.
9. Of crucial importance for the competitiveness of yearling stocking is the form of capital borrowing contracts. The marginal rate of return to operating capital borrowed on a short-term credit instrument for the few months the yearlings are on grass is 23 to 9 per cent, yet only 4 - 1.5 per cent if working capital has to be borrowed on a one-year contract.
10. A relatively small proportion of cropland adds a great deal of flexibility and income-creating potential to a ranch. Cropland provides grazing and forage, which is often available at different times from native grasses, - small grain pasturage - or is of superior quality alfalfa. By permitting variety of organization seasonal labor requirements are often reduced. The value added per acre of productive cropland is several times greater than from rangeland, thus justifying a higher price. The high accounting price of cropland and the derived capital value suggest that substantial investments to improve and irrigate suitable land may be profitable.
11. The intensity of operation may be moderately raised by using more capital and labor, and by buying hay. This study points out the limits of conventional operation. Further intensification calls for intensified range management, or permanent improvements such as brush clearing, reseeding, fertilizer use or irrigation (51) (52).
12. Limiting the choice of enterprises limits the income levels that may be reached. Specialization as an aim in itself may be justified if experience or the ability to supervise a great variety of activity at once is lacking.
13. Even with a limited choice of activities as used in this study, the organization of a ranch is complicated and sensitive. While the principles of management remain the same everywhere, differences in actual resource availability and productivity may call for radically changed optimum orgainzations with only slightly different resource situations. To accomplish the calculating work necessary to modify the results it will be necessary to either employ computers, or develop simplified planning methods such as Weinschenck's difference method (53), the Swedish HYV method (54) (55), or Blechsteins's Kreuznach method. (56).
14. The Four Section Ranch model was calculated using long-term average prices and productivity factors. It is essentially a "stationary state" model, based on the fundamental notion that the best management strategy is to follow one basic prescription every year. In such a framework year-to-year changes must be seen as necessary evils, the goal being to hew as close as possible to the ideal model under any situation. This view overlooks the fact that exceptions far exceed the occurrence of average conditions. Variations in prices and productivities can constantly be expected, The remainder of this monograph is devoted to a study of strategies which incorporate sume awareness of changes to come into organizational and operational plans.

A rise or fall in the price of beef affects the relative advantage of beef enterprises competing for the use of range, cropland, capital labor and - most important - for the operator's attention. In this chapter, the effects of a change in the general level of prices, of a movement of prices from planning or steer-buying time to the time finished calves or steers are sold, and of diffused rather than discrete price expectations will be investigated. ${ }^{1}$
A. Description of Resources and Relationships in the
"Four And Four" Model Ranch

In this series the amount of operating capital is set at a given level. Purchase prices and eelling prices are varied by parametric programming. The results are presented (a) in a "price map" (17, ch. 8), and (b) in a price-contribution nomograph. The price map identifies the optimum enterprise combinations associated with various buying and selling

[^11]prices. The income nomograph identifies the contribution to profit and overhead associated with all price configurations. The nomograph also demonstrates the price sensitivity of enterprises and the 'price risk' associated with each.

The "Four And Four" model ranch consists of four sections of land owned outright, an option to rent an additional four sections of range, plus 150 acres class A (alfalfa) cropland, and an 'intermediate' capital position defined as follows: the operator owns outright operating capital, equal to $?$ per cent of the value of the real estate, he may borrow up to one half the value of the real estate at four per cent for the purchase of livestock, and up to twenty per cent of the value of the real estate value $(\$ 218,350)$ at seven per cent to finance all other operating expenses. 2
B. Ranch Organizations as Influenced by Price Levels and Price Changes

1. Classes of Organizations Covered by the Price Map

In figure 19 the abscissa variable represents the purchase price of calves bought for wintering and steers for grazing (Po). The ordinate variable is the deviation of the selling price level from the purchase

[^12]

Fig. 19. Price Map: Calf Buying Price Versus Calf Selling Price (Difference to Buying Price), Four-And-Four Ranch Model.
price level ( $\Delta P^{*}$ ). $\mathrm{P}^{*}$ may be considered either the actual realized selling price, or the expected selling price upon which planning is based. 3

As prices are varied, the optimum organization of the model of a firm will change only as the point of tangency with the maximum revenue contribution plane swings from one vertex point to the next (see chapter IV). In a price map this permits delineation of areas of common organization. Because many such changes take place, in fig. 19 a number of minor changes have not been mapped to avoid unnecessary confusion. The areas specifically identified as having a common organization are:

> Group I. No Cattle
> A - 'Sell out/rent'. Marginal rate of return on operating capital
> less than loan rate, rate of return on land less than rental rates.
> Group II. Cows Only (activity 1.05)
> B - Cow-calf transition. Same system as in (C), yet cow numbers vary from zero (boundary of A, lowest calf price) to near the number of cows in (C), range land successively taken under operator's management.
$3^{3}$ The price level is identified by the price of weaned feeder calves. However, differences betwe日n classes of livestock, and seasonal differences have been taken into account. All prices used are varied strictly in proportion with the feeder calf price. This is a simplifying assumption. Over short periods of time prices of individual classes of livestock may move samewhat independently of each other. The simplifying assumption was made for the obvious reason of keeping the problem manageable. In ad hoc studies of a particular ranch for a particular market situation price changes, may, of course, be specified individually for calves, yearlings. etc.

C - Cow-calf. Fall Calving, alfalfa hay supplement, 508 cows (activity no. 105) (598 above a calf price of \$25.50 per cwt.).

Group III. Mixed Operations
$D=$ Cow-calf ( 1,05 ) supplemented by calves wintered and fed on small grain pasture (2.07). Size and composition of herd varies.
$E$ - As (D); (1.05) partially or totally replaced by spring calving cows (1.01). Proportions vary.

F-Spring calving cows (1.01), calves wintered on small-grain pasture (2.07) and summer-grazed range yearlings (2.05).

6 - As (F); spring calving replaced by alfalfa-fed, fall calving cows $(1.05) .4$

Group IV. Calves and Yearlings only
H - Yearlings grazed on range (2.05) and, as far as available, on sudan grass pasture (2.06); number of steers limited by available capital and purchase price.
$I$ - As (H); some of the cropland diverted from sudan grass to pasture for calves (2.07).
J. Calves wintered in the rough (2.01) and subsequently grazed on range (2.02); supplemented by additional calves bought in the spring for grazing (2.05); cropland utilized by calves on small grain pasture (2.07).

[^13]K - All calves bought in fall. Activities 2.01, 2.02, 2.07.

## 2. Dptimum Organization for Constant Prices

No beef activity contributes anything to profit and overhead below a calf price of $\$ 11.25$ per 100 pounds. With the slightest price improvement, and the hope for better days to come, yearling grazing is indicated (region H). Beyond \$12 calf raising (B) is indicated. With further improved prices, mixed operations with cows and calf wintering/yearling grazing (group III) appear most promising.
3. Dptimum Organizations if the Price Level Changes During the Period of Production

As the price level goes up, not only is more income generated, there is more latitude to adjust to change, and the regions of optimum organization themselves cover a wider latitude, indicating greater stability in the face of short-term price changes. The range of the mixed operations area develops as follows as the base (purchase price) increases:

| base price | Stability range of selling price  <br> $\$ 20 / \mathrm{cwt}$ $+\$ 1.75$ |
| :--- | ---: |
| 25 | $+\$ 2.75$ to $-\$ 1.25$ |
| 30 | $+\$ 2.50$ |
| 35 | $+\$ 10$ |

It is, of course, true that within this range the exact composition of the optimal livestock mix varies.

The upper boundary of the 'mixed operations' region forms the lower boundary of the 'calf-and-stocker cattle' phase (group IV). The boundaries between the stocker subregions are dependent solely on the purchase price, while the selling price margin determines the proportion of cows and stocker cattle. A stocker/feeder calf price of $\$ 15.50$ shifts cropland use from sudan grass (2.06) to oatsmetch pasture (2.07). Beyond $\$ 20.50$ activity 2.01 (wintering calves) is introduced, Above a base price of $\$ 22.50$ activity 2.05 is eliminated. Because the level of operating capital has been fixed, an increase in the general beef and price level reduces the number of animals that may be bought. At $\$ 10$ as many as 2700 steers may be financed with the given base. At $\$ 15$ the number falls to 1950 ; to 1500 at a $\$ 20$ price base, and 1250 , 1050, and 950 with price basie' of $\$ 25, \$ 30$, and $\$ 35$, respectively. If more capital were made available, the number of steers bought would be increased and the competitive range of stocker operations expanded.

Lowar selling prices suggest "pure" cow-and-calf operations (group II). The number of cows ultimately is limited only by the acreage available (to $588 / 59$ head). As long as the feeder/stocker calf price stays above $\$ 16$ per hundredweight, range is used to capacity by cows.

Only if prices fall below that mark is a gradual reduction in the number of cows indicated, until below the $\$ 12$ price level all beef activities become unprofitable. 5

5 The model specifies that a minimum income of about $\$ 7000$ to cover land tax, other overhead and minimum living is available at this point. As prices fall, this minimum is earned by renting out all land and saving the capital. This is not a realistic assumption if prices stay depressed permanently; The rental rate is bound to fall if the level of calf prices falls permanently.

In summary, with prices falling stocker cattle oparations are not among the favored activities. With prices increasing, a mixed operation with both a cow herd and varying numbers of calves wintered and summer grazed is the ranch organization of choice. Only with a positive price margin between spring and fall prices pure stocking operations are more advantageous than mixed operations.

A cow herd however, cannot easily be liquidated on short notice, and, more important yet, cannot be built up again within a short time, either. Thus, while it may be profitable to have only steers to reap the benefits of rising prices, cows should always be around to help cushion the effect of falling prices. This may tip the balance heavily in favor of cows. On the basis of the model calculations, taking into account the fixity of a cow herd, one might expect that cow herds will be the basic operation. Cowe may be complemented by grazing steers, provided the price looks right, and pasture or cropland to plant to small grain pasture is availabla.

> C. The Influenee of Price Upon Profit and Ovarhead Contribution

Figure 20 shows the amount of contribution to profit and overhead that may be obtainad by ranch organizations optimal for indicated price oonfigurations. Each curve is associated with a given basing or purchase price as it pravailed during the beginning of a period of production, and relates the net contribution obtainable (ordinate) at various selling prices at the end of the period of production (abscissa) for the particular


Fig. 20. Price Profit Map of the Four-And-Four Ranch Model: Relations Between Calf Buying
basing price. Table XV lists the contribution of various organizations (including the optimal one) for a number of basing prices, with selling price identical to basing price.

Figure 20 associates the value of the objective function with - constant, rising, and falling - be日f price levels. It also gives some idea of the price sensitivity or the "price risk" associated with the various ranch cattle producing activities. The slope of the curves directly represents the price-income gradient, $\frac{\Delta c}{\Delta D}$ ( $\Delta C=$ change in contribution to profit and overhead, $\Delta P=$ change in calf price). The steaper the eurves, the greater the income change associated with a change of the price of beef during one full period of production.

Point estimates of the price/income gradients have been assembled in table XVI. Not unexpectedly the gradient increases from zero for the rentwout alternative, through cow-and-calf operations to pure steer stocking activities. By definition each organizational plan has a constant gradient. The succession of optimum plans called for, as the - anticipated or ex-ante - selling price varies, leads to a succession of constant price-income gradients, each of fixed value, but applicable only in the price range for which the organization is best adapted. Together these define a price-income curve which approximates a smooth curve. At the scale used in figure 20 it is difficult to identify all the vertices where the price-income gradients change. Only one series of vertex points, corresponding to the boundary between regions III and IV in the price map has been identified (dotted line).

TABLE XV

## CONTRIBUTIONS TO PROFIT AND DVERHEAD, OPTIMAL AND SUBOPTIMAL PLANS FOR

 MODEL CATTLE RANCH, SOUTH CENTRAL OKLAHOMA (FOUR AND FOUR RANCH, INTERMEDIATE CAPITAL, VARIOUS PRICE LEVELS).| Description of Ranch Plan | Price Map Region ${ }^{\text {a }}$ | Buying and Selling Price Level |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \$12/cwt. | \$16/cwt. | \$20/cwt. | \$24/cwt. | \$28/cwt. | \$32/cwt. |
| I Sell out or rent out | A | \$7,055 ${ }^{\text {b }}$ | \$7,055 | \$7,055 | \$7,055 | \$7,055 | \$7,055 |
| II Cow-Calf 291 beef cows | 日 | 6,185 | 10,580 | 14,975 | 19,375 | 23,770 | 28,165 |
| 588 beef cows | C | 3,425 | 12,135 | 20,920 | 29,625 | 38,335 | 47,070 |
| II Mixed Operations Cows, some small grain calves | 1 | 1,976 | 12,210 | 22,090 | 32,410 | 42.835 | 52,975 |
| Calves \& year= lings, some cows | $\text { us } E, F, G$ | [/28,150 | G/10,955 | [/21,670 | F/32,970 | $E / 43,445$ | E/54,260 |
| IV Calves wintering \& Yearlings grazing | H, I, K | H/1,445 | 1/9,560 | I/15,990 | K/23,165 | K/30,835 | K/35,565 |

a Letters refer to subregions in figure 19.
b Underlined values are maximum for its price level.
the effect of a difference between buying and selling price on contribution TO PROFIT AND QUERHEAD IN THE FOUR AND FQUR RANCH ( $\frac{A C}{4}$ ).

L\$ GAIN PER $1 \$$ INCREASE IN FEEDER CALF PRICE
from buying to selling time]

| Description of Ranch Plan | Buying Price |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \$12/cwt. | \$16/cwt. | \$20/cwt. | \$24/cwt. | \$26/cwt. | \$28/cwt. | \$32/cwt. |
| I Sell out or rent out ${ }^{\text {b }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| II Cow-and Calf |  |  |  |  |  |  |  |
| 291 beef cows B | 0 | \$1100 | \$1100 | \$1100 | \$1100 | \$1100 | \$1100 |
| 588 beef cows C | 0 | 0 | \$2200 | \$2220 | \$2220 | \$2220 | \$2220 |
| II Mixed Operations |  |  |  |  |  |  |  |
| primarily cows, some small-grain calves ( 104,107 ) | 0 | \$2560 | \$3605 | \$3605 | \$3605 | \$3605 | \$3540 |
| calves, some cows E,F,G | 0 | G/\$9775 | 6/\$5235 | F/\$4570 | \$4380 | E/\$4405 | E/\$4105 |
| IV Calf wintering <br> yearling grazing $H, I, K$ | H/15009 | I/\$11785 | I/\$9750 | K/\$8425 | \$7930 | K/\$7490 | K/\$6770 |

[^14]
## D. The Effect of Erroneous Price Estimates

While decisions are taken on the basis of estimated (ex ante) selling prices, income is determined on actual prices at the time of sale (ex post).

The price-income map (fig. 20) shows only price-income combinations in cases where, at the time the decision to buy steers is taken, the anticipated selling price has been estimated correctly. If the anticipated price turns out to be wrong, and assuming that no short-term disposition is possible, any gross deviation of the actual (ex post) salling price from the anticipated one (ex-ante) will result in a deviation from the expected income. There may be either a windfall profit or loss. Once inputs are committed, the final outcome $C$ is a linear function of the realized be日f price $\mathrm{P}_{\mathrm{b}}: \quad \mathrm{C}=\mathrm{K}+\mathrm{P}_{\mathrm{b}} \mathrm{Y}$, where the cost constant K not only includes fixed costs, but also all variable costs including the cost of stocker calves, which have been committed irrevocably once a decision has been made. The effect of miscalculating future prices for any level of prices and any ranch organization considered may be visualized readily by laying a tangentthrough the point on the line representing a given organization. The steeper the slope the greater is the price sensitivity of anticipated returns.

By the criteria of the price-income gradient a steer stocking operation is more sensitive to short-term price changes than a cow-calf operation. While stocker cattle hold out the promise of greater gains when the price is moving in the right direction, it also may plummet income much more radically with an unexpected price drop.

Table XVI shows the cost of a one dollar error in anticipating price for the model ranch. Predictably a higher price than expected increases returns, a lower price than expected reduces returns. But a closer look is needed to demonstrate that no matter which way we err in predicting price, an error costs us, either in actual losses, or in opportunity costs, in income foregone which we miss by hedging on our price estimates.

In table XVII, for a given initial price level the income contributions obtained by anticipating selling prices correctly ("ex ante contribution") are compared with the income contributions obtained if prices deviate by specified amounts from expectations ("ex post contributions").

The differences between ex ante and ex post contributions on the same line measures the total windfall loss or gain (57, p. 178) (58, pp, 57, 288) (59, p. 261), The amount of the windfall could be calculated by multiplying price difference and price-income gradient (table XVI). It is a pure price effect. Distinct from windfall loss or gain is long-run loss or gain, measured by the differences between appropriate values in the "ex ante contribution" column. The differences between windfall (ex post) and long run (ex ante) loss/gin can be measured by subtracting the contributions of the ex ante column from values along the SW - NO diagonals. The difference between long-run loss or gain and windfall or price effect loss/gain is never positive. It is the (opportunity or actual) cost of imperfect price anticipation. We can call it the substitution effect. The substitution affect is that part of wind. fall losses that could have been avoided with proper forecasting and organization (table XVIII).

## TABLE XVII

CONTRIBUTION TO PROFIT AND DVERHEAD FOR varidus anticipated and realized sellinc prices, FOUR AND FOUR RANCH MODEL, FEEDER/STOCKER CALF PURCHASE PRICE \$26 PER HUNDRED POUNDS. ORGANIZATIONS OPTIMAL FOR EXPECTED SELLING PRICE.

| Expected Selling | Optimum | Ex Post Contribution (Ex Post Price lower than Ex Ante Price by |  |  |  |  | Ex Ante Contri= bution ${ }^{\text {a }}$ | Ex Post Contribution (Ex Post Price Higher than Ex A |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Ex Ante Price) <br> per 100 pounds | Program | -\$10 | - \$B | -\$6 | -\$4 | -\$2 |  | + ${ }^{\text {\% }}$ | + ${ }^{\text {\% }} 4$ | +\$6 | + ${ }^{8}$ | +310 |
| \$12 | A | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 | 7055 |
| \$14 | B | -2610 | -410 | 1785 | 3985 | 6180 | 8380 | 10580 | 12780 | 14980 | 17175 | 19370 |
| \$16 | c | -10090 | -5650 | -1210 | 3230 | 7670 | 12110 | 16550 | 20990 | 24430 | 29870 | 34310 |
| \$18 | $c$ | -5650 | -1210 | 3230 | 7670 | 12210 | 16550 | 20990 | 24430 | 29870 | 34310 | 38750 |
| \$20 | C | -1210 | $3230{ }^{\circ}$ | 7670 | 12210 | 16550 | 20990 | 24430 | 29870 | 34310 | 38750 | 43200 |
| \$22 | c | 3230 | 7670 | 12210 | 16550 | 20990 | 24430 | 29870 | 34310 | 38750 | 43200 | 47640 |
| \$24 | D | -5630 | 1580 | 8790 | 16000 | 23210 | 30400 | 37620 | 44830 | 52040 | 59250 | 66450 |
| \$26 | E | -5255 | 3510 | 12270 | 21030 | 29790 | 38550 | 47310 | 56070 | 64840 | 73600 | 92360 |
| \$28 | E | 3510 | 12270 | 21030 | 29790 | 38550 | 47310 | 56070 | 64840 | 73600 | 92360 | 101120 |
| \$30 | K | -20374 | -4510 | 11350 | 27210 | 43070 | 58930 | 74790 | 90650 | 106510 | 122370 | 138230 |
| \$32 | K | -4510 | 11350 | 27210 | 43070 | 58930 | 74790 | 90650 | 106510 | 122370 | 138230 | 154190 |
| 834 | K | 11350 | 27210 | 43070 | 58930 | 74790 | 90650 | 106510 | 122370 | 138230 | 154190 | 170050 |

[^15]
## TABLE XUIII

THE CDST OF IMPERFECT PRICE ESTHMATES, FOUR AND FGUR RANCH MGDEL, FEEDER STOCKER CALF PURCHASE PRICE 3 2. PER HUNDRED PDUNDS.

ORGANIZATIONAL BPTIMA FOR EXPECTED SELLING PRICE.

| Expected <br> Selling <br> Price | Optimum Progran | Cost of Querestimating Selling Price $(E x \text { Ante - Ex Post) }$ <br> Ex Post Price Lower than Ex Ante Price by... |  |  |  |  | Ex Ante Contribu= tion and Ex Ante Price=Ex Post Price | Dpportunity Cost of Underestimatino Selling Price (Ex Ante - Ex Post) <br> Ex Post price Higher than Ex Ante Price by... |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prica) |  | - $\mathbf{- 1 0}$ | -\$8 | -\$6 | -\$4 | -\$2 |  | +\$2 | + ${ }^{*} 4$ | +\$6 | +\$8 | + \$10 |
| \$12 | A | 0 | 0 | 0 | 0 | 0 | $D$ | -4330 | -5060 | -9500 | -13940 | -17380 |
| \$14 | B | -9665 | -7465 | -5270 | -3070 | -870 | 0 | -2690 | -3770 | -5000 | -7260 | -11040 |
| \$16 | c | -17140 | -12700 | -6840 | -3820 | -710 | 8 | 0 | D | 0 | -540 | -4240 |
| \$18 | $\bigcirc$ | -12700 | -8840 | -3820 | -710 | 0 | 0 | 0 | B | -540 | -4240 | -9560 |
| \$20 | [ | -8840 | -3820 | -710 | 0 | 0 | 0 | 0 | -540 | -4240 | -8560 | -15740 |
| \$22 | c | -3820. | -710 | 0 | 0 | 0 | D | -540 | -4240 | -8560 | -15740 | -27160 |
| \$24 | D | -14010 | -10530 | -7760 | -5000 | -1230 | 0 | -930 | -2480 | -6890 | -15540 | -24200 |
| \$26 | E | -17370 | -13050 | -6725 | -3400 | -520 | 0 | 0 | -2860 | -9960 | -17060 | -14150 |
| \$28 | E | -13050 | -8725 | -3400 | -620 | 0 | 0 | -2860 | -9960 | -17060 | -14150 | -21150 |
| \$30 | K | -41370 | -28940 | -19070 | -11340 | -4240 | 0 | 0 | 0 | 0 | 0 | 0 |
| \$32 | K | -28940 | -19070 | -11340 | -4240 | 0 | 0 | B | 0 | 0 | 0 | 0 |
| \$34 | K | -19070 | $-11340$ | -4240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

This table derived from table XVII,

The stubstitution effect is of course zero for all correctly anticipated prices (ex ante column). The area of a zero substitution effect sometimes extends over a range of prices (here $\$ 16-22,26-28$, 30 and up). Within each of these ranges no change of the optimum plans is indicated, hence no resource substitution is necessary if prices fluctuate within this range. (The 'no substitution' regions are boxed in in table XVII).

There is a bias apparent in the affect of overestimating and underestimating selling prices. The bias shows up most clearly if we "fold over table XVIII upon itself", i.e, by subtracting the cost of underestimating from the cost of overestimating by a like margin. A minus sign indicates that overestimating causes the greater cost. Table XIX presents the estimating bias associated with tables XVII and XVIII.

Qverestimating obviously is more costly when a price increase is ovarestimated ( $P^{*}-P_{0} \geq 4$, where $P_{0}=26$ ). Underestimating the selling price while it is already falling strongly ( $p_{*}-P_{0}$ - 12) is equally obviously the more costly choice. In between the choices are not as obvious. Yet, excepting the $\$ 16$ level $\left(\boldsymbol{\Lambda}_{\mathrm{p}}=10\right)$ it appears that within the boundaries indicated overestimation on balance tends to be more costly.

## E. Expected Values of the Contribution to Profit and Dverhead

We know now the outcome of several ranch programs for a wide range of prices and price changes over a period of production. In this section we condense our information for each program, by multiplying the estimated probabilities of cartain price changes with the outcomes which

TABLE XIX
the difference of the cost of overestimating and underestimating beEf selling prices. four and four model ranch, FEEDER/STOCKER CALF PURCHASE PRICE \$26.
[Dollarg]

| ```Expected Selling Price p*``` |  | Optimum Program | (Cost of Overestimating) - (Cost of Underestimating) of Actual Price $E$ (Low Ex Post) - (Hioh Ex Post) ${ }^{\text {a }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$12 | A | no cattle | 1330 | 5060 | 9500 | 13940 | 17380 |
| \$14 | B | 291 cows | 1820 | 2900 | 5125 | 6490 | 10170 |
| \$16 | C | 588 cows | - 710 | - 3820 | - 3820 | - 3280 | 415 |
| \$18 | C | " " | 0 | - 710 | - 3280 | 415 | 4740 |
| \$20 | C | " " | 0 | 540 | 3230 | 4740 | 11910 |
| \$22 | C | " " | 540 | 4240 | 8560 | 15020 | 23330 |
| \$24 | D | 565 cows <br> 216 calvas | - 297 | - 2510 | - 870 | 5015 | 10190 |
| \$26 | E | 540 cows <br> 338 calves | - 620 | - 850 | 1230 | 4010 | - 2220 |
| \$2日 | E | " " | 2860 | 9330 | 13650 | 5425 | 8100 |
| \$30 | K | $\begin{gathered} 1220 \text { calves } \\ 870 \text { yearly } \end{gathered}$ | ings | -11340 | -19070 | -28940 | -41370 |
| \$32 | K | $" 1$ | 0 | - 4240 | -11340 | -19070 | $-28940$ |
| \#34 | K | " | 0 | 0 | - 4240 | -11340 | -19070 |

$a_{\text {minus }}(-)$ : cost of overestimating greater than cost of under= estimating.

No sign: cost of underestimating.
we calculated for these price changes, and summate the products. The result of this operation are the expected values of the contribution to profit and overhead for each of the programs or strategies, for a given initial price, $P_{0}$. Dur choice guide we modify by selecting the program with the highest expected value.
(5.1) $E(C)=\sum^{t} p_{t} C_{t}\left(t=1 \ldots n\right.$; and $\left.\sum^{t} p_{t}=1.0\right)$.

