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PREFACE

Spatially varied flow, in which water enters a channel
all along its length, is the natural mode of flow for many
natural and constructed channels. Spatially varied flow is
quite unlike uniform or nonuniform flow. However, until
recent years, most channels conveying spatially varied flow
have been designed by uniform flow methods. This thesis
deals with spatially varied steady flow in a vegetated
channel. While it is only a small contribution in relation
to the amount of work that must be done to fully understand
spatially varied flow in open channels, perhaps some of the
findings can help determine where additional research is
needed and suggest possible avenues of approach to the
problem of spatially varied unsteady flow,

The experiments reported herein were conducted in a 410-
foot long bermudagrass-~lined test channel located at the
Stillwater Outdoor Hydraulic Laboratory.

An outdoor experiment of this type presents many
problems. The Oklahoma wind affected the inflow during
spatially varied flow experiments, so it was necessary to
conduct experiments immediately following the dawn or at
dusk, The necessity for extreme accuracy and precision

necessitated great care and unusual procedures in referencing



the data gathering equipment. However, the results obtained
were gratifying and more than justified the additional effort.

The author acknowledges with gratitude the suggestions
and assistance of his major adviser, Dr., James E., Garton,
in collecting and analyzing the data and his interest,
enthusiasm, and assistance throughout the preparation of
this manuscript.

This project would not have been possible without the
continuing support of W. O. Ree, The author expresses his
thanks for suggestions on setting up this project and
collecting and analyzing the data.

To the members of the advisory committee, Professors
E. W Schroeder;, F. R, Crow, Dr. G, L. Nelson, and Dr. R. B.
Deal, go the author’s thanks for their suggestions and
assistance as sought at various times during this study.

Two others who have assisted the author are W. R. Gwinn,
who assisted with the computer programming and collection
and analysis of data, and Albert L. Mink, who assisted with
setting up the complicated profile prediction programs. The
author expresses his thanks to them and to Charles E. Rice
and the other members of the Hydraulic Laboratory Staff for
their cooperation and assistance through many pre-dawn

arisings to conduct the spatially varied flow experiments.,
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CHAPTER I
INTRODUCTION
The Problem

Graded terraces and diversion channels are important
soil and water conservation measures., Graded terraces are
used principally to reduce erosion, retard runoff, and
increase intake. The main uses of diversion channels are
to protect bottom lands from runoff, divert excess water
from active gullies, and to prevent the concentration of
water on a long, gentle slope too flat for standard terracing.
Much time and money are spent annually on the construction
of terraces and diversion channels. From 1936 through 1961,
1,413,000 miles of graded terraces were constructed in the
United States (1, p. 558).

To obtain the maximum return for the time and money
invested in terracing systems, the most economical but
practical and adequate combinations of size, shape, and
grade should be used.

The method of design should be based upon the best
concepts of hydraulics in order to prevent unnecessafy and
costly overdesign. At present, most terraces and diversion

channels are designed using methods developed for uniform



flow and modified by field observation and experience.
Observation and experience play an overly important role,
for when time-variable flow enters a channel all along its
length as in a terrace or diversion channel, the use of
uniform flow equations is unrealistic. The added water
disturbs the energy or momentum content of the flow, and the
uniform flow methods do not account for the water stored in
the channel at the time of the peak inflow., At the time of
the peak inflow a graded terrace system might contain an
inch or more of runoff in storage.

The type of flow in which discharge enters the channel
all along its length is called spatially varied flow. A
theory has been developed to describe both the steady and
the unsteady state, and the steady-state phenomenon has been
investigated for the small, short channels used in water and
sewage treatment plants and for large lateral spillway
channels for dams. However, little work has been done toward
applying the theory to terraces and diversion channels where
the inflow per unit length is small and the energy loss
due to the impact of the entering flow is probably small.
Investigation of the spatially varied flow phenomenon in
vegetated channels is prerequisite to placing the design of
agricultural conservation channels on a sounder theoretical

basis.,



Objectives

1. To predict water surface profiles for spatially varied
steady flow with increasing discharge in a vegetated
channel using existing mathematical theories.

2 To determine experimentally the water surface profiles
for spatially varied steady flow with increasing
discharge in a vegetated channel for various inflow
values and roughness conditions.

3. To compare the results obtained from objectives one and
two.

4, To modify, if necessary, the existing equation to more

accurately predict the actual water surface profiles.

Scope of Investigation

The investigation was limited to spatially varied steady
flow with increasing discharge. Only one channel was avail-
able for testing. The range of discharge as well as the
initial channel cross section, length, and slope were
determined by available resources and facilities. During
the course of the testing the slope of the channel could
not be altered because of the time required to re-establish

vegetation.



Definition of Terms

The terms used in this paper correspond to those pre-
sented in "Nomenclature for Hydraulics," published by the
American Society of Civil Engineers (41, pp. 19-497)., Any
terms not appearing in "Nomenclature for Hydraulics" are

defined where they occur.
Definition of Symbols

Unless otherwise defined in the text, the following
symbols are used throughout this paper. Insofar as possible,
these symbols correspond to those presented in "Nomenclature
for Hydraulics" (41, pp. 12-18). The original workers'

definitions are followed in some cases.,

Symbol Quantity Dimensions
a acceleration ft,/sec.?
A area ft.2
bw width, water surface ft.
B coefficient nonhomogeneous
c speed of sound - ft./sec.
C coefficient, Chezy . ft,1/2/gec,
C coefficient, discharge ft.l/2/sec.
C coefficient, exponent nonhomogeneous '
D diameter ft.
£ force 1b.,
f resistance coefficient, dimensionless

Darcy - Weisbach



guantitz

total force on a body

force (basic quantity)

force, gravitational

force, pressure

force, shearing

gravitational acceleration
head

head, resistance

head, pressure or piezometric
head, velocity

head, total (Bernoulli)
roughness height

length (weir, pipe, stream tube)
mass (basic quantity)
coefficient in Bazin formula
coefficient in Manning formula
coefficient in Kutter formula
coefficient, exponent

Cauchy number

Froude number

Mach number

Reynolds number

Weber number

pressure

*See Chapter II, Review of Literature

Dimensions

1b,

1b,

1b,

1b.

1D
ft./sec.
ft.

£t

ft.

ft.

ft.

ft.

ft,

1b. sec.zlft.
nonhomogeneous
#*
nonhomogeneous
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless

lbo/ftoz



Szmbol

Quantity

perimeter

digcharge per foot of length
discharge

hydraulic radius (A/P)

distance along stream tube
slope (sine of inclination angle)
slope, bed

slope, shear

time |

time (basic quantity)

local velocity

mean velocity

arbitrary direction

coordinate in direction of flow

depth of flow

‘depth to centroid, critical depth

depth, mean

vertical distance from a datum
angle

Coriolis coefficient
Boussinesq coefficient

specific weight

inclination angle of channel bottom

viscosity, dynamic

viscosity, kinematic (u/p)

Dimensions

ft.

cfs./ft.

cfs.

ft.

ft.
dimensionless
dimensionless
dimensionless
sec,

sec.

ft./sec.
ft./sec.

ft.

ft.

ft.

ft.

ft.

ft.
dimensionless
dimensionless
dimensionless
1b,/ft.°
dimensionless
1b, sec,/ft.?2

f‘c.,z/sec°



Symbol Quantity Dimensions
) density 1b, sec.2/ft.u

o surface tension 1b./ft.



CHAPTER II
REVIEW OF LITERATURE
Introduction

This chapter, Review of Literature, contains not only
a review of previous thought and reéearch, but also a develop-
ment of some of the concepté presented. This development is
thought necessary because preceding researchers were not in
complete agréement on some of the'cdhcepts of fluid flow,
and any conclusions reachéd in this‘section on these subjects
must be supported by analysis or data,

The material in this chapter consists of a brief summary
of some of the.basic concepts of fluid mechanics necesééry'
for considerihg gradually varied flow énd spatially varied
steady flé@; a detailed review,Janaiyéis, and'discussion of
gradually varied flow, velocity diétribufion, and resiéfahce;
a review of spatially varied steady flow equations and methods
for their solutionj and a briefdreview‘of analysis and

research on rectangular weirs,



One~Dimensional Flow

According to Sears and Zemansky (53, p. 237), when
proper conditions are fulfilled the flow of a fluid is of a
relatively simple type called laminar or streamline, If the
flow is of a laminar or streamline type, every particle
passing a point follows éxactly the same path as the pre-
ceeding particles which passed the same point. These paths
are called lines of flow or streamlines. Flow will be of the
streamline type provided the velocity is not too great and
the obstructions, constrictions or bends in the conduit are
not such as to cause the lines of flow to change their
direction too abruptly., If these conditions are not fulfilled,
the flow is of a much more complicated type called turbulent.

Rouse (48, pp. 35=36) defined a streamline as

an imaginary curve connecting a series of particles

in a moving fluid in such a manner that at a given

instant the velocity vector of every particle on

that line is tangent to it,

He defined a stream filament as

a small filament or tube of fluid, bounded by

streamlines and yet of inappreciable cross-

sectional area. . » . This stream filament

might be considered, in either steady or

uniform flow, as the passage through space

of a fluid particle, and as such is the basis

of the one-dimensional treatment of certain

flow problems. Indeed, elementary hydraulics

is based largely upon this conception, a single

filament being assumed to have the ecross-
sectional area of the entire flow.
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Rouse (48, p. 37) stated that

in certain types of fluid motion the stream
filaments are arranged in a very orderly fashion,
and may be made visible experimentally by the
introduction of colored fluid at some point in
the flow, More generally, however, there occurs
a complex interlacing of the actual streamlines;
the various particles not only follow completely
different and intricate courses but suffer con-
tinuous distortion and subdivision, so that no
particle exists as an individual for more than a
short interval of time.” In such cases it is
often practicable to represent by streamlines

or filaments the temporal average of conditions
throughout the movement. Such representation
does not ignore the actual complexity of the
motion, but serves only as a convenient aid in
visualizing the underlying pattern of the

flow.

Bernoulli's Equation

Sears and Zemansky (53, p. 238) derived the Bernoulli
equation for an incompressible, nonviscous fluid flowing
with streamline flow. They considered a fluid-filled
portion of a pipe consisting of two lengths of different
diameters joined by a transition section., They then con-
sidered a cross section in each of the uniform diameter
lengths and displaced the fluid some small distance, The
net work done on the system was equated to the sum of the
increases in the kinetic energy and gravitational potential

energy of the system. The final equation is

2

\'

Yoo+ B2+ = C tant

5 * 2% y onsta (1

This is Bernoulli's equation applicable to streamline flow

without resistance.
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Rouse (48, pp. 42=-48) used a more sophisticated approach
in his derivation of Bernoulli's equation. Rouse's derivation
follows:

Consider a fluid with zero viscosity, surface
tension, and compressibility. Weight and pressure
will then be the only forces under consideration.,
Then the forces exerted in an axial direction upon
an elementary cylinder of fluid as shown in Figure
1 will be the pressure at either end and the com-
ponent of fluid weight acting parallel to the axis.,
The rate of pressure variation in any direction is
the pressure gradient. The difference in pressure
intensity on the two ends of the fluid cylinder is
given by the pressure gradient in the axial direction
times the distance between the two ends, The total
force acting upon the fluid volume will be

dF, = p dA - (p + %% dx) dA + ydx cos o dA

Introducing the rate of change of elevation, h, in the
x direction (cos o = - 3h/3x) this becomes

dF =z - 3P dxdA - v3h dxdA
X oxX oX ,

In words, the force per unit volume, f, acting in any
direction is equal to the rate of decrease of the sum
(p + vh) in that direction.

X = f :-_9_(+h)
dxdA X X P Y

This force per unit volume divided by the density
of the fluid will equal the force per unit mass,
or, in accordance with the Newtonian equation, the
rate of acceleration of the fluid in the given
direction

»
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dW =7 dxdA

X

Figure 1. Elementary Forces Due to Pressure Gradient
and Weight



(p + Yh)

[}
<
o]+

?
LE3

If any component of the substantial acceleration is
zero, there can be no variation in the sum (p + 7h)

in that direction., In other words, the distribution

of pressure intensity must be hydrostatic in any
direction in which no acceleration takes place,

For the acceleration component along a streamline

o = dvg . vy . ays Ei =_?Vé , v Vg
s Tat 3t as at ot s

. Vg o, a(v2/2)
a3t 9s

This equation may be combined with equation (2) to
give B '

r 2
Vg + alv/2y - o1 iL (p + vh)
ot as p as

This may be rewritten

avs 3 V2 :
L 1 - A AR

The three terms within the parentheses may be set
equal to the energy per unit volume, E,. Then for
steady flow along a streamline

[ dE. = oYl 4 p 4 h = f(t)
J. v - pT P ya = .
S .

This equation states that while the velocity must
not change with time the pressure intensity of the
flow may vary with time, and this vdriation will
exactly equal the change in E,, with time and will
extend uniformly over the entire length of the
streamline. It will have no-effect whatever upon
the velocity at any point. If E_ is not a function
of time, along any streamline

13

(2)
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v? C (3)
Ev z pff + p + yh = Constant
Each term of equation (3) has the dimension of
energy per unit volume, the equation embodying
a complete statement of the energy principle,
or the essential balance between kinetic energy
and potential energy over every part of a
streamline in steady flow. Equation (3) is
commonly known as the Bernoulli equation.
If each term in equation (3) is divided by the specific

weight of the fluid, the result wili be

2

=V .
By * 7z " g + h v | (4)

Each term has the dimension of energy per unit weight of
fluid. Since this is equivalent to length, the several terms
are characterized as heads, and are called, respectively? the
total head, the velocity head, the pressure head, and the
geodetic or elevation head. Since the pressure head and
elevation head represent potential“enérgy as distinguished
from the kinetic energy embodied in the velocity head, the
sum (p/y + h) is known as the,potenfial head. ’It follows
that the sﬁh.of velocity and poténtial heads will notrvary
with distance along any streamline in steady flow. Howe?ér,
no restriction is placed upon variation from one streamiine

to another,
Dimensionless Groupings

Dimensional analysis is a powerful analytical tool that

is very useful in model analysis and design. Through the
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years, some of the dimensionless groupings applicable to
fluid flow hgve been evaluated and tabuiated for a\great
number of experiments; Much can be learned about a parti-
cular flow condition by considering the numerical value of
these dimensionless groupings in the light of previously
recorded experiments, A short general discussion of the
factors influencing fluid flow is presented bbeurphy (38,
pPp. 164=170),

According to Murphy, a particular condition of flow
will be influenced by the dimensions of the system, the
properties of the fluid, and the applied forces aiding or

retarding the flow. These factors may be indicated as

o) pressure FL™2

\Y velocity Lot

L control distance L

A outline dimensions L

n ~ cross section dimensions L

0 density ML'3

n viscosify ML'lT'l
o surface tension FL-1

e bulk modulus FL™?

g acceleration of gravity LT?

According to the Buckingham Pi Theorem, seven dimension-
less terms are required to express a relationship among these

variables. The following combination is usually chosen:
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LP_=f (Ao n, poVL, Vz, ov2L, oVZ)
ov2 L T’ w gl o e

f (%’ %’ Nps Npy Ny, Np)

The first two terms pertain to geometrical characteristics;
the four following terms are the Reynolds number, the Froude
number, the Weber number, and the Cauchy number, respectively.

The Reynolds number expresses the ratio of the inertial
forces of an element of fluid to the viscous forces. It is
of great value in pipe flow problems., It is useful in all
flow problems in determining if a particular flow condition
is in the laminar or turbulent mode, For pipe flow the

Reynolds number is defined as

= VD
NR = =

It is usually defined for open channel flow as

Ng = YR
RV

However, the open channel Reynolds number and that for pipe
flow cannot be compared directly, because, for a pipe, D = UR,
For consistency the Reynolds number for pipe flow will be
used in this paper for both pipe and open channel flow,
Thus,

N_ = BVR

R v
The value of the critical Reynolds number when flow changes

from laminar to turbulent is approximately 2,000 by this

definition (49, p. 129),
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The Froude number is an expression of the ratio of the
inertial forces to the gravitational force developed on an
element of fluid. It is the most important criterion when
designing models of prototypes in which gravitational forces

cause fluid motion., The Froude number is usually defined as

V

" (gypt/?

The Weber number expresses the ratio of surface-tension
forces to inertial forces. It can be of major importance
in small models in which free-surface flow occurs. The Weber

number is usually defined as

Ny = s
W (o7pL)

The length term could be the depth of flow or the hydraulic
depth, or some other length.

The Cauchy number is dimensionally equivalent to the
ratio of the inertial force to the compressibility force.
It is the criterion used when describing the motion of objects
moving at a high speed in a fluid, The Cauchy number is

defined as

Another dimensionless group closely related to the Cauchy
number is the Mach number. The Mach number is defined as
the ratio of the velocity to the speed of sound.

= V
NM =<
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It can be shown that the Mach number is the square root of

the Cauchy number

Gradually Varied Flow Equations for Open Channels

Introduction

The flow of water in opeh channels is usually nonuniform
in both depth and velocity distribution. Equations derived
to describe gradually varied flow express a relationship
between the depth of water in a channel, the variation of
this depth with distance along the bed of the channel, the
mean velocity in a section, the variation of this velocity
with distance, the slope of the bed, a coefficient of resis-
tance, and a coefficient to account for the nonuniform velocity
distribution. Both the energy and momentum concepts have
been used to derive gradually varied flow equations., However;
there is controversy between hydraulicians concerning the use
of the momentum concept and the meaning of the resistance
involved. There is some controversy concerning the form of
the velocity distribution coefficient for use with the energy
concept, and also concerning the equations used to describe
the resistance in the two methods.

In classical mechanics, momentum is defined as the
product of the mass of a body and the magnitude of its

instantaneous velocity., Momentum is a vector quantity
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having both magnitude and direction. The principle of
momentum is applied by summing the external forces acting
upon a fluid body and equating them to the change of momentum
of the fluid body. In deriving varied flow equations, the
forces on a length of stream tube are frequently considered
first and then an integration is carried out over all of the
stream tubes between two cross sections. Some hydraulicians
use the momentum principle to derive an equation of the
Bernoulli form to describe gradually varied flow. Others
state that the momentum principle can be used to derive a
Bernoulli-type equation only for special conditions, if at
all. Hydraulicians have different concepts of the resistance
involved in the momentum approach. Some feel that it
describes only the boundary shear, others that it describes
all of the energy losses.

The energy approach is frequently applied by equating
the rate of change of energy to the rate at which work is
done upon an elementary free body of fluid in a stream tube
as it passes between two cross sections. The resulting
relationship is integrated along the étream tube and then
over all of the stream tubes between the two cross sections,
All of the equations derived by the energy principle are of
the Bernoulli form. However, some variation is found in the
velocity distribution coefficients used by different

investigators.
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The velocity distribution coefficients used in the
gradually varied flow equations are of either mean-square
or mean-cube form., The mean-square coefficient is defined

as

B = 2 J vZda (5)
AV A
The mean-cube coefficient is defined as

a = nim I V3dA (6)
A

AVS

Momentum Concept

Bahkmeteff (2, PP. 232-234) used the momentum concept
in deriving an equation to describe phenomena such as the
hydraulic jump where internal energy losses are quite high.
The equation relates the change in momentum content of the
entire fluid movement across two cross sections a short
distance apart, each in reaches of uniform flow in a hori-
zbntal channel, to the difference in pressure force on the
cross sections and the shearing force on the boundary of the
channel between the two cross sections. The equation is not
in Bernoulli form and no velocity distribution coefficient
is included.

Keulegan (28, pp. 97-111) used the momentum concept in
deriving a differential equation for gradually varied flow.

The equation contains the mean-square velocity distribution
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coefficient and a friction coefficient that he stated is
directly related to the wall friction.

Eisenlohr (15, pp. 633-644) derived a momentum equation
by considering a channel to be divided into stream tubes
and examining two cross sections in the channel a finite
distance apart to see what happens when the fluid is allowed
to displace and flow across these sections for unit time.
The stream tubes are assumed to remain of constant area over
the finite length. TForces are summed for a single stream
tube between the two sections and then over all the stream
tubes. The resulting equation has the form of a Bernoulli
equation with a term for shearing stress and with the mean-
square coefficient applied to the velocity=-head term.,

Eisenlohr was taken to task for his original paper by
several hydraulicians, Kalinske (26, pp. 645-646) pointed
out weaknesses in Eisenlohr's derivation. Kalinske thought
that Eisenlohr should not have considered a finite length
of stream tube, but should have integrated along the tube.
Also, Kalinske disagreed with Eisenlohr's assumption that
variation of the stream tube area was negligible, since he
did not at the same time assume variation in the stream tube
velocity to be negligible, Without this assumption con-
cerning stream tube area, Eisenlohr's equation will not
assume the form of a Bernoulli-type equation. Kalinske
stated that the momentum concept deals only with the

external forces on the fluid body.
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Taylor (55, pp. 646-648) pointed out some of the flaws:
in Eisenlohr's basic assumptions. He presented no alternative
derivation,

Van Driest (57, pp. 648-651) also touched upon errors
in Eisenlohr's basic assumptions. -He stated that Eisenlohr's
momentum equation would be approximately correct provided
that the difference between the mean-square coefficients
approached'zero faster than the difference in the mean
velocities in the two sections under consideration. He
also stated that the loss term for the momentum equation
would describe only the losses due to external forces, -

Rouse and McNown (50, pp. 651-657) stated that Ei§enlohr's

1

approach was oversimplified. They presented an alterngte

N Py
derivation that was more complete. Rouse and McNown derived

their momentum equation as follows:

Write the basic vector relationship between .-
force per unit volume and the rate of change of
momentum for an infinitesimal body of fluid and
integrate over the entire volume. The basic vector
relationship for an infinitesimal body of fluid is

- d(ev) _ _dv _
f-——=3-—=t Da—;E’-Da

If this equation is written for the components in
the three Cartesian coordinate directions, the
integral expression for any direction, x, will be

F, = LE) = of a, d(vol)

vol

The term on the left includes the x component of
all forces acting upon every: particle in the volume
at a given instant. However, since every force



upon a particle within the volume requires the
existence of an equal and opposite force upon
the neighboring particles, all such internal
forces will counterbalance each other so that
only the external forces need be considered.

The term on the right of the equation may be
made more explicit by considering the fluid volume

to be composed of a great number of fluid filaments

representing the temporal average of conditions
throughout the flow. The surface of this volume
will then consist of the walls of the outermost
filaments and the sum of all the cross-sectional
areas at either end of each one.

Consider the incremental volume of a stream
tube or filament as shown in Figure 2. The
external forces acting upon this elementary
free body are the attraction of the earth and
the pressure and shear exerted by the surround-
ing fluid, which may be resolved in any direction,
x, and equated to the product of the mass of the
element and the corresponding component of its
acceleration,

LGdF) = dm a,

The component of accelerétion; ay, of the incre-
mental volume may be expressed in terms of a
differential, ds

- dvx i avx gi =vavx
X dt as dt 3s

Furthermore, dm may be written as pds dA, so that

: av
L(dF), = pv —X ds dA

Equation (7) expresses the equality between the
impulse per unit time and the accompanying rate
at which the momentum of the fluid element is
changed,

Before 1t is possible to integrate over the
volume, which means a double integration along
the stream tube and then over the end areas, it
is necessary to express dA in terms of a variable
which is independent of s. This can be done by

23
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Figure 2,

(1)

Incremental Volume of Stream Tube
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using the relationship vdA = dQ, the rate of
flow through the stream tube, which is neces-
sarily the same at all cross sections. Thus,

dv
= X
) (dF)y, = p—gz ds dQ (8)

and for a finite length of stream tube, (s, - s;)

52
[ 7 iR = p(vx2 - v, ) dQ

Sl 1
This may then be integrated across the volume to
yield
f Y(dF)_ = [ plv, =v_ ) dQ = v, v, dA
vol X g % 0% A, X2 2
-f pv, v, dA (9)
Ay X1t

Internal shears and pressures cancel in the
process of summation. The left side represents
the x component of the resultant of all external
forces which can be evaluated only through measure-
ment or arbitrary assumption as to type of varia-
tion. The right side, which represents the
difference in flux of the x component of momentum
past the two end sections, requires equally
explicit knowledge as to the corresponding
velocity distribution, Only if the flow at

the two end sections is in essentially the

same direction can the equation readily be
applied to conditions in which the velocity
varies across the flow, under which conditions

it reduces to the alternative forms

JF, = 0Q (BpVp= BjVy)
or
F, = pB,V2A, - pB VA, (10)
x T PBVahy = PR VIAy

A nearly identical derivation was presented at an earlier

date by Rouse (48, pp. 52-54)., According to Rouse (48, p. 54),
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In the general case of curvilinear flow, in which
average values of neither velocity nor pressure
intensity may be used, equation (9) must be
followed strictly, actual curves of velocity

and pressure distribution forming the basis

for integration, and the actual volume of the
fluid being used to determine the component of
the fluid weight in the given direction. Yet
such methods will require experimental measure-
ment of velocity and pressure distribution at one
section or the other, for the general principles
of momentum, energy, and continuity have as yet
provided no means of determining these characteris-
tics: by rational analy51s.,_¢

In hls c1051ng discussion Elsenlohr (16, pp. 657-668)

altered or- clarlfled his orlglnal assumptlons and methods of

derlvatlon; 1He also stated that the momentum equation in the
- form of a Bernoulli-type equation was only an approximation,
due to the restriction of the use of the average area of the
stream tube in the derivation.

Daugherty -and Ingersoll (13, pp. 76=77) derived a
momentum equation by considering‘an infinitesimal length of
fluid in a horizontal pipe of uniform diameter and equating
the shear and pressure forces to the momentum change of the
free body.. According to Daugherty and Ingersoll, if the
fluid is incompressible, the resulting equation can be
written in Bernoulli form even if the pipe is not of uniform
diameter. The shearing force term seems to represent the
entire head loss of the body of fluid., In a later section
of their text (13, pp. 333-334), Daugherty and Ingersoll
applied a mean=square velocity distribution coefficient to

their original equation.
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Chow (9, pp., 49-52) derived a momentum equation for
gradually varied flow in open channels by considering two
cross sections a finite distance apart and equating the
external friction force, the resultant pressure force, and
the weight component in the direction of flow to the change
in momentum across the enclosed body of water per unit time.
The initial equation is not in the Bernoulli form and includes
the mean-square velocity distribution coefficient, a term
for the weight component, a term for the difference in
pressure on the two ends, and a term for external friction
and resistance. Chow then assumed a rectangular channel
and used the average depth in rearranging this equation
into a Bernoulli-type equation with mean-squaré velocity
distribution coefficients and a term for external losses
only. The equation is quite similar to Eisenlohr's original
momen tum equation that he later stated was really only an

approximation.,

Energy Concept

Keulegan (28, pp. 97-111) used the energy concept in
deriving a differential equation to describe gradually
varied flow., The equation contains the mean-cﬁbe velocity
distribution coefficient and a term for energy loss.

Eisenlohr (15, pp. 633-644) derived an energy equation
by considering a channel to be divided into stream tubes and

examining two cross sections in the channel a finite distance
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apart to sée what happens when the fluid is allowed to dis-
place and flow by these sections for unit time. The work

done on the fluid in each stream tube is then summed for

the finite length of tube and then over all the tubes. The
resulting equation has the form of a Bernoulli equation»with

a term for energy loss and with a mean=-cube velocity distribu-
tion coefficient.

