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CHAPTER I 

INTRODUCTION 

As the scope of problems to which statistical inference 

is applied becomes wider, it is apparent that it is some

times necessary to use procedures which formally take into 

account information which is held prior to the formal ex

perimentation. Rather than taking actions based solely on 

the outcome of the experiment, one wishes to combine in some 

manner the information from the experiment with the informa

tion already held, and then take action based on this 

combined information. The need for such a technique arises 

not only from the desire to make better inferences through 

the use of prior information, but even more urgently to pro

tect the decision maker from making errors through the 

misuse of prior information. Such errors are quite apt to 

be made, because it is most unlikely that if substantial 

prior information exists, it will not be used in some way, 

particularly if it disagrees with the experimental results. 

There are, of course, instances in decision making in 

which the prior information is quite nebulous, but attempts 

to define "complete ignorance" have pointed out some inter

esting and perhaps unexpected results. (Luce and Raiffa 

[8]). It is also easy to see that, in the final analysis, 
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the choice of a decision procedure must depend upon the 

judgment of the decision maker. The alternatives seem to 

be either to use this judgment in a formal or informal way. 

The purpose here is not to justify the use of expert opin

ion, but to attempt to devise procedures to circumvent some 

of the difficulties of the so-called "Bayesian 09 method of 

using prior information. 

Objections to Bayes Procedures 

Many statisticians and logicians have taken exception 

to the use of Bayesian inference. Because of the nature of 

these objections, they can be discussed briefly here before 

outlining the procedures themselves. The dissension in

volves the idea of using a probability distribution to rep

resent one's uncertainty about something, and the objections 

have been primarily of two types, which will be designated 

as II logical vv and npractical •00 

The logical objection has been that the calculus of 

probabilities is not valid when the probabilities represent 

degree of belief rather than some relative frequency ideao 

For example, a person sympathetic with this objection would 

feel that to say 10 the probability that it is snowing in 

Moscow now is .avv is not an acceptable use of probability. 

The practical objection is that in many cases a 

person°s degree of belief is too 11 fuzzy" to be represented 

as a precise number. Anyone who has ever tried to represent 

a degree of belief with a probability will vvprobablyOi be 
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sympathetic with this objection. 

There has been considerable research directed toward 

resolving the logical objection. It is apparent that the 

resolution has not been obtained, but it is also apparent 

that the idea cannot be dismissed simply because it involves 

a different concept of probability than most statisticians 

have accepted in the past. There have been several axio-

matic developments leading to weight functions which repre-

sent degrees of belief and also obey most* of the conditions 

for probability measures. Outstanding among these are the 

developments of Ramsey (12), De Finnetti (2), and Savage 

(13). It should also be pointed out that attempts to define 

probability in the relative frequency sense in a precise 

mathematical manner have not been entirely successful. 

(Jeffries [6]). As the concern here is with the practical 

difficulties, this issue will not be discussed further, but 

it does seem that at least an attempt to resolve some of the 

practical difficulties is justified. 

It is significant that the objections of many of the 

leading statisticians, as reported in the literature 

(Pearson [11], Neyman [10]), are based not on the logical 

but the practical difficulties involved. In an attempt to 

overcome this difficulty, Lehman and Hodges (7) have pro-

posed a technique called a modified Bayes procedure, which 

is a mixture between a Bayes procedure and a minimax 

*There re-mai,ns som-e- .. ,q.uestion regarding . complete 
additivity. 

L 
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procedure. Smith (15) has suggested an idea, also mentioned 

by Good (3), that a person specify only a convex set of 

probabilities rather than a unique distribution. Good sug

gested that one might specify a probability distribution of 

probability distributions over that convex set. In a prac

tical sense this seems to be asking a lot of the decision 

maker, and in a theoretical sense admission of this idea 

would apparently force one to admit the idea of probability 

distribution upon probability distribution ad infinitum. 

Smith suggests taking the minimax over this set, which seems 

to be a reasonable procedure , subject, of course, to the 

usual criticisms of minimax. 

This paper is an attempt to make use of the fact that 

in many applications it is not necessary to know the prior 

probabilities exactly. This is to say that in some instances 

it is possible to change the prior distribution somewhat and 

not affect the inference or decision at all. Many of the 

authors who have presented applications of Bayes procedures 

have developed a sensitivity analysis regarding the prior 

distribution. All of these analyses, however, have assumed 

that the prior distribution belonged to some family indexed 

by a parameter and have examined the sensitivity to changes 

in this parameter. The basic idea here is to not make this 

restriction. 

Isaacs (5) suggests an idea similar to the one to be 

developed here. The problem which h e was considering was 

not in a Bayesian context, but in the area of decision 

J 
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making under uncertainty. One must make a decision which is 

related to a parameter 8. If the probability distribution 

of e can be specified as P(6), then the action with the 

smallest expected loss can be taken. To investigate how 

this decision depends on P(S), one might find the distribu

tion Q( 8), which is "closest 10 to P( e), that results in a 

different optimal actiono 

.The problem to be considered here is based on an idea 

quite similar to Isaacs 0 • The decision maker is to choose 

one of a finite number of actions. He decides on a prior 

distribution P. Now, considering the experiment to be con

ducted, what is the °'closest'° distribution to P which would 

result in a different procedureo This problem will not be 

stated more precisely until the elements of the Bayes pro

cedure are presented. The approach and results here are not 

at all like Isaacs', and his results will not be presented 

in this paper. 

Decision Problems and Bayes Procedures 

The type of statistical decision problem presented here 

is a special case within the class named II partition problems" 

by Savage (13). Partition problems occur frequently in some 

fields of application, notably operations research activi

ties. Other types of decision problems can often be approx

imated arbitrarily closely within this frame of reference. 

Let the elements of the problem be: 

A finite number of 00 states of nature 980 



a finite number of actions, 

0 0 0 , 

a ~ function on Ax ®, 

L[a., 8 .] , 
1 J 

a}, n 

and an experiment, with outcomes 

XE X. 

6 

The decision maker is faced with the task of choosing an 

action from A. The proper action to be taken depends, in a 

way to be explained below, upon which state of nature 

actually holds true. Which state of nature this is is un-

known to some degree to the decision maker, and a prior 

probability function on®, 

P = { P1 , P2 ~ 0 • • , Pn} , 

is an attempt by the decision maker to represent, before the 

experiment X, all of his information regarding the relative 

likelihood of the various states of nature. 

Known to the decision maker is a loss function L, which 

is a measure of the desirability (or rather the undesirabil

ity) of any action, given that a certain state of nature is 

true. It will be assumed that the decision maker's primary 

motive is to minimize, in some sense, the expected loss. It 



should be pointed out that there are two common conceptions 

of a loss function. In one of them, 

L[a, SJ = -I[a, SJ, 

where I is the income, or utility, (positive or negative) 

derived from taking action a when the state of nature is e. 

The other conception is that it is more reasonable to use 

L[a, eJ = ::~{I[a*,SJ} - I[a, eJ. 

That is, the loss values for each state of nature are meas

ured from an origin correspondi ng to the very best that 

could be accomplished if the state of nature were known. 

Although this distinction is most important, it does not 

affect the mathematics of the procedure once the loss func-

7 

tion is determined, so it will not be discussed here. 

Excellent discussions for both sides of the issue, and also 

developments of how utility is measured, are given in Savage 

(13), and in Luce and Raiffa (8). 

The decision maker has the opportunity to observe, 

before choosing an action from A, an outcome x e; X of an 

experiment. The probability distribution of x will depend 

upon the state of nature through a likelihood function on 

ex X, f. (x), determining a probability measure on X for each 
1 

e E e. For a fixed S E e, the function of x, f. (x) can be . 1 

either a probability function or a density function, 

depending on the structure of the space X. It will be 

assumed that the statistic xis sufficient for the family of 
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experiments indexed by the state of the nature. It will also 

be assumed that fi(x) > 0 for every x and for every i. 

The decision maker's procedure can be represented mathe

matically by the specification of a class D of decision 

functions, with elements d(x) ED, each decision function 

mapping X into A. If the experimental outcome is x, the 

decision maker chooses action d(x) . The primary problem of 

decision theory is to investigate the choice of decision 

function. Clearly , the choice of a decision function should 

depend upon at least the prior distribution , the loss func-

tion, and the likelihood funct i on . 

It should be pointed out that except for the limita

tions made here on the structure of the spaces A and e, this 

is a very general formulation of the statistical inference 

problem. This formulation is primarily due to Wald and is 

presented elegantly in the first chapter of Wald (16). 

Excellent discussions of the application of this formulation 

are given by Schlaiffer (14), Savage (13), and Blackwell and 

Girshick (1), increasing in level of difficulty in the order 

that they are listed . 

Consider now the problem of evaluating a decision func

tion. If ei is the true state of nature and a decision 

function d(x) is used to choose an action, the risk function 

R(d, 8.) 
l 

I 

= f L[d(x), 
x ! 

e.J f.(x)dx 
l l 

is clearly the expected loss to the decision maker. 



Because the decision maker does not know the true e., how-
1 
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ever, this function does not serve to establish a preference 

of d0 over d1 unless 

i = 1, 2, ... , n, 

A Bayes procedure consists of using the prior distribu

tion over ® to obtain an expected risk, denoted by the B§;Yes 

risk function, 

B(d, P) = L p.R(d, e.). 
8. E® 1 1 

J_ . 

This provides, given a prior distribution, a procedure for 

ranking decision functions according to preference, and sug-

gests the following definition. 

1.1) Definition: A Bayes decision function against P, 

denoted by d, is a function in D which satisfies p 

B(dp' P) < B(d, P) for all de:; D. 

The use of a Bayes decision function is called a Bayes 

procedure. 

It is interesting to note that if the decision maker 

has an order relation in D corresponding to his preference 

of one decision function over another, and if this order 

relation satisfies certain axioms which can be thou~ht of as 

representative of the decision makerus uurationalityjH then 
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there can be shown to exist a prior distribution P such that 

the ordering of the Bayes risk functions will correspond to 

the ordering in D. A proof of this is given in Blackwell 

and Girshick (1). 

