A COMPARATIVE STUDY OF THE TEACHING OF

FIRST YEAR ALGEBRA

By
ALLEN MAYNARD ROBSON
Bachelor of Science Oklahoma Baptist University
Shawnee, Oklahoma 1937
Master of Science
Oklahoma State University
St.illwater, Oklahoma 1949

Submitted to the Faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF EDUCATION
August, 1965

A COMPARATIVE STUDY OF THE TEACHING OF \qquad FIRST YEAR ALGEBRA

PREFACE

This study was to determine if there were significant gains in student achievement in Algebra I when different teaching methods were used. The methods involved the conventional method of the teaching of algebra and the programed method of instruction. The study was limited to one jurior high school and evaluated student achievement in AIgebra I for one semester.

A survey of literature indicated that several studies had been made concerning achievement when a program had been used. The results of the survey indicated that students achieved success in the learning of subject matter when programmed materials were used. The survey falled to reveal studies that contrasted achievement gains when dif. ferent approaches to learning were followed. The author was interested In determining the influence on achievement when stadents were exposed to programmed instruction vergus conventional methods of teaching,

Indebtedness is acknowledged to Dr. J. Paschal Twinan, who served as chaiman of my advisory committee, for encourgging my interest in the problem and for his guidance throughout the study; to Dr. Stanley Trail and to Dr. James Tarver for their suggestions and guidence in the statistical treatment of the data; to Dr. Guy Dornell, Mres. Helen Jores and Dr. Helmer Sorenson for their kind and helpful advice. I am especially indebted to Dr. J. Win Payne and Dr. Sorensor who offered encouragement to complete the doctoral program.

The efforts and cooperation of Mr. Harold Lewis, head of the mathematics department at West Junior High School, were greatly appreciated. The cooperation of this dedicated teacher made the study possible.

To my wife and son, I say thanks for donating that part of your time that made possible the completion of my course of study.

To the many persons who helped make the completion of this study possible the writer extends appreciation.

TABLE OF CONTENTS
Chapter Page
I. THE PROBLEM 1
Introduction 1
Statement of the Problem 3
Purpose of the Study 4
Limitations of the Study 4
Scope of the Study 5
Definition of Terms 5
Hypotheses to be Tested 8
Summary 9
II. REVIEN OF THE LITERATURE 10
Comparative Studies 21.
Summary 32
IIT. METHODS AND PROCEDURES 34
Desi.gn of the Study 34
Assumptions 36
Personnel for the Study 36
Subject Matter Organization 37
Measurang Instruments 38
Statistical Methods 42
IV. RESULTS OF TGE ETUDY 44
Reports From the Diary 44
Tests of Stated Hypotheses 48
Suwmary 78
V. CONCUSTONS AND RECOMMEMDATIONS 79
Review of the Study 79
Conclusions of the study 79
Sumnary 81
Recommendations 82
BIBLIOGRAPHY 83
APPENDIX 87

LIST OF TABLES

Table Page
I. Classification of Stadents Included in This Study 37
II. Sums and Means of the Criterion and Control. Variables for Algebra I Students 49
III. Summary of Experimental Data for Stadents in Algebra I 49
IV. Sums of Squares and Crossproducts in Deviation Form for Both Subgroups 50
V. Test of Significance of Influence of Teaching Method on Achiefement in Algebra I 51.
VI. Significance of Differences Anong Adjusted Y Means
in Algebraic Achievement 52
VII. Significance of Achievement Anong Groups in Algebra I. 53
VIII. Attitude Change Toward Mathematics at the End of the First Semester 54
TX, Surns and Mans of the Griterions and Control Variables for Algebra I Students' Vocabulary 55
X. Sumary of Experimental Data for Students in Algebra I Vocabulary 55
xi. Sums of Squares and Crossproducts in Deriation Form for Both Subgroups Vocabulary 56
XII. Test of Gignificance of Influence of Teaching Method on Achievement in Algebra I Vocabulary $5 ?$
XITL. Signiticance of Difference Among Adjusted Y Means in Vocabulary 58
XTV. Significance of Achievement Among Groups in Algebraic Vocabulary 59
XV. Sums and Means of the Criterion and ConcrolVariables for Algebra I Students in FundamentalProcesses60
XVI. Summary of Experimental Data for Students in Algebra I Fundamental Processes 61
XVII. Sums of Squares and Crossproducts in Deviation Form for Both Subgroups' Fundamental Processes 62
XVIII. Test of Significance of Influence of Teaching Mathod on Achievement in Algebra I Fundamental Processes 63
XIX. Significance of Differences Among Adjusted Y Means in Fundamental Processes 64
XX. Significance of Achievement Among Groups in Command of the Fundamental Processes of Algebra I 65
XXI. Sums and Means of the Criterion and Control. Variam ables for Algebra I Students' Equation Solving 66
XXII. Sumnary of Experimental Data for Students in Algebra I Equation Solving $6 ?$
XXIII. Sums of Squares and Crossproducts in Deviation Form for Both Subgroups Equation Solving 68
XXIV. Test of Significance of Influence of Teaching Method on Achievement in Algebra I Equation Solving 69
XXV. Significance of Differences Among Adjusted Y Means in Equation Solving 70
XXVI. Significance of Achievement Arong Groups in the Solution of Algebraic Equations 71
XXVII. Sums and Means of the Criterion and Control Variables for Algebra I Students Testing the Ability to Represent 72
XXVIII. Summary of Experimental Data for Students in Algebra I Considering the Ability to Represent Relationships Algebraically and in the Formation of Equations 73
XXIX. Sums of Squares and Crossproducts in Deviation Form for Both Subgroups 74
Table Page
XXX. Test of Significance of Influence of Teaching Method on Achlevement in Algebraic Relationships and Equation Formation 75
XXXI. Significance of Differences Among Adjusted Y Means in the Ability to Represent Relationships Algebra- ically and to Set Up Equations 76
XXXII. Si.gnificance of Achievement Among Groups in theAbility to Represent Relationships Algebraicallyand to Set Up Equations 77
XXXIII. Choice of Program or Conventional Teaching Methods in Group A 78

CHAPTER I

THE PROBLEM

Introduction

Automation and the exploration of space have opened mary new fields for mathematical emphasis. This has resulted in mathematics being one of the fastest growing and most rapidy changing of all the sciences.

Educational change comes slowly, and if change is to be signifine cant, it is negessary to have adequate plamning. The content in mathematics text books and the methods of teaching mathematios will have to change if Anerican youth are to be prepared to compete suce cesshlyy in the space age. If educators agree with the thesis that the acquired knowledge of man priow to 1900 doubled by 1950, donbled again by 1960 , and will double mace more by 2967 , they will not be as reluctant to change content and methods as they have in the past.

Many articles have been motter calling for improved methods of instruction at all educational levels. If now teaching methods have been developed that will enable the teacher to accomplish better teach ing, it is a challenge to all schools to use them. Certainly if new methods can bring about greater mathenatical achivevent and a better understanding of mathematacal concepts on the part of students, these methods should be used.

The Encyclopedia Britamica Program for first year algebra ina cludes the conventional course offerings. The algebra curriculum has developed through tradition an accepted sequence of topics. Temac, the trade name for the program developed by Encyclopedia Britanica, encom passes what is commonly referred to as traditionall algebra. New conw cepts and terminology that are used in the School Mathematics Study Group materials are not included in Temac.

Programed materials support the Effect Theory of learning. The Effect Theory maintains that learning requires stimuluswesponse cone tiguity (stimulus and a response to occur closely together in time) and reward in the form of satisfiaction or drive reduction. Psychologists recognize the S.R Formala for learning is, at best, incomplete. There is a recognition that a great deal goes on between stmulusoResponse, and that a response must be reinforced if learning is to take place.

Research indicates that practice alone does not produce learning, but oniy fatigue or extinction. To insure the ocurrence of learning, It is necessary to employ the operation of reinforcement. A learned response when reinforced will more likely occur the second time. The failure to remforce a response decreases the probability of occurrence of the response.

Psyehologists point out that learning takes place when a response receives a satisfactory reinforcement. A pigeon pecking a key to get a Ifght to come on or a rat operating a device to obtain food are exw amples in their studies indicating that learming takes place when a response receives a satisfiactory peanforcement.

Research indicates that more effective learning takes place when responses axe inmedatesly reinforced. When the reward or xeinforcer
in inmediate, leawning talkes place at a faster pace. Reactons folm Sowed by immediate reinforcements are better learned than those more remote fron reinforcement. Also, learming anceases with increased amount of reinforcement. watson (56) states that behaviors which are reinforced are more likely to recur. The reinforcement to be most aftective in leaming must follow immediately the deshred behavior. Wheh of the effectiveness of programed learning lies in that fact that Information about success is immediately fod back for each responge.

Frogramed materials for Algebra I use the theory of Stimuluzw ResponsemRenforcement. The problem is the stimulus. The answer given by the student is the response. The student can obtain immediate satisfiaction by checking his response with the answer provided for hin. The answer and sequential problems are used to reinforce each pesponse given by the student.

Statenent of the Froblem

The public was calling for change in educational pwotices. tho ministratows wore faced with the problem of introducting new whthe matical content as well as new methods of pressentation Most admine Astrators and school systexu are peluctant to change content or teaching methods until there is statistical evidence establishing superioxity of the now material or method. All suggested changes raise questrons as to what can be expectec from the change. Who will gain, and whomil Tose if this mange is made?

The problem of this study was to determine if there are signifio cant dififerences in student achievement in firrst year algebwa wen dicferent procedures are vsea.

Purpose of the Study

Temac has been in Limted operation for four gears. During this period of time there has been a number of studies made showing that students acheve when programed teaching is used. However, we also know that achievement gains are made when eonventional teaching mexhods are ased. There is a lak of research comparing stadent achievenent When the programed method is compared to conventional methods of instruction.

The purpose of this stady was to compare stadent achievenent in first year algebra when divergent teaching methods are used. Progremmed materisis have not been used to ary great extent in the ponca Chty School System or in Ponca City West Junior High School. The teachers were interested in developing an materstanding of programed matexads and how they can be most effectively used an the caryoulum There was also a desire to detemine if there were significant gains in student achatement when the programmed approach was used in contrast to the conventional approach in the teaching of algebra at the janar hagh sohool level in Ponca City, Oklahoma.

Limitations of the Study

The stuay was 1 mited to a small popalation. It would hate been desirable to have a larger population and larger samples, but from a practical and firancial point of viev a larger sample could not be used. The study was coniined to one school: it was also Iimited to student achevement in the first course in algebra for one semester. Inferences are imited to the popalation that whs sampled.

Scope of the Study

The study was concemed with student achevoment in the first Course in algebrat West funior High Sohool. Ponca City, Oklahoma. The population from which the samples were drem included ninth grade stadents enrolled in conventional algebra. The stadents had completed the HenmonaNelson Test of Mental Abiluty, the Orleans Prognosis Test for Algebraic Achevement, ard had mede satisfactory progress in eughth grade mathematicu.

The socioweconomic background of all students inclaced in the study was that found in a city of 30,000 population, located in Worth Central Oklahoma. The city is the business and cultural center for a prosperous onl and agroulturally oriented commanty. Most of the parents of stadents in the study had average or above average incomes, and most of the professions and job classificgtions were represented.

The Fonca City School System is organied on the 6-3-3 plan. In the elenentary grades a semioplatoon syster of organization is used. The junior high sohool progran is departmentalited. A great majority of the students in this stady are products of the system.
Definition of Terms As Used in the Study

Some terms in the strdy may require clarification. The less familiar of these terms are the following: First Year Afgebra. This is the conventional algebra course that is nsually offered to ninth grade students. In some funior high schools eighth grade stradents wil take this course.

Achievement in Algebra. Expressed by a standard score obtained by administering the AM and BM Forms of the Seattle Algebra Test. Standard Score. Gives a comparable base in onder to compare several sets of soores. The standard seore is found by obtaining the devia tion of a score from the mean and dividing by the standard deviation. Conventional Teaching Method. That method is usually found in the typical cilassroom with the teacher using the lecture and demonstration method. The stadents responding to questions and are studying the same matexial at the same time. Programmed Materials. Are materials that attempt to combine the knowic edge of the subject matter specialist with that of the experimental psychologist. The content is broken down into small sequential segments or frames. The frames are carefully organized to give students a stepobymstep comprehension, along with sufficient review, of the subject matter covered.

Temas. Name given to program used ins this study. The name refers to the program that was developed by Encyclopedia Britannica for the forst course in algebra.

Popalation. All ninth grade students at Ponca City West Jwnior High School arolled in first year algebra.

Group A. The group that makes use of programed materials.
Group B. A group that is taught by conventional methods. Group C. A group that is taught by conventional methods. Statistically gignificant. The use of a five percent level of contio dence in detemining the probability of a certain event occwraing by chance more often than five in one hundred.

The Analysis of Coraverice. Statistical adjustment for indtial difere ences in variables whioh provides a method of adjusting student sceres whose pretreatment achevement or ability scores were not equal. Orlegns Prognosis Test. A test given to predict success in algebra. The splitwhalf reliability of this test is .92.

Seattle Algebra Test. The test has been designed to measure the achievement of stwdents in the important objectives of the first half year of a high sohool course in beginning algebra. It is essentially a poner test and has an alternate form reliability of 07 . Attitude Scale. The instrument measures attitudes towards mathematics and consists of 45 weighted items. The reliablity of the attitade scale was checked at Lendblom High School in Chicago and the Pearson Correlation Coefficient obtained was .98.
t. Test. Test used to compare two means. tis the ratio of a devia. tion from the mean, in a distribution of saple statistics, to the standard error of that distribution. The test allows us to contrast the significance of the difference of mean scores. The test can only deal whth 2 mean scores at one time and one independent variable. t test deals with parametric measurement of intarval size and nomal distroibution.

Hemon-Nelson Test of Mental Ability. Form A for grades 609 was used in this study. The test consists of 90 items and is published by Houghton Miffin Co. The reliability coeficoient for Form A with ninth grade stadents is .94. Chi Square. χ^{2} is a method of comparing observed or obtained results with those to be expected theoretically on some hypothesis.

fypotheses to be Pested

In the course of this study the following hypotheses were tested:

1. There will be a diference in the achsevement levels of groups A, B, and 0 et the end of the dirst semester. $p<.05$
2. There will be a difference in favorable attitudes toward mathem matlos, as exemplifised by the students in each group, at the and of the metructional period: $p<.05$
3. There will be a significant diffexence in the ability to underow stand algebraic vomabutary at the end of the first amester. $P<.05$
4. There wll be a significant difference in the ability to use fumamental processes. $P<.05$
5. Thexe will be a significant difierence in the ability to solve equations. $p<.05$
6. There will be a signipicant difference in the ability to represent relathonchips algebraically and to set up equations for given problems. $p<.05$
7. There will be aiguificant difference in the choice of teachang methots at the end of the instruetional period. $P<.05$

The literature informs us that mathematies is the fastest growing and the nost rapidily changing segment of all the sciences. The scope and sequerce of mathematics curses are being changed in the schools of this nation. Along with the change in content it is imperative that we study changes in presentation of subject matter and changes in teaching methods. If allowances for individual differences are to be made, changes in conventional teaching methods must come. Programmed material nay help us to make this change. If programs are to be accepted by the professional teacher, there has to be evidence available that the new method is superior to or equal to eonventional ones.

This study was to determine the achievement of each of three groups of students and to determine if there was a significant difo ference in achievement. In addition to total achievenent in Algebra I a study was made of achievement in four areas of Algebra I i undere standing of algebraic vocabulary; use of fundamental processes; solum tion of equations; and the representation of relationships algebraim cally. A study was made in the change of attitudes of students toward mathematics. A test for significance of choice of teaching metnods at the end of the instmetional period was made.

Review of the Literature

The Encyclopedia Britanica Frogrammed Materials for the teaching of first year algebra were developed in a workshop at Roanoke, Virginia. The workshop was under the direction of Loetta W. Horton and consisted of thirtymsix mathematics teachers. At the present time the progran developed in this workshop is used by more than four hundred school systems, colleges, and universities.

At Roanoke in the fall of 1960 an experiment began in the ase of the program. Some five hundred and fifty students completed the courses in Algebra I and II, trigonometry and calculus. The students were rane domly assigned and had varying degrees of ability. The eleven teachers assigned to the program had no previous training or orientation for the task.

The teachers were reported to have been well satosijed with the sesults obtained. The tests were made by the teachers, and improved student $2 . c h i e v e m e n t$ was obsermed. The mathematics iaculty experienced mach professional growth. The Roanoke Teachers agree that the best and most effective way of using progranmed material is still the subject of debate.

