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PREFACE

The prime numbers are irregular in their distribution, sand some
of the deepest theorems in the theory of numbers have to do with the
prime numbers. However, when the large scale distribution of primes is
considered, it appears in many ways quite regular and obeys simple laws.
The study of these laws falls in the field of analytic number theory.
This particular domain of number theory operates with very advanced
methods of the calculus and is considered to be techuically one of the
most difficult fields of mathematics. Its central problem is the study
of the function m(x), which indicates the number of primes up to a
certain number x. It was discovered guite early by mesns of empirical
counts in the prime tables that the fumction m(x) behaves asymptotically
like the function x/los x (see page 7). The following formula is
called the Prime Number Theorem:

lim m(x)/(x/log x) = 1
X =
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CHAPTER I
INTRODUCTION

The purpose of the dissertation is to analyze the fundamental con-
cepts, organize a logical unit with necessary additiomal proofs, and
present an expository discussion of the prime number theorem and other
theorems needed in the development of the proof of the prime number
theorem. Prime numbers, distribution of prime numbers, and the sieve
of Eratosthenes in relation to the prime number theorem are briefly
discussed in this chapter. The history of the prime number theorem is
traced through the conjectures of the eighteenth and early part of the
nineteenth centuries, the analytic proofs of the theorem in the latter
part of the nineteenth century, and the improvements on bounds in the
first half of the twentieth century. Chapters two and three are used
to present, in detail, a discussion of the modern, so called "elementary"
proofs of the prime number theorem. In chapter two proofs of prelimi-
nary lemmas and theorems are presented. It culminates with the proof of
Selberg's basic formula. The proof of the prime number theorem is com-
pleted in chapter three. The elementary proofs of Erdos and Selberg,
and the simplifications which have appeared since are discussed in the
final chapter.

The natural numbers greater than one may be divided into two classes,
prime numbers and composite numbers. A prime number is any natural num-
ber (positive integer) greater than one which has exactly two divisors,

1 and the number itself. All other natural numbers greater than 1 are



said to be composite numbers. The "fundamental theorem of arithmetic"
states that every natural number greater than 1 may be represented
uniquely as the product of prime factors. Thus the prime numbers derive
their peculiar importance as building stones from which all other natural
numbers greater than 1 may be created multiplicatively.

One of the most interesting problems in number theory has to do with
the distribution of the primes among the integers. Although there are
great irregularities in the occurrence of the primes, the general distri-
bution is found to possess certain features of regularity which can be
formulated in precise terms and made the subject cf mathematical inves-
tigation.

Definition 1.1. If x is any real number, then m(x) denotes the

number of primes not exceeding x.

The problem of studying the distribution of the prime numbers
resolves itself into a study of the function m(x). Finding m(x) for
large values of x is quite a job. In fact, extending the table of primes
becomes a formidable task. To decide that a given natural number is prime,
one needs to be sure that no natural number less than n divides n, except
1. It is not necessary to try as diviscrs all natural numbers less than
n, for if a given prime will not divide n then no multiple of the prime
will divide n. Thus one needs to consider only primes less than n, and
not all of these. If no prime less than or equal to /n will divide n,
then n must be prime, for if d is any divisor of n such that /n < d < n,
then n/d also divides n and is less than /n. If n/d is not prime, it
has prime factors less than /n which must divide any multiple of n/d
inecluding n.

There exists an ancient method of finding the primes known as the



sieves of Eratosthenes. Eratosthenes (276-194 B.C.) was a Greek scholar,

chief librarian of the famous library in Alexandria. He is noted for his
chronology of ancient history and for his measurement of the meridian be-
tween Assuan and Alexandria, which made it possible to estimate the dimen-
sions of the earth with fairly great accuracy [8] .

The primes less than or equal to any real number x may be obtained
by the sieves of Eratosthenes. If the natural numbers greater than one
and less than or equal to x are listed in their natural order, one may
apply the sieve as follows: Underline all multiples of 2 except 2, then
consider the first number after 2 that has not been underlined, i.e., 3.
The 3 is a prime since 2 does not divide it. In the same manner as for 2,
underline all multiples of 3 except 3; then consider the next number
after 3 that has not been underlined. It is also a prime. If the pro-
cess is continued, the first number not underlined after a given prime
will also be a prime. If q is the greatest prime < /X%, then the process
mey stop after the multiples of q (except q) are underlined. Thus, the
numbers that have not been underlined are all of the primes less than or
equal to x.

If one desires to obtain only the primes greater than the /x and
less than or equal to x, then the primes < /x are also underlined. For
example, consider the case x = 50. The primes less than or equal to /50
are 2, 3, 5, and 7. List the natural numbers from 2 to 50; then in con-
secutive order, underline all multiples of 2, 3, 5, and 7. The sequence
looks like this:

2345586108 9 10 11, 12 13, 14 15,

}_6_)17:3;2:19:22:?_1)?3323:2;25)%‘9§I:

28, 29, 30, 31, 32, 33, 34 35, 36, 37, 38, 39,



ko, k1, ke, 43, W, bs, 16, M7, 18, ko, 50;
The numbers not underlined
11, 13, 17, 19, 23, 29, 31, 37, 41, 43, uT
are the primes greater than or equal to /50 and less than or equal to 50.

Definition 1.2. For any real number x, the symbol [x] denotes the

greatest integer less than or equal to x.
The number of integers sieved out for amy prime p < /x may be repre-
sented by [x/p] . One may devise a formula for m(x) - m(/x) by using the

bracket function. An expression like

SR AL

will not serve because some numbers are sieved out two or more times.
Numbers of the form pq are sieved out twice: once when sieved by p and
once when sieved by q. It is necessary to add I [x/pg], where the sum

extends over all primes p and q such that p < q < /x. Even this expres-

- 3 050

is not complete. Numbers of the form P, B must be considered. These

sion,

numbers will be sieved out once each by Pys BY B, @0d by p, - These num-

bers are added back three times when the multiples of PRy PRy and
B, b, are added back. So these numbers have not actually been taken out

at all. This situation is remedied by subtracting

2 [mwm) -

where the sum extends over all primes p; , pp, D3 such that

P, <B <p <V/x. If this procedure is continued and if p,, B,y .-+5 Pk
are all the primes < /x, then one obtains the following formula:



n(x) - nl(/x) = -1 + [x]

S @A) - ShEsd e

where the second two sume extend over all primes such that

P, <P 3 <p.S Vx. By using the definition of the Mobius function,

definition 2.5 of chapter two, this may be expressgsd in the following pre-

cise form:
(1) m(x) - nwf/x) = -1 + zu(a) [x/a] ,
d
where the sum is extended over all positive divisors of the product
Py By +ocPye

It was proved by Euclid (Elements, Book §, Prop. 20.) around
300 B.C. that there exist an iafipite number of primez. In essentials
his proof is as follows: Let P be a product of amy finite set of primes,
and consider P+ 1. The integers P and P + 1 can have no prime factor inm
common, since such a factor would divide 1, which is impossible. Hence
P+ 1 is either a new prime or it containe a prime factor distinet from
those occurring in P, If thers were only & finite number of primes alto-
gether, we could take P to be the product of all primes, and a contradic-
tion would result [4] .

In 1737 Euler proved the existence of an infinity of primes by a new
method, which shows moreover that

(2) the series, ; L, is divergent.

=1 Pn

Euler's work is based on the idea of using an identity in which the

primes appear on one side but not on the other. BStated formally, his

identity is
(3) £ 2® =TT (Q+pP+p®+..0)=TT Q-7
n=1 P P



where the products are over all primes p. Euler's comntribution to the
subject is of fundamental importamce; for his identity, which may be re-
garded as an analytical equivalent of the fundamental theorem of arith-
metic, forms the basis of nearly all subseguent work sl .

