THE PRTME MUMBER THEOREM
By
HMRBERT VIGTOR MONKS
Hachelor of Axts
Northeastern State College
Tahlequah, Oklahoma1950
Master of TeachingNoxthesstern State CollegeTahlequah, Oklahoms1957Master of ScienceOklehoma State UniversityStillwater, Oklahoms1958

Submitted to the Faculty of the Graduate School of the Oklahoma State Univerenity
in partial fulf"iliment of the requirements
for the degree of DOCTOR OF EDUCATION

Mey, 1.965

581344

PRIFPACE

The prime numbers are irregular in their distribution, and some of the deepest theorems in the theory of numbers have to do with the prime numbers. However, when the large scale distribution of primes is considered, it appears in many ways quite regulaz and obeys simple laws. The study of these laws falls in the field of analytic number theory. This particular domain of number theory operates with very advanced methods of the calculus and is considered to be technically one of the most difficult fields of msthematics. Its central problem is the study of the function $\pi(x)$, which indicates the number of primes up to a certain number x. It was discovered quite early by mesns of empiricsl counts in the prime tables that the fumction $\pi(x)$ bebaves asymptotically like the function $x / \log \times$ (see page 7). The following formula is called the Prime Number Theorem:

$$
\lim _{x \rightarrow \infty} \pi(x) /(x / \log x)=1
$$

Indebtedness is acknowledged to Dr . R. B. Desi for his valusble guidance and assistance, and to Drs. Jeanae L. Agnew, O. H. Hamiltom, and J. F. Hoffman for their suggestions and advice during the prepars.tion of this thesis; and to the National Science Foundation for the Faculty Fellowship award which gave me the opportruity to devote full time to the completion of my doctoral program.

TABLE OF CONTENIS

Chapter PageI. IMIRODUCIION
II. PRELIMINARY LFMMAS AND THEOREMS 12
III. THE PRTME MUMBER THEOREM 37
IV. REMARKS ON THE ELEMENTIARY PROOFS 50
BIBLIOGRAPHY 53

CHAPTER I

INTRODUCTION

The purpose of the dissertation is to analyze the fundamental concepts, organize a logical unit with necessary additional proofs, and present an expository discussion of the prime number theorem and other theorems needed in the development of the proof of the prime number theorem. Prime numbers, distribution of prime numbers, and the sieve of Eratosthenes in relation to the prime number theorem are briefly discussed in this chapter. The history of the prime number theorem is traced through the conjectures of the eighteenth and early part of the nineteenth centuries, the analytic proofs of the theorem in the latter part of the nineteenth century, and the improvements on bounds in the first half of the twentieth century. Chapters two and three are used to present, in detail, a discussion of the modern, so called "elementary" proofs of the prime number theorem. In chapter two proofs of preliminary lemmas and theorems are presented. It culminates with the proof of Selberg's basic formula. The proof of the prime number theorem is completed in chapter three. The elementary proofs of Erdos and Selberg, and the simplifications which have appeared since are discussed in the final chapter.

The natural numbers greater than one may be divided into two classes, prime numbers and composite numbers. A prime number is any natural number (positive integer) greater than one which has exactly two divisors, 1 and the number itself. All other natural numbers greater than 1 are
said to be composite numbers. The "fundamental theorem of arithmetic" states that every natural number greater than 1 may be represented uniquely as the product of prime factors. Thus the prime numbers derive their peculiar importance as building stones from which all other natural numbers greater than 1 may be created multiplicatively.

One of the most interesting problems in number theory has to do with the distribution of the primes among the integers. Although there are great irregularities in the occurrence of the primes, the general distribution is found to possess certain features of regularity which can be formulated in precise terms and made the subject of mathematical investigation.

Definition 1.1. If x is any real number, then $\pi(x)$ denotes the number of primes not exceeding x.

The problem of studying the distribution of the prime numbers resolves itself into a study of the function $\pi(x)$. Finding $\pi(x)$ for large values of x is quite a job. In fact, extending the table of primes becomes a formidable task. To decide that a given natural number is prime, one needs to be sure that no natural number less than n divides n, except 1. It is not necessary to try as divisors all natural numbers less than n, for if a given prime will not divide n then no multiple of the prime will divide n. Thus one needs to consider only primes less than n, and not all of these. If no prime less than or equal to \sqrt{n} will divide n, then n must be prime, for if d is any divisor of n such that $\sqrt{n}<d<n$, then n / d also divides n and is less than \sqrt{n}. If n / d is not prime, it has prime factors less than \sqrt{n} which must divide any multiple of n / d including n.

There exists an ancient method of finding the primes known as the
sieves of Eratosthenes. Eratosthenes (276-194 B.C.) was a Greek scholar, chief librarian of the famous library in Alexandria. He is noted for his chronology of ancient history and for his measurement of the meridian between Assuan and Alexandria, which made it possible to estimate the dimensions of the earth with fairly great accuracy [8] .

The primes less than or equal to any real number x may be obtained by the sieves of Eratosthenes. If the natural numbers greater than one and less than or equal to x are listed in their natural order, one may apply the sieve as follows: Underline all multiples of 2 except 2, them consider the first number after 2 that has not been underlined, i.e., 3 . The 3 is a prime since 2 does not divide it. In the same manner as for 2 , underline all multiples of 3 except 3 ; then consider the next number after 3 that has not been underinned. It is also a prime. If the process is continued, the first number not underlined after a given prime will also be a prime. If q is the greatest prime $\leq \sqrt{ }$, then the process may stop after the multiples of q (except q) are underlined. Thus, the numbers that have not been underlined are all of the primes less than or equal to x.

If one desires to obtain only the primes greater than the \sqrt{x} and less than or equal to x, then the primes $\leq \sqrt{x}$ are also underlined. For example, consider the case $x=50$. The primes less than or equal to $\sqrt{50}$ are 2, 3, 5, and 7. List the natural numbers from 2 to 50; then in consecutive order, underline all multiples of $2,3,5$, and 7 . The sequence looks like this:

2, 3, 4, $5,6,1,8,2,10,11,12,13,14,15$,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
$28,29,30,31,32,33,34,35,36,37,38,39$,
$\underline{\underline{0}}, 41,42,43,44,45,46,47,48,42, \underline{\underline{50}}$;
The numbers not underlined

$$
11,13,17,19,23,29,31,37,41,43,47
$$

are the primes greater than or equal to $\sqrt{50}$ and less than or equal to 50 .
Definition 1.2. For any real number x, the symbol $[x$] denotes the greatest integer less than or equal to x.

The number of integers sieved out for any prime $p \leq \sqrt{x}$ may be represented by $[x / p]$. One may devise a formula for $\pi(x)-\pi(\sqrt{x})$ by using the bracket function. An expression like

$$
[x]-1-\sum_{p \leq x}\left[\frac{x}{p}\right]
$$

will not serve because some numbers are sieved out two or more times. Numbers of the form pq are sieved out twice: once when sieved by p and once when sieved by q. It is necessary to add $\Sigma[x / p q]$, where the sum extends over all primes p and q such that $p<q \leq \sqrt{x}$. Even this expression,

$$
[x]-1-\sum_{p \leq \sqrt{x}}\left[\frac{x}{p}\right]+\sum\left[\frac{x}{p q}\right]
$$

is not complete. Numbers of the form $p_{1} p_{2} p_{3}$ must be considered. These numbers will be sieved out once each by p_{1}, by p_{2}, and by p_{3}. These numbers are added back three times when the multiples of $p_{1} p_{2}, p_{1} p_{3}$, and $p_{2} p_{3}$ are added back. So these numbers have not actually been taken out at all. This situation is remedied by subtracting

$$
\sum\left[\frac{x}{p_{1} p_{2} p_{3}}\right]
$$

where the sum extends over all primes p_{1}, p_{2}, p_{3} such that $p_{1}<p_{2}<p_{3} \leq \sqrt{x}$. If this procedure is continued and if $p_{2}, p_{2}, \ldots, p_{k}$ are all the primes $\leq \sqrt{x}$, then one obtains the following formula:
$\pi(x)-\pi(\sqrt{x})=-1+[x]$
$-\sum_{p \leq \sqrt{x}}\left[\frac{x}{p}\right]+\sum\left[\frac{x}{p_{j} p_{x}}\right]-\sum\left[\frac{x}{p_{1} p_{j} p_{x}}\right]+\ldots \ldots$.
where the second two sums extend over all primes such that $p_{i}<p_{j}<p_{r} \leq \sqrt{x}$. By using the definition of the Mobius function, definition 2.5 of chapter two, this may be expressed in the following precise form:
(1)

$$
\pi(x)-\pi(\sqrt{x})=-1+\sum_{d} \mu(d)[x / d]
$$

where the sum is extended over all positive divisors of the product $p_{1} p_{2} \cdots p_{k}$

It was proved by Euclid (Elements, Book 9, Prop. 20.) around 300 B.C. that there exist an infinite number of primes. In essentials his proof is as follows: Let P be a product of any finste set of primes, and consider $P+1$. The integers P and $P+1$ can have no prime factor in common, since such a factor would divide 1 , which 1 is impossible. Hence $P+1$ is either a new prime or it contains a prime factor distinct from those occurring in P. If there were oniy a finite number of primes altogether, we could take P to be the product of all primes, and a contradiction would result [4].

In 1737 Euler proved the existence of an infinity of primes by a new method, which shows moreover that

$$
\begin{equation*}
\text { the seriea, } \sum_{x=1}^{\infty} \frac{1}{p_{n}}, \text { is divergent. } \tag{2}
\end{equation*}
$$

Euler's work is based on the idea of using an Identity in which the primes appear on one side but not on the other. Stated formaliy, his identity is
(3) $\sum_{n=1} n^{-8}=\prod_{p}\left(1+p^{-s}+p^{-2 s}+\ldots\right)=\prod_{p}\left(1-p^{-8}\right)^{-1}$,
where the products are over all primes p. Euleris contribution to the subject is of fundamental importance; for his identity, which may be regarded as an analytical equivalent of the fundamental theorem of arithmetic, forms the basis of nearly all subsequent work [4].

The question of the diminishing frequency of primes was the subject of much speculation before any definite reaults emerged. The problem assumed a much more precise form with the publication by Legendre in 1808 (after a less definite statement in 1798) of a remarkable empirical formula for the approximate representation of $\pi(x)$. Legendre asserted that for large values of $x, \pi(x)$ is approximateiy equal to

$$
\begin{equation*}
\frac{x}{\log x-B} \tag{4}
\end{equation*}
$$

where $\log x$ is the natural (Napierian) logarithm of x and B a certain numerical constant. A similar, though not identical, formula was prepared independently by Gauss. Gauss's method, which consisted in counting the primes in blocks of a thoussind consecutive integers, suggests the function $1 / \log x$ as an approximation to the average deasity of distribution ('numbers of primes per unit internal') in the neighborhood of a large number x, and thus the integral of the density,
I.I. $(x)=\int_{z}^{x} \frac{d u}{\log u}$
as an approximation to $\pi(x)$. The function (5) is the so-called "integral logarithm of $x^{\prime \prime}$. Gauss's observations were communicated to Bncke in 1849, and first published in 1863 ; but they appear to have commenced as early as 1791 when Gauss was fourtieen years old. In the interval the relevance of the function (5) was recognized independently by other writers [4].

The precise degree of approximation claimed by Gauss and Legendre for their empirical formulae outside the range of the tables used in
their construction is not made very explicit by either author, but we may take it that they intended to imply at any rate the "asymptotic equivalence" of $\pi(x)$ and the approximating function $f(x)$, that is to say $\pi(x) / f(x)$ tends to the limit 1 as x tends to infinity. The two theorems which thus arise corresponding to the two forms of $f(x)$ are easily shown to be equivalent to one another and to the simpler relation

$$
\begin{equation*}
\pi(x) /(x / \log x) \rightarrow 1 \text { es } x \rightarrow \infty \tag{6}
\end{equation*}
$$

The distinction between (4) and (5), and the value of B in (4) become important if one inquires more closely into the order of magnitude of the "error" $\pi(x)=f(x)$. The following table indicates the accuracy of $\operatorname{Li}(x), x /(\log x-1)$, and $x / \log x$ as approximations of $\pi(x):$

x	$\pi(x)$	$L_{1}(x)$	$[x /(\log x-1)]$	$[x / 10 g x]$
1,000	168	178	169	144
10,000	1,229	1,246	1,217	1,085
100,000	9,592	9,630	9,512	8,685
$1,000,000$	78,498	78,628	78,030	72,382
$10,000,000$	664,579	664,918	661,458	620,420

The proposition (6), which is now known as the "prime number theorem," is the central theorem in the theory of the distribution of primes. The problem of deciding its truth or falsehood engaged the attention of mathematicians for about a hundred years [4].

