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CHAPTER 1
INTRODUCTION

Throughout the ages man has been interested in the
measurement of time.(l’ls) The first recorded time meas-
uring devices were sundials in Babylonia in 2000 B.C.

Then in 200 B.C. the Clepsydra (water clock) was introduced
into Greece. Since the Clepsydra did not depend on the
sun time which changed the weather conditions and seasonal
variations, it reached a high state of development and was
used in the homes of the more wealthy. The Clepsydra
developed along two lines:

l. In dry countries.the water was replaced by sand

and the sand timer or hour glass was born.

2. In other countries it evolved into an elaborate

and gilded mechanism.

This mechanization went to the extent that in 807 A.D. a
water clock that had twelve doors representing the hours
was presented to Charlemagne from Bagdad; each door opened
at the hour it represented and out came the same number

of little balls which dropped on a drum at intervals to
signal the hour. When it was twelvé o'clock, twelve
horsemen in miniature issued forth at the same time and

shut all the doors. This elaborate mechanism and train

1
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of cogged wheels has made the water cioék the anéestor in
the direct line_of modern clocks. | |
Between 966 and 1360 A.D. the true mechanical clock
was invenfed, but the exact inventor is unknown. All
clocks of this age were ponderous and the parts were made
in biacksmith shops. All the mechanical clocks were
weight driven. In 1500 the mainspring was invented by
Peter Henlein of N;rnberg. This aliowed portable timee
keepers to be built, and by 1600 the spring-driven tabie
clOckS were at the height of their popﬁiarity andfpocket‘
watches weré comihg into extended use. |
About 1685 the pendulum was applied to clocks and the
curved hairgpring and balance wheel to Watches. From thié
time until well past 1800 the only clocks built, except n
special ones, were pendulum clocks and practically the |
-only-balance-COntrdlled tiﬁékeepers were pocket ‘watches.
Thé.reason for this abrﬁpt ¢hange was the increased accu-
racy afforded by the pendulum and the hairspring balance
wheel. In 1655 a clock did well to keep time to five
minutes a day, but with the advent of the pendulum its
“error might drop to the order of five secénds a day; simi-
larly, = watcpesvwere brought from an almost unpredictable
pefformance fo'within two or three minutes a day. While
‘there are many claimants to the invention of both the
behdulum and thé hairspring, it is generally cohéeded that
Christian Huygens was the first to apply them in practical

~form to timekeepers sold to the public in about 1674.(13)
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 From this time for the next 100 years, many types of
escapements were patented. Among these were the cylinder,
the anchor, the duplex, and in 1750 the detached lever
escapement by Thomas Mudge.(lz) This lever escapement
practically replaced all the other types except the chronom-
eter escapement which is used for extreme accuracy and
which is too fragile for pocket watches and too expensive
for the household clocks.(l4)

The lever and chronometer escapements have one common
feature by which they differ from other escapements. With
most other escapements such as the verge, the cylinder,
and the duplex, the balance is never free from interfefence
by escapement friction. In both the lever and the chronom-
eter, the balance is free and out of contact with the es- -
capement during most of its oscillation and is acted upon
only during the mid-part of its swing, where interference -
produces a minimum of‘disturbance to its timekeeping.  This
featuré Justifies the name "detached" lever escapement.

In this long chain of advances in the watch and clock
technology there seems to be little evidence of a basic
analytical approach to the escapement mechanism as a whole.
True, certain elements of the escapement were studied
individually. A. L. Rawlings and Léudius Saunier, for‘
example, studied various portions of the escapement mech-
anism but, in general, did not consider the mechanism as
an entity.(l4’15) From all this the escapement evolved,

to a large extent, by cut and try methods. If it worked,
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it was used and all future parts were made just the same,
This is permissible for clocksfand watches where thé load
is essentially constant, but for varying iéaaé& mechaﬁisms,
such as the timers used in ofdnance,and rockets, one could
'~ g0 on indefinitely}with this method. Therefore, the pﬁrpose
of this study is to define in general terms the basic es-
capement as an entity and to determine analyticélly the
equations of motion. This will enable a ﬁrediction of the
results of varying certain parameters in the equations ahd
will give an idea of the operational characteristics with
a minimum of the cut and try procedure. fhis method is
compared with actual mechanisms to correléte actual per-
formance with analytical results.

From this study an apparently improved method of
torque senSitiVity control evolved. This method is out-

- lined in Chapter VIII.



CHAPTER II
PREVIOUS INVESTIGATIONS

One of the first mathematical treatments of a theoreti-
cal discussion on escapements was presented by G. B. Airy
in about 1827. Although it forms a basis for almost all
writings on the subject since that time, he confined his
investigation explicitly to pendulums constructed to swing
the bob over a cycloidal arc and therefore havé»the same
time of oscillation for all amplitudes (isochronous pendu-
lum). Many writers since that time overlooked this limita-
tion. However, A. L. Rawlings attempted to re-establish
Airy's more important resultslin a simplified manner.(14)
Rawlings continued the Airy investigation on the pendulum
and arrived at the same basic premise that (if zero is
defined when the bob is hanging straight down) before zero
a forward impulse shortens the period while a retarding
impulse lengthens the period. After zero a forward impulse
lengthens the period and a retarding impulse shortens it.
But as long as the impulse is consistent, any losses can
be taken out by regulating; thus it does not matter where
the impulse occurs so long as it is predictable; Rawlings