Gronback (11) reports that research coneening the effectiveness of programed materials is frogmentary. Researeh indicates that when the teacher is favorable to the use of the program that pupil progress
is at least equal to conventional classes and sometimes superior. When the teacher is anfavorable to programed instruction, the pupil perfore mance is inferior. Studies suggest that programs teach facts as well as conventional procedures do. Followmp tests often indicate starto ling deficiencies in mathematics when pupils have been taught by prom grammed instruction. Evidence now available gives little support to the view that instraction calling for one active response after another will teach better than conventional methods.

It is fairly evident that a pupil learns something from well prom grammed material. The aims should be the improvenent of learning for boys and girls and foousing of attention on the individual learner. The program should not be looked upon as a way of cutting the staff.

Tunsdaine (34) states that the public should be informed conoerno frig the poteritial promise and practical limitations of progranmed matem goials. There is need for government research in the field to improve techniques and to provide firm foundation for subsequent practical derelopments. Standardized technique for assessing the program should be developed.

It is unfortunate that this new technique in education first became popularized under the head of "Teaching Nachines." This is uniortunate because a machine cannot teach, and the image of a me. chanical device replacing the teacher is envisioned. Nasca (4l) suggests a more appropriate nane for this new methodology is "Programmed Learning, ${ }^{\text {P }}$

MeGarvey (36) found that pupils enrolled in sumex school in the Algebra Improvement Course using Temac showed considerable amprovement

In the mastery of algebra. The student reaction to programed instraco tion was favorable. The teacher found that he did not have an oppor" tanty to lecture to the entire group, but that he had more time for individual studexts. The stady reports that the teacher had nore time to enrich the learning of faster learners and that remedial work with slower students was more easily accomplished.

Clark (10) states that no sirgle discovery made in the precess of educating chidren and adults has the potential of progromed learm ing. Careffl study should be made of a program before it is selected for use. A well constructed program will allow a pupil to learn mathematics and to learn it with interest and anderstanding. Good proo grams mill enable us to raise the mathematical competence of many wo have been doomed to faslure.

In education we are confronted with many demands for curyeulum change. The teacher is challenged to change his mode of teaching. Programed Anstruction offers him a way to change. The process of prom graming amonnts to taking a body of material to be learred ard presenting it in an orderiy sequence of units. Each unit is organzed in small steps which are formed as questions. Programaed materials may be presented in various ways. There are available teaching machines and programed textbooks. The presentation is not as important as the content of the program.

Moore (39) obscrwes that if programed materials are to continue to be useful they mast provide not only for induridual differences in ability but also for individual differences in motivation to achieve. The writer urges that students be grouped by level of ability and rew grouped by type of motivation. The probability of success influences
pupills attitudes towaril program learning. Those who are strongly dise posed to "Pex of failure" prefer tasks extremely easy or extremely difineult and awold tasks that offer only a fifty percent probability success because such tasks involve the ege. A pupll who fears farlure will show more interest in the prograrn whon the probability of suceess becomes greater than fiffty percent. The task becones nore pleasant for him. The pupil who has "high hopes of success" loses intorest with continued success or continued farlme. kss interest will Increase as the probability of success approaches the finty percent level. The papil wher free to choose and who has a nigh hope of success will look for new and nove difficult tasks as he masters old ones. Motio vation and achievement are strongly relatad. The experiments suggest that some pupils, wher vsing programed instroction or when learning through the comentional methods of instruction, regrite a challemging, duplent approach to the learning of a concept; others with the same ability require an asy, nonthreatenirg method for learming the same concept. The researeh made by Moore indicates that for all typas of stadenta to be motivated it is necessary for programed materials to haye difierent levels of difficulty.

In 1963 it was estinated that about one million school ohildren would be exposed to the technique of towning called programed ho struction. In fitye yeare the use of the technique has spreat from a handul of experimental classrooms to more than 5,000 schools across the nation. It is estimated that the muber could easily trople by 1965. For mayy, programed instruction has become a symbol of progresa. However, many enucatorg who at first mbraced the new techumue are now backing away and taking a secon look. Some think that programmed
teaching has been over estimated, and a few educators think that the use of programmed instruction is dangerous.

Many studies madeate that students leern when a program is used. Dro. B. F. Skinner, Harvard's famous behavorial peychologist, claims that the use of a progroan is the best way to learn。 About 1953, while experinenting with pigeons, Skimer discovered that the birds could be taught to accomplish many astonishing feats provided that each step of behavior was rewarded with a grain of corn. Many psychologists call the process of rewarding "reinforcement." Reinforcement is important to the theories about programed instruetion. In 1954 Skinmer published an articie in which he argued that people could be taught in the same way he taught his pigeons. This article signaled the birth of prom gramed instruction. In a progran for people the reinforement factor i.s erocouragement. The student is rewarded at each step by being told that his arswer is correct. The programer arranges his material in such a way as to invite correct responses.

Many educators say, "People aren't pigeons," and are disturbed by the rigid application of laboratory theory to the classroon gituation. They are alamed when the programmer attempts to change the art of teaching to an exact soience. The teachers warn that the new technique contains a munber of serious defects. The defects most comoniy men tioned are these: most progranmed instruction discourages oxitical thinking: a program fosters rote learning and the memorization of facts: in spite of reinforcement most programmed instruction is both mechani.. cal and monotonows, and it is an uninspiring way to learn. The lito orature points out that a program will help a student menorize facts, but the program has not been made that will teach the student to enjoy
the facts. Educators are placing renewed emphasis on teaching students how to think. Many educators claim that the program approach to teacho ing is discouraging children to think.

There are both good and bad programs being produced and sold. There has been too much haste on the part of publishers to produce prom grams. The publishers have supported little research in the field of programed materials. Some programs have been developed and placed on the market during a five weeks' period. Research indicates that it may require two years to produce effective programed materials. The inm feriov programs have found their way into homes and schools. So widespread has home use of the new technique become that the Center for Programmed Instruction, a nonprofit organization, has found it neces. sary to issue a "Parents' Guide" that warns the parents concerning the bad programs.

Some comminities have looked to programmed instruction as a way to replace teachers and thus lower the tax rate. This has not taken place as the program will not replace the teacher. In most cases the program is an aid to the teacher and not a threat to him. The issue is not whether a program can replace a teacher, but how teachers can best use the new technique.

The selection and use of programed learning materjals should ree ceive detailed attention from the school administrator and the classo room teacher. Before using this new educational tool, a school needs to answer questions such as the following:
"What is the basic nature of programed material?
Will this basic nature be respected?
What function of the teaching tasks is to be expected of the programed learning materials?

Who will be the key persons in implementing the use? How, when, and where will materials be used? ${ }^{\text {I }}$

All programming is based on some common assumptions:
"If a student does not learn, it is the instruction that is failing.

The individual learner is a class of one and is entitled to instruction fitted to him and his uniqueness.

Whatever is to be learned is to be analyzed for basic orderliness and organized into a behavioral catalog of the component skills and coneepts.

Learning is facilltated by a continuous knowledge of progress with a high degree of success, by orderly progress, and by being presented in a series of steps which have been pretested on likeminded students with similar backgrounds.

As a corollary, if a learner is continuously to be guided by himself or by a teacher in his learning, there should be some overt behavior that makes it evident that the learning is moving in the desired direction." ${ }^{2}$

Many of these principles may be at variance with common school practices as grading, promotion, and scheduling. Once a school has decided to use programed materials and that the goals of the school and the goals of programmed learning are compatible, the school must decide what functions it may expect the program material to perform. Three possible approches are these: Will the program be used as a substituta for the teacher? Will it be used to supplement the efforts of the teacher or to increase the productivity of instructions

Usaally the program is not expected to do the total task of teaching. Most educators rely on program materials for supplementary

[^0]functions or for partial instruction. The decision to use programed materials rests with all the people responsible for making a general policy decision; however, the classroom teacher is the one to decide if a program is to be used in a particular course. The teacher is the person who should select a particular program.

The selection of a program for a particular course requires deliberate preparation. To make a satisfactory selection it is necessary for the teacher to study, test, and evaluate the program. The teacher should consider, depending upon the school situation, that the program may be used in a classroom, in a study hall, at home, or in a special center for programmed materials. Teachers should decide how a program is to be used when different programs are being evaluated. The program may be used as a basic part of class work, as remedial wrork, or to enrich the regular work.

Murphy and Goldberg (22) state that programmed instruction is being successfully used in the business world. Companies of all sizes use programs and find important advantages in using then. Management makes use of the program to help bring specified achievement levels up to a certain pojnt. IBM, Schering, Du Pont and Bell Laboratories report a gain in performance when programmed instmation is compared to conventional instruction. Some industries look upon the techniques as a powerful tool to influence on-the-job behavior and for bringing the levels of employees' skills and abilities up to the requirements of the jobs they are assigned.

Feldhusen (14) indicates that a logical question to ask is this: Is programed learning material in any way more effective than simpler narrative presentations by text, teacher, or television? According to

Feldhusen, a growing tide of research evidence, classrom experience, and personal sentiments suggest a "nd" to the preceding question. We find a conflict in what is reported to be true in industry and what is reported to be true in the school situation when program learning is considered. The reinforcement princtple is most saced to the theory underlying programed learning. Instead of reinforcement some researches found signs of boredom when programs were used. The signs of boredom and dissatisfaction were sufficiently great to indicate that the program would not be a unfformly reinforcing expersence to all youngsters.

An advantage claimed for programed leaming is that differences in aptitudes or intelligence can be reduced or eliminated as factors in learning. The claim has been made that children at various levels of mental ability would learn equally well from the program. Recent reserch evidence indicates that this is not true. As with most learma ing meterials, able youngsters learned more and learned more rapidiy mith the procrammed materjal. Programs have been found to be more suritable for bright and more verbally able youngsters.

Researchers such as Feldhusen (14) and Silberman (47) found Iearning just as effective when all learning principles incorporated in programed instruction and clamed as advantages were stripped away. They found that students can still learn well from narmative instruco tional material.

Stalurow (49) states that the problem facing enthusiasts in the field of programed learning is getting teachers to accept and use programed materials. A review of the literature indicates that rather than get teachers to accept or use programed materials they should be
cautioned to proceed slowly. They should be urged to question exces. sive claims. Stalurow deplores attempts to compare teaching programs with a live teacher becaluse of research difficulties controlling variables which may affect the outcome. Researchers agree that this is a problem; however, most of them suggest that we not retreat from the problem because of experimental difficulties. Every effort should be made to determine if learning from programs is as effective as learn ing from a live teacher or other available mediums. Studies shond be made to detexmine what things the program can teach well and what must, be left to the teacher. To determine how a program can best be used with pupils, it is necessary to make comparisons between the teacher and the program.

The acid test of any educational innovation can take pace in only one place, the school use of the materials in actual classroom conditrions. A survey was carried out by the Center for Programed Instrucw tion under a contract from the United States Office of Education to report the reaction of school systems which were using programed meterids. Over 2,000 sohool superintendents replied to the question neires sent during the survey. The administrators were asked to evaluate reaction in their om systems on a five point scale with these five categories: enthusiastic, fevorable, neatral, opposed, strongly apo posed. They were asked about the reactions of teachers, administrators, board of education, students, and parents. The results were as fol. lows: Some answers were omitted so the percentages do not add to 100 .

Teachers: 22 per cent enthasiastic; 55 per cent favorable; 15 per cent neatral: 5 per cent opposed; less thar I per cent strongly opposed.

Aministration: 30 per eent enthnsastic; 53 per cent favorable; 1 per cent opposed; none strongly opposed.

Boards of Education: 12 per cent enthusiastic; 45 per cent favorable; 19 per cent neutral; 1 per cent opposed; and none strongly opposed.

Parents: 12 per cent enthisiastic; 37 per cent favorable; 23 per cent neutral; 3 per cent opposed; none strongly opposed.

The favorable response to programm materials indicates that the materials have been well received by those school systems using them. The response does not indicate that an educational panacea has been found.

Edacators are not in agreement as to the value of the teaching machire or programed learning. The acknowledged father of the teachIng machine, Sidney L. Pressey, professor of education at the University of Arizona, has some second thoughts about the uses now being made of teaching machines or programmed material. He is inclined to think they have become monstrosities. Pressey expresses his objections as follows:
"Orthodox programing, as it has developed in recent years, is no more productive of learing than silent reading of materials dealing with the same substance, and silent reading takes less time.

A oseful alternative, incisive and time saving, is presentation to students of challenging questions which lead them to eorrect responses.
'Feedback' information, which comes autonatically in programmed materials, is a useful adjunct to established educational proceso ses but need not be fragmented, as it is when it comes through the program textbook or teaching machine." 3

3sidney L. Pressey, "A Puncture of the Huge Programming Boom?" Teacher College Record, February 1964, p. 418.

Pressey (44) says reviens of the most adequate research show programmed learning often to be no more efficient than the usual studyreading approach and almost always more clumsy and expensive. He tells of some experiments of his own which support this conclusion. By filling in blanks in several sections of a program dealing with the analysis of behavior, Pressey translated these into simple discourse. Groups of students studied the materials separately; some, using programed materials; others, the translations. Those who studied the translations learned as much, and in one fifteenth of the time required to go through the program material. This experiment indicates that students learn very rapidly from silent reading without overt responding as reguired in programmed instruction.

After months of testing, Coronet Learning Programs reported that the results indicate that a signifficant increase in learning took place in all of the classrooms involved. Testing was conducted in fourteen states, twenty-eight schools, and with 1,590 students.

Reactions of educators to Coronet Learning Programs were repowted as enthusiastic. The short-unit approach, the handy, inexpensive format, and the basic educational content have all been given high appraisals.

Schools in the Coronet study were requested to assign the use of the program at random to any suitable classroom rather than select teachers already experienced with the use of programmed materials. The teacher first administered the pre-test. Then the program was assigned. In sone schools it was done as regular classwork, and in others, as
honevork. After completion of the program by the entire class, posto tests were given. The teacher returned the packet for evaluation. For each particupating class, pre-test and postotest scores were entered for each student, and his gain calculated. Average scores were computed for the class. These scores were then subjected to standard procedures to determine their statistical significance. The percentage of possible gain was a measure used in the Coronet Experiment. Coronet xeports that the comparatively new measure is becoming more widely used in the foield because it is less influenced by extraneous factors. It is determined by dividing average gain by the possible gain. The possible gain is the difference between the possible score and the average score on the pre-test.

Coronet reports that all obtained results are statistically significant. The observed gains are much greater than can be accounted Rer by chance. On all of their programs except one, Latitude and longitude, the percentage of possible gain was equal to or exceeded fifty per cent. Data obtained from the testing demonstrated a signk ficantly high level of student achievement resulting from actual classo room wse of Coronet Learning Programs.

Bncyclopedia. Britanote Films, Inc, have reported several case hastory reports when Tenac Programed Leaming Materials have been used. These reports are concerned with the teaching of Algobre I.

A report is given on the teaching of an Algebra I sumner class at Nuthey, Now dersey, High School. Mr. Max Kletter was the teacher. The study period was flue days weekly from 8:00 A.M. to 12:00 noon for six weeks in fuly and August, 1962. The class was composed of seventeen
boys and girle, most of them about to enter the twelfth grade. Three had been graduated from high school the month before. The majority had been taking non-academic work and wanted to complete Algebra I to be eligible to enter an academic program in September. The three June graduates warited to pass the course to meet college entrance requirements.

Each student was given his own Temac Algebra I programmed notebook. Progressing at his own rate, he worked through the text and was tested at the end of each unit of the course. Mr. Kletter kept a log of the number of frames completed by each student each day as a check on students' work habits. Students were allowed to take the course materials home at night and on weekends. Mr. Kletter found no boredom, and reports the class worked up to the closing bell. Students liked the material and enjoyed the feeling of discovery when they worked a frame and found they had given the correct answer. The teacher did not collect papers and did not have a problem with cheating. Mr. Wletter spent a great deal of time with individual students. He broke up the Sourmour class period with discussion and some blackboard work. A break was taken at 10:00 A.M. each morning.

At the end of six weeks, students were given the Lankton First, Year Algebra examination. Fourteen students passed, and three failed. Mr. Kletter reports that this was about the same as the failure rate for the reguiar one-year course and below the failure rate expected when stadents take a year of algebra during a six-weeks' summer class. Five stadents scored in the top ten per cent, and half were in the top twentyofive per cent, according to the national norms. All but five stedents were above the national means. Onily two students fell below
the fortioth percentile and one, who had failed first year algebra two years ago, scored at the ninety-eighth percentile.