The question of the diminishing frequency of primes was the subject
of much speculation before any definite results emerged. The problem
assumed a much more precise form with the publication by Legendre in 1808
(after a less definite statement in 1798) of a remarkable empirical for-
mula for the approximate representation of m{x). Legendre asserted that
for large values of x, m(x) is approximestely egual to

(4) e T
vhere log x is the matural (Napierian) logarithm of x and B a certain
numerical constant. A similar, though not identical;, formula was pre-
pared independently by Gauss. Gauss's method; which consisted in count-
ing the primes in blocks of a thousand comsecutive integers, suggests the
function 1/log x as an approximation to the average demsity of distribu-
tion ('numbers of primes per unit internal') in the neighborhood of a

large number x, and thus the integral of the density,

rr' du
(5) Li (x) = J; log u

as an approximation to m(x). The function (5) is the so-called "integral
logarithm of x". Gauss's observations were communicated to Encke in 1849,
and first published in 1863; but they appear to have commenced as early
as 1791 when Gauss was fourteen years old. In the interval the relevance
of the function (5) was recognized independently by other writers [4] -
The precise degree of approximation claimed by Gauss and Legendre

for their empirical formulae outside the range of the tables used in



their construction is not made very explicit by either author, but we may
take it that they intended to imply at any rate the "asymptotic equiva-
lence" of m(x) and the approximating function £(x), that is to say
m/x)/£(x) tends to the limit 1 as x tends to infinity. The two theorems
which thus arise corresponding to the two forms of £(x) are easily shown
to be equivalent to one ancther and to the simpler relation

(6) m(x)/(x/log x) - 1l a8 x ~ »
The distinction between (4) and (5), and the value of B in (4) become
important if one ingquires more closely into the order of megnitude of
the "error"” m(x) - £(x). The following table indicates the accuracy of

Li(x), x/(log x -1), and x/log x as approximations of m(x) :

x n(x) Li(x) f(x/(10g x -1]1 | [x/10g x]
1,000 168 178 169 1hh
10,000 1,229 1,246 1,217 1,085
100,000 9,592 9,630 9,512 8,685
1,000,000 78,498 78,628 78,030 72,382
10,000,000 664,579 664,918 661,458 620, k20

The proposition (6), which is now known as the "prime number theorem,” is
the central theorem in the theory of the distribution of primes. The
problem of deciding its truth or falsehood engaged the attention of mathe-
maticians for about & hundred yesrs [4] .

The first demonstrated results are due to Tchebychef, who (1850),

among other things, proved that the inequalities

X

(1) %.m<n(x)<§.i3§—§

are valid for all sufficiently large values of x. He also showed that the
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quotient of the mumbers T(x) snd sy bhas the limit 1 for imcreasing X,
providing that the limit exists [6]. These results comstituted an ad-
vance of the first importance, but (as Tchebychef himself was well aware)
they failed to establish the essential point, namely, the existence of
1im m(x)/(x/log x). Although the numerical bounds cbtained by Tchebychef
were successively narrowed by later writers (particularly Sylvester), it
came to be recognized in due course that the methods employed by these
authors were not likely to lead to a finsl solution of the problem [4] .

Already Euler had begun applying the methods of the calculus to
number-theory problems; however, the Cermsn methematician G. F. B.
Riemann (1826-1866) is generally regarded as the real founder of ana-
lytic number theory. His personmal life was medest and umeventful until
his premature death from tuberculosis. According toc the wish of his
father, he was originally destined to become a minister; but his shyness
and lack of ability as a speaker made him abandon this plan in faver of
mathematical scholarship. Ee was unassuming to a fault; yet at present
he is recognized as having one of the mogt penetrating and original
mathematical minds of the nineteenth cemtury. In analytic number theory,
as well as in many other fields of mathematics;, his ideas e£till have a
profound influence [8]

The new ideas which were to supply the key to the solution of the
problem on the existenmce of the lim m(x)/(x/log x) as x = w were intro-
duced by Riemsnn in 1859 [9] in a memoir which has become famous, not
only for its bearing on the theory of primes; but aleo for its influence
on the development of the gemeral theory of functions. Euler's idemtity
had been used by Euler himself with a fixed value of e(e = 1), and by

Tchebychef with s as a real varisble. Riemann now introduced the idea



of treating s as a complex varisble and studying the series on the left
of (3) by the methods of the theory of amalytic functions. This series
converges only in a restricted portion of the plane of the complex vari-
able g, but defines by contlinuation a single-valued amalytic function
regular at all finite points except for a single pole at ==1. This
function is called the "zeta-function of Riemann,” after the notation
{(s) adopted by ite author [4],

Riemann, perceiving the fundamental importance of the zeta function
for the study of the distribution of primes, developed the elements of a
theory for this function. He also formulated six hypotheses which he
could not prove. Especially the position of the imsginary zeros of the
function appeared to be of great importance for the spplicatiomns to
prime number theory. According to Riemana's famous but still unproved
hypothesis, all the imaginary zeros have the real psrt o = 1/2, All the
other hypotheses of Riemsnn have been proved by later investigators [6],
The problems raised by Riemann's memoir inspired in due course the funda-
mental researches of Hadamard in the thecry of integral functions, the
results of which at last removed some of the obstacles which for more
than thirty years had barred the way to rigorcus proofs of Riemaun's
theorems. The proofs sketched by Riemann were completed (in essentials),
in part by Hadamard himself in 1893, and in part by Van Momgoldt in
189k [L].

The discoveries of Hadamard prepasred the way for rapld advances in
the theory of the distribution of primes. The prime number theorem was
proved in 1896 by Hadamard himself and by de la Vailée Poussin, inde-
pendently and almost simultanecusly. Of the two procfs Hadamard's is

the simpler, but de la Vallee Poussin (in ancther paper published in
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1899) studied in great detail the guestion of clossuess of approximetion.
His results prove conclusively (what had been foreshadowed by Tchebychef)
that, for all sufficiently large values of x, m(x) is represented more
accurately by Li(x) than by the function (4) (no metter what value is
assigned to the constant B), and that the most favorable value of B in
(4) is 1. This conflicts with Legendre's original suggestion 1.08366
for B, but this value (based on tables extending ounly sz far as x=400000)
had long been recognized as having little more than historical interest.

The theory can uow be presented in a greatly simplified form, and
de la Vallée Poussin's theorems can (if desired) be proved without re-
course to the theory of integral functions. This is due almost entirely
to the work of Landau. The results themselves underwent no substantial
change until 1921, when they were improved by Littlewood; but Littlewood's
refinements lie much deeper and the proofs involve very elaborate
analysis [4].

There are two important changes in "depth” of the prime number
theorem. First, the zeta function is no longer needed for cbtaining the
sharpest known error term in the prime number theorem; in fact, the ele-~
ments of the theory of functions of a complex varisble are now sufficient.
Second, the prime-number theorem as such (without any estimationm of the
error term) now falle under the scope of elementary methods. Titchmarsh
established the following result:

(8) mx) « Li(x) = pkx « e (x)
where w (x) = oflog x) 5/9 - €, it is valid for all sufficiently large
values of x; ¢ is a positive number, k and o are certain positive con-
stants, and ¢ denotes a function of x which varies between the limits -1

and 1. This formula, which was proved in 1938, expressses the best result



up to now for the function m(x). It is easily seen from the formula
that m(x) is approximated by Li(x) with great sccuracy. It was shown
by Littlewood that the left side of (8) assumes both positive and negative
values infinitely often [6] . Littlewood's theorem, however, is a pure
"existence theorem," and no numerical value of x for which m(x) > Li(x)
is known.

There was a sensation when an "elementary” proof of the prime number
theorem was given in 1948 by P. Erdos and Alte Selberg. Selberg proved
the fundamental relation

(9) T logp + T logploggqg = 2x logx + O(x),
psX pasx

and he and Erdos, independently, deduced the prime number theorem from
it. The resulting proof, while not simple, requires nothing more com-
plicated than the most elementary properties of the logarithmic function.
The so-called "elementary” proofs are discussed in detail in
chapter two and chapter three. The proofs of Erdos, Selberg, and simpli-
fications which have appeared since are also discussed in the final

chapter.