Here $P_{t}$ is the probability of having a selling price $P_{t}$ in one year follow a purchase price $P_{0}$ in the preceeding year.

Only a limited number of observations are available to estimate the probabilities of annual price changes. The longest series is "Prices Receivad by Farmars for Calvas" (60) (61), For Oklahoma this series goes back to 1909. To aliminate the variation due to ohanges in the secular price level the raw data wers firet expressed in terms of their ter-year moving (centerad) averages, and normalizad to the 1957-59 price lavel (pigure 21). ${ }^{7}$

From the adjusted data a table of transition probabilities or a Markov table (62) was constructed (table XX). Tablas II to V, appendix E, contain the values of contributions of several ranching strategies for purchase prices of $\$ 18, \$ 22, \$ 26, \$ 30$ per 100 pounds, and sales prices $P_{t}$ as expactad according to table $X X$. The bottom line contains the expected value of each strategy, the sum of all outcomes weighted with the associated probabilities. The expected values in the bottom
${ }^{7}$ See appendix E table I for further details.

TABLE $X X$
TRANSITION PROBABILITIES OF CALF PRIEES (YEAR-TO-YEAR CHANGES) OKLAHOMA 1909-63a

| First Year Price Changes | Unit | Second Year Prices |  |  |  |  |  | $\frac{\text { Number of Years }}{\text { First Year Price }} \begin{gathered} \text { Probability } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | to \$15.99 | $\begin{aligned} & \$ 16 \text { to } \\ & \$ 19.99 \end{aligned}$ | $\begin{aligned} & \$ 20 \text { to } \\ & \$ 23.99 \end{aligned}$ | $\begin{aligned} & \$ 24 \text { to } \\ & \$ 27.99 \end{aligned}$ | $\begin{aligned} & 52 \mathrm{~B} . \text { to } \\ & \$ 31.99 \end{aligned}$ | $\$ 32$ and upward |  |
| To \$15.99 | Number <br> probability ${ }^{b}$ <br> ave. price? <br> change | - | - | $\begin{gathered} 1 \\ 1.0 \\ \$ 14.95- \\ \$ 23.29 \end{gathered}$ | - | - - | - | $\begin{aligned} & 1 \\ & 0.023 \end{aligned}$ |
| $\begin{aligned} & \$ 16 \text { to } \\ & \$ 19.99 \end{aligned}$ | Number <br> probability <br> ave. price <br> change | $\begin{gathered} 1 \\ 0.10 \\ \$ 16.92= \\ \$ 14.95 \end{gathered}$ | $\begin{gathered} 5 \\ 0.50 \\ \$ 18.33= \\ \$ 18.10 \end{gathered}$ | $\begin{gathered} 4 \\ 0.40 \\ \$ 16.86 \\ \$ 21.16 \end{gathered}$ | - | - | - | $\begin{aligned} & 10 \\ & 0.227 \end{aligned}$ |
| $\$ 20$ to $\$ 23.99$ | Number <br> probability ${ }^{\text {b }}$ <br> ave. price) <br> change | - | $\begin{gathered} 4 \\ 0.25 \\ \$ 20.98= \\ \$ 19.03 \end{gathered}$ | $\begin{gathered} B \\ 0.50 \\ \$ 22.71- \\ \$ 22.47 \end{gathered}$ | $\begin{gathered} 3 \\ 0.18 \\ \$ 22.56= \\ \$ 24.98 \end{gathered}$ | $\begin{gathered} 1 \\ 0.05 \\ \$ 20.81= \\ \$ 28.18 \end{gathered}$ | - | $\begin{aligned} & 16 \\ & 0.364 \end{aligned}$ |
| $\begin{gathered} \$ 24 \text { to } \\ \$ 27.99 \end{gathered}$ | Number probability ave. price) change | - | $\begin{array}{r} 1 . \\ 0.083 \\ \$ 24.95= \\ \$ 17.24 \end{array}$ | $\begin{gathered} 3 \\ 0.25 \\ \$ 25.56 \\ \$ 23.00 \end{gathered}$ | $\begin{gathered} 5 \\ 0.417 \\ \$ 25.39= \\ \$ 24.98 \end{gathered}$ | $\begin{gathered} 3 \\ 0.25 \\ \$ 25.63- \\ \$ 26.69 \end{gathered}$ | - | $\begin{aligned} & 12 \\ & 0.273 \end{aligned}$ |
| $\$ 28$ to. $\$ 31.99$ | Number <br> probability <br> ave. price, <br> change $S$ | - | - | - | $\begin{array}{r} 1 \\ 0.333 \\ \$ 28.14= \\ \$ 25.77 \end{array}$ | - | $\begin{gathered} 2 \\ 0.657 \\ \$ 30.48- \\ \$ 32.38 \end{gathered}$ | $\begin{aligned} & 3 \\ & 0.068 \end{aligned}$ |
| $\$ 32$ and upward | Number probability ave. price change | - | - | - | $\begin{gathered} 2 \\ 1.0 \\ \$ 32.38 \\ \$ 25.34 \end{gathered}$ | $\cdots$ | - - | $\begin{aligned} & 2 \\ & 0.045 \end{aligned}$ |

$\mathrm{a}_{\text {See }}$ text for adjustments made to eliminate effect of changes in the general price level.
Dumber of years in this price range following a year with price as indicated in the first column.
CProbability of a year recurring with price as indicated in first column.
row have been carried over into table XXI. ${ }^{8}$ Table XXI contains significant information. It permits evaluation of the profit-generating potential of each strategy in terms of its expected value, for each of a number of initial price levels. Thus, at a price of $\$ 22$ for weaned calves, mixed operation D (primarily a cow herd, with some calves kept over to next spring on small grain pasture) has the highest expected value, followed by a streight cowmand-calf setup (program C). With a purchase price of $\$ 18$ per 100 pounds a program with only calves and yearlings (I) has the highest expected value.

Stocker cattle are more promising than any other kind of ranching program when the calf price is low. The probability of a price rise is never greater than when prices are down at the bottom.

It is not possible to switch back and forth between stocker cattle and a cow herd, but it is possible to vary the composition of the herd somewhat. For example, if prices and feed conditions warrant, some or all of the calves (program D - G) may be retained while calves would be sold at weaning time when prices are imminent.

A strategy which is based primarily on cows, with calf and yearling operations added as the occasion justifies, would be most advantageous on theoretical grounds, too. The expected value of such a strategy ( $D$, table XXI) is greater than any other program. It exceeds the expected value of a strict calf-raising operation (C) by 9 per cent, and a program based on buying and selling stocker calves and yearlings (IV) by 25 per
$8_{\text {Which also }}$ contains the expected values for purchase prices of $\$ 15$ and $\$ 32$ which, as seen in table XXI, have a single-valued expected selling price.

TABLE XXI
COMPOUNDED EXPECTED CONTRIBUTION TO PROFIT AND OVERHEAD, FOUR AND FOUR RANCH MODEL

| $\begin{aligned} & \text { Purchase } \\ & \text { Price } \\ & \mathrm{P}_{\text {it }} \end{aligned}$ | ```Probability of Purchase Price Dccurring P``` | $\begin{gathered} \text { II } \\ \text { Cows Only } \\ \hline \end{gathered}$ |  | IIIMixed Operations |  | ```IV Calves and Yearlings Only``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B | C | D | Other |  |
| \$15 ${ }^{\text {a }}$ | 2.3\% | \$ (18274) | \$(27150) | \# (32004) | G\$3212 | H \$107422 |
| \$18 | 22.7 | 13834 | 18684 | 19738 | G 22329 | I 23035 |
| \$22 | 35.4 |  | 26026 | 29238 | F 24743 | 」 23098 |
| \$26 | 27.3 |  | 32096 | 34260 | E 34480 | K 20905 |
| \$30 | 6.8 |  | 43926 | 48618 | E 50069 | $k \sim 52000$ |
| \$32 | 4.5 |  | 32094 | (28131) | E(26959) | (loss) |
| Weight | Average ${ }^{\text {b }}$ | $=\sum^{t} p_{t} c$ | $t) \$ 27530$ | \$29780 | \$ 28870 | \$ 23775 |

Figures in parenthesis are not optimal for this price range. They have been computed to astimate the outcome of a strategy which is followed evary year.
${ }^{\text {a Selling price }} \$ 23$ (sae preceeding table).
${ }^{\mathrm{b}}$ The expected valus of a strategy followed consistently year after year.
cent. An increase of 9 per cent of returns over variable cost is a respectable increase, amounting to perhaps 15 per cent and more in profits. This could be obtained on most ranches now specializing on raising feeder calves, simply by feeding out some calves, if there is lush and cheap winter pasture, and the price is right.

A pure stocker steer operation seems to be justified only if the operator has shown exceptional ability to gauge the market, has the capital required to carry the large number of animals, and will make sell and buy decisions solely on the basis of current market appraisals. This often means going against the market and abruptly changing the mode of operation.

## CHAPTER VI

AN INTERTEMPORAL RANCH MODEL

The optimel management plan devaloped in Chapter $V$ is based on maximization of the expected contribution to prafit and overhead. This approach utilizes historio price probabilitios as observed over fifty years. Yat it is a shortwrun plan, taking account axplicitly of only two pointa in time, the beginning and the end of the production pexiod. By invoking the "atationary atata" conoept, whare pricas, teohnology and natureminducod production conditions are assumed in equilibwium, and therefore oonatant.

We cen extend the results of Chapter $V$ to the long rum. Most ranch production conditions vary most all the time. Still we may consider the plans advanced previously as norms, from which the managar would deviate as conditions require. But under what conditions should he deviate, and how much? Can we not advance more definite management recommendations?

## A. Introductory Considerations

The approach chosen here is to extend the one-year model over a period of years, and optimize the stream of profit and overhead contriw bution obtainable over the entire periad, while varying beth the price and yield structure. The analysis can now be called "dynamic" in the Frisch (63) sense. The extension of a onewpesiod linear programing model into several periods is conceptually simple ( $16, \mathrm{p}, 265$ ). The flow of inn puts and outputs in each period of production is treated as a semiw
autonomous entity. The necessary comection from period to pewted ts established by transferring certain outputs of one pariod as stocks which then will be available as inputs in a subsequent pexiod. This is essentially an application of the Neumann model of economic growth ( 64 ) ( $16, \mathrm{p}, 300 \mathrm{ff}$ ) In the realm of the firm, with appropstate aseumptions about the nature of the particular production process.

Growth models of farme ovar time hava been put forward by Swanson (65), Loftsgard and Heady (66) (67), and Plaxico (68). In Loftegard's model only one stock is transfared fram one period to the next: liquid capital. ${ }^{1}$ He assumas no changes 40 prioes or productuaties from year to year. Hence his growth model is a pyramid of annual programs, in which just ons stock resource, capital, varies in quantity. The problem formulated by Loftsgard thus can be reduced to a parametric programming model.

Most production items are stocks which serve a specialized purpose, and are absolutely or conditionally "fixed" in the sense that at any given time it rarely pays to sell them, because "salvage value" or sales price is usually much lower than the normal value in use (9), (10), (11). This implies that a firm cannot be reorganizad anew sach year. The pattern of stocks held determines future operations in a certain way. A fixed asset once acquired (bought or produced') affects the cholce of production method in future years, until it is either wom out or its use value no longer exceeds its sales value.

The particular restrictions imposed by the nature of the fixed.

[^16]assets held by the firm can be incorporated into a linear programming model only if stock transfer activities are included for various types of assets.

Livestock enterprises, like many other biological systems, produce goods which may either be sold immediately, or retained as stocks for reproducing themselves in the future. The annual choice between stock and sales production can be made in such a way that the highest possible capital growth is sustained over time (16, p. 331), subject to the operator's given consumption preferences fixed in time (16, p. 331), (68).

If prices remain constant, the annual plan would approach an invariant pattern which insures steady, maximum "balanced" growth (16, p. 329). If, howevar, prices or physical productivities are subject to exogenous changes, the annual plans would be expected to vary for two reasons: (a) the annual growth rates differ, and (b) stocks of exhaustible resources, especially capital, may become so depleted over a series of low-income years that the stocks transmitted will not permit the ideal optimum organization. ${ }^{2}$

## 1. Price Changes Follow a Cyclical Pattern

Budgets and plans presuppose certain price expectations. The usual approach is to fit long-run plans to timemconstant expected prices. Yet figures 2 and 21 show that the price of beef does not vary randomly. There is a definite cyclical pattern in the movement of prices. The pattern varies with respect to both amplitude and length of period. Successive

[^17]

Fig. 21. Prices Raceived by Oklahoma Farmers for Calves, 1909-63; Deviation from 10 -year moving average price, normalized to 1957-59 level ( $=\$ 23.38$ ). For saurce of data see appandix E, table VI.
peaks occurred 14, 13, 9, 8 years apart, successive troughs 13, 11, 10, 9, and 11 years apart. Still the basic pattern is of the nature of a sinusoidal curve, which has a downward beat a little steeper than the upswing.

> 2. Long-Run Plans as Part of a "Dynamic
> Management" Routine
A.G. Hart (6), (7) stressed that a rigid plan of production covering several production periods is inherently less profitable than a flexible plan. Usually it is possible to limit the number of initial, irrevocable decisions to the commitment of resources needed in the first period (72).

Later, when the time for the commitment of resources for the next production period arrives, one will proceed either according to the original plan, if it is learned that original expectations are becoming realized. If, however, it is learned in the meantime that the original expectations, upon which the first plan was based, will not come true, the manager is free to change his plan for the second production period. Within the limits set by the original commitments, he may still adjust volume of production, direction of production, and intensity of input to the modified expectations. It is clear that he would never willingly change the plan to make the outcome worse than he would have obtained from the original plan. Thus flexibility of plans as defined by Hart can result only in upward adjustments of expected outcomes. ${ }^{3}$
${ }^{3}$ The premiss being that later information ipso facto will be both more certain and more accurate, because more information is available to arrive at an estimate. All modern probabilistic approaches to management (73) rest on this assumption.

According to Hart, management thus starts with some indibial master plan which covers several periods of production. Yet only those resources needed in the first period of production are committed immediately. Periodically, before the inputs for the next period have to be committed, the plan is reviewed and, if the expectations of price and productivity parameters have changed, the plan is changed accordingly. Such a systematic approach to management deserves to be called "dynamic management."

It should be possible to incorporate such an approach into the scientific management of cattle ranches. The results certainly should be better than an approach based on ona price only, the average. Because the avarage is the expected value of prices expected at certain points in time compounded over a period of time, it is twice removed from reality, and so is a plan based on average prices. Dynamic management would bring planning procedures one step closer to reality. It is difficult to predict in advance the increase in profits obtainable by a dynamic management procedure, because such estimates would be contingent upon certain assumptions of the accuracy of the forecasts on which plans are founded.

## 3. Specifications of the Madel

In a plan which axplicitly covers a period of several years, the management problem becomes somewhat different from the onexyear plan. The question of the right mix of cows, replacement stock, and stockers arises anew each year. In addition there is the question of the optimum culling and replacement rate in relation to price level and productivity.

## a. Activities

The assumed choices are: stocker cows, replacement heifers, wintering summer grazing calves for sale as long yearlings in the fall, raising heifer calves, or selling either heifer or steer calves as weanlings. The last activity would be a capital transfer activity, which serves three purposes: (a) it transfers liquid capital not needed in one year to the next; (b) it serves as part of a consumption or profit-taking function; and (c) it is a savings function.

This activity is essentially Swanson's "income transfer activity" (65) retaining a few characteristics of its own. Eighty per cent of the net receipts of a given year may be transferred to the capital constraint of the next year. The remaining 20 per cent is part of a postulated cone sumption or profit-taking function:

$$
\begin{equation*}
H_{i}=7000-F_{i}+0.2 \mathrm{~S}_{i-1} \tag{6.1}
\end{equation*}
$$

The variables in (6.1) are defined as follows:
$H_{i}=$ total household consumption $F_{i}=$ fixed costs
$S_{i-1}=$ surplus liquid capital in preceeding year.
The $\$ 7000$ constraint and the transfar activity act as an additional
"requirement on the time shape of the income stream" (65 p. 1255). As a savings or outside investment activity, this vector determines an opportunity cost for capital. The rate chosen ( 10 per cent) exceeds the market rate of interest, and reflects the uncertainty of expected outcomes, or acts as an insurance pramium on capital. In either case it is viawed as a genuine cost. The rate of return in this activity sets a floor for all "own-rates" of return (16, p. 31B) in all other activities. The interest rate of the transfer activity serves the purpose which ordinarily
is achieved by discounting.

## b. Criterion Function

Rather than maximizing the sum of discoumted net revanues of all basis processes here the simple sum of the not revomues of tha basis processes is maximized, subject to the restriction imposed by the trans fer activity (see above). Since we assume fixed periods of investment (74, P. 875), either approach assures that the income stream is maximized. If capital is scarce, activitios with high rates of return on capital will be chosen so as to maximize the rate of return on capital. Even with an abundance of capital no activity will be chosen which retums less than the opportunity rate of return on capital.

To estimate total raturns from ranching alone, earnings from the transfar activity are deducted from the cumblative total contributions to profit and overhaad over all years.

## C. Constraints

In the dynamic model external and internal constraints are dism tinguished. Typical external constraints are the acreage allowed and the minimum fixed cost constraint. Examples of intemal constraints are the number of cows, heifers etc. available in any one year. In generalized form the model employed here has the form:

$$
\begin{aligned}
& \text { (6.2) } c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\cdots+c_{t-1} x_{t-1}+c_{t} x_{t}=c_{\max } \\
& \text { subject to constraints } \\
& \text { (6.3) } A_{1 e} X_{1} \\
& A_{2 \theta 2} X_{2} \\
& (-) A_{2 i 1} X_{1}+A_{2 i 2} x_{2} \\
& A_{3 日 3} x_{3} \\
& (-) A_{3 i 2} X_{2}+A_{3 i 3} X_{3} \\
& \text { - }
\end{aligned}
$$

The capital letters represent submatrices or subvectors for the years 1...t. A process vector may consist of three kinds of input-output elements: (1) subscript e represents external constraints and the associated requirements; subscript 1 refers to either (2) stock outputs of a given year (with - sign), or (3) stock inputs in the succeading year. Types (2) and (3) form the time-related structure of oapital stocks which is subject to modification in conformity with given intertemporal price and cost relations. The matrix is of the much discussed blocktriangular form and can be solved advantageously by a special algorithm and computer program (75), (76), (77). The actual input output matrix for a typical year is given in table XXII. This model permits a series of choices as indicated in figure 22.

The model (table XXII) specifies the same weaning rates ( $a_{33}, a_{43}$, $a_{34}, a_{44}$ ), death losses, minimum culling rates ( $a_{52}, a_{63}, a_{64}$ ), costs

TABLE XXII
intertemporal ranch model; objective functicn and constraints DF THE BLOCK SUBMATRIX OF YEAR $k$, PRICE LEVEL $=100$

| Constraint Description No. |  | Unit | Process |  |  |  |  |  |  |  |  | Constant kb | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\begin{gathered} k 1^{a} \\ \text { winter } \\ + \text { graze } \\ \text { steers } \\ \hline \end{gathered}$ | $\begin{gathered} \text { k2 } \\ \text { raise } \\ \text { heifer } \\ \text { calves } \\ \hline \end{gathered}$ | ```k3 raise coming heifers``` | $\begin{gathered} \mathrm{k} 4 \\ \text { cow } \\ \text { herd } \end{gathered}$ | $\begin{aligned} & \text { k5 } \\ & \text { sell } \\ & \text { steer } \\ & \text { calves } \end{aligned}$ | $\begin{gathered} \hline k 6 \\ \text { sell } \\ \text { heifer } \\ \text { calves } \\ \hline \end{gathered}$ | $\begin{gathered} \hline k 7 \\ \text { sell } \\ \text { heifers } \end{gathered}$ | k8 <br> sell <br> cows | $\begin{gathered} \mathrm{k9} \\ \begin{array}{c} \text { capital } \\ \text { transfer } \end{array} \end{gathered}$ |  |
| c | Objective |  |  | -182.84 | -4.95 | -24.41 | 0.88 | 120.05 | 101.25 | 155.88 | 140.00 | $0.10=$ | $=\max$ |
| $C_{0}{ }^{\text {b }}$ | (Livestock | value) |  | (-101.25) | $(-155.88)$ | (-140.00) |  |  |  |  |  |  |
| $\mathrm{k}-1,3$ s | steer calves | - head | 1 |  |  |  |  |  |  |  | $=$ | $=0$ |
| $k-1,4$ | heifer calves | head |  | 1 |  |  |  |  |  |  |  | $=20^{c}$ |
| $k-1,5 y$ | yrlg. heifars | head |  |  | 1 |  |  |  |  |  |  | $19^{\circ}$ |
| $k-1,6$ | mature cows | head |  |  |  | 1 |  |  |  |  |  | $=120^{\text {c }}$ |
| k, 1 o | op. capital | \$ | 29.54 | 10.33 | 32.25 | 15.92 |  |  |  |  | $1=$ | $=2750^{\text {c }}$ |
| $k$, 2 I | rangeland | acres | 2.67 | 4.75 | 8.36 | 8.36 |  |  |  |  |  | $=1250$ |
| $k, 3$ s | steer calves | head |  |  | -0.304 | -0.44 | 1 |  |  |  |  | 0 |
| k, 4 h | heifer calves | head |  |  | -0319 | -0.44 |  | 1 |  |  | = | 0 |
| $k, 5$ y | yrlg. heifers | head |  | -0.95 |  |  |  |  | 1 |  | $=$ | 0 |
| $k, 6$ ? | mature cows | head |  |  | -0.90 | -0.86 |  |  |  | 1 |  | $=0$ |
| $k+1,1$ | op. capital | \% | -182.84 | -5.38 | -7.84 | -16.80 | -120.05 | -101.25 | -155.88 | -140.00 | -0.8 = | $=-7000$ |

[^18]${ }^{\mathrm{c}}$ initial endowment.
and prices as the preceeding models. While the objective function shows the net contribution to profit and overhead, the inequalities ( $k, 1$ ) represent gross cash outlay and gross cash receipts for each process. ${ }^{4}$


Legend: _- explicit choices

Figure 22. Decisions Incorporated into the Intertemporal Ranch Model.

[^19]
## d. The Planning Horizon

Ideally a growth plan for the firm should consider at least a full period of the cattle cycle. Practical limitations permitted inclusion of only five years in the program. To simulate the full cycle, these five years were started at successive years of the cycle, thus tracing various patterns of price developments which might be expected (figure 23).

Two end or terminal conditions were established. The first (versions $A$ and $C$ ) required that the current value of the initial livestock set be available, but set no conditions on the number of livestock at the end of the period. In the other two versions ( $B, D$ ) it was specified that the initial herd (cows, heifers, heifer calves) must be rew stored in kind at the end of the last period. As expected, this constraint added rigidity to the model and tended to depress operating profi.ts.

## e. Price and Cost Levels

Figure 23 illustrates the hypothatical eight year cycle of beaf prices assumed. Because only five years may be considered at any one time, five-year models were computed beginning in each of the eight years of a full cycle. These were then compared to a growth model with constant prices.

Beef sales prices and values are varied up to 30 per cent from the average, strictly in proportion with the Index of Beef prices (figure 23) in versions $A$ and $B$ (appendix $F$, table I). In $C$ and $D$ in addition to prices, range capacity, marketing weights and certain costs (appendix $\mathrm{F}_{\mathrm{g}}$ table II) are varied inversely with beef prices. This, in effect, simulates low prices in periods of drought (appendix $F$, table III). The
range capacity was varied up to 15 per cent from the average. Clearly a change in the beef price level will change the marginal revenue of all processes. In table XXIII the relative change of the marginal revenue of activity is presented. Changes in costs and productivities will aggravate the effect. Higher prices thus may lead to expansion, while low prices may force a contraction of the "normal" activity level.


Fig. 23. The Hypothetical Beef Price Cycle of the Intertemporal Ranch Model.

Proportionate price changes affect marginal revenue processes differently because of differences in input-output structure (table XXIV). This changes the marginal substitution rates which in turn may demand changes in the organization of the firm.

