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CHAPTER I 

INTRODUCTION 

1-1. Statement of the Problem 

The analysis of three-dimensional frameworks by means of 

string polygon and linear graph theory is investigated. Bars of general 

shape and cross-section are rigidly connected and supported in such a 

manner that the structure so formed is stable under the influence of 

loads, settlement of supports, temperature and volume changes, and 

initial distortions (Fig. 1-1 ). 

A minimum number of forces and moments are chosen as pri-

mary unknowns in the system. .Utilizing equivalent elastic weights 

applied at member ends, compatibility equations are formulated. 

Their solution may be obtained using 

a) Matrix Inversion 

b) Matrix Carry-Over Process(l 5) 

c) Group Elimination Technique. 

For the purpose of this study, the problem wq1:,1ld be considered · 

solved when the end-conditioning elements of each bar and deforma-

tions of all joints are calculated. 

1-2. Historical Review 

The introduction of the conjugate beam analogy is usually 

credited to Mohr(l). Extension of his principles for the calculation 
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of deformations and the solution of indeterminate frames can be seen 

in the works of Muller Breslau(2 l, Westergaard(3l, Lee(4 l, Cross(5>, 
Diwan(6 l , and Kiusalaas(7l. Tuma and his associates (S-lS) have 

conducted extensive research in the use of distributed and equivalent 

elastic weights leading to flexibility analysis of planar and space 

structures. 

2 

The investigations of Langefors(lB), and Wehle and Lansini 19) 

show a ~atrix formulation by energy approach. ,, Denke(2 l) expressed 

Maxwell-Mohr equations accounting for effects of loads, settlements 

of supports, initial distorsions and temperature variations. Force 

methods have been widely employed also for the analysis of piping 

systems by a number of researchers: Brock(23 l, Soule(24 ), and 

Owens(25 ) ... 

Analysis of space frames by means of the well-known slope 

deflection method is also possible as shown by Tuma and Tolaba(26 ), 

Tsui(27 l, Baron(28), Martin and Hernandez(29), FengC30l, Monforton 

and Wu( 31 ), and Shore(32 ). 

The above·-mentioned techniques cannot provide the systematic 

procedure that is very important for establishing compatibility of 

deformations in complex framed structures. To accomplish this 

purpose, a matrix formulation by means of linear graph theory has 

begun to appear recently (1962) in civil engineering literature. This · 

has been primarily a result of the increased capability of dealing with 

large systems in which abstraction of concepts is a practical necessity. 

Moreover, the method lends itself to digital computer programming. 

Application of topological ideas to the electric circuit theory 

was initiated by Kirchoff and Maxwell nearly a century ago(35). 



Langefors( 36 , 37 ,,38), Henderson<\9), and Samuelsson(40) studied the 

extension of these concepts to structural analysis, mainly in the 

language of theoretical mathematics. Other recent investigators that 

might be mentioned are Dimaggio(4 l) and Henderson and Bickley(42 >, 

who described the statical indeterminacy of a stable structure as a 

topological property; Lind(43 >, who takes the view that structures are 
' 

only special cases of the class of problems in system theory; and 

Spillers(45 ) and Fenves and Branin(46 >, who have presented a mathe .. 

matical analogy between the network problem and the linear continuous 

frame problem. 

Electrical analogies have also been employed as shown by 

Kron(47 >, Cheni48 >, Ryder(49 >, and others. 

Direct solution of large space frames involves voluminous 

numerical operations besides requiring a computer with huge storage 

capacity, 
0

Langefors(52 ) proposed the method of piecewi.se analysis 

in 1950. Later :Kron(50, 51 ) conducted an extensive research based 

upon the idea of tearing and interconnecting. His principle found 

wide application in the area of electrical network in which the vari

able• are 1imple scalars. Kron's factorized form and doubling 

technique, afford a saving in the amount of numerical computation, 

but do not relieve the problem of 11torage requirement•, Moreover 

they call for the 1olution of an interconnection matrix. Recently, 

dalletly(SO), Clouih, Wil on and King( 34 >, Ei1emann nd N my t(&7), 

and Spiller (&4) employ d Gau 11 11 principl to limina.te a iroup of 

unknown• at time. 
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A method for the formulation of compatibility equations for 

rigidly jointed skeletal structures allowing for releases such as hinges, 

roller supports and a group elimination technique for the solution of 

large systems are presented here and can form the basis for a general 

computer program for the analysis of complex frameworks. 

1-3, Scope and Procedure of Investigation 

The study is subject to the following limitations. 

a) Material is linearly elastic, homogeneous, isotropic and 

continuous. 

b) Deformations are small and elastic. 

c) Plane sections remain plane after deformations. 

In the development of the analytical approach, the steps con

sidered are: 

1) Sign convention for actions and displacements is established; 

2) Geometry of bars and associated quantities is defined in 

terms of coordinates and transformation matrices; 

· 3) Equilibrium and relative deformations of a member are 

studied; 

4) Statics of the entire system is formulated utilizing linear 

graph theory. Solution for the unknowns is obtained by 

means of compatibility of deformations. 

5) Group elimination technique to solve large structures is 

discussed. 

6) The theory is demonstrated by two numerical examples. 



1-4. Coordinate Systems 

Two classes of right-handed cartesian systems are required 

for the analysis of space fr ameworks. The first, named as the local 

system, is associated with t he member. The origin of such a system 

is located at the near end (i ) and the :xf - axis passing through the far 

end (j) of bar (a) (Fig. 1- 2). The second type , referred to as the 

global system, has its ori gin at an arbitrary point o , The axes are 

oriented at convenience (F i g. 1- 2). While there are as many local 

systems as members , there is only one globa l system for the entire 

structure. Superscripts ot her than o are used for member systems. 

1-5. Sign Convent ion a nd Notation 

Forces and deflections a re repr esent ed by vectors with a 

single head; couples , moment s and angular deformations are denoted 

by double headed line segment s. 

Loads consist of three components of forces and three compo-

nents of couples parallel to X:, Y, Z axes of t he appropriate reference 

system (Fig. 1-3). The matr ix of these actions _{w}, referred to 

o-system, is defined as 

po 
ma 

po 
max 

Po 
may 

po 
maz 

5 

= ( 1. 1) 
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Internal forces and moments are denoted by N and M, 

respectively. They are positive if acting as shown in Fig. (1-4), 

and are designated in a-system by the matrix 

N~ 1ax 

a 
Niay 

ra} 
a 

{Hfa} = r<a = 
Niaz 
----·· (1. 2) a 
Miax 

M~. 
iay 

---
a 

Miaz 

Joint deflections 6 and rotations 6, represented by vectors, 

are positive when .directed in the positive sense of the coordinate axe·s 

(Fig. 1-5). These deformations are expressed by the matrix 

60 
Jx 

60 
Jy 

r 
60 

6J Jz 
{ A~} = (Jo = (1. 3) 

(Jo 
J. Jx 

(Jo 
Jy 

(Jo 
Jz 

Other notations adopted for use in this thesis are explained 

where they first occur. 



N~ i 

M~ ~/\ l~a 
N. Na 

1a.y/ . 

zo 
0 

1az 

a \ M. 
iay M~ 

No . 
iax 1 

~·------xo 
0 0 

1az 

a) Local System 

b) Global System 

M~ 

1 JaZ O 
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Mjay 
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Jay 
0 

J. .. .... MJ·ax 
N'? 

Jax 

FIG. 1-4. POSITIVE INTERNAL ACTIONS 
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1-6. Stereo-Geometry 

Geometry of a space frame can be described by a study of bars, 

applied. loads, and internal actions as viewed in various reference 

systems. 

A member is located in space by means of local and global 

systems as shown in Fig. (l-6). Consider a point m whose coordinate 

vector, measured from the near end i in a-system, is denoted by 

a x. 1m 

a 
Yim 

a 
z. 
1m 

The same vector, when referred to a-system, becomes 

(1. 4a) 

(1. 4b) 

where [ w J is the matrix of direction cosines between the o-,. and oa 

a-systems, and is given by 

a a a oax oay oaz 

[ woaJ = /3oax /3oay /3oaz (1. 4c) 

yoax yoay yoaz 

The submatricei=: resulting from the vertical partitioning of 

the transformation matrix. [w0 aJ are frequently used in the subsequent 

chapters. They are 



x .. .. o ~ 
OJ . 

,0 z . 
01 

. 0 

.X. . 
O.J 

y~ 
1 

0 0 z. z . 
lm OJ 

FIG. 1-6. GEOMETRY OF A BAR IN SPACE 
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a aoay aoaz oax 

{woax} = f3oax {woay} = {3oay {w } - {3oaz (1. 4d) oaz 

Yoax Yoay Yoaz 

An important property of the matrix (Eq. 1. 4c) is expressed by 

-1 * 
· [ w oa J = [ w oa J = [ w ao J (1. 4e) 

where the asterisk stands for matrix transposition. 

Assuming the coordinates of the end points i and j, and a 

third point k on zf-axis known, .the direction numbers a, {3, y can 

be obtained from the following relationships 

{ } 1 { o} w =- d. 
oax L ,ij . a 

(1. 5a) 

(1.5b) 

a =-{3 y +y f3 oay oax oaz oax oaz (1. 5c) 

f3 =-y a +a y oay · oax oaz oax oaz (1. 5d) 

·Y = - a f3 + {3 a oay oax oaz oax oaz (1. 5e) 

in which La is the length of the straight line joining. i · and j, and 

Lk is measured along zf-axis between i and k. 

Utilizing [ w0 aJ, loads, internal actions, and joint deformations 

can be transformed from one system of reference to the other as 



shown below: 

{w~a} = [ 11 oaJ {w~a}; {w~a} = [naoJ { W~a} 

{afa} = [n oaJ { Hja} ; { Hja} = [ 11 aoJ {Hfa} 

{Aj} = [n 0 aJ {Aj}; {A~} = [nacJ {~~} 

in which 

[w~J 
[ TT oJ = 03 I "'oa r* 0 J oa 3 

[n aoJ= 0 w* 
3 oa 

[O O OJ 
[ 03] = 0 0 0 

0 0 0 

14 
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( 1. 6c) 

(1. 6d) 
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CHAPTER II 

STATICS AND END DEFORMATIONS OF A BAR 

Equilibrium of a member isolated from a space frame is con-

sidered in the first part of this chapter. T~e second half deals with 

the end deformations of a simple beam due to bar-redundants, applied 

loads, temperature changes an.d support displacements. Spectal cases 

arising from the necessity of introducing structural discontinuities 

such .as spherical hinges are also investigated. Equilibrium and 

deformations of a bar removed from a planar framework are reco.rded 

in Appendix A. 

2-1. Stereo-Static's 

A freebody of a bar is sketched in .Fig. 2-1. Six elements -

three forces and three moments - are acting at each end. The member 

is statically indeterminate to the sixth degree. Simple beam and 

cantilever type basic structures are most commonly employed in 

structural analysis, The first kind is adopted for this research. 

