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. PREFACE

In reliabiliﬁy studie‘»'s,' componentsS (or systems of components).
are observed to'fiﬁl randomly in time. As these components fail,
they are veithei' repé,ir‘ed. or ?eplaced and é.re then allowed to operate
until another failure occurs. If we>note the times between successi‘ve‘
f‘bailurevand consfruct a frequency histégrafn of these failure—tii'nes,‘
wé find that a large number of fami}iés of probability distributions
may then be invoked to describe the frequency histégfém. Often a
loCatiqn parameter is used in indexing such distributions. For*the
most pﬁrt we shall conce_rn_oursélves with probability density fl;.ric-
tions defined over the entire f)ositive half of the real axis.

If one has under study a given c.omponent and desires to Vasce‘r-
tain certain of its yliife -parameters (such as expected life), he may
fiﬁd that the time required for a sample of n components to fail may
be excessively long. In suéh éases, alternative approaches to life-
testing are considered; the mbre profitable alternatives have been
two.in number: (1) to place the components in a stressed enviren-
ment, or (2) to make inferences regarding the life-parameters even
though only r (< n) components have failed. The first alternative
requires that one possess some knowledge of the rel.atigmship between
failure-times arising under a stressed environment and those arising

under the components' dperating environment; the second alternative

has been relatively successful whenever the failure-times are

iii



assumed to possess an exponential distribution or a Gamma distribu-
tion.

In this dissertation we shall discuss a third alternative, appli-
cablg to c‘oﬁponents whése_failure—times under nermal operating
conditions, are distributed according to the generalized-gamma distri-
bution, We suppose thaf, under these‘v same operating conditions,
there exists a specific, observable parameter which, for each com- '
ponent, occuré at some (random) time, X, prior to the failure-time,
Y, of the component. By épecifying a (marginal) distribution of
failure-times and relating the wa.rriing-times (X) to these failure-
times by means of a conditional distribution (of X given Y), one
may de siénate a bivariate probability ciensity function. The warning-
tirﬁes thén possess a marginal ciistribution which is indexed by the
parametefs both of the failure-time density énd of the conditional
density.

We :shall‘focus 6ur’att¢rition on the family of bivariate distri-
bqtioné whose marginal diétribgtion of failure-times (Y:) is thé'
generalizéd Gamma distribution and whose conditional diStribut_ion
of X given Y 1is the Beta dis‘trfibuti.on. We devote two .chapters to "
the generalized Gamma distribution _,al,nd to .the :esti’mation of its
paffameters before introducing .a further generaliZation of the Gamma
distributioﬁ. This latter generaliza_’cion‘ arises in the next two' chap-
te-ré whenever the aforementi;nﬁed_ cbr;ditiénal distribution is assumed
to be of the form P xP” l/yp.

These many generalizations provide, of course, results appli-

cable to less general situations, Since the Weibull distribution, a
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special case of the generalized Gamma distribution, has been widely
acknowledged in reliability studies, we devote a pair of concluding
chapters to our generalizations' implications upon it.

The impetus for undertaking this study can be attributed to a
number of persons. Dr. E. W. Stacy, of the IBM Systems Develop-
ment Division, introduced me to his generalization of the Gamma
distribution. Professor H. O. Lancaster, in his lectures at the
University of Sydney, provided the motivation for investigating bivar-
iate distributions.. Dr. Robert A. Hultquist, whose interests in
bivariate distributions have influenced the direction and scope of
this study, has been a most pa{tient adviser while reviewing those
results, too often hastily presented, which were developed during
my year as a Fulbright scholar at the University of Sydney. The
many persons, in the Departments of Mathematics and of Mathema-
tical Statistics at the University of Sydney and in the Department of
Mathematics and Statistics at Oklahoma State University, who have
advised, Bolstered, and consoled me during the trials, troubles, and
tribulations associated with this research, deserve acknowledgment,
but are unfortunately far too many in number to enumerate. Hope-~
fully none will feel offended by this collective expression of my
appreciation. In conclusion, acknowledgment of the National Science
Foundation's Co-operative Fellowships, under the auspices of which

this research was initiated, should be made.
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CHAPTER I
" STACY'S GENERALIZED GAMMA DISTRIBUTION:

In this chapter we shall present certain fundamental properties of
Stacy's three-parameter ga.rhma’distributibn. After indicating the
historical development of the distribution, we define its pé.rameters
and examine the effects of assigning certain values to these. We derive
an associated distribution, a generalized double exponential distribution.
We then examine some of the more interesting propertiés of these two

probability density functions,
1. Introduction

A quite general, three-parameter, univariaté probability density
function was suggested in September, 1962, by Dr. E. W. Stacy [1]. .
This distribution was defined, for a posit'i‘ve randoem variable, Y,
as |

) |
amdyd-1 /2 g d) (1)

fly;a, d, p) =p P

where each of the parameters a; d, and p :is" taken to be positive,

and where TI'(p) is the standard (complete) gamma function given by
® p-1 -u
'(p) = [ uP™% e qu.
o

. However, a subsequent joint effort by this author and Stacy [ 2]

led te a generalization of this density, one which can be.shown to:have



certain advantages, especially in avoiding difficulties encountered in
the estimation of the three parameters.. For a positive random vari-

able, Y, we shall consider then
. c
hiy; a, b, ¢) = |cla be ch e (Y/a)/ (b) , (1. 2)

for positive pa,fa.meters a and b and for real parameter c.

We shall be closely concerned throughout this dissertation with
density (1. 2); and, whenever a random variable Y is distributed
according to this density, we shall denote the relationship by the con-
ventional expression /

YN h(y;a, b, c),
and shall refer to this density as the Stacy distribution. On occasion
we may write

Yroh( 5 a, b, c),
the dot indica.ting that the argument which should stand in its place is

understood to be vy.
2. Parameter Definitions

If one examines the (Stieltjes) probability element associated

with density (1. 2), the arrangement
c
, bc-1 - a , d
dH(y) = {M @Pel om0/ p ) (-al)} (1.3)
indicates clearly that the parameter a has the effect of scaling
the random variable - Y. Thus, we refer to this parameter (a) as
the scaling parameter.

We refer to the remaining parameters, b and c, . as the shap-

ing and exponentiating parameters, respectively. The former (b)



receives its designation because its sufficient statistic [See Chapter I,
Section 5] is the same as that for the shape parameter of the less
general»two-»pa»rafneter Gamma distribution [See Chapter I, Section 3]
however, its role in actually shaping the curve associated with equa-
tion (1. 2) is one shared frequently with the itter pafameter (c) in the
product bc.. For, 0 < bc < 1 implies that the curve appr.oé.cﬁes
the ordinate axis asymptotically; bc = 1 implies a finite non-zero
ordinate -on the ordinate axis; and, bc > 1 provides a curve which
begins at the origin. Reference to the final parameter, c, as the expo-
nentiating parameter is due to its predominating position in equation

(1.2).
3. . Special Cases of the Stacy Distribution

In addition to being a valid probability density function on its

. own merits, the Stacy distribution includes, as special cases, a num-
ber of more common probability distributions. We first note the
case when ¢ = 0. In order for the density (1. 2) to have meaning,
we must assume that this case represents the degenerate distribution
with mean zero.

Whenever we assume that the value of the exponentiating para-
meter is positive, a large collection of distribution families can each
be seen to be merely subfamilies of the famiiy of densities defined
by (1. 2).

1. The two-parameter Gamma distributions

hiy;a, b, 1) = y° te '(V/a)/ab r(b).

- We risk pedantry to list special cases of the two-parameter



-Gamma distributions, but these too are 'f'am‘ilia.r’fa.mili.es
- included as subfamilies of the Stacy family:
a. The standard one-parameter Gamma distributions
hy; 1, by 1) = yo L e™V/r (o).
b. The exponential distributions
h(y;a, 1, 1) = e-(Y/a')/a..
c. The Chi-squared distributions

" For n a positive integer (''degrees of freedom?),

hiy; 2, % 1) = Yn/z =1 e'V/Z/zn/Zr'(n/Z).

The Weibull distributions
C.
h(y; a, 1, ¢c) = cyc“1 e (y/a.)/a;c‘
Special cases of the Weibull distribution include
a. The exponential distributions. [cf: 1.b]
b. The Rayleigh (circular normal) distributions
. 2/23.2- 2
h(y-;a.N/—Z, l,2)=yey /a“.
The Chi distributions
" For n a positive integer, n
n n-1 —yZ/Z 2 -1
h(ysN2, 5, 2) =y e 72% .T(n/2).
The Chi distributions with scaling parameter

"For n a positive integer,

n n-1 -y%/2a%n 3l .v
h(y; a.NfZ, > 2) = vy e /a. 2 I"(n/Z).

Special cases of note here include
a. The modulus normal distributions

-2 2
h(y;a'\/_z,—é,Z)= /22 o TV/23]

ITa




b: The circular normal (Rayleigh)-distributions
- -3 2/zaz- 2
‘h(y;aN2, 1, 2) = ye Y /%%

c. The spherical normal distributions

VPR
hiy; aN2, 3/2, 2) = _1_3. / _1%_ YZ Y /2a”

We shall show [See result (1.8)] that the density (1. 2) with c <0,

-corresponds to that of a random variable Y = l/X, where
1
Xnh (X;a—., b,_ C)

with ¢ > 0. Thus, we see that the densities termed inverse exponen-
tial, inverse Chi-squared, etc., are included as special cases of

density (1. 2).
4, Properties of the Stacy Distribution

:Suppose we have a random variable Y with probability density

function (1. 2). Then the t-th moment of Y is given by

. al ©"'(b+t/c)/T(b), if t/c > -b
.. E[Y ] = . . (1.4-.)
@ , otherwise.
- Thus, the mean is given by
al(b+ 1l/c)/C(b), if 1/c > -b,
- E[Y ] = (1.5)
‘ . 00, otherwise, ' .
and the variance is given by
aLz[ (b + 2/c)‘l"(b) - r‘z(b + 1/c) | ,if Ze>-b,
Var [Y] = I‘Z(b) (1.6)
0 , otherwise. :

+For Y v h(y; a, b, ¢), the cumulative distribution function may



be shown to:be

H(y) = 7 h(y;-a, b, c)dy
o]

L (b)/1b), if ¢ >0

1- rw(b)/r(b)’, if ¢ <0,

. where w = (y/a)c and ,I‘w(b) is the standard notation for the incomplete .
Gamma function

w b-1 -u
Su e

I‘w(b)l = f du.

o]

We note the following important results regarding the distribution

~ .of certain transformed Stacy random variables.

1. Let Yeh(y; a, b, ¢). Then

Z = k YrUh(z; ka, b, c) (1.7)

for any k > 0,

2. Let Y~h(y;a, b, c). Thenfor any t # O,
W = Y'eh(w;al, b, c/t). | (1.8)
We note in passing that W' = chvh(w'; a.c,b, 1), the

standard.two-parameter Gamma distribution, provided

that ¢ # O.
3. Let Yl/v h(yl; a bl’ ¢} be distributed independently of
YZNh(yz; 2, bZ’ c). Then

Y .a 4C
_ 271
W = 1/, 1+[Yla2]

has Beta distribution with parameters b

1 and bz. (See

p. 123 0f [3].)

4. Let YiNh(yi; a, bi’ Ci)’ 1 = 1,2, ..., n, bean



‘independent set of random variables.. Suppose no c, = 0.
Then, according to the results listed in (1. 7) and (1. 8),

.foreach - i=1, 2, . . ., n,

Z.
i

C.
(X/a) * ~ h(z; 1, b, 1)

Therefore, 'from the reproductive property 6f indepen-

dently distributed one-parameter Gamma variates,

n C. n
Z = £ (X./a.) '~ h(z;1, £b,, 1). (1.9)
i=1 Yt 1t

We note in passing, however, that a correspondingly

simple result does not exist for

n
Y = Z Yi.
i=1
5. Let Y~ h(y;a, b, ¢). Thenlet Z = fnY. One can then
show that _
v cz, ¢
Z~ k(z;a, b, c) = Ic I a-bcebcze-(e /a,‘ )/1" ®) (1. 10

- for positive parameters a and b, non-zeroc parameter c,

- and random variable Z € (-0, + ). The density (1. 10)
we shall refer to as a generalized double exponential distri-
bution, since the double eprnential distribution of Gumbel

[4] corresponds to k(z; 1, 1, -1).
.5. Completeness and Sufficiency

By definition, the density h(y; a, b, c) would be complete if the

vanishing‘ of the integral
[0's)
J k(y) h(y; a, b, c) dy
Ly 0

for every permissible set of values for a, b, and ¢ implied that



the function k(y) = 0, almost ‘e verywhe if-e .« If b and ¢ are
assumed known (fixed), the completeness property follows immedi-
ately from the unicity property of the Laplace transform. Should
only ¢ be assumed known, .the property of completeness exists
since Z = -YC would have the two-parameter Gamma distribution,
knownto be complete. .However, it is not readily apparent that the
more general case, with a, b, and c all unknown, provides a
complete density function.