The first demonstrated results are due to Tchebychef, who (1850), among other things, proved that the inequalities
(7)

$$
\frac{7}{8} \cdot \frac{x}{\log x}<\pi(x)<\frac{9}{8} \cdot \frac{x}{\log x}
$$

are valid for all sufficiently large values of x. He also showed that the
quotient of the numbers $\pi(x)$ and $\frac{x}{\log x}$ has the limit 1 for increasing x, providing that the limit exists [6]. These results constituted an advance of the first importance, but (ss Tchebychef himself was well aware) they failed to establish the essential point, namely, the existence of $\lim \pi(x) /(x / \log x)$. Although the numerical bounds obtained by Tchebychef were successively narrowed by later writers (particularly Sylvester), it came to be recognized in due course that the methods employed by these authors were not likely to lead to a final solution of the problem [4].

Already Euler had begun applying the methods of the calculus to number-theory problems; however, the German mathematician G. F. B. Riemann (1826-1866) is generally regarded as the real founder of analytic number theory. His personal life was modest and uneventful until his premature death from tuberculosis. According to the wish of his father, he was originally destined to become a minister, but his shyness and lack of ability as a speaker made him abandon this plan in favor of mathematical scholarship. He was unassuming to a fault; yet at present he is recognized as having one of the most penetrating and original mathematical minds of the nineteenth century. In analytic number theory, as well as in many other fields of mathematics, his ideas atill have a profound influence [8].

The new ideas which were to supply the key to the solution of the problem on the existence of the $\lim \pi(x) /(x / \log x)$ as $x \rightarrow \infty$ were introduced by Riemann in 1859 [9] in a memoir which has become famous, not only for its bearing on the theory of primes, but also for its influence on the development of the general theory of functions. Euler's identity had been used by Euler himself with a fixed value of $s(s=1)$, and by Tchebychef with s as a real variable. Riemann now introduced the idea
of treating s as a complex variable and studying the series on the left of (3) by the methods of the theory of amalytic functions. This series converges only in a restricted portion of the plane of the complex variable s, but defines by continuation a single-valued analytic function regular at all finite points except for a single pole at $g=1$. This function is called the "zeta-fuaction of Riemann," after the notation $\zeta(s)$ adopted by its author [4].

Riemann, perceiving the fundamental importance of the zeta function for the study of the distribution of primes, developed the elements of a theory for this function. He also formulated six hypotheses which he could not prove. Especially the position of the imaginary zeros of the function appeared to be of great importance for the applications to prime number theory. According to Riemana's famous but still unproved. hypothesis, all the imaginazy zeros have the real part $\sigma=1 / 2$. All the other hypotheses of Riemann have been proved by later investigators [6]. The problems raised by Riemann's memoir inspired in due course the fundamental researches of Hadsmard. in the theory of integral functions, the results of which at lsst removed some of the obstacles which for more than thirty years had barzed the way to rigorous proofs of Riemann's theorems. The proofis sketched by Riemann were completed (in essentials), in part by Hadamard himself in 1893, and in part by Van Mongoldt in 1894 [4].

The discoveries of Hadamard prepared the way for rapid advances in the theory of the distribution of primes. The prime number theorem was proved in 1896 by Hadsmard himself and by de la Vallée Poussin, indem pendently and almost simultaneously. Of the two proofs Hadamard's is the simpler, but de ls Vallee Poussin (in another paper published in
1899) studied in great detail the question of closeness of approximation. His results prove conclusively (what had been foreshadowed by Tchebychef) that, for all sufficiently large values of $x, \pi(x)$ is represented more accurately by $\mathrm{Li}(\mathrm{x}$) than by the function (4) (no matter what value is assigned to the constant B), and that the most favorable value of B in (4) is 1 . This conflicts with Legendre's original suggestion 1.08366 for B, but this value (based on tables extending only as far as $x=400000$) had long been recognized as baving little more than historical interest.

The theory can wow be presented in a greathy simplified form, and de la Vallée Poussin's theorems can (if desired) be proved without rem course to the theory of integral functions. This is due almost entirely to the work of Landau. The results themselves underwent no substantial change until 1921, when they were improved by Littlewood; but Littlewood's refinements lie much deeper and the proofs involve very elaborate analysis [4].

There are two important changes in "depth" of the prime number theorem. First, the zeta function is no longer needed for obtaining the sharpest known error term in the prime number theorem; in fact, the ele. ments of the theory of fuactions of a complex variable are now sufficient. Second, the prime-number theorem as auch (without any estimation of the error term) now falle under the scope of elementary methods. Titchmarsh established the following result:

$$
\begin{equation*}
\pi(x)-L i(x)=\varphi k x \cdot e^{-\omega(x)} \tag{8}
\end{equation*}
$$

where $\omega(x)=\alpha(\log x)^{5 / 9-\varepsilon}$; it is valid for all sufficiently large values of $x ; \varepsilon$ is a positive number, k and α are certain positive constants, and φ denotes a function of x which vaxies between the ilmits -1 and 1. This formula, which was proved in 1938 , expresses the best result
up to now for the function $\pi(x)$. It is easily seen from the formula that $\pi(x)$ is approximated by $\mathrm{Li}(\mathrm{x})$ with great accuracy. It was shown by Littlewood that the left side of (8) assumes both positive and negative values infinitely often [6]. Littlewood's theorem, however, is a pure "existence theorem," and no numerical value of x for which $\pi(x)>\operatorname{Li}(x)$ is known.

There was a sensation when an "elementary" proof of the prime number theorem was given in 1948 by P. Frdos and Alte Selberg. Selberg proved the fundamental relation

$$
\begin{equation*}
\sum_{p \leq x} \log ^{2} p+\sum_{p q \leq x} \log p \log q=2 x \log x+O(x) \tag{9}
\end{equation*}
$$

and he and Erdos, independently, deduced the prime number theorem from it. The resulting proof, while not simple, requires nothing more complicated than the most elementary properties of the logarithmic function.

The so-called "elementary" proofs are discussed in detail in chapter two and chapter three. The proofs of Erdos, Selberg, and simplifications which have appeared since are also discussed in the final chapter.

CHAPPER II

PREL TMINARY LEMMAS AND THEOREMS

As stated in the introduction, the basic intent of this chapter and chapter three is to present, in detail, a discussion of the modern, so-called "elementary," proofs of the prime number theorem. The major contributions were those of Erdos and Selberg, but in presenting detailed proofs in this and the next chapter it was found convenient to rely heavily on the outline and discussion in Nagell [6]. The ultimate goal of this chapter is the proof of Selberg's basic formula and this asymptotic formula is used to deduce the prime number theorem in chapter three. Definitions, lemmas, and other theorems are given as a means of obtaining this objective.
$\pi(x)$ is usually used to denote the function which gives the number of primes less than or equsil to the real number x. It may be written as

$$
\pi(x)=\sum_{p \leq x} 1
$$

Where p extends over a.ll primes $\leq x$. Rather than consider the function $\pi(x)$, the function $\vartheta(x)$, defined by the following equality, is studied in relation to the prime number theorem:

Definition 2.1. $\vartheta(x)=\sum_{p \leq x} \log p$, the sum extending over all primes $p \leq x$.

Although the prime number theorem is ususily stated as

$$
\lim _{x \rightarrow+\infty} \frac{\pi(x)}{x / \log x}=1
$$

it may be stated in other forms. In particular, it is equivalent to the proposition

$$
\lim _{x \rightarrow \infty} \frac{v(x)}{x}=1
$$

In chapter three the equivalence of the two propositions is proved, and the second relationship is established as a consequence of Selberg's formula (Theorem 2.5),

$$
\vartheta(x) \log x+2 \sum_{p \leq \sqrt{x}} \vartheta(x / p) \log p-2 x \log x=o(x \log x)
$$

The term $o(x \log x)$ represents any function of x with the property that

$$
\lim _{x \rightarrow \infty} \frac{o(x \log x)}{x \log x}=0
$$

The concept of functions being of some function or 0 of some function is discussed later. The formula may also be stated in other forms. In particular, it may be given as

$$
\frac{\vartheta(x)}{x}+\frac{2}{x \log x} \sum_{p \leq \sqrt{x}} \vartheta(x / p) \log p-2=0(1)
$$

This is the form used in chapter three.
Each of the twelve lemmas and each of the first four theorems of this chapter contribute to the proof of Selberg's formula. Lemma 2.12 contributes directly by establishing relationships involving some of the terms in the formula. Lemma 2.9 is also instrumental in the proof by establishing that

$$
\sum_{d \leq x} \frac{\mu(d)}{d}\left(\log \frac{x}{d}\right)^{2}
$$

may be approximated by $2 \log x$. Each of the other lemmas and theorems contributes indirectly by contributing directly to the proof of some other lemma or theorem. For example, Theorem 2.2 establishes that, for $x \leq 2, \vartheta(x) / x$ is bounded by two positive constants and this fact is
used to prove other lemmas.
Consider the series $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$. , where the brackets have the same meaning as in Definition 1.2. For each term in which $p^{k}>n$ for some k, the value of the term is zero. Thus one may write

$$
[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots \cdot=\sum_{k=1}^{r}\left[n / p^{k}\right]
$$

where r is the highest integral exponent which satisfies the inequality $\mathrm{p}^{r} \leq \mathrm{n}$, This series is involved in the proof of Theorem 2.2. Therefore, the following theorem is proved first.

Theorem 2.1. Let n be a natural number, and let p be a prime. Then the exponent of the highest power of p which divides $0!=1.2 .3 \cdot 0 \cdot \mathrm{n}$ is equal to

$$
\begin{equation*}
\mathbb{N}=[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots \tag{1}
\end{equation*}
$$

Proof: The series continues so long as the power of p is $\leq n$. If h_{V} denotes the number of terms in the sequence $1,2, \ldots, n$ which are divisible by p^{V}, the required exponent \mathbb{N} is equal to $h_{h}+h_{p}+h_{3}+\ldots$. The natural numbers $\leq n$ which are divisible by p^{v} are

$$
1 \cdot p^{v}, \quad 2 \cdot p^{v}, \cdots, \quad\left[n / p^{v}\right] \cdot p^{v} .
$$

Thus the term $h_{V}=[u / p v]$, and the theorem is proved.
The proof of the following theorem of Tchebychef an now be given:
Theorem 2.2. There exist two positive constants, b and c, such that for all $x \geq 2$
(2)

$$
b x<\vartheta(x)<c x
$$

Proof: Let n be an integer 2 2. If p^{m} is the highest power of the prime p which divides the binomial coefficient
(3)

$$
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
$$

then, by Theorem 2.1,

$$
m=\sum_{V=1}^{r}\left(\left[\frac{2 n}{p^{v}}\right]-2\left[\frac{n}{p^{V}}\right]\right)
$$

where r is the highest integral exponent which satisfies the inequality
(4)

$$
\mathrm{p}^{\mathrm{r}} \leq 2 \mathrm{n},
$$

and thus

$$
x=\left[\frac{\log 2 n}{\log p}\right] .
$$

The difference

$$
\left[\frac{2 n}{p^{v}}\right]-2\left[\frac{n}{p^{v}}\right]
$$

has either the value zero or the value 1 , and therefore
(5)
$\mathrm{m} \leq x$ 。

Now

$$
\binom{2 n}{n}=\frac{(n+1)(n+2) \cdots 2 n}{n!}=\prod_{n=1}^{n+h} \frac{n}{n}>2 n
$$

and on the other hand, by (5) and (4),

$$
2^{n}<\binom{2 n}{n}=\prod_{p<20} p^{n} \leq \prod_{p<2 n} p^{p},
$$

the products extending over all primes $p<2 n$. Therefore, by taking the logarithm.

$$
n \log 2<\sum_{p<2 n} r \log p=\sum_{p<2 n}\left[\frac{\log 2 n}{\log p}\right] \log p .
$$