Such a basic member (Fig. 2-2) is supported at j by a spherical pin, 

and the near end i is permitted to displace parallel to line ij and 

a a 
rotate about Yi and Zi axes. Therefore, the bar-redundants, 

treated as arbitrary1oads, consist of the force component in 

X-direction and the moment components about the Y and Z axes 

i:lt end i, and three moment components at j (Fig. 2-2). They are 

15 
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. designated by z. x. y as 

a 
xiax (d)Nrax 

y:3" 
iay M?-

iay 

z:3- a a Y. Miaz 
{ z:} 

1a 1az 
= = = (2. 1) 

z~ y<: a 
Ja Jax Mjax 

y~ 
Jay 

M': 
Jay 

y<: a 
. JaZ Mja:z 

in which the scale factor d is some multiple of · 5. It is found that 

when d is taken equal to the average length of bars,. the resulting 

flexibility matrix for a system will ~e better-conditioned. 
,j~ 

The end-conditioning and cross-sectional elements are func-

tions of the loads. Introducipg the notation of Table 2-1, the, · 

transmission relationships may be stated as 

{H~ } :, [f. J {za} ,+.{BH~ } :: {za~} + {BH~ } 
· ia ia · a ia · ·.1a · lcii (~. 2a) 

{H': } ~ [f. J {za} +{BH~ } := {za~ } + { BH~ } Ja Ja a ·. Ja . · · Ja Ja (2. 2b) 

{H?} = .[ni ] {za} + {Ba?, 1 = {za? } + {Ba? } 1a . oa a · 1a f · 1a :1a (2.2c) 

* By end-conditioning elements is meant the end reactive forces 
and moments .. 



TABLE 2·1. STEREO-STATIC MATRICES OF BAR (a) 

[w:a] = [ iwoax I -±; woaz I t; woay] ; [ w:] = [ 0a, 1 I ~ woaz I ·t; woay] ; [ w:~] • [0s, 1 I woay I woaz] 

[·::J +- I •,., I •,.,) , ["'~l · [:~ ::.] , r·i..J · [~ :~~ 

l ·-:.J · 1t, t1• J [-:.+ l .. ;. J · f, f ·i-J \w:.. J , l ·-:.J · fi 1,-:.1 · .. J [ ~:] , l m,f. I · [·· Jr-:. J 

{BHfa} =[ "oa](BHfa}; {BHja} = [n 0 J{aHja}; {a~a} • ~(sNfm I "ia] t:a]; {BNja} = ha]{BNja} 
lQma 

{•:.] . [::"] ' {·~} -!! j, (,,;.] t] 
{•:j} = [ z;j ·•:j .:~:]; [r:j] = [::. 03] ; [R~] • [r:j](ria] ; {rL:j] = [I:] 

a a qJ 13 •qj 
·yqj xqj O 

{BH~a} = [r:j]{BHja} + t[r:m] {w~a} ; {BH~a} = ["qa]{Ba:a} 

['qa,qa~ '- ["qa] r{~j] 
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(2. 2d) 

(2. 2e) 

{ Hq } = [t a.] {za} + {' BHq } = {zHq } + {BHq } qa qa, q J a qa . qa : qa (2. 2f) 

where prefixes Z and B are read as due to arbitrary and applied 

loads, respectively; and superscript q specifies the coordinate 

system associated with that cross-section (Fig. 2-1). 

2-1. 1. Special Cases 

a) Bar with a Hinged End 

Let the end j of bar (a) (Fig. 2- 1) be a spherical pin. Then 

the redundan.ts consist of those associated with end . i. ... Eqs.. (2-2,a.-d) .. 

can be modified to obtain expressions for the member-end reactions. 

This is accomplished by deleting rows associated with moments at j 

and columns pertaining to the nonexisting loads. Using the notation 

of Table 2-1. : 

{Hfa} = [ fl ] { Z~ } . + { BH~} - { ZH~ } + { BH~ } · 1a 1a 1a 1a · 1a (2-3a) 

{ Nja} = [ e. ] { z~ } + { BN~ } = {zN~} + {BN~} 1a 1a Ja Ja Ja 
(2-3b) 

{H~a} = [ 11:r~aJ{ zfa} .+ { BHfa} = { ZH? } + { BH? } 1a 1a (2-3c) 
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{ N? } = [w I . J { z~ } + { BN? } = { ZN? } + { BN? } Ja · oa 1 a Ja Ja · Ja (2-3d) 

b) Straight Bar with Hinged Ends 

A pinned-end straight member is shown in Fig. (2-3). The 

system of applied loads may be general, subject to the condition that 

the torsional equilibrium is identically satisfied. X~a .(Fig. 2-4) is · 1 X 

the only redundant in this case. As in case (a), expressions for tile 

end-conditioning forces are derived from Eqs. (2-2 a-d), and given 

below. Nomencluature used in the following relations is recorde.d 

in Table 2 ::- 1. 

= {e! }'.x?- + {BN~} = 1a 1ax 1a { ZN?'} + {BN?'} 1a · 1a (2-4a) 

{ e ! } x~ + { BN1:1' } = { ZN~ } + { BN1:1' } 1a · 1ax Ja Ja Ja (2-4b) 

(2-4c) 

{ NJ?a} = dl {w } X~ + {BN?} = {ZN?} + {BN':>} oax · iax . Ja Ja Ja (2-4d) 

Cross-sectional elements for both cases (a) and (b) may be 

evaluated from Eqs. (2-2 e, f). Other special situations such as a 

roller sµpport can be treated similarly. 

2-2. Elasto-Geometry 

End deformations of the basic bar (Fig. 2-2) are algebraically 



1 a 

a~ 

Bar (a) a 
.~x. 
~ l 

XO 0------.... 0 

FIG. 2-3. PINNED-END STRAIGHT BAR 

Bar (a) 
a 

~xi 

i 

FIG. 2.:.4. ·SIMPLE BEAM-ARBITRARY AND APPLIED LOADS 
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expressed in terms of angular and linear functions~ and recorded in 

Table 2-2. The notation employed is explained below. 

All quantities are referred to .the member system as specified 

by superscript a. 

ri~ is the displacement of end i of basic beam (a) along 1ax 

-Xa-axis due to all causes. 

cpjax is the rotation of end .j of basic beam (a) about Xa

axis due to all causes. 

e:~ is the displacement of end i of basic beam (a) along 1ax 

Xa-axis due to all causes excluding the bar-redundants. 
J 

-r~ . is the rotation of end i of basic beam (a) about za-1az 

axis due to all causes excluding the bar .. redunq.ants. 

nfixx is the displacement of end i of basic beam (a) along 

-Xa -ax.is due . to N~ = + 1. 1ax 

F~. :is the rotation at end i of basic beam (a) al::>out Ya-11yy 

· axis due to Y~ = +l. 1ay 

F~. is the rotation .at end j of basic beam (a) about . ya_ 
JJYZ 

axis due to Y~ = +1. 
Jaz 

Ga is the rotation .at end i of the basic beam (a) about 
ijxz 

Xa-axis due to Y~ = +1. 
JaZ 

E~. is the .displacement at end i of the basic beam (a) 
lJXX . 

along 'Xa-axis due to :Y~ = +1. · · Jax 
a E.. is the rotation at end j of the basic beam (a) about 
JlZX 

za-axis due to N~ = +1. 
1ax 

The flexibility matrix denoted by A is symmetrical, as it 

22 

should be in view of Maxwell's reciprocal theorem for linear systems. 



TABLE 2-2 END DEFORMATIONS 

1 l 1 
1 a I I 1 .....1..a 1 a 1 a 1 a J a 1 i a - --·------·- ------------ -1.J-,-. _____ ... E.--, "'.""E.. E.. -E.. E .. ____ , __ =01]1ax ~ /llXX Q llXY d - hxz-- '.ct--lJXX>-···d··'"-lJXy····a·rrJXZ 

d I ! · i 
l " ' 
! ' I a 

cpiay 
1 ia a !a a a da -:. ~-· F.. Fl.. G.. .G.. . . 
u t nyx . nyy \1.Jyz 1Jyx IJYY 11Jyz 

i \ f 
a 1 a a a a a ).a cp. ""8 .. ___ F.. F~. G.. G.. UT·· 

__ -..:.iaz._ --"-'" ---- uzx·---. ""'"'Trzy--" ·- ·-· flZZ-·. . -lJZX. -----lJZY-~··'-·--···· tJ-Z·z---

a 1 ia a ~ 
cpjax d 'jixx Gjixy Gjixz 

! . • 

a 1 la a ~ 
cpjay d f jiyx Gjiyy Gpiyz 

a _ --~-1 ... j ~ _ ___ ___ a ~ 
-,-:-~-a'Z' .. ----·- d 1jizx Gj:izy · · ~~izz 

or 

r V~ l fn!~ Z:a f + 
I a?-1a 1a 

• 
v~ I J Ea Fa I a z. CT. 

Ja a a Ja JR 

or 

{ v: ] = [A:] [ z:] + { a: } 

a F .. 
JJXX 

a 
Fjjyx 

a F .. 
JJXY 

a F .. 
JJYY 

a Fi .. pxz 
. ~ F.•,. 

Jpyz 

Fa -· ----F~ 0 --~,---~ -F~"' ·•I·• 
· ~jj:ix · jjzy jjzz 

x?-1ax 

y?-
ray 

a 
Yiaz 

• ~ 

y~ 
Jax 

y<:'-
Jay 

y<:'-
JaZ 

BASIC BAR (a) 

... 
1 ea 
d iax 

a 
T. ray 

a 
T. .1az 

+ a 
T. 
Jax 

a 
T. 
Jay 

a 
T. 

JaZ 

ts:) 

~ 
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Equations (Table 2-2) can be modified for application to bars 

with other end conditions. This is accomplished by deleting rows 

and columns associated with the redundants that do not appear for the 

special case. 