To determine a set of sufficient statistics for the density (1. 2),

_we inspect the function K(y; ;:b) of Lehmann and.Scheffe [51,

where
K( y ;vyo) = L( ;’.; a, b, C)/L( ;’.o;fa's b, ¢),
. where ;7 represents the vector, (yl, Vo oo e yn), of observa-

tions and where L ?, a, b, c) is the likelihood function associated
with the :vector ? A statistic Tj (;:r‘) is sufficient for the j~th para-
meter of a distribution if Tj( ?) = Tj(;; ) implies that K (_y.; ;',o)v—# 0
and is independent of this j-th parameter.

Pitman [ 6] states a necessary condition on the functional form
of a distribution in order thé,t a sufficient statistic exist for a para-
meter. Due to the position of the exponentiating parameter in density
(1.2), it is impossible to meet Pitman's factorization criterion, so
that one must conclude that no single sufficient statistic exists for
this parameter.

However, for the scaling and shaping parameters,. Pitman's
condition is satisfied and,. by use of Lehmann and Scheffé's K-func-

tion, we find that the statistic sufficient for the scaling parameter is



n
> Y (implying that ¢ must be known) and, for the shaping para-
i=1 n n
meter, II Y. (or, equivalently, Z InY,).
i=1 * i=1 :

6. Some Notes on the Generalized Double

-Exponential Distribution

Since one of our sufficient statistics for the Stacy distribution
h(y; a, b, c¢) involves the random variable Z = in Y, we shall now
investigate further the generalized double exponential distribution,
‘k(z; a, b, c), given by equation (1. 10). We note that the moment-

generating function associated with density (1. 10) is readily given by

v ‘ tan = E[ Yt] .
i.e., tﬁ { I'(b +t/c)/1(b), t/c > -b (1.11)
. otherwise, ‘

the 15&§t equality following as a result of equation (1. 4).

’W.e.: note that, so long as ¢ > 0, no problem regarding the
existence of our moment-generating function exists for positive values
of t. We recall that, should'_c be negative,. we can resolve the
matter by concerning ourselves with the random variable 1/Y rather -
that Y; i.e., with - Z rather than Z.

With equation (1. 11), then, we may easily ascerté;in the moments

of Z = In Y. Let us define Z' = In(Y/a), so that
Z' ~Kk(z'; 1, b, c).
Then the relationship

E[z1¥ - {aKE[etZ']/atK =o}

implies that, for t/c > -b, and for any K=1, 2, . ..,



K a K (b + t/c)

Elz"'
: ] T"(b) d tK . t=0

Therefore, for K = 1, 2, . . .,

]

Bl (v/2) 1% = = 18w / 1,
C

where
¥ ) = & rey/at,

Thus, using the additional result that, for any positive constant

E{zn(Y/s).—E[zn(Y/s-)]}K = E{En Y - E(an&K ,

we have A S
E[4n Y] = fna+ w(b)/c,
Var [In Y] = ¥ (b)/cz,
and
by [InY] = E[lnY -E¢nY) 12 = v (m)/c?,
_ where | |
| T(x) = 3 fnT(x)/d x =I'" (x)/T(x),
. and |
W' (x) = d¥(x)/dx, and ¥!' (x)=d¥!(x)/dx,

as defined by Edwards [ 7].

Theorem: Suppose that Z~h(z; 1, b, 1). Then, for any
s, t >0,
E[25%(n 2)] = Db +s) E[4n 1Y/ (b),

where U~ h{(u; 1, b+ s, 1).

Proof: By definition,

10

(1.12)

S,

(1.13)

(1. 14)

(1.15)

(1.16)

(1. 17)



11
(e o) . ’
E[z%n 2)'] = [ {zs,(fzn.z)'c zb“le'z/r(b)} dz

QO
- r(';“("bf) g {(m w) )= - 1‘(b+s)} du

H

(b + _s) E[ fn U]t/l“‘(b),
- where U.~h(u; 1, b+ s, 1). QED
. Corollary: For Z~h(z; 1, b, 1),
Var [Z4n Z] = b(b+1‘)\Il'(b+2)-b2\112(b+-1)+b(b+ Dwi(b+2). (1. 18

Proof: Direct substitution of the result (1. 17),, with s =t= 1 and

s =t = 2, into the f‘ormula‘

L2 :
Var [Z4n Z] =E[Ztn 2] - E%[2 M Z],

provides the result.

. 7. Lower Bounds for the Variance of Unbiased

\

~ Estimates of Stacy's Parameters

-~

- C..R. Rao [8] showed that, for any unbiased estimate, a, of a
function e (0) of a parameter 0 associated with a ‘Iﬁ'r’ébability. density
function, f(x; 0 ), which satisfies certain regularity conditions:

 Var (B) >[a’ (O)]Z/n;Var [ 4n f(x; 9)/89 ].

* % %
Therefore, letting a , b , and ¢ denote any unbiased estimates of

the scaling, shaping, and exponentiating parameters, respectively,

c+l

. Var _(a*) > 1/n Var [ - l'°—:_+ cY$/a®" ] = az/nbcz, (1. 19) |

Var (b*) > 1/n Var [~cin a - ¥(b)+cin Y] =1/nw ' (b), (1. 20)

and

*
Var (c ) >1/nVar [ -bfna + binY - —cl? (é)cﬁ ) ],



12

or
Y 2
Var (¢ )>c“/n{l+b [¥' (b+1) + ¥ (b + 1)]¢. (1. 21)
These results follow from successive application of the results listed
in equations (1.6), (1.7), (1.8), (1.15), (1.17), and/or (1.18). The
- expressions on the righf hand side of inequalities (1. 19), (1. 20), and
(1.21) are called minimum variance bounds. Estimates which

attain.this variance are termed minimum variance bound estimators.



CHAPTER II
' ESTIMATION OF STACY'S PARAMETERS

In this chapter we examine the possibility of . utilizing the methods
of n;aximum-likelihood and of moments to obtain non-iterative tech-
niqties for the estimation of the three parameters of density (1. 2).
Noting the apparent futility of using either method to obtain estima-
tors which are explicite functions of the observations (and not of the
remaining, or nuisance, parameters), we then examine the method-
of -moments as applied to the generalized double exponential distribu-
tion, defined in equation (1. 10).

The resulting estimation technique does not ‘yie ld the joint proba-
bility density function of the estifnators; however, our discussion
throughout the chagter allows us to indicate many properties of the

various estimators which are available.
1. Preliminary Considerations

- Suppose we consider the problem of point estimation of the para-
meters of Stacy's distribution from an unordered and untruncated
; randombsample of n observations, Vir Yoo o v 0 Voo each from
the same parent distribution, h(y; a, b, c), given by equation (1. 2).
‘A first approach t'o; this problefn is often. that of the method of

maximum-~likelihood. Howéver, the following equations indicate

13
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the difficulties encountered in the attempt to obtain joint estimates by

the maximum -like_lihood attack:

n
¢ Z (y,/a)°
3 In L( y a, b, c) _ -nbc i=1

L ¢ 4 - = o0, (2.1)
d nL(y; a, b, ¢ 2

2 ya’b’ 2. S} = -ncdna +c Ziny-n\Il(b) (2.2)
i=1

and

BEnL(y a, b, c)
dc

=2 _nbfna + b zzn v - Z(Y/a) zn(y/a) =0, (2.3)
I c l i=1 i=
© —rp n “
where L(y;a, b, c) = 'Hl h’(yi; a, b, c)is the likelihood: function of
1= .
the sample ;r. = (yl, Voo o v s yh) and where W(b) is the logarith-
mic derivative of the Gamma function with respect to its argument b.

The plus sign is chosen for the first term of equation (2. 3).if ¢ > 0;

for- ¢ < 0, the negative sign is chosen, so that we may write

31nL(y,ab,c) n - 1
- 5o - nbina +b f lzny Z(y{a) 1n(y{a) =0. (2. 3")

Thus, we see that we might solve explicitly equation (2. 1) for .
~either a or b, equation (2.2) for either a, c, or Ww(b), and
equation (2. 3') for b..'Denoting these solutions with carets and indi-

cating their functional dependence on nuisance parameters, we have:

- n 1/c
a.l(b,c) =§ z yic/nb ? , - (2.4)
i=1
- n
az(b,c) = exp ? Z (In. vy )/n - w(b)/ }
i=1

n 1/n v
g It y% exp {- \Il(b)/c} # (2.5)
i=1 .

- ) n .
b(a, )= = (y;/a)%/nc, - - (2.6)
‘ i=1 '
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PS n c c n c
B (@, ©) =33 [(v/a)%nly;/2)°] - J= tnly/2) (2.7)
i=1 i=1
:I/(a, c) = C{E»En (yi/a)}/ n, . (2.8)
i=1
¢ (a, B) = n w(b)/ £ [0 (/211 - (2.9)
1=

Iterative solutions, using appropriate selections from the pre-
ceding six equations, should, if convergent, provide estimates of
‘the three parameters. However, the important statistical properties,
such as bias and variance, of the resulting (iterative) estimates would
not be available and, consequently, the search for other estimation
techniques was undertaken.

Before ‘procéeding to a consideration of other possible estimation
techniques, we examine some of the statistical properties of the indi-
vidual estimators provided in equations (2. 4) through (2.9).

. First, we note that we may obtain the exact distribution of ;.l(b, c);
for, applying successively the results (1.8), (1.7), (1.9), (1.-7), and
(1.8), we have, for independent yiNh (yi; a, b,. cly 1i=1, 2, . « ., n:

c c. _c
Yl Nh(Yl ;a’, b, l)

in/aCN h(-; 1, b, 1)

Z = (ch/ac)fUh(Z, ls nbs l)

WM B
—

n
=
i=1

a.CZ/nb = {

ylc/nb}’“h( *3 a.c/'n b, nb, 1),

and

.;l(b’ c)uh( - ; a/(nb)l/c, nb, c) ' (2.10)

Therefore, from equations (1,5) and (1.6), we see that
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E[; (b,c)] = a I‘(nb+l/c)/l"(nb)(nb)]'/c,

1
and (2. 11)
(b, c)] = 2%[ T{nb+7/c)I(nb)

a1/ )] 7/Tsb) (n b) 2 €,

Var [al

/
so that the following unbiased estimate of the scaling parameter is

suggested:
- 2 c.1l/c
a3(b, c) = I'(nb) | igl A ] / T(nb + 1/c). g (2.12)

V Equivalently, we might write this estimator in the form
;3(b, c) = {I‘\(nb) (n b)l/c/r(nb+1/c5}.;l(b, c). (2, 12Y)
The bracketed quantity in this expression may then be termed the bias
correction factor; it may be conveniently approximated, as is shown

by Stacy and Mihram [ 2].

Not only is the estimator a3(b, c) unbiased for the scaling para-

- meter, but also it is sufficient and its density is given by

-~

a, (b, c)~»h(-; A, B, C), where
A = aT(nb)/ T'(nb+1/c),
= nb,
and
C =c.

Therefore, since b and c¢ have been presumed known,. reference to
section 5 of Chapter I provides the fact that the density of a.3(b, c) is

complete. Thus, from page 190 of Kendall and Stuart's second volume, °

a (b, c) possesses the property of being the unique minimum variance

3

unbiased estimate of the scaling parameter. [9]. This variance is
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Var [a,(b, c)] = a’[T(nb +2/c) T (ab)

-r?‘(nb +1/¢)]1/ f (nb+ 1/¢). (2.13)

- i

Now, equation (2.5) suggests an estimate, az(b, c), of the

scaling parameter. Its expectation may be shown to be

_ E[;Z(bv, c)] = a{r (b + 1/nc)/p(b§n exp {- \I(b)/cz . (2. 14)
“and its variance is given by '

v

Var [;Z(b, c)];_a‘z[exp ?.;Z‘If(b)/¢%][fn(b+2/nc) (b)- b+ Vnc) ]

n
(b \_ (2. 15)
Therefore, another unbiased estimate (unbiased whenever the
&

shaping and exponentiating parameters are assumed fixed) of the
scaling parameter is provided by

- n 1/n

a4(b, c) = {I“(b)/l"(b + l/nc)} n ?1’[ Yii R (2. 16)

: i=1 .

I
“having variance

-~

Var [a (b, c)] :a.2 gr‘n(b+2/nc)1"n(b)-1"2?l(b-;- l/nc)} /l“zn(b+ VYnc).
4 . - . (2. 17)

Of the two shaping parameter estimators, given by equations
(2.6) and (2.7), only the first yields readily its statistical properties.

