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PREFACE 

The·prime numbers are irregular in their di,tribution., and some 

ot, the deepest theorems in the theory -ot ~number.s have to do nth the 

prime numbers. However., when the large eeal.e distribution of primes is 

considered, it appears in many ways quite regular and obeys simple laws. 

The stucly: of these lave falls in the tield ot analytic number theory-. 

This particular domain 0t number theory operates With very advanced 

methods' of the calculus and is considered to be technically ·one of the 

most difficult fields of mathematic~. It~ central problem is the study 

ot the function n(x)., which indicates the number of primes up to a 

certain number x. It was discovered quite early by means ot emp:J.rical 

counts in the prime tables that the fwilletion tT( x) b~baves aeymptotical.J.Y' 

like the function x/log x ( see page 7). The tolloWing fQ:nnula is 

called the Prime Humber Theorem: 

lim n(x)/(x/log x) = 1 
x....,, 

Indebtedness ie acknowledged te Dr. R. B. Deal tor his valuable 

guidance and assistance., and to Drs. Jeanne L. Agnew., o. H. Hamilton., 

and J.E. Hottman tor their suggeations and advioe during the prepare.~ 

tion ot this thesis; and to the Natioml Scienee foundation tor the 

Faculty rellovship award Which gave me the opportw:iity ·to devote tull 

time to the completion ot m:, do11tto:ral program. 
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CHAPTER I 

INTRODUCTION 

The purpose of the dissertation is to analyze the fundamental con­

cepts, organize a logical unit, With necessary additional proofs, and 

present an expository discussion of the ·-prime number theorem- and other 

theorems needed in the development of the -proof of the prime number 

theorem. Prime numbers, distribution of -prime numbers, and the sieve 

of Eratosthenes in relation to the prime number theorem are briefly 

discussed in this cha.-pter. The history of the prime number theorem is 

traced through the conjectures of the eighteenth and early part of the 

nineteenth centuries, the analytic proofs of the theorem in the latt-er 

part of the nineteenth century, and the 1.mprovements on bounds in the 

first half of the twentieth century. Chapters two and three are used 

to present, in ·detail, a discussion of' the-modern, so called "elementary" 

proofs of the prime number theorem. In chapter two proofs of prelimi­

nary iemmas and theorems are presented. It culminates with the proof of 

Selberg's basic formula. The proof of the pri111e number theorem is com­

pleted in chapter three. The elementary proofs of Erdos and Selberg, 

and the simplifications which have appeared since are discussed in the 

final chapter. 

The natural numbers greater than one may be divided ioto two classe, 

prime numbers and composite numbers. A prime number is any natural num­

ber (positive integer) greater than one which has exactly two divisors, 

1 and the number itself. All other natural numbers greater than 1 are 

1 
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said to be composite numbers. The "fundamental theorem of arithmetic" 

states that every natural n\l,\nber greater than l may be represented 

uniquely as the product of prime "'factors. Thus the prime numbers derive 

their peculiar importance as building stones from which all other natural 

numbers greater than l may be created multiplicatively. 

One of the most interesting problems in number theory has to do with 

the distribution of the primes among the integers. Although there are 

great irregularities in the occurrence of the primes, the general distri­

bution is found to possess certain features of regularity which can be 

formulated in precise terms and me.de the subject of mathematical inves­

tigation. 

Definition 1.1. If xis any real n~mber, then n(x) denotes the 

number of primes not exceeding x. 

The problem of studying the distribution of the ·prime numbers 

resolves itself into a study of the function n(x). Finding n( x) for 

large values of xis quite a Job. In fact, extending the table of primes 

becomes a formidable task. To decide that a given natural number is prime, 

one needs to be sure that no natural number leas t-han n divides n, except 

~· It is not necessary to try as divisors all natural numbers less than 

n, for if a given prime Will not divide n then no multiple of the prime 

,Will divide n. Thus one needs to consider only primes less than n, and 

not all of these. If no prime less than or equal to /n will divide n, 

then n must be prime, ror if d ·1s any divisor of n euch that /n < d < n, 

then n/d also divides n and is leas than/n. If n/d is not prime, it 

has prime ·factors less than /n which must divide any multiple of n/d 

including n. 

There exists an ancient method of finding the primes known as the 
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sieves ~ .Eratosthenes. Eratosthenes (276-194 B.C.) was a Greek scholar, 

chief librarian of the -f'anwus library in Alexandria.. He is noted for his 

chronology of ancient history and for his measurement of the meridian be­

tween Assuan and Alexandria, Which made it · poss:1.ble to estimate the dimen­

sions of the earth with fairly- great accuracy [8-] • 

The primes less tha-n or equal to a:ay ·real number x nay be obtained 

by the sieves of Eratosthenes·. If the natural numbers greater than one 

and less than or equal to x are listed in their natural order, one may 

apply- the sieve as follows: Underline all rnultip1es of 2 exoept 2, then 

consider the first number after 2 that has not been underlined, i.e., 3. 

The 3 is a: prime since 2 does not divide it. In the same -manner e.s for 2, 

underline all multiples of 3 except 3; t hen consider the next number 

after 3 that has not been underlined. It is also a prime. I.f the pro­

cess is continued, the first number not underlined after a given prime 

will also be a prime. If q is the greatest pri1ne s-fx, then the process 

may stop after the multiples of q (except q) are underlined. Thus, the 

numbers that have not been underlined are all of the primes less than or 

equal to x-. 

If one desires to obtain only the primes greater than the Ix and 

less than or equal to x, then the primes :i.: Ix are also underlined. For 

example, consider th~ case x = 50. The primes less than or equal to 150 

are 2, 3, 5, and 7. List the natural numbers "from 2 to 50; then 1n con­

secutive order, underline all multiples of 2, 3, 5, and 7. The sequence 

looks like this: 

g, .l, 1±, i., §., 1, :§., 2., ~., ll, ~ 13, ~ 1', 
!§., 17, ~, 19, ~, ~, .?..§., 23, ~, ~., ~, gi_, 

~, 29, ~ 31, ,E, 33, ~, ~, ~, 37, ~, -22,, 



~' 41, ~' 43, 44, ~' 46, 47, ~' ~, ~; 

The nu!Jibers nut unu-erlineu 

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 

4 

are the ·primes greater than or equal to ./50 a:p.d less than or equal to 50. 

Definition 1.2. For any real number x, the symbol [x] denotes the 

greatest integer less than or equ.a-1 to· x. 
I 

The number of integers sieved out for any prime p ~ .fx may be repre-

sented by [x/p) . One 1IIBY devise a fo-rmula for n(x) - -n(./x) by using the 

bracket· function. An expression like 

[x] - 1 - p~x [ru 
will not serve because some numbers are sieved out two or more times. 

Numbers of the form pq are sieved out twice: once whe~ sieved by p and 

once when sieved by q. It is necessary to add I: [x/pq], where the sum 

extends over all primes p and q such that ·-p < q ~ ./x. Even this expres-

sion, 
, 

is not complete. Numbers of the form p1 Pa p3 must be considered. These 

numbers will be sieved out once each by Pi , by Pa , and by P,a • These num-

bers are added ·-'bac·k three times when the multiples of p1 Pa , p1 p3 , and 

p8 p3 are added back. So these numbers have not actually been taken out 

at all. This situation is -remedied by subtracting 

, 

where th~ sum extends over all primes Pi , i;:g , P.3 such that 

p1 < Pa < P.a ~ /x. If this procedure is continued and if p1 , p2 , ••• , Pk 

a.re ·all the primes~ Ix, then one obtains the following formula: 
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n(x) n(/x) = -1 + [ x ] 

- ~ c~1 
pS/x pJ + ~ [p;p~ • O O ' 

where the second two sums extend over all primeis su h that 

pi< pj < Pr s/x. By using the definition of the Mobiua function, 

definition 2.5 of chapter two, this -may be expressed in the folloWing pre-

cise form: 

(1) n(x) ~ n{/x) = -1 -+ E µ. (d} [:x:/d] , 
d 

where the sum is extended over all positive divisor of the product 

P1 Pa •• ·Pk• 

It was proved by Euclid (Elements, Book 9.9 Prop. 20.) around 

300 B.C. that there exist an 1lC!f'1nite nwn'ber of primes. In essentials 

his proof is as fQllows: Let P be a product of any finite set of primes, 

and ooasider P + 1. The integers P and P + l can have no prime factor in 

common, since such a factor would divide 1, which is i mpossible. Hence 

P + 1 is either a new prime or it contains a prime factor diatinat from 

thQse occurring in P. If ther~ w·ere only a finite number of primers alto-
' 

gether, we could take P to be the product of all primesp and a contradic-

tion would result [ 4 ] • 

In 1737 Euler proved the existence of an infinity of prime by a new 

method, which shows moreover ~hat; 
co 

(2) the seri.ea, I: 2:..., .is divergent. 
n=l Pn 

Euler's work is based on the idea of' using an idea.ti y 1.n which th 

primes appear on one sid.e but not on the other. Stat d :f'ormally,9 his 

identity is 

(3) TI ( -s .. 2s ) = l . +p +p +ooo = 
p 
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where the products are over all ~rimes p. Eu.l er~s contribution to the 

subject is o:f fundamental importance; for his identity, which ·may be re-

garded as an analytical equivalent of the fundamental theorem of arith­

metic, forms· the basis of nearly all subsequent work [ 4] • 

The question of the diminishing f:r.eq_uency of primes was the subject 

ef' much speculation before a:ny definite r esµlt:1,r emerged-;. The problem 

assumed a much more precise f orm wlth the publicati on by Legendre in 1808 

(after a less definite statement i n 1798) of a r emarkable empirical for­

mula for the approximate representation Of.' n(x). Legendre a-sserted that 

for large values of x., n(x-) is approxlrnateq.y--·equa-1 tu 

( 4) log x - :Ii 
x 

where log x :1.s the -natural (Napiertan) logarithm of x and Ba certain 

numerical constant. A similar, though not identical., .t'ormuJ.a was pre,-

pared independently by Gauss. Gauss's method, which consisted in count-

ing the primes in blocks of a thousand consecutive i.nt egers, suggests the 

function 1/log x as an approximation to the average density of distribu­

tion ( 'numbers of' pri-mes per un:1.t internal') in the neighborhood of a. 

large p;umber x, and thus the integral of the dens :1.ty, 

( 5) 

as an approximation to n(x). 

r'lf. du 
Li (x) = , 8 iog u 

The funct i on ( 5) :ts the so-called "intesral 

logarithm of x". Gauss's observations were comnruni cated t o Encke in 1849, 

and first published in 1863; but they appear to have commenced as early 

as 1791 when Gauss was fourt.een years old. In the interval the relevance 

of the f unction ( 5) . was recognized independently by other writers [ 4] . 