Kalinske (26, pp., 645-646) made much the same comments
about Eisenlohr's energy equation as he did about the momentum
equation. Kalinske further stated that the energy principle
as used by Keulegan and Eisenlohr probably should be called
the power principle, since the terms calculated are really
the flow of energy per unit time and the work done per unit
time., Furthermore, Kalinske stated that the important thing
to recognize in the use of this principle is that all external
and internal energy losses and work done must be taken into
accounts; in using the momentum principlé, only external
forces need be considered,

Van Driest (57, pp. 648=651) stated that not only could
an energy equation containing mean-cube coefficients be
obtained, but that an energy equation containing mean=square
coefficients could also be obtained., According to Van Driest,
this equation containing mean-square coefficients is easily
obtained by considering the work done on an element of fluid
in a stream tube as it moves between two sections: The work

done is integrated across the cross sections. He stated
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that the work done and the energy changed is per pound of
fluid which traverses a distance such that each element of
it has a common displacement and occupies the cylindrical
region that one pound would occupy at any section of the
channel.,

Rouse and McNown (50, pp. 651-657) presented an alternate
to Eisenlohr's derivation. Their derivation of the energy
equation follows: .

Equate the rate of change of energy to the
rate at which work is done upon an elementary free
body such as is shown in Figure 2 by the external
forces of pressure, shear, and fluid weight. The
component of these forces must be written in the
direction of displacement, s. The energy of a
particle will change as the result of both accelera-
tion and dissipation. A term for energy change due
to acceleration may be written in terms of an in-
crease in kinetic energy, but a term for energy
change due to dissipation can be written only in
terms of the decrease in the total head of the
element. Thus,

Rearranging the terms on the right side,

2
a(v/2) d

s 9H ds
s 3F ~ Y B IE

1ap v pds dA

5= ds dQ - y==— ds dQ

- P 285

Since dQ, unlike dA, is a constant along the stream
tube, this equation may be integrated at once with
respect to s:
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52 2 2
fs J(dF) v = % [(vp)® = (v)71 dQ - v(H, - Hy) dQ
l . :

This equation may be integrated over all of the stream
tubes

Pl P2
]A (4= + 2zq) vy dA -fA (17'+ z,) v, dA
1 2
2 B v, 2
V2 l
fA [(75) - H2] v, dA - IA [(75) Hl] v, dA
2 1

The foregoing general energy equation may be
applied to a given state of flow only if the
distribution of velocity and pressure is known
at both end sections. Unlike the momentum
equation; this energy equation involves only
the magnitudes of the velocities. However,
the velocity distribution here affects both
sides of the equation, with the result that
the energy principle may usually be applied
only if both sections under consideration are
located in essentially uniform zones. Then
the pressure distribution is hydrostatic and
the general energy equation reduces to the
form of the Bernoulli equation

y ‘ Py Yy i Py, .
oy (?E) + = tz) = a2 (7E)+ - z, hL (11D

in which

Eisenlohr (16, pp. 657-668) also attempted to derive
an energy equation containing a mean-squarevcoefficient. He
considered two cross sections a finite distance apart and

let the fluid in a stream tube displace a small distance.
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He wrote an expression for the energy change of the fluid in
the stream tube between the two cross sections and integrated
along the tube. He then considered the fluid in every stream
tube to have moved the same distance and integrated over all
of the stream tubes. The resulting equation is of Bernoulli
form with mean-square coefficients.,

Eisenlohr then proceeded to develop a power equation
which contains the mean-cube coefficient for velocity distri-
bution. He did this by considering two cross sections a
finite distance apart and letting the fluid in a stream tube
flow by these sections for unit time. He wrote an equation
for the power change between the end sections. The resulting
equation was then integrated over all the stream tubes and
divided by the weight of water flowing per unit time. The
resﬁlting equation of Bernoulli form contains the mean~-cube
coefficients and has the units of foot-pound per second per
pound per second., The term for loss in a reach represents
the average energy lost per second by each pound of water
passing through the reach per second.

The energy concept was also discussed by Bakhmeteff
(2, pp. 26~31), Rouse (48, pp. 47-52), Rouse (47, pp. 57=59),
Rouse and Howe (49, pp. 69-72), Daugherty and Ingersoll

(13, pp. 68-73, pp. 252-254), and Chow (9, pp. 39-40),
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Discussion

There seems to be little agreement on the application
of the momentum concept to gradually varied flow. Bakhmeteff
(2, pp. 232-234), Rouse (48, pp. 52-54), Rouse and McNown
(50, pp. 651-657), Rouse (47, pp. 55-57), and Ippen (47,

PP. 506-507) did not derive the Bernoulli-type momentum
equation, Eisenlohr (16, pp. 657-658) and Van Driest (57,
ppo 648-~651) wrote it with reservations., Keulegan (28,

Pp. 97-111), Daugherty-and Ingersoll (13, pp. 76-77), and
Chow (9, pp. 49-52) wrote the momentum equation in Bernoulli
form although Chow's equation was derived for a rectangular
channélo

A Bernoulli-type momentum equation may be obtained from
equation (10) if appropriate assumptions are made. Consider
equation (10) as applied to a finite length of the fluid in
the condition of gradually varied flow in an open channel as

shown in Figure 3.
yFP_ = pB-VzA - pB VIA (10)
X 2 1 :
This can be written as

zFx = 0Q (B,V, = 8,V))

The term on the left of the above equation can be considered
as the sum of all of the external forces of pressure, gravita-
tional acceleration, and bed shear acting in the x direction

upon the body of water between sections (1) and (2).
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Figure 3. Gradually Varied Flow Diagram
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If hydrostatic pressure distribution can be assumed, then
from Stoker (54, pp. 454-~455), the resultant pressure force

on the body can be written as

F = YA Ax
Py avg

2le

The force caused by gravitational acceleration can be written

as

F A Ax tan ©
g, Y ave x ta

For small inclination angles, tan © = sin © =¢2l - zz)/Ax

F = YA (z, - z,.)
gy avg 1 2

If it is assumed that the variation from section (1) to
section (2) is approximately linear in depth, area, and

velocity, then

pr ] YAavg (y.l - yz)

v v
1+ "2 -
PA ) (82V2 B,V.)

) Fx avg (-‘7“‘- 11

pA-.av ( V2 V2 + .

If it is assumed that the difference between the velocity
heads at sections (1) and (2) is proportionately larger than
the difference between momentum coefficients at sections (1)

and (2), (the assumption of Van Driest (57, p. 649)), then
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PA 2 2
JF = —2Y8 (g V. - B.V])
X 2 22

Then by grouping all terms,

- + - - T
YAavg (yl y2) YAavg (zl zz) s,
PA 2 2
= . avg B - B
2 3 2V2 lvl)

Rearranging and simplifying, the following Bernoulli-type

momentum equation can be obtained:

vi vg st
+ + = = + + +
Brogt V1 T3 TRy TV T YA v (12)

The conditions assumed in the derivation should be kept
in mind when using equation (12). As has been stated pre-
viously, there is not complete agreement concerning the
validity of this equation.

Most of the hydrauliciané cited agreed that the resistance
in the momentum equation 1is only that of the boundary layer,
However, Daugherty and Ingersoll (13, p. 77) implied that
the loss terms in the momentum and energy equaéions could
be interchanged.

There was general agreement on the form of velbcityv
distribution coefficient to use with momentum equations.'

In all of the derivations in which a nonuniform velocity
disfribution was considered, the mean-square velocity

distribution coefficient was used,
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There seems to be more general agreement on the form
and meaning of the energy equation than on the momentum
equation. In all of the derivations cited, the final equa-
tion was developed into the form of the Bernoulli equation,
or a derivative of this equation. The resistance term
always represents all the losses in the channel,

Most of the investigators developed energy equations
containing mean-cube velocity distribution coefficients. At
least two of those cited, Van Driest (57, pp. 6u48-651) and
Eisenlohr (16, pp. 657-668), developed energy equations
containing mean-square velocity distribution coefficients,
Each considered an element of a stream tube and wrote an
equation for the work done on this element of stream tube as
it moved between two sections, Then each considered the fluid
in every stream tube -to have moved the same distance and
integrated across the entiré cross section, The result is
an energy equation with mean-square velocity distribution
coefficients, However, because of the nonuniform velocity
distribution, the fluid in some tubes is moving faster than
in others, making it erroneous to obtain an average energy
per pound of fluid in this manner. Therefore, the énergy
equations containing mean-square coefficients are invalid.

It is more proper to consider the enérgy change of the
quantity of fluid flowing across a section per unit time.

This method leads to the equations with mean-cube coefficients,
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It seems that these Bernoulli-type energy equations containing
the mean-cube velocity coefficients should really be called
power equations because in reality the dimensions are enérgy
per unit time per unit weight across a section per unit time,
rather than energy per unit weight. This idea was mentioned
by Kalinske (26, p. 645), Eisenlohr (16, pp. 664~668), and
Ippen (47, p. 507),

The means for evaluating boundary shear and energy loss
are also a matter of controversy. Keulegan (28, p. 110)
stated that the Manning equation describes the magnitude of
frictional force in channels, and hence Manning's n'éhould
be computed using a momentum equation. Eisenlohr (15, p, 6u40)
stated that both the Chez9 and Manning equations were momentum
equations, and hence should be used only in evaluating boundary
shear. He further stated that these equations would not:
yield practical results when used to evaluate energy loss
except for uniform velocity distribution., He offered no equa-
tion to evaluate the energy loss under conditions of nonuniform
velocity distribution.-

According to Rouse and McNown (50, pp. 656-657),
however, the Chezy and Manning equations were derived solely
for the case of uniform flow, under whiéh coﬁditions boundary
shear.and energy loss are directlyvproportional. The customary
’loss coefficieﬁts of nonuniform flow, on the other hand, are

0 !
simply means of evaluating the head loss in terms of boundary
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geometry and have no source in the momentum principle,
Apparently Chow (9, p. 332) was of the same opinion
concerning the loss coefficients,

According to Rouse and McNown (50, p. 6561},

The common failure to distinguish between the
evaluation of boundary shear and energy dis-
sipation in gradually varied flow is actually
tantamount to assuming that a« = 8 = 1, for
under such conditions (but only then) the
energy and momentum equations become
identical,

Conclusions

Considering the present appafent lack of understanding
of the méﬁénéﬁm concept as applieé éeléradually varied flow,
it would seem best to use the energy or power concept for
this type of flow and reserve the momentum concept for such
phenomena as the hydraulic jump-where there occur ver& high
internal energy losses unpredictable by the energy equation.
However, when considering spatially varied flow where‘
turbulence caused by the entering fluid is quite high and
energy losses are unpredictable, it may be necessary to use
the momentum approach. Then the appropriate shearing loss-
term would probably ‘have to be obtained from uniform or
gradually varied flow-by the use of equation (12),

The mean-square velocity distribution coefficient should
be used with the momentum equations and the mean-cube
coefficients with the energy or power equation of Bernoulli

form,
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Conclusions concerning resistance equations to use with
the momentum and power equations will be given at the end

of the section on resistance.
Velocity Distribution

Most ordinary calculations involving the total momentum
content at a channel croés section or the total power crossing
the section are based on the assumption of a uniform velocity
distribution. The mean-square and mean-cube cocefficients are
assumed to be nearly one or of only theoretical interest.
However, the velocity in a condﬁit is never uniform. Even
away from the boundary layer the velocity is not uniformly
distributed. This is particularly true of natural channels
where there are irregularities in cross section and where
there may be large or small obstructions to flow.,

According to Chow (9, p. 27), Coriolis (12) was the first
to propose the mean-cube coefficient to apply to the velocity
head as computed from the mean velocity. The Coriolis, mean=-
cube, or velocity-head coefficient, a, is defined as

ez 2 [ v oaa (6)
. AV A ‘
Boussinesq (7) proposed the mean-squaré coefficient as

defined by equation (5)

3:..,}_2.,3[v2dA (5)
AV A
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to be applied to the computation of the momentum content at
a channel cross section.

Examination of equations (6) and (5) shows that the
momentum coefficient will be less than the velocity head
coefficient, since the local velocities are cubed in equation
(6) and only squared in equation (5).

O0'Brien and Johnson (42, p. 215) presented a graphical
method for obtaining energy and momentum coefficients from
velocity measurements in a conduit. The velocity data are
plotted on a cross section of the channel., Lines of equal
velocity are drawn and the areas between the lines are
Obtéined with a planimeter. Values of velocity, velocity
squared, and velocity cubed are plotted versus mass area.
The areas 5etween the latter two curves and the axis and
bounding lines are then the integrals of equations (5) and
(6); respectively. These areas may be found by the use of a
planimeter. The total discharge may be found by the mass
plotting of vélocity versus area. With the total cross=-
sectional area known, the momentum and velocity-head
coefficients are easily obtained. |

Chow (9, p, 29) presented the following approximate
formulas for velocity-head and momentum coefficients where it
is possible to assume a logarithmic velocity distribution:

a =1 + 3 52 - 2 83

= M) - s .
(e = - ) where v, * maximum velocity



L1

According to Chow, Rehbock (45) assumed a linear
variation of velocity with depth in obtaining the following

equations:

o = 1 + 82
2
B =1 + E

3
For a logarithmic velocity distribution in a pipe Streeter

(47, p. 401) arrived at the following equations for velocity-

head and momentum coefficients:

2
l + 2493f" l.55f3/

a

B 1 + 0,98f

O'Brien and Johnson analyzed data from several previous
investigations and obtained the values for o and B presented
in Tablé:f (42, p. 215), They pointed out that the highest
value of o they had obtained was that for the Rhine River
(Item 7 iﬁ‘fable I), which yielded an o of 1.35. The
corresponding value of B was 1.121., The highest value of o
they obtained was 2.08 (Item 18 in Table I), obtained upstream
from a weir, |

Kingv‘(3l, p. 7.11), in discﬁssing the data in Table I,
stated thatuinmfaifl§tétraight uniform channels o appears
to vary from about 1.04 to 1,10, . Upstream from weirs or in
the vicinity.of obstructions or pronounced irregularities in

alignment, « .may have any value from 1,10 to 2.0 or even

more,
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VALUES OF VELOCITY-HEAD AND MOMENTUM COEFFICIENTS
FROM O'BRIEN AND JOHNSON (42, p. 215)

Maximum Hydraulic Critical Mean Coefficient Coefficient
Item Width Depth Radius Area Depth Velocity a B8 Source Remarks

1 1.97 2.83 .73 5.59 0.65 1.05 1.20 1.07 34 ) Rectangular channel 3 ft. above
2 3.28 2.88 1.07 9.64 0.71 1.18 1.22 1.08 34 ) weir with obstructions upstream
3 3.28 2.87 1.07 9.62 0,72 1.20 l.41 1.12 34 )

4 3.3 1.41 .76 4.65 1.63 8.41 1.07 1.03 34 Simplon Tunnel, center of

. : straight reach 164 feet long
5 34,6 - 10.6 6.11 250.5 4,67 3.32 1.10 1.05 34 Trapezoidal channel
6 6.52 4.92 2.07 31.2 2.52 4,88 1.07 1,03 34 Horseshoe conduit, straight
: ' reach
7 523. 12,51 8.0 4365, .27 - 3,36 1.35 1.121 34 Rhine River, 1,200 feet below
) bridge, long curve

8 8.5 4,54 2,28 36.92 2,25 2,91 1.06 1.01 19 )

9 8.75 4.01 2,13 32.4 2.16 2.87 1.04 1.014 19 )
10 9. 3.0 1.8 23.59 1.97 2.60 1.04 1.014 13 )} Sudbury Aqueduct, bottom slope
11 8.9 2,03 1.35 15.24 1.74 2.16 1l.04 1.01 19 ) = 0,000189
12 8.75 1,51 21,07 10,92 l.64 1.87 1.04 1.012 19 )
13 0.87 .58 1.17 7.59 1.16 5 Bazin weir experiments
14 0.8 .40 0.47 0.68 1.14 4o Nikuradse experiments
15 4,22 2.5 1,07 36,52 )
16 4,22 5,0 1.08 36,52 ) Computations by Lindquist of
17 4,22 5.0 ' 1.6 36,52 ) Schoder and Turner weir
18 4,22 5.0 2.08 36,52 ) experiments.
19 4,22 10.1 1.8 : 36,52 )
20 4,22 9.0 2.0 36,52 )

¢h
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According to Chow, in channels of complex cross section,
the coefficients for velocity head and momentum can easily
be as great as 1.6 and 1.2 respectively. He stated that the
coefficients are usually higher in steep channels than in
flat channels. Table II from Kolupaila (33, pp. 12-18) was
presented as containing possible values for design (9, p. 28).

In a grass-lined V-shaped channel with 1 on 10 side
slopes and a flow depth of less than 0.8 foot, Ree (43,
p. 187) found velocity-head and momentum coefficients of
3.48 and 1.70,respectively.

Rouse (47, p. 59) quoted values of velocity-head and
momentum coefficients as being as high as 2.0 and 1.33
respectively for parabolic velocity distributions in

circular pipes.,
Resistance

Introduction

The flow of liquid in a conduit or channel can follow
one or another of three distinct modes of behavior: laminar
flow, turbulent flow past a smooth surface, turbulent flow
past a rough surface (3, p. 34)., The three modes are
revealed successively when the flow through a moderately
rough pipe is changed from zero to some high velocity
(20, p. 556).

Roughness does not appreciably affect the resistance in

laminar flow because the velocity distribution is parabolic



TABLE II

DESIGN VALUES FOR VELOCITY-HEAD AND MOMENTUM
COEFFICIENTS FROM KOLUPAILA
(33, pp. 12-18)

Channels
Regular channels, flumes, spillways
Natural streams and torrents.
Rivers under ice cover

River valleys, overflooded

Value of o Value of B8
Min. Avg, Max. Min. Avg. Max.
1.0 1,15 1.20 1,03 1,05 1,07
1,15 1.30 1.50 1.05 1.10 1.17
1.20 1.50 2,00 1.07 1,17 1.33
1,50 1.75 2,00 1.17 1.33

hh
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and there is no velocity at the surface of contact. The resis-
tance is dependent upon the viscosity of the fluid. An
increase in velocity will eventually lead to turbulent flow
past a smooth boundary or turbulent flow with a laminar
boundary layer. The boundary roughness does not materially
affect the resistance in this partially turbulent flow,
because the roughness elements are shielded by the boundary
layer. As the velocity is increased a point will eventually
be reached where the laminar boundary layer is thinned
sufficiently that the boundary roughness becomes exposed to
the direct action of the moving fluid, and the flow goes into
the fully turbulent mode. In this mode the resistance will
depend upon the roughness of the boundary, and will be

independent of the viscosity.

Pipe Flow Formulas

King and Brater (32, p. 66) presented a short discussion
of the origin of pipe flow formulas. According to King, many
empirical formulas have been developed from test data. One
of the earliest was developed by Chezy in 1775, Most of the
formulas were based on the assumption that the energy loss
depends only on the velocity, the dimensions of the conduit,
and the wall roughness. The work of Hagen, Poiseuille, and
Reynolds showed that the density and viscosity of the fluid
also affected the energy loss. Finally, principally as a

result of the work of Nikuradse, it became generally recognized
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that the effect of roughness does not depend on the actual
magnitude of the roughness, but on the ratio of the roughness
size to the diameter of the pipe.

According to King and Brater (32, p. 6.16) of all the
formulas that have been used to determine energy losses in
pipes, only the Daréy-Weisbach formula permits the proper
evaluation of all the factors that affect the loss

2
h. = £ LV
L 5 78 (13)

It is dimensionally correct and can be used for any liquid.
The Darcy-Weisbach equation can be derived analytically
for the laminar flow of liquid in a pipe form the equation

of Poiseuille (32, p. 6.8).

32uVL

h, = 14

The equation (14) can be derived by considering a cylinder
of fluid moving under conditions of laminar flow in a pipe
of uniform diameter. If the Reynolds number is factored
from equation (14) it can be seen that

h -

L v
L D 7g

zﬁ?

from which, for laminar flow:

64
-
Nz

However, for turbulent flow past a rough surface the

resistance coefficient remains essentially constant over



7

a wide range of velocities. This is known as the quadratic
resistance law. For turbulent flow past smooth surfaces
the resistance is proportional to the velocity raised to
the 1.75 power.

According to Bakhmeteff (3, pp. 26-27) these equations
for pipe resistance may all be derived from a general equation

obtained by dimensional analysis

n 2-n
- %& _ B%:H o(%)
The exponent, n, does not remain constant but changes with
the Reynolds number., The exponential formulas with constant
coefficients are thus useful and applicable only within given
limited ranges. The usual procedure is to use the Darcy-Weisbach
equation and to place in the resistance coefficient all the

error caused by the constant exponent.

Open Channel Formulas

For laminar flow in a wide, open channel an equation

similar to the equation of Poiseuille (1l4) can be written

w
1]
—:I w
=
<

(15)

\<

Laminar flow is of only passing interest in this paper.
Therefore, no further discussion will be presented.

Many empirical equations have been developed for
computing the resistance of turbulent, uniform flow in open

channels, In 1918 Houk (24, pp. 226-261) made a very
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comprehensive review of the existing open channel formulas.
He divided the various formulas into four classes as follows:
(1) German formulas developed on the assumption that a
roughness factor is unnecessary, (2) Formulas of the exponen-
tial type in which roughness conditions are accounted for by
a coefficient, (3) miscellaneous formulas, and (4) the
formula.of Bazin and that of Kutter.

The German formulas that did not include a roughness
factor would have to be used with the assumption that the
flow is of the laminar or partially turbulent modes. Among
the authors of this type of formula, Houk included Siedek,
GrSger, Hessle, Christen, Hagen and Gaukler, Hermanek,
Matakiewicz, Lindboe, Teubert, and Harder.

The exponential formulas are those having the general

form

V.= 0 pegy
in which x and y are constants determined from experimental
data and C” is a coefficient. In some formulas the values
of x and y are assumed to be the same for all classes of
wetted perimeters and the coefficient C” is to be varied
according to the roughness, size, slope, and shape of the
channel, and according to any other conditions that may
affect the velocity. In others, the value of x and y are
varied for the different classes of roughness, and the
variation in the coefficient C” is not supposed to be as

great as it is in the former.



49

The most prominent of the equations with constant

exponents is that of Chezy:

V.2 C¢ RS (16)

The Chezy equation has been criticized by some investi-
gators who state that C increases with S. Equations of the
constant-exponent type were also proposed by Williams, and
Williams and Hagen. Ellis and Barnes each proposed an
equation with variable exponents x and y.

Among the authors of miscellaneous formulas Houk cited
Manning, Biel, Schmeer, and Elliott. Houk presented the

Manning formula in its abbreviated form as

vV = h:.t_g R0.5730.50 (17)

A formula presented by Biel was distinct in that it contained
a temperature correction., Houk dismissed the Schmeer and
Elliott formulas without discussion.

Houk considered the Bazin and Kutter formulas to be the
most valuable open channel formulas. Both of the formulas
express a relationship for the Chezy coefficient in terms
of other coefficients and parameters. The only essential
difference between the two formulas is that the Kutter
formula includes a slope correction.

The Bazin formula in English units is

87

(@]
"

0.552

=1E



The Kutter formula is

L1 | gy 504

0,00281
Q= S

0.00281y n
/R

1+ (41.6 ¢+

The m and n are variable coefficients.

As the result of applying the various formulas to a

range of channels Houk reached the following conclusions:

1.

7.

Of the German formulas which have been developed

on the assumption that a roughness coefficient
is not necessary, not one possesses sufficient
merit to warrant its adoption as a general
formula.

It is not possible to develop a satisfactory
formula for velocities in open channels with-
out introducing therein a variable term to
allow for changes in roughness.

No exponential formula so far advanced could
be recommended for general use.,

The effect of temperature should not be intro-
duced into a formula for the flow of water in
open channels unless its magnitude is greater
than that assumed by Biel.

Manning's formula in its original form is
practically as good as Kutter's for channels
of small or ordinary dimensions, but is in-
ferior to Kutter's for large rivers.

Although its algebraic form is somewhat more
simple than Kutter's equation, it does not
seem advisable to adopt it for use even in
ordinary instances, since the latter equation
is now in general use and, moreover, is
applicable to extreme cases.

No definite effect of the slope on the Chezy
coefficient is shown by the experimental data
for small open channels.

Data available at present show a decrease in C
with an increase in S in large rivers with flat
slopes,

50
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8. The Bazin formula is inferior to Kutter's for
all types of open channels. The constancy of
the factor m is less than that of the factor
n in all instances.
9. Although the Kutter formula is not ideal, it
is the best equation available at the present
time.
Since the time of Houk's work no new resistance formulas
for open channels have attained any degree of acceptance.

The Manning formula in the form in English units of

v = 1.486 g2/3 gl/2 (18)
n

has come into wider acceptance because of its simplicity.

The Kutter formula is less widely used, partly because of

its more complex form and partly because the gagings of

the Mississippi River by Humphreys and Abbot, on which the
slope corrections were based, are known to be quite inaccurate
(9, pp. 94-95). Brater deleted the Kutter formula when

preparing the fifth edition of Handbook of Hydraulics

(32, pp. 7.1-7.80),

According to Rouse (47, pp. 11l4-115), the Manning,
Kutter, and Bazin formulas are applicable only when flow
is in the fully turbulent mode, since the roughness para-
meters n and m of these formulas are directly comparable to
the roughness parameter k and hence cannot logically be
applied to conditions in which viscous action is appreciable,

This same thought was expressed by Keulegan (29, pp. 707=741),
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He found that the Manning formula described quite well the
flow in rough channels when the relative roughness is large.
There has been much discussion concerning the dimensions

of the Manning n. Directly from the Manning formula, the

dimensions of n are seen to be T/Llfa. The following

discussion was presented by Chow (9, pp. 98-99):

+-2 .Since it is unreasonable to suppose that the
roughness coefficient would contain the dimension
T, some authors assume that the numerator contains
gi 2, thus yielding the dimensions of L1/ for n.
Also, for phy81c?l reasons, it will be seen that

[¢ (R/k)] k1/6 where. . . ¢(R/k) is a function
of R/k. If ¢ (R/k) is considered dlmen51onles§6
n will have the same dimensions as those of kl
that is, L1/6

On the other hand, it is equally possible to
assume that the numerator of 1.486/n can absorb
the dimensions of L1/3/T, or that ¢ (R/k) involves
a dimensional factor, thus leaving no dimensions
for n. Some authors, therefore, preferring the
simpler choice, consider n to be a dimensionless
coefficient,

It is interesting to note that the conversion
of the units of the Manning formula is independent
of the dimensions of n, as long as the same value
of n is used in both systems of units. If n is
assumed dimensionless, then the formula in English
units gives the numerical constant 3.28081/3 = 1,486
since 1 meter = 3,2808 feet1 Now, if n is assumed
to have the dimensions of L1/ s its numerical value
in English units must be different from its value in
metric units, unless a numerical correction factor
is introduced for compensation. Let n be the value
in metric units and n” the value in English units,
Then n” = (3.28081/6) n = 1,2190n. When the formula
is converted from metric to English units, the
resulting form takes the numerical constant
3.2808(1/3 + 1/6) = 3,28081/2 = 1,811, since n
has the .dimensions of L1/6, Thus, the resu}glng
equation should be written V = 1,811 R2/3
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Since the same value of n is used in both systems,
the practical form of the formula in the English
system is

v = 1.811 R2/351/2,1,2190n = 1.486 R2/3s1/2/q

which is identical with the formula derived on
the assumption that n has no dimensions.

In a search of early literature on hydraulics,
the author has failed to find any significant dis=-
cussion regarding the dimensions of n., It seems
likely that this was not a problem of concern to
the forefathers of hydraulics. It is most likely,
however, that n was unconsciously taken as dimen=-
sionless in the conversion of the Manning formula,
because such a conversion, as shown above, is more
direct and simpler....

