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PREFACE 

In reliability studie~,. components: (or systems of components) 
i 

are observed to fail ra:.ndomly in time. As these components fail, 

they are either repair'ed or replaced and are then allowed to operate 

until another failure occurs. If we note the times between successive 

failure and construct a fre'quency histograz;n of these failure-times, 

we find that a large number of fami,lies of probability distribut.ions 

may then be invoked to describe the frequency histogram. Often ,a 

location paramete,r is used in indexing such distributions. For the 

rriost part we shall concern .ourselves with probability density fu~c­

tions defined over· the entire positive half .of the real axis. 

If one has under study a given component and desires to ascer .. 

tain certain of its 1li£e-parameters (such as expected life), he may 

. find that the time tequired for a sample of n components to fail may 

be excessively long. In such cases, alternc\.tive approaches to life-

testing are considered; the more profitable alternatives have been 

two in number: ( I) to place the components in a stressed environ-

ment, or (2) to make inferences regarding the life-parameters even 

though only r ( ~ :h) components .have failed. The first alternative 

requires that one possess some knowledge of the relationship between 
.. ! . 

failure-times arising under a stressed environment and those arising 

under the components' operating environment; the sec on~ alternative 

has been relatively successful whenever the failure-times are 
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assumed to possess an exponential distribution or a Gamma distribu-

tion. 

In this dissertation' we shall discuss a third alternative, appli-

cable to c'omponents whose failure-times under normal operating 

conditions, are distributed according to the g~neralized gamma distri-

bution, · Vfe suppose that, under these same operating conditions, 

there exists a specific, .observable pararneter which, for each com-

ponent, occurs at some (random) time, X, prior to the failure --time, 

Y, of the component. By specifying a (marginal) distribution of 

failure""times and relating the· warning-times (X) to these failure-

times by means of a cond.itional distribution (of X given Y), one 

may designate a bivariate 'probability density function. The warning-

times then possess a marginal distribution which is indexed by_the 

parameters both of the failure-time density and of the conditional 

density .. 

We. shall ,focus ou/atte~tion on the family of bivariate distri­

b4-ti0ns whose marginal clii,itribution o'f 'failure-times (Y) is th~ . . 

generalized Gamma distributipn and whose conditional distributfon 

of X giver1 Y is the Beta distrib:ution. We devote two .chapters to 

the· generalized Gamma distribution .. and to the estimation of its 
' ' 

pa:rameters before introducing a f_urt~er generaH~ation of t~e Gamma 

' distribution. This latter generalizat:i.or1 arfse~ in the ,next two 1 chap~ 

te·r s whenever the aforementioned conditiona.l ,distribution is assumed 

' p-1 p 
to be of the form p x /y . 

These many generalizations provide, of course, results appli,-

cable to less general situations. Since the Weibull distribution, a 
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special case of the generalized Gamma distribution, has been widely 

acknowledged in re liability studies, we devote a pair of concluding 

chapters to our generalizations' implications upon it. 

The impetus for undertaking this study can be attributed to a 

number of persons. Dr. E. W. Stacy, of the IBM Systems Develop­

ment Division, introduced me to his generalization of the Gamma 

distribution, Professor H. 0. Lancaster, in his lectures at the 

University of Sydney, provided the motivation for investigating bivar­

iate distributions., Dr. Robert A. Hultqt.iist, whose interests in 

bivariate distributions have influenced the direction and scope of 

this study, has been a most patient adviser while reviewing those 

results, too often hastily presented, which were developed during 

my year as a Fulbright scholar at the University of Sydney. The 

many persons, in the Departments of Mathematics and of Mathema­

tical Statistics at the University of Sydney and in the Department of 

Mathematics and Statistics at Oklahoma State University, who have 

advised, bolstered, and consoled me during the trials, troubles, and 

tribulations associated with this research, deserve acknowledgment, 

but are unfortunately far too many in number to enumerate. Hope­

fully none will feel offended by this collective expression of my 

appreciation. In conclusion, acknowledgment of the National Science 

Foundation's Co-operative Fellowships, under the auspices of which 

this re search was initiated, should be made. 
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CHAPTER l 

STACY'S GENERALIZED GAMMA DlSTRIBUTION 

In this chapter we shall present certain fundamental properties of 

Stacy's three-parameter gamma distribution. After indicating the 

historical development of the distribution, we define its parameters 

and examine the effects of assigning certain valuE;is to these. We derive 

an associated distribution, a generaliz;ed double exponential distribution. 

We then examine some of the more interesting properties of these two 

probability density funCtions, 

1. Introdu,ction 

A quite general, three-parameter, univariate probability density 

function was suggested in September, ~962, by Dr .. E. W. Stacy [ l]. 

This distribution was defined, for a positive random variable, Y, 

as 

·d d- 1 -(y/a)P 1r,. d 
f(y; a, d, p) = pa y e /J. (p) , ( 1. 1) 

where each of the parameters a~. d, and p is· taken to be positive, 

and where r (p) is the standard (complete) gamma functiop. given by 

r (p) = 
00 p-1 -u J u e ; du. 

0 

However, a subsequent joint effort by this author and Stacy [ 2] 

led to a generalization qf this density, one which can be shown to ha:ve 

l 
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certain advantages, especially in avoiding difficulties encountered in 

the estimation of the three parameters .. For a positive .random vari-

able, Y, we shall consider th~n 

· I I -be bc-1 -(y/a)c/ h(y; a, b, c) = c a y e r(b) ( l. 2) 

for positive parameters a and b and fo,r real par;ameter c. 

We shall be closely concerned throughout this dissertation with 

density ( l. 2); and, whenever a random variable Y is distributed 

according to this density, we shall denote the relationship by the con-

ventional expression 

YN h (y; a, b, c), 

and shall refer to this density as the Stacy distribution. On occasion 

we may write 

Yruh( · ; a, b, c), 

the ~ot indicating that the argument which shcrnld stand in its place is 

. understood to be y. 

2, Parameter Definitions 

Hone examinea the (Stieltjes) probability element associated 

with density ( l. 2), the arrangement 

( I. 3) 

indicates clearly that the parameter a ha~~ the effect of scaling 

the random variable Y. Thus, we refer to this parameter (a) as 

the scaling. parameter. 

We refer to the re __ maining parameters, · b and c, . as the s!1,ap­

. ing and exponentiating parameters, respectively. The former (b) 
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receives ih designation because its sufficient statistic [See Chapter I, 

Section 5] is the ·same as that for the shape parameter of the less 

general two~paratneterGarnma disttibution [See Chapter I,. Section 3.]; 

however, its role in actually shaping. the curve associated with equa­

tion ( 1. 2) is one shared frequently with the la:ter parameter (c) in the 

product be.. For, ·o < be < 1 implies that the curve appr,oache s 

the ordinate axis asymptotically; be = 1 implies a.finite.non-zero 

ordinate-on the ordinate axis; and, be > 1 provides a curve which 

begins at the origin. Reference to the final parameter, c, as the expo­

nentiating. parameter is due to its predominating position in equation 

{ 1. 2). 

3 .. Special Cases of the Stacy .Distribution 

In addition to being a valid probability density function on its 

own merits, the Stacy distribution includes, as special cases, a num­

ber of more common probability dist:ributions. We first note the 

case when c = 0. In order for the density { 1. 2) to have meaning, 

we must assume that this case represents the degenerate distribut:j.on 

· with mean ze.ro. 

Whenever we assume that the value of the exponentiating para­

meter is positive, a large collection of distribution families can each 

be seen to be merely subfamilies of the family of densities defined 

by { 1. 2). 

l. The two-parameter Gamma distributions 

h{y; a, b, 1) = 

We risk pedantry to list special cases of the two-parameter 



Gamma distributions, b1Jt these too are familiar -families 

included as subfarnilie s of the Stacy family: 

a. The standard one .. parameter Gamma distributions 

b-1 -y; 
h(y; 1, b, 1) = y e r{b). 

b. The exponential distributions 

h{y; a, 1, 1) = e -{y/a)/ a. 

c. The Chi-squared di,stributions 

• For n a positive integer {''degrees of freedom"), 

h{y; 2, ~· 1) = yn/2 ,;; l e -y/ 2;znl 2r·{n/2). 

2. The Weibull distributions 

c-1 -{ /a)c· c 
h{y; a, 1, c) = cy e Y I a . 

Special cases of the· Weibull distribution include 

a. The exponential distributions. [ cf: 1. b) 

b. The Rayleigh { circular normal) distributions 

. 2/2 2 2 
h{y; a ,.rz,, 1, 2) = y e -y a /a . 

3. The Chi distributions 

For n a positive integer, 
2 E. -1 

. ,.. n n-1 -y / 21 2 / h{y; '\/2, z, 2) = y e 2 r{n 2). 

4. The Chi distributions with scaling parameter 

· For n a positive integer, 
· 2 .. 2 £_ 1· 

. r . n n - 1 -y / 2a/ n 2 / h(y; a"' 2, --, 2) = y e a 2 r{n- 2). 
2 

Special cases of note here include 

a. The modulus normal distributions 

h(y;a"'J2, ~, 2) = J:a. 2 
.· 2/2' 2 -y a 

e • 
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b; The circ\,llar normal ('Rayleigh)··distributi€J'nS 
. 2;2· 2 2 

h(y; a,.,[2, 1, 2) :: y- e -y a/a . 

c. The spherical normal distributions 
. ' . 

. 1 rz" 2 -y 2/2a2 
h(y; a,.,fz,. 3/2,. 2) = 3 ,J IT- y e . 

. a ~ 

We shall showISee result (1. 8)] that the density (1. 2) with c <O, 

-corresponds to that of a random variable Y = 1/X, where 

1 --- X N h (x;-., b, c) 
a 

with c > 0. Thus, we see that the densities termed- inverse exponen-

tiai,. inverse Chi-squared, etc., are included as_ special cases of 

density ( 1. 2). 

_ 4. Properties of the Stacy- Distribution 

/. Suppose we have a random variable Y with probability density _ 

-- function ( 1. 2). Then the t-th moment of Y is given by 

t __ { a
00

t 'r(b + t/c)/r(b) , 
· E[Y ] 

. otherwise. 

Thus, the mean is given by 

E[Y ] 
= {a r(b + 1/c)/r(b), 

. co, otherwise, 

and the variance is given by 

if t/ c > -b 

if 1/c > -b, 

( 1. 4) 

{ 1. 5) 

5 

Var [Y] 

r(b + 2/c) r(b) - r2(b + 1/c) ] 

~ (b) 
othe-rwise~ 

, if 2/c>-b, 

( 1. 6) 

' For Y ru h(y; a, b,_ c), the cumulative distribution funct_ion may 



be. shown to· be 

H(y) = fy h(y;--a, b, c) dy 
0 

{
r (b)/r(b), if c > o 

= lw- rw(b)/r (b)~ if c < ,0, 

6 

. c 
where w = (y/a) and .r (b) is the standard notation fer the :iocomplete 

w 

Gamma function 

w b-1 -u r (b), = J . u . e du. 
w 

0 

We note the following: important results regarding the distribution 

of certain transformed. Stacy random variables. 

1. Let YrJh(y; a, b, c). Then 

. Z = k Yf\Jh(z; ka, b, c) ( 1. 7) 

for any k > O. 

2. Let Yrvh(y;a, b,. c). Thenforany t /= 0, 

t t I W = Y rvh(w; a, b, c t). ( 1. 8) 

We note in passing that W' = Yc""h(w'; aC, b, i), the 

standard.two-parameter Ga:i;nma distribution, p:rfovided 

that c =/:- 0. 

3. Let Y l"'"' h(y 1; a 1, h 1, c)I. be distributed independently of 

Y 2Nh(y 2 ; a 2, b 2, c). Then 

has Beta distribution with parameters b 1 - and b 2. (See 

p. 12 3 of . [ 3 ] . ) 

4. Let Y.~h(y.; a., b., c.), i = I, 2, , .. , n, be an 
l l l l l 



i independent set of random variables. Suppose no c. == 0. 
1 

Then, according to the results listed in ( l. 7) and ( 1. 8), 

. for each i = 1, 2, . . . , n, 

c. 
Z. = (X/a.) 1 rv h(z.; 1, b., 1). 

1 1 1 1 1 

Therefore, from the reproductive property of indepen-

dently distributed one-parameter Gamma variates, 

n c. n 

7 

Z = :E. (X./a.) l,.._, h(z; 1, 
i= l 1 l 

:E;b., .1). 
·1 

( l. 9) 
1, 

We note in pas sing, however, that a correspondingly 

simple res ult does not exist for 

y = 
n 
~ 

i= l 
y .. 

1 

5. Let Y rv h(y; a, b, c). Then let Z = .fo Y. One can then 

show that 

I -be bcz -(ecz/ac) 
Z,..., k(z; a, b, c) = I c a · e e ·. Yr (b) (l. 10) 

· for positive parameters a and b, non-zero parameter c, 

and random variable Z E (-oo, + oo). The density ( l. 10) 

we shall refer to as a generalized double exponential distri-

bution, since the double exponential distribution of Gumbel 

[4] corresponds to k(z; 1, 1, -1) . 

.. 5. Completeness and Sufficiency 

By definition, the density h(y; a, b, c) would be complete if the 

vanishing of the integral 

00 

J k(y) h(y; a, b, c) dy 

y= 0 

for every permissible set of values for a, b, and c implied that 



the. function k(y) :;: O, almos,t eve ryw hie t, e ., If b and c are 

assumed known (fixed), the completeness property follows immedi-

ately from the unicity property of the Laplace transform. Should 

only c be assumed known, .the property of completeness exists 

since Z = Ye would have the t·wo-parameter Gamma distribution, 

known to be complete. However, it is not readily apparent that the 

more general case, with a, b, and, c all unknown~ provides a 

complete density function. 