The precise degi:"ee of -approxi mation clai med by Gauss and Legendre 

for their empirical formulae outsi de the range of the tables used in 
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their eonstruetion is not made ver:, explicit by either author, but we :aey 

take tt···-tbat they intended to imply at- aey rate the ivasymptot:tc eqw.va­

lenee11 ot n(x) and the approxitmtiug f'unetion f(x), that is to s~y­

n<x)/r(x) tend.s-to the limit 1 as x tends to infi-utty. 'fhe tvo theorems· 

which ·thus arise earresponding to the two forms of f'(x) are easily shown 

to be eq.uivalentto one another and to the simpler !elation 

(6) ·n(x) /(x/log x) ... 1 ·e.s x ... co 

The distinction between (4) and. (5), and the value of Bin (-4) become 

important if' one inquires more closely into the order of tmgn±tude of 

the "error" nfx) - f'(x). The f'ollo'Wing table :1:ndicat-ea the aceurac;y of 

Li(x), x/(log x -1) 1 and x/log x as approxiDBtions of nfx) : 

x n{x) Li(x} [x/( lQg x -l }1 [x/los .xl 

1,000 168 178- 169 144 
' 

10,000 1,229 1,246 1.,217 1,085 

100,000 9,592 9,630 9,512 8,685 

1,000,000 78,498 78,628 78,030 72,38~ 

10,000,000 664.,579 664,,918 661,458 620,420 

The proposition ( 6), whica is now know as the 11prime D:'\lDlber theCi>rem, "· is 

the central theorem 11ll the theory of-the distribution ot primes. The 

problem of' deoidiDS its truth or falsehood engaged the attention of mathe­

maticians tor about a hundred ;years [4J . 

The first demonstrated reaults are due to Tohebyc~et, who (1850), 

amoDg other things, proved that the inequalities 

(7) f :lt. < TT {x) < 2. • l X og x '5 og x 

are valid tor all suf'ficie~tly large values of x. He also showed that the 
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. x 
q,uotient of the -m.unbers-·n(x) and log x bas the limit 1 for increa.·sing x, 

providi.ug that the limit-· exists [6]. Theae results constituted an ad• 

vance of' the first ·importance, but (as Tehebychef himself' was well aware) 

they failed to ·establish the essential pointj ll8mely, th~ ex,istence of 

lim n(x)/(x/log x). Although the numerical bounds obtained by Tchebychef 

were successively narrowed by later writers (particularly Sylv-eater)., it-· 

came to be rec·ogniz-e·d in due course that the methods employed· by these 

authors were· not likely to lead t o a final solution of the problem·· [ 4 J • 

Already Euler ba-d begun apply'ing the 111ethcd1B of' the calc:ulus to 

number-theory-problems; howev-er, the Gerrmm. mathematician G. F. B. 

Riemann (1826-16'6) is generally regarded as the real founder of am.a-

lytic ·· number theory. Bis personal lite was -modelilt and uneventful until 

his premature death f'rom tuberaulosis. According to the Wish of his 

father, he was originally destined to become a -minister, but his s-byness 

and lack of' ability as a speaker made him abandon th.is plan in tavor ot . 

mathematical scholarship. Be was unassuming to a fault; yet at present 

he is reeagnized as having one of the most -penetrat:l.ng and original 

mathematical minds of the nineteenth century. In analytic number the<i>ry-1 

as well as in mny other fields of math~tics, his ideas still have a 

profound influenae [ 8] • 

The new ideas which were to supvly the key to the solution ot the 

problem on· the existenee ot the lim:-rr(x)/(x/log x) as x ... • were intro­

duced by Riemann in 1859 [ 9 J in a memoir Which bas beoome famous, not 

only tor its bearing on the theory of pri-mes, but also tor its influence 

on the development of the general theory- of tunat:1.ons. Euler's identity 

bad been used by Euler himself With-a fixed value of e(·s • l).; and by 

Tehebychet With s as a real variable. Riemann now :l.ntroduced tbe .·idea 
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of treating s as a complex variable and studying the series on the left 

of (3) by the methods of the theory of analytic functions. This series 

converges only in a restricted portion of the plane of the complex vari-

able s, but defines by continuation a single-valued analytic func·tion 

regular at all finite poi nts except for a single pole at s=l . This 

function is called ·the "zeta-function of Riernann 3
11 after the notation 

C( s) adopted by its author [4]. 

Riemann, perceiving the fun.damental importance of the zeta function 

for the study of the distri.bution of primes 3 developed. the elements of a 

theory for this function. He also formulated six hypotheses which he 

could not prove. Especially the position of the i magi nary zeros of the 

function appeared to be of great importance for the applications to 

prime number theory. According to Riemann's fa.moue. but still unproved 

hypothesis, all the i maginar/ z~ro have the real part cr = 1/2. All the 

other hypotheses of Riemann have been prmred by ia·ter i.nvestigat~rs [6]. 

The problems raised by Riemann~s memoir inspired in due cour~e the funda-

mental researches of Hada.mar. in the theory of integral functions, the 

results of which at last removed some of' the obstaclet:1 which for .more 

than thirty years bad barred the way to r igorous proofs of Riemann's 

theorems. The proofs sketched by Riemann were completed (in essentials), 

in part by Hadamard himself in 1893, and in part by Van Mongoldt in 

1894 [4]. 

The discoverie of Hadamard pr epared the way for r apid advance in 

the theory of the distribution of prims. The prime number theorem was 

proved in 1896 by H.adamard himself and 'by e la Vall' Poussi, inde-
' 

pendently and almost simultaneously. Of the two proof's Hadamard's is 

the simpler, but de la Va11te Poussin (in another paper published in 
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1899) studied in great detail the question of' closeness of approxi11Btion. 

His results prove conclusively (what n:ad been foreshadowed by Tchebychef'} 

that, :f'or all sufficiently large values of x, rr(x) is represented more 

accurately by Li(x) t han by the funetion (4) (no matter what value is 

assigned to the constant B), and that the most favorable val ue of Bin 

(4) is 1. This conflicts with Legendre's original suggestion 1.08366 

f'er B, but this value (based on tables extending only as far as x=4ooooo) 

had long been recognized ae having little more than historical interest. 

The theory ca.n ·nc,w ~e preaented in a greatly simplified form, and 

de la Va.11,e Poussin's theorems can ( if desired.) be proved wi:thout re-

e,ourse to the theory of integral functions . Thi$ :f.B due almost entirely 

to the work of Landau. The results themselves underwent no substantial 

change tm.til 1921, when th.e.y were improved by Littlewocld; but Littlewood's 

refinements lie much deeper and t he proofs in:volve V€r:f elaborate 

analysis [4]. 

There are two i mportant changes i n II depth0' of the prime number 

theorem. First, the zeta tu.nation ia no longer needed for obtaining the 

sharpest known error term in the prime number theorem; in f'act, the ele, .. 

ments of the theory of functions of a complex variable are now suf'f'ioient. 

Second, the prime-number theorem as auch (without any estimation of the 

error term) now falls under the scope of' elementary methods. Titohmarsh 

established the f'ollow:1.ng result: 

(8) n(x) ~ Li(x) = cp k x • e-W (:it) 

where a, (x) = a(log x) 5/9 - e ; it is valid :for all suff':1.cientJ.y large 

values of x; e is a poait:t.ve number, k and a a.re oerta:tn positive con .. 

s·tants, and cp denotes a function of' x which varies beti,feen the limits wl 

and 1. This formula, Which was proved in 1938, expresses the best result 
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up to now for the function n(x). It is easily seen from the formula 

that n(x) is approximated·by Li(x) With great accuracy. It was shown 

by Littlewood that the left side of (8) assumes both positive and negati ·e 

values infinitely often [6]. Littlewood's theorem, however, is a pure 

'' existence theorem," and no numerical value of x for which TT( x) > Li( x) 

is known. 

There was a sensation wb:en an II eleme:o.tary11 proof of the pri-me number 

theorem was given in 1948 by P. Erdos and Alte Selberg. Selberg proved 

the fundamental relat+on 

( 9) E lof(p + 
p~ 

E log p log q - 2x log x + O(x), 
pq~x 

and he and Erdos, independently, deduced the prime number theorem from 

it. The resulting proof, while not simple, requires nothing more com· 

plicated than the most elementary properties of the logarithmic function. 

The so.called "elementary" proofs are discu,ssed in detail in 

chapter twe and chapter three. The proofs of Erdos, Selberg, and simpli· 

fications which have appeared since are also discussed in the final 

chapter. 
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As stated in the introduction, the basic intent of this chapter and 

chapter three is to present., in detail, a discussion of the modern., 

so-called "elementary-,'' proof's of' the prime number theorem. The major 

contributions were those of Erdos and Selberg, but :i.n presenting detailed 

proof's in this and the next chapter it was found convenient to ~ely 

heavily on the outline and discussion in Nagell [6]. The ultimate goal 

of this chapter is the proof' of Selberg' s bas:i'.c formul.a and this asymp­

totic formula is 'used to deduce the prime number theorem in chapter 

three. Definitions, lemma.a, and other theorema are given as a means of' 

obtaining this objective. 

n(x) is usually used to denote the ~unction whiah gives the number 

of primes less than or equal to the real number x. It rray be written as 

TT(x) = t 1 
~x 

where p extends ov·er all primes $; x. Re.the-.r than consider the function 

n(x), the function t?(x), defined by the following equality, is studied 

in relation to the prime number theorem: 

Definition 2.l. ·~(x) = t log p, the sum e:it:tending over all 
p~ 

primes p ~ x. 