In computing resistance coefficients by the various
formulas for data obtained under natural channel conditions,
the loss has usually been computed by an equation of the

form

2 2
Vi Py s Ko

— - + + h (19)
fg + g +ozq 75 z

e L

This equation is the same as the power equation (11l) or
the momentum equation (12) if the velocity is assumed to be
uniformly distributed across the channel. However, in
developing the empirical resistance formulas used in open
channel work, equation (19) has been applied to natural channels
with neither uniform flow nor uniform velocity distribution.
The error from these assumptions has been left in the
resistance coefficients.

Because the loss term in equation (19) describes neither

shear loss nor power loss for nonuniform flow with nonuniform
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velocity distribution, and because the resistance equations
developed therefrom to compute and systematize loss coefficients
under these conditions are strictly empirical, it seems
illogical to insist that these resistance equations are
momentum equations rather than power equations, even though

the shearing stress on the walls of a conduit or channel is
sometimes used in demonstrating a derivation of these equa-
tions. Rather, it seems that these resistancé equations

could be used to systematize either shearing losses or power

losses.,

Resistance in Veggtated Channels

Probably the most extensive and complete information on
resistance in small vegetation-lined channels available at
present was presented by Ree and Palmer in 1949 (44). The
work was conducted at the outdoor hydraulic laboratory'of
the Soil Conservation Service located at Spartanburg, South

Carolina. Eleven different plant species adapted to the °°

e’

southeastern and south central parts of the United States
were tested under various conditions of season, growth, and
maintenance., The channel bed slopes ranged from 1 to 24
per cent, with most slopes between 3 and 6 per cent. Two
general types of channel, trapezoidal and rectangular, were
tested. The dimensions and vegetal conditions are presented
in Table III.

Test data were analyzed using the Chezy, Manning, and

Kutter resistance formulas. The slopes involved were large



TABIE IIT

DIMENSIONS AND VEGETAL~LINING CONDITIONS OF EXPERIMENTAL
CHANNEIS AT OUTDOOR HYDRAULIC IABORATORY AT
SPARTANBURG, S.C. TABIE" PHOTOGRAPHED
FROM REE AND PALMER (44, p. 6)

Nominal channel

Vegetation and ] dimensions E;gixg Condition of
channel No. Bed Bottom Side number vegetation
slope width slope
Percent Feet
Bermuda grass: .
B1-1 ....... 28.7 1.5 ] 1:1 ... { 1 | Green, long.
2 | Dormant, long.
B1-2 ....... 20.0 1.5 | 1Bzl .. { 1 i Green, long.
2 | Dormant, long.
B1-6 ....... 20.0 1.5 | 4:1 ... } (éreen, slhort.l
- s reen, long.
B1-3 ....... 10.0 1.5 | 1.5:1 ... 2 | Dormant, long.
Bl-5 ....... 10.0 1.5 | 4:1 ... 1 | Green, long.
2 | Green, short.2
1 | Green, long.
B2-7 ...... . 3.0 4.0 | 1.B:1 ... 2 | Dormant, long.
38 | Dormant.: Long in test 1,
short in tests 2 to 10.
B2-8 ....... 3.0 1.5 | 1.5:1 ... 1 | Green, long.
{ 2 | Green. Long in test 1, short
in tests 2 to 10.
B2-18 ..... . 3.0 1.5 | 4:1 . 1 | Green, short.l
1.0 Veréclcal 1 | Dormant, short.2
_ 2.0 |....do. 1 Do.
B2-19 ...... 3.0 35 ... do. 1 Do.
6.0 ...do. 1 Do.
B2-17 ...... 1.0 1.5 | 4:1 .. 1 | Partially dormant, short.2
Supply canal 2 4.0 | 1.5:1 4 | Green, short.?
Centipede grass:
Bl-4 ....... 10.0 15 | LB:1 ... { 1| Green, long.
2 | Dormant, long.

Dallis grass and
crabgrass:

B2-6 ....... 6.0 2.0 | 3:1 1 | Green, long.
3.0 4.0 | 1.5:1 1 | Green, long, first season.
............................. 2 | Green, long, second season.
Kudzu: B2—9 .. {d--veeemee] onvmmeandiinion, 8 | Dormant, mulch of vines and
leaves,
............................. 4 | Green, cut.l
......... (3) (3) 5 | Dead vines (test a).
Green (tests b, ¢, and d).
Lespedeza:
B2-2 ....... 6 21 3:1 1 | Dead, uncut.
B2-5 .. 6 21 8:1 .... 1 | Green, uncut.
B2-11B, 3 2 | Vertical 1 Do.
B2-15C 3 2{....do.... 1 | Dead, uncut.
B2-16B ..... 3 2|....do.... 1 | Green, uncut.
B2-15A 3 2....do.... 1 | Green, short.l
Sericea lespedeza:
B2-1 B 6 21 3:1 1 | Dormant, long.
6 21 38:1 .... 1 | Green, medium long, woody.4
3 2 | Vertical 1 | Dormant, short.5
3 2]....do.... 1 | Green, long, not yet woody.
3 2 |....do.... 1 | Dormant, long.
3 2 |....do.... 1 | Green, long.
3 2|....do.... 1 | Green, short.1
6 24 3:1 1 | Dead, long.
3 21 Vertical 1 | Green and dormant, short.
3 21....do.... 1 | Green and dormant, long.
3 2 f....do. .. 1 | Green and dormant, short.
3 2 |....do... 1| Green, long.
3 2 {....do... 1 | Greed and dormant, short.
6 21 38:1 ... 1
3 2 | Vertical 1
3 21l ...do.... 1

1 Cut shortly before test.

2 Kept cut.

3 Changed by plowing.

4 Cut to 6-inch height 2 months before test.
5 Cut previous fall,

55
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enough that the slope term in the Kutter formula was of
such small magnitude that it was ignored. Where the flow
was nonuniform, losses were computed using equation (19),

The usual procedure used in testing was to run a series
of tests at different discharge values in each channel,
usually beginning with a low discharge value and increasing
the discharge for each succeeding test., Different types of
vegetation reacted in different manners; the reaction being
a function of the season and maintenance as well as of the
type of vegetation.

Water flowing at slight depths through vegetation
encounters resistance from stalks, stems, and foliage. A
large proportion of the channel cross-sectional area may be
blocked out by vegetation, and the resistance to flow will
be high, As the discharge and hence the depth of flow is
increased, the force exerted by the flowing water causes
the vegetation to bend. The vegetation is bent over when
the bending moment exceeds the resisting moment. The bending
moment is a function of the depth and velocity of flow, the
resisting moment a function of the length and type of
vegetation. When sufficient bending moment is exerted to
flatten vegetation to the channel bed and free a portion of
the cross section of the channel, the resistance decreases
sharply. If tests were ruﬁ starting at high discharge values
and going to low discharge values, the sequence of events

probably would not be reversed, since the vegetation would
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not recover fmom the flattening produced by the high flows.

Test results for bermudagrass showed that while the. |
discharge was low and flow was entirely within the area
occupied by the grass, the Manning coefficient was practically
constant. As the discharge was increased a point was reached
where the flowing water exerted sufficient bending moment
to start to bend and submerge the vegetation, and the
resiséance coefficient decreased.rapidly with increased
discharge. When the grass was completely submerged and
lying flat the registance reached a constant low value.
Furthe? charniges in resistance were caused by roughening of
".the channel bed by erosion,

Sericea lespedeza in the tall green condition exhibited
somewhat different resistance characteristics from highly
flexible bermudagrass. The resistance increased slightly
from an initial low=discharge value, reached a peak value,
and then started to decline as discharge and depth.increased.
The physical explanation is as follows: The initial value
of resistance coefficient was obtained with low discharge
and the cross-=sectional area of flow including only the
lower part of the stalks below the first leaves., As the
discharge was increased the water rose to include some of
the lower leaves in the cross=sectional area of flow. Thus
the resistance coefficient increased. The resistance
coefficient increased until the fairly stiff plants started

to bend and submerge and a portion of the flow area was
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cleared, Even after the plants bent, they did not lie flat
as did the bermudagrass, but continued to offer considerable
obstruction to the flow,

The product of mean velocity and hydraulic radius, VR,
was used as a criterion for systematizing the resistance
coefficients, The resistance of vegetation to flow was
thought to be a function of the degree of flattening of the
vegetation, which is influenced by the velocity and depth
of flow. Results of a large number of tests with bermudagrass-
lined channels of a range of shapes and slopés showed that
the VR product could be used with a greét deal of confidence.
Log=-log plottings of Manning's n versus the VR product yielded
a straight-line relation with a negative slope from a VR value
of 0,2 foot squareaper second to a VR value of 3 to 3.5 feet
squared per second,; the latter value depending upon the grass
length, Then resistance ceased to be a function of VR. Tests
with other vegetation yielded consistent relations, although
few were of straight-line form over as large a portion of

the range of data.

Spatially Varied Steady Flow with Increasing Discharge

Spatially varied flow is defined as flow having a non-
uniform discharge resulting from the addition or diminution
of fluid along the course of flow., Several hydraulicians

have attempted to solve the problem of spatially varied

steady flow with increasing discharge. The principle of the
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conservation of linear momentum has been used by nearly all
of the investigators mentioned in this dissertation. However,
these. investigators have made various assumptions as to the
effect,of the entering water upon the main flow, and as to

the amount and evaluation of the energy loss in the flow.

Some have assumed that all of the momentum of the entering
water will be lost; others have assumed that thé component

of the momentum of the entering“water in the direction of flow
will add to the momentum of thé main flow. Some have assumed
that the momentum losses will balance the shearing losses;
others have assumed negligible shearing losses; and still
others have assumed that a uniform flow resistance equation
may be used to determine shearing losses,

According to Chow (9, p. 327), Hinds (22, pp. 881-827)
was probably the first to develop a substantially correct
theopetical analysis of spatially varied steady flow. Hinds
assumed that: (1) all of the energy of impact of the entering
fluid is lost, (2) the entering fluid has no component of
momentum in the direction of the main flow. As Hinds stated,
the first assumption is tantamount to assuming the collisions
between water molecules to be completely inelastic and that
the particles of fluid flow away together with approximately
egual individual velocities. Hence; the velocity in the
channel is uniform over the cross section. Because it was
assumed that all energy of impact is lost, and that the

average and individual velocities are equal, only the law
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of conservation of linear momentum is necessary in the
- treatment of the problem.,

On the basis of the conservation of linear momentum,
Hinds developed an equation for the case of uniform inflow
by considering an incremental length of the channel, equating
the momentum change across the length to the external forces
acting on the length, and letting the length become infinitesi-
mally small. The resulting equation can be integrated directly
~if an exponential veloecity law is assumed. However, for
‘more general conditions including nonuniform inflow it can
‘be solved only by approximate methods. No term for shearing
loss was included in the equation, although Hinds showed how
‘to include a correction at the time of computing a water
surface profile. Tor channels in which the control point
‘is not located at the downstream end, Hinds developed a method
.-for locating the control: The:computations then proceed
‘upstream and downstream from the control section.

The theory was verified by both model and prototype tests,
The model spillway tested was 16 feet long and was of
“trapezoidal section with 1C-inch bottom and 2 on 1 side
slopes., Fifteen tests were run in the model; the maximum
discharge was 31.1 cubic feet per second. The prototype
testing consisted of measurements taken on the Arrowrock
Reservoir spillway in the spring of 1923, The spillway

‘consisted of six 62=-foot sections separated by piers. The
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maximum discharge measured:was approximately 10,000 cubic
-feet per second,

Camp (8, pp. 606=617) developed a theoretical analysis
~of spatially varied steady flow quite similar to that of Hinds.
Camp assumed uniform inflow and a negligible momentum com-
ponent of the inflow in the direction of the main flow. His
“derivation was based on the concept of the conservation of
linear momentum. The only difference between the Hinds and
Camp equations is that the latter contains a term for shearing
loss.

Camp developed an analytical solution for rectangular
channels. The resulting function was implicit in depth. The
© function was written in dimensionlesé form and a graphical
solution was developed. ‘He also developed a method to apply
-the solution to flow in channels with parallel sides
extending below the water surface but with other bottom
shapes,

The theory was applied to the channels used in water
~and sewage plants.. Free outfall was assumed at the outlet
end, and the control section was estimated to occur at a
distance upstream from the end equal to three to four times
‘the critical depth,

Tests were conducted on several small lateral spillway
channels., Total discharge ranged from 1.237 to 73.6 cubic
feet per second; total length of channel ranged from 20.0 feet

to 49,0 feet,
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Thomas (56, pp, 627-633) stated that the hydraulic
theory underlying Camp’s analysis does not apply to sharply
curving streamlines and therefore fails in the vicinity of
the outfall, Thomas wrote of experimental evidence that
indicated a wider variation in the position of the effective
control than suggested by Camp. According to Thomas, the
uncertainty of the location of the control section frequently
obscures the refinement of introducing the shearing loss term
into the formulas. Consequently, the inclusion of the shearing
loss term is often superfluous.

Thomas proposed an alternate method whereby a parabolic
shape was used to approximate the water surface, The shear=-
ing loss was ignored, Tests were conducted in a small lateral
spillway channel., The channel was 4 inches wide and 5 feet
11 inches long, with level top edges and adjustable bottom
slope, The bottom slope was varied from 0 to 3.1 per cent,
Calculated profiles were compared with experimental profiles
and percentage errors were givéna It was noted that with
increased slope the velocity became larger and the percentage
error increased. |

Beij (6, pp, 193=213) conducted a study of spatially
varied steady flow in roof gutters. He first approached
the problem by using dimensional analysis, conducting tests,
and obtaining empirical equations., However, he was able to
analyze only level channels in this manner due to the

complexities involved in analyzing sloping channels and so
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turned to a theoretical approach using the conservation of
momentum., As a basis for his theoretical analysis he assumed
uniform inflow and no momentum component in the direction of
flow, Fof,the general case he neglected the effects of sur-
face tension and viscosity but included a shearing loss term
and a slope term. A theoretical equation was derived by
considering a short increment of channel and equating the
momentum change across the free body to the external forces
acting upon the body., The length of increment was then
allowed to become infinitesimally small., The resulting
differential equation could not be integrated in its general
form,

Beij assumed negligible shearing loss and applied the
differential equation to level channels., Under these condit-
ions his equation can be integrated directly for a particular
channel shape. He assumed critical depth at the outfall and
developed particular solutions for the depth at the upstream
end and for the capacity of rectangular, triangular, trapéQ
zoidal, and semicircular gutters., He then compared theoretical
results for depth at the upstream end with experimental dafae

Favre (37, pp. 520=522) developed a more complete equation
that includes a shearing loss term and a component of inflow
velocity in the direction of the axis of the channel. The
Favre equation was used to predict water surface profiles in
a model of the Boulder Dam that was tested at the Swiss Federal

Hydraulic Research Laboratory at Zurich, Switzerland,
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Jaeger (25, p, 181) cited De Marchi (1%), who developed
a graphical method of predicting water surface profiles for
spatially varied flow based on the assumption that thel
momentum of the entering fluid has no component in the
direction of flow, and that the component of the weight
parallel to the sloping bed is balanced by the wall shear,

Li (35, pp. 255-274) also used the principle of the
conservation of linear momentum in his analysis of spatially
varied flow. He did not neglect the momentum component of
the added fluid in the direction of flow as did Hinds and
Camp, However, he did not deal with it directly. For
conditions for which the shearing loss is of secondary
importance, Li assumed that the momentum component of the
entering fluid would balance the shearing force at the
channel walls. A differential equation was derived. A
closed form solution could not be obtained for the general
case, but he developed rather &ngenious methods of solution
for channels of level or constant bottom slope with either
parallel or sloping side walls. Various outlet conditions
were treated.

Li assumed that the shearing loss would be important
only for channels with level or gradual slope. For these
conditions he treéted only channels with level bottom, thereby
removing tﬁe momentum component in the direction of flow. A

differential equation was derived and solutions were developed
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for the percentage increase in the depth at the upper end of
level channels with either parallel or sloping side walls,

Tests were conducted in both lgveltand sloping channels,
The test channel with level bottom‘was of rectangular cross
section with 9-inch bottom and variable length of from 4,38
to 7.50 feet. Water was added to the channel over the level
tops of both side walls, Total discharge ranged from 0.88
cubic foot per second to 3,06 cubic feet per second., The
outlet end of the channel was continued 6 feet beyond the
end of fluid introduction. The flow at the outlet of the
test channel was subcritical. The test channel with sloping
bottom was of rectangular cross segtion with 3-inch bottom,
length of 4 feet 6 inches, and slope of 13 per cent., Water
- was added uniformly over a weir on oné“side and free
discharge was.allowed at the outlet,

’Iéhow (9, pp. 329-332) used the momentum concept in
defi§ing an equation for spatiéli& varied flow., He assumed
that the inflow occurs uniformly along the channel and that
it possesses no momentum component in the direction of flow,
\A;term for shearing losses is included, For nonuniform
distribution of velocity the Coriolis coefficient rather than
the Boussinesq coefficient is used because, according to
Chow, the friction slope is evaluated by a formula for
energy loss, such as the Manning formula. He then derived
the same equation by an energy appfoach (9, pp. 332-333),

However, this derivation seems to contalin a fallacy in the

Se
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term for the kinetic energy needed to speed up the added
fluid, The Chow equation with Coriolis coefficient is as

follows:

(20)

A finite difference method was devised whereby the
equation can be used to predict the water surface profile
in any channel provided a control point is known (9, pp. 34l=-
3486),

Woo and Brater (58, pp., 31=56) derived an equation
nearly identical to the Chow momentum equation, No velocity
distribution coefficients were included. The Darcy-Weisbach
resistance equation was used to evaluate boundary resistance,
A finite difference method quite similar to the Chow method
was presented.

The Woo and Brater equation was tested by conducting
experiments in which simulated rainfall fell on an impervious
surface, The test flume was 29 feet 7 inches long and 6 1/4
inches wide, The bed slope was varied from 0 to 6 per cent,
Rainfall intensities of 1.65, 2,95, and 5,04 inches per hour

were simulated.
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Numerical Integration of Initial Value Problems

The calculation of water surface profiles for either
gradually varied flow or spatially varied flow involves a
situation in which the water surface elevation is known only
at some control point and the derivative of the depth with
respect to the distance down the channel is a function of
the depth and the distance. Mathematically this can be
called an initial value problems The calculation of the
water surface elevation all along the channel must start
from the known point and be projected to all points of the
channel by use of the expression for the derivative.

Several methods have been developed to solve initial
value problems, Open=type formulas express a relation for
the ordinate at some value of the independent variable in
terms of only previously calculated ordinates and slopes.,
Closed~-type formulas involve previously calculated ordinates
and slopes as well as the unknown slope at the projected
point., Closed-type formulas usually must be solved by
iteration,; because they involve.the value of the ordinate
at the unknown point in both sides of the equation (21, p, 192),

A Taylor series expansion is sometimes used to obtain
initial points from which to start either open-type or
closed-type formulas that require more thah one known value
of the ordinate and slope (21, pp, 192=133). The Taylor

series expansion has the disadvantage that it involves higher
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order derivativés of the ordinate. These may not be easily
obtained for complicated equations.

The simplest method for solving initial value problems
is that of Euler (39, pp, 224-227), Euler's method consists
of projecting from a point where the ordinate is known to a
point where the ordinate is unknown by simply evaluating the
derivative at the known point, multiplying by the interval
between values of the independent Qariable and adding this
product to the value of the ordinate at the known point.

The predicted ordinate is then taken as a known point and
prediction is made to another unknown point. - The solution
is continued in this manner. Euler's method should be used
with caution since it can be very inaccurate.,

Euler's method can be modified to improve the accuracy
by altering it to make it a closed-type formula (51, p. 119),
In this modified Euler method the ordinate at the unknown
point is calculated using the derivative at the point where
the ordinate is known. Then the derivatives at the predicted
point and the known point are averaged and a new prediction
is made using this averaged slope., This modified Euler
method can be iterated until the prediction does not change
within some small 1limit. This method is well suited to the

digital computer,
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The Milne method is somewhat more complicated than the
Euler method and requires knowledge of the ordinate and the
derivative at four pivotal points to start the solution
(51, p. 120), It is a closed-type formula involving both
a predictor and a corrector,

The Adams method is an open-typé formula developed from
the Newton backward-difference formula (21, pp. 198-199),

It can involve any number of pivotal points., If no differences
were retained in the Newton backward-difference formula, the
Adams method would be identical-té the Euler method.

A closed-type formula developed from the Adams method
is called the modified Adams method or Moulton's method
(21, pp. 200-201),

The Runge-Kutta method is an open-type averaging method
involving only one known point (39, pp. 232-236). It is
self-starting and has no check on the computation. It has
the advantage that the interval length can be changed readily
in the middle of computing a series bf points.,

Frequently the solufion of 'an initial value problem is
started with one of the self=starting methods such as the
Taylor series expansion, the Euler or modified Euler method, -
or the Runge-Kutta method. Then the solution is continued

with a more sophisticated method such as that of Milne,
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Rectangular Weirs

For many years ekperimenters worked to obtain an exact
and general formula to describe the flow over weirs. Finally
it became apparent that the number of variables involved is
so great as to defy an exact analytical approach, The usual
approach to the problem is to assume that gravitational forces
are predominant and ignore the effects of viscosity, surface
tension, weir height, shape and condition of crest, condition
of approach channely, and the approach velocity in deriving an
approximate equation., The resulting equations do not describe
the flow over weirs with a great deal of accuracy, and
corrections must be applied to account for the secondary
effects.

The approximate equation for flow over weirs is derived
from the theorem of Torricelli which states that

the velocity of a fluid passing through an orifice

in  the side of a reservoir is the same as that

which would be acquired by a heavy body falling

freely through the vertical height measured from

the surface of the fluid in the reservoir to the

center of the orifice. (23, pp. 10-11)

Horton (23, pp., 10-13) presented a mathematical development
of the general formula for weirs and orifices. The following
development 1is patterned after that in Horton's paper.

Consider a rectangular opening in the side of a
retaining vessel as shown in Figure 4, From Torricelli's

theorem the velocity of flow through an elementary layer

whose area is L dy will be



Figure 4, Rectangular Orifice
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The discharge through the entire opening will be, per unit
of time, neglecting contractions,

h %
2
[ % g 2L oay
h1
This equation can be considered a general approximate

O
]

equation for the flow through any weir or orifice, if L is
considered to be a variable. For a rectangular opening, L
is a constant and the equation can be integrated into the

following form:

2

Q=31 ap?? @if? . i

(h2 - h1

) (21)
For a weir or notch, the upper edge will be at the surface,

h1 = 0, and if h2 is replaced with h, then equation (21)

can be written

X2 3
g+ %L t2g) Y 2n¥? (22)

According to Horton (23, p. 130), practical weir
formulas differ from equation (22) in that the velocity of
approach must be cgnsidered and the discharge must be
corrected by a contraction coefficient to allow for the
diminished section of the nappe as it passes over the crest.

lip. Equation (22) is frequently written as

Q=CLhHh32 (23)
This is the general equation for flow over horizontal-crested

weirs,
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The vértical contraction expresses the relation of the
thickness of nappe in the plane of the weir crest to the
depth on the crest. It comprises two factors, the surface
curve or depression of the surface of the nappe, and the
crest contraction or contraction of the under surface of
the nappe at the crest edge. The latter factor varies with
the form of the weir cross section. In general, variation
of the vertical contractioﬁ is the principal source of
variation in the discharge coefficients for various forms
of weirs, according to Horton (23, pp. 13-14),

If the sides of the notch have sharp upstream edges so
that the nappe 1is contractéd in width, the weir is said to
have end contractions, If the crest length is the same as
the width of channel, the sides of the channel above the
crest thus becoming the sides of the notch, the notch suffers
no contraction in width, and the weir is said to have end
contractions suppressed, The-end contractions tend to
reduce the effective length of a weir.

Weirs that operate with a negative pressure beneath the
nappe do not have the same discharge characteristics as
weirs that are fully aerated. The effect of these negative
pressures is to increase the effective head operating on the
weir and hence increase the discharge for a given measured
head. Even with well-aerated nappes there is a tendency
for the nappe to adhere at low heads. Little information is

available on this condition. It is avoided if at all possibleo
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Corrections have been proposed for the velocity of
approach, because the velocity head should be added to the
potential head when computing the effective head on a weir,

Many experimenters have attempted to determine formulas
to correct the approximate equation for the rectangular sharp-
crested welr, Most of the experiments prior to 1907 were
described by Horton (23), King (31, pp. 4.5-4,7) summarized
the Horton information. Horton reported on early experiments
in France that involved relatively small quantities of water
and the results from which are of only limited use.

Francis (17) performed experiments at Lowell,
Massachusettsy, in 1852, The lengths of weirs were 8 and 10
feet; the weir heights were 2-and 5 feet; the range of heads
was from 0.6 to 1.6 feetj; the velocities of approach ranged
from 0.2 to 1.0 foot per seconds

Fteley and Stearns (19, pp. 1-118), in 1877 and 1879,
experimented with two sharp-crested suppressed weirs; respec-
tively 5 and 19 feet long, 3.17 and 6.55 feet high, and with
maximum heads of 0.8 foot and 1.6 feet. Experiments were

also conducted on a weir with end contractions.

Bazin (4) conducted 381 experiments on suppressed weirs
in France in 1886, ‘Heads varied from 0,3 foot to 1,7 feet,
heights of weir ranged from 0.79 foot to 3.72 feet, and
lengths of weir were 1.64, 3.28, and 6,56 feet.

The Frese (18) experiments were performed at Hanover,

Germany, prior to 1890. Comparatively large volumes of
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water were used in testing weirs under a wide range of
conditions.,

The Rehbock (46, pp, 11l43-1162) experiments were conducted
at the Karls?uhe Hydraulic Laboratory in Germany. The
quantities df water used were not large, but conditions were
favorable for unusual accuracy and for conducting experiments
ﬁnder a wide range of conditions. Rehbock also presented
the results of extensive experiments by the Swiss Society
of Engineers and Architects.,

The experimenfs of Schoder and Turner (52, pp., 999-1110)
were performed at Cornell University between 1904 and 1920,
With the published results of these experiments were in-
cluded 1,162 experiments by others. In all, 2,438 separate
volumetric measurements for 152 different heads were made.
Heights of weir ranged form 0,5 to 7.5 feet, heads from 0,012
foot to 2,75 feet, and lengths of weir from 0.9 foot to 4,2
feet,

All of the preceding experimenters considered the
velocity of approach when correcting equation (23), Francis
developed an equation‘to determine the effective length of
a weir when end contractions were not suppressed.

Cone (11) conducted weir experiments at the Fort Collins
Hydraulic Laboratory. His testing program included 226 tests
on rectangular notches of crest lengths 0.5, 1.0, 1.5, 2.0,
3,0, and 4,0 feet. End contractions were not suppressed.