TABLE XXIII

```
INTERTEMPORAL RANCH MODEL; RELATIVE CHANGES IN CONTRIEUTION
 TO PROFIT AND OVERHEAD, SALE OF STEER CALVES (PROCESS k5)
 WITH ASSUMED CHANGES IN BEEF PRICE, COST AND
 PRODUCTIVITY
```

| Index Number of Beef Prices | Relative Change in $\mathrm{C}_{\mathrm{k} 5}$ |  |
| :---: | :---: | :---: |
|  | Only Price Varies A, B | Price, Cost, and Productivity Changes C, D |
| 70 | $69.4 \%$ | 65.0\% |
| 75 | 74.5 | 70.6 |
| 80 | 79.6 | 76.3 |
| 100 | 100 | 100 |
| 120 | 120.2 | 125.2 |
| 125 | 125.4 | 131.8 |
| 130 | 130.6 | 138.4 |

B. Results

## 1. Price Changes Only

a. Activity Levels and Contributions
(i) "Normal" run. This is a plan for a period of five years with constant "normal" prices. Total contribution for the period (the objective to be maximized) could be considered a function of the expected long-run price:

$$
(6.5) \quad c=f[e(p)]
$$

TABLE XXIV
INTERTEMPORAL RANCH MODEL; RELATIVE CONTRIBUTION TO profit and overhead, with assumed changes in beef PRICE LEVEL. $\left(C_{k 5}=100\right)$

| Beaf Prica Index | Production Process |  |  |  | Sales Process |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} k 1 \\ \text { steers } \end{gathered}$ | k2 heifer calves | $\begin{gathered} \text { k3 } \\ \text { heifers } \end{gathered}$ | $\begin{gathered} \text { k4 } \\ \text { cows } \end{gathered}$ |  | k6 heifer calves | $\begin{gathered} k 7 \\ \text { heifers } \end{gathered}$ | $\begin{gathered} k \theta \\ \text { calves } \end{gathered}$ |
| Price Change Only (Variants A, C) |  |  |  |  |  |  |  |  |
| 70 | 116.8 | -7.9 | -32.2 | -5.2 | 100 | 84.3 | 129.6 | 115.8 |
| 75 | 119.3 | -7.1 | -29.6 | -3.9 | 100 | 84.3 | 129.8 | 116.0 |
| 80 | 121.2 | -6.3 | -27.2 | -2.7 | 100 | 84.4 | 129.9 | 116.2 |
| 100 | 127.8 | -4.1 | -20.4 | 0.7 | 100 | 84.4 | 129.9 | 116.6 |
| 120 | 131.9 | -2.8 | -15.8 | 3.0 | 100 | 84.4 | 129.9 | 117.0 |
| 125 | 132.9 | -2.4 | -14.9 | 3.5 | 100 | 84.5 | 130.0 | 117.1 |
| 130 | 133.3 | -2.1 | -14.0 | 3.9 | 100 | 84.5 | 130.0 | 117.2 |
| Change of Price, Costs, and Productivity (Variants B, D) |  |  |  |  |  |  |  |  |
| 70 | 95.0 | -22.5 | -53.8 | -26.9 | 100 | 84.3 | 129.7 | 115.7 |
| 75 | 102.5 | -18.2 | -45.8 | -20.2 | 100 | 83.3 | 129.8 | 116.0 |
| 80 | 108.8 | -14.4 | -39.2 | -14.6 | 100 | 83.3 | 129.9 | 116.2 |
| 100 | 127.8 | -4.1 | -20.4 | 0.7 | 100 | 84.4 | 129.9 | 116.6 |
| 120 | 133.0 | -2.1 | -14.9 | 3.5 | 100 | 84.4 | 129.9 | 117.0 |
| 125 | 133.6 | -1.7 | -13.7 | 4.1 | 100 | 84.5 | 130.0 | 117.1 |
| 130 | 134.1 | -1.4 | -12.7 | 4.6 | 100 | 84.5 | 130.0 | 117.2 |
| $v_{k j}=100 \frac{c_{k j}}{c_{k 5}}$ |  |  |  |  |  |  |  |  |

The long run "normal" optimum plan for the model ranch sames to be a combination of about 100-130 cows (including heifexs with cajf), the necessary complement of heifer calves, steers wintered, grazed and sold as long yearlings, and heifer calves partly sold at weaning; partially retained to utilize range capacity (table $X X V$, col. 9). 5
(ii) "Variable price" runs. Eight five-year runs, each beginning at a different station of the eight-year price cycle, are summarized in table $X X V$ by the year in the cycle, in table XXVI by the price level of the year. The average of these aight runs is the expected returns as a function of prices expected in the short run:
$(6.6) \quad e(C)=F\left[e\left(P_{k}\right)\right]$
The expected net contribution from ranching activities (the contribution of the "outside" activity $k 9$ has been deductad here and in the following tables ly an average of the eight runs covering the full price cycle, exceeds the corresponding value from the "normal" price run by less than one per cent. However, greater capital carryover provides additional interest earnings. On balance the mean of the variable price runs showed more steer calves sold at weaning time (process $k 5$ ), and there seems to be a greater amount of capital put on reserve (kg).

More conspicuous are the changes which occur in individual years. Obviously sales are shifted from lowmprice to high-price years, whenever possible, subject to the need to maintain a breeding herd and the financing constraints. In no case are the conditions severe enough to
$5_{\text {The replacement processes of this model do not seem to be stable. }}$ reat The number of heifersmith-calf varied from none to 43 per year in a 10-year model which had been tentatively calculated.

TABLE XXV
intertemporal ranch model, average contribitiona
and activity levels - frice changes only
by year or rin

| process No. (1) | $s$ Description <br> (2) | Variant <br> (3) | Cyclical Price Variations |  |  |  |  |  | "normal" price (10) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Year of Run |  |  |  |  | Average of years (9) |  |
|  |  |  | (4) | $(5) .$ | $\begin{aligned} & 3 \\ & (5) \end{aligned}$ | $4$ | $\begin{gathered} 5 \\ (\mathrm{~B}) \end{gathered}$ |  |  |
| Contribution to Profit and Dverhead [\$] |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{aligned} & A \\ & B \end{aligned}$ | $\begin{aligned} & 9,200 \\ & 9,230 \end{aligned}$ |  | 11,660 | 11,880 | $\begin{aligned} & 10,230 \\ & 10,400 \end{aligned}$ | $\begin{aligned} & 11,430 \\ & 10,930 \end{aligned}$ | $\begin{aligned} & 11,320 \\ & 10,830 \end{aligned}$ |
| Production Processes [head] |  |  |  |  |  |  |  |  |  |
| 15 | steers (yrlg.) | A | b | 21 | 26 | 31 | 36 | 29 | 39 |
|  |  | - |  | 21 | 26 | 27. | 7 | 20 | 35 |
| 2 h | haifers (yIlg.) | A | 20 | 28 | 29 | 35 | 36 | 30 | 27 |
|  |  | B | 20. | 36 | 40 | 47 | 20 | 31 | 34 |
| 3 h | haifers w. calf | A | 18 | 4 | 12 | 5 | 0 | 8 | 10 |
|  |  | a | 18 | 3 | 9 | 14 | 38 | 15 | 16 |
| 4 | cows | A | 120 | 120 | 106 | 103 | 83 | 105 | 111 |
|  |  | 8 | 120 | 120 | 105 | 97 | 96 | 108 | 105 |
| Sales Process [head] |  |  |  |  |  |  |  |  |  |
| 5 | steer calves | A | 37 | 28 | 20 | 10 | 31 | 25 | 13 |
|  |  | B | 37 | 27 | 23 | 39 | 54 | 35 | 23 |
| 6 haifer calves ${ }^{\text {c }}$ |  | A | 30 | 25 | 16 | 10 | 37 | 24 | 29 |
|  |  | 日 | 2 B | 14 | 6 | 27 | 34 | 22 | 18 |
| 71 | haifers ${ }^{\text {c }}$ | A | 15 | 14 | 22 | 33 | 34 | 24 | 19 |
|  |  | B | 16 | 19 | 24 | 3 | 0 | 13 | 16 |
| a | cows ${ }^{\text {c }}$ | A | 0 | 0 | 0 | 10 | 72 | 16 | 18 |
|  |  | 日 | 0 | 0 | 0 | 0 | 0 | - | 0 |
| 9 | capital surplus [s] | 7 A | 50 | 2,000 | 6,170 | 10,060 | 15,590 | 6,770 | 3,850 |
|  |  | 8 | 40 | 2,050 | 5,790 | 8,650 | 11,910 | 5,690 | 4,780 |

[^20]table xXVI
Intertemporal ranch model; average contaigut ion and activity levels, PRICE CHANGES ONLY; BY PRICE LEVEL.

| ProcassNoscriptionNo.(1) | Variant <br> (3) | Price Level |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 100 \\ & (4) \end{aligned}$ | $\begin{aligned} & 120 \\ & (5) \end{aligned}$ | $\begin{gathered} 125 \\ (6) \end{gathered}$ | $\begin{aligned} & 100 \\ & (7) \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { (B) } \end{aligned}$ | $\begin{array}{r} 70 \\ \text { (9) } \end{array}$ | $\begin{gathered} 75 \\ (10) \end{gathered}$ | $\begin{gathered} 80 \\ (11) \end{gathered}$ |
| Contribution to profit and overhead $[5]$ |  |  |  |  |  |  |  |  |  |
|  | A B | 9,410 9,440 |  | 15,320 15,950 | 24,270 19,190 | $\begin{aligned} & 13,970 \\ & 12,180 \end{aligned}$ | $\begin{array}{r} -1,600 \\ 3,520 \end{array}$ | $\begin{aligned} & 8,670 \\ & 7,350 \end{aligned}$ | $\begin{aligned} & 7,420 \\ & 7,630 \end{aligned}$ |
| Production Processes [heed] |  |  |  |  |  |  |  |  |  |
| 1 steers (yrlg.) | A | 20 | 51 | 55 | 54 | 0 | 0 | 29 | 20 |
|  | в | 10. | 32 | 51 | 42 | 0 | 0 | 18 | B |
| 2 heifers (yrlg.) | A | 34 | 22 | 27 | 39 | 34 | 4 | 42 | 35 |
|  | B | 30 | 24 | 25 | 33 | 38 | - 24 | 37 | 39 |
| 3 heifers w. calf | A | 15 | 12. | 9 | 5 | 4 | 11 | 5 | 19 |
|  | B | 22 | 11 | 8 | 12 | 21 | 12. | 17 | 19 |
| 4 cows. | A | 113 | 114 | 113 | 110 | 104 | 86 | 106 | 105 |
|  | B | 112 | 111 | 111 | 108 | 104 | 108 | 104 | 106 |
| Sales Process [head] |  |  |  |  |  |  |  |  |  |
| 5 steer calves | A | 12 | 9 | 9 | 50 | 47 | 18 | 31 | 35 |
|  | B | 29 | 11 | 18 | 51 | 52 | 37 | 45 | 44 |
| 6 heifar calves | A | 35 | 30 | 17 | 19 | 47 | 2 | 17 | 21 |
|  | 日 | 36 | 29 | 19 | 13 | 29 | 14 | 13 | 23 |
| 7 heifers ${ }^{\text {b }}$ | A | 26 | 7 | 26 | 37 | 27 | 4 | 29 | 25 |
|  | B | 10 | 10 | 12 | 10 | 24 | 4 | 17 | 15 |
| 8 cous ${ }^{\text {b }}$ | minimum culling only |  |  |  |  |  |  |  |  |
| Capital Transfer [\$] |  |  |  |  |  |  |  |  |  |
| 9 capital surplus | A | 0 | 0 | 3,600 | 7,100 | 19,700 | 19,300 | 3,300 | 1,250 |
|  | B | 610 | 650 | 3,300 | 8,180 | 15,050 | 13,050 | 3,220 | 1,260 |

abjective to be maximized.
$\mathrm{b}_{\text {In addition to minimum, cull of }}$ 3.5 per 100 heifars, 7 per 100 firs year cows, 12 per 100 mature cows.

Datails see appendix F, table IV.
a value of breeding herd to be available after 5 years.
B, Same number breedino animals to be ratained after year 5 which was used in year 1 .
force an accelometed culling of the breading herd. Ghanget in heme mise are controllad by the number of replaomants. Wintaring and grayng of young staers and haifers (k1, k2) is indicated prion to highmpace years. The practice is entiraly absent or reduced in low price yenar. The opposite holds trua for the sela of wanad colvas (k弓, kEs). Thera is a significanty low caryover of excess copltal preceading the highmpriee period, while capital carryover is highast at the beginning of a prea deciins. In this modal the annul contribution to profit and ovarabad varias mueh more than would be indieated by the ralation af tables


The requimament that the breeding ham be rastored in kind gt tha and of the planning pariod (variant $\quad$ ) silghty depresaes returns.

## 5. Itid Resources






 ment to metain the original number of breeding obobk ot the and preventag of cource, that the whate herd may be sold bff pecmaturely,





TABLE XXVII
INTERTEMPORAL RANCH MODEL; SUMMARY OF RESULTS, NORMAL RUN, VARIABLE PRICE RUN AVERAGES.

| Item | "Normal Run" <br> Variant |  | ```Average of 8 "variable price" runs Variant``` |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} A \\ (2) \\ \hline \end{gathered}$ | $\begin{gathered} B \\ (3) \\ \hline \end{gathered}$ | $\begin{gathered} A \\ (4) \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 8 \\ (5) \\ \hline \end{gathered}$ |
| Contribution to Profit and Overhead, 5 years: | \$ 80, 187 | \$ 56,645 | \$82,004 | \# | 57,400 |
| Less interest earneds | 1,923 | 2,490 | 3,375 |  | 2,845 |
| initial herde | 21,655 |  | 21,669 |  |  |
| Net Contribution, Ranch | 55,609 | 54,155 | 56,960 |  | 54,555 |
| per year | 11,320 | 10,830 | 11,390 |  | 10,930 |
| Consumption and fixed costs | 7,769 | 7,996 | 13,774 |  | 12,790 |
| Dperating capital accumulated, after 5 years | 20,512 | 16,926 | 17,481 |  | 16,277 |

${ }^{\text {a }}$ Initial livestock endowment utilized, valued at prices of the last year. This makes the net contribution comparable in variants $A$ and $B$.
$b_{\text {After }}$ paying off the initial investment in breading stock, and allowing for fixed expenses and consumption in each year.
indeed be indicated, namely when an operation is to be closed out anyway, or if they could be replaced with certainty without incurring high replacew ment costs. This sellout certainly demonstrates that the operation does not pay by itself in a year with a 70 per cent price level. It is justified economically only because carrying over may make future earnings possible.

## c. Shadow Prices

The marginal revenue of resources in a time-spanning model equals the actual returns in a given year times a compounding factor (74, p. 876), calculated for any time of reference. The reference period may be the beginning, the end, or any other convenient point in time (70). In this model the end of the period is the reference time.

Because interest was not transmitted along with the principal, instead of compound interest we have a cumulative rate of interest over time. To determine the gain from an amount $A$ saved over $t$ years, with the interest $i$ withdrawn annually, the annual interest payments are simply edded to the principal:
(6.7) $\quad A_{t}=A\left(1+i_{1}+i_{2}+\ldots+i_{t}\right)$

Since moreover some of the savings capital is supposed to be spent annually, we have to modify this formula by an attrition factor, $h$, to allow for this drain:
(6.8) $R C_{t}=\left(i_{1}+h i_{2}+h^{2} i_{3}+\ldots h^{t-1} i_{t}\right)$

In the model, $i=0.10$ and $h=0.80$. Hence our minimum cumulative marginal rates of return to capital RC are
$33.6 \%$ in year 1
$29.5 \%$ in year 2
$24.4 \%$ in year 3
$18.0 \%$ in year 4 and
$10.0 \%$ in year 5.
If the "own rate" of returns exceeds the minimum interest rate in any one year because of scarcity of operating capital, the difference will be added to the minimum cumulative interest rate of that year, and to earlier years according to (6.B).

The marginal revenues which are transferred to future production periods also include the cumulative marginal contributions to income obtained from future processes utilizing the particular stock. This applies to cows, heifers, and calves. On the other hand, the marginal revenues of resources which are not transferable cannot contain any imputed future earnings. Their shadow prices are, therefore, strictly the marginal revenues of a given year. The use of range is a onemperiod resource in the model. The shadow price of range in tables $X X I X$ and $X X X$ is thus strictly a rental rate, immediately comparable to land shadow prices in a static model. The same applies to terminal activities like k1 and selling activities k5 to k8.

Because the shadow price of the capital transfer activity measures the difference between the minimum rate of return on capital and the "own" rate, $i . e$. the additional cost of withdrawing operating capital in one year, it directly indicates the lack of capital, and the opportunity cost of capital. Table XXVIII lists this quantity rather than the total cumum lative rate of interest of capital. The latter may be estimated by adding the opportunity costs of capital transfer to the cumulative minimum rate

INTERTEMPORAL RANCH MODEL; SHADOW PRICES CAPITAL TRANGFER ACTIVITY; BEEF PRICES VARY.

EY YEAR OF RUN. [PER CENT]


TAble XXIX
INTERTEMPORAL RANCH MODEL;
SHADOW PRICES, RANGELAND.
BEEF PRICES VARY.
by PRICE LEVEL
[dollar/acre/year]

| Run No. | Price Level |  | Price Levels |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Initial | Average | 100 | 120 | 125 | 130 | 100 | 70 | 75 | 80 |
| 1A | 100 | 115 | 42.60 | 12.76 | 13.23 | 5.46 | 0 | 0 | 0 | 0 |
| B |  |  | 24.36 | 10.86 | 13.23 | 10.38 | 0 | 0 | 0 | 0 |
| 2A | 120 | 119 | 0 | 44.35 | 14.40 | 7.84 | 0 | 0 | 0 | 0 |
| B |  |  | 0 | 28.84 | 14.40 | 12.41 | 0 | 0 | 0 | 0 |
| 3A | 125 | 100 | 0 | 0 | 42.96 | 15.05 | 0 | 0 | 0 | 0 |
| 日 |  |  | 0 | 0 | 29.74 | 0 | 0.14 | 0 | 5.39 | 0 |
| 4A | 130 | 89 | 0 | 0 | 0 | 44.17 | 1.30 | 0 | 5.81 | 0 |
| B |  |  | 0 | 0 | 0 | 29.49 | 1.30 | 0 | 4.18 | 5.85 |
| 5A | 100 | 85 | 0 | 0 | 0 | 0 | 40.90 | 0 | 7.83 | 8.26 |
| 日 |  |  | 16.94 | 0 | 0 | 0 | 12.15 | 0 | 4.16 | 6.13 |
| 6A | 70 | 89 | 9.81 | 0 | 0 | 0 | 0 | 61.09 | 0 | 0 |
| B |  |  | 6.51 | 20.85 | 0 | 0 | 0 | 23.60 | 0 | 0 |
| 7A | 75 | 100 | 9.95 | 10.95 | 3.02 | 0 | 0 | 0 | 37.03 | 10.81 |
| B |  |  | 0 | п.a. | 0 | 0 | 0 | 0 | 0 | 0 |
| 8A | 80 | 111 | 9.72 | 15.42 | 11.77 | 3.24 | 0 | 0 | 0 | 36.65 |
| B |  |  | 9.59 | 15.22 | 10.65 | 15.23 | 0 | 0 | 0 | 7.22 |
| Average $\begin{array}{r}A \\ B\end{array}$ |  |  | 6.54 | 9.78 | 10.60 | 7.90 | 0.32 | 0 | 3.41 | 4.77 |
|  |  |  | 11.01 | 15.64 | 12.76 | 9.50 | 0.36 | 0 | 3.43 | 3.99 |

(last line in table XXVIII) in the given year, and, adjusted by the attrition factor, in all preceeding years. For example, in year five, run 5 A , the full value of operating capital is $10+25.3=35.3$. In the preceeding year the cumulative rate equals $18+8.7+(0.8)(25.3)=46.9$. In year three it is $24.4+11.2+0.8(8.7+(0.8)(25.3))=58.7$. In year two and one the available capital is sufficient to make full use of the given stock. Yet the opportunity cost of capital in succeeding years is carried back:

$$
\begin{aligned}
& I_{2}=29.5+0.8^{2}(8.7+(0.8)(25.3))=57.0, \text { and } \\
& I_{1}=33.6+0.8^{3}(8.7+(0.8)(25.3))=55.6 .
\end{aligned}
$$

Table XXVIII shows that even in the normal run some additional capital could be profitably employed in year two. Thereafter the ranch itself generates enough income to provide both sufficient income and finance the operations adequately.

The same is true in run 1, which combines years with price levels 100-120-125-130-100. The opportunity cost of capital is higher here because more income is foregone in the high-price year. The next three runs, beginning with price levels of 120 and above, generate enough income in the first year to fully finance operations in all succeeding years.

Beginning with run 5 capital shortages become apparent. It is clear now that the flexible model did not show up better compared to the "normal run" model simply because in those runs which started with one or more low-price years not enough capital was generated to maintain optimum production lavels in succeading years. If we had allowed a borrowing activity the flexible plan would have shown up more advantageously. It is clear from this table that it would have paid to borrow operating
capital at rather high rates of intergst. The amounts required wodid have been small compared to the value of the livestock. Still it uas possible under the assumptions of variant $A$ and $B$ to build up the capital position over time even in the most critical runs 6,7 and $B$ which start with the lowest price lavels.

A comparison of variants $A$ and 日 reveals that ganerally in a the capital cost in the early years was highar than in $A$, lowar in the later years. This plainly refleots the imposed requirement that e certain number of breading atook be ratainad in the last year, thus reduaing the nead for oparating capital. In the more flaxibla modol $A$ the hord wa gemoralily built up to a maximum valum in the last year by carrying young otook as lomg as poseibla, thus increaeing the capital requiramenta per dollar garned.

Table XXIX presents the shadow prices of rangeland, ordared by beef price level. The table gives some indication of the short-run variations in derived demand for range relative to changes in the price of beef. It is also possible to estimate the minimum justifyable purchase prices from the land shadow prices obtained, as was done in chapter IV.

In table $X X X$ the shadow prices of rangeland were averaged by year of run, and compared to the value of the "normal run." The average of the middle years, which are more representative of a continuing operation, is depressed from the "normal run" level. Shadow prices of variant 8 tended to increase as time went on compared to variant $A$, again reflecting the forced increase of breeding stock requiring more grazing per dollar
earned than young stock. ${ }^{6}$
For the sake of brevity other shadow prices had to be omitted.

TABLE XXX
INTERTEMPORAL RANCH MODEL; SHADOW PRICES OF RANGELAND, beEf prices varie; average of runs over a price CYCLE_VERSUS "NORMAL RUN" DATA
[dollars per acre]

|  |  | Year of Run |  |  |  |  | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |  |
| "Normal run" | A | 36.53 | 7.70 | 9.08 | 7.82 | 0.57 | 12.34 |
|  | B | 17.90 | 7.70 | 8.53 | 7.04 | 6.85 | 11.60 |
| $\left.\begin{array}{l} \text { Average of } \\ \text { variable } \\ \text { price runs } \end{array}\right\}$ | $A^{\text {a }}$ | 43.72 | 8.00 | 6.78 | 6.51 | 0.78 | 13.16 |
|  | $日^{\text {b }}$ | 22.20 | 5.16 | 6.45 | 5.41 | 13.47 | 10.54 |

a Average of a runs
${ }^{b_{\text {Average }}} \begin{aligned} & \text { of } 7 \text { runs }\end{aligned}$
2. Beef Prices and Costs Varied

By varying costs, feed requirement and range capacities synchronously with the beef price, the model simulates the double pinch the rancher feels when a price change occurs as a result of widespread drouth. In general the results are comparable to those of the preceeding section. Clearly the extra pinch has somewhat the effect of an increase in price variation alone.

[^21]In this model, as in the previous one, the main differences between runs are caused by the capital constraints. In almost all runs capital hampers the full realization of the potential of other resources. In a number of runs either more initial capital or a relaxation of the terminal capital constraint had to be allowed to arrive at a feasibla solution. Since only the absolute minimum was allowed, a number of the runs simulate progressive exhaustion and sellout of the capital stock (see appendix $F$, table IV) of a ranch, leading to lower and lower cow numbers, thus lower and lower earning capacity as well.

The general value of this sequence of runs is impaired by the shortnass of the planning periad.

## a. Aotivity Levels and Contribution

The expected value of both run C and D (table XXXI, col B) is 20-22 per cent lower than in the previous series (tabla XXV). This is the combined effect of the nonhomogeneous cost increase parallel with low prices (emergency feed) and lack of capital at critical periods. The latter could be remedied if capital could be borrowed (in reality this would be the course to take).

In variant $C$, which does not require that the breading herd be restored in kind at the end of the period, it proves to be more profitable to sell off the entire herd in the last high-price year. This would permit repurchase of a cow herd before prices fully recover (see appendix $F$, table IV). This sell-off occurs in the first three runs, which begin with high-price years and end with lowmprice years. This explains in part the low values in table $X X X I$, col. 6 and 7 (variant $C$ ). In the remaining years, which start with a lower price, operating capital restricts expansion

TABLE XXXI
INTERTEMPDRAL RANCH MODEL; AVERAGE CONTRIBUTION and activity levels - price and cost changes. BY YEAR DF RUN.

| Process Description No. <br> (1) <br> (2) | Year of Run |  |  |  |  |  | Average all years (9) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1 \\ (4) \end{gathered}$ | $\begin{gathered} 2 \\ (5) \end{gathered}$ | $\begin{gathered} 3 \\ (6) \end{gathered}$ | $\begin{gathered} 4 \\ (7) \end{gathered}$ | $\begin{gathered} 5 \\ (8) \end{gathered}$ |  |
| Contribution to profit and overhead [\$] |  |  |  |  |  |  |  |
|  |  | $\begin{aligned} & 9,980 \\ & 8,650 \end{aligned}$ | $\begin{aligned} & 11,730 \\ & 13,310 \end{aligned}$ | $\begin{aligned} & 11,960 \\ & 11.200 \end{aligned}$ | $\begin{aligned} & 9,230 \\ & 4,140 \end{aligned}$ | $\begin{aligned} & 1,080 \\ & 6,310 \end{aligned}$ | $\begin{aligned} & 8,800 \\ & 8,720 \end{aligned}$ |
| Production Processes[head] |  |  |  |  |  |  |  |
| 1 stears (yrlg.) | $\begin{aligned} & C \\ & D \end{aligned}$ | $0$ | $\begin{aligned} & 9 \\ & 8 \end{aligned}$ | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | $\begin{aligned} & 13 \\ & 16 \end{aligned}$ | 10 0 | $\begin{aligned} & 13 \\ & 11 \end{aligned}$ |
| 2 heifers (yrlg.) | $\begin{aligned} & C \\ & D \end{aligned}$ | $\begin{aligned} & 14 \\ & 20 \end{aligned}$ | 20 40 | 21 34 | 24 43 | 16 17 | $\begin{aligned} & 19 \\ & 31 \end{aligned}$ |
| 3 heifers w. calf | $\begin{aligned} & C \\ & D \end{aligned}$ | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 5 10 | 2 7 | 3 | 0 34 | $\begin{array}{r} 4 \\ 14 \end{array}$ |
| 4 cows | $\begin{aligned} & C \\ & D \end{aligned}$ | $\begin{aligned} & 115 \\ & 108 \end{aligned}$ | $\begin{aligned} & 109 \\ & 107 \end{aligned}$ | $\begin{array}{r} 96 \\ 101 \end{array}$ | $\begin{aligned} & 60 \\ & 93 \end{aligned}$ | 40 82 | $\begin{aligned} & 84 \\ & 98 \end{aligned}$ |
| Sales Processes [head] |  |  |  |  |  |  |  |
| 5 steer calves | $\begin{aligned} & C \\ & D \end{aligned}$ | $\begin{aligned} & 45 \\ & 44 \end{aligned}$ | 35 36 | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | 17 42 | 18 46 | $\begin{aligned} & 29 \\ & 39 \end{aligned}$ |
| 6 heifer calves | $\begin{aligned} & C \\ & D \end{aligned}$ | 42 13 | 29 26 | $\begin{aligned} & 20 \\ & 11 \end{aligned}$ | 11 27 | 18 30 | $\begin{aligned} & 24 \\ & 22 \end{aligned}$ |
| 7 heifers | $\begin{aligned} & C \\ & D \end{aligned}$ | 9 6 | $\begin{aligned} & 17 \\ & 31 \end{aligned}$ | $\begin{aligned} & 17 \\ & 21 \end{aligned}$ | $\begin{aligned} & 22 \\ & 10 \end{aligned}$ | 15 6 | $\begin{aligned} & 16 \\ & 15 \end{aligned}$ |
| 8 cows | $\begin{aligned} & C \\ & D \end{aligned}$ | 1 | 1 0 | $\begin{array}{r} 25 \\ 0 \end{array}$ | 14 0 | 34 0 | $\begin{array}{r} 15 \\ 0 \end{array}$ |
| $9 \text { capital surplus }$ $[\$]$ | $\begin{aligned} & C \\ & D \end{aligned}$ | 200 120 | $\begin{aligned} & 2,890 \\ & 2,160 \end{aligned}$ | 7,260 8,030 | $\begin{array}{r} 7,900 \\ 11,130 \end{array}$ | $\begin{aligned} & 17,970 \\ & 11,350 \end{aligned}$ | $\begin{aligned} & 7,240 \\ & 6,560 \end{aligned}$ |
| 02 range unused | $\begin{array}{r} C \\ D \\ \hline \end{array}$ | $\begin{aligned} & 124 \\ & 171 \\ & \hline \end{aligned}$ | $\begin{array}{r} 182 \\ 90 \\ \hline \end{array}$ | $\begin{aligned} & 287 \\ & 183 \end{aligned}$ | $\begin{aligned} & 578 \\ & 182 \end{aligned}$ | $\begin{aligned} & 813 \\ & 168 \\ & \hline \end{aligned}$ | $\begin{array}{r} 397 \\ 159 \end{array}$ |

C: Capital to restore initial herd size retained at end of run.
D: Initial herd to be restored in kind at end of run.
$C$ and $D$ are not strictly comparable because number of runs different.
in the latter years.
Particularly in variant $C$ emphasis has shifted to the quick sale of young stock to the neglect of replacements. In variant $D$ this effect is less apparent since the terminal constraint forces replacements back in for the benefit of future oparations.