Although the prime number theorem· is usually stated ae 

lim 
x --

12 

Ill 1, 
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it may be stated in other ~orms. In particular, it is equivalent to the 

proposition 
lim ~ ·-= 1 x .... c:o x • 

In chapter three the equivalence of the two propositions is proved, and 

the second relationship is established as a consequence of Selberg's 

formula (Theorem 2.5), 

t?(x) log x + 2 :E .;;(x/p) log p - 2x log x = o(x log x). 
p~x 

The term o(x log x) represents any function of x with the property that 

lim o(x log x) 
x .... c:o x log x = o. 

The concept of functions being o of some function or O of some function 

is discussed later. The formula may also be stated in other forms. In 

particular, it may be given as 

~+ 
x x l~g x :E t?(x/p) log P 

pefx 
- 2 = o(l). 

This is the form used in chapter three. 

Each of the twelve lemmas and each of the first four theorems of 

this chapter contribute to the proof of Selberg's formula. Lemma 2.12 

contributes directly by establishing relationships involving some of the 

terms in the formula. Lemma 2.9 is also instrumental in the proof by 

establishing that 
µ.'d' x 

:E ~ (log crYa 
w;:x 

may be approximated by 2 log x. Each of the other lemmas and theorem~ 

contributes indirectly by contributing directly to the proof of some 

other lemma. or theorem. For ex.ample, Theorem 2.2 establishes that, for 

x s 2, f(x)/x is bounded by two positive constants and this fact is 
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used to-··prove · otber 1"9lml'6:s. 

Cons·ider the series [n/p] + [n/p2 ] + [n/p3 ] + • • • , where 

the brackets· have the same meaning as in Definition 1.2. For each terQ'l 

in which pk > 1l for- some k, the value of the term is zero. Thus one 

may write 

r 
[m/p] + [n/p2] + [n/p3J + • • • = 'E [n/pk] 

k=l 

where r is the highe.st .integral -exponent which sati·sfies the inequality 
' 

pr :s:: n. This series is involved in the·proof or Theorem 2.2. Therefore, 

the following t-heorem is proved first._ 

Theorem 2.1. Let n be e. natural number, and let .P· be a prime. Then 

the exponent of the highest power of p which divides nl = 1•2•3•••n is 

equal to 

(:).) m = [11./p] + [n/l'J + [n/p3 ] + · · · . 

Proof: The series continues so long as the power of pis :s:: n. If 

hv denotes·the ·number of terms in the sequence l, 2, ••• , n·which are 

divisible 'b;y pV,, the required exponent lll is equa,l to 1\ + q, + q. + • • • . 

The natural -numbers s n which are ·divisible bypv are 
' 

Thus the term b.y • [n/pV'.)., and the theorem·· is proved. 

The proof of' the folloWine; theorem of Tchebychef can no~ be given: 

Theorem 2.2. There exist·two positive constants, band c, suah 

that fer all x ~ 2 

(2) bx< l(x) < ex • 

Proof': Let n be an integer :!!: 2. I:f pm i·IJ! the highest power of the 

prime p whioh divides the bino~:tal coettieient 
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then, PY Theorem 2.1, 

m = 
r 
!: 

v=l 

(2n}J 
n! n! 

([!:] - 2 [p;..]) 
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where r is the highest integral exponent which satisfies the inequality 

(4) 

and. thus 

The difference 

r = [log 2 ~J . 
. 1.Qg p 

[!~] - 2 [~] p 

bas either the value zero or the value l, and therefore 

(5) ms r. 

Now 

(2n) = (p.+1H~+2~ 
n n. 

• • • 2n 

and on the other hand, by ( 5) and ( 4) 3 

the products extending ove:r all primes p < 2n. Therefore.Ii by taking ,the 

logarithm. 

n log 2 <. I: r log p = E [~0 i-~.!J log p. 
p<2n p<2n · log P 

For every- p., 

[!£., . :2nJ :s: 
lee; p 

;,_c,g 2n 
log p II 



:a log 2 < 

or 

r.ioer 2n1 • 1 • . Lioi P :J 

. p<:2n t log 2n 
logp • 101, + .t 

'1'~ p>{2i. 
log p 

8 (log :!n)8 
'l?he express1~11 {log IF n,.... ;;,ens to zero. as n ... •· 

llem.oe, for .all sutf'iotently large. :#;~tegers n., 

8 (log .2n)8 

f -.·· t'ioi- 2)1 . :a-.2 

or 

11. .. 2 2 
8 . 8· 

{log 2 ~1 • .(l.og 2n) • 

Thus 

__ 12 o- l > a.... ( log 2D)2 
IL .. ti..u. + '"" lG! 2 

and lq e~n.oting square ;reotrs · 

It tollowa that 

·au 

a. l > 8,12n l9g 2:a 
Ies; I. 

· ~ log 2 .. lb l.01 i!n > *9t 2 

m. log 2 .. f2m log.2n > t (n+ l) log 2o 

.It 2n ~ x < b + 21 one obtains 

··f(x) :2: tJ(2n). 2 i(n. + l) log 2 > ! x leg 2· 
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:tor all su:ttie:tem.tly -large, x. lence, for s·ome ,m an/! all x ·::tt Ji the ,above 

relat:ton ·holb ... tfuw for all x sueh t~-t ~ x < H· 

~.x;) ~. J.og 2 >· i leg 2 · • · lol 2, X•o 

!his proves the f-irst inequality of Theorem,.2 With b= log a. . . . . . I 

The number ( ~) is clearly' divisible bi all. primes p Which -are > ti. 

p<2n . k p<an . 
IT n._._Il. P• . . n! . . .,_ .. , . . P 
p> ,n . l,l>:n 

Where·p· is 'prime and.the p:roduct» n k» ~nu. over all ·e.omposite numbers, 

k, such that n: < k :ir; 2n a1id: nS div.to.es n k1 it follows that 

. . _b. . • p<2n 
2h = ·(l + l)2a = E (2n\ > (2n) :t n· P , 

. :L=O i) m p>n 

ad, 'by takiq logarithms, a~ log ! >··t?-(2m) ... 1'(».)... Suppose that x :ts -a 

pewer of' 21 that is, x ~ '=!h w'h.$re h :ts a positive integer. It 

fGllows the.t 

~hus, 
f(eh) < log 2 

h 
I: 

k=l 
ik_ < 2h+l ·· leg ! = 2x log 2 .. 

;rvther, it 2h·l < x :e al?-, · t.h•n, . f'o:r al.1 x :a: l, 

tJ(x) f.···f(2ll) < 2hi-l log 2 < 4x log e, 

~ch. ·proves the second. :ta-equality w'it,b o = 4 log 2. 

In proving the priime nuqi:ber theorem and Qther preliminary le-mmas 

and theorems, ·one ·n11 alsG :m.eed the f01•mula given b;y the- tollowiq 

the ore mt 

Theorem 2.·3. I:t' the· sum is extended over all primes p ~ x,. then 

,(6) ,,, E leg i • log x + Q » 
pQ: p 

where ~ is: a f'waatioa ~t 2li ·such that H~ I :ts less than. a. positive ·, 
I 
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constant. 

Proof: The proof' requires·the following relation: 

where p extends over all primes :s: n and·the series continues so long:as 

the power of p is :s: n. :By ·the definition of' ··the bracket function, it 

follows ·that 

L ([.!...] + 
ps.n pa. [-.~-] + ) P-. • •• , log p 

< 2 (~ + · ~ + • · · )1og· P = n 2 ~(~-1) 
p:S:n . p~n 

Where the second series is infinite. further, one sees that 

2 ( !! .. 1.)1oa; p = n 
p:S::n p . 

2 ±Bg P - i'(n). 
p:S:n p 

Consequently, one may observe the.t 

t log ;e_ .. -~ < !. ~ [!fl log p < 
~ p · n n ~ ~ 
p~n p:S:n 

.! log n! < L log P + 2 12.U?. 
n p~n p p:S:n p~pml) • 

Thus 

l 1 log n! 
l!l. 

~ iog pl< max (tin}, 2 
p~n P · p:S:n 

1,g p) 
p ) • 

Acoording to Theorem 2.2, l{aj_ < c·wnere c is e. positive 00nstant and 
. , n 

·ll 
E (log p)/p(p 00l) :s: !: (log m)/rn(m ... 1) where the right side converges 

p:lil:n ·· m=2 
to a positive eonstant as n ~ =• Therefor6j 



(7) 1 - log n! :u !: !2U = Cl; 

p:Sn P 

19 

where <:x is a. function of n such that la I is l~s,iil tllan a posit:ive constant. 

For every integ~r h ;;;;:: :2, log h -=· h log h = (h=l) log(h-1) 
. 1 

(h~l) log(l+ h-1), where the l.ast t,erm is less than L 'l1hus 

or 

n 
!: log h = 

h=2 

> n log n = 1 (n.,,l.) • 

n 
n log n - .n .. 1 < !: 1.og h < r.1 log n fl 

h=:2 

log n = 1 1 
= ~= < 

n 
= ! log n ! < log n • 

ll 

Formula (6) is obtained 'by c.iombining the!Ffie :1!.nequal:tt:i,es with (7). 