To determine a set of sufficient stati'stics for the density ( I. Z), 

- - I we inspect the function K( y; y, ) of Lehmann a,.nd.Scheffe [ 5], 
0 

where 

K( y; r:,) = L( y; a, b, c)/L( y0 ; a, b, c), 

-where y represents the vector, (y 1, y 2, ... , yn)' of observa-

--. 
tions and where L( y; a, b, c) is the likelihood function associated 

-+ ........ 
with the vector y. A statistic T. (y) is sufficient for the j-th para­

J 
meter of a distribution if T .( y) = T .. ( ; 0···. ) implies that K {y; y0 ) ¢ 0 

J J . 

and is independent of this j-th parameter. 

Pitman [ 6 J states a nee es sary condition on the functional form 

of a distribution in order that a sufficient statistic exist for a. para-

meter. Due to the position of the exponentiating parameter in density 

(1. 2), it is impossible to meet Pitman's factorization criterion, so 

that one must conclude that no single sufficient statistic exists for 

this parameter. 

However, for the scaling and shaping parameters, Pitman 1s 

condition is satisfied and,. by use of Lehmann and Scheff~ 1s K-func-

tion, we find that the statistic sufficient for the scaling parameter is 

8 



n 
~ 

i= l 
Y. c (implying that c must be known} and, for. the shaping para-

1 
n n 

meter, IT Y. 
i= l l 

(or, equivalently, ~ £n Y.} . 
i= 1 1 

6. Some Notei:; on the Generalized Double 

Exponential Distribution 

Since one of our sufficient statistics for the Stacy distribution 

h(yi a, b, c) involves the random variable Z = £n Y, we shall now 

investigate further the generalized double exponential distribution , 

k( z; a, b, c}, given by equation ( 1. 10). We note that the moment-

generating function associated with density ( l. 10) is readily given by 

t = E[ y ] ; 

9 

i. e., E[ et 1 = {at r(b + t/c)/r(b), t/c > -b (1.1}) 
oo otherwise, 

the l~st equality following as a res ult of equation ( 1. 4). 

· We note that, so long as c > 0 , no problem regarding the 

existence of our moment-generating function exists for positive values 

of t. We recall that, should c be negative, we can resolve the 

matter by concerning ourselves with the random variable 1/Y rather 

that Y; i.e., with . - Z rather than z. 

With equation ( l. 11}, then, we may easily ascertain the moments 

of Z = in Y. Let us define Z 1 · = £n(Y /a), so that 

2 I r,J k( Z I i 1, b, C ) • 

Then the relationship 

E[Z')K = {aKE[e'2 ']/atK l,=oJ 
implies that, for t/ c > -b, and for any K = 1, Z, . . . ' 



E[ z I ]K = aK r(h+ t/c) 

r (b) a tK 

Therefore, for K = 1, 2, ...•. , 

t=O 

E[.fo (Y/a) ]K = k r!K\b) / r(b), 
c 

where 

10 

( 1. 12) 

Thus, using the additional result that, for any positive constant s, 

we have 

and 

where 

and 

E[.tn Y] = .tn a+ w(b)/c, 

Var [ .tn Y ] = 'llr 1 ( b) / c 2, 

µ 3 [.tn Y]. = E[.fo Y - E(£n Y) ] 3 = 'llr 11 (b)/c 3, 

w(x) = a .enr(x)/a x=r'(x)/r(x), 

'¥ 1 (x) = d 'llr(x)/dx, and '¥ 11 (x)= dw'(x)/dx, 

as defined by Edwards [ 7]. 

Theorem: Suppose that Z"' h(z; 1, b, 1). Then, for any 

s,. t > 0, 

[ s t .. t; . E. z (in Z) l = r(b + s) E(£n U] · r (b), 

where U"" h ( u; 1, b + s, 1) . 

Bro of: By definition, 

( l. 13) 

(1.14) 

( l. 15) 

( 1. 16) 

{l.17) 



s t 00 { s t b-1 -z 1 
E[Z·{inZ)]=z~O-z {inz) z e /r{b)Jdz 

= r(~f b)) u~: {(in u) tu{b+s )- le -u; r{b+s)} du 

r{b + s) E[ £n U]t/r{b), 

where U . .-h{u; 1, b + s, 1). Q.E.D. 

Corollary: For Z rv h(z; 1, b, 1), 

11 

Var [ Z in Z J = b(b+l)'llt 1 (b+2)-b 2 w 2{b+ l)+b{b+l)\[,2{b+2). {l. 18) 

Proof: Direct substitution of the result { l. 17),. with s = t = l and 

s = t ::::; 2, into the formula 

. 2 2 
Var [_z in Z] = E [ Z £n Z] - E [ Z £n Z] , 

provides the result. 

7. Lower Bounds for the Variance of Unbiased 

·. Estimates of Stac;y 1s Parameters 

C .. R. Rao [ 8] showed that, for any unbiased estimate, a, of a 

function a. {Q) of a parameter Q associated with a probability density 

function, f{x; Q ),, which satisfies certain regularity conditions: 

A_ • 2 . 
• Var {Q) > [11 1 {Q)] /nVar [a inf{x;S)/ag ]. 

* * * Therefore, letting a , b , and c denote any unbiased estimates of 

the scaling, shaping, and exponentiating parameters, respectively, 

* [ be c/ c+ l 2; 2 Var {a ) ~ 1/n Var . - a+ cY a ] = a; nbc , {l.19) 

* Var (b ) ~ l/n Var [-c£n a - w{b)+c£n Y] =1/n w 1 {b), {l.' 20) 

and 
* / 1 Ye Y c Var {c ) > 1 nVar [ -b£n a + binY- - {-) £n {,,...) ] , 

- c a a 
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or 

* 2 { 2 J. Var (1c ) > c /n l+b [ ii! 1 (b+l) + ii! (b + l)lj'. ( L 21) 

These results follow from successive application of the results listed 

in equations (1.6), (1.7), (1.8), (1.15), (1.17), and/or (1.18). The 

expressions on the right hand side of inequalities ( 1. 19), ( 1. 20), and 

(l.21) are called minimum variance bo.unds. Estimates which 

attain this variance are termed minimum variance bound estimators. 



CHAPTER II 

ESTIMATION OF STACY 1S PARAMETERS 

In this chapter we examine the possibility of utilizing the methods 

of maximum-likelihood and of moments to obtain non-iterative tech-

niques for the estimation of the three parameters of density ( 1. 2). 

Noting the apparent futility of using either method to obtain estima-

tors which are explicite functions of the observations (and not of the 

remaining, or nuisance, parameters), we then examine the method-

of-moments as applied to the generalized double exponential dist.ribu-

tion, defined in equation ( 1. IO). 

The resulting estimation technique does not yield the joint proba-

bility den.sity function of the estimators; however, our discussion 
·; 

throughout the chapter allows us to indicate many properties of the 

various estimators which are available. 

1. Preliminary Considerations 

. Suppose we consider the problem of point e·'stimation of the para-

meters of Stacy's distribution from an unordered and untruncated 

random sample of n observations, y1, y 2, ..• , . y n' each.from 

the same parent distribution, h(y; a, b, c), given by equation ( 1. 2). 

A first approach to this problem is often that of the method of 

maximum-likelihood. However, the following equations indicate 

13 
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the difficulties encountered in the attempt to obtain joint estimates by 

the maximum-likelihood attack: 

-a £n L( y ; a, b, c) 
a a 

-nbc 

n c 
c !; (y./a) 
i= 1 1 

+ = 0, ( 2. 1) --a a 

-a £n L(y; a, b, c) = 
ab 

n 
-nc Lna + c !:,Ln y.- n w{b) = 0, 

. 1 1 
1= 

( 2. 2) 

and 

a l1n L( ~;ca, b, c) = ± n -nb.tna + b ~Ln y. - _;(y/a)c.tn(y/a)=O, (2.3) 
I c I i= 1 1 i= 1 
n ·-where L(y; a, b, c) = .rr 1 li(y.; a, b, c) is the likelihood function of 

1= 1 -the sample y = (y 1, y 2, ..• , yn) and where w(b) is the logarith-

mic derivative of the Gamma function with respect to its argument b. 

The plus sign is chosen for the first term of equation (2. 3),if c > O; 

for c < 0, the negative sign is chosen, so that we may write 

n n a Ln L(.Y-; a, b, c) 
a c 

= ~ - nb.tna +b. !; . ..fn y. - !:(y/a)c.fn(y/a)=O. (2. 3 1) 

c i= 1 1 i= 1 

Thus, we see that we might solve explicitly equation (2. 1) for 

either· a or b, equation (2. 2) for either a, c, or w (b), and 

equation ( 2. 3 1) for b .. ·Denoting these solutions with carets and indi-

eating their functional dependence on nuisance parameters, we have: 

al(b, c) = r. ~ y.c/nb 
~ i= l 1 

] !/ c • 

;z(b, c) = exp ) ; (Ln y.)/n -
( i= l l 

w(b)/ c} 

--1 nrr Y. ~ 1/ n l ] exp - w ( b) / c , 
i=l l 

( 2. 4) 

( 2. 5) 

(2.6) 
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.... 
bz_{a, c) ( 2. 7) 

\Tr (a, c) = cf f, in (y./a~/ n, 
l i= 1 1 } 

( 2. 8) 

c (a, b) = n \Tr(b)/ 1t (£n (y./a)] . 
i=d l 

( 2. 9) 

Iterative solutions, using appropriate selections from the pre-

ceding six equations, should, if convergent, provide estimates of 

the three pa.rameters. However,. the important statistical properties, 

such as bias and variance, of the resulting (iterative) estimates would 

not be available and, consequently, the search for other estimation 

techniques was undertaken. 

Before proceeding to a consideration of other possible estimation 

techniques, we examine some of the statistical properties of the indi-

vidual estimators. provided in equations (2. 4) thrsugh (2. 9) . 

. First,. we note that we may obtain the exact distribution of a1(b, c); 

for, applying successively the results { I. 8), ( I. 7), ( I. 9), { l.-7), and 

(1.8), we have, for independent y.--vh (y.; a, b, c),. i = I, 2, ..• , n: 
1 · 1 

c . c c ) y. ,.._, h{y. ; a , b, , l 
· 1 1 

c/ c y. a r-1h( ·; I, 'b, I) 
1 

n 
c c 

Z = Z: (y. /a )Nh(z; I, nb, I) 
. i= I 1 

and 

.A 1/c 
a 1 (b, c)Nh{ · ; a/ { n b) , nb, c) { 2. IO) 

Therefore, from equations { I. 5) and ( l. 6), we see that 
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E[; 1(b,c)] = a r(nb+l/c)/r(nb)(nb)l/c, 

and ( 2. 11) 

2 
= a [ r(nb+4" c)r(nb) 

--t'(nb+ 1/ c:)l/r\nb) (n b) 2/ c,, 

so that the following unbiased estimate of the scaling parameter is 

suggested: 

( 2. 12) 

Equivalently, we might write this estimator in th~ form 

' 

; 3(b, c) = fr(nb) (n b)l/c/r(nb+l/c)};1(b, c). (2, 12') 

The bracketed quantity in this expression may then be termed the bias 

correction factor; it may be conveniently approximated, as is shown 

by S,tacy and Mihram [ 2]. 

Not only is the estimator a 3(b, c) unbiased for the scaling para­

meter, but also it is sufficient and its density is given by 

a 3 (b, c)rvh( ·; A, B, C), where 

A = a r(nb)/ r(nb + 1/c), 

B = nb, 

and 

c = c • 

Therefore, since b and c have been presumed known, reference to 

section 5 of Chapter I provides the fact that the density of a 3(b, c) is 

complete. Thus, from page 190 of Kendall and Stuart's second volume, 

a 3(b, c) possesses the property of being the unique minimum variance 

unbiased estimate of the scaling parameter, [ 9] . This variance is 
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2 
= a [ r (nb +2/ c) r(nb) 

-r2(nb + 1/c)]/ r2 (nb+ 1/c). ( 2. 13) 

... 
Now, equation (2. 5) suggests an estimate, az(b, c), of the 

scaling parameter. Its expectation may be shown to be 

(2. 14) 

· and its variance is given by 

V [ - (b )]. _ a 2[expt-2w(b)/c~J[.r1(b+2/nc) rn(b)-?n(b+l/nc)] ar a 2 , c - . · n . 
r (b) \ (2. 15) 

Therefore, another unbiased estimate (unbiased whenever the 
lo< 

shaping and exponentiating parameters are assumed fixed) of the 

scaling parameter is provided by 

a 4 (b, c) = [r (b)/r (b + 1/nc)} n [ ~ / i 1 l/n ( 2. 16) 

having variance 

Var [; 4 (b, c)] =a 2 fr n(b+2/nc) rn(b)-r 2n(b~ l/nc1 / r2n(b+ l/nc). 
· . (2.17) 

Of the two shaping parameter estimators, given by equations 

(2. 6) and (2. 7), only the first yields readily its statistical properties. 

From equation ( l. 9), we recall that 

n 
Z = ~ (y./a)c""'h(z; 1, nb, 1). 

i= l l 

Therefore, from equation (L 7), we see that 

-
b 1(a, c) ,v h(·; 1/nc, nb, 1). (2. 18) 

Thus, we have immediately the properties 

-
E[ b /a, c)] = nb/nc = b/ c]· 

Var [b 1 (a, c)] = b/nc 2, 

(2. 19) 
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following by refe,rence to equations (1, 5) and ( 1. 6). 

Therefore, an unbiased estimate of the shaping parameter (with 

the remaining parameters as.sumed fixed) is given by 

A - n , 
b 3 (a, c) = c b 1 (a, c) = ~ (y./a)c/n . 

. 1 1 
(2. 20) 

1= 

From equation ( 1. 7) we see, then, that 

... 
b 3 (a, c)..v h( ·; 1/n, nb, l); (2. 21) 

,.. 
from equation ( 1. 6), it follows then that the variance of b 3(a, c) 

is 
... 

Var [ b 3(a, c)] = b/n. ( 2. 22) 

In section 7 of Chapter I, we found the minimum variance bound 

for unbiased estimates of each of Stacy's parameters. Equation ( 1. 20) 

provides the result that this bound, for unbiased estimates of the 

shaping. parameter, is 1/n i[(·1 (b), Thus, we may establish the 

rather interesting result that irr 1 (b) > t, for every positive b. 