Cone presented a general equation similar to equation (23)



76

in which the exponent on the head term was a linear function
of the crest length, rather than the constant value of 3/2,

Cline (10, pp, 396=-413) reanalyzed the data presented by
Schoder and Turner and presented an empirical equation which
considered the exponent on the head term in equation (23) a
variable related to the head, rather than a constant.
According to Cline it was possible to obtain good correlation
between measured and computed discharge, even at low heads.
He also stated that correction for velocity of approach
depends entirely upon the physical dimensions of the weir,
and can be applied directly.- -

Kandaswamy and Rouse (27, pp. 1-13) reported on various
experiments conducted at the Massachusetts Institute of
Technology and at the Iowa Institute of Hydraulic Research
that showed the effect of the height of the weir,

Kindsvater and Carter (30, pp. 1-36) conducted tests
on weirs with end contractions suppressed, The weir lengths
ranged from 0.10 to 2.68 feet, heights from 0.30 to 1,44 feet,
and heads from 0,10 to 0.72 foot. They chose equation (23)
as thelr basic equation, but corrected the length and head
terms to effective values. The discharge coefficient was
considered a function of various dimensionless ratios,

Brater (32, pp, 5.,11-5.12)-plotted the discharge
coefficient versus the head-over-height ratio for several
of the previously mentioned experiments. His conclusions

are as follows:
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In general, it must be concluded that even among

tests for which conditions appear to be quite

similar, there are rather great differences in

discharges for the same head, and that although

the weir is a very useful measuring device, its

limitations should be recognized and understood.,

Two of the factors that seem to be of great importance
in the flow over weirs are the crest condition and the
condition of the upstream face of the weir (31, pp. 4.11-
4,12), However, these conditions are difficult to evaluate
quantitatively, and for a given weir the conditions will
change with age, and a rating that is accurate when a weir
is new may be completely inaccurate when the weir is older
and perhaps slightly rounded or perhaps encrusted,

Head measurements on weirs should be made far enough
upstream to be unaffected by the surface curve, However, the
head should not be measured so far upstream as to be affected
by head losses due to resistance. Cone (11, p. 1111) stated
that head measurements should be made at least 4 h upstrean,
or sidewise from the end of the crest in the plane of the
welr a distance of at least 2 hs, King (31, p. 4.12) stated
that head should be measured at least 2,5 h upstream from

the weir. Brater (32, p; 5.30) changed this recommendation

to 4 h for the horizontal-crested weir.



CHAPTER III
THEORETICAL ANALYSIS
Introduction

Much of the material which might otherwise appear in
this chapter is presented in Chaptér 1T, Réview of Literature,
Therefore, only two subjects, the derivation of an equation
for spatially varied steady fiow with increasing discharge,

and the method of solution of this equatioh, are presented,
Spatially Varied Steady Flow With Increasing Discharge

Spatially varied steady fléW.With increasing discharge
can be analyzed by the principle of the conservation of‘
momentum. The change in momentum along an incremental length
of channel can be equated to the sum of the forces écting on
the body. If it is assumed that the inflow enters thé |
channel with no velocity or momentum compénent in the
direction of the main flow, and if the original concept of -
streamline flow 1s stretched somewhat further, then equation

(10) is directly applicable to the problem.

- 2 1 2
2 Fx z 082V2A2 pBlVlAl : (10)
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The term on the left of equation (10) can be considered as
the sum of all of the external forces of pressure, gravita—
tional acceleration, and bed shear acting in the x direction
upon the body of water between sections (1) and (2) of

Figure 5.

If hydrostatic pressure distribution can be assumed, then
from Stoker (54, pp, U54=455), the resultant pressure

force on the body can be written as

F

d
A A
D, Rayg °¥ 3%

The force caused by gravitational acceleration can be written
as

F = YA Ax tan o
Ex avg

For small inclination angles, tan 6 =sin @ = So

F

#
-
>
|2
b
9]

s av s
X Ve

If it can be assumed that the variation from section (1)

to section (2) is approximately linear in depth, then



(1) (2)

WATER
SURFACE

A4 —

L GHANNEL

BED L\M —L__\%
HORIZONTAL — T |
)

Figure 5., Spatially Varied Flow Diagram
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Grouping all the terms,

2 2 -
082V2A2 - pBlVlAl = YAan Ay + YAayg AX So

- yA Ax S
avg s

Rearranging and dividing by YAa s

vg
85V2A, _ B1V2A,
Ay = - 2272 = "1l 4 (s - s)) Ax
g Aavg o s
If A can be written as
avg
a2 2+
.ave T,
Then
by = = & (2 V2) (8. v2A - 8 vPA) + (S - S) ax
y g Ql + 52 2°2°2 111 o s X
But since
ViAy = Q
Vohg = Qp = Qp + 4Q
Then
) V2A 8 V2A = g ( + AQ) V 8 v
2272 17181 7 8 ' Q Vv, = 8,0,V
By Vs
= Q) (B,V, = B,V + 5 AQ)

1

The expression for Ay can be written
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Q (Vy 4 V) ByVsy
= - - Sz A
Ay SR CRER Y (8,V, - B,V + o Q)

+ (S = S ) Ax ‘ (24)
o 5]

This equation for spatially varied steady flow is nearly
identical to an equation presented by Chow (9, p. 341)
and King and Brater (32, p. 11.5). The only difference is
in the inclusion of a variabiéhmomentum coefficient,
The following assumptions were made in deriving equation
(24) 3
1, The flow is such that it can be represented by
at least temporal streamlines,
2, The flow at the two ends of a reach is in essentially
the same direction.
3, The pressure in the flow is approximately hydro-
statically distributed.
4, The angle of inclination of the channel bottom is
relatively small,
5, The variation in depth aﬁd area between the two
ends of a reach is approximately linear.
These assumptions are approximately the same as those used
in deriving equation (12) for gradually varied flow, with the
excéption of the restrictive assumption concerning the
variation in momentum coefficient in gradually varied flow.
-Equation (24) in its present form can be solved by

numerical integration. If a constant Boussinesgqg coefficient
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*

is assumed, a somewhat simpler differential equation can be
obtained, While this differential equation is no more
amenable to solution than equation (24), it can be classified
and examined for possible discontinuities,

Consider equation (24) and assume

Bl=82=8

and
Vit Vo  za+ % AA
T ave
1 2

Let
= = +
0, = Q Q, = Q * 4Q
V. =V V. = V + AV
1 2

Then equation (24) can be written as

(V + AV = v + L0 * V) aQ)
Ay:-.B_gQ. Q

A+ AA

N

+ (S « S ) Ax
o s

Simplifying and ignoring the product of the increments,

v
- BQ AV + 0§ AQ
Ay = = BX , g - A
y g(m)*'(so SS) X
= - 89 (QILV V2O, (s, - 5_) bx

g ‘Q(EFTIIN
)
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But since

or

The preceding equation can be written as

X2 vy 4 v oaQ
8 QATTIR _
by = - g XTI/ IR ) + (5] - 8 bx

This equation can be simplified to the following:

z - 2Q AQ - QV_AA + V AQ AA
o g ¢ (A" 172 REY(A + BRA) ) + (S, - 8) 8x

If the products of the increments and the product of the
area and the increment of area can be assumed to be relatively

small, then the preceding equation can be written as

by = - £ (2220 - QV shy (S, - Sg) Ax
g S
A%
Divide by 4x
-A-X---’p-sn ZI:QA-Q- Q—AA -
Ax ~ g (AZ Ax A3 ) ¥ S Ss

Assume the necessary conditions to form the derivative and

let x become infinitesimally small. Then

But
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b
1 dA _ 1 dA QX . w dy _ 1 QX
Adx " Edy dx ~ & 3% - v, ax
And
dQ .
Tx q
Thus

2

dy - . 28Qq , _BQ gz,+ S -5

dx gA gA2 X o s
m

This equation can be rearranged into the following form:

dy _ S0 - Ss - ZBQq/gA2
dx -~ -

2 2
1 BQ“/gA ym

(25)

Equation (25) is identical to the Chow equation (20) except
for the presence of the Coriolis coefficient in equation (20)
and the Boussinesq coefficient in equation (25)., |

The resistance losses due to bed shear in spatially
varied flow can be estimated by any empirical resistance
formula., The Manhing formula (18) can be rearranged into the

following form:
2

. Bl (26)
2 R2/3

avg avg

2,21 A

The Manning coefficient to use in equation (26) should be
- obtained under uniform flow conditions, or if it is obtained
under nonuniform flow conditions where velocity distribution
is not uniform, equations (10) or (12) should be used in

calculating bed shear losses.,
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Solution of Spatially Varied Steady Flow Equation

The differential equation (25) describing spatially varied
steady flow is a first order, first degfee, ndnlinear ordinary
differential equation. It can be solved analytically only
for the simplest cases in which the shearing resistance can
be assumed to be negligible., Furthermore, the denominator
in equation (25) corresponds to (1 - B8 N;)° At the critical

depth the Froude number, N_., will be one, and if the Boussinesq

F
coefficient, B8, should be approximately one, then the
denominator will be zero and fhe derivative undefined. For
a channel in which the only point of known water surface
elevation is near a free outfall where the depth is near
critical, the denominator can be of such small magnitude as
to adversely affect the accuracy of the computation. This
influence might extend for some distance upstream from the
control point,

This same effect should be kept in mind when working
with equation (24), However, equation (24) shows no possi-
bility of having a zero denominator, and the only possible
difficulty would be with the relative magnitudes of the
various terms. The only way to be certain about this
possibility would be to apply the equation to a given
situation and calculate the individual terms in equation

(24),
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Equation (24) can be solved as follows: Starting from
a control point or location, X where the ordinate, Yoo is
known, estimate the depth,"yn +tl’ some incremental distance
upstream or downstream, depending upon whether the bottom
slope is subcritical or supercritical. Then solve for Ay in

equation (24). Use this Ay to reestimate Y, and recalcu-

+ 1°
late Ay. When the calculated Ay values cease to change
within some small limit, assume that the iterative process
has been carried far enough and take yn v 1 as a known

ordinate and proceed to calculate Yo Continue this

+ 2°
procedure until the water surface elevation has been
calculated all along the channel,

The preceding method is approximately equivalent to a

modified Euler method with iteration. It is readily adapted

to & digital computer,



CHAPTER IV
EXPERIMENTAL SETUP
General Description

The experimental setup was a full-size outdoor model
as shown in Figures 6 and 7. It consisted of an asym~-
metrical V-shaped test channel approximately 410 feet long
with design side slopes of 3 on 1 and 6.6 on 1 and with
design bottom slope of 0,001, The maximum depth was approxi-
mately 2.7 feet. Free outfall occurred normally at the lower
end of the channel, although a set of end sills could be
used to block‘the end of the channel and raise the water
surface elevation in the lower norticn of the channel. The
usual outlet condition is shown in Figure 8. The channel
was lined with bermudagrass which was c¢lipped with a rotary
power lawnmower. Figure 9 shows a typical stand and
vegetal condition.,

Flow was measured and introduced into Forebay 1 with the
two=foot modified Parshall flume shown in Figure 10. The flow
could then enter the channel either at the upper end or all
along the upper 3989.2 feet over the adjustable weir shown
in Figure 11, depending upon the position of a set of movable

entrance gates. This flow introduction scheme and the possible
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Figure 7. Over-All View, Spatially Varied Flow
Experimental Setup

Figure 8, Outlet Weir, FC 31
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Fipure 9. Grass Condition in 196/, FC31

Figure 10, Two-Foot Modified Parshall T lume



Figure 11. Spatially Varied Flow into FC 31
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exit conditions allowed uniform, nonuniform, or spatially
varied flow experiments to be conducted. The total system
capacity was 40 cubic feet per second,

The water surface profile was measured with the gage
wells equipped with manual point gages and FW-1 recorders as
shown in Figure 12, The farthest downstream well was approxi-
mately 10 feet from the outlet; the next was 25 feet upstream
from this well; all the rest were on a 50-foot spacing., For
spatially varied flow experiments the head on the adjustable
weilir was measured with the three gage wells in Forebay 2 and
with a special point gage thaf was moved down the weir, This
gage 1s shown in Figure 13,

During the 1964 testing season, three current metering
stations were installed in the channel. They were located
27, 200,and 396 feet, respectively, from the upper end of the
adjustable weir. Figure 14 shows a current meter in place

at one of the stations.,
Detailed Description

Test Channel and Outlet Structure:

The design shape and slope of channel were not exactly
realized in the field. The final grading left a few irregulari-
ties, some settling occurred, and some erosion took place during
establishment of the vegetal cover,

A concrete retaining wall with apron was installed at

the downstream end of the channel. The retaining wall was



Figure 12, Gage ''ell and Equipment

%

Figure 13. Direct~lMeasuring Weir-Head Point Gage



Figure 14.

Current Meter and Velocity Direction Vane
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built to the design cross section of the channel. The apron
and downstream channel were low enough that free outfall could
occur over the wall., A galvanized angle, 2 x 2 1/2 x 3/16,
was mounted on the retaining wall to serve as a weir lip,

The angle was attached to the top of the wall with the 2 1/2-
inch side flat and the 2-inch side about one inch upstream
from the downstream face of the retaining wall. Vertical
slots were constructed on the downstream face of the retaining
wall so that 2-inch lumber of various widths could be dropped
into the slots and used to raise the downstream water level

in the channel. This structure is shown in Figure 8,

Gage Wells:

The gage wells were of 1l6-inch steel pipe. Each was
connected to the channel with one 1 1/2-inch galvanized pipe.
This pipe was installed with the invert at the design channel
bottom at each station. Each gage well was equipped with
an FW=1 recorder with 5:12 pen-float ratio and 6-hour time
scale, A u-inch float was used. A 3~foot Lory point gage
accurate to 0.001 foot was mounted in each gage well, TFigure

12 shows a gage well and equipment,

Referencing Systems:

A bench mark was mounted in a concrete monument sunk
into the ground near the channel and approximately 200 feet
from the upper end. Two permanent mounts for engineers'

levels were located approximately 100 and 300 feet, respectively,
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from the upper end of the channel. The levels were used for
referencing the elevation cf the gage wells and for leveling
the adjustable weir, The mounts were constructed of 3-inch
pipe set in concrete, Shades were provided so that direct
rays of the sun would not heat the level bubbles unevenly.
Prior to the 1964 testing season a manifold system was
installed such that the point gages in each weil could be
referenced to a common water surface., A plastic pipe was
laid beside the wells and a tee, valve, and inlet were
provided at each well. By plugging the pipe to the channels
the wells could be filled by a pump feeding one end of the
manifold, Then the wells were allowed to drain to the
elevation of an outlet slightly above the elevation of the
highest point of the manifold system. This provided a common

water surface relatively unaffected by wind.

Inflow Introduction and Measurement:

The adjustable weir was 399,23 feet long and was mounted
on a concrete retaining wall., The weir plate was aluminum and
was 1/8 inch thick and 3 1/4 inches tall. It was notched
for adjustment and was bolted on 3 x 3 galvanized angles
mounted on the wall. The welr plate and angles were installed
in sections approximately 12 feet long., Waterproof tape and
calking compound were used to seal joints between the
sections and between the weir plate and angle. The adjustable

welr and wall are shown in Figures 11 and 13.
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Three gage wells similar in form and equipment to those
connected to the channel were installed in Forebay 2 near the
upper end; middle, and lower end of the weir to provide
information on the water elevation in Forebay 2.

The direct-measuring weir-head gage shown in Figure 13
was used to obtain the head on the adjustable weir. It was
constructed of a precision level and a micrometer depth gage
capable of measuring to 0,001 inch., The depth gage was
clamped to the level. The end of the depth gage rod was
sharpened and used as the point gage. When in use, the point
was approximately 6° 5/8 inches upstream from the upper edge
of the adjustable weir.

A pair of leveling wells were constructed to aid in
leveling the adjustable weir., These consisted of two small
round plexiglass wells connected with clear plastic tubing
and with micrometer depth gages mounted on top., The wells
had angle irons on the bottom such that they sat astride the
weir plate. The difference in elevation between two points
on the weir could be determined to be approximately 1 or 2

thousandths of an inch.

Velocity Distribution Measurement:

Three current metering stations were installed in the
channel in the summer of 1964, At each station the channel
was spanned with an open-web steel joist on which was mounted
a 3 x 3 angle running the length of the joist and marked at

half-foot intervals, This angle supported a small rider and
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clamp, The rider was equipped with a mount for a Lory point
gage. A Gurley pygmy current meter was mounted on a rod on
the point gage. Use of the point gage allowed exact knowledge
of the depth of the current meter while taking a series of
readings. For testing spatially varied flow, a vane and
protractor were used to determine the direction of current.
This latter arrangement is shown in Figure 14. The vane

was 0,10 foot above the meter at Stations A and B and the
same elevation as the meter at Station C. A headfhone and

a stopwatch were used at the upstream and middle current
metering stations. A signal counter and stopwatch set was
used at the downstream station,

The gage well and current meter station locations are
presented in Table IV. The reference point is the end of the
adjustable weir nearest the upstream end of the channel. The
distance from this reference point was used in all computations

involving distance down the channel,

Rating of Adjustable Weir:

A length of the adjustable weir was mounted in a model
basin to obtailn a rating curve, The basin was 5,66 feet
wide and the welr extended all the way across the basin. The
configuration was as shown in Figure 15. This was intended
to match as closely as possible the approach conditions in
the field installations, The head was obtained with a Lory
point gage in a small gage well whose inlet was greater than

4 h upstream from the weir, and also with the direct-measuring



welr-head gage. The weir was divided into four parts of

equal length, and the direct-measuring gage was set at the

center of each length when obtaining readings.

LOCATIONS OF GAGE WELLS, CURRENT METER STATIONS,
AND OUTLET WEIR

Gage Well
Number

1

2

8
9

Lip Of Outlet
Weir

Current Meter
Station A

Current Meter
Station B

Current Meter
Station C

Nominal
Station
0 + 25
0 + 75
1l + 25
1+ 75
2 + 25
2 + 75
3 + 25
3 + 75
4 + 00
4 + 10

TABLE TV

Distance From
Upper End
Of Weir

(ft.)

23,6

73.6
123.6
173.6
223.6
273.6
323.6
373.6
399.2

409.6

26.8

199.8

396,2

100
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Figure 15, Setup to Rate Adjustable Weir



CHAPTER V
EXPERIMENTAL PROCEDURE
General Procedure

The general experimental procedure was to conduct uniform
and nonuniform flow experiments to determine a resistance-
vegetal condition relation for the test channel and then to
conduct spatially varied steady flow experiments to test water
surface profile predictions made using theoretical equations
solved by digital computer with the resistance-vegetal condi-
tion relation as input information. The first experiments
were conducted in 1963, Analysis of the spatially varied
flow data indicated the need for obtaining a rating curve for
the adjustable weir, This was done in the winter of 1963-64,
Experiments were continued in the summer of 1964 and included
repetitions of the 13963 experiments as well as measurements
of velocity distribution for nonuniform flow and spatially

varied steady flow,
Details of the 1963 Experimental Procedure

The 1963 testing schedule is presented in Table V. The
first three experiments in 1963 were uniform flow experiments.

End sills were used to raise the outlet until a condition

102



SUMMARY OF TESTS CONDUCTED, FC 31, 1963

TABLE V
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Discharge
Length Through
of Type Water Parshall Corrected
Expt. Test Culms of Temp., Flume Leakage Discharge
No. No. Date (in.) Test °F, (cfs) (cfs) (cfs)
1 1 8-20-63 3.08 Uniform 83 2.035 0.000 2,035
2 8-20-~63 3,08 Uniform 82 5.043 0,000 5.043
3 8-20~63 3,08 Uniform 82 9,832 0.000 9.832
4 8~20-63 3,08 Uniform 80 20,154 0.000 20,154
5 8-20~63 3,08 Uniform 80 29,92 0.000 29,92
2 1 8-23-63 4,00 Uniform 81 2.050 0.000 2,050
2 8-23-63 4,00 Uniform 82 5,087 0,000 5.087
3 8-23-63 4,00 Uniform 82 9,002 0.000 9,002
4 8-23-63 4,00 Uniform 81 20,32 0.000 20,32
5 8-23-63 4,00 Uniform 81 29,98 0,000 29,98
3 1 8-26-63 4,19 Uniform 83 2,144 0.000 2,14y
2 8§-26-63 4,19 Uniform 83 5.076 0.000 5.076
3 8-26~-63 4,19 Uniform 82 8.907 - 0.000 8.907
4 8~26-63 4.13 Uniform 81 20,04 0.000 20,04
5 8-~26-63 4,19 Uniform 81 29,173 0.000 29,173
4 1 8-27-63 4,30 Nonuniform 83 2,200 0.000 2,200
2 8-27-63 4.30 Nonuniform 83 5.131 0.000 5,131
3 8-27-63 4.30 Nonuniform 84 9.016 0.000 9.016
4 8-27-63 4,30 Nonuniform 84 20,26 0.000 20,26
5 8-27~63 4,30 Nonuniform 84 29.90 0.000 29,90
5 1 8§-29-63 3.04 Nonuniform 82 2.248 0.000 © 2,248
2 8§-29-63 3.04 HNonuniform 82 5.197 0.000 5.197
3 8§-29-63 3,04 Nonuniform 82 9.511 0.000 9,511
4 8-29-63 3,04 - Nonuniform 81 20,50 0.000 20,50
5 8-29-63 3,04 Nonuniform 81 30,35 0.000 30,35
6 1 9-4-63 3.83 Spat. Var. 79 5.01 .65 4,36
2 9-6-63 3.95 Spat. Var. 77 4,95 .65 4,30
3 9-6-63 3.95 Spat. Var. 78 9.57 .65 8,92
L 9~6-63 3.95 Spat. Var. 81 19,53 .65 18.88
5 9-11-63 4,12 Spat. Var, 80 28.16 .37 . 27,78
6 9-11-63 4,12 Spat. Var. 81 38,46 .37 38.089
7 10-10-63 3,86 Spat. Var, T4 5.15 24 4,91
8 10-10-63 3,86 . Spat. Var. 72 9,34 24 9.10
9 10~11-63 3.87 Spat. Var, 72 19.81 24

19.57
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approximating uniform flow was obtained. Five test flows,
approximately 2, 5, 10, 20, and 30 cubic feet per second
were run at each of three roughness conditions: just after
mowing, a few days later, and at an arbitrary maximum length.
The vegetal condition of the channel lining was described by
determining the average length of the vegetative and flowering
culms of the bermudagrass. A single measurement was made

of each vegetative or flowering culm arising at a node of a
stolon. The measurement was made from the node to the apex
of the longest blade or racene of the inflorescence. Some
annual bristlegrass was present. Measurements of the length
to the apex of the longest leaf or inflorescence of each
individual plant were taken in a similar manner and were
averaged with the bermudagrass measurements, In the early
part of the season, these measurements were taken at several
locations throughout the length of the channel., By the
latter part of the testing season a system had been devised
in which the grass was measured in 24 two-inch squares. The
square was placed at random three times between each profile
station, twice on the long flat slope and once on the short
steep slope.

The water surface profile was determined by using the
average of ten point gage readings taken successively in each
gage well down the channel. Twenty readings were taken on
the Parshall flume, ten before and ten after taking the

channel readings. This same procedure was used on the



105

nonuniform and spatially varied flow experiments,

Two nonuniform flow experiments of five tests each were
conducted at minimum and maximum grass lengths. The only
difference in testing procedure from that of the uniform
flow experiments was that no end sills were used,

A spatially varied flow experiment of nine tests with
total discharges of 5, 10, 20, 30, and 40 cubic feet per
second was conducted in 1963, The repetition of some tests
was necessary because the early tests indicated that the
inflow was not uniformly distributed as had been desired and
that a measurement of the head on the adjustable weir was
necessary to determine inflow distribution. During the later
tests, head measurements were obtained at 25-foot intervals
down the weir using the direct-measuring point gage. The
shape of the weir crest proved to be such that both an ad-
hering and a springing=free condition were obtained. This
dual behavior did not cause unusual difficulties because the
transition occurred at about 12 to 13 cubic feet per second.
Only at the 10 cubic feet per second discharge was there any
mixed flow., The situation was handled by including the
position of the adhering and springing-free flow in the test
notes and watching to see that these positions remained stable
during the test.

Some seepage through the dikes around Forebay 2 was
observed during preliminary tests of the adjustable weir.

This made it necessary to estimate the amount of leakage to
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be subtracted from the discharge measured with Parshall flume
for the spatially varied flow tests, The surface area of
Forebays 1 and 2 at the elevation of the adjustable weir was
determined. Then immediately after conducting a spatially
varied flow test the rate of fall of the water in Forebays 1
and 2 was measured., This rate of fall multiplied by the
surface area gave the rate of leakage. The leakage rate was
determined in this manner several times during the 1963 testing
season. The data are included in Table V.,

Engineers' levels on the permanent mounts were used in
1963 to reference the elevations of the point gages in the
channel gage wells and of those in the wells in Forebay 2,
The levels were also used to level the adjustable weir. The
lengfh of sight ranged from approximately 30 to 105 feet,

Bottom elevation readings were taken across the channel
at half-foot intervals at each profile station. This was
done five times during 1963. "Examination of the data showed

negligible erosion, and the data were averaged,
Weir Rating Procedure

A 5066~€bot length of the adjustable weir was tested in
the model basin.under both adhering and springing-free
conditions. During”the earlier tests the head on the weir
was obtained at the gage well located upstream from the weira
However, this did not prove entirely satisfactory, and during

later tests the head was obtained with both the gage well and
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the direct-measuring weir-head gage. Readings with the
direct-measuring gage were taken along the weir at four
places spaced so that each reading was for an equal length
of weir. These head .readings were averaged. Discharges
were measured using orifice plates located in the pipeline

leading to the testing basin.,
Details of the 1964 Experimental Procedure

Experience in 1963 indicated the engineers' levels used
with a length of sight of up to 105 feet to be unsatisfactory
for precision referencing and for leveling of the adjustable
weir, In 1964 the manifold system conhecting the gage wells
was used to reference the gage wells. The system proved to
be quite satisfactory. The engineers' levels were used in
referencing only for short lengths of sight such as obtaining
the reference of the gage well at Station 1 + 75 from the
elevation of the bench mark so that the other gages could
be referenced, and for the referencing of the wells of
Forebay 2 to the nearest channel wellseﬁffhe adjustable weir
was leveled by using the portable gage wells to establish
reference points at 50-foot intervals and using an engineers'
level to set the elevations between these reference pointsg
With this method it was possible to obtain accuracy of
approximately * 0.001 foot in leveling the weir,

A summary of the experiments conducted in 1964 is presented

in Table VI. The experimental procedure was changed somewhat
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TABLE VI

Discharge
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Length Of Through
Culms And Type Water Parshall Corrected
Expt. Test Branches 0f Temp. Flume Leakage Discharge

No. No. Date (in.) Test °F, (cfs) (cfs) (cfs)
7 1 7-21-64 2.89 Uniform 85 2.166 0,000 2.166
2 7-21-64 2.89 Uniform 85 5.105 0.000 5.105

3 7-21-64 2,89 Uniform 84 9.675 0.000 9,675

4 7-21-64 2.89 Uniform 84 20,40 0.000 20,40

5 7-21-64 2.89 Uniform 85 33,38 0.000 33,38

8 1 7-22~64 2,92 Nonuniform 86 2.119 0.000 2.119
2 7-22-64 2.92 Nonuniform 86 5,109 0.000 5.109

3 7=-22-64 2.92 Nonuniform 86 9,422 0.000 9.422

4 7-22-64 2.92 Nonuniform 85 20,50 0.000 20,50

5 7=22-6k 2.92 Nonuniform 85 33.35 0.000 33.35
9 1 7-28-64 2,45 Uniform 83 1.964 0.000 1.964
2 7-28-64 2,45 Uniform 83 4,629 0.000 4,629

3 7-28-64 2.45 Uniform 83 8,181 0.000 8,181

4 7-28-64 2.45 Uniform 82 20,30 0.000 20,30

5 7-28-64 2,45 Uniform 82 32,89 0.000 32.89

10 1 7-29~-64 2.48 Nonuniform 82 2.268 0.000 2.268
2 7-29-64 2,48 Nonuniform 82 5.046 0.000 5.046
3 7-29-6Y4 2,48 Nonuniform 8u 9,174 0.000 9,174

4 7-29-64 2.u48 Nonuniform 83 20.58 0.000 20,58

5 7-29+64 2,48 Nonuniform 83 33,48 0.000 33.48
11 1 8ulubly 2.80 Uniform 86 2,264 0,000 2,264
2 8-L-BlY 2.80 Uniform 86 4,801 0.000 4,801
3 8~L4-bl 2.80 Uniform 86 8.701 0.000 8.701

Y 8-h-bL4 2.80 Uniform 83 20,48 0.000 20,48

5 8-l~bl4 2.80 Uniform 84 33,42 0.000 33.42

12 1 8~-5-6Y4 2.94 Nonuniform 86 2.379 0.000 2.379
2 8-5-64 2.94 Nonuniform 86 4,976 0.000 4,976
3 8-5-8U4: 2,94 Nonuniform 85 9.021 0.000 9,021

4 8-5-64 % . 2,94 Nonuniform 84 20,40 0.000 20,40

5 8-5-64 2,94 Nonuniform 83 33,06 0.000 33.06
13 1 8-27~64 * Nonuniform 80 1.961 0.000 1.961
2 8-28-64 # Monuni form 77 5.048 0.000 5.048

3 8-28~6U4 # Nonuniform 82 8.983 0.000 8.983

4 8§~31-6Uu 2.28 Nonuniform 81 18,98 0.000 18.98

5 8-31-6U4 2.28 Nonuniform 80 29.04 0.000 29,04

14 1 9-.22-64 w Spat. Var, 75 4.08 0.29 3.79
2 9-23-64 L Spat. Var. 74 9.59 0.29 9.30

3 9~-24-04 w% Spat. Var. - 19.50 0.29 19.21

4 9-24~86Y4 w Spat. Var. 75 29,99 0.29 29.170

5 9.-25-64 wok Spat. Var., 73 39.62 0.29 39,33

“Estimated 2.28
**Estimated 2,35
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from that used in 1963, An attempt was made to remove the
effect of vegetal condition when comparing uniform and
nonuniform flow experiments by conducting a uniform flow
‘experiment on one day and a nonuniform flow experiment on
the following day. The vegetal condition was assumed to
change very little between the two experimehts° The inten-
tion was to conduct three sets of uniform and nonuniform flow
experiments at three grass lengths. However, the vegetation
.
length data in Tabié\ﬁtshow that Experiments 7 and 8 and
Experiments 11 and 12 were conducted at approximately the
same grass length. The water surface and discharge measure-
ments were obtained in the same manner as in 1963, The
method used to describe the vegetal condition differed from
that used in 1963 in that the length of all vegetative and
flowering culms and branches in each two-inch square were
measured and averaged. Very few weeds or undesirable grasses
were present in 1964, For nearly all determinations the
two-inch square was placed randomly three times in each
reach. An alternate method was tried whereby the material in
a six=inch square was clipped, dried, and weighed. The same
pattern of 24 samples, three per reach with two taken froﬁ
the long slope and one taken from the short slope, was tried,
The samples were air-dried for several days and then were oven-
dried at approximately 180 to 190 degrees Fahrenheit for 24
hours and weigh@do A check on a sample left for 12 more

hours showed no further weight change.
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Following these experiments the three current metering
stations were installed and a nonuniform flow experiment of
five tests was conducted and velocity distribution informa-
tion was obtained. Velocity observations were taken at
different depths at the marked vertical stations across the
channel, For the tests with smaller discharges at Stations
A and B, and for all tests at Station C, the half-foot stations
were used. For the tests with larger discharges at stations
A and B, one=foot stations were used. The observations were
taken at intervals of one=tenth of the depth along each
vertical except near the edges of the channel, where the
interval between vertical settings would have been quite
small, Observationé could not be obtained closer to the
bottom than approximately 0.2 foot because of grass tangling
in the current meter cups.