The concept of :f'uncrtd.ons 'being o o:.!:' a11>me :t'unction or O o:f' aome 

f'unctien is a. useful o.ne :in 't,his type of' ane.lys:i.s. His't.;liJP:r.y ha.s dictati!d. 
I 

Tfle defini ti.ons, a.risi e;i·ven biele,w for the part:iaula.r @e.se needed in tb.:l.s 

paper W1 th more care 't,han cust,omary and then t;ransl.a.ted in·to standard 

usage. Let A be a subset of' R (:r®als) such that for every ye Rp there 

exists an x e A such that x > y, Eu1d. Nco be t,ba collection of' sets of the 

:f.orm (x I x e A an.d x > a tor somiei a e R} • If g :i.s, a n.on.,,zero 

f'unotion de:f'i.ned on A to Rp then o(i) and O(g) a:.re defined by 

Definition 2.2. 1.i(g) = ft! 3 'U e Nm; Uc d.om f .11 1£m i = o} 
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It should be observed that these definitions work just as well :f'or 

real or eompl~ valued functions on a.ey topological spaoe X and any 

point p of X oan be used if Np is the collection of open sets containing 

p. The folloWing properties are also valid: 

(8) 

(9) 

(10) 

For any real constant k., 

(a.) h e o{g) implies kh e o(g) 

(b) h e O(g-) implies kh e O(g). 

For any p~~itive ft'JJ'lction h., 

(a) t e o(g) implie!i!l h.f e o(ng) 

(b) f e O(g) implies h:f' ·e O(b.g).: 

If O < f ~gin some U, I~, then 

(a) o(f) c o(g) 

(b) O(f) c: O(g). 

If h e o( g)., it is customary to use tb.e following notat,ioru 

h(x) = o ( g(x)) • 

. A similar motation is used f'or any fun~tion h e O(.g), that is., 

h(x) = O (e.:(x)). 

Thus :x: log x = o(:x.2 )., cos x • o(/x)., logx = o(/x)., 2x = O(x)., 

eto. 1'he prime number theorem could also be f'ormu.l.ated. a.a follows: 

n(x) = · x · + o ( ..2,_ \ • 
log x log iJ 

FormuU:l (6) may also be written as 

t log i • log x + O(l), 
p='x P 

or as 

= los x + o(l9g x). 
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In the ( u, v) plane the area. of [cu, v) I l :s: u is: y, O " v -s: 1/u} 

is log'-:,. This area. can be approximated b;y :E 1/n. This relat·ton is 
nj:y 

expressed more precisely by formula (11) of Lemma 2.1. The area of 

[Cu,v) I 1 =' u" y, 0 ~ v -~ (log u)/u} is ~log y)2 • This a.rea. can be 

approximated by !: (log n)/n. Formula '(14) of Lemm 2.2 gives a. more 
n"y 

precise statement of this fact. 

Lemma 2.1. There exii:rts a. posit,ive absolute constant y such that 

(11) E i = log y + y + 0(1/y), 
ns:y 

where the sum extends over all positive integers n ~ y. 

Proof: Let z be the lea.st integer> y, that is, z = [y + 1]. Let 

6n = 1/n - log(l + 1/n), then 

z-1 
( log(:n+l) - log n) = 

z-1 
(12) log z = E E log(l + 1/n) 

n•l n=l 

z-1 
(i 1. log(l + 1/u)) 

z-1 l 
z-.1 

= E - + 11:il E - - E an•. 
n=l 

·Ii n=l J:!. n=l 

Let :f'(x) = 1/2-i!' - 1/x + log(l. + 1/x), then f'(x) = -1/~ (x + 1) < 0 

for all x > 0 and the derivative of 1/x - log(l + 1/x) is -1/~(x + 1) 

< 0 for all x > o. Thus 6:n and f(n) a.re both decreas:lt.:o.g functions With 

zero as the limit so 6n > 0 and f(n) > o. mow, f(n) = 1/'E:n.2 - 6:rv 

&n > o, anil f'(n) > O imply that the following inequality holds for a.ll n: 

(JJ) o < an < 1/2.n2 • 

It follows from this that the infinite series E an is convergent and 

has a positive value y. l\i.rther, 
= 00 

!: 6n < t z 1/ri 
n=z nmz 

CCI 1 00 

(itr ~ l < t E ii{n:1r = t r: = = 2{z-1; . 
:c.=z n=z 



from formula (12) and the preceding results, one obt;ains the follo·wi:ng: 

z-1 1 z-1 CD 

E - = log z + E an = log z + E on n 
n=l 11=1 n=l 

= log z + y + @/z 

where 9 is a f'unction of z such that !@I is less than a positive. constant. 

Thus 

But 

E 1/n = log z + y + 0(1/z) 
nsy 

:.:;:·· 1.og; y + y +log·~ + 0(1/z) .. 

= J. + id ;) 

so log z/y + 0(1/z) is 0(1/y). This conclu.de:s the proof' of formula (1.1). 

Lemma. 2.2. There exists au abllllolute IQ\©nste,nt ,:;i su<:ih th.at 

where the sum extend.:s over all posi t:tve 1:nt~g@rl$l n :s: y. 

Proof: Let z = [y + 1]. Cl.li!l®irly 

9 J ' 
( log zY9 ~ '"'i. ( ( log[n + 1] )8 = '.( lt1g n)2) 

n~l 

and since log( n + 1) = log n + +/n ~ 6:o.!' then 

~=l 
i{log z)"a :a:: ! E ( (log n + 1/n = 61,1,.)2 = (log :o.)2 ) = 

n~l 

z-1 log E. 
:z E n 

n=l 

By means of' ( 13) one may observe that the latter sum on the ri.ght,,.hand 
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side tends to a finite limit e when z ~ •· Further, 

I .; ( &n log n + 6n/n - 1/2.,/ 
n=z 

- i 6r;,2) I < ; ( l,oe; u) /n.8 

D•Z 

: _Jjl J= ~!. x < (log z)/z- + z · (log z)/-1 + 1/z + (loJ z)/z •. 

Thus one may conclude that 

z .. 1 log n . a .flog z) 
I: ii - ·• i ( leg Z) + '\i\ . z - + . C I 

n=l 

where e is an absolute cons.te.:ra.t. This formula gives ( 14) in. a manner 

similar to that in Lemma 2.l. 

.A. function f( n) defined tor all natural numbers n is oalled aa 

arithmetiaal function. 

Definition 2.4. The arithmetical f'uncti_on which gives the number 

of positive tiv:Lsors of n is denoted by T(n). 

Le:mma 2,3, If' the sum is extended over all positive integers 

.n ~ y, then 

where y and care the same absolute constants as in Lemmas 2.l and 2.2. 

Proot: Since T(n) is equal to·-the number of ordered pairs of 

natural numbers a and 'b such that ab • n, then I: 4- = !i!}. J 
ab=a ao n. 

and ' 
~!.W.-~ ~~- LJr., uij- 11 · ~ ab=n .all> ab~ 811 

where the sum oa the ript .. hand. side extends over all mtural num'be:ra 

a and. b such that ab 2' y. Now let Si denote the part of this sum 1n 

which a •··/y, let Sa denote the pa.rt in watch b ·'I/ ./y, and Sa denote the 

part im which a·c /y and b·C/ y. Thea the value of the required ,sum is 



S1 + S, - , • By Lemmas 2.1 and 2.2., 

Bi= L! ~1= 
a'!i/y a bSi7a b 

~ · ~·. ( log y/a. + y + o(a/y)} 
a~y . . . 

= L ~ (1og y - log a+ y + O(a/y)) 
a.'!i/y 
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= logy 
loa 8 "'C" l . · . 2. i + y L a+ 0(1/y) I'.. l 

a.'1 y a.'!i/ y as/y . 

= (1ogy+y) (1og /y + y + 0(1/./y)) -· i{log .fy)8 

. - e + O ( 10,/Y:) + 0(1//y) 

= (logy+ y) (t logy+ y + 0(1/./y)) - 1/8 (log y)8 

· .. - .e + . o~0J/l) + o(i/.fyl 

~ 3/8. (log y)8 + 3/2 Y.log y+? .~ .e+ O ( 10J/) .. 
It. is plain that .Bi, = Si. Further.,.. by Lemmas 2.;l and 2.2., 

= ( f log y + 'V + 0( 1/.f y) r 
= ,!- ( log y )2 + y log y + y2 + o ( 10, 1 l) • 

Hence I: ft= Si+B.3-8.a 
ab~y 

= 3/4 (log y)8 + 3 y logy + 2 y8 ... ,!- (log y)8 

.. 2a - (log y) - v8 + O ( 10i1l-) 

= i ( log y )8 + 2 y log y + y8 - 2c + O ( loiY l) ., 

which proves Lemma 3.2. 



Another important arithmetical function is the Mobius function 

µ.(n), defined as follows: 
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Definition 2.5. µ.(1) = 1; µ.(n) = o, if n is divisible by the 

square of any prime; ... Pr) = ( -l)r, if' Pi , P:a • • ·, and Pr_ 
are different primes. 

Thus µ.(2) -= i;ii(3) -= µ.(7) = µ.(11) = -1, µ.{4) = ·µ.(8) = o, 

µ.(6) =- µ.(10) = µ.(14) = 1, etc. 

Definition. 2.6. An integer is called a square-free number if it is 

not divisible by any square> 1. 

Theorem 2.4. for every natural number n > 1, 
__ ./ 

where the sum extends over all positive divisors d of n. 

Proof: One needs only to extend the sum over all positive square-

free divisors d of tt. The theorem is proved by multiplicative induction. 

It is true when n is any prime p, since Sp = µ.{1) + µ.(p) = O. 

Suppose that it is true for _n = m. Then it can be sho-wn that it is also 

true for n = mp·, -where p is any prime. If m is dirtsible by p, it is 

easily seen that Smp contains the same terms as Sm• Since, by hypo­

thesis, Sm= o, then Smp = o. If mis not divisible by p, then 

Smp = L (µ. ( 6 ) + µ ( p6 ) ) , 
6lm · 

the sum being extended over all positive square-free divisors 6 of m. 