The teacher observed that the class did very well and that the programned course instilled good work habits. The student sees the entire program before him, and he knows how mach he has to do. Mr. Kletter stated that the student has to learn by himself, and this is the best way to learm. The students stayed with a problem until they were successful in working it and they reported a wonderful feelIng when they finally looked at the answer and saw they had it right. The teacher thought that the program allowed him to make better use of his tine and that dull classroom drill was avoided. Mr. Kletter reported that a strong teacher with a wide background in mathematios is needed for the program. He observed that it would be practical to have a class where some students could be working on algebra and some on brigonometry in the same room. He further observed that bright students could do two years of algebra in one year with programned materials.

A case history report from Harding Junior High School, Lakewood, Ohio, with Mr. Paul McGarvey, the teacher, reports similar results. The study period is five days weekly from 8:00 A.M. to 10:00 A.M., for six weeks during the summer session of 1962. The class was com posed of sixteen boys and three girls with average I.Q. of 105.8 and I.Q. range 92.118 as scored on Otis Quick Scoring Beta. Thirteen students had completed algebra during the 1961-62 school year with below average scores. The average for these students on the Cooperative Elementary Algebra Test, Form Y, was in the sixtieth percentile nationally. The range was from the twenty-seventh through the ninety-
aighth percentiles. The thirteen students wished to review their knowledge of nirth grade algebra. The remaining six students had completed ninth grade general mathematics, which included one semester's work in elementary algebra. They wished to complete their ninth grade algebra credit.

Each student was given his own Temac Algebra I programed notebook. Students progressed at their own rate and answered questions from the text. After completing a specified number of pages he was tested on the material he had covered. The teacher spent most of the class time checking individual students progress and answering individual students' questions. As tests were completed, they were immediately graded and discussed individually with each student. Mr. MeGarvey considered his most important role to consist of motivating each student to progress at his own rate, and of enriching the learning of faster students. Twentyminute discussions implementing the materials covered were led by the teacher at intervals during each week.

The students had no difficulty utilizing the Temac Programmed notebook. At the end of the first week, the class had completed an average of 180 pages of the total 1,292 pages of the entire course. The range was 113 pages to 269. Each student spent approximately ten hours in class and an average of less than two hours on outside study. At the end of the summer session two students had completed the entire course, ten had completed at least 75 per cent of it while four were unable to reach the halfway point. With the exception of two students, test scores were average or better.

The Cooperative Elementary Algebra Test was given at the end of the summer session. The thirteen review students had taken a form of this test when they completed algebra in the ninth grade. The median score for this group rose from the fifty-ninth percentile to the ninetieth percentile. The mean rose from the sixty-first to the seventy-fourth percentile. Eleven students showed substantial improvement, one showed no improvement, and one did more poorly. The median score for the six other students was at the forty-second percentile while the mean was at the forty-fifth.

Student reception of the programed instruction was reported as favorable. Motivation and discipline problems did not exist. Most of the class would arrive early to begin their work in algebra. The majority of the students fielt that the time passed rapidly. Faster students said they were relieved by the fact they did not have to lis. ten to explanations of material they already knew. Slower students appreciated the opportunity to spend as much time on a particular topic as they needed. Two students expressed opposition to programed instruction. They found it boring and monotonous. One achieved high test scores, and the other showed no improvement.

The teacher's coments were favorable. He reported that many students would report early for class and would work steadily until the end of the regular two-hour period. He observed that in the class with a relatively narrow ability range, the rate of individual progress was outstanding.

At Manhasset, New York, the Manhasset Junior High School conducted an experimental study using Temac Programmed Learning Materials. Twenty-six students were in the experimental group. The median I.Q.
of the control group was 104 while the median I.Q. of the experimental group was 105. According to teacher judgment the ranges in social maturity and in emotional adjustment were about the same in both groups. The experiment was conducted as a means of perhaps improving the provided course in elementary algebra designed to meet the needs of those pupils who have experimenced difficulties in mathematics in grades seven and eight who desire to move at a slower rate. It is customary in this school system for similar students to take three years to cover the work of elementary algebra and plane geometry rather than the customary two years.

Each student in the experimental group was furnished with program material and used this material in the classroom only. There was no outside assignments and no homework. Pupils were encouraged to work at their own rates with little or no assistance from the instructor. In the control group the teacher assumed the conventional role, and the class had daily homework, daily drill, and frequent testing.

At the end of the semester, the control groups and the experimental groups were tested. The control group had gone from a percentile rate of sixteen to one of forty-elght while the experimental group had gone from a percentile rating of thirty to thirty-three. The Lankton test form AM was used as a preatest for the second semester. The median for the experimental group was the twentymfourth percentile, while the control group was at the thirty-first percentile. When the final test was given using lankton Form BM the experimental group had gained while the control group had lost. The experimental group had gone from the twenty-fourth percentile at midyear to the thirty-first percentile at the end of the school year while the control group had
gone from the thirty-first percentile to the twentyoeighth. No student in either group completed the course.

At the end of the experiment, over half of the students in the experimental group asked permission to use the programmed material over the summer and to take a test in September with the intent of going into plane geometry classes the following year. Toward the end of the last semester, pupils were asking for more help, and their questions were meaningful and to the point. It was concluded that some of the students developed considerable selforeliance and gained a much better understanding of the process of independent study.

A questionnaire given the students in the experimental group indicated that about one third of them would prefer to have programmed courses while another one third preferred the conventional manner of teaching, and the other one third could not decide. Fifty per cent of the class felt that the Temac materials were clearly better than other courses they had taken in mathematics; twenty-eight per cent felt they were as good; approximately eighty per cent of the students felt that occasional lectures were a necessity. The students in the experimental group liked the idea of being able to work on their own, without homework, and with the individual attention of the teacher when It was necessary. Half of the students mentioned that the work was so well organized that they needed little help from the teacher.

The school administration decided that the use of programmed material should be continued with the slow learner. The administration felt that this material offered considerable promise in use with their regular classes.

Another report from Manasset indiactes that there was not a sigmificant difference jin achievement when Tomac was used. This study was with a "dedicated class of 24 students who were weak in mathenatics and in general achlevement. Temac was used with 12 of the children while the other 12 received the asual instruction. Two of the children using programed materials completed the work in algebra in one year instead of the year and a half the decelerated group normally required. They were able to join and keep up with the regular group for the geonetry part of the program and so save one year's work in mathematics.

When the entire school system, $\mathrm{K}-12$, changed to the new mathematics, the use of Temac was discontinued. The rather expensive equipment is now unused. The program, consisting of a highy specific semies of steps, could not be changed to the new mathematics program. At Roanoke, Virginia, 475 students were involved in a. study using Temar. Each student in the experimental classes was given his own Temac program and was allowed to progress at his own pace. No homework was permatted. The teacher's role varied as to whether she was working with a help or no-help class.

The stadents reaction when asked if they would care to take another course using programmed materiais was this: seventymone per cent answered affimatively, foumeen per cent answered negatively, and finteen per cent indicated that they were undecided. The stadents exw pressed a desire to work on the naterial outside of class hours as well as in class. They also felt that it would be adrisable for the teachers to give occasional lectures rather than have only programmed
material. The stadents likod the idea of wring at their own speed, and they stated that the materoal was organized so that they could easily understand it. Over ninety per oent of the students in those classes where programmed materoals were used on a help basts were pheased that the teacher was able to give them individual help when wers they needed itt.

The teachers involved in the project indicated that they would prefer to wse programmed material to conventional material the followm srg year. The concensus of the teachers, based on teachermmade test and classroom obsemetions was that the students who had used progxam materials had learred more, showed greater independence, and hed a better undexstanding of anderlying principles than the students who had utilumed the conventional material. The teachers thought that their contribution to the stradents using the program in the help classo es wes greater than their contribution to the students in conventional classes.

When the Lankton First Year Algebra Test was administered, it was found that the students who had used programed materials were superior to the students using conventional material. The teachers realiged that the findings mst be tempered by the possibility that they ean be explaned not by the use of a program, but by novelty expect of the Hawthorre variety. The rescarchers agreed that further researeh is needed. The Roamoke School Bystem fourd the results so promising that programmed materials were purehased for approximately one third of the studerts for the school year 1961.62.

Programed instruction is bringing new horizons to the classroom and also mary new headaches. At least in some areas of study the ewidence indicates that darefully prepared and tested programs can be an ald to classroon learning. It is the quainty of the program that matters, and it makes little difference in the leamang situation if the program is in a machire or a programed textbook. The Interature indicates that the prospect of a lush school market is tempting some publishers to overlook quality and that they are more concerned with promotion of programs than preparation of the programs.

The Educational Testing Serviee of Princeton, New Jersey, is attempting to help educators sort out conflicting claims and avoid costly mistakes in selecting programed learning materials. Studies are made of programs to detemine if the content, is up to date and woxthwile, whether the program meets the standards of technical excellence, and whether there is evidence that students learn frem a given program.

A variety of programed materials is becoming available. Ira evaluating the speafic content which a self-instructional program purports to teach, the progrim should be examined to determine what the student is required to do and whether this replects the kind of competence which educators wish to achieve. Just any set of question and answer material does not constitute a selpinstructional progran. Itens in a step-byostep program are designed so that the student will respond to the eritical aspect of each iten. Programed materials are designed to adapt to individual differences by allowing each student
to proceed at his own rate. Questions should be designed to dagnose the students' needs and to lead into material suited to those neads.

The adre cates of programed leaming claim that the materials can be used to extend the curviculum without any addition to the staff, that gifted students can often do as much as two and onemalf years of mathematics in one year's time, that slow students have the opporturaty to master the subject at therr own pace, that flexibility in scheduing becomes a reality, with no need to stagger the mathematies offering from year to year. The claim is made that programed learno ing materials are economical because all of the above advantages are secured without the additions to plant or starf.

Producing a specialized program whether for industry or the class. room requires time and money and a well trained staff. Mary school systems are producing their own program materials. From past experim ences they are taking a good look and making a thorough study of prom grams on the maxket for sale. Management and education are making use of programmed instruction, but a broad segment of top management and educators remain skeptical about sutomated learning. Some psycholom gists say that programed education raduces teaching to an exact science. Teachers ask, will this new technque produce ereative minds or well drined robots?

A sumary of the valnes of programed instruction are the followm ing: (2) The pupil is continuously involved in the leamang process. He mast answer questions in order to proceed. (2) The pupil immedie ately hnows if he is right or wrong. (3) Each papil proceeds at his own rate of speed. (4) Individual instruction becomes a reality.

More informathon is needed about progranmed instruction in the followng areas: (1) in what capacity is it most aseftur (2) How ©fective is itt (3) In what areas will it find its fullest applicam tion: (4) Can pupils with conventional study skills make satisfactory use of progremmed materdals?

Research stadies indicate that pupiss leam when programed matew rojals are used. There are few reports comparing achewement when the conventional methods and the program teohnique are used. School sysum tems should carry out active experimentation with selfoinstractional materials before making large scale adoptions.

Design of the Study

Wighty-four Algebra I students in the minth grade at West Junior High School, Ponca City. Oklahoma, were involved in the project. The students were divided into three groups with twenty-eight in each group.

The teacher served as a resource person in the class using programed materials. Fach student using a program progressed at his own pace, and the teacher was available to give instruction when the indtividual student made a request. The formal lecture period or the group discussion technique was not used in conjunction with the prom gram, Teachermade tests and tests prepared by Bnoyclopedia Britannica to be used with Temac were administered as students becane prepared for them.

In the class using the program each student was with the teacher when each of the tests was graded. Errors were discussed with the student as the test was scored, and each student was required to achieve a raw score of 60 before proceeding to the next test.

Grouping was used to the extent that a student who wes progressing at a rapid pace was placed with a group of slower students. He was available to help members of the group with any problems they did
not understand.
Form BM of the Seattle Algebra Test was given to all students finishing the semester's work before the scheduled end of the semester. When a student completed the first semester, he went immediately to the work for the second semester. The teacher prepared a diary for the class using the program. Students were allowed to work with the program outside of class time. Groups B and C used traditional textbooks and approached the learning of algebra by the use of conven. tional methods.

Standard scores made by the students were used for comparisons. The data obtained was subjected to statistical procedures to determine if there was a significant gain in achievement.

Group A used programmed materials in the study of Algebra I. Groups B and Cused conventional teaching methods. The three groups consisted of students with comparable mathematical abilities. The selection of students was determined by scores made on the Orleans Prognosis Test for Algebra I and the Henmon-Nelson Test of Mental Ability. Using the split-half method the reliability of the Orleans Test is .92. The students and methods of instruction were randomly assigned to groups. Groups A, B, and C were taught by the same teacher at West Junior High School. The instructional periods were fifty-five minutes long and met five times per week for eighteen weeks.

The null hypothesis was tested at the .05 level of significance. The scores made by the students on standardized algebra tests were compared by the t. test and analysis of covariance.

At the beginning of the first semester form AM of the Seattle Algebra Test was administered to the students of each group. The
student was examined in vocabulary, fundamental processes, equations, algebraic representation and problems. The reliability of this test is .87 using alternate forms. At the end of the semester form BM of the Seattle Test was administered to each student.

An attitude scale was given at the beginning and at the end of the instructional period. Statistical techniques were used to compare the before-and-after scores.

Assumptions of the Study

It was assumed that the two teaching methods would be successful in the teaching of algebra. It was also assumed that differences in achievement would occur and that each group would achieve. Also the attitudes of students would change significantly when different teach. ing methods were used. The null hypothesis was accepted to be opera. tional in this study.

Personnel for the Study

All of the eighty-four students involved in the study completed the eighth grade course in mathematics at West Junior High School. All of them received instruction from the same eighth grade mathematics teacher. The students received instruction from the same algebra teacher in the ninth grade.

The distribution of the students in this study is shown in Table I.

TABLE I

CLASSIFICATION OF STUDENTS INCLUDED
IN THIS STUDY

	Type of Eighth Grade Mathematics	Type of Algebra	Time of Instruction			Total
Group	A Conventional	Teacher plus the program	10:26-11:23 A.M.	11	17	28
Group	B Conventional	Conventional	12:20--1:15 P.M.	12	1.6	28
Group	C Conventional	Conventional	1:20--2:15 P.M.	13	15	28

Subject Matter Organization

The textbook used was A First Course in Algebra by W. W. Hart. In the first nine weeks of the semester the students studied general numbers, linear equations, signed or directed numbers, and monomials with one week being taken for reivew and remedial work. The students studeo ied polynomials, linear equations with one unknown, simultaneous linear equations, and special products and factoring during the second nine weeks. The programmed materials included similar problems and material. In the class using the program the students were not regimented as to the time they would spend on a particular topic. For example, in the conventional classes two weeks were assigned for the study of linear equations. In the class using the program students could spend one to three weeks on linear equations.

Measuring Instruments

The Henmon-Nelson Tests of Mental Ability and the Orleans Algebra Prognosis Test were used in an attempt to determine three groups of students with comparable ability in mathematios.

The Henmon-Nelson Test of Mental Ability contains ninety items to be completed in 30 minutes. The mental age, percentile rank and I.Q. can be determined from the test results. Care was used in the construction and selection of items to avoid using those that might appeal more to one sex than to the other. A random sample of two hundred boys and two hundred girls aged twelve was obtained from the entire population; neither the means nor the standard deviations of the test scores for these two groups was significantly different at the 1 per cent level. Congruent validity is demonstrated by a correlation coefficient of .776 with the Otis; .798 with the Lorge-Thorndike; . 760 with SRA Primary Mental Abilities and . 794 with Kuhlman-Anderson. The predictive validity of the Henmon-Nelson Test is demonstrated by a correlation coefficient of .699 with the test on quantitative thinking in the Iowa Tests of Educational Development. Using alternate forms, the reliability coefficients are established at . 867 and .906 .

The Orleans Algebra Prognosis Test was developed by Joseph B. Orleans, chairman of the Mathematics Department, George Washington High School, New York City. The test gives an estimate of a student's probability of success in first year algebra. The revised edition is a revision of the original test in use for over twenty years. "The test attempts to measure those abilities that lead to success in learning algebra. These basic elements involve (1) an appreciation of the
use of symbols to represent numbers, (2) the ability to substitute values for these symbols, (3) the ability to represent quantities by means of symbols and to use them, (4) the ability to express relationships by means of symbols, and (5) the combination of all the above in solving problems." ${ }^{1}$

The test is divided into eleven parts, and each part is timed. The actual working time for the test is thirty-nine minutes. Complete administration calls for forty-five.