Equat,ion (2. 8) 1,uggests. still;cmotmr_ technique for estimating the 

shaping parameter, b. We do not know explicitly the distribution 

.of irr (a, c), but equation ( 1. 11) allows us to generate its moments; 

two of interest are 

. E[ irr(a, c)] = irr(b) (2. 23) 

and 

-Var [ irr (a, c)] = i[( 1 (b)/n. ( 2. 24) 

· We note then that irr (a; c) is an unbiased estimate of irr (b), 

which Edwards [ 7] on page 108 shows to be a monotone increasing 

.function of its argument. Thus, a graphical (or tabular) estimation 
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A 

procedure for b could be organized by calculating w (a, c) and 

referring to the graph (table) of 'Ill (b). 

From our work in section of Chapter I, we see that 'Ill (a, c) is 

a function of the sufficient statistic for the shaping parameter. In 
.... 

addition, the result of. Rao [ 8] would demonstrate that w (a, c) 

attains the minimum variance bound for unbiased estimates of '1r (b). 

(Compare the variance given in equation (2. 24) with the result indicated 

in section 7 of Chapter I. ) 

As for the estimator (2. 9) of the exponentiating parameter, a dis-

cussion of its statistical properties is hampered by the appearance 
n 

of the expression ~ in (y./a), a random variable whose distribution 
i= 1 1 

(and whose inverse 1s distribution) is unknown. 

However, suppose we define a parameter d by 

d = 1/ c. ( 2. 25) 

Equation (2. 9) would then suggest our considering as its estimator 

d (a, b) :; S ~ in (y./a)J /n '¥ (b). 
( i = 1 1 

( 2. 26) 

An inspection of equation ( I. 12) would then provide the pr ope rtie s: 

I\ 

E [ d (a, b) ] = 1/ c = d (2.27) 

and 

At this point then we have accumulated a number of estimators 

which may be employed whenever any pair of the three Stacy para-

meters are assumed fixed,· Since we would aspire to erase such a 

restriction, we might rightly turn to estimation techniques other than 
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that of maximum-likelihood. 

The method-of-moments probably merits attention. In section 4 

of Chapter I, we have seen that, for Y"' h(y; a, b, c) and for 

td = t/ c > -b, 

E(Yt) = atr(b+t/c)/r(b). 

Thus, we have 

E(Y) = ar(b + 1/c)/r'(b), 

E(Y 2) = a. 2 r(b + 2/c)/r-(b), 

( 2. 29) 

(2.30) 

Var (Y) = a.2 [ r(b + 2/c) r(b) - r2(h + 1/c)? 

r2 (b) j 
(2. 31) 

and 

E(Y 3 ) = a 3 r (b. + 3/ c)/ r (b), (2.32) 

whenever the arguments of the indicated Gamma functions are positive. 

[Recall that, in the event that t/c ~ -b, we may consider the random 

variable 1/Y instead of Y and thereby eliminat,e the complication 

of having invalid arguments in the Gamma functions.] 

We therefore see that, for any t =J. 0 and such that t/c >-b, we 

t 
may estimate a unbiasedly by 

"'t 
a 5 (b, c) = r(b) 

n 
z) 

i=l 
Y.t/n r(b + t/c). 

1 

The variance of this estimator would be given by 

( 2. 33) 

V [ ... t (b )] - a. 2t rr(h+ 2t/c) r(b) -11 (2.·34) 
ar as ' c - n r2 (b + t/ c) j . 

However, for general t, the distribution of ; 5 t (b, c) is not readily 

available. 

With t = 1, we may obtain another unbiased estimate of the 
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scaling parameter, 

.... n 
a 5 (b, c) = r (b) ·. E y./n r'(b + 1/ c), 

i= 1 1 
( 2. 35) 

which, then, has variance 

Var [;5(b, c)] =a 2{r(b+i/c)f'(b)-r2(b+l/c)}/nr2(b+l/c)., (2.3€d 

Explicit solutions,. for equations (2. 29) through (2. 32),for· the 

remaini~g parameters are not so apparent •. Forming ratios of these 

moments may at first seem promising, since, for r + s = t, the 

expression 

= r (b :1- t/ c) r (b) 
s r 

E(Y ) E(Y ) r(b+s/ c)r(b+r/ c) 

eliminates one nuisance parameter; viz., the scali~g parameter. 

Nevertheless, this procedure does not seem particularly fruitful. 

However, we recall that 

E(Y/a( = r(b + 1)/p(b) = b .. 

Thus,. for our random sample, y 1, Y 2, • 

';;n (a, c) = r; ( y./a)c?' 
( i= I 1 J 

with expectation 

.· .r;; {i~I (y /~>CJ a bn 
and with variance 

. . , y , . we have 
n 

(2.37) 

(2. 38) 

(2. 39) 

(2.40) 

( 2. 41) 

By equation.(2. 39), we have suggested, as an estimate of the shaping 

parameter~ 
,.., 
b (a, c) = 1 ~ (y./a)c? 1/n 

. 1 1 1:::; 

( 2. 42) 
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which. has expectation 

E [ b (a, c) ] = r n (b + 1 / n) / r n ( b) ( 2. 43) 

and variance 

Var [b (a, c)] = [ r'1{b + 2/n)r1{b) - r 2n{b+l/n)} ;-fZn (b). ( 2. 44) 

Thus, the method-of-moments does not seem effective in providing 

estimation techniques for Stacy 1s parameters; the estimates suggested, 

· such as those of equations (2. 33) and (2. 39), still depend upon one 1s 

knowing or presuming values of the nuisance parameters. 

2. An.Estimation Technique Whenever All 

Parameters Are Unknown 

We have seen, in section 5 of Chapter I, that the statistic sufficient 

for the shapa.rigpaxameter; b, is the product of the observations {or, 

equivalently, the sum of the logarithms of these same observations). 

We might be led, then, to examine the problem of estimation for the 

generalized double exponential distribution of equation ( 1. 10), for this 

distribution is that of the logarithm of a Stacy variate. 

Suppose again that we have a random 

( 1. 2); thus for z. =.tny., i = 1, 2, ... 
1 1 

sample iy ~ ni= 1 

) ? n 
' n, ( z i) i= l 

from density 

constitutes a 

random sample from density ( 1. 10). An examination of the maximum-

likelihood equations will provide no new suggestions on estimation. How-

ever, as we shall now see, the method-of-moments approach proves 

most fruitful. 

Let us recall the results (1. 14), (1.15), and (1. 16); viz., 

E[.tnY) = .tna+ w(b)/c ( 2. 45) 
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· Var [.tn Y] - "\II 1· (b)/ c 2 ( 2. 46) 

and 

3 3 
· µ 3 [.tn Y] = E[.tn Y - ·E(.tn Y)] = w" (b)/c , 

where, as previously, 

and 

· w ( b) = a .tn r ( b) / a b, 

w 1 (b) = d w(b)/db, 

w'' (b) "". d w' (b)/ db. 

Consider now the coefficient of skewness of 1n Y: 

fL3(.tn Y] 

1var [.en yrz= + w'' (b) 

- [w•(b)]¥2 ' 

( 2. 4 7) 

( 2. 48) 

which we see to be a.function of only one parameter, b. (The plus 

sign will apply if c > O.) Thus, calculation from a random sample, 
n 

zi = .tn y i , i = 1, 2, . . . , n, of z =· l: z./n and 
' i= 1 1 

where 

n 3 
K.tn y = n E (z. - z) /(n -

i= 1 1 

2 
s .tn y 

n - 2·· 
= E(z.-z) /(n-1) 

i= 1 1 

" 3 
l)(n - 2) s.tn Y' ( 2. 49) 

( 2. 50) 

is an unbiased estimate of Var [.fo Y], should provide a method of 

estimating. the shaping parameter. (Note that the quantity, 

n f (z. -z )3/(n-l)(n-2), 
. i= 1 1 

estimates uribiasedly µ 3 [.tn Y] ). Kendall and Stuart [ 9] on page 

· 244 of volume I, list the variance of s ~n y as 
.. 

2 
Var [ s .tn y ] · 

. . 2 
= µ 4[£n Y] - [Var (.tn Y)] + 

n 
2 . 2 

ri(n-l) [Var (.tn Y)] , 
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,where µ4 [.tn Y] · = E[£n Y .,. E(.fo Y)] 4 • Using the moment-

generating function of equation ( l. 11), we have that 

so that 

2 ] f . · Zn [ 2]/ 4 Var [ s = 'llt 111 (b) + -. "[,1 (b) ] nc . £n Y n-1 
( 2. 51) 

Now, a plot of the function on the right-hand side of equation 

( 2. 4.8) would provide a double-valued graph,. symmetric about the 

axis of .its argument. If, however, we were to plot the function 

µ 3(£n Y) 
= 

[ Var (£n Y)] :Yz [w' (b)]¥2 ' 
<j>(b) = 

W II (b) 
( 2. 5 2) 

we would have the single-valued graph appearing in Figure 1, located 

at the end of this chapter. Thus, calculation of - j K£n y I should 

provide an estimate of <j>(b) and, hence, v.ia the graph of q>.(b), of the 

shaping parameter, b. 

N 
Let UE! denote this estimate by b. Then equation (2. 46) suggests, 

as an estimator of the exponetiating parameter, 

(2 •. 53) 

where s£n yis the positive root of the expression given in equation 

(2. 50), where the positive sign is selected if K£n· y < 0, the minus if 

K£n y > 0, and where the value of [ w 1 (b ){ l/Z may be ti;i.ken from 

the graph of this function presented in. Figure 1. 

It would remain, then, to select an estimate of the scaling para-

meter .. Selecting the estimator implied by equation (2. 45) would prove 

..... ...i ...i 

to be the equivalent of choosing the estin:iator a 2(b, c. (b) ), given 

by equation (2. 5). Since any scaling parameter estimator we may 
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now consider will be a function of our estimates b and c( b), we 

might desire to select that estimate which will have the properties 

/\.,- ,.,J "'-' 

(for these fixed values, band c(b) ) of being unbiased and of having 

minimum variance attainable among unbiased estimates. If so, we 
A ,-.J ,,.,,,, ,..) 

select a 3(b, c (b) ), given by equation (2. 12). If ease of calculability 

A,'Vr..lr.J 

is a criterion deemed important in selecting an estimate, a 5 (b, c (b) ) 

might be suggested. 

3. Estimation Techniques Whenever One Parameter Is Known 

We have seen how, in the absence of knowledge of the values of 

any of the three Stacy parameters, we may estimate jointly the entire 

set. We might now consider relaxing this restriction by considering 

cases where one, and, for the moment, only one, of our three para-

meters is assumed known. A number of iterative techntques will 
~1:·· 

surely occur to the reader who refers to our many estimating equa-

ti on s : ( 2. 4) , ( 2. 5 ) , ( 2. 6 ) , ( 2. 7 ) , ( 2. 8 ) , ( 2. 9 ) , ( 2. 12) , ( 2, 16 ) , ( 2. 2 0 ) , 

(2. 26), (2. 33), (2. 35), (2. ?7), (2. 39), (2. 42), (2. 48), and (2. 53). We 

shall, however, attempt to avoid such techniques and endeavor to 

present only non-iterative estimators which are explicit functions of 

the observations. 

Suppose we consider first the case in which the exponentiating 

parameter has a. fixed ( known)value, c • 
0 

result ( 1. 8), that, for y,..., h(y; a, b, c ), 
. 0 

Thus, for a random sample, 
c 

W. = Y. o, 
1 1 

We recall, by reference to 
c c 

0 . 0 W =Y "'h(w; a , b,.l). 

i = 1, 2, ... ; n, we see 

that we may estimate unbiasedly w 1 (b), as suggested by equation 

(2.46), by 
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\fr' (c) 
0 

2 = ·s .1nW 
, z. 2 

;:; co·, ~-in Y ( z. 54) 

' 2 
where s.fo y is as d,efined by equation ( z. 50). Reference to equa-

tion ( 2. 51) provides the variance of w I as 

Var [ \fr(c )] = '\[( 111 (b) +....;::.::.. ["\Ir (b)] /n, . "' · . l • Zn 2] 
o n-1 ( 2. 5 5) 

interesting. in that it is independent of the known c , as well as the 
0 

unknown scaling parameter~ Edwards [ 7] on page 100 of Volume II, 

shows that iv 1-(b) is a monotone, positive-valued function of its posi­

tive argument, b, so that, after calculatin~ s1n2 W' we may, use the 

graph of \fr' (b)-. to e sti:rnate the shaping parameter. · (See, F1gure 2 

at the end of this chapter. ) 

" DE;inoting this estimate by b(c0 ), we may turn again to any one 
.,. I\ 

of the five estimators, a. (b (c ), c ),.for the scaling.parameter. 
1 0 0 . 

The statements at the conclusio:p; of the preceding section are again 

pertinent in choosing among these estimators. 

With the exponentiatfog. parameter ass.urning a fixed. value, c '' ·a : 

we migh.t consider estimating .the remaining para~_eters by applying 
c 

the method-of-moment.s to the random variable, 
. 0 . 

W = Y • Appropri-

ate applications of equations (1. 8), ( 1. 5), and (1. 6) provide the inter-

esting result that 

c 
Ez (Y o,) 

c 
Var (Y 0 ) 

= 

. ,. ·. 

- Zb2 a b. = 
a. 2 b 

Therefore, one might consider as an estimate of the shaping para-

meter r ~n ~· w. 
N i;;: 1 l 

b (c ) = .2 2 
( 2. 56) 

0 n ·S w 



where s 
w 

2 is provided analogously to that given by equation (2. 50). 

This procedure for estimating the shaping parameter, however• suf-

fers in that none of its statistical properties are known. 