There are two approaches to the construction of a Bayes 

procedure. The decis i on maker can, before observing x , 

evaluate in some way the Bayes risk functions and choose 

from D the Bayes decision function, d . The other approach p 

consists of first observing x , and then, instead of solving 

for the function d over its entire domain , he need only p 

solve ford (x) for the x observed. p 

Since 

B(d , P) = E p . R( d, 8. ) 
J_ J_ 

= E pi J L[ d ( x) , 0 i] f i ( x) dx 
x 

=f[EL[d(x), 8.J p . f.(x)]dx 
J_ J_ J_ 

x 

a necessary and suffi cient condition for 

B(d , P) < B(d1 , P) 
0 = 

i s for 

Thus, i f x i s the outcome obs erved, a Bayes procedure con-
' I 
I 

sis ts of choosing a E A s uch tha t 
p 
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EL[ a , 8. J p. f . (x) < "L[ e J f ( ) p i i i = 1.., a, . p. . x 
l l l 

for every a EA. 

Since by assumption Ep. f. (x) > 0 for any P and any x, this 
l l 

is equivalent to choosing ap such that 

pifi (x) p . f. (x) 
EL[ a , e. J E f ( ) < EL[ a, e. J E i / ( ) for every a c: A. 

p l Pj j x - 1 Pj j x 

Let the conditional distribution of e given x be referred to 

as the posterior distribution over s, and denoted by 

Pc x) = r P c e 1 I xJ , P c e 2 I xJ , . . . , Pc en I xJ 1 . 

Thus, a Bayes procedure consists of choosing ap such that 

EL[a , 8.JP[8 . lxJ < EL[a, e .Jp[S, lxJ for every a c:A. p l l = l l 

It will be convenient to write this equation in terms of the 

Bayes .l.Qli, 

W[a, P(x)J = EL[a, Si] p [Si Ix], 

which is clearly the expected loss of any action under the 

posterior distribution. Finally, then, if the outcome x EX 

has been observed, a Bayes procedure consists of choosing a p 

such that 

W[a , P(x)J < W[a, P(x)J for every a EA. 
p = 

If the action ap satisfies this relation, it will be called 

the best action against P(x). 
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Sensitivity to the Prior Distribution 

In the same manner that there are two approaches to 

finding Bayes procedures, there are two approaches to deter

mining the sensitivity of the procedure to the prior distri

bution. The a priori approach is to determine, before the 

experiment is conducted, the effect of changes in the prior 

distribution on the choice of a decision function. The a 

posteriori method consists of determining, after the experi

ment has been performed, the effect of changes in the prior 

distribution on the choice of an action to be taken. 

In the following chapters a procedure will be developed 

which can, to a certain extent, be applied to either an a 

priori or an a posteriori analysis. The primary emphasis 

will be placed on the a posteriori approach for reasons that 

will be discussed below. For the sake of clarity, the 

development will be presented in terms of the a posteriori 

analysis and the necessary changes to obtain an a priori 

analysis will be pointed out throughout this development. 

The basic i dea upon which the sensitivity analysis will 

be based was indicated previously. This idea is given that 

the decision maker has estimated the prior distribution to 

be P, what is the closest distribution Q which would result 

in a different decision? To state this idea more precisely, 

the distinction must be made between the two possible ap

proaches pointed out above. 

Suppose first that the space D of possible decision 
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functions contains only a finite number of elements. The 

a priori analysis in this case can consist of finding the 

distribution Q, nearest to P, for which the best decision 

function is different than the one which is best against P . 

The a posteriori analysis can consist of, given that xEX 

has been observed, finding the distribution Q, nearest to 

P, for which the best action against Q(x) is different from 

the best action against P(x) . 

A procedure will be developed in the next chapter which 

can be used in almost exactly the same manner to solve 

either problem. It is felt , however, that the results of 

the a posteriori analysis will have much more practical 

significance. The primary reason for this is that the 

decision maker is essentially interested in the decision 

function evaluated at only one point , the x whi ch is ob

served in the outcome of the experiment. He will, in gen

eral over-estimate the sensitivity of the procedure with the 

a priori analysis because he will be concerning himself with 

changes in the deci sion function which will not actually 

make any difference , since many decision functions map the 

x whi ch is actually observed into the same action . It will 

al so be seen that as far as the action taken, the sensiti

vity to the prior distribution is very much dependent upon 

which experi mental outcome obtains. That is to say, for 

s ome experimental outcomes the prior distribution plays very 

lit tle part i n determining the pos terior distri buti on and 
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for other outcomes the prior distribution is most important. 

From one point of view, the two analyses can be com

pared in the following manner. The a priori analysis will 

divide the space of all possible prior distributions into 

equivalence classes, with Q1- ~ if the same decision func

tion is best against each of them. For each experimental 

outcome x EX, the a posteriori analysis will partition the 

same space into equivalence classes, with Qi-~ if the same 

action is best against Q1 (x) and ~ (x). The equivalence 

classes for the former case can be formed using the equiva-

lence classes of the latter as follows. 

Suppose that the space X contains a finite number of 

elements. Given any x E X, the Bayes procedure for any given 

prior distribution Q can be found by minimizing over a EA, 

the quantity 

(1.2) 

A priori, the Bayes decision function is found by minimizing 

over d ED, the quantity 

but this can be done by solving (1. 2) for each x EX. Thus, 

given Q and the best action against Q(x) for each x EX, the 

decision function can be built up. 

As an example, let 
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X = { X1 , )'2 , X3 ) • 

For each x EX, the a posteriori partitions are symbolically 

indicated in Figure 1. 

ai 

Figure 1. The A Posteriori Partitions of the Space 
of Prior Distributions 

The a priori partition is indicated in Figure 2 where 

[ai, aj, ak) is the decision function for which d(x1 ) = ai, 

d()'2 ) = aj , and d(x3 ) = ak. 

If P were as shown in Figure 2, then the a priori solu-

tion would be Q, whereas if x2 were the experimental outcome~ 

then Q' would be the nearest distribution to P which really 

made any difference. It can be seen that the entire a 

priori analysis hinges upon the experimental outcome for 

which the procedure will be the most sensitive to the prior 

distribution. 



Figure 2. The A Priori Partition of the Space 
of Prior Distributions 

16 

The role of the experimental outcome in determining the 

sensitivity to the prior distribution can be illustrated in 

another way. When P and x are fixed, 

p [ e . I xJ cc p . f . ( x) , 
1 1 1 

when considered as a function of ei, with the constant of 

proportionality determined by the condition that the poste-

rior probabilities must add to one. It is seen, then, that 

fi(x), considered as a function of i is most important in 

determining the posterior distribution. In Figure 3(a), the 

posterior distribution would be quite sensitive to changes 

in the prior distribution; whereas,in Figure 3(b), the pos-

terior distribution would not be sensitive at all to changes 

in the prior distribution. 

In addition to the logical considerations, computational 
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Figure 3~ The Influence of the Likelihood Function in Determining 
the Posterior Distribution 
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and methodological factors indicate the desirability of the 

a posteriori analysis. In the case that x can take on in

finitely many values, there are an infinite number of pos

sible decision functions to consider. If xis a continuous 

variable and the class of decision functions is not re-

stricted severely, then Q can be arbitrarily close to P and 

still result in a different Bayes decision function. Even 

if Xis finite, there are mk possible decision functions, 

where A has m elements and X has k elements. In the a 

posteriori analysis, the structure of the space X has no 

bearing on the problem since the only concern is with the 

value of x obtained. 

There is at least one general drawback to the a poste

riori analysis. In formulating a prior distribution, the 

decision maker is to act independently of the observation x. 

This is tacitly assumed in the procedure for computing the 

posterior distribution. The seriousness of this drawback is 

difficult to evaluate, but it might be advisable for the 

decision maker not to be told the value of x obtained, but 

only the solution Q to the sensitivity analysis procedure. 

Of course, the choice of the prior distribution should not 

depend upon Q either, but no alternative procedure has been 

developed. The decision maker could be told only the dis

tance from P to Q, but it is doubtful if this information 

would be very meaningful to him. 

Generally, it seems that the a posteriori analysis will 
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be more valuable. There will be certain specialized situa-

tions, however, in which the a priori analysis will be 

needed. It might, for example, be necessary to evaluate the 

choice of a decision function from a very restricted class 

of functions for a situation in which circumstances prohibit 

an a posteriori analysis. This might be the situation if 

one were developing an automated decision making device for 

use in a guided missile. To allow for this possibility, the 

necessary procedural changes for this type of analysis will 

be pointed out throughout the remainder of the paper. An 

example of an a priori analysis will be given for a quality 

control problem in Chapter IV. 

The following example will illustrate the nature of the 

Bayesian approach. The sensitivity of the solution to the 

prior distribution will be analyzed at the end of the next 

chapter. 

ExamTile 1: A manufacturer of small rockets has a con

tract to produce a considerable number of a newly designed 

model and estimates of the utility structure as a function 

of the probability of failure are as follows, where a1 is the 

action to begin production: 

-I[ a1 , e. J 
J. 

0 50 100 500 1000 

The engineering office has estimated the prior distribution 
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P of the probability of failure 8 to be, 

P = ( • 1 , • 25, • 3 5 , • 25 , • O 5} • 

Five rockets have been tested and one failure observed. The 

following calculations have been made, using f.(x) = 
J. 

( 5) e.x ( 1 - 8. ) 5-x, where x is the number of failures ob-x J. J. 

served out of five trails. 

81 8 
2 63 84 Bs 

fi(l) .328 .410 .360 .260 .l~ 

The decision to be made is whether to begin production (a1 ), 

redesign (a3 ), or to test five more rockets (a2 ). The re

design cost is 100 and it will be assumed that redesign will 

result in a reliability of at least .9. For simplicity, it 

will be assumed that in the event that five more are tested, 

more than one failure will result in a decision to redesign, 

and one or less failures will result in a decision to pro

duce. The cost of the additional testing is 25. 

In this case, the utility if it is decided to test 

should be calculated as 

1 

:..r[ ~, ei] = 25 + [L (~) et (1 - ei)5-x][-rcaP, eiJJ 
X=O 

5 
+ [L. (~)8 t (1 - e i )5-x][100 J. 

X=2 



Thus, the following utility functions are obtained. 

-I[ a 1 , e J 
i 0 

-I[~' 8.) 
1 33 

-I[ a3 , 8.J 
1 

100 

e 
2 

50 

86 

100 

100 

125 

100 

Ss 

500 1000 

260 294 

100 100 

The following loss functions are computed using 

L[a. 8 J = max 
' a*EA (I[a*, 8]} - I[a, 8). 

L[ a 1 , 8.] 
1 

0 

33 

100 

0 

36 

50 

0 400 900 

25 160 194 

0 0 0 

The posterior distribution is computed from P and fi(l), 

i = 1, 2, 3, 4, 5'j 

P(l) = (.097, .3Q8, .378, .194, .023). 

21 

The Bayes loss for each action is computed using this paste-

rior distribution. 