extended this approach to balance wheels and hairspring
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escapements by shaping the hairspring into an overcoil to
get isochronous results thus making Airy's analysis valid
for balance wheels. His objective was directed to practi-
cal application rather‘than to derive an analytical tool.
K. Giebel, in his dissertation in 1905 on the influ-
ence of the escapement on the running of clocks, obtained
an equation of motion of the form 6 + x(6 ¥ f£) = 0 which
he solved for a constant "x" and "f".(7) ‘He indicated
that a more rigorous treatment would be most difficult at
that time (x is some function of the hairspring constant
and f is a kinetic friction function with the sign change
on the friction f to accommodate velocity change). He
discussed the effect of the forcing torque but handled it
separately and apparently did not include it in his basic
équation of motion. His equation, as far as it goes, is
similar to the one derived in this study; however, this
study does include more effects than previously'considered
and it combines the experimental and theoretical approaches.
Several authors attempted to define the function of the
escapement, but they most generally tried to do it fromﬁf.
yi?practical rather than an analytical viewpoint. Theyffi
tended to treat a theoretical approach similar to the quote
by Mr. Saunier:
Analytical solutions possess a degree of accuracy
far beyond that which it is possible to obtain in
pPractice; and besides this we are ignorant of the
exact values of several of the principal elements

involved in the calculations, friction for example,
and this would render any purely theoretical results



open to question; we shall therefore, as in the

former case, only resort to elementary mechanical

principles. Supported by experimental evidence;

the solutions they afford will abundantly suffice

to satisf a%l the requirements of practical

Horology. (15

The tendency to rely on experimental data and
previous successes has been prevalent throughout the his-
tory of clock and watch development without an attempt
to arrive at an over-all analytical solution or the logi-
c51 epproach of coupling the analytical solution with
experimental data. Those who'did attempt analytical
solutions, did so with an interest in only one portion

of the mechanism rather than the unit as a whole,



-CHAPTER III
THEORETICAL CONSIDERATION

'The balance wheel hairspring assembly is the main
factor controlling the time rate of the escapement;
therefore, it is logical to begin the theoretical con-
siderationshere and prdgress through the other stageé.
The forces acting on the balance wheel are the hairspring
torque, driving torque, frictional torque, and inertia
torque. These make up all the external forces acting
on the balance wheel during its operation. Each of these '
forces requires a closer éxamination.

The hairspring torque acts with the balance wheel
to give an oscillatory torsional spring mass system.

If there were no other forces acting on the wheel and
the external conditions were unchanged, the system wouldi
oscillate at a given amplitude indefinitely and the time
of oscillation would be identical for each oscillation,
This is the optimum condition toward which one should
strive. This gives an equation of the form:

20 - 0
(o]

0+ w
where 0 is displacement and wi is spring constant Ko.

divided by the moment of inertia I, with the solution,



G»= Oocos wbt,

provided the bouﬂdary conditions are

©-06;0=0att-=o.

Friction is inevitable in any mechanical device.
There is a possibility of three friction forces acting
on the balance and hairspring assembly: (a)‘viscous
friction; (b) kinetic or sliding friction; and (c) aefo—
dynamic friction or damping. It is reasonably apparént
that if there are any lubricants there is bound to be
viécous friction of considerable magnitude. Since there
are_béarings, there is also bound to be sliding friction.
Aerodynamic friction exists but to a lesser degree;
according to calculations it is about 10-100 to 1 smaller.
Aerodynamic friction is not included as a separate term
in this analysis because it is small and will occur as a
part of one of the other damping terms. This does not
invalidate the analysis as the correiation is good;

By adding the damping terms for viscous and sliding'

friction, the equation of the balance wheel now becomes

é + wzg + Cé + R—g— = 0,
° | el

L viscous damping coefficient
where C = moment of inertia of balance

and R = Sliding friction coefficient
~ 7 moment of inertia of balance°’

One more term, the forcing function, must be consid-
ered before attempting to solve the equation. A look at

the forcing function reveals that this is the method by
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which power is supplied to offset the decrease in amplitudé
caused by the friction terms. A further look reveals that
this is supplied fo the balance'over'airelatively shortf
period of time; and, as was pointed out in Chapter I,:tﬁis
is the big advantage of the detached-lever.‘ During this
short periodvof attachment to the balance wheel, all 6f,
the energy needed to maintain oscillation is supplied to
the balancé along with any reflected motions generated
between the power source and the balance wheel. Basically,
by determining the shape, amplitude, and duration of the
pulse, the éum total of the train and eséapement charac-
jteriSticé can be applied to the balance wheel. This pulse’
will fhen;include such items as train inertia, gear friction,
tooth irrégularity, etc. Since this is the only time the
train connects with the balance, this must be true. There-
fore, by putting in this pulse, which includes the oddities
of the escapement train and power supply, the escépemeht,
as a whole has been taken into consideration and not part
by»partf The equation of motion for the escapement is then

as follows;

5 + w29 + Cé +'R—g- + X, =0,
o : o] (4}

where Xg is the above-described foréing function divided

by the moment of inertia of the balance wheel assembly.
As can be seen, this equation as it stands is non-

lineér sincé both the R and X terms can be nonlinear

functions. The“R and X terms warrant further consideration.

E



n

If ® = 0 when the balance wheel is at rest, there is

a forcing function of the general form shown in Figure 1,

Figure 1. Simplified Force Function

This forcing function is not normal in the sénse.thaﬁ‘it

is not time dependent but actuélly e depehdent; The fprce
is applied at a certain angle regardless of the time, The
balance wheél determines when the system reaches that angle,
Thls for01ng function acts more as a negative damplng term
than a forcing functlon. This can, however, be converted

to a time function by considering 90 to be at time t = 0.