A current direction vane’and protractor were mounted on
the current metering rod and a spatially varied steady flow
experiment of five tests was conducted. Velocity direction
and magnitude observétibns were taken at approximately the
same vertical stations as for the nonuniform flow experiment,
Observations wefe taken closer to the surface and closer to
the bottom than in the previous experiment in an attempt to
better define the isovels in those regions. The head on
the adjustable weir was obtained every 25 feet down the weir
using the direct-measuring point gage. There was no problem

with mixed flow because with the new improved leveling system
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there were only very small differences in head down the weir,
Leakage determinations were made during the spatially
varied flow tests in the same manner as in 1963. Before the
start of the testing season the dike around Forebay 2 was
raised and strengthened, and the leakage rate was decreased
from that observed in 1863. The observed leakage rates from
Bottom elevation readings were taken across the channel
at half-foot intervals at each profile station as in 1963,
Thig was done four times during the 1964 testing season and

the elevations were averaged.,



CHAPTER VI

PRESENTATION, ANALYSIS, AND DISCUSSION OF DATA
Introduction

The object of all testing prior to the spatially varied
steady flow experiments was to provide knowledge of resistance
and velocity distribution in the channel and to enable measure-
ment of inflow during the spatialiy varied flow experiments.
This information was necessary for computing theoretical
water surface profiles to compare with the observed profiles
obtained from the spatially varied flow experiments. Therefore,
the data from these prior experiments are not presented in
order of collection, but rather as it seems.logical to mention
them in leading up to the profile prediction methads and the
comparison of the results from these methods with the observed

profiles,
Veloecity Distribution

The data from the current meter measurements of the
velocities in the channel during nonuniform flow and spatially
varied steady flow Experiments 13 and 14 in 1964 were used

to determine Boussinesq coefficients. The analysis was

112
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performed by a method similar to that of O'Brien and Johnson
described in Chapter II.

The depth and velocity data obtained at each vertical
station during Experiment 13 were plotted log depfh versus
velocity. A smooth curve was drawn through each set of
points, and the depth values corresponding to desired isovels
were taken from the plots and plotted on a drawing of the
cross section. The isovels were then drawn similarly to
those shown in Figure 16, The areas within the isovels, or
between the isovels and the water surface, were planimetered
and tabulated. These data are presented in Table A-1 in
Appendix A,

The corresponding portion of the analysis of the spatially
varied flow data from Experiment 14 was slightly more com-
plicated than that for Experiment 13. The velocity observa-
tions were corrected for the component down the channel., The
vane was 0,10 foot higher than the meter at Stations A and B,
so the correction could not be made directly for these
stations. The angle=from=~axis=-of-channel and depth data
were plotted for each vertical station, the angle at the
depth of a given velocity reading was determined from this
plot, and the velocity was multiplied by the cosine of the
angle, The depth and this velocity component were then
plotted log depth versus velocity and the analysis proceeded
as for Experiment 13, The velocity-area déta from Expefiment

14 are presented in Table A-2 in Appendix A,
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When the data were taken the current meters could not
go within approximately 0.2 foot of the bottom because of
grass tangling in the cups, so velocity data were unavailable
for this region. Using the method of 0'Brien and Johnson
and assuming the velocity to be linearly distributed from the
last known isovel to the bottom yielded discharges greater
than the total measured flow. This led to the belief that
the grassed portion of the channel was carrying very little
flow and that perhaps some effective bottom elevation or
effective cross-sectional area could be determined, Various
schemes such as a trial and error method of finding a constant
value to raise the channel bottom were tried. The method
finally chosen was to plot velocity versus area similarly
to Figure 17, and to integrate between zero area and the
area of the lowest defined iso?el to obtain the discharge
within that portion of the cross section., This was always
less than the total measured discharggo The difference was
computed and was assumed to be conveyed at one-half the
value of the lowest defined isovel. The additional area
needed to convey this residual discharge was computed., This
value was added to the value of the total enclosed area at
the lowest known isovél to give an effective area which was
plotted at zero velocity as shown in Figure 17. With this
point determined it was possible to calculate velocity

distribution coefficients by the method of O'Brien and Johnson.,
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A part of the 0'Brien and Johnson method was replaced
by two computer programs, The velocity and area data were
obtained as in the 0'Brien and Johnson method. The velocity
was then related to area by a least-squares polynomial using
the Polyfit Fortran IV program for the IBM 1410 listed in
Table B-1 in Appendix B. This program fitted the data with
a least-squares polynomial of up to degree four. The co-
efficients of the polynomial obtained from the Polyfit
program were used in the Alphabet 3 program listed in Table
B;? in Appendix B which integrated beneath the fitted polynomial
down to the value of the last known isovel by Simpson's rule,
then determined the residual discharge and the effective area.
The program determined the Boussinesq and Coriolis coefficients
by squaring and cubing‘the velocity-area relationships,
integrating the resulting relationships over the effective
area, and dividing the integration sums by the product of the
total area and the mean velocity squared and by the product
of the total area and the mean velocity cubed, respectively,
Polynomials of second, fhifd, and fourth degree wefe
tried in the program. The best fit of most of the data was
obtained by using the maximum observed velocity at each station
as the velocity for zero area and using a polynomial of degree
four., The maximum observed velocity was not used for the
data from Station C of Test 4 of Experiment 14, because it
was so high in relation to the other maximums at Stafion C

from Experiment 14 as to be of questionable value.
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Part of the input to the Alphabet 3 program included the
number of increments into which the integration interval was
broken. A range of values was tried with some trial data.
Breaking the interval into about twenty-five increments gave
good results.

The Boussinesq coefficient results as well as the dis-
charge, total area, and effective area values from Stations
B and C for Experiment 13 are presented in Table VII. The
data from Station A were so erratic as to be useless and are
not presented. Apparently the observer at that station was
not picking up all of the signals on his headset at the
higher velocities. The Boussinesq coefficient results and
the discharge, total area, and effective area values from
Experiment 14 are presented in Taﬁie VIII.

The Boussinesq coefficients presented in Tablee VII and VIII
are considerably higher than most of the values cited in
Chapter II, Review of Literature. Only Ree (43, p. 187) pre-
sented a value, 1.70, within thevrange_of those presented in
Tables VII and VIII. Ree's value was also for a small grassed
channel. These high values of the Boussinesq coefiicient
for small grassed channels are caused by the vegetation
blocking a sizable portion of the cross section. Comparatively
little water flows in the gfassed poftion of the channel,

This effect can be seen by examining Figure 16 and noting

the large area outside the last known isovel.



TABLE VII

BOUSSINESQ COEFFICIENTS FROM NONUNIFORM FLOW
EXPERIMENT 13, FC 31

Station A Station B Station C
x = 27 X = 200 x = 396
Test Total Effective Total Effective : Total Effective
No. Discharge Area Area Beta Area Are% Beta Are% Area Beta
cfs ft,2 ft. 2 ft, 2 ft. ft. ft,2
1 1,961 Data Erratic, 4,064 3,175 1,754 2,548 2,053  1.801
Not Presented
2 5,048 6,837 5.298 1.638 3,972 3.236 1.705
3 8,983 9,160 7,926 1.482 5,370 4,481 1.673
4 18.978 13,776 12,289 1.383 7,820 7.104 1.433
) 28,041 17,630 15.653 1,356 10,524 9,350 1.395

61T



TABLE VIII

BOUSSINESQ COEFFICIENTS FROM SPATIALLY VARIED
STEADY FLOW EXPERIMENT 14, FC 31

Station A Station B Station C
x = 27 x = 200 x = 396
Test Total Lrifec, Total Lifec, Total Effec,
No. Disch. Area Area Beta Disch. Area Area Beta Disch. Area Area Beta
cfs ft,2 ft,2 cfs  ft.,2  ft,? cfs ft,2 ft,3
1 0.289 3.714 1.958 20494 1,912 5,169 3.128 1.950 3.766 3,939 2,980 1.794
2 .0687 6.695 5,064 1,789 4,720 8.626 6.978 1.592 9.237 5,831 4,536 1,692
3 1.381 11.493 8,545 1,669 9,712 13.788 11.980 1.483 19,084 8.5u6 7.267 1.535
Ly 2,079 16.000 13.628 1.482 14.884 18,564 15,390 1.513 29,485 11,138 9,109 1,502
5 2,746 19,326 12.418 1.677 19,722 22.668 13,470 13.420 10,463 1,478

1.467 39,037

02T
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The Boussinesq values from Experiment 14 varied con-

siderably with distance down the channel. Thié was a result
of two factors., First, there was a very low mean velocity at
Station A for the size of the cross section as compared to
that at Station C., The range of the variables was not the
same from one end of the channel to the other., Second, the
inflow currents from the side had a stronger influence at the
upper end of the channel since they were larger there in
relation to the mean velocity in the channel. Figure 16
shows the effect of the inflow at Station B, There was a
rather large area to the right of the cross section that had
almost no effective velocity component down the channel,
The area of maximum velocity was located at the left of
the point of maximum depth in the channel, whereas for
nonuniform flow this area occurred almost directly over
the point of maximum depth,

Because the Boussinesq coefficient data showed con-
siderable variation it was thought desirable to try to
relate the Boussinesq coefficient to various parameters
rather than to simply use an average value when computing
resistance or water surface profiles; Possible relations
were sought between the Boussinesq coefficient and area,
mean velocity, discharge, hydraulic radius, Reynolds number,
and Froude number, singly and in various combinations. The
only attempt that showed any real promise was a log-=log

plotting of the Boussinesq coefficient and discharge, as



shown in Figures 18 and 19 for Experiments 13 and 14,
respectively. The data from each station for each experiment
were transformed to logarithms and fitted using the LS02
program presented in Table B:é in Appendix B, The resulting

coefficients and exponents of the relation
- b
Beta = C3Q (27)

are presented in Tablé IX and the fitted lines are plotted in
Figures 18 and 19. The coefficient and exponent from Experi-
ment 13 varied only slightly from Station B to Station C,
so the data were lumped and an average line fitted. The
resulting coefficient and exponent are also presented in-
TableﬁiXand the average line drawn on Figure 18. The loss
of the data from Station A for Experiment 13 was a definite
handicap in this analysis,

Only a fair fit of the data would have been obtained
by lumping all of the data from Experiment 14, An attempt
was made to relate the coefficient and exponent to distance
down the channel, The three data points each for the
coefficient and exponent were found to plot linearly on
log-log paper as shown in Figures 20 and 21, A line was
fitted through each set of data using the LS02 program.

The resulting relationships were

,04106-
1,598 xo 0 (28)

(@]
1)

=0, 62
~0,5026 x 028 (29)

¢
]
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TABLE IX

COEFFICIENT AND EXPONENT IN RELATIONSHIP
C
BETA = C,Q *

Experiment Station Coefficient Exponent
C C

3 4
13 A - -
B 10888 ”041018
C 1,980 -,1006
13 , B & C 1,934 -,1012
Lumped
14 A 1,824 ~,1935
B 20012 "‘01153

C 2002’“"‘ ""’008779
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The fitted lines are drawn in Figures 20 and 21, The fit
was so close that final fitted lines of Boussinesq coeffi-
cient versus discharge on Figure 19 would have been difficult
to distinguish from the lines individually fitted to each

station. Therefore, the final lines are not shown,
Resistance

The resistance of the test channel was determined using
the water surface e1e§g£ion and cross section data from the
uniform flow and nonuniform flow experiments in 1963 and 1964,
presented in Tables A»é:through A-8 in Appendix A, and the
corresponding discharge and temperature data presented in
Tables V and VI. Resistance was computed by two different
methods. One method consisted of ignoring the variation in

velocity across the channel and using Equation (19)

<3
N

<
SN

+ z + h (19)

= 4

P
g vy T a1 c 2

N
o]

to determine a head loss value, The other method consisted
of - assuming that the conditions of flow were such that

Equation (12)

2 2 F
" V2 Sy
I o + = o Tmnm: (12)
B1 2g "Y1 v A T By Y TE Y avg

was applicable and using the Bouésineéq coefficient relation=-

ship from Experiment 13

Beta = C_Q | (27)
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One of the most important restrictions on Equation (12)

is that the variation between Bl and 32

variation between Vl and V20 Since Equation (27) gives the

Boussinesq coefficient as a function of discharge alone, this

be less than the

requirement is fulfilled and Equation (12) is indeed applicable.
By the conclusions reached in Chapter II, Review of
Literature, it is possible to use the Manning formula,

Equation (18)

S (18)

with either Equation (18) or (12), so long as the resulting
fésistance coefficients are not‘ﬁsed indiscriminately. nThe
slope term simply has a different meaning and wvalue: in
each case, ﬁ

The amount of data to be analyzed was quite vast and
a Fortran IV program for the IBM 1410 was used to carry
out the analysis. The Retardance 3 program presented in

i

Table B{E‘of Appendix B was used to compute resistance using
Equation (12)., A slightly modified version computed resistance
coefficients using Equation (19), The programs computed
resistance using the data from three profile stations at a
time. A resistance value was computed for the reach between
the upstream and middle stations, the reach between the up-
stream and downstream stations, the reach between the middle

and downstream stations,; and finally, an average for the

entire three=station reach. The output included Manning's n,
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the Chezy coefficient, the DarcyLWeisbach resistance coefficient,
Reynolds number, velocity, hydraulic radius, and other
variables.

The output was examined for possible relationships to
systemize the data. One of the methods tried was a log-log
plotting of Manning's n versus velocity times hydraulic
radius. This method was presented by Ree and Palmer (4y,
pp. 21-23) and is cited in Chapter II, Review of Literature.
The range of the 1963 and 1964 data computed using both Equa-
tion (19) and Equation (12) plotted in a straight band for
each experiment. The averaged resistaﬁce values for the
three=station reach gave the narrowest band. The results
from analysis of the 1963 and 1964 nonuniform flow experi-
ments using Equation (19) are presented in Figures 22 through
27. The results obtained using Equation (12) are presented
in Figures 28 through 33, Comparison of the two figures for
the same experiment shows the effect of considering the
Boussinesq coefficient when computing the resistance for
nonuniform flow in the test channel, FC 31. Consideration
of the Boussinesq coefficient made very little difference
in the resistance values at the ubstream end of the channel,
However, use of Equation (12) and the Boussinesq coefficient
rather than Equation (19) tended to decrease the resistance
values near the downstream end of the chann;l where the flow
‘was accelerating. The combination of these two effects de-

creased the width of the band of data in Figures 28 through 33.
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yfigure 26, Resistance Computed Assuming Uniform
Velocity Distribution, Experiment 12

OF MEAN

A ‘Fc & ! ]
.08 'EXPERIMENT 12 .
. ‘ v N 'NONUNIFORM FLOW
7\0 ; ‘UNIFORM VEL, DIST. ASSUMED
/ A . .
08 LAVERAGE o Xv o _ o
o
e} g o
o R o ~
! av v
.04
03 LEGEND
: — o REACH 123 Vv REACH 367
o REACH 234 v REAGH 678
a REACH 345 N REACKH 789
© REACH 456
.02 1 { i
0.1 0.2 0.4 0.6 0.8 L0 2.0
PRODUCT VELOCITY AND HYDRAULIC RADIUS, VR

' T
Fc .3 '
EXPERIMENT 13
. NONUNIFORM FLOW '
UNIFORM  VEL, DIST. ASSUMED
~_ g :
AngAcEj A . )
o v
g vV v
(2
! D ‘ Qv v g.u
LEGEND , Q it N
— © REAGH 123 v REACH 567 —
o] REAGH 234 v REAGCH 678
A REACH 345 ~n REAGCH 789
& REACH 456 _
1 1 . I ,
0. 0.2 0.4 0.6 0.8 1.0 2.0 3.0

PRODUGT OF MEAN VELOOITY AND HYDRAULIGC RADIUS, VR

Figure 27, Resistance Computed Assuming Uniform

Velocity Distribution, Experiment 13



COEFFICIENT, n

RESISTANCE

COEFFICIENT,

RESISTANCE

.08

.06

.04

.03

.02

.08

.06

.04

.03

02

13y

1 f - T
FC 3i
EXPERIMENT 4.
NONUNIFORM  FLOW ]
AVERAGE 3 BOUSSINESQ . COEFFICIENT GONSIDERED
e =
LEGEND \N
- ~;\~.\E\ B
O REAGCH 123 ~ o
O REAGH 234
A REACH 345
[~ & REAGCH 4956
Vv REAGCH 567
v °‘REACH 678
~ REAGH 789
i
0.l 0.2 0.4 0.8 0.8 10 2.0 t ¥
PRODUGCT OF MEAN VELOCITY AND HYDRAULIC RADIUS, VR
Figure 28, Resistance Computed Considering Boussinesq
Coefficient, Experiment U4
Tro o - S— -
EXPERIMENT 5
NONUNIFORM  FLOW ]
BOUSSINESQ - COEFFIGIENT  CONSIDERED
:’\\\L
AVERAGE7 _\k\ﬁ\ '
O~ .
LEGEND R T | ——
— O REAGH 123 V  REACH 567 '
O REAGH 234 + REACH 678
A REACH 343 ~ REACH 789
o REAc| 456 |
0. . 0.2 0.4 0.6 .08 LO: 2.0 3.0
PRODUCT OF MEAN VELOGITY AND HYDRAULIC RADIUS, VR

Resistance Computed Considering Boussinesq
Coefficient, Experiment 5

Figure 29,



COEFFICIENT, n

RESISTANCE

COEFFICIENT, n

RESISTANCE

.08

06

04

03

.02

.08

06

04

.03

.02

135

Fc 3 ! o
Qg\\ EXPERIMENT 8 ‘
. ~ Jaa NONUNIFORM FLOW T
‘~T§-~Ng \“v»\\\\ BOUSSINESQ COEFFICIENT ~ CONSIDERED
AVERAGE \ \ : : .
=)
\\
LEGEND : _
| O  REAGCH 23 V  REAGH 3567
0 REACH 234 .  REACH 678
&  REAGH 345 ~  REACH 789
O ' REAGH 456
| l |
0. 0.2 0.4 06 08 Lo 2.0 3.0
PRODUCT OF MEAN VELOGITY AND HYDRAULIC. RADIUS, VR
Figure 30. Resistance Computed Considering Boussinesq
Coefficient, Experiment 8
FC 311 '
EXPERIMENT 10 —
: \ NONUNIFORM  FLOW _
‘ t;7~_ N BOUSSINESQ COEFFICIENT  GONSIDERED
AVERAGE S '
\\\Q
~]
| | F\\N
LEGEND \ ~—
— O REACH 123 Vv REACH 567
O  REACH 234 o REAGCH 678
A  REACH 345 N~ REAGH 789
©  REAGH 456 :
| | _
o4 0.2 0.4 06 08 LO ' 20 3.0

PRODUCT OF MEAN VYELOCITY AND HYDRAULIG RADIUS, VR

Figure 31,

Resistance Computed Considering Boussinesg

Coefficient; Experiment 10



COEFFICIENT,

RESISTANCE

.08

.06

.04

.03

.02

136

1
FC 3t

73
AVERAGE ’ \&\

EXPERIMENT 12
NONUNIFORM  FLOW
BOUSSINESQ  COEFFICIENT CONSIDERED

—

i/

=

— \
LEGEND
— (o] REACH 123 v REACH 567
a REACH 234 v REACH 678
A REACH 345 ~ REACH 789
O REACH 456
] | |
0.1 0.2 0.4 0.6 0.8 1.0 2.0 - 3.0
PRODUCT OF MEAN VELOCGCITY AND HYDRAULIC RADIUS, VR

Figure 32. Resistance Computed Considering Bbﬁssinesq

COEFFICIENT, n

RESISTANGE

.08

.06

.04

.03

.02

Coefficient, Experiment 12

T T i
Fc 3i ‘
EXPERIMENT I3 »
NONUNIFORM ~ FLOW
\ BOUSSINESQ COEFFICIENT CONSIDERED
\5&\ -
AVERAGE B \
\: '\
—— \"\ .
LEGEND B
- o REACH 23 v REACH 567 —_— T —
O  REACH 234 v REAGCH 678 :
/-9 REACH 345 ~ REACH 789
< REACH = 456 ’
L ’_ | i
0.1 0.4 0.8 1.0 . 2.0 3.0

0.2

0.6

PRODUGT OF MEAN VELOCITY - AND HYDRAULIC RADIUS ,. VR

Resistance Computed Considering Boussinesq
Coefficient, Experiment 13

Figure 33,



137

An average line was fitted to each n - VR log-log plot
using the LS02 program, giving the equation

C

n = C (VR) 2

(30)
The coefficients and exponents of these fitted lines are
presented in Tablec X  aznd XTI and the average lines are

shown in Figures 22 through 33. The coefficients and exponents
from the uniform flow experiments are also included in Tables
X and XI. Examination of the data in Tables X and XI showed
that considering the Boussinesq coefficient in computing
resistance for the nonuniform flow experiments tended to
decrease the value of the coefficient and increase the
absolute value of the exponent. For the nearly uniform flow
tests, exactly the opposite effects were noted.

An attempt was made to relate resistance to the vegetal
condition of the channel, The average culm length data for
1963 presented in tabular form in Table A<9 in Appendix A
were plotted versus date as in Figure 34. Lines were drawn
to connect the data points on the culm length versus date
plot. The culm length at the time of a given experiment
could then be read from this plot, Similafly, the average
length of culms and branches for 1964 and the sample weight
data presented in Tables Awib and A%ii in Appendix A were
plotted versus date as in Figure 35. Whereas the length of
culms and branches showed reasonable variation and trend in

relation to the time of mowing, the vegetation sample weights



TABLE X
COEFFICIENT AND EXPONENT IN RESISTANCE
C
RELATIONSHIP n = C, (VR) 2, FC 31, 1963

Resistance
Average Computed Assuming

Resistance
Computed Considering
Bou%sinesq Coeffigient
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2

_002099

« 2456
«2713

.2606
1677

Culm Uniform Velocity
Experiment Length Distribution
(in.) C1 C2 1
Uniform Flow
1 3.08 0.03580  =-0,2110 0,03593
2 4,00 ,03954 - »2468 ,03964
3 4,19 J0LL7y = ,2708 ,04u74
Nonuniform Flow
4 4,30 ,04819 - 2540 .04866
5 3.04 .03811 - ,1585 ,03769
TABLE XI
COEFFTICIENT AND EXPONENT IN RESISTANCE RELATIONSHIP
C
n = C (VR) %, FC 31, 1964
Average Resistance

Culm And Computed Assuming
Branch Uniform Velocity

Resistance
Computed Considering

Experiment Length Distribution Boussinesq Coefficient
(in,) C1 C2 C1 Co
Uniform Flow
7 2.89 0,03995 -0,2798 0,04003 -0.,2792
38 2,45 .03663 - ,2411 ,03667 - ,2417
11 2,80 s 04057 - .2872 04058 - .2872
Nonuniform Flow
8 2,92 - 04673 = ,2581 ,0u4630 - ,2b6U45
10 2,48 -04185 - ,2240 04153 - 2309
12 2,84 -0L4B15 - ,2559 ,04572 - 2624
13 2,28 03814 - ,2487 ,03775 - ,25660
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were extremely variable and of very little value., Apparently
the sample was not sufficiently large or some unknown

factor was acting. Therefore, the sample weight data were
disregarded and lines were drawn to connect the data points
of culm and branch length versus date.

The coefficients and exponents in Table X from both
uniform and nonuniform flow experiments in 1963 were plotted
versus average culm length as in Figures 36 and 37. The
coefficients and exponents for the 1964 data were plotted
versus average culm and branch length as in Figures 38 and 39,
The culm length data collected in 1963 seemed to have much
more promise of being related to resistance than the culm
and branch length data collected in 1964, The culm length
showed a wider range and the data were much less clustered.

The coefficients and exponents for the uniform flow and
nonuniform flow average lines in 1964 seemed to be unlike.
The spatially varied flow experiments with free outfall were
reasoned to be more like the nonuniform flow experiments than
the uniform flow experiments, so the uniform flow data from
1964 were deleted. The 1963 uniform flow data were also
deleted for the sake of consistency, although the 13963 data
showed less tendency to fall into two groups than did the
1964 data. Possibly, deleting the last three-station group
of data down the channel when computing the average line for
each experiment would have made the uniform flow and nonuniform

flow data more alike. Examination of the data in Figures 24
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through 27 and 30 through 33 showed that the resistance data
from reach combination 789 were considerably higher than
that from the other reach combinations for 1964, The data
in Figures 22, 23, 28, and 29 showed the effect to be less
pronounced for the 1963 data.