W[a1, P(l)J = 98.3, 

W[a2 , P(l)] = 59.3, 

W [ a3 , P ( 1)] = 25. 1. 



The best action, then, is to redesign. Just how sensitive 

to the prior distribution this decision is will be consid~ 

ered at the end of the next chaptero 

22 



CHAPTER II 

THE SENSITIVITY ANALYSIS PROCEDURE 

This chapter will be devoted to developing a mathemat-

ical procedure for carrying out the sensitivity analysis 

procedure described in the introductiono Before this can be 

done, some attention must be given to defining what is meant 

by distance in the space of all possible prior distributions. 

For the first part of the chapter, it will only be assumed 

that the distance function o(P, Q) is a non-negative, 

strictly convex function of Q and that 6(P, P) = O. Actu

ally, then, 6(P, Q) need not be a distance function at all 

in the sense of defining a metrico Later in the chapter, 

considerable development will be done using the usual 

Euclidean norm as the distance function. In the next 

chapter, a discussion of the role of the distance function 

will be presented, and some alternative distance functions 

considered. 

The basic problem presented in the introduction is, 

given a prior distribution P and an experimental outcome x, 

with a any best action against P(x), find Q such that: p O 

for some k Ip, 

(2.1.1) 

23 
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and such that, for any Q satisfying 

W[ai, Q(x)] < W[ap, Q(x)J, for any i = 1, 2, ... , m, 

(2.1.2) 

(2.1.3) 

If it is desired to make an a priori analysis, the 

problem becomes, given a prior distribution P, with d the 
p 

Bayes decision function against P, find Q0 such that: 

B(dk' Q) < B(d, Q) 
. 0 p O 

for some k Ip, (2.2.1) 

and such that, for any Q satisfying 

B(di' Q) < B(dp, Q), for any i, (2.2.2) 

(2.2.3) 

Since 

W[ak, Q(x)] -W[ap, Q(x)J = I:q. ~. (x) 
l l 

and 

the a priori analysis can be carried out through the same 

procedure as the a posteriori, provided that the space D 

contains a finite number of elements, by replacing the 
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by 

R(dk' e.) - R(d , e.), 
1 p 1 

i = 1, 2, .... , n. 

The Existence of a Solution 

The problem is stated above in what seems to be the 

most natural mannero It will be shown in this section that 

the problem as stated has no solution, but that a suitable 

modification can be made resulting in a problem that always 

has a unique solutiono 

The approach to solving problem (2.1) is to ,find, for 

each k = 1, 2, o,o, m; k Ip~ Qk such that: 

and such that, for any Q satisfying 

W[ak, Q(x)J < W[ap, Q(x)J, 

(2.3.3) 

Then, choosing Q0 from the set 

k :l p, 

such that 

will give a solution to problem (2.1) if one exists. It is 
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also clear that if none or" the problems (2.3) have a solu

tion, then problem (2.1) cannot have a solution. 

Considering the problem (2.3) for a specific k F p, one 

must: 

Minimize f> (P, Q,) ' 

subject to: 

q. f, (x) 
l. l. 

E q. f. (x)' 
J J 

(2.4) 

(2.4.la) 

where 

q. > 0 
l. = 

Eq. = 1, 
l. 

i = 1, 2, ... , n. 

The restriction (2.4.la) can be replaced by 

(2.4.2) 

(2.4.3) 

(2.4.l) 

2.5) Theorem: If b(P, Q) is a non-negative, strictly con

vex function of Q and b(P, P) = O, problem (2.4) has no 

solution. 

Proof: It will be shown that if Q satisfies conditions 

(2.4.1) through (2.4.3), then there exists a probability 

distribution R on e, also satisfying those conditions with 



o(P, R) < 6(P, Q). 

This can be shown by letting 

R = exP + (1 - ex) Q , 

where (dropping the subscript k) 

Then 

since 

ex = -I: q. b. /2(I: p. b. - I: q1. b1. ) • 
1 1 1 1 

I: r i bi = ex I: pi bi + ( 1 - ex) E qi bi 

= ex (E p. b. - I: q. b.) + I: q. b. 
1 1 1 1 1 1 

= iE q. b . < 0 , 
1 1 

E qi bi < O. 
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Since ap is a best action against P(x), I: pi bi ~ 0, and thus, 

O<ex<l. 
"" 

The ref ore, by the convexity of o, 

6(P, R) = 6(P, exP + (1 - cx.)Q) . 

< cx.o(P, P) + (1 - ex) 6 (P, Q) 

= ( 1 - ex) o (P, Q) 

< o(P; Q). 



It is seen then that although the statement of the 

problem in (2.1) seems to be the most reasonable formula

tion, this problem has no solutiono The statement of the 

problem will, therefore, be re-formulated, asking for the 

nearest distribution for which one is indifferent between 

a and some other action. A great deal of relatively use
P 
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less qualification will be avoided throughout the remainder 

of this paper if it is assumed that there is only one best 

action against P(x), so this assumption will be made. 

The problem as re-formulated is: 

subject to: 

Minimize 6 (P, Q.) , 

E q. = 1, 
J. 

i = 1, 2, ••• , n. · 

(2.6) 

(2.6.1) 

(2.6.2) 

The solution to this problem will exist unless ak is an 

inadmissible action according to the following definition. 

2.7) Definition: An action ak is inadmissible if for somej 

L[ ak, e 1. J > L[ a., e. J 
= J J. 

for all i = 1, 2, ••• , n, 

and 

L[ ak, e . J > L[ a . , e. J 
J. J J. 

for some i = 1, 2, ••• , n. 



29 

2.8) Theorem: If ak is not an inadmissible action, and if 

5(P, Q) is a non-negative, strictly convex function of Q 

with 6 (P, P) = 0, then, 

problem (2.6) has a unique solution~' (2.8.1) 

if W[ak' Q(x)J <W[ap, Q(x)J, then o(P, Qk) < o(P, Q), 

(2.8.2) 

inf (o(Qk, Q) I W[ak, Q(x)J < W[ap' Q(x)J} = o .. (2.8.3) 

Proof: It will be shown that there is at least one dist~i

bution Q which satisfies the constraints (2.6.1) through 

(2.6.3). Since the set of distributions which satisfy those 

constraints is closed and bounded, and 5 (P, Q) by its con

vexity must be continuous, then the function 6(P,Q) must 

take on a minimum value on this set • 

. Since ak is not inadmissible, either bki = 0 for all i 

or bki < 0 for- some i. In the former case, any distribution 

satisfies the constraints. Because ap is a Bayes solution 

against P(x), E pi bki ~ O. If E pi bki = 0, then P satisfies 

the constraints. The only remaining case is where bki < 0 

for some i and I:: pi bki > 0. In this case, the must be some 

j for which bkj > 0. The distribution Q with 

q. = bkj/(bkj - bki)' J. 

qj = bki/(bkj - bki), 

qr = 0 r = 1, 2, 
• 0 • ' 

n ; 

r I i r I j' 
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will then satisfy the constraints of problem (2.6). 

To show uniqueness of the solution, suppose that Q and 

Rare both solutions to the problem. Since the constraint 

set is convex, a:. Q + ( 1 - o:.)R also satisfies the constraints 

for O < a:. < 1. But, due to the strict convexity of 5(P, Q), 

the contradiction 

o (P, o:.Q + (1 - ex)R) < exo(P, Q) + (1 - ex)o(P, R) = o(P, Q) 

is obtained. 

To show that 6 (P, Qk) < 6 (P ,Q) for the set 

(Q I W[ ak, Q(x)J < W[ ab~ Q(x)J}, let Q satisfy 

W[ak,Q.(x)J < W[ab,Q.(x)J. Letting 

R = o:.P + (1 - ex) Q, 

where 

then, it is easily seen that 

E ri bki = O. 

It was shown in Theorem 2.5 that O <ex< 1. Thus, R satis

fies the constraints of problem (2.6) and 

But, by the convexity of 6 (P, Q), 

6 (P, R) ~ ( 1 - ex) 6 (P, Q), 

and, therefore, 
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That inf[6 (Qk, Q) I W'[ak, Q(x)J < W[ab' Q(x)J} = 0 is shown 

as follows. Due to the continuity of 6(P, Q), for any E > O 

a Q such that W[ak' 'Q(x)J < W[ab 9 Q(x)J can be found for 

which 

b (Qk, Q) < E 

by increasing one of the coordinates of Qk associated with 

the smallest bki by a sufficiently small amount and de

creasing by the same amount one of the coordinates associated 

with a larger bki" If all the bki are equal, they must all 

be zero and this case has been assumed not to occur. 

The fundamental problem of this chapter, stated in 

equations (2.1) is now modified to read: 

Find Q0 such that 

W[ak, Q0 (x)J = W[a 9 Q (x)J for some k Ip, p O 

and such that, for any Q satisfying 

W[a., Q(x)J < W[a , Q(x)J for any i = 1, 2, ••• , n, 
l .. p 

(2.9) 

(2.9.1) 

(2.9.2) 

(2.9.3) 

Theorem 2.8 establishes that this problem has a solu-

tion unless all the actions other than a are inadmissible, p 
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and that there will always exist, arbitrarily close to Q0 , a 

distribution against which a is not the best action. Prob-
P -

lem (2.9) will be solved as indicated in equations (2.3) 

with the inequalities replaced by equalities. It will be 

shown subsequently that it is generally not necessary to 

solve the problem for every action alternative to ap, and 

that in many instances it is only necessary to solve the 

problem for one alternative action. 

The idea of inadmissibility can be easily extended to 

decision functions rather than actions simply by replacing 

the loss function with the risk function. Theorems for the 

a priori analysis can then be obtained which are analogous 

to the two above. 

Construction of a Solution 

Attention will now be turned to finding a solution to 

the problem presented in equations (2.6) when o(P,Q) is the 

usual Euclidean norm; that is, 

Minimize o (P, Q) = [E (pi - qi) 2 ] 1 , (2.10) 

subject to 

(2.10.1) 

(2.10.2) 

q. > 0 
1 = i = 1, 2, ... , n. (2.10.3) 

It will be assumed that b1 > 0 and bj < 0 for some i and j. 
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Two methods of solving this problem will be presented • 

.Method I is proved to result in a solution for every problem • 

.Method II is considerable easier to apply, but has not been 

proved to be successful in every case. The difficulty will 

be discussed as the methods are presented. 

To solve the problem, it will clearly be sufficient to 

minimize [c(P, Q)J2. Neglecting the non-negativity con

straint (2.10.3) for the moment, the method of La Grange 

multipliers can be applied. 