From equation (1.9), we recall that

n
Z = = (yi/a)cmh(z; 1, nb, 1).

i=1
Therefore, from equation (1.7), we see that

-~

b (a, c) ~ h(-; l/nc, nb, 1). (2.18)
Thus, we have immediately the properties

E[b (a c)] = nb/nc = b/c | |
1 (2.19)

-

Var [b (a, c)] = b/nc?,
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following by reference to equations (1,5)and (1. 6).
Therefore, an unbiased estimate of the shaping parameter (with

- the remaining parameters assumed fixed) is given by

- -~ n
by(a, c)=cb (a c)= = (y./a)%/n . (2. 20)
i=1 *

From equation (1l.7) we see, then, that
by (a, c)~h( *; 1/n, nb, 1); o (2.21)

from equation (1.6), it follows then that the variance of {3\3(3., c)
is
Var [ £3(a, c)] = b/n. | | (2.22)
In section 7 of Chapter I, we found the minimum variance bound
for unbiased estimates of each of Stacy's parameters. Equation (1. 20)
provides the result that this bound, for unbiased estimates of the
shaping parameter, i.s 1/n &' (b). Thus, we may establish the

rather interesting result that o' (b) > _—é—, for eivery positive b.
Equation (2. 8 suggests still:another. technique for éstima‘.tingvthe

shaping parameter, b. We d§ not know explicitly the distribution

| of :I/(a., c), but equation (1, 11) allows us to generate its moments;

two of interest are

CE[ \I:(a, c)] = w(b) . | (2. 23)

and
Var [ ¥(a, ¢)] =¥ ' (b)/n, (2. 24)
"We note then that ¥ (a, c) is an unbiased estimate of ¥(b),

which Edwards [ 7] on page 108 shows to be a monotone increasing

function of its argument. Thus, a graphical (or tabular) estimation
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procedure for b could be organized by calculating _&r(a, c) and
referring to the graph (table) of \ir(b).

From our work in section of Chapter I, we see that \Ij(a., c) is
a function of the sufficient statistic for the shaping parameter, In
addition, the result of Rao [8] would demonstrate that \£r(a, c)
attains the minimum variance bound for unbiased estimates of ¥ (b).
(Compare the variance given in equation (2. 24) with the resulf indicated
in section 7 of Chapter I.) |

As for the estimator (2.9) of the exponentiating parameter, a dis-
cussion of its statistical properties is hampered by the appearance
of the expression ; In (‘yi/a), a random variable whose distribution
' (and whose inverse'.:éistribution) is unknown.

However, suppose we define a parameter d by °
d = 1/c. (2. 25)

Equation (2.9) would then suggest our considering as its estimator

-~

n
d(a, b) =5 = tn ('yi/a.)} /n w(b). ' (2. 26)
i=1

An inspection of equation (1. 12) would then provide the properties:
A
E[d(a, b)] = 1/c=4d - (2.27)
and

Var [d (a, b)] = ¥'(b)/nc? P (b) = d% @' (b)/n T(b). (2.28)

At this point then we have accumulated a number of estimators
which may be employed whenever any pair of the three Stacy para-
meters are assumed fixed. Since we would aspire to erase such .a

restriction, we might rightly turn to estimation techniques other than
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that of maximum-likelihood.
The methéd-of-moments. probably merits attention. In section 4

of Chapter I, we have seen that, for Y~ h(y; a, b, c) and for

td = t/c > -b,

Lot t
E(Y) = a I'(b+t/c)/T(b).
Thus, we have
- E(Y) = a.I'(b + 1/c)/T(b), (2.29)

E(Y% = a® r(b + 2/c)/T(b), (2. 30)

Var (Y) = az{r(bJ“Z/.c)r(b)"rz(bJ“l/c)i (2.31)
 (b)

and

E(Y?) = a’ T (b + 3/c)/T (b), (2.32)

whenever the arguments of the indicated Gamma functions are positive.
[Recall that, in the event that t/c < -b, we may consider the random
- variable 1/Y instead of 'Y and thereby eliminate the complication
of having invalid a'rguments in the Gamma functions. ]
We therefore see that, for any t # 0 and such that t/c >-b, we

may: estimate at unbiasedly by

“~

n
a' (b, c)= T(b) = Y'/aT(b+1t/c). C (2.33)
. i=1 :

The variance of this estimator would be given by

- 2t (o |
Var [‘a5t (b, c)] = a " yT(b+ Zt/c)I‘(b) -

n fz(b+f/c)

1{ . (2.34)

However, for general t, the distribution of a.5t (b, ¢) is not readily
available.

With t = 1, we may obtain another unbiased estimate of the
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scaling parameter,

;5 (b, c) = I"(b) 2 y,/n T(b+ 1/c), ’ (2. 35)
i=1

which, then, has variance
Var [;S(b, ¢)] :az{r"(b+2/c)r‘(b)-I‘Z(b+‘l/c)} /nT?(bt1/c),  (2.36)

Explicit solutions, for equations (2. 29) through (2. 32),for the
remaining parameters are not so apparent.. Forming ratios of these
momenté may at first seem prorﬁiéing, since, for r + s =t, the
expression

E(Y) _ IL(b+t/c) T(b)
E(Y) E(Y) I(b+s/c) [(btr/c)

(2.37)

eliminates one nuisance parameter; viz. » the scaling parameter.
Nevertheless, this procedure does not seem particularly fruitful.

However, we recall that

E(Y/2)S = T(b+ 1)/T(b) = b. (2. 38)
Thus, for our random sample, Vi Vo e e .Yn’ .we have
~n n c) ;
b" (a, c) =§ H’(yi/a) g, , ' (2. 39)
i=1 ‘ '
with expectation
o c n
;Eél‘[ (yi/a))Z= b : . (2. 40)
i=l ' v ' :

and with variance

2n

Var{,“gn(a, c@ = bM(b+1)? - b = b [ (b+1)7-b7] . (2.41)

By equation (2. 39), we have suggested, as an estimate of the shaping

parameter,

b (a, c) = %.H (yi/a)cz /n , (2.42)

i=1
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which has expectation

E[D (a, ¢)] = b + 1/0)/T® (b) (2.43)

and variance
Var [b (a, ¢)] = {r“(b + 2/n) P (b) - I‘Zn(b+1/n)} /T (b).  (2.44)

Thus, the method-of-moments does not seem effective in providing
estimation techniques for Stacy's parameters; the estimates suggested,
~such as those of equations (2. 33) and (2. 39), still depend upon one's

knewing or presuming values of the nuisance parameters.

2. An Estimation Technique Whenever All

Parameters Are Unknown

. We have seen, in section 5 of Chapter I, that the statistic sufficient
for the sha;pin»g;rnp’a;ramé“ce r, b, is the product of the obse’fVations (or,
equivalently, the sum of the logarithms of these same observations).
We might be led, then, to examine the problem of éétimation for the
generalized double exponential distribution of equation (1. 10), for this
distribution is that of the logarithm of a Stacy variate.

Suppose again that we have a random sample iy 3 ni=l from density
(1. 2); thus for z, = In Yi..i =1, 2, . . ., n, §z=i€ " i=1 constitutes a
random sample from density (1. 10). An examination of the maximum-
likelihood equations will provide no new suggestions on estimation. How-
ever, as we shall now see, the method-of-moments approach proves
most fruitful.

Let us recall the results (1. 14), (1. 15), and (1. 16); viz.,

CE[In Y] = fna+ w(b)/c (2. 45)
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Var [4n Y] = ¥ ' (b)/c? (2. 46)
and
w4 Y] = Eln Y - E(n V)] = 9" (b)/c>, (2. 47)

where, as previously,

T (b) d ¥(b)/db,

and

' (b) = d ¥ (b)/db.

Sl

Consider now the coefficient of skewness of. In Y:

}~’-3[£n Y] I T (b)
EVar[lan}?’/Z ) [\If'(b)]?/2

which we see to be a function of only one parameter, b. (The plus

) (2.48)

sign will apply if ¢ > 0.) Thus, calculation from a random sample,

n
z; = In Vs i=1,2, ..., n, of -z-='" = zi/n and
i=1
K o=n Z(z -7) /(- in-2) s (2. 49)
myY ™R 24 n Y’ -4
where
2 n -2
S n Y .Z_ll(zi -z) /(n-1) | (2.50)

is an unbiased estimate of Var [4n Y], should provide a method of

estimating the shaping parameter. (Note that the quantity,

n 2(z -2 )3/ (n-1)(n-2),
i=1

estimates urbiasedly u, [4n Y]). Kendall and Stuart [9] on page

244 of volume I, list the variance of s2 as
InY
: ’ >
p.4[f.n Y] - [Var (fn Y)] 2

[Var (In Y)]%,

2
Var [sgny 1 = n ¥ Rm-1
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]4,

where g [InY] = E[InY - E(dnY) Using the moment-

generating function of equation (1. 11), we have that

1.L4_[.¢n Y] = {\Ir"”' (b)/c4}+ 3[ Var ({n Y)] 2‘,
so that

22w () ] Zf/nc4. (2.51)

2 = 1
Var [s,(ln Y] g\If (b) +
Now, a plot of the function on the right-hand side of equation

(2.48) would provide a double-valued. graph, symmetric about the

axis of its arguinent.- If, however, we were to plot the function

(5] k(4 Y) ' (b) 52)
03 b) = =~ = 0= _—_? ’ D
[Var (In Y)]?’/2 [ @' (b)] 2

- we would have the single-valued graph appearing in Figure 1, located

should

at the end of this chapter. Thus, calculation of - , K,(Zn v
-provide an estimate of ¢(b) and, hence, via the graph of ¢ (b), of the
shaping.parameter, b,

Let us denote this estimate by A’t: Then equation (2. 46) suggests,

as an estimator of the exponetiating parameter,
o Ty L 1/2 :
c(b) = T 4T (b) /Sln v o (2.53)

where s, vis the positive root of the expression given in equation
(2.50), where the positive sign is selected if Kﬂn:Y < 0, the minus if
Kln ¥ > 0, and where the value of 2\_1{ ' (b )_g 1/2 may be taken from
the graph of this function presented in Figure 1.

It would remain, then, to select an estimate of the scaling para-
meter.  Selecting the estimator implied by equation (2.45) would prove

to be the equivalent of choosing the estimator .aZ(A’E), ‘3 (—’5) ), given

by equation (2.5). Since any scaling parameter estimator we may
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now consider will be a function of our estimates rf) and '\cj(n‘t;), we
might desire to select thaf estimate which will have the properties

- (for these fixed values, b and D)) of being unbiased and of having
minimum variance attainable among unbiased estimates.  If so, we
select ;3(15, c(B)), given by equation (2.12). If ease of calculability
is a.,criterion deemed important in selecting an estimate, 3.5("5, < (E) )

might be suggested.
3. Estimation Techniques Whenever One Parameter Is Known

- We have seen how, in the absence of knowledge of the values of
any of the.three Stacy parameters, we may estimate jointly the entire
set. We might now consider relaxing this restriction by considering
cases where one, and, for the moment, only one, of our three para-
meters is assurﬁed known. A number of iterative techn%ques. will
surely occur to the reader who refers to our many estir;-éting equa-
tions: (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.12), (2.16), (2.20),
(2.26), (2.33), (2.35), (2.37), (2.39), (2.42), (2.48), and (2.53). We
shall, however, attempt to avéid such techniques and endeavor to |
present only non-iterative estimators which are explicit functions of
the observations.

Suppose we consider‘ first the case in which the ebxponentia.ting '
parameter has a fixed (known)value, S )')V‘Ve-reca.ll, by reference to
result (1.8), that, for Y~ h(y; a, b,_co), W = _YCON h(w; aco’ b,1).
Thus, for a random sample, Wi = Yico, i=1, 2,.. . .;n, we ‘see
that we may estimate unbiasedly ¥' (b), as suggested by equation

(2.46), by
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. 2 2 2

Tiley) = spw 7 S Sy (2. 54)
where SanY is as d,efiﬁed bY ‘e'quat‘ion (2.50). V.Re;f'erence to equa—
tion (2. 51).provides the variance of @' as

Var [ W(e)] = §u (o) +22 (@ (8)1%]/m, (2.55)

interesting in that it is independent of the known Co’ as well as the
unknown scaling parameter; Edwards [ 7] on page 100 of Volume II,
shows that ¥ '(b) is a monotone, positive-valued function of its posi-

ZW, we may use the

tive argument, b, so that, after calculating S0

graph of ¥ (b) to estimate the shaping parameter. (See Figure 2
at the end of this chapter.) |

Denoting this estimate by %(co), we may turn again to any one
‘of the five estimators, ai (Il\n (co), co),,'for the scaling parameter.
The statements at the conclusion of the precve:ding section are again
pertinent in choosing among these estimators.

With the exponentiating. Parameter assuming a fixed value, 4
we might conside;: estimating the rer.naining parameters by applying
the method-of-moments to the random variable, W = Yco. Appropri-

ate applications of equations (1.8), (1.5), and (l.6) provide the inter-

esting result that

Var (Y °) a“b

Therefore, one might consider as an estimate of the shaping para-

n 2
gE W, g , »
n o 1
b(c) = ‘P52 4 : (2.56)

meter
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where sw2 is provided analogously to that given by equation (2. 50).
This procedure for estimating the shaping parameter, however, suf-
fers in that none of its statistical properties are known.