CHAPTER II
PRELIMINARY LEMMAS AND THEOREMS

As stated in the introduction, the basic intent of this chapter and
chapter three is to present, in detail, a discussion of the modern,
so-called "elementary," proofs of the prime number theorem. The major
contributions were those of Erdos and Selberg, but in presenting detailed
proofs in this and the next chapter it was found convenient to rely
heavily on the outline and discuseion in Nagell [6]. The ultimate goal
of this chapter is the proof of Selberg's basic formula and this asymp-
totic formula is used to deduce the prime number theorem in chapter
three. Definitions, lemmss, and other theorems are given as & means of
obtaining this objective.

m(x) is usually used to dencte the function which gives the number

of primes less than or egusl to the real number x. It may be written as
wx) = & 1

where p extends over all primes € x. Rather than consider the function
m(x), the function #(x), defined by the following equality, is studied
in relation to the prime number theorem:

Definition 2.1. #(x) = I log p, the sum extending over all
primes p S x. ne

Although the prime number theorem is usually stated as
lim X
X = X/108 X FrisEs

12
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it may be stated in other forms. In particular, it is equivalent to the

proposition
lim JSx! W s
X @ X

In chapter three the equivalence of the two propecsitions is proved,; and
the second relationship is established as a consequence of Selberg's
formula (Theorem 2.5),

Hx) log x + 2 é} Hx/p) log p - 2x log x = o(x log x).
px

The term o(x log x) represents any function of x with the property that

lim ogx log x)
X =@ X log x

= 0.
The concept of functions being o of some function or O of some function
is discussed later. The formula may also be stated in other forms. In

particular, it may be given as

AE) o B T #(x/p) logp - 2

> x log x *

o(1).

This is the form used in chapter three.

Each of the twelve lemmas snd each of the first four theorems of
this chapter contribute to the proof of Selberg's formula. Lemma 2,12
contributes directly by establishing relationships involving some of the
terms in the formula. Lemma 2.9 is also instrumental in the proof by

establishing that
&!d! x
z (1cg 3)°
d<x ¥ "
may be approximated by 2 log x. Each of the other lemmas and theorems

contributes indirectly by contributing directly to the proof of some
other lemma or theorem. For example, Theorem 2.2 establishes that, for

x €2, #(x)/x is bounded by two positive constants and this fact is
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used to-prove other lemmas.

Consider the series o/p] + [n/p®] + [n/p®] + - - -, where
the brackets have the same meaning as in Definition 1.2. For each term
in which p¥ > n for some k, thg value of the term is Zero. Thus one

may write
la/p] + /%] + (/] + ¢ ¢ - = 7 [n/pK]
k=1

where r is the highest integral exponent which satisfies the inequality
p¥ s n, This series is involved in the proof of Theorem 2.2. Therefore,

the following theorem is proved first.

Theorem 2.1, Let n be a natural number, and let p be s prime. Then

the exponent of the highest power of p which divides n! = 1.2:3--..n is
equal to
(1) ¥ o= [l + AF] + Rl + o

Proof: The series continues so long as the power of p is € n. If
hy denctes the number of terms in the sequence 1, 2, ..., n which are
divisible by p', the required exponent N is equal to by +hp +hy + eee

The natural numbers € n which are divisible by p¥ are
1ep¥, 20pY, °re, Ln/p¥] . ¥ .

Thus the term hy = [n/pV],and the theorem is proved.

The proof of the following theorem of Tchebychef can now be given:

Theorem 2.2, There exist two positive comstants; b and ¢, such
that for all x 2 2 |

(2) bx < #{x) < cx .

Proof:s Let n be an integer 2 2, If pM is the highest power of the

prime p which divides the binomial coefficient



3) (%) - &4

then, by Theorem 2.1,

xr .
m o= T ([é& -2 i])
=1 PV‘ p—‘-"v

where r is the highest integral exponent which satisfies the inequality

()‘*) pr £ 2o,
and thus
r = Lg%a‘sw&]
log p

The difference

2n , [ n
= - 2
has elther the value zero or the value 1, and therefore

(5) ms r.

Now

2n (n+l)(nt2) 2 2n _ e n+h
( n> = n! - ;[[ > a8

and on the other hand, by {5) and (&),

on e V(En) = :FI 2 s [ o*,

n. P<tn <2n

the products extending over all primes p < 2n. Therefore, by taking the

logarithm.
nlog2 < I rlegp = l%%§£§% log p.
p<2n pen 7 &P

For every p,

[log.En] < 08 2n
log logp ’



end for all p > /2n,

Thus onre @btqins
' Y P<2!.!.
1og Zn
nlog2< % . E‘%“ﬁ" * logp + L log
/e - ™
or
nlog2</2hleg2n + o(2n).
. Bo
d(en) >n log & - /Zn log 2n.
8 log 2n)®
The expression (Tog @jr ( %’;;@n) tends to zero as n = «,

Hence, fer all su.ffiai‘eﬂ'bly large.j;nﬁe_gem B,

(log 2n)?

bEOTREER  u

or .
n-22 '(_fé;g.ﬁ’:}”’ + (1log 2n)° .
Thus
2 ~2n + 1> 8n <%§§%‘1>3 ?

and by extracting square roots

ne1l>8%n Tﬁ'ﬁ‘l;g?n

It follows that

| ,én. log 2 - /2u log &n > .J;Qg_g
and o

B log 2 -v2n log 2n > % (n+ 1) log 2.
If 2n £ x < 2n + 2, one obtains

~of{x) =z o(2n) 2 Hn + 1) log 2> % x log 2

16
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for all sufficlently large x. ¥ence, for some N and all x 2 N the sbove
relation holds, Now for all x such that 25 x < § |

¥x) 2 log2>F log2 = .l_ﬁ_g____ow 2 %,

This proves the first inequality of Theorem 2.2 with b = }9%{3 .
<2n ’ . ;
The number \ n/ is clearly divisible by all primes p which-are > n
‘and < 2n. ‘-Si\nce; p<en Ik <&n
ILoee = Al »
p>n p>n

vhere p 1s prime and the produet, I k, extends over all compoeite numbers,

k, such that n < k = 2n and n! divides II k, it follows that

: ' 2n p<en
2 = 1+ = 3 (B> (E) 2 T o,
| 1=0 4 2 p>n

and, by taking logarithms, 2n log 2 > 9{2n) - o(n). Suppose that x is a
power of 2, that is, x = 2B where h is a positive integer. It
- follows that -’ h : ke
Hx) = H2B) = = ,(0(:9:1‘) - ofei-l ))
k=1
Thus - h : .
| MP) < 1og2 £ 2F < 2Pl 1g2 = 2x log 2.
k=1 ' ,
Further, if 20"l < x < 2B - them,  for sll z21,
ox) =9(28) < 221 1082 < Ux log 2,
which proves the second ineguality with ¢ = L log 2.

In proving the prime number theorsm end other preliminery lemmas
and theorems, one will also need the formile given by the following
theorem? | |

Theorem 2.3. If the sum 1s extended over all primes p < x, then

(6) v % L8P = logx+6 ,

DEX P

where ¢ 18 a function of x such that |9| is less then a positive



18

constant.

Proof: The proef requires the following relations

desm = 3 (D [F )
Og e “"‘ psn p EF- Dg p.?

where p extende over all primes < n and'the series comtinues so long as
the power of p is € n. By the definition of the bracket function, it

follows that

;;; ([%%j * [%%J + oo ) log p

’ 1
<SG F e - 3D

psn .

where the second series is infinite. Purther, one sees that
lo n
I UML) [P
psa psn

<%~l>logp = 0 > iz%gaam,

psn pShn

Consequently, one may cbserve that

log p #{n) 1 [Eﬂ .
E P "n <n§PlOSP<~

psn pen
L lognl < Z legp 4 z log p |
I P p(p=1)

p=n psn

Thus

Ligu - 3 Lge
psn T

%%«‘-‘%)) °

Acgording to Theorem 2.2, Q%El < ¢ where ¢ 1s & positive comstant and

< o (H20 S
: pEr

Tl

- a
E (1og p)/p(p-1) = ZP {1og m)/m(m-1) where the right side converges
psn : m=z

te a positive constant as n - «. Therefors,



N
(7) =legn! - I ig%mﬁ = a,
‘ psn P

where @ is a function of n such that |o| iz less than a positive constent.
For every integer h'= 2, logh~= &b logh - {h-1) 1og{h-1) -

(n-1) log(i+ H}:i“)’ where the last term is less than 1. Thus
i _

n h
T logh = I [h legh - (h-1) log(h-1) - (k1) leg (1¥gTT )]
h=2 =2

> nlegn - 1 (nl) .
Hence
n ‘
nlogn -n-1 < T legh < nlogn,
el
or
1 2 10gh 1
logpn =1l «> < F o= = =Jogn! < logn,
n pmp B n

Formula (6) is obtained by combining these inequalities with (7).