Let 

Then a solution must satisfy the n + 2 equations, 

qi - P· l. + A bi + µ = 0 i = 1, 2, 0 0. q , n, (2.11.1) 

E qi bi = o, (2.11.2) 

E q. = 
l. 

1, (2.11.3) 

for some A and µ.. It will be shown that if the solution to 

these equations does not violate the non-negativity condi

tions, then it is the solution to problem (2.10). 

The method of incorporating conditions (2.10.3) into 

this problem is based on some results of Kuhn and Tucker, 

obtained in their work is the theory of games. This Kuhn

Tucker theory is that upon which some of the methods of 

quadratic p_rogramming have been ··based. Although these 

quadratic programming methods could be used directly for the 



34 

problem at hand, the special nature of this problem enables 

one to apply the Kuhn-Tucker theory more directly. Because 

the results of Kuhn and Tucker are explained and proved very 

lucidly in Chapter 6 of Hadley (4), this book will be used 

as a primary reference. 

The primary theorem will be proved here for any convex 

distance function so that the results can be used in a later 

chapter. It should be pointed out that the Kuhn-Tucker 

theory applies to much more general problems. 

2.12) Theorem: Let 6(P, Q) be continuously differentiable 

strictly convex function of Q, and let the set E of vectors 

Q satisfying 

q. > 0 
l :::: 

~ q. b. = 0, 
l l 

Z::q. = 1, 
l 

i = 1, 2, .•• , n, 

be non-empty. A necessary and sufficient condition that 

6 (P, Q) be the minimum of 6 (P 9 R) for R in E, and for Q to be 

the only point in E at which 6 (P, R) takes on this minimum 

value, is that there exist A,µ such that, 

i = 1, 2, •.• , n 

L [ :~i ( p ' Q) + A bi + µ J qi = 0 
i 

(2.12.1) 

(2.12.2) 
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Q, is in E. (2.12.3) 

06 5i. Proof: Let~ be written 
l 

To show the sufficiency, it 

will first be shown that, 

n 
6 (P, R) > 6 (P, Q) + L 6 i (P, Q) (r i - qi) 

i=l 

for any R in E. 

For any O <a< lj 

o [P, Q + ex.CR - Q)] < cx.6(P~ R) + (1- cx.)6(P~ Q), 

or 

6[P, Q + a.CR - Q.)J - 6 CP, Q.) < o (P, R) - o(P, Q.). 
a = 

Then, Taylor's formula can be used to write 

r:oi[P,Q +6cx.(R-Q.)](r. -q.) < o(P,R) - o(P,Q), 
l l = 

where O < 6 ~ 1, and taking the limit as a approaches zero, 

5(p, Q.) + r:c/(P, Q)(r. - g_.) < 6(P, R). 
l 1 = 

Let Q, A, andµ satisfy the conditions of the theorem. If 

Q and Reach belong to E, then clearly, 

~b.(r. - q.) = 0 
l 1 1 

~(r. - q.) = O. 
1 1 

Combining this with the inequality developed above, 



o(P,R) > o(P,Q,) + Eoi(P,Q,)(r. -q.) +A.Eb.(r .... q.) = l. l. l. l. l. 

= o(P, Q) + E[oi(P, Q,) +Ab. + µ](r. - q.), 
l. l. l. 

and from condition (2.12.2) on Q, 

5 (P, R) ~- 6(P, Q) + E[6i(P, Q,) + Ab. +µJr .• 
l. l. 

Since r. > O, condition (2.12.1) on Q, gives 
l. 

6 (P, R) ~ 6(P, Q) , 

36 

and, thus, the sufficiency of the conditions. It was shown 

in Theorem 2.8 that the minimum can only be taken on at one 

point in E. 

The necessity of the conditions of the theorem is very 

closely related to the duality theory of linear programming 

and this connection will be used in the proof. 

Let Q, be the point in E at which o(P, R) takes on its 

minimum value. Let 

!::.' = fo 1 (P,Q),0 2 (P,Q), •.• , on(P, Q.)}, 

The proof hinges upon the fact that if 

bn} 1 . 

i = 1, 2, •.. , k, 

i = k + 1, ••• , n, 
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then, for any V' = {v1 , v2 , . . . , 
v. > 0 

1 = i = 1, 2, ••• , k, 

for which 

GV = <p, 

V must satisfy 

This is shown as follows. For any V satisfying the above 

conditions, there exists an a.> 0 such that for O < e < a., 

f'I, +ev. > 0 
':11 l = ' i = 1, 2, ... , n. 

Since 

GV = <p; 

I:: b . [ q. + Sv. J = 0 , 
1 1 l 

~[q. + Sv.J = 1 , 
1 1 

and, thus, 

o(P,Q. + ev) ~ o(P,Q.). 

If 6'V < O, then 6'(8V) < O, and a Taylor's expansion of 

o(P, Q,) about Q, would show that there exists a 80 e:(O, a.) such 

that 

o(P, Q + e v) < o(P, Q.). 
0 



Therefore, for any V such that 

GV:::; <P, 

where ~k is a k-rowed identity matrix and N is a null 

matrix. Thus, the linear programming problem, 

Maximize ~!'::, v v , 

subject to: 

GV = <P, 

with the vi unrestricted in sign (except as restricted by 

the constraint matrix), has a solution V = <P. It follows 

that the dual problem, 

Minimize cp, u 
' • 0 0 ' 

subject to: 

u. > 0 i = 3, 4, ••• , k + 2,. 
J. = 

38 

must have a solution. Note that the first two components of 

U are unrestricted in sign because of the equalities in the 

primal problem. The first two components of U are the quan

tities A and.µ needed for the conditions of the theorem, and 
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the last k components insure the inequalities for condition 

(2.12.1). 

2.13) Theorem: A necessary and sufficient condition for Q 

to be the unique solution to problem (2.10) is the existence 

of A andµ satisfying the following conditions: 

q. -p. +Ab.+µ> O, i = 1, 2, 
0 0 0 ' 

n, (2.12.1) 
l. l. l. = 

I: b. q. = o, (2.12.2) 
l. l. 

? 
I: q. = 

l. 
1, (2.12.3) 

q. > 0 
' i = 1, 2, 

0 0 0 ' 
n, (2.12.4) 

l. = 

with equality in (2.12.1) for those i such that qi> 0, 

Proof: This theorem follows directly from Theorem 2.12. 

The difficulty of the problem lies in obtaining Q, A, 

andµ satisfying the above conditions. Both methods given 

here consist generally of solving equations (2.11) without 

the non-negativity conditions as an initial solution. If 

the non-negativity conditions are not violated by this solu

tion, then this solution satisfies the conditions of Theorem 

2.13. In the case that the non-negativity conditions are 

violated, both procedures will consist of adjusting the 

initial solution until the conditions of the theorem are met. 

Method I consists of the.-, use of the simplex method of 
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linear programming to adjust the solution. The general idea 

of the linear programming problem will be to introduce arti-

ficial variables which will weaken the inequalities of 

Theorem 2.13. Under these weakened conditions, a solution 

will be found. Then, the simplex method will be used to 

force out the artificial variables, resulting in a solution 

to the original inequalities. One could use only artificial 

variables for the initial solution to the weakened inequali

ties, but the number of iterations will be far less if the 

solution to equations (2.11) is used for the initial 

solution. 

To solve the equations 

qi - Pi + Ab i + µ = 0 i = 1, 2, ... , n, 

~ b. q. = 0, 
1 1 

the first n equations are summed, giving 

where 

b = 1I:b .. n 1 

Hence, 

qi - pi + 11. (bi - b) = 0 . i = 1, 2, •.. , n. 

(2.11.1) 

(2.11.2) 

(2.11.3) 

These n equations are each multiplied by their respective bi' 



41 

summed, and solved using (2.11.2), giving finally, 

~ p. b. 
-) J J 

qi = Pi - Cb i - b E c b j - b) 2 i = 1, 2, ... , n. 
(2.14) 

If each qi is non-negative in this solution, then the prob

lem has been solved. If this is not the case, let the q's 

be ordered so that 

q. < 0 
1 

i = 1, 2, •.. , k, 

i = k + 1, ••• , n. 

Method I co:p.sists of solving the following linear program

ming problem: 

subject to: 

n 

Minimize: L si 
i=k+l 

q1. +Ab.+µ -u. = p. 
1 1 1 

i = 1, 2, •.. , k, 

n 

I bi qi -
i=l 

n 

I q. -
1 

i=k+l, .•• ,n, 

n 

L bi Si= 0 
i=k+l 

n 

I s. 
1 

= 1 , 
i=l i=k+l 

(2.15) 



i = 1, 2, •.. , n, 

u. > 0 
1 = ' i = 1, 2, ••. , n, 

i = k + 1, ••• , n, 

with the additional non-linear constraint, 

n 

I qi ui = 0 · 
i=l 

2.16) Theorem: The solution to problem (2.15) satisfies 

the conditions of Theorem 2.13. 

Proof: Since s. > 0 
1 

i = k + 1, 
0 0 0 ' 

n, if the con-
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straint set contained solutions with s. = 0, i = k + 1, ••• , n, 
1 

the solution of problem (2.15) would have to be of that form. 

When si = 0 

become 

and 

' i = k + 1, k + 2, ..• , n, the constraints 

i = 1, 2, ••• , n, 

~ q. = 1 . 
1, 

q. > 0 ' i = 1, 2, 
0 0 0 ' 

n, 
1 == 

u. >O 
' 

i = 1, 2, 
O o O ' 

n, 
1 = 
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These are precisely the conditions of Theorem 2.13, and thus 

have a unique solution, which, therefore, must be the solu-

tion to problem (2.15). 

The initial basic feasible solution is found by evalu

ating equations (2.14), and setting 

s. = -q. 
1 1 

µ =-Ab, 

i = k+l, .. .,n 

and using the original qi values for i = 1, 2, •.• , k. 

Thus, the basis variables are (q1 , ~, . " ' , qk' sk ., +1 ' ••• ' 

sn' A,µ}. That this is a basic feasible solution follows 

from the fact that equations (2.11) have a unique solution. 

Note that the variables A andµ are unrestricted in sign in 

problem (2.15). 