Looking at the results arrayed by price levels (table XXXII) it is clear that steer and heifer grazing (rows 1, 2, 7) is even more severely limited to high price years (unless lack of capital precludes this). In years with high prices the production of virtually two years will be concentrated. It would pay to build up the cow herd in a period of advancing prices, in order to sell it before a price break becomes apparent. Thus virtually all capital would be reinvested prior to the peak price years, and great liquid reserves would be held during the low-income years.

## b. Idle Resources

Idled acreages are listed at the bottom of tables XXXI and XXXII. Idled acreages in variants $D$ and even more so in $C$ exceed those in $A$ and $B$ by wide margins. This is the direct and most disturbing result of lack of operating capital at critical periods. A secondary reason is limited carrying capacities during some periods.

## 3. Some Implications of the Dynamic Model

The five year plans were drawn up in order to determine what decisions can profitably be made from period to period given expectations about the prices and costs in the planning period. The plans for the first year are essentially predetermined by the given livestock complement

## TABLE XXXII

INTERTEMPORAL RANCH MODEL; AVERALE CONTAIBIGTION AND ACTIVITY LEVELS, price and cost changes by price level

| Process Description No. <br> (1) <br> (2) | Variant <br> (3) | Price Leval |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 100 \\ & (4) \end{aligned}$ | $\begin{aligned} & 120 \\ & (5) \end{aligned}$ | $\begin{aligned} & 125 \\ & (6) \end{aligned}$ | $\begin{aligned} & 130 \\ & 75 \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { (日) } \end{aligned}$ | $\begin{aligned} & 70 \\ & (9) \end{aligned}$ | $\begin{array}{r} 75 \\ (10) \\ \hline \end{array}$ | $\begin{gathered} 80 \\ (11) \end{gathered}$ |
| Contribution to profit and overhegd [ $\hat{\mathbf{s}}$ ] |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {c }}$ | 6,360 7,800 | 6,110 8,390 | 6,780 10,400 | 29,710 28,950 | 6,910 19,730 | 940 1,260 | 4,763 4,180 | 5,670 5,100 |
| Production Procssses [head] |  |  |  |  |  |  |  |  |  |
| 1 stears (yrlg.) | [ | 3 | 2 | 21 | 38 | 0 | 0 | 11 | 15. |
|  | D | 0 | 3 | 15 | 37 | 0 | 0 | 11 | 0 |
| 2 heifars (yrlg.) | 5 | 15 | 21 | 22 | 45 | 4 | 2 | 22 | 18 |
|  | D | 24 | 31 | 24 | 47 | 24 | 17 | 30 | 34 |
| 3 heifers w. cilf | [ | 4 | 8 | 15 | 4 | 4 | 0 | 0 | 1 |
|  | D | 14 | 16 | 22 | 8 | 11 | 10 | 12 | 19 |
| 4 cows | c | 85 | B4. | 90 | 171 | 69 | 69 | 78 | 87 |
|  | D | 91 | 94 | 102 | 114 | 1,90 | 98 | 89 | 81 |
| Seles processes [habd] |  |  |  |  |  |  |  |  |  |
| 5 stear calves | c | 37 | 22 | 7 | 50 | 31 | 21 | $2 E$ | 36 |
|  | D | 42 | 26 | 15 | 52 | 51 | 35 | 43 | 41 |
| 6 haifar calues | c | 22 | 21 | 2 | 50 | 31 | 8 | 16 | 28 |
|  | D | 14 | 20 | 4 | 27 | 42 | 21 | 17 | 13 |
| 7 heifers | c | 10 | 8 | 21 | 33 | 15 | 11 | 19 | 10 |
|  | 0 | 7 | 7 | 15 | 35 | 11 | 5 | 17 | 18 |
| 8 cows | c | 16 | 13 | 4 | 54 | 18 | 0 | 1 | 15 |
|  | D | 4 | 0 | 0 | D | 0 | 0 | 0 | 0 |
| 9 capital surplus | c | 10 | 10 | 540 | 3.550 | 24,880 | 22,610 | 5,990 | 270 |
|  | D | 20 | 60 | 670 | 3,010 | 20,530 | 15,790 | 3,960 | 0 |
| 02 range unused | c | 436 | 504 | 379 | 160 | 626 | 477 | 313 | 279 |
|  | D | 257 | 297 | 215 | 100 | 145 | 73 | 79 | 126 |

C: Capital to restore initial herd size.
D: Initial herd to be restored in kind at end of run.
$C$ and $D$ are not strictly comparable, because number of runs different.
and available capital. It is necessary to produce all that is possible, and sell enough to adequately finance the operations of the next year (including fixed costs and household living). If the outlook is bright for the next two to three years, the breeding herd will be kept large. Also, grazing animals will be retained to the extent that available capital permits. Thus the greatest possible sales volume will have been built up when the market is highest. ${ }^{7}$

Run 1, 2, and 3 begin at fairly high price levels. Therefore sufficient income is received in the first years to finance future plans involving high capital investments.

Run 6, 7, and $B$ also start in a rising market. However, incomes in the early years are quite low. The full potential cannot be reached because of lack of capital in the early years. The herd is allowed to shrink and sales are accelerated whenever possible in order to obtain the necessary funds for the coming year. Such a pace could lead to eventual attrition of the entire herd (run $6 C, 7 C / D$ ), or it may be impossible to maintain the minimum income postulated ( $\$ 7000$ less fixed costs). The assumption that operating capital must always be financed from current income or savings is restrictive for many situations. If we dropped this assumption, plans would have looked like the plans in runs 1 - 3; sales would have been delayed whenever possible, and the herd would have been built up in time to maximize sales in high price years.
${ }^{7}$ Income tax was not considered in this model; one would have to assume that the operator will equalize his earnings over a period of years as permitted by the 1964 Income Tax Act.

## TABLE XXXIII

INTERTEMPORAL RANCH MODEL; SHADOW PRICES, CAPITAL TRANSFER ACTIVITY, PRICES AND COSTS VARY.

| Run No. | Price Level |  | Year of Run |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Initial | Average | 1 | 23 | 4 | 5 |
| $\begin{aligned} & 1 \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | 100 | 115 |  | $\begin{aligned} & 46.2 \\ & 46.6 \end{aligned}$ |  |  |
| $\begin{array}{r} 2 C \\ D \end{array}$ | 120 | 119 |  | $\begin{array}{ll} 25.6 & \\ 53.3 & 30.7 \end{array}$ |  |  |
| $\begin{array}{r} 3 \mathrm{C} \\ \mathrm{D} \end{array}$ | 125 | 100 |  | $\begin{aligned} & 39.0 \\ & 39.0 \end{aligned}$ |  |  |
| $\begin{array}{r} 4 \mathrm{C} \\ 0 \end{array}$ | 130 | 89 |  | 0 |  | 24.1 |
| $5 \mathrm{C}^{\mathrm{C}}$ | 100 | 85 |  | 9.4 | $\begin{aligned} & 35.9 \\ & 10.1 \end{aligned}$ | $\begin{aligned} & 40.9 \\ & 23.5 \end{aligned}$ |
| $\begin{gathered} 5 C^{b} \\ D \end{gathered}$ | 70 | 89 |  | $\begin{aligned} & \text { 159. } 127 \\ & \text { n.a. } \end{aligned}$ | 208 | 63.1 |
| ${ }^{7}{ }_{\text {c }}^{C}$ | 75 | 100 | 4100 | $\begin{array}{cc} \text { not feasible } \\ 342 & 312 \end{array}$ | 145 | 517 |
| $\begin{array}{r} 8 \mathrm{C} \\ \mathrm{D} \end{array}$ | 80 | 111 | 4048 | $\begin{array}{ll} 276 & 143 \\ \text { n.a. } \end{array}$ | 47.2 | 25.5 |

$a_{\text {Stock constrained in }} 5$ th year to 0.875 .
${ }^{b}$ Initial working capital increased to make program feasible.

How dows the rancher act if a fall in prices is imminent? Under the price regimens envisaged no accelerated cow culling occurs (runs 3, 4, 5). As far as the capital position allows, sales are accelerated. Whether sales in the low price years are deferred depends on the size of capital reserves accumulated in preceeding years. If sales must be made because the receipts are needed, calvas rather than yearlings will be sold.

## CHAPTER VII

## SUMMARY AND IMPLICATIONS OF FINDINGS


#### Abstract

Relevant ranch situations of South Central Dklahoma's "Herefard Heaven" ware programmed for optimum operations suocessively in a statio, short-run stochastic, and dynamic frame work.

The purpose of the static model was to investigate the effect of certain a priori decisions, such as the admission of livestock purchases or stocker cattle processes, of size and tenure, and the relative scarcity or cost of operating capital upon the outcome of operations and the best organization to follow. General findings of this part have already been reported in chapter IV.


In the stochastic frame work it was desired to determine the ranch organization which would produce the highest expected contribution to profit and overhead over a range of prices; expected in the near future. The results also indicated the year-to-year price or market risk involved in the alternative production processes.

In a price map the ranch organizations most desirable for given combinations of buying and selling prices were sumarized. Stocker cattle operations would be advantageous if a rise in price is expected. With essentially constant price levels some combinations of calf production with stocker operations is most profitable. If prices are expected to fall, it would be best to raise calves and sell them at weaning time.

It was also verified that the price risk is considerably higher for stocker cattle operations than for cowmandmcalf operations. Relatively small price changes may wipe out all stocker profits.

Taken over all possible initial price situations, a combination of cows and stocker cattle would have the highest expected returns, followed by a pure cow operation. Stocker operations have the lowest expected value.

Expected outcomes have also been estimated for various initial price levels. Stocker cattle have the highest expected value at very low initial price levels (because of the likelihood that prices will adm vance and give the operator the benefit of a positive price margin). At average and higher than average initial price levels mixed operations would be preferable, while at the highest initial prices it would be most advantageous to sell the calves at weaning.

The question of the best ranch organization was finally approached from the viewpoint of the dynamic economic organism moving forward over time. The method chosen permitted explicit consideration of the conditional fixity of long-lived resources such as breeding stock, and of patterns of expectations which approximate the cyclical price changes which have characterized the cattle market for generations.

The dynamic model shows (a) the explicit path of organizational growth and adaptation to market and cost situations, and (b) it identifies decisions which are "right" not only for the year for which commitments of resources take place, but also for the years to come.

It is rather difficult to generalize the results of dynamic models, partly because it is the very purpose of such estimates to be specific rather than general about the course to take, partly because rather
specific assumptions have to be made as to the resources at hand and the prices expected in order to make the model plausible to the prospective user. The subordinate role of generalization is compensated for by the potential usefulness of the method explored in practical ranch management work. It is entirely possible that in the years to come management consultations will be based on dynamic plans tailored specifically for individual ranches, incorporating new expectations about the market into an annual review of the original master plan.

One rather obvious generalization is the need for adequate (capital or credit) reserves to carry the ranch over adverse periods. The reserves have to be several times the minimum needs for operating capital under constant price assumptions. Lack of reserves will seriously hamper the future earning potential and may even lead to an attrition of the other productive resources of the ranch.

If prices are expected to fluctuate, the problem of management becomes one of timing production and sales in such a way that total returns, suitably discounted, are maximized. The dynamic model shows that under certain conditions considerable shifts in production and sales are advisable. Sales should be concentrated in high price periods. Furthermore, highprice periods will attract high volume, low margin production processes such as stocker operations. Low price period, on the contrary, should be bridged by selling low volume, high margin products such as weanling calves. With uniformly high prices an equilibrium in the model ranch would incorporate a considerable number of stocker yearlings, and just enough cows, calves, and replacements to keep the ranges fully stocked at all times.

One purpose of the dynamic analyses was to learn more about optimum selection, culling and replacement policies. This objective was only partially achieved. A semblance of equilibrium between cows, heifers and heifer calves was reached only after the third year, when the terminal conditions of the model were already beginning to affect the enterprise choices. There was no evidence that negative selection (culling) beyond the minimum level specified in the model ever would be advantageous. Instead the level of positive selection (number of replacement heifers retained) was varied according to the conditions in any given year.

It is almost certain that operations based on long-run plans, but kept flexible until a decision has to be made, are mere profitable than plans based on long-run expectations only, which require makeshift adjustments from time to time. No attempt to estimate the advantages accruing from dynamic versus static management has been made here.

The author feels that the present study raises a number of questions which it might be useful to consider. What is the economic replacement policy under conditions similar to those anvisaged here? Careful herd records such as those of the Turner Ranch (7B) and the Miles City Experiment Station (79), (80), (81) would provide the basic biological data.

The advantages of "dynamic management" over the static approach might be measured by simulating the returns of dynamic plans based on expectations (as published by the U.S.D.A. and the State Extension Service) and long-run static plans, and comparing the outcomes of the two alternatives, if the actual prices experienced (ex post) are used to determine the returns (82). Alternatively, Markow chain analysis could be used to determine the expected values of alternative management strategies (83),(84).
 as was used to qualuate the modele in mhater III and $V$.

Thore is an urgent need to devalop methed of incorperating ohanhing


 expectationg change. Large ranch operations eould do thde on thois tiwn, private or public mangemant sorvices and aiosociations might porform this sarvice for thair oliants.

Richard Coodwin ( $85,0,196$ ) damonetratiad thet "If aniy a part of the producers are oyole consol, ous," commodty byelon ander by lagged production rempene couid be wiped out. Un the antramy if ald






 arising out of zandom variationg gf productian and disapatamane weuld be wiped out in shoet while, thus bringing groutar stálitity ta the industry



1. Gray, Fonton, and H. M. Calloway. Solis of Oklahoma. Oklanoma Ag. Exp. Station. Misoell. Pub. No. SG (1959).
2. United States Bureai of the Censug. Unitad Stetas Census of Ageicultusas 1959. Vol. I, Part 36, Dklahoma. Washingtom, D.C.i U.S. Governmant Printing Offiog, 1961.
3. Black, John D., Marion Clawson, Charlea R. Sayre and Walter Wlloox. Ferm Management. Now York: MaoMillan, 1953.
4. Sohultz, Wolfgang M. Dia Nauzeitliche Getraidearnte. Beriohte Uber Land. technik, No. 52. MUncheni Neureutar, 1957.
5. Kahn, Herman. On Tharmonuolear Mar. (2nd ed.) Arincetoni Princeton University Press, 1961.
6. Hart, Albart G. Anticipations. Uncartainty and Dynamic Planning. Chicagai University of Chicago Preas, 1940.
7. "Risk, Uncertainty and the Unprofitability of Compounding Probabilities." Studies in Mathematical Economics. Eds. Lang, Mcintyre, Yntema. Chicagoi University of Chicago Press, 1942, p. 110-118.
Q. Haynes, W. W. Managerial Economics - Analysis and Cases. Homewood, Ill. Dorsey Press, 1963.
8. Johnson, Glenn $L$., and Lowell S. Hardin. Economics of Forage Valuation. North Central Regional Pub. No. 4日; Purdue University Ag. Exp. Station Bull. 623 (1955).
9. Johnson, Glenn L. "Supply Functions - Some Facts and Notions." Agricultural Adjustment Problems in a Grouing Economy. Eds. E.O.Heady et al. Ames, Iowa: Iowa State University Press, 195B, p.7B.
10. Edwards, Clark. "Resource Fixity and Farm Organizetion." Journal of Farm Economics 41 (1959), 747-759.
11. Brandow, G. E. Interrelations amona Demands far Farm Produets and Implications for Control of Market Supply. Pennsylvania Ag. Exp. Station, Bull. 680, 1961.
12. Bradford, Lawrence A., and Glenn L. Johnson. Farm Management Analysis. New York: Wiley, 1953.
13. Wood, Marshall K. and George B. Dantzig. "Programming of Interdependent Activities." Econometrica 17 (1949), 193-211.
14. Graves, Robert L. and Philip Wolfe (editors). Recent Advances in Linear Programming. New York: McGraw-Hill, 1963.
15. Dorfman, Robert, Paul A. Samuelson, and Robert M. Solow. Linear Programminc and Economic Analysis. New York: McGrawwill, 1958.
16. Heady, Earl 0. and Wilfred Candler. Linear Programming Methods. Ames: Iowa State University Press, 1958.
17. Dorfman, R. "Application of the Simplex Method to a Farm Theory Problem" Activity Analysis of Production and Allocation. T.C. Koopman, editor. New York: Wiley, 1951.
18. Hildreth, D.G. and S. Reiter. "On the Choice of a Crop Rotation Plan." Activity Analysis of Production and Allocation. Chapter 11. T.C. KOopman, oditor. New York: Wiley, 1951.
19. Waugh, F.V. "The Minimum-Cost Dairy Feed." Journal of Farm Economics 33 (1951), 369.
20. Fisher, W.D. and L.W. Schruben. "Linear Programming Applied to FeedMixing Under Different Price Conditions." Journal of Farm Economics 35 (1953), 471-483.
21. Fox, K.A. "A Spatial Equilibrium Model of the Livestock-Fead Economy in the United States." Econometrica 21 (1953), 547-566.
22. Freund, R.J. and R.A. King. "The Selection of Farm Enterprises: A Case Study in Linear Programming." University of North Carolina, Ag. Exp. Station, Journal Paper 552, Raleigh 1953.
23. Judge, George G. and I.F. Fellows. Economic Interpretations of Broiler Production Problems. Connecticut Ag. Exp. Station, Technical Research Bull. 302, Storrs, 1953.
24. Heady, E.O. "Simplified Presentation and Logical Aspects of Linear Programming Technique." Journal of Farm Economics 36. (1954), 1035-1048.
25. McCorkle, C.O. Jr. and J.N. Boles. "Use of Linear Programming in Cotton Acreage Adjustment Research in California." 1954 Proceedings. Western Farm Economics Association, p. 39m59.
26. Babbar, M.M. "Statistical Approach in Planning Production Programs for Interdependent Activities." Unpub. Ph.D. dissertation, Iowa State College, 1953.
27. Bowlen, B.J. "Production Planning of Crops for Iowa Farms Using Activity Analysis and Linear Programming." Unpub. Ph.D. dissertation, Iowa State University, 1954.
28. Kottke, M.W. "A Study of Dacision Sharing, Tonure Uncertainty and the Choice of Farm Enterprise Combinations Under Farm Leasing Systems in Minnesota." Unpub. Ph.D. dissertation, University of Minnesota, 1955.
29. Freund, R.J. "The introduction of Risk into a Linear Programming Model," Unpub. Ph.D. dissertation, North Carolina State College, 1955.
30. Dixon, L.V. "Economic Efficiency in Dairy Cattle Feeding on Connecticut Farms." Unpub. M.S. dissertation, University of Connecticut, 1955.
31. Reisch, Erwin and Ludwig Eisgruber. "Bibliography of Linear Programming and its Application to Agricultural Economics Problems." Lafayette, Indiana, privately circulated (Sept. 1960).
32. Bostwick, Don. "Mathematical and Statistical Techniques as Managerial Tools." Conference Proceedings. Farm Management Research Committee of the Western Ag. Econ. Research Council. Denver, Dct. 1962, 21-30.
33. Woermann, Emil. "Der Landwirtschaftliche Betrieb im Preis- und Kosten= gleichgewicht." Handbuch der Landwirtschaft. Vol. 5, Berlin: Paul Parey, 1954, p. 196-231.
34. Allen, R.G.D. Mathematical Analysis for Economists. (Reprint, London 1956). London: MacMillan, 1938.
35. Tucker, Albert W. "Combinatorial Theory Underlying Linear Programs." Recent Advances in Lingar Programming. ods. Graves \& Wolfe. New York: McGraw-Hill, 1963, 1-16.
36. Graves, Robert L. "Parametric Linear Programming." Racent Advances in Linear Proqramming. eds. Graves \& Wolfe, New York: McGraw-Hill, 1963, 201-210.
37. Knight, Frank H. Risk, Uncertainty and Profit. Boston: Houghtonmifflin, 1921.
38. Hardy, Charles D. Risk and Risk Bearing. Chicago: University of Chicago Press, 1923.
39. Mehr, Robert I. and Bob A. Hedges. Risk Management in the Business Enterprise. Chicago: Irwin, 1963.
40. Fellner, William. Emergence and Content of Modern Economic Analysis. New York: McGraw-Hill, 1960.
41. Hesser, Leon F. and Melvin R. Janssen. Capital Rationing Among Farmers. Purdue University Ag. Exp. Station, Research Bull. 703, Lafayette, 1960.
42. Tinbergen, Jan. "The Notions of Horizon and Expectancy in Dynamic Economics." Econometrica, 1 (1933) 247-264.
43. Boulding, K.E. "The Present of the Theory of the Firm." Linear Programming and the Theory of the Firm. eds. Boulding \& Spivey, New York: MacMillan, 1960, 1-17.
44. Barr, Alfred L., W. Schultz, James S. Plaxico, and Arnold B. Nelson. Boef Cattle Systems and Range Improvement Alternatives: Estimated Production, Income, and Costs. Dklahoma Ag. Exp. Station, Processed Series P-358, Stillwater, Sept. 1960.
45. Jennings, R.D. Feed Consumption by Livestock 1910-41. U.S.D.A. Circular 670, Washington D.C., 1943.
46. Plaxico, James 5. and Jackson L. James. Beef Cattle prices. Seasonal Movements and Price Differentials on the Oklahoma City Market. Oklahoma State University Ag. Exp. Station, Bull. B-486, 1957.
47. (Animal Husbandry Department). Feeding and Breeding Tests. Oklahoma Ag. Exp. Station, Miscell. pub. 17, 1950; Miscell. pub. 27, 1952.
48. Lloyd, R.D. and R.W. Hecht, Dverhead Labor on Northern Nevada Cattle Ranches. Nevada Ag. Exp. Station, Bull. $2 \overline{09}, 1959$.
49. Hodgman, C.D. (editor). C.R.C. Standard Mathematical Tables. 12th edition, Claveland: Chemical Rubber Publishing Co., 1959.
50. Barr, Alfred L. "Dynamic and Static Analyses of Cattle Systems and Range Improvement Practices, Northeastern Dklahome." Unpub. Ph.D. dissertation, Oklahoma State University, 1960.
51. Barr, Alfred L. and James S. Plaxico. Optimum Cattle Sys.tems and Range Improvement Practices for Northeastern Oklahoma: Dynamic and Static Analyses, Oklahoma Ag. Exp. Station, Miscell. Pub. 62, 1961.
52. Weinschenck, G. "Programme Planning with Particular Stress on Experience in Germany." Farm Business Planning Methods. European Productivity Agency, project no. 6/14-II. Oslo, 1960.
53. Renborg, U. "Varainfachte Planungsmethoden auf der Grundlage der linearen Programmierung." Bedeutung und Anwendung oekonometrischer. Methoden in der agrarwirtschaftlichen Forschung. Hiltrup: Westfalischer Landwirtschaftsverlag, 1963.
54. Johnsson, H., U. Renborg, and V. Saefrestad. "Resultatmaximerung i Lantbruket." Meddelande 3-57 Från Jordbrukets Utredningsinstitut; Stockholm, 1957.
55. Blechstein, K. "Zur ehz-Methode." Bedeutung und Anwendung oakonometrischer Methoden in der agrarwirtschaftlichen Forschung. Hiltrup: Westfulischer Landwirtschaftsverlag, 1963.
56. Hicks, J.R. Value and Capital. 2d. ed., Doford: Oxford University Press, 1946.
57. Keynes, J.M. The General Theory of Employment, Interest and Money. New York: MacMillan, 1935.
58. Samuelson, P.A. Economics. 5th ed., New York: Prentice-Hall, 1961.
59. U.S. Department of Agriculture, Statistical Reporting Service. Prices Received by Farmers for Calves, 1909-1960, Statistical Bull. 294, Washington D.C., 1961, p. 40.
60. $\qquad$ - Agricultural Prices. Washington D.C., monthly.
61. Kemeny, J.G., A. Schleifer jr., J.L. Snell and G.L. Thompson. Finite Mathematics with Business Applications. Englewood Cliffs, N.J., Prentice-Hall, 1962.
62. Frisch, R. "Statikk og Dynamikk i den Okonomiske Teori." National= фkonomisk Tidakrift, 67, p. 321, quoted in J. Tinbergen, "Annual Survey of Significant Developments in General Economic Thaory." Eonometrica 2, (1934) 13-36.
63. von Neumann, John. "Ueber ein oekonomisches Gleichungssystem und eine Varallgemeinerung des Brouwerschen Fixpunktsatzes." Erqebnisse日ines Mathemathischen Colloquiums 8 , (1935-36) 73-83. English translation "A Model of General Economic Equilibrium." Review of Economic Studies 13(1), (1945-46) 1-9.
64. Swanson, Earl R. "Integrating Crop and Livestock Activities in Farm Management Activity Analysis." Journal of Farm Economics 37, (1955) 1249-58.
65. Loftsgard, Laurel D. "Linear Programming of Dynamic Plans for an Actual Farm and Household." Unpub. Ph.D. dissertation, Iowa State College, 1958.
66. 