The end deformations (Fig. 2-5a) are represented by analogous 

loads known as elastic weights .(Fig. 2-5b). Forces are designated by 

"P", and couples by ~- They are defined by the matrix { W} as 

-a 
Qiax 

1 a 
d riiax 

--·-
-a a P. cpiay 1ay 

-a -a a .w. piaz cpiaz 
{w:} 

1a 
= = = 

-a -a a 
wja pjax cpjax 

(2. 5a) 

-a 
pjay 

a 
cpjay 

-a 
·pjaz 

a 
cpjaz 

or 

(2-5b) 

2 .. 2. 1. Analytical Expressions for Deformation.Constants 

Let the flexibility matrix for an element of length ds at 

q (Fig. 2-1) be defined by 



-a p, 
1az 
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a 
_____.,....xi 

FIG. 2-5a. END DEFORMATION VECTORS 
' 

y~ 
1 

FIG. 2-5b. END ELASTIC WEIGHTS 



[ :X.~aJ = 

or simply 

:x_q(N) 0 0 
qax 

----·--

0 :X. q(N) 0 
qay 

------·--·-··-· ------

0 0 A q{N) 
qaz 

0 0 0 

0 0 0 

0 

---

0 

---·-···-·····---· 

0 

A q(M) 
qax 

0 

0 

1---------

0 

--·· --------·-··-

0 

0 

:X. q(M) 
qay 

0 

----

0 

-----
0 

0 

0 

___ ,__ ______ ·-----·- r---···-··-------·- ·--····-·--,.,-----·-~-- ·-------------

0 

A q(N) 
qa 

0 

A q(M) 
qa 

0 0 0 A q(M) 
qaz 

-

in which .additional superscripts (N) and (M) denote linear and 
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(2. 6a) 

(2. 6b) 

angular quantities, respectively. The elemental elastic weights are 

designated by 

-{dwq } = . qa 

} , 

-q 
dQqax 

-q 
dQqay 

-q 
dQqaz 

(2. 7a) 
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(2. 7b) 

where cross-sectional elements are available from Eq. (2-2f). By 

means of conjugate beam analogy, equivalent end elastic weights due 

to bar-redundants and applied loads can be shown to be 

~· 
{wa} = I: [t a J ·[A. q J [t a J { za} a (a) qa,q j qa qa,q j a 

(2. 8) 

from which. the flexibility and load-function matrices are, respectively, 

given by 

" [ J~·[q][ J = L.J t a. A t a. 
(a) qa,q J qa qa,q J 

(2, 9) 

~· = I: [t a ] [A. q ] { BHq } 
(a) · qa, q j qa qa (2. 10) 

The additional superscript (L) denotes "due to applied.loads", 

Numerical values of these constants (Eqs. 2-9, 10) for various bar 

shapes are available elsewhere( 58 >. 

Lettheendsofbar (a) (Fig. 2-l)bedisplacedby {.o.fa} 
and { Aja} due to yielding of supports. Then the displacement

functions {a:(A)} are calculated as 
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1 (6a _ 6a ) 
d iax jax 

ea _ _1 ( 6 a _ 6 a ) 
iay L iaz jaz a 

a(A) a. 1a e~ + -1 (6 ~ - 6 ~ > iaz L · 1ay Jay a 
{ a:(A)} = = 

a(A) a. 

(2. 11) 

Ja 

-e~ + 1 ( 6 a - 6 a ) 
Jay L iaz jaz a 

- ()~ - l... (6 ~ - 6 a ) 
Jaz L · 1ay jay 

a 

Temperature-functions { cr!(T)} may be added to Eqs. (2 ... 10, 11) 

to obtain 

(2. 12) 



CHAPTER III 

FORMULATION AND SOLUTION 

In this chapter some basic elements of linear graph theori 59, 62 ) 

are reviewed and then used to establish the static equil:i.br:i.um of skeletal 

structureso Compatibility equations are then obtained by means of the 

cotransmi.ssion principle of elastic structureso Fina.Uy, an algebraic 

solution for the system unknowns is giveno 

3-1. Defirnl.t:i.ons 

A linear oriented graph (Fig. 3- la) is a set of lines and nodes in 

which each line has two ends called terminalso Orientation of each line 

is indicated by its associated arrowhead. It is further assumed that 

1) The set contains finite number of nodes and lines, 

2) Ends of each Hne coir11::ide with distinct nodes, 

3) Each node is a terminal of some li.neo 

A terminal of a line and a node are said to be incident when the 

terminal and the node c6foc:i.de o 

An end node of a graph .is a node at which a terminal of only 

one l:i.ne is incident. 

A subgraph is any subset of the elements of a grapho When the 

subgraph contains t"1Aro and only two distinct end nodes and in which all 

nonencl nodes are incident to only two terminals of distinct lines of the 

subgraph, it is called a siµiple open path (2dlb3 in Figo 3-la)o 

29 



A graph is said to be connected if and only if there exists at 

least one simple open path between every pair of nodes of the grapho 

A mesh is a connected subgraph such that every node of this subgraph 

is incident to two and only two termi.na.ls of distinct line members of 

the subgraph (2dlb3c in .Figo 3- la)o 

A tree is a connected g-raph conta:i.ning no mesheso Thus, it 

follows that between any two nodes of a tree there exists exactly one 

simple open patho There a.re nb line segments in a tree of nb + 1 

node so Any connected graph has a subgraph which .is a tree (indicated 

chord d terminal 

1 

node 
e 

0 

FIGo 3- lao ORIENTED LIN.EAR GRAPH-TREE AND CHORDS 

d d 

~2 
c 

(i) {ii) (iii) 

FIG. 3- lbo BASIC CUTSETS FOR THE GRAPH OF F'IGo 3~ la 
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by thick lines in Fig. 3- la} containing all the nodes of the graph. The 

lines that are members of the tree are called branches and those that do 

not belong to the tree are designated as the chords. This tree is, however, 

not unique. But the number of chords is the same irrespective of the 

choice of the tree. Each chord corresponds uniquely to a particular rr.1.esh 

(2dlb3c in Fig. 3-la) consisting of the chord and the simple open path in 

the tree between the end nodes of the chord. Let n be the number of line 

elements in a connected graph, nb the number of branches :i.n a tree of the 

graph; then, n = nb + nc where nc is the number of chordso 

For the purpose of this presentation a specific node of the graph is 

designated as the datum. Its significance and selection will be explained 

in the next section. 

A node-to-datum path is the simple open path in the tree of a graph 

between the node and the datum (2c3a0 in Fig. 3-la). 

A subgraph, separated from a connected graph by a closed line such 

that the line sever~ one and only one branch and none, few or all of the 

chords of the graph and such that the subgraph does not include the datum> · 

is called a cutset (Fig. 3-lb). Thus, having selected a tree :i.n a connected 

graph, a cutset can be associated with each branch. It follows then that a 

total of nb cutsets can be realized in the graph. 

3-2. Linear Graph of a Framework 

A framework (Fig. 1-1) is a system of bars, each of which 

(Fig. 1-:n is represented by an oriented line segment in a Hnear graph 

(Fig. 3-2a}. The arrow specifies the direction of the X-axis of the mem

ber system. Joints other than .supports, where one or more members 

meet, are nodes; and all the supports irrespective of their nature are 



joined bylines meeting at a common point known as the datum. Thus 

any number of supports are identified by the datum node. 
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The frame (Figo 1-1) can be reduced to one or more cantilevers 

(Fig. 3-2b) by removing a minimum number of redundant barso Topo

logically this is equivalent to ~ tree (called the formulation tree indi

cated by thicklines in Fig. 3-2a) resulting when certa:i.n line segments 

(chords indicated by thin lines i.n Fig. 3-2a) are separated from the Ii.near 

graph. In any connected graph.a number of trees can be realized, For 

formulation purposes only one of them is. sufficient, 

rigid node 

10 

hinged node 

FIG. 3-2a, LINEAR GRAPH OF THE FRAME OF FIG. 1-1 

----· ® 
Q) 

FIG. 3-2b, CANTILEVER BASIC STRUCTURE 
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In case all the supports of a structure are other than fixed, one 

or more as needed may be temporarily fixed. How to obtain the solu-

tion of the original structure will be explained in .detail in the last 

section of this chapter. 

3-3. Sign Convention for Oriented Graphs 

A line segment oriented (towards, a way from) a node· is said 

d 
,..,,,.-·--··~<-~·--· 

~~,.,,·~~,,~2. 

to be (positively, negatively) incident upon the node. For example, 

in Fig. 3-la,. line segment c is positively ind.dent on node 3 and 

negatively on 2. 

A chord is said to be (positively, negatively) intersected in a 

cutset subgraph, if the associated branch and the chord are (similarly, 

oppositely) incident on the nodes of the cutset. 
e d d ___ and _ e_ (cutset number (ii) of Fig. 3-lb) are, 

tively and negatively intersected. 

A branch is said to be (positively, negatively) included in .a 
' 

mesh if the branch and the associated chord are {similarly, oppositely) 

oriented in the mesh. For example, mesh "e0a3bl" {Fig. 3- la) con-

tains branch._~s __ b_ and __ a positively and negatively, respectively. 

A node-to-datu:r!l_path is said to contain a branch (positively, 

negatively).. if the orientation of the branch is (the same as,. opposite 

to) that of the path. In Fig. 3- la, path" lb3a0" contains 12_~:a:r1~!1-~s 

a and b positively and negatively, respectively. 

c 

3-1 !q.> 



3-4. Certain Topological Matrices 

Two matrices of utmost importance in this presentation can 

. be established by means of linear graphs. One is the basic cuts et 

matrix designated { r be], and the other, .the node-to-datum matrix 

[TbJ]. 
a) The basic cutset matrix has the following characteristics: 

I 

Its rows correspond to branches and columns represent chordso The 

matrix elements which are themselves matrices or vectors may be 

written down algebraically by an inspection of the basic cutsetso 

An element in row b and column c of { r be] is 

(-rb , +rb , 0) if the chord c is {positively, negatively, not) 
' c ' c 

intersected in the cutset subgraph corresponding to the branch bo 

The ma the ma tical structure of an element rb is a function of the 
'c 

geometry and classification of the branch b and the chord c as w:i.11 

be shown later.in this chaptero 

Following the rules laid down, the cuts et matrix for t.he graphs 
J-1 °'-, h 

of Figso @_~a, b is given by 

Chords -1---- d e 

Branches 

a 0 -r 
a,e 

b {rbcJ = -rb d r {3o 1) 
' 

b,e 

c -r c,d 0 
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Eq. (3. 1) can be easily established column by column by means 

of branch-mesh information. In this case the basic cutsets are not 

necessary. The fule is: 

An element in row b and column c of { rt ] is 
- )C 

(+I'b , -rb , 0) if' the branch b is {positively, negatively, not) 
'c 'c 

included in the mesh associated with the chord c. 

The cutset matrix is seldom a square matrix . 
.,..__h'' " -- ' 

b) The node-to-datum matrix has its rows corresponding to 

branches and columns represented by nodes other than the datum, 

The matrix can be constructed algebraically by the following rule: 

An element i'n row b and column J of [ TbJ] is 

(-Tb, J' + Tb, J'. 0) if the branch b is (positively_, negatively, not) 

th 
contained in the J node-to-datum path. Like rb the mathe-

' c' 

matical structure of Tb J depends upon the classification and 
' 

geometry of the branch and the node as will be explained subsequently 

in this chapter. 