The constraint 

I: q. u. ::; 0 
1 1 

is imposed by not bringing qi into the basis when ui is 

already in and not bringing u1• into the basis when q. is 
1 

already in. Hadley describes a linear programming approach 

to this type of problem by using all artificial variables 

in the initial basic feasible solution and gives a proof that 

the additional nonlinear constraint will not affect the 
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termination of the simplex procedure. This proof, given on 

pages 218-219 of Hadley (4), is quite long and will not be 

given here. It does not, however, depend on what basis is 

used for the initial solution, and thus applies to the pro

cedure given hereo 

Method II also consists of evaluating equations (2.14) 

for an initial solution to the problem. Assume again that 

the first k components of Qare non-negative and the remain

der negative. To find a solution to the conditions of 

Theorem 2.13, the negative probabilities are set to zero and 

the first k components are adjusted using the conditions of 

Theorem 2.13 in much the_ same manner that equations (2.11) 

were solved .. 

Assuming that the first k components of Q will remain 

non-negative and the remainder will be zero, Theorem 2.13 

furni'S'hes the following equations: 

q. - p. + A. b. + µ = 0 
1 1 1 

i = 1, 2, ••• , k, 

k 

I bi qi= o 
i'=l 

k 

I qi = lo 
C=l 

' 

(2.17.1) 

(2.17.2) 

(2.17.3) 

Summing the first n equations and using (2.17.3) gives 
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k 

+ A ~b.: + kll = 0. L.. J. 
i=l 

Let 

k k 

A = l -I P· ' b' = ~ Lbi J. 
i=l i=l 

so that 

i = 1, 2, •.. , k. 

These k equations are each multiplied by their respective bi' 

summed, and solved with equation (2.17.2), giving 

k. k 
-~·b. p. L.. J. J. + A L (bi - b' )2 - Ab' = 0 
i=l 

and thus, 

q1. = p . - ( b . - b i ) 1 . 1 

i=l 

k 

~ p.b. +Ab 0 

L J J 
~j_=_l _________ + 1A 

k k 

2(bj - b' )2 
j::1 

i = 1, 2, .•. , k. 

(2.18) 

If these k probabilities are non-negative and the remaining 

conditions of Theorem 2.13, 

q. - p. + A b. + µ > 0 
1 J. 1 

i=k+l, ••• ,n, 

are satisfied with q. :::: O, i = k + 1, .•• , n, then a solution 
J. 
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has been obtained. It is important to note that the A and µ 

used to check this condition must be those revised values 

calculated from equations (2.17). 

This procedure can fail to terminate here for two rea

sons; either some of the probabilities in (2.18) are nega

tive, or the condition (2.13.1) is not satisfied for those 

probabilities set to zero. In the former case, the new 

negative probabilities are set to zero and the adjustment 

procedure is repeated, leaving the original negative prob

abilities set to zero also. An example will be given of 

this procedure. 

The author has been unable to construct an example in 

which the other failure occurs, and also unable to prove 

that it cannot occur. If it were to occur, it would seem 

reasonable to remove the qi for which (2.13.1) is violated 

from the set forced to zero, and repeat the adjustment 

procedure. 

Experience in trying to construct an example for which 

this procedure fails has led the author to believe that if 

such problems exist, that one is extremely unlikely to hap-

pen onto one in solving reasonably "well structured" prob-

lems. It is so much easier to use Method II than Method I 

that it is certainly recommended to try it first. It is 

important to note that if the procedure were to fail, the 

user would know that he had not reached a solution, since 

the procedure is not terminated until the conditions of 

Theorem 2.13 are met . 
• 
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It was pointed out previously that it is not necessary 

to solve problem (2.10) for each alternative to a in order p 

to find a solution to problem (2.1). If the solution to 

problem (2.10) is given by Q equations (2.14), then 

{ Ep. b. 2 } 
= r:[p. -p. + (b. -b) J ·"!._ ] 

l l l i::(b.-b)2 
J 

(2.19) 

If the equations (2.14) do not give a non-negative solution, 

the quantity in equation (2.19) is a lower bound on o(P, Q0 ), 

since the imposition of the non-negativity conditions can 

only increase the minimum distance if they have an effect. 

The procedure is to calculate the quantity in equation 

(2.19) for each alternative action and then solve for~ 

corresponding to the action resulting for the minimum of 

the quantities. If equations (2.14) give a solution for 

this Qk, then this is the solution to problem (2.1). If 

equations (2.14) do not give a non-negative solution, then 

either method is used to find a solution. If the distance 

O(P, Qk) is still less than the next largest of the quanti

ties from equation (2.19), then the solution to problem 
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(2,1) has been obtained. If neither of these is the case, 

then the Q corresponding to the next largest quantity from 

(2.19) must be found, and so forth, until it is assured that 

a solution has been obtained. 

Exam12.le 2: This example is a continuation of Example 1 of 

the preceding chapter. From the loss functions and the 

quantities fi(l), i = 1, 2, 3, 4~ 5, the values 

are computed. 

e, 

bli -32.8 -20.5 o.o 104.0 140.4 

b2i -22.0 - 5.7 9.0 41.6 30.3 

From the these values the following calculations are made. 

b2i - b2 -31.0 -14.7 o.o 32.6 21.3 

r:p. b2. = 11.45. 
1 1 
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Since 11.45/2,693 > 24.62/24,727, the solution for which 

a1 and a3 will be equally good is first found. 

From equations (2.14), the following initial solution 

is obtained. 

ql = .1 + 71 (24.62/24,727) 

= .1 + 71 (.000995) :::: .170 

~ = . 25 + 58°7 (.000995) = .308 

q3 = . 35 + 38.2 (.000995) = .388 

q4 = . 25 - 6508 (.000995) = .185 

q5 = .05-102.2 (.000995) < 0 

Since q5 < 0 in this solution~ q5 is set to zero and equations · 

(2.18) are used to find the next solution. 

A = 1 

4 4 

-2pi = .05 b' 1 = i I bli 
i:::l i=l 

e1 82 83 

bli -ii·1E-33.2 -12.7 

4 

I cb1i - b'1) = 11 ~670 
i=l 

4 

I pi b li = 17 . 60 . 
i=l 

= 12.7 

84 

91J 
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q1 = .1 + (45.5)(17~6~1~6~g12~) + .0125 

= .1 + (45.5)(.001507) + .0125 = .1810 

Ch = .25 + (33.2)(.001507) + .0125 = .3125 

Cl3 = .35 + (12.7)(.001507) + .0125 = .3816 

= .25 - (91.3)(.001507) + .0125 = .1249 q4 

The remaining condition of Theorem 2.13.1, 

qs - Ps + Abs + µ > 
= 

0 
' 

is satisfied since 
't' 

-.05 + (127.7)(.001507) - .0125 > o. 

It is now necessary to see if this solution is actually 

closer to P than the lower bound corresponding to a2 , given 

by equation (2.19). The distance from P to the above solu-

tion is computed to be 

6 (P, Q1 ) = • 17 2. 

The lower bound for the distance to the solution correspond-

ing to a2 is 

6 11.45~,r;-~ (P,~) = /v2,693 = .221. 

Thus, the solution to the problem has been obtained. A dis

cussion of the use to be made of this solution will be given 

at the end of the following chapter. 

Example 3: This example will illustrate the solution to 
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problem1 (2.10) by both Method I and Method II, and also the 

procedure for the case that Method II does not result in a 

solution the first time that it is applied. Let 

Then 

P - [ .09, .01, .. 15, .75}, 

Ep. b. = 82 
l l 

E(b. - b) 2 = 30 ,000 
l 

and equations (2.14) give the following solution: 

qi = .09 + 150 (82/30,000) = .500 

<l2 = .01 - 50 (82/30,000) = -.1267 

q3 = .15 - 50 (82/30,000) = .0133 

q4 = .75 - 50 (82/30,000) = .6133. 

When Ch is set to zero, 

2 (bi - b I ) = 26 , 400 ' 
i,*2 

and equations (2.18) give the following solution: 

ql = .09 + 133[(81 + .0033)/26,400] + .01/3 = .503 

~ = 0 

q, = .15 66[(81 + .0033)/26,400] + .01/3 = -.053 

q4 = • 75 66[(81 + .0033)/26,400] + .01/3 = .550 . 



When q3 is also set to zero, 

·2 . pi bi = 66 ' 
i)2,3 

~. (b. - b' )2 = 20,000, L 1 

if2,3 

and equations (2.18) give the following solution. 

q1 = .09 + 100(66/20,000) + .16/2 = .50 

gz = 0 

q, = 0 

q4 = ·75- 100(66/20,000) + .16/2 = .50. 

Since 

-.01 + 100(66/20,000) - .16/2 > 0 , 

-.15 + 100(66/20,000) - .16/2 > 0 , 

the remaining conditions of Theorem 2.13 are satisfied and 

the solution has been obtained. 

The linear programming problem which will solve this 

problem ts as follows: 

Minimize s2 , 

subject to: 

52 
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1 0 0 0 -100 100 l -1 -1 0 0 0 0 qi .09 

0 1 0 0 100 -100 1 -1 0 -1 0 0 - 1 q2 .01 

0 0 1 0 100 -100 1 -1 0 0 -1 0 0 q, .15 

0 0 0 1 100 -100 1 -1 0 0 0 ;..1 0 q4 = .75 
1 1 1 1 0 0 0 0 0 0 0 0 - l A.1 l 

... 100 100 100 100 0 0 0 0 0 0 0 0 -100 ~ 0 

µ1 
> 0 i 1, 2~ 3, 4 q. "" = µ2 l 

> 0 i 1, 2, 3, 4 U1 u. = :::: 
l 

> U:! 
S2 = 0 

U3 

U4, 

$2 I 

The variables t1.1, A2 , and µ1, µ 2 are necessary because the 

original/\. andµ are unrestricted in sign. The quantities 

in the first solution above are used to determine the basis 

as {qi, s2 , q3 , q4, A1~ µ 2 } 9 and the matrix associated with 

these variables must be inverted. The above set of equa-

tions is then multiplied by this inverse to put the equa-

tions in the canonical form for the simplex method. 

