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'PREFACE 
·, I 

A survey of the literatu·re conc·erni;ng the subject of nonlinear 

-estimatio'n, in many _instances seems to be a collection of specific 

cases where a solution (not necessarily the 11 best") has been arrived 

at through some ·prior knowledge of the ranges of the parameters 

being sought.·· It is also noted that even if the errors associated with 

•the -observations are quite s~all, the researcher may get 'an answer 

which at best is suspect. 

The author 1s interest in .the area of nonlinear e stimati9n was 

· aroused when he was ~onfronted with: a problem of estimation wherein 

th;e parameters soitght were fc;>rmation constants' of complex ions in 

a transition metal complex. None of the Litera~ure was of any as sis-

tan,ce in solving this problem. Consequently, the search for a solu

tion was an expedition into the land of relative minima. Eve:q though 

a reasonable answer was ultirpately found, there was no assurance 

that it was the best or even that it W9-S unbiased. Prior knowledge of 

an analytical form made the results acceptable .to the researcher. 

In the exam:ple just cited, the author made no representations 

. regarding the II goodness II of the solution~ . Indeed, the method of solu-

tion was quite shakey, and, as a result, no inferences could be drawn. 

The ·11 goodness 11 of a statistical procedure used to arrive at a solution 

should be evaluated. Bias and variance are. relative under the general 

heading of 11goodness' 1 of an estimator. An estimate ca~ be unbiased 
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· and still b.-e of little value if the va:dance of the estimate is-large. Alter

natively, one ·may have an estimate with little or no variance, but if it 

has an unknown bias, it car+ be equally-without value. Desirable esti -

mates or --Btatistic-s are tho·se with small variance and no bias. 

In the ·material which follows; the author intends to avoid, where 

.possible, the use of seemingly endless proofs of non-existence and 

instead-substitute an example to show non-existence. Lastl.y, u.nless 

one agr·ees on som·e basic concepts, ·the··proce'ss of argument is endless. 

With this ~dea in ·mind, the author will spend little time in re stating 

those concepts with which practicing statisticians are already familiar. 
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··CHAPTER I 

THE LEAST SQUARES METHOD FOR LINEAR MODELS 

In the method of least squares, observations y.{.-l ) are 
. , 1 1- , • • • , n 

drawn from a p0pulation where each y. is assumed to have the form 
1 . 

where Q. is a function of an unknown parameter 13. and a known 
1 l 

'function of x.. The distribution of the random variable £. may or· 
1 1 

may not be known. The sum of squares 

n 2 n . 

~ £. = ~ (y. -f.(Ql' Q2' • •.' 
i=l l i=l l l 

Q ) 2 
p 

n 
is formed and the values of the 13 k that minimize the ~ £. 2 are 

i= l l 

the least squares .estimates of the 13 k" Graybill ( 1961) shows that 

in many important cases when the distribution of the £. is unknown, 
1 

the least squares method gives rise to estimates of the 13 1s. which are 

unbiased, consistent, and, under certain conditions have minimum 

variance. It can be shown, in some instances, that the least squares 

estimate of the 13 1s and the maximum likelihood estimate 0£ the 

13 1s are the same. 

In this and alt succeeding sections, use will be made of matrix 

·. algebra. Summation notation will be used only when it is deemed 

necessary for clarity. 

Let us assume that the random vector e 1 has mean p (null vector) nx 
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2 
and a- I as its variance-covariance matrix. The distribution of the 

vector e will be unknown or unspecified. This removes the possi-

bility of obtaining·maximum H~elihood estimators for the (pxl) vector 

of the 13k's, say 13. In ordinary linear least squares procedures, 

one finds estimates of unknown parameters under the restriction that 

1~1 is minimum and each Qk is some linear function of the form 

. where A is unknown and hk(x.) is some known. or assumed function pk 1 · 

of a known value x. where x. is a value of a single variable x. Let 
1 1 . 

Y 1 be a vector of observations and let X be a matrix of known 
nx 

values where the i.i.th row of X is a ( 1 x p) row vector whose J-th 

element i~ some function of the x. value that is associated with the 
1 

i-th element in the Y vector. Let this function of x. be represented 
1 

by h.(x.). The model could then be written as 
J 1 

Y=Xl3te 

in which /x 1 is a vector of unknown parameters to he estimated. The 

i-th element in the Y vector could be represented by 

y. = 
1 

p 
~ 

j= l 
13 .h. (x.) + 

J J 1 
E • • 

1 

Returning to the criterion that e 1e is to be minimized, we have 

e 'e = (Y -Xl3) '(Y - Xl3) = Y 1Y - 213 1X 1Y t 13 'X 'Xl3. 

The 13 that minimizes e 'e is found by obtaining the solution to 

a e 'e 
a 13 

= ~-
From this we get 

2 



13 = (X 'X) - 1 Xi y 

2 
and also obtain an estimate of er by 

; 2 = (Y - x 13·) I (Y - x ~ ) 
n - p 

• where n = the number of observations of y, and p is the number of 

parameters used to miRimize e 'e. The estimate for er 2 can also be 

written 

; 2 = Y' (I - X (X 'X) - l X 1) Y 

n - p 

3 

Recalling that the distribution of e was not specified, it is not possible 

to make any assumptions about all functions of the random variable e. 

Graybill (1961), in discussing the Gauss-Markoff theorem, shows that 
. . ' ' I 

under quite general conditions the least squares estimate of 13 in the 

model 

Y=X!3te 

is the best (minimum variance) linear (linear function of the vector 

Y) unbiased estimate of 13 if the following two conditions on the dis-

tribution of e are satisfied: 

a) The expected value of 

b) · The expected value of 

e = 

e e' 

fJ, and 

2 = er I. 



'CHAPTER II 

LEAST SQUARES FOR THE NON-LINEAR MODE.LS 

Consider now the case where the unknown pa.rametere a.re to 

be estimated using the general model 

= p( f3' x) 
Y q(a, x) + £ 

where p(f3, x:) and· q(a, x) ate polynomials in known values of x. 