For every p,

$$
\left[\frac{\log 2 n}{\log p}\right] s \frac{\log 2 n}{\log p}
$$

and for all $p>\sqrt{2 n}$,

$$
\left[\frac{\log 2 n}{\log p}\right]=1
$$

Thus one obtains

$$
n \log 2<\sum_{p \leq \sqrt{2 n}} \frac{\log 2 n}{\log p} \cdot \log p+\frac{p<2 n}{p>\sqrt{2 n}} \log p
$$

or

$$
n \log 2<\sqrt{2 n} \log 8 n+v(2 n)
$$

So

$$
\vartheta(2 m)>n \log 2-\sqrt{2 n} \log 20
$$

The expression $\frac{8}{(\log 2)^{2}} \frac{(\log 2)^{2}}{n-2}$ teads to zero as $n \rightarrow \infty$. Hence, for all sufficiently large integers

$$
7 \geq \frac{8}{(\log 2)^{F}} \frac{(\log 2 n)^{2}}{n \sim 2}
$$

or

$$
n=2 \geq \frac{8}{(\log 2)^{2}} \cdot(\log 2 n)^{2}
$$

Thus

$$
n^{2}-2 n+1>8 n\left(\frac{\log 2 n}{\log 2}\right)^{2}
$$

and by extracting square roots

$$
n-1>a \sqrt{2 n} \frac{\log 2 n}{\log 2}
$$

It follows thet

$$
\frac{\mathrm{n}}{2} \log 2-\sqrt{2} \log \ln >\frac{\log 2}{2}
$$

and

$$
n \log 2-\sqrt{2} n \log 2 n>\frac{1}{2}(n+1) \log 2
$$

If $2 n \leqslant x<2 n+2$, one obtains

$$
\vartheta(x) \geq \vartheta(2 n) \geq \frac{1}{2}(n+1) \log 2>\frac{1}{4} \times \log 2
$$

for all sufficiently large x. Hence, for mome N and all $x \geq$ the above relation holds. Now for all x such that $2 \leq x<N$

$$
\vartheta(x) \geq \log 2>\frac{x}{N} \log 2=\frac{\log 2}{N} x_{0}
$$

This proves the first inequality of Theorem 3.2 with $b=\log 2$.
The number $\binom{2 n}{n}$ is cleariy divisible by all primes p which are $>n$ and < 2n. Since

$$
\prod_{p>\infty}^{p<2 n} p \cdot \frac{\Pi k}{n!} \geq \frac{p<2 n}{p>} p
$$

Where p is prime and the produet, II k, extends over all composite numbers, k, such that $n<k \leq 2 n$ axd $n:$ divides Πk it follows that

$$
2^{2 n}=(1+1)^{2 n}=\sum_{i=0}^{2 n}\binom{2 n}{i}>\binom{2 n}{n} \geq \prod_{p}^{\prod_{n}} p,
$$

and, by taking logarithms, $2 n \log 2>\vartheta(2 n)=\vartheta(n)$. Suppose that x is a power of 2 , that is, $x=2^{h}$ where in a positive integer. It follows that

$$
\left.v(x)=v^{h}\right)=\sum_{k=1}^{h}\left(v\left(2^{k}\right)-v\left(2^{k-1}\right)\right) .
$$

Thus

$$
\vartheta\left(2^{h}\right)<\log 2 \sum_{k=1}^{h} 2^{k}<2^{h+1} \log 2=2 x \log 2
$$

Further, if $2^{h-1}<x \leq 2^{h}$, theng, for all $x \geq I_{0}$

$$
\vartheta(x) \leq \vartheta\left(2^{h}\right)<2^{h+1} \log 2<4 x \log 2
$$

which proves the second inequallty with $c=4 \mathrm{log} 2$.
In proving the prime aumber theorem and other preliminary lemmas and theorems, one mill also need the formula given by the following theorem:

Theorem 2.3. If the sum is extended over all primes $p \leq x$, then
(6) $\quad \sum_{p \leq x} \frac{\log p}{p}=\log x+\theta$,

Where is a function of x such that $|\theta|$ is leas than a positive
constant.
Proof: The proof requires the following relation:

$$
\log n:=\sum_{p \leq n}\left(\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots\right) \log p
$$

where p extends over all primes $\leq n$ and the series continues so long as the power of p is $\leq n$. By the definition of the bracket function, it follows that

$$
\begin{aligned}
& \sum_{p \leq n}\left(\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots\right) \log p \\
& <\sum_{p \leq n}\left(\frac{n}{p^{2}}+\frac{n}{p^{3}}+\cdots\right) \log p=n \sum_{p \leq n} \frac{\log p}{p(p-1)},
\end{aligned}
$$

where the second series is infinite. Further, one seen that

$$
\begin{aligned}
& n \sum_{p \leq n} \frac{\log p}{p}>\sum_{p \leq n}\left[\frac{n}{p}\right] \log p> \\
& \quad \sum_{p \leq n}\left(\frac{n}{p}-1\right) \log p=n \sum_{p \leq n} \frac{\log p}{p}=\vartheta(n) .
\end{aligned}
$$

Consequently, one may observe that

$$
\begin{aligned}
& \sum_{p \leq n} \frac{\log p}{p}-\frac{\vartheta(n)}{n}<\frac{1}{n} \sum_{p \leq n}\left[\frac{n}{p}\right] \log p< \\
& \frac{I}{\bar{n}} \log n!<\sum_{p \leq n} \frac{\log p}{p}+\sum_{p \leq n} \frac{\log p}{p(p-1)} .
\end{aligned}
$$

Thus

$$
\left|\frac{1}{n} \log n!\quad \sum_{p \leq n} \frac{\log p}{p}\right|<\max \left(\frac{2(n)}{n}, \sum_{p \leq n} \frac{10 g p}{p(p-1)}\right) .
$$

According to Theorem 2.2, $\frac{\vartheta(n)}{n}<c$ where 0 is a positive constant and $\sum_{p \leq n}(\log p) / p(p-1) \leqslant \sum_{m=2}^{n}(\log m) / m(m-1)$ where the right side converges to a positive constant as $n \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\frac{1}{n} \log n!-\sum_{p \leq n} \frac{\log p}{p}=\alpha_{0} \tag{7}
\end{equation*}
$$

where α is a function of n such that $|\alpha|$ is less than a positive constant.
For every integer $h \geq 2, \log h=h \log h \sim(h-1) \log (h-1)-$ (h-I) $\log \left(1+\frac{1}{\text { h-I }}\right)$, where the last term is less than I. Thus

$$
\begin{aligned}
\sum_{h=2}^{n} \log k & =\sum_{h=2}^{n}\left[h \log h-(h-1) \log (h-1)-(n-1) \log \left(1+\frac{1}{h-1}\right)\right] \\
& >n \log n-1(n-1) .
\end{aligned}
$$

Hence

$$
n \log n-n-2<\sum_{n=2}^{n} \log n<n \log n
$$

$0 x$

$$
\log n-1-\frac{1}{n}<\sum_{h=2}^{n} \frac{\log h}{n}=\frac{1}{n} \log n:<\log n .
$$

Formula (6) is obtained by combining these inequalities with (7).
The concept of functions being o of ome functiox or of some function is a useful one in this type of analymis. History has dictated a usage and terminology which is not cansistent with modern carefuiness. The definltions are glven below for the particular case needed in this paper with more care than customary and then translated into standard usage. Let A be a subset of $R(x e a l s)$ such that for every $y \in R$, thexe exists an $x \in A$ such that $x>y_{s}$ and N be the collection of ants of the form $\{x \mid x \in A$ and $x>a$ trox wome a $\in R\}$. If g is a nonuzero function defined on A to R, then $O(g)$ and $O(g)$ are deffued by Definition 2.E. $o(\varepsilon)=\left\{f \mid \exists U \in \mathbb{N}_{\infty}, V \subset\right.$ dom $\left.X_{,} \lim _{\infty} \frac{f}{\mathbb{E}}=0\right\}$ and

It should be observed that theae definitions work just as well for real or complex valued functions on axy topological space X and any point p of X can be used if N_{p} is the collection of open sets containing p. The following properties are also valid:
(8) For any real constant k,
(a) $\mathrm{h} \in \mathrm{o}(\mathrm{g})$ implies kh ε o(g)
(b) $h \in O(g)$ impiles i in $\varepsilon O(g)$.
(9)

For any poritive fometion n_{0}
(a) $f \in d g$ impliee hfeo(hg)
(b) $I \in O(g)$ implies $h f \in O(\mathrm{gg})$.
(10)

If $0<\mathrm{f} \leq \mathrm{g} \mathrm{L}$ some $\mathrm{U} \in \mathbb{N}_{\mathrm{cos}}$ then
(a) $O(x) \subset o(g)$
(b) $O(f) \subset O(g)$.

If $h \in o(g)$, it is cugtomary to use the following notation:

$$
n(x)=o(g(x))
$$

A similar notation is used for any function $h \in O(g)$, that is,

$$
h(x)=o(g(x))
$$

Thus $x \log x=O\left(x^{2}\right), \quad \cos x=O(\sqrt{x}), \quad \log x=O(\sqrt{x}), \quad 2 x=O(x)$, etc. The prime number theorem could also formulated as follows:

$$
\pi(x)=\frac{x}{\log x}+o\left(\frac{x}{\log x}\right) .
$$

Formula (6) may also be written as

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+o(1)
$$

or as

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+o(\log x)
$$

In the (u, v) plane the area of $\{(u, v) \mid I \leq u \leq y, 0 \leq v \leq I / u\}$ is $\log y$. This area can be approximated by $\sum_{n y y} 1 / n$. This relation is expressed more precisely by formula (11) of Lenma 2.1. The axea of $\{(u, v) \mid l \leq u \leq y, 0 \leq v \leq(\log u) / u\}$ is $\frac{1}{2}(\log y)^{2}$. This area can be approximated by $\sum_{n \leq y}(\log n) / \mathrm{n}$. Formula (14) of Lemma 2.2 gives a more precise statement of this fact.

Lemma 2.1. There exints a positive absointe constant γ such that

$$
\begin{equation*}
\sum_{n \leq y} \frac{I}{n}=\log y+\gamma+O(I / y) \tag{11}
\end{equation*}
$$

where the sum exteads over all positive integers $n \leq y$.
Proof: Let z be the least integer $>y_{2}$ thet $1 s, z=[y+2]$. Let $\delta_{n}=1 / n-\log (1+1 / n)$, then
(12) $\quad \log \pi=\sum_{n=1}^{2 \operatorname{col}}(\log (n+1)-\log n)=\sum_{n=1}^{201} \log (1+1 / n)$

$$
=\sum_{n=1}^{m_{n-1}}\left(\frac{1}{n}-\frac{1}{n}+\log (1+1 / n)\right)=\sum_{n=1}^{2=1} \frac{1}{n}-\sum_{n=1}^{z=1} \delta_{n}
$$

Let $f(x)=1 / 2 x^{3}-1 / x+\log (1+1 / x)$, then $f(x)=-1 / x^{3}(x+1)<0$ for all $x>0$ and the derivative of $1 / x=\log (1+1 / x)$ iss al/ $12(x+1)$ <0 for all $x>0$. Thus δ_{n} and $f(m)$ are both decreasing functions with zero as the limit so $\delta_{n}>0$ and $I(n)>0$. Now, $f(n)=1 / x^{2}=\delta_{n}$ $\delta_{n}>0$, and $f(n)>0$ imply that the following inequality holds for all n:

$$
\begin{equation*}
0<\delta_{\mathbb{w}}<1 / 2 \mathrm{n}^{2} \tag{13}
\end{equation*}
$$

It follows from this that the infinite aeries $\Sigma \delta_{n}$ is convergent and has a positive value γ. Further,

$$
\begin{array}{r}
\sum_{n=2}^{\infty} \delta_{n}<\frac{1}{2} \sum_{n=2}^{\infty} 1 / n^{2} \\
\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{2(2-1)} .
\end{array}
$$

From formula (12) and the preceding results, one obtains the following:

$$
\begin{aligned}
\sum_{n=1}^{2 \infty 1} \frac{1}{n}=\log z+\sum_{n=1}^{2-1} \delta_{n} & =\log z+\sum_{n=1}^{\infty} \delta_{n} \cdot \sum_{n=2}^{\infty} \delta_{n} \\
& =\log a+\gamma+\theta / \pi
\end{aligned}
$$