Examination of the data from the nonuniform flow experi-
ments in Figures 36 through 39 led to the decision to relate
the coefficient and exponent in the retardance relationship
linearly to vegetation length. This was done using the
Fortran IV Multivariate program listed in Table B-4 in

Appendix B, The resulting equations were of the form

C; = By + B, (Vegetation length) (31)

Cy

n

By + B, (Vegetation length) (32)

The equations from the data analyzed assuming uniform velocity
distribution are presented in Table XIIL, and the fitted lines
are plotted in Figures 36 and 38, The equations from the
data analyzed considering the Boussinesq coefficient are
presented in Table XIII, and the fitted lines are plotted in
Figures 37 and 39,

The Manning's n data plotted in Figures 22 through 33
varied considerably within each experiment. The general
trend was for the resistance to increase from the upstream
to the downstream end of the channel. This trend was investi-
gated. The data from each reach combination computed considering

the Boussinesq coefficient were fitted separately using the LS02



TABLE XII
EQUATIONS RELATING COEFFICIENT AND EXPONENT IN RESISTANCE
RELATIONSHIP n = C1(VR)C2 TO LENGTH OF VEGETATION,
RESISTANCE COMPUTED ASSUMING UNIFORM VELOCITY

DISTRIBUTION, NONUNIFORM FLOW,
FC 31, 1963 AND 1964

C, = 0,01138 + 0,008794 (Culm Length) (33)

C, = 0,06850 - 0,07500 (Culm Length) (34)

C, = 0.,01122 + 0,01206 (Culm and Branch Length) (35)

(@]
1

=0.1771 0,02631 (Culm and Branch Length) (36)

145
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TABLE XIII

EQUATIONS RELATING COEFFICIENT AND EXPONENT IN RESISTANCE
RELATIONSHIP n = C,(VR)“2 TO LENGTH OF VEGETATION,
RESISTANCE COMPUTED CONSIDERING BOUSSINESQ
COEFFICIENT, NONUNIFORM FLOW, FC 31,

- 1963 AND 1964

1963:
C_ = 0.01122 + 0.008706 (Culm Length) (37)
C, = 0,05644 - 0,07373 (Culm Length) (38)
1964
c, = 0,01094% + 0,01201 (Culm and Branch Length) (39)
C. = -0,1858 - 0,02555 (Culm and Branch Length) (40)
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program. The resulting lines are shown in Figures 28 through
33 and the coefficients and exponents are presented in Tables
XIV and XV. The distance down the channel to the middle of

each reach combination is also given in Tables XIV and XV. The
coefficient and exponent were plotted versus distance down the
channel as in Figures 40 through 43. The trend in coefficients
was for a slight increase with distance down the channel. The
trend in exponents was for a slight decrease. The general
trend in the coefficients and exponents and also in the
vegetation length data led to the consideration and use of

a multivariable relationship to relate the coefficient and
exponent in the resistaﬁce relationship to vegetation length
and distance down the channel, The Multivariate program was
used to fit the data. The 1963 and 1964 data were fitted
separately because of the difference in the methods of
measuring the vegetation lengths. The equations relating

the coefficient and exponent to distance down the channel

and vegetation length were of the form

C; = B, + B, x + By (Vegetation length) (41)

(Vegetation length) (42)

O
n

2 ® By * Bg x *+ By

These equations for the 1963 and 1964 nonuniform flow data :

'
analyzed considering the Boussinesq coefficient are presented
in Table XVI. The resulting final fitted resistance lines

for Experiment 13 are presented in Figure U4bu.
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TABLE XIV

COEFFICIENTS AND EXPONENT IN RESISTANCE RELATIONSHIP
n = (vR)C2 FITTED TO EACH 3~ SECTION REACH,
RESI%TANCE COMPUTED CONSIDERING BOUSSINESQ
- COEFFICIENT, FC 31, 1963

Distance
Reach Down Culm
Experiment Combination Channel Length Coefficient Exponent
- (ft.) (in.)
b 123 73.6 4,30 0.04243 =0,2723
234 123.6 4,30 .0U4636 - .261Y4
345 173.6 4,30 .05171 - .2708
456 223,6 4,30 04958 - .2716
567 273.6 4,30 04873 - 2875
678 323.6 4,30 .0u43L6 - .2506
789 365.5 4,30 .05200 - o241Y
5 123 73,6 3.04 .03301 =-. 01652
234 123.6 3.04 ,03452 = ,1410
346 173.6 3,04 .03807 - o1661
456 223.6 3,04 .03678 ~ ,1996
567 273.6 3.04 03867 - 52128
678 323.6 3.04 .03986 = .1776
789 36545 3.0k 04279 - .1825
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COEFFICIENT AND EXPONENT IN RESISTANCE RELATIONSHIP

n = C'(VR)CZ FITTED TO EACH 3-SECTION REACH,
'RESTISTANCE COMPUTED CONSIDERING BOUSSINESQ
COEFFICIENT, FC 31, 1964

Culm
Distance And
Reach Down Branch
Experiment Combination Channel Length Coefficient Exponent
(ft,) (in.)
8 123 73,6 2,92 0.03899 -0.,2604
234 123,6 2,92 ,03905 - ,2257
345 173.6 2,92 -0u537 - 2445
456 223,6 2,92 . 04695 - ,2813
567 273.6 2,92 .04888 - 3047
678 323.6 2,92 .05061 - ,3031
798 365,5 2.92 .05510 - ,3322
10 123 73.6 2,48 . 03634 - ,2408
234 123,6 2.48 . .,03580 - ,2014
345 173.6 2,48 ,04006 - ,2206
456 223,6 2,48 . 04085 - 2575
567 273.6 2.48 04202 - ,2681
678 323.6 2,48 04448 - ,2435
789 365.,5 2,48 .05160 - ,2928
12 123 73.6 2.94 . 04039 - ,2775
234 123.6 2,94 .03949 - ,2340
345 173.6 2,94 04378 - ,2485
456 223,6 2,94 04470 - ,2815
567 273.6 2,94 204612 - ,2948
678 323.6 2,94 - 04919 - ,2842
789 365,.5 2,94 .056uU46 - .3340
13 123 73.6 2,28 203306 - ,2651
234 123.6 2,28 .03327 - ,2099
345 173.6 2,28 . 33659 - ,2378
456 223,6 2,28 ,03728 - ,2909
567 273.6 2,28 .03842 - .2960
678 323.6 2,28 ,03925 - ,2763
789 365,6 2,28 .0L66Y - 3212
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TABLE XVI

EQUATIONS RELATING COEFFICIENT AND EXPONENT IN RESISTANCE
RELATIONSHIP n = C,(VR)®2 TO DISTANCE DOWN CHANNEL
AND LENGTH OF VEGETATION, RESISTANCE COMPUTED
CONSIDERING BOUSSINESQ COEFFICIENT,
NONUNIFORM FLOW, FC 31,
1963 AND 1964

1963:
C1 = 0,005427 + 0,00002631 x (43)
+ 0,008681 (Culm Length)
C2 = 0,03905 - 0.00002857 x (44)
- 0,06925 (Culm Length)
1964
Cl = 0,0002846 + 0,00004775 x (u5)
+ 0,01204 (Culm and Branch Length)
C, = -0,1412 = 0,0002515 x (46)

-0,02701 (Culm and Branch Length)
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Inflow Distribution

The data from the rating tests of the adjustable weir

were analyzed using Equation (23)

Q =cLhn3? (23)
The equation was rearranged into the following form:
c = q/cL n¥?) (47)

and the discharge coefficient was determined for each test.
These coefficient values were plotted versus head as in
Figure 45, and separate rating curves were drawn for the
springing-free and adhering conditions. Some of the data
points were determined using the gage well and Lory point
gage and some using the direct-measuring weir-head gage.
The measurements obtained with the Lory gage were used only
for purposes of extending the springing-free rating curve.
The rating curves shown in Figure 45 were used with the
heads on the adjustable weir measured in the field using the
direct-measuring weir-head point gage to determine the inflow
distribution into the channel for the spatially varied flow
experiments. The heads measured at two consecutive places
along the weir were aﬁeraged. The weir coefficient corres-
ponding to this average head was determined from the appro-
priate rating curve., The coefficient was multiplied by the
weir length between measﬁrements, and the resulting product
by the average head raised to the three-halves power to give

the increment of inflow along that length of weir. The total
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calculatéd inflow was determined, and each increment of inflow
was corrected by multiplying by the total corrected discharge
from Tables V or VIand dividing by the total calculated
discharge over the weir. The measurement spacing, measured
heads, calculated increment of discharge, corrected increment
of discharge, and total discharge at a given distance down the
channel are presented in Tables A~12 and A-13 in Apﬁeﬂdix

A, Test 1 of Experiment 6 was not included because an
insufficient number of head measurements was obtailned to
define the inflpw distribution accurately. Better agreement
was obtained in 1964 than in 1963 between the calculated
discharges over the weir and the measured discharges corrected
for leakage. This was attributed to the rebuilding of the
Forebay 2 dike prior to the 1964 testing season, the improved
welr leveling techniques developed in 1964, and the greater

number of head measurements obtained in 1964,
Water Surface Profile for Spatially Varied Flow

Methods of Computing Theoretical Profiles

The observed water surface profiles for spatially varied
steady flow Experiments 6 and 14 are presented in Tables A-1lu
and A-15 in Appendix A. Also presented in Tables A-1lk and
A-15 are four computed water surface profiles for the condi-
tions corresponding to each spatially varied flow test. Each
of the four computed profiles for each test was computed

with a different technique, each representing a different
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degree of refinement of the theory of spatially varied steady
flow and of the information on resistance and velocity

distribution. Briefly, the four methods were as follows:

Method 1
This method consisted of assuming uniform velocity

distribution and using Equation (19)

vZop V2 op
1 1 2 2 (19)
?E + fT=+ zq = §§:+ 77 + z2 + hL

for nonuniform flow with uniform velocity distribution to
calculate water surface profiles for spatially varied steady
flow. This method was approximately equivalent to assuming
By = 82 = 1,00 and deleting the term containing AQ from
Equation (24), which gives

. Q (Vy + V)
y = = -
g(Ql Qz>

' - - A
(V2 Vl) + (So SS) X (48)

and ignoring the difference between Ql and (Ql + Q2)/2o
The head loss term in Equation (19) was computed by multiplying

Ax by a slope-value obtained using Equation (26)

(26)
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Values of Manning's coefficient were obtained by using the
resistance relationship, Equation (30)
C

n=C (VR 2 (30)
with Equations (33) through (36), presented in Table XII,
which related Cl and 02 to vegetation length. Equations
(33) through (36) were determined assuming uniform velocity
distribution. For the 1963 tests the vegetation lengths
were determined from Figure 34, Because no vegetation»length'
measurements were taken at the time of conducting the léﬁu
spatially varied flow tests, and because the 1964 spatially
varied flow tests were conducted shortly after mowing fhe
channel, the average of the culm and branch lengths after
two previous mowings, 2.35 inches, was used,

A starting point for the water surface computations was
needed., Because the test channel, FC 31, was a mild channel
with free outfall, the water surface elevation at the farthest
downstream gage well was chosen. The measured inflow
distributions presented in Tables A-12 and A-13 were used.
The measured channel cross section data presented in Tables
A-7 and A-8 were used. The computer program Hydel 2 listed
in Tabie B-6 computed tables of area and hydraulic radius

from the cross section data.
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Method 2
Method 2 consisted of assuming uniform velocity distribu-

tion and using Equation (24), which gave

Q. (V. + V) j
_o_ 11 Y2t _ 2 _
Ay = ) (V, -V, + = 8Q) + (S_ - S_) 8x

(49)
The change from Equation (19) to Equation (439) was the only
difference between Method 1 and Method 23 all of the other

variables remained the same,

Method 3
Nonuniform velocity distribution was considered in

Method 3. Equation (24)

Qu(Vy *+ V) B,V
= g 70, (B Vo = B2 Vi * o 40
+ (S - 8S_) Ax (24)
o s _

and the Boussinesq coefficient relationship, Equation (27),

| C
Beta = C_ Q 4 (27)

were used., The values for C3 and CL+ in Table IX obtained by
lumping the data from Stations B and C for nonuniform flow
Experiment 13 were used in Equation (27)., The shear slope,

SSs was computed using Equation (26)

2 2
g = Qavg n
s 2 " 2/3 (26)
2,21 A R
avg avg
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Values of Manning's n were obtained by using the resistance

relationship, Equation (30)

C
n = C; (VR) 2 (30)

with Equations (37) through (40), presented in Table XIII, which
related C; and C, to vegetation length. Equations (37)

through (40) were determined considering the Boussinesg
coefficient. The starting point, inflow distribution data,

and channel cross section data remained the same as for

Methods 1 and 2.

Method &

Method 4 was the most refined technique available. It
consisted of using Equations (24) and (26) with the relation-
ships for C; and C, as a function of distance down the
channel developed from data from spatially varied flow

Experiment 1% and given in Equations (28) and (29)

,04106
1.598 xo ol (28)

(@]
1

~0,5026 x‘°°2862 (29)

Cu
The shear slope in Equation (24) was obtained using Equations
(26) and (30) and Equations (43) through (u46) presented in
Table XVI which relate Cl and C2 to vegetation length and
distance down the channel and which were developed from the
resistance data with Boussinesq coefficient considered.
Other variables remained the same as for the previous

methods.
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Four digital computer programs were written to accomplish
the four methods. All used the Euler method with iteration
as explained in Chapter III, Theoretical Analyéis, to project
up the channel from the starting point at the farthest down-
stream gage well. The programs were set to project at one-
‘foot intervals, The iterations were continued until a
-calculated Ay at a station agreed with the preceeding
calculated Ay at that station within 0.00001 foot. The
inflow distribution was read into. the computer in tabular
form and the programs interpolated linearly between two
locations where the total discharge was known, Thevtables
of area and hydraulic radius obtained with the Hydel 2
program were used as input for the profile computation
programs, The predlctor programs 1nterpolated between the
cross sectlon stations and also w1th1n each table of areas
and hydraulic radii, since these were set up for elevation
intervals of 0.01 foot, The program used with Method 4,

SVF 5F, is presented in Table é{j*in Appendix B. The
programs used with Methods 1 through 3 were simplifications

of this program.,

Discussion of Observed and Computed Profiles and

Methods of Computation

The observed and calculated water surface profiles from
the test for which the differences between the observed and

calculated water surface profiles were greatest, Test 5 of
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Experiment 14, are presented in Figure 46. Even for this test,
plottihg elevation versus distance down the channel revealed
very little, Thefefore, another means of comparing the
results of the different prediction methods was sought. The
scheme chosen was to compute the differences between the cal-
culated and observed profiles and to plot these differences
versus distance down the channel. The differences are pre-
sented in Tablés Amlu.and A-15 and are plotted in Figures 47
threugh 50.

The differences plotted as in Figures 47 through S50
showed that the predicted profiles agreed with the observed
profiles in order of the refinement of the prediction method.
Method 2 was better than Method 13 Method 3 was better than
Method 2, and Method 4 was better than Method 3. The largest
differences for all methods occurred near the downstream end
at either nominal station 3 + 75 or 3 + 25, From those
stations upstream, the difference plots of Methods 1, 2, and 3
were nearly parallel, There was a general tendency for the
parallel lines to become farther apart with increased dis-
charge, although the differences obtained with Method 3
showed little or no increase with increased discharge. This
meant that out of the zone of curvature of the streamlines the
results obtained with any of Methods 1, 2, or 3 should be
nearly the same, but that in a zone of curvature of>stream1ines
the approximations involved in Methods 1 and 2 would become

increasingly inaccurate as discharge increases.
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The difference plots from Method 4 did not vary exactly
as did those from Methods 1, 2, or 3, mainly because of the
“consideration of the variation of resistance with distance
down the channel. Upstream from nominal stations 3 + 75 or
"3 + 25, the prbfiles obtained with Method 4 tended to become
more parallel to the observed profiles than did those
obtained with Methods 1, 2, or 3.

The differences in water surface elevations obtained
near the downstream end of the channel from Methods 3 and 4
were attributed in large part to the consideration of the varia-
tion of reéistance with distance down the channel, because
the Boussinesq coefficients from nonuniform flow Experiment
13 used in Method 3 and those from spatially varied flow
Experiment 14 used with Method 4 were of the same order of
magnitude at both Stations B and C., This initial better
prediction with Method 4 made the Method 4 profiles fit
better all the way up the channel,

The plotted differences between the observed and computed
profiles for Experiment 14 revealed the effect caused by
estimating a constant culm and branch length., The differences
for Method 4 were mainly positive for Test 1 and decreased to
a negative value for Test 5. ' The bermudagrass grows consider-
ably in four days, as shown in Figures 34 and 35. Probably
the estimated culm and branch iength of 2.35 inches was too
long for Tests 1 and 2, about right for Test 3, and was too

short for Tests 4 and 5. Apparently, the decrease of the
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differences was not caused by the increase of the discharges
from Test 1 to Test 5, because Tests 7, 8, and 9 of Experi-
ment 6, conducted within 36 hours, did not show the same
effect with increasing discharge.

The large differences near the downstream end between
the observed and computed profiles in 1964 weée noted and
contemplated. An initial hypothesis was that these differences
might be caused by the steep slope between the observed low
points in the channel. This steep slope would have the
effect of decreasing the Ay values and lowering the profiles.
However, this would be in direct contradiction to the results
obtained for Tests 7, 8, and 9 of Experiment 6 in 1963, where
the differences show a larger increase from nominal station
3 + 75 to 3 + 25 than from 4 + 00 to 3 + 75, and where the
observed low points in the channel show no such break as in
1964, No explanation was thought satisfactory for explaining
the differences. However, rather than using the minimym
bottom elevations at each station it probably would have
been better to have used an averaging method, such as
averaging the lowest point at a cross section and the two

elevations adjacent to it.



CHAPTER VII
SUMMARY AND CONCLUSIONS
Summary

Spatially varied flow, where water enters a channel all
~along its length, is the usual mode of flow for many natural
and constructed channels, Theoretical equations describing
spatially varied steady flow have been obtained by use of
the principle of the conservation of linear momentum, How-
ever, the theory had not been tested previously for applica-
bility to small agricultural conservation channels.

The problem was investigated at the Stillwater Outdoor
Hydraulic Laboratory in an asymmetrical V-shaped bermudagrass-
lined test channel approximately 410 feet long with design
side slopes of 3 on 1 and 6,6 on 1, maximum depth of 2.7
feet, and design bottom slope of 0.001, Free outfall occurred
at the outlet, although there was a provision for outlet
sills, Flow could enter the channel either at.its upper
end or all along the upper 3993,2 feet over an adjustable
weilr, Thus it was possible to conduct uniform flow, nonuniform
flow, and spatially varied steady flow experiments in the
channel. Three current meter statiqhs were located 27, 200,

and 396 feet, respecfively, from the upstream end of the channel.
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Uniform and nonuniform flow experiments were conducted
in the channel fg determine the resistance characteristics
of the channel., Discharges of 2, 5, 10, 20, and 30 cubic
feet per second were used during each experiment., Velocity
distribution measurements were taken during one nonuniform
flow experiment., Spatially varied steady flow experiments
with total discharges of 5, 10, 20, 30, and 40 cubic feet
per second were conducted to provide a check for water
surface profile predictions made using theoretical equations
solved by digital computer with the resistance and velocity
distribution characteristics as input information.

The first experiments were conducted in 1963. Three
uniform, two nonuniform, and one spatially varied flow
experiment were conducted. Analysis of the spatially varied
flow data indicated the need for obtaining a rating curve
for the adjustable weir. This was done in the winter of
1963-64, Experiments were continued in the summer of 1964,
Three uniformy four nonuniform, and one spatially varied
steady flow experiment were conducted. Measurements of
velocity distribution were taken during one nonuniform flow
experiment and during the spatially varied steady flow
‘experiment.,

Water surface profiles were computed by four different
methods, each representing a different degree of refinement
of the theory of spatially varied steady flow and of the
information on resistance and velocity distribution. The

results were compared,
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Conclusions

The spatially varied steady flow equation as developed
from the momentum concept yields a good prediction of
water surface profiles if suitable Boussinesq co-
efficient and resistance relationships are used.
Boussinesq coefficients and resistance coefficients
determined from steady nonuniform flow can be used
with reasonable accuracy in predicting spatially varied
steady flow water surface profiles.

The use of Boussinesq coefficients and resistance
coefficients computed considering Boussinesq co-
efficients 1s essential in computing spatially varied
steadj flow water surface profiles where there is
appreciable curvature of flow,

The limiting factor in predicting spatially varied
steady flow profiles in small vegetated channels

is not the theory nor the computational method, but
rather the estimation of Boussinesq and resistance
coefficients and possibly of the hydraulic elements

of the channel.

Boussinesq coefficients in small vegetation-lined
channels are much larger than commonly quoted text
book values of 1.1.

For fairly dense clipped bermudagrass sod, average culm
length seems to be a satisfactory criterion for

relating resistance to vegetal condition.
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Suggestions. for Future Research

The original statement of the problem and the findings
of these experiments suggest several topics that need
investigation,

The effect on the predicted profiles of using different
integration increments of distance up the channel;‘and the
differences in predicted profiles between fhe various methods
for other bottom‘slopes could be easily investigated.

The difference between the resistance values 6btained
under the nearly uniform and the nonuniform flow conditions
in the experimental channel should be studied.

The extent of the variation of the Boussinesq coefficient
with culm length in the experimental channel is of interest.
If significant variation is found, this should be considered
when computing resistance -using the Boussinesqg coefficient.

Because of the importance of the Boussinesqg coefficient
in computing water surface profiles in zones of appreciable
streamline curvature in small vegetation-lined channels, more
research needs to be conducted on velocity distribution and
methods of estimating the Boussinesq coefficient for different
types of flow in vegetation-lined channels.

The most important area for future research is in
obtaining experimental and predicted spatially varied
unsteady flow profiles for small vegetation-lined channels.

Some work is being done on the general problem of spatially
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varied unsteady flow, but very little is being done on small
vegetation-lined channels., The research facility at
Stillwater offers unique opportunities for working with

this problem.,
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APPENDIX A

EXPERIMENTAL DATA AND THEORETICALLY
PREDICTED WATER SURFACE PROFILES
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TABLE A-1

VELOCITY DISTRIBUTION DATA FROM EXPERIMENT 13

Section A Section B Section C

Test Velocity Area Velocity Area Velocity Area
1 Data Erratic, 1,40 0,000 2,36 0,000
Not Presented 1,10 . 370 1.75 . 329
1,00 2599 1,50 . 569
.90 s 881 1.25 <694
075 1,267 1,00 .839
.50 1.793 .90 ,898
2 1,79 .000 3,40 .000
1,50 2823 3,00 . 249
1,25 1,737 2,50 «730
1.10 2.298 2,00 1.166
1,00 2,693 1.50 1.652
.90 3,056 1.25 1.846
o 75 3,473 1,00 1.921
3 2,11 ,000 4,18 ,000
1,75 1,514 4,00 2118
1,50 2,664 3,50 0703
1,25 3,758 3,00 1.268
1,00 4,732 2,50 1.809

.75 5,512 2,00 2,319
~ 1.50 2,683
1.00 2,955

4 2.68 ,000 4,95 .000
2,50 971 4,50 .720
2.25 24640 4,00 1,786
2,00 4,116 3,50 2,572
1,75 5,698 3,00 3,360
1,50 7,006 2,50 4,068
1.25 8,198 2,00 4,629
1.00 9,122 1,50 5,045
5 3,09 - ,000 5,17 000
3,00 .170 5,00 723
2,75 2,304 4,75  1.443
2,50 4,439 4,50 2,170
2.25 6,237 4,00 3,376
2,00 7.830 3,50 4,516
1.75  9.443 3,00 5,522
1.50 10,893 2,00 6,746

1,00 12,613
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TABLE A=2

VELOCITY DISTRIBUTION DATA FROM EXPERIMENT 14

Section A Section B Section C
Test Velocity Area Velocity Area Velocity Area
1 0,306 0,000 1,05 0.000 2,55 0.000
2275 .118 1,00 .119 2,50 .085
»250 .258 .90 U421 2,25 2368
2225 . 406 .80 0773 2,00 . 634
.200 . 586 .75 1,279 1,75 . 965
.175 . 803 .70 1,474 1,50 1.268
.150 1,002 .60 1,802 1.25 1,516
.50 2,142 1.00 1.711
.40 2,457 :
2 2298 .000 1,30 .000 3,94 .000
- 240 .585 1,20 42y 3.50 . 540
2225 . 766 1.10 .960 3,25 . 855
.200 1.345 1.00 1.548 3.00 1.189
0175 1.842 .90 2,284 2,75 1.530
. 150 2,291 . 80 3.0u48 2,50 1.803
.130 2,531 .70 3,650 2,25 2,074
.60 4,124 2,00 2,386
.50 4,564 1,75 2,655
1,50 2,855
3 0297 . 000 1,59 .000 4,95 .000
0275 2265 1,50 0272 4,50 .622
.250 . 986 1,40 1.016 4,00 1.655
0225 2.168 1,30 1.850 3.50 2,522
.200 3.490 1.20 2,740 3,00 3,414
2175 4,542 1,10 3.736 2,50 4,141
.150 5,225 1.00 4,668 2,00 4,651
.80 5,612 1.50 5,078

. 80 6,532
.70 7,170
.60 7.866
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TABLE A=2 (CONTINUED)

Section A Section B Section C
Test Velocity Area Velocity Area Velocity Area
4 0,307 0,000 1.82 0.000 5,25 0,540
. 300 ,030 1.70 2499 5.00 1,227
0275 .266 1.60 1,359 4,50 2,469
.250 0923 1,50 2,438 4,00 3,530
2225 2.839 1.40 3.468 3.50 4,603
.200 5,071 1.30 4,666 3.00 5.450
2175 6.677 1.20 5.819 2,50 6,290
1,10 6,953 2,00 6.867
1,00 8,000 1,50 7.442

.90 8,961
.80 10.019

5 o 347 .000 1.92 .000 5.74 .000

0275 1,207 1.80 . 710 5.00 2,373
0250 4,0u46 1.70 1,752 4,50 3,815
. 240 5.768 1.60 3.084 4.00 5,261
0225 7,632 1.50 3,998 3.50 6,564
. 200 9,547 1,40 5,270 3.00 7,513
175 10,601 1,30 6,635 2,50 8,373
150 11,463 1.20 7,949 2,00 3.031

1,10 9,145
1,00 10,465
.90 11,665
.80 13,033



TABLE A-=3

WATER SURFACE ELEVATIONS FROM UNIFORM
FLOW EXPERIMENTS 1, 2, AND 3, 1963

Experiment 1

Station Test 1 Test 2 Test 3 Test U Test 5
23,6 914,000 914,302 914,602 915.040 915.253
73,6 913,958 914,266 914,570 915,012 915,218

123.,6 913.910 914,223 914,535 914,987 915,184
173,6 913,852 914,176 914,494 914,954 915,142
223,6 813,803 914,139 914,463 914,927 815,107
273.6 913,750 914,104 914,432 914,903 915,073
323,6 913,706 914,074 914,405 914,878 915,035
373,.6 913,643 914.028 914,363 914,843 914,982
399.,2 913.622 914,017 914,354 914,838 914,976
Experiment 2

Station Test 1 Test 2 Test 3 Test 4 Test 5
23,6 914,051 914,346 914,602 915,027 915,294
73,6 914.007 914,305 914,572 914,990 915.256

123.6 913,958 914,264 914,534 914,956 915,222
173.6 913.895 914,212 914,491 914,907 915.175
223.6 913,842 914,166 914,454 914,867 915,134
273,6 913.784% 914,127 914,422 914,832 915,102
323.6 913,731 914,090 914,390 914,790 915,058
373.6 913.652 914,030 914.344 914,734 914,999
399,2 913.618 914,011 914,330 914,720 914,989
Experiment 3