Suppose next that we allow only the shaping parameter to have a 

fixed value, say, b 0 • Then equation (2. 46) suggests an unbiased esti­

mate of d 2 = l/c 2 ; viz., 

-2 2 
d (b ) = s n ·ylw' (b ) ' o .en o 

( 2. 5 7) 

·2 
where s_fo y is given by equation ( 2. 50) and w1 (b0 ) may be obtained 

from Figure 2, located at the end of this chapter. Reference to 

equation (2. 51) provides 

. d4 { 1 
Var [a'.2(b )] = -. . '111'(b )/[ '111 (b )] 2 

o n · o o 
2d4 

+ ~=-:-i) . ( 2. 58) 

Thus, we may form the exponentiating parameter 1s estimator 
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= + [ wl(b ) J 1/ 2 Is 
- o J.n Y ' 

(2.59). 

where [ w 1 (b ) J l/ 2 may be obtained from Figure 1 at the end of this 
0 

chapter. The choice of signs will be dependent upon the sign of the 

following unbiased estimate of µ 3(J.n Y), defined by equation (2. 47), 

n 
= n L (z. - z )3/(n-l)(n-2), 

i= 1 1 
( 2. 6 0) 

where zi ::: J.n yi' i = 1,. 2, ... , i;i. If . µ 3 (J.n Y) < 0, we select 

for the right-hand side of equation (2. 59) the plus sign; otherwise, we 

select the minus sign. [See equation (2.53).J 

We are again confronted with the estimation of the remaining para-

meter, a. The reader will be left again to decide his choice among 

the set of scaling parameter estimates, 
~ ,v 

a. (b, c(b) ),·i=l,~ .. ,,5. 
l O O 

Finally, suppose we assume that only the scaling parameter has 



a fixed value, say, a . 
0 

Then. we may estimate the shaping para~ 

meter, b, by the method indicated beneath equation (2. 52). The 
,v 

resulting estimate we have denoted previously by b. 

To estimate the remaining parameter, c, the reader may 

choose between c(b), as given by equation (2, 53), and ; (ao, b), 

as given by equation (2. 9). The decision might rest upon several 

factors. Each of the estimators is calculated from statistics already 
,.., 

generated in arriving at the estimate, b; thus, ease of computation 

hardly seems a pertinent factor. Neither of the estimators I statis­

tical pr ope rtie s are known, though the square of the 'inverse of the 

first estimator estimates unbiasedly I/c 2, whil~, the inverse of the 

second estimates unbiasedly 1/c. However, 
""""'. . ,,.. 
c ( a , b) provides 

. 0 . 

. ,.. 
automatically the sign of c, and, for this reason, migh,t be preferred. 

4. Estimation Techniques Whenever Two Parameters 

May Be Assumed Known 

If we assume that.two of the three Stacy parameters are assumed 

fixed (known), the task of estimating.the third is, in every case, 

28 

straightforward. In this section we shall list in Table I these estima-

tion techniques, ancl,. wherever possible and applicable, indicate the 

relative efficiency of.our estimates. For the unbiased estimators 

fisted in Table I, we consider, as indicators of efficiency, the concepts 

. of minimum variance bound estimators {MVBE) and of minimum vari-

ance unbiased estimators {MVUE), as described respectively on pages 

. 9 and 190 of Volume II of Kendall and· Stuart [ 9]. The minimum vari-

ance bounds are presented in section 7 of Chapter I; minimum variance 



unbiased estimators exist as a,. result of our discussion in section 

5 of Chapter I (i.e., because they are unbiased, are functions of the 

sufficient statistics,. and have probability density functions which 

are complete.) 

In Table I, parenthetical entries, other than those which are 

obviously functional arguments, refer to equation numbers in Chap­

ters I or II. A ''NO'' entry implies that this property does not exist 

for the indicated estimator,. whereas ''UNK" implies that the property 

is unknown or undetermined. An estimator for which the indicated 

property should not apply is indicated by a dash. 

29 



TABLE I 

PROPER TIES OF EST IMA TORS 

Refer- Esti- Unbi- Distri- Vari-
Estimator ence mates ased bution ance MVBE MVUE 

a 1(b, c) ( 2. 4) a NO ( 2. 10) ( 2 .. 11). 

. a 2(b, c) ( 2. 5) a NO UNK (2.15) 

"" * a 3(b, c) ( 2, 12) a YES (2.12') (2. 13) NO YES 

a 4 (b, c) ( 2. 16) a YES UNK ( 2. 17) NO NO 
.... ,,, >',c 

( 2. 35) ( 2. 36) 
.,. 

a5(b, c) a YES UNK NO NO 

""t t >:, ,:;: *,. .. 
a 5 (b, c) ( 2, 33) a YES UNK ( 2,. 34) NO NO 

b 1 (a, c) ( 2. 6) b NO (2.18) (2;19) 
L 

b ;;!,a, c) ( 2. 7) b UNK UNK UNK UNK UNK 
... 
b~a, c) ( 2. 20) b YES (2. 21) ( 2. 22) NO NO 

"" t (a, ,c) ( 2. 8) '1r (b) YES UNK ( 2. 24) YES YES 
... 
'1r '(c) ( 2. 54) '1'' (b) YES UNK ( 2. 55) NO UNK 

"' b (c) ( 2. 56) b UNK UNK UNK UNK UNl< 
N n 
b (a, c) (2.39) bn YES UNK ( 2. 41) NO UNK 
N 

b (a, c) ( 2. 42) b NO UNK ( 2. 44) 

-I Kin YI (2. 49) · cp(b) UNK UNK UNK UNK · UNK 

c. (a, b) ( 2. 9) c UNK UNK UNK UNK UNK 
(\} 

(2.53) c (b) c UNK UNK UNK UNK UNK 

d (a, b) (2. 26) d=l/c YES UNK ( 2. 28) NO NO 
fl) 

i=l/c 2 d 2(b) ( 2. 5 7) YES UNK ( 2. 58) NO NO 

.,, 
In general, apparently not. lfor = . 1, however, "YES. II -·· c 

** In general, apparently not. For t =· c, however, ' 1YES. II 
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r 
I 
1 

[ '1t' ( b) J i I z = [ d in r ( b) Id b l i I z 

.... 

- - -

' ~ .I 1,£ c 

- --

I '1i''(b) <Ii (b) = 
- [ '1r 1 (b) J 37 2 ,, --- --

-

Figure 1. Aids for Estimation 
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c 

I 

d 2 .tn r (b)/db 2 I 'iit' (b) = , 
If 

... .. 
""" ,... 

-
• .. 

-- ' 
j 

d 3 .tn r (b)/db 3 
l ili" (b) = 

l 

I 

Figure 2. Two Derivatives of the Psi Functi9n 



CHAPTER III 

A DISTENDED GAMMA DISTRIBUTION 

In this chapter we shall discuss a four-parameter univariate 

probability density function, defined for a positive random variable, 

X. The density function can be shown to be a generalization of Stacy's' 

three-parameter generalized distribution; furthermore, its behaviour 

near the ordinate axis is that of Stacy's generalized Gamma distribu-

tion. The moments of this distribution can be related to the moments 

of a corresponding Stacy distribution, as will be shown in. Chapters N 

and V, where, in discussing certain bivariate density functions,. this 

distended Gamma distribution is found to be one of the marginal densi-

ties. 

l. Preliminary Considerations 

For a.positive random variable., X,,positiv:e param.eters a 
! 

and p, real parameter c j, 0, and parameter b >-p/ c, we may define 

the following univariate probability density function, which we shall 

term the distended Gamma distribution: 

p-1 
g(x; a, b, c, p) = px 

aPr(b+p/c) 

x c 
egf [ (a) ; b), ( 3. 1) 

where 

33 
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CX) b·l -u f u e du, if c >O 

(x/ a)c ( 3. 2) 

c 
J(x/a) b-1 -u d u e · u, 
0 

·) 

if c < 0 .• 

The cumulat~ve distribution func;tion associated with' ( 3. 1) is 

G(x), I~ r (~p/ c) f egf[ ~)c; (b+p/ c)] -(~)P egf[ ~) c; b ]1 
-L · 1 (3. 3) 

and.,the moments of the random variable X are given by 

aspr (b + ~) 
s c 

E[X J = (p.+s)r(b+iic) ' ( 3• 4 ) 

for b· >- (p+s)/c, b >..,.p/c and provided that pf:. -s. 

The properties of the function egf [ (x/ a) c; b] should be of some 

importance to a discussion of our distended Gamma distribution. We 

note first that 

oo b-1 -u . 
I u e · du = r {b), (3. 5) 
·O 

the Gamma function with pararneter b,. provided that b > O. (The 

lirnit does not exist if b ~ O.) In addition, for any real m, 

. tm tc 
hm (--) egf [ (-) ;b] = 0, 
t-oo a a 

( 3. 6) 

as may be seen by noting that, from equation ( 3. 2), 

c 
lim egf[(t/a) ;b]:: O, ( 3. 7) 
t-oo 

so that, when~ver m > O, repeated applic;ation of L'Hopital 1s Rule 

provides the desired result. A further J;"esult relating to the function 

( 3. 2) is that 
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i£ c > 0 x c e 
. · { -(x/a)c 

egf [ <a) ; l] :: . -(x/~)c 3. 8) 
. 1 - e , if c < o. 

Thus, from .(3.. 5) we !'lee that 

+ oo, if O < p .< i, 

lim j(x; a, b, c; p) == r (b)/ ar (b t 1/ c), if p = 1, . and 
x-o 

o, if p > 1, ( 3. 9) 

so that the density (3-. 1) behaves, at the ordinate axis, as. would a 

St a c y distribution with shaping. parameter, p . [ 2] 

In addition to these properties, we note that certain transforma-

tions of distended Gamma variates are again distended Gamma vari-

·ates; e.g., for· Xf\J g(x; a, b, c, p), k, t > O, 

Y = kX rv g(y; ka, b, c, p), (3.10) 

and 
t t . 

Z :::! X N g(z; a, b, c/t, p/t). ( 3. 11) 

2 •. Special Cases of the Distended Gamma Distribution 

. We have defined and "briefly discussed a. four-parameter probability 

density function ( 3. 1). In order to indicate its merit as an applicable 

probability density function, on~ might enumerate, in a manner simi-

:lar to the listing provided in section 3 of Chapter I for: Stacy 's general-

ized Gamma distribution, any familiar farnilief of probability density 

functions. which are subfamilies of it. 

First consider the restriction of the para.meter space provided 

. whenever c is- positive and b == 1. Using the result of equation (3.8), 

we see that, in this case, density (3. 1) represents; Stacy's three-
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parameter distribution with positive shaping parameter •. For, 

g{x; a, 1, c, p) = c xp-\-(x/a)/aP r {p/c), (3.12) 

which is identically :({x; a, p, c;) as. given in eq1,1ation { 1.1). Thus, 

our distended- Gamma distribution includes ·many families of distribu-

tions which we saw in section. 3 of Chapter I to be special cases .of 

· Stacy's generalized Gamma distribution. 

Another interesting sub-family of the family of densities described 

by equation (3. 1) •is the one-parameter distribution -

l g{x; a, 2, 2, 1) = l oo -1/ 2 -u a J u e du, 

{x/a)2 

which, we may write as 

l oo ;·2 oo 2 
g{x; a, 2, 2, 1) = ~ f e -{t a) dt = .3 f e -y dy. 

a2 x a x./a · 

. From page 77 of Rainville [ 10), we see that 

where 

l - "Jrr 
g(x;_ a, 2, 2, 1) = ~ 

x 
erfc (-), a 

edc (t) is the complement of the error function, 

CX) 2 2 
erfc (t) 2 

I 
-y 

dy 
. 2 t .. -y 

= e = l - -f e d Y• ,..,; t ~o 

{ 3. 13) 

(3. l~ 

(3. 15} 

A two-parameter generalization of this last probability density 

function is provided, for a and p > 0, by 

g(x; a, 1/ 2, 2, p) -

or equivalently, 

g(x; a, 1/ 2, 2, p) = 

p-1 
px ex> ' 

I -
(x/ar 

_ px p- l ,J;i erfc (~a) 

aP r ( p+J ) 

-J/2 -u u e au, 

(3.16) 
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where· erfc (t) is defined in equation (3.15) •.. For the sake of later 

reference,. we shall refer to univariate density (3. 16) a-s the error-

· function distribution. 
. '-., 

Having a.technique for estimating the parameters of our four-

paramete.r density ( 3. 1) would poa sibly be o,f great value. However, 

since we shall show that this density is,in cevtain cases, the marginal 

distribution of the warning-times associated with the b.ivariate warn:i,ng-

time/failure-time distributions which we discuas at length in the next 

two chapters, we shall q,efer our presentation of parameter estimation 

techniques for the time· being. 



CHAPTER IV 

THE UNIFORM/STAGY BIV .ARIA'I',E::. D.ISTRIBUTION 

Suppose that one has specified a probability density function, . h(y), 

to describe the population of failure-times, Y ( > O), of some compo­

nent (or system of components). Suppose also that we may measure, 

or observe, prior to each faulure-time, some property of the system 

which would warn of, yet not accurately predict the time of, the impend­

ing failure of the system. If we denote the time of this warning by X 

and assume that, for each failure-time Y, the re is a unique -warning­

time, X( < Y), then we could define a bivariate probability density 

f(x, y) on the range O < x< Y < co. By assuming a conditional density 

of X given Y = y,. we could completely specify this bivariate density 

function: 

f(x, y) = g(x I y) h(y), ( 4. 1) 

where g(x I y) is this conditional density, defined. for a random vari­

able X which takes values with positive probability only in the range 

0 < x < y. 

In this chapter, we shall concern ourselves with bivariate densities 

which a re capable of factorization as indicated in equation ( 4 .• l), . St+Ch 

that the marginal density of the failure-times is specified by Stacy's 

generalized Gamma distribution ( 1. 2), and such that the conditional 

density is designated by the uniform distribution 

38 
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g(x I y) = 1/y, 0 ·< .X < Y• ( 4. 2) 

1. . A Theorem on the Implications of a 'Uniform 

Conditional Distribution 

We shall then be concerned with the Uniform/Stacy bivariate 

distribution 

· / I I -be be- 2 -(y/a)1c f(x, y; a, b, c)= h(y;a, b, c) y= c a · y e I'(b), (4. 3) 

for O < x < y < oo,for 'r·eaJ parameter c (which we shall con-

tinue to refer to ~s the exponentiating parameter)., and for positive para-

meters a and b (the scaling c1,nd shaping parameters, respectively). 