and E.D. Heady. "Application of Dynamic Programming Models for Optimal Farm and Home Plans." Journal of Farm Economics 41, (1959), 51-62.
68. Plaxico, James 5. "Dynamic Programming and Management Stratagies in the Great Plains." Management Strategies in Great Plains Farming. Great Plains Council Publication No. 19. Lincoln, Nab., 1961.
69. Ramsey, Frank. "A Mathematical Theory of Saving." Ecomomic Journal 3日, (1927), 543. Quoted in (16), p. 266 ff.
70. Schneider, Erich. Pricing and Equilibrium. 2d. ed. London: Allen \& Unwin, 1962, p. $\overline{203}$.
71. Tintner, Gerhard. "A Contribution to the Nonstatic Theory of Production." Studies in Mathematical Economics and Econometrics. Lange, McIntyre, and Yntema, editors. Chicago: University of Chicago Press, 1942.
72. Modigliani, Franco and Kalman J. Cohen. "The Significance and Uses of Ex Ante Data." Expectations, Uncertainty, and Business Behavior. M.J. Bowman editor. New York: Social Science Research Council, 1958. 151-164.
73. Schlaifer, Robert. Probability and Statistics for Business Decisions. New York: McGraw-Hill, 1959.
74. Boulding, Kenneth E. Economic Analysis. 3rd ed. New York: Harper, 1955.
75. Dantzig, George B. "Upper Bounds, Secondary Constraints, and Block Triangularity in Linear Programming." Econometrica 23, (1955) 174-83.
76. $\qquad$ . "Compact Basis Triangularization for the Simplex Method." Recent Advances in Mathematical Programming. R.L. Graves and Ph. Wolfe, editors. New York: McGraw-Hill, 1963. 125-32.
77. Beale, E.M.L. "The Simplex Method Using Pseudo-basic Variables for Structural Linear Programming Problemis." Recent Advances in Mathematical Programming. New York: McGraw-Hill, 1963. 133-48.
78. Lindley, Charles E. "A Study of the Reproductive Performance of a Purebred Hereford Herd." Unpub. Ph.D. dissertation, Oklahoma State University, 1957.
79. Baker, A.L. and J.R. Quesenberry. "Fertility of Range Beef Cattle." Journal of Animal Science 3(1944), 78-87.
80. Knapp jr., Bradford, A.L. Backer, J.R. Quesenberry, and R.T. Clark. Growth and Production Factors in Range Cattle. Montana Agricultural Experiment Station, Bull. 400, Bozeman, 1942.
81. Wilson, M.L. et al. A Study of Ranch Organization and Methods of Range Cattle Production in the Northern Great Plains. U.S. Department of Agriculture, Technical Bull. 45. Washington, D.C., 1928.
82. Hildreth, R.J. "Discussion: Integrating Crop and Livestock Activities in Farm Management Activity Analysis." Journal of Farm Economics 37 (1955), 1263-65.
83. Bostwick, Don. "Yield Probabilities as a Markov Process." Agricultural Economics Research 14 (1962), 49-56.
84. Howard, Ronald A. Dynamic Programming and Markov Processes. Cambridge, Mass.: M. I. T. Press, 1960.
85. Goodwin, Richard M. "Dynamical Coupling with Especial Reference to Markets Having Production Lags." Econometrica 15 (1947), 181-204.
86. U.S. Department of Agriculture, Agricultural Marketing Service. Livestock and Meat Statistics. Statistical Bull. 230, 333. Washington, D.C., 1957, 1963.
87. Jeffrey, D.B., et al. Qklahoma Custom Rates. Dklahoma State University Extension Service, Leaflet L-50. Stillwater, 1960.
88. "Flexible Beef Plan." Successful Farming, September 1957 (Des Moines, Iowa: Meredith). As quoted by C.W. Nauheim. "Flexible Livestock System." Management Strateqies in Great Plains Farming. Great Plains Council Pub. No. 19, Nebraska Ag. Exp. Station 1961; 81-88.

APPENDICES

## APPENDIX A.

LONG-RUN PRICE TRENDS AFFECTING THE gEEF INDUSTRY

The trend parameters described here cover the period 1925-1962 (61, 86 ). Numbers in parentheses below the trend constants are estimated standard deviations.

1. Trend of the Ratio

Price index, slaughter steers, all grades, Chicago :
Index of prices received by farmers, all farm products
$I_{B}=100.87+0.738($ year -1962$) \quad t_{b}=5.16$
$( \pm 0.142)$
Average 1957-59 $=$ 100. This regression function measures the relative change in the level of slaughter cattle prices compared to the price level of all farm products. If 1925 is chosen as the base period, the beef price in 1962 is 136 per cent of the general farm price level.
2. Trend of the Ratio

Price, stocker and feeder steers, all weights and grades, Kansas City
Price, slaughter steers, all grades, Chicago
$I_{s}=89.12+0.471$ (year - 1962$) \quad t_{b}=5.32$
$( \pm 0.088)$
Prices in dollars per 100 pounds. The stocker and feeder steer price level in Kansas City in 1962 was 89 per cent of the price of slaughter steers in Chicago. The ratio of the stocker/feeder and slaughter steer
prices narrowed down even though the difference of the prices, in absolute terms, increased during this period (see section 4, below).

## 3. Trend of the Ratio

Price, feeder calves, good and choice, Kansas City : Price, slaughter steers, all grades, Chicago

$$
I_{C}=105.34+0.782(\text { year }-1962) \quad t_{b}=5.16
$$

Price in dollars per 100 pounds. The feeder calf price in Kansas City in 1962 was five per cent higher than the slaughter steer price in Chicago, and increased by .78 per cent of the slaughter steer price every year.
4. Trand of the Difference

Slaughter Steer Price, Chicago,
less Stocker and Feeder Steer Price, Kansas City:

$$
D=3.734+0.034(\text { year }-1962) \quad t_{b}=1.58
$$

(\$0.021)
In 1962 the price of slaughter steers in Chicago was $\$ 3.74$ per 100 pounds higher than the price of stocker and feeder steers in Kansas City. The difference tands to increase slowly, even though the price ratio (see section 2) has narrowed down over the years. The trend constant ( 3.4 cents annual increase) was not significant at the five per cent level.

```
APPENDIX B, TABLE I
SEASONAL PRICES OF SALAblE LIVESTOCK AS USED IN THE BUDCETS \({ }^{\text {a }}\)
```


${ }^{\text {a }}$ Adapted from (47)

APPENDIX B, TABLE II
PRICES USED IN THE GUDGETS.


APPENDIX B, TABLE III
WEANING WEIGHT, ANIMALS SOLD, BEEF SOLD PER COW (LIVEWEIGHT)
SALES VALUE PER HEAD AND AVERAGE SALES PRICE PER 100 POUNDS 日EEF SOLD.

| Act./ <br> Budget <br> Number | Weaning Weight Cwt. |  | Number of Animals Sold per Hundred Cows |  |  | Cut. Beef Sold per Cow | $\frac{\text { Sales Value per Head }}{\text { Calf }}$ |  |  | Sales Price per Cwt. Beef |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Steer | Heifer | Steers | Heifers | Total ${ }^{\text {a }}$ |  | Steer | Heifer | Cow |  |
| 1.01/2 | 4.85 | 4.60 | 44 | 28 | 84 | 4.61 | \$121.25 | \$105.80 | \$143.12 | 21.72 |
| 1.03 | 5.20 | 4.95 | 44 | 28 | 84 | 4.86 | 130.00 | 113.85 | 143.12 | 21.86 |
| 1.04/5 | 4.90 | 4.50 | 40 | 28 | 80 | 4.40 | 125.44 | 106.20 | 152.00 | 22.31 |
| 1.06 | 5.50 | 5.20 | 40 | 28 | 80 | 4.88 | 143.36 | 122.72 | 152.00 | 22.53 |
| 1.07 | 5.00 | 4.60 | 40 | 28 | 80 | 4.47 | 128.00 | 108.56 | 152.00 | 22.34 |
| 1.08 | 4.60 | 4.30 | 40 | 28 | 80 | 4.23 | 121.90 | 105.35 | 156.93 | 22.95 |
| 1.09 | 4.90 | 4.50 | 20 | 14 | 40 | 4.51 | 125.44 | 106.20 | 152.00 | 21.99 |
| 1.10 | 4.85 | 4.60 | 22 | 14 | 42 | 4.51 | 121.25 | 105.80 | 143.12 | 21.99 |

[^22]APPENDIX B, TABLE IV<br>UNPRICED PHYSICAL REQUIREMENTS OF BUDGETED COW-CALF ACTIVITIES

|  |  | Prairie |  |
| :--- | :---: | :---: | :---: |
| Budgat |  |  |  |
| Number | Type Hay <br> Tons/Cow | Alfalfa <br> Hay <br> Tons/Cow | Oats-Vatch <br> Grazing <br> A.U.M./Cow |
| 1.1 | 0.030 |  | - |
| 1.2 | - | 0.436 | - |
| 1.3 | 0.030 | - | - |
| 1.4 | 0.030 | - | - |
| 1.5 | - | 0.590 | - |
| 1.6 | 0.030 | - | - |
| 1.7 | 0.880 | - | - |
| 1.8 | 0.290 | - | 4.48 |
| 1.9 | 0.028 | 0.507 | - |
| 1.10 | - |  |  |

Alfalfa hay may be used instead of prairie hay if prices permit, but not vice versa.

```
 APPENDIX B, TABLE V
COSTS DF CROP ENTERPRISES, (PER ACRE)
```

| Budget <br> Number | Crop | Sead and Fertilizer | Machinery for Establishment | Custom Hire ${ }^{\text {a }}$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3,1 | Alfalfa hay | \$4.12 | \$0.53 | \$25.80 | \$30.45 |
| 3,2 | Prairie hay | - | - | 9.92 | 9.92 |
| 3.3 | Dat hay | 2.20 | 2.22 | 12.44 | 16.86 |
| 3.4 | Sudan hay | 0.70 | 2.22 | 11.00 | 13.92 |
| 3.5 | Dats-vetch grazing | 10.05 | 1.84 | - | 11.89 |
| 3.6 | Sudan grazing | 0.70 | 2.22 | - | 2.92 |

aD.B. Jeffrey et al. (BB)

APPENDIX b, TAble VI
SEASONAL LABOR REQUIREMENTS FOR CROP ENTERPRISES
(MAN-HOURS PER ACRE)

| Budget Number | Crop | Harvest Labor | All Other Labor |  |  | Total | $\begin{gathered} \text { All } \\ \text { Labor } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Det-D | anapr | May-Sept. |  |  |
| 3.1 | Alfalfa | 10.40 | - | - | 0.60 | 0.60 | 11.0 |
| 3.2 | Prairie | 3.50 | - | - | - | - | 3.50 |
| 3.3 | Dats | 7.61 | - | 0.37 | 1.91 | 2.28 | 9.89 |
| 3.4 | Sudan | 3.98 | - | - | 3.02 | 3.02 | 7.00 |
| 3.5 | Dats-vetch grazing | - | - | 0.37 | 1.98 | 2.28 | 2.28 |
| 3.6 | Sudan grazing | - | - | 1.03 | 1.63 | 2.70 | 2.70 |

## APPENDIX B, TABLE VII

## DISPOSITION OF THE OPERATOR'S WORK TIME

(1) Total time allocated for work on ranch
(2) Overhead labor
(3) Work time available to perform duties associated with specific processes
(4) Avarage per month
(5) Since overhead labor may be shifted to a limited extent, maximum work time in any one month for specific processes:

200
(6) Available for specific processes, Fall (October - December, 3 months) 600
(7) -- ditto, Winter - Spring (January - April, 4 months) 800
(8) -a ditto, Summer (May - September, 5 months) 1800

Hours per Year 2580
Specific $\frac{\text { Overhead }}{780}$

Hours per manth
$150 \quad 65$

Note: The limits set by (6), (7), (8) are subject to restriction (3): Operator's total annual work time associated with specific processes may not exceed 1800 hours, even though in some periods his monthly time for specific processes exceeds the average of 150 hours.
Additional labor is availabla by hiring casual help at $\$ 1.0$ per hour.

APPENDIX C.
INPUT - OUTPUT COEFFICIENTS AND CONTRIBUTION TO OQJECTIVE (OUERHEAD
AND PROFITS) OF THE STATIC MODELS

| Row No. | Item | Unit | Cow-and Calf Activities |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.01 | 1.02 | 1.03 | 1.04 | 1.05 | 1.05 |
| 00 | Objective | 5 | - 18.77 | - 9.45 | - 28.25 | - 24.88 | - 9.35 | - 42.97 |
|  | Land |  |  |  |  |  |  |  |
| 01 | Total Acreage | acre | 8.96 | 8.59 | 8.96 | 9.33 | 8.59 | 9.33 |
| 02 | Cropland | acre |  |  |  |  |  |  |
| 03 | Class A Cropland | acre |  |  |  |  |  |  |
| 04 | Prairis Maadow | acre |  |  |  |  |  |  |
|  | Rent Options |  |  |  |  |  |  |  |
| 05 | Any Acreage | acre |  |  |  |  |  |  |
| 06 | Cropland | acre |  |  |  |  |  |  |
| 07 | Class A Cropland | acre |  |  |  |  |  |  |
| 08. | Prairie Meadow | acre |  |  |  |  |  |  |
|  | Oparating Capital ${ }^{\text {a }}$ |  |  |  | . |  |  |  |
| 09 | Livastock, Fall | \$ | 192.00 | 192.00 | 192.00 | 192.00 | 192.00 | 192.00 |
| 10 | All Other, Fall | \$ | 15.05 | 5.74 | 24.42 | 21.28 | 5.74 | 39.13 |
| 11 | Livestock, Spring | I | 192.00 | 192.00 | 192.00 | 192.00 | 192.00 | 192.00 |
| 12 | All Other, Spring | \$ | 15.06 | 5.74 | 24.42 | 21.28 | 5.74 | 39.13 |
|  | Labor ${ }^{\text {b }}$ |  |  |  |  |  |  |  |
| 13 | Total | man-hr. | 5.58 | 6.50 | 6.58 | 5.43 | 6.38 | 6.73 |
| 14 | October-December | man-hr. | 4.05 | 4.76 | 4.05 | 1.74 | 2.47 | 2.54 |
| 15 | January-April | man-hr. | 0.74 | 0.74 | 1.74 | 1.02 | 1.02 | 1.52 |
| 16 | May-September | man-hr. | 0.79 | 1.00 | 0.89 | 2.67 | 2.89 | 2.67 |
|  | Roughage |  |  |  |  |  |  |  |
| 17 | All Hay | ton | 0.030 | 0.436 | 0.030 | 0.030 | 0.590 | 0.030 |
| 18 | Alfalfa Ray | ton |  | 0.436 |  |  | 0.590 |  |
|  | Salable Livestack |  |  |  |  |  |  |  |
| 19 | Weaned Calves, Octobar 10 | head | - 0.72 | - 0.72 |  |  |  |  |
| 20 | Roughad Yearlings, April 1 | head |  |  |  |  |  |  |
| 21 | Trap-uintered Yrlgs., Apre 9 | head |  |  |  |  |  |  |
| 22 | Long Yaarlinga, August 10 | head |  |  |  |  |  |  |
|  | Sales Accounting |  |  |  |  |  |  |  |
| 24 | Net Bagf Production, Lvwt. | ton | - 0.230 | - 0.230 | - 0.243 | $-0.220$ | $-0.220$ | - 0.244 |
|  | Sales Volume | * | -17.10 | - 17.10 | -106.25 | - 0.15 | - 98.15 | -109.95 |

[^23]APPENDIX C (continued).


APPENDIX C (continued)
(3)

| Row No. | Stocker Cattio Activities |  |  | A1felfe |  | $\begin{gathered} \text { Prairie } \\ \text { Hay } \\ 3.03 \\ \hline \end{gathered}$ | Oats Hay <br> 3.04 | Sudan <br> Grass Hay 3.05 | Hay Purchase |  | Rant Dut Alfalfa (Share) 3.08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { own } \\ & 3.01 \end{aligned}$ | Sharerented 3.02 |  |  |  |  |  |  |
|  | 2.07 | 2,08 | 2.09 |  |  |  |  |  | $\begin{gathered} \text { Alfalfa } \\ 3.06 \end{gathered}$ | $\begin{gathered} \text { Prairie } \\ 3.07 \\ \hline \end{gathered}$ |  |
| 00 | - 14.95 | - 22.64 | - 8.39 | -30.45 | -30.45 | - 9.92 | -16.86 | -13.92 | -25.00 | -18.00 | 0 |
| 01 | 1.21 | 8.00 | 6.67 | 1.00 |  | 1.00 | 1.00 | 1.00 |  |  | 1.00 |
| 02 | 0.88 |  |  | 1.00 |  |  | 1.00 | 1.00 |  |  | 1.00 |
| 03 |  |  |  | 1.00 |  |  |  |  |  |  | 1.00 |
| 04 |  |  |  |  |  | 1.00 |  |  |  |  |  |
| 05 |  |  |  |  | 1.00 |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  | , |  |  |  |  |
| 07. |  |  |  |  | 1.00 |  |  |  |  |  |  |
| OB |  |  |  |  |  |  |  |  |  |  |  |
| 09 | 115.24 | 166.88 | 166.88 |  |  |  |  |  |  |  |  |
| 10 | 14.95 | 17.51 | 3.26 | 30.45 | 30.45 | 9.92 | 16.86 | 13.92 | 25.00 | 18.00 |  |
| 11 |  | 166.88 | 166.88 |  |  |  |  |  |  |  |  |
| 12 |  | 17.51 | 3.26 | 30.45 | 30.45 | 9.92 | 16.86 | 13.92 | 25.00 | 18.00 |  |
| 13 | 3.28 | 2.31 | 4.41 | 0.60 | 0.60 | 0 | 2.29 | 3.02 |  |  |  |
| 14 | 0.38 | 0.73 | 1.43 |  |  |  |  |  |  |  |  |
| 15 | 0.82 | 0.98 | 0.98 |  |  |  | 0.37 |  |  |  |  |
| 16 | 2.07 | 0.60 | 1.00 | 0.60 | 0.60 |  | 1.91 | 3.02 |  |  |  |
| 17 | 0.333 | 0.025 | 0.667 | - 2.75 | - 1.83 | - 1.10 | - 1.45 | - 1.25 | $-1.00$ | - 1.00 | - 0.92 |
| 18 |  |  | 0.667 | - 2.75 | $-1.83$ |  |  |  |  |  | - 0.92 |
| 19 | 1.00 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |  |
| 22 |  | 1.00 | 1.00 |  |  |  |  |  |  |  |  |
| 23 | - 0.129 | - 0.132 | - 0.132 |  |  |  |  |  |  |  |  |
| 24 | -177.66 | -225.78 | -225.78 |  |  |  |  |  |  |  |  |
| 25 | 67.23 | 166.88 | 166.88 |  |  |  |  |  |  |  |  |
| 26 | 13.05 | 17.51 | 3.26 |  |  |  |  |  |  |  |  |

## APPENDIX C (continued).

| Row No. | Rent In |  |  | Rent Out |  |  | Weaned Calves October 10 |  | Roughed Yearlings April 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $4.02$ | $\begin{gathered} \text { Meadow } \\ 4.03 \end{gathered}$ |  |  | $\begin{gathered} \text { Meadow } \\ 4.06 \end{gathered}$ | $\begin{aligned} & \text { Sel1 } \\ & 4.11 \end{aligned}$ | $\begin{aligned} & \text { Buy } \\ & 4.12 \end{aligned}$ | $\begin{aligned} & 5011 \\ & 4.13 \end{aligned}$ | $\begin{aligned} & \text { Buy } \\ & 4.14 \end{aligned}$ |
| 00 | - 2.50 | - 6.00 | -6.00 | 2.38 | 5.70 | 5.70 |  | . |  |  |
| $\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \end{aligned}$ | - 1.00 | $\begin{array}{r} -1.00 \\ -1.00 \end{array}$ | $\begin{aligned} & -1.00 \\ & -1.00 \end{aligned}$ | 1.00 | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & 05 \\ & 06 \\ & 07 \\ & 08 \end{aligned}$ | 1.00 | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ |  |  |  |  |  | . |  |
| $\begin{aligned} & 09 \\ & 10 \\ & 11 \\ & 12 \end{aligned}$ | 2.50 2.50 | $\begin{aligned} & 6.00 \\ & 6.00 \end{aligned}$ | $\begin{aligned} & 6.0 .0 .0 \\ & 6 \end{aligned}$ |  |  |  |  | 2.38 |  | 2.62 |
| $\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$ |  |  | . |  |  | . |  |  |  |  |
| $\begin{aligned} & 17 \\ & 18 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$ |  |  |  |  | , |  | 1.00 | - 1.00 | 1.00 | - 1.00 |
| $\begin{aligned} & 23 \\ & 24 \end{aligned}$ |  |  |  |  |  |  | -115.24 |  | -137.81 |  |

APDENDIX C (continuad)
(5)

| how No. | Trap-wintared Year= 1ings, April 1 |  | Long Yearlings Auqust 10 |  | ```Livestock Sales Account 4 . 1 9``` | BorrowOperating Capital $f$. |  | Hire Labor |  |  | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Fall | Winter |  |  |  | Summer |
|  | Sell 4.15 | $\begin{aligned} & \text { Buy } \\ & 4.16 \end{aligned}$ |  |  | $\begin{aligned} & \text { Se11 } \\ & 4.17 \end{aligned}$ | $\begin{aligned} & 8 \mathrm{By} \\ & 4.18 \end{aligned}$ | Livestock $\$ .20$ | $\begin{aligned} & \text { Other Exp. } \\ & 4.21 \end{aligned}$ | $\begin{gathered} X-X I I \\ 4.22 \end{gathered}$ | $1-\mathrm{IV}$ | $\begin{gathered} V=I X \\ 4.24 \end{gathered}$ |
| 00 | $-2.88$ | -153.82 | - 3.75 | -170.63 |  | 1.00 | -0. $x x^{\text {c }}$ | -0.04 | -1.00 | -1.00 | -1.00 |
| $\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 05 \\ & 06 \\ & 07 \\ & 08 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  | -1.00 | 1.00 |  |  |  |
| 10 |  |  |  | 3.75 |  |  | -1.00 | 1.00 | 1.00 | 1.00 |
| 11 |  |  |  |  |  | -1.00 | 1.00 |  |  |  |
| 12 |  | 2.88 |  | 3.75 |  |  | -1.00 | 1.00 | 1.00 | 1.00 |
| 13 |  |  |  |  |  |  |  | $-1.00$ | -1.00 | $-1.00$ |
| 14 |  |  |  |  |  |  |  | $-1.00$ |  |  |
| 15 |  |  |  |  |  |  |  |  | -1.00 |  |
| 16 |  | - |  |  |  |  |  |  |  | -1.00 |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 | 1.00 | - 1.00 |  |  |  |  |  |  |  |  |
| 22 |  |  | 1.00 | - 1.00 |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| 24 | -150.94 |  | -166. 88 |  | 1.00 |  |  |  |  |  |



Appendix D.
Fig. 1. Contribution to Profit and Overhead and Organizational Characteristics, Basic Four Section Ranch Model. Hay Price Raised 40 per cent (Model No. S2).


Appendix D.
Fig. 2. Demand for Capital and Accounting Prices, Basic Four Gection Ranch Piodel. Hay Drice Raised 40 oo: cent (Medol No. 32).


Appendix D.
Fig. 3. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Breeding Herd Only.
Left: Normal Hay Price (Model No. SB); Right: Hay Price up 40 per cent (Model No. S10).


Appendix 0 .
Fig. 4. Demand for Capital and Accounting Prices, Four Section Ranch. Breeding Herd only. Left: Normal Hay Price (Model No. S8). Right: Hay Price up 40 per cent (Model No. S10).


Appendix D.
Fig. 5. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Range and Cropland, Capital Charged for Months of Use only (Model No. S15).


Appendix D.
Fig. 6. Demand for Capital and Accounting Prices, Four Section Ranch. Range and Cropland, Capital Charged for Months of Use only (Model No. S15).


Appendix D .
Fig. 7. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. Rangeland, Raised Cattle Only. Left: Normal Hay Price (Model No. S17); Right: Hay Price up 40 per cent (Model No. S19).


Appendix D.
Fig. 日. Demand for Capital and Accounting Prices, Four Section Ranch. Rangeland, Raised Cattle Only.
Left: Normal Hay Price (Model No. S17).
Right: Hay Price up 40 per cent (Model No. S19).