For the graph of Fig. 3- la, the node-to-datum matrix 1.s 

given by 

No des -----
Branches 

b 

c 

a 

1 2 

0 0 

0 -T 
c, 2 

0 

----+----------~----·---~-·-··---··--

-T 
a,2 

'I' 
a, 3 



\· .. :_:.,"' ..... :· Matrix . [ TbJ] is always a square matrix unless any columns 

ar~ d~leted. for some reason a Proper arrangement of rows and 

columns yields a triangular form (Eqo {3. 2))0 

3-5. Statical Indeterminacy of a Space Frame 

The system elements are subdivided into: 

Group.· I: nblh Branches'with a .hinged end, 

Group II: nbOh Branches with rigid ends, 

Group III: nc Oh Chords with rigid ends. 

Group lV: nc2h Chords with both ends hinged, 

Group V: nclh Chords with a hinged end, 

Group VI: ncss Chords representing spherical supports at joirits 

where two or more bars are connected together. 

The total number of bar-redundants may be shown to be 

3(nblh. + nclh + ncss) + 6(nb0h + ncOh) + nc2h. 

or simply . 

3(n + nbOh + ncOh) - 2(nc2:h). 

where n is the count of line segments in a .linear graph (Fig. 3-2a) 

of a space frame. 

Ne.cessary equations for the solution of the member redundants 

are obtained from statics and compatibility. Excluding the datum, 

36 

there are nblh hinged nodes and nbOh rigid ones. P(nblh.) + 6(nb0h)) 



Independent equations of equilibrium may conveniently be written by 

means of (nblh + nbOh) basic cutsets .:-+ freebbdies from a 

structural engineering point of view. Thereby the statical indeter

minacy of a skeletal structure may be expressed as 

3(n + nbOh + ncOh) - 2(nc2h) - (3(nblh) + 6(nb0h )) 

or simply 

6(nc0h) + nc2h + 3(nclh + ncss) 

The relations of this section for the number of bar-redundants 

and statical indeterminacy are subject to the condition that a formu

lation tree can be constructed without the necessity for constraining 

any supports. 

For the frame shown in Fig. 1-1 (corresponding linear graph 

is given in Fig. 3-2), nblh = l; nbOh = 3; ncOh = l; nc2h = 2; 

ncss = 1. Correspondingly the bar-redundants and the system 

unknowns are 38,and 17, respectively. 

3-6. Modified Joint Loads 

Consider a joint J in a framework at which "al" bars 

are positively incident and "a2" bars negativelyincident (Fig. 3-3a). 

The applied loads at the node are given by 

{w~} = [:~) 
(3. 3a) 
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Bar (a) 

zlc~ o y 
0 

XO 
0 

FIG. 3-3a. JOINT J AND ADJOINING BARS 

. 0 y 

FIG. 3-3b. EQUNALENT SYSTEM OF LOADS FOR BAR (a) OF 
FIG. 3-3a 
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Loads may also be applied at a number of points along the 

members (Fig. 3-3a). For convenience of formulatiop., the member 

loads are replaced by an equivalent system consisting of basic reactions 

{ BH~a} and { BNja} acting at the ends i and j (Fig. 3-3b). They 

are then added algebraically to obtain the modified joint loads as 

(3. 3b) 

(3. 3c) 

or simply 

(3. 3d) 

3-7. Equilibrium 

Static Equilibrium of an.arbitrary system of bars (Fig. 1~1) 

can be established by means of its linear graph {Fig. 3-2R). Four. 

the basic cutsets of Fig. 3-2:a.. 

expressed by 

(3.,4a) 

Utilizing Eqs. (2. 3). (3. 3),. and notation of Table 3-1 and .rearranging 

terms, Eq. (3. 4a) becomes 
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No WO 

~j8 
2 

0 
N.1 

p~ J . 
5 

0 6 0 
Nj7 , No 0 Hj5 

j9 Nj6 

0 
Nj8 

(a) (b) 

0 WO 

0/. 
3 

WO 
2 

~ 
2 

3 '10 

8 1s1 ~ 0 

0 
Hj3 0 

2 ilO o H 

CD 
Nj 6 . j5 4 

0 0 
Nj8 O' Nj7 0 

Hj1 Nj9 

(c) (d) 

FIG. 3-4. FREEBODIES FOR THE FRAME OF FIG~ 1-1 



41 

x 7 W3° 
i7x 

Po 4b) 

in which;· for example, [r l, 8 ] and [Tl, 1] are given by 

(3. 4c) 

and 

0 0 0 0 0 0 0 0 0 

{.03, 6] = 0 0 0 0 0 0 [ 03] ~ 0 0 0 . p. 4d) 

0 0 0 0 0 0 0 0 0 

.The .isolated part {Fig. 3-=4b) yields 

(3o 5a) 

Since the loads applied at intermediate points of the bar number 8 are 

in equilibrium with basic reactions, only the influence of { ~Nf 8} and 

{Baf8} is considered in writing the above equation. Substituting 

from Eqs. (2. 2, .. 3,. 4) and introducing the nomenclature of Eqo {3o 3) 



TABLE 3-1. STEREO~STATIC MATRICES OF A SYSTEM Ol/\BARS 

Identification of Branch and Its Details Type of Elements Associated with the Branch 

Chord Details Node Details 

Node at Node at 
which end Group Branch which end Group Hinged Rigid 

No. j is classi- Transformation Matrix No .. j is classi- Node Node 

incident fication incident fication No. No. 

c k IV -- --· 

" · .. v·~f ~ c b v -- --
I -.1 * 

b b I [wob] = -I;, {°'obz t • 
L {"' } 

c b VI -- --
· . b oby . 

-~·-· -- -- - J(=b) --· 

- * -
d{°'obx} 01. 3 c k. III -- --

* * -Lb{"'obz} {"'oby} c k IV -- --

* * 
Lb{"'oby} {"'obz} c k v -- --

-1 
b h II [rrjob] = 

c· k VI -- --
03 ["'obr 

~ - -. -- - J --
-.- -- - -- J 

STEREO-S'J;' ATIC 

MATRIX 

{rb,c} =[~:bJt"'oc~} .\ 

[rb,c] =["':bf ["':c] 

. -1 
1 

[rb,c] =["':b] a 
-1 

[Tb,~ =[ °':bJ . 

-1 . 

~b;c] =(TTjob] [r:iJtjo~ 

tb,c 1 = [TTjobrl{r~~(°'ocx}i 

{rb,c] = [TTjobJ
1f~aj [";:c] 

{rb.c] = [njobJ
1 
{rL~k]i 

-1 . 

{Tb,J] . ., [njob] · {rL~ 

[rb,J] = [•jobJ
1~~J] 

~ 
l\.:> 
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and Table 3-1, Eq. (3. 5a) may be written as 

X.66 W2o 
1 X 

X7 W3o 
i7x 

(3. 5b) 

where, for example, 

-1 -1 

[r2. 5] = [njo2J [r~. 2J [ TTjo5J • [ T2, 2J = [njo2J ~~2] (3. 5c) 

Similar equations can be obtained from the freebodies shown 

in.Figs. 3-4 c, d. All these relations are collected into a single 

matrix equation 

{:;J (3. 6a) 

, ' 
in which 



z5 
5 

, ~ 

1 6 Pl0 zil x.6 1 X 

z2 x7 w2° 

{zb} = 
2 

{ zc} 
.i7x 

{wJ} = -· (3. 6b) 
z3 8 ,W3° 

3 zi8 

z4 9 W4° Z.g 4 . 1 - ~ 

0 
zilO 

{r be] and [ TbJ] are the ,eutset and node-to-datum matrices of 

the linear graph (Fig. 3-2a) of the frame (Fig. 1-1 ). They are 

recorded in Table 3-2. 

Thus the problem of establishing static equilibrium for frame-

works is reduced to the following two simple routine steps 

1) Represent a given structure by its linear graph which is a 

simple plane sketch. Then construct a formulation tree in the same 

figure indicating the branches by thick lines. Thin lines stand for 

chords, that is, redundant members. 

2) Utilizing the branch-mesh and node-to-datum information 

of the graph, Eqs. (3. 3) and.Table ·3-1, develop {r be] and 

[ TbJ] as explained in Sections 3-4, 7 of this chapter. It must be 

noted that this approach eliminates the laborious task of drawing 

freebody sketches. 

Eq .. (3. 6a) is augmented to obtain 
;·· 

{z} = { ~ I x J { ::} (3,6c) 
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TABLE 3-2. TOPOLOGICAL MATRICES FOR GRAPH OF FIG. 3-2c 

CUTSET.. MA TRIX 

c = 5 c = 6 c = 7 c = 8 c = 9 c = 10 

.. b = 1 0 0 -rt, 7 -r1 a -r1 9 0 , , 
----

b = 2 

{ rbc J = 
b = 3 

-r2 5 -r2 6 0 r 2, s 0 0 
' ' 
·--·· 

-r3 5 -r3 6 0 r 3 s 0 r3 10 
J ' ' ' 

' 

b = 4 -r4 5 -r4 6 -r4 7 0 -r4 9 r4 10 
' J J J ' -

NODE-TO- DA TUM MA TRIX 

J = 1 J = 2 J = 3 J = 4 

b = 1 T 1,, 1 0 0 0 

- ·-------
b = 2 0 T2 2 0 0 

[TbJJ = 
' 

b = 3 0 T3 2 T3 3 0 
J· J 

b = 4 T4 1 
' 

T4 2 
J 

T4 3 
' 

T4 4 
' 



where 

{ zbJ {rbc] {Tb~l {z}=~; {s]=-1 ; {x]=-0 J (3. 6d) 

' 
[I] anh [ 0] are identity and null matrices. 

3-8. Elasto·Statics 

In Section 3-5 of this chapter, an expression for the number 

of redundants in an indeterminate frame was given as 

6(nc Oh) + nc2h + 3(nc lh + ncss ). 

An equal number of deformation equations are required for the com

plete solution of the problem. 

a) System Elastic Weights 

· Elastic weights of a bar (a) were defined in Chapter II as 

{w:} = [ A:]{ z:} + .{ er:} (3. 7a) 

for the whole system 

-1 Al 0 0 0 0 z1 1 
w1 1 1 er 1 

---------- -------------- ~-- i-----· 

• 0 • 0 0 0 • • 
-a 0 0 Aa 0 0 za + a 
wa = era a a (3. 7b) 

------ ----- 1----

• 0 0 0 • 0 • • 
~n 

0 0 0 0 An Zn n w er 
n n n n 
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or simply 

{ W} = [A] { Z} .+ { a } (3. 7c) 

in which · [A] is a square matrix whose diagonal elements are either 

scalars or square matrices, and off-diagonal submatrices consist 

of zeros. [A] is known as the primitive flexibility matrix. 