The validity of a prognosis test is evaluated in terms of the effectiveness with which it aids in the prediction of the degree of success one will achieve in a certain area. An r of .82 was obtained between prognosis test scores and scores made on the Columbia Research Bureau Algebra Test when these tests were administered to three hundred beginning algebra students in George Washington High School, New York City. An r of .71 was determined when similar comparisons were made of the test scores of 250 students in two New York City high schools. The Orleans Test, Revised Edition, was administered to 322 beginningalgebra students in one school and 119 students in another school. The Seattle Algebra Test was administered to 278 and ninety-four of the same students at the end of a half-year of study. The correlations between the prognosis and achievement test scores were . 60 and .59 respectively.

A corrected splitwhalf reliability coefficient of . 92 was obtained by correlating the odd and even items on the tests of 411
$I_{\text {Joseph B. Orleans, "Orleans Algebra Prognosis Test," Manual of }}$ Directions, World Book Company, New York, p. 3.
beginning-algebra students in a single community. The standard error of measurement on the Orleans Algebra Prognosis Test is 4.2 raw score points.

Based on the data obtained in the preliminary research a prognosis score of 62-98 will indicate that chances for success in algebra are very good. A score in the range of 25-61 indicates a good chance to do average work. A score $0-24$ indicates that the student is a poor risk and will likely fail under ordinary instructional provisions.

The Seattle Algebra Test for the end of the first halfayear of Algebra I was developed by Harold B. Jeffery, supervisor of research in Seattle Public Schools. The test was designed to measure the achievement of students in the important objectives of the first halfe year of a high school course in beginning algebra. There are two come parable forms, AM and BM, each comprising forty-seven test items selected on the basis of curricular validity and satisfaction of statistical requirements. The time required for administration of the test is one class period. The test measures knowledge and understanding of the facts of beginning algebra and the application of acquired skills and methods. There are four parts to the test. Part A consists of nine items, nineteen per cent of the total items, and is on vocabulary. Part B considers fundamental processes and includes twentymone items or forty-five per cent of the test items. A test on equations is included in Part C consisting of nine items which is nineteen per cent of the total test. Algebraic representation and problems make up the eight test items found in Part D. The items in Part D represent seventeen per cent of the overall test items.

The test items found in the Seattle Algebra Test were constructed after a thoroagh analysis of varied instructional materials and authoritative pronouncements in the mathematics field. The elements measured may be justified in terms of frequency of inclusion in commonly used textbooks and on the basis of expert judgment as to importance. Test scores obtained from the testing of 6,500 students over a three-year period were used to determine the two final forms of the test. The forms were balanced in difficulty, extended over a suitable range of difficulty, and composed of items known to be of significant discriminating power.

The reliability of the Seattle Algebra Test is demonstrated when correct split-half reliability coefficients, based upon test results from 164, 128, and 84 students in separate communities were obtained. An alternate form reliability of .87 was found on administration of both forms AM and BM to students in one community, with an interval of less than a week between the successive administrations. The standard error of measurement on the Seattle Test is four standard score points. Form $A M$ and $B M$ are comparable in content in the sense that their respective items cover in approximately equal proportions the various aspects of the subject with which the test is concerned.

The attitude scale toward mathematics was developed by Nicholas Kushta when he was doing graduate work at the University of Chicago. The scale consists of forty-five weighted items. The items were weighted by nine judges at the University of Chicago. The arithmetic mean of the nine weights given by the judges was the final weight of the item. The coefficient of concordance, the agreement in ranking of the items by the judges, was .93. The reliability of the attitude
scale was established by testmretest of thirtymive ninth grade students at Lindblom High School in Chicago on successive days. The Pearson Corcelation Coefficient obtained was . 98.

In administering the attitude scale the student is instructed to list those statements which he accepts as reflecting his attitude. The arithmetio mean of the weights of the statements on the student's list givee a numerical score which characterizes the student's attitude. The lower the arithmetic mean is found to be, the more favorable is the attitude toward mathematics.

Statistical Methods

The analysis of covariance was the method of statistical analysis used to test the hypotheses concerned with achievement in Algebra I as related to method of instruction and related variables. This technique is especially useful for testing differences in academic achievement. The analyses of covariance was used to control the influence of I.Q., Orleans Prognosis Test, and the algebra pre-test results on algebraic achievenent, The andysis of covariance provides for a measure of control or individual differences and incorporates the elements of the analysis of variance and regression. The method takes into account the variable characteristics other than the criterion. Analysis of covariance serves as the final statistical judgment in determining the significance of achievement.

Chi Square was used to determine if there was a significant difference in the choice of teaching methods at the end of the instructional period. This method of statistical analysis was also used to determine if there was a significant change in the attitude of students
toward mathenatios. Chi Square contrasts the difference between obseryed or obtained results with those results theoretically expected. This technique uses ordinal or nominal level of measurement and is nonparametric.

Report From the Diary

The teacher kept a daily diary in which he made observations cone cerning the attitudes of students' progress in the three classes. The students in the class using programed materials enthusiastically acm cepted the program and the idea of program teaching. The reports from parents and students were favorable to the use of Temac in the approach to the learning of algebra.

In the first four weeks of the sohool term all students made sat. isfactory progress and were working with enthusiasm. It was observed by the teacher that programmed material had an important advantage when students were absent. It was easier for them to make up back work or to be up with the other students when they returned to class.

During the sixth week of instruction the students in the class using programed materials were having trouble with signed numbers. At this time it was observed that the other classes are farther along in the course than the program class. Another observation was that a few students using the program were losing their initial enthusiasm.

At the end of the seventh week the range in frames completed was from 1489 to 3156 . The slow students had a tendency to work at a still slower pace. Competition seemed to be missing in the programmed class,
and some stadents were having difficulty in remembering what had previe ously been presented. This was not an exclusive characteristic of the class using Temac, but was more pronounced than in the conventional classes. The conventional classes were having better success than the experimental class in solving equations involving fractions. Mr. Lewis, the teacher, was of the opimion that the conventionel classes had covo ered more material. He believed his work with the program had improved his teaching of the regular algebra classes.

At the end of the nine weeks" grading period the lettex grades given by the teacher were considerably higher in the program class. It was observed that the tests that came with Temac were probably easier than the teacher-made tests used in the conventional classes. The stum dents using the program were observed to be slowing their pace. This was possibly due to the problems becoming more difficult. Many stum dents in Group A were having difficulty with substituting polynomials. This was not observed in Groups B and C. The range of work covered by individual students was getting greater in the programmed class. The teacher stated that ungraded papers had become a problem.

In the eleventh week of the instruction period the parents attend ed ${ }^{\text {a }}$ Back-momschool" Night. All of the parents who were present seemed to accept the use of the program. However, it was observed that no parent presented an opinion if the program was good or bad. At this time the range in frames completed by students ranted from 1.971 to 4,500. Subtraction, multiplication, division of exponents were giving Group A more than the usual amount of difficulty. Approximately twenty per cent of Group A was behind the progress of students in Groups B and C.

During the thirteenth week one student using Temac completed the semester's work. He took the semester test at this time and made a standard score of 134. This was a gain of thirty-eight points over his pre-test score. To complete the first semester's work, a student was to complete successfully the first fifteen tests that come with Temac. In contrast to the one student who had completed all of the tests during the thirteenth week, there was one student who had not completed Test 6 and four students who had not completed Test 7. In this week of instruction three students took Test 11 and one student took Test 12.

One half of the students had completed Test 11 by the fifteenth week. During this week a student who had made the most progress in algebra was assigned to work with two slower students. This was an attempt by the teacher to help the slow student. Mr. Lewis observed that the programmed material gave a good explanation in regard to graphing. The conventional classes had completed the work on simulta. neous equations and that one half of the students using the program had reached this point.

At the end of the Christmas holidays several students in Group A were ready to take two or three additional tests. It was observed that the students using the program had worked more on algebra during the vacation period than the students in the conventional classes. The grouping of students in small study groups was a help to both the slow and fast student. Groups were observed as being in competition with each other, and more material was being covered.

During the last week of the semester the students in Group A were having difficulty with factoring. At this time many of the slower stum dents using the program were getting discouraged and were in need of encouragement from the teacher to continue the work. There were days when the teacher would have been glad to have discarded the program approach to the teaching of Algebra I. Mr. Lewis stated that there is not a sense of reward or selfappraisal for the teacher's benefit even if the student does a good job in a particular area.

Three students in the programmed class completed the first semes. ter's work before the scheduled time. The spread of frames completed by students at the end of the semester was from 3,655 to 5,700 or a difference of 2,045 .

At the end of the semester the teacher preferred the conrentional method of teaching Algebra I. The use of the program oreated much more work for the teacher in the grading of papers and in providing more in dividualized instruction. Mr. Lewis stated that he was in need of a grader or a secretary if he were to do quality teaching. Slow students using the program had a tendency to get slower and lose interest when they realized that they were not keeping up with the progress made by classmates. The program was oriticized for not being consistent in the coverage of important information. Some topics received much attention while others were given only a brief treatment. The good student was observed to get bored with needless repetition of information after he had received all of the necessary instruction. However, this repetition is desirable for the slower student. The better students had the ime pression that they repeated much werk that was not necessary.

Tests of Stated Hypotheses

Hypothesis I. There will be a difference in the achievement level of Groups A, B and C at the end of the first semester.

Table II shows the mean gain score in each group, mean I.Q.'s and mean scores on the Orleans Prognosis Test. As a criterion the first semester gain scores as measured by the Seattle Algebra Test were used. Since the academic ability and the mathematical ability could conceivably influence each student's response to the criterion, these individual differences were controlled by obtaining the fenmon Nelson I.Q. scores as a measure of academic ability and the scores made on the Orleans Prognosis Test as a measure of mathematical ability foro each student in the sample. By using these scores as control variables in the analysis of covariance, the possible bias introduced by indi. vidual differences was removed in so far as those factors adequately represent the differences in question. The information in Table II indicates that each group experienced a gain in achievement. The group using programed materials had a mean gain of 17.46 standard scores. The groups using conventional procedures in the study of Algebra I had mean standard score gains of 31.86 and 22.92. The mean gain of the three groups of students was 24.08 standard scores. The mean I.Q. of the eighty-four students in the study was 110.89 and the mean standard score on the Orleans Prognosis Test was 64.29.

TABLE II
SUMS AND MEANS OF THE CRITERION AND CONTROL VARIABLES FOR
ALGEBRA I STUDENTS

Number			Gain in Achievement Algebra I			I. Q	Orleans Prognosis	
		N	$\sum Y$	\bar{Y}	$\sum \mathrm{X}_{1}$	X_{1}	$\sum \bar{x}_{2}$	\bar{X}_{2}
Group	A	28	489	17.46	3108	111	1833	65.46
Group	B	28	892	31.86	3127	111.68	1752	62.57
Group	C	28	642	22.92	3080	110	1815	64.82
Total		84	2023	24.08	9315	110.89	5400	64.29

Table III presents a summary of the data relative to achievement in algebra during one semester. The sums of squares and the sum of all possible crossproducts are necessary for the computation and are show in the following table. These values were found for the entire sample and not for the three groups individually.

TABLE III
SUMMARY OF EXPERIMENTAL DATA FOR STUDENTS IN ALGEBRA I

Scores	Symbols	$\begin{gathered} \text { For Entire } \\ \text { Sample } \\ \hline \end{gathered}$
Given in Algebra I	$\sum Y^{2}$	57,923
Henmon Nelson I.Q. Scores	$\sum x_{1}^{2}$	1,039,231
Orleans Prognosis Test for Algebra I	$\sum x_{2}^{2}$	360,364
Crossproducts	$\sum X_{1} X$	225,840
	$\sum X_{2} Y$	131,633
	$\sum \mathrm{X}_{1} \mathrm{X}_{2}$	603,470

Table IV shows the variation in the subgroups when the first semester's achievement is considered. The values in Table II and Table III were used to compute the sums of squares and the sums of crossproducts in deviation form for the total sample and for within subgroups.

TABLE IV
SUMS OF SQUARES AND CROSSPRODUCTS IN DEVIATION
FORM FOR BOTH SUBGROUPS

Source of Variation $-\sum y^{2}$	$\sum x_{I}^{2}$	$\sum x_{2}^{2}$	$\sum x_{1} y$	$\sum x_{2}{ }^{y}$	$\sum x_{1} x_{2}$
Total 9,202.4166	6,264.035	13,221.1428	1,503.7500	1,583.0000	4,648.5715
Within					
Subgroups 6,246.2501	1,769.8215	13,091.9286	1,323.7142	2,191.8928	4,696.1429

Table V shows the test for signficance after the regression equations are calculated, and adjustments have been made in the sum of squares. A test of signiffcance was made of the mull hypothesis that there was not a significant difference in achievement of Groups A, B and C at the end of the first semester. The analysis of covariance is show in Table V. The Fwalue of 80.7819 with two and seventy nine degrees of freedom is significant beyond the 01 level of confidence. The null hypothesis was rejected. Thereiore, when the criterion means of the three groups were adjusted for individual differences in $I_{0} Q$. and scores on the Orleans Prognosis Test, the difference wes so large that it was not caused by a sampling accident. Presumably the dif. ference in achievement can be attributed to the teaching procedures.

TABLE V
TEST OF SICNIFICANCE OF INFLUENCE OF TEACHING METHOD ON
ACHIEVEMENT IN ALGEBRA I

Souree of Varetation Degrees of Freedom Sum of Squares Mean Squares
Total 81 8,819.1017

Wethin Subgroups	79	2.896 .2551	36.6601
Difference	2	5.922 .9466	2961.4733
$\mathrm{~F}=80.7819, \quad \mathrm{p}<.01$			

Table VI demonstrates the test for signticance of differences among means after the criterion means have been adjusted for differences that cannot be attributed to the teaching method. To have a significant difference at the .05 level of confidence there mast be
a differential of at least 3.22. A differential of 4.26 must be reached at the . O1 level to have a significant difference.

TABLE VI
SIGNTFICANCE OF DITFERENGES AMONG ADJUSTED Y MEANS
$S D y x=\sqrt{36.66}=6.05$
SEmyx $=\frac{6.05}{\sqrt{28}}=\frac{6.05}{5.292}=1.14$
$S E_{d}$ between any two adjusted means $=6.05$

$=6.05 \times .2672=1.62$
For $\mathrm{df}=79, \quad \mathrm{t} .05=1.99 ; \quad \mathrm{t} .01=2.63$
Significant difference at .05 level $=1.99$ Y $1.62=3.22$
Signiffcant difference at 01 level $=2.63 \times 1.62=4.26$

Table VII illustrates the significance of the differences between adjusted group means. The two groups that studied algebra using cone ventional teaching procedures experienced achievement that was superior to the group using programmed materials at the . 01 level of confidence. There was a significant difference between the groups using conventional teaching procedures at the 01 level of confidence.

SIGNTFICANCE OF ACHIEVEMENT AMONQ GROUPS IN ALAEBRA I

Group	Adjusted Mean	$\overline{Y c}-\overline{\mathrm{Ib}}$	$\overline{Y C}-\bar{Y}{ }^{\text {a }}$	$\bar{Y} \mathrm{~b}-\mathrm{Ya}$
C	29.36	5.83 **		
B	23.53			4.28**
A	19.25		10.11**	

Hypothesis 2. There will be a difference in favoroble attitudes toward mathematics, as exemplified by the students in each group at the and of the instructional period.

Table VIII indicates the attitude change toward mathematics of the eightymfour firstmear algebra students as measured by the attim tude scale. In the group using programed materials the attitudes of twenty students changed to unfavorable toward mathematics. There were elght favorable changes in this group. In the groups using cono Fentional teaching procedures there was a total of twenty seven stam dents whose attitude change was unfavorable and a total of twentyonine students whose attitude change was favorable. Using chi square as a statistical procedure to test the significance of the attitude change the null hypothesis was not rejected. The chi square value of 4.154 with two degrees of freedom is not significant at the .05 level of conficence. It canot be presumed that the attitude change found in students was caused by the teaching procedures.

TABLE VIII

atrtevode change toward mathematics at the
END OR THE FTRST SEMESTER

	Unfavorable		Farorable		
Group in	20	$\begin{aligned} & \mathrm{FF}_{0} \\ & 15.7 \end{aligned}$	8	$\begin{aligned} & F E_{0} \\ & 22.3 \end{aligned}$	28
Group B	14		14		28
Group C	13		15		28
	47		37		84

Hypothesis 3. There will be a significant difference in the ability to understand algebraic vocabalary at the and of the first semester.