Suppose next that we allow only the shaping pérameter to have a
fixed value, say, bo' Then equation (2, 46) suggests an unbiased esti-
mate of d2 = l/cz; viz.,

~2

d% () = 5,2 S/ (b ), (2.57)

where s.(7.1\'12Y is given by equation (2.50) and ¥ (bo) may be obtained
from Figure 2, located at the end of this chapter.. Reference to

equation (2,51) provides
2 a* 12 2a*
Var [d (bo)] = —n——{\lr“(bo)/[\lf‘ (bo)]} t 5 ). (2.58)

Thus, we may form the exponentiating parameter's estimator

b)) = J l/dz(bo) =t [ wi(b)] l/Z/SJZH‘Y , (2.59)

where [W¥' (bo)] 1/2 may be obtained from Figure 1 at the end of this
chapter. The choice of signs will be dependent upon the sign of the

following unbiased estimate of p.3(1n Y), defined by equation (2. 47),

- n
pnY) = nE(z -3 3/ (n-1)(n-2), (2. 60)
i=]
where z, = ln Vi i=1,2, ..., n I 'p.3(£n Y) < 0, we select

for. the right-hand side of equation (2.59) the plus sign; otherwise, we
select the minus sign. [See equation (2.53).]

We are bagain confronted with the estimation of the remaining para-
meter, a. The reader will be left again to decide his choice among

the set of scaling parameter estimates, a,:.L (bb’ ’?:(bo) )y i=1,,.., 5.

. Finally, suppose we assume that only the scaling parame'ter has
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a fixed value, say, a- Then we may estimate the shaping para-
meter, b, by the method indicated beneath equation (2.52). The
res'ulting estimate we have denoted previously by rl‘;

To estimate the remaining parameter, c, the reader may
choose between %(E), as given by equation (2.53), and g (ao, T)),
as given by equation (2.9). The decision might rest upon several
factors. Each of the estimators is calculated from statistics already
generated in arriving at the estimate, A’t‘); thus, ease of computation
hardly seems a pertinent factor. Neither of the estimators’® statis-
tical properties are known, though the square of the ’in.verse of the
first estimator estimates unbiasedly l/cz, whil‘e‘ the inverse of the

o~

second estimates unbiasedly 1/c. However, c A(ao, b) provides

automatically the sign of /E:, and, for this reason, might be preferred.

4. Estimation Techniques Whenever Two Parameters

May Be Assumed Known

If we assume that two of the three Stacy parameters are assumed
-fixed (knowh), the task of estimating the third is, in every case,
straightforward. In this section we shall list in Table I these estima-
tion techniques, and, Wherever possible and applicable, indicate the
relative efficiency of our estimates. For the unbiased estimators
listed in Table I, we consider, as.indicators of efficiency, the concepts
-of minimum variance bound estimators (MVBE) and of minimum vari-
ance unbiased estimators (MVUE), as described respectively on pages
9 and 190 ofl Volume II of Kendall ar;dv-Stuart [9]. The minimum vari-

ance bounds are presented in section 7 of Chapter I; minimum variance
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unbiased estimators exist as a result of our discussion in section

|
5 of Chapter I (i.e., because they are unbiased, are functions of the
sufficient statistics, and have probability density functions which
are complete.)

In Table I, pafenthetical entries, other than those which are
obviously functional arguments, refer to equation numbers in Chap-
ters I or II. A '"NO! entry implies that this property does not exist
~ for the indicé,ted estimator, whereas 'UNK' implies that the property

is unknown or-undetermined. An estimator for which the indicated

-property should not apply is indicated by a dash.



Refer-

PROPERTIES OF ESTIMATORS

TABLE I

Distri- Vari-

Esti-  Unbi- :
Estimator ence mates ased butiqn ance . MVBE MVUE
a_.A_l(vb, o) (2.4) a NO (2.10) (2. 11)
“a,(b, ¢ (2.5) a NO - UNK ~ (2.15)
agb, c) (2.12) a  YES (2,12 (2.13) No*  YEs
;4(b,' <) (2.16) a YES UNK (2.17) NO Nor
;5(b, c)  (2.35) a  YES UNK (2.36) NO NO
;ts(b,c) (2,33 af YES UNK  (2.34) No & wNo*F
El(a, <) (2.6) b NO (2.18) (2.19) .
Bz(a, Q) (2.7 b UNK UNK UNK UNK  UNK |
| Ega, ) (2.20) b YES (2.21) (2.22) NO NO
-:?(a, c) (2.8) - ¥{(b) YES UNK (2.24) YES YES
T '(e)  (2.54) ¥'(®) YES UNK  (2.55) NO UNK
B (c) (2.56) b UNK UNK UNK UNK  UNK
:t\:n(a, c) '(2. 39) b YES UNK (2.41) 'NO | UNK
b (@, < (2. 42) b NO UNK  (2.44)
- |K£n Yl (2.49) &) UNK UNK UNK UNK  UNK
¢ (a, b) (2.9) < UNK UNK UNK UNK  UNK
& b) (253 ¢ UNK UNK UNK UNK UNK
d(a, b) (2.26) d=1/c YES UNK  (2.28) NO NO
a%(b) (2.57) d=1/c® YES UNK  (2.58) NO NO

* In general, apparently not.

*% In general, apparently not. For
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t =c, however, "YES."

For ¢ ='1, however, "YES."
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Aids for Estimation
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Figure 2.

Two Derivatives of the Psi Function



CHAPTER III
A DISTENDED GAMMA DISTRIBUTION

In this chapter we shall discuss avfour-param'etér univariate
probability densit’y function, defined for a po.sitive random variable,
X. The density function can be shdwn to be a generalization of Sta.cy's.‘
three-parameter generalized distribution; furthermore, its behaviour
“near the ord'inat‘e axis is that of Stacy's generalized Gamma distribu~-
tion. The moments of this distribution can be related to the moments
’of a corresponding Stacy distribution, as will be shown in Chapters IV
and.V, where, in discussing certain biva.r-ia.te density functions, this
distended Gamma distribution is found to be one of the marginal densi-

ties.
l. Preliminary Considerations

: For a. positive random variable, X, positive parameters a
s

and p, real parameter c #:-:-"O‘,. and parameter b >-p/c, we may define
the following univariate probability density function, wh’ich we shall

term the distended Gamma distribution: |
p-1 : c
g(X; d, _b, Cy p) : ) PX egf [ (2{5_) H b]a (3. 1)
a" T (b + p/c) :

where

- 33
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- .
J 'ub*le-udu, if ¢ >0

. |
egf| (%:-)C;b] = (X/a) (3. 2)

J,.(x/a)c ub- 1 B

du, if c <O.
(e} i

The cumulative distribution function associated with' (3. 1) is

1 c X\P o
G(x)‘-‘l-‘- W {egf[g—') ; (b+p/c)] -(:)pegf[g)c;b]

(3. 3)
and.the moments of the random variable : X are given by
< a.SpI‘ (b + Egi) _ B
CEX): wreTmw o (3.4)

for b >- (pts)/c, b >=p/c and pro'vided:that p# -s.

The properties of the function egf [(x/a)c; b] should be of some
iméortanc_e t6 a discussion of our distended Gamma distribution. We
note first that

1 £ 135S b1 = ® b-1 -u _ ' :
im, eg ‘[(;) sb] = [ u Te  du=T (b), | (3.5)

x=0 -0
the Gamma function with parameter b, provided that b > 0. (The
limit does not exist if b < 0.) In addition, for any real m,

lim (-“,:-Lt-)m egf [ 2)3b] = o, ,. (3.6)
t—oo -

as may be seen by noting that, from equation (3. 2),

lim egf [(t/a) :b] = O, | (3.7)
t—

so that, whenever m >0, repeated application of L'Hopital's Rule
provides the desired result. A further result relating to the function

(3. 2) is that
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C
c o "(%/3) , if ¢ >0

egf [D) 5 1] =

: (3. 8)
-3 4 o <.

H
Thus, from (3. 5) . we see that
+ o, if 0 < p < I,
limg(x; a, b, c;p) =4 I' (b)/al (b.+ 1/c), if p=1, and
X~r0

0, if p >1, (3.9)

so that the density (3. 1) behaves, at the ordinate axis, as.would a
St.a.cy distribution with shaping, parameter. p . [2]

In addition to these properties, we note that certain transforma-
tions of distended Gamma variates are again distended Gamma vari-

ates; e.g., for Xndg(x;a, b, ¢, p), k, t >0,

Y = kX rvgly; ka, b, ¢, p), (3.10)
and

¢ .
z = X'tuglz;al, by ¢/t p/t) (3.11)
2. Special Cases of the Distended Gamma Distribution

- We have defined and briefly discussed a four-parameter probability
density function (3. 1). In order to indicate its merit as an applicable
probability density function, one might enumerate, in a manner simi-
‘lar to the listing provided in section 3 of Chapter I for Stacy's general-
ized Gamma distribution, any familiar famili.evls of probability density
functions which are subfamilies of it.

vFirst consider th;} restriction of the para.metebr space provided
‘-whénever ¢ is positiveand b = 1. Using the result of equation (3. 8),

we see that, in this case, density (3. 1) represents Stacy's three-



parameter distribution with positive shaping parameter.. For,

g{x;a, 1, ¢, p) = ¢ Xp-le-(x/a)C:/apI, (p/‘c),.: (3. 12)

which is identically f£(x; a, p, ¢) as given in equation (1.1). Thus,
our distended Gamma distribution includes many families of distribu-
tions which we saw in section 3 of Chapter I to be special cases of
Staéy's generalized Gamma distribution.

Another interestiné, sub-family of the family of densities describi)ed
by equation (3, 1) «is the oné-parameterv distribution .

1

glx; a2, 5 2, 1) = 51 J du, (3. 13)
(x/2)%
which we may write as
2 ‘00 2
1 2 X -(t/a 2 -
g(x;a,—Z-.Z, l)'—'-—zf e(/)dt:EI eydy.
a X X/ a
From page 77 of Rainville [10], we see that
1 .
gixia 3 2 1) = AT erc (5), | (3. 14

. where erfc (t) is the complement of the error function,
o 2 2
- 2 t .-
J eV dy = 1-27¢7g
t T ©

erfc (t) = y. (3.15)

=y

- A two-parameter generalization of this last probability density

function is provided,for a and p > 0, by

i

' _p-1 o .
g(X; a, 1/2’ 2, p) = —B* foo u-l/ze-udu,

a

or equivalently,

px P merfe (sa)

ptl )
2

g(X; a, 1/2’ 2: P)

- ’ (3.16)
aP I (
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© where eric (t)- is defined in equation (3. 15), . For the sake of later
reference, we shall refer to univariate density (3. 16) as the error~
-function distribu&ion. ’

: Haﬁng a technique for estimating the parameters of our four-
paramete_r density (3. 1) would possibly be of great value. Howevéf,
since we shall show that this density is,in certain cases, the marginal
distribution of the warning-times associated with the bivariate warning-
time/failure-time distributions which we discuss at length in the next
two chapters, we shall defer ourvpresentati;)n of parameter estimation

.

‘techniques for the time being.



CHAPTER IV
THE UNIFORM/STACY BIVARIATE DISTRIBUTION

Suppose that one has specified a probability density function, . h(y),
to deécribe the population of failure-times, Y (>0), of some compo-
nent (or system of components). Suppose also that we may measure,
or observe, prior to each faulure-time, some property of the system
which would warn of, yet not accurately predict the time of, the impéﬁd-
ing failure of the system. If we denote the time of this warning by X
and assume that, for each fa,.ilure-timé Y, there is a unique-warning-
tir;e, X( < Y), then we could define a bivariate probability density
f(X, y) on the range 0 < x<VY < o. By assuming a conditional density
of X given Y =y, we could completely specify this bivariate density

function:

f(x, y) = glx|y) hiy), (4. 1)

where g(x|y) is this conditional density, defined for a random vari-
able - X which takes values with positive probability only in the range
0 < x < vy.

In this chapter, we shall concern ourselves with bivariate densities
which are capable of factorization as indicated in equatic_)n (4. 1), such
that the marginal density of the fa.illure-tirnes‘ is specified by Stacy's
generalized -Gamma distribution (1. 2), and such that the conditional

density is designated by the uniform distribution

38
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gx|y) = 1y, 0 <.x <y. o (4. 2)

1. . A Theorem on the Implications of a Uniform

. Conditional Distribution

We shall then be concerned. with the Uniform/Stacy bivariate

distribution
: _ ‘ s
f(x, y; a, b, c)= h(y;a,b,c)/y= |cl a.-bcybc-ze (Y/a)/l"(b), (4. 3)

for 0 < x <y < w,for real  parameter c (which we shall con-
tinue to refer to as the exponentiating parameter), and for positive para-
met‘ers a and b (the scaling and shaping parameters, respectively).
However, since we may obtain a number of pertinent results relatingv

to general warning-time/failure~time bivariate densities without assum-
ing a functional form for the marginal density of Y, wé defer momen-
ta.rily our discussion of bivariate density (4. 3) to present the following

theorem.

- Theorem: Let f(x, y) be the bivariate probability density fuhction
as described by equations (4, 1) and (4. 2). Then the following results

may be established:

(A) - The random variable U = Y - X has the same marginal
density function as X; furthermore, with f(x, y) as specified by equa~-
tion (4. 3),

X nJgix; a, b-l/c, c, 1), : (4. 4)

as given by equztion (3.1). Consequently, whenever these moments
exist,

E(Y-X)® = E(X)°. . (4.5)
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(B Whenever the appropriate moments of Y exist,

E[Y/(st1), i s # 1

. E[Xs Yt]. = (4.6)

E[(fnY -1) Y"1, if s = -1.