Eq. (3. 7c) is partitioned corresponding to branches and chords 

as 

(3. 7d) 

b) System Deformations 

Let the deformations in the direction of system unknowns 

{zc} and joint loads {wJ} be denoted by 

{a} = { ::} (3. 8) 

As a result of the contragredient properties (53 ) of actions and 

deformations in elastic structures,. the distorsions of the members 

{Eq. (3.7b)) may be transformed to equivalent displacements { .6} 
. . { I J* at the releases and nodes by the cotransmission matrix !; X , 

since { !; j X] was the matrix which transmitted actions at the 

releases and joints to the members (Eq. (3. 6c)). Thus, 
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(3. 9) 

Introducing the notation of Table 3-3~ the above equation may be 

written as 

(3. lOa) 

(3. lOb) 

c) Compatibility and Solution 

The solution to system unknowns { zc} is obtained by post

ulating that the elastic curve shall be continuous in the direction of 

the forced releases. This means that { .6c} be equal to zero. 

Thus from Eq. (3. lOa), 

(3. lla) 

Eq. (3. lla) is substituted into Eq. (3. lOb) to obtain 

(3. llb) 

The nomenclature used in Eqs. (3. 1 la, b) is recorded in Table 3-3. 

Once { zc} are calculated, determination of other quantities 

is a simple matter of application of Eqs. (3. 3a), (2.2), (2. 3), and (2.4). 

Deformation matrices in Eqs. (3. lOa, b) can be generated 

element by element by means of the following expressions: 
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[Ac., c.J i 7 1, 2 •·• nc 
1 1 (3. 12a) 

. * 
{Ac c J = > : {~Tb c J [Ab J {~r.b c J J~:. 1~+'21 :::nncc} .• . . b ( ) k' . k k' . 

1 J k ci-cj 1 J 
(3. 12b) 

(3. 12c) 

; * 
= { a } + ,2 : {:r.b J { crb } 

ci · bk(c.- c.) k' ci k 
1 1 

i=l, 2 ... nc (3. 12d) 

~= 1, 2 ... nb} 
J= 1, 2 ·•· nb 

(3. 12e) 

* ·{a } = :> : {T ] {a .} i = 1, 2 ... nb 
JJi bk(J.-J.) bk.Ji bk 

1 1 

(3. 12f) 

in which 

denotes summation over branches common to loops 

bk(c.-c.) 
1 J 

> I 

bk(c.- J.) 
1 J 

=> J 
bk(J.-J.) 

1 J 

corresponding to chords ci and cj' 

denotes summation over branches common to loop c. 
1 

and node-to.!.datum path J .• 
J 

denotes summation over branches common to the node-

to-datum paths Ji and Jr 
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TABLE 3-3. ELASTO-STATIC MATRICES OF A SYSTEM OF BARS 

-!~ 

{ ercb} = {rbcJ { (Jb} 

-!~ 

[ A J J J = [ T bJ J [ Ab J [ T bJ] 

-!~ 

{ CJ J J} = [ T bJ] { erb} 

-1 
{ er } = {er } - [A J {er lJ J JJ cc cc 



3-9. Analysis of Frameworks with Supports Other Than Fixed 

It is not possible to establish a formulation tree when all the 

supports of a structure (Fig. 3-5a) are other than fixed.· This dif-

ficulty will be overcome by restraining one or more supports as 

needed (Figs. 3-5b, c). The solution obtained for the :qiodified struc

ture (Fig. 3-5b) does no,t generally satisfy the condition that the sum 

of the end-conditioning moments of all the bars meeting at the fixed 

51 

support plus the couples applied at that point be equal to zero. That is: 

(3. 13a) 

or in terms of system unknowns and applied loads, 

(3. 13b) 

Eq. (3. 13b) may.be employed to reduce the degree of statical 

indeterminacy of the modified structure to that of the original frame

work. Such a procedure becomes mathematically involved especially 

·in case of complex space frames. In addition the computations can-

not easily be adapted to computers. 

Lagrange's method of undetermined multipliers is employed 

to take care of the constraint conditions (Eq. (3. 13b)). Let the 

matrix of the undetermined constants be denoted by {µ} 1 in which 

.th t t . 1 • cons an 1s µi . _ Their number is equal to that. of the 

constraint equations. The ·solution equation (Eq. (3. 1 la)) for the 

new structure is modified to obtain 
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CD 

FIG. 3 ... 5a. A FRAME ON SPHERICAL SUPPORTS 

® 

Joint@ CD 
constraine 

FIG. 3-5b. MODIFIED STRUCTURE 

® 

FIG. 3-5c. LINEAR GRAPH OF MODIFIED FRAME 
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(3. 14) 

Eqs. (3. 13b, 14) are collected and written as 

or simply 

(3. 15b) 

The correct solution.to the original structure (Fig. 3-5a) is given 

by Eq. (3. 15b). 

It must be noted that this approach involves unknowns equal 

to twice the number of constraints plti.s·:the redu1'ii:fahts' of;tlie'·-given 

frame. 



CHAPTER IV 

SOLUTION OF HIGHLY REDUNDANT SYSTEMS IN 

EASY STAGES 

Structural analysis consists of formulation and numerical 

solution, the first of which has been investigated in Chapter III. 

Many practical problems involve the solution of hundreds, and some

times thousands of simultaneous equations, requiring development 

of new techniques to reduce both the volume of numerical operations 

and the amount of computer storage necessary at any stage of com

putation. The purpose of this chapter is to describe group elimina

tion method for fairly large frameworks. 

4-1. Basis of the Method 

The essential feature of the method is the proper arrangement 

of the system redundants into groups such that the resulting flexibility 

matrix of the whole structure is of ·"tridiagonal"' or "three and five 

diagonal" form. ·Inmost practical cases this is possible. Two types 

of grouping are presented .in the following. 

4-1..L Subdivision Resulting in "Tridiagonal" Flexibility Matrix 

Consider an arbitrary framework shown in Fig. 4-1, for 

which a formulation tree consisting of nt separate parts is indicated 

by thick lines and chords by thin lines (Fig. 4-2,). The chords 
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FIG. 4-1. ARBITRARy FRA111:ewoRK IN SPACE 

c.n 
c.n 
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interconnection 
group 
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FIG. 4· 2. TREE SUBGRAPHS - REDUNDANT GROUPS 

FIG. 4-3. MUTUAL INTERACTION BETWEEN REDUNDANT 
GROUPS OF FIG. 4-2 
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contained within a part of the tree make an interior group and those 

interconnecting two adjacent tree subgraphs constitute an interconnection 

group. Let the total number of groups be ng• which for the case under 

consideration is equal to five. Mutual interaction is graphically 

·represented by Fig. 4·3, The solution matrix for the complete struc

ture is of l'tr'idiagonal'.' form and is given by 

Ag 2 
' 

I 
I 
i ........ ···-, ..... -.... .. ....... . I 

A2, 3 ! 

.. """'"" .. : .... ,. ....... '" ......... ·-·· .1 ... . 
I I 

A3. 3 I A3 4 
' ' 

\ A4, 5 
I 

"-·-··- ....... -· ...... -.......................................... I . . , .. 

I :A5. 5 

• 

z1 Kl 

. Z2 K2 

Z3 - K3 (4-1) 
'--=·/ ,u . ... 

.. Z4 .K4 . 
: 

I 

Z5 K5 

in which symmetrical submatrices along the diagqnal are flexibilities 

of the individual groups and the nonzero off-diagonal ones represent 

coupling effects. The matrix is very sparse, as is usually the case 

with large systems. 

This type of grouping is favorable for building frameworks 

with the number of bays larger than the number of stories. 

4-1. 2. Sub-Division Resulting in "Three and Five Diagonal" 

. Flexibility Matrix 

For the structure of Fig. 4-1, another formulation tree is 

shown in Fig. 4-4. The tree is.divided into nt segments. The chords 

with both ends incident within ~ segment form an interior group and 



58 

Redundant Groups 

Tree segments 

FIG. 4-4. TREE SEGMENTS - REDUNDANT GROUPS 

1 2 3 4 5 6 7 

FIG .. 4-5. MUTUAL INTERACTION BETWEEN REDUNDANT 
GROUPS OF FIG. 4-4 

8 

datum 



those located between two adjacent segments make an interconnection 

group. As shown in Fig. 4-2, there are a total of n = 8 redundant g 

groups. Mutual interaction in this case is represented in .Figo 4-'5. 

The solution matrix given by Eq. (4. 2) is of "three and five diagonal" 

form. 

This type of subdivision is favorable tor tall., slender frame-

works. 

zl Kl 

A2 1 A2 2 A2 3 A2 4 
J , ' ' 

z2 K2 
------------·-·--· ... -.. -------- --···--·-···-·-- -- ···--· -····----··-- ···-----· •... ··------········-·--··· ------- -- --

' A3 2 A3 3 A3 4 
, ' ' . ' 

Z3 K3 

Z4 K4 
·-

Z5 K5 

A6, 7 A6, 8 z6 K6 
------- ·------- --

A 7, 7 A7, 8 Z7 K 7 
·--- ----- -·---·-------

AB, 7 AB. 8 zs K3 
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(4o 2) 

4-2. Group Elimination 

:,·· 

Direct matrix inversion is not practical for large sea.le 

systems. Gauss's method can be efficiently employed taking advan-

tage of the inherently sparseness of the matrices .. The process of 

elimination for the solution of Eqs. (4. 1) and (4. 2) is represented· 

graphically in Figs. 4-6 and 4-7, respectively. 

In the following development of recursion relationships for 

the analysis of redundant groups. (Fig .. 4-4)"' . it is assumed that the 



Redundant 
Groups 

After First 
Stage 

After Second 
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FIG. 4-6. GRAPHICAL REPRESENTATION OF ELIMINATION 
STAGES FOR EQ. (4. 1) 

Eu 
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Redundant 
Groups 
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.Stage 
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FIG. 4-7. GRA,PHICAL REPRESENTATION OF ELIMINATION 
STAGES FOR EQ. (4-2) 
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flexibility matrices "A" in Eq. (4, 2) are generated first by means 

of the techniques of Chapters II and III. As shown in Fig. 4-7, the 

first stage eliminates the alternate groups 1, 3, 5 and 7 corresponding 

to the tree segments. Thus from Eq. (4. 2) 

= {A:11. J {z. } + {A:Il. . J {z. . } + {K:Il} 1, 1-n. . 1-n 1, 1+n 1+n 1 
m m m m 

in which 

-1 
{ A :Il..... ] = - [A :Il ~ l J { A :Il ~} ] 

1, 1+n 1, 1 1, 1+nm 
m 

m denotes the elimination stage number; n = 1 for m = l; i 
m 

assumes the numbers 1, 3, 5 and 7 of the groups eliminated; 

( 4. 3a) 

(4. 3b) 

( 4. 3c) 

matrices with subscripts less than 1 are considered null; and zero 

superscript indicates the initial matrix. 