(Hadley [4])o The simplex procedure is then carried out in 

the usual manner, except for the imposition of the constraint 

I: qi ui = 0, as described previously in this chapter o The 

tableaus are presented below in a form that should be 

self-explanatory. 



qi q2 Cl} q4 A.1 "'2 µl µ2 ui ~ U3 14 s 

l 0 0 0 -100 100 l -1 - l 0 0 0 0 · - .09 

0 l 0 0 100 -100 l -1 0 - 1 0 0 - 1 .01 

0 0 1 0 100 -100 1 -1 0 0 -1 0 -1 · .15 

0 0 0 1 100 -100 1 -1 0 0 0 -1 0 .75 
1 1 1 1 0 0 0 0 0 0 0 0 - 1 1 

-100 .100 100 100 0 0 0 0 0 0 0 0 -100 0 

1 

1 0 0 0 0 0 0 0 0 0 0 0 0 .5 
0 -1 0 0 0 0 0 0 0 

'2 'f 'i 
l .12-67 i -~ -1 

0 0 1 0 0 0 0 0 0 i -1 ~ 
0 .0133 

0 0 0 1 0 0 0 0 0 0 .0133 
1"3 -75 - "3 

0 0 0 0 1 1 0 0 
l l 1 

0 .00273 - 200 -600 -600 -600 
0 0 0 0 0 0 -l 1 + 1 1 1 0 .1367 

b 6 b 

1 
2 1 1 · .... 1267 - ~ ~ ~ 

Figure 4. Simplex Tableau 

~ 



q1 q2 q, q4 A.1 i\. 2 µ1 µ 

1 0 0 0 0 0 0 0 

0 - l - . ,2 0 0 0 0 0 

0 0 3 0 0 0 0 0 

0 0 - l 1 0 0 0 0 

0 0 
1 

0 l -1 0 0 
200 

0 0 - ! 
2 

0 0 0 -1 1 

1 2 

1 0 0 0 0 0 0 0 

0 - 1 -- 2 0 0 0 0 0 

0 - 2 - l 0 0 0 0 0 

0 1 1 l 0 0 0 0 

0 
1 1 

0 1 -1 0 0 -- --200 200 
0 1 1 0 0 0 -1 1 

2 2 

Figure 4. 

U1 u2 u, 
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0 0 1 

0 1 - 2 

0 0 l 

...L. 0 
1 --200 200 

1 0 I 
2 ~ 

= 1 

0 0 0 

0 0 1 

0 1 0 

0 0 0 
1 

0 0 200 
1 0 0 
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CHAPTER III 

FURTHER ASPECTS OF THE SENSITIVITY ANALYSIS 

Although Chapter II constitutes the basic development 

of the sensitivity analysis procedure, the results of that 

chapter provide only a framework within which to approach 

the problem of ascertaining the sensitivity to the prior 

distribution. Many of the details of the sensitivity anal

ysis will necessarily depend upon the nature of the specific 

problem being considered. Some of the general aspects of 

the application of the procedure will be discussed in this 

chapter as guidelines for the decision maker. 

The Use of the Results 

The decision maker may find that it is his "good 

fortune" to have the solution Q0 be quite dissimilar to P. 

This should be taken to mean that no reasonable a.mount of 

reconsideration about P would lead him to Q0 as the prior 

distribution. It is important to realize that the 

"similarity" of probability distributions depends a great 

deal upon the nature of the information upon which the prior 

distributions are based. For example, one may feel much 

more certain about a prior distribution based upon a great 

amount of historical evidence than about one based entirely 

56 
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upon his II feelings 0 10 

In the case that the decision maker does feel that Q 
0 

is quite dissimilar to P and if the distance function can be 

granted to be a reasonable one, then ap is very likely the 

proper action. It is important that the distance function 

have this reasonability, for otherwise there might be some 

distribution Q with b(P, Q) > o(P, Q0 ) which would seem more 

similar to P than does Q0 , which would not have been consid

ered for its optimal action. 

Except for a subsequent discussion of the role of the 

distance function, little more will be said regarding the 

case that Q0 is quite dissimilar to P. This is not because 

this case is unimportant, for the possibility of this kind 

of information is the primary reason for conducting the 

sensitivity analysis. It merely seems that this case is 

quite easy to interpret and needs little clarification. 

What, then, can be decided in the event that Q0 is 

quite similar to P? First, if nothing more were decided, 

the sensitivity analysis would not have been in vain. This 

type of information ranks in the same order of importance 

as determining ap in the first placeo The primary purpose 

of a mathematical model is to lend insight into the structure 

of a phenomenon, not merely to provide a procedure for 

attaining optimums. 

In at least one sense, the outcome is easier to inter

pret in this case than when Q0 is dissimilar to P. The 
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decision maker is assured that the sensitivity analysis has 

performed its function properly because it makes little dif-

ference whether the distance function is really a reasonable 

one or not. This is because the decision maker has exhib-

ited a prior distribution resulting in a different action 

which, in his consideration, is near enough to P to warrant 

attention. Any other distance function which is more 

"reasonable" would have to yield a solution which is at 

least as "similar" to Pas Q. 
0 

One of the first things that should be noted is that 

if Q0 is similar to P, then, under either of these distribu

tions, the difference of the expected losses of the best 

actions against these two distributions is probably rela~ 

tively small. If the discriminatory power of expected loss 

is not significant, the decision maker should probably con

sider other decision making criteria. It seems to the 

author that other criteria should be seriously considered in 

any case. In the first place, if 6 is truly a random vari

able, the decision maker is quite likely not really inter

ested in what happens in many repetitions, but what happens 

in the next realization of the random variable. In the 

second place, for many applications e is not actually a ran-

dom variable in the usual sense, but merely an unknown, the 

expectation being taken over the decision maker's uncer-

tainty. In either case, some attention should be given to a 

minimax type consideration of the alternatives. 

If the minimax criterion is used to decide between the 
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two actions which are best against P and Q, a great deal of 
0 

the objection to the minimax procedure is overcome, because 

the expected losses of the two actions do not differ dras

tically. The use of the minimax procedure in this situation 

would be a combination minimax and Bayes procedure. Such a 

philosophy of decision making has attracted the attention of 

several.writers and the reader is referred to Lehmann and 

Hodges (7), Wesler ·c17), Good (3), and Smith (15) for presen-

tation of their approacheso The procedure described above 

seems to be of a different nature than any presented by 

these authors. Further development of these ideas will not 

be attempted here except to point out that more than two 

actions can be compared in the same manner by finding the 

action which is best against the second nearest distribution 

to P and so forth. This would probably be a desirable pro

cedure in the event that the second nearest "critic al" dis-

tribution was also quite similar to P. 

Further Experimentation 

There is another action in addition to those normally 

in A which should be considered by the decision maker at 

this point. This is the option of performing additional 

experimentation before choosing a terminal action. It is 

sometimes possible to formally include this alternative in 

the action space and evaluate it along with the other 

actions. Generally, however, this approach results in com-

putational procedures which are prohibitive. 
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The basic idea to be considered by the decision maker 

at this point is that the weight given to the prior distri

bution in the application of Bayes rule is inversely related 

to the amount of experimental evidence. This is because the 

likelihood function, in expectation, becomes more peaked 

about the true value of e as experimentation is continued. 

Because of this phenomenon the sensitivity of the result to 

the prior distribution decreases with further experimentation. 

A quantitative analysis of this phenomenon becomes very 

unwieldly because the experimental outcomes depend upon which 

state of nature is true and that, of course, is unknown. To 

take the expectation over the states of nature by using the 

prior distribution seems to miss the point entirely for this 

type of analysis, because the whole idea of the convergence 

with additional experimentation is based on the fact that 

there is one state of nature that is true. Even in the case 

that the state of nature is actually a random variable, one 

is usually concerned with the situation in which all of the 

experimentation is carried out under one realization of this 

random variable. 

It will suffice, it is hoped, for the purpose at hand, 

to state the basic result that, whatever the prior 

distribution, 

lim Pr{:_[ei I xi' 
n .... oo •... P[8j I X1' 

• 0 0 ' 



for any fixed 1"I ' where e. is the true state of nature and 
l 

is any other. The proof of this result can be found in 

Savage (13). The convergence is based on the law of large 

numbers, with the rate of convergence depending on the 

quantities 

f. (x) 
E[ ln f~(x)J 

J 
j -· 1, 2, 

Q 0- Q ' 
n; j f. i. 
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e. 
J 

It appears that the examination of the rate of convergence 

can be used in the consideration of some problems, but such 

a procedure would be much too involved to investigate in a 

general manner here. 

The Role of the Distance Function 

Some discussion has been presented in preceding sec-

tions regarding the role of the distance function; namely, 

that the importance of the function depends upon whether 

the solution to the problem is similar to P. The author has 

been unable to locate in the literature work of a general 

nature which would give insight into the question of choosing 

a reasonable distance function. 

The primary weakness of the Euclidean norm is that a 

change in probability from .00 to .05 weighs exactly as 

heavily as a change from .55 to .60. It appears to be 

agreed upon by all who have considered the problem that it 

would be more reasonable to have a distance function based 

more upon some sort of relative change, weighing a change 
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from .00 to .05 more heavily than a change from .55 to .60. 

Functions based upon relative change, however, are generally 

not symmetric, and it is questionable whether the change 

should be relative to P or relative to the solution. 

A solution procedure will now be given for a distance 

function which is a significant generalization of the 

Euclidean norm, and which would seem to meet nearly any need 

that might arise in practice. This function is 

(3.1) 

where ci, i = 1, 2, 0 '1 G , n is any set of positive numbers. 

This function has many merits. If it is desired to 

make the function depend upon the relative change in the 

probabilities, .then the ci can be chosen such that 

[L. (p, - q. )2 Ji 
o (P, Q) = . i . 1 • 

. Pi 

In the event that the decision maker has different feelings 

of confidence in his estimate of the probability for differ-

ent states of nature, he can assign the ci accordingly. It 

may also be helpful in interpreting the results of the anal

ysis to vary the c1 • Suppose, for example, that the solu

tion using the Euclidean norm is such that I pk - qk I is 

large for some k and I pi - qi I is small for i I k. By 

solving the problem again with ck< 1, the decision maker 
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can effectively restrict the size of \ pk - qk \ and see what 

effect this will have on the other deviations. It might 

also be pointed out that assigning relatively small c. for 
. 1 

those pi which are small will have the effect of making the 

first trial solution less likely to violate the non-

negativity conditions. 

Since the function (3.1) is convex, Theorem 2.8 can be 

applied, resulting in the formulation of the problem as, 

Minimize 

subject to: 

q. > 0 
1. = 

5 (P, Q) 

, 

E q. = 1 , 
1 

i = 1, 2, ••• , n. 