Thé:above'plot then becomes Figure 2,

X

Figure 2. Force Function vs. ot
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Because of the unlocking of the esdapément before the
éower stroke, a more exact plot of‘x9 vs wt is shown in
Figure 3. Ré is, in general, constant over the complete
cyéle; however, since é changes sign at m, the plot of
Ry vs wt is approxiﬁately.és shown in;Figure 3. |

A comparison of the two functions reveals that between
each set of vertical lines both functions}are constant
over the interval. This allows the original equation to
‘be separated into fourteen equations with'matching end
conditions between each segment? This cén be progfammed
for the IBM 1410 cdmputer. Thié program is defined in
Appendix B. The fourteen equations are ofvthe form

é} + wilol +_Cél + R, + X, =0,
?
)
5

2 . '
014 + w01914 + 0914 + R14 + Xl4 = 0.

X and R are now constants. The sblutionsvare then of the

form _ , » ‘
0, = e-Ct/2(Alcos w;t + Blsih alt) + 5%—‘+ E%—,
o1 %o1
, ,
)
’ ' R X
9,4 = efCt/z(Al4cos w;t + By,sin o t) + -%i + 34,

5
Wo1 @01
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One may observe in Figure 4 that some of the segments
do not end at a change in X or R such as between 1 and 2,

6 and 7, 8 and 9, and 13 and 14. This is simply an addi-
tional segmentation to allow for compensating a nonlinear
hairspring constant if this happened to be the case. It
might also be observed that this basic equation can be
used not only of the detached lever escapement but also
for any of the other escapements provided suitable R and
X functions can be described,

Now that the mathematical model has been determined,
the equations can be solved,

The previous graphs of the functions over one cycle,
or 2m, form the basis for the solution. For computational
purposes, the sign as shown in the graphs must be observed.
For instance, Xg, Xll’ X12 carry a plus sign while X4, XS’
XlO carry a minus sign. Rl through R7 carry a plus sign
and RB through Rl4 carry a minus sign. The sign convention
represents the dissipative system influences, the direction
of rotation of the balance wheel, and the change in the
sign of the velocity at n.

In the Xg vs wt plot, X3 and Xl@ are dissipated
energies caused by unlocking the escapement, while X4,
ng Xll’ and X12 are augmentative terms arising from the
escape wheel acting on the pallet.

In the R vs wt graph (Figure 4) all the energies are
dié@ipative kinetic friction terms. Normally, with true

kinetic friction, all R's should be equal. Should there
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be a deviation arising from some nonlinearity in friction
that is known, it can be remedied by changing some of the
R(n) terms. The wolterms allow‘for four shifts in the

hairspring constant if it is found to be nonlinear. These

shifts are at Ol, 95, 97, 99, 912, and © If the hair-

14°
spring is linear, ©, is left constant and the equations
are considerably simplified.

The fourteen segment "end times" are

g -8 T _sp 5
| 5 e
TT2 = wl ) | TT3 = wl + _ wz ’
1. T
Z-5 Z= -5
2 5 - « ' 2 o)
TT4 - Wy * wy TT5 - Wy * w5’
] . - 8_
TT6 = TT5 e TT7 = TT5 + o
3 3
e 3-8 - 2G -8
TTg = TT, + S, - TTy = TT, + = ,
4 4
- g -¢ - R
TT;o = TTy + e TT;; = TTg + e
- g_ = TT
TT,p = TTg + o3 TT)s = TTy, + %E,
TT,, = TT +-9- TT,. = TT,, + z-¢
e T TR Yoo 15 = 114 .

The equation to be solved is
2, . o 0 ,
09 + CO + RQTZT + XG = 0;

0+ w



17

the boundary conditions are

L]

©=0;06=0;t-=0,

o}
The solution is

R [ ]
e = e'Ct/z(Acos wt + Bsin wt) + —g —ge + —g.
' W, |e| W,

The solution to the equation, when separated into fourteen

linear equations, is of the form

R X
~_=Ct/2 . n n
On = e (Ancos wit + Bn51n wit) + 5= + 5.
‘ ’ ©oi Doi

These solutions are tabulated below. (See Appendix A
for a more complete derivation).
These solutions are based on the sign convention

previously discussed.

91 valid from t = 0 to t = TT.:

20
Lt/ . !
6, = e (A)cos w;t + B;sin w,t) + ——,
} )
val ol
V/4w§l - c2
(01 = | 2 ‘ ]
2
BL = Oon
1" 20,
R
-1
Al = go - —wz'-‘ 9
ol
R,
Bl = (Go - —2—-)BL1.

wol .
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)

92 va11d from t= TT2 tot = TT3:
| Ct/2 - . Ry
6, = e (Azcos wot + B,sin wot) + —5
W
ol
2 2
_ woz-c
Wo = 2 ’
C
BL, = 5~
2 2wy’
E = wl(TTz),
B1 _
Ay = - ag(wzsinvE(BLzsin E - Cos E)
~w;sin E(BLlsin E - Cos E))
A .
+ ag(wécos E(cos E - BL,sin E)
+ wsin E(sin E + BL, cos E))
) (Rl' ) R, )(BLzsin E - cos E)
.2 2* —CTT2/2 ?
Wo1 ©o2 e '
. wl 1(51n E + BL;cos E) + B (BL sin E - cos E)
B2 = w2 (BL sin E - cos E) B
sin E + BL,cos E
- A ( 2 ).
2 BL2s1n E - cos E

93 valid from t = TT

3 to t = TT4: |

Ry x

(Azcos w2t + Bzsin wyt) + —2— + =5,
)

Wo2 )

e-Ct/2
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{4w2 - C2
} _ 02
P2 =73 ’

- F = wz(TTs),

n. Bo - Ry -X5) |
A3 = AZ- 2 _ﬁ,frs/z (BL281n F - cos F) 9
wbze

| (Ry - Ry - X3)
Bs = B2+, 2 -CTT3/2 " (Sln F + BLZCOS F).