The reduced system of equations after the first stage is of 

"tridiagonal " form and is given by 

m m 

A~t- z2 Km 
A2 2 A2 4 2 

' ' -----
m 

Af 4 
Km 

A4 2 Z4 4 
(4. 4a) ' ' = ----

~ 
----

m m m 
z6 Km 

A6 4 A6 - 8 , , ' 6 
----- -- -·--· 

!Am m 
z8 Km . 8, 6 I 8, a 8 
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in which 

[ m J [ m-lJ { m-1 ]{ m J { m-1 J{ m J A. . = A. . + A. . A. . + A. . A. . 
J, J · J, J J, J-n · J-n , J J, J+n J+n , J m m m m 

(4. 4b) 

{ · J { . · · ]~~ { m - 1 J { m - 1 J { J A. . = A. . = · A. . + A. . A. . 
J, J+2n J+2n , J J, J+2n · J, J+n • J+n , J+2n m m m m m m 

(4o 4c) 

{K~} = {K~-l} - {A~~l ]{K~ } - {A~~l ]·{K~ } 
J J J, J-n J-n J, J+n · J+n m m m · m 

(4. 4d) 

j assumes the numbers 2, 4, 6 and 8 of the remaining groups after the 
i . 

first stage; matrices with subscripts less than one or greater than 

eight (that is ng) are considered null/ m = l; nm= 1 for m = 1; and 

zero superscript denotes initial matrix. 

With m = 2 onwards, nm ='2nm-l' and {ArjJ2n ]= { oJ, 
m 

Eqs. (4. 3)..and (4. 4) may now be applied repeatedly to eliminate 

group n:qmbers i = 2, 6 at stage 2, and group number i = .4 at 
, . . 

stage 3. Continuing this process ultimately leads to a.n equation, 

containing redundants of only_ one group 11;~ber j given by 

[A~~] { Z.} = {K~i} 
J, J J . J 

where j = (2)mt 

mt =.,total,nµmber 'of elimination stages. 

(4. 5) 

Eq. (4. 5) can be solved for {zj} by any direct :µiethod. Redundants 

in all other groups may then be obtained by back-substitution into 

Eqs. (4. 3). 



General recursion relationships for the solution of the type of 

Eqs. (4. 1) and (4. 2) are recorded in Table 4-1, in which 

m = elimination stage number, 

mt = total number of stages, 

i denotes group numbers eliminated1 

j refers to the residual groups after an ~d.imination stage, 

matrices with subscripts less i:han one or greate:1:' than the 

group· number are co,nsidered null, and zero ·superscript IndI·, 

ca te s initial matrix. 

A relation between mt and the total number of groups ng 

can be shown to be 

(2)mt :!:'.: ng :!:'.: (2)mt+l - 1 {4, 6) 

The process has an interesting physical meaning. Each stage 

of elimination is equivalent to the closure of gaps corresponding to 

the redundants eliminated. 

Advantages of this technique are: 

1) Analysis of large frameworks that previ.ously could have 

been solved only approximately may now be conducted in easy stages 

to obtain fairly accurage results. 

2) The amount of computation involved in the direct solution 

is considerably reduced. If several of the groups are identical, the 

amount of reduction increases proportionately. 

3) If a system already solved is altered in any manner, such 

as changes in some member sizes, the solution of the altered system 

need not be started from the beginning. Only those parts of the 
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TABLE 4-1. RECURSION RELATIONSHIPS FOR SOLUTION OF THE TYPE OF EQS. 4. 1 AND 4. 2 

·r mJ=[ m-1J-l{ m-1} iK· A. . K. 
l 1 1, 1 1 

m _ . m-1 I m-1 
A. ·+ - - A. . A .. + { J t J-1r J 
. 1, l'- nm 1, 1 l 1, 1- nm 

tr z.} = {A:TI. _ J {z. _ } + [A:TI. + J {z. + J +[K:TI} 1 1, 1 n 1 n 1, 1 n 1 n L 1 m m m m 

A .. = A. . + A . A. . + A . . A. . ~ mu t m-J t m-1 J t m ~ { m-1 J t m ~ J, J J, J j, J - nm J - nm'J J,J+nm J+nm,J 

-

1st Stage 1·2nd Stage 
m=l m=2 

Last Stage 
m=mt 

> I i=l,3, ... 1i=26 I 11·-c2)mt-l I Jo • • • • • -

or 
i= (2)mt-1 

' 
3(2mt-1 ·· ) 

{ m J [ m il;~ { m-1 J t m-1 J{ m J A. . = A. . = A. . + A. . A. . 
, J, J + 2nm J + 2nm,J J,J + 2nm J,J+nm J+nm,J+2nm > 

j:::2,4, .•. , j=4,8, .••. I••• 

I I 
j = (2)mt 

{K1:1} = {K1:1-11- [A1:1.-1 J ~K1:1-1} _ {A1:1.-1 J ~K1:1 } J J J,J-n J-n J,J+n · J+n ., m m m m 

n = 1 
m 

n = 2n m m-1 

m = 1 

m = 2, 3, ... mt 

[ A1j!2nJ =[ 0 J 
{ Ai j ! 2nm] = [ O J 

~ I 

m = 1, 2, 3 mt (for Eq. 4. 1) 

n1.=2,3, mt (for Eq. 4. 2) 
0) 

~ 



analysis which are affected need be repeated. 

4) . The process can be easily programmed to a digital com

puter, and the solution efficiently accomplished by means of computer 

systems such as GISMO (General Interpretive System for Matrix 

Operation). 
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5-1. Space Frame 

CHAPTER V 

APPLICATION 

The steel framework (Fig. 5-1) has been completely solved 

on the IBM 1410 computer. Properties of its members are given in 

Table 5-1. All bars are prismatic. Modulus of elastidty_, E, is 

equal to 4, 3.20, 000 kips per square fooL 

Fig. 5-2 shows a formulation tree and corresponding redun-

dant members. The procedure of analysis is given by a detailed flow 

graph in Appendix B. 

Three static effects considered are: 

a) Applied loads as shown in Fig. 5~ 1, 

b) Temperature increase of 40°F, 

c) Support displacements: o~x :.-:: o~Y - ~o~z - O" 015 1 

Solution of each case is recorded in Table 5-2. 

5-2. Planar Frame Loaded out of Plane 

The structure shown in Fig. 5-3 has been analyzed by 

Koepsell(l 5>, Member properties and joint loads are given in Table 5-3" 

A formulation tree is sketched in Fig. 5-4. 

Utilizing the relationships given in Appendix A and Table 3-1, 

the topologic matrices recorded in Table 5-4 are calculated" The 
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TABLE 5-1. PROPERTIES OF SPACE FRAME BARS (UNITS: Kips, Kip-Ft., Ft., Radians) 

MEMBER COORDINATES OF POINTS (Ft.) FLEXIBILITIES IN MEMBER SYSTEM 

(E)Diixx (E)~iyy (EJFfizz 
a a 

(E)Fjjzz No. Shape i j k (E)Fjjxx . (E)Fjjyy 

1 21 WF 142 (0, 0, 12) (20,0,12) (0, 0, 24) 68.965517 40.621786 358 • .22752 -- -- --
2 21 WF 142 (0,20,12) (20,20,12) (0,20,24) 68.965517 40.621786 358.22752 67897.835 40. 621786 358.22852 

3 21 WF 142 (0, 0, 12) (0,20,12) (0, 0, 24) 68.965517 40. 621786 3.58. 22752 67897.835 40.621786 358.22752 

4 14WF 142 (0, 0, 0) (0, 0, 12) (-20,0,0) 41. 290322 49. 601722 125. 65369 43230.020 49.601722 125. 65369 

5 14WF 142 (20,20,0) (20,20,12) (0, 20, 0) 41. 290322 49. 601722 125.65369 43230. 020 49.601722 125.65369 

6 8WF67 (20, 0, 0) (20,20,12) (0, 0, 0) 170.48875 ·- -- -- -- --
7 8WF67 (0, 0, 0) (20,0,12) (0, 20, 0) 170. 48875. - -- -- -- --

-
8 21 WF 142 (20,20,12) (20,0,12) (20,20,24) &8.965517 40.621786 358.22752 -- -- --
9 14WF142 (20, 0, 0) (20, 0, 12). (0, 0, 0) 41. 290322 49.601722 125.65369 -- -- --

LOAD FUNCTIONS FOR CASE (a) 

BAR LOAD FUNCTIONS LOAD FUNCTIONS FOR CASES 
(E)cfax 

a 
(E)-rfaz (E)-rjax 

a 
(E)Tjaz NO. (E)-riay (E)-rjay (b) AND (c) ARE ZERO 

l o. 0 -1015.54 -895.569 -- -- --
2 

ALL OTHERS ZERO ,. 

9 

(E)Gtyy 

--
20.310893 

20.310893 

24.800861 

24.800861 

--
--
---

(E)Gtzz 

--
1'1'9, 11376 

179. 11376 

62. 826844 

62.826844 

--
-
--
--

. 

0:, 
00 



BAR END NO. NX 
kips 

i -5.13171 
1 

·j -5.13171 

i 0.00138 
2 

j ·O·. 00138 

i -o. 54251 
3 

j -0;54251 

i -5.51399 
4 

j -_5. 51399 

i -o. 24711 
5 ' 

j --o. 24711 

i 0.46043 
6 

.j 0.46043 

i 5.76536 
7 

j 5.76536 

i -o. 43348 
-8 

j -0,43348 

i -7. 4362_8 
9 

j -7.43628 

.. 

TABLE 5-2a .• COMPUTER SOLUTION FOR THE FRAME OF FIG. 5-1 - CASE (a) 

END REACTIONS IN MEMBER SYSTEM JOINT DEFORMATIONS IN GLOBAL SYSTEM 

JOINT 
NO .• 6x 6 6 ex 9y NY NZ MX MY MZ y - z· 

kips kips ki~·ft. kip-ft. kip,-ft. in. . in. in. radians radians 

o. 55946 -5.51995 0.00000 10. 39903 · 1.18929 .-_ 

l o: 0036115.94 o~ 00035250 -. -0~00085292 -- ----o. 44054 4.48005 0.00000 o. ooo·oo 0.00000 ' 
··t 

·-· 
o. 00821 o. 00020 -o. 00011 -0.00878 o. 17997 

2 --0. 00000014 o. 00027056 -o. 00002_858 0.00000154 - 0.,00000007 
o. 00821 0.00020 -o. 00011 -o. 00480 o. 01577 

-0.06791 o. 00596 -0.00878 -o. 11911 -1. "17832 
3 0.00000000 o. 00000000- 0.00000000 0.00000319. 0.00000024 

-o·. 06791 o. 00596 --0. 008'18 o. 00011 0.17997 

o. 01696 -1. 06296 0.01097 --2. 36522 o. 08437 
4 0.00467887 o. 00010394" -o. 00063243 · o. 00000152 0.00013821 

o. 01696 1.-06296 0.01097 10.39025 -o. 11911 

0.03046 0.00055 0.00099 -o. o:oi 75 ·o. 1.0504 

0.-03046 0.00055 0.00099 o. 00480 -0. 20051 

·O. 00000 o; 00000 0 •. -00000 ·o. 00000 0.00000 

0.00000 0.00000 o. 00000 0.00000 o. 00000 

0.00000 0.00000 0.00000 o. 00000 0.00000 

0,00000 o. 00000 0.00000 0.00000 0.00000 

o. 00084 -0. 01002 0.00000 0.20040 o. 016'1£ 

·o. 00084 -0. 01002 0.00000 0.00000 0:00000 

0.00705 -o. 18628 0.00000 2. 23532 0.08462 

0.00705 -0.18628 o. 00000 o. 00000 0.00000 

.flz 
radians·_· 

--
0.00000990 

-.o. 00001445 

.. 