Where θ is a function of z such that $|\theta|$ is less than a positive constant. Thus

$$
\begin{aligned}
\sum_{n \leq y} 1 / n & =\log z+\gamma+0(1 / z) \\
& =\log y+\gamma+\log \frac{z}{y}+0(1 / z)
\end{aligned}
$$

But

$$
\begin{gathered}
\left|y\left(\log \frac{2}{y}+0(1 / z)\right)\right| \leq \frac{1}{y} \cdot y+\frac{y}{z} \cdot z \cdot O(1 / z) \\
=1+0
\end{gathered}
$$

so $\log z / y+O(1 / z)$ is $0(1 / y)$. This concludes the proof of formula (11).
Lemma 2.2. There exists an absolute constsat suah that

$$
\begin{equation*}
\sum_{\operatorname{ys} y} \frac{\log n}{y}=\frac{1}{2}(\log y)^{2}+c+d\left(\frac{\log y}{y}\right) \tag{14}
\end{equation*}
$$

Where the sum extends over all positive integers n $S y$ o
Proof: Let $z=[y+1]$. Clemisy

$$
(\log 2)^{2}=\sum_{n=1}^{2-1}\left((\log [n+1])^{2}-(\log n)^{2}\right)
$$

and since $\log (n+1)=\log n+7 / n=\delta_{n}$, then

$$
\begin{gathered}
\frac{1}{2}(\log z)^{2}=\frac{1}{2} \sum_{n=1}^{\pi-1}\left(\left(\log n+1 / n-\delta_{n}\right)^{2}-(\log n)^{2}\right)= \\
\frac{1}{2} \sum_{n=1}^{n=1}\left((\log n)^{2}+2 \frac{\log n}{n}-2 \delta_{n} \log n-\frac{2 \delta_{n}}{n}+\frac{1}{n^{3}}+\delta_{n}^{2}-(\log n)^{2}\right) \\
\quad=\sum_{n=1}^{2-1} \frac{\log n}{n}-\sum_{n=1}^{2-1}\left(\delta_{n} \log n+\delta_{n} / n-1 / 2 n^{2}-\frac{1}{2} \delta_{n}\right) \quad
\end{gathered}
$$

By means of (13) one may observe that the lather sum on the right-hand
side tends to a finite limit c when $z \rightarrow \infty$. Furither ${ }_{9}$

$$
\begin{aligned}
& \left|\sum_{n=z}^{\infty}\left(\delta n \log n+\delta_{n} / n-1 / 2 n^{2}-\frac{1}{2} \delta_{n^{2}}^{2}\right)\right|<\sum_{n=2}^{\infty}(\log n) / n^{2} \\
& <(\log z) / z^{2}+\int_{z}^{\infty} \frac{\log x}{x^{2}} d x=(\log z) / z^{2}+1 / z+(\log z) / z
\end{aligned}
$$

Thus one may conclude that

$$
\sum_{n=1}^{z-1} \frac{\log n}{n}=\frac{1}{2}(\log z)^{2}+O\left(\frac{\log z}{z}\right)+c
$$

where c is an absolute constant. This formuls gives (14) in a manner similar to that in Lemma 2.1.

A function $f(n)$ defined for all naturel numbers n is called an arithmetical function.

Definition 2.4. The arithmetical function which gives the number of positive divisors of n in denoted by $T(n)$.

Lemma 2.3. If the sum is extended over all positive integers $n \leq y$, then

$$
\sum_{n \leq y} \frac{\pi(n)}{n}=\frac{1}{2}(\log y)^{a}+2 y \log y+\gamma^{3}-2 c+o\left(\frac{\log y}{\sqrt{y}}\right),
$$

where γ and c are the same absolute constants as in Lemas 2.1 and 2.2.
Proof: Since $T(n)$ is equal to the number of ordered pairs of natural numbers a and b such that $a b=n$, then $\sum_{a b=a} \frac{1}{a b}=\frac{\pi(n)}{n}$; and

$$
\sum_{n \leqslant y} \frac{T(n)}{n}=\sum_{n \leq y} \sum_{a b=n} \frac{1}{a b}=\sum_{a b \leqslant y} \frac{1}{a b},
$$

where the sum on the right-hand side extends over all natural numbers a and b such that $a b \leq y$. Now let S_{1} denote the part of this sum \ln which $a \leq \sqrt{y}$, let s denote the part in which $b \leqslant \sqrt{y}$, and s_{3} denote the part in which $a \leq \sqrt{y}$ and $b \leq \sqrt{ }$. Then the value of the required sum is
$S_{1}+S_{2}-S_{3}$. By Lemmas 2.1 and 2.2,

$$
\begin{aligned}
S_{1}= & \sum_{a \leq \sqrt{y}} \frac{1}{a} \sum_{b \leq y / a} \frac{1}{b}=\sum_{a \leq \sqrt{y}} \frac{1}{a}(\log y / a+\gamma+O(a / y)) \\
= & \sum_{a \leq \sqrt{y}} \frac{1}{a}(\log y-\log a+\gamma+O(a / y)) \\
= & \log y \sum_{a \leq \sqrt{y}} \frac{1}{a}-\sum_{a \leq \sqrt{y}} \frac{\log a}{a}+\gamma \sum_{a \leq \sqrt{y}} \frac{1}{a}+0(1 / y) \sum_{a \leq \sqrt{y}} 1 \\
= & (\log y+\gamma)(\log \sqrt{y}+\gamma+O(1 / \sqrt{y}))-\frac{1}{2}(\log \sqrt{y})^{a} \\
= & \quad\left(\log y+\gamma\left(\frac{\log \sqrt{y}}{\sqrt{y}}\right)+O(1 / \sqrt{y})\right. \\
& \quad\left(\frac{1}{2} \log y+\gamma+O(1 / \sqrt{y})\right)-1 / 8(\log y)^{2} \\
= & 3 / 8(\log y)^{2}+3 / 2 \gamma \log y+\gamma^{2}-c+0\left(\frac{\log \sqrt{y}}{\sqrt{y}}\right)+0(1 / \sqrt{y})
\end{aligned}
$$

It is plain that $S_{2}=S_{1}$. Further, by Lemmas 2.1 and 2.2,

$$
\begin{aligned}
S_{3}=\left(\sum_{a \leq \sqrt{y}} \frac{1}{a}\right)^{3} & =(\log \sqrt{y}+\gamma+O(1 / \sqrt{y}))^{2} \\
& =\left(\frac{1}{2} \log y+\gamma+O(1 / \sqrt{y})\right)^{2} \\
& =\frac{1}{4}(\log y)^{2}+\gamma \log y+\gamma^{2}+0\left(\frac{\log y}{\sqrt{y}}\right)
\end{aligned}
$$

Hence

$$
\begin{gathered}
\quad \sum_{a b \leq y} \frac{1}{a b}=S_{1}+S_{2}-S_{3} \\
=3 / 4(\log y)^{2}+3 \gamma \log y+2 \gamma^{3}-\frac{1}{4}(\log y)^{a} \\
-2 c-(\log y)-\gamma^{3}+0\left(\frac{\log y}{\sqrt{y}}\right) \\
=\frac{1}{2}(\log y)^{2}+2 \gamma \log y+\gamma^{2}-2 c+0\left(\frac{\log y}{\sqrt{y}}\right)
\end{gathered}
$$

which proves Lemma 3.2.

Another important arithmetical function is the Mobius function $\mu(n)$, defined as follows:

Definition 2.5. $\mu(1)=1 ; \mu(n)=0$, if n is divisible by the square of any prime; $\mu\left(p_{2} p_{2} \cdots p_{r}\right)=(-1)^{r}$, if $p_{1}, p_{2} \cdots$, and p_{r} are different primes.

Thus $\mu(2)=\mu(3)=\mu(7)=\mu(11)=-1, \mu(4)=\mu(8)=0$, $\mu(6)=\mu(10)=\mu(14)=1$, ete.

Definition 2.6. An integer is called a square free number if it is not divisible by any square >1.

Theorem 2.4. For every natural number $n>I_{\text {, }}$

$$
S_{n}=\sum_{d \cdot \mid m} \mu(d)=0
$$

where the sum extends over all positive divisors d of n,
Proof: One needs only to extend the sum over all positive squarefree divisors a of n . The theorem is proved by multiplicative induction. It is true when n is any prime p, since $S_{p}=\mu(1)+\mu(p)=0$. Suppose that it is true for $n=m$. Then it can be shown that it is giso true for $n=m p$, where p is any prime. If m is divisible by p, it is easily seen that $S_{m p}$ contains the same terms as S_{m}. Since, by hypothesis, $S_{m}=0$, then $S_{m p}=0$. If m is not divisible by p, then

$$
S_{m p}=\sum_{\delta \mid m}(\mu(\delta)+\mu(p \delta)),
$$

the sum being extended over all positive squaremfree divisore δ of m . Since $\mu(\mathrm{p} \delta)=-\mu(\delta)$, it follows that $S_{m p}=0$.

Definition 2.7. For any integer $h \geq 0$, the function $\varphi_{h}(n)$ is defined by the equation

$$
\varphi(n)=\sum_{d \mid n} \mu(d)(\log d)^{h},
$$

where the sum extends over all positive divisors d of the natural number n and $(\log d)^{0}$ means the number 1.

Eemma 2.4. If the natural number n is divisible by more than h different primes, then

$$
\varphi_{h}(n)=0
$$

Proof: This is true for $h=0$, according to Theorem 2.4, and so it can be assumed that $h \geq 1$. One can use mathematical induction and suppose that Lemma 2.4 is true for all the functions $\varphi_{k}(n)$ when $k \leqslant h-1$. If $n=p^{\alpha} m$ where $\alpha \geq 1$, and where the integer m is not divisible by the prime p, then for each d that divides n, one may write $d=d_{2} d_{2}$ where d_{I} divides m and d_{8} divides p. Thus one obtains

$$
\begin{gathered}
\varphi_{h}(n)=\sum_{d} \mu(d)(\log d)^{h}=\sum_{d_{1}} \sum_{d_{2}} \mu\left(d_{2} d_{8}\right)\left(\log d_{2} d_{8}\right)^{h} \\
=\sum_{d_{2}} \sum_{d_{2}} \mu\left(d_{1} d_{2}\right)\left(\log d_{1}+\log d_{2}\right)^{h}
\end{gathered}
$$

Where the outer sum on the right-hand side extends over all positive divisors d_{q} of m and the inner sum over all positive divisors d_{k} of p. Then

$$
\begin{gathered}
\varphi_{h}(n)=\sum_{s=0}^{h}\binom{h}{s} \sum_{d_{2}} \mu\left(d_{1}\right)\left(\log d_{1}\right)^{s} \sum_{d_{2}} \mu\left(d_{2}\right)\left(\log d_{2}\right)^{h-s} \\
=\sum_{s=0}^{h}\binom{h}{s} \varphi_{s}(m) \varphi_{h m s}\left(p^{\alpha}\right)
\end{gathered}
$$

Since n has more then h different prime factors, m has more than $h-1$ different prime factors. Therefore, by hypothesis $\varphi_{B}(m)=0$ for $s=0,1$, . . , and $h-1$. The remaining term $\varphi_{h}(m) \varphi_{0}\left(p^{\alpha}\right)$ is also equal to zero, since its last factor is zero. Thus the lemma is proved.

Lemma 2.5. For any positive number x, let

$$
\lambda(d)=\mu(d) \cdot\left(\log \frac{x}{d}\right)^{2}
$$

and 1

$$
f(n)=\sum_{\alpha \mid n} \lambda(d),
$$

where the sum extends over all positive divisors d of the positive integer n. Then

$$
\begin{gathered}
f(1)=(\log x)^{2} ; \\
f\left(p^{\alpha}\right)=-(\log p)^{2}+2(\log x)(\log p)
\end{gathered}
$$

When p is a prime and α an integer ≥ 1;

$$
f\left(p^{\alpha} q^{\beta}\right)=2(\log p)(\log q)
$$

when p and q are different primes, and α and β are integers ≥ 1; $f(n)=0$ if n is divisible by three or more different primes.