Appendix 0.
Fig. 9. Contribution to Profit and Overhead and Organizational Characteristics, Four Section Ranch. With Option to Rent an Additional Section of Range. Left: Hay Price up 20 per cent (Model No. 523 ). Right: Hay Price up 40 per cent (Model No. S24).


Appendix 0.
Fig. 10. Demand for Capital and Accounting Prices, Four Section Ranch. With Option to Rent an Additional Section of Range. Laft: Hay Price up 20 per cent (Model No. S23). Right: Hay Price up 40 per cent (Model No. S24).
afpendix D, table i. the characteristics of static ranch models at critical points ${ }^{3}$ - THE BASIC FDUR SECTION RANCH MODEL

| L | Description | Unit | Capital Charged for Full Year |  |  |  |  | Capital Charge Method Relaxed$(s-4)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $(5-1)$ |  | (3-2) | $(5-3)$ |  |  |  |
|  |  |  | 0 | 6 | 5 | C | [ | 0 | G | C |
| (hay price level:) |  |  | normal | normal. | normal | up 20\% | Up 40\% | normal | normal | normal |
| 1 | Operating Capital Level | dollar | 11,200 | 65,300 | 169,400 | 167,000 | 166,900 | 18,400 | 69,500 | 171,600 |
| 2 | ditto, per acre | dollar/acre | 4.40 | 27.50 | 65 | 65 | 65 | 7.20 | 27.10 | 67 |
| 3 | Target Rate(s) of Interest ${ }^{\text {b }}$ | per cent | 38.4 | 26.4/4.0 | 1.5 | 2.1 | 2.0 | 39.0 | 27.4/23.5 | 9.3 |
| Income Contribution at ... ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |
| 4 | Target Rate of Interest | dollar | 6,600 | 10,500 | 27,800 | 26,700 | 26,700 ${ }^{\text {(13,500 }}$ | 6,600 | 9,500 | 22,400 |
| 5 | 10\% Rate of Interest | dollar | 9,800 | 20,800 | $(13,500)^{n}$ | $(13,500)^{h}$ | $(13,500)^{h}$ | 10,000 | 20.700 | $(21,500)^{h}$ |
| 6 | Zero Rate of Interest | dollar | 11,000 | 27,400 | 30,400 | 30,200 | 30,100 | 11,200 | 27,000 | 30,200 |
| 7 | ditto, per acre | dollar/acre | 4.30 | 10.70 | 11.85 | 11.80 | 11.75 | 4.35 | 10.55 | 11.80 |
| 8 | Value of Beef Sales | dollar | 26,700 | 49,500 | 216,500 | 220,700 | 219,600 | 24,100 | 36,400 | 220,700 |
| 9 | ditto, per acre | dollar/acre | 10.40 | 19.30 | 84.50 | 86.20 | 85.60 | 9.40 | 14.20 | 86.20 |
| 10 | Beef Production Volume | tons | 19.8 | 83.1 | 152.8 | 148.4 | 147.6 | 17.5 | 77.5 | 148.4 |
| 11 | ditto, per acre | pounds/acre | 15 | 65 | 119 | 116 | 115 | 14 | 61 | 116 |
| 12 | Number of Cows | head | 0 | 255 | 0 | 0 | 0 | 0 | 279 | 0 |
| 13 | Number of Calves Wintered | head | 83 | 114 | 351 | 143 | 136 | 136 | 114 | 143 |
| 14 | Number of Stocker Cattle | head | 69 | 96 | 1,141 | 1,176 | 1,177 | 0 | 0 | 1,176 |
| 15 | Rangeland Utilized | acres | 83 | 2,400 | 2,400 | 2,400 | 2,400 | 45 | 2,400 | 2,400 |
| 16 | Hay Utilized | tons | 28 | 165 | 256 | 48 | 43 | 45 | 179 | 48 |
| 17 | Labor Hired ${ }^{\text {d }}$ | mar-hours | 0 | 3117 | 0 | 0 | 0 | 0 | 452 F | 0 |
| Accounting Price of Land User , 20 fa |  |  |  |  |  |  |  |  |  |  |
| 19 | Prairie Hay Land | dollar/acre | 5.82 | 11.18 | 10.34 | 14.54 | 17.64 | 7.33 | 12.88 | 11.10 |
| 20 | Cropland | dollar/acre | 6.54 | 31.60 | 39.30 | 39.20 | 35.20 | 10.53 | 15.34 | 32.20 |
| 21 | Class A Cropland | dollar/acre | 6.54 | 42.70 | 39.30 | 39.20 | 38,20 | 10.53 | 50.00 | 32.20 |
| 20-Year Values ${ }^{\text {® }}$ |  |  |  |  |  |  |  |  |  |  |
| 22 | Rangel and | dollar/acre | 6.30 | 74 | 118 | 115 | 114 | 6.10 | 12.00 | 70 |
| 23 | Prairie Hay Land | dollar/acre | 15.25 | 134 | 124 | 174 | 211 | 18.80 | 54 | 99 |
| 24 | Cropland | dollar/acre | 17.10 | 378 | 470 | 458 | 455 | 27.00 | 64 | 287 |
| 25 | Class A Cropland | dollar/acre | 17.10 | 510 | 470 | 468 | 456 | 27.00 | 210 | 287 |

appendix d, thble il. the characteristics df static ranch models at critical points a bRSIC MCDEL, CHOICE DF ACTIVITIES RESTAIETED


APPENDIX D, TABLE III. THE CHARAETERISTICS OF STATIE RANCH MODELS AT CRITICAL DOINTS - TENURE AND SIZE VARIANTS

| L1$n$B | Description ... |  | Tenant-Dperated 4-Section Ranch $(5-11)$ |  |  | $\begin{aligned} & \text { Small Duner-Operated Rarich } \\ & (5-12) \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unit price levels) | $0$ <br> normal | $G(R)$ normal | $\bar{C}$ <br> nomal. | $\overline{0}$ <br> normal | G <br> normal | C |
| 1 | Operating Capital Level | dollar | 18,700 | 116,300 | 180,400 | 7,360 | 26,000 | 63,700 |
| 2 | dito, per acre | dollar/acre | 7.30 | 45.50 | 70.50 | 7.65 | 27.10 | 65.50 |
| 3 | Target Rate(s) of Interestb | per cant | 34.8 | 22.9/19.9 | 10.1 | 39.0 | 29.9/16.0 | 10.5 |
| Income Contribution At ...c |  |  |  |  |  |  |  |  |
| 4 | Target Rate of Interest | dollar | 50 | 3,400 | 13,900 | 2,480 | 3,260 | 7,760 |
| 5 | 10 \% Rate of Interest | dollar | 3,070 | 13,700 | 14,000 | 2,840 | 7,980 | 8,220 |
| 6 | Zero Rate of Interest | dollar | 4,300 | 21,800 | 23,100 | 4,300 | 10,350 | 11,350 |
| 7 | ditto, per acre | dollar/acre | 1.68 | 8.50 | 9.00 | 4.50 | 10.80 | 11.80 |
| 8 | Value of Beef Sales | dollar | 23,100 | 121,100 | 222,800 | 9,630 | 14,080 | 82,500 |
| 9 | ditto, per acre | dollar/acre | 9.00 | 47.40 | 87 | 10.00 | 14.70 | 85 |
| 10 | Beaf Production Volume | tons | 16.9 | 110.7 | 149.8 | 7.0 | 29.2 | 55.5 |
| 11 | ditto, per acre | pounds/acre | 13 | 87 | 117 | 15 | 61 | 116 |
| 12 | Number of Cows | haad | 0 | 145 | 0 | 0 | 103 | 0 |
| 13 | Number of Calves Wintered | head | 130 | 143 | 143 | 54 | 46 | 57 |
| 14 | Number of Stocker Cattle | head | 0 | 535 | 1,189 | 0 | 0 | 435 |
| 15 | Rangeland Utilized | acres | 43 | 2,375 | 2,425 | 18 | 890 | 890 |
| 15 | Hay Utilized | tons | 43 | 104 | 48 | 18 | 68 | 19 |
| 17 | Labor Hired ${ }^{\text {d }}$ | man-hours | 0 | 0 | 0 | 0 | 0 | 0 |
| Accounting Price of Land Use: |  |  |  |  |  |  |  |  |
| 18 | Rangeland | dollar/acra | 3.46 | 3.48 | 7.60 | $2.38^{f}$ | 2.58 | 7.24 |
| 19 | Prairie Hay Land | dollar/acre | 10.51 | 12.44 | 11.20 | 5.85 | 13.14 | 11.13 |
| 20 | Cropland | dollar/acre | B. 61 | 17.08 | 31.40 | 6.57 | 13.32 | 30.33 |
| 21 | Class A Cropland | dollar/acre | 21.20 | 47.80 | 31.40 | 6.57 | 50.94 | 30.33 |
| Twenty-Year Values ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| 22 | Rangeland | dollar/acre | 9.90 | 17.00 | 64 | 6.10 | 15.30 | 60 |
| 23 | Prairia Hay Land | dollar/acre | 30.10 | 61 | 95 | 15.00 | 78 | 92 |
| 24 | Cropland | dallar/acre | 24.70 | 83 | 266 | 16.80 | 79 | 252 |
| 25 | Class A Cropland | dollar/acre | 61 | 234 | 266 | 16.80 | 302 | 252 |

APPENDIX 0 , TABLE IV. THE CHARACTERISTICS OF STATIC RANCH MODELS AT CRITICAL POINTS ${ }^{\text {a }}$ LAND MIX VARIANTS; CAPITAL CHARGE METHOD RELAXED (I)

| 1 | Description (hay | Unit | $\begin{gathered} \text { Range only } \\ (S-43) \end{gathered}$ |  |  | Range and Prairie Hay Land$(S-14)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r}\text { n } \\ \hline\end{array}$ |  | rice lavel:) | $\begin{gathered} 0 \\ \text { narmal } \end{gathered}$ | $\begin{gathered} G \\ \text { normal } \end{gathered}$ | $\begin{gathered} c \\ \text { normal } \end{gathered}$ | $\begin{gathered} 0 \\ \text { narmal } \end{gathered}$ | $\begin{gathered} G \\ \text { normal } \end{gathered}$ | $\begin{gathered} C \\ \text { normal } \end{gathered}$ |
| 1 | Dperating Capital Level | dollar | 32,500 | 115,500 | 180,300 | 32,500 | 111,700 | 180,300 |
| 2 | ditto, per acre | dollar/acre | 12.70 | 45 | 70 | 12.70 | 44 | 70 |
| 3 | Target Rate(s) of Interest ${ }^{\text {b }}$ | per cent | 28.9 | 26.6/19.1 | 19.1 | 28.9 | 26.6/19.1 | 14.6 |
|  | Incame Contribution at... ${ }^{\text {c }}$ |  |  |  |  |  |  |  |
| 4 | Target Rate of Interest | dollar | 6,100 | 6,800 | 11,800 | 6,100 | 6,900 | 15,300 |
| 5 | $10 \%$ Rate of Interest | dollar | 12,200 | 17,900 | 18,800 | 12,300 | 17,900 | $(18,800)^{\text {K }}$ |
| 6 | Zero Rate of Interest | dollar | 15,400 | 24,600 | 26,500 | 15,500 | 24,500 | 25,500 |
| 7 | ditto, per acre | dollar/acre | 6.00 | 9.50 | 10.35 | 6.05 | 9.65 | 10.35 |
| 8 | Value of Beef Sales | dollar | 16,400 | 111,500 | 211,700 | 16,400 | 109,500 | 211,700 |
| 9 | ditto, per acre | dollar/acre | 6.40 | 44 | 83 | 6.40 | 43 | 79 |
| 10 | Beaf Production Volume | tons | 37.4 | 100.6 | 140.9 | 37.4 | 99.2 | 140.9 |
| 11 | ditto, per acre | pounds/acre | 29 | 79 | 110 | 29 | 77 | 110 |
| 12 | Number of Cows | head | 166 | 166 | 0 | 166 | 166 | 0 |
| 13 | Number of Calves Wintered | head | 0 | 0 | 0 | 0 | 0 | 0 |
| 14 | Number of Stocker Cattle | head | 0 | 573 | 1,275 | 0 | 560 | 1,275 |
| 15 | Rangeland Utilized | acres | 1,404 | 2,550 | 2,550 | 1,404 | 2,525 | 2,550 |
| 16 | Hay Utilized | tons | 84 | 84 | 0 | 84 | 84 | 0 |
| 17 | Labor Hired ${ }^{\text {d }}$ | man-hours | 0 | 0 | 0 | 0 | 0 | 0 |
| Accounting Price of Land Use |  |  |  |  |  |  |  |  |
| 18 | Rangel and | dollar/acra | $2.38{ }^{\text {f }}$ | 2.85 | B. 44 | $2.38{ }^{\text {f }}$ | 2.68 | 6.00 |
| 19 | Prairie Hay Land | dollar/acre | not | determined |  | $5.70{ }^{\text {f }}$ | 5.70 | 6.00 |
| 20 | Cropland | dollar/acre | 20.60 | 23.10 | 38.80 | 23.20 | 25.00 | 34.50 |
| Tmenty-Year Values ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| 21 | Rangeland | dollar/acre | 8.10 | 14.50 | 43 | 8.10 | 13.60 | 38 |
| 22 | Prairie Hay Land | dollar/acre |  | not deter | ined | 19.50 | 29 | 38 |
| 23 | Cropland | dollar/acre | 70 | 117 | 197 | 79 | 127 | 220 |

Footnotes see table D-1
appendix $D$, table $v$. the characteristics of static ranch models at critical points a -LAND MIX VARIANTS: CAPITAL CHARGE METHOD RELAXED (II)

| L | Uescription $\quad \because \quad$ Range and Cropland $\quad(5-1.5)$ |  |  |  |  | Range, Prairie Hay and Cropland $(5-16)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n <br> e | Description (hay | orice laval:) | $\begin{gathered} 0 \\ \text { normal } \end{gathered}$ | $\begin{gathered} G \\ \text { normal } \end{gathered}$ | normal | $\begin{gathered} 0 \\ \text { narmal. } \end{gathered}$ | $\begin{gathered} 6 \\ \text { normal } \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \text { normal } \end{gathered}$ |
| 1 | Operating Capital Level dittos per acre | $\begin{aligned} & \text { dollar } \\ & \text { dollar/acra } \end{aligned}$ | $\begin{array}{r} 15,400 \\ 6.00 \end{array}$ | $\begin{aligned} & 75,000 \\ & 29.30 \end{aligned}$ | $\begin{array}{r} 173,600 \\ 60 \end{array}$ | $\begin{array}{r} 7,100 \\ 2.00 \end{array}$ | $\begin{array}{r} 74,200 \\ 29 \end{array}$ | $\begin{array}{r} 171,600 \\ 67 \end{array}$ |
| 3 | Target Rate(e) of Interest ${ }^{\text {b }}$ | per cent | 37.8 | 26.3/23.0 | 16.0 | 39.5 | 27.4 | 16.0 |
|  |  |  |  |  |  |  |  |  |
| 4 | Target Rate of Interest | dollar | 6,600 | 9,100 | 16,700 | 6,600 | 8,600 | 16,900 |
| 5 | 10 \% Rate of Interest | dollar | 9,300 | 20,200 | 21,800 | 8,700 | 20,300 | 21,800 |
| 6 | Zero Rate of Interest | dollar | 10,300 | 27,000 | 30,200 | 9,400 | 27,000 | 30,200 |
| 7 | ditto, per acre | dollar/acra | 4.00 | 10.55 | 11.80 | 3.70 | 10.55 | 11.80 |
| 8 | Value of Beef Sales | dollar | 20,100 | 41,400 | 222,800 | 14,700 | 41,400 | 220,700 |
| 9 | ditto, per acrer | dollar/acre | 7.85 | 16.20 | B7 | 5.75 | 16.20 | 86 |
| it |  |  |  |  |  |  |  |  |
| 10 | Beef Production Volume | tons | 14.6 | 81.6 | 149.8 | 10.6 | 81.0 | 148.4 |
| 11 | ditto, per acre | pounds/acre | 11 | 64 | 117 | 8 | 63 | 116 |
| 12 | Number of Cows | head | 0 | 277 | 0 | 0 | 278 | $\therefore 0$ |
| 13 | Number of Calves Winterad | head | 113 | 143 | 143 | 82 | 143 | 143 |
| 14 | Number of Stocker Cattle | haad | 0 | 0 | 1,189 | 0 | 0 | 1,177 |
| 15 | Rangeland Utilizad | acres | 38 | 2,425 | 2.425 | 28 | 2,400 | 2,400 |
| 16 | Hay Utilized | tons | 38 | 188 | 48 | 2 B | 188 | 48 |
| 17 | Labor Hiradd | men-haurs | B | 4717 | 0 | 0 | 4597 | 0 |
|  | Accounting Price of Land Use |  |  |  |  |  |  |  |
| 18 | Rangeland | dollar/acre | $2.38{ }^{\text {f }}$ | 2.61 | 7.89 | $2.38{ }^{\text {f }}$ | 2.61 | 7.89 |
| 19 | Prairie Hay Land | dollar/acre |  | not determin |  | $5.70{ }^{\text {f }}$ | 12.88 | 11.10 |
| 20 | Cropland | dollar/acre: | 6.46 | 13.84 | 32.20 | $5.70{ }^{\text {f }}$ | 15,34 | 32.20 |
|  | Twenty-Yaar Velues ${ }^{\text {a }}$ |  |  |  |  |  |  |  |
| 21 | Rangeland | dollar/acra | B. 10 | 13.60 | 122 | 6.20 | 9.85 | 47 |
| 22 | Prairie Hay Lend | dollar/acre |  | not determi |  | 14.40 | 47 | 66 |
| 23 | Cropland | dollar/acre | 16.90 | 52 | 191 | 14.40 | 56 | 191 |

TABLE D-vi. THE CHARACTERIStics OF STATIC RANCH MODELS AT CRITICAL POINTS ${ }^{a}$
LAND MIX VARIANTS: FULL CAPITAL GHARGE METHOD, CHOICE OF ACTIVITIES RESTRICTED

| $\begin{aligned} & \mathrm{L} \\ & \mathrm{i} \\ & \mathrm{n} \\ & \underline{e} \end{aligned}$ | Description hay | Unit <br> hay price level: | Raised Cattle |  |  |  |  |  |  |  | Breeding Herd Range Only (S-21) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Range Only |  |  |  |  | Range and Prairie Hay Land (S-20) |  |  |  |  |
|  |  |  |  | (S-17) |  | (S-18) | (S-19) |  |  |  |  |  |
|  |  |  | $\begin{gathered} 0 \\ \text { normal } \end{gathered}$ | $\begin{gathered} G \\ \text { normal } \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \text { normal } \end{gathered}$ | $\begin{gathered} \text { C } \quad . \\ \text { up } \\ \hline \end{gathered}$ | $\begin{gathered} \text { c } \\ \text { up } 40 \% \end{gathered}$ | $\begin{gathered} 0 \\ \text { normal } \end{gathered}$ | $\begin{gathered} \mathrm{G} \\ \text { normal } \end{gathered}$ | $\begin{gathered} \bar{C} \\ \text { normal } \end{gathered}$ | $\begin{gathered} 0 \\ \text { normal } \end{gathered}$ | $\begin{gathered} \text { G;C } \\ \text { normal } \end{gathered}$ |
| 1. | Operating Capital Level | dollar | 32,500 | 61,200 | 84,100 | 83,700 | 82,300 | 32,500 | 58,900 | 82,900 | 32,500 | 59,500 |
| 2 | ditto, per acre | dollar/acre | 12.70 | 23.80 | 32.80 | 32.70 | 32.10 | 12.70 | 23.00 | 32.40 | 12.70 | 23.20 |
| 3 | Target Rate (s) of Interest ${ }^{\text {b }}$ | per cent | 28.9 | 17.8/6.3 | 4.0 | 3.6 | 1.3 | 28.9 | 26.5 | 3.9 | 28.9 | 26.1/0 |
|  | Income Contribution At... ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Target Rate of Interest | dollar | 6,100 | 12,000 | 20,800 | 20,000 | 20,900 | 6,200 | 6,900 | 20,900 | 6,100 | 7,100 |
| 5 | 10\% Rate of Interest | dollar | 12,200 | 16,800 | $(15,800)$ | (14,700) | $(13,800)$ | 12,300 | 16,600 | $(15,900)$ | 12,200 | 16,600 |
| 6 | Zero Rate of Interest ditto, per acre | dollar | 15,400 6.00 | 22,900 8.95 | 24,200 9.45 | 23,000 8.97 | 22,000 8.60 | 15,500 6.05 | 22,500 8.80 | 24, 200 | 15,400 6.00 | $22,600$ |
| 8 | Value of beef ${ }^{\text {ditto, }}$, per acre | dollar/acre | 16,400 | 29,800 ${ }^{8.95}$ | 35,100 | 34,600 | 33,900 | 16,400 | 29,500 | 34,700 | 16,400 | 29,800 |
| 9 | ditto, per acre | dollar/acre | 6.40 | 11.60 | 13.70 | 13.50 | 13.25 | 6.40 | 11.50 | 13.55 | 6.40 | 11.60 |
| 10 | Beef Production Volume | tons | 37.3 | 68.2 | 84.1 | 82.9 | 81.0 | 37.3 | 67.1 | 83.2 | 37.3 | 67.8 |
| 11 | ditto, per acre | pounds/acre | 29 | 53 | 66 | 65 | 63 | 29 | 52 | 65 | 29 | 53 |
| 12 | Number of Cows | head | 166 | 298 | 248 | 245 | 240 | 166 | 298 | 247 | 166 | 301 |
| 13 | Number of Calves Wintered | head | 0 | 0 | 179 | 177 | 173 | 0 | 0 | 177 | 0 | 0 |
| 14 | Number of Stocker cattle | head | 0 | 0 | 177 | 175 | 171 | 0 | 0 | 176 | 0 | 0 |
| 15 | Rangeland Utilized | acres | 1,400 | 2,550 | 2,550 | 2,550 | 2,550 | 1,404 | 2,525 | 2,525 | 1,404 | 2,550 |
| 16 | Hay Utilized | tons | 84 | 137 | 287 | 179 | 180 | 84 | 151 | 285 | 84 | 153 |
| 17 | Labor \#ired ${ }^{\text {d }}$ | man-hours | 0 | 133F | 57F/294S | 240 F | 545 F | 0 | 479 F | 50F/330S | 0 | 489 F |
| 18 | Accounting Price of Land Use Rangeland Prairie Hay Land | dollar/acre | $2.38{ }^{\text {f }}$ | 6.94 | 7.74 | 7.65 | 8.15 | 2.38 5.70 ${ }^{\text {f }}$ | ${ }^{2.62} .7{ }^{\text {f }}$ | 7.75 10.56 | $2.38{ }^{\text {f }}$ | 8.61 |
| 20 | Twenty-Year Values ${ }^{\text {e }}$ |  | 8.20 | 78 | 93 | 92 | 97 | 8.20 | 9.80 | 93 | 8.20 | 103 |
| 21 | Prairie Hay Land | dollar/acre | $\cdots$ | -- | -- | -- | -- | 19.70 | 21.30 | 126 | .- | -- |

[^24]appendix d, table vil. the characteristics of static manch madels at critical points ${ }^{3}$ sasic faur sectiofd ranch with an additianal rent dption; bAISED CATTLIE BNLY

| $\begin{aligned} & \mathrm{L} \\ & \mathbf{i} \\ & \mathbf{n} \\ & \mathbf{e} \end{aligned}$ | Description (hay prica laval |  | Basic Land mix |  |  |  | Ranqe ondy |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (5-22) |  | $\begin{gathered} (5-23) \\ c^{u p} 208 \end{gathered}$ | $\begin{gathered} (5-24) \\ {[ } \\ \hline \end{gathered}$ | $(5-25)$ |  |  | $\begin{gathered} (5-27) \\ \mathrm{c} \\ \hline \mathrm{p} 40 \% \\ \hline \end{gathered}$ |
|  |  |  |  | ${ }^{C}$ |  |  | + | ᄃ |  |  |
|  |  |  | 1) normal |  |  |  | normal | normal |  |  |
| 1 | Operating Cepital Level ditto, per acre | $\begin{aligned} & \text { dollar } \\ & \text { dollar/acrs } \end{aligned}$ | 86,300 | $\begin{gathered} 99,900 \\ 31.00 \end{gathered}$ | $\begin{gathered} 98,200 \\ 30.65 \end{gathered}$ | $\begin{aligned} & 97,000 \\ & 27.20 \end{aligned}$ | $\begin{aligned} & 76,200 \\ & 23.30 \end{aligned}$ | $\begin{gathered} 107,300 \\ 33.55 \end{gathered}$ | $\begin{aligned} & 105,200 \\ & 52.85 \end{aligned}$ | $\begin{array}{r} 104.700 \\ 32.70 \end{array}$ |
| 2 |  |  | 27.00 |  |  |  |  |  |  |  |
| 3 | Tergat Rate(s) of Interest ${ }^{\text {b }}$ | par eent | 21.5/7.9 | 5.1 | 2.5 | 11.9 | 23.1/17. ${ }^{\text {B }}$ | 4.1 | 3.6 | 1.3 |
|  | Incrme Contribution at.... ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |
| 4 | Targat Rate of Interast 10\% Rate of Interest | dollar | 12,300 | 26,400 | 28,300 | 20,000 | 8,900 | 23,700 | 24,000 | 24,400 |
| 5 |  | dollar | 22,200 | $(21,500)$ | $(21,000)$ | 21,700 | 18,8DO | $(17,400)$ | $(16,200)$ | $(15,200)$ |
| 6 | Zero Rate of Interestditto, per acre | dollar | 30,800 | 31,500 | 35,800 | 30;400 | 26,400 | 2B,200 | 26, 800 | 25,700 |
| 7 |  | dollar/aere | 9.60 | 9.85 | 9.60 | 9.50 | 8.25 | B.80 | 6.50 | 8.05 |
| 8 | Vailua of Ēeef Seles ditto, per acre | dollar | 43,300 | 45,600 | 44, 800 | 41,300 | 37.300 | 43,900 | 42,800 | 42,300 |
| 9 |  | dollar/acte | 13.55 | 14.25 | 14.00 | 12.90 | 11.55 | 13.75 | 13.40 | 13.20 |
| 10 | Beaf Production volume ditto, per acre | tons | 94.6 | 105.3 | 103.4 | 93.2 | 84.8 | 105.2 | 102.6 | 101.3 |
| 11 |  | pounds/acre | 59 | 66 | 65 | 43 | 53 | 66 | 64 | 63 |
| 12 | Number of Cows <br> Number of Calves Wintered <br> Number of Stocker Cattle | head | 354 | 319 | 313 | 342 | 376 | 310 | 303 | 300 |
| 13 |  | head | 114 | 229 | 225 | 114 | 0 | 224 | 218 | 216 |
| 14 |  | head | D | 114 | 118 | 0 | 0 | 221 | 216 | 214 |
| 15 | Rangeland Utilizad <br> Hay Utilized <br> Labor Hirad <br> Accounting Price of Land Usa | acras | 3,040 | 3,040 | 3,840 | 3,040 | 3,190 | 3,190 | 3,190 | 3,190 |
| 16 |  | tons | 218 | 292 | 223 | 113 | 191 | 358 | 268 | 225 |
| 17 |  | man-hours 72 | 6F/145S | 170F/8335 | 486F/3265p | 6295 | 763F | B89F | 839F | 831F |
| 18 | Rangel and | dollar/acre | 3.86 | 7.46 | 7.89 | 5.40 | 3.41 | 7.70 | 7.65 | 8.15 |
| 19 | Praifia Hay Land | dollar/acre | 12.10 | 10.68 | 14.60 | 20.60 | - | -- | - | - |
| 21 | Cropland <br> Cless A Cropland | dollar/acre | 14.38 | 32.40 | 36.10 | 23.40 | - | -- |  | - |
|  |  | dollar/aere | 46.20 | 40.80 | 46.00 | 56.70 | - | - | - | $\cdots$ |
|  | Tmanty-Yaar Velubs ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| 22 | Rangeland <br> Prairie Hay Land | dollar/aere | 38.00 | 89 | 94 | 41 | 18.40 | 92 | 91 | 97 |
| 23 |  | dollar/acre | 119 | 128 | 174 | 155 | -- | - | - | - |
| 24 | Prairie Hay Land Cropland | dollar/acre | 142 | 387 | 431 | 176 | - | - | - | - |
| 25 | Class A Crapland | dollar/bere | 456 | 487 | 559 | 427 | $=$ | - | $\underline{-}$ | - |

APPENDIX D, TABLE I - VII, Footnotes:
${ }^{\text {a }}$ Typical points are defined as
0 - Highest target rate of interest which justifies production. The operating capital (line 1) is the maximum amount that may be invested at this rate.
$G$ - The level of operating capital which just permits to make efficient use of all rangeland allotted.
$R$ - Level of operating capital which requires use of all rentable land allotted.
C - Capacity point. No further efficient increases in operating capital are possible, because the marginal return to capital would fall to zero or less (technically, an internal rate of interest of less than one per cent is taken as the cutoff point).
${ }^{6}$ Tuo interest rates for point $G$ : the first one is the highest which just permits to use all the rangeland; the second is the one where further increases in operating capital are justified. The lower value is used to discount the 20 -Year value of land at this point.