Since µ(~6) = - µ.(6)., it follows that Smp = O. 

Definition 2.7. For any integer h ~ o, the function cph(n) is de­

fined by the eql:la.tion 

cp (n) = 
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where the sum extends ev-er ia.ll posittve divisors d of the natural number 

n and ( leg d) 0 means the number 1. 

I.enuna 2.li-. If thenatural·number m..is divisible by more than h 

different primes, ·then 

cph(n). = o. 
Proof: This is true for h = o,according to !heorem 2.4, and so it can 

be assumed that b lit 1. One can use mathematical induction and suppose 

that Lemma 2.!i. is true for all the functions cpk(n) whem k , h-1. If 

n = J;Pm where a :it 1, and where the integer· mis not divisible 'by the 

prime ·p, then for each d that divides. n, one may write d = ds da where 

c!f.1 diyides m ariida divides P• Thus one obtaiu 

! 

= E ~(d)(log d)h = 
.d 

where the ou_ter sum en the right-hanu side extends over all positive 

divis0rs· c\ of. m and the inner sum ever all positive divisor.a elm of p. 

Then 

h -
• I: (!) Cf's(m). Cf'h-s (pCI) • 

s=O 

Since n bas more than h different prime factors, m has more thatt h-l 

clittere11.t prime f'aotors. Th.erefore, by hypothesis ·cp8 (rn) • .o tor 
S '• 01 11 • • ~, and h-;t.. The remaiD.1~: term 1f>h(m) cp·0(pOI) ii 

.also equal to ze;ro, sinee :t.ts le.st factor is zero. Thus the lemma is 

proved.. 



and·,· 

Lemma 2.5. for any positive number x, let 

l(d) = µ.(d) • ( log fJ2 

f'(n) = E l(d) , 
din 

where the sum extends over all positive divisors d of the positive 

integer n. Then 

f(l) -= (log x.)2 ; 

f( efl') = -( log p )2 + ~( log x)(log p) 

when p is a. prime and a an integer ~ l; 

when p and q are different primes, and a and~ are integers~ l; 

f{n) = O if n is divisible by three or more different primes. 

Proof: One mar write l(d) in the following way: 

µ.(~) ( (log x)2 - 2 log x log d + {log d)2 ) 

= ( log x)2 µ.( d) - 2 log x µ.( d) log d : tJ..( d)( log .d)2 • 

'1'heref ore, 
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:f'(n) = · (log x)2 E 1,1,(d) - 2 log x E µ.(d) log d + E µ.(d)(log d)2 

din din dfn 

= (log x)2 cp 0Jn) - 2 log x q,1 (n) + % (n). 

Thus the proof follows ~rom the definitions and Lem.ma 2.4 (for h = o, 1, 

and 2). 

Lemma 2.6. For every· :tlatural number m, 

I ~ ~~) I s; 1. 
n=l 

Proof: It follows from Theqrem 2.4,tha.t 



and 

m 
E 

n=l 

m 
1 = !: E µ.( d) , 

n=l djn 

r: µ.{d) = 
din 

m 
r: kr µ.{r) , 

r=l 

where kr is the number of multiples of r which ares m. However, 

kr = [m/r] for 1 s r s m. Thus, 

m 
r: µ.(n) [m/n] = 1. 

h=l 

Consequently, 

I m ... ; µ.(n)/11 ... 1 I 
Fl 

= I :.· p.(n)m/n - : µ.(n) [m/n] I 
n=l :a=l 

=. 1· ; µ.(n) (!! Q [!tfl) l s ... ; (~ 
n=l n iJ n=l :a 

[;]) :S: m-1 • 

Thus 

I m ; µ ( n) /n I :S: l + m .. l = m, 
n=l 

whieh proves the lemma. 

Lemma. 2.1. for every positive real number x., 

E µ{k)/k log x/k = 0(1), 
k:S:x 

where the sum extends over all t)OSttive integers k $ x. 

Proof: Applying I.,emma 2.1., one finds that 

ttl!2. x E k . log ii 
k~ 

= E ~li ( E l/n - y + @,. ~ ) 
k:S:x nsx/k x ' 
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where I~ I is less tha:o. a po1:ttive constant Co :For kn = m, n · = m/k, 

ak = s. f1,111etion of k, bn = bm/k = a function .of n., then 



so 

becomes 

E 
ak 

E 
bn 

E 
Sk bn 

k - = - :;:·. 

k~x n:s:x/k n k:S:x kn 

n:s:x/k 

= E l E ea. ic1 ' - •·;n/d .. 
' mSX m aim 

E l/m. E µ.( d) 
m:S:x djm 

- y E µ.(k)/k 
k='x 

+ 

E 
6k_bll!Lk 

~x m 

kn=m 

E µ.(k) r;;,_/x , 
k:S:x 

,where d runs through all positive diviso1•s of m, By Theorem 2.4, the 

first sum ha.s the value l; and by Lem.ma. 2.6, the second sum has an 

absolute value· :s: y. The absolute value of the third sum is at nost 

o/x E 1 :s: c. 
kSX 

This gives the desired results. 

Lemma 2.8. For every natu:r:·al number n, 

E µ.(d) 'T'(n/d) = 11 

din 

where the sum extends over e.11 positive diviso:t•s d of n. 

Proof: Since 'T'(u/k) = 

divisors d of n/k, then 

E 1, the sum extending over all positive 
d 

E µ(k) T(n/k) = 
k 

E µ.(k) 
k 

= 

where the inner sum on the righ·t-hand. s:J.de extends over all positive 

divisors d1 of n/d. By Theci:i:·em: 2.14,, this inner $um is equal to zero. when 

d ::/, n and equal to l when d = n. Thus ·the right-hand. side is = l. 
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Lemina 2.9. For every··posi-tive real number x, 

(15) I: iJ,(d.)/d (log x/d)2 --~ 2 log x + 0(1), 
d,!i:x . 

where tb.e·sum extends over all positive i-ntegers d !!ii :x: .. 

Proof: Applyi:ng·Lemma 2.3 f'or y =x/d, one may write the left-hand 

side of' formula ( 15) in tne · f'.orm:. . 

E p(d) ·( I: !i!l - 2 y lpg ! .. y2 + 2c ) 
d.$x d nw-:x: :a. d 

where 19 I is less than a positive constant Ci. For all su:f'f'iciently 

large x the absolute -value of' the last sum is smaller than 

ii... ih. Htl mt = ,.-to ( ~ ,-3/4) 

= x·f O {Jx .,. .. 3/4 dz) 
. 1 

:ru.rther, by letting k = l:ld, one finds that 

= 2 E 1/k I: µ.(d) T(k/d)., 
k='x dlk 

= 0(1) •. 

~ere the inner sum en tb.e right-hand side extends over all positive 

divisors d of k. Hence, by means of Lemmas 2.8 and 2.1, 

2 leg x + 0(1). 

F.imlfy., applyi:ngLemmas 2.7 and 2.6, -one sees that t-b.e left-hand side 

of' :f'ormula (15) is equal to 

2 log x + 0(1). 

Thus Lemma 2.9 is prov~. 

( 
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Lemma 2.10. If tb.e sum is extended over all·primes p-~ x, then 

(16) · E (log p) (log x/p) ·-= o(x log x). 
pSx 

Proof: If y = x/(log x), the sum on the left-hand side is equal to 

I: (log p) (log x/p) + 
psx 
I: (log p) (log x/p) 

p>y pSy- . 

< log x E log··-p + 
pSy 

( log log x) E log 'p 
pSx 

· = log x /J(x/log x) + (log log x) ·i(x). 

Applying Theorem 2.2, one sees that this function has the order of 

maguitude 
O(x log log x), 

Wb.ioh is somewhat better than (16). 

In the following lemma the expression "the sum extends over all 

prime powers rP --~ x, where a is a· na.tti.ral number'' oocurs. This means 

that there is a term in the sum for each power rfX of a prime p for which 

TJX s x. For example, if ap is the greatest integer such that pap-~ x, 

them. I: log p is the same as :E ap( log p), or the same as 
'f!X$.x p~x 

I: log p + E log p · ·+ · E log p + ~ • · • · + I: log p, 
p~ p2 sx p3 sx ~ 

where k is the greatest integer such that 2k s x, It follows that 

k • 
= E 6( ~~) • 

Pl . 

i 

Lemma 2.11. It the sum .. is·extended over all prime powers rP -~ x, 

where a is a natural ·number, then 

(17) t log p = O(x) • 
p(i'Sx 



Proof: The sum on the left-hand side is equ.a.l to 

where k is the greatest integer such that 2k,1' x. This sum is at most 

equal to 
,D(x) + k 1(/"x). 

From Theorem 2.2 and the :f'aot that'\ k ~ (log x)/log 2, 

magnitude of D(x) + k D{/"x) is 

O(x) + log x O(/x) 
log 2 

= O(x). 

the order of 

Lemma 2.12. If f(n) is the function defined in Lemma 2.5, then 

E f( n) = ( log x)t1(x) + 2 E D(x/p) log p + o{x log x), 
ll~X ~X 

where the sum on the left-hand side extends over all positive integers 
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n ~ x, and where the sum on the right-hand side extends over all primes 

P ~ /"x • 

Proof: It follews from Lerj]ma 2.5 that 

(18) E f(n) = (log x)2 + E (2(1og x)(log p) - (log p)2 ) 

ll~X 

+ 2 E (leg p)(log q). 

Here the first sum on the right-hand side extends over all prime powers 

pa~ x, a being a natural number; the second sum on the right .. hand side 

extends over all primes powers r;P and q~ such that rfX q~ ~ x and 

p < q., where a and ~, are natural numbers. 