Proof: One may write $\lambda(d)$ in the following way:

$$
\begin{gathered}
\mu(d)\left((\log x)^{2}-2 \log x \log d+(\log d)^{2}\right) \\
=(\log x)^{3} \mu(d)-2 \log x \cdot \mu(d) \log d+\mu(d)(\log d)^{2} .
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
f(n)=(\log x)^{2} \sum_{d \mid n} \mu(d)-2 \log x \sum_{d \mid a} \mu(d) \log d+\sum_{d \mid n} \mu(d)(\log d)^{2} \\
=(\log x)^{2} \varphi_{0}(n)-2 \log x \varphi_{1}(n)+\varphi_{2}(n)
\end{gathered}
$$

Thus the proof follows from the definitions and Lemma 2.4 (for $h=0,1$, and 2).

Lemma 2.6. For every natural number m,

$$
\left|\sum_{n=1}^{m} \frac{\mu(n)}{n}\right| \leq 1
$$

Proof: It follows from Theorem 2.4 that

$$
1=\sum_{n=1}^{m} \sum_{\left.\alpha\right|_{n}} \mu(\bar{\alpha})
$$

and

$$
\sum_{n=1}^{m} \sum_{d \mid n} \mu(d)=\sum_{r=1}^{m} k_{r} \mu(r)
$$

where k_{r} is the number of multiples of r which are $\leq m$. However, $k_{r}=[m / r]$ for $1 \leq r \leq m$. Thus,

$$
\sum_{h=1}^{m} \mu(n)[m / n]=1
$$

Consequentiy,

$$
\begin{aligned}
& \left|m \sum_{n=1}^{m} \mu(n) / n-1\right|=\left|\sum_{n=1}^{m} \mu(n) m / n-\sum_{n=1}^{m} \mu(n)[m / n]\right| \\
= & \left|\sum_{n=1}^{m} \mu(n)\left(\frac{m}{n}-\left[\frac{m}{n}\right]\right)\right| \leq \sum_{n=1}^{m}\left(\frac{m}{n}-\left[\frac{m}{n}\right]\right) \leq m a l .
\end{aligned}
$$

Thus

$$
\left|m \sum_{n=1}^{m} \mu(n) / n\right| \leq 1+m-1=m,
$$

which proves the lemma.
Lemma 2.7. For every positive reel number x,

$$
\sum_{k \leq x} \mu(k) / k \log x / k=O(1)
$$

Where the sum extends over all positive integers $k \leqslant x$.
Proof: Applying Lemma 2.1, one finds that

$$
\sum_{k \leq x} \frac{\mu(k)}{k} \log \frac{x}{k}=\sum_{k \leq x} \frac{\mu(k)}{k}\left(\sum_{n \leq x / k} 1 / n-\gamma+e_{1} \frac{k}{x}\right),
$$

Where $\left|O_{2}\right|$ is less than a positive constant c. For $k n=m, n=m / k_{p}$ $a_{k}=$ function of $k, b_{n}=b_{m} / k=a$ function of n, then

$$
\begin{gathered}
\sum_{k \leq x} \frac{a_{k}}{k} \sum_{n \leq x / k} \frac{b_{n}}{n}=\sum_{\substack{k \leq x \\
n \leq x / k}} \frac{a_{k} b_{n}}{k n} \neq \sum_{\substack{m \leq x \\
k n=m}} \frac{a_{k} b_{m} / k}{m} \\
=\sum_{m \leq x} \frac{1}{m} \sum_{d \mid m} a_{d} a_{m / d} ;
\end{gathered}
$$

so

$$
\sum_{k \leq x} \frac{\mu(k)}{k}\left(\sum_{n \leq x / k} I / n-\gamma+\theta_{1} \frac{k}{x}\right)
$$

becomes

$$
\sum_{m \leq x} 1 / m \sum_{d \mid m} \mu(d)-\gamma \sum_{k \leq x} \mu(k) / k+\sum_{k \leq x} \mu(k) \theta_{1} / x,
$$

where d runs through all positive divisors of m. By Theorem 2.4, the first sum has the value $I_{\text {; }}$ and by Lemme 2.6 , the second sum has an absolute value $\leq \gamma$. The absolute value of the third sum is at nost

$$
c / \mathrm{X} \sum_{k \leq X} I \leq c
$$

This gives the desired resuita.
Lemme 2.8. For every natural number n_{0}

$$
\sum_{d \mid n} \mu(d) T(n / d)=1
$$

where the sum extends over all positive divisors d of n.
Proof: Since $\tau(n / k)=\sum_{d} l_{\text {g }}$ the sum extending over ell positive divisors d of n / k, then

$$
\sum_{k} \mu(k) \tau(n / k)=\sum_{k} \mu(k) \quad \sum_{d \mid k} 1=\sum_{d} \sum_{d_{2}} \mu\left(d_{2}\right)
$$

where the inner sum on the $x i g h t-h a n d$ side extends over all positive divisors d_{1} of n / d. By Theorem 2.4, this inoer sum is equal to tero when $d \neq n$ and equal to 1 when $d=n$. Thus the right-hand side is $=1$.

Lemma 2.9. For every positive real number x ,

$$
\begin{equation*}
\sum_{d \leq x} \mu(d) / d(\log x / d)^{2}=2 \log x+o(1) \tag{15}
\end{equation*}
$$

where the sum extends over all positive integers $d \leq x$.
Proof: Applying Lemma 2.3 for $y=x / d$, one may write the left hand side of formula (15) in the form:
$2 \sum_{d \leq x} \frac{\mu(d)}{d}\left(\sum_{n d \leq x} \frac{T(n)}{n}-2 \gamma \log \frac{x}{d}-\gamma^{2}+2 c\right)$

$$
+\sum_{d \leq x} \frac{\mu(d)}{d}\left(\theta(d / x)^{\frac{1}{2}} \log \frac{x}{d}\right)
$$

where $|\theta|$ is less than a positive constant c_{1}. For all sufficiently large x the absolute value of the last sum is smaller than
$4 c_{1} \sum_{d \leq x} \frac{1}{d}\left(\frac{d}{x}\right)^{\frac{1}{2}}\left(\frac{x}{d}\right)^{\frac{1}{4}}=x^{-\frac{1}{4}} 0\left(\sum_{d \leq x} d^{-3 / 4}\right)$

$$
=x^{-\frac{1}{4}} \circ\left(\int_{2}^{x} z^{-3 / 4} d z\right)=x^{-\frac{1}{4}} O\left(x^{\frac{1}{4}}\right)=0(1) .
$$

Further, by letting $k=n d$, one finds that

$$
2 \sum_{d \leq x} \frac{\mu(d)}{d} \sum_{k \leq x} \frac{T(n)}{n}=2 \sum_{k \leq s} 1 / k \sum_{d \mid k} \mu(d) T(k / d)
$$

Where the inner sum on the right-hand side extends over all positive divisors d of k. Hence, by means of Lemmas 2.8 and 2.1,

$$
2 \sum_{d \leq x} \frac{\mu(d)}{d} \sum_{k \leq x} \frac{T(n)}{n}=2 \log x+o(1)
$$

Finally, applying Lemmas 2.7 and 2.6, one sees that the left-hand side of formula (15) is equal to

$$
2 \log x+o(1)
$$

Thus Lemma 2.9 is proved.

Lemm 2.10. If the sum is extended over ail primes $p \leqslant x$, then

$$
\begin{equation*}
\sum_{p \leq x}(\log p)(\log x / p)=o(x \log x) \tag{16}
\end{equation*}
$$

Proof: If $y=x /(\log x)$, the sum on the left-hand side is equal to $\sum_{p \leq y}(\log p)(\log x / p)+\sum_{p>y}^{p \leq x}(\log p)(\log x / p)$

$$
\begin{aligned}
& <\log x \sum_{p \leq y} \log p+(\log \log x) \sum_{p \leq x} \log p \\
& =\log x \vartheta(x / \log x)+(\log \log x) \vartheta(x)
\end{aligned}
$$

Applying Theorem 2.2, one sees that this function has the order of magnitude

$$
O(x \log \log x),
$$

Which is somewhat better than (16).
In the following lemms the expression "the sum extends over all prime powers $\mathrm{p}^{\alpha} \leq \mathrm{x}$, where α is a natural number" occurs. This means that there is a term in the sum for each power p^{α} of a prime por which $p^{\alpha} \leq x$. For example, if α_{p} is the greatest integer such that $p^{\alpha} p \leq x$, then $\sum_{p^{\alpha} \leq x} \log p$ is the same as $\sum_{p \leq x} \alpha_{p}(\log p)$, or the same as $\underset{p \leq x}{ } \log p+\underset{p^{2} \leq x}{\Sigma \log p+\underset{p^{3} \leq x}{\Sigma} \log p+\cdots+{ }_{p^{k} \leq x}^{\Sigma} \log p, ~}$ Where k is the greatest integer such that $2^{k} \leq x$, It follows that

$$
\sum_{p^{2} \leq x}^{\sum} \log p=\sum_{x=1}^{k} \vartheta(\sqrt[x]{x})
$$

Lemma 2.11. If the sum is extended over all prime powers $p^{\alpha} \leq x$, where α is a natural number, then

$$
\begin{equation*}
\sum_{p \alpha \leq x} \log p=O(x) \tag{17}
\end{equation*}
$$

Proof: The sum on the left-hand side is equal to

$$
\vartheta(x)+\vartheta(\sqrt{x})+\vartheta(\sqrt[3]{x})+\cdots+\vartheta(\sqrt[k]{x}),
$$

where k is the greatest integer such that $2^{k} \leq x$. This sum is at most equal to

$$
\vartheta(x)+k \vartheta(\sqrt{x}) .
$$

From theorem 2.2 and the fact that $k \leq(\log x) / \log 2$, the order of magnitude of $\vartheta(x)+k \vartheta(\sqrt{x})$ is

$$
O(x)+\frac{\log x}{\log 2} O(\sqrt{x})=O(x) .
$$

Lemma 2.12. If $f(n)$ is the function defined in Lemma 2.5, then

$$
\sum_{n \leq x} f(n)=(\log x) \vartheta(x)+\underset{p \sqrt{x}}{2 \sum} \vartheta(x / p) \log p+o(x \log x),
$$

Where the sum on the left-hand side extends over all positive integers $n \leq x$, and where the sum on the right-hand side extends over all primes $p \leq \sqrt{x}$.

Proof: It follows from Lemma 2.5 that

$$
\text { (18) } \begin{aligned}
\sum_{n \leq x} f(n)=(\log x)^{a} & +\Sigma\left(2(\log x)(\log p)-(\log p)^{2}\right) \\
& +2 \Sigma(\log p)(\log q) .
\end{aligned}
$$

Here the first sum on the right-hand side extends over ail pxime powers $p^{\alpha} \leq x, \alpha$ being a natural number; the second sum on the rightohand side extends over aill primes powers p^{α} and q^{β} such that $p^{\alpha} q^{\beta} \leq x$ and $p<q$, where α and β are natural numbers.