(C) ~ The cumulative marginal distribution function . G(x), associ-
ated with the random variable X, differs from the cumulative marginal
distribution function, H(y), associated with Y, when each is evaluated

at t, by
G(t) - H(t) = tg(t), (4. 7)

- where g(t) is the marginal density of X (evaluated at t).

(D) . Whenever the appropriate moments of Y exist,
E(2X) = E(Y), - (4. 8)
Var (2X)= 4 Var (X)=Var (Y) + 3 E (Y% >Var (Y)  (4.9)
a.hd
Cov (X, Y) = —%Var (Y). | (4. 10)
(E) . Whenever E(YZ) exists and Y has not a degenerate
distribution,
0 < Corr (X, Y) = /Z—Y\Ta—g—r—%' =J - Vérl(Y) 5 < 1.
N Var (Y) +5E(Y )
(4.11)
Proof:
(A) LetU = Y-X, V = Y. Then X(U, V)=V -U and

Y(U, V) = V. The absolute value of the Jacobian associated with this
transformation is unity, so that the joint probabpility density function of U

- and -V becomes



41

%
f (u, v) = f[ x(u, v), y(u, v)] ¢ 1
= h(v)/v, 0 < u < v < oo.
y 4 .
Thus, . f F(u, v) = f(u, v), sothat X and Y have the same bivariate

probability density function as U and V (=Y). Therefore, the mar-

-ginal density of U is that of X; and, whenever we have
h(y) = b{y;a, b, ¢),

as specified by equation (1. 2), this marginal density becomes
o) c
bc-2 =(y/a bc
glus 2, b=1/c, e, p)= J {Jo]y** 722 r(b)} ay,
y=u |
as given by equation (3. 1). The equivalence of the s-th moments of

X and U = Y - X then follows immediately.

(B) Now|

® vy
E[x°Y) = 5 f Sy fx, y)dxdy
y=0 x=Q
[0 0] y - )
= [ f %° yt lh(y) dx dy
y=0 x=0
or
. 0
1 +t
‘ 7 v hiy)dy, s # -
E[XSYt] = y=0
@ t-1
S [y -1]y " h(y) dy, s=-1.
p_Y=°
(C) Now
t
G(t) = [ . gx) dx,
X=0

where g(x) represents the marginal density of X; viz.,
fe'e}
glx) = [ f(x, y) dy.
y=x



42

Thus
t (0.0}

I J f(x y)dydx
X=0 y=X

Q
~
ot
o
1

1i

t vy o t
{J" I + 0 } h(y)/y dxdy
y=0 xX=0 .y=tx=o ,
t o0
J hy)dy +t [ f(x, y) dy.
y=0 y=t

(D) . Equation (4. 8) follows by substitution of s = 1: into equa-
tion (4. 5) and by subsequently applying the linearity property of the
expectation operator. Egquations (4.9) and ('4. 10) follow from repeated

and appropriate applications of equation (4. 6).

(E) Equation (4. 11) follows from the definition of the correla-

tion coefficient and an application of the result (4. 10).

2. Parameter Estimation For the Uniform/Stacy

Bivariate.: Distribution

. Suppose we have a random sample of n observations (xi,. Yi)’
i=1, 2, .. ., n, each taken from bivariate density (4. 3). Now,
since the set of yi's .constitute a random sample from h(y; a, b, c),

. we see that ‘i:he parameters of bivariate density (4. 3) could be esti-
mated by utilizing only the observed failure-times, Y;e i=1, 2,... ,’ n,
and applying the ap.propriate estimation technique of Chapter II. How-
ever, suppose we attempt to estimate these parameters by employing
only the warning-times: X .XZ' s e s X

A consideration of the maximum-likelihood equations associated

with the univariate density function (4. 4) does not reveal any procedure
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readily applicable to this estimation problem. The: m'ethod-of-moinents
would be concerned withthe results obtained-from equation (4.6) after

setting t = 0 and referring to equation (l.4).. For convenience, we

list
aT(b+ 1l/c)/2r (b), if b+ 1/c >0
- E(X) ={+ ©, otherwise, | (4.12)
and
|24 rerz/e T (o) Tobr )1 /TE(D),
Var (X) = if b+ 2/c>0 4. 13)

+ oo, otherwise,

but note the futility apparent in any effort to utilize such results
jointly in an estimation technique. |

However, suppose we consider the application of the method-of -
moments to the random vari_a‘ble,. fn X, The joint moment-generating

function of fn X and fnY is given by

_ E[esln.X -I-.tin-Y]v - :E[XS, Yt], (4. 14)

which, with s # =1, may be more explicitly presented upon reference
to equations (4. 6) and (1.4). (With s = -1, the explicite representation
of (4. 14) requires, in addition, reference to equation (1.17).) Equat-

ing t to zero in (4. 14) provides the moment-generating function for

dn. X:
" . sinX s ,S 8
Efe ] =E[X?] =E[Y ]/(s+1)=a’T (b+s/c)/(s+1)T (b)
(4. 15)
for all s such that (b + s/c) > 0 and such that s # . -1,
Now the i-th moment of In'X is givenby = =~
E[tn X]* = o' [%* X7 /0 & . (4. 16)

I

8
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However, before proceeding directly to the application of equation

(4. 16), we note that, for any positive constant a,
E[fn X] =4n a + E[In(X/a)],
and that, for any k = 2, 3, 4, ...,
k ' vk .
E L in (X/a)-E[tn (X/a.)]} =EdinX - E(tn X)} . (4.17)

Thus, a consideration of the random variable {n (X/a)v should simplify
our efforts in obtaining the moments of In. X. For, from eéluation

(4. 15), we have, for s # -1,
E.[es‘.@n(X/a)] = E(X/a)® = T (bts/c)/(s+1) T (b), (4. 18)

so that, for i=1 2, .. .,

. i ik (k)
E[lft (X/2)]* = = HEDTI T b) (4. 19)

k=o k! ¢~ T (b)

k
. where 1"( )(b) is the k-th derivative of the Gamma function with
respect to its argument. (T (0) (b) is, of course, taken to be I (b). )

Thus we readily lobtain

E[fn (X/a)] = -1+ \Ir(b)/c, | (4. 20)
from which we obtain the rather interesting result that

E[fn (X-e)] =4na+ ¥(b)/c = E[4n Y], (4.21)

© where W(b) is as defined beneath equation (2.47). In addition, by
applying the result of equation (4 17) to the appropriate combination
of moments acquired by setting i =1, 2, and 3 in equation (4. 19), we

have the central moments

Var [nX] = 1 +w'(b)/ c* (4.22)
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- and

gy UnX) = -2 Fut(b)/ 3. (4. 23)

On page 111 of Volume II, Edwards [7] shows that,. for every
b >0, ¥ (b)>0 and ¥'(b) < 0. Thus, from equation (4. 22), we
have

@ (b)/c? (4. 24)

‘-—l+Var(£nX)| = I\I/'(b)/cz\ =

and

[ ¢ (b)]3/2c3, if ¢ <0

,-1 + Var (tn X) |3/2 2, 3 (4. 25)
-[w (b)]7%/c”, if c< 0.
In addition, from equation (4. 23) we see that the quantity
- 3 (4. 26)
2+ p, InX) = T ' (b)/c .
is positive (negative) whenever c¢ is negative (positive).
Therefore we see that
(_w' (b)
2 (<0) i >0
[w (0)]7% (<O <
2 + M (4n X)
, 72 = N , (4. 27)
- 1+Var(in X)I - (b)3/2 (>0) if c< 0,
L[' ' (b) ]
and thus. we may establish the result
24 pgn X) ' (b)
- = - | —— = Q(b), : (4. 28)
|- 1+Var (In X)I-3/2 [\If'(b)]?’/2
t he last equality following as a result of equation (2.52). We may
then propose, as an estimate of & (b),
- * 2 + m 5 (In X) (4. 29)
l-l + s lﬁ

InX
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where

(z, ~ z )3/(n-l)(n-2), (4. 30)

1 .

m3(£n X)=n

WM

1
_ n
for z = Z zi/n and z; = fn X i=1, 2, . . . , n,is an unbiased
i=1
estimate of . (4n X), and where

o

Spn X 20 unbiased estimate of
Var (In.X), is given by equation (2. 50).
* .
With & , one may estimate the shaping parameter b by refer~
ring to. Figure 1. Denoting this estimate by b’ﬁ, we may then proceed

to estimate the exponentiating parameter by considering equation (4. 24),

taking as our estimate

Y =t (e ]/Z/l -14:s'fnx)1/2. (4.31)
Since the statistic within the outermost pair of absolute-value signs

~of the right-hand side of equation (4 29) estimates the expression given
in equation (4. 27), we see that we may use, as a criterion fokr determin-
ing the sign of c*, the sign of the qualntity, 2+ m, (In X); i.e., we
take ¢ to be positive (negative) if this quantity is negative ( positive).

Finally, to estimate the iscaling parameter, a, we may consider

estimators suggested by equations (4. 12) and (4. 20); viz.,

3 % % P e sk %
a) (b,c)=2C(b) T x/naT(® +1/c) (4.32)
i= 1 ,
and
X ok % n l/n 3k %k
a, (b, c) = 1131 x, exp[l- ¥(b)/c ]. (4. 33)

The first estimator has the advantage of being unbiased (whenever b
and .c"\ may be considered fixed, no longer random variables), though
it is not calculable whenever b+ l/c‘ﬁ is negative [cf: equation

(4.12)]. Regardless of the sign of c*, the second estimator is
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3o

b3 B
calculable; however, for fixed b and c , the resulting estimate is
biased for a.

However, reference to equation (4. 15) indicates that a bias correc-

e g2 e o
3R 3R > b4

tion factor may be obtained for a, (b, c r);i.e. » for fixed b and c ,

2

. 'we may form the unbiased estimate

: Ih
(b (14 1/n)" { I X'}
* F i=] * R

o]

%k

3

a7, = (4. 34)

% £
™Mb + 1/nc )

) 5k

' S %
This estimator may, like 2, ﬁ(b » € ), suffer the disadvantage of being

e o

73

% %k o
incalculable in certain cases when ¢ < 0; viz., whenever b +1/nc
is negative.

Let us consider b and ¢ as being fixed values. Then, with the

variances of our two unbiased estimates of the scaling parameter given

by
2 " a® [ ar (b+ 2/0)T (b)
o, = Var[a, (b, c)] = . -1
1 L n 30%bt 1/c)
(4. 35)
and
» s ' 2n n
632 = Var[a,*(b, 0)] = 2} (1+1/n) rf‘l’ézm/nc)r (b) -1},
) (142/n) T " (b+1/nc)
‘ (4. 36)
one rhight consider the formation of the unbiased estimator
%k L%k Tk
a, (b, ¢} = Ba, (b, c) +(1-Bla; (b, c), (4. 37)
- where
2 2 2
B= (" - 0'13)/(0'1 to," - 20 ,) - (4. 38)
with
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~ (1+1/n) T (b) T[bt(nt1)/nc
0']_3 = a i 2+]_/2) b+ /C) l-r}(b.l_l/nnc;l) - \3 . i (4:.39)

o

By construction, B is selected so that the variance of a4_". (b, <),

-2 -2 2
o =[lo;Nog™) - /[<r -Zcr 3l (4. 40)
is the minimum variance for all unbiased estimators which are linear

e

¥ b
combinations of ay (b, c) and ajg (b, c); thus, Ty

the minimum of the two quantities 0'12 and- 0'32. [See page 323 of Wilks

44~ (b, c) is more tedious to calculate than either of the

2.is not greater than

[3].) Though a
estimators given by equations (4. 32) and (4. 34), the resulting reduction
in‘ variance may well justify its use.

It is. conceivable that one (or two) of the three parameters of the
bivariate density (4. 3) might, for specific situations, be assumed
known. For example, with h(y) taken to be the Weibull distribution
(a case we shall examine more closely in Chapter VII), . we need esti-
mate only the scaling and exponentiating parameters, for the shaping
parameter is aséumed to be unitby (b = 1). Such cases could be handlea
individuallf and are, with the exception of the case where the marginal
density of failure-times is assumed to be Weibull, left for the reader.
Procedures for such cases would be derived in a manner analogous t<;

that. of sections 3 and 4 of Chapter IL



CHAPTER V
THE BETA/STACY BIVARIATE DISTRIBUTION

Having seen that a uniform distribution may serve _av's a conditional
distribution.for the warning times, one might be led to inquire of the
possibility of using more general distribution.s in this role, In this
chapter we. examine the employment of a. Beta distribution (normal-
ized over the interval between 0 and the given y) and, noting the
difficulties encoﬁntered in attempting to estimate the additional para-
meters thus introduced, we then consider possible restrictions of the

parameter space of this Beta/Stacy distribution.
1. Preliminary Results

. Suppose we now consider a bivariate density, defined over the

range 0 < x < y < oo, such that

f(?c, y) - glx I yips @b (y) (5.1)
~where h(y) is tﬁe marginal distribution of Y (défined. over 0 <y < .m)
and glx|y;ps q = <P H(y- X) /B yPta-t (5.2)

is the Beta distribution, indexed by positive parameters .p and q
and defined over the range 0 < x < y. The function B(p, q) is the
- Beta-function, equal to . I" (p) r (q)/F (p+ q).