In th.e first sum on the right .. band side, the terms with a .i!: P. are 

o©ns14,ered. first. Let g(x) denote the number of' prime powers 'ff'·~ x 
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With ex :.t 21 then the contribution. of these terms to the sum is at most 

equal to 
2(log x)2 g(x) :s. 2(1og x)2 ( /"x + 3/'x. + 0 • • + Vx) 1 

where·k is the ~eatest integer such tba.t 2k :s. x. Tb.us the contribution 

does not exceed 

2(1og x)a k /"x ··~ 2(log x)2 log_.! /"x = o(x log x) • 
· .... log 2 

Qons:l.der next the terilll.ll With. a =- 1 in the first sum on ·the right-hand 
I 

side. The aontribution of' these terms is equal to 

I: (2(log x)(log p) - (log p)2 ) 
p:s.x . 

== I: ( lag x log p + (log p)(log x - log p)) 
p~' 

. .. = ( log x) I: log p + 
p!Cx 

I: (log p)(log x/p) 
p~ 

= (log x) t?(x) + o(x log x), 

according to Lemma 2.10. Thus the :t'irst sum on the right-hand side in 

formula (18) is equal to 

(19) (log x) ~(x) + o(x log x). 

Finally, consider the· second sum on the right ... hand side. Applying 

Lemma 2.11 for x/ q'p instead of for x, then one sees that the 

oo~tribution of the terms wttb. 'p ~ 2 and a~ 1 has the order of 

magnitude 
I: (log q) O(x/q,$) = O(x) I: (log q)/q'p = O(x) ; 

tor tlle infinite ser:t.es, E (log q)/~, extending over.all primes q is 
2 . 

convergent tor ·~ :it 2 .. Thus the second sum on the right-band, side is 

equal to 

(20) 2 I: (log p)(log q) + O(x), 



where the sum extemd.s over all primes -p and q., such that pq .,s; x and· 

p < q. The latter sum is equal to 

I: (log p)(log i) - t (log p)2 

pq~ ps/x 

= I! ( log p )( log q) ·+ E. { log .P )( log 1) 
p'1x q~~ . 
pq~ pq:i.x 

- E (lag p)(log qr_) ... 
pefx 
q~x 

E (log p)8 • 

p$/x 

. Aecord:Lng to Theorem 2.2., the last two sums have af···most the ~er of' 

magni:tude 

(f(/x) ) 2 = O(x) 

au 
(1.og /x) 1'({x) = O({x log~) 

respectively. Hence one eonclwies that -expressU.on (20) is equal to 

I: (log--p) f(x/p) ··-+ · E (log ca) ti-(x/p) + G(x) 
pefx · · q'{x 

= 2 .E (log p)···f(x/p) ··+ 0(x) • 
p~x 

Im:troduciq expressions ( 19) a,d C to) into formula ( 18)., one f':t.nall7 

o(x log x) 

I: :f'(n) = ( log x)8 + ( log x) -f(x) + 
~x 

+ 2 I: (log p) f(x/p) 
p-s:./x 

+ O(x) 

= o(x leg x) + ( log x) f(Jii)· + o(x log x) + 

2 . J. (log p:) ,.,(x/p) + o(x log x) 
p -~. 

= (log x).f(x) + 2 I: (log p) l(x/p) + · o(:x: log x). 
p'1x 
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This con~ludes the proof· of Lemma 2.12. 

ne proof of Selberg~s basic formula can now be given. 

T~eorem.2.5. If the sum is extend.ed·over all primes.p 1'./x, then 
'\ 

f(x)(log x) + 2 I: ab(x/p)(log p) ... 8x log x = o(x log x). 
-p$./x . 

Proof: Aeaording to Lemma 2.12, the left .. ba:nd side is equal to 

I: f(n) ... 2x log x · + o(x log x). 
~ 

Aoef)rding to the detiidtien of th~ :tunetion t(:o.)., 

I: :f'(n) = E E l(d) ., 
n$Jt dX di t\ . 

where the inner sum exteau over all positive divinrei d of n. Renae 

I: f'(n) • I: 1'.(4) [x/d]-·· .. -= I: 1'.(d)(x/d .. ed), 
n='X d$.X ~ 

where O ·$l ·ed.< 1. If z ·• x/(log x)2 , then 

lemce 

I: ( log x/ d)2 · ···~ I: ( log x/ d)1 ·+ 
d$x d$z 

• z(log x)2 + dS:x 
I: (e log log x.)8 

d>II 

s: z(lGi x)2 + 4x' (log log x)8 

d$x 
I: ( log x/ 4)8 

d>z 

= O(x) + 0 ( x(log log x)8 ) = o(x las x). 

t t(u) • ~ i(d) x/d + o(x log x) 
~. a,;:x 

= t x µ.( i) /4 ( log x/d.)8 + o(x log x), 
dSx 



aad, by L~mma 2.9, 

I: f'(n) == 2x leg x + o(x log x). 
m:liix 

This completes ·the proof ot S.f!lberg' s b~sic :f'ormu.1.a. 



CHA.Pl'ER III 

The·prime number theorem is usually stated as 

lim ~ 1 
X-DCCI" ~ = ., 

it ma;r a.+so 'be stated in otlber forms .. Ia-particular, it is equivalent 

to the -proposition 

lim 
x .._. ~(~l = 1 x • 

In this chapter the equivalence of' the two propositions above will 'be 

proved, and. then the second relationship will be established. Although 

mod.itied in ~rte., the proof'e ··given ·are from Na.sell [ 6] . 

Theorem 3. i. The pri~e rrumbe:r theorem 
- tni;: 

-1rl~L -i7lig x - 1 

is equivalent to the theorem 

and 

So 

Proof: :B;y definition, 

1:im 
x. -tao 

= l • 

i(x) ··= I: log p ; 

n(x) • I: l • 
p!Cx 

f(x) ~ n(x) lbg x. 

37 



If 3 < y s x 9 then 

Hence, 

rr(x) - y :s: n(x) - rr(y) = ~ 
y<pSX 

1 s !: log P 
y<p:S:x logy 

1 ( !: log p = !: 
log Y p:S:x psy 

log P). = #{x) = ~(Yl s #(x) 
logy logy 

?J(x) s rr(x) log x = y log x + log x (rr(x) - y) 

s y log x + ~og x ~(x) • 
logy 

1 
by choosing y = x6.9 where ,6 = 1 =.1.og iog x 1 one obtains 

Q s rr(x)l~=~ =ls l log x + l,2g x = 1 
J{.x ~(xT Slog x 

Since, acoord.ing to Theorem 2.2» D(x) > bx.9 i,;hen 

O s rr(x)log x = 1 < x01og x + 1 
#{xJ bx log log X=l 

Here the right=band side tends to zero for increa~iri.g x; consequently» 

which proves the theorem. 

li.m 
x~ 

The proof of the prime number the.or-em will now be given.9 stated in 

the follo'W"ing; form: 

(1) 

It f'ollows from Theorem 2.2 that for int~rea.s:ing x the quotient 

D(x)/x has a positive lower limit a and an upper limit A;then O < a :s: A. 
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Thus '.bo prove ( l)., om.e needs to show "that 

(2) a=A·-=l. 

·Tae pro(l)f' is bud oaSe~berg.•s fo~ula which was proved :ta the. pre­

oecl.1:ag chapter .. The formula is used :lu the tormt 

(3) D(x)/x + 2/(x log x) E D(x/~) leap - 2 = o(l), 
.. : ps/x : . 

where the s~ exteuds over all ppimes p ~ ./x. · The tolloWiq formn:161 · 

Whia.h :was· proved. in Clhapter II., is a.lse useful in the Foof': 

(4) E (log p)/p • log x + ~(l) 1 
pu 

wl!lere the sum .extends aver all primes p J Xo 
I . ,•· 

· Lemme. 3.1. It lina sup f(x)/x ··-m A. ar;,.4111:1.ln inf ,Cx)/x • a, 
x .... x -too 

thea 

(5) a. + A =·, 2 .. 

Proof': It is possible to let x tent to im.f'inity in such a way that 
i 

,Cx)/x tencls to A. Let c 'be e.. given positive 11umberJ then 

'· 
~i(x/p) > (a - c) x/p 

· for every x autticieatl.y large and f'er every pJii·me p , ./x-, ·a:ad., therefore, 

2/(x log x) :E . D(x/p) 101 p :t 2/(x leg x) I: . (a ... e)(x/p) log p 
p~x. . p~x · · · 

• 2(a-e)/los; x , I: (log "9/p,. 
. ·p.Vx . . . 

· It follows trom: ( J.t.) -that · the i r:l.ght-ha.nd s:14,e ot tlda 1mqual:I. ty teacls t; 

a ... e W'hetL x ..... . If' formula (3) is applie4., one obtains 2 ... A :;t a - c • 

The inequality h,lu tor every pe~i tjl ,re e ; eoa1Jequeatly' .,. 

(6) A·+ a -=· a •. 
h. the ·.other bad., it is poas!l'ble to let x tend to :Lnf':l.m.ty 111 suoh ·a 

way that l(x) tencla to a. It e 11 a given positive nwuber., thea 



· 1'(x/p) < (A + e)(x/ll) 
i 

toz: everyx suttiaiem:tly large and for every prime p s./'x, amt., ·therefore, 

2/(x lGg x) E i(~/p)log p, ~· 2/(x log x) E (A + e)(x/p) log p 
· . p~x · · P1if x · 

= 2(A + e)/'J,.og x E (log p)/p. 
#x 

.I'tr follQws from ( 4) that the right-hand side ot this inequality tends tt;> 

A + e whem x ~. If formula ( 3) is applied., then one obtains 

a - a -A+ c. The ineqUljLlity holds fer ever, pesitive c; therefore, 

A+ a :ii: 2. 

This inequality ·together· with (6)· l~ads to (5). 