The concept of functicns being o of seme function or 0 of some
function is & useful one in this type of‘analyﬁihn History has dictated
a usage and terminclogy which Is not sonsistent with modern carefulness.
‘The definitions are given belew for the particular case nesded in this
paper with more care than customary and then tranglated into standard
usage. Let A be a subset of R (reals) such that for every y € R, there
exists an x € A such that x > y, and Ne be the cellection of sste of the
form -{k | X el and x> a for soma & € R} . If g is a non-zero

funetion defined on A to R, then ofg) and 0{g) are defived by

| 3 : " £
Definttion 2.2. ofg) = {f|3 Ve Mo, Ucaoms, UnZ= 0}

and

L]

P

p , fi{x i
Definition 2.3. 0(g) JUeN, k>0 3 %6 U, @;%‘ < ¥e}.




It should be observed that these definitions work just as well for
real or complex valued functions on any btopoleogieal space X and any
point p of X ecan be used if Ny is the collection of cpen sets containing
p. The following properties are slso valids

(8) For any real constant k,

(a) h e olg) implies kh e ofg)
" {(v) he oflg) implies kh e O(g).
(9) For any positive faaction h,
{(a) £ ¢ o(g) fmplies hf e ofhg)
(b) £ e 0{g) implies hf ¢ O(hg).:
(10) If 0<f < g in some U ¢ N, then
(a) ol£) < ofg)
(v} ofg) < -ofg).
If h e ofg), it is customary to use the following notation:
nWx) = o(g‘(:x)) .
A similer notation is used for any function h ¢ 0{g), that is,
nx) = 0(»5;(:&:)).
Thus x log x = o), cos x = ofYx), logx = oflx), &x = 0O(x),

ete. The prime number theorem could alsc be formlated as follows:

N m et LLE
(=) log x + 0’( log JL) *
Formula (€) mey alsc be written as

r 2282 = 10gx + 0(1),
psx P
oOr as

s 082 . log x + oflog x).
PSK
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In the (u,v) plans the area of {}u»v) ! ifsusy, 0svs l/u:}
is log'y. This ares can be approximated by ﬁgy 1/n. This relation is
expressed more precisely by formula (11) of Lemma 2.1. The area of
{j(u,v)l lsusy, 0<vs (log u)/ﬁ} is ¥{log y)°. This area can be
approximated by-ngy {log n)/n. Formuls (14) of Lemma 2.2 gives & more
preclise statement of this fact.

Lemme 2.1. There exists s positive absolube constant y such that

(11) ‘ T = logy+vy +0(1/fy),

nsy 2
where the sum extends over all positive integers n € y.
Proof: Let z be the least integer > y, that is, z = [y + 1}. Let

8, = 1/n - log(l + 1/n), then

Fl Zel '
(12) log 2 = % <log(n+l) - log n>=ﬁ T leg(l + 1/m}
n==]. =]
@=1 1 1 . Ze=l 1 Gl
= I (ﬁ - =+ log(l + 1/n)) = T = - T by
n=1 ’ n=l =1 i

Let £(x) = 1/8® < 1/x + log(l + 1/x), then £fx) = -1/¥¥(x + 1) <0

for all x > O and the derivative of 1/x - log{l + 1/x) 18 -1/+(x + 1)

< 0 for all x > 0. Thus &, and £f(n) are both decreasing functions with

zero as the limit so b6, > 0 and £{n) > 0. Now, f{n) = 1/2f - &y,

8y > 0, and #f(n) > 0 imply that the following imequality holds for all n:
(13) 0 < &, < ife .,

It follows from this that the infinite serles I 8, 18 convergent and

has a positive value yv. Further,

A
O
™
=
3}
LV
A8
TN
gp
Y
s
H
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From formula (12) and the preceding results, ons obtains the followings

Z"'l l Z-»l @ . <
I 3 = logz+ ¥ &, = logz+ ¥ én e vg én
n= = =l ERE,

log o + v + 6/2

where © is a function of z such that |o| is less than a positive constant.

Thus
T 1/m = logz+ vy + 0(1/z)
nsy
= log y +y+ leg 2 + 0{1/z).
But

|y(log 3% + <;(1/z)>

P-4 .J.:.'y + 10350(1/2)
y %

= 1+0,
so log z/y + 0(1/2) is O(1/y). This concludes the proof of formzla (11).

Lemma 2.2, There exists an absclute constent ¢ such that

(14) s ED o Hiegy)f + e+ o3BT,
ns 3 t : ¥y

where the sum extends over all posgitive integers n £ y.
Proof? Let z = [y + 1]. Clesarly

gl \
(log z)° = % ((('.'mg[n +1]P - (1o n,)B)
n=l

L]

and since log(n + 1) log n+ 1/n - 6,5 then

Tl
Hicg 2P = & = ((1@5 n+ i/n - 6ﬂ)3 - {1log n)a> =
o=l
1 2=l 2 log n 25 1 2 2\
5 T ((lsg a)® +2 =20 .28 logn - B+-=+8° - (leg n)’> :
o) o) a 0o n
n=1 :
Z"‘l 10 n k4 'al . )
= T ‘“%”ﬁ - % (8, leg n ¥ By/u - e - 387 .
n=1 =l

By mesns of (13) one may cbserve that the latter sum on the right-hand
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side tends to a finite limit ¢ when z -+ . Further,

-} -]
T (énlogn+ by/mn -1/2 -346.2) < T (logn)/n®
n=2 B=Z S

log x

< (log z)/2 + J‘: dx = (log z)/?® + 1/z + (log z)/z.

Thus one may conclude that
2-1 log n wr 2 log 2z
z r— =3 (leg z)* + 0 =3—) + ¢,
=1

where ¢ ig an absolute constant. This formula gives (14%) in & menmper

similar to that in Lemma 2.1.

A function f(n) defined for all matural numbers n is called an '

arithmetical function.

Definition 2.4. The arithmetical functlior which glves the nﬁmher
of poéttive divisors of n is denoted by T(n).
Lemma 2.3, If the sum is extended over all positive lategers
n £y, then
2 U2 - gyl +ayleey + ¥ - 2 4 o 128X),
nsy vy
where y and ¢ are the same absolute constents as in Lemmas 2.1 and 2.2,
Proof': Since T(n) is equal to-the number of ordered pairs of

: ‘ . 1 T\Wn
natural numbers a and b such that ab = n, then X 75 = ‘%‘l $
‘ n

» _ ab=
and _
'r,.n" l=ﬂ 1
- 252 %

where the sum on the right-hand side extends over all natural numbers
& and b such thet ab £ y. Now let 8, denote the part of this sum In
vhich & €y, let S; dencte the pert in which b €/y, and & denote the

part in which a < /y and b€/ y. Then the value of the required sum is



Tt is plain

Hence

5

ek

By Lemmas 2.1 and 2.2,

1 1 _ 1/ o o
,agy & bsyz/ab a% a ,(105 y/a + v+ of /Y)>
2 /% ’(103 y -~ loga+ vy +'(‘)(a'/y)> |
as/y

ey = 3 - > E2iy 3 Zioy) I
as/y as/y ey as/y

(log y +v) (lo;g Sy +y + 0(1//:v')> - H1og /¥)?
-c + 0(39%;/1>-+v0(.1//y)
(1og y * Y) (%‘ logy +y + 0(1//y)) - 1/8 (log ¥)?

-t .0(%-“’73-3{1) + (1) |

. 3/‘8' (log y»R + 3/2‘ v log If‘" v " ¢+ 0 <107gy—> .

that § = 8 . Further, by Lemmas 2,1 and 2.2, -

=

( z ‘-J:-)a' (logfy +y o+ G(l/‘/y))2

as/y

(Frogy+vy+ O(l/fy))a
= 1 (108 f)z +ylogy +v +0(}9%;I) .

1 .
T o= = G ts -5
absy &b

3/ (log y)® +3y logy + 2 ¥ - & (log y)®

- 2¢ = (log ¥) -Ya+0(},.‘2.}5.§¥)

2 (logyP +2y logy +¥ -2c+0(.1£%.r1) ,

which proves Lemma 32
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Ancther important arithmetical function is the Mobius function

w(n), defined as follows:

Definition 2.5. w(l) = 1; p(n) = 0, if o is divisible by the

square of any prime; Ww{p, P ++- py) = (-1)F, if p, n, +--, and Pr
are different primes.

Thus w(2) = w(3) = w(7) = w(il) = -1, u(d) = w(8) =0,
w(6) = w(10) = (i) = 1, ete.