The ·[3 1s · and a 1s are unknown coefficients (vectors), and the y values 

are observed. This model in general describes a large class qf 

asymptotic functions. One of the simpler forms of the ratio of two 

linear functions is the bilinear model 

y = + £. 

This simple model may be used to describe many different types of 

data sets, Once again no assumption will be made about the distribu-

tion of £ other than that the expected value of £ = 0, and the 

. 2 
expected value of £ = constant. 

We can write, using matrix notation, 

y = r x f3 + e 
nxl nxn nxp pxl nxl 

or 

y - rx f3 = e 

' 
where r is a diagonal matrix whose elements are 
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;_ 1 q 
y.. = [q. ('a, x.)] =[ l + ·:z · · ·n 

11 1 1 J. j=l 

. -1 
h. (x.)] . 
. J l 

In the least squares procedure we wish to minimize 

e 1 e = y '¥ - 213 1X ! r y + 13 'XI r2 x 13 •. 

Taking the partia-ls of e 1e with respect to the 13 k and a j 

·. -equating to zero, we have: 

O e I e = fJ = ..- 2 X ' rY t 2X ' r" X ~ . a 13 

a e'e 
cln 

0 

a e 1e 
a a . 

J 

·- 0 since a = constant = 1. 
0 

and 

where [x]. is~ diagonal matrix whose elements, x.j, are the coef .. 
J 1 

ficients of the a.. Now 
J 

a e 'e 
a 13 = fJ 

can be solved for 13, i.e., 

~ = (X I r 2x) - l x 'rY or 

This solution is. valid for any r so long as the 'I·. 
11 

are bounded and 

2 -1 
(X 1 r X) exists. Indeed r is nothing more than a transformation 

on the matrix X, and 13 is the least squares solution for a given r. 

5 

This means that for ci:'given r all the theorems concerning the general 

linear hypothesis models apply. 

The procedure for estimating the a 1s . in the r matrix for a 

given model must be considered. Ahlfors ( 1963) states that 11 the sum 

and the product of.two analytic functions are again analytic. The same 

is true of the quotient 
f(z) 
g(z) 

of two analytic functions, provided that 



6 

g(z) does not vanis:P,. . , . Since the sum and product of analytic 

functions are again analytic, it follows that every polynomial is an 

~nalytic 'function. " As long as r is bounded and the model is aJDaly-

tic,._ then 

. 2 
a e 1e 

2 a e 1e = 
a a a 13. a 13a a 

2 XI [ X] . r2 Y - 4 XI [ x] . r 3 X (3 • 
J J 

= 

One can .readily see that if the denominator of the mode 1 has a zero . 

. within the range of the xi' the model is not a continuous function. 

For example, consider the model 

1 + e:. y = 
l + a x 

This_ model is not defined when 

a = -1 
x. 

1 

It seems only logical then to restrict oneself to parameter values of 

ri j that yidd continuous non-zero values for q(a, x). It was noted 

earlier that the _least squares estimate for the vector 13, given r, 

was minimum variance and _unbiased. The residual surn 0£ squares 

of deviation for a ~iven matrix r is 

R=Y 1Y-Y 1 rx(X' r2 X)-l X' r Y. 

The problem arises when one attempts to find the vector a that will 

minimize R. Since Y 1Y is known, minimizing. R is. equivalent to 

maximizing Y I f X(X 1r 2 X)- l X I r Y. Before embarking on the quest 

for the estimate of the vector a, some preliminary observations 

should be made: 



l. If the estimation model is to be continuous, every diagonal 

element of "r must be non-zero and have the same sign. The proof 

is by inspection. Consider the mode 1 

where 

y = 
p(l3, x} 
q(a, x} + £ ' 

-1 q j -1 
[ q. ( a , x. )] = ( ~ a .x. ) - y1 .. 1 .. • 

1 1 . 0 J· 1 
J= 

If the mode 1 is to be coutinuous, 
-1 

y .. can never equal zero over the 
11 . 

range of x. In addition, all y.. must have the same sign. 
11 

If the 

sign of q(a, x) changes over the range of x, then q(a 9 x) contains at 

least one zero in the interval of x. This comes directly from the 

intermediate value theorem as treated by Johnson and Kiokemeister 

(1963). 

2. It can be shown that the diagonal matrix r has at most 

q < n elements that are equal. Every element of r is an inverse 

polynomial, and Ahlfor s states that '' a rational function R (z) of 

order p has p zeros and p poles, and every equation R(z) = a 

has exactly p roots. 11 Since we are interested only in real values 

of a, we find that the number of times that the y 1s can take on the 

value a is less than or equal to p, 

Let us now attempt to maximize the expression 

R 
l x l 

For a given set of Y and X and suitable restrictions such that the 

y.. are continuous over the range of x in q( a, x), WE'- have · R as 
11 

a continuous function of (a, x). Taking the partial of R with respect 
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to the. a., .. we have 
J 

* ~ =[a y1rx][ (X'r2x)-1x'r Y] + a a. a a. 
J J . 

8 

2 -1 
[Y' rx][ o(X' r X) ] [x 1 rY]+[Y'rX(X 1~xf 1][{ 3 X'rY)]. a a. . a a. 

J J 

Noting that Y and X are constants and r = 
* a R 

look at.the three factors of -!;'.\-- separately. 
v a. 

J 
readily differentiable, but the second is not. 

y.. is diagonal, we can 
ll 

The first and third are 

Consider a non-singular matrix A which contains the parameter 
pxp 

a .• We have 
J 

AA-l = I, 

[~] a a. 

-1 a A-l 
A + A--o a. = p ' 

Let 

j . 

8 A-l 

a a. 
J 

J 

A -1 = (XI r 2 X)-1. We have 

a. A 
lfa. 