Station Test 1 Test 2 Test 3 Test U Test §
23.6 914,133 914,435 914,657 915,072 915,329
73.6 914,087 914,394 914,613 915,028 915,286

123.6 914,038 914,350 914.568 914,983 915,240
173.6 913,976 914,300 914,514 914,929 915,185
223.6 913,924 914,255 914,463 914,879 915,135
273.6 912,873 914,218 914,419 914,833 915,090
323,606 913.829 914,183 914,378 914,785 915,040
373.6 913,772 914,137 914,317 914.716 914,968
399,2 914,121 91u.,294 914,948

813.746

914,695

186



WATER SURFACE ELEVATIONS FROM NONUNIFORM

TABLE

A=Y

FLOW EXPERIMENTS 4 AND 5, 1963

Experiment 4

Station Test 1 Test 2 Test 3 Test U4 Test 5
23.6 914,143 914,407 914,623 915,004 915,238
73.6 914,093 914,355 914,568 914,946 915,176

123.6 914,043 914,301 914,513 914,888 915,115
173.6 913,967 914,223 914,432 914,801 915,026
223.6 913,897 914,147 -914,353 914,716 914,937
273.6 913,824 914,070 914,273 914,631 914,847
323.6 913.742 913,977 914,175 914,520 914,725
373.6 913,594 913,792 913,963 914,272 914,458
399,2 913,479 913,637 913,775 914,041 914,209
Experiment 5

Station Test 1 Test 2 Test 3 Test 4 Test 5
23.6 914.010 914,258 914,484 914,853 915,091
73,6 913,960 914,206 914,430 914,797 915,033

123,06 913,915 914,158 914,380 914,745 914,978
173.6 913.855 914,097 914,315 914,674 914,906
223.,6 913,801 914,040 914,256 914,610 914,838
273.6 913,743 913,981 914,194 914,544 914,770
323,6 913.667 913,898 914,101 914,436 914.6Uu48
373.6 913,549 913,749 913,932 914,230 914,424
399,2 913,442 913,604 913,747 913,999 914.161
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TABLE A-5

WATER ‘SURFACE ELEVATIONS FROM UNIFORM

Experiment 7

FLOW EXPERIMENTS 7, 9, AND 11, 1964

Station Test 1 Test 2 Test 3 Test U4 Test 5
23.6 914,095 914,380 914,633  915.035 915.430
73,6 914,048 914,338 914,590 914,995 915,397

123.,6 914,016 914,307 914,558 914,965 915,371
173.6 913.977 914,271 914,518 914,928 915,341
223,6 913,938 914,233 914,478 914,889 915,311
273.6 913,896 914,197 914,436 914,852 915.282
323,6 913,852 914,158 914,388 914,804 915,242
373.6 913,795 914,109 914,326 914,748 915.200
399,2 913,770 914,093 914,303 914,730 915,187
Experiment 9

Station Test 1 Test 2 Test 3 Test U Test 5
23.6 914,039 914,292 914,493 914,933 915,264
73.6 913,991 914,249 914,448 914,887 915,219

123.6 913,954 914,215 914,410 914,849 915.182
173.6 813,917 914,181 914,372 914,806 915,14l
223,6 913,879 914,148 914,333 914,764 915,101

- 273.6 313,845 914,117 914,296 914,722 915,064

323,6 913,813 914,087 914,255 914,668 915,010

373,6 913,770 914,048 914,199 914,596 914,946

399,.2 913,753 914,034 914,176 91u4.574 914,927
Experiment 11

Station Test 1 Test 2 Test 3 Test 4 Test 5
23,6 914,118 914,355 914,581 915,038 915,340
73.6 914,062 914,302 914,527 914,994 915,292

123.6 914,021 914,263 914,487 914,959 915,251
173,56 913,978 914,224 914,446 914,921 915,212
223,6 913,935 914,183 914,403 914,882 915,167
273.6 913,892 914,147 914,360 914,848 915,131
323,66 913.8u48 914,104 914,313 914,806 915,074
373,6 913,779 914,042 914,241 914,748 915,004
389,2 913,738 914,014 914,210 914,728 914,976
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WATER SURFACE ELEVATIONS FROM NONUNIFORM

TABLE A-6

EXPERIMENTS 8, 10, 12 AND 13, 1964

Experiment 8

FLOW

Station Test 1 Test 2 Test 3 Test U Test 5
23,6 914,104 914,372 914,605 914,972 915,261
73.6 914,053 914,319 914,552 914,914 915,198

123.6 914,015 914,276 914,506 914,868 915,149
173.6 913,974 914,228 914,453 914,807 915,085
223.6 913,920 914,167 - 914,387 914,734 915,007
273.6 913,864 914,103 914,317 914,658 914,925
323.,6 913,792 914,014 914,216 914,540 914,792
373,6 913.647 913,837 914,014 914,310 91u4,5u2
399,2 913,455 913,616 913.760 914,011 914,226
Experiment 10

Station Test 1 Test 2 Test 3 Test U4 Test 5
23,6 914,077 914,310 914,528 914,910 915,202
73.6 914,022 914,253 914,471 914,849 915,138

123,6 913,978 914,206 914,423 914.799 915,086
173.6 913,934 914,187 914,370 914,781 915.02Y4
223.6 913,883 914,102 914,310 914,675 91u4.955
273.,6 913.828 91u.043 914,250 914,609 914,884
323.6 913.770 913,974 914,170 914,510 914,770
373,6 913.647 913.823 913.996 914,302 914,538
399,72 913,464 913,612 913,757 914,024 914,241
Experiment 12

Station Test 1 Test 2 Test 3 Test 4 Test 5
23,6 914,143 914,364 914,780 914,966 915,256
73,6 914,084 914,304 914,520 914,903 915,189

123.6 914,037 914,255 914,469 914,850 915,132
173,6 913,994 914,207 914,415 914,789 915,069
223.6 913,941 914,150 914,356 914,721 914,995
273.6 913,887 914,089 914,291 914,652 914,921
323,67 913,827 914,015 914,208 914,548 914,801
373,6 913,691 913,853 914,019 914.324 914,557
399.2 913,626 914,033 914,228

913,489

913,763
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Experiment 13

TABLE A-6 (CONTINUED)

Station Test 1 Test 2 Test 3 Test 4 Test 5
23,6 914,016 914,282 914,486 914,792 915,046
73.6 913,961 914,227 914.434 914,737 914,986

123.6 913,916 914,180 914.383 914,688 914,934
173.6 913,874 914,130 914,329 914.628 914,873
223.6 913,824 914,075 914,272 914,572 914,810
273,6 913,765 914,013 914,209 914,502 914,738
323.6 913,711 913,946 914,133 914,412 914,637
373,6 913,602 913.806 913.977 914.231 914,438
399,2 913,438 913,612 913.756 914.006 914,202
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TABLE A=7

BOTTOM ELEVATIONS AT HALF-FOOT INTERVALS
ACROSS FC 31, 1963 (READ ROW-WISE)

915454
914412
913.21
913,92
9444
915.08
915.49

915448
9l4a14
913.20
913.77
1914435
914497
915.36

915453
914.09
913.18
913465
914421
914476
915429

915.36
913.96
913416
913465
914413
914476
915.28

915.28
913.87
912.98
913.48
913499
914465
915426

915410
913466
912497
913.57
914,15
914,68
915423

915,15
913463
912,96
913453
914423
914481
915436

915404
91376
912496
913467
914429
914,91
915440

914493
913459
912.88
913.53
914a24
914.72
915413

915,435
913,94
913.29
914401
914449
91513

915426
913494
913,31
913.81
914435
914499

915436
913,94
913429
913.71
914427
914,84

915423
913.84
913,31
913.69
914.18
914.82

915.12
913.71
913.C6
913.55
914.08
91475

914,92
913455
913,10
913.64
914,420
914474

914497
913,50
913,07
913,60
914430
914491

914489

913454

913,09
913,74
914438
914495

914,75
913447
912496
913,62
914427
914480

915420
913477
913440
91410
914458
915416

915.17
913.85
913443
913.88
914445
915,07

915,20
913479
913436
913475
914431
914491

915,02
913,70
913436
913.73
91427
914,93

914492
913.58
913,11
913459
914,17
914,483

914,71
913,45
913.18
913,69
914425
914479

94,75
913,36
913,17
913467
914,438
914498

9l4a7l
913441
913,21
913.81
914445
915,00

914459
913432
913400
913.73
914431
914,81

NOMINAL STATION 0+25

915400 914478
913,69 913.58
913,53 913.60
914415 914419
914468 914474
915423 915435
NOMINAL STATION 0+75
914497 914481
913,69 913461
913,47 913,52
913,98 9144C4
914452 914,62
915,15 915417
NOMINAL STATION .#25
914,96 914479
913.60 913,48
913.39 91344
913,77 913,82
914437 914443
914497 915,00
NOMINAL STATION 1+75
914.82 914466
913,51 913442
913438 913442
913,80 913.87
916,35 914443
915,02 915.08
NOMINAL STATION 2+25
914476 914456
913,52 913440
913,22 913424
913,63 913473
914422 914426
914490 914,97
NOMINAL STATION 2+75
914450 914432
913,35 913,19
913420 913.29
913.76 913.82
914434 914444
914,88 914494
NOMINAL STATION 3+25
914460 914438
913,28 913,16
913426 913434
913476 913489
914450 914453
915403 915413
NOMINAL STATION 3+75
914449 914430
913,23 913407
913426 913436
913.90 913496
914451 914458
915404 915412
NOMINAL STATION 4+00
914441 914430
913417 913.06
913,10 913,18
913,83 913494
914436 914449
914.88 914495

914466
913441
913.65
914423
914479
915439

914463
91345
913458
914410
91473
91519

914468
913434
913453
913.89
914452
915406

914450
913426
913452
913490
914451
915416

914433
913.16
913432
913480
914437
915404

914419
913406
913432
913.93
914448
915.01

914017
913.07
913432
91396
914460
915.18

914421
91297
913440
914406
914463
915419

914408
912.89
913424
913496
914457
914498

914446
913.19
913.76
914430
914490
9154.41

914451
913411
913.68
914417
914469
915425

914,451
913.07
913452
914400
914459
915414

914429
913407
913453
9164402
914455
915420

914418
912.99
913437
913.86
914eu6
915412

914402
912.93
913437

1914400

914455
915.07

913499
912,94
913437
914404
914.74
915423

914401
912.80
913450
914413
914473
915.28

913492
912475
913439
914406
914466
915,03

914031
913410

' 913.85

914440
914497
915449

914431
913.07
913470
914423
914+88
915429

914427
913404
913461
914412
914471
915424

914417
913.03
913460
914407
914464
915.21

914406
912,90
913448
913.95
9l4a54
915.18

913480
912.87
913.47
914405
914463
915.18

913477
912.83
91342
914,14
914479
91528

91380
912,81
913459
914422
914484
915433

913477
912474
913443
914610
914474
91506
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©

BOTTOM ELEVATIONS AT HALF-FOOT INTERVALS

TABLE A-8

ACROSS FC 31, 1964 (READ ROW-WISE)

915453
914,12
913,20
913.92
914443
915406
915446

915.47
914.14
913.18
913,77
914432
914496
915436

915450
914409
913415
913464
914,19
914474
915.27

915.38
913.97
913414
913.64
914413
914476
915.28

915428
913.88
912.98
913447
914.00
914467
915424

915.08
913.64
913400
913.58
914.16
914468
915.21

915.16
913466
912.92
913450
914,20
914479
915432

915.05
913477
912.93
913465
914.28
91490
915438

915.02
913.64
912.86
913.48
914417
9l4e72
915.08

915434
913493
913.28
913.99
914449
915412

915426
913.96
913.32
913.81
914435
914,98

915434
913.92
913426
913.71
914426
914481

915.24
913.83
913.29
913.70
914.18
914480

915413
913.71
913.07
913.55
914408
914475

914490
913454
913410
913465
914421
914473

914498
913452
913406
913,61
914430
914491

914491
913,60
913.08
91374
914,36
914494

914477
913450
912496
913,61
914,28
914477

915.18
913.76
913436
914,06
914458
915416

915.16
913.86
913,42
913,89
914445
915406

915417
913,83
913,35
913.74
914,30

914,88

915,02
913,70
913,36
913.72
914425
914,91

914490
913459
913411
913.59
914418
914,82

914,68
913,445
913,18
913,70
914 .26
914,76

914,177
913.41
913413
913.68
914436
914498

914,76
913444
913,20

913,82

914,44
914,98

914,61
913,38
913,00
913,70
914,430
914,80

-NOMINAL STATION 0+25

914499 914477
913467 913.58
913453 913459
914412 914.18
914466 914.72
915421 915433
NOMINAL STATION 0+75
914496 914482
913470 913460
913447 913452
913.98 914404
914452 914461

915414 91515
NOMINAL STATION 1+25

914495 914480
913462 913.46
913439 913444
913.78 913,82
914437 914440
914,495 914497

NOMINAL STATION 1475

914485 914465
913,51 913443
913.38 913442
913.80 913.87
914435 914242
915400 915.06
NOMINAL STATION 2+25
91475 914457
913452 913,38
913422 913425
913,64 913472
914423 914428
914,89 914494
NOMINAL STATION 2475
914447 914432
913434 913.18
913.21 913.28
913.77 913484
914434 914445
914.87 914493
NOMINAL STATION 3+25
914463 914439
913,30 913.18
913422 913433
913,76 913.89
914448 914453
915.01 915411
NOMINAL STATION 3+75
914451 914431
913.28 913.12
913425 913435
913,88 91396
914,453 914457
915404 915.11
NOMINAL STATION 4+00
914445 914434
913.21 913611
913.07 913416
913.80 913491
914436 91444

914,81 914493

914462
913438
913.65
914621
914.81
915437

914463
913445
913458
914,10
9144172
91518

914468
913.35
913.50
913.88
914450
915404

91454
913.29
913452
913.88
914+53
915414

914433
913416
913430
913.80
914438
915402

914418
913.08
913432
913492
914450
915400

91417
913410
913433
913496
914458
915417

914422
913,01
913443
914404
914464
915418

914421
912497
913,23
913495
914454
914493

914443
913422
913474
914427
914,88
915439

914451
913414
913.68
914417
914.68
915423

914450
913406
913452
913.98
914458
915611

914428
913.08
913454
913498
914456
915417

914017
913.01
913437
913.88
914447
915e12

913.98
912495
913438

-914401

914456
91506

914402
912.96
913.36
914403
914472
915a22

914404
912486
913.46
914410
914473
915426

913496
91278
913435
914406
914462
915.01

91430
913.09

1 913.85

914436
914496
91547

914432
913,08
913.69
914422
914.86
915429

914,28
913403
913.60
914410
914,68
915421

914.18
913404
913.61
914407
914463
915422

914406
912490
913446
913494
914655
915416

913.80
912.88
913.48
914407
9l4e64
915416

913480
912.83
913.42
914.10
914460
915425

913.84
912484
913460
914422
914.80
915431

913,81
912476
913,42
914408
914,70
915.04
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CULM LENGTH AND DENSITY DATA, FC 31, 1963

TABLE A-=3

193

Total Total Avg.
Area Culm Number Culm Culm
Measured Length of Length Density
Date (in.2) Grass (in.) Culms (in.) culms/in.

8/20/63 288 Bermuda 1,908.25 627
Crabgrass 16.50 6
Bristlegr. 135,00 36

) s 3,08 2,32
8/22/63 6u Bermuda 551,00 154
Bristlegr, 143,50 23

. 177 3.92 2,77
8/26/63 96 Bermuda 833.50 203
Crabgrass 37.25 7
Bristlegr, 21,25 3

897,00 213 4,18 2,22
8/28/63 96 Bermuda 1,267.50 298
Crabgrass 116.75 17
Bristlegr. 100,00 16

,GBT, 337 4,47 3,46
8/29/63 32 Bermuda 143,25 49
Crabgrass 2,75 1
Bristlegr. 33,50 11

185,50 61 3.04 1,91
g/4/63 64 Bermuda 460,00 121
Bristlegr, 4,75 1

- - BeL,75 127 3.81 1.91

3/6/63 24 Bermuda 263,75 83 3.18 3.46
8/10/63 96 Bermuda 876.25 21u
Crabgrass 30,25 7

. 27T 4,10 2,30

10/7/63 g6 Bermuda 859,50 224 3,84 2,33
10/21/63 96 Bermuda 1,001,00 255
Bristlegr. 20,00 Yy

‘ 759 3.94 2,70

9 o
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TABLE A-10

BERMUDAGRASS CULM AND BRANCH LENGTH AND
DENSITY DATA, FC 31, 1964

Total
Total Culm Number Avg. Culm Culm And
Area And Branch Of Culms And Branch Branch

Measured Length And Length Density
Date (in,?) (in,) Branches (in,) C and B/in,
7/20/64 52 534,88 187 2,86 3,60
7/23=24/6U4 96 1,579.25 531 2,97 5.53
7/31/64 96 1,210.75 477 2,54 4,97
8/3/64 96 1,432.25 528 2.71 5,50
8/6=7/64 96 1,937.00 626 3,09 6,52
§/1-2/64 96 1,444,00 632 2,28 6.58



1195

TABLE A- i1
VEGETATION SAMPLE WEIGHTS, FC 31, 1964

Area Dry
Sampled Weight
Date (in.2) (grams)
7/24/64 864 270.9
7/30/64 864 312.6
8/3/64 864 262,0
8/6/6u 8oL | 304.6
8/30/64 864 282.5
g/2/64 864 282.2

9/25/64 864 360,89
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TABLE A-1?

INFLOW DISTRIBUTION, EXPERIMENT 6

Test 2
Flow Adhering

Distance From Total Adjusted

Upper End Of Calculated Adjusted Discharge At
Weir Head AQ AR Station
(ft.) (ft.) (efs)  (cfs)_ (cfs)

0 | — | 0,00
®.237 Q.240
25 0,021 ‘ . 240
.387 .392
75 .017 Ce .632
.306 310 S
125 . 017 - B 942
.384 .389 o
175 .020 : 1.331
. 480 - 486 _ :
225 021 : 1.817
646 654 |
275 .027 ‘ : - 2,471
. 80U .81y
325 .027 3,285
<732 .74l
375 024 : 4,026
0229 «232
395 .021 : 4.258
040 04l
399,23 —_— 4,299

Total 4,245 4,299



TABLE A~12 (CONTINUED)

Test 3

197

Flow Adhering Except From 290 to 350

Distance From
Upper End of
Weir
(ft.)

0
25
75

125
175
225
275
325
375
397

399,23
Total

Calculated Adjusted

Total Adjusted
Discharge At

Head AQ AQ Station
(ft,) (cfs) (cfs) (cfs)
—_— 0.000
0.u67 g.484
0,029 484
«837 «867
,026 1,351
+760 .787
+026 2,138
.887 »919
.030 , 3.057
1,048 1,085
.032 4,142
1.284 1,330
.037 5,472
1.400 1,450
.036 | 6.922
1,367 1,416
035 8,338
«517 «535 .
.030 8.873
«045 047
— 8,920
8.612 8.920
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TABLE A-1? (CONTINUED)

Test 4 .
Flow Springing Free

Distance From Total Adjusted

Upper End of Calculated Adjusted Discharge At
Weir Head AQ SR (o Station
(ft,) (ft.) (cfs) (cfs) (cfs)

0 : - 0.000
1.170 1,125

25 0,051 1.125
‘ 2,234 2,148

75 .0u7 3,273
2,194 2,110

125 .050 5.383"
2,340 2,250

175 052 7.633
2,430 2.336

225 .053 9,969
2,600 2,500

275 .058 12.469
2,742 2,636

325 .,058 15.105
2,705 2,601

375 057 17.706
1,016 0977

395 2052 ‘ - 18,683
2205 2197

399,23 _— 18,880

Total 19.636 18.880
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TABLE A-12 (CONTINUED)

. Test 5
Flow Springing Free
Distance From _ ~ Total Adjusted
Upper End of Calculated Adjusted  Discharge At
Weir Head AQ AQ Station
(ft,) (ft,) (cfs) (cfs) (cfs)
0 0,071 0,000
1.794 1.738
25 .075 1.738
1.835 1.777
50 072 3.515
1,757 1,702
75 071 5.217
1.739 1.684
100 070 6,901
1.762 1,707
125 072 8,608
1,798 1.741
150 074 10.349
1,876 1.817
. 175 076 12,166
1.889 1.830
200 075 13,996
1,798 1.741 -
225 071 v 15,737
1.739 1.684 o
250 070 17,421
1.720 1,666
275 070 19,087
1,720 1.666
300 070 20,753
1.753 1.698
325 072 22,451
1.794 1.738
350 073 24,189
1.876 1.817
375 077 26,006
1,526 1.478
395 o075 27.484
317 . 307
399,23 C— 27,791

Total 28,693 27,791



TABLE A-lZ’(CONTINUED)

Test ©
Flow Springing Free

Distance From

Upper End of Calculated ~ Adjusted
Weir Head AQ AQ

200

Total Adjusted
Discharge At
Station
(cfs)

(ft.) (ft,) (cfs) . (cfs)

Windy And High Head.,
Uniform Inflow

Assumed
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TABLE A-12 (CONTINUED)

Test 7
Flow Adhering
Distance From ‘ Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station
(ft,) (ft.,)  (cfs) (cfs) . (efs)
0 0.030 : 0,000:  —r
0,504 0,369 :
30 +025 . 369
0269 <197 :
50 024 : : 2566
. 316 s232
75 :023 . 798
.286 2210
100 s022 1,008
0265 194 '
125 022 1.202
. 307 0225 '
150 s025 ' 1.427
«373 s273
175 s027 1.700
U427 .313
200 .028 - 2,013
U437 . 320
225 .027 2,333
455 333
250 +030 ; 2,666
s oU3 . 398 ’
275 5033 3,064
s 584 2428 :
300 ,032 , 3,492
0551 SU0U
325 2031 . 3,896
. 509 »373
350 .030 ‘ ; 4,269
462 . 339
375 028 4,608
s 342 0251
395 <027 4,859
.069 .051
399,23 _— 4,910

Total 6,699 4,910
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Vi

TABLE A-12 (CONTINUED)

Test 8
Flow Adhering Except From 300 To 350
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station
(ft.) (ft,) (cfs) (cfs) (cfs)
0 0,036 0.000:
0,737 0.728
30 .030 .728
- 400 ¢ 395
50 2030 1.123
o473 o467
75 029 1.590
441 o435
100 027 2,025
.416 JU411
125 0027 2,436
, o WL - 438
150 029 : 2,874
2520 0513
175 032 3,387
' 584 0577
200 033 3.964
«584 0577
225 2032 b,54]
2615 607
250 2035 5.148
0715 . 706
275 .038 5.854
o TH7 0738
300 037 6.592
07102 .693
325 . 036 7.285
0652 .6u4h
350 034 7,929
0622 .61l
375 2033 8,543
468 U462
395 032 9,005
.096 095
399023 — 90100

Total 9.216 9,100
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TABLE A-~12 (CONTINUED)

Test 9
Flow Springing Free
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station
(ft.) (ft.) (cfs) (cfs) (cfs)
Q 0,058 0,000
1.556 1,480
30 054 1.480
.872 925
50 .051 2,405
1.166 1.109
75 .051 3,514
' 1,160 1.104
100 .050 4,618
1,153 1.087
125 .050 5,715
1.190 1.132
150 ,053 6.8L47
1.246 1.185
175 055 8,032
1.297 1.234
200 057 9,266
1.307 l.244 :
225 055 10,510
1.323 1.259
250 .058 11,769
1.403 1,335
275 .061 13,104
1.430 1.361
300 . 060 14,465
1.409 1.341
325 .059 15,806
1.375 1,308
350 .057 17.114
1.326 1.262 ;
375 .056 18,376
1.038 988
395 055 » 13,364
.218 0207
399,23 —_— 19,571

Total 20,568 19,571
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TABLE A-13

INFLOW DISTRIBUTION, EXPERIMENT 1u

N

Test 1
Flow Adhering
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station

(ft.) (ft.) (efs) (efs) (cfs)

0 0,025 . 0,000
0,119 0,122

10 021 0122
.194 .198

30 021 321
.189 . 193

50 021 «5 1L
.208 C¢214

75 .018 2728

‘ : 0222 0227 .

100 022 .955
. 246 0252

125 . 020 1,207
.230 235

150 .021 l.442
«230 «235

175 .020 - 1.877
0135 138

190 . 020 1.815
0192 ¢ 196

210 0021 2,011
o lUl o 1U47

225 021 2,158

: 4226 .231 ’

250 . 020 2,389
! 226 0231

275 .021 2.620
«236 0242

300 021 2,862
+236 2242

325 . 020 3,104
«251 0257

350 022 3,361
228 0233

375 018 3,594
.039 ., 040

380 . 018 3.634
151 +155

399523 _ 30789

Total 3,703 “3,789
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TABLE A-13 (CONTINUED)

Test 2
Flow Adhering
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station

(ft.) (ft.) (cfs) (cfs) (cfs)

0 ®.037 0,000
0,276 0,273

10 .035 0273
» 498 1493

30 .033 » 766
cB77 172

50 .033 1.238
.563 «557

75 031 1.795
.5 8L 578

100 .03y 2,373
.610 .604

125 032 2,977
.590 . 584

150 ,033 3.561
.587 .581

175 .032 4,142
. 350 o 346

190 .033 4,488
479 o474

210 .033 4,962
«357 + 353

225 .033 5,315
0577 0571

250 .032 5.886
»580 0574

275 .033 6,460
‘ .593 . 587

300 033 7.047
. 587 . 581

325 .033 7.628
603 597

350 034 8,225
971 2065

375 .031 8.730
. 106 .105

380 ,031 | 8,895
.409 405

399.23 _— 9,300

Total 9,397 9.300
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TABLE A-13 (CONTINUED)

Test 3
Flow Springing Free
Distance From Total Adjusted
Upper End of - Calculated Adjusted Discharge At
Weir Head AQ AQ Station
(ft.) (ft,) (cfs) (cfs) (cfs)
0 0.061 0.000
0,562 0,529
10 : ,058 .529
1.06Y4 1.001
30 .056 ' 1,530
1,039 978
50 .055 2,508
1.261 1.187 ‘
75 .053 3,695
1.272 1.197
100 .056 ‘ 4.892
1.296 1.219
125 .055 6.111
1.283 1.207
150 .055 7,318
1.272 1.197
175 2054 8,515
. 757 0712
190 ,054 9.227
1.018 .958
210 .055 10,185
«770 2725
225 2055 10,910
1.265 1.190
250 054 12,100
1,265 1.190
275 .055 13,290
1.273 1.198
300 .055 ‘ 14,488
- 1.273 1.198
325 <054 , 15,686
1.290 1,214
350 »056 " 16,900
1,265 1.190
375 «052 18,090
24k  .230
380 .053 ' 18,320
946 ' . 890
399,23 -_— 19,210

Total 20,415 . 19,210
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TABLE A-13 (CONTINUED)

Test 4
Flow Springing Free
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station

(ft.) (ft.) (cfs) (cfs) (cfs)

0 0,078 0,000
0.787 0,795

10 .076 « 795
1,515 1.530

30 075 2,325
1.480 1.495

50 074 3.820
1.796 1.814

75 072 5,634
1.825 1.843

100 075 7.477
1.861 1.879

125 074 9.356
1.839 1.857

150 074 11,213
1.825 1,843

175 073 : 13.056
1.089 1,100

190 073 14,156
1.483 1.498

210 075 15.654
1.117 1,128

225 074 16.782
1.832 1,850

250 073 18,632
1.832 1.850

275 074 20.482
1.854 1,872

300 .075 ‘ 22,354
1.861 1,879

325 . 074 24,233
1,872 1.8830

350 075 26.123
1.836 1.854

375 - .072 27.977
0355 . 358

380 2072 28.335
1.350 1.363

399,23 e 29,698

Total 29,409 29,698
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TABLE A~13 (CONTINUED)

Test 5
Flow Springing Free
Distance From Total Adjusted
Upper End of Calculated Adjusted Discharge At
Weir Head AQ AQ Station
(ft.) (ft.) (cfs) (cfs) (cfs)
0 0,095 0.000
1.032 1.036 '
10 . 084 1.036
2,023 2,032
30 092 3.068
1.986 1,995
50 ,091 5.063
2,409 2,419
75 .088 7.482
2.434 2,445
100 ,093 9.927
2.478 2.489
125 .090 , 12,416
2,434 2,445
150 091 14,861
2.421 2:432
175 080 17.293
1,450 1.456
190 090 18,749
1.954 1.962
210 091 20,711
1,465 1.471
225 ., 090 22,182
2,416 2.426
250 090 _ 24,608
2.421 2,432
275 091 27,040
2,454 2.465
300 091 29,505
2.450 2.461
325 .091 31,966
2,486 2,497
350 .093 34,463
2.466 2,477
375 090 36.940
<487 489
380 ,091 37,429
1.894 1.902
399.23 —_ 39,331

Total 39.160 39,331



Station

23,6

73.6
123.6
173.6
223.6
273.6
323,6
373.6
398.2

23.6
.73.6
123.6
173.6
223.6
273.6
323,6
373.6
399.2

(1)
Observed

914.050
914,042
914,034
914.021
913,999
913.967
913.902
913.758
913.586

914.314
914.306
914,296
914.280
914.252
914,213
914,137
913.965
913.,7u6

TABLE A-1Y

OBSERVED AND CALCULATED WATER SURFACE PROFILES,

(2>
Method 1

914,017
914,008
913,994
913,972
913,946
913.913
913.856
913.717
913.586

914,272
914,265
914.251
914,227
914,197
914.157
914.087
913,918
913,746

(3)
Method 2

914,022
914,014
913.999
913.977
913,951
913.918
913.860
913.7189
913,586

914.283
914,276
914.261
914,238
914.207
914.166
914.094
913,924
913,746

Test

(4)
Method 3

914,030
914.022
914,008
913,985
913.960
913.926
8913.868
913,721
913.586

Test

914,298
914,290
914,275
914,252
914,221
914.179
914.107
913.931
913,746

2

3

(5)

Method U

914,043
914.037
914.025
914.006
913.983
913.951
913,894
913,742
913.586

914,315
914,309
914.297
914,277
914,249
914.2089
914,137
913.956
913,746

EXPERIMENT 6, SPATIALLY VARIED FLOW

(6)

Diff.
(2)-(1)

-0.033
-.033
-oOUO
-,0u49
"’0053
-.053
~.0L4b
~,041
-,000

-.042
-.041
-.0U5
-,053
“9055
"0056
~-.050
-,0L47
~.000

(7)

Diff.
(3)-(1)

-0.,028
-.028
-.035
-.0hy
-,0u8
-.0u9
-,0u42
-0039
-,000

.031
.030
-.035
-.0L2
.0us
9047
.0u3
041
.000

(8)
Diff,
(4)-(1)

-0.,020
-.020
"5026
-,036
-,039
-.0u41
"0034
-.037
=0000

"5016
-,016
-.021
-,028
-.031
-,034
~-.030
-,034
-,000

(9)
Diff.