W, o€
9, valid from t =‘TT4 tot = ITy:
' : R X
94v= e'Ct/z(A4cos wyt + B,sin wzt) + f%- +M—%—,
' ' ' W2 Woo
G = wz(TT4),
(R, - R, + X, - X,)
3 4 3 4 .
A, = Az - > -CTT4/2 (BL2s1n G - cos G),
W o
Ry - R, + X, - X,)
_ 3" Mg tAz - RXy) |
By = By + o —CIT,/2 (sin G + BL,cos G).
W0
5 valia from t = TTg to t = TTg:
S o Re X
95 = e Ct/z(Ascos Wzt + Bgsin wst) + 5 + —g—,
- ©53 ®o3
\Z4w§3-—02
Weg = ) ’
: C
BL, = 5——
3 2w3’

H = wz(TTS),
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By

A - =
Wz

5 (wgsin H(BLgsin H - cos H)

- w,sin H(BLgsinEH - cos H))

A
4 .
+ ag(wscos H(cos H - BL.sin H)

+ wzsin H(sin H + BLZCOS‘H))
) (R4 + X, _ Re + xs)(BL3s1n H - cos H)
5 2 -CTT5/2 ?
Woo 93 e

wy, A,(sin H + BL,cos H) + B, (BL,sin H - cos H)
_ P27 2 4\ PHg )
- ' (BLssin H - cos H)

B
5 W=
sin H + BL.,cos H
- Ac( S )
S5 BLasin H - cos H’®

96 is valid from t = TT6 to t = TT7:

R
9 = e'Ct/Z(Ascgs wzt + Bgsin wst) +,—g—;
. W
03
L = wS(TT6)’
402, - 2
_ 03
Wz = P ’
| (R; - Rg + X5) .
Ag = As - > -CTTG/Z (BL3s1n L - cos L),

Bg = Bs + . -CTT6 5 (sin L + BL,cos L).

©7 is valid from t = TT, to t = TTg:



o
-Ct/2 , ) _

97 = e ct/ (A7cos Wyt + B.sin w4t);+ —%—,

: w
04

102, - c?

Wy = 3 ’
YC‘ )

B]’_,4 = Twz,.

Bg

A, = = =2
Wa

" (w4sin M(BL4sin M - cos M)

- wssin M(BLssin M - Cos M))

Ag

o+ az(w4cos M(cos M - BL4519 M)v

4 wssin_M(sin M + BL3cos M))
" BL4s1n M- cos M

- (2 - 3 )( 3 )
-CTT./2 ?
Y03 Yo4 e 7
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o3 As(sin M + BLscosAM) + BG(BL3Sin M - cos M)

7= w4( (§i4sin M - cos M)

B

sin M + BL,cos M
- A (e 4" )
7'BL,sin M - cos M”°

Og is valid from t= TTg to t= TT

9
0, = e'Ct/Z(A cos w,t + Bgysin w,t) + E§_
8 = | 8 Wq 8 Wy R

wo4

N = w4(TT8),

)
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R7 - R8 ,

A, - (—————ET——7§)(BL sin N - cos N),
9’04e

, = R
B7 + ( R7 8
-CTT./2

2 e 8
wo4

)(sin N + BL,cos N).

99 is valid from t= TT9 to.t:= TTlO:

e

w

9 =

3

R
(Agcos wzt + Bgsin wst) + ;%—,
03

_ o-Ct/2

2 2
_ 0)03 - C
= 5 ’

P = (,04(TT9) ’

B

9 =

B
_ 8 . . -
= - 5§(w381n P(BLssln P - cos P)

- w4sin<P(BL4sin P - cos P))

A
'8 .
+ Bg(wECOS P(cos'P - BL3s1n P)

+ w4s1ﬁ P(sin P + BL,cos P))
_ (RB _ R9 )(BL351n~f - CcOoS P)

.w2 w2 - -CTTg/z ’
: o4 03 e

w, Aq(sin P + BL,cos P) + B (BL,sin P - cos P)
__4.78 4 8 4 , )
wa (BLssin P - cos P)
- sin P + BL.,cos P
~ A( S 3 )
-9 BLssin P - cos P/*

910 is valid from t = TTlO to t = TTll:
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‘ R, X
_ . =Ct/2,, . . 10 . *10
910 = e (Alocos wzt + B,,sin wst) + 5= + ~5
. @53 ©o3
Q = w3(TT10)’
(Rg - Ryp = X. )
9 10 10 .
Alo = Ag - 5 -éTTI6/2 (BL3s1n Q - cos Q),
0 .e .
03
(R, - R -X;A) .
. S 10 10 .
Blo = B9 f . 'ETTlo/z (sin Q + BL;cos Q).
wose
Oll is valid from t = TTll to t = Tlet
| | R X
-Ct/2 .
0,, = e Ct/ (Allcos.wst + By;sin wgt) + ;%l + —%l,
03 ©o3
R = wS(TTll)’
(Ryn = Ryy + X940 - X,,)
, 10 11 10 711 _ .
Ajp = Ay - > -C"I_‘Tll/a‘! : (BLzsin R - CosR),
W, e
. . i (R - R + X - X. ) . .
_ 10 11 10 11 .
Bll = B10 + . “CTTll/z (s1n‘R + BLscos R).