J 
= 

. 3 . 
-2X 1 [x]. r X 

.J 

A = X' r 2 X and 

where [x]. is a diagonal (nxn) matrix. Thus 
J 

a (X' r 2 x)- 1 

a a. 
J 

We also have 

and 

a Y' rx 
a a. 

J 

a x• rY 
a a. . 

.J 

-Y 1 [x]. r 2 X 
J 

-X' [x]. r 2 Y. 
J 

Combining these results, we have 



* o R 
8a. 

J 

= Y 1 [x].r 2 X(X 1 r 2 x)- 1 X 1 rY 
J 

+2Y •rx (X I r2x)- 1x•[ x] .:r3x(x •r2x)- 1x •r y 
J 

- Y I rx ( x 'r2 x) - 1 x ' [ x] . r 2 y. 
. . J 

Let Q = rX(X' r 2x)"'." 1xi r and note that 

QQ= rx(x 1r 2x)-1:x: 1 rrx(x 1 r 2x)- 1x 1r=rx{x 1r 2x)-1x 1r=a 
,::, 

Thus, Q is idempotent and less than full rank. 
nxn 

o R 
R ewr.iting 15--

v a:. 

in terms of Q and equating to_ zero, we have 

-or letting 

we have 

* o R - = -Y'[x].rQY+2Y'Q[x].rQY-Y 1Q[x].rY = 0 
Ba. J J J 

J 

[x]. r= r[x]. = D 
J . J 

2 Y 1 (Q "'." I) DQY = O; 

J 

9 

The matrix of the quadratic form is the matrix A in the function 
nxn 

s = Y I AY- where s is a scalar. In ordinary least squares proce-

dures the matrix A contains no parameters to be estimated. It has 

been shown that this is :qot the case when the estimation m6del has 

the ratio form. Consider the quadratic form 

s = Y 1 (2Q-I) DQY - Y 'QDY - 2Y 1[ (Q-I) DQJ Y. 

In this form 

A = [ (Q - I) DQ] 
nxn-

which is not necessarily symmetric since D is a row operator on Q 

in the product DQ. It would be nice if an acceptable vector a existed 



which could, in association with the known x., make the matrix 
. 1 . 

A = [ (Q - I) DQ] = fJ • 

Obviously, if D = kl, we would aut9maticaUy have a solution since 

[ ( Q - I) k I Q] = [ ( Q - I) I Q k] = [ Q z - Q] k = fJ • 

D was defined to be [x]. r where 
J 

d.. = x, j y.. = x) [ 1 + 
11 1 11 1 

q j_]-1 
~ a.x. 

J-_ 1 
j=l 

If D = kl is to be a solution, we have n such equations or polyno-

mials that must be satisfied. But this is impos.sible since for any set 

of a j we have a polynomial of degree q < n which must attain the 

same value at n distinct points such that D = k I. With D = kl 

' 
eliminated as a possible solution, attention should be given to the 

10 

entire matrix of the quadratic form~ H a gene rat solution exists wholly 

within the matrix of the quadratic form, then a solution should exist 

for the specific case having the estimation model 

y = t -E • 

l + a x 

In matrix notation the model can be written 

Y= rJl3+ e 

where J is a column vector of enes anq. 

( 1 -1 
Y·· = + al xi) 11 

Also 

Q - rJ (J' r 2 J)-1 JI r 

and 

D = [x] 1 r. 



Here 

and 

q .. = 
lJ 

2 -1 
~ y .. ) Y·. y.. , 

11 11 JJ 

a .. = x. y ..• 
11 1. 11 

Thus, in the matrix equation (Q - I) DQ = fJ, we must have each ele-

ment -of the product equal to z,ero. Let us first examine the diagonal 

elements of this product assuming at least one of the · x. ::: 0 and 
. 1 

all of the x. > O. The i-th diagonal element of the product is 
1 ....,... 

2.-1 2n 2 . 2-1 2 fJ .. = ( ~ Y .. J y.. :E d .. y.. - d .. (:Ey .. ) y.. • 
11 . 11 i1 j = 1 JJ JJ 11 11 11 

Now since all of the y.. have the same sign and none of the y.. = O, 
11 11 

we can substitute for d.. and y... We have 
11 11 

n 2 n -3 
:E d .. y.. = :E x. { 1 + a 1 x.) 

j = 1 . JJ JJ j = l J . J 

Thus fJ.. cannot equai zero for any x 1. = O. The off diq.gonal 
11 

elements follow the same pattern, and hence, the possibility of a 

general splution wh0lly within the matrix [ (Q-I) DQ] can be etimi-

nated. A1so to be remembered is the fact that for more complex 

estimation models (i.e •.• more parameters in q(a, x) ), two or more 

equations with the general matrix form [ ( Q - I) D Q] must simultane-

ously be f;!atlsfied. The.se equations differ only in the factor D which 

has been eliminated as a source for a solution. 

Cons~der .now the problem of solving the simultaneous equations 

a e 1e. 

a 13 
= fJ, a e'e 

a a. 
J 

We have already indicated that 

o. 

11 



f3 = (X1 r 2 x)- 1 x I r Y 

is minimum variance unbiased for any given r. Now examine 

a e 1e 
a a. 

J 

= 2~ 1 X 1 [x]. r 2 Y-2~ 1X 1·[x].r3 X[3 
J i . J 

. which retains the same form across all j except for the [x] .• One 
. . J 

can let a. = 1 for alt models. If we substitute our best estimate 
0 

for ~, which is the be st for any r, we have 

a e 1e 
a a.. 

J 

= 2Y 1 rx(x 1 r 2 X)- 1 .x• [x]j r 2Y 

-2Y 1 IX(X' r 2x)- 1 x• [x]j r 3x(x 1 r 2x)- 1x 1 rY 

or, after' substituting Q and D as before we have 

a e'e 
a a . 

J 

= 2 Y I Q D Y - 2Y I QDQY. 

12 

Equating. to zero we have precisely the same situation as before, namely 

a whole set of equations of the form 2 Y 1 ( Q - I)DQY = 0 for each j 

which must be satisfied. 