(3.3) 

(3.3.1) 

·c3.3.2) 

Theorem 2.12 can be applied to this problem, giving as 

a necessary and sufficient condition for Q to be the solu

tion the existence of A andµ such that 

q: -p. 
1. 1. '\ 0 + A. bi + µ > i = 1, 2, •.. , n, 

Ci 

Eb. q. = 0, 
1. 1. 

i = 1, 2, ••• , n, 

(3.4.1) 

(3.4.2) 

(3.4.4) 



with equality in (3.4.1) for those i such that qi> 0, 

Assuming that equality holds in (3.4.1) for each i, these 

equations can be solved in a manner similar to equations 

(2.11), giving 
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i=l,2, o••,n, (3 .. 5) 

where C = E ci. If in this solution, some of the non-

negati vi ty conditions are violated, methods nearly identical 

.with either Method I or Method II of Chapter II can be used 

to obtain a solution. Since the ci are fixed, the simplex 

procedure can be carried out with merely a modification of 

the coefficients. Method II is carried out in exactly the 

manner as in Chapter II. A lower bound on the distance from 

P to the solution is given by 

(3.6) 

No extensive comparison has been carried out of the 

results of using various distance functions. Example 2 of 

Chapter II has been solved using (3.2), giving the following 

comparison. If 



then 

Q0 = { 0 18, .31, .38, .13, .00} 

whereas, if 

. [""" (:p. -q.)2]! 
6 (P, Q) = L . 1 1 , 

pi 

then 

Q,0 = { .14, .33, .42, .10, .01} . 

Other Types of Decision Problems 

The actual construction of Bayes procedures is quite 

dependent upon the structure of the spaces A and a, and 
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this dependency carries over into the sensitivity analysis. 

In this paper, the primary consideration was intended to be 

for the case in which both of these spaces are finite. As 

pointed out in the introduction, however, it is often pos-

sible t.o approximate other types of problems arbitrarily 

closely within this frame of reference. Consideration will 

be given in the following chapters to the cases in which A 

is finite and® is an interval on the real line, and to a 

case in which both A and® are intervals. 



CHAPTER IV 

APPROXIMATE SOLUTIONS FOR CONTINUOUS PARAMETERS 

It has been pointed out that the procedure of Chapter 

II can be used to obtain arbitrarily close approximations to 

solutions in certain problems in which the state of nature 

is represented by a continuous variable. This chapter will 

be devoted to describing the approximation procedure and 

proving the above statement. 

The Convergence Theorem 

Because the approximation procedure will be applied to 

several situations, the primary theorem will be proved for a 

rather general problem. This problem is: 

l b 
Minimize [p(S) - q(S)J2 dS 

subject to: 

a 

J b q(e)b(e)de = o 
a 

lb g_( S)de = l 
a 

q (8) > 0 [a.e.J , = 
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(4.1) 



where 

b f p(6)d0 = 1 
a 
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b 
, p(S) > 0 , J p(8)b(8)d8> O, 

a 

b(6) is continuous and p(S) is continuous almost everywhere 

on [a,b]; there exist 61, 82 s[a,b] such that b(8 1 ) > O, 

b(8 2 ) < O; and integration is in the Lebesgue sense. 

Consider the sequence of partitions 

n = 2, 3, 

each dividing [a,b] into equal sub-intervals. Let 

a . 
Ill 

Pn(e) = f p(6)d8 a . l < 8 < a . , n,1- n1 

a . 1 n,1-
n = 2, 3, ..• , 

ani 
b (8) = J b(e)d e ' n n i = 1, 2, •• ., 2 • 

a . 1 n,1-

b 
Since J Pn bn is a continuous linear functional on ~ space 

a 

(Munroe [ 9 J), it follows 

lim/0 p. (S)b (S)de = f P p(8)b(8)d8 • n n n 
a a 

Let r be such that fbpnbn > 0 
a 

for any n > r. 
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It follows from the continuity of b that there exists 

ans such that, for any n > s, there exist i and j such that 

b (8) > 0 n a ·1<8<ani' n,1- = 

.Lett be the larger of rands and 

p. :: p (8) n1 n 

b . = b (8) n1 n 

Then the problem 

' 

a . 1 <8<a 1 , n,1- = = n 

n = t,t+l, ••• , 

n i = 1, 2, .•• , 2 • 

Minimize E (p q )2 i ni - ni 

subject to: 

' 
n i = 1, 2, •.• , 2 , 

satisfies, for any n > t, the hypotheses of Theorem 2.12, 
n with the minor modification that E qni :;: 2 , and can be 

solved by the methods of Chapter II. The solution will 

also be the solution to the problem 



69 

. b 
Minimize f · [pn(e) - qn(8)]2 d8 

a 
(4.2) 

subject to: 

l b b c e) q c e) d8 = o 
n n 

a 

b f qn(e) = 1 
a 

' 

The sequence of solutions to the above problem will be 

denoted ( qn) , n = t, t + 1, ••• 

4.3) Lemma: For the sequence (Pn)' (qn) defined above, 

lim o(pn, qn) exists, where 
n 

Proof: 

o(p, q) = [Jbcp(e) - q(e)J2 dBJ]1 . 
s. 

Due to the way in which b . was defined, it can be ni . _ 

easily verified that, for any n = t, t + 1, ••• , the solution 

qn satisfies the constraints imposed upon the solution qn+l" 

Thus, for any m, n; m > n, 

Thus, 



and since 

lim 6 ( p , p ) = O 
n,m n m 

and for any p and q 

6 (p, g) ~ 0 

then the limit in question exists. 

4.4) 

tion 

Lemma: For the sequence (qn) and 

described above lim 6( q ~ ~) = O. 
m,n n 

the distance func-

Proof: It will be convenient to use the notation 

where P and Qare vectors in m-space. It follows that if 

p(e) = P· 
1 
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q(e) = qi b-ac ) b-a - i-1 <e< i ~i= m = m ' 1,2, .•. ,rri, 

then 

Let lim 6 (p ·, q ) = d, and for an arbitrary positive ~, let 
n n n 

N be such that for m > N , n > N, 
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Then, for m > n, 

< d + E, 

and, as pointed out in the preceding proof, 

Define the vectors in tD--space, 

... ' 

and Q,'n is su.cl+ that the first 2m-n components are qnl, the 

m-n second 2 components are ~ 2 , and so forth. The plane 

determined by these three vectors is represented in Figure 

5, and the distances indicated are in terms of the Euclidean 

norm in tD--space. 

The circle of radius o2m(P Q,' ) is to represent the m, n 
possible locus of the vector Q, ~. The proof of the lemma 

consists of showing that due to the manner in which these 

vectors are obtained, Q ~ must lie on tb,e arc AB, where the 

line AB is orthogonal to "-m_ - Pm. If Q, ~ were not on the arc 
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AB, there would be a convex linear combination R of Q' and . n 

~ with o2m(Pm, R) < o2mCPm, ~). This would contradict the 

minimality of o2mCPm' ~) because, as pointed out previously, 

Q'n satisfies the constraints !or the solution of~' and 

since the set of vectors satisfying the constraints is con

vex, R also satisfies the constraints for the solution of 

~· 

p 
m 

~d /°2m 

Figure 5. A Plane in ~-Space 

The greatest possible distance from ~· to a point on the 
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arc AB would be the distance from ~ to A when \ o2m (Pm'~) -

t>2m (Pm, Q. 'n) \ =- E. Thus 

and 

Thus, by choosing E small enough, 6( qn, qm) can be made 

arbitrarily small. 

4.5) Lemma: There exists a function q(8) such that 

lim 5( qn, q) = 0 and q satisfies the constraints of problem 
n 

(4.1). 

Proof: The preceding lemma, due to the completeness of~ 

space, shows that the function q exists. Using again the 

continuity of linear functionals on~ space, 

fbb(8)q(8)d8 = 
' a 

fbq(e )de = lim Jb q (8)d8 = 1 . 
a.· n·a. n 

To show that q(8) > 0 [a.e.J, use is made of the fact that 
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lim 6( q , q) = 0 implies that there 
n n 

exists a subsequence of 

( qn) that converges to q[ a. e. J , and since q > 0 for every n 

n, then q(8) > 0 [a.e.J. 

4.6) Theorem: Let the sequence of solutions to :problem 

( 4. 2) be (qn) , n = t, t + 1, . • • . Then 

4.6.1) there exists a function q(8) such that lim qn = q 
n 

[mean square], and 

4.6.2) this function q(8) is a solution to problem (4.1). 

Proof: The result (4.6.1) has been established through the 

preceding lemmas. In light of Lemma 4.5, the remainder of 

the theorem can be :proved by showing that q is actually the 

closest distribution that satisfies the constraints. Sup-

:pose that there exists a q0 satisfying the constraints of 

:problem (4.1) and 

Consider the sequence of functions (q0 n) n=t,t+l, 

II • ,:) ' 

Clearly 

a . 1 <8<a., 
n,1- = n1 

n i = 1, 2, ••. , 2. 



n=t, t+l, ..• 

and again using the continuity of linear functionals, for 

any E > O, there exists an N such that for n > N 

b \ I qon ( e )b (e) dS I < E O 

a 

For any n > N, the simple function q uon can be found such 

that 

and 

a . 1 < e < a i I j, k n,1- ni; 

f q 'oie )b(S )d6 = 0 

f q' (8)d8 = 1 on 

by solving for q' (6), a . 1 < e <a., i = j, k. For a on n,1- = ni 
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simple function this is merely a matter of solving for these 

two unknowns the two linear equations represented by the two 

integral equations above. It can be easily shown that for 

any SE [a,b], 

in this solution. Thus, by choosing N sufficiently large, 

6 ( q0 n, q '0 n) for n > N can be made arbitrarily small. 



Let 

E= O(p,q)-E>(p,q) 
0 

and N be large enough that for n > N, 

5(p,, Prt < E/5 

Then, 

= 0 (p, q) - 2 6/5 

which contradicts the minimality of o(pn' qn). 

It is rather unfortunate that the b . had to be so n1. 

carefully chosen in order to prove the theorem. It is 
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clear, however, from conside~~tion of the conditions of 

Theorem 2.12, that the solution is a continuous function of 

the bni in some neighborhood of the correct values, and thus 

approximate values can probably be used without serious 

consequences. 

Application of the Approximation Procedure 

The decision maker does not, in general, actually 

compute a sequence of solutions in finding an approximate 

solution. He simply divides the interval [a,b] into sub

intervals small enough to achieve what he considers a satis

factory approximation. The above theorem establishes that 

this approximation will be a reasonable one. 

In the case that the action space is finite and the 

state of nature space· .is represented by an interval, the 

approximation procedure is applied in essentially the same 

manner as the procedure of Chapter II. The loss function 

and the likelihood function are continuous functions of a 

parameter representing the state of nature, and are used to 

form the function b(S) in the same manner that the quanti

ties bi were determined in Chapter II. That is , 

b(S) = (L[ak' 8] - L[ap, 9]} f(x; 8) • 

If the procedure is to be used for an a priori analysis, 

the function b(S) is the risk function. For example, con

sider the choice between sampling plans A and B with OC 

curves as shown in Figure 6. 