e

12 . is valid from t = Tle-to t =TT

wose

13
4w2 - 02
. 02
Wy = p) ’
C
BL, = =——
2 v2w2’
S = w3(TT12),
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Bua .o in
- EE-(w2SIn S(BL,sin S - cos 8S)

12
- wgsin S(BLsin § - Cos S))
All : : .
+ 65—(wzcos S(cos S - BL251n S)
| + wgsin S(sin S + BL3cos‘S))

) (Rll + xll R12 + Xlz)(BLzsln S - cos S)
2 2 TT ’

o3 o2

3( ll(31n S + BLscos S) + Bll(BL sin S - cos 9

B2 =5, ~(BL,5In S - cos 3) )

sin S + Bchos S
12(BL sin S - COS S)°

013 is valid from t = TT13 to t = TT

14%
~Ct/2 | . Ri3
913 = e (Alscos wot + B, zsin wzt) + 5,
w
_ - 02
T = wé(TTl3)’
(Ry5 = Ry, + X,,)
, 12 713 12 .
Az = A5 - 5 —CTT- 372 (BL2s1n T - cos T),
Ry, - Rin + X,5)
12 13 12 .
Bl3 = B]_Z + > :ﬁ_f]_;/z (sin T + BL200S T).

wooe
] . . ' ' _ .
14 is valid from t = TT14 to f,f TTlS'

R
. - 2,.. v . 4
914 = e Ct/ (Al4cos wlt + Bl4s1n wlt) + —%—,

ol
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U = w1(TT14)9

B v
13 . . :
Ajg = - BI-(wlSIH U(BLls1n U - cos U)
- wzsin U(BLzsin U - cos U))
N

13 .
+ EI—(wlcos U(cos U - BL151n U)
+ w,sin U(sin U +'BL2cos U))
R14 BLlsin U - cos U

- ( - — )
2 2 -CTT, ,/2 ?
o2 o1 e 14

w2( 13(81n U + Bchos U) + Bl3(BL2s1n U-cole

14 © ©y (BL sin U - cos U)
sin U + BL,cos U
- Ay, G L )
14°BL,sin U - cos U

For the second cycle the first term is:

R

~Ct/2 )

6, = e Ct/ (4, cos w;t + Bysin o;t) + —%—,
‘ o

W1
157"
The new Al and Bl are:

with V = wl(TT

(Ryy - Ry
-CTT /z(BL sin V - cos V),
2 15

©51€
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f;(sin V - BLlCos V).
All future terms are the same provided TT15 is
added to all the times. That is, TT, would now be equal

to the old TT3 + TTls; TT4 = old TT4 + TTlS’ etc.

If Wo1 is linear, many of the coefficients simplify
considerably: |
Wol T Wog = Woz = oy = Wo
BLl = BL2 = BL3 = BL4 = bl’
®p = W = Wz = Wy,
R
Al remains equal to (90 - ;ﬁ)bl’ '
.0 :
5 -CTT2/2
Ay = Ai - (Rl - R2)(blsin E - cost)/woe » ,
' 5 -dTTz/z
B, = Bl + (Rl - Rz)(sin E + blcos E)/woe ,
' 2 -CTT3/2
Ag = Ay - (R2 - Ry - Xs)(blsin F - cos;ﬁ/woe ,
By = By + (Rz,- R; - X3XS1n F + b, cos F)/woe . )
B4 = 33 + (R$~R4+X3»X4)(s1n G + blcos G)/woe ,
5 -CTT5/2
Ag = A, - (R4—R +X -Xs)(b sin H - cos H)/w e .
-CTT5/2'
By = By + (R -R+X -X5)(S1n H + blcos H)/w e s
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10

11

11

13

12

. | o =CTT/2
A5-(R5-R6+X5)(bls1n L - cos L)/woe o

| : : o =CITg/2
Bs+(R5-R6+X5)(sin L + blcos L)/woe S

Ag- (RG-R7)(b sin M- cos M)/w e R

B6+(R6-R7)(sin M+ blcos M)/woe R

5 -CTT8/2
A7-(R7-R8)(blsin N - cos N)/woe ,

-CTT8/2

B7+(R7-R8)(sin N + blcos N)/wie ' ,

AB—(RB-RQ)(blsln P - cos P)/woe s

B8+(R8-R9)(sin P + blcos P)/woe .

Ag-(Rg-RlO-XlO)(blsin Q - cos Q)/woe

o : . . ) -CTT10/2
B9+(R9—R10-X10)(sin Q + blcos Q)/w e

’

9

27,

5 -CTTll/Z

Ao (R10 11+Xlo 1l)(bls1nR-cos R)/w e
Blo+(Rlo;Rll+xlo-XllX$inR-+blcOSRVQ e
All-(Rll-R12+Xll-X12XblsinS-gosSYw%e
Bll+(Rll-R12+Xll-X12XbinS-+blcosSVwoe

Alz—(Rlz-R13+X12)(blsin T - cos T)/woe

’ .

-CTT11/2

?

-CTT,,/2

1

k)

k]



13
14

14

=

= Als-(ng—Rl4)(blsin U - cos U)/woe

Blz+(R12-R13+X12)(Sin T + bycos T)/wSe

2 -CTT14/2

. g =CTT,,/2
Bl3+(Rl3-Rl4)(31n U + b, cos U)/woe |

?