Definition 2.6. An integer is called a square-free number if it is

not divisible by any square > 1.

Theorem 2.4, For every natural number n > 1,

5 = 3 w{d}) = O
n dlm l-"( ) 5

where the sum extends over all positive divisors 4 of n.

Proof: One needs only to extend the sum over all positive square-
free divisors 4 of . The theorem is proved by multiplicative induction.
It is true vhen n is any prime p, simce 85, = w(1l) + ulp) = o0.
Suppose that it is true for n = m. Thern it can be shown that 1% is slso
true for n = mp, where p is any prime. If m is divisible by p, it is
easlly seen that smp containg the same terms as S,. Siunce, by hypo-
thesis, S; = O, then Smp = 0. If mis not divisible by p, then

Sup = > (ul8) +u(pd)) ,
6lm
the sum being extended over all positive squara-free divismrs 5 of m.
Since p(pd) = - u(8), it follows that Spp = C

Definition 2.7. For any imteger h = O, the function ¢, (n) is de-

fined by the equation

o () = fiz w(@)(10e Q) ,

din
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where the‘sum'extenas o&er &ll positive divisors d of the natural number
n and (log d)o means the number 1. |

Lemms 2.4%. If the nétural‘nnmber n is divisible by more than h
&ifferen£ primes, then

pp(n) = O.

Proof: This is true for h = 0,according to Theorem 2.4, and so it can
be assumed that h 2 1. One can use mathematical induction and suppose
that Lemma 2.4 is true for all the functions 9p{n) when k < h-1., If
n = f*m where @ 2 1, and where the integer m is not divisible by the
prime p, then for eachid that divides n, one may write d = §; d, where

d; divides m and & divides p. Thus one obtains

op(n) = = u(a)log d)® = T £ u(dd) (log )"

= ¢t wlad)(lesq +log i)k,
8 o

where thé outer sum on the right-hand side extends over all positive

diviseraida of m and the inner sum cover all p@éitive divisors 4 of p.

Then o
on(n) = = (B £ w@a)iogd)® =  u(e)(log &)Be -
§=0 d1 dﬂ
= 5 (D) gplm) Bpoe () -
g8=0 s. 817 Th-s

S8ince n has more then h different prime factors, m has more than h-l
different prime factors. Therefore, by hypothesis pg(m) = 0 for
8 = 0, 1, °+ * ¢, and h-l. The remaining term 'Qh(“0'¢b(Pa) is
 alse equal to zero;vsince its last factor is zero. Thus the lemma is

proved,



Lemms 2f5. For any positive number x, let
2
Ma) = u(a) - (1og§)
and v

fln) = T Aa),
d|n

wheré the sum extends over all positive divisors d of the positive
integer n. Then

£(1) = (log ) ;

£(p%) = ~(1log p)® + 2(1cg x){log p)

when p is a prime and o au integer = 1;

£(p?P) = 2(1og p){log q)
when p and q asre different primes, and @ and B are integers 2 1
f(n) = 0 if n is divisible by three or more different primes.

‘Proof: One may write A(d) in the following way:
w(d) ((1og x? - 2 log x log 4 + (log d)a>

= (log x)a p(d) - 2 log x - u(d) log a # pld){log a)°.
Therefore, | "
fln) = (logx)® 3 p(d) -21logx T pd) legda+ = pl(d)(log a)

d|n djn ap ,
= (log x)° ¢@(ﬁ) - Qvlgg x ¢ (n) +q@(n).
Thus the proof follows from the definitions and Lemma 2.U (for h = 0, 1,
.and 2). |
Lemma 2.6, For every natural number m,

e
n

=1

= 1.

Proof: It follows from Theorem 2.4 that



m
1l = I z w(d) )
=1l dfn
and
m m
z Z p(d) = T kpu(r),
=1 dln r=1 '

where k,. is the number of multiples of r which are < m. However,

kp = [m/r] for 1 S r <m Thus,
m
v w(w) [m/n]
b=l

Consequently,

m
m I p:.(n)/n..-]_’ =

?:1 uw(n)m/n - ;Jn p(n) [m/n]
n=

n=1 =l =1
= n_z_l w(n) (2 - n_l( - [%]) < mel .
Thus
m ‘E.‘n p(n)/a| £ 14+m-1 = m,
n=]1

which proves the lemma.

Lemms 2.7. For every positive resl number x,
 w(k)/k legx/x = o(1),
ksx

where the sum extends over all positive integers k & x.

Proof': 'A-pplying Lemme 2.1, one finds that

T E'—'g---z-lt::giz = 7 &4(-‘1( T 1/n ‘-y + @ = )

ksx ksx nsx/k

vwhere |01| is less than & positive constant ¢ For km = m, n

ax = 5 function of k, by = bp/x = & function of n, then

1ot

28

= m/k,,
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a b ax b &k bp/
r T g 2B =3 E2R . oy oW
k€x nsx/k k<x msx
nsx/k kr=m

msx dlm
80
ik Lk
2 89( 21k -y o+ oaf)
kSx nsx/k
becomes

T 1/m oz p@ - vye opki/e + 2 pk)e/x ,
msx dfm ksx kSx

where d runs through all positive divisors of m. By Theorem 2.4, the
first sum has the value 1; and by Lemma 2.6, the second sum has an
absolute value < vy. The absolute value of the third sum is at nost

¢/x T1 £ e¢.
k=x

This gives the desired results.
Lemma 2.8. For every natural number n,
z w(a) m(n/a) = 1,
an
where the sum extends over sall positive divisors 4 of n.
Proof: Since T(n/k) = g 1, the sum extending over all positive
divisors d of n/k,lthen
T k) m(n/x) = £ k) =T 1 = T = w(q),
k k dlx d& 4
vwhere the inner sum on the right-hand slde extends over all positive
divisors ¢ of n/d. By Theorem 2.4, this inner sum is equal fo zero when

d # n and equal to 1 when d = n, Thus the right-hand side is = 1.
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Lemma 2.9. For every positive real number x,
(15) = w(d)/a (log x/a)® = 2 legx + 0(1),
d=x -
where the sum extends over all positive in'begers d s x.
Proof: Applying Lemma 2.3 for y = x/d, ome may write the left-hand
side of formula (15) in the forms:.

2 z—&éﬂ( Zm-2y105%9f+23>

dsx ndsx
. 1
+ ¥ M( o(d/x)? log %)
where |9| is less than a positive constant ¢; . For all sufficlently
large x the. absglu‘be value of the last sum is smaller than
1 1 ' :
2 W L 7 -

asx X asx

1 . ! , I ‘
= x4 O(I Z 3/4 o'iz) = x *0o{x*) = o0o1).
v 1 ' :
Further, by letting k = nd, one finds that
2 % ‘iéﬂ > 1&9-)‘ = 2 3§ 1k 3xn w(a) t(k/a),
dsx k<x k<x d|k
where the inner sum on the right-hand side extends over all positive
divisors d of k. Hence, by means of Lemmss 2.8 and 2.1,
2 v E.g&l. T I%EL = 21logx + 0(1).
asx, o ksx
Finally, applying Lemmas 2.7 and 2.6, one sees that the left-hend side
of formula (15) is equal to

2 log x + 0(1).

Thus Lemma 2.9 is proved.
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Lemma 2.10. If the sum is extended over all primes p < x, then

(16) % (log p) (log x/p) = ofx log x).
psx

Proof: If y = x/(log x), the sum on the left-hand side is equal to

N s
£ (log p) (log x/p) + pzx (1og p) (1og x/p)
psy >y

< logx ¥ logp + (loglogx) T logp
- : Py o psx

- = log x ¥(x/log x) + (log log x) &(x).
Applying Theorem 2.2, one sees that this function has the order of
magnitude
O(x log log x),
which is somewhat better than‘(lé).