However, since we may obtain a number of pertinent results relating 

to general warning-time/failure-time bivariate densities without assum-

ing a functional form for the marginal density of Y, we defer momen-

tarily our discussion of bivariate density (4. 3) to present the following 

theorem. 

Theorem: Let f(x, y) be the bivariate probability density function 

as described by equations (4. 1) and ( 4. 2). Then the following results 

may be established: 

(A) The random variable U = Y - X has the same marginal 

density function as X; furthermore, with f(x, y) as specified by equa-

tion ( 4. 3), 

X ,V g(x; a, b-1/ c, c, 1), ( 4. 4) 

as givE)n by equztion (3. 1). Consequently, whenever these moments 

exist, 

( 4. 5) 



(B) Whenever the appropriate momen,ts of Y exist, 

\ E[ Y 6 +t]/(s+ 1), .. if s . "::/: ·-F 

l E[(ln Y - -1) yt .. l], if s • = -1 • 

40 

( 4. 6) 

(G) The cumulative marginal distribution function .G(x), associ .. 

ated with the random variable X,. differs from the cumulative marginal 

distribution function, H(y), associated· with, Y, when: each is evaluated 

at t, by 

G(t) - H( t) = t g(t), ( 4. 7) 

where g(t) is the marginal d.ensity of X (evaluated at t). 

(D) Whenever the appropriate moments of Y exist, 

E( ZX) = E(Y), (4. 8) 

1 Z -
Var (2X) = 4Var (X)-.;:.V.~r (Y) + 3 E (Y ) >~ar (Y) ( 4. 9) 

and 

' 1 
._ G~v (X-, Y) = 2 .Var (Y). ( 4. 10) 

(E) Whenever. E(Y 2) exists and Y has not a degenerate 

distribution, 

0 < Gorr (X, Y) = Var {Y). = 
4 Var (X) 

. Var (Y) < 1. 

var fY) ~ ;E '(r 4·) 
( 4. 11) 

Pr.oof: 

(A) LetU =Y-.X,.V=Y. Then,.X(U,V)=V-U and 

Y(U, V) = V. The absolute vah.:i.e of the Jacobian as sociatec;l with this 

. transformation is unity, so that the joint probaJ:>ility density function of U 

and . V b~cG>mes 
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* f (u, v) = f[ x(u, v), y(u, v)] : 1 

= h(v)/v, 0 < u < v < oo. 

* Thus, . f (u, v) · = f(u, v), so that X and Y have the same bivariate 

probability density function as U and V (=Y). Therefore, the mar-

ginal density of U is that of Xi and, whenever we have 

h(y) h(y; a, b, c), 

as specified by equation (1. 2), this marginal density becomes 

bc-2 -(y a) be oo I c ~ g(u; a, b-1/c, c, p)= f Tic I y e /a r (b) dy, 

y;:. u 

as given by equation (3. 1). The equivalence of the s-th moments of 

X and U = Y - X then follows immediately. 

(B) Nowi 

E[XsYt] 
00 y s t - f f x y f(x, y) dx dy 

y=o x=o 

00 
fy s t-1 

= f x y h(y) dx dy 

y=o x=o 
or 

1 
00 

s+t 
Cs+ I) f y h(y) dy, s 'f -1 

E[ x6Yt] = y=o 

oo t-1 
J [ £n y - 1 J y h( y) d,y, s = -1 . 

(C) Now 

t 
G(t) = f g(x) dx, 

x=o 

where g(x) represents the marginal density of X; viz;., 
00 

g(x) = J f(x, y) dy. 
y;;:x 



Thus 
00 t 

G(t) = f f f (x, y) dy dx 

x=o y=x 

={ / 
y 

f 
y=o x=o 

00 t 

+ f f 
y=tx=o 

t 00 

} h(y)/y 

= f h(y) dy + t f f(x, y) dy. 

y=o y=t 

dx dy 

(D) Equation ( 4. 8) follows by substitution of s = 1 into equa-

tion (4. 5) and by supseq1+ently applying the linearity property of the 
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expectation operator. Equations ( 4. 9) and ( 4. 10) follow from repeated 

and appropriate applications of equation (4. 6). 

(E) Equation (4. 11) follows from the definiHon qf the correla-

tion coefficient and ar:i. application of the result (4. 10). 

2. Parameter Estimation For the Uniform/Stacy 

Bivariate., Distribution 

Suppose we hc1-ve a random sample of n observations (xi, yi), 

i = 1, 2, · . . . , n, ea.ch taken from bivariate density ( 4. 3). Now, 

since the set of y. 1s constitute a random sample from h(y; a, b, c), 
1 

we see that the parameters of bivariate der:i.sity (4. 3) could be esti-

mated by utilizing only the observed failure-times, y., i=l, 2, ..• , n, 
1 

and applying the appropriate estimation technique of Chapter II. How-

ever, suppose we attempt to estimate these parameters by employing 

onlythewarning-times: xl' x 2,.,., xn. 

A consideration of the maximum-likelihood equations associated 

with the univariate density func::tion ( 4. 4) does not reveal any procedure 
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rec;Ldily applicable to this estimation problem. The method-of-moments 

would be concerned withthe results obtained from equation (4. 6) after 

setting t = 0 and referring to equation (1. 4) .. For conyenience, we 

list 

E(X) ={: r(h+ 1/c)/Zr(b), if b + 1/c > 0 
( 4 .• 12) 

oo , otherwise , 

and 

2r 1 . 1 2 1/ ;· 2 a L"j' r(b+2/c)r(b)- 4 r (b+.lfc)] r (b), 

Var (X) = if b + 2/ c >.O (4.13) 

+ oo, otherwise, 

but note the futility apparent in any effort to utilize such results 

jointly in an estimation technique. 

However, suppose we consider the application of the method-of-

moments to the random vadable,, i.n X. The joint moment..-generating 

function of i.n X and i.n Y is given by 

(4. 14) 

which, with s. -:f. .;.l, may be more explicitly presented upon reference 

to equations (4. 6) and ( 1. 4). (With s. :::: -1, the explicite representation 

of (4. 14) requires, in addition, reference to equation ( 1 .. L7).) Equat-

ing t to zero in (4. 14) provides the moment-generating function for 

i.n X: 

1 n 

· E[e 5 ~nx] ::::.E[Xs] = E[Ys]/(s+l)=asr(b+s/c)/(s+l)I'(b) 

(4.15) 

for all s such that (b + s/c) > 0 and such that s f:. . -1. 

Now the i--th moment of i.n X is giv~n by 

~[in X]i:::: aiE [e 5 ~n XJ/a si 
s=O 

( 4. 16) 
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However, before proceeding directly to .the appliGation of equation 

(4. 16), we note that, for any positive constant a, 

E(.tn X] = £n a+ E[.fo(X/a)], 

and that, for any k = 2, 3, 4, . . . , 

f }k ! k E 1_£n (X/a)-,E(£n (X/a)] · = E\£n X - E(£n X)} , ( 4. 17) 

Thus, a consideration of the random variable .fo (X/ a) should simplify 

our efforts in obtaining the moments of .ln. X. , For, from equation 

(4.15),wehave, for s ~ -1, 

E[es.ln(X/a)] = E(X/a)s = r (b+s/c)/(s+l) r (b), ( 4. 18) 

so that, for i = 1, 2, .. . ' 

E(£n (X/a)]i = ~ i ! (-1/-k r(k) (b) ( 4. 19) 
k=o k!c r(b) 

. where r(k) (b) is the k-th derivative of the Gamma function with 

respect to its argument. (r ~O) (b) is, of course, taken to be r (b). 

Thus we readily obtain 

E[.ln (X/a)] = -1 + w(b)/c, ( 4. 20) 

from which we obtain the rather interesting result that 

E[.ln (X·e)] = .ln a+ w(b)/c = E[.ln Y], (4. 21) 

where w(b) is as defined beneath equation (2. 47). In addition, by 

applying the result of equation ( 4. 17) to the appropriate combination 

of moments acquired by setting i = 1, 2, and 3 in equation (4. 19), we 

have the central moments 

, Va, r [ £n X] = 1 · + w 1 ( b) / c 2 
! 

( 4. 22) 
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and 

3 
··µ3 (.tnX)::: -2 +'¥"(b)/c. (4.23) 

On page 111 of Volume II, Edwards [ 7] shows that,. for every 

b > 0, '¥1 (b) > 0 and '¥" (b) < 0. Thus, from equation ( 4. 22), we 

have 

1-1 + Var (.fo X) I ::: 1'¥' (b)/c 2 I ::: '¥' (b)/c 2 ( 4. 24) 

and 

l 1
3/ 2 !['¥' (b)] 3/7c 3, if c < 0 

-1 + Var (.fo X) ::: . ~ 2 3 
-[ '¥' (b) J / c , if c < o . 

( 4. 25) 

In addition, from equation (4. 23) we see that the quantity 

2 + µ 3 (.tn X) ::: '¥ " (b)/ c 3 ( 4. 26) 

is positive (negative) whenever c is negative (positive). 

Therefore we see that 

'\¥ 11 (b) 

[ '¥' (b) ]3/2 ( < 0) if c > 0 

2+ µ 3 (.tnX) 
::; 

1- l+Var(.tn X)j ¥2 -'¥"(b) 

[ '¥' :(b) //2 

( 4. 27) 

( > 0) if c < o, 

and thus we may establish the result 

2 + µ 3 (.tn. X) 
::; 

I- !+Var (.tn X)!3/ 2 

'¥" (b) 

[ '¥'(b) ]3/2 
:l w (b), ( 4. 28) 

the last equality following as a result of equation (2,52). We may 

then propose, as an estimate of w (b), 

* 
2 + m 3 (.tn.X) 

2 · ¥2 
1-1 + s I .tn X 

( 4. 29) 
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where 

n 3 
mitn X) = n I: (z. - z) /(n-l)(n-2), 

i= l l . 

( 4. 30) 

n -for · z = I: z./n and z. = ln x., 
1 1 1 

i = 1, 2, ... , n, is an unbiased 
i=l 

estimate of 1-1 3 (ln X), and where 
2 

sln X' an unbiased estimate of 

Var (ln.X), is given by equation (2. 50). 

* With <I , one may estimate the shaping parameter b by refer.-

* ring to . Figure l. Denoting this estimate by b , we may then proceed 

to estimate the exponentiating parameter by considering equation (4. 24), 

taking as our estimate 

( 4. 31) 

Since the statistic within the outermost pair of absolute-value signs 

· of the right-hand side of equation (4. 29) estimates the expression given 

in equation (4. 27), we see that we may use, as a criterion for determin­

* ing the sign of c , the sign of the quantity, 2 + m 3 (ln. X); Le., we 

* take c to be positive (negative) if th~s quantity is negative ( positive). 

Finally, to estimate the 1scaling par.ameter, a, we may consider 

estimators suggested by equations (4. 12) and (4. 20); viz., 

and 

* * * * n * * al (b , c ) = 2 r (b ) I: x./ n r (b + 1/ c ) 

* ,;, * 
a 2 (b., c ) · 

i= l l 

= II x. exp[l-:- "[r·(b )/c J. { 
n }1/n * * 

i= l l 

( 4. 32) 

( 4. 33) 

The first estimator has the advantage of being :unbiased (whenever b * 
* and c may be cons.idered fixed, no longer random variables), though 

* * it is not calculable whenever b + 1/ c is negative [ cf: equation 

(4.12)]. * Regardless of the sign of c , the second estimator is .. 
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* * · calculable; however,. for fixed b and c , the resulting estimate is 

biased for a. 

However, reference to equation (4. 15) indicates. that a bias correc-

* * * * * tion factor may be obtained for· a 2 (b , c )ii. e., for fixed b and c , 

we may. form the unbiased estimate { n }l,b 
n * . / n . x. * * * r (b ) pt 1 n) iIJ 1 1 

a 3 (b , c ) = · n * * 
r. (b + 1/nc ) 

(4. 34) 

* * * This estimator may, like a 1 {b , c ), suffer the disadvantage of being 

* * * incalculable in certain cases when c < 0; viz., whenever b + 1/nc 

is negative~ 

Let us consider b and c as being fixed values. Then,. with the 
i 

variances of our two, unbiased estimates of the scaling. parameter given 

by 

2 * O"l = Var· [a 1 (b, c)] .,. a 2 { 4r (b+ 2/c)r (b) 

n 3r2(b+ 'i/ c) 

and 

.. 2 * 
0" 3 =Vc;1.r[~.(b,c)] = a2{(l+l/n) 2nr~b+2/nc)rn(b) -l} 

n 2n ' 
( 1+2/n) r (b+1/nc) 

( 4. 36) 

one might consider the formation of the unbiased estimator 

* . * . * . 
a,4 (b, c) = Ba 1 (b, c) + ( 1 - B)a3 (b, c), (4. 37) 

where 

( 4. 38) 

with 
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or 

- a 2 r 2( l+ 1/n) r (b) r[b+(n+ 1)/nc -11 
er 13 - l ( 2+ 1 n r(b + 1 c) r('b+ 1 nc) J · ( 4. 39) 

* By construction, B is selected so that the variance of a 4 (b, c), 

( 4. 40) 

is the minimum va);'iance for all unbiased estimators which are linear 

* * 2 combinations of a 1 (b, c) and a 3 (b, c); thus, er 4 is not greater than 

2 2 . 
the minimum of the two quantities er 1 and· cr 3 . [See page 323 of Wilks 

[ 3 J.) Though a 4 ,:, (b, c) is more tedious to calculate than either of the 

estimators given by equations (4. 32) and (4. 34), the resulting reduction 

in variance may well justify its use. 

It is conceivable that one (or two) of the three parameters of the 

bivariate density (4. 3) might, for specific situations, be assumed 

known. For example, with h(y) taken to be the Weibull distribution 

(a case we shall examine more closely in Chapter VII),: ,we need esti-

mate only the scaling and exponentiating parameters, for the shaping 

parameter is assumed to be unity (b = 1). Such cases could be handled 

individually and are,. with the exception of the case where the marginal 

density of failure-times is assumed to be Weibull, left for the reader. 