28
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CHAPTER IV
APPLICATIONS

This chapter will discuss the uses of this work in
evaiuating unit data and what can‘be expected as a general
result. It will be divided into four topics to simplify
discussion:

1. Unit curves,

2. Computed unit curves,

3. Bstimation of unit parameters, and

4. Operational curve estimation.

Graphic plots are generalized to a great degree in
order to obtain the most information on a minimum number
of plots. There are four different types of graphs
presented here. The most numerous type is the "computed
unit curves." This is a graph computed from the solution
of the equation of motion with certain values of viscous
friction (C), forcing function (X), and kinetic friction
(R). Since it is possible to convert readily between
R and X, they are combined into a function (K) that will
be discussed later. Each graph is for a constant C/wO
with each curve on the graph at a diffefent;K; The ordinate

of the graph is balance wheel amplitude and the abscissa

29
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is number of cycles from release or zero time. The second
type of curve, "unit curves," is identical to the "computed
unit curves"'except‘it is a measured curve plotted with
data taken from an actual operating unit. This plot will
bé compared with the "computed unit curves" later in order
to obtain the parameters C, X, and R. Thé other fwo curves
allow any Xn/wi to be converted to an equivalent Rx/wi.
Both have as ordinate Rx/wﬁ; one has an abscissa of

Xz/wi and the other Xs/wi with B = 0 and o = 0,»respectivel&,
with individual curves for variations in the duration of
'x2 and X3 where a and B are the angular measure of the

duration of the forcing function.
Unit Curves

The "unit curve" is nothing mofe than a plot of the
peak amplitude for each cycle of the balance wheel in
radians vs. the number of cycles or time for a specific
input tordue. The recording begins when thé unit is at
zero cycles with a maximum amplitude of "ovérbank" (6.28
radians for the units tested) and allowed to continue
until a steady amplitude is reached. The recording is
then plotted as an amplitude decay curve to a suitable
scale.

The reason for obtaining unit éurves is twofold.
First, considerable information can be gained,about the
operating unit with the unit curve alone; and, second,

the evaluation of the unit curves in conjunction with
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~the "computed unlt curves" will allow a gquick estlmate of
the relative values of C, X, and R. For 1nstance, if one
obtains three unit curves from the unit of interest for

, 1nput torgques of A, 2A, and 3A, they mlght resemble
’.Flgure S.

AMPLITUDE

CYCLES

" Figure 5. Unit Plot

First, dne notices that the change in amplitude between A
and 2A is the same as between 2A and 3A (within the
tolerance of measurement). Thus, for any torgue cohdition,
ekcept those approaching zero amplitude, one can estimate
closely_the‘aMplitude of oscillation. vIn this instance,
overbénk would occur at about 4A. The unit must maintain
some minimum amplitude to operate, and near this minimum
the unit does not exhibit this linear property necessérily.

The method of measurement of the maximum amplitude
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pér cycle was by means of a light beam photo-cell arrange-
ment. This was supplied by Sandia Corporation. The light
beam to the photo-cell was broken each time a notch in

the balance wheel passed between the bulb and the photo-
cell, The output was applied to a Hewlett Packard 450A
Amplifier and then a CEC 5-124 oscillograph. The results
were recorded on light-sensitive paper. There weré sixty
notches in the balance wheel giving a resolution of plus
or minus one notch or plus or minus six degreeé in ampli-
tude. The testing procedure was to apply a known torque |
to the escapement through a test fixture and to displace>
manually the balance wheel to the overbank condition. The
recorder was then started and the balance wheel releésed.
The recérding was allowed to continue until a steady
oscillation had been reached (for these tests about six

- seconds). This procedure was-repeated-for-three different
torques, and then the number of notches were counted and
plotted on graph paper corresponding to the amplitude-that
number represented. In order to-obfain the same rep- |
resentative portion of the cycle, every second set of
oscillations was used. To obtain a more aécurate ampli-
tﬁde count, the notch under the light source with the
balance at zero amplitude was shortened. This short

tooth gave less signal and was easy to dlStlngUISh as

depicted in Figure 6.
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/-short tooth

1/2 CYCLE

Figufe 6. ReCorder Chart

sV
< G
\

~ GRAIN OF WHEAT

LAMP

30 V.

) : M._E’
: >
-____——J g o Mer

~ PHOTO-DIODE 100%|

AC
AMP. | 20 db-
GAIN

Figure 7. Schematic of Amplitude Measuring’Equipmentv
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Computed Unit Curves

Thes¢ curves are similar to the "unit curves" except
they are generated from the'solution‘of the'equation of
motion discussed in Chapter ITI. All of the computed
unit curves used with this study and included in the
Appendix C were generated with the ten-step computer pro-
,gram'of Appendix B. This program is used to compute the
positive maximum value of the oscillation at the same point
in each cyclé along with the number of cycles and thev
values of C/w_, R/w>, Xz/w>, and X,/w> and to print this
information for each cycle. From this it is easy to plot
the computed ﬁnit curves. Since R/wi times some constant
is equal to Xs/wi times some other constant and is also
equal to Xz/mi times still aﬁother conétant, it was ex-
pedient to combine these constants and plot a combined
éiﬁgle.#alue K rather than various values of each of the
constants., - | | |

Thus, a "computed unit curve" with a Speéific C/w,
and a certain K can be obtained by setting R/w% = 0;
Xé/w% ; 0; and Xs/w% = A, This same curVe'can also be
obtained by setting R/w> = -B; X,/02 = 0; and X5/02 = O.
A third method of obtaining this same identical curve

T 5 _ , 5
would be setting R/w_ = 0; X5/ 0, =‘-D; and Xz/w_ = 0.

2

Since R/wi acts over the entire cycle and Xs/mi and Xz/w0

act only during a short portion of the cycle (forcing and

unlock), it becomes necessary to have some equivalence.
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factor or graph factor to convert A to B and B to C depend-
ing on the duration of X2 and Xs.‘ All the "computed unit
curves" in this document, unless specifically noted, were

computed with A = K and R/wi = Xz/wi

= 0 with a duration
of Xs equal to plus and minus 0.2786896 radians. Thus,
the graph factor on K is 3.650. This means that if K is
divided by 3.65, B is obtained. Then by means of the
other two tybes of graphs one‘can convert to any duration
on X2 and Xs, and thus use these computed unit curves for
escapements other than the one discussed here.