Thable IX provides the mean gain in achievement as measured by the Seattle Test on vocabulary. The eriterion used was the gain scores as measured by the Seattle Algebra Test on vocabulary. The scores made by students on the Hemon Nelson I.Q. Test and the Ordeans Prognosis Test were used as control variables. In the analysis of covariance, the possible bias introduced by individual differences will be removed in so far as those factors adequately represent the differences in question. Each growp experienced achievement in the mastery of alge. braic wocabulary. The group using programed materials experienced the lowest achievement score as measured by the test.

TABCE IX
SUMS AND MEANS OF THE CRITERIOR AND CONTROL VARTABLES
FOR ALGEBRA I STUDENTS' VOCABULARY

	Number	Gain in Achievement in Vocabulary			$\frac{I_{.} Q_{0}}{\bar{x}_{1}}$	Orleans Frognosis	
	N	S	$\overline{\mathrm{Y}}$	Σx		$\sum x_{2}$	$\overline{\bar{x}}_{2}$
Group :	28	362	12.93	3108	111	1833	65.46
Group B	28	373	13.32	31.27	111.68	1759	62.57
Group 0	28	368	23.14	3080	110	2815	64.82
Total	84	1103	13.13	9315	110.89	5400	64.29

Table X gives a sumary of the data obtained from the vocabulary test. The sums of squares and the sum of all possible crossproducte are necessary for the omputation and are show in the following table. These values were found for the entire sample and not for either of the three groups individually.

TABLE X

SUMMARY OF EXPERTMENTAL DATA FOR STUDENTS IN ALGEBRA I VOCABULARY

Scores	Symbols	Total for Entire Sam
Gain in Algebra I	$2 \mathrm{Y}^{2}$	14.697
Hermon Nelson I.Q. Soores	$\sum x_{1}^{2}$	1,039,23
Orleans Prognosis Test for Algebra I	$\sum x_{2}^{2}$	360,364
Crossproducts	$\sum \mathrm{X}_{\mathrm{S}} \mathrm{Y}$	122. 34.1
	$\sum x_{2}{ }^{\text {r }}$	71,185
	$\sum x_{1} x_{2}$	603,470

Table x illustrates the data obtained from the pocabulary test in deviation form. The values In Table IX and Table \mathbb{X} were used to compute the sums of squares and the sums of crossproducts in deviation form for the total sample and for within subgroups.

TABLE XI
SUMS OF SQUARES AND CROSSPRODUCTS IN DEUIATTON FORM
FOR BOTH SUBGROUPS VOCABULARE

Table xI demonstrates the test for significance in achiewement in algebraic vocabulary due to teaching method after the regression equations have been calculated, and adjustments have been made in the sum of squares, A test of significance was made of the mull hypothesis that there was not a significance difference in the ability to undero stand algebraic vocabulary at the and of the instructional period. The analysis of covariance is demonstrated in fable XII. The Fovalue of 25.67 with two and seventy nine degreos of freedom is significant beyond the .01 level of confidence. The null hypothesis was rejected. Therefore, when the criterion means of the three groups were adjusted for individual differences in I.Q. and scores on the Orienn Prognomis Test, the differenee was so large that it was not caused by a samping accicent. Presumably the difference in the understamding of algebraze wocabulary wes caused by the teaching procedures.

TABLEE XII
TEST OF SIGUTHTCANCE OF TNPLUENCE OF TEACHING METHOD
ON ACHIEVEMENT IN ALGEBRA I VOCABULARY

Souree of	Residuals		
	Degrees of	Sum of	Mean
Variation	Froedon	Sguares	Squares
Total	81	206.6152	
Within Subgroups	79	125.2307	1.5851
Dipference	2	81. 3845	40.6922

Table XIII illustrates the test for signifacace of differences among vocabulary means after the criterion means have been adjusted for differences that cannot be attributed to the teaching method. To have a significant difference at the 05 level of confidence there must be a differential of at least .66. A differential of 87 must be obtained at the . 01 level to have a significant difference.

TABLE XIII
SICNTFICANCE OF DTFFERENGES AMONG ADUUSTED I MEANS
S. D. $x_{0}=\sqrt{1.5851}=1.25$
S.E. $\mathrm{E}=1.25=.23$
$\sqrt{28}$
S Ed between any two adjusted means $=1.25 \sqrt{\frac{1}{28}+\frac{1}{28}}$
$=1.25 x .2672=.33$
For $d i=79, t .05=1.99 ; t .01=2.63$
Significant difference at .05 Ievel $=1.99 X .33=.66$
Shgnificant difference at on level $=2.63 \times .33=.87$

Table XIV demonstrates the signtifcance of the differences between adjusted group means. Group B, using conventional teaching procedures, experienced achievement that was superior to the other conventional group and the programed group at the 01 level of confizdence. There was not a significant difference between the group using programed materials and Group C.

TABLE XIV
STGNIETCANCE OF ACHIEVEMENT AMONG GROUPS IT ALGEBRAIC VOCABULARE

Group	Adjusted Mean	$\overline{Y b}-\overline{Y a}$	$\overline{Y b}-\overline{Y c}$	$\overline{Y a}-\overline{Y c}$
B	14.72	$2.12^{* *}$		
A	12.60			
C	12.09	2.63^{*}		

** Indicates sigmificance at the . 01 level.

Hypothesis 4. There will be a significant difference in the ability to use fundamental processes.

Table XV gives the mean gain in achievement as memsured by the Seattle Test on fundmental processes. The nears gain an achievenent of the three groups was 26.71 standard scores. Group A, using proo gramed materials, had a mean gain of 14.93. Groups B and C, the groups using conventional procedures to study algebra, had mean gains of 18.71 and 16.50 atandard scores. The control variables are the scores made on the Fenmon Nelson I.q. Test and the OrIeans Prognosis Test. By using these scores as control variables in the analysis of covariance, the possible bias introduced by individual differences was removed in so fiar as those factors adequabely represent the drffero ences in question, acadmic ability and mathematical ability.

TABLE XV
SUMS AND MEANS OF THE CRITERTON AND CONTROL VARTABLISS
FOR ALGEBRA I STUDENTS IN FUNDAMENTAL PROCESSES

Number		Gain in Achievement			I. Q	Oricans	Prognosis
	N	$\sum \Psi$	\bar{Y}	$\sum X_{1}$	${ }_{1}$	$\sum \mathrm{X}_{2}$	$\overline{\bar{x}}_{2}$
Group	A 28	418	14.93	3208	112	1833	65.46
Group	B 28	524	18.71	3127	211.68	1752	62.57
Group	C 28	462	16.50	3080	110	1815	64.82
	- 84	1404	16.71	9385	110.89	5400	64.29

Table KVI gives a summary of the data obtained from the test on fundamental processes. The sums of squares and the sum of all possible crossproducts that are necessary for the computation are show in the following table. These values were found for the entire sample and not for the three groups individually.

TABLE XVI
SUMMARY OF EXPERIMENTAL DATA FOR STUDENTS IN ALGEBRA I FUNDAMENTAL PROCESSES

Scores	Symbols	Total for Entire Sample
Gain in Algebra I	$\sum \Psi^{2}$	24,588
Henmon Nelson I.Q. Seores	$\sum X_{1}^{2}$	$1,039,231$
Orleans Prognosis Test for Algebra I	$\sum X_{2}^{2}$	360,364
Crossproducts	$\sum X_{1} \Psi$	
	$\sum X_{2} Y$	155,900
	$\sum X_{1} X_{2}$	90,368

Table AVI illustretes the data obtsined irom the test on funamental processes in deviation form. The values in Table KV and Table $x V I$ were ased to compute the sums of squares and the sums of arossproducts in deviation form for the total sample and for within subgroups.

TABLE KVII

SUMS OF SQUARES AND CROSSPRODUCTS IN DETIATTON FORM FOR
BOTH SUBGROUPS ${ }^{\circ}$ FUNDAMENTAL PROCESSES

Souree of Variation	$\sum y^{2}$	$\sum x_{1}^{2}$	$\sum x_{2}^{2}$	$\sum x_{1} y$	$\sum x_{2} y \quad \sum x_{2} x_{2}$	
Total	1,121.1428	6,264.035	13,221. 1428	206.4285	110.8571	4,648,5715
Within						
Subgroups	$918.5715 \quad 1.769 .8215 \cdots 13.091 .9286$			162.4286	269.0000	4,696.1429

Table XVIII demonstrates the test for significance in achievement in the fundamental processes of algebra after the regression equations have been calculated and adjustments have been made in the sum of squares. A test of significance was made of the null hypothesis that there was not a significant difference in achievement in the fundamental processes. The analysis of covariance is shown in Table XVIII. The Fovalue of 10.89 with two and seventy degrees of freedom is signim ficant beyond the .01 level of confidence. The null hypothesis was rejected. Therefore, when the criterion means of the three groups were adjusted for individual differences in I.Q. and scores on the Orleans Prognosis Test, the difference was so large that it was not caused by a sampling accident. Presumably the difference in achieve。 ment can be attributed to the teaching procedures.

TABLE XVIII
TEST OF SIGNIFICANCE OF INFLUENCE OF TEACHING METHOD ON
ACHIEVEMENT IN ALGEBRA I FUNDAMENTAL PROCESSES

	Degrees of	Residuals	
Source of	Freedom	Sum of	Mean
Variation	81	Squares	Square
Total	79	$1,118.8134$	
Within Subgroups	2	876.9683	11.1008
Difference	$F=10.89, \quad p<.01$	241.8451	120.9225

Table XIX demonstrates the t test for significance of differences among mean scores in the use of fundamental processes after the criterion means have been adjusted for differences that cannot be attrim buted to the teaching method. To have a significant difference at the .05 level of confidence there must be a differential of at least 1.77. A differential of 2.34 must be reached at the .01 level to have a significant difference.

TABLE XIX
SIGNIFICANCE OF DIFFERENCES AMONG ADJUSTED Y MEANS

$$
\begin{aligned}
S . D_{0} y_{0} X_{0} & =\sqrt{11.1008}=3.33 \\
S_{0} E_{\mathrm{a}} \mathrm{~m} & =\frac{3.33}{\sqrt{28}}
\end{aligned}
$$

$S \mathbb{E}_{\mathrm{d}}$ between any two adjusted means $=3.33 \sqrt{\frac{1}{28}}$ $=3.33 \times \quad .2672=.89$

For $d f=79, t .05=1.99 ; t \quad .01=2.63$
Significant difference at .05 level $=1.99 \times .89=1.77$
Sugnificant difference at . 01 1evel $=2.63 \mathrm{X} .89=2.34$

Table XX illustrates the significance of the differences between the adjusted group means. The groups that studied algebra using conw Ventional teaching procedures experienced achievement that was superior to the group using programed materials. There was not a significant difference between the two conventional groups. Group 6 had achieve ment that was significant at the .05 level of confidence when compared with Group A, the group using programmed materials. The achievement
of Group B was significant at the .01 level when contrasted with Group A。

TABLE XX
SIGNIFICANCE OF ACHIEVEMENT AMONG GROUPS IN COMMAND OF THE FUNDAMENTAL PROCESSES OF ALGEBRA I

Group	Adjusted mean	$\overline{\mathrm{Yb}} \cdot \overline{\mathrm{Yc}}$	$\overline{Y b}-\overline{Y a}$	$\overline{Y c}-\overline{Y a}$
B	17.73	. 49		
c	17. 24			2.07*
A.	15.17		2.56**	
* Indicates significance at the 05 level				
	** Indicates	ificance	the . 01	

Hypothesis 5. There will be a significant difference in the ability to solve equations.

Table XXI gives the mean gain in achievement as measured by the Seattle Sub Test on equation solving. The criterion used was the gain scores as measured by the Seattle Algebra Test on equation solving. Wach group experienced achievement in its ability to solve algebraic equations. Group A, the group using programmed materials had the lowest achievement score as measured by the test. The scores made by stadents on the Hemon Nelson I.Q. Test and the Orieans Prognosis Test were used as control variables. In the analysis of covariance, the possible bias introduced by individual differences was removed in so far as those factors adequately represent the differences in question.

TABLE XXI

SUMS AND MEANS OF THE CRITERION AND CONTROL VARIABLES FOR ALGEBRA I STUDENTS' EQUATION SOLVING

Number		Gain in Achievement				Orleans Prognosis	
	N	$\sum \mathrm{Y}$	\bar{Y}	\sum		之 X_{2}	\bar{X}_{2}
Group A	28	339	12.11	3108	111	1833	65.46
Group B	28	400	14.28	3127	111. 68	1752	62.57
Group 0	$\frac{28}{84}$	$\frac{371}{1110}$	$\frac{13.25}{13.21}$	$\frac{3080}{9315}$	$\frac{110}{110.89}$	$\frac{1815}{5400}$	$\frac{64.82}{64.29}$

Table XXII gives a summary of the data obtained from the test on equation solving. The sums of squares and the sum of 211 possibie crossproducts are necessary for the computation and are shown in the following table. These values were found for the entire sample and not for either of the three groups individually.

TABLE XXII
SUMMARY OF EXPERIMENTAL DATA FOR STUDENTS IN ALGEBRA I
EQUATION SOLVING

Scores	Symbols	Total for Entire Sample
Gain in Algebra I	$\sum Y^{2}$	15,014
Henmon Nelson $\mathrm{I}_{0} \mathrm{Q}$. Scores	$\sum x_{1}^{2}$	1,039.231
Orelans Prognosis Test For Algebra I $\sum X_{2}^{2}$ 360, 364		
Crossproducts	$\sum \mathrm{X}_{1} \mathrm{Y}$	123,388
	$\sum \mathrm{X}_{2} \mathrm{Y}$	71,854
	$\sum \mathrm{X}_{1} \mathrm{X}_{2}$	603,470

Table XXIII filustrates the data obtained from the test on equation solving in deviation form. The values in Table XXI and Table XXII were used to compute the sums of squares and the sums of crossproducts in deviation form for the total sample and for within subgroups.

TABLE XXIII

SUMS OF SQUARES AND CROSSPRODUCTS IN DEVIATION FORM FOR BOTH SUBGROUPS EQUATION SOLVING

Source of	$\sum y^{2}$	$\sum x_{1}^{2}$	$\sum x_{2}^{2}$	$\sum x_{1} y$	$\sum x_{2} y$	$\sum x_{1} x_{2}$
Variation						
Total	346.1428	$6,264.035$	$13,221.1428$	296.9285	496.8571	$4,648.5715$
Within		$1,769.8215$	$13,091.9286$	277.5715	584.2858	4.696 .1429

Table XXIV demonstrates the test for significance in achievement in the solving of equations after the regression equations have been calculated and adjustments have been made in the sum of squares. A test of significance was made of the null hypothesis that there was not a significant difference in the ability to solve algebraic equations at the end of the instructional period. The analysis of com variance is demonstrated in Table XXIV. The Evvalue of 24.73 with two and seventy nine degrees of freedom is significant beyond the . 01 level of confidence. The null hypothesis was rejected. Therefore, when the criterion means of the three groups were adjusted for individual difo ferences in I.Q. and scores on the Orleans Prognosis Test, the differm ence was so large that it was not caused by a sampling accident. Prec sumably the difference in the ability of students to solve equations was caused by the teaching procedures.

TABLE XXIV
TEST OF SIGNIFICANCE OF INFLUENCE OF TEACHING METHOD ON ACHIEVEMENT IN ALGEBRA I EQUATION SOLVING

| | | | |
| :--- | :---: | :--- | :--- | :--- |
| | | Residuals | |
| Source of | Degrees of | Sum of | Mean |
| Variation | Freedom | Squares | Square |
| Total | 81 | 324.2128 | |
| Within Subgroups | 79 | 199.3755 | 2.5237 |
| Difference | 2 | 124.8373 | 62.4186 |

Table XXV demonstrates the test for significance of differences among mean scores derived from tests on equation solving after the criterion means have been adjusted for differences that cannot be attributed to the teaching method. To have a significant difference at the .05 level of confidence a differential of at least .86 is rem quired. A differential of 1.13 must be obtained at the . 01 level for the difference to be significant.