The marginal distribution of X (Again, this variable will refer to

49
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our warning times.) we may denote by

[0 o]
glxsp, q) = [ f(x, y)dy, (5. 3)

y=x
though it is also indexed by the parameters specifying h(y). Before
circumscribing h(y) more specifica.lly, however, we note that a
‘number of pertinent results may be summarized without such a restric-

tion. This summarization is the content of the following theorem.

Theorem: Let. f(x, y) be the bivariate probability density function
as descr_ibed by equations (5. 1) and (5.2). Then we have the following

results.

(A) : For. Xnig(x; p, q), as given in equation (5. 3), the random
variable U= Y - X(\)g(u; g, p), provided that h(y) is not indexed by '

the parameters p a,nd. -q in other than a syrhm'etrica.l manner.
(B) . Whenever the (s + t)-th moment of Y exists,
E[X° Y] = Bp+s, @ E[YT)/Be, a) (5.4)
provided that s > -p.

(C) . The cumulative distribution function associated with the

random variable X can be expressed, at point t, as

o
Gl = H(o) + [ {B,, (b, D0(y)/Blps )} &y (5.5)
y=t
where v = t/y and where
v p-l -1 '
B, @) = f uPTH1-0)? du. (5.6)
o
(D) Whenever the appropriate moments of Y exist,

E[X°] = B(p+s, q) E[Y®]/B(p, q), for s > -p, (5.7)
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E[X] = pE(X)/(p+q) ~(5.8)

Var [(p+ @)X/p] = Var [Y] + qE(YZ)/p(p+q+l), (5.9)

Cov [X, Y] = (EJI:—q—) Var (Y) (5. 10)
(E) - Whenever E(Y%) exists and whenever Y has not a degener-

ate distribution,

p2 Var (Y)
(ptq) %Var (X)

0 < Corr (X, Y) < 1 (5.11)

Proof:

(A) Letting U = Y - X, V =Y, we transform to obtain the

bivariate density
% -1 -1 +q-1
f (u, v) = {uq (v-u)p /B(p, q) vPrd }h (v)y

over the range 0 < u < v <oo. The Beta function B(p, q) is sym-
-~ metric in its arguments, so that we see that the conditional distribution
of U given V (i.e., given Y) is g(u|y; g, p). Thus we have the

marginal distribution of U = Y - X given by
* O %
g (u) = [ £ (u, v)dv
v=u

Q0
= [ glul]v:q ph(v)dv,

v=u

Therefore, whenever h(v) dépends. neither upon p nor upon q (unless
p and q are symmetric in this indexing of h(v)), we have upon
reference to equation (5. 3), the desired result; viz., that the marginal
distribution of U =Y - X is g (u; q, p)-

(B) By definition,
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® Vv
t N -
E[XSY 1= J I X.s+p 1
y=0 x=0

q-1 -p-qtt+]l P
(y-x)1"y h(yMxdy/B{p, ),

Upon performing the interior integration, we have, for s >-p,

(00
E[XSYt] h(y)y® *B(p+s, @)dy/B(p, q)

I
—

y=o

B(p-ts, q) E[YSH],
B(p, q)

whenever the latter moment exists.

(C) By definition,

t o t . o
G(t) = [ glxipy qdx = [ J o f(x, y) dy dx.
x=0 XS0 y= X :

Reconsidering the area of integration, we have

t v ot |
G(t) = [ [ f(lx, y)dxdy+ [ [ f(x, y)dxdy
y=0 X= y=tx=0
t y ‘
= [ h(y) [ gx|y:ip g dxdyt
y=0 X=0
0 t 7
+ [ hiy) [ glx]y;ps @ dxdy
y=t  x=o ,
. lo'e)
= H(t).+ [ B_(p, @) h(y)/B(ps q) dy.
y=st
(D) - The result stated in equation (5.7) follows as a corollary

to part (B) of this theorem; similarly for the result in equation (5. 8).

As for that in equation (5.9), we note that

2
Var [ (p+ q) X/p] = (£+—%)—’Var (X)

P
(p+ q)z[ (p)(pt1) E(YZ)_,VP.-Z EAY)]
pz (P+q)(p+q+l) (p+q) )
- _ 2
= Var (Y) +_—i—__p(p+q+l) E(Y"),
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. whenever E(YZ)‘ exists..

Then,
Cov (X, Y) = E(XY) - E(X) E(Y)
= Py E(YY - (PoyEHy) = (B ).
(Fq—) E(Y"™) _(p+JE (Y) ‘(p_l_q)Va-r (Y),

(E) .Finally, providing 0 < Var (Y) < oo,

y — ‘ .
Corr (X, Y)= /p Va; (Y)
: (ptq) Var (X)

The positive correlation of X 'aﬁd Y is assured by the positiveness
of each of the factors beneath the r‘adical; the right-hand inequality
follows upon a consideration of (5.9)- | Q.E.D,
. Suppose we take the marginal distribution, h(y), to be Stacy's
generalized Gan‘:ma distributien, given by equation (1. 2). We are then

considering the bivariate density

£(%, 75 3, by ¢y Py Q)= I ¢ P L y-x)1" 1ybc'p-qe-(Y/a)c/atbcI‘(b)B(p’q).
(5.12)
for positive param‘e‘ters‘ a, b, p, and q, for real p.aramveter c, and
for positive random variables X and Y such that x < y < oo.
(With p= g = 1, we have the Uniform/Stacy bivariate density, dis-
cussed at length in the preceding chapter,) Using, as the marginal
distribution of 'Y, Stacy's generalized gamma distribution, allows us, by
referring to equations (1. 4), (1.5), (1.6), and (1. 7), to specify the
moments and distributions mentioned in the preceding theorem,
In addition, we note that we may obtain the joint moment-generat-

ing functionof Z = 4nY and W = InX as

sW + tZ
e

EJ 1 = B[x° Y'Y,
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- which, for s > -p, becomes

E[e‘SW“Z] = B(p +s, q)E[Y‘S+t]/B(p. Qs

- or

’5 E[eSWHZ) | ¥t pr&)p)l‘ Igt:;qi)sl[ﬂtg§-S+¢)/ ¢l (5.13)
provided (s + t)/c > -b, and s >-p. From equation (5. 13); we
may determine the following moments |
" E(fn X) = 4na+¥(p) - \If'(p+Q)<+ T (b)/c, (5. 14)
or
"E(InX) = E(nY)+ ¥(p) - T(p + q),
and o
‘Var _(fln.X) =¥'(p) - ¥' (ptq) + T (b)/cz, (5.15)
or |
Var (fn. X) =-Var (In Y) + ¥' (p) - ¥'(ptq),
and
Ba(nX) = w'(p) - ¥'"(p+q) + o (b)/¢3. (5. 16)

" or

paUn X) = paUn Y) + 2 (p) - ¥ (p+ q),

. where the Wfunction and. its der‘iv:atives are described in Chapter XXIV
of Edwards.[7]. We note that, since q > 0. implies"that T (p) < Tlp+q)
¥'(p) >¥v'(ptq), and o' p) <¥(p+q), we are able to establish the ine-

’ qualitieé | |

"E(nX) < E(nY),

Var (fn.X)> Var (fn Y), and C(5.17)

b3 UnX) < psltn Y).
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2. Parameter Estimation for the Beta/Stacy

" Bivariate Distribution

. Suppose now that we have a random sample of size n .taken from
bdensity (5.12). Denoting these observarions by (Xi' yi), i=1, ..., n,
. 'we may derive the maximum=likelihood equations associated with para- .

‘meters p and q:

9 In L 2 n
) T2 = -n¥(p) + n¥(ptq) + T In X = Z-lnyi = 0 (5.18)
P i=1 i=1
n n
| ?_’én_qlz_ = -n ¥(q)+n¥(ptq) + Zin (y;-x) - 2 Iny,70.(5.19)
i=1- i i=1

The remaining maximum-likelihood equations are identically those
presented previeusly as equations (2. 1), (2.2), a.ndr(Z. 3). The result-

“ing se;c of ﬁive equations does not readily suggest for any ohe of the para-
- meters, an estimation technique which uses only the observed warning
times, X i=1 2, ..., n. Inaddition, any attempt to solve explic~
itly the maximum-likelihood equations associated with the marginal
distribution of X would apparently be thwa.rt'ed by the complexity of -
their expressions.-

Nevertheless, it is possible to establish the Cramer-Rao-lower
bounds for 'the- variances of unbiased estimates of the parameters of
density (5.12). The lower bounds for unbiased estimates of a, b, and
c are thosé‘ presented in section 7 of Chapter I; for -p* and q:k unbias-~

ed estimates of p and q, respectively,

£ 3
Var (p ) > 1/n[w'(p) - ¢! (p+ q)] (5. 20)

and

" var (q7) > 1/n[w'(q) - ¥'(p + @] (5.21)



56

In order to ascertain the statistics sﬁfficient for each of thé‘ para-
meters of density (5. 12), we comnsider again the K-function of Lehmann
~and Scheffe. [5]. For brevity we merely list these results, noticing
that |

n n '
.H(xi/yi), or, equivalently, = 4n (xi/yi), is sufficient for p,
i=1 Ji=1 '

n ‘ n .
T [ (yi-xi)/y,], or,equivalently, 3 4n| l-(xi/yi)] , is sufficient for q,
i=1 1 1:1 .

n
y.s Or,equivalently, = in Vs is sufficient for - b,

_1‘1 Ci=1

= =

1l

;
and, whenever ¢ is known, ;; yic is sufficient for .a. Again,. the
form of density (5. 12) is not ;;olper to admit a single statistic sufficient
- for ¢, [Pitman, 6] |
- Thus, with our random sample (xi, yi), i=1, 2, .. s N, ‘i't would
- appear that our estimation technique would be to |

(1) Estimate a, b, and ¢ by the appropriate technique of -
Chapter II,

(2)  Solve iteratively equations (5. 18) and (5. 19) for 'p and- q.

Howe\verr, it would seem f‘ea.sible in many applications to restrict
the parameter space associated with‘density‘.(5.=l 2) by assuming one or
-more of the parameter values to be known. Assigning values to one
" (or:two) of the parameter‘s‘ of the set: a, b, c would be entirely reason-
“able in cases where the distribution of failure times can be assumed to
be one of the subfamilies listed in section. 3 of Chapter I; in such cases,
. the estimation of the remaining parameters in this set is .str’aightforﬂ-

-ward, [See sections 3 and 4 of Chapter II. ], and the estimation of p

and g .would then follow from the iterative solution of equations (5. 18)
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and (5.19).
Suppose, however, that one is willing to specify the conditionai
distribution (5. 2) by assigning values to p- and q.. [For example,
p = gq = 1 specifies a uniform conditional distribution, thereby desig-
‘nating the bivariate density of the preceding chapter. ]
Letting
A 4(ps @) = ¥ (p) - ¥'(ptq) | (5.22)

- and
B,pr a) =-T"(p+a) + T (p), B (5. 23)

we see that equations (5. 14), (5. 15), and (5. 16), with p and q. each
~known, suggest a method for estimating, those parameters indexing

the marginal distribution of Y by using only the observed warning-

times x x e e ey X 4
. 1':2’ ’ ’ n

(1), Estimate ¢(b) by computing

m3 (,(Zn X) - Az (p’ q)
72| *

o2
T

— (5. 24)
n. X -A.l(p’ a) '

- where. A (p, q) and A, (p, q) are given by equations-(5.22) and

(5.23) [c.f.Figure 2], ‘where’.-é'm?’:(lln X)is as given: by equation (4. 30),
. 2 .

- and where s, . isas given by equation (2. 50). Using the graph

of ¢(b) inFigure 1 at the end of Chapter II, we obtain the estimate

~n
of b, say, b.

(2)  Estimate c by computing

= e OV sy it s ] VR (5. 25)

- taking the positive (negative) sign if mg (In: X) - A 2(p, q), u.sédrin
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~ ey ) N1/ 2
calculating ¢, is negative (positive). The quantity [¥' (b)] i

s
readily obtainable from Figure 1l at the end of Chapter II; the denomina-

. : ~
tor of T is available from the calculations used in obtaining ¢.