In the following lemms the expression "the sum extends over all
primé powers p¥ € x, where ¢ is a natursl number" occurs. This mesns
that there 1s a term in the sum for each power p* of a prime p for which
® < x, For example, if op is the greétest integer such that p*P < x,

then I logp 1is the same as E op(log p), or the same as
pa’ix PSX

Tlogp + T logp + T logp + ¢+ + T logp,
pSX oS p°sx pEsx

where k is the greatest integer such that 2K < x, It follows that
koo
T logp = T o(Vx).
osx r=l
Lemmea 2.11; If the sum is extended over all prime powers (® <€ x,
where o 1s e natural number, then

(17) T logp = O(x).
prsx
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Proof: The sum on the left-hand side is equal to
Hx) + ovx) + HVx) + .o+ (¥,

where k 1s the greatest integer such that 2k < x, This sum is at most
equal to

¥(x) +  k H/x).
_From Theorem 2.2 and the fact tha'l;\g k < (log %)/log 2, the order of

magnitude of ¥(x) + Xk #(/x) is
o(x) + %gg{g ovx) = o(x).
Lemma 2.12 . If £(n) is the function defined in Lemms 2.5, then
T fn) = (log x)x) +2L Hx/p) logp + ofx log x),

nsx p</x
where the sum on the left-hand side extends over all pesltive integers
n s x, and where the sum on the right-hanrd side extends over all primes
psvVx .

Proof: It follows from Lemma 2.5 that

(18) T #(a) = (logx® + = (2(108x)(108 ) - (108 0)°)
nax

+ 2% (log p)(log a).

Here the first sum on the right-hand side extends over all prime powers

PQ'

< x, « being a natural number; the second sum on the right-hand side
extends over all primes powers p¥ and q_B such that p¥ o s x and

- p < q, vhere @ and P are natural numbers.

In the first sum on the right-hand side, the terms with « = 2 are

eonsidered first. Let g(x) denote the number of prime powers p¥ < x
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with ¢ 2 2, then the centribution of these terms to the sum is at most

equal to
2(log x)® g(x) = 2{log x® (/x + 3/'3;‘ + eee + Kx),

where k is the greatest integer such that 2K s x. Thus the contribution
does not exceed

2(1log x)'z kv £ 2(log x)? %ﬁé&g‘fx = o{x log x) .

Consider next the terms with o = 1 in the first sum on the right-hand

side, The contributlion of these terms is equal to

2 (2(108 x)(108 ) - (108 2)°)

pPSx

= 3 (log x log p + (log p){leg x - log p))
psx

H

(log x) T logp + I (log p){log x/p)
pPSX psxX

= (log x) #{x) + ofx log x),
according to Lemms 2.10. Thus the first sum onm the right-hend side in
formula (18) is equal to
(19) (108 x) (%) + ofx log x).
Finally, consider the second sum on the right-hand side. Applying
Lemma 2.11 for x/ gP iunstead of for x, then one sees that the
contribution of the terms with B =2 2 and o = 1 has the order of
magnitude
T (log q) 0(x/gf) = 0(x) T (log @)/eP = o(x) ;

for the infinite series, g (1log q) /qB , extending over.all primes q is
o :

convergent for B 2 2. Thus the second sum on the right-hand side is
equal to

(20) 2% (log p)(log q) + O(x),



where the sum extends over all primes p and g, such that pg < x and

P < @. The latter sum is equal %o

Z (108 p)(logq) - I (log p)?
pasx p/x

= I (log p)(logg) + I (log p)(log q)
ps/x av/x
Pasx pasx

« T (log p){logg) - £ {leg p)®.

p</x p¥/x
a/x |
According to Theorem 2.2, the last two sums have.gf*ﬁméﬁ-fhe order of
magnitude
(svm) = o)
and

(1o vVx) o/x) = O(/x logvk)
fesPectively.jHence one concludes that expressiocn (20) is equal to

. :7::: (1ogp) #(x/p) + q &M (log @) o(x/p) + o(x)

= 2 I (log p)-o{(x/p) + ofx) .
pS/x

Introducing expressiong {19) apd (20) into formula (18), one finally
obtains

£ f{n) = (logx)® + (log x) o(x) +
nsx

olxlogx) + 2 % (logp) #x/p) + 0Ofx)
) pVx

= o{x log x) + (log x) é(x) + ofx log x:) +

2 T (log p) ®{xfp) + o(x.los x)
px

= (log x)3(x) + 2 I (log p) Hx/p) + of(x log x).
ps/x

34
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This comcludes the proof of Lemme 2.12.
The proof of Selberg's basic formula can pnow be given.
Thecrem 2.5. If the sum is extended over all primes p S /x, then
Hx)(logx) + 2 T H(x/p)logp) - 2xlogx = ofx log x).
‘ pVx
Proof: Accordlng to Lemma 2.12, the left-hand side is egusl to
z £{n) - &x legx + ofx log x).
nsx
According to the defimition of the funetion £(n),
T #{n) = T T A4a),
nsx nsx djn
where the luner sum extends over all positive divisors & of n. Hence
T f{n) = = AMa)lzx/a]l = £ Aa}x/d ed),
nsx dsx dsx

where 0 €ed<1l. If z=x/(log x)?, then

dsx
M| s 3 (logx/a = 3 (logx/a® + T (logx/a)®
s z(log x)® + = (195 “;("’*i.;&‘l@xg x) ))
Z

g , Usx 2
= z{log x)® + £ (8 log log x)
a>z

< z{log x)® + lx (log log %)
= O{x) + © (:x(l@g log x)a ) = ofx log x).
Hence

T flu) = £ Aad)=x/a + ofx log x)
nsx asx,

= ¥ xp(d)/d (log x/a)® + ofx log x),
dsx ‘



and, by Lemma 2.9,

v f{n) = 2xlegx + oflx log x).
nsx .

This completes the proof of Selberg’s basic formula.

36



CHAFTER III
THE PRIME NUMBER THEOREM

The prime number theorem is usually stated as

lim L ES

X = X/log X =

1t may also be stated in other forms. Im particular, it is equivalent

to the proposition

1im ‘égxg a1

X —o X

<

In this chapter the egquivalence of the twe propesitions above will be

proved, and then the second relationship will bs established.
. modified in parts, the proofs given are from Nagell [6] .

Theorem 3.1. The prime number theorem

% = x/log x 1

is equivalent to the theorem

i—.l
@

Un 9lx) .
X = X

Proof: By definitiom,
Hx) = T logop,

, “PSE
and
mx) = T 1.
psx
8o

HMHx) < nlx) log x .

37

Although
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If 3<y s x, then

m(x) -y s nl(x) - nly) = vy 1s yx iogp
y<psx y<psx 1087

1 < : Hx) - 9(y) Hx)
= " {Z logp- X log ) = =
log y pSx psy / log ¥ log vy

Hence,

Hx) sm(x) logx = y log: x + leg x (n(x) - y)

<y log x + 208 % (%) .
log vy

1
1 = Tog log x » one ocbtains

@sﬂgx)lo%z_s .1y logxgylogx _ 1
X M x) bleg %

= Y log x 4+ 1-8
HHx) §

by choosing y = %8, where §

o

Since, according to Theorem 2.2, #(x) > bx, then

Osngzj.ogjx -1 < xﬁlog,x,*_ 1 .
Hx bx log log %=1

Here the right-hand side tends to zerc for incressing x; consequently,

m  m(x)leg x 1
X %o M x ?
which proves the theorem.

The procf of the prime nuwber theorem will now be given, stated in

the fellowing form:

(l) ' Lim ‘l}gx) = 1,

X = X

It fellows from Theorem Z.2 that for increasing x the guotient

#(2)/x has a positive lower limit a snd an upper limit A;then 0 < a < A,
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Thus to prove (1), one needs to show that

(2) a=a=1.