* Consider the case where Y = Y - K where K is unspecified. 

We still want to maximize Y I rX(X' r 2 X)-l X 1 rY or find the 

vector a: such that 2 Y' (Q - I) DQY = O. Let 

y * I [(Q-I)DQ] y* = (Y- K) I [(Q-I)DQ] (Y- K) 

= Y 1[{Q-I)DQ]Y-2K'[(Q-I)DQJY+K 1[{Q-I)DQJ K = O. 

If 

Y '[ (Q-I)DQ] Y = 0, 

then 

K' [(Q-I)DQJ(Y - ~ K) = 0 



for some K. One might then choose an a: and solve for K, and if 

K = k J, we would have a solution for the model 

y - k = p( f3' x) + 
q(a:, x).· 

E 

where the vector K is based on the chosen a. It should be possible 

to set up some convergent algorithm based on K as a function of a. 

that would correct the vector K .to ~- Unfortunately, it appear~ that 

13 

such a convergent procedure would be applicable only in the case where 

the estimation model contained only one a .• In the case where more 
. J 

than one a.. · is present, there is no guarantee that all K .. would be 
. . J J 

.the. same for a given vector a.. 

The number of possible solutions in the ratio model must be con-

sidered. It can. be shown that a polynomial qf degree n has n roots, 

some of which may be duplicates or may be complex. lf we consider 

the model 

y = 1 + a. x + E 

in matrix form, we have 

y = rJ f3 ·. + e 
0 

where J 1 = (1, 1, •• ) • It follows that 

a e 1e 
aa = 2[3 J 1 [x].r2 Y-2f3 J 1 [x].r3 J.[3 = 0 

O J . 0 J O 

Converting. this to summation notation, we have 

If f3 0 I= 

n 
f3 ~. x. 

0. 1 
. 1= 1 

o, we have 

... 2 2 3 
Y· · . y. = f3 ~ x. y .. 

11 1 0 1 11 

the result 

3 2 
f3 0 

~x. - ~ x. 0 . y .. y .. y. = 
1 11 1 11 ], 



This may be written in a form which is the difference. of two polynomi-
n ;"" 

als over the common denominator II ( 1 + o. x.) where n is the num-
i= 1 1 

ber of distinct values of x. Since the restriction is made that each 

y .. has the same sign and is not equal to zero, the coefficient of j3 
11 · 0 

in the first term becomes 

n 
·~ x. 
i= 1 1 

n 
[ II 

j=l 
j ~ i 

~ 3 
(l+a.x.)] 

J 

which is a polynomial of degree (3n - 3) in a. The second term 

becomes 

n n ~2 n n n. - 2 
II (1 +ax.) ~ x. y .. ,y. = II {l+a x.) ~ x.y. II (l+a x.) 
i=l l i=l l ll l i=l l i=l l 1 j=l J 

j=,f i 

has degree ( 3n - 2) m a.. Now consider the equation in which 

a e 1e 

a 13 o 
= 13 (J • r2 J) - J • r Y = o. 

Written in summation notation, 

2 -1 
P. = (~ y.. ) ~ Y·. y .• t-'o 11 ·.11 1 

By substituting for 
2 

y.. and finding the common denominator one 
11 

finds 

[ R 
i= 1 

( l + a. x.)] 
1 

a x.) ] 
J 

The above expression is of the first degree in a.. The expression 

3 2 13 ~ x. y.. - ~· x. y.. y. = 0 
0 1·11 111 1 

is a polynomial in a of degree ( 3n ... 2). We now have to find all the 

14 



zeros of a polynomial of degree (3n - 2) rn o:. in order to determine 

if there exists an a. and (3 that wiU minimize e 'e. There is no 
0 

15 

guarantee that only one absolute minimum exists. There is no guaran-

tee that any solution lies within an acceptable space for a. 

The generalization can now be made to the case where the model 

contains two or more a. j. We have, in the case for ( (3 0 , a 1, a 2 ) , 

two simultaneous polynomials. They are 

= 

and 

a e 1e 
0 = 0 

a2 

where k = ( 3n - 2) and 

= 

~ k-i ~ i k 
l: 

i=o 
Ci a l a. 2 

k ,,, - k-i ,,, 

l: c. Cl l a 
i=o 

1 

* 

i 
2 

c., c. are functions of x. 
1 1 1 

and y. which 
1 

are derived from the data and eshrnation model. It can be heuristi-

caUy argued that each of the polynomials can have either no solution 

or an infinity of solutions in an acceptable space for a 1 and a 2 . 

The re is also the condition that among the infinity of roots, shoul.d 

they exist, the only acceptable ones are those for which both polyno-

mials aiie simultaneously sab,(lfied. 



CHAPTER Ill 

FINDING A SOLUTION FOR THE RATIO MODEL 

It has been demonstrated that even in the simplest case of 

estimating 13 0 and a 1 for the ratio model 

13 0 
t E , y = 

there are (3n - 2) possible solutions in an acceptable region. More 

elaborate models contain much higher degree polynomials, and for 

more than one a ., we also have the problem of satisfying the partial 
·J 

equations simultaneously. Therefore, it was .decided to restrict this 

study to the bilinear model 

y = 
13o+l3lx 

+ E ' 

1 + a 1 x 

It was desired to find, if possible, some estimate of the 1 ' goodness v' 

of the estimated parameters and what, if any, inferences could be 

made about them. To do this, the Gauss-Seidel relaxation procedures 

for various models with no error were first examined. These itera-

tive methods are often used with good results in many scientific appli-

cations. They can b~ found in elementary texts on numerical analysis. 