0 •. 00010973 

O') 

co 



BAR END NO. NX 
kips 

i -0,41824 
1 

j -0.41824 

i -8. 56391 
2 

j -8.56391 

i -4.51727 
3 

j -4.51727 

i -1.32269 
4 

j -1.32269 

i -0.86189 
5 

j -0.86189 

i -4,52410 
6 

j -4. 52410 

i -3.04253 
7 

j -3.04253 

i 0.05536 
8 

j o. 05336 

i 2.61054 
9 

j 2.61054 

TABLE 5-2b, COMPUTER SOLUTION FOR THE FRAME OF FIG. 5-1- CASE (b) 

END REACTIONS IN MEMBER SYSTEM JOINT DEFORMATIONS IN GLOBAL SYSTEM 

JOINT 

NY NZ MX MY MZ NO. 0 x oy 0 e (Jy z x 
kips kips kip-ft. kip~ft. kip-ft. in. in. in. radians radians 

o. 10420 -0.04691 o. 00000 0.93819 2, 08404 
1 0,06053333 -o. 00246314 o. 03773949 

o. 10420 -o. 04691 0,00000 0.00000 0.00000 

0.13559 2.19126 0.00547 -0. 02232 2. 19966 
2 o. 06076111 0.05998994 o. 03734491 -0.00018925 o. 00025608 

o. 13559 2. 19126 0,00547 43. 80282 -o. 51216 

-0.21382 -1.27578 -o. 02232 ·. 25. 51021 -2. 07667 
3 0.00000000 0.00000000 0.00000000 -o. 00027526 -o. 00036142 

-o. 21382 -1. 27578 -o. 02232 -o. 00547 2. 19967 

-4.41307 o. 20442 0.00734 -1. 53722 -27.44660 
4 -0.00178449 -o. 06153464 o. 03728829 0.00008448 -o. 00001070 

-4.41307 o. 20442 0,00734 o. 91587 25. 51021 

3. 68843 -8. 5398.0 o. 02985 58.67473 24.30140 

3.68843 -8.53980 o. 02985 -43. 8028.2 -19. 95980 

0.00000 0.00000 0.00000 0.00000 0.00000 

O; 00000 0.00000 0.00000 0.00000 0,00000 

o. 00000 0.00000 0.00000 o. 00000 0.00000 

0.00000 0.00000 , 0.00000 0.00000 o, 00000 

-o. 02412 -0. 99826 0.00000 19. 96528 . -o. 48232 

-o: 02412 -0.99826 0.00000 0.00000 0.00000 

-o. 04884 3. 05131 0.00000 36.61567 -o. 58610 

-o. 04884 3. 05131 0.00000 0.00000 0.00000 

.ez 
radians 

0. 00029868 

0.00008882 

o. 00007347 

-J 
0 



BAR END NO. NX 
kips 

i -o. 00452 
1 

j -0.00452 

i -26.65552 
2 

j -26.65552 

i 7.98662 
3 

j 7.98662 

i 1. 76840 
4 

j 1.76840 

i -7.13365 
5 , 

j -7.13365 

i -0,01868 
6 

j -0,01868 . 
i I 

0,00093 
7 

j 0.00093 

i 0.00853 
8 

j 0.00853 

i 0.00775 
9 

j 0,00775 

TABLE 5-Zc. COMPUTER SOLUTION FOR THE FRAME OF FIG. 5-1 - CASE (c) 

END REACTIONS 1N MEMBER SYSTEM JOlNT DEFORMATIONS IN GLOBAL SYSTEM 

JOINT 
NO. bx by bz e (I 

NY NZ MX MY MZ x y 
kips kips kip-ft. kip-ft. kip-ft. in. in. in. radians radians 

0.00092 -o. 00444 0.00000 0.08885 o. 01840 
1 0.00000083 0.00050972 o. 00000083 -- --

0.00092 -0. 00444 0.00000 0.00000 0. 00000 

-0.00726 7. 13947 0.03686 -o. 09013 0,00265 
2 o. 17497222 0.00048564 -0.00084336 -0.00000422 o. 00059509 

-o. 00726 7. 13947 0.03686 142:69927 o. 14783 

-o. 00476 1. 77284 -0.09013 -35. 49371 -0.09255 
3 0.00000000 0.00000000 0.00000000 -o. 00058362 -0.00141644 

-o. 00476 1. 77284 -o. 09013 -o. 03686 0,00265 

7.98754 -0,00024 -o. 07420 0,00164 60. 35683 
4 o. 00000169 o. 17846997 o. 00020283 -0,00108477 0.00000000 

7,98754 -0.00024 -o. 07420 -o. 00128 -35. 49371 

0,01474 -26.65924 -0. 07348 177.21158 o. 13800 

o. 01474 -26.65924 -0. 07348 -142. 69927 -o. 03890 

0.00000 0.00000 0.00000 0,00000 · o. 00000 

0,00000 0.00000 0.00000 0.00000 o. 00000 

0.00000 0. 00000 0.00000 0.00000 0,00000 

0,00000 0.00000 0.00000 o. 00000 0.00000 

o. 00372 -0. 00379 0.00000 0.07576 o. 07436 

0,00372 -o. 00379 0,00000 0,00000 0.00000 

o. 00761 -o. 000005 0.00000 0.00006 o. 09137 

o. 00761 -0.000005 0.00000 0.00000 0.00000 

e 
z 

radians 

~· 

-0.00073519 

-o. 00075417 

-o. 00074236 

.....:i ..... 
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Ci;rcular bar of radius 14. 5 ft. 

10 kips 10 kips 

FIG. 5-3. TWO BAY PLANAR FRAME 

5 4 

0) 
3 2 

datum node @ 

FIG. 5-.4. ·· FORMULATION TREE ANDREDUNDANT MEMBERS 



TABLE 5-3. MEMBER PROPERTIES AND JOINT LOADS 

EI = GJ for all members 

1 
0 1 

3 6 
--···· ------········--· 

[ Ai] [A~] [ A~] 10 
= = = 0 1. 0 0 EI 

1 0 1 
6 3 

0.7975 0.2914 0.3059 
----·--·--·-.. -- ·- ·- --- ····-· --·· - - --- ........... ___ -

[ A!] = [ A;] = 0-. 2 914 

0.3059 

32. 0 

{er!} = {er~}.= 44.15 

20.348 

2.2069 

-0.2914 

0. 

0. 

10 
EI 

-0.2914. 

0~7975 

r1° I l 10 l {w1°} = Ql; = +40 ; 
0 0 

W2 "' P2 = 5 z 

rs~) t~o); {w3°} = = {wJ} ~ 
Q30 

x 

10 
Ei 

W1° 

W2° 

W3° 
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TABLE 5-4. TOPOLOGICAL.MATRICES FOR.PLANAR, FRAME 

o. 5 -1 -0.5 -0. 5 1 0.5 

1 0 0 0 0 -1 

0 -1 0 0 1 0 

r 1 4 -r 1 5 
-0. 5 1 o. 5 0 0 0 

, • 

{rb cJ 
0 0 -1 0 0 0 

= -r2 4 03 = 
• 0 1 0 0 0 0 

03 r 3 5 • 0 0 0 0.5 -1 -0.5 

0 0 0 1 0 0 

0 0 0 0 -1 0 

-10 -1 0 0' 0 

0 0 0 0 0 

0 -1 0 0 0 

T 1 1 .. 0 3 1 • 
03 2 . . 0 0 -10 0 0 

0 3 2 T 0 3 2 • 2.~ .. • 
0 0 0 0 0 

03 2 0 3 1 T3 3 
' 

, . . 0 0 0 0 0 

0 0 0 -10 -1 

0 0 0 0 0 

0 0 0 0 -1 
'-- -
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following elasto-static matrices are obtained by means of Eqs. (3-12 ). 

1.9645 -0. 2086 o. 1389 - 0. 0834 0.25 -0.9167 

-0. 2086 4. 2069 0.2086 o. 25 -1 -o. 25 

[Ace] 
0. 1389 0.2086 1. 9645 0.0834 -0.25 -0.0834 

= 
-0.0834 0.25 0.0834 1. 9645 -0.2086 0.1389 

0,25 -1 -0.25 -0. 2086 4.2069 0.2086 

-0. 9167 -0. 25 -0,0834 0.1389 0.2086 1. 9645 

-1. 667 -0.25 1. 667 0 0 

5 1 -5 0 0 

{AcJJ 
1. 667 0.25 -1. 667 0 0 10 

:;:: 
EI 

1. 667 0.25 0 -1. 667 -0. 25 

-5 -1 0 5 1 

-1. 667 -0.25 0 1. 667 o. 2·5 

32.0 

44. 15 

{ace} 
20.348 10 = EI 32. 0 

------
44. 15 

20.348 

The flexibility matrix [ Ace] is very well-conditioned as can 

be seen from its strong diagonal. The redundant moments may be 

solved ,from the compatibility condition 

10 
~ 
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The un~nowns as obtained by direct inversion of [Ace] are 

given by 

4 4 -15.06629 Y-4 M.4 1 y 1 y 
-----

4 4 
Y.4 M.4 -28.47731 

J x J x 

z4 4 4 -16.98538 Y.4 M.4 

{z} = 
4 J y J y 

:,::: = = (kip-ft. ) 
C, 

z5 5 5 
yi5y M.5 -16.98538 

5 1 y 

5 M5 -11.52269 Y.5 J x j5x 

5 5 -15.06629 yj5y M.5 J y 

Calculation of end•conditioning elements of all the members is a 

simple matter of using equations of Appendix A. 



6. 1. Summary 

CHAPTER VI 

SUMMARY AND CON CL US IONS 

Flexibility method for the analysis of continuous framed 

structures is generalized in this study. A s:i.mple beam in space :i.s 

selected as the basic element and the end elastic weights due to loads, 

temperature and volume changes, and support displacements are 

defined in terms of the deformation functions of the membero . Pri

mary unknowns in the system consist of the bar-redundants of the 

redundant members, Using connectivity properties of linear graphs, 

equilibrium relationships are developed in matrix notation. Com

patibility of deformations yields a minimum set of simultaneous 

equations. Group elimination technique for solution of large problems 

. is discussed. Two numerical examples are included to demonstrate 

the theory. 