The proof is besed on Selberg's formula which was proved in the pre-
éeding chapter. The formuls is used in the forms _

(3)  #(x)/x+2/(xlogx) T &(x/p) logp -2 = of1),

’ o ps/x i '

whefe the‘k sum extends over all 'p;“iﬁxea p$€vV%x. The following formuj_a ,’
which was ﬁroved in Chapter II, is also useful in the praofx

(&) T (log p)/p = log x +0(1) ,
pex |

where' the -sum extends over ail primes p £ x.
‘Lemma 3.1. If 1lim sup &{x)/x ~= A and if lim inf x)/x = s,

; X = ‘ X o

then

(5) | a+A = 2,

Proofs It is possible to let x tend to infinity in such a way that

HHx)/x tenc}é to A. Let ¢ be & given positive number; then

R

Hx/p) > (8 - ¢€) x/p

for every x sufficiently large and for every prime p s /%, and, therefore,

2/(x logx) T H{x/p) log p = 2/(:}::103 x) 2“ (8-¢)(x/p) 1og p
- p¥/x : px '
= 2(a-e)/logx, I (log P/p. .
p</x fp'

- It follows from (4) that the“rightmhand side of this inequality tends to
B =6 whe;i x =w, If formuls (3) is applied, one obtains 2 A z & = € .
The inequélity holds for evéry' positive e; eénsequenﬂy,

(6) A+asg2

On the other han&, it is pussible to let x tend to infinity in such a

way that o(x) tends to a. If ¢ is a given pdsitive nunber, then



- Hx/p) < (& + e)(x/p)
for every x suffieicn‘bly ‘large» and for every prime p < /x, and, 'therefore,

2/(x log x) £ x/p)log p. S 2/(x log x) T (A + e)(x/p) logp.
- pYx - p/x |

= 2(A+¢)/logx T (log p)/p.
pYV/x
It follows from (4) that the right-hand side of this inequality tends to
: A+ e when x =0, If formula (3) is applied, then ene'ebta‘ins | |
2 ~asA + e, The inequglj.'t;y holds for every poesitive ¢; therefozfe,'
At+aza.

This inequality .‘together‘ {ri'bh (6) leads to (5).

In the following proof, let the var*ia-blg X tené. %o infinity ir; such
& mammer that #(x)/x tends to A. |
Lemma 3.é. If ' l is a given number > a, and if the sum,

| 8(x) = %' (g p)fp,

extends. ow;'er all primes p < x and such that 9(x/p) 2 Ax/p, then the
quotient 8S(x)/(log x) tends to zero for x =, ‘

 Proof: Bince #x/p) = L log q, then
pasx ‘

T ox/p) logp = T logp £ logg =
psx ‘ psx pPasx

T logp T loggqg + L logg T logp =~ Z logp I logg
ps/x PYSX a¥/x pgsx . /X qs/x

T | o(x/p) log ¢ - ( T log ‘P)ﬂ.

= T ox/p) logp +
. qs/x pe/x

ps/x
2 3 ox/e) o8 (st/))"
/s x/p) log p - x))

‘Since, by Theorem 2.2 the last term has the order O(x), then Selberg's
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formula (3) may be written as: )

(1) #(x)/x + 1/(x1logx) T &(x/p) logp - 2 = ofl).

20 S

Let ¢ be a positive number. For eyery x/p exceeding a certain
number u which depends on ¢, then &{(x/p) > (a - ¢)(x/p). There exists
a positive number b depending on u and go on € such that

(8) x/p) > (a - e){x/p) - b
for all the primes p such that Xfp'S W 'Thus the latter inequality
heolds for every p s .

If the sum I' extends over all primes p S x such that

Hx/p) = \x/p, then
(9) =" Hx/p) logp 2 rx ' (log p)/p >

(A =a) x2* (log p)/p + (& - ¢} xZ* (log p)/p.
If the sum I" extends over all primes p < x such that #(x/p) < A\x/p,
" then by (8),
(10) =" ox/p) logp > (a -¢) xI" (logp)/p - b 3(x)
From (9) and {10) one mey deduce that

v #(x/p) logp = ' 6(x/p) log p + =" &(x/p) logp >
psx

(& =e)x © (logp)/p + (A -a)xZ! {log p)/p - bo(x).
psx
Substituting from this result into formula (7), one obtains for x tending

to infinity in such & msnner that &{x)/x tends to A,

A+ta ~c¢ *.(k - &) lim sup £t (log p)/p < 2,
¥ =0 leg x

Hence, recalling a + A = 2,
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1im sup Zflogp)fp < _€
X = log x A-8

Since A - & > o, and since € can be chosen arbitrarily small, this gives

the desired lemma.

Lemma 3.3, If u is a given positive number-< A; and if the sum,

CRRIC SICT

exbends over all the primes p amd g which satisfy the following

conditions: p £/, q s/(x/p), snd d(s/pa) = ux/pd, then the

Bix)
{1og x1°

Proof: Replacing x by x/p in Selberg's formulae one obbains

- quotient
tends to zero for x = w,

Hx/fp) = 2x/p + olx/p) - 2/(log x/p) E__ #{x/pq) leg q.
as/%/p

If this expression for &#{x/p) i introduced into the same formula,

then one obtains
Mx) = 28 + ofx) -

2% . 2
Toe® L logp (~I=;~ + olx/p) - T E  #{(x/pq) log q)

/% qs/%/p

= ax 108 B (o 4 Af ) m&;Zn
2x + ofx) - YT xpﬁ?k > <h + of1) + T x

where

Vv = £ 8(x log p lo
P4 ( /pQ) log x/p ’

the sum extending over all primes p and ¢ such that p < /%, q < Jx?p,

Since, by formula (U4},
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T logp/p = % logx + 0(1),
p</%
it follows that

Hx) = W/logx-+ ofx).

In every term of the sumV, p $/x and g s/%X/p, and, therefore,

B X i L1
pa = p2 (pf)2 s x¥x2 = x3/h. Thus, if 8 is any positive number,
then

Hx/pa) < (A+ 8)(x/pa)

for x sufficiently large.

Let

Vv = 3" +-3" ,

where the first sum extends over all primes p and g such that p s /x,
qa s/x/p, and d(x/pg) < ux/pa, and the second sum extends over all
primes p and q such that p </x, q s/%/p, snd &#(x/pa) > px/pq.
Then |

. 1 log p log q
S ' : +
v wx I Tog x/p P q

1 log p log_ q
A + [} .
( §)x = Tog */p P g '’

where the sums are taken as above. Further,

V £ (A+8)xW - (A+8 -p)xz 1 logp logg

Tog x/p p q
where
W= T 1 log p log g
p,q 108 X/p P q

1 10§ P T log g ,

5
ps/x OB X® TP os/xfp 4

the sums extending over all primes p =< /x and over all primes q = /x/p.



Applying formula (4), one obtains

W = 3 .].-.0_%’_.9. Tc;él;cﬁ (%— log x/p + 0(1)>
P X ’ R

= s}}_lﬁ%._a (—;—+ o(l)> = £ log x + ollog x).
pS/x -

Hence o(x) =

Tog % log x/p P

|

(A +8)x - =t O I B 1°gp-i9s§1--°é+sx,
where B tends to ze»rdl for x-=- o, ¥From this; one deduces that

. (A + ¢ 1 lo log d(x
v T ~p)xr 108D 10849 < A+ - (x) + g
(log x)° , p q X ’

where the sum is the same as in Lemma 3.3. Hence, for x tending to

infinity inm such a manner that 9(x)/x tends to 4,

1im sup 1 5 log log g é .
x = (log x)° ) a - Amm)

Since A - p >0, and since § is an arbitrary posltive nﬁmbef, this

proves the lemms.

Lk

By *means' of Lemmas 3.1, 3.2, and 3.3, one may now prove the follow-

ing relstion:

(1) | a=A4=1
Suppose that A > &, then there exists & positive number ¢ > 1 such
that A > 0 a -and & positive number § such that

(12) - Azoa + 8(o+2),

Further, denote by N a matural number.

Consider the sum

8 = Z'Q 1052 l@gg ):G 1o§'r
! P a r
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where Z‘g extends over all the primes p and g such that

ps/x, as/%/p, pa= N, #x/pq) = (& -8) x/pq,

and where I, extends over all the primes r such that
| pg/c < r < O pq.
If there are no primes r, the sum 3, is = 0.

For every term in the sum 35, then

r § Opg = O‘p‘%‘ (p® )% < O‘x"}x% = GXS/}"' £ x
when x is sufficiently large. Thev following inequality will be proved
for the same terms:
(13) Hx/r) > (a+86) x/r,
when x is sufficiently large. This inmequality is true for all r-% pg,
since |
Hx/r) = #x/pg) 2 (A -8) x/pg > (A -8) x/cr

2 (oa + o8) xfor = (a+ 8) x/r

in virtue of (12).
Consider now the terms with r > pg. For these terms, x/r <
x/pq % ox/r. If in Selberg's formule,
(logy) 8(y) + 2 T oy/p) logp = 2y logy + ofy logy),
' <y
one first replaces y by~ x/py and then by'x/r, one obtains on

subtrac'bioﬁ
(log x/pa)¥(x/pa) - (log x/¥) &(x/r) =

2(/pd) (108 %/pa) - (2 x/r){log x/r) + of % log x/r).
or {X/r) =

log x/pq x _x log x/pq - log x/r
log x/r Hx/pa) - 2 (Pq r) - 2x/pa log x/T + olx/r).
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low
2x/pq 108 %/pg - log x/r = 2x/pq log r/pg
log x/r © log x/r
£ 20x ‘log o =
/r m o(x/r) ,
and
log x
log x%r = L
Thus

Hxfr) > (& -8)(x/pa) - 2(x/pa - x/r) + olx/r)
‘ = exfr - (2 "A"“{’)(J‘C/PQ)’ + o(x/r) ;
end, since a+A = 28nd Aza0 + o + 2,
Ha/r) > (a+A)xfe) - (a+6)w/p2) + ofx/r)
> (a+ a0+ 08 + 28) x/r - (a+$) oxfr + ofx/r)
= (a+28) x/r + olx/r).