In the first sum on the right-hand side, the terms with $\alpha \geq 2$ are considered first. Let $g(x)$ denote the number of prime powers $p^{\alpha} \leq x$

With $\alpha \geq 2$, then the contribution of these terms to the sum is at most equal to

$$
2(\log x)^{2} g(x) \leq 2(\log x)^{2}(\sqrt{x}+\sqrt[3]{x}+\cdots+\sqrt[k]{x})
$$

where k is the greatest integer such that $2^{k} \leq x$. Thus the contribution does not exceed

$$
2(\log x)^{2} k \sqrt{x} \leq 2(\log x)^{2} \frac{\log x}{\log 2} \sqrt{x}=o(x \log x)
$$

Consider next the terms with $\alpha=1$ in the first sum on the rightwand side. The contribution of these terms is equal to

$$
\begin{aligned}
\sum_{p \leq x}(2(\log x)(\log p) & \left.=(\log p)^{2}\right) \\
& =\sum_{p \leq x}(\log x \log p+(\log p)(\log x-\log p)) \\
& =(\log x) \sum_{p \leq x} \log p+\sum_{p \leq x}(\log p)(\log x / p) \\
& =(\log x) \vartheta(x)+o(x \log x)
\end{aligned}
$$

according to Lemma 2.10. Thus the first wum ow the rightmand side in formula (18) is equal to

$$
\begin{equation*}
(\log x) \vartheta(x)+o(x \log x) \tag{19}
\end{equation*}
$$

Finally, consider the second sum on the rightwand side. Applying Lemma 2.11 for x / q^{β} instead of for x, then one sees that the contribution of the terms with $\beta \geq 2$ and $\alpha \geq 1$ has the order of magnitude

$$
\Sigma(\log q) O\left(x / q^{\beta}\right)=O(x) \Sigma(\log q) / q^{\beta}=O(x)
$$

for the infinite series, $\sum_{2}^{\infty}(\log q) / q^{\beta}$, extenaing over all primes q is convergent for $\beta \geq 2$. Thus the second sum on the right-hand side is equal to

$$
\begin{equation*}
2 \Sigma(\log p)(\log q)+O(x) \tag{20}
\end{equation*}
$$

Where the sum extends over all primes p and q, such that $p q \leq x$ and $p<q$. The latter sum is equal to

$$
\begin{aligned}
& \underset{\mathrm{pq} \leq x}{\sum}(\log p)(\log q)-\underset{p \sqrt{x}}{\sum}(\log p)^{2} \\
& =\sum_{\substack{p \leq \sqrt{x} \\
p q \leq x}}(\log p)(\log q)+\underset{\substack{q \leq \sqrt{x} \\
p q \leq x}}{\sum}(\log p)(\log q) \\
& -\sum_{\substack{p \leq \sqrt{x} \\
q \sqrt{x}}}(\log p)(\log q)-\sum_{p \leqslant \sqrt{x}}(\log p)^{2} .
\end{aligned}
$$

According to Theorem 2.2, the last two sums have at most the order of magnitude

$$
(v(\sqrt{x}))^{2}=O(x)
$$

and

$$
(\log \sqrt{x}) \vartheta(\sqrt{x})=O(\sqrt{x} \log \sqrt{x})
$$

respectively. Hence one concludes that expression (20) is equal to
$\underset{p \leq \sqrt{x}}{\Sigma}(\log p) v(x / p)+\underset{q \sqrt{x}}{\Sigma}(\log q) v(x / p)+O(x)$

$$
=2 \sum_{p \sqrt{x}}(\log p) \vartheta(x / p)+O(x) .
$$

Introducing expressions (19) and (20) into formula (18), ane finely obtains

$$
\begin{aligned}
& \sum_{n \leq x} f(n)=(\log x)^{2}+(\log x) \vartheta(x)+ \\
& O(x \log x)+2 \underset{p \sqrt{x}}{ }(\log p) \vartheta(x / p)+O(x) \\
& =0(x \log x)+(\log x) \vartheta(x)+o(x \log x)+ \\
& 2 \sum_{p \leq \sqrt{x}}(\log p) v(x / p)+o(x \log x) \\
& =(\log x) \vartheta(x)+2 \underset{p \leq \sqrt{x}}{ }(\log p) \vartheta(x / p)+o(x \log x) .
\end{aligned}
$$

This concludes the proof of Lemm 2.12.
The proof of Selbergis wasic formula can now be given.
Theorem 2.5. If the sum is extended over all primes $p \leq \sqrt{x}$, then

$$
\vartheta(x)(\log x)+2 \underset{p \leq \sqrt{x}}{\sum} \vartheta(x / p)(\log p) \Rightarrow \log x=0(x \log x)
$$

Proof: According to Lemma 2.19, the lefttmand side is equal to

$$
\sum_{n \leq x} f(n) \quad 2 x \log x+o(x \log x)
$$

According to the definition of the furation $f(x)$,

$$
\sum_{n \leq x} f^{\prime}(n)=\sum_{n \leq x} \sum_{d / a} \lambda(a)
$$

Where the inner sum extends over all positive divisoxs d of n. Hence

$$
\sum_{n \leq x} f(n)=\sum_{d \leq x} \lambda(d)[x / d]=\sum_{d \leq x} \lambda(d)(x / d=c d)
$$

Where $0 \leq \varepsilon \mathbb{d}<$ I。 If $z=x /(\log x)^{2}$, then

$$
\begin{aligned}
& \sum_{d \leq x}|\lambda(d)| \leq \sum_{d \leq x}(\log x / d)^{2}=\sum_{d \leq z}(\log x / d)^{2}+\sum_{d>z}^{d \leq x}(\log x / d)^{2} \\
& \leq \operatorname{zog} x)^{2}+\sum_{d>2}^{d s x}\left(\log \left(\frac{x(\log x)^{2}}{x}\right)\right)^{2} \\
& =z(\log x)^{2}+\sum_{\mathbb{2}>2}^{5 x}(8 \log \log x)^{2} \\
& \leq 2(\log x)^{2}+4 x(\log \log x)^{2} \\
& =O(x)+O\left(x(\log \log x)^{2}\right)=o(x \log x) \text {. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{n \leq x} f(n) & =\sum_{d \leq x} \lambda(d) x / a+o(x \log x) \\
& =\sum_{d \leq x} x \mu(d) / d(\log x / d)^{2}+o(x \log x)
\end{aligned}
$$

and, by Lemma 2.9,

$$
\sum_{n \leq x} f(n)=2 x \log x+o(x \log x)
$$

This completes the proof of Selberg? besic formula.

CHAPTER III

THE PRIME MOMBER THEOREM

The prime number theorem is usually stated as

$$
\lim _{x \rightarrow \infty} \frac{H(x)}{x / \log x}=I_{9}
$$

It may also be stated in other forms. In partioular, it is equivalent to the proposition

$$
\lim _{x \rightarrow \infty} \frac{乡(x)}{x}=1
$$

In this chapter the equivalence of the two propositions above will be proved, and then the second relatiouship will be established. Although modified in parta, the proof given are from Nagell [6].

Theorem 3.1. The prime number theorem

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

is equivalent to the theorem

$$
\lim _{x \rightarrow \infty} \frac{v(x)}{x}=1 .
$$

Proof: By definition,

$$
\vartheta(x)=\sum_{p \leq x} \log p
$$

and

$$
\pi(x)=\sum_{p \leq x} 1
$$

So

$$
v(x) \leq \pi(x) \log x .
$$

If $3<y \leq x$, then

$$
\begin{aligned}
& \pi(x)-y \leq \pi(x)-\pi(y)=\sum_{y<p \leq x} I \leq \sum_{y<p \leq x} \frac{\log p}{\log y} \\
= & \frac{I}{\log y}\left(\sum_{p \leq x} \log p-\sum_{p \leq y} \log p\right)=\frac{\vartheta(x)-\vartheta(y)}{\log y} \leq \frac{\vartheta(x)}{\log y}
\end{aligned}
$$

Hence,

$$
\begin{gathered}
\vartheta(x) \leq \pi(x) \log x=y \log x+\log x(\pi(x)-y) \\
\leq y \log x+\frac{\log x}{\log y} \vartheta(x)
\end{gathered}
$$

by choosing $y=x^{\delta}$, where $\delta=1-\frac{1}{\log \log x}$, one obtains

$$
\begin{gathered}
0 \leq \frac{\pi(x) \log x}{V(x)}=1 \leq \frac{y \log x}{v(x)}+\frac{\log x}{\delta \log x}=1 \\
=\frac{y \log x}{\vartheta(x)}+\frac{1-\delta}{\delta} .
\end{gathered}
$$

Since, according to Theorem 2.2, $\quad v(x)>b x$, thes

$$
0 \leq \frac{\pi(x) \log x}{\vartheta(x)}=1<\frac{x^{\delta} \log x}{b x}+\frac{1}{\log \log x-1}
$$

Here the rightwhan side tends to zero for increasing x g consequentiy,

$$
\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{v(x)}=10
$$

Which proves the theorem.
The proof of the prime number theorem will now be given, stated in the following form:
(1)

$$
\lim _{x \rightarrow \infty} \frac{v(x)}{x}=1
$$

It follows from Theorem 2. 2 that for increasing x the quotient $\vartheta(x) / x$ has a positive lower limit a and an upper limit A; when $0<a \leq A$ 。

Thus to prove (1), one needs to show that

$$
\begin{equation*}
a=A=1 \tag{2}
\end{equation*}
$$

The proof is based on Selberg's formula which was proved in the preceding chapter. The formula is used in the forms

$$
\begin{equation*}
\vartheta(x) / x+2 /(x \log x) \underset{p \sqrt{x}}{\sum} \vartheta(x / p) \log p-2=o(1), \tag{3}
\end{equation*}
$$

Where the sum extends over all primes $p \leq \sqrt{x}$. The following formule, Which was proved in Chapter II, is also useful in the proof:

$$
\begin{equation*}
\sum_{p \leq x}(\log p) / p=\log x+O(1) \tag{4}
\end{equation*}
$$

Where the sum extends over all primes $p \leqslant x$.
Lemma 3.1. If $\lim \sup \vartheta(x) / x=A$ and if $\lim \operatorname{Inf} \vartheta(x) / x=a$, then

$$
\begin{equation*}
a+A=2 \tag{5}
\end{equation*}
$$

Proof: It is possible to let x tend to infinity in such a way that $\vartheta(x) / x$ tends to A. Let ε be a given positive number; then

$$
\vartheta(x / p)>(a-c) x / p
$$

for every x sufficiently large and for every prime $p \leq \sqrt{x}$ and, therefore,

$$
\begin{gathered}
2 /(x \log x) \sum_{p \sqrt{x}} \vartheta(x / p) \log p \geq 2 /(x \log x) \sum_{p \leq \sqrt{x}}(\operatorname{s-c})(x / p) \log p \\
=2(a-\varepsilon) / \log x, \sum_{p s \sqrt{x}}(\log p) / p
\end{gathered}
$$

It follows from (4) that the right whand side of this inequality tends to a - e when $x \rightarrow \infty$. If formula (3) is applied, one obtains $2-A \geq a-c$. The inequality holds for every positive s; consequently,

$$
\begin{equation*}
A+a \leq 2 \tag{6}
\end{equation*}
$$

On the othex ham, it is posaible to let x tend to infinity in such a way that $\vartheta(x)$ tends to a. If ε is a given positive number, then

$$
\vartheta(x / p)<(A+\varepsilon)(x / p)
$$

for every x sufficiently large and for every prime $p \leq \sqrt{x}$, and, therefore,

$$
\begin{gathered}
2 /(x \log x) \sum_{p \leq \sqrt{x}} \vartheta(x / p) \log p \leq 2 /(x \log x) \sum_{p \leq \sqrt{x}}(A+\varepsilon)(x / p) \log p \\
=2(A+\epsilon) / \log x \sum_{p \leq \sqrt{x}}(\log p) / p
\end{gathered}
$$

It follows from (4) that the right-hand side of this inequality tends to $A+\varepsilon$ when $x \rightarrow \infty$. If formula (3) is applied, them one obtains $2-a \leq A+\varepsilon$. The inequality holds for every positive ε; therefore,

$$
A+a \geq 2
$$

This inequality together with (6) leads to (5).
In the following proof, let the variable x tend to infinity in such a manner that $\vartheta(x) / x$ tends to A.

Lemma 3.2. If λ is a given number $>a$, and if the sum,

$$
\mathbb{S}(x)=\Sigma^{\prime}(\log p) / p,
$$

extends over all primes $p \leq x$ and such that $\vartheta(x / p) \geq \lambda x / p$, then the quotient $S(x) /(\log x)$ tends to zero for $x \rightarrow \infty$.

Proof: Since $O(x / p)=\sum_{p q \leq x} \log q_{\text {, }}$ then

$$
\sum_{p \leq x} \vartheta(x / p) \log p=\sum_{p \leq x} \log p \sum_{p q \leq x} \log q=
$$

$$
\begin{aligned}
& \underset{p s \sqrt{x}}{\sum} \log p \underset{p q s x}{\Sigma} \log q+\underset{q \leq \sqrt{x}}{\Sigma} \log q \underset{p q \leq x}{ } \log p-\sum_{p s \sqrt{x}} \log p \underset{q \leq \sqrt{x}}{\Sigma} \log q \\
& =\underset{p \leq \sqrt{x}}{\sum} \vartheta(x / p) \log p+\sum_{q \leq \sqrt{x}} \vartheta(x / p) \log q-\left(\underset{p s \sqrt{x}}{\sum} \log p\right)^{2} . \\
& =2 \sum_{p \sqrt{x}} \vartheta(x / p) \log p-(\vartheta(\sqrt{x}))^{2} .
\end{aligned}
$$

Since, by Theorem 2.2 the last term has the order $O(x)$, then Selberg's
formula (3) may be written as:
(7) $\vartheta(x) / x+1 /(x \log x) \sum_{p \leq x} \vartheta(x / p) \log p-2=0(1)$.