These m etho.ds do have their d,rawbacks, and in the cases of the 

bilinear models tried, they wen~ found to be unsatisfactory. In these 

attempts to find solutions for bilinear models, it was found that under 

16 



all possible permutations (six in the case for 13 0 , ~ 1, Cl 1), the rates 

of convergence were extremely slow even with good starting values. In 

many instances there was no convergence at all . It should be noted 

that better results were obtained. with these methods when the depe n

dent parameter in a given equation was th~ variable . with respect to 

which the partial e 'e was taken. There seems . to be a loaical reason 

for this since, in the case of ordinary lip.ear regression RlOdels, these. 

procedures have a tendency to diverge if the wrong dependent para 

meter is considered in a given set of normal least squares equations. 

Some Preliminary Investigations 

17 

To determine, in some degree, the difficulties in obtaining a 

solution for the ratio model, it was decided that an investigation should 

be made in order to find as many •olutions as possible for different 

data sets from different models with and without added error. In each 

case, the estimating model was bilinear, but the data generating func

tion or model was not necessarily bilinear. One of the criteria for 

ordinary linear regression is 'that the expected value of e is fb and 

that the estimate 13 forces the sum of the residuals to zero when 13 
0 

is present. It seems reasonable to require the same result for the 

sum of residuals in the non-linear case. Accordingly, we can attempt 

(with no guarantee of success) to force this result if we always use 

the estimate for 13, say 13, as a function of r. Thus 

13 = (X' r 2 x)- 1 x I r Y 

can be substituted in the expression 



a e 1e 
a n l 

= 2 13 I XI [ x] l r 2 Y .,: 2 ~ I XI [ x] l r .3 X p = 

2Y I rX(X 1r2xr 1x '[x] l r 2Y-2Y 1X(X'r 2X)- 1X 1[x] l r?X(X 1r 2X)- 1X 1rY 

which has only one parameter a. 1. Any zero of this expression will 

satisfy the least squares regression requirements except for the fact 

_that each zero is either a relative minimum, relative maximum or 

point of inflection for the residual sum of squares function. Since the 

number of possible solutions increases with n, it was decided to 

take a direct approach and systematically search out as many roots 

or solutions as could be found for· a given set of .eleven data points. In 

each search for roots, resolution of O. 00 l was used for a 1 on the 

interval -100. 0 ::_ a 1 < 

Li . = y. - y . , ~ 8. , and 
1 1 1 . 

100. 0 

~ 6. 2 .,---
and the values of ~ 0 , 13 1, a 1, 

were tabulated. This procedure 

yields real valued roots for the pa~amete rs. 
>',< 

Any other root a 1 · that 

was within 0. 00 l of a previously di_scovered root for a would be 

bypassed. It should be pointed out that the interval for a 1 included 

all the points of discontinuity. The eleven x values always used 

were (0, 1, 2, • . . ' 10). Thus the discontinuous values for a 1 

were (-i, -1/2, -1/ 10). Actually, any values for a: 1 such 

that a 1 ·< .-0, l causes the bilinear estimation model to have points 

of discontinuity over the range of x. 

Some of the g~nerating models used in this phase of the study 

were: 

l 
Y = 1 +x 

x 
Y = l+x 

18 



l+x 
y = 1+ 2x 

6 + 7x 
y = 

l+ 5x 

2 
x 

y = 3 + x 

y = ~ + £ 
1 +x 

When no error was added to a bilinear function, it was found that 

~~2 -
although several roots existed, there was only one where - 8- - O. 

When errors were added, it was. discovered that, among the roots 

19 

found, there existed more than one of equal merit from a data de scrip-

tion standpoint. It was also found that in some cases, the number of 

solutions obtained increased as the added error decreased. This is 

not saying that bad data can be fitted with more ease. It is cited only 

to point up the fact that good data and a poor selection of the estima-

tion model may cause additional problems in estimation. One test 

run on a set of data generated by the model y = 6 + £, where the 

2 
er = O. 01, yielded 141 roots of which four were of equal merit. 

Any one of the 141 solutions was reasonable. 

Generating the Errors 

Reference. has been made to "added errors. 11 It is not practical 

to use random numbers from a published table when dealing with a 

problem of some magnitude. There are mathematical procedures 

which furnish a satisfactory substitute. These methods, though not 

random in the sense of being unrepeatable, are quickly computable 
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and hav,e an ·extremely large cycle. The pro'cedures described below 

produce numbers un that are approximately unifor·mly distributed 

on the.unit interval (0, 1). It is relatively easy to generate random 

numbers having other than rectangular distributions from a source 

that is rectangular or uniform. Let u, be uniformly distributed on 

(0, 1). To convert u to a normally distributed variable with mean µ 

2 
and variance o- , we note that the variable u has mean - 1/ 2 and 

v~riance = 1/ 12. By use of the cen'tral limit theorem it is seen that 

£ = (u - ! ) tfT2n approaches a normal distribution with mean zero 

and variance one as n increases without bound. If n = 12, w.e 
12 

have £ = ·~ u. - 6. 
i= l 1 

Preliminary tests for n = 12 proved to be 

a large enough sample from f(u) to give a satisfa~tory normal distri-

bution for £. 

To obtain the uniform random numbers u, one has only to call 

upon the theory of power residuals. Any computing subroutine that has 

a finite inputwill eventually repeat~ This makes it imperative for 

any systematic procedure to have a very long cycle. Congruent num-

bers (modular numbers) are defined as elements of a set such that for 

every X; y in the set, the quantity (x-y) is exactly divisible by some 

fixed value m, which is the modulus of the set. A full discussion of 

the theory is rather long. IBM Corporation gives a thorough analysis 

and description of the method and theory. The conclusion was made 

that among .all methods which were statistically acceptable, the fol-

lowing procedure has the most merit. Since the random errors sought 

were to be computed on a base 10 computer, it was determined that 

a multiplier m = 10011 and a starter u = 1234567373 
0 

would be 



Satisfactory. This choice has a cycle of 500, 000, 000. Any numbe~ 

m, of the form m = 200 T ~ R ma.y be used. T is any positive 

integer, and some of the acceptable· R values are 3, 11, 13, 19, 

21, 27. The starting value u can be any 10-digit number not end
o 

ing in O and not divisible by 2 or 5. Then, computatfonally, 

ui + 1 consists of the ten low-order positions of the product mui. 