I~ the followiq proof, let the var;f,able x tend to infinity in suoh 

a ma.Der that .6(x)/x. ~ends to A. 
' 

Lemma 3.2. It · l. is a given number >a,. and if' .the sum, 
S(x) = i• (log p)/p, 

exteadsover all primes p ·~ x and sueh that 6(x/p) ;t >..x/p, then the 

quotient S(x)/(log x) tends to zero for x -... 

Proof: Since f(x/p) • E log q1 then 
pq:s:x . 

E l(x/p) ;esp • E log p t log q • 
p:S:x p:$x pq~x 

I: log p E · log q + E log q E log p .. E log p t log q 
p:s:/x pq:S:X q,~x pt1'x .. · p~x q1'/x 

. a 
• I: t)(x/p) log p t E f(x/p) log q - ( I: log :p) · 

p$/x q~x · p~:x: 

• 2 t l(x/p) log p .. (1(/'x))1 

~x . •· 

Sinoe, by 'l'heorem 2.2 the last term has the arcler O(x)., t);lea Sel'be:rg•s 
•' • I 



formula (3) may 'be writt-en as: 

(7) "(x)/x + l/(x log x) E l(x/p) log p - 2 = 0(1). 
p:s;x . 

Let e be a positive number. For e·rery- x/p exceeding a. certain 
I , 

number u which depends on e, them D(x/p) > (a - e)(x/p). There exists 

a pos:1.'.t:lve number b depending on. u and so on e such that 

(8) IJ(x/p) > (a "' e )(x/p) - b 

for all the primes p such that x/p ·~ ~. 1Thus the latter inequality 

holds for every p ·:!!:: Xo 

It the sum x:·1 -extemds over all primes p :s; x sucah that 

D(x/p) :2: >..x/p,, then 

(9) E' D(x/p) log p ~ AXE' (log p)/p > 

(). ... a) x E' (log p)/p + (a - e) x I:' (log p)/p-. 

If the sum !:" extends over all primes p ··~ x such that D(x/p} < AX/p, 

· then by (8), 

(lo) E" D(x/p) log p > (a ~ e) x I:11 (log p)/p .. b i,(x) 

From (9) e.11d (10) one may deduce that 

I: i,(x/p) log p = E' ~(x/p) log p + I:" l(x/p) log p > 
p~x 

(a .. e)x I: (l!C)g p)/p + (). .. a)x E' (log p)/p .. bf(x). 
p~,i,: 

Su.'bst:ttutins: from this result into :f'erm.ul.a (7), one obtains f'or x tending 

to inf'init1 in suah a manner tha.t ~(x)/x tends to A, 

A + a ... e ~ (A ... a.) lim sup ~ 1!2§ p)/p :!i: 2 .. 
x ""* lag x 

Renae; reoalli:r:,.g a+ A = 21 
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lim sup E!{ lqg_ 2,)j_;p,, :s: r ~.,, 0 

x -f>Cl:j J.og x · ....... 

Since A .. a>· o., and since e can 'be chosen arbitrarily small, t~is gives 

the desired lemma.o 

Lemma 3.3. If µ. is a give:a positive number·< A, and if the sum, 

extends over all the primes p and q which satisfy the following 

conditions: p :s: /x, q :s: /(x/p) 9 and 1'(s/pq) :s: µx/pq, then the 

. quotient 

tend.a to zero for x -o co. 

Proof: Replacing x by x/p in Selberg 0e formula -on-e obtains 

~(x/p) = 2x/p + o(x/p) = 2/(log .x/p) . I: -D(x/pq) log q. 
q~· 

If this expression for i(x/p) :i.s introduced into the same formula, 

then one obtains 
9'(x) = 2x + o(x) -

2 (2x a ) t log p - + o(x/p) = __ ,,;.,x( I: t?( x/pq) log q 
.logx p~x p logxp q~ .· 

4V 
+ Ioi""x I 

Where 

v = I: ,O.(x/pq) log ,E, 101,9,. ., 
p,q log x/p 

the sum extending over all primes p a.nd q such that p ··:S: /x., q :s: .fxf'p. 

Since, by form~l.a (4), 



it follows that 

E log p/p = i log x + 0(1), 
p~X 

U{x) = 4V/log x + o(x). 

In every term of the sum V, p s ./x and q 1' /x/p, aud, therefore, 

pq = pi {pq2 )'! s x~xt = x:?,/4• Thus, if 6 is any positive uumber, 

then 

t'J(x/pq) < (A-+ 6 )(x/pq) 

for x sut'ficieatly large. 

Let 

V = E' + ···E" , 
where the first sum extends over all primes~ and q such that p $.fx, 

t 1- ./x/p., and t'J(x/pq) ~ µ.x/pq, and the second sum extends over all 

pr.imes p and q such that p $ ./x, q s .fxfp., and t'J{x/pq) > µ.x/pq. 

Tben 

V s p.x E' 1 log ~ log g, + · 
log x/p p q 

(A + a)x E" lo~ x7p lo: ~ lo: q , 

where the sums are ta.ken as above. Further, 

v :e ·(A + a) x w - (.A + a - µ. )x E • 1 log p log q 
log x7p p q ' 

where 

w = I: l lO§ }a log g. 
p,q log x/p p q 

= I: l lO§ E_ I: log g, 
p~x log x/p p q~ q 

, 

the suQIS extencUng over all primes ·p -s .f x and over all primes q 1- I x/p. . 



Apply'img formula (4.), one obtains 

B:enee "(x) ~ 

w = 

• I: log; P (! + 0(1)) .= t log x + o(log x). 
p'!ifx P 

( ) 4 ( · ) l log ;e . log q + A + 6 x ;. log x A + 6 ... µ. · .· x E' log x/p P q -~ x,· 

where~ ten.els to zero tc,r x- oo. from this, one deduces that 

· · 4 . (A. + , .. µ.) I:' log p log 9, ~ A + 6 _ 0-(xl + -~ 
( log x)'a · · · · p q x I 

where the sum is.the same as in Lemma 3.3. Hence, for-x tending to 

iafinity im:· such a mauner that. ·-b(x) /x temds to A, 

,llm su.p l x;u log p log q ~ . 6 
x -eco ( log x)1 P Ill 4(A-u) • 

S.ince .A·., ... p; > ·~, · ad J:lnoe 6 :ls au arbitrary ;positive number, this 

prGVes the lemma-~ 

ime; re~tion: 

(11) 

Suppose that A>· a, then there exists a positive number a> l such 

that A > a a .. :an4 a positive number a suoh that 

(U) 

further, denote ~7 Na ·matural number. 

Consider the sum 

s • Ia lo& R l!f i le 1-.91 r 
p q ll" 
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where r. extends ·over all the ·prim.es p and q such that 

p :$ ./x., . q :$. fi/p, pq 2: N., t?-(x/pq) ~ (A - 6) x/pq , 

aad nere Ia extends over all the primes r such that 

pq/cr < r ::!i:; a pq. 

It there are no primes r, the sum re is = ·O. 

l9r every term. in the sum re , then 

when xis euf':t'iciently lare;eo The f'olloWine; inequality Will be proved 

for the same terms: 

. (13) tJ(x/r) > (a-+·6) x/r , . 

when xis suttioiently large. This inequality is true for all r,~ pq, 

since 

-b(x/r) ct t)(x/pq) ~ (A ... 6) x/pq > (.A - &) x/ar 

:it: (aa + a6) x/ar • (a+ 6) x/r 

:l:ia virtue of ( 12). 

GonsU.er 11.GW the terms with r > pq. for these terms., x/r < 

x/pq ~ •x/r. If in Salberg'• formula., 

(log 7) tJ(7) + 2 I: t?-(7/p) l.mg p • 2 Y' log Y' + 0(7 log 1). . pff,/y ~ 

e:ae first rep-laces y by- x/pq &nd them. 'by x/r., one obta:f.Ds on 

subtraction 
( log x/pfV 8( x/pg.) - ( log x/r'J 6( x/r) · · .: 

2(x/pru (los x/pq) .. (2 x/r)(lcg x/r) +. o( ; log x/r). 

or -b(X/r) ct 

101 xfna _a, I > ( x x) I 1oe; x/pq. - 101 x/r. c I ) 
0 ~sa 'V\x pt - 2 -- - - - 2x pq - --- - - + ox r. log x r . pq r . log x/r · 



Row 

ani 

Tb.us 

2x/pq log x/pq - log ~t~ = b./PI.'~ 
log x/r ~ 

~ 2ax/r log a = o(x/r), 
log x/r 

f(x/r) . > (A.- 6)(x/pq) .. 2 (x/pq - ,x/r) + o(x/r) 

-·= 2x/r - (2 - . A + -6 )(x/pq) + · o(x/r) ; 

and, stnce a + A = 2 aud A-:- 2: u- · ·+ a6 + 26 , 

f:(x/r) > (a+ A)(x/r) - (a+ 6)(x/pq) + o(x/r) 

.i: (a+ 8liJ + a6 + 26) x/r .. (a+ 8) ax/r + o(x/r) 

:i!: (a + 26) x/r + o(x/r). 

U xis suttieieatly large, then 

· 1'(x/r) > (a + 6-)(x/r) • 

This proves ine.qualit;r (13) tor all r. 

Consequently, 

s .s; I: log r .rft lQf p log g. , 
r r P- q 

whex-e the tirst sum extends over· a·u primes r -~ x and. such tlla.t 

I( x/r) . ~ · ( a + 6) ( x/r) , and. Where the sum rfl extem.ds over all p:r:Lmea 

p and q such tbat 

p ~ /x, q ~ /xfp, r/a ~ pq < ar. 