Let ε be a positive number. For eyery x / p exceeding a certain number u which depends on ε, then $\vartheta(x / p)>(a-\varepsilon)(x / p)$. There exists a positive number b depending on u and so on ε such that

$$
\begin{equation*}
\vartheta(x / p)>(a-\epsilon)(x / p) \quad b \tag{8}
\end{equation*}
$$

for all the primes p such that $x / p \leq u_{0}$ Thus the latter inequality holds for every $p \leq x$.

If the sum Σ^{0} extends over all primes $p \leq x$ such that $v(x / p) \geq \lambda x / p$, then
(9) $\Sigma^{v} \vartheta(x / p) \log p \geq \lambda \times \Sigma^{\prime}(\log p) / p>$

$$
(\lambda-a) \times \Sigma^{t}(\log p) / p+(a-\varepsilon) \times \Sigma^{t}(\log p) / p
$$

If the sum Σ^{8} extends over all primes $p \leq x$ auch that $\vartheta(x / p)<\lambda x / p$, then by (8),
 From (9) and (10) one may deduce that
$\sum_{p \leq x} \vartheta(x / p) \log p=\Sigma^{\prime} \vartheta(x / p) \log p+\Sigma^{n} \vartheta(x / p) \log p>$

$$
(a-\varepsilon) \times \sum_{p \leq x}(\log p) / p+(\lambda-a) \times \Sigma^{0}(\log p) / p-b \vartheta(x) .
$$

Substituting from this result into formus (7) one obtains for $\%$ tending to infinity in such a manner that $V(x) / x$ tends to A.

$$
A+a=6+(\lambda \infty a) \frac{\lim \sup }{x \rightarrow \infty} \frac{\Sigma^{0}(\log p) / p}{\log x} \leq 2
$$

Hence, recalling $a+A=2_{2}$

$$
\lim _{x \rightarrow \infty} \frac{\sum^{\prime}(\log p) / 0}{\log x} \leq \frac{\epsilon}{\lambda \rightarrow 6} .
$$

Since $\lambda-a>0$, and since ϵ can be chosen arbitrarily small, this gives the desired lemma.

Lemma 3.3. If μ is a given positive number $<A$, and if the sum,

$$
R(x)=\Sigma \cdot\left(\frac{\log p}{p}\right)\left(\frac{\log _{q} q}{q}\right),
$$

extends over all the primes p and q which satisfy the following conditions: $p \leq \sqrt{x}, q \leq \sqrt{(x / p)}$, and $\vartheta(s / p q) \leq \mu x / p q$, then the quotient

$$
\frac{R(x)}{(\log x)^{3}}
$$

tends to zero for $x \rightarrow \infty$.
Proof: Replacing x by x / p in Selbergis formula one obtains

$$
\vartheta(x / p)=2 x / p+o(x / p)-2 /(\log x / p) \sum_{q \sqrt{x / p}}^{\sum} \vartheta(x / p q) \log q
$$

If this expression for $v(x / p)$ is introduced into the same formula, then one obtains

$$
\begin{gathered}
\vartheta(x)=2 x+0(x)- \\
\frac{2}{\log x} \sum_{p \sqrt{x}} \log p\left(\frac{2 x}{p}+0(x / p)-\frac{2}{\log x / p} \sum_{q \sqrt{x / p}} \vartheta(x / p q) \log q\right)
\end{gathered}
$$

$$
=2 x+0(x)-\frac{2 x}{10 g x} \sum_{p \sqrt{x}} \frac{10 g p}{p}(2+0(1))+\frac{4 y}{\log x}
$$

where

$$
V=\sum_{p, q} \vartheta(x / p q) \frac{\log p \log q}{\log x / p}
$$

the sum extending over all primes p and q such that $p \leq \sqrt{x}, q \leq \sqrt{x / p}$. Since, by formula (4),

$$
\sum_{p \leq \sqrt{x}} \log p / p=\frac{1}{2} \log x+o(1)
$$

it follows that

$$
\vartheta(x)=4 V / \log x+o(x)
$$

In every term of the sum $V, p \leq \sqrt{x}$ and $q \leq \sqrt{x / p}$, and, therefore, $p q=p^{\frac{1}{2}}\left(p q^{2}\right)^{\frac{1}{2}} \leq x^{\frac{1}{4}} x^{\frac{1}{2}}=x^{3 / 4}$. Thus, if δ is any positive number, then

$$
\vartheta(x / p q)<(A+\delta)(x / p q)
$$

for x sufficiently large.
Let

$$
V=\Sigma^{\prime}+\Sigma^{\prime \prime},
$$

where the first sum extends over all primes p and q such that $p \leq \sqrt{x}$, $q \leq \sqrt{x} / \mathrm{p}$, and $\vartheta(\mathrm{x} / \mathrm{pq}) \leq \mu \mathrm{x} / \mathrm{pq}$, and the second sum extends over all primes p and q such that $p \leq \sqrt{x}, q \leq \sqrt{x / p}$, and $\vartheta(x / p q)>\mu x / p q$. Then

$$
\begin{aligned}
V \leqslant & \mu \times \Sigma^{\prime} \frac{1}{\log x / p} \frac{\log p}{p} \frac{\log q}{q}+ \\
& (A+\delta) \times \Sigma^{\mu} \frac{1}{\log \times / p} \frac{\log p}{p} \frac{\log q}{q},
\end{aligned}
$$

where the sums are taken as above. Further,
$V \leq(A+\delta) \times W-(A+\delta-\mu) \times \Sigma^{\prime} \frac{1}{\log x / p} \frac{\log p}{p} \frac{\log q}{q}$,
where

$$
\begin{aligned}
W & =\sum_{p, q} \frac{1}{\log x / p} \frac{\log p}{p} \frac{\log q}{q} \\
& =\sum_{p \sqrt{x}} \frac{1}{\log x / p} \frac{\log p}{p} \sum_{q \sqrt{x / p}} \frac{\log q}{q},
\end{aligned}
$$

the sums extending over all primes $p \leq \sqrt{x}$ and over all primes $q \leq \sqrt{x / p}$.

Applying formula (4), one obtains

$$
\begin{aligned}
W & =\sum_{p \leq \sqrt{x}} \frac{\log p}{p} \frac{1}{\log x / p}\left(\frac{1}{2} \log x / p+o(1)\right) \\
& =\sum_{p \sqrt{x} \frac{\log p}{p}\left(\frac{1}{2}+o(1)\right)=\frac{1}{4} \log x+o(\log x) .} .
\end{aligned}
$$

Hence $\vartheta(x) \leq$
$(A+\delta) x-\frac{4}{\log x}(A+\delta-\mu) \times \Sigma^{\prime} \frac{1}{\log x / p} \frac{\log p}{p} \frac{\log q}{q}+\beta x$,
where β tends to zero for $x \rightarrow \infty$. From this, one deduces that
$\frac{4}{(\log x)^{2}}(A+\varepsilon-\mu) \Sigma \frac{\log p}{p} \frac{\log q}{q} \leq A+\delta-\frac{\vartheta(x)}{x}+B$,
Where the sum is the same as in Lemma 3.3. Hence, for x tending to infinity in such a manner that $\vartheta(x) / x$ tends to A_{p}

$$
\lim _{x \rightarrow \infty} \sup \frac{1}{(\log x)^{2}} \Sigma^{\prime} \frac{\log p}{p} \frac{\log q}{q} \leqslant \frac{6}{4(A-u)} .
$$

Since $A-\mu>0$, and since δ is an arbitrary positive number, this proves the lemma.

By means of Lemmas $3.1,3.2$ and 3.3 , one may now prove the following relation:
(11)

$$
a=A=I_{0}
$$

Suppose that $A>a$, then there exists a positive number $\sigma>1$ such that $A>\sigma$ a and a positive number δ such that

$$
\begin{equation*}
A \geq \sigma a+\delta(\sigma+2) \tag{12}
\end{equation*}
$$

Further, denote by \mathbb{N} a natural number.
Consider the sum

$$
S=\Sigma_{R} \frac{\log p}{p} \frac{\log g}{q} \Sigma_{B} \frac{\log r}{r}
$$

Where $\Sigma_{\mathcal{L}}$ extends over all the primes p and q such that

$$
\mathrm{p} \leq \sqrt{\mathrm{x}}, \quad \mathrm{q} \leq \sqrt{\mathrm{x} / \mathrm{p}}, \quad \mathrm{pq} \geq \mathbb{N}_{3} \quad \vartheta(\mathrm{x} / \mathrm{pq}) \geq(\mathrm{A}-\delta) \mathrm{x} / \mathrm{pq},
$$

and where Σ_{B} extends over all the primes x such that

$$
\mathrm{pq} / \sigma<\mathbf{r} \leq \sigma \mathrm{pq} .
$$

If there are no primes r_{0} the sum Σ_{B} is $=0$.
For every term in the sum Σ_{B}, then
$r \leq \sigma p q=\sigma p^{\frac{1}{2}}\left(p q^{2}\right)^{\frac{1}{2}} \leq \sigma x^{\frac{1}{4} x^{\frac{1}{2}}}=\sigma x^{3 / 4} \leq x$
when x is sufficiently large. The following inequality will be proved for the same terms:

$$
\begin{equation*}
\vartheta(x / x)>(0+8) x / r, \tag{13}
\end{equation*}
$$

when x is sufficiently large. This inequality is true for all $\mathrm{r} \leqslant \mathrm{pq}$, since

$$
\begin{aligned}
& \vartheta(x / r) \geq \vartheta(x / p q) \geq(A-\delta) x / p q>(A-\delta) x / \sigma r \\
& \geq(\sigma a+\sigma \delta) x / \sigma r=(a+\delta) x / r
\end{aligned}
$$

in virtue of (12) 。
Consider now the terms with $r>p q$. For these terms, $x / r<$ $x / p q \leq \sigma x / r$. If in Selberg's formula,
$(\log y) \vartheta(y)+2 \sum_{p \sqrt{y}} \vartheta(y / p) \log p=2 y \log y+o(y \log y)$, one first replaces y by $x / p q$ and then by x / r, one obtains on subtraction

$$
\begin{gathered}
(\log x / p q) \vartheta(x / p q)-(\log x / x) \vartheta(x / r) \leq \\
2(x / p q)(\log x / p q)-(2 x / r)(\log x / r)+o\left(\frac{x}{r} \log x / r\right) \\
\text { or } \vartheta(x / r) \geq \\
\frac{\log x / p q}{\log x / r} \vartheta(x / p q)-2\left(\frac{x}{p q}-\frac{x}{r}\right)-2 x / p q \frac{\log x / p q-\log x / r}{\log x / r}+o(x / r)
\end{gathered}
$$

Now

$$
\begin{gathered}
2 x / \mathrm{pq} \frac{\log x / \mathrm{pg}-\log x / r}{\log x / r}=2 x / \mathrm{pq} \frac{\log r / \mathrm{pg}}{\log x / r} \\
\leq 2 \sigma x / r \frac{\log \sigma}{\log x / r}=o(x / r)
\end{gathered}
$$

and

$$
\frac{\log x / p q}{\log x / r} \geq 1
$$

Thus

$$
\begin{gathered}
\vartheta(x / r)>(A-\delta)(x / p q)=2(x / p q-x / r)+o(x / r) \\
=2 x / r-(2-A+\delta)(x / p q)+o(x / r) ; \\
\text { and, since } a+A=2 \text { and } A \geq a \sigma+\sigma \delta+2 \delta, \\
\vartheta(x / r)>(a+A)(x / r)-(a+\delta)(x / p q)+o(x / r) \\
\geq(a+a \sigma+\sigma \delta+2 \delta) x / r-(a+\delta) \sigma x / r+o(x / r) \\
\geq(a+2 \delta) x / r+o(x / r) .
\end{gathered}
$$