The decimal point for each value of u is considered. to be at the 

left so that O < u < 1. 
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C:HAPTER IV . . ' . . 

SOME PROPERTIES PF ESTIMATED ~ARAMETERS 

BY A SYSTEMATic SEARCH PROCEDURE 

, The computer used ih this ptUdy has a relatively fast (4. 5 µ s) 

access time, and in spite q{ this speed, conside:i;able con::iputing time 

was used for. this invest~ga.~i6n. All, preLiminary cpmputing was done 
' ' 

with programs written in. Fortran (4) compiling language. This method 

of progrflrnming~ though costly in machine time, allowed for quick (one 

shot) testing of different methods ov~:r seve:~al data sets.: The detei--

mination of bias arid covariance of es·t~mated para:mete:i;s presents an 

entirely different problem~ In Monte Cc!-rlo procEJdures, one has to 

repeat an algorithm enough times to e:stablish, within reason, some 

trend or probability. Becadse of th~ repetitive nature of this part 
. . ' 

: o(the study, it was decided\o do. the balance of the programming in, 

symbolic machine language,; whick is generally six to ten times as 

efficient as. F·ortra.n. · It was also decided to restrict the study to three 

generating mode ls: 

y = l + x 
t £ 

y = o. 3' t £ 

x + £, y = 1 + 2x 

Each data set was taken over the same x values, naqiely 
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x. = (0, l, 2, .•• , 10). The added ''errors £. were drawn (gener~ 
1 1 

-ated) from a quasi'.-·normal distribution having a mean = 0 and· stan-

dard deviation = O. 1. This sets the c. v. (coefficient of ·variation) 

at approximately 30 pe·r cenL The estimation model for each test 

was 

y = 
13~ + l3lx 

1 + a 1 x + £ 

with the accepta.ble region for a. 1 restricted to the interval ( .. O. 08 

< a 1 < 4. 0). AU the estimates were tabulated ·for each data set, 

and the best estimate from each set was selected for the study of 

bias and covariance. 

All three generating models were reasonably we 11 behaved. The 

prior knowledge of the driving forces (parameters) for each data set 

made the selection of the acceptability space quite easy. Such prior 

knowledge is unusual in most cases of non""'.linear estimation. There 

were 1088 data sets tried of which 905 had solutions in the acceptable. 

space. In each of the selected sets of estimates (13 0 , 13 1, a. 1), there 

. . . . · -6 . z6.2 
was a suff1c1ently good set such that ~ ,6,. < .10 and "s ~ O. 01 

which was essentially the mean and variance of the quasi-normal 

2.3 

added errors. In other words, the data sets were adequately described 

by the parameters that were estimated. The fitted line in each 

instance passed inside the data points as indicated by the randomness 

of the d,istribution. of the signs for the ,6,.. over the range of x. 
l· 



CH.A,PTER V 

AN ALTERNATIVE APPROACH TO 

NON-LINEAR ESTIMATION 

Gauss method (sometimes caUed Gauss -Seide 1, Seide 1, Gauss -

Newton, OJ;" Newton-Raphson) is p:i:imarily based on linearizing the 

estimation model with respect to the desired parameters by means 

of a truncated Taylor series. Starting yalues or initial estimates 

are substituE;)d for the parameters in the series or normal equations, 

and a set of correction factors is obtained. These correctors are 

then weighted and added to the previous estimates and the process 

repeated. Hopefully, this sequence of estimates will converge to 

or stabilize on an acceptable set of parameter estimates. Two of the 

more recent papers on the Gauss method are quite good. Moore and 

Ziggler ( 1959) indicate that the 11 least squares II solutions derived by 

this method are usually quite satisfactory and that the inverse of the 

matrix can be used for estimating variances and covariances if the yi 

are assumed to be normally distributed. They state, "From these 

esti;mates we can compute single and joint confidence intervals for 

the parameters as indicated for the Lin.ear problem." Hartley ( 1959) 

states that ''when the regression function is non-linear in the para

rpeters, both the theory and the practice of the estimation procedure 

is considerably more difficult.'' In the presentation of his modiHration 
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to the Gauss method and in the accompanying proofs, he assumes cer-

tain conditions which c1re present in the ratio estimation model. Some 

of the conditions are: 

1. The ·estimation model is continuous, and both first and 

second partial deviatives exist. 

2. The residual sum of squares of deviation function is 

always greater than O for all observeq. vectors and estimating para-

meters 1n a bounded convex set S of the parameter space. 

3. The assumption is made that it is possible to find a suit-

able starting vector that, along with the properties of convex sets, 

will guarantee convergence. 

With some additional assumptions, Hartley proves that an absolute 
I 

minimum can be achieved •. 

By .means of his assumptions and convex theory, Hartley proves 

that all of the first partial derivatives in the sequence approach zero 

as a limit. This satisfies part of the requirements for a least squares 

solution. He indicates that it is highly unlikely that two or more sets 

of estimation parameters yield the same residual sum of squares. He 

states, ''It is also clear that an absolute minimum of Q is inside S. " 

Here Q is the residual sum of squares function, and S is the convex 

set described above. The statements regarding the uniqueness of 

both the estimates and the absolute minimum a.re based on the fact 

that the matrix oft.he normal equatiol').s is positive definite. 11 ••• 

If the region S ••. can be chosen to be the region containing the absollite 
+ 

minimum, ••• then our iterative process will converge to the vector -0 

yielding the absolute minimum of Q. " Here -0 + is the solution vector. 



· The preceding, from Hartley ( 1959), is a logical and effective 

presentation-of the theory. The difficulty arises when one must 

necessarily find the ·starting vector .Q. that resides tn the convex 
0 

set S. Local minima may be relatively near to on.e another. so that 

the "wide grid" suggested by Bartley. may have to· be changed to a 

fine o;ne. Even then there is no assuraLce that the local mini.mum 

found is not adjacent to one where the function Q is nearer to zero. 