Procedures for such cases would be derived in a manner analogous to 

tllat of sections 3 · and 4 of Chapter II. 



CHAPTER V 

'J'HE BETA/STACY BIVARIATE DISTRIBUTION 

Having seen that a uniform distribution may serve as a conditional 

distribution for the warning times, one might be led to inquire of the 

possibility of using more general distributions in this role. In this 

chapter we examine the employment of a Beta distribution (normal-

ized over the interval between O and the given y) and, noting the 

difficulties encountered in attempting.to estimate the additional para-

meters thus introduced, we then consider possible restrictions of the 

parameter space of this, Beta/Stacy distribution. 

1. Preliminary Results 

Suppose we nqw consider a bivariate density, defined over the 

range O < x < y < oo, such that 

f(x, y) = g(x I y; p, q) h (y), ( 5. 1) 

where 11.(y) is the marginal distribution of Y (defined over O < y < oo) 

and 
p- 1 . q- 1 . p+q- 1 

g(x I y; p, q) = x (y-x) /B(p, q) ·y - (5. 2) 

is the Beta distribution, indexed by positive parameters . p and q 

and defined over the range O < x < y. The function B(p, q) is the 

Beta-function, equal to. r (p) r (q)/r (p + q). 

The marginal distribution of X. (Again, this variable will refer to 
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our warning times.), we may denote by 

00 

50 

g(x;. p, q) = f f(x, y) dy, (5. 3) 

y=x 

though it is also indexed by the parameters specifying h(y). Before 

circumscribing h(y) more specifically, however, we note that a 

number of pertinent results may be summarized. without suc::h a restric-

· tion. This. summarization is the content of the following theorem. 

Theorem: Let. f(x, y) be the bivariate probability density function 

as descfibedby equ,ations (5. 1) and (5. ~). Then we have the following 
... ~· ' . . .... ' 

results. 

(A) , For. X f\J g(x; p, q), as given in equation (5. 3), the random 

variable U = Y .. XNg(u; q, p), provided that h(y) is not indexed by 

the parameters p and q in other than a symmetrical manner. 

(B) Whenever the (s. + t) .. th moment of Y exists, 

(5 •. 4) 

provided that s > ""P• 

(C) The cumulative disfrihution function associated. with the 

random variable X can be expressed, at point t, as 

· G(t) = H(t) + J00
{Bv (p, q)h(y)/B(p, q~ dy (5. 5) 

y=t 

where v · = t/y and where 

v 
p-1 q-1 · B (p, q) = f u ( 1-u) du. v (5. 6) 

0 

(D) Whenever the appropriate moments of Y exist, 

for s > -p, (5. 7) 



E[X] ::: p E(Y)/(p + q),. 

Var [ (p + q)X/p] = . Var [ Y J + qE(Y 2)/p(p+q+ 1), 

Gov [.X, Y] = <-+p ) Var (Y) 
p q 
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(5. 8) 

(5. 9) 

(5. 10) 

(E) Whenever E(Y 2) exists and whenever Y has not a degener-

ate distribution, 

0 < Corr (X, Y) = 
z p . Var (Y) 

2 (p+q) ·. Var (X) 

.< 1 (5. 11) 

Proof: 

(A) Letting U = Y -· X, V = Y ,. we transform to obtain the 

bivariate density 

over the range O < u < v < oo. The Beta function B(p, q) is sym-

metric in its arguments, so that we see that the conditional distribution 

of U given V (i.e., given Y) is g(u I y; q, p). Thus we. have the 

marginal distribution of U = Y .. X given by 

* 00 * g (u) = J f (u, v) dv 
. v=u 

00 

= J g(u I v; q, p)h (v) dv, 
v=u 

Therefore,. whenever· h(v) depends neither upon p nor upon· q (unless 

p and q are symtnetric in this indexing of h(v)), . we have upon 

reference to equation (5. 3), the desired result; viz., that the marginal 

distribution of U = Y - X is g (u; q, p). 

(B) By def~nition, 
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s t _ ex:> y s+p-1 q-1 -p-q+t+ I ~, _. 
E [ X Y ] - J J x (y-x) Y h( )dxd·?•1- -·)·-

y:;:o x=o Y · . Yl-:.,,;':':t'' q ' 

Upon pe·rforming .the interior integration~ we have,. for s >-p, 

= 

00 

J h(y)ys+tB(p+s, q)dy/B(p, q) 
y=o 

B(p·+s, q) E[Ys+t], 

B(p, q) 

whenever the latter moment exists. 

( C) By definition, 

t t . 00 . 

G(t) = J g(x; p, q)dx' = J. J , f(x,· y) dy dx. 
x=o x:::;o y= x 

Reconsidering the area of integration,. we have 

t y oot , 
G(t) = J J · f(x, y) dx dy + J J' f(x, y) dx dy 

y=o x:;:o y=t x;:;;o 

t 

= J . 

y=o 

y 
h.(y) J g(x I y; p, q) dx dy t• 

x.=o 

00 t 
+ J h(y) J g(x !Yip, q) dx dy 

y=t x=o 

00 

= H(t) 1 + J B.v (p, q) h(y)/B(p, q) dy. 
y:::;t 

(D) The result stated in equation (5. 7) follows as a. corollary 

to part (B) .of this theorem; simila.rly for the result in equation (5. 8). 

As.for that in equation (5. 9), we note that 

2 
Var [ {p + q) x/ p] ,;: (p+q) Var (X) 

2 
p 

= (p + t) 2[ (p)(p+l) . E(Y 2)- L E1Y)] 
p {p+q)(p+q+ 1) . (p+q)2 , · 

= Var (Y.) + p(pfq+ 1) E(Y 2), 



2 
whenever E(Y ) exists .. 

Then, 

Cov (X, Y) = E(XY) - E(X) E(Y) 
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= ~) · E(Y 2) - (. P+-)E 2(Y):::; ( .·+P· ).Var (Y), 
ptq . p q p q 

(E) Finally, providing 0. < Var (Y) < oo, 

Corr (X, · Y)= 
·2 
p Var (Y) 

The positive correl~tion of X and Y is assured by the positiveness 

of each of the factors beneath the radical; the right-hand inequality 

follows upon a consideration of (5.9). Q.E.D, 

Suppose we take the marginal d!stribution, h(y), to be Stacy 1s 

generalized Gamma distribution, given by equation ( 1. 2). We are then 

considering thE) bivariate density 

f(x, y; a, b, c, p, 
-1 -lbc- - -(.la)cbc 

q) = I c I xp (y-x)q y P '1e y;, ;a r(b)B(p,q), 

(5. -12) 

for positive parameters. a, b, p, and q, :Cor real parameter c, and 

for positive random variables X and Y such that x < y < co. 

(With p = q = 1, we have the Uniform/Stacy bivariate density, dis-

cussed at length in the preceding chapter.) Using, as the marginal 

distribution of Y, Stacy 1s generalized gamma distribution, allows us, by 

referring to equations ( 1. 4), ( l. 5), ( l. 6), and ( l. 7), to specify the 

moments and distrihuJions mentioned in the preceding theorem. 

In addition, we note that we may obtain the joint moment-gene rat-

ing function of Z = J.n Y and . W = 1n. X as 
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which, for · s > -p, becomes 

E[ esW+tZ] = B(p +s, q)E[ Ys+t]/B(p, q), 

or 

·E[esW+tZ] = as+t r(p.+s)r(p.+q)r[b+(s+t)/c], .( 5 . 13) 
. r(p) r(p+q+s)r(b) 

provided (s + t)/ c > -b, and s >-p. From equation (5. 13), we 

may determine the following moments 

E(£n X) = £n a+ \li'(p) - \li'(p+q) + \li'(b)/c, . (5. 14) 

or 

E(£n. X) = E(£n Y) + \Cr (p) ... \Cr {p + q), 

and 
. 2 

Var (£n X) = \Cr 1 (p) - \li' 1 (p+q) + \Cr' (b)/ c , (5. 15) 

or 

Var (£n. X) =·Var (£n Y) + \Cf' (p) - \Cf 1 (p+q), 

and 

(5. 16) 

or 

where the \[,-function and its derivatives are described in Chapter XXIV 

of Edwards. [ 7]. We n0te that, since q > 0 . implies that \Cr (p) < \li'(p+q), 

\li' 1(p) >\li' 1 (p+q), and \li'l1( p) <'1''.l(ptq), we are able to establish the ine-
' 

· qualities 

E(£n X) < E(£n, Y), 

Var (£n X) > Var (£n Y), and (5. 17) 

~·· 
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2. Para.meter Estimation for the Beta/Stacy 

·· Bivariate Distribution 

,. Suppose now that we have a random sa!'llple of size· n taken ~rom 

.densi,ty(5.'12h Denotingtheseobservarionsby (x., y.), i=1, .... , n, 
l · 1 

we may derive the maximum-likelihood equations associated with para-

· meters p and q: 

a .tn L -......-~, = a P 

n n 
-.n "\li(p) + n "\li(p+q) + ~ .tn x. - · ~ .tn. y. = 0 

i=l .l. i:::;l . l 
(5.18) 

a .tn L n n: .. a = -n "\li(q)+nw(p+q) + ;E.tn {y.-x.) -<2),fo,y.;::0.(5 .• 19) 
q . i; 1 . ;L 1 i= 1 l 

The remaining.m.a.ximu:rp-likelihood equations are identically those 

presented previously as equations (2. 1), (2. 2), and (2. 3). The result .. 

· ing set of five equations does IlOt readily sugges~ for any one of the para-

· meters, an. estimation technique which, uses only the observed· warning 

times, x., . i = 1, 2, . • • , n. In addition, any attempt to solve explic­
. 1 

itly the maximum-likelihood equations associated with the marginal 

distribution of X would apparently be thwarted by the complexity of 

their express ion.'.s. • 

Never.the less, it is possible to establish the Gramer-Rao, lower 

bounds. for the variances of unbiased estimates of the parameters· of 

density (5.12). The lower· bounds for· unbiased estimates of a, b •. and 

* * .·. c are those presented in section. 7 of Chapter Ii. for · p and q unbias-

ed estimates of p and q, respectively, 

* Var (p ) > 1/n[ w '(p) - "\Ii , (p + q)] (5. 20) 

and 

* Var (q) > 1/n[w'(q) - w'(p + q)]. (5. 21) 
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In order to ascertain the statistics sufficient for each of the para­

meters of density (5. 12), · we consider again the K:..function of Lehmann 

. and Scheffe. [ 5]. For brevity we merely list these results, noticing 

that 
n n 
.II(x./y.), or, equivalently, ~ .fo (x./y.), is suffit:ient for p, 
. ll l . . l l l 
1= 1= 

n n 
II [(y.-x.)/y.J,or,equivalently, ~£n[1-(x./y.)], is sufficient for q, 

i= l l 1 l i= l l l 

n 
II y., o·r,equivalently, 
. l 1 
1=. 

.n 
~ £n y ., is sufficient for· b, 
. l l 
1= 

and, whenever · c is known, 
.n c 
-~ y. is sufficient for· a. 

i= 1 1 
A.gain, the 

form of density (5. 12) is not proper to admit a single statistic .sufficient 

for c. [Pitman, 6] 

Thus, with our random sample {xq y,), i = 1, 2, •.. , . n, it would 
. . l l 

appear that our estimation technique would be to 

( 1) Estimate a, b, and,. c by the appropriate ·technique of 

Chapter II, 

(2) Solve iteratively equations (5. 18) and (5. 119) for p and q. 

However, it would .seem feasible in many applications to restrict 

the parameter spac~, associated with density (5.·12) by assuming one or 

more of the parameter values to be known .. Assigning. values to one 

(or two) of the parameters of the set a, b, c would be entirely reason-

able in cases where the distribution of failure times can be assumed to 

be one of the subfamilies Listed in .section 3 of Chapter I; in such cases, 

the estimation 9f the remaining parameters in this .set is straightfor-

ward, [See sections 3 and 4 of Chapter II. l, and the estimation of p 

and q would then follow from the iterative solution ef equations (5. 18) 



and(S.19). 

Suppose, however, that one is.willing to specify the C(;)nditional 

distribution (5. 2) by assigning values to p and q. [For example, 

p = q = l specifies a uniform conditional distribution, thereby desig­

nating the bivariate density of the preceding chapter. ] 

Letting 
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b.. 1(p, q) = w' (p) - w' {p+q) ( 5. 22.) 

and 

. & 2 ( p, q ) ::: - W II ( p + q) ' + W II ( p) , (5. 23) 

we see that equations (5. 14), (5. 15), and (5. 16), with p and q. each 

known, suggest a method for estimating. those parameters indexing 

the marginal distribution of Y by using only the observed warning-

(1), Estimate cj> (b) by computing 

(\) 
cj> ,= ,. 

m 3 (.en X) - b.. 2 {p, q) 

I s l.n, x2 ~ D..1 ( p, q) 13/ 2 
( 5. 24) 

where b.. 1 {p, q) and A. 2 (!), q) are given by equations ·(5. 22) and 

(5. 23) [c.£.Figure 2}; ·where:,;·mJ(£n X) ts a.$' give:n·by<~ql.1:aJ;ion (4. 30), 

2 
and where s is as given by equation ( 2. 50). Using the graph · £nX 

of cj> (b) in,Figure l at the end of Chapter II,. we obtain the estimate 
N 

of b, say, b. 