Figure 8 is a diagram of a relative compariéon of X2’

X3, and R. One must adhere to the sign cohvention as -

shown or erroneous computation will result.

. |
e [ .,
2 | o |
g RN ot
3larpl™4 | 1| ey fepss -
. ) o [+
R|
Ry (n= 12345)
oL wt
"Ry (= 6789,10)
= = a3z 1

Figure 8. Ten Step Division of X and R
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All computed unit curves assume

3 = ~Xo»
B o= O', o = B =Y = IJ,,
Rl = R2 = e e e e = R5 = _RG = -R7, e o . e o = —Rlo’

and W, is constant over the entire range.
Estimation of Unit Parameters

Certain values over and above the "unit curves" just
discussed will be required for the estimation of unit.
parameters by the graphical method. The method will be
outlined by means of an actual example based on a test
unit in this study. This method will entail the use of
all the curves previously discussed in this chapter in
addition to values that either can be measured from the
unit or computed from the detailed drawings of the unit.
These include draw angle (0.3551 radians) and powér angle
(plus or minus 0.2787 radians). The draw angle is defihed
as the angle the balance turns during unlocking the
escape wheel. The power angle is defined‘aS'the angle
through which the balance turns during the time the
forcing functions act; this angle is measured from "O"
beat position both plus and minus.

The first step after the above values have been
determined is to estimate C/wo. This is.done by matching
the above "unit curves" to some "computed unit curve"

as closely as possible. It would be rather unique if a
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"unit curve" should fall exactly on a "computed unit curve;"
therefore,’@ood judgment must prevail in matching the curves.
This is also another good reason for using several differ-
ent torques when taking data for the "unit curves." This
provides an opportunity that one of the curves is more
likely to approximate a computed unit curve. Should it be
obvious that the unit curves are out of the fange of those
curves available, other curves can be generated raﬁidly
for different C/w values. This was discussed under the
second topic in this chapter. Figure 9 shows the match
of the unit curve with a “calculated or computed unit
curve" where C/wo = 0.0515. This curve was generated
especially to show a close match condition. From the time
marks on the recording paper the frequency of oscillation
is 2,574 cycles per second or ol = 16.173 rad./sec. From
the solution of the equation of motion, Chapter III,
4w2 - 02

W = ——
‘and with C/w = 0.0515, C and w0, are found to be 0.833
and 16.174, respectively.

Now it is‘necessary to determine the K value for the
curve. Although K and C are not independent, once C has
been found any change in K is linear with a change in X
or R, It is permissible to interpolate in the flat region
of the curves without appreciable error. Thus K = 0.214

for the 100 gm load. K is a combined function consisting
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of the'forcing function (Xs/w35, the kinetic friction func-
tion (R/wi), and the négative forcing function (xz/wﬁ),
This negative forcing function occurs during draw or unlock
when the balance isvdoing work dn the lever., |

K, is found by dividing K by the graph factor,

R

0.214/3.65 = K, = 0.0586.

R
By measurement, the particular loading fixture which was
used in these tests was found to inpartAa torque of 0.007155
in-gms to the balance during unlock and 0.06215 in-gms
‘during power for every 100 gms load on the input to the

fixture. This information must be determined for each

fixture,

X, = M2/I where M, is the input to the balance during
the unlocking interval and I is the polar
moment of inertia of the balance

© 0.007155 in-gms x 2.205 lbs,
Xg =" ' T =7 2
v 1000 gms 1.10 x 10”° in # sec
x2 = 143.41
X3 = MS/I where M3 is input to balance during power

or driving phase

Xy = 0.06215 x 2,205 —— = 1245.8
1000 x 1.10 x 10

2 /2
or Xo/wS =.5,49 and Xz/wg = 4.77.

After determining from drawings or measurement that
the draw angle is 0.3551 radians and the power is plus

or minus 0.2787 radians, one refers to Figure 10 where
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= 0,2787, B =0, and € = 0,2787 + 0.3551 or 0,6338,
€ is the angular measurement to the'beginning of the
unlock interval. The curve of interest lies'approximately
on the line 0.3, 0, 0.60. The curve label sequence is
(@, B, €)~(0.3, 0, 0.6). Thus, at X,/u> = 0.549, a
corresponding value of Rx /w% is 0.073.

Likewise, on the second curve (Flgurell) find at
3/m is 4.77, Rx /w is 1.30. The curve to use in this
’ 1nstance is approximately one-half the dlstance between
(0, 0.25, 0.25) and’(O, 0.3, 0.3) where a is 0.2787 and

B is 0.2787. Other relevant computations are
2 2 ., 2
Rxs/wo - sz/wo - R/“’o = Kps

1.30 = 0.073 - R/w> = 0.0586,

or R/2 = 1.168 and R = 305.546.
| Ré/I - R, R, = 3.36 x 10~ #in/rad.
R = 305.546, w, = 16.174,
X, = 143.41, ©, = 16.173,
Xy = 1245.8,
C = 0.833.