Hartley adds, "If there is a problem in which the absolute minimum 

is not unique for all large samples, the least squares principle 

ceases to be an appropriate method for estimation since it will be 

incapable of distinguishing between the two solutions. • , • It is only 

the unique vector which yields the absolute minimum of Q that is of 

interest in statisticcj.l estimation theory. 11 

Consider now the bilinear estimation model 

. [30 + [3lx 
y = + £ 

from the standpoint 9f the Gauss proce,dure. 
-1 

The factor ( l + a 1x) 

in this model can be expanded into or written as a Taylor series. We 

have: 

-1 
( l + a 1 x) 

00 
i = :z (-a 1 x) 

i=o 

which is analytic everywhere except for the point (a 1 x) = -1. Unfor

tunately, the Gauss method calls for a truncated series, and for 
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(a 1 x) > ·l we have term for term divergence. Since it is not feasible 

to restrict (a 1 x) to the interval (0 < a 1 x < < l), we must tp.en use 

the factor ( l + a 1 x) - l its e 1£ for the '' linearizing II and evaluation parts 

in the Gauss procedure. Taking the cue from the ordinary. linear 



least ·squares procedure, we have the function 

2 (P. ) 2 130+13 Ix 2 
Q . = -~ e: = ~·[ y - p I-'' x ] ;:: ~[ y - ] 

q ( a , x) l + a 1 x • 

H we have sufficiently good starting values, the ratio model could be 

treated as if it were linear •. Remembering the rule for compound 

(two factor) differentiation, we have for the bilinear estimation model 

the vector 

a e: -x 

8(13,a) 

)~ '~ -

13 0 + 13 1 x)x) 
2 . 

( l + a 1 x) 
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Here the superscript * is used to indicate 

for purposes of ,differentiation. Except for 

a parameter held constant 

2 
the factor ( 1 + a. 1 x) we 

* have a "linearized II vector if starting values are substituted for (13 , 
0 

""' al =.al). Thus the 1'Hnearized 11 bilinear estimation model 

becomes a 11 linear11 model with parameter vector (13 0 _, 13 1, 0. 1) I• 

* >:C * This new model has starting values (13 0 , 13 1 , a. 1 ) within it, and 

it would be_ sheer folly to solve for (13 0 , 13 1, a 1). We should then be 

interested in some method of obtaining a correction for the starting 

values. From elementary numerical analysis (Salvadori and Baron 

(1955) ), we can obtain such a corrector. Consider the set of simul-

taneous equations 

A x = c 
nxn nx l nx 1 

* where A is non-singular. A starting value X is chosen and the 

* * product AX = C is evaluated. Then the system 

* A X = C - C 
!:::.. 

is formed and a solution is obtained for the vector X t;;. The correction 



,:, 
X is then weighted and added to the vector X to obtain a better 

D.. 

-e-stirnate for the vector· X. The weight is usually < 1, and the 

-sequence is repeated until * 0 c - c :: p1. If * C - C = [6. then 

X = f1 and the solution X has been obtained. 
D.. 

We can now write Q in the 1 ' linearized 1 ' form 

,:: * :::,: 
Q = :E [ y 

a lx( f3 o + f3 l x) 2 
+ ] • * 2 ( 1 + a 1 x) 

In matrix notation the new Q takes the familiar form 

Q = e 1e = (Y .;.. Z P ) 1 (Y - Z £. ) 

where the rows of z 
nx 3 

have the 

zi = ((\+In/ xi) 

and the vector 

x. 
1 

* ,:c 
-x. ( f3 + f3 l x.) ) l O 1 

* 2 { l + a 1 xi) 
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But, because os the starting values in the matrix. Z, we want a correc-

* * * * * tion factor P such that w P + ([3 0 , f3 1 , a· 1 ) will converge to 

the parameter ([3 0 , f3 1, a 1) that will minimize Q. Accordingly, we 

can define 

and let 

* 

Y· 1 

£. 
1 

* = 

= 

f3 0 

y. 
1 

l 

,:c 
t 

t 

:,~ 

f3 l 

al 
\ 

y; 
1 
* 

,:c 

x. 
1 

x. 
1 

Thus _e__ Hi the correction vector that will i:iatisfy the ordinary linear 

regression model: 



* .... -e 
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The-wieght, usaaUy positive :arid < 1 cari also be determined by find

ing the minimum po-in~·of a ·quadratic curve passing through three sue- -

·c-e-s-sive values of Q. _ This minimum of the quadratic function used to -

de-t-ermine · w is suggested by Hartley (.1959) and is used in his pro0f 

of co.nvergence to the absolute minimum for Q. 

The ~edified Gauss procedure a~ outli:0:ed above has its faults. 

The matrix Z can become singular due to poor starting values, a 

_bad combination of ciata and estimation mod!;ll, or unfortunate oscilla.-

tion in the correctfon vector. It a-Lso dr_c>ps the requirement that 

1: .ti. = O. It does_ have the distinct advant~ge, in lhe case of good 

· ~- e 1e 
starting values,. that it simultan.eous ly satisfies O (~, a) = ~- when, 

the estimation models become more complex when for example, there 

are two or more a. r Since the .matrix z I z i_s positive definite,. the 

procedure will obtain the param-eter estimates that coincide with 

local :,;ninima .. Theore-tically, the meth(?d is sound even though it 

fails when the estimation model is exact and there is no added error. 

This -is due to_ the fact that the matrix Z' Z becomes. singular as the 

estimates, for _the parameters approach the true value. -The thf:lory 

requires that Q is greater than O for all estimation models an,d 

co·rresponding data sets. 