CIncludes income from renting out land which cannot be used efficiently in production, at given rates of interest.
$d_{F}$ - Labor hired in the Fall (October - December);
Sp- Labor hired in the Spring (January - April);
s-Labor hired during five summer months (May - September).
EThe present value of 20 annual marginal product values per acre (accounting price), discounted at a rate equivalent to the internal rate of interest at that level of operating capital used, but not less than 5.5 per cent.
$f_{\text {These }}$ are minimum accounting prices of land corresponding to a rental rate.

GThe second figure applies at a zero internal rate of interest.
hparentheses indicate a suboptimal organization for a 10 per cent or higher rate of interest.
iFor the 0 and $G$ points of this series see models $55 / 7$ (appendix $D$, table II).
$J_{\text {For the }} 0$ and $G$ points of this series see models $S=17 / 19$ (appendix D, table VI).
$K_{\text {For }}$ the 0 and $G$ points of this series see model $S-20$ (appendix $D$, table VI).
hapemdixe，jable I


| 1 | mascurct |  | Aetivitusa |  |  |  |  |  |  |  |  |  |  |  | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | C． 5 |  | ． 22.50 | 3.65 | ．6． 6.50 | 6.37 | －5．0 | －7．4 | 4.0 | 20.0 | $-7.0$ | －1．0 | $-1.0$ | －1．0 | －19．19 | －9．92 | －16．67 |
| 1 | tango | 2550 | －1．0 | 1.0 | －1．0 | 1.0 |  |  |  |  |  |  |  |  |  | 1.0 | 1.0 |
| 2 | eropland | 150 |  |  | －1．0 | 1.0 |  |  |  |  |  |  |  |  |  |  | 1.0 |
| 3 | cluse A | 50 |  |  | －1．0 | 1.0 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | pristrie hay | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.0 | ： |
| 5 | rance | rent 2400 | 1.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | clase A | apt． 150 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | ap．capltal | 0 | 2.50 |  | 6.50 |  | －100 | －100 | 100 |  | 1.0 | 1.0 | 1.0 | 1.0 | 10.0 | 9.92 | 1ú． $\mathrm{bij}^{\text {i }}$ |
| $B$ | ＂fres＂equity real entatab | 24035 |  |  |  |  | 50 |  |  |  |  |  |  |  |  |  |  |
| 9 | frag ecifity chattol | 0 |  |  |  |  |  | 25 |  |  |  |  |  |  |  |  |  |
| 10 | Laber XI－III | 800 |  |  |  |  |  |  |  |  | －1，0 |  |  |  |  |  | 0,37 |
| 11 | ＂IV－V | 320 |  |  |  |  |  |  |  |  |  | －1．0 |  |  |  |  |  |
| 12 | ＂Vi－VII | 320 |  |  |  |  |  |  |  |  |  |  | －1．0 |  |  |  | 1.03 |
| 13 | ＂VIJI－X | 480 |  |  |  |  |  |  |  |  |  |  |  | －1．0 |  |  | 0，88 |
| 14 | orazing | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | hay | 0 |  |  |  |  |  |  |  |  |  |  |  |  | －1．0 | －1．1 | －1．45 |
| 16 | beef output | 0 |  |  |  |  |  |  |  | 1.0 |  |  |  |  |  |  |  |


| 1 | Activitiond |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17 | 1.04 | 1，05 | 1.107 | 4，08 | \％．11 | 1.01 | 4．06 | 2.01 | $\begin{aligned} & 2.01 \\ & 2.02 \end{aligned}$ | $\begin{array}{r} 2.04 \\ 2.05 \\ \hline \end{array}$ | $\begin{aligned} & 2.04 \\ & 2.06 \\ & \hline \end{aligned}$ | 2.07 | 2.05 | 2.66 |
| 0 | －13．92 | －22．19 | －14．76 | －17．5日 | －28．97 | －24．92 | －17．65 | －40．49 | －128．93 | －132．02 | －129，01 | －131．39 | －134．02 | －142．06＝ | －144．60 |
| 1 | 1.0 |  | 0.214 |  | 1．376 | 0.184 |  |  |  |  |  | 0.752 | 0.875 |  | 0.752 |
| 2 | 1.0 |  | 0.214 |  | 1.375 | 0.184 |  |  |  |  |  | 0.752 | 0.875 |  | 0.752 |
| 3 |  |  | 0.214 |  |  | 0.184 |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 13，92 | 214.19 | 206，75 | 209．50 | 220．97 | 216．92 | 209．65 | 232.49 | 128.93 | ． 132.02 | 129.01 | 131.39 | 134．82 | 142.06 | 144．60 |
| 10 |  | 3.12 | 3，98 | 3.98 | 4.49 | 5.12 | 3.65 | 3.68 | 1.25 | 1.25 | 2.05 | 2.65 | 1.02 |  | 0．60 |
| 11 | 2.62 | 0.56 | 0.63 | 0.63 | 0.63 | 0.87 | 1.05 | 0.86 |  | 0.33 | 0.38 | 0.73 | 0.44 | 0.38 | 0.73 |
| 12 | 0.40 | 0.42 | 0.42 | 0.42 | 1．86 | 0.40 | 0.46 | 0.52 |  | 0.28 | 0.28 | 0.56 | 0.92 | 0.28 | 0.58 |
| 13 |  | 1.35 | 1.48 | 1.35 | 2.56 | 1.90 | 0.42 | 1.35 | 0.10 | 0.30 | 0.30 | 1.27 | 0.95 | 0.10 | 0.99 |
| 14 |  | 14．0日 | 12．88 | 11．68 | 9.04 | 13.00 | 13.44 | 14.08 | 3.0 | 6.0 | 3.0 | 1.2 | 0.5 | 3.0 | 1.2 |
| 15 | －1．25 | 0.03 |  | 0.88 | 0.29 |  | 0.03 | 0.03 | 0.05 | 0.05 | 1.0 | 1.0 | 0.33 |  |  |
| 16 |  | －3．775 | －3．775 | －3．840 | －3．734 | －3．840 | －3．852 | －4．285 | －5．140 | －6．349 | －6．656 | －6． 854 | －6．816 | －6．349 | －6．612 |


daecription of actluities
2 rant aut ran
3 rent Elaes A cropland
4 rant out class a eropland
5 barcou against rasi astata aquity es security
borrow egainst chattel as aecurity
save（4\％interest）
－12 hire labor
3 Aum transfer
14 buy hay
15．harveat prairla hey
7 harvest suden hay
all－calving cow－calf
04 aottane日ad caka aupplament
． 07 prairie hay aupplament
． 08 small grein pastura
11 silage aupplement
pring－calving cow－calf
1.01 cottonsered caka aupplement
1.01 cottonseed caka
．01 wintaring calves on grae
2.01 summer pasture roughed calves
2.04 trap wintering celves
2.05 summar pastura for trap wintered calvas

2．06 sudan grese pasturs for trop－wintared celves
2.07 calves wintered on amellegrain pasture
bradit ifne $L$ in calculated an follown
$L=\frac{1}{\pi}(m \cup-D)$
whera $V$ is the value of the esset to be mortgaged
D indebtednaeg，and．m the minimum equity ratio acceptable
to the credit inatitution．The axpresolon in parentheais ls the＂fres＂squity in the Ba column．
this figure le varied parametrieally from $\$ 12$ to $\$ 35$
appendix E, table II
FDUR AND FOUR RANCH, EXPECTED CONTRIBUTION TO PROFIT AND OVERHEAD, FEEDER/STOCKER PURCHASE PRICE $\left(F_{b}\right)+\$ 26 ;$
selling price expectations from table xx

|  |  | Ex Post Expected Selling Price |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \$16-22 | \$24 | \$26-28 | \$30 up |
|  |  |  | Organiz | tion: |  |
|  | Probability | $\bigcirc$ | D | E | K |
| Ex Ante | of Selling |  |  | 65 cows (1.05) | 869 calves (2.01) |
| Selling | Price |  | 565 cous (1.05) | 475 cows (1.01) | 354 calves (2.07) |
| Price | Decurring | 588 cows (1.05) | 216 calves (2.07) | 338 calves (2.07) | 869 yearlings (2.02) |

Expexted Contribution

| $\$ 16$ | $0.041 \%$ | $\$ 12,212$ | $\$ 1,581$ | $\$-5,255$ | $\$-36,234$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 0.042 | 16,553 | 8,790 | 3,507 | $-28,304$ |
| 20 | 0 | 20,993 | 15,998 | 12,268 | $-20,374$ |
| 22 | 0.125 | 24,443 | 23,206 | 21,029 | $-4,512$ |
| 24 | 0.333 | 29,874 | 30,414 | 29,791 | 11,348 |
| 26 | 0.207 | 34.314 | 37,622 | 38,552 | 27,208 |
| 28 | 0 | 38,754 | 44,830 | 47,313 | 43,069 |
| 30 | 0.250 | 43,195 | 52,038 | 56,074 | 58,930 |
| Weighted Mean: | $\$ 32,096$ | $\$ 34,260$ | $\$ 34,480$ | $\$ 20,905$ |  |

APPENDIX E, TABLE III
FOUR AND FOUR RANCH, EXPECTED CONTRIBUTION TO PROFIT AND OVERHEAD, FEEDER/STDCKER PURCHASE PRICE $\left(\mathrm{P}_{\mathrm{b}}\right)=\$ 22$;
selling price expectations from table xx

| Ex Ante |  | Ex Post Expected Selling Price |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \$16-20 | \$22 | \$24 | \$26 up |
|  |  |  | Organiza | ion: |  |
|  |  | C | D | F | J |
|  |  |  |  | 354 calves (2.07) |  |
|  | Probability |  |  | 96 calves (2.01) | 354 calves (2.07) |
|  | of Selling |  |  | 819 steers (2.05) | 351 calves (2.01) |
| Selling | Price |  | 536 cows (1.01) | 96 steers (2.02) | 687 steers (2.05) |
|  | Decurring | 588 cows (1.05) | 354 calves (2.07) | 87 cows (1.01) | 351 steers (2.02) |
| Expected Contribution |  |  |  |  |  |
| \$18 | 0.125 | \$16,553 | \$8,485 | \#-10,985 | \$-16,855 |
| 20 | 0.125 | 20,993 | 18,447 | 5,123 | 1,158 |
| 22 | 0.375 | 24,443 | 27,409 | 21,231 | 19,171 |
| 24 | 0.219 | 29,874 | 36,371 | 37,339 | 37,184 |
| 26 | 0.094 | 34,314 | 45,333 | 53,447 | 55,197 |
| 28 | 0.062 | 38,754 | 54,295 | 69,555 | 73,210 |
| Weighted Mean: |  | \$26,026 | \$29,238 | \$24,743 | \$23,098 |

## appendix e, table iv

FOUR AND FOUR RANCH, EXPECTED CONTRIBUTION TD PROFIT AND OVERHEAD, FEEDER/STOCKER PURCHASE PRICE $\left(P_{b}\right)=\$ 18$; selling price expectations from fable xx


```
 APPENDIX E, TABLE V
FOUR AND FOUR RANCH, EXPECTED CONTRIBUTION TO PROFIT AND OVERHEAD,
 FEEDER/STOCKER PURCHASE PRICE (P)
 selling price expectations from table XX
```

| Ex Ante Selling | Organizations: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Probability | c | D | E | K |
|  | of Selling |  |  |  | 657 calves (2.01) |
|  | Price |  | 574 cows (1.05) | 552 cows (1.05) | 354 calves (2.07) |
| Price | Occurring | 598 cows (1.05) | 207 calves (2.07) | 320 calves (2.07) | 657 yearlings (2.02) |
| \$26.75 | 0.333 | \$35,905 | \$36,250 | \$35,606 | \$ -5,000 |
| 32 | 0.667 | 47,936 | 54,827 | 57,450 | 75,000 |
| Weighted | Mean: | \$43,926 | \$48,618 | \$50,069 | \$ 52,000 |



# APPENDIX E, TABLE VI <br> PRICES RECEIVED FOR CALVES BY OKLAHOMA FARMERS, 1909-1963 (DOLLARS PER 100 POUNDS) 

| Year | Annual <br> Average <br> Pricea | Index of Prices Paid Production and Living ${ }^{b}$ | Annual Average Price Deflated by Cost Index | Centered 10 Year Moving Average ${ }^{\text {c }}$ | Annual Average Price Adjusted ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t | $P_{t}$ | $c_{t}$ | $P_{t c}=\frac{P_{t} \cdot C_{5 B}}{C_{t}}$ | $P_{\text {at }}$ | $P * \frac{P_{t c} \cdot P_{5 B}}{P_{a t}}$ |
| 1909 | 4.80 | 356 | 13.71 |  |  |
| 10 | 5.40 | 36 | 15.00 |  |  |
| 11 | 4.95 | 36 | 13.75 |  |  |
| 12 | 5.80 | 37 | 15.68 |  |  |
| 13 | 6.60 | 37 | 17.84 |  |  |
| 14 | 6.90 | 38 | 18.16 | 16.17 | 26.26 |
| 1915 | 7.30 | 38 | 19.21 | 15.96 | 28.14 |
| 16 | 7.50 | 42 | 17.86 | 15.60 | 26.77 |
| 17 | 8.80 | 55 | 16.00 | 15.19 | 24.63 |
| 18 | 9.30 | 67 | 14.53 | 14.55 | 23.34 |
| 19 | 9.80 | 73 | 13.42 | 13.76 | 22.80 |
| 1920 | 8.80 | 78 | 11.28 | 13.00 | 20.29 |
| 21 | 5.60 | 54 | 10.37 | 12.40 | 19.55 |
| 22 | 5.50 | 51 | 10.79 | 12.13 | 20.80 |
| 23 | 5.40 | 54 | 10.00 | 12.30 | 19.01 |
| 24 | 5.50 | 54 | 10.19 | 12.78 | 18.64 |
| 1925 | 6.70 | 56 | 11.97 | 13.24 | 21.14 |
| 26 | 7.20 | 55 | 13.09 | 13.53 | 22.62 |
| 27 | 8.30 | 54 | 15.37 | 13.66 | 26.31 |
| 28 | 10.40 | 56 | 18.57 | 13.65 | 31.81 |
| 29 | 10.40 | 55 | 18.91 | 13.55 | 32.63 |
| 1930 | 7.60 | 51 | 14.90 | 13.54 | 25.73 |
| 31 | 5.60 | 44 | 12.73 | 13.63 | 21.84 |
| 32 | 4.15 | 38 | 10.92 | 13.62 | 18.75 |
| 33 | 3.70 | 38 | 9.74 | 13.46 | 16.92 |
| 34 | 3.65 | 43 | 8.49 | 13.28 | 14.95 |
| 1935 | 6.00 | 45 | 13.33 | 13.38 | 23.29 |
| 36 | 6.10 | 45 | 13.55 | 13.91 | 22.77 |
| 37 | 7.10 | 48 | 14.79 | 14.80 | 23.36 |
| 38 | 7.20 | 45 | 16.00 | 15.86 | 23.59 |
| 39 | 7.80 | 44 | 17.73 | 16.89 | 24.54 |

Appendix E, Table VI continued

| $t$ | $p_{t}$ | $C_{t}$ | $\mathrm{P}_{\text {tc }}$ | Pat | p* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1940 | 8.20 | 45 | 18.22 | 17.67 | 24.11 |
| 41 | 9.60 | 48 | 20.00 | 18.29 | 25.57 |
| 42 | 11.80 | 55 | 21.45 | 19.05 | 26.33 |
| 43 | 12.40 | 61 | 20.33 | 19.95 | 23.83 |
| 44 | 11.90 | 64 | 18.59 | 20.73 | 20.97 |
| 1945 | 12.40 | 66 | 18.79 | 21.52 | 18.79 |
| 46 | 14.70 | 72 | 20.42 | 22.55 | 21.17 |
| 47 | 19.70 | 85 | 23.18 | 23.17 | 23.39 |
| 48 | 23.60 | 92 | 25.65 | 23.05 | 26.02 |
| 49 | 20.80 | 88 | 23.64 | 22.72 | 24.33 |
| 1950 | 25.30 | 90 | 28.11 | 22.54 | 29.16 |
| 51 | 30.60 | 100 | 30.60 | 22.27 | 32.13 |
| 52 | 23.40 | 100 | 23.40 | 21.92 | 24.95 |
| 53 | 15.20 | 96 | 15.84 | 21.55 | 17.18 |
| 54 | 15.80 | 96 | 16.46 | 21.68 | 17.75 |
| 1955 | 16.60 | 95 | 17.74 | 21.54 | 18.96 |
| 56 | 15.60 | 96 | 16.26 | 20.84 | 18.24 |
| 57 | 17.90 | 98 | 18.27 | 20.53 | 20.81 |
| 58 | 25.50 | 101 | ø. $\{25,25$ | 20.96 | 28.1日 |
| 59 | 26.90 | 101 | - $\left\{\begin{array}{l}26.63\end{array}\right.$ |  |  |
| 1960 | 22.10 | 101 | 21.88 |  |  |
| 61 | 23.50 | 101 | 23.27 |  |  |
| 62 | 25.30 | 103 | 24.56 |  |  |
| 63 | 24.10 | 104 | 23.17 |  |  |

asource: (60), p. 40.
$b_{1957}=1959=100$. Source: (61), February 1964, p. 38.
$c p_{a t}=\frac{1}{10} \sum_{t-4}^{t+4} P_{t}+\frac{1}{20}\left(p_{t-5}+P_{t+5}\right)$
${ }^{d}$ Prices normalized to 1957-59 level. $P_{58}=\$ 23.38$
e Extrapolated.

## APPENDIX F, TABLE I

INTERTEMPORAL RANCH MODEL; CONTRIBUTION TO PROFIT AND OVERHEAD GROSS REVENLE AND PRODUCTION EXPENSE FOR SELECTED BEEF PRICE LEVELS (VERSION A, 日)

| Beef Price Index | Production Processes |  |  |  | Sales Processes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ¢ ${ }^{\text {k1 }}$ | $\begin{aligned} & k 2 \\ & \text { Haifar } \end{aligned}$ Calves | k3 | k4 Cows | $\begin{gathered} \hline k 5 \\ \text { Steer } \\ \text { Calves } \end{gathered}$ | $\begin{gathered} \text { k6 } \\ \text { Heifer } \\ \text { Calves } \end{gathered}$ | $\overline{k 7}$ <br> Heifars | $\begin{gathered} \mathrm{k} \mathrm{\theta} \\ \text { Cows } \end{gathered}$ |
| Contribution to Profit and Overhead ( $c_{k j}$ ) |  |  |  |  |  |  |  |  |
| 70 | 97.27 | -6.60 | -26.84 | -4.34 | 83.30 | 70.20 | 108.02 | 96.50 |
| 75 | 106.58 | -6.33 | -26.43 | -3.47 | 89.42 | 75.38 | 116.00 | 103.75 |
| 80 | 115.92 | -6.05 | -26.03 | -2.60 | 95.55 | 80.55 | 123.98 | 111.00 |
| 100 | 153.30 | -4.95 | -24.41 | 0.80 | 120.05 | 101.25 | 155.88 | 140.00 |
| 120 | 190.68 | -3.85 | -22.80 | 4.36 | 144.55 | 121.95 | 187.78 | 169.00 |
| 125 | 200.02 | -3.58 | -22.39 | 5.23 | 150.68 | 127.12 | 195.75 | 176.25 |
| 130 | 209.37 | -3.30 | -21.99 | 6.10 | 156.80 | 132.30 | 203.72 | 183.50 |
| Gross Revenue (Additions to Capital, End of Year, $\mathrm{-a}_{\mathrm{k}+1,1, j}$ ) |  |  |  |  |  |  |  |  |
| 70 | 126.77 | 3.73 | 5.41 | 11.58 | (identical with |  |  |  |
| 75 | 136.12 | 4.00 | 5.82 | 12.45 |  |  |  |  |
| 80 | 145.46 | 4.28 | 6.22 | 13.32 | ckj values |  |  |  |
| 100 | 184.84 | 5.38 | 7.84 | 16.80 | above) |  |  |  |
| 120 | 220.22 | 6.48 | 9.45 | 20.28 |  |  |  |  |
| 125 | 229.56 | 6.75 | 9.86 | 21.15 |  |  |  |  |
| 130 | 238.91 | 7.03 | 10.26 | 22.02 |  |  |  |  |
| Production |  | Expensa (Capital |  | Requirement, Begin of Year, $a_{k 1, j}$ ) |  |  |  |  |
| all | 29.54 | 10.33 | 32.25 | 15.92 | 0 | 0 | 0 | 0 |

$$
c_{k j}=a_{k+1,1, j}-a_{k 1, j}
$$

APPENDIX F, TABLE II
CHANGES IN RANGE CAPACITY, MARKETING WEIGHT, INPUTS AND COSTS ASSOCIATED WITH GIVEN BEEF PRICE LEVELS.

intertemporal ranch mdeel: net contribut ion to profit and overhead, gross revenue ND TOTAL EXPENDITURES, VARIOUS DRICE LEUELS OF GEEF CATILE

| $\begin{aligned} & \text { Price } \\ & \text { Index } \end{aligned}$ | Production Processes |  |  |  | Sales Processes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{K1} \\ \text { steers } \end{gathered}$ | $\begin{gathered} \text { K2 } \\ \text { heifer } \\ \text { calves } \end{gathered}$ | $\begin{gathered} \text { k3 } \\ \text { heifers } \end{gathered}$ | $\begin{gathered} \mathrm{K} 4 \\ \text { cows } \end{gathered}$ | $\begin{gathered} \mathrm{K5} \\ \text { staer } \\ \text { calves } \end{gathered}$ | $\begin{gathered} \text { Ks } \\ \text { heifer } \\ \text { calves } \end{gathered}$ | $\begin{gathered} \text { K? } \\ \text { heifere } \end{gathered}$ | $\begin{gathered} \mathrm{KB} \\ \text { cows } \end{gathered}$ |
| - | Contribution to Profit and Overhead ( $\mathbf{c}_{\mathrm{jk}}$ ) |  |  |  |  |  |  |  |
| 70 | 74.22 | -17.68 | -42.02 | -21.00 | 79.15 | 65.85 | 101.33 | 90.41 |
| 75 | 86.92 | -15.42 | -38.91 | -17.14 | 84.83 | 71.49 | 110.02 | 9 e .31 |
| 80 | 99.77 | -13.22 | -35.90 | -13.36 | 91.63 | 77.24 | 118.87 | 105.35 |
| 100 | 153.30 | - 4.95 | -24.41 | 0.88 | 120.05 | 101.25 | 155.88 | 140.00 |
| 120 | 200.20 | - 3.19 | -22.39 | 5.30 | 150.43 | 126.92 | 195.44 | 175.95 |
| 125 | 211.60 | - 2.73 | -21.76 | 6.45 | 158.33 | 133.59 | 205.73 | 185.31 |
| 130 | 222.82 | - 2.27 | -21.20 | 7.61 | 166.36 | 140.37 | 216.18 | 154.81 |
|  | Gross Revenue (additions to capital, end of year ( $\varepsilon_{\text {c }}(\underline{1,1, j}$ ) |  |  |  |  |  |  |  |
| 70 | 118.29 | 3.50 | 5.07 | 10.85 |  |  |  |  |
| 75 | 12 E .48 | 3.80 | 5.45 | 11.80 |  |  |  |  |
| 80 | 138.85 | 4.10 | 5.83 | 12.76 | identical with |  |  |  |
| 100 | 182.84 | 5.38 | 7.84 | 16.90 | $c_{k j}$ values <br> above |  |  |  |
| 120 | 225.57 | 6.74 | 9.75 | 21.11 |  |  |  |  |
| 125 | 235.94 | 7.10 | 10.35 | 22.24 |  |  |  |  |
| 130 | 246.13 | 7.46 | 10.89 | 23.38 |  |  |  |  |
| Praduction Expense ( $\mathrm{a}_{\mathrm{k} 1, \mathrm{l}}$ ) |  |  |  |  |  |  |  |  |
| 70 | 44.07 | 21.18 | 47.10 | 31.85 | none |  |  |  |
| 75 | 41.56 | 19.22 | 44.36 | 28.93 |  |  |  |  |
| 80 | 39.08 | 17.33 | 41.73 | 26.12 |  |  |  |  |
| 100 | 29.54 | 10.33 | 32.25 | 15.92 |  |  |  |  |
| 120 | 25.37 | 9.93 | 32.14 | 15.81 |  |  |  |  |
| 125 | 24.34 | ¢. 83 | 32.12 | 15.79 |  |  |  |  |
| 130 | 23.31 | 9.73 | 32.09 | 15.76 |  |  |  |  |