These values subétitutéd into the solution of the equa-
tion of motion would lead to the "computed unit curve“
as shown in Figure 9. - A family of curves could now be
generated by changing the input load aﬁd thus varying

X2 and Xs.
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Operational Curve Estimation

The family of curves discussed above are for‘a spe="
cific C and a varying input torgue. Many times it will
be necessary to estimate how a change in R and C will
affect the resultant operation of the unit. There are |
two approaches to estimating this effect. The simplest,
assuming computer time is available, is to put the new
values in the solution to the equation of motion and
compute new curves., If this method is used, five data
cards need to be punched with the following values con-
taining no more than 10 digits each:

Card 1: o, B, Y, By Cy O, w3
Card 2: p, oy

Card 3: Ry, Ry, Ry, Ry, R;
Card 4: -Rg, =R, -Rg, ~Rg, ~Ry,;
C&Td 5: Xac) "'”XBAB ""X43 “"'x79 X39 Xgo

For the sample problem they would be as follows:
2787 .2787 L2787 .2787 ,833 6.28 16.174
.6338 .6338
305.546 305,546 305,546 305.546 305.546
-305,546 -305.546 -305.546 ~305.546 --~305,546
143.41 ~1243.8 -1245.8 +~143.41 1245.8 1245.8
In some instances a program cannot be computed and yét
there is}need to know what should be expected with a
change in a parameter. A change in R is easy to evaluate.

One simply computes the new R/wi; finds the difference
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between the old and new R/wi; multiplies the change by
3.65; and applies it to the known.K by addition. This
value will be the new condition for the unit, and the new
amplitude will be the steady-state amplitude for the unit
under these conditions. A change in C will not only change
the decay time characteristics, but also it will change the
amplitude of oscillation. By the use of Figure 12, it is
possible to estimate the change in amplitude caused by a
change in C., The abscissa is C/w0 and the ordinate is a
decimal multiplication factor to be applied to the'amplia
tude for correction. For instance, if‘C/wo was previously
0.040 and the new C/wo was 0.060, it would be expected that
the amplitude would decrease by 0.83/1.2 x old amplitude;
thus, the new amplitude is 4.20 x 0.83/1.2 = 2,835, . |

At times the numerical values of C, X; and R will
not be important but father their relation to one another
will be most important. These methods outlined herein
offer a means of computing the numerical values'of C, X,
and R if desired. The operational characteristics of the
units can be determined by the graphical means discussed

without numerical computation of these values.
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CHAPTER V
COMPARISON OF RESULTS

These experimental results are based on the test data
from five 1321-type escapements suppliediby Sandia Corpora-
tion. These units, although packaged differently, are
similar in size and construction to the jeweled-lever
escapement used in a Hamilton Railroad Watch. The basic
differences are an uncompensated beryllium copper balance
wheel, a different hairspring, increased diameter balance
and escape wheel pivots and beryllium copper balance and
escape wheel bushings. The units wére from obsolete
timers that had different manufacturing dates and had been
subjected to varying unknown envircnments. The units were
‘numbered one through five. Units one through three ap-
peared to be of similar design and construction. Unit
four was of a later design and included Electrofilmed
escape wheel teeth, pallet fork, and bushings. Unit five
was assembled at Oklahoma State University from spare |
parts and, in general, seemed to exhibit freer motion than
the other units. The only noticeable mechanical difference
between unit five and the first three units was a decreased

lock angle.,
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Prior to testing, the units were placed in an electro-
sonic watch cleaning machine and allowed to remain during
a standard watch cleaning cycle using L and R watch clean-
ing solution. The units were then placed in the test
fixture and allowed to operate without lubricant under a
200 gm load for approximately thirty miﬁutes prior to ob-
taining test data. It was observed that readings obtained
shortly after cleaning were not consistent with readings
taken after this "run in" time had elapsed. By and large,
results of early readings indicated a smaller C. After
this run-in operation, readings were taken for three fix-
ture loads. A variation in amplitude of plus or minus
0.104 radians would be considered as the same amplitude
since the sensitivity of amplitude measurement was only
as accurate as plus or minus one tooth on the balance
wheel. This amounts to about 1.67 percent of the over-
bank amplitude. The matching results are shown in Figures
13, 14, 15, 16, and 17 with Table I containing the cal-
culated values for X, R, and C.

C varies over a reasonably large range -- 0,757
to 1.431 -- but this could be expected from the non-
homogeneity of the sample of units tested here. Once
the amplitude of units tested reached a constant value,
the difference between computed data and measured data
is indistinguishable. Thus the analytical prediction

of linearity with load is established and will allow
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operating characteristic prediction. Prior to the time
the amplitude reaches a constant, the closest match shows
a certain amount of variation. The characteristic of
this variation for a good match between a computed unit
curve (CUC) and a unit curve (UC) is that the UC has a
lower decay rate than the CUC over the first few cycles
and a greater decay rate than the CUC as the unit approaches
a constant amplitude. A better match can be seen in Figure
18 where C has been allowed to increase at an arbitrary
preset rate depending on the value of e'Ct/z. In the upper
curve C varied from 0.151 to 0.175 and in the lower curve

C varied from 0.140 to 0.163. For a value of e~Ct/2
greater than 0.15, C increased three percent per cycle.

-Ct/2 }oss than 0.150 and greater than

For a value of e
0,03, C increased 1.5 percent per cycle. For a value of
e'Ct/2 less than 0.03 and greater than 01005, C increased
0.5 percent per cycle and e"'Ct/2 less thean 0.005, C re-
mained constant. Thus, there is apparently a slight non-
1inearity in the damping coefficient with velocity. When
the amplitude is high, the average velocity is high. As
the amplitude decreases the velocity decreases and the
friction increases, The explanation of the phenomena of
curve seems reasonable since an increase in friction is a
common occurrence in nature with a decrease in velocity

in such ordinary things as a fiddle string. It also agrees

with the deduction of Doctor Glaser in the article on
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