( 2) Estimate c by computing 

( 5. 25) 

taking the positive (negative) sign. if m 3 Vn, X) - D.. 2(i:>, q), 'l!lsed in 
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calculating ';', is negative (positivet •. The quantity [ ill' (~)] l/Z ,is 

readily obtainable from Figure 1 at the end of Chapter· II; the denomina­

tor of ~ is available from the calculations u~ed in obtaining ~-

( 3) Estimate a by any one of the four estimators: 

or 

N N rv I\) :q. N (I.) . 

a 1{b, c, p, q) ::;; (p + q) r (b) ~ x./np r (b + 1/c), (5. 26) 
. 11 

rv "' N 1 n }1/n 1::;; { fV N} 
.az(b, c, p, q) ::;; n xi exp - ~p) + ~p+q) - ~b)/ c ' 

i::;; l (5, 27) 

r>J N N . rn(p) rn(p+q~ )I'~b{i~'i xi} 1/n 
a3(b; c·, p', q) ::;; n n 1 . rv· 1 ' (5. 28) 

r (p+q)r. (p+ - ) r~b+---;y) n n1,; 

N N N ru N f'V f\J ,..J f\J 
a 4(b, c, p, q) ::;; A a 1 (b,. c, p, q) + ( l-A)a 3(b, c, p, q). 

(5. 29) 
f'\) 

For fixed b and c, each of these estimators, save· a 2(b, c, p,· q), 

is unbiased for a, The coefficient A, used in calculating 

r'\J 
a 4(b, c; p, q), .. :is given by 

. (5. 30) 

where 

cr 1 =Var[a 1(b,c,p,q)];:::- . . 2 rv a 2 f(p+q)(p+ 1) 

n (p+q+ l)(p) 

r(b+4"c) r(b) . -1] 
. 2 ' 
r (b. + 1/c) 

(5. 31) 

·2 N 
cr 3 = Var [ a 3(b, c,. p, q)], ( 5. 32) 

or 

{ 
n.- n n / n / · 2n / er 2= a.2 r \p)r (b)r (b+2 nc)r. (p+2 n)r. (p+g+l n) 

3 n · Zn / · Zn / n · / · . r .. (p+q)r (b+l nc)r (p+l n)r (p+q+2 n) 

and 

N IV 
cr 13 = Gov [a1(b, c, p, q), a 3(b, c, p, q)] (5. 33) 

' = a 2f1e+q)(np+ l)r(b) r(b+(n+ 1)/nc)' } 
Lnp(hp+nq+l)I'(b+l/c)r(b+l/nc) _-l • 
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N 
By this construction, Wilks on page 323 shows that 

variance not greater than the minimum of CT 1 
2 and 

-aib, c, p, q) ~as 

2 . 
O" 3 ; VlZ. , 

2' 2 2 
2 N ;., .··. ;. O"l 0"3··.(0"13), 

er 4 = Var[a4 (b, c, p; q)];::. 2 . 2 
... a- 1 ta- 3 - 20- 13 

(5, 34) 

: 
3 .... ; A Beta/Gamr.pa Distribution . 

We have seen that, in the absence of failure-time (Y) data, we 

encounter difficulty in estimating the five parameters of density (5.12). 

Furthermore, we have seen how complete specification of the condi-

tional density (5. 2) allows us to estimate the parameters of the failure-

time distribution, using only warning..:.time s in so' doing. 

We now consider anoth~r interesting restriction of the parameter 

space associate with bivariate density (5. 12). Suppose we assume 

that c = l, so that,for the margin.al distribution of our failure-times, 

we ·restrict our attention to the subfamily of two-parameter Gamma 

distributions. If, in addition, we assume that (p+q) = b; we are focus~ 

ing attention on the bivariate density 

p-1(· )b-p·d 
x ~x f(x, y; a, b, 1, p, b-p)= b- . . 

. y · .. (p, b-p) 

b-1 -y/a ·· y e , 

ab!"'(b) 

or, equivalently, 

. p..:. l b-p~ 1 -y/a1 b_ 
f(x 1 y; a, b, 1, p, b-p)= x (y-x) . e. ,a-r(p)r(b-p) (5. 35) · 

for O < x < y < oo, and for a > 0, 0 < p < b. 

One of the most interesting properties of this bivariate density 

is that the marginal density of the warning...:times becomes 

g(x; p, b-p) = h (x; a, p, 1), (5. 36) 

. 
a two-parameter Gamma distribution. Thus, by part (A) of tile 



theorem in section 1 of this chapter,. we see that,. with b ""· p + q, a 

symmetric function of p and q, the rc;1.ndom variable U = · Y - X 

has two-parameter Gamma density: 

U = Y - XN h(u; a, b-p, 1). (5. 37) 

In addition, since the product of the densities (5. 36) and (5, 37) is 

60 

the same as the joint probability density function of X and U, we see 

that X and U = Y - X are independently distribut.ed Gamma variates 

with common scale parameter. Thus, from result ( l. 9), we would 

have the marginal density of Y: 

Y ('\.) h(y; a, b, 1). (5. 38) 

We have then established the following theorem: 

Theorem: Let X and Y b,e two random variables .defined over 

the range O < x < y < ro. Let YNh(y; a, b, 1), U = Y - X, and 

(p + q) = b. Then, X N h{x; a, p, 1) and is. independent of 

UN h{u; a, q, 1) if and only if the conditional density of X given Y 

is g{xjy;p, q). 

This result is most pleasing in that it allows. us to discuss warning­

time s and failure-times. which are each distributed according to a 

common and familiar family of probability density functions. In addi­

tion,, their joint probability density function is dependent upon only 

three parameters;· viz., a, b, and p. The marginal density of war:ning­

times is indexed by two: a and p, s:o .. ¢at;, if pne utilizes. the appro­

priate proced1,1re outlined in .section 3 of Chapter II, estimation of a 

and p, using only the sample of warning-times,, would follow directly. 

Estimation of b would require information. provided only by the 
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failure-times (or, say a truncated subset of these, as is indicated by 

Chapman [ 11]). 

4. A Simplified Conditional Distribution 

In this section, we propose another restriction of the parameter 

space associated with bivariate density (5. 12). We note from equation 

(5, 8) that the parameters p and q are directly proportional; viz., 

p E(Y-X) . = q E(X). Thus, as signing any fixed value, say q , to q 
0 

might not severely restrict our bivariate density (5.12); especially not 

if the proportional relationship between the mean of X and that of Y 

is. deemed important,· 

Let us consider bivariate density (5. 12) with q = 1, i. ,e,, 

I l p-1 bc;-p-1 .. -(yfa);c be f(x, y; a, b, c, p, 1) = c p x · y e a r (b), 
( 5. 39) 

for O < x < y < oo and for parameters a > O, b > 0, c f:. 0, 

and p > 0. The conditional distribution of X given Y becomes 

£or O < x < y, anp. p >O, ( 5. 40) 

which we see to be a one ... parameter generalization of the conditional 

distribution used in the preceding chapter. 

Though this restriction on q limits the shape pf the resulting 

conditional density (5. 2), its use leads to several simplifications 

whenever one considers the properties of bivariate density (5. 39), 

For example, results (5. 4), (5. 5), (5. 8), and (5. 9) become 

00 

G(t) = H (t) + tp J y -p h(y) dy, 
y= t 

(5. 41) 

(5. 42) 



or, whenever h(y) is as. defined by equation ( i. Z), 

G(t) = H(t) + .! g(t; a, b-p/c, c, p) 
p 

[See(3.l).],, 

E [ X] = p E [ Y] / ( p+ 1), 

and 
2 

Var· [X] · = P Var (Y) + 
(p+ 1) z 

2 p E(Y ) 

(p+ 1) 2(p+2) · 

(5. 43) 

(5. 44) 

Similarly the moments given by equations (5. 14), (5. 15), and (5 •. 16) 

a.re simplified: 

and 

E(.fo.X) = [Lna+ 'M(b)/c] - 1/p, 

Var (in X) = [ 'M' (b)/c 2J + l/p 2, 

( 5. 45) 

(5. 46) 

(5. 47) 

. We note also that the marginal distribution of warning-times, as 

implied by equation (5. 42) is a distended Gamma distribution, as 

. described in Chapter III; viz., 

Xlllg(x; a, b-p/ c, c, b). (5. 48) 

With the distribution of failure-times. specified by Stacy's 

generalized Gamma distribution, equation ( 5. 43), becomes 

.· E[X] = ap r (b+l/c)]/(p+l) r (b). (5. 49)' 

Together, with, the logarithmi.c moments presented in equations 

(5. 45), (5. 46), and (5. 47), this moment should allow us to estimate 

· the four parameters of our bivariate density (5. 39) by· using only the 

warning-times x 1, ..• , x .. Since explicit .solutions for the para­. n 

meters in these four equations (with sample moments replacing 
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theoretical moments therein) are not apparent, an iterative ··· technique 
I 

is suggested. Unfortunately, st~tements regarding the statistical 

properties of the resulting estimators would be primaJ;"ily speculative 

in nature. 



CHA.PTER VI 

AN EXTENSION OF THE UNIVARIATE 

WEIBULL DISTRIBUTION 

In Chapter 1 we noted that the univariate density (1. 2) was, a gener-
' 

alization of Stacy's original generalized gamma distribution ( 1. 1). 

This. generalization was made possible by noting the permissibility of 

the expc;mentiating parameter's as sumip;g. an.y real value: ;en this 

· chapter we intend to. display some of the effects, s0me 0£ the ~dvantages, 

and some of the possible disadvantages of extending similarly the para­

meter space of the Weibull disttiibution, 

1. Preliminary Remarks 

. The· univariate Weibull [ 12] distribution has been mentioned (Cn~­

ter I) as that special case of density ( l. 2) wherein the shaping. parameter 

has. value b = l and the exponentiating. parameter, c, assumes, only 

.. positive values; i. e, 1 a positive-valued random variable, Y, ;has been 

said to possess the, Weibull distribution if its probability density func-

tion were given by 

·. c-1 -(y/a)c/ .c ' f(y; a, c) = cy e a , (6. 1) 

· .for positiwe parameters a and c, termed now ... respectively, the 

scale and shape parameters. • 
Suppose that we have a random, untruncated, unordered sample 
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y., . i = 1,. 2, ••• , n, .· taken from density (6 • .1.) and that we .seek 
l . 

to estimate the parameters a and/or, c. The current te~hniques 

. for the parameter estimation from such a. sample include iterative 

methods derived from the maximum-likelihood equations [ 13], a 

least-squares method which, can be facilitated by the· use 0£ s·pecial 

probability graph paper [ 14], a method implied on page 22 by D,. R. 

Cox [ 15], who . utilizes the method-of-moments, and a method 
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. presented by M .. V. Men0n [ 16], whose co~clusions Jollowed an appli-. 

cation of the method-of-moments. to the random variable , .ln Y. 

Before presenting our extension of the Weibull distribution,' let 

us. pause momentarily to discuss the last:two estimation techniques. 

For YNf(yi a, c), we have 

• E(Y)• :;: ar( 1 + 1/c) 

and (6. 2) · 

. ·. 2)- ', 2 . <')/ ) 
/E(Y ·_ :;: a r (l + ct c ~ 

Thus. we see that the rnondtone function 

. . 2 ". Z 
, R (d) = E (Y)/E(Y ) = dB(4, d)/ 2 , (6. 3) 

·. where 

· B(u, y); .. r (u) r (v)/r (u· + v) 

and ·.d = 1/c, is independent of the scale parameter,. Thus,. calcula­

tion of, 

R 
·.n . 2 n 2 

(.~ y.) /(n ·~ y. ) 
.· ·. 1 1 . 1 1 . 
1::: 1= 

(6. 4) 

would·,provide an estimate of R(d), the graph of which would, in 
,,.' .. 

turn, yield an estimate, -1 
cR = :1R , of th,e Weibull shape parameter •. 
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This. graph, for the reacl.er 's convenience, is .. provided in Figure 3, 

located at the end of this chapter. 

Once the Weibull shape parameter has been estimated, one could · 

then invok~ 'any of the estimators for Stacy.'s. scaling parameter, listed 

in Table I.· We note, however, that the ·invocation of 

would provide an.estimate with the interesting property that its vari-

ance (with· c.R considered constant, no lollger a random variable) 

becomes expressible as 

(6. 5) 

Now1, in Menon 's estim~ion techniques we note that, in the case 

where the scale parameter is ass.umed fixed, the procedure may 

lead to an undesirabl.e nega;tive estimate of ''the :shcj_.pe parameter. 

Menon very adeptly sug'gests an alternative (though essentially the 

same) method for avoiding this possible embarrassment. [ 16] We 

shall. demonstrate that, by extending the parameter space· associated 

with the Weibull distribution,. we may avoid being concerned about 

obtaining any such negative estimate. 

2. Extending the Weibull Distribution Parameter Space 

Con.sider the probability density function 

I c · . c-1 - a c 
h(y; a, c) = I c Iv. e (y ) /a , (6. 6) 

\ 

for ~ positive random variable Y, positive scale· parameter a, and 

real shape para:meter c. This distril:>ution, it may be n:oted, corr es -

ponds to h(y; a, I, c), as given by equation ( l. 2). 



We may therefore establish the results that, for YNh(yi a, c), 

Z = Y/kNh(z; a/k, c) (6. 7) 

for any positive k, and 

W = Ypf\J h(w; a.P, c/p) (6. 8) 

for any p -::/= O. Now, for G ::/: O, the cumulative distribution 

function becomes: 

H(y; c!-, c) = 
.{ 1 - exp [ -(y/a)c] 

exp [ -(y/a(] 

if c > 0 
(6. 9) 

ifc<O, 

and the moments, for · K = 1, Z, .••• , are given by 

+ex:>, if.;.K<c<O. 
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·{aK r ( l+K/ c), if K/ c >-1, and µKI (Y) :;:; E(YK) :: 

(6. 10) 

An imp01;tant property associated with any reliability distribution, 

such as density (6. 6), is the age-specific failure rate. [ Cox, 15] 

This function becomes, for density (6. 6), 

cp:(y) = 

c-1 c . 
cy /a , 1f c >O 

-eye-le -(y/a)c , if c < 0. 

a c[ l-e-(y/a)C ] 

(6.11) 

·Whenever O~c:·:< !,, :thei.functicfa · ·<j> ( y ).··is monotone:d&creas-

i.ng; :,.~i.lt',· ,c > 1 implies <j>(y) is monotone :;i.IJ,;Greasing, and 

c = 1 provides the result that <j>(y) = l/a, constant. However, an 

appropriate analys~s of <j> (y), for negative value!:J of c, leads to the 

conclusion that this function cannot be monotone~ This fact, coupled 

with the fact, implied by equation (6. 10), that only a finite number ·Of 

moments exist whenever c < O, will probably hamper proposed appli-

cations of density (6. 6) to reliability studies. 
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Suppose now that we have a :random ~ample of n unordered, 

untruncated ob:;ervati0ns, y., i = 1, 2, . ~ • , n from density (6, 6), 
. . 1 

We may def~ne three pertinent parameter' system states (P,'S~:S. ): 

P.S.S. I: c assumed known (fixed), a tobeestimated. 
P. S.S. II: •· a assumed known (fixed), c to be estimated 
P.5~ S. III: a, c to be estimated Jointly. 