Thus· 

• ~ log p log g. ,: 2, . I: log p E log q = 
P q· r pefx q$:1r/p .. · 

c/r I: (log p) l(ar/p) '< ei E (log p)/p < ea log x, 
p~x· p~x 

where Ci and G.I are positive constants. C~sequently', 

S :s: e; log x E (log r)/r , 
r 

where the sum extends over all the primes r ·:S: x and such that . ' ~ 

i(x/r) · :t (a.+ &)(x/r). By Lemma 3.2 one then obtains 

(14) 8 = · 13:i. {log x)• , 

where j2, tends to zero for x ~ c,o •. 

l'ow consider the sum 

T = t log p log q , 
.l) q 

extending over all primes p aud q such that 

p ~ /x, q 1' ./x/p, -pq ~ N. 

Then. 
l 

p~x · qu'lj:" 
T :t ( E log p ) ( E log q) • 

p.VN p q~ q 

llenoe by -t'ormula ( 4) 
T :a: { i··log x - i los/).1 + o(l)) ( k log x - i lowl{ + .o(l)) , 

Therefore, 

(15) T > Os (log x)8 , 

where ea is a pesitive. oons.tant • 
. ' 



Let 

where tbe latter sum exten!3,s over all the primes p and. q satisfying the 

condition$ 

p :si /x, q . :!ii . {x/p, pq :at: N, 8(x/pq) < (A - 6 )(x/pq). 

~his latter sum, in, virtue of Lemma 3.3,., is equal to ·~ (log x)8 , 

where · -Aa tends to zerc, for x ... cio.. Renee, 

r_ lo§ ,I' lo§. i ;: T '• !!la (log x)a , . 
~ ' q 

and in virtue of' inequality (15), 

(16) , 

for x su:f':f'ieiel!l.tly large. 

It in the sum Ie, one considers tor a fixed. value of x, the primes 
' I 

p . and q Shieh have the property that the Sum fe lo: t takes i tf!! Jni,nimum 

value i;t, 1 p. depends on x om.J.y:1 

'fben by (16) 

If one compares this result with inequality (14), one obtains tor x .. • 

tbet. 
l:L • Ia log r .. o. 

r 

Consequently, to every 1n;,sitive uum'ber e and to ever:, _natural m:wnber I 

there cor~eaponds a number t • pq ~ N such that 

< I I 



the s,um e;xtendins. over all pri-rnes r such ·that r > t/u and r··:!I:: at. 

HeI1.Ce 

log r < e at, 

and 

(17) 2'(0't) .. 2'( t/a) < e at. 

If N, and therefore also t, are suf'.:f'ioiently large, then 

· f(at) > (a. .. -e) at , 

and 
' 

2'(t/g) < (A+ e)(t/a) • 

Renee., it follows from ( 17) that 

(a ... e)a - A + e < ea ~ 
a 

This inequality bolds for every positive ~umber e so that one obtains 

e.o2 - A is. O. On the other hand., a.a < A and a > o. 

Thus., every number c:t-< A/a. has _the property that ·er ., A/a.. If a 

tends to A/a, then 

or 
A 
- ~ l • a 

Since a~ A and, a+ A= 2., it follows ·that 
I 

a • A • l. 



CHA.PT.ER IV 

REMARKS ON THIE 11 ELEMENTARY11 PROOFS 

Th!i~ "e.leme1:1.ta.ry11 proof.a of ·the prime number theorem emphasize 

ein.oe again. nr!8,t1 1 l!i endu:r·i:o.g pr.ogress in solving problems that seem to have 

ir10 ia,:iluMJ.:im. Th1:1i t,elephon1r~., tbe radio, the television, the a.irpl.$.ne, 

~1rtt1. a:r.0.l somr,:1 of 1;he results of man's success in solving other problems 

iiirh:Loh seemed. :f .. m:pos!fs:i.ble.. As late as 1932., Ingham [4], in discuss:t.ng the 

!:'?..:naly·t:tc. proof.lB., made t.he following statement: "The solution just out­

l:'Lo.ed. may 'be held tr} 'be unwatisfaetory in that it introduces ideas very 

:i:•@m.t:)'te :t':rom the or:tgi.nal p:woblem, and it is natural to ask for a proof' of' 

·the :i;rt•im~ number t:heorem nclt depending on the theory of' functions of a 

eompl@:i[ ,re.r:ia.blE:. Tr> thim1 we must reply that at present no such p;-oo:f' 

:!..~ k:t:tom:1.. We q3a.n. 1.1J.,leed g\, further and sa.y that it seems unlikely that 

ll;), ':r•ea.:1 v·a::i:•:te,b:t.e' p:r:·oof' vr:lll be discovered., at any rate, so 

ar; 't,h~ t:!'!.@tn•y :ts f'crnniied on Euler's i.denti ty .'' Thus, it is all the 

m,-:irQ11 :t'01nw,i:eka'ble t,hrd,t, in 19!~8, Selberg and Erdos were able to give 

p:i?ooi:'61 t.~:f' t,he p:r.:i.me nu1nbei:r. theorem. 

i,as:tc:i uernr 't,h1ng i.n the "elementary'' proof of the ·prime number 

r·,c,,,,..v,c,,,., :ltJ:i 8f~11;b~J:•g' s !lll,~iym.ptot1e formula. ( Chapter II). <From this f'ormule. 

r;;eyt,x•o.l. m:~ys tci d.eduoe the prime number theorem. The p:roo:f's 

:i.n Cha1tt,@r u: and. Chapt,er 1:1:I we:r.e based on the outline e.nd d.::t.s .. 

,:mK1l~i©lM3 o:t Nagel.1. ::(;!Jne f5.:r.st; proof of Selberg dates from 1948. 
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.1948 [6]. 

In hie polished pap®l" » SeJJt'il~rg preaienti; amother preo:f'. He se ... 

leetn the methoiil . . et pre.mt bia~f.l.Wllet it avoided the t\.'Ui>ncept ef lower and 

5.1 

upper l.im!ts al!lli thus ~eemed t~ be the most eleme:a.tary .·way. In h:ts intro-

. luciticu he gave a ilketch of hili first p?'OQf in which he made use et the · 

follffllll8 re!!!nil.t, by P. Eriil!.os.11 t:l:At!l.t tor a.u arbitrary poiz,:!.tive fixe4 

m.u.m.'be:r a, tnei:l\"1$ e:.'l!:i8t a K( 6) > O atlld ~u Xi® = Xe(6) ~ueh that for l>Xo, 

tllere ·are mere ·tmn K( 6; x/log :it pr:bntuiil tD the i~tenal from x to x + ax. 

Salberg ti!tEl.t,ie!l& that thei p:irHf' l®f Eries wa.11 {Q)b\e.im.ed Without knowleclge of 

his work.,. U(l'Jept that 1·t 11. ba$1!!!il ~n h.:J.s (Selberg's) formula; and after 

he (Sel'berg) ha.i the othti:1• part.Iii r,;;f the proof.\ He also states tba.t Erios• 

])roof eoataiu ~1.11'.ll.iiali rl!llla.t®d tit) hil!!l {Selbere;'/i) ·proof, at w1d.eb ideas b.e 

( Erto11) had arri''fed in<dle11pendently [ 10] • 

In the int:t"-'lil@t1Lie»n of hi!lil pape:11."9 Eriolf [2] gives a ver:, interest:tng 

aceoWll.t ot the prime lll!.wn'l~\11:l" theor*mo It g:I.vehs intight into the methocll.s 

uset 'by othe:r IJlllflfa im tli.d.$l. :t':iel(i. The e."1Cl(llhaD.ge of' idee.!111 as illust:l!"ated 

:i.m his pap~r, i!!l 'be1u~:tit~ia.l in th~ $\ii,lll"V"iug ot ma.ey p:t•oblems. 

In tb.ei i&ei~ott:i pa,rt of' h:ifsi ps.per, Sel'berg prov®!!l the basic formula. 

After proviug it 9 he pl•oeecdei by "!f.?'i ti711g the basic :f'ormu.1.a in a.nfl>ther 

f'o1•m.. He i!Qtr~lu,~et e. term R(x) 11 'b;r w.:r:!ting t?(x) = x + R(x). In the 
.\ 

third part !l>f hie pape::.•9 he continue1i by discuming sorne ot the prope.'t"ties 

ef' R( x) • And in th~ :f':i.rial pa'ri, .he prov~Hei tlw.·t 

lim !1& 
:it: ..... :g == l 

l.im :~(~), • 0 • 
.x ... = x 



. . . 
Sin@e t;b:e proof'~ by.Sellberg aiad Erdos, !()th.er mathema.ticie.~.have 

presented modifieatili)IW.. .E. M.. Wright- [ 11] ha.s given such -a. proof in 

which be uses the elmne:0,t~ of.' i::-iaL:ml.us to prement some of the eonoepts. 

lie points out tba.t uthe w:Je of the ~e.l~u.lus makes um1ie@flRl!$ary certain 

. cemple:d titiffi\\ of detail and show more ~lea.rly the fund.a.mental ideas 

( W'hi@'.tt a.re D of ~our~e' ~ISentially Seiberg i IS) /' Robert Breusch [ l] 

prove@l that, for every e > C'.i, thell! 

'1' (:x) = E 
pllls;x 

.. · + I/ 1 ""1/6 + e ) ..i..og p m :ir. . c,11.~ og; · x , 

and tbuei el&lta'blii'Jh~is the proof of' the prime n:wnber theorem ir.t · this form. 

other nath.ematicianB mvei also give~ ~ele:mentar,11' proof® ot' the prime 

number theorem.. The det~i.lffi!. . of proof$ in languages other _th.an English 

were not em.t1rely compreh~~i~le by this author. · It $eems, nowever, 

that the other proof$ i.nvolve the ba~ic ideas of Erdo$ and Selberg or a 

va.:riatioa or $1mp.li:f'i~a:tio:n of such c~oncept&'!l. Ea~h author hasp of' ciourse, 

pre$e:o:ted his proof by his o'W!l metho,i. Thus Erdos and Selbe:rg have 

tu:ihered in a new era :in the proof' of the primt!!l n1m'ber theorem. 
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