If x is sufficlently large, then
Nz/r) > (a+8)(x/r) .
This proves inequality (13) for all r.

Consegquently,
s £ ¥ lﬁg r 2‘3 ng B l®q§ g R

where the first sum extends over all primes r < x and such thet
#(x/r) = (a+ 8)(x/r), and where the sum X° extends over all primes
p and g such that

p < /%, ¢ £ /X/p, rfc S pg < or.



Thus -

_Zelogp logd < ¢ £ logp Z logaq
B q r o ops/x asor/p.

o/r I (logp) #or/p) < e T (logp)/p < clogx,
ps/x pS/X
vhere ¢; and ¢, are positive constants. Consequently,

S £ ¢ log xX (log r)/r ,
r

vhere the sum extends over all the primes r < x and such that

Hx/r) = (a+ 8)(x/r). By Lemma 3.2 one then obtains

(14) 8 = B (logx)®,

where B, tends to zero for x — @,

Now consider the sum
T = ¥ 108 p log g
P q

extending over all primes p and g such that

p < V%, asV/x/p, g = N

Thén .
1
p</x \ y asx®
T z( z&eg.&)(qﬁmﬁg_g) .

Hence by formula (4)
T 2 (4108 x - & 108/8 + of1)) ( 4 log x - ¥ Loa/N + o(1))

Therefore,
(15) T > o (log x)?,

where ¢; 1s a positive constant.

14

b7



48

Let
T o= 2‘2 log p logq 4 5 log p log g y
p q p q

where the latter sum extends over all the primes p and q satisfying the

conditions

P £ V%, ¢ S /x/p, pg = N, &(x/pg) < (A - 8)(x/pq).

This latter sum, in virtue of Lemms 3.3., is equal to B,{log x)3

where B, tends to zereo for x - =. Hence,
T2 ng_,.v. -l-‘%-ﬂ = T'-8 (log x)? ,
and in virtue of inequality (15),
(16). 5 E’-g-ﬁ --1-9§-£ > % o5 (log x)?

for x sufficient;y large.

If in the sum %, one .-censiders for a fixed value of x, the primes
p and q shich have the property that the sum I, "J:E%"E takes 1its minimum
velue i, p depends on x only,

Then by (16)
8 2 p 3 E—%—*B’ lg%‘g‘ > 4u o (10g x)°.

If one compares this result with inequality (14), one obtains for x = ®
that ‘ -
b= 5 i’?g—?- - 0.
Consequently, to every positive number ¢ and to every natural number N
;chere correaponds & nunber t=pg 2 N such that

rsot

Et}-gg-_l-‘-< €,
ro>



k9

the sum extending over all primes r such that r > t/o and r < ot.

Hence
I logr < e ot,
ro>t
and
(17 #lot) - #(t/o) < ¢ ot.

If N, and therefore also t, are sufficlently large, then
#ot) > (a -€) ot

and |
#t/g) < (A + ¢)(t/o) .

Hence, 1t follows from (17) that '

(a -~ €)o - é._.;_..?. < €0 .

This inequallty holds for every positive number € so that one obtalns
80® - A S 0. On the other hand, ac < A and a >0,
Thus, every number ¢-< A/a has the property that o® SA/a, If o

tends to A/a, then

2
(é) s &
& &
or
A
"a' < l °

Bince a <A and a+ A =2, it follows that

a8 = A = ],



CHAPIER 1V
REMARKS ON THE “ELEMENTARY" PROOFS

The "elementary” proofs of the prime number theorem emphasize
orcee agaln man's enduring progress in solving problems that seem to have
no solution. The telephone, the radio, the television, the airplane,
ete. are some of the results of msn's success in solving other problems
which seemed impossible. As late as 1932, Ingham [4], in discussing the
analytic proofs, made the following statement: "The solution just out-
lined mey be held te be unsatisfactory in that it introduces ideas very
remote from the original problem, and it is natural to ask for & proof of
the prime number theorsm not depending on the theory of functions of a
complex variable. To this we mugt reply that at present no such proof
is known. We can indesd go further and say that it seems unlikely that
& gepulnely 'real varisble' proof will be discovered, at any rate, so
long a8 the theory is founded on Euler's idemtity." Thus, it is all the
more remarkable that in 1o48, Selberg and Erdos were able to glve
"alementary” proofs of the prime nunber theorem.

The baslc new thing in the "elementary" proof of the prime number
theorenm 18 Selberg's asymptotie formuls (Chapter II). ‘From this formuls
avolve several ways to deduce the prime number theorem. The proofs
glven in Chapter IT and Chapter ITI were based on the outline and dis-
cupsions of Nagell. The first proof of Selberg dates from 1948,

Negellts proof 1s related to it; the proof followed an exposition given

50
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by ven der Carput and baged on notes of some lectures held by Erdos in
1948 [6].

In his published psper, Selberg presents anobther proof. He se~
lected the methed of proot becsuse it svolded the concept of lower and
upper limits and thus seemed to be the most elementsry way. In his intre
fuetion be gave & sketeh of his first proef in which he made use of the
foll@wing result by P. Erdos, thet for an arbitrery positive fixed
pumber 6, thers exist & XK(8) > 0 wand sn Xo = Xe(8) such that for X>Xo,
thers are more than K(6) x/leog x primes im the imbterval from x to x + 6.
Selberg states that the provt of Frdos wes obiained without knowledge of
his work, except that 1t is besed ¢n his (Selberg's) formuls; and aftef
he {Selberg) had the other parts of the yr@@f,' He also states that Erdos!
proof contains ideas related to his (Bslberg’s) proof, at whicﬁ ideas he
(Erdos) had srrived independemtly [10].

In the inbroducticn of his paper, Erdos [2] gives & very interesting
ascount of the prime puombaer theorem. It gives ipeight inte the methods
used by other men fm this field. The ewchenge of ildeas, as 1llustrated
in his paper; is benefieiel In the solving of many problems.
| In the second part of his paper, Selberg proves the basle formula,
After proving it, he proceeded by writing the basic formule in snother
form. He latroduced a term R(x), by writing Hx) = =+ R(x}, In the
third part of his paper, he contlnusd by discussing some of thé properties

of R(x). And in the finsl part, he proves that

lim #(x)

=
¥ oo W%
by proving
m Bx) . o

® o R



52

Sinee the proofs by Selberg and Erﬂmayigthéﬁ maﬁﬁemati@iaus havé
preaented'modifimati@msn E. M. Weight [11] has given such a proof in
which'he”usés the elements of @alculuﬁ’t@ presant some of the concepts.
He points Out'that "the use of thel@alaulus makeé unn@&@@sary‘eertaiﬂ
complexities of detail snd shows mors cl&arly ﬁhe fuﬁdaméntal ideas
{which are, of @ouﬁ@@a essentially Selberg's)," Robert Breuseh [1]

proves that for every e > O, then

T(x) = T ingp = x+olx 10g~L/6 * €
plsx ) .

X)s

and thus establishes the proof of the ﬁrime nﬁmber th@@r@m-in'this form.

: @thar mathematicians have slsc given "elementary™ pr@@fs of the prime
numbar thecrem. Thé details of proofs in lamgwages other than English
were not enmtirely comprehemsible by this suthor. It éa@msg hewever,

that the‘@th@r proofs favolve the basle ideas of Erdos and Selberg or a
varistion or simplification of such concephs, anQh aubthor has, of courée,
presented his proof by his @wn.methgdn Thug Erdos and Selberg have

ughered in & new era in the proof of the prime nurber theorem.
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