Now let us consider Menon 's approach to the estimation of the Weibull 

parameters. [ 16] Analogous to his procedure, w 1e find the first three 

moments of the random variable Z ::: £n Y to be 

µ 1 1 (.fo Y) = E(£n Y) ::: £n a + X. / c 

where the 

' · 2 2 · 2 
:;: E [ £n Y ~ E (£n Y) ] = ( X. 2 - X. 1 ) / c , 

00 i -x 
Ji.... = f (.fo x) e · dx, 

1 
0 

i = 1, 2, 3, 

are defined by Mennen [ 16]; the pertinent values are 

x. 1 = ,..0,5772, 

2 . 2 · :' 
( 'f... 2 - x. 1 ) :;; n I 6, • and 

3 
(X.3 - 3X.2X.l + 2X.l ) = -2.4036. 

and ( 6. 12) 

(6. 13) 

We note that the quantity µ 3(£n Y) is negative (positive) according to 

whether c is positive (nt::gative). 

No.w, for P.S.S. I, our estimation technique for the scale para-

. I\ 
meter may be selected from any of the estimators a. [ 1, c] ;i=l, 2, .•. , 5, 

i 1 . 

as listed in Table I. For P. S.S. II, one might estimate c by consider-

ing estimator c (a, 1), as. given by equation (2.9); here v.,e note, as did 
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Menon [ 16], the possibility qf obtaining a negative estimate of th'e 

Weibull shape; parameter, but this possibility no. longer concerns us, 

since negative values of this parameter are deemed perm~ssible under 

the definition of density (6.6) .• 
. . 

Estimation in the event that P,S.S~ III exists is precisely as 

Menon [ 16] suggests, except that, as in section Z ,of Chapter II, we 

choose the sign of the estimate of c to be positive (negative) if the 

sign of the third central samf>le moment~ 

·. n 
· ·1:; [ln Y .. - ( ..! 

• 1 · n 
1 ::: 1 

n 3 
~ .fo Y.)] 
1 1 

is negative (positive). Once the ...es;timate ~ ( 1) [ cf: equation (Z. 53)] ~ 

of c is obtained, one may select any of the scale parameter estimates, 

;.[1, '6(1)], i= 1, Z,. ~ ~, 5, given in Table!. (Ncllit.e: one must take 
l 

care, however, in the event that,~( 1) < O; fo:r; difficulty in evaiu~ti~ 

some of the Gamma functions, invdlved in the expressions for certain 

scale· parameter estimators, may be encountered,.) 

3. A Note on Estimation for the 

Exponential Distribution 

If the Weibull1;1hape parameter .c can be assumed.fixed, we note 

that,for Yrv h(yi a, c), the random variable W = Yc,v h(w; y, 1), the 

exponential distribution with m.ean y . = a c. One may e-stablish that, 

for a random sample y., i = 1, Z, 
l 

. • • ·. , n,taken from density (6. 6) 

with c fixed, the unique minimum -variance unbiased estimate of y is 
n 
.~ w./n, for w. = y.c, 
i= 1 1 . l l 

i = 1, Z, ·• . _.~· ·, n. Our ·results pert~EllP!,t: to 
.... 

the more general Stacy distribution reveal that estimator a~fl, c] 

[See Table I] is the uniq~e minimum variance unbiased estimator. of . . . ·f . 



the Weibull scale parameter, a, whenever the shape parameter may 

be assumed known. 

In examining the estimators a. ( 1, 1),, i = 1, 2, , .. 5, provided 
l 

by the appropriate entries in Table I with b = c = 1, we see that 
... ... 
a. 3 ( 1, l) ;:: a5(1, 1), so that we have only two unbiased estimates for 

the scale parameter of the exponential distribution. The second, 

though its variance. is not less than ail, 1), possibly merits an 

individual display, along with its variance: 

... { n 11/n 
a 4 (1, 1) = i~l wij /Tn(l+l/n), (6. 14) 

and 
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... 
Var [a4 (1, l)] = a 2 { rn( l + 2/n) - r2~'H 1/c~Jrf1'1+ 1/ c) . 

1 (6. 15) 

Though not so efficient as a 3 ( 1, 1), the fact that the geometric 

mean of the observations from an.e~ponential distribution may be 

employed to estimate unbiasedly the mean.of the distribution is 

itself of possible interest. 
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i.,. ,.. 

'"' 

... 
R(d) · = dB(d, d)/2 · ~ 

... ,. 
• 

... ,.. ,.. 
'"' 

·~-·~ - ~-

d = 1/c I 

Figure 3. An Aid for the Estimation of the Weibull Shape Parameter 



CHAPTER VII 

BIVARIATE WEIBULL DISTRIBUTIONS 

The Weibull distribution has been discussed both directly and 

indirectly in the prec:;eding chapters. With positive shape parameter, 

it has proved a quite powerful tool in the description of data arising 

from reliability studies. (See, ;e.g., Gumbel [ 4] and Kao [13:J.) We 

now turn our attention again to a study of the bivariate warning--_ 

time/failure.-time distributions defined in Chapters IV and V, 

restricting ourselveE! to those cases wherein the margi11~l density 

of the failure-times is presumed to be the extended Weibull distribu-

tion of Chapter VI. . 

1. Definitions 

• We shall then define the Uniform/Weibull bivariate probability 

density function by 

I r c-2 -(y/a(/· .c f ( x, y; a, c) = c y e a , ( 7. 1) 

for random variables X and, Y such that O < x < y < oo, for 

positive parameter a, and for real param~ter c. The more general 

Beta/Weibull bivariate probability density function we shall define as 

where O < x < y < oo, a, p, and q > 0, and c is real. We note 
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that bivariate density (7. 1) is that of equation (7. 2) with p = q = l; i.e., 

f(x, y; a, c) = f(x, y; a,., c, 1, 1). 

The marginal density of the failure-times is, of course, in. each 

case, the extended Weibull distribution presented-in equation (6. 6), 

whereas the marginal density of the warning times becomes 

00 

g(x) = f f(x, y; a, c, p, q) dy. 
y=x 

2. Parameter Estimation for the 

. Beta./W eibull Distribution 

(7.3)1 

As stated in Chapter V, we see that, in the absence of knowledge 

about .the values of p and q, we must somehow utilize both sample 

warning-:times and sample failure-times in order to estimate theae 

parameters. Since we are quite desirous of acquiring estimation 

schemes. which will employ only sample warning-times, we find that 
I 

we still must presume some ",a priori" knowledge of the parameters 

p and q. 

In Chapter IV,. we saw that the three parameters of the more 

general Uniform/Stacy distribution' (4. 3) may be jointly estimated 

from the sample of warning-times: x 1, x 2, •• . , x. 
n 

Proceeding 

analogously, we see that, for XJVg(x; a, 1-1/ c, c, 1), [ See equation 

( 3. l).] 

and 

E[Ln X] = .en a + .!. w ( 1) -1, 
c 

Var[LnX] = l+w'(l)/c 2• 

(7. 4) 

(7 ~ 5) 

We note that the right-hand side of equation (7. 5) is a function 
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of c only.· Thus, as in Cha:pteu-.IVt an estimate of this Weib~U shape 

parameter is 

( 7 t..i\"/ ' \ 
9 '-'\/:,'I,·; 

where the sign is selected according to the criterion. established for 

ascertaining the si.wiot::.c *(b:~) in; equation .(1., 3,1), .)whei:re ~. ;al~ t is as 
. / . 

given by equ,ation ( 2~.50)--).,,.a~d where 

1/2 1/2 
[ iJi 1 (I)] - = ( 1. 6449) . - = 1. 28 25, 

. ·. .. 

as provided by Menon. [ 16] Estimation of the remaining parameter 
. . - . ' ' * . * . 

(a) may be effected by selecting one of the estimators. a. ( 1, c ( 1) ), 
. ' . : l 

i = 1, 2, 3, 4, as defined in the closing section of Chapte:r 4. 

If a conditional distribution (of X given Y = y) more general 

than,. the uniform density is desired, one might consider that condi~ 

tional density given by equation (5. 40). :i:n this. event, we- recall th.at 

E(1n X) = 1n a + .! iJi( 1) - 1/p, c 
(7. 7) 

(7. 8) 

and 

,E(X) = apT (1 + 1/c)/(p + 1), ( 7. 9) 

as :µJay .be seen by reference to equations (5. 45), (5. 46), and (5. 49), 

respectively •. Substitution of the corresponding sample ·moments .. : 

into these last three results, followed by the simultaneous solution 

of the. resulting equations, will provide estimates of the parameters 

a, c, and p. 
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3 •. Some Spesific Distributiens 

Since the Weibull distribution, especially with positive shape 

parameter, is often used to describe the distdbution of failure-times, 

we list a few notable cases of bivariate density (7. 2) by providing 

Table II. The product of the entries of the first two .columns completely 

specify a warning-time/failure-time bivariate density which has• as 

its warning-times I marginal density, the corresponding eritry of the 

third colu.mn. Functions of the form h(y; r, s) are provided more . 

explicitly by equation .(6. 6); those denoted by h(u; r, s, t) are described 

by equation ( 1. 1); while g(u; r, s, t, v) is specified, in general, by 

equation ( 3. 1) though, more particularly, 

in equation (3. 16). 

1 
g(u;r,z, 2, v) is. presented 



TABLE II 

BETA/WEIBULL: BIVARIATE, DISTRIBUTIONS 

Marginal of Y 

Exponential 

h (y; a, 1) 

Exponential 

h (y; a, 1) · 

Ex:ponential 

h .(y; a, i) 

Rayleigh 

h (y; a~ .. 2) 

Rayleigh 

h (y; a, 2) 

Weibull 

h (y; a, c) 

· Conditional of XI Y 

·uniform 

l/y 

Beta (q =: l) 
p-1; p px y 

Beta {p +.q = 1) 

~P-\y-x)q-1;r (p)r (q) 

Uniform 

1/y 

Beta (q = l) 

p-1; p . 
P·X y 

Beta (q :::; 1) 

p-1; p 
,PX y 
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Mar gi:rial of · X 

Distended Gamma 

g(x;, a, o. 1, 1) 

Distended,Gam.~a 

. g(x; a, 1-p, ,1, p) 

Gamma 

h (x; a,. 'p,- 1) 

Error-function 

g(x; a, 1/2,. ·2, 1) 

Distended.·Ga.mrna · 

. g{x; a, 1-p/ Z, Z,. p) 

Distended Gamma 

. g(x; a, 1 ... p/ c, ~ •. p) 



CHAPTER VIII 

SUMMARY 

In this dissertation we have discussed a number of probability 

density functions and have indicated for each a number of their 

more importap.t properties. The families of univariate distributions 

discussed in Chapters I and II, as generalizations of the already 

important Gamma, Weibull, Chi, and double exponential families, 

will surely find direct application not only in reliability studies but 

also in other related schools of thought. The extensicm of the para­

meter space of the Weihull distribution, as introduced in Chapter VI 

and as. ~mployed in Chapter VII, will provide effectively a means of 

discussing the distribution of an "inverse·-Weibull" random variable. 

The distended Gamma distribution,,with its .four parameters, may 

prove too cumbersome for facile manipulation, too. general for immedi­

. ate application, too unplea·sant in form for the more artistic eye, to 

stand on its own merits as a useful tool for the reliability engineer. 

However, its generation as the marginal distribution of warning-times, 

as ind:i.cated in Chapters IV and V, should augment the opportunities 

for its applicability. 

This study has perhaps uncovered as many problems as it has 

managed to solve. Among the properties which serve to aid in char­

acterizing. the distributions we have discussed, we have generally 
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bypassed such char<il,cterizations as th~ir associated generating func­

tions. An intensive study, probably via the Mohte Carlo method, of the 

nature of the distributions of the many statistics arising in. connection 

with our diverse estimation techniques,· could prove valuable. In addi-

tim, an examination of the property of completeness for the distributions 

of any sufficient statistics could assist in one 1s selecting among unbias 7 

· ed estimators,. especially if minimu:m variance is desirable. 

It is. conceivable that the reliability engineer, utilizing the concept 

of employing warning-times to make inferences a.bout certain para;_ 

meters of life-time, might seek to make these inferences whenever 

he has accumulated information only.frpin some portion of his n sample· 

warning-times; viz., information.from r( ~ n) warning-times. acquired 

either as a set of order statistics or from a truncated life-test. In 

. either c~re, the information available might also .. include the failure-
·! I 

times of 's( < ~) components, .. so that statistics whic:P, are fundtions 
; 

both of the observed warning,.;ti:mes and ,of the obser,ved failurE(7times 

might be constructed. 

If one assumes each of a s'yst~m's. components :is. selected £rpm 

one of Stacy's distributions,: the'n he tnay seek to infer the .syste:tp 's 
. . . . 

life-parameters fro'm available infoi:mation concerning the. life"."para-

m~ters of the indivi4ual components{ Such a study. inevitably l~ads to 

an, eiamination of ~rder sta~istics; again, the value o~ ordered statistics, 

obtained from our distributions, is apparent. 
! . ' . 

The problem of point estimatipn has been rather extensively inves-

tigated in the present study. What, though, might be said 0f previding 

interval estimates? The area of hypothesis testin~, for conjectures 
' 



form,ulated about the parameters describing our many distributions, 

has been left virtually unexplored. 

Thus, though this study has resolved a riumber of interesting 

problems, it has produced as many unsolveq. ones. 
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