TABLE XXV
SIGNIFICANCE OF DIFFERENCES AMONG ADJUSTED Y MEANS

$$
\begin{aligned}
& \text { S.D. } y . x=\sqrt{2.5237}=1.60 \\
& \text { S.E.m. y.x. }=\frac{1.60}{\sqrt{28}}=1.6= \\
& S E_{d} \text { between any two adjusted means }=1.6 \sqrt{\frac{1}{28}+\frac{1}{28}} \\
& =1.6 \mathrm{X} .2672=.43 \\
& \text { For } \mathrm{df}=79, \mathrm{t} .05=1.99 ; \mathrm{t} .01=2.63 \\
& \text { Significant difference at the } .05 \text { level }=1.99 \mathrm{x} .42=.86 \\
& \text { Significant difference at the } .01 \text { level }=2.63 \times .43=1.13
\end{aligned}
$$

Table XXVI gives the significance of the differences between the adjusted group means. There was not a significant difference between the two groups using conventional teaching procedures. There was a significant difference between Group B and Group A at the . 05 level of confidence. There was a significant difference between Group 6 and Group A at the . 01 lerel of confidence. The groups using conven. tional teaching procedures experienced achievement in equation solving that was significantly greater than that of the group using the program.

TABLE XXVI
SIGNIFICNACE OF ACHIEVEMENT AMONG GROUPS IN THE SOLITION OF ALGEBRATC EQUATIONS

Group	Adjusted Mean $\quad \overline{Y C}=\overline{Y 0}$	$\overline{\mathrm{Yb}}, \overline{\mathrm{Ya}}$
0	14.09 .85	
B	13.24	. $94 *$
A	12. 30	

Hypothesis 6. There will be a significant difference in the ability to represent relationships algebraically and to set up equa tions for given problems.

Table XXVII gives a summary of the data obtained from the test on representing relationships algebraically and in the formation of equations. The criterion used was the first semester gain scores as measured by the Seattle Algebra Test on Ability to represent rela tionships algebraically and to formulate equations. The academic ability and the mathematical ability could oonceivably influence each student's response to the criterion, these individual differences were controlled by the Henmon Nelson I.Q. scores as a measure of academic ability and the scores on the Orleans Prognosis Test as a measure of mathematical ability. Jsing these scores as control variables in the analysis of covariance, the possible bias introduced by individual differences was removed in so far as those factors adequately represent the differences in question. The information in Table XXVII indicates
that each group experienced a gain in achievement. Group A, using proo grammed materials, had the lowest mean gain score of the three groups. TABLE XXVII

SUMS AND MEANS OF THE CRITERION AND CONTROL VARIABLES FOR
ALgebra I STUDENTS TESTING THE ABILITY TO REPRESENT
RELATIONSHIPS ALGEBRAICALLY AND TO SET UP EQUATIONS

Table XXVIII gives a summary of the data obtained from the test on algebraic relationships and equation formation. The sums of squares and the sum of all possible crossproducts are necessary for the come putation and are shown in the following table. These values were found for the entire sample and not for the three groups individually,

TABLE XXVIII
SUMMARY OF EXPERIMENTAL DATA FOR STUDENTS IN ALGEBRA I CONSIDERING THE ABILITY TO REPRESENT RELATIONSHIPS

ALGEBRAICALLY AND IN THE FORMATION OF EQUATIONS

Scores	Symbols	For Entire Sample
Scores in Algebra I	$\sum Y^{2}$	13.166
Henmon Nelson İQ. Scores	$\sum x_{1}^{2}$	1,039,231
Orleans Prognosis Test for Algebra I	$\sum x_{2}^{2}$	360,364
Crossproducts	$\sum \mathrm{X}_{1} \mathrm{Y}$	115,680
	$\sum X_{2} Y$	67,193
	$\sum x_{1} x_{2}$	603,470

Table XXIX demonstrates the data obtained from the test on algebraic relationships and equation formation in deviation form. The values in Table XXVII and Table XXVIII were used to compute the sums of squares and the sums of crossproducts in deviation form for the total sample and for within subgroups.

TADLE XYAX
SUMS OF SQUARES AND CROSSPRODUGTS IN DEVIATION FOAM FOR BOTH SUBGROUPS

Scurce of Variation	$\sum y^{2}$	$\sum x_{1}^{2}$	$\sum x_{2}^{2}$	$\sum x_{1}{ }^{y}$	$\sum x_{2} y$	$\sum x_{1} x_{2}$
Total	240.2380	6.264 .035	13,221.1428	129.6428	207.2857	$4,648.5715$
Within						
Subgroups	218.0715	1,769.8215	13,091.9286	110.9643	260.7500	4,696.1429

Table XX demonstrates the test for significance in achievement in algebraic relationships and equation formation after the regression equations have been calculated and adjustments have been made in the sum of squares. A test of significance was made of the null hypothesis that there was not a significant difference in the ability to represent relationships algebraically and to set up equations to solve problems at the end of the instructional period. The analysis of covariance is show in Tabie XXX. The Fovalue of 5.09 with two and seventy nine degrees of freedom is significant beyond the .01 level of confidence. Therefore, when the oriterion means of the three groups were adjusted for individual differences in I .Q. and scores on the Orleans Prognosis Test, the difference was so large that it was not caused by a sampling acoident. The difference in achiovement can be attributed to the in fluence of the teaching procedures.

TABLE XXX
TEST OF SIGNTFICANGE OF INFLUENCE OF TEACHING METHOD ON ACHIEVEMENT IN ALGEBRAIC RELATIONSHIPS AND ERUATION FORMATION

Source of	Residuals		
		Sum of	Mean
Variation		Squares	Square
Total	81	236.2922	
Wiathin Subgroups	79	209.3154	2.6496
Difference	2	26.9768	13.4884

Table XXXI demonstrates the test for significance of differences among means after the criterion means have been adjusted for differences that cannot be attributed to the teaching procedure. To have a sigm nificant difference at the .05 level of confidence it was necessary to have a differential of at least .88 . A differential of 1.16 must be reached at the 01 level to have a significant difference.

TABLE XXXI
SIGNIFICANCE OF DIFFERENCES AMONG ADJUSTED Y MEANS

$$
\begin{aligned}
& \text { S.D. Y. } x=\sqrt{2.6496}=1.63 \\
& \text { S.E.M. Yo } x=\frac{1.63}{\sqrt{28}}=\frac{1.63}{5.292}=.308
\end{aligned}
$$

$S E_{d}$ between any two adjusted means $=1.63$
 $=1.63 \mathrm{x} .2672=.44$

For df $=79, t .05=1.99 ; t .01=2.63$
Significant difference at the .05 level $=1.99 X .44=.88$
Significant difference at the 01 level $=2.63 \times .44=1.16$

Table XXXII illustrates the significance of the differences between adjusted group means. There was not a significent difference between the two groups using conventional teaching procedures. Group B, a conventional group, differed significantly from the group using the programmed materials at the .05 level of confidence. There was not a significant difference between Group C, a conventional group, and Group A.

TABLE XXXII
SIGUIFICANCE OF A YHIEVEMENT AMONG GROUPS TN THE ABILITY TO REPRESENT RELATIONSHIPS ALGEBRAICALLY

AND TO SET UP EQUATIONS

Group	Adjusted Mean	$\overline{\mathrm{Y}} \mathrm{D}-\mathrm{Y} \mathrm{Y}$		$\Psi \mathrm{Y} \cdot \mathrm{Ya}$
B	12.86	. 44		
c	12.42			. 49
A	11.93		-.93*	

Hypothesis 7. There will be a significant difference in the choice of teaching methods in the experimental class at the end of the instructional period.

Table XXXIII provides the data concerning the choice of method in the class using programed materials. At the end of the instructional period the students were given an opportunity to make a choice relative to the teaching procedure they would prefer for the second semester. Nineteen students made the choice to continue the use of programed materials. Nine students indicated that they would prefer a change to conventional procedures of instruction. Chi Square was the statistical method used to determine the significance of the stum dent's preference. The Chi Square value of 3.571 was not significant at the .05 level of confidence. The null hypothesis was not rejected. It cannot be presumed that the teaching procedures influenced the chorice of students.

XXXITI
CHOICE OF PROGRAM OR CONVENTIONAL TEACHING METHODS IN GROUP A

Group A	Do Not Prefer Change Favorable	Prefer Change Unfavorable
	$\begin{array}{r} 19 \\ f e=14 \end{array}$	$\begin{array}{r} 9 \\ f^{\circ} e=14 \end{array}$
	$x^{2}=3.571, p$	

Seven hypotheses were stated for this study. On the basis of the results obtained from the statistical analyses, the mal hypotheses were rejected or not rejected at the .05 level of confidence. The single classification analysis of covariance as developed by James E. Wert in his book Statistical Methods in Educational and Psyohem logical Research was used to determine the signilizance of achievement in Algebra I when different teaching methods were utilized, and allowances were made for differences in ability that was found in wach group. The t test as developed by Henry E. Garrett in his text Statistics in Psychology and Education was used to determine the significance of the dufference in the adjusted mean scores.

CHAPTER V
CONCLUSTONS AND RECOMMENDATIONS
Review of the Study

The major objective of this study was to compare achievement in Algebra I when different teaching methods were used. The minor objeco tive was to determine if there was a significant change in attitude toward mathematics due to methods of instruction. The study was limited to one school and a small population. Inferences are limito ed to the popilation that was sampled.

Conclusion of the Study

On the basis of this research and subject to the specifined limitations, the followirg conclusions were made:

1. Students in all groups achieved in Algebra I. A significant F value was found on the test of significance of influence of the teaching method on achievenent. Therefore, the difference in achievement can be presumed to be the result of the teaching method and not the result of I.Q. or the Orleans Prognosis Test. In the test for significance of differences anong adjusted means, it was conciuded that groups B and C differed significantly from group A at the . 01 level and that group C had a significant difference from group B at the 01 level. The groups taught by the conventional methed of Instraction experienced achievement that was significantly greater
thar that of the growp that used programed materials. The mall hypothesis was rejected.
2. The null hypothesis was not rejected when the test for signi. fieance of the dafferexce in pavorable attitudes toward mathematios wes made. In the group ueing the program the attitude of twenty stue dents changed to unfavorable while eight changes were favorable. In the conventional dasses there were twentymsven unfawrable changes compared to twentyonae favornble changes. The assumptign panot be made that the attitude onange was the result of the teathing methods.
3. The null hypothesis wes rejected when the F test was made for significance of influence of the toaching method in algebraic vocabum 2ary. Achievement car be presumed to be due to the teaching method. The t test was applied to the adjusted means. Group B differed significantly from Geup A and C at the ol level. There was not a signipicant difference between Group A and C. Group B taught by conventional instructional methods, had a significant gain in achievem ment over the programmed group and the other group taught by conven tional methods.
4. Student achevement in the fundamental processes of algebra Can be attributed to the teaching method. A sigmificant fers como puted, and the mull hypothesis was rejected. The to test for sig. nificance of the difference among adjusted means prowides a basis to assume that the gein experienced by the conventiont elasses over the programmed class was significant at the . 05 level. There was not a signifieant difference between the classes tanght by conventional methoas.
5. The E ralue was significant beyond the .05 level of confidence when statistical methods were applied to the data obtained from the test for achievement in equation solving. When the criterion means of the group were adjusted for individual differences in I. Q and on scores made on the Orleans Test, the difference can be presumed to be doe to the teaching methods. The null hypothesis was rejected. The conventional groups experienced better mean achavement scores than the eroup asing the program. The difference was significant at the .05 level. There was not a significant difference between the con Fentional groups.
6. Teaching procedures had a significant influence on achzoves ment in equation formation and in the understanding of algebraic ree lationships. The Felue was significant beyond the .05 level of confidence and the mill hypothesis was rejected. The conventional groups had greater mean gain soores than the group using programmed materials. Howerer, only one of the conventional groups had a gain that was significant at the .05 level of confidence when compared With the experimental group.
7. At the end of the first semester nine students in the group using the program made a preference to change to conventional methods of instruction. Nineteen preferred to continue to use the program materials. The null hypothesis was not rejected. We cannot presume that the students preferred one method of instruction over the other.

Summary

It was found in the study that the teaching methods had a significart infinence on achievenent in first-year algebra. The resuits
from the strdy indicate that the classes using oonventional methods of instruction achieved at a significantly higher level than the class using program materais. There was not a signifieant charge in the attitucies of students toward mathematios due to methods of instruction. The method of instraction did not have a significant influence in dea termining the teaching method that studerts preferred.

Recommenations

The writer makes the following recomendations as the result of this stady:

1. More studies should be conducted comparing achievement when different methods of instruction are used.
2. More studies should be conducted to determine the signifin cant factors that influence students attitudes toward teaching methods and subjert matter.
3. Additional studies should be made to determine what are the best ways to use progrum materials.
4. More research is needed to determine at what grade levels can programmed materials be used to the best advantage for students and teachers.
5. Research should be conducted to determine more adequately the type of student that can use a program to the best adrantage.
6. More progroms using the modern concepts of algebra should be dereloped.
7. Teachers and school administrators shonld continued to evalu. ate progran materoals and to experiment with their use to determine their proper place in the instructional program.