If x is sufficiently large, then

$$
\vartheta(x / r)>(a+\delta)(x / r)
$$

This proves inequity (13) for all r.
Consequently,

$$
s \leq \sum \frac{\log x}{x} \Sigma^{3} \frac{\log p}{p} \frac{\log g}{q}
$$

Where the first sum extends over all primes $x \leq x$ and such that $\vartheta(x / r) \geq(a+\delta)(x / r)$, and where the sum Σ^{3} extends over all primes p and q such then

$$
p \leq \sqrt{x}, q \leq \sqrt{x / p}, \quad r / \sigma \leq p q<\sigma r
$$

Thus

$$
\begin{aligned}
& \Sigma^{3} \frac{\log p}{p} \frac{\log q}{q} \leqslant \frac{\sigma}{x} \sum_{p \sqrt{x}} \log p \underset{q \leq \sigma r / p}{ } \log q= \\
& \sigma / r \underset{p \sqrt{x}}{\sum}(\log p) \vartheta(\sigma r / p)<c_{l} \underset{p \sqrt{x}}{\sum}(\log p) / p<c_{2} \log x, \\
& \text { Where } c_{1} \text { and } c_{2} \text { are positive constants. Consequently, } \\
& S \leq c_{2} \log \times \sum_{r}(\log r) / r,
\end{aligned}
$$

Where the sum extends over all the primes $r \leq x$ and such that $\vartheta(x / x) \geq(a+\delta)(x / r)$. By Lemma 3.2 one then obtains

$$
\begin{equation*}
S=\beta_{1}(\log x)^{2} \tag{14}
\end{equation*}
$$

where β_{1} tends to zero for $\mathrm{x} \rightarrow \boldsymbol{\infty}_{\text {. }}$.
Now consider the sum

$$
T=\Sigma \frac{\log p}{p} \frac{\log q}{q}
$$

extending over all primes p and q such that

$$
p \leqslant \sqrt{x}, \quad q \leqslant \sqrt{x / p}, \quad p q \geq N
$$

Then

$$
T \geq\left(\sum_{p \geq \sqrt{N}}^{p \leq \sqrt{x}} \frac{\log _{p} p}{p}\right)\left(\sum_{q \sum \sqrt{N}}^{q \leq x^{\frac{1}{4}}} \frac{\log g}{q}\right)
$$

Hence by formula (4)
$T \geq\left(\frac{1}{2} \log x-\frac{1}{2} \log / N+O(1)\right)\left(\frac{1}{4} \log x-\frac{1}{2} \log / N+O(1)\right)$, Therefore,

$$
\begin{equation*}
T>c_{3}(\log x)^{2} \tag{15}
\end{equation*}
$$

Where c_{3} is a positive constant.

Let

$$
T=\Sigma_{2} \frac{\log p}{p} \frac{\log q}{q}+\Sigma_{2}^{\prime} \frac{\log p}{p} \frac{\log q}{q},
$$

where the latter sum extends over all the primes p and q satisfying the conditions

$$
p \leq \sqrt{x}, q \leq \sqrt{x} / p, p q \geq N, \vartheta(x / p q)<(A-\delta)(x / p q)
$$

This latter sum, in virtue of Lemma 3.3., is equal to $\beta_{2}(\log x)^{2}$, where β_{2} tends to zero for $x \rightarrow \infty$. Hence,

$$
\Sigma_{2} \frac{\log p}{p} \frac{\log q}{q}=T-\beta_{2}(\log x)^{2}
$$

and in virtue of inequality (15),
(16). $\quad \Sigma_{q} \frac{\log p}{p} \frac{\log q}{q}>\frac{1}{2} c_{3}(\log x)^{2}$
for x sufficiently large.
If in the sum Σ_{2}, one considers for a fixed value of x, the primes p and q shich have the property that the $\operatorname{sum} \Sigma_{G} \frac{\log _{r} r}{r}$ takes its minimum value μ, μ depends on x only,

Then by (16)

$$
s \geq \mu \Sigma_{8} \frac{\log _{g} p}{p} \frac{\log q}{q}>\frac{1}{2} \mu c_{3}(\log x)^{2}
$$

If one compares this result with inequality (14), one obtains for $x \rightarrow \infty$ thet

$$
\mu=\Sigma_{B} \frac{\log r}{r} \rightarrow 0 .
$$

Consequently, to every positive number ε and to every natural number \mathbb{N} there corresponds a number $t=\mathrm{pq} \geq \mathbb{N}$ such that

$$
\sum_{r \sigma>t}^{r \leq \sigma t} \frac{\log r}{r}<\varepsilon,
$$

the sum extending over all primes r such that $r>t / \sigma$ and $r \leq \sigma t$. Hence

$$
\sum_{r \sigma>t}^{r \leq \sigma t} \log r<\varepsilon \sigma t
$$

and

$$
\begin{equation*}
\vartheta(\sigma t)-\vartheta(t / \sigma)<\varepsilon \sigma t . \tag{17}
\end{equation*}
$$

If N, and therefore also t, are sufficiently large, then

$$
\vartheta(\sigma t)>(a-\varepsilon) \sigma t,
$$

and

$$
\vartheta(t / g)<(A+\varepsilon)(t / \sigma) .
$$

Hence, it follows from (17) that

$$
(a-\varepsilon) \sigma-\frac{A+\varepsilon}{\sigma}<\varepsilon \sigma .
$$

This inequality holds for every positive number ε so that one obtains $a \sigma^{2}-A \leq 0$. On the other hand, $a \sigma<A$ and $a>0$.

Thus, every number $\sigma<A / a$ has the property that $\sigma^{2} \leq A / a$. If σ tends to A / a, then

$$
\left(\frac{A}{Q}\right)^{2} \leq \frac{A}{a}
$$

or

$$
\frac{A}{a} \leq 1
$$

Since $a \leq A$ and $a+A=2$, it follows that

$$
a=A=1
$$

CHAPTER IV

REMARKS ON THE "ELEMENTARY" PROOFS

The "elementary" proofs of the prime number theorem emphasize once again man's enduring progress in solving problems that seem to have no solution. The telephone, the radio, the television, the airplane, etes. sie some of the results of man's success in solving other problems which seemed impossible. As late as 1932, Ingham [4], in discussing the Qualytie proofe, made the following statement: "The solution just out1saed may be held to be unsatisfactory in that it introduces ideas very yemote from the orlginel problem, and it is natural to ask for a proof of the prime number theorem not depending on the theory of functions of a comples vaxiable. To this we must reply that at present no such proof 4. known. We san indeed go further and say that it seems unlikely that a genulnely 'real varioble' proci will be discovered, at any rate, so long as bhe theory 9 founded on Euler's identity." Thus, it is all the mexe remarkible that in 1948, Selberg and Erdos were able to give
"olemandaxy" proor" of the prime number theorem.
The hasic merg thaing in the "elementary" proof of the prime number theoren in Severg'g asymptotic formula (Chapter II). From this formula arolve several ways to deduce the prime number theorem. The proofs givar in Chapter II aud Chapter III were based on the outline and disCugsions of Nagel. The first proof of Selberg dates from 1948. Magell's proof is related to at; the proof followed an exposition given
 1948 [6].

In his pulilihed paper, Selberg present another proof. He se.
 upper limits and thus eemed to the most elementary way. In his introduction he gave aketch or his fixat prowi in which he made use of the
 number δ, there exist a $\mathrm{k}(\delta)>0$ wnin $\mathrm{x}=\mathrm{Xo}(\delta)$ wuch that for $\mathrm{X}>\mathrm{XO}$,
 Selberg gteter that the prow of Endos was cbeanea without knowledge of his work, except that it in kased on his (Selberg's) formula; and after he (Selberg) had the otber partu ait the proof. He also states that Erdos' proof combund deas redatect to his (Seloerg's) proof, at which ideas he (Eremon) had arwived independentiy [10].

In the introductov of his papaz, Erios [2] gives a very interesting agcount of the prinm amakia thearems. It gives insight into the methods used by other man fin twa ficild. The erahange of ideas, as illustrated in his papews ds bewericial in the walving of many problems.

In the pecoud past of his paper: Smiberg prowes the basio formula. After proving it, be procecede by witizus the basio formula in another form. Fie introured a texm $\mathbb{R}(x)$, by witing $\vartheta(x)=x+R(x)$. In the thiro part of his papen", he conthued by discuseing some of the properties of $\mathrm{R}(\mathrm{x})$. Axd in the fims part, he proves that

$$
\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1
$$

by proving

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=0 .
$$

Sinee the proofs by Selburg awd Erdow, ther mathemeticians have presented modificotions. Enownight [II] has givea such a proof in which he use the elements of calculus to prewent some of the concepts. He points out that "the use of the saluilus make\% unnecturary certain complexities of detail muin Ghow more clearly the fundamental ideas (Which are, of course, esisentishy Selbergis) ${ }^{88}$ Robext Breusch [I] prover that fore wery $\varepsilon>0$, thea

$$
\Psi(x)=\sum_{p^{m} x} \log p=x+o(x \log \operatorname{cog} / 6+\varepsilon x)
$$

aud thus estakliskes the prock of the prime number theorem in this form. Other mathematiclang nave also givex "elementary" prowis of the prime number thmoremo fhe detalin of proofs in laggages other than English were not entixely comprehamikia by this suthor. It seems, however, that the otber prooss fixwolve the base ideas af Exdos aud Selberg or a
 presented his proof by his own method. Thus Erdos and Selberg have nchermin in ant exa in the prove of the prime maber theorem.

BTBLIONRAPFY

1. Breusch, Robert. "An Elementery Proof of the Prime Number Theorem With Remaindex Terms "Paitic Tournal of Mathematice, X (1960), 487-497.
2. Erdom, P_{0} "On a New Method in Elementary Number Theory Which Leads to an Eilementary Proot of the Prime Number Theorem," Proceeding of Nationoth Acerdemy of Science of UoSnAo XXXV (1949), $374-384$.
3. Erxera, A. Mne Modificetion de la Demonetration de Landau du Theorem des Nombrea Premiere," Methesis, LXVII (1958), 321-337.
4. Ingham. The Distribution of Prime Numbers (Cambridge Tracts in Mathematics and Mathematimi Pbysios, Number 30), London: Cambidge Uaiverility Preas. 193_{2}.
5. LeVeque, Willian Mudgon. Topige In Mumber Theory. II, Readne,

6. Nagell, Twyue. Introdugtion to Number Theory, New Iork: John Willy ant some 1951.
7. Mren Twn am Fexbert S. Zumemmun An Thtroduction to the Theory of Numbers. New York: John Wiley end Sons, 1960.
8. Ore, Oystixn Mumber Theory and Its Hiptory. New York: MoGrawe H11 Book 60. 1948.
9. Riemana, Beruhaw U. Uebmy die Amzabl dex Primzehlen unter einex gegebquen Groseg. Monatinerichte der Berliner Akademio, 2859 (thie is found in The Collegted Works of Bermherd. Riemann, edited by Helnefch Weber, New York: Dover Publica= 610aiy 1959).
10. Selberg, Atile. "An Elemeatary Front of the Prime Number Theorem," Anne1s of Mathematics, L (1949), 305-313.
11. Wright, E。Mo "The Elementary Proof of the Pxime Number Theorem," Proceedings of the Royal Sogiety of Edinburg, Section A, UXIII (1952), 257 267.

YITA
Herbert Victor Monks
Gractionte for the Degrea of
Doctar of Education

Thesinis THE PRTME MMMBRE TPEORTM
Major Fields Manemetes

Biogxaphicei:

Personal Date: Bors wew Fufaula, Oklshoma, Marein 5, 1927, the sor of Mo. Cod Beeste Monks.

ERucation: Attended graic school at Bower in Pittaburg County; Cracuated frem Cambria figh School, Muskogee, Oklahoma, in 1945, reaelyed the Bachelor of Arta degree from Northeasterm State College, Manlequah, Oklahoma, with a major in Mathe metics, in May, 1950 : received the Master of Teaching degree from Mombeastem Stete Gollege in May, 1957: received the Mater of Selence degree fron Oklahom State Univeraity in Anguet, 1958 : completed requisements for the Doctor of Education degre in May, 1965.

Profesional Experience: Degan caxeer as mathematica teacher at quintom, Oklahoma, 12 1948; accepted position as teacher and athletze ceach at Ketehum, Oklahoma, for the school year 1949 ajog sexved as grade principal, teacher, and coach at Indianola, Oklahoma, for the school year 1950.51; served as high school pripespal wel mathematies teacher at Salina. Oklahome, for the school yesre 1951-57\% and have served as an Ancietan Prefemsur of hathemates at Northeastern State College mince 1958.