The systema.tic searc_h procedure which obtains all pos1:1iple real 

'valued estimates yielded some 905 solµtiOnijl or parameter sets across 
.• •, . 

three data generatip.g models. In--each sea-rch there was the' require-

m ent tha.t :!: A ~ 0 
. 2 -- .. 

a:nd 'E 4 be minimum. All of the pq.rameter sets -

were quite good from a data description standpoint. The norrnaL 



-equation£FW'e"r-e always satisfied for the· data set that had estimation 

parameters in an acceptable region. It logically follows that these 

-e-stimates should he good starting values for testing the modified 

Gauss procedure. With the relaxation of the restrictior.. :E .a,~ 0, 

one should expect a shift in the parameter values between the two 

procedures. It would appear that even better estimates would be 

obtained under the relaxation. The exact opposite occurred. The 

2 
least squares criterion requires that Z.6. be minimum. Out of the 

905 trials of the modified Gauss procedure, there were only three 

sets where-the sums of squares of deviation were essentially equal 

to the search procedure and only one wlfere there was any improve-

ment. The sum :of deviations was never zero. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The re,sults of this study should point up the fact that procedures 

in non-linear estimation are far from what is statist_ically desirable. 

It is not practicable to embark on a systematic search for a solution 

in the absence of large-scale computing facilities. When the estima-

tion model has the bilinear form, one has to search out all possible 

parameter sets before one can be assured that the best sets have been 

found. This has its analogy in the theory of stepwise regression 

wherein one attempts to seek o{it the best model to describe a particu-

lar data set and b_ases a decision on th_e sums of squares removed by 

different sets of parameters. Unless all possible models have been 
I 

tried, one cannot be sure that the best mod.el or set of best models 

has been found. There is also the problem of propagated errors that 

accompanies any numerical pr.o.cedure that is programmed into a 

computer. Any well-designed computer has built-in electronic logic 

checking circuits that wiH set error indicators if the computer makes 

an interna.l mistake. The computer will do exactly what it is pro-

grammed to do. Propagated errors come from poor programming 

. techniques or insufficient numerical analysis of the problem from a 

computation standpoint. Some of the most innocuous looking analytic 

functions or computing algorithms that are mathematicaJ.ly sound do 
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not yield readily to good computer programming. To this Pandora's 

computing box add the flatness of the polyn,omials derived from the 

data .u'Sed and bilinear estimation model, and you have a situtation in 

which the parameters estimated can be suspect. The error propaga-

tion problems are the same for the modified Gauss procedure but 

to a higher degree. This is due to the greater amount of computing 

that is necessary in building the z•z I Z 1e 
-·--,, 

matrix and findir:g .L 

for each iteration. The theory and methods of controlling propagated 

errors in high-speed computation is a discipline in itself. Couse-

quently, ·much thought went into the preparation of the symbolic machine 

language programs used in this study. 

The bias in the estimates cannot be due to the programming or 

the computer. The fault, from a statistical standpoint, lies either 

with the estimation procedure or with the least squares criterion. 

The added errors had a near normal distribution, but the distribution 

of the estimated parameters was evidently not normal. under repeated 

sampling. In the tabulations and graphs exhibited in the Appendix, one 

will see little similarity between the estimated parameters and the 

driving forces (parameters) in the generating models. The relatively 

small acceptable space for the parameters served only to narrow the 

parameter distribution and hence make a bad situation look a little 

better. There was adequate evidence that numerous estimates were 

outside the acceptable space and that these estimates could be as good 

or better than the ones selected. The space restriction also caused 

approximately one-third of the data sets to be rejected on the basis of 

not having an acceptable snlution. Both of the estimation procedures 



were appar-ently -succ-essful in describing the data even though the 

modified Gau-ss procedure· sometimes diverged and, almost without 

ex-ception, had a sizeably larger sum of squares of deviation. In 

other words, the modified Gauss procedure was not as good as the 

systematic search procedure from the least squares standpoint. 

There is still much work to be done and many questionE to be 

answered in the theory of non-linear estimation. Throughout the 

entire study, as s·et forth in t~is paper, one of the answers became 

increasingly evident. It is that no statistical inferences can be 

associated with the estimated parameters in the ratio model. All 

one can do is to attempt to describe the data with the knowledge that 

other estimates can exist that are as good or better and that a differ

ent procedure can sometimes ferret out still better estimates. 
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APPENDIX 

SUMMARY OF DISTRIBUTION DA TA OF THE EST,IMA TED 

PARAMETERS IN THE BILINEAR ESTIMATION MODEL 

Generating m0de l 
1 

Number of trials 506 Y = 1 + x' +' e 

130+13 lx 

Number having solutions 505 
Average number of Eol.utions l. 00 

Estimating model y = 1 +a f + e 

Acceptable Region -0. 08 < a 1 :S. 4. 0 · 

Means of estimated parameters 
Covariance of estimated parameters 

-2 
Mean of rr = • 01006 

· Variance of ;2 = • 0000230 

13 0 

.997 

. 0095 

[3 l 

• 236 
. 0016 
• 0124 

x + e Number of trials 265 

al 

L 111 
• 0216 
• 0585 
• 35 37 

. Generating model y = lt2x 

13 0+13 f 
Number having solutions 200' 
Averc;1.ge number of solutions 1. 01 ···· 

Estimating model y = + e 
1 +a .lx 

Acceptable Region -0. 08 ::_ ~ l ::_ 4.; 0 

Means of estimated parameters 
Covariance of estimated parameters 

. ~2 
Mean of rr = • • 00987 

-2 o- = •. 0000 245 Variance of 

13 0 

• 014 
• 0138 

13 l 
• 766 

-.0222 
• 1944 

Generating model y = 0. 3 + e Number of trials 317 

al 

l. 496 
- • 014 7 
·. 4097 

• 8816 

13o+l3lx 
Estimating model y =----

Number having solutions 200 
Average number of solutions 1. 26 

1 +a 1x 

Acceptable Region -0. 08 <·a 1 < 4. 0 

Means of estimated parameters 
Covariance of estimated parameters 

' ~ 2 
Mean ·of rr = • 01088 
Variance of ;;. 2 ,= • 0000313 

. 35 

13 0 
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