BTELTAGRAPHY

(1) Barta, T.J. "Attutudes Toward a Programed Text: The Analysis of Behavior Compared With a Textbook of Paychology" Aadio Qusue Commincations Reriew, XI (November 1963), 267-240.
(2) Betton, d. R. "Teaching Machines and Programmed Learming in the Classroon National Elementary Princinal, XLIT (February 2963), 28-31.
(3) Blackan, H. S. "Meachirg Machimes and the Mentelly Retarded Sohel Lfe, XLVI (November 1963), 10-12.
(4) Bohn, Q. A. W. "Can People Be Taught Like Pigeons? Frogramed Teaching Fortune, LITI (Detober 1960), 176 -179.
(5) Boroff, D. "Educatson Comes of Age" Parents Magazine, XXXVIII (Fobruavy 1963), 74-76.
(6) Bossone, R. M. "Programea Materials: A Peaching Aid Clearing House, XXVIT (November 1963), 148-151
(7) Boutwey, W, D. Whats Happening in Equation Programed Tretruction PTA Magartne, LVII (October 1963), 22.
(8) Buckley, N. "Programmed Learning: Return to Reality" Duns Review and Modern Industry, LXXXIII (May 1964), 46w. 47.
(9) Caulield, R. L. "Evaluation of Programed Texes" School ard Society, XCT (March 1963), 116-117.
(10) Clamk, J. F' "Programed Leaming: My Fluts Six Months" Mathenattes Teacher LV (November 1962), 579.531.
(11) Cronback, J. L. "What Research Says About Programmed Instruction NEA Journal, II (Decomber 1962), 45-47.
(12) Dessarot, D. J. "Some Thoughts on Programmed Instruction in Mathematics" School Science and Mathematios, LXIV (Apri1 1964), 285-288.
(13) Eding, Jack V, et al. Four Case Studies of Programmed Instruction New York: Fund for the Adrancement of Education, 1964.
 Frogramed Learming Material" Journal pueational Researeh, LV (January 1962), 491.496.
(15)
__- Teacher vs. Programed Legrafng Wisconsin Journay of Equeation, XCV (Noyember 1962), 8. 10 .
___ "Taps for Teaching Machines" Phi Delta Kapoan, DXIV (March 1963), 265-267.
(17) Forbes, J.E. "Programmed Instructional Materials: Past, Present, and Fruture Mathematios Teacher, LVI (Aprol 1963). 224-227.
(18) Gagne, R. M. Learming and Proficiency in Mathenatics" Mathematies Teacher, UVI (December 1963), 620.626.
(19) Garrett, Henry E. Statistics in Psychology and Education, New York: Mekay, 1958.
(20) Geis, G. In Some Considerotions in the Evaluation of Frograns" $\frac{\text { Andio Visual Comunications Reriew }}{6469}$ (January 1962),
(2) Geller, M. 3. "Pupils Attitudes Toward Programed Learning" Scisnee Teacher, XXX (Maroh 1963), 265-267.
(22) Goldberg, M. H. Comparison of Frogramed and Conventional Inatruction Methods Journal Applied Psychology, MLVIII (Apri1 1964), 110.114.
(23) Hart, Waiter W. A First Course in Algebra, Boston: D. C_{0} Heath and Company. 1947.
(24) Hecinger, F.M. "Big Changes Coming in Educatior" Parents Magamine, XXXV (September 1960), 46-49
(25) Heimer", Ralph T. "Some Implications of Programed Instruction for the Teaching of Mathematios" Mathematies Teacher, LTV (May 196\%) 333-335.
(26) Helen, H. A. "Programmed Materials Today" Gritique and Eroposed Elementary School Journal, LXIT (January 1963), 189 196.
(27) Hester. F. Pregramed Learning Can Better Teacher. Pupil Relationship Grade Teacher, LXXTX (May 1962), 54.
(28) Halgard, E. R. Conditioning and Learning, New Yowk: Appieton, Century, Crorts Inc., 1940.
(20) Howton, in. Wh. Men Mathematics and Programmed Lesming: What the Roanoke Teachers are Saying Audic Visual Instructor, (March 1962), 333-335.
(30) Jovanovich, Wo "When Publishers Go Publice Saturday Revieun, XLVII (May 1964), 21-22.
(31) Lambert, P. Experinental Folklore and Experimentation the Study of Programmed Leaming in the Wauwatosa Public Schools" Joumal Education Researoh, LV (July 1962), 485-494.
(32) Lange, Phil C. "Selection and Use of Programmed Learning Materials NEA Journal. (April 1964), 28-29.
(33) Lunsdaine, A. A. and Glaser, Robert. Tegehing Machines and Programmed Learning, Washington: Department of Audioo Visual Instrmotion National Education Association. 1960.
(34) Lansdaine, A. A. "Some Critical Issues in the Employment of Instruction Throagh Programmed Learning Audio Visusi at Commuiegtion Review, X (January 1962), 61-64.
(35) "- Criteria for Evaluating SelfoInstructional Programsi School Life, XLV (November 1962), 14-17.
(36) MoGarvey, Paul Programed Instruction in Ninth Grade Algebra: Mathematies Teacher, LV (November 1962), 576-579.
(37) Maier, M. H., and Jacobs, P. I. "Programed Learning Some Recommendations and Results National Asscciation of Secondary School Prinoipals Balletin, XLVIII (Apri1 1964), $242-255$.
(38) Margolis, R.J. "Do Teaching Machines Really Teach" Redbook. CXXI (September 1963), 51 t.
(39) Moore, Jo Wo, and Smith, Wo Jotivation in Automated Instruction Sehool Life, XLVI (November 1963), 2la22.
(40) Murphy, I. Ro, and Goldberg, I. K_{0}. Strategies for Using Programmed Instruction Howard Business Review, *LII (May 1964), 115-1.32.
(41) Nasca, Den. "Have You Tried a Program Yet Tr Science Education, XIVII (February 1963), 68~72.
(42) Ohles, J。F. "Approach to Machine Teachings Sehool and Soctety, LXXXVIII (November 1960), 4400441.
(43) Packer, R. E. "Tomomow Antomated Schools" Soience Digest, LIII (May 2963), 34-38.
(4d) Pressey, S. L. "Punoture of the Huge Programming Brom" ${ }^{\text {P4 }}$ Educe ILon Digest, X XX (April 1964), 9-12. Teachers College Record, New York: Columbia University.
(45) Probst, G. E. "Programed Learning in the Schools: Tasks foro 196\% Sequee Teacher, XXIX (October 1962), $34-35$.
(46) Randolph, Po H. "Experiment in Programmed Instruction in Junior High School" Mathematics Teacher LVII (March 1964), 160.162.
(47) Shlberman, H. F. "Self Teaching Devices and Frogrammed Materials: Comparisons with Conventional Instruction Review of Educationgl Research, KXXII (Aproil 1962), 185-186.
(48) Smith, M. D. Some Considerations in Teaching Mathematios by Programed Insturetion Mathematies Teacher, IV (May 1962), $343-350$.
(49) Stalurox, L. Mo "Problems in Ewaluating Automated Instruction" Teacher College Record, LXIII (October 1961), 66a70.
(50) \qquad - Problems, Procedures, Pitialls and Promise of Programming Practice National Association of Secondary School Printipals Balletin, (April 1964), 256-270.
(52) Talley, C. A., Jr. "Programmed Instruction Solves Problems Texas Outlook, XLVIII (May 1964), 22.033.
(52) Teaching With Temac, Chicago: Encyclopaedia Britannica Press. Inco, $\mathrm{r}_{\mathrm{o}} \mathrm{d}_{\text {。 }}$
(53) Temac Case History Report, Wilmette: Encyclopaedia Britannica FIIms, Inc., (June 1964).
(54) The Use of Programmed Instruction in U. Schools, Washington: The Center for Programed Instruction, Inc. United States Government Printing Office, $\$ 963$.
(55) Tracey, W. Ro "Programing: Evaluating Achievements Clearing House, XxXVIII (November 1963) 1943-148.
(56) Watson, Goodwin "What Do We krow About Leamaing" NEA Journal. (March 1963), 20-22.
(57) Wert, James E., Neidt, Charles 0. , and Ahmarm, J. Stanley. Statistical Methods in Educational and Psychological Researoh, New York: Appleton, Century, Crofts Ince, 1954.
(58) Ziskind, M. "Programmed Instruction for Ourriculum Enr: ohment" National Catholic Education Association Bulletin. IX (August 1963), 100 102.

APPENDIX A
Form AM Seattle Algebra Test

SEATTLE ALGEBRA TEST

For End of First Half Year

BY HAROLD B. JEFFERY, EARL E. KIRSCHNER, PHILLIP STUCKY, JOHN R. RUSHING, OTIE P, VAN ORSDALL, DAVID SCOTT
SEATTE PUBLIC SCHOOLS
FORM

DIRECTIONS:

Do not open this booklet until you are told to do so.
This is a test of your knowledge of algebra. For each question there are five possible answers. You are to read each question and determine which answer is correct; then record the answer on the answer sheet. You may answer a question even when you are not perfectly sure that your answer is correct, but you should avoid wild guessing. Do not spend too much time on any one question.

Study the sample questions below, and notice how the answers are to be marked on the separate answer sheet.

Sample A. $2+3$ equals	
	a. 9
b. 8	
	c. 6
	d. 5
	e. none of the above

For Sample A the answer, of course, is " 5 ," which is answer d. Now look at your answer sheet. At the top of the page in the left-hand column is a box marked SAMPLES. In the five answer spaces after Sample A, a heavy mark has been made filling the space (the pair of dotted lines) marked d.

$$
\text { Sample B. If } 5 x=15 \text {, then } x \text { equals }
$$

f.	75
g.	20
h.	3
i.	-3
j. none of the above	

The correct answer for Sample B is " 3 ," which is answer h; so you would answer Sample B by making a heavy black mark that fills the space under the letter h. Do this now. If the correct answer had not been given, you would have chosen answer \mathbf{j}, "none of the above."

Read each question carefully and decide which one of the answers is best. Notice what letter your choice is, Then, on the separate answer sheet, make a heavy black mark in the space under that letter. In marking your answers, always be sure that the question number in the test booklet is the same as the question number on the answer sheet. Erase completely any answer you wish to change, and be careful not to make stray marks of any kind on your answer sheet or on your test booklet. When you finish a page, go on to the next page, If you finish the entire test before the time is up, go back and check your answers. Work as rapidly and as accurately as you can.

When you are told to do so, open your booklet to page 2 and begin. The working time for this test is 40 minutes.

Published by World Book Company, Yonkers-on-Hudson, New York, and Chicago, Illinois
Copyright 1951 by World Book Company. Copyright in Great Britain. All rights reserved

Part A. Vocabulary

1. In $3 a^{2} c$, the c is
2. a term.
3. a binomial.
4. an exponent.
5. a factor.
b. a numerical coefficient.
6. Which expression is a binomial?
7. $3 y$
8. $5 x+10$
9. $3(x-2)+5 y-2 z$
10. a^{2}
11. none of the above
12. In $6 a^{2} m+3 u$, the 6 and 3 are
13. terms.
14. exponents.
15. binomials.
16. coefficients.
17. literal factors.
18. In the algebraic expression $7 a^{2}$, the ${ }^{2}$ is
19. a coefficient.
20. a subtrahend.
21. a binomial.
22. a monomial.
23. an exponent.
24. $\operatorname{In} 3 x-5 y, 3 x$ is a
25. factor.
26. term.
27. coefficient.
28. binomial.
29. root.
30. The fraction $\frac{7 y}{5 x}$ expresses
31. an equation.
32. a product.
33. a sum.
34. a quotient.
35. a difference.
36. In the equation $x+2=5,3$ is
37. a root.
38. a factor.
39. the left member.
40. a literal term.
b. the degrec.
41. The expression $I=p r t$ is called
42. a binomial.
43. a formula.
44. a root.
45. a trinomial.
46. none of the above.
47. In the formula $d=r t$, the rate (r) may be expressed in
48. miles.
49. hours.
50. miles per hour.
51. hours per mile.
52. none of the above.

Part B. Fundamental Processes

10. $(-2)(-2)(-2)$ equals
a. -8
b. -6
c. +6
d. +8
e. none of the above
11. $8+2 \times 3-8 \div 2$ equals
f. 11
g. $\quad 10$
h. 3
i. -3
j. none of the above
12. $3 x+4 x$ equals
a. 72
b. $7 x^{2}$
c. $12 x$
d. 122^{2}
c. none of the above
13. $3 a+4 b$ equals
f. $12 a b$
g. $7 a b$
h. $3 a+4 b$
i. $7(a+b)$
j. none of the above
14. $\left(5 a^{a}\right)(-a)$ equals
a. $4 a^{2}$
b. $\quad 5 a^{4}$
c. $\quad 5 a^{3}-a$
d. $-5 a^{4}$
e. $-15 a^{4}$
15. $15 x y \div 5 x y$ equals
f. $\quad 10 \mathrm{xy}$
g. $3 x y$
h. $-3 x y$
i. -3
j. none of the above
16. $21-(-5)$ equals
a. -26
b. -16
c. $\quad 16$
d. 26
e. none of the above
17. $(-42)+(-6)$ equals
f. -48
g. -36
h. 36
l. 48
j. none of the above
18. $\left(32 u^{8}\right)+(-2 v)$ equals
a. $30 y^{7}$
b. $\quad 16 y^{8}$
c. $-16 y^{7}$
d. $-30 y^{7}$
e. none of the above
19. 5^{3} equals
f. 15
g. 25
h. 125
i. 625
j. none of the above
20. $\left(-3 v^{2}\right)^{3}$ equals
a. $27 y^{6}$
b. $-27 \psi^{5}$
c. $-3 y^{6}$
d. $-27 y^{6}$
e. none of the above
21. $5(a-2)-4 a$ equals
f. $-15 a-10$
g. $\quad a-2$
b. $\quad 9 a-10$
i. $\quad a-10$
j. none of the above
22. $42 y-[10-2(3 y-4)-2]$ equals
a. $48 y+16$
b. $48 y-16$
c. $36 y-20$
d. $36 y-16$
e. $18 y+30$
23. $\frac{-24 n^{4}-8 n^{3}+16 n^{2}}{-8 n^{2}}$ equals
f. $\quad 3 n^{2}+n-2$
g. $\quad 3 n^{2}-n-2$
h. $-3 n^{2}-n+2$
i. $\quad 3 n^{2}-1 n-2$
j. none of the above
24. $5 W+2 L-W-8 L$ equals
a. $\quad 4 W+6 L$
b. $\quad 4 W-10 L$
c. $6 W-6 L$
d. $-4 W-6 L$
e. none of the above
25. If $a=3$ and $b=2$, then $6 a^{2}-2 a b+3 b^{2}$ equals
f. 36
g. 54
h. 78
i. 324
j. 348
26. In the formula $A=L W-3 S^{2}$, find A if $L=16$, $W=5$, and $S=4$.
a. 224
b. 122
c. $\quad 78$
d. -64
e. none of the above
27. If $a=2, b=-3$, then $2 a(a+2 b)$ equals
f. $\quad 32$
g. +16
h. -16
i. -48
j. none of the above
28. In the temperature formula, $C=\frac{5}{6}\left(F-32^{\circ}\right)$, find C if $F=50^{\circ}$.
a. 455°
b. $\quad 18^{\circ}$
c. 10°
d. -10°
e. none of the above
29. From $-19 a+5 b-100$ tak $-9 a+10 b-3 c$.
f. $-10 a-5 b-7 c$
g. $\quad 10 a+15 b+130$
h. $-28 a+15 b-13 c$
i. $-10 a+15 b-7 c$
j. none of the above
30. $(3 x+2)(x-1)$ equals
a. $3 x^{2}-5 x-2$
b. $3 x^{2}+5 x-2$
c. $4 x+1$
d. $3 x^{2}-x-2$
e. $3 x^{2}-2$

Part C. Equations

31. If $\frac{x}{2}=6$, then x equals
a. 3
b. 4
c. 8
d. 12
e. none of the above
32. If $s=2+t$, then t equals
f. -3
g. $\frac{2}{5}$
i. 10
j. none of the above
33. If $3 c+12=6$, then c equals
a. 6
b. 2
c. -2
d. -6
e. none of the above
34. If $\frac{2}{3} x=2$, then x equals

f. $\quad 3$	
g.	$\frac{4}{3}$
h.	1
i.	$-\frac{1}{2}$
j. none of the above	

35. If $6+3 x=x-4$, then x equals
a. 5
b. $\quad 2 \frac{1}{2}$
c. 1
d. $-2 \frac{1}{2}$
e. none of the above
36. If $3 s-1=2(s+3)$, then s equals
f. -7
g. 1
b. $\frac{7}{3}$
$\begin{array}{ll}\text { i. } & 4 \\ \text { j. } & 7\end{array}$
37. If $\frac{3}{2} x+5=x+8$, then x equals
a. 6
b. $\quad 1 \frac{1}{2}$
c. $\frac{8}{5}$
d. $-\frac{8}{5}$
e. -6
38. If $\frac{x}{3}-\frac{x}{9}=6$, then x equals
f. 27
g. 18
h. 3
i. 0
j. none of the above
39. The value of x which satisfies both of the equations
$\left\{\begin{array}{l}3 x+2 y=-2 \\ 2 x+2 y=-4\end{array}\right\}$ is
a. -6
b. -2
c. 2
d. 6
e. none of the above

Part D. Algebraic Representation and Problems Directions. In the following questions, read each problem and decide which of the five given algebraic expressions or equations is correct. DO NOT SOLVE THE EQUATIONS.
40. If n represents an odd number, the next higher consecutive odd number is
a. $2 n$
b. $n+1$
c. $n+2$
d. $n+3$
e. n^{2}

Seatule: Alg-Ax
41. The area of a rectangle whose length is L and whose width is W is
f. $L+W$
g. $2 L W$
h. $2 L+2 W$
i. $L W$ j. $(L W)^{2}$
42. A line 6 inches long is divided into two parts. If the shorter part is S inches, the longer part is
a. $S-6$ inches.
b. $6-S$ inches.
c. $\frac{6}{S}$ inches.
d. $S+6$ inches.
e. none of the above.
43. One angle is three times a smaller angle. Their sum is 180°. Find the number of degrees in each angle. (Let a equal the number of degrees in the smaller angle.)
f. $a+3=180^{\circ}$
g. $3 a=180^{\circ}$.
h. $2 a+3=180^{\circ}$
i. $a+3 a=180^{\circ}$
j. none of the above
44. Mr. Randall in Everett and Mr. Moore in Tacoma decide to hike toward each other until they meet. Everett is 60 miles from Tacoma. If Mr. Randall averages 3 miles per hour and Mr. Moore averages 4 miles per hour, in how many hours will they meet? (Let t equal the number of hours until they meet.)
a. $4 t-3 t=60$
b. $3 t+4 t=60$
c. $\frac{t}{4}-\frac{t}{3}=60$
a. $\frac{t}{7}=60$
e. none of the above
45. Helen's age is one third of her mother's age. The difference between their ages is 24 years. How old is each? (Let M equal the mother's age.)
f. $M-\frac{M}{3}=24$
g. $3 M=24$
h. $\frac{1}{3} M=24$
i. $M-\frac{1}{3}=24$
j. none of the above
46. A picture is 4 inches longer than it is wide. If w is the width, the perimeter is
a. $P=2(w+4)$
b. $P=2(2 w+4)$
c. $P=w(w+4)$
d. $P=2 w+4$
e. none of the above
47. The price of pork increased 10% in one month. If it now sells for 66 cents per 1 lb ., what was the price before the increase? (Let P equal the price before the increase.)
f. $P-0.10=66$
g. $P+0.1=66$
h. $P+0.1 P=66$
i. $P-0.1 P=66$
j. none of the above

APPENDIX B
Form BM Seattle Algebra Test

SEATTLE ALGEBRA TEST
 For End of First Half Year

BY HAROLD B. JEFFERY, EARL E. KIRSCHNER, PHILLIP STUCKY, JOHN R. RUSHING, OTIE P. VAN ORSDALL, DAVID SCOTT seattle public schools

DIRECTIONS:

Do not open this booklet until you are told to do so.
This is a test of your knowledge of algebra. For each question there are five possible answers. You are to read each question and determine which answer is correct; then record the answer on the answer sheet. You may answer a question even when you are not perfectly sure that your answer is correct, but you should avoid wild guessing. Do not spend too much time on any one question.