(3) Estimate a by any one of the four estimators:

~NoN N nooR ~ ~J

a'l(bp. Cy Po» Q) = (P + q) i (b) z i{i/l'_lp T (b+ l/C), (5. 26)
5 v U ‘n l/n =

gz(b’ C, P» q,) :{ HXi} €Xp '{\I(p) + ‘I(P‘*'Q) '\I(g)/g‘}p
- i=1 . (5, 27)
NN N . ' (p) Fn(vp+q+—l-_)l‘n(?>l){.n»1x.} n

a3(b§ c, P, q) = — — n 1 1; 11 , (5.28)

T (pra)T (ot ) Tibtog)
or
24({:’ g)a P, Q) = Ar;.l(g,’ g‘: Ps q) + (l”A)g3(g’ /g: F()g qz)g-)

~
For fixed b and ¢, each of these estimators, save a,z(b, c, Py Q)
is  unbiased for a. The coefficient A, used in calculating

3-)4(13, c; Py q)s is given by

A = (0‘12—0'13)/[0'12+0'32- 2_cr13], (5. 30)
where
2 -
o'iZ:Var[g.)l(b, c,pyq)]= a.T {(p+q)(p+l) r(3+z/c)r(b) —l},
(ptgrl)(p) T (b + 1/c)
| (5.31)
o,% = Var [T,(b, < b 9], (5.32)
or . _
o 2z 52 l"n(p)l"n(b)l"n(b+2/nc)l",n(p+2/n)I"2n(p+q+l/n) -1
3 l"n(ﬂp+q)l"2n(b+ l/nc)l"zn(p+ l/n)l"‘n(‘p'-i-q‘-i-Z/n)
and

~ ~
T,37 Cov [a-l(b, C, Ps Q) a.3(b, c, py q)] (5. 33)

_ aZ{}p*‘!-q)(np-f 1)T(b) T{b+(n+1)/nc) -1}
np(np+nqg+1)I'(b+1/c)I(b+1/nc) ’
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' ‘ ‘ n .
By this construction, Wilks on page 323 shows that a4(b,' C, Py q) ha.s

variance not greater than the minimum of 0‘12 and 0'32; viz.,
Var[a4(b,‘ ¢y pr Q)5 , (5. 34)
: ‘ Ty ;+0—3 "2'613 .

¢ 2=
4.

3., A Beta./Gamrpa. Distribution

We have'seen that, in the absence of failure-time (Y) data, we
encounter difficulty in estimating the five parameters of density (5.12).
Furthermore, we have seen how complete specification of the condi-
tional density (5. 2) allows us'to estimate the parameters of the failure-
time distribution, using only wafning-times in so'doing.

We now consider another interesting restriction of the parameter
space associate with bivariate density (5. 12). Suppose we assume
that ¢ = 1, so thatfor the marginal distribution of our failure-times,
wé restrict our attention to the subfamily of two-parameter Gam-ma
distributions. If, in addition, we assume that (p+q) = b, wé are fo‘cus‘r-
ing attention on the bivariate density

1, b-p-1 b=l -y/a -
xP " Hy-x)""P y eY/a,

v>" 'B(p, b-p) a2’ I (b)

f(x, VS a-by b, 1, P b“P)=
or, equivalently,

f(x,y;a, b, 1, p, b-p)= xp*l(y-x)b'p"le'Y/a/abr(p)r(b-p) (5.35)

for 0 < x <y <o, andfor a >0, 0 < p < b.
One of the most interesting prope rf:ies of this bivariate density

is that the marginal density of the warning-‘times becomes

g(x; p, b-p) = h (x;a, p, 1), (5. 36)

a two-parameter Gamma'. distribution., Thus, by part (A) of the
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theorem in section 1 of this chapter, we see that, with b=p+ q, a
symmetric function of p and g, the random variable U = Y - X

has two-parameter Gamma density:
U = Y -Xph(u; a, b-p, 1). [ (5.37)

In addition, since the product of the densities (5. 36) and (5. 37) is

- the same as the joint probability density function of X and U, we see
that X and U = Y - X are independently distributed Gamma variates
with common scale parameter. Thus, from result (1.9), we would

have the marginal density of Y:
Y ™ hiy;a, b, 1). (5. 38)
We have then established the following theorem:

Theorem: Let: X and Y be two random variables defined over
the range 0 < x < y < o. Let Ynh(y;a, b, 1), U=Y - X, and
(p+q) = b, Then:XnNh(x;a, p, 1) and is independent of
UM h(u; a, g, 1) if and only if the conditional density of. X given Y
is glx|yip, .

This result is most pleasing in that it allows us to discuss warning-
times and failure-times which are each distributed according to a
common and familiar family of probability density functions. In addi-
tion, their joint probability density function is dependent upon only
three parameters; viz., a, vb, and p. The marginal d‘ensity‘of warning-
times is indexed by two: a and p, so. that,,if one utilizes the appro-
priate proced‘ure outlined in section 3 of Chapter II, estimation of a
and p, using only the sample of warning-t‘ime’s,‘ would follow directly,

Estimation of b would require information provided only by the -
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failure-times (or, say a truncated subset of these, as is indicated by

- Chapman [11]).
4. A Simplified Conditional Distribution

In this section, we propose another restriction of the parameter
space associated with bivariate density (5.:12). We note from equation
(5.8) that the parameters p band q are directly proportional; viz.,

P E(Y—X) = qE(X). Thus, assigning any fixed value, say .0 to q
‘might not severely restrict our bivariate density (5.-12); especially not
if the proportional relationship between the mean of X and that of Y

is. deemed important,’

Let us consider bivariate density (5.12) with q = 1, i..e.,

pP- lybC -pP- le'(Y/é‘)7abcr (b) ’

f(x,y3;a, b, ¢, p, 1) = |c|px
o (5.39)
for 0 < x < y < o and for parameters. - a >0, b >0, ¢ # 0,

and p > 0. The conditional distribution of X given Y becomes
: = pxP 1/ P
g(x|y; ps 1) = px= /y5, for 0<x <y, and p >0, (5. 40)

which we see to be a one-parameter generalization of the conditional
distribution used in the preceding chapter.
Though this restriction on q limits the shape of the resulting
conditional density (5. 2), its use leads to several simplifications
- whenever one considers the propefties of bivariate density (5. 39).

. For example, results (5.4), (5.5)(5.8), and (579) become
E.[XSYt] = pE[YS+t]/(p+S); for s. # -p, (5.41)

o0
G(t) = H(t) + t° [ y"P h(y) ay, (5. 42)
‘.y=t
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or, whenever h(y) is as defined by equation (1. 2),

G(t) = H(t) + g(t; &, b-p/cs < p) [See (3. 1).1,
E[X] = p E[Y]/(p+1), (5.43)
and
2 E(Y?)
Var [X] = -—E—'—Z— Var (Y). + —B= (5. 44)
(pt1)” (pt+1) (p+2)

Similarly the moments given by equations (5. 14), (5. 15), and (5. 16)

are simplified:

E(In X) = [4nat ¥(b)/c] - 1/p, (5. 45)
Var (In X) = [ ¥' (b)/c?] + 1/p%, (5. 46)
and
' 3 3
poyltn X) = [w'(b)/c”] -2/p". (5.47)

- We note also that the marginal distribution of warning-times, as
- implied by equation (5. 42) is a distended Gamma distribution, as

. described in Chapter III; viz.,
XNg(x; a, b-p/c, c, b). (5.48)

With the distribution of failure-times specified by Stacy's

generalized Gamma distribution, equation (5.43) becomes
CE[X] = ap I' (b+1/d]/(p+1) T (b). (5. 49)

Together with the logarithmic moments presented in equations

. {5.45), (5.46), and (5.47), this moment shouid allow us tc estimate
the four parameters of our bivariate density (5. 39) by using only the
warning~times Xpp o0 o9 Xooo Since explicit solutions for the para-

meters. in these four equations (with sample moments replacing
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theoretical moments therein) are not apparent, an iterative “technique
is suggested. Unfortunately, statements regarding the statistical
properties of the resulting estimators would be primarily speculative

in nature.



CHAPTER VI

AN EXTENSION OF THE UNIVARIATE

WEIBULL DISTRIBUTION

In Chapter! I we noted that the univariate density (1. 2) was a gener-
alization of Stacy’s original generalized gamma distribution (1. 1). “
This generalization was made possible by noting the permissibility of
" the exponentiating parameter's assuming any real value.” In this
~chapter we intend to display some of the effects, some of the a.dva.nté.ges,
az;.d some of the possible disadvantageé of extending similarly 'the para-

meter space of the Weibull distzibution,
1, Preliminary Remarks

- The univariate Weibull [ 12] distribution has been mentioned (Chapw
ter I) as that special case of density (1. 2) wherein the shaping parameter
- has value b = 1 and the exponentiating parameter, é, assumes- only
. positive values; i.e,, é. positive~valued random variable, Y, ‘-has been
said to possess the Weibull distr.ibution if its probability density func-

tion were given by

. . C
Cf(ys a, o) = oySTlem0/3) 70 6. 1)

for positive parameters a . and c, termed now, respectively, the
’ s
scale and shape parameters.

. Suppose that we have a. random, untruncated, unordered sample

64
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Voo i=1,2, ..., mn, _-‘taken from density (6. 1) and that we seek
to estimate the parameters a and/ar c. The current techniques
for the parameter-'estimation from such a sample include itefative
methods derived from the maximum-likelihood equations [ 13], a
least-squares method which vcvan be facilitated by the use of special
probability graph paper [ 14], a method implied on page 22 by D. R.
Cox [ 15], who utilizes the method~of-moments, and a method
.presented by M. V Menon [16], whose coriclusions:'follo‘wed anappli-.
cafion of the method—of—momentsv to the.ra.ndom variable " In Y.
Before presenting our extension of the Weibull dis»tribution,' let
us pause momentarily to discuss thé last.two estimation techniques.

- For -Ynf(y; a, c), we have

CE(Y) = ar(l+ 1/c)
' and . (6*"2)

;zE‘(Y ) = 321"(1 2 c)

Thus we see that the mondtone function
'R(d) ;‘EZ(Y)/E(’S;{‘Z) = aB(d, d)/2, (6. 3)
: whe{re |
B(u, v): 3 T (u) T(v)/T(u+v)
and d = 1/9, is independent of the scale parameter, . Thus, calcula-
tion of,
2

y) /@ z yh | (6.4)
1 i=1 B ‘ ,

would provide an estimate of R(d), the graph of which would, in

turn, yield an estirhate, R =‘dR-l, of the Wei>bu1.1 shape parameter,

o
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This graph, for the reader's convenience, is.provided in . Figure 3,
locé,ted at the end of this chapter.

Once the Weibull shape parameter has been estimated, one could
then invok:e:‘an}.r of the :e:s;tim‘a,tors-for Stacy's scaling'pabrameter, listed

in Table I.- We note, however, that the invocation of
;(lc)-“—% /a T (l+ 1/c)
57 "R’ T 2 Vi R
would provide an estimate with the interesting property that its vari=~

ance (with' ¢ considered constant, no longer a random variable)

R

becomes expressible as

Var [a, (1, c_:R)]=a2[‘l-R(dR)]/nR(dR}%a?(l-ﬁ)/nﬁ; (6. 5)
Now, in Menon's‘ estimla).t ion techniques we note that, in the case
where the sca‘_le pé-rameter 1s assumed fixed, the procedure may
lead to an undesirable negative estimate of the shape parameter.
Menon very adeptly suggests an alternative (though essentially the
same) method for avoidiﬁg this possible embarrassment. [ 16] We
shall demonstrate that, by extending the parameter space associated

with the Weibull distribution, we may avoid being concerned about

obtaining any such negative estimate:
2. Extending the Weibull Distribution Parameter Space

Consider the probability density function
c
' c-1 -(y/a c :
hy;a, c) = |e |y " e (v/2)7/5e, (6.6)
for g positive random variable Y, pos'itive scale parameter a, and

real shape parameter c. This distribution, it may be noted, corres-

ponds to h(y;a, 1, c), as given by equation (1. 2).
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We may therefore establish the results that, for YwnJh(y; a, c),

Z =Y/kwnh(z; a/k, c) (6.7)
for any positive k, and

W = YpN h(w; ap, c/p) | (6.8)
for any p 7= 0. Now, for ¢ # 0, the cumulative distribution
function becomes:

1 - exp [-(y/a.)c] if ¢ >0

H(y; a, c) = c (6.9)
exp [-(y/a)] i ¢ <0,
and the moments, for K = 1, 2,_ .« + ., are given by
K B K I (1+K/c), if K/c >-1, and
' (Y) = E(Y0) =
+ oo, if < K<c¢c < 0.
- (6.10)

An important property associated with any reliability distribution,
such as density (6.6), is the age-specific failure rate. [Cox, 15]
This function becomes, for density (6.6),

Cyc-l/a’c . if ¢ >0

{y) = - : (6.11)
i --cyc-le“(Y/a')iC ; if c<o0.

a_c[ ].._e'(}’/é')c ]

- Whenever 0,<cfiﬁ<.- I, ‘thefunction ¢ ( y ) ‘is monotone decreas-
ing; “hBats c > 1 implies ¢(y) is monotone ine¢reasing, and
c = 1 provides the result that ¢(y) = 1/a, constant. However, an
appropriatevanalysis of ¢(y), for negative values of c, leads to the"
conclﬁsion that this function cannot be monotone, This fact, coupled
with the fact, implied by equation (6, 10), that or;ly a finite number of
moments exist whenever c < 0, will probably hamper proposed appli-

cations of density (6.6) to reliability studies.
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Suppose now that we have-a random sample of n unordered,
untruncated observations, y,, i=1, 2, . ., n from den51ty (6 6)

We may define-‘threepertivnent parameter system state s (P.SiS.):

P.S.S. I: ¢ assumed known (fixed), a to be estimated.
P.S.S. II: ' a assumed known (fixed), c to be estlmated
PO S.S

III a, c to be estimated JOlntly.