· Pr[Acc] 

e i'.o 

Figure 6. The QC Curves for 
Two Sampling 
Plans · 
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An QC curve is a risk function in which L[ accept, SJ = 1, 

and L[reject, SJ = 0 for all 8. If the decision makerwishes 

to accept lots withe< 80 and reject lots withe~ eo, then 

a reasonable (and Bayes) criterion for choosing between A and 

B would be to minimize 

8 
O 1 

k1 f {1-Pr[acc, 8]} p (S)d8 + k2 f Pr[Acc, 8]p(8)d8 , 
0 0 

where p(S) is the prior distribution. The risk function 

should be, then, 

8 > e , d = A,B. = 0 

It might be the usual procedure for the decision maker 



79 

to use for the prior distribution a Beta distribution with 

parameters based upon past performance of the production 

facilities. The approximate sensitivity analysis procedure 

could be used to determine how much the prior distribution 

would have to change to result in the choice of a different 

sampling plan. 

The remaining type of decision problem to which the 

approximate procedure will be applied is the case in which 

both the spaces A and e are intervals. The only problem 

within this situation which will be considered is the esti

mation problem with a quadratic loss function, and this will 

be the topic of the next chapter. 



CHAPTER V 

THE SENSITIVITY OF THE POSTERIOR MEAN 

In many applications of decision theory, the choice of 

a best action depends only upon the mean of the posterior 

distribution. These applications include problems in which 

the loss functions are linear in a parameter representing the 

state of nature, and estimation problems where the loss func

tion is proportional to the mean squared error of the esti

mate. The purpose of this chapter is to develop a procedure 

for determining the sensitivity of the posterior mean to the 

prior distribution. It will be shown that the procedure of 

Chapter II can, with minor modifications, be applied to this 

problem. 

Formulation of the Problem 

In this chapter the state of nature will be taken as 

some value of a real variable in an interval [a,bJ. If this 

variable can take on only one of a finite number of values, 

a modification of the procedure of Chapter II can be applied 

directly. If the parameter representing the state of nature 

is considered as a continuous variable, the approximation 

procedure of the preceding chapter can be applied to reduce 
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the problem to one in which there are only a finite number 

of states of nature. 
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The posterior mean is the expected value under the pos

terior distribution of .the state of nature parameter. An 

analogy will be made between the possible values of the 

posterior mean and the action space considered in the 

earlier chapters. Because, however, the posterior mean can 

take on any value in the interval [a,b], the approach will 

have to be considerably modified, since the finiteness of 

the action space was essential to the previous approach. 

As an approach to this situation, the following problem 

will be considered. 

• • • < e 
n 

. .. ' 
= b • 

e) such that n 

Considering the experimental outcome as fixed, let the pos

terior mean be denoted by µq for any prior distribution Q. 

As before let the estimated prior distribution be P. The 

problem to be considered is: 

5.1) Given some 6 > O, 

Minimize o (P, Q) 

subject to the condition on the prior distribution Q that 

µ. >P. +6. 
q = p 

The condition (5.1.1) can be written as 

Eb. q. > 0 , 
1 J.. = 

(5.1.1) 
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where 

b 1• = f. (x)(6. - µ - fl) , 
1 1 P. 

since 

q.f.(x) 
1 1 8 > J1 + 6 

!: q. f. (xJ i p 
j J J 

is equivalent to 

µ - 6] > 0 • 
p = 

The following theorem will show that the above problem 

can be solved by replacing the inequality in (5.1.1) with 

equality, and that the procedures of Chapter II can be used 

to solve the problem. 

5.2) Theorem: If o (P, Q) is a non-negative, strictly con

vex function of Q, with b(P,P) = O, problem (5.1) has the 

same solution as the problem: 

Minimize 5 (P, Q) 

subject to: 

I: bi qi = 0 ' 

I: qi = 1 ' 

qi > 0 i = = 
1, 2, •• 0 , n ' 

where 
,. 
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b. = f.(x)(e. -µ -~) 
l l l p 

If µ > µ > µ implies 6 (P, R) > o(P, Q) , where R 
r q P 

and Qare the distributions nearest P having posterior means 

µrand µq, respectively, then the theorem is true. Let 

where 

Then 

S = ex P + ( 1 - ex) R ~ 

exI:pi fi(x) µr - µg 
exI:p. f.(x) + (1 - ex)~r. f.(x) = µ - µ • 

i i i i r p 

exE p. f. (x) r:pi fi (x) ei 
[ ,] J J 

= E [exp. + (1 - ex.) r .] fJ. (x)J E p. f. (x) 
J J J J 

= µ . q 

But, from the minimality of 6(P,Q), and since O <ex< 1, 

6 (P, Q.) < 6 (P, S) < 6 (P, R) , 
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and thus the theorem. 

The problem is thus reduced to the same form as that 

considered previously in this paper, and all the theorems and 

procedures apply. It might be noted that the sufficient 

condition for the above problem to have a solution, i.e., 

that there are bi both positive and negative, simply means 

in this application that µP + 6 < en. There is also, of 

course, an analogous problem and theorem for decreasing the 

posterior mean, which can be obtained by letting e 1• = - 8, , 
1. 1. 

i = 1, 2, ..• , n. 

Application of the Procedure 

So far nothing has been indicated regarding the choice 

of 6. In the case that the application is to a problem with 

a finite number of actions, each with a linear loss function, 

the interval [a,b] will be divided into a finite number of 

sub-intervals such that if the posterior mean falls in a 

particular sub-interval, then the corresponding action is 

best. In this case, the choice of 6 is clearly the distance 

from µP to the next sub-interval on either side. 

One of the most important decision problems based upon 

the posterior mean is the estimation of the parameter e·. A 

Bayes estimate is one which minimizes the expected loss under 

the posterior distribution, where the loss function depends 

on the true value of e and the estimated value. If the loss 

function is proportional to the mean squared error of the 
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estimate, then the Bayes estimate is obviously the mean of 

the posterior distribution. 

In this application the choice of 6 is not so easy. In 

choosing 6 the decision maker is being called upon to specify 

how much the estimate would have to change in order to make 

a significant difference to him. This may or may not be an 

easy question, but it is an age-old question which the stat-

istician must face in nearly all problems. 

Some results have been obtained in studying the solu

tion as a function of 6. The equations are rather unwieldly 

and may not be useful •. If the trouble were justified by the 

problem, however, the following results could be used to 

graph each qi as a function of 6 in some neighborhood of 

zero. 

It is clear that if Q(6) is the solution to problem 

(5.1), considered as a function of 6, that 

lim o[P,Q(6)J = o. 
6 .... o 

It can also be easily seen that the distance from P to the 

nearest boundary of the space of all possible prior distri-

butions is 

Thus, there exists a 6 0 such that for any 6E (0, 6 0 ), the 

solution for Q(6) can be found from 



where 

b. = f.(x)(6. - µ - 6)0 
1 1 1 p 

That is to say that none of the qi in these equations will 

be negativeo 
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This solution can be written as a function of 6, giving 

where 

By applying equation (2ol9), it can be seen that this solu

tion is non-negative provided that 

The theory of this chapter can be used to investigate 

the sensitivity of other aspects of the posterior distribu

tion by replacing the 6. with 01 pseudo variables ~10 whose pos-
. l. 

terior means are of interesto For example, the sensitivity 
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of Bayesian confidence intervals can be studied through the 

use of characteristic functions of certain subsets of®· 

That is, if 

then 

cpA (6) = 1 

cp A ( S) = 0 

if 6 EA c ® 

if E ® - A , 

E cp A ( e ) = Pr Ob • [ e E A] 0 

Thus, the posterior mean of cpA is the confidence level that 

the true parameter lies in the set A. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The primary idea upon which this work has been based is 

that in many applications of Bayesian inference, it is not 

necessary to know the prior distribution exactly. The space 

of all possible prior distributions is divided, according to 

the nature of the problem, into mutually exclusive subsets, 

and it is necessary only to know in which subset the prior 

distribution is contained. Because, however, it is difficult 

to characterize or describe, in a meaningful way for practical 

considerations, subsets of an n-dimensional space when n is 

more than two or three, little use has been made of this 

idea. The approach used in this paper is to find the 

"distance" from an estimated prior distribution f to the 

nearest boundary of the subset containing it. 

For certain distance functions in the space of all pos

sible prior distributions, a procedure for solving the above 

problem has been developed, and this procedure is relatively 

easy to apply. Exact solutions are obtained when the number 

of states of nature is finite, and basically the same proce

dure gives apparently satisfactory approximations when the 

state of nature space is an inte.rval on the real line. It 
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is implicit in the approach to the problem that the number 

of possible actions is finite, but certain other cases, such 

as estimation problems, can be approached by approximating 

the action space with a finite space. The approximations, 

both in the action space and the parameter (state of nature) 

space, do. not appear to be really serious drawbacks. For a 

great many problems in which continuous variables are used, 

the continuity is merely an abstraction, introduced for 

convenience. When this abstraction no longer offers con

venience, but rather is a handicap, then it can well be 

discarded. This is particularly true for the decision maker 

who has access to a high speed computing machine, for this 

computing power alleviates many -of the difficulties which 

have been in the past responsible for the introduction of 

continuous variables. 

Ideas for Further Research 

, Sensitivity analysis of Bayes procedures to the various 

inputs seems to offer many possibilities for further 

research. In addition to the sensitivity to the prior dis~ 

tribution, there are also important considerations of a 

similar nature regarding the conditional distribution of the 

experimental outcome given the state of nature, and regard

ing the loss function used. To a large extent, the prior 

distribution, the conditional distribution, and the loss 

function enter the computations in a similar way. Thus, it 
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would be expected that any progress in analyzing the sensi

tivity to one of these inputs might also be used in consid

eration of the others. 

It should be clear that the approach to the sensitivity 

analysis used here is~ approach and not the approach. The 

basic problem is simply studying the Bayes procedure as a 

function of the prior distribution, and there are undoubt

edly many other approaches which would be profitableo 

Within the framework used here, there are several 

avenues of further research. Further investigation of the 

role of the distance function is certainly one of theseo 

Also, the same basic approach to the sensitivity analysis 

might be used to develop sensitivity analysis procedures for 

the loss functions or the conditional probabilities. Some 

new ideas would, no doubt, be obtained through applying the 

procedure of this paper to some special problem areas, such 

as statistical quality control, or analysis of variance. It 

might also be worthwhile to investigate more carefully the 

effect of further experimentation on the sensitivity to the 

prior distribution. Finally, it appears that a very fruit

ful area for further research is the combination of Bayesian 

and minimax procedures suggested in Chapter III. 
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