The selection of system unknowns and the formulation technique 

are believed to be original. 

6. 2. Conclusions 

The formulation presented here is general and is employed 

with a slight modification to planar structures loaded in or out of 

plane. 
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It is observed that the choice of redundants adopted yields a 

better-conditioned flexibility matrix than that obtained with complete 

cuts. This can be seen by a comparison of numerical example no. 2 

(Chapter V) with the problem solved by Koepsell on page 47 of his 

doctoral dissertationP 5), 

A general computer program for the analysis of rigid jointed 

skeletal structures allowing for internal releases is developed, 

Group elimination process can easHy be programmed by means of 

computer languages such as GXSMO (General Interpreti.ve System for 

Matrix Operations). 

6, 3. Extensions 

Immediate extensions of this research would be to analyze 

1) Seini-rigidly connected frameworks supported by elastic 

springs; 

2) Rigidly jointed structures acted upon by dynamic di.s-

turbances; 

3) Buckling phenomena o:f rigidly jointed spac.e frames; 

4) Three-dimensi.onal solids such as dams(Bl); 

5) Plate and shell structures as an equivalent assembly of 

bars; anq 

6) Investigation of the tree that would result in well-

conditioned flexibility matrix, 
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APPENDIX A 

SPECIAL CASES 

The theory presented in Chapters I-V is equally applicable 

to planar frames. Here the stereo~·si:Htic and elB-ffto 0 ·geome 

tions for a bar are given. 

A-1. Loads in the Plane 

A member isolated from a planar frame loaded in its plane 

is shown in Fig. (A-1 ). 

pm -mx .-...-...-
---------

u----_ ....... __ --_J_·'""o __ a ___ xo 

i 

\ Na 
iay 

FIG. A-1, BAR LOADED IN PLANE 
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. a a a a a a 
Choosing {d)Niax(=Xiax), Miaz(=Y iaz>' and Mjaz(=Yjaz) 

as bar-redundants, the following stereo-static equations ca.n·be 

established. 

in which 

{H~a} = 

[r. J .= 1a · 

a .N. 1ax 

N~ iay 

M~ 1az 

1 0 ct 

1 0 ,:-
a 

0 1 

1 . ("\ 
d s1nHa 

0 

N? .x~ 
Jax 1ax 

{Hja} N? {z:} a = = Y. 
Jay 1.az· 

--·-
M? 

Jaz 
ya. 
· j'az 

-
0 1 0 0 ct 

1 
[rjaJ 0 1 . '' 1 

-i:;_ = ,:- --L a a 

0 0 0 1 

1 
,:- cos oa 

a 

1 
-- cosO 

La a 

1 0 
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(A. 1) 

(A. 2) 

(A. 3) 

(A. 4) 

(A. 5a) 

(A. 6a) 

~A. 7a) 



{BHfa} = 

1 a cos oa 
1 

-,:- sinOa 
a 

------+---· 

1 . "' a sm ua 

0 

BN° iax 

1 
,:- cos oa 

a 

0 

1 . "' L sm ~'a 
.a 

1 
--L cos.O 

a a 

1 

a BN. 
Jax 

BN? {BHja} = a .BN. 1ay Jay 

0 
BMiaz 

a 
BMjaz 

If h, k are ariy two points across the frame, then 

1 0 0 
--·---··· 

[r~k] = 0 1 0 
---- ---

0 .0 1 -yhk xhk 

, 'l'he inverse of [ n j0a] is very frequently used in establishing 

elemental matrices of {rbc] ai;id [ 'rw-} and .is given by 

d cos oa I d s~n oa o 

- L sin O L cos O 1 
-........ ___ . '[ -·-- ·-

a a a a 

o I o 1 

86 

(A. 8a) 

(A. 9a) 

(A. 1 Oa) 

(A. lla) 

Finally the end deformations relation is obtained from 

Table 2-2 by deleting rows and columns not applicable to this case. 
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-a 1 a .!._Da _!Ea 1 Ea x~ .!ea 
Qiax d riiax d2 iixx d iixz a ijxz 1ax d iax 
--- -----
-a a 1 a a a a + a P. = cpiaz aEiizx Fiizz Gijzz yiaz T, 

1az 1az 
--- ---··-·-----·-----·--- ------ ----· 

-a a 1 a a a y~ a P. cpjaz d Ejizx G .. F .. T. 
JaZ JlZZ JJZZ JaZ Jaz 

(A. 12a) 

or 

(A. 13a) 

A-2. Loads Out-Of~Plane 

Bar (a) removed from a normally1oaded planar frame is 

shown in Fig. (A-2). 

Bar (a) 

\ 
x~ 

1 

---0 
s::::'--~~-~~~a~~~~~~~~~~-.i.-~~~~~..-Xo 

FIG. A..-2. BAR LOADED NORMAL TO PLANE 
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Moments ~ay' Mjax' Mjay are chosen as bar-redundants 

and expressed by 

y~ 
Ma l iay iay 

------ ---· 

{z:} = Y': = 

Mfax J JaX 

Y': Ma 
Jay jay 

(A. 14) 

St O ,+,·t.j r~··1at]0 0]1S 1fA 1 "-11I'0'1g"h A 41, ··ir,- "'/c:io ·Yp·n11',·,,n'IJ'1lp ·ere -b,d.J.C .LJ.<· .J. , • ·~ , • 1, a. ~c:..JL. .. ,. cc p., .. c .. ,:,.,·~ .. 

to this case. Eqs. (A. 5a) through (A. 13a) are modified in view of the 

nature of loading as 

N': 1az 
----

{Hfa} = M':1-1ax 
·-----"·---

M~ iay 

1 -r 
a 

-··---

[\a] = 0 

0 

1 
-L 

a 

0 

0 

0 
1 
L 

a 
----··· . -·---~-----··--

1 0 

0 0 

0 

.cos O 
a 

sin O 
a 

(A. 5b) 

~ -
1 

0 
1 

-L L a a 

[fjaJ 
.. 0 1 0 (A, 6b) 

0 0 1 

1 
L a 

0 (A. 7b) 

0 
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a a 
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~
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0 , cos O 
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O -sin O cos O a a 

a a a 
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BM? 
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JlXY JJXX JJXY 
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a 
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(A. 8b) 

(A. 9b) 

(A.lOb) 

(A.llb) 

(A. 12b) 

(A. 13b) 



APPENDIX B 

COMPUTER ANALYSIS 

A computer program was written for the IBM 1410 for complete 

analysis of space frames composed of straight members. 

A macro flow diagram (Fig. B-1) illustrates the basic steps to 

the solution of a problem. The main program is subdivided into four 

phases in view of the limited storage capacity of the computer. 

Required input data are indicated below. The output consists of mem-

ber end reactions and joint deformations, 

INPUT DA TA - PHASE I 

Number of Bars, Supports, and k-Points 

d, nblh, nbOh, ncOh, nc2h, nclh, ncss, ns, nk 

d average length of bars and some multiple of .5. 
Next six numbers indicate numbers of various types of members. 
ns, nk are numbers of supports and k-points. 

Coordinates in Global System 

J x y z 

J joint, support, or k-point number 
x, y, z indicate coordinates 

Connectivity Details 

NM i j k 

NM bar number 
i, j joints at µear and far ends of the bar 
k point on z-axis of bar 
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Loop and Node-To-Datum Details 

NM J nblcl, nbOcl, nbncl 

NM redundant bar number or joint number 
J joint at far end in case of bar or joint number itself in case 

of joint 
In a loop or node-to-datum path corresponding to bar NM or 

joint NM 
nblcl number of branches with a hinged end 
nbOc 1 number of branches with rigid ends 
nbnc 1 ;:: nb le 1 + nb Oc 1 

(nbct(I), nbcTJ(I), SG:N(I), I=l, nbncl) 

nbct(I) Branch number 
nbctJ(I) Joint at far end of the branch 
SGN(I) Branch orientation in a loop or node-to-datum path 

INPUT DAT A - PHASE II 

Member Flexibilities in Member SY;stem 

NM, Eight values of deformation functions 

NM bar number 

INPUT DATA - PHASE III 

Applied Joint Loads in Global System 

J p 
y 

J joint number 
P, /Q applied forces and couples 

Support Displacements in· Global System 

6 6 
y z 

e 
x 

J support number 

e e y z 

6, e support deflection and rotation 
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Load Deformation .Functions in Member System 

NM e:. 
lX 

T. 
lZ 

NM bar number 

T, 
JX 

T. T. 
JY JZ 

e:, T linear and angular load functions 

Member Details 

NM NLP IC JC ICS JCS TMPR THERM E 

NM bar number 
NLP number of load points 
IC, JC codes (end joint number or O if it is a support other 

than of kind ncss) 
ICS, .JCS codes (end support number or (NB + NS + 1), if it 

is other than any support) 
NB total number of branches 
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TMPR, THERM, E are temperature change, thermal coefficient 
and modulus of elasticity 

Member Loads in Global System 

a x. 
1m 

p 
x 

p 
y 

x~ x- coordinate of load point 
1m 

P, Q load components 

INPUT DATA - PHASE IV 

NI 

NI code to direct the flow into Phase I (for new frame), 
Phase III (for the same frame with new causes), or end. 
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Read d, Number of Bars, Joints, Supports an~ k·Points Read,Jolnt Loads, Support Displacement, and. Load Functions 

R~ad Coordinate~ of Joints, Supports, and k·Points 

Read NM, I, j, k 

CalculS.te w-Matrices and Store 

Yes 

Calculate [ TT j]"' l Matrices and Store 

Yes------, 

Calculate 

Read Loop or Node-to-Datum Details 

Evaluate r and T Matrices Element by Element: and Store 

No 

Read Bar Flexibilities 

Evaluate Ace• AcJ' and A J'J Matrices and Store 

Trianguiarize Ace Matrix "and Store 

Read Bar End Codes, Bar Loads, Temperature 
Details and Modulus of Elasticity 

Evaluate Basic Bnr Reactions and Store 

Add Basic Bnr Reactions to Joint Loads 

Evaluate System Redundants 

Evaluate Bar R.edundants of Branches 

No~--,-.---~ 

Evaluate Bar En_d Actions 

Print Out Bar End Actions 

No~---..------' 

.Evaluate Joint Deformations 

Print Out Joint Deformations 

FIG. B·l. FLOW GRAPH OF COMPUTER PROGRAM F.OR THE ANALYSIS OF 
THREE-DIMENSIONAL FRAMES BY FLEXIBILITY METHOD 
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