Now let us c":Ons‘ilder Menon's approach to the estimation of the Weibull

paramet‘ers;‘ [16] Analogous to his procedure, we find the first three . .

moments of the random variable Z = 4n Y to be
p.l'(fn Y) = EnY)=4na+ )\l/c J

'12)/&3, and & (6.12)

1l
I

by Un¥) = E[4n Y ;.E(fzri Y_)]Z (A, =\

=3\ N H 2N )/c ,

I

p.3(£n Y)I = Etin Y --;E(ln Y)]3 (A 3

where the _ ‘ ‘
. k o - _
A. = [ (Un x) e dx, i = 1, 2, 3,
° ;

are defined by Mennon [ 16]; the pe rtinent values are

)';1 = ~0,5772,

(A, - xlz) - 1n%6, and (6. 13)

(A3 = 30+ 2>\13) = -2.4036.

~ We note that the qué.ntity- p.3(£n Y) i:s negative (positive) according fo
whether c is positive (negative). |
Now, fo:‘r P.S.S. I, eur estimation technique for the scale-para-
meter méy Be selected from any of the estim/atérs ’a\i[ 1, c];i=1,2,...,5,
as listed in Table I.  For P.S.S. I, one might estimate c b_y consider- -

-~

ing estimator c¢ (a, 1), as given by equation (2.9); here we note, as did
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Menon [ 16], the -possibility of obtaining a negative estimate of the
Weibull shape parameter, but this possibility no longer concerns us,
since negative values of this paraméter are deemed pervmi'ssiblek under
the definition of density (6.6).

Estimation in the eveﬁt that Pv,S.S!. IIT exists is preciéely as
Menon’[ 16] suggests, except thaf, as in‘section 2 of Chapter II, we
choose the sign of the estimate of c to be positive (negative) if the

sign of the third central sample moment,

n n s
T[inY. -( Z inY.)]

. 1 1
i= 1 1

Bl—

is negative (positive). Once the -‘eslit'imat‘e fc\:J(l) [ cf: equation (2.53)],

of c is‘obta.ined, one may select any of the scale parameter estimates,
;i[l, ’c"(l)]," i=1, 2, ..., 5, given in Table I. (Note: one must take
care, however, in the event tha.t. Acl(l) < 0, fory difficu_Lty ir‘lievaliu;.t‘ir;é

some of the Gamma functions, involved in the expressions for certain

scale parameter estimators, may be encountered.)

3, A Note on Estimation for the

Exponential Distribution

If the Weibull shape parameter ¢ can be assumed fixed, we note

~ that,for Yo h(y; a, c¢), the réndom varié.ble w = Ycrvv h(w»; v, 1), the
e xponential distribution with mean vy = a®. One may establish that,
for a random sample ;s i=1, 2, b. .".., n,taken from density (6.6)
with ¢ fixed, the unique minimum variance unbiased e-stimaté of vy iis
;_IZIII wi/n, for w, = yic, i=1, 2, <« o« » D Our results pe‘rtéénjeznat:'t;o
tlr-le more general Stacy distribution revéa.l that estimator ;3[ 1, c]

[See Table I] is the uniqile minimum variance unbiased esti;né.tor of
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the Weibull scale pa.ra.metef, a, whenever the shape parameter may
be assumed known.

In examining the estimators ai(l, ,i=1 2, , . .5, provided

by the appropriate entries in Table I with- b = ¢ = 1, we see that

a.3(l, 1) = 35(1, 1), so that we have only two unbiased estimates for
the scale parameter of the exponential distribution. The second,

though its variance is not less than a 3(1, 1), possibly merits an

individual display, along with its variance:

i=1 1

- n 1/n ,
a, (1, 1) .—.{.n w.} / TV (1 + 1/n), (6. 14)

and

Var [a, (1, 1)] = az{l"n(l +2/n) - rzn("1+1,/c}/r-,2’1(:1+1/c).
‘ (6.15)
Though not so efficient as as (1, 1), the fact that the geometric
mean of the observations from an exponential distribution may be

employed to estimate unbiasedly the mean. of the distribution is

itself of possible interest.
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Figure 3. An Aid for the Estimation of the Weibull Shape Parameter



CHAPTER VII
BIVARIATE WEIBULL DISTRIBUTIONS

The Weibull distributioﬁ has been discussed both dii'.(.e_ctly and
indirectly in the preceding chapters. With éositivé shapé parameter,
it has proved a quite powerful tool in the de svcr.iption of data arising

from relia.bility studies. (See, 'e.g., Gumbel [4] and Kao [13].) We
now turn our attention again to a study of the bivariate warning-::
time/fé.ilur'e‘—time distributions defined in Chapters IV and. V,
restricting ourselves to those ﬁaSes wherein the marginal density
of thé fé.il.ure-—times is pI;esuvmed to be the e.xter_lded Weibull distribu—

tion of Chapter VI.
1. Definitions

: We shall then define the Uniform/Weibull bivariate probability
density function by |

C
f(x, y; a, C.) = lCI YC.-Ze-(Y/a) /aC’ N (-7..1)

for random wvariables X and Y suchthat 0 < x < y < oo, for
positive parameter ‘a, and for real parameter c. The more: general

Beta/Weibull bivariate probability density function we shall define as

o 4C - . ‘
f(xs, VY3av CypPrq) = iclxp-l(}"x)q- lyc-p-qe-(y/a) /3CB(p..q), (7.2)

where 0<x<y <o, a, p, and q > 0, and c is real. We note
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that bivariate density (7. 1) is that of equation (7. 2) with p = q = 1; i.e.,
flx,y;a, c) = f(x,y;2a, ¢, 1, 1).

The marginal density of the failure-times is, of course, in each
case, the extended Weibull distribution presented in equation (6.6),

whereas the marginal density of the warning times becomes
g(x) = [ f(x, y;a, ¢, py q) dy. | (7.3}
y=x '

2. Parameter Estimation for the

Beta/Weibull Distribution

As stated in Chapter V, we see that, in the absence of knowledge
about the values of p and g, we must somehow utilize both sample |
warning-times and sample failure-times in order to estimate these
parameters. Since we are quite desirous of acquiring estimation
schemes which will employ only sample warning~times, we find that
we 4still must presume some '(é. priori' knowledge of the parameters
p and gq.

 In Chapter IV, we saw that the three parameters of the more
general Uniform/Stacy distribution (4. 3) may be jointly est.ima.ted
frofn the sample of warning-times: Xis Xpp o 0 v s X o Proceeding
analogously, we see that, for Xwg(x; a, 1-1/c, c, 1)s[See equation
(3.1)]

Elfn X] = fna+ = w(l) -1, (7. 4)
and

Var [in X] = 1+ ¢ (l)/cza (7.5)

We note that the right-hand side of equation (7.5) is a function
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of ¢ only. Thus, as in Chapte'r:IV';f an estimate of this Weibull shape

parameter is
<y = 1T [\If’f(l)]_l/z./ |s%n x -1 [1/3, (7. 607, 0

where the s1gn is selected accordlng to the criterion. establ1shed for
ascertaining the s1gnof C (b ) in equation’(4, 31)"“‘1"I*re s‘c i is as

given by equation (2. 50) “and where

/2

[w' (1] = (1.6449)1,/2? 1. 2825,

as prévided by Menon. [16] Estimation of the remaining parameter
(a) fnay be eff‘ecjced by\ seleéting one of the éstimators a.i*’( 1, c*( 1). )
i=1, 2, 3, 4, as defined in the closing section of Chapter 4.

If a conditional distribution (of X given Y =vy) rhor-e general
than the uniform density is desired, one might consider that condi-

tional density given by equation (5.40). In this event, we recall that

EfnX) = Ina+ %—\If'(l) - 1/p, 2 (7.7)

Var (In X) = (1/p%) + w'(1)/c% (7.8)
and |

E(X) = apT(1+ e/ (p+ 1), (7.9)

as may be seen by reference to equations (5.45), (5.46), and (5. 49),
respectively. . Substitution of the corresponding sample moments.:
into. these last three results, followed by the simultaﬁeous solution
of the resulting equations, will provide estimates of the parameters

a, c, and p.
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3.. Some Specific Distributiens

Since the Weibull distribution, especially with positive shape
parameter, is often used to describe the distribution of failure-times,
we list a. few notable cases. of bivariate density (7; 2) by providing
Table II. The product of the entries of the first two ,colﬁmns 'cémpletely
specify a warning-time/failure-time bivariate density which has, as
its warning-times' marginal density, the corresponding ertry of the
fhird colurﬁﬁ. Functions of the form h(y; r, s) are -prorvid’ed more
ex plicitly by equation (6.6); those denoted by h(u; r, s, t) ére dvescribed
by equation (1. 1); while g(u; r, s, t, v) is gpecified, in general, by
equation (3. 1) though, more particularly, g(u; r, _%.’ 2, v) is presented

in equation (3. 16).



TABLE II

BETA/WEIBULL BIVARIATE DISTRIBUTIONS

Marginal of Y

' Conditional of X| Y

Marginal of X

Exponential ‘Uniform Distended Gamma
h(y;a, 1) 1y g(x; a, 0, 1, 1)
Exponential  Beta (g = 1) Distended-.Gé.mma '

. p-l,p )
h (y; a, 1) pxP 7 /yP - g(x; a, 1-p, 1, p)
Exponential Beta (p‘ +g=1) Gamma

p-1 -1 :
h (y; a, 1) <P (y-X)q /T (p)T (g hix;a, p, 1)
Rayleigh Uniforrh - Error-function
h (y; a, 2) 1/Y g(x; a, 1/2! 2, »1)
Rayleigh Beta (g = 1) Distended Gamma
. p-l, 1
h (y; a, 2) v prxp /yp glx; a, 1"P/2's' 2, p)
Weibull Beta (q = 1) Distended Gamma
-1 v : : ’

h (y; a, c) pxt/yP ‘g(x; a, l-p/c, ¢, p).
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- CHAPTER VIII
SUMMARY

In this dissertation we have discussed a number of probability
density functions and have indicated for each a number of their
more important properties. The families of univariate distributions
discussed in Chapters I and.Il, as genéralizations,of the already
important Gamma, Weibull, Chi, and double exponential families,
will surely find direct application not only in reliability studies but
also.in other related schools of thought. The extension of the para-
meter space of the Weibull distribution, as introduced in Chapter VI
and as employed in Chapter VII, will provide effectively a means of
discussing the distribution of an ''inverse-Weibull" réﬁdom variable.

The distended Gamma distribution,with its four parameters, may
prove too cvumbersome for facile ménipulation, too general for immedi-
ate applica;cion, too unpleasant in form for the more artistic-eye, to
stand on its own merits as a useful tool for the reliability engineer.
However, its generation as the marginal distribution of warning-times,
‘as indicated in Chapters IV and V, should augment the opportunities
for its applicability.

This study has perhaps uncovered as many problems as it has
managed to solve. Among the properties which serve to aid in char-

acterizing the distributions we have discussed, we have generally

[
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bypassed such characterizations as their aséociated generating func-
tions. An intensive study, probably via the Monte Carlo method, of the
nature of the distributions of the many statistics arising iniconnection
with our diverse estimation techniques, could prove valuable. In addi-
tion, an,exa'mination of the property of completeness for the distributions
of any sufficient statistics could assist in one's selecting among unbias-
"ed estimators, especially if minimum variance is desirable.

It is conceivable that the reliability engineer, utilizing the concept .
of employing warning-times to make inferences about cerfain pé.ra;
meters of life-time, might seek to make these inferences whenever
he.ha.s accumulated information only frem some portion of his n sample
warning—timés; viz., information from r(< n) warning-times acquired
either as a set of order statistics or from a truncated life-test. In
eithe‘»r ci§é, the information a.vva.il'able might also _inc].tidiethe failure~ .
times of is"!( < r») compovrlents,"} éo that s;fatistics~ which are fun‘étions
both of the observed w‘arnir’lg_'-,tivmes and ';of the obse_r‘\}ed failuréétime;
might be c0nstructed‘.‘ | |

If one assumes each of a system's components is selected from
one of Stacy's distributions,’ the;ri he frﬁay seek to infer the -systein’s
life-parameters from avaiLa;ble infor;ma‘tion concerning the l.ife-_pa,fa,-
meters of ghe indivi@ual cvompohents;. Such a study inevitabiy lle;a.ds to
ari) examination 6f 6rder sta.t;istics; a.gajin, the value of ordered statistics,
éb?:ained from our distribufions, is éppa;rent.

The prqblem of point eétimafion hé.s been rathér-_extensiveky inves~
tigated in the present study. Whaf, though, might bel sé.ici of previding

interval estimates? The area of hypothesis testing, for conjectures



formulated about the parameters describing our many distributions,
has been left virtually unexplored.
Thus, though this study has resolved a number of interesting

problems, it has produced as many unsolved ones.
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