Study the sample questions below, and notice how the answers are to be marked on the separate answer sheet.

Sample A. $2+3$ equals
a. 9
b. 8
c. 6
d. 5
e. none of the above

For Sample A the answer, of course, is " 5 ," which is answer d. Now look at your answer sheet. At the top of the page in the left-hand column is a box marked SAMPLES. In the five answer spaces after Sample A, a heavy mark has been made filling the space (the pair of dotted lines) marked d.

Sample B, If $5 x=15$, then x equals
f. 75
g. $\quad 20$
h. 3
i. -3
j. none of the above

The correct answer for Sample B is " 3 ," which is answer h; so you would answer Sample B by making a heavy black mark that fills the space under the letter h. Do this now. If the correct answer had not been given, you would have chosen answer j, "none of the above."

Read each question carefully and decide which one of the answers is best. Notice what letter your choice is. Then, on the separate answer sheet, make a heavy black mark in the space under that letter. In marking your answers, always be sure that the question number in the test booklet is the same as the question number on the answer sheet. Erase completely any answer you wish to change, and be careful not to make stray marks of any kind on your answer sheet or on your test booklet. When you finish a page, go on to the next page. If you finish the entire test before the time is up, go back and check your answers. Work as rapidly and as accurately as you can.

When you are told to do so, open your booklet to page 2 and begin. The working time for this test is 40 minutes.

Part A. Vocabulary

1. In $7 b x^{2} y$, the b is

1. an exponent.
2. a subtrahend.
3. a factor.
4. a term.

ह. none of the above.
2. In $2 a^{\prime}$, the 2 is
6. a polynomial.
7. a literal factor.
8. a term.
9. a coefficient.
10. none of the above.
3. The expression $x^{2}+3 x y+b$, is

1. a binomial.
2. a term.
3. a monomial.
4. a polynomial.
b. none of the above.
5. In the equation $x-8=7,10$ is
6. a root.
T. a check.
7. the degree.
8. a numerical factor.
9. an identity.
10. In $5 a y^{2}+3 a x+4 a b$, the ${ }^{2}$ is
11. a polynomial.
12. a factor.
13. a coefficient:
14. a monomial.
15. none of the above.
16. In the expression $9 b-5 x, 5 x$ is a
17. factor.
18. difference.
19. sum.
20. coefficient.
21. literal term.
22. In the expression $(7)(4)=28,28$ is
23. a quotient.
24. a factor.
25. an addend:
26. a product.
27. none of the above.
28. The expression $A=l w$ is called
29. a binomial.
30. a formula.
31. a root.
32. a trinomial.
33. none of the above.
34. In the formula $I=p r t$, the interest (I) may be expressed in
35. per cent.
36. rate.
37. years.
38. dollars.
39. none of the above.

Part B. Fundamental Processes
10. $(-3)(-3)(-3)$ equals
a. -27
b. -9
c. +9
d. +27
e. none of the above
11. $6+4 \div 2-3 \times 2$ equals
f. 4
g. 2
h. 1
i. -1
j. none of the above
12. $4 m+7 m$ equals
a. $28 \mathrm{~m}^{8}$
b. $11 \mathrm{~m}^{4}$
c. 11 m
d. $11(m+m)$
e. none of the above
13. $5 x+3 y$ equals
f. 15 xy .
g. $8 x y$
h. $5 x+3 y$

1. $8(x+y)$
j. none of the above
2. (4b) $\left(-3 b^{2}\right)$ equals
a. $-12 b^{3}$
b. $\quad 4 b-3 b^{3}$
c. $\quad b^{2}$
d. $12 b^{3}$
e. none of the above
3. $20 c d \div 4 c d$ equals

> f. $\quad 5 c d^{2}$
> g. $5 c d$
> h. -5
> i. 5
> j. none of the above
16. 7-(-3) equals
a. 21
b. $\quad 10$
c. 4
d. -10
e. none of the above
17. $(-12)+(-6)$ equals
f. -18
g. -2
h. 18

1. 72
j. none of the above
2. $15 x^{6} \div(-3 x)$ equals
a. $-5 x^{3}$
b. $-5 x^{4}$
c. $-18 x^{6}$
d. $5 x^{3}$
e. none of the above
3. 3^{3} equals
f. 6
g. 9
h. 27
i. 33
j. none of the above
4. $\left(-2 b^{2}\right)^{3}$ equals
a. $8 b^{3}$
b. $-6 b^{5}$
c. $-8 b^{6}$
d. $-8 b^{8}$
e. none of the above
5. $5(2-a)-8$ equals
f. $-5 a-80$
g. $-a+2$
b. $-35 a$
6. $-5 a-50$
J. none of the above
7. $3 y-[7-2(3 y-5)-4]$ equals
a. $9 y+7$
b. $9 y-13$
c. $11 y$
d. $3 y+2$
e. none of the above
8. $\frac{15 a^{4}-10 a^{3}+5 a}{-5 a}$ equals
f. $-3 a^{3}+2 a^{2}-1$
g. $\quad 3 a^{3}-2 a+a$
h. $-3 a^{3}+2 a^{2}$
i. $-3 a^{3}-2 a-1$
j. none of the above
9. $6 h+2 w-h+7 w$ equals
a. 14 hw
b. $9 w-5 h$
c. $5 h+9 w$
d. $9 h^{2}+5 w^{2}$
e. none of the above

Satclo: Ale-EIM.
25. If $x=3$ and $v=1$, then $4 x^{4}-3 x y+2 y^{2}$ equals
f. 139
g. $\quad 29 x y$
h. 29
i. -29
J. none of the above
26. In the formula $A=2 S^{2}-L W$, find A if $S=10$; $L=4$, and $W=2$.
a. 392
b. 208
c. 192
d. 32
e. none of the above
27. If $a=2$ and $b=-4$, then $3 a(a+b)$ equals
f. -48
g. -12
h. +12
i. +36
j. none of the above
28. In the temperature formula $C=\left(F-32^{\circ}\right)$, find C if $F=70^{\circ}$.
a. 564°
b. 211°
c. 208°
d. $66^{\circ}{ }^{\circ}$
e. none of the above
29. $(-7 x+5 y-z)-(-8 x-5 y+z)$ equals
f. $x-y+2 z$
b. $x-2 z$
h. $x+10 y-2 z$
i. $-x$
j. none of the above
30. $(2 x-3)(x+1)$ equals
a. $2 x^{2}-x-3$
b. $2 x^{2}-3$
c. $2 x^{2}-5 x+3$
d. $2 x^{2}-5 x-3$
e. none of the above

Part C. Equations

31. If $x+3=15$, then x equals
a. 3
b. 12
c. 18
d. 45
e. none of the above
32. If $5 a=-30$, then a equals
f. -150
g. -35
h. -25
i. 6
j. none of the above
33. If $\frac{x}{5}=-16$, then x equals
a. -80
b. -21
c. -11
d. $-3 \frac{1}{5}$
e. none of the above
34. If $\frac{r}{3}-2=1$, then r equals
f. 9
g. 7
h. 6
i. -6
j. none of the above
35. If $3 c-2=10-c$, then c equals
A. $\frac{1}{2}$
b. 2
c. 3
d. 8
e. none of the above
36. If $2(w-3)=12$, then w equals
f. 3
g. $4 \frac{1}{2}$
h. $7 \frac{1}{2}$
i. 9
j. none of the above
37. If $9=3 x-15$, then x equals
a. -8
b. -2
c. 8
d. 21
e. none of the above
38. If $\frac{x}{2}-\frac{x}{8}=9$, then x equals
f. 54
g. 24
h. 3
i. 0
j. none of the above
39. The value of x which satisfies both the equations $\left\{\begin{array}{l}3 x+2 y=7 \\ 5 x-2 y=9\end{array}\right\}$ is .
a. -2
b. -1
c. 1
d. 2
e. none of the above

Part D. Algebraic Representation and Problems
Directions. In the following questions, read each problem. and decide which of the five given algebraic expressions or equations is correct. DO NOT SOLVE THE EQUATIONS.
40. If n represents an even number, the next higher consecutive even number is
a. $2 n$
b, $n+1$
c. $n+2$
d. $n+3$
e. n^{2}
41. The perimeter of a rectangle W feet wide and L feet long is
f. $L W$
g. $L+W$
h. $2 L+W$
i. $2 W+L \quad$ j. $2 W+2 L$
42. The difference between two numbers is 3. If the larger number is L, the smaller number is
a. $3 L$
b. $L-3$
c. $3-L$
d. $L+3$
e. $\frac{L}{3}$
43. The sum of three times a number and one fourth of the same number is 13 . What is the number? (Let n equal the number.)
f. $\frac{3 n+n}{4}=13$
g. $3\left(n+\frac{1}{4}\right)=13$
h. $3 n+\frac{1}{4}=13$
i. $3 n+\frac{n}{4}=13$
j. none of the above
44. A rectangle is 3 feet longer than it is wide. If its perimeter is 26 feet, what are its dimensions? (Let w equal the width.)
a. $4 w+6=26$
b. $2 w+3=26$
c. $w+4 w=26$
d. $4 w+3=26$
e. none of the above
45. A pair of skates sells for 10% more than it did six months ago. The present selling price is $\$ 2.20$. What was the selling price six months ago? (Let x equal the selling price six months ago.)
f. $0.1 x=\$ 2.20$
g. $x+0.1 x=\$ 2.20$
h. $2 x+0.1=\$ 2.20$
i. $x-0.1 x=\$ 2.20$
j. none of the above
46. The complement of an angle is twice the given angle. Find the number of degrees in each angle. (Let a equal the number of degrees in given angle.)
a. $2 a=180-a$
b. $a+2 a=180$
c. $2 a=180$
d. $a+2 a=90$
e. none of the above
47. Two trucks traveling in opposite directions pass each other in Capitol City. The northbound truck averages 25 miles per hour and the southbound truck averages 30 miles per hour. In how many hours will they be 200 miles apart? (Let t equal the number of hours.)
f. $25 t+30 t=200$
g. $25 t+200=30 t$
h. $5 t=200$
i. $30(t+10)=200$
j. none of the above

Go back and check your answers.

APPENDIX C

Attitude Scale Toward Mathematics

Weight

1. 1.17 I think mathematics is an excellent subject, and it comands my highest loyalty and respect.
2. 5.01 I am neither for or against mathematics, but I do not bew lieve that to require mathematics for graduation will do anyone any harm.
3. 7.95 I feel the good done by taking mathematics is not worth the time and energy spent on it.
4. 9.01 I regard mathematics as a written memorial to human ignorance.
5. 7.18 I believe that mathematics will lose ground as more elec. tive subjects are added to the school program.
6. 3.24. I feel mathematics is trying to adjust itself to a world more and more concerned with social problems and deserves support.
7. 8.49 The material taught in mathematics is altogether too superficial to be of interest to me.
8. . 44 I feel mathematics is the greatest means for increasing the knowledge of the world.
9. . 94 I think mathematics is the most important influence in the development of critical thinking and good work habits.
10. 4.01 I believe that mathematics is necessary, but like all other school subjects it has its fault.
11. 10.09 I regard mathematios as a harmful subject, slowing a person's reading rate, and making a person hate school.
12. 8.01 Mathematics is too theoretical for me, and so I stay away from it.
13. 5.34 I believe in the good of mathematics, but I am not able to put it to much practical use so don't eare for it.
14. 1.24 I believe that mathematics furnished the stimulus for the best scholarship of our school.
15. 6.28 I am not much against mathematics, but if I do not like the teacher I do not take the course.

Weight
16. 10.61 I regard mathematics as hopelessly tied up with olde fashioned ideas.
17. 2.45 I believe that mathematice forces me to stack to a job fiarily well and has a consequent good influence on the work in other school subjects.
18. 4.75 3 anderested only to the extent of taking mathematios courses vecasionally.
19. 9.51 I feel mathematics is ridicalous for it does not help a person solve everyday problems.
20. 5.33 Sometimes I feel waking mathenatics is worth while, and sometimes I doubt it.
21. 1.71 My ability in mathematics is the promary gulding influence in planning my school program and my life's work.
22. 3.78 I like the geod feeling I get from working on mathematica, but 1 do not agree with the idea that it makes me better in other school subject.
23. 7.02 My attitude toward mathematios is one of neglect due to lack of respect.
24. 8.95 I believe mathematics is a pet subject of the teachers and the princlpal and does not have any appeal to students.
25. 4. 84 I am sympathetic toward mathematios, but I do not encourage others to take it.
26. 9.55 I regard mathematics as a subject that should not be taught in high school.
27. 6.23 I know too little about mathematics to express an opinion.
28. .60 I regard mathematios as the most important subject in school.
29. 7.51 I am slightly against mathematics and intend taking only a Inttle of it.
30. 9.02 I do not think a man is honest in his thinking if he says he takes mathematics for any reason other than that he has to.
31. 3.78 There is moch that is too hard in mathematios, but I feel it is so important that it is my duty to help others when they have trouble with it.

Weqg
32. 2.29 1 - 1 , understand.
3. 10.55 think mothemetios 15 whont question staph and futile.

3n 2.29 I teel the maber of people tho take mathematios is a good thatextion of how memy people tham straight.
35. 9. 36 I Ieel that mathematles is petty, and interested in too many fotrigs of 1attle inpomtarea.
36. 2.65 In mathemathes T do very good work and express myself well.
37. 8.89 I belleve mathematics 15 really not of moh good dopanding for its Influance upon teachere who lseep inslisting methematios lis userul.
38. S. O1 in intend taking mathenaties nyself, but it belfeve its influence is on the decifre.
39. 9.76 It sems absurd to me for anyone to be interested in mathematics.
40. 6.98 My attitude toward mathematios is best described as andiffererce.
4. 3.00 I believe that anyone who will work at mathematies will appreckete lt.
44. 8.69 Mathemetios is duly and nothing much can ba done about it.
43. 7.12 My attitnde toward mathematics is I can take it or leave it. with a slight tendency to disfayor it.
44. 4.45 I have a casual interest in mathematics.
45. 10. 84 I have nothing but cortempt for mathematjes.

VITA

Allen Maynard Robson
Carididate for the Degree of
Doctor of Education

Thesis: A COMPARATIVE STUDY OF THE TEACHTNG OF FIRST YEAR ALGEBRA
Major Field: FAucation Administration
Biographical:
Personal Data: Born in Yates Center, Kansas, Oetober 8, 1914, the son of Aloneo and Fae Robson.

Education: fttended Washington grade schoot, Yates Center, Kansas: graduated from Pauls Valley, Oklahoma High School In 1933; received the Bachelor of Science Degree from Oklahoma Baptist University, Shawnee, Oklahoma, with a major in mathematics and a minor in physical education in August 1937; received the Master of Science Degree in Education from Oklahoma Agricuitural and Mechanical College, Stillwater, oklahoma in 1949; completed requirements for the degree of Doctor of Education in Education Administratione Secondary Education at the Oklahoma State University, Stillwater, Oklahoma, August 1965.

Professional experience: Mathematics teacher and athletic coach at Cherokee, Oklahom High School, 1937-1939. Mathematics teacher and athletic coach at Fairview, Oklahoma filgh School, 1940.1941. Nathematics teacher and athletic roach at Wagoner, Oklahoma, High School, 1941.42. Entered the Inited States Nayy in April, 1942. Served as physical filtness officer and mahtematics instructor at the Navy Electroieal Troining School, St. Louis, Missouri: Armed Guard Commander, in charge of navy gun and communcations crevs aboard merchant ships: Executive of ficee of an $2 . C . I_{0} G_{0}$; discharged with the rank of lieutenant in October, 1945. Mathematics teacher and athletic coach at Ponca City East Junfor High Scheol 1945m46. Mathematies teacher and athletice coach at Ponca City Senior High School 1947-1950. Director of Special Sexvices for the Ponca City Board of
thucatuon and Ponca Cxty Seniow High School athletic coach 1950. 9960 . Promexpal of Ponoa Chty West Junior High Sohool 1961.4965. Superintendent of Ponca City Public Sohool Sys. tem June 7, 1965.

Professtonal Organizations: National Education Association, National Assceiation of Secondary Behool Prancipals, Oklahoma Bucation Association, Oklahoma Association of Secondary School Prinolpals, Phi Delta Kappa.

[^0]: ${ }^{1}$ Phil C. Large, "Selection and Use of Programed Learning Materials," NEA Journal, April, 64, p. 28.
 ${ }^{2}$ Tbid