APPEnDIX F, TABLE IV
INTERTEMPORAL RANCH MODEL, ANNUAL CONTRIEUTIONS AND PROCESS LEVELS, ALL VARIANTS.

| Run No. <br> (1) | Price Levels |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 120 | 125 | 130 | 100 | 70 | 75 | 80 |
|  | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|  | Contribution to Profit and Overhead, from Ranch Enterprises [\$] |  |  |  |  |  |  |  |
| 1 A | 7877 | 12402 | 15637 | 34616 | -2264 |  |  |  |
| B | 7877 | 12402 | 15637 | 22186 | 8709 |  |  |  |
| C | 7366 | 10613 | 16436 | 40501 | 0 |  |  |  |
| D | 7365 | 10613 | 16436 | 31401 | 9525 |  |  |  |
| 2 A |  | 8294 | 15915 | 28740 | 25819 | -14946 |  |  |
| B |  | 8294 | 15915 | 24543 | 7436 | 5323 |  |  |
| ${ }^{\text {c }}$ |  | 7784 | 13234 | 48065 | 0 | 0 |  |  |
| D |  | 7129 | 7952 | 33800 | 2525 | 3075 |  |  |
| 3 A |  |  | 8758 | 21559 | 15591 | -450 | 11153 |  |
| B |  |  | 8745 | 21559 | 13200 | 4709 | 5948 |  |
| C |  |  | 7595 | 37368 | 7304 | 0 | 0 |  |
| D |  |  | 7589 | 37295 | 5566 | 1729 | 2961 |  |
| 4 A |  |  |  | 14032 | 16519 | -927 | 10322 | 3592 |
| B |  |  |  | 14032 | 17056 | -592 | 9594 | 6796 |
| C |  |  |  | 22603 | 11813 | -2174 | 6481 | 2186 |
| D |  |  |  | 13299 | 16451 | -1842 | 5742 | 3792 |
| 5 A | 15489 |  |  |  | 14202 | 1697 | 7582 | 6941 |
| 日 | 9845 |  |  |  | 14492 | 1638 | 7252 | 9701 |
| C | 3629 |  |  |  | 15436 | 1819 | 5900 | 5752 |
| D | 8898 |  |  |  | 14567 | 2067 | 6092 | 6026 |
| 6 A | 8192 | 19872 |  |  |  | 6639 | 7546 | 6565 |
| 8 | 11360 | 12527 |  |  |  | 6638 | 7291 | 6784 |
| c | 6901 | -2244 |  |  |  | 5068 | 6001 | 5816 |
| 7 A | 7376 | 14748 | 21534 |  |  |  | 6755 | 7917 |
| B | 9839 | 10941 | 20392 |  |  |  | 6748 | 2845 |
| C | 6883 | 6943 | -10587 |  |  |  | 5410 | 6001 |
| D | 7136 | 7420 | 9615 |  |  |  | 1927 | 5483 |
| 8 A | 8134 | 14483 | 14758 | 22406 |  |  |  | 2076 |
| 8 | 8284 | 15530 | 19080 | 13638 |  |  |  | 035 |
| c | 7010 | 7469 | 7235 | 15617 |  |  |  | 592 |



## Appendix F，Table IV continued

| （1） | $\begin{aligned} & 100 \\ & (2) \end{aligned}$ | $\begin{aligned} & 120 \\ & (3) \end{aligned}$ | $\begin{aligned} & 125 \\ & (4) \end{aligned}$ | $\begin{aligned} & 130 \\ & (5) \end{aligned}$ | $\begin{aligned} & 100 \\ & (6) \end{aligned}$ | $\begin{array}{r} 70 \\ (7) \end{array}$ | $\begin{aligned} & 75 \\ & (8) \end{aligned}$ | $\begin{array}{r} 80 \\ (9) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 A |  | 20.0 | 19.9 | 52.6 | 45.2 | 0 |  |  |
| B |  | 20.0 | 19.9 | 52.6 | 45.2 | 19.1 |  |  |
| C |  | 20.0 | 36.7 | 58.6 | 0 | 0 |  |  |
| D |  | 20.0 | 50.2 | 51.5 | 28.9 | 20.0 |  |  |
| 3 A |  |  | 20.0 | 20.0 | 52.6 | 0 | 30.9 |  |
| B |  |  | 20.0 | 20.0 | 52.6 | 50.5 | 21.5 |  |
| C |  |  | 20.0 | 58.7 | 0 | 0 | 0 |  |
| D |  |  | 20.0 | 58.7 | 0 | 45.6 | 18.9 |  |
| 4 A |  |  |  | 20.0 | 52.8 | 0 | 50.8 | 46.0 |
| 日 |  |  |  | 20.0 | 52.8 | 22.1 | 45.2 | 21.1 |
| C |  |  |  | 20.0 | 0 | 0 | 45.5 | 39.1 |
| D |  |  |  | 20.0 | 53.3 | 4.0 | 44.6 | 20.0 |
| 5 A | 49.2 |  |  |  | 20.0 | 0 | 55.1 | 34.5 |
| 日 | 20.0 |  |  |  | 20.0 | 8.9 | 52.6 | 47.9 |
| C | 40.5 |  |  |  | 20.0 | 0 | 49.3 | 45.2 |
| D | 17.5 |  |  |  | 20.0 | 0 | 36.7 | 47.3 |
| 6 A | 58.4 | 51.9 |  |  |  | 20.0 | 46.1 | 22.5 |
| B | 50.0 | 19.1 |  |  |  | 20.0 | 46.1 | 52.6 |
| C | 4.2 | 11.8 |  |  |  | 12.5 | 15.2 | 7.3 |
| 7 A | 13.8 | 21.5 | 52.4 |  |  |  | 20.0 | 51.8 |
| B | 21.4 | 35.4 | 19.1 |  |  |  | 20.0 | 51.8 |
| C | 0 | 0 | 0 |  |  |  | 0 | 0 |
| D | 33.9 | 32.0 | 8.7 |  |  |  | 20.0 | 36.0 |
| $B$ A | 30.8 | 14.0 | 21.6 | 51.3 |  |  |  | 20.0 |
| 日 | 36.0 | 41.8 | 47.7 | 20.0 |  |  |  | 20.0 |
| C | 8.3 | 30.4 | 34.3 | 35.3 |  |  |  | 0 |
| 1 k3 Heifers with Calf［ head］ |  |  |  |  |  |  |  |  |
| 1 A | 18.2 | 14.9 | 3.5 | 0 | 0 |  |  |  |
| B | 18.2 | 14.9 | 3.5 | 0 | 48.6 |  |  |  |
| C | 18.2 | 19.0 | 18.7 | 0 | 0 |  |  |  |
| D | 18.2 | 19.0 | 18.7 | 0 | 34.7 |  |  |  |
| 2 A |  | 18.2 | 0 | 0 | 0 | 0 |  |  |
| B |  | 18.2 | 0 | 0 | 20.6 | 43.0 |  |  |
| C |  | 19.0 | 18.3 | 0 | 0 | 0 |  |  |
| D |  | 19.0 | 19.0 | 12.6 | 0 | 27.4 |  |  |
| 3 A |  |  | 18.2 | 0 | 0 | 0 | 0 |  |
| B |  |  | 18.2 | 0 | 16.8 | 0.3 | 47.9 |  |
| C |  |  | 19.0 | 0 | 0 | 0 | 0 |  |
| D |  |  | 19.0 | 0.3 | 0 | 0 | 43.4 |  |

Appendix F, Table IV continued
(4)
\(\left.\begin{array}{ccccccccc}\hline \& 100 \& 120 \& 125 \& 130 \& 100 \& 70 \& 75 \& 80 <br>
(1) \& (2) \& (3) \& (4) \& (5) \& (6) \& (7) \& (8) \& (9) <br>

\hline \& \& \& \& \& 18.2 \& 0 \& 17.9 \& 0\end{array}\right]\)| 0 |
| :--- |
| A |
| B |


| （1） | $\begin{aligned} & 100 \\ & (2) \end{aligned}$ | $\begin{aligned} & 120 \\ & (3) \end{aligned}$ | $\begin{aligned} & 125 \\ & (4) \end{aligned}$ | $\begin{aligned} & 130 \\ & (5) \end{aligned}$ | $\begin{aligned} & 100 \\ & (6) \end{aligned}$ | $\begin{array}{r} 70 \\ (7) \end{array}$ | $\begin{array}{r} 75 \\ (8) \end{array}$ | $\begin{array}{r} 80 \\ (9) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 A | 117.9 | 101.3 |  |  |  | 120.0 | 119.5 | 102.8 |
| 日 | 102.2 | 102.8 |  |  |  | 120.0 | 119．5 | 102.8 |
| C | 76.3 | 65.5 |  |  |  | 120.0 | 103.0 | 88．8 |
| 7 A | 102.8 | 117.8 | 103.0 |  |  |  | 120.0 | 119.5 |
| 日 | 102.8 | 103.3 | 107.3 |  |  |  | 120.0 | 119.5 |
| C | 55.4 | 3 B .5 | 22.6 |  |  |  | 95.0 | 77.2 |
| D | 72.8 | 62.6 | 63.2 |  |  |  | 81.8 | 70.3 |
| 8 A | 119.5 | 110.9 | 107.0 | 104.0 |  |  |  | 120.0 |
| 日 | 119.6 | 108.4 | 93.2 | 97.2 |  |  |  | 119.2 |
| C | 90.5 | 77.9 | 67.0 | 74.4 |  |  |  | 105.3 |
| k5 Sell Steer Calves |  |  |  |  |  |  |  |  |
| 1 A | 17.8 | 0 | 0 | 45.4 | 39.0 |  |  |  |
| B | 17.8 | 0 | 0 | 45.4 | 53.8 |  |  |  |
| C | 50.5 | 0 | 0 | 52.8 | 0 |  |  |  |
| D | 50.5 | 0 | 0 | 52.8 | 55.9 |  |  |  |
| 2 A |  | 0 | 0 | 45.4 | 38.9 | 0 |  |  |
| B |  | 0 | 0 | 45.2 | 45.2 | 54.7 |  |  |
| C |  | 31.3 | 0 | 52.8 | 0 | 0 |  |  |
| D |  | 41.7 | 0 | 50.6 | 45.2 | 47.2 |  |  |
| 3 A |  |  | 0 | 52.6 | 45.2 | 0 | 33.5 |  |
| B |  |  | 0 | 52.6 | 50.3 | 45.7 | 53.9 |  |
| C |  |  | 21.3 | 52.9 | 45.5 | 0 | 0 |  |
| D |  |  | 21.7 | 53.0 | 45.6 | 39.3 | 46.9 |  |
| 4 A |  |  |  | 58.3 | 52.6 | 0 | 0 | 39.5 |
| 日 |  |  |  | 58.3 | 52.6 | 0 | 45.3 | 54.7 |
| C |  |  |  | 58.6 | 52.9 | 0 | 0 | 33.7 |
| D |  |  |  | 53.1 | 48.3 | 8.0 | 40.8 | 48.4 |
| 5 A | 45.4 |  |  |  | 58.3 | 29.2 | 14.2 | 0 |
| 日 | 54.8 |  |  |  | 58.2 | 26.6 | 16.5 | 42.7 |
| c | 35.5 |  |  |  | 58.3 | 52.6 | 45.2 | 28.4 |
| D | 42.6 |  |  |  | 58.2 | 46.6 | 47.3 | 40.7 |
| 6 A | 0 | 44.6 |  |  |  | 58.3 | 52.6 | 53.2 |
| 日 | 47.6 | 55.9 |  |  |  | 58.3 | 52.6 | 42.5 |
| ［ | 33.6 | 28.9 |  |  |  | 52.8 | 45.4 | 39.1 |
| 7 A | 0 | 0 | 45.3 |  |  |  | 56.7 | 33.2 |
| 日 | 26.4 | 0 | 51.5 |  |  |  | 55.7 | 33.4 |
| ［ | 24.4 | 16.9 | 9.9 |  |  |  | 41.8 | 33.9 |
| D | 32.0 | 30.7 | 37.1 |  |  |  | 36.0 | 35.1 |






| Appendix F，Table IV continued |  |  |  |  |  |  |  | $\begin{gathered} (10) \\ \hline(90) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （1） | $\begin{aligned} & 100 \\ & (2) \end{aligned}$ | $\begin{aligned} & 120 \\ & (3) \end{aligned}$ | $\begin{aligned} & 125 \\ & (4) \end{aligned}$ | $\begin{aligned} & 130 \\ & (5) \end{aligned}$ | $\begin{aligned} & 100 \\ & (6) \end{aligned}$ | $\begin{aligned} & 70 \\ & (7) \\ & \hline \end{aligned}$ | $\begin{array}{r} 75 \\ (\mathrm{~B}) \end{array}$ |  |
| 7 A | 0 | 0 | 0 |  |  |  | 0 | 0 |
| 日 | 0 | 0 | 0 |  |  |  | 0 | 0 |
| c | 787 | 1053 | 1218 |  |  |  | 299 | 480 |
| D | 480 | 612 | 582 |  |  |  | 315 | 252 |
| B A | 0 | 0 | 0 | 0 |  |  |  | 0 |
| 日 | 0 | 0 | 0 | 0 |  |  |  | 0 |
| C | 454 | 580 | 52 日 | 565 |  |  |  | 245 |

> APPENDIX F, TABLE V

INTERTEMPORAL RANCH MODEL; AMOUNTS BY WHICH OPERATING CAPITAL COULD BE INCREASED BEFORE A CHANGE IN RATE OF RETURN OCCURED.

| Run No. | Year of Run |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |
| normal | - | 3390 | - | - | - |
| 1 A, ${ }^{\text {a }}$ | - | 460 | - | - | - |
| C, D | - | 650 | - | - | - |
| $2 \mathrm{~A}, \mathrm{~B}$ | - | - | - | - | - |
| C | - | 2670 | - | - | - |
| D | - | 510 | 3050 | - | - |
| $3 \mathrm{~A}, \mathrm{~B}$ | - | - | - | - | - |
| C | - | 680 | - | - | - |
| D | - | 2130 | - | - | - |
| $4 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ | - | - | - | - | - |
| D | - | - | - | - | B0 |
| 5 A | - | - | 1860 | 1370 | 1810 |
| B | - | - | 1830 | 2400 | - |
| C | - | - | - | 780 | 1460 |
| D | - | - | 550 | 580 | 840 |
| 6 A | - | 40 | 60 | 50 | 100 |
| B | - | 720 | 1220 | 560 | - |
| C | - | 590 | 650 | 370 | 1320 |
| 7 A | - | 120 | 1390 | 1330 | - |
| B | - | 120 | 1440 | 2700 | - |
| 8 A | - | 780 | 570 | - | - |
| 日 | - | 650 | 330 | - | - |
| c | 310 | 720 | 2290 | 830 | 5670 |

APPENDIX F, TABLE VI
INTERTEMPORAL RANCH MODEL; SOME ADDITIONAL CHARACTERISTICS DF VARIABLE PRICE RUNS: BEEF PRICE CHANGES ONLY

| Run No. | Price Level |  | Dperating Capital Accumulated |  | Consumption and Fixed Cost |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beginning | Average | A |  | A | 旦 |
| 1 | 100 | 115 | 23,990 | 25,380 | 18,320 | 15,480 |
| 2 | 120 | 111 | 14,410 | 18,010 | 24,160 | 18,240 |
| 3 | 125 | 100 | 10,550 | 12,110 | 19,344 | 16,820 |
| 4 | 130 | 89 | 9,818 | 7,900 | 13,460 | 13,740 |
| 5 | 100 | 85 | 12,090 | 8,406 | 8,570 | 9,260 |
| 6 | 70 | 89 | 15,620 | 11,882 | 7,000 | 7,850 |
| 7 | 75 | 100 | 23,713 | 21,694 | 8,370 | 7,870 |
| 8 | 80 | 111 | 29,651 | 24,842 | 10,960 | 12,240 |
| Average | e 100 | 100 | 17,480 | 16,280 | 13,770 | 12,790 |
| "Normal | 1" 100 | 100 | 20,516 | 16,930 | 7,770 | B,000 |

Wolfgang Martin Schultz

Candidate for the Degree of<br>Doctor of Philosophy

Thesis: THE ORCANIZATION OF COMMERCIAL CATTLE RANCHES IN SOUTH CENTRAL OKLAHOMA FDR PROFIT AND STABILITY: STATIC AND DYNAMIC ANALYSIS

Major Field: Agricultural Economics
Biographical:
Personal Data: Born in Negast, near Stralsund, Pommarania, Germany, April 28, 1929, the son of Otto W.M. and Ingrid C. Schultz.

Education: Attended primary school in Arnswalde and Plauen, Germany, sacondary school 1939-47 in Plauen, receiving baccalaureate (Abitur) July 1947; received Diploma in Agriculture from Justus Liebig Universitat in Giessen, Cermany, June 1954; received the Doctor of Agriculture Degree in Agricultural Economics from the Justus Liebig Universitat in Giessen, Germany, in 1956; completed requirements for Doctor of Philosophy degree in December, 1964.

Professional exparience: Engineering trainea, Braitungen, Thuringla, Germany 1947-48; Farm Management trainee, RauischmHolzhausen and Halsdorf, Hessen, Germany 1948-50; Research assistant, 195456, Instructor ("Assistent") 1956-59, Department of Farm Manage ment, Justus Liebig Universityt, Giessen, Germany; Graduate Assistant, 1959-61, Department of Agricultural Economica, Oklahoma State University; Assistant Professor, Eoonomics Dapartment, South Dekota State Univarsity, 1961-64; Research Associate, Department of Agricultural Economics, University of Alborta, 1964 =


[^0]:    ${ }^{1}$ for statistical purposes the U.S. Bureau of the Census defines a farm as a "Livestock Ranch" if "sales of livestock, wool, and mohair re. presented 50 per cent or more of the total value of farm products sold and if pastureland or grazing land amounted to 100 or more acres and was 10 or more times the acreage of cropland harvested" ( $2, \mathrm{p} . \mathrm{xxiv}$ ). However, in popular parlance a ranch is often thought of as simply a large or "important" farm.

[^1]:    2many people act as if they hold the -- fallacious -- belief that if there is a choice of actions, one to uphold the status quo, the other to make some kind of change, staying put is ipso facto the better alternative. The only reason not to make a change, if analysis shows change to be favorable, is unfamiliarity with the new. Good management requires that the "instinctive" fear of change be taken account of explicitly in two waye: The cost of chengeover must be calculated and included in a costbenefit analysis ( $4, \mathrm{p} .48$ ), and the manager must habitually "ponder.... the unthinkable" (Herman Kahn, 5) to be familiar with an alternative course of action if it should become necessary to follow it.

[^2]:    ${ }^{4}$ The literature on linear and other mathematical programming is legion. George Dantzig is generally credited with the development of linear programming as a calculatory mathod. The first generally available accounts of linear programming were published in 1949 (14).

    Subsequent developments can be followed in a series of symposia volumes, the last of which (15) contains further references.
    "Linear Programming and Economic Analysis" by R. Dorfman, p. Samuelson and R.M. Solow, has long been considered the standard work on the application of linaar programming in aconomics (16).
    E.D. Heady and W. Candlar have written a widely usad explanation of linear programming with special reference to farm managament and egricultural economios (17).

[^3]:    E"Hmeortainty" not in the knight (30) sense, but as used in its oxiginal meaning (39). Mahr and Hedges (40) consolousily avoid the wintinomy of Kinght's "risk and uncertainty." To them ( $\rho$. 15) "risk is defined as uncertainty regarding a loss." Instead they make a distinction betwean "static risk." always a cost to both individuals and sociaty (firel), whers statistical analysis and thus pooling is more applicable, and "dynamio risk." which involves qusstions of both size of risk and profit and lose (managemant, political, innovative rieks!), which may be loesos to the individual whils gein to bociaty and viee varsa. Furthermore "the growth and development of the eoonomy depend upon the existence of an adequate number ... willing and abie to undertake the dynamio risks." Fellner (41) apparently has a similar distinotion in mind when he defines "business risk" as "a risk not capable of being eliminated through pooling ( $p$. 48)."

[^4]:    ${ }^{1}$ Tinbergen's "planning horizon (43)."

[^5]:    a May be sold as feeder or slaughter cattle depending on market price situation.
    $b$ Trap feeding in one year out of threa.

[^6]:    ${ }^{a}$ Excludes value of purchased animal.

[^7]:    ${ }^{4}$ This arrangement allows the operator more flexibility than if the total of 1800 hours had been prorated strictly to each month. It is assumed that he works more in high-load periods, but makes up for it at other times.
    ${ }^{5}$ A supplementary program had to be written to step into the next range of interest rates that would require a change in organization, and recompute the new situation. This modification of the eustomary 'variable price programming' routine provided a continuous series of optimum solutions, which in turn defined the demand ourves for operating capital as presented in the following chapter.

[^8]:    1as defined on page 12.
    ${ }^{2}$ Even though the computations themselves were based on a variation of the cost of borrowing capital.

[^9]:    ${ }^{6}$ present value of annual accounting price accumulated over 20 years; discounted at internal rate of interest according to the formula

[^10]:    Bata for the $R$ and new Cupoints are given im teble VII In appendix D. The Dapoint and Gapoint are, of course, Identical to the varsion without the rent option; owned land, costing less than rented land in terms of alternative income foregone, would be used up before rentimg in other land.

[^11]:    1 This study of the effect of changing prices is dynamic in the sense that it takes account explicitly of the change of - albeit extraneously conceived - variables over time, if only over a period of 6-12 months, and stochastic to the extent that it operates with diffused price expectations.

[^12]:    2 The process specifications of this series differ slightly from those used in the Four Section Ranch of chapters II-IV. For full specifications see appendix E. In the main, in this model fall calving has a slight edge over spring calving, and wintering appears more favorable.

[^13]:    ${ }^{4}$ This model did not include a cow-calf activity combining alfalfa supplement feeding with spring oalving, or one incorporating spring and fall calving, which turned out to be the most profitable choices in the Four Saction Ranch. If they had been allowed, they would probably monopolize the pictura.

[^14]:    ${ }^{\text {a }}$ No change in income with change in beef price - provided the prices are only temporarily depressed, and the rental rate is not affected.
    ${ }^{b}$ Letters refer to subregions in fig. 19.

[^15]:    $\mathrm{a}_{\text {and }}$ ex post contribution for correctly anticipated price.

[^16]:    ${ }^{1}$ This makes the Loftsgard-Heady modal formally analogous to the Ramsey model (69), (16, p. 267 ff.).

[^17]:    ${ }^{2}$ The latter is an asymmetric effect, active only in low-income years.

[^18]:    aprocess (i) omitted in first year block; bcost of initial livestock investment $L_{0}$ added to first year coefficients $C$;

[^19]:    ${ }^{4}$ For convenience it is assumed that all production expenditures occur at the beginning of the production period - October 1, and all income is received one year later. Sales and shipping expense is sub= tracted directly from sales receipts.

[^20]:    ${ }^{\text {a }}$ Objective to be maximized.
    $b_{\text {nane permitted. }}$
    ${ }^{\text {In }}$ addition to minimum culls 3.5 per 100 heifers, 7 per 100 first year cows, 12 per 100 mature cows.

    Details see appendix $F$, table IV.
    A: Value of breeding herd to be abailable fter 5 years.
    B: Same number breding aint
    retained after year 5 which was used
    in year ${ }^{1}$.

[^21]:    ${ }^{6}$ The first year shadow price is generally quite high, due to the technicality that slightly more heifers were allowed in the first year than could be accomodated with the given acreage (see appendix F, table IV, section k3).

[^22]:    ${ }^{\text {a }}$ Includes 12 cull cows weighing 9.87 cwt. each.

[^23]:    ${ }^{\text {a }}$ Capital requirements for static models no. $1,2,3,5-10,17-24$. Other models drop rows 10 and 11. Rows 9 and 10 of Stocker Cattle Activities are modified as shown in rows 25,26 , to account for lower borrowing costs.
    babor for haying activities does not include harvest labor. This is provided by the custum operator.
    ${ }^{\text {C }}$ The parametric capital cost coefficient is varied betwesn -0.40 and zero.

[^24]:    Footnotes see table D-I