(5)-(1)

-0.007
-.005
-.008
-.015
‘5016
-0016
-,008
~-,016
-,000

+,001
+,003
+.003
“0003
"0003
-‘0004
-.000
“'0009
-.000

602



Station

23,6

73,6
123.6
173.6
223.6
273,6
323.6
373.6
399,72

23.6
73,6

123.6
173.6
223.6
273.6
323,6
373.6
399.2

(1
Observed

914.673
914,665
914.653
914,631
914.598
914,530
314,452
914,242
913,973

914,946
914,930
914,916
914,884
914,838
914,777
914,668
914,433
914,133

(2)
Method 1

914,623
914,615
914,598
914,569
914,532
914,480

/914,393
914,193

913,973

914,860
914,851
914,832
914,799
914,757
914.697
914.598
914,378
914,133

TABLE A-14 (CONTINUED)

(3)
Method 2

914,643
914.635
914.618
914.588
914,550
914,497
914,407
914.202
913,973

914.888
914,873
914,858
914.824
914,780
914,718
914.617
914,391
914,133

Test

(4)
Method 3

914.665
914.657
914,638
914.608
914,570
914,516
91h4.426
914,215
913.973

Test

914.913
914,903
914,881
914,846
914,803
914.740
914.638
914,408
914,133

mn

5

(5)
Method U4

914,686
914.678
914.663
914,637
914,603
914,552
914.463
914.248
913.973

914,837
914,928
914,910
914,878
914,838
914,780
914.678
914,445
914,133

(6)

Diff,
(2)-(1)

-0,050
=-,050
-,055
-.062
-,066
~-,070
-,059
~-,0Uu9
=,000

-,086
-,079
-.,084
-.085
-.081
-.080
-.070
-,055
-.000

(7

Diff,
(3)-(1D

=-0.030
‘“0030
-,035
-.043
-,0L8
-.053
-.0u45
-.040
-,000

-,058
""0051
-.058
~.060
-.058
-.,059
-,051
-.0u43
-,000

(8)

Diff.,
(4)-(1)

-0.008
""0008
"’0015
-,023
=,028
”’003,4
c'0026
-,027
“_0;00-0

~.033
"0027
-.035
~.038
~.035
~.037
~-,030
-,025
-,000

(9)

Diff,

(5)-(1)

+0,013
+,013
+,010
+.006
+.005
+.002
+.011
+.006
+.,000

-,009
'-e002
-.,006
~,005
+,001
+,003
+,011
+,012
+,000

0T¢



TABLE A-14 (CONTINUED)

Test 6
(1) (2) (3) 1) (5) (6) (7) (8) (9)
Station Observed Method 1 Method 2 Method 3 Method # Diff. Diff, Diff. Diff.
(2)-(1) (3)=(1) (4)~(1) (5)~(1)
23.6 915,158 915,054 915.092 915.121 915,148 -0.,104 -0,066 =0,037 -0.010
73,6 915,141 915,045 915,082 915,110 915,139 =,096 -,059 =,031 - =-,0072
123.6 915,126 915,025 915.060 915,087 915,119 =~.101 -,066 =,039 -.,007
173,6 915,093 914,991 915.024 915,050 915,087 =,102 -.069 -,043 -,006
223.6 915,044 914,949 914,979 915,005 915,046 =,095 -,065 =.039 +.0082
273.6 914,981 914,886 914,913 914,939 914,982 -.095 -,068 -, 02 +.001
323,56 914,860 914,780 914,802 914,827 914,872 =.080 ~.,058 -,033 +.012
373.6 914,606 914,547 914,561 914,581 914.621 =.059 -,045 -,025 +,015
399.2 914.284 914,284 914,284 914,284 914,284 ~=,.000 -,000 -.000 +.000
Test

23,6 914,079 914,063 914,070 914.080 914,083 -.,016 -,009 +.001 +.,014
73,6 914,077 914,055 914,061 914,071 914,086 =,022 ~,016 =,006 +.0089
123.6 914,059 914.040 914,046 914,055 914,073 =-,019 -.013 -,004 +.014
173.6 914,049 914,017 914.023 914,032 914,053 =~-,032 -.026 w017 +,.004
223,6 914,033 913,988 913.994 914,003 914,027 =-,0Uu45 -.039 -.,030 ~,006
273.6 914,001 913,951 913.957 913,966 913,992 ~,050 -, 0uy «~,035 -.008
323.6 913.934 913.890 913,894 913.902 913.930 ~.0uy -, 040 -,032 -.00H
373.6 913.748 913.743 913.747 913.749 913.771 ~.,005 -.001 +.,001 +.023
399,2 913,610 913.610 913.610 913.610 913.610 ~.000 -,000 +,000 +.000

TT¢



TABLE A~14% (CONTINUED)

Test 8
(1 (2) (3) u) (5) (6) (7 (8) (9
Station Observed Method 1 Method 2 Method 3 Method 4 Diff, Diff, Diff, Diff,
(2)=-(1) (3)=(1) (W)-(1) (5)=(1)
23.6 914,313 914,287 914,298 914,312 914,329 =0,026 -0.015 -0.001 +0,016
73.6 91y,311 914.278 914,289 914,303 914,322 -,033 -,022 -,008 +.,011
123.6 914,292 914,262 914,273 914,286 914,308 ~,030 -,019 -,006 +,016
173.6 914,279 914,237 914,248 914,261 914,286 ~,042 -,031 ~,018 +.007
223.6 914,259 914,205 914,215 914,229 914,257 -,054 -.0uy -.030 -.,002
273.6 914,222 914,163 914,171 914,184 914,214 =-,058 -,051 -,038 -,008
323,6 914,148 914.091 914.097 914,109 914,140 =.057 -,051 -,039 -,008
373.6 913,937 913.922 913,926 913.933 913,959 ~,015 -.011 -.004L +,022
399,2 913,753 913,753 913.753 913.753 913,753 =.,000 ~.,000 -,000 +,000
Test

23,6 914,692 914,638 914.659 914.681 914,702 -=.054 -,033 -,011 +.,010
73.6 914,689 914,630 914,651 914,671 914,695 -=,059 -.038 -,018 +.006
123.6 914,667 914,613 914,633 914,653 914,679 =-,053 -.034 -.01Y4 +,012
173.6 914,647 914.58%4 914,603 914,623 914,653 ~,063 -, 04y -.024 +.006
223.,6 914,621 914.547 914,565 914,585 914,619 -,074 -.,056 -.036 -,002
273.6 914,574 914,495 914,512 914,531 914.568 ~.,079 -.062 -,043 -,006
323.6 914.483 914,408 914,421 914,440 914,477 ~,075 -,062 -.043 -,006
373,6 914,237 914,208 914,219 914,230 914.264 =-,028 -,018 -,007 +.,027
399.2 914,000 914,000 914,000 914,000 914,000 =.000- -.000 -,000 +.000

¢1e



Station

23.6

73.6
123.6
173,6
223.6
273,6
323.6
373.6
399,2

23,6

73,6
123.6
173.6
223.6
273,6
323.6
373.6
399.2

1
Observed

914,011
914,003
913.988
913.972
913,94k
913.910
913.863
913,752
913,599

914,319
914,310
914,297
914,276
914,248
914.208
914,148
914,004
913,811

TABLE A-15

OBSERVED AND CALCULATED WATER SURFACE PROFILES,

(2)
Method 1

913,994
913.986
813,967
913.937
913.903
913.865
913.809
913.688
913,599

914.281
914,273
914,255
914,226
914,191
914,148
914,081
913,931

- 913.811

(3)
Method 2

913.999
913.990
8913.972
913,941
913.907
913,869
913,812
913,690
913.599

914,294
914,285
914,267
914.237
914,201
914,157
914,088
913.935
913.811

Test 1

(4)
Method 3

914,007
913,998
913.979
913,948
913,914
913,876
913,818
913,691
913,599

Test

914,310
914,300
914,281
914,250
914,215
914.169
914,099
913.938
913,811

EXPERIMENT 14, SPATIALLY VARIED FLOW

(5) (6)
Method 4 Diff,
(2)-(1)

914,027 ~0.,017
914,022 ~-,017
914,010 ~.022
913,983 -,035
913,963 ~.041
913.928 ~-.0u5
913,872 -,054
913,731 ~.064
913,599 =.000"
914,338 -.038
914,332 ~,037
914,320 =.042
914,298 -,050
914,269 ~.057
914,227 -.060
914,157 -.067
- 913,983 -.073
913.811 -.000

(7)

Diff,
(3)-(1)

-0.012
~.013
-.017
"'0031
-.037
-. 041
-.051
-.062
-.000

~.025
.025
-.030
-,039
-. 047
051
0060
.069
-.000

(8)
Diff,
(4)~(1)

=0.004
-,005
-.010
=-.024
~-.,030
-.034
=.0L45
-.061
-,000

-,009
-,010
-.016
=,026
-.032
-,039
-.0u49
-0066
=.000

(3)
Diff.

(5)-(1

+0.017
+.,019
+,021
+,017
+,019
+.,018
+,009
-.021
-,000

+.019
+,022
+,023
+.022
+,021
+.019
+.,009
-,021
-.000

€TC



Station

23,6

73,6
123.6
173.6
223.6
273.6
323.6
373.6
399.2

. 23.6

73.6
123.6
173.6
223.6
273.6
323.6
373.6
399.2

(1)
Observed

914.672
914.663
alu.647
91h4.624
914,588
914.542
914,465
914.287
914,054

914.940
914,931
914,912
914.887
914,847
914,793
914,702
914.500
914,244

(2)
Method 1

814.588
914,579
914,561
914,532
914.496
914,447
914,368
914,196
914.054

914,815
914.807
914,789
914,758
914,723
914.671
914,584
914,397
914,244

TABLE A~15 (CONTINUED)

(3)
Method 2

914,612
914.603
914,584
914,553
914,515
914, L4blL
914,382
914,204
914,054

914,852
914,842
914.823
914,791
914,752
914.696
914.605
914,411
914,24y

Test 3

(W)
Method 3

914.636
914,625
914,605
914,574
914,536
914, L8
914,401
914,213
314,054

Test

314,882
914,871
314 850
914,817
914,778
914,721
914.628
914,422
914,244

(52 (6)
Method 4 Diff,
(2)=-(1)

914,669 =0,084
914,662 -,08Y4
914,648 -,086
914,623 -.,092
914,591 -.093
914,543 =-.095
314,460 =,097

914,260 ~.091
914.054 =000
914,918 =-,125
914,911 -.124
314,835 ~,123
914,869 ~-.128
914,835 -.12Y4
914.782 -.122
914.688 ~,118
314,470 -,103
914,244 =,000

(7)
Diff,
(3)=(1)

-0,060
-,060
-.063
-.071

074

-,078

-.083

-,083

..000

-088
.088
.089
.096
-0095
.087
-.097
-.089
-.000

(8)
Diff,
(4)=(1)

-0,036
=""0038
“00'42
-.050
-,053
-,058
=.064
”007'4
-,000

-.058
-,060
-,062
-,070
~,069
-.072
-,074
-.078
-.000

(9)
Diff,
(5)-(1)

-0,003
-.001
+.001
"‘0001
~-,002
+,001
=,005
-,027
-.000

-,022
-.020
-,017
~-,018
-.012
-.010
-.01k
-.030
-.000

hTe



Station

23.6

73.6
123,6
173.6
223.6
273.6
323.6
373.6
399.2

(1)
Observed

915.150
915,140
915.120
915.091
915.048
914,990
914.887
914,666
914,396

(2)
Method 1

314.987
914.978
914,959
914.929
914,891
914.836
914,745
914,553
914,396

TABLE A-15 (CONTINUED)

(3)
Method 2

315,033
314.023
915,002

914,969

914.928
914.869
914.772
314.560
914.396

Test 5

)
Method 3

315,066
915,055
915,033
914,999
914.958
914,898
914.798
914.583
914,336

(5)
Method 4

315.104
315,096
915.080
915.052
915.015
914.9589
914,860
914.632
914,396

(6)

Diff.
(2)-(1)

~0,163
~,163
"0161
"0162
-.157
-.154
-o142
-,113
~.000

(7)

Diff.
(3)-(1)

-0.117
~-.117
~-.118
"0122
-.120

-.121

-.115
"‘0106
-.000

(8)

Diff,
(W)-(1)

-0.084
-.085
-.087
-,092
-.090
"5092
-.089
-,083
-.,000

(9)

Diff.

(5)-(

-0.0u46
-.0u486
-.040
-.039
-.033
-.031
-.027
-.03Uu
-.000

1)

ST
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TABLE B-~1

LISTING OF POLYFIT FORTRAN IV PROGRAM

la¥aNakakakaks!

MONSS JOB 211140007 MCCOOL  JANRUARY 21965

MONS S ASGN MGOsA2

MONSS - ASGN MJBsA3

MONSS MODE GO»TEST

MONSS EXEQ FORTRANsSOF»S1U»08005559POLYFIT
POLYFIT

THIS PROGRAM 1S FOR THE 1410
CALCULATES A POLYNOMIAL OF UP TO DEGREE 4 TO FIT OBSERVED DATA.
GIVES OBSERVED AND CALCULATED VALUES OF Y THEN RUNS REGRESSION
ON YOBS AND YCAL.
N=DEGREE OF EQUATION
K=NUMBER OF OBSERVATIONS
OIMENSION X(100)eY(100}sA(Te7)sB(E}(CALLL00}
150 FORMAT{21XsF10e3s5XsF1Ua336XsF10a395XeF 10431}
175 FORMAT{12X»19HEQe OF XOP1 .VS XCP2+//312Xs2HY=sF9abolH+yFPales1HX»3X
1512HCORRs COEFe=sF9¢343X310HSTDs DEV =sFFe3+//)
300 FORMAT(213)
310 FORMAT(10F8,.3}
323 FORMAT{5Xs9HPOLY EQ - s2HY=sF10e3s3H +pFlUe3+3HX ++F10e399H{X#*2}
1 +sF10e3s9H(X%¥#3)  +sFl043sFHIX#RG) +oF10s396H(XER5)//)
324 FORMAT(1346£1246)
400 FORMAT{27X»4HXPR2+410X¢+6HXOBSP1»9Xs6HXCALPL»9Xs3HDEV S/ /)
500 FORMAT(1H1}
600 FORMAT(//)
WRITE(34500)
READ(193003NsK
M=K
JJ=N
WRITE(34600)
READE1s310MLYCI)oX{T)slnleM)
DO 40 KK=1lsJJ
N=KK
NP1=N+1
DO. 10 J=1sNP1
DO 10 Ks1lsNP1
KlsJ+K=~2
AtJsK)=0e
DO 10 I=1:M .
10 AlJsKI=A(JeKI+XL ]} nEK
Atlsli=M
NP2=N+2
DO11J=14NP1L
11 A{JsNP21=0s
DOl4lcl M
14 AGL1sNP2I=ALL1sNP2I+Y (]
DO15J22 NP1
DO151=1+M
K2=J-1
15 ALJaNP2I=ALJINP2I+(IXI1)IROK2)I®(Y(]))
DO 16 I=1s6
16 B{131=0.
DO 420 K=lsN
KP13K+1
L=K
DO 402 I1=KP1sNP1
IF{ABS{A{I1+K})eLESABS(A(LIK}}IGO TO 402
401 L=t
402 CONTINUE
IF{L.LE«K)GO TD 420
405 DO 410 JxlpNP2
TEMP=A(KyJ}
AlKsJr=AlLsJ}
410 A{LsJ)=TEMP
420 CONTINUE
DO 102 I=1sN
200 REC=1e/AlIs]}
IPl=l+]
0O 111 J=IP1sNP2
111 AtlsJ)mA(lsJ)RREC

~N

w



[a¥a)

101
102

103
51

52

53

54

55

22

2

-

2

=3

4

o
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TABLE B~1 (CONTINUED)

DO 102 K=IP1sNP1
IF(A(Ks1)+EQeD41GO TO 102
REC2Le/AtKs 1}

DO 101 JsIPlsNP2
A{KsJ)=AIK s J)SREC=ALT+J}

CONTINUE
BINPLIZAINPLsNP21/AINPLsNPL}

NNN=0

DO 103 MMa1sN

13NP1-MM

BUINEAIT NP2}

NNN=NNN+1

DO 103 J=1+NNN

MI=NP2-J

BII)=B(II-A(]sM3I%B(M3)

GO TO (51552553556955) oN
WRITE(3¢3231B(1)»B(2)
WRETEI2+3264)1KKsBI1)35B(2)

GO TO 22
WRETE1353231B411sB(2)sB(3)
WRITE(2+3261KKsB{1)+B(2)+8(3)

Go To 22
WRITE(3+3231B(1)sB(2)4B131+B(4)
WRITE(253241KKsBU1}1+B121+8(3148(4)
GO TO 22
WRITE(3+3231B(1)»B12}+B(31+B14)2B(5)
WRITE(2+324)KKsB(11+Bi213BE3)sBE4)»BL5)
6o 10 22
WRITE(3+323)B(11sB(21+B(31sB(4)sB15)s016}
WRITE(2+324)KK2BE1) sBL2)+B(31+B(61sB{5)2Bi6)
CALCULATING YCALL1}

WRITE(35600)

WRITE(3+6400}

DO 21 I=i+M
YCALEII=BI1)+B(2)%X{1)+BI3) X1 I#XITI+BI4I¥XCIIEXLII#X(1)4BI5)#XL]
LIeX{TIVeX (T ex 1)

DEV=Y(13~YCALELY .
WRITE(3¢1500X(11sY{1)sYCALITI+DEV
WRITE(3+600}

REGRESSION OF YOBS VS YCAL

LEAST SQUARES EQUATION Y = A + B8X
SUMX=04

SUMY =0

5XSQ=0,

SUMXY=0.

SYSQ=0,

C=0.

DO 20 I=1:M

C=C+1la

SUMY=SUMY+Y (1}

SUMX=SUMX+YCAL (1)
SXS5Q=SXSQ+YCAL{1)#x2
SUMXY3SUMXY+YCALLLeY L]}
SYSQESYSQ+Y.(1) ##2 :
CONTINUE

SLYSQESYSQ-t{SUNY##2)/C)
SLXSQ=5XSQ~( {SUMX&#2)/C)
SLXYaSUMXY~( { SUMX#SUMY ) /C)

Ze{ {SUMY /C)~( SUMKY/SUMX ) /¢ {SUMX/C 1~ SXSQ/ SUMX )}
W2 { SUMY =2 *SUMX } /€
R=SLXY/(SQRT{SLXSQ®SLYSQ})
SDSQ=SLYSQ-({SLXY#%21/SLXSQ)
55Q=5DSQ/ (C~240}

S =SQRT(S5Q}

WRITE(341751WsZsRsS

CONTINUE

GO TO 2

END
MONS S EXEU LINKLOAD

PHASEENT IREPRQG
CALL POLYF1T

MONS$ EXEQ ENT1REPROGsMJB
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TABLE B-2

LISTING OF ALPHABET 3 FORTRAN IV PROGRAM

[a¥a¥a¥a¥a¥a¥aYalataYaNa¥ataReXakakalal

300
301
317
318
319
320

321
322
324

-

N

o

MONSS$ JOB 211140007 MCCOOLs JANUARY s 1965
MONS$ ASGN MGOsA2 .
MONS $ ASGN MJBsA3

MONSS MODE GOsTEST

MONS$ EXEQ FORTRANSSOF »SIUs8s59+sALPHABET3
ALPHABET?3

THIS PROGRAM IS5 FOR THE 1410

PROGRAM 1S FOR FINDING BOUSSINESQ AND CORIOLIS CQEFFICIENTS
PROGRAM USES SIMPSON RULE TO FIND AREA UNDER CURVES OF V VSeAs
VEE2 VYSeAs AND V#¥3 yS.A

THIS PROGRAM TAKES OUTPUT FROM POLYFIT PROGRAM

B8{11 ARE COEFFICIENTS OF A POLYNOMIAL FIT OF VELOCITY TO AREA
8(1) ARE READ IN ORDER OF INCREASING POWERS OF A
NN=DEGREE OF POLYNOMIAL

N=TOTAL NUMBER OF TESTS TIMES NUMBER OF SECTIONS IN EACH
EXPER TMENT

NE=EXPERIMENT NUMBER

NT=TEST NUMBER

TION=SECTION NUMBER

QT=TOTAL DISCHARGE AT SECTION

AT=TOTAL AREA

XFIRST =ZERO

XLAST=AREA WITHIN LAST ISOVEL

DELX=INTERVAL OF AREA FOR INTEGRATION BY SIMPSON RULE
DIMENSION Bi6)

FORMAT(3F843)
FORMAT{A43139A49A5+134A4 1 A8 A3 sA6sFTe39ATsF743)
FORMAT{213)
FORMAT(3HAL=9E12.6+6HALPHA=2EL1246s5HBETA®»EL1246)
FORMAT(1H1//57Xs17THSVF EXPERIMENT 1371
FORMAT(31X»4HTEST s5Xs 7THSECTION37Xs2HAT » JOX s2HAT 210X #2HAL 98X e
15HALPHAs6Xs4HBETA/ /)
FORMAT{31X+13+8XsA3:6X93(F743s5X}+1F6e395X2F643/1)
FORMAT(1HI1)}

FORMAT(13+6E1246)

READ(1s317) NsNE

WRITE(3+319} NE

WRITE(3,320)

1=0 !
READ(1¢3011EXPsNE+SKIPLsTESToNT»SKIP2+SECs TLONsDISCHsQT s AREASAT
READ(1»300) DELXeXFIRST4XLAST

READ(1+324) NNs(BlJ)ed=1161

NNN=NN+1

NNNN=NNN+1

DO 6 J=NNAN»6

BlJ}=0,

K= ((XLAST—XF]RST)/DELX)*I.

L={K-131/2
. ALPHA=0.

BETA=0,

=0,

X1=XFIRST

X2#X1+DELX }

X33X2+DELX -
CALL VALUE(B(L3+B121sB(31sB14128(5) sBI61sX1sY1sYSLoYCL)
CALL VALUE{B{1)sB(2)eB{3)sB{4)sB(5)9BI6)sX2+Y2:Y¥S2sYC2}
CALL VALUE(BI1)+B(2)B(31+B14)»B(5)sBI6)sX3+Y34YS3YC3)
0D 40 I=1lst

ALPHA=ALPHA+DELX#{YC1l+4#YC2+Y(3}/3
BETA=BETA+DELX*{YS1+&4,¥YS2+YS3}/3.
Q=Q+DELX*(Y1+he#Y2+Y3]/3,

X12X3

Yi=Y3

YS1=YS3

YC1=YC3

X2=X3+DELX

X33 X2+DELX

CALL VALUE(BIL)+BI21sB13)1sBi4)sB15)sBI6) eX2sY25Y52,YC2}
CALL VALUE(BU1)+B(2)+B13)+B(4)sB(519B{6)sX35¥39Y5307C3)
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TABLE B~2 (CONTINUED)

CONTINUE

IF(E{K-(2#L)~1)4EQe0} GO TO 50

ALPHRASALPHA+DELX#{YC1+YC21/2,

BETA=BETA+DELX®#{YS1+Y521/2,

Q=Q+DELX#{Y1+Y2}/2,

Xi=x2

Y1l=Y2

QR=QT-Q

Al=24%QR/Y1+X1

SaY1/{X1-Al}
ALPHASALPHA+SESESE( ({ (A1/Ge~ALl) WAL+ 5% ALEA]IRAL-ALFALGAL)RAL~
TUEIXL/40=AL)EX1+1a5%A1RAL I EX1~ALBAL#AL ¥ X])

ALPHA®= (ATH#AT/{QT*#QT#QT ) ) #ALPHA
BETA=BETA+S#S#({{A)/34-Al)RAL+ALRALIRAL-((X]1/3¢~A1)%X]1+A1RAL}¥X]}
BETA={AT/{QT#*QT3)#BETA

WRITE(2+30) 1EXPINE s SKIPL4TESToNT »SKIP23SECHTIONsDISCHQTsAREASAT
WRITE{2+3261NNe({B{J])sJ21oNNN) S
WRITE(2+318}1A15ALPHAYBETA
WRITE(3+321INT+TIONsQTsATsALlsALPHABETA

I=j+]
IF{14LTeN} GO TO 2
WRITE(3,322)
GO TO 1
END
MONSS EXEQ FORTRAN»SOFs51U»8+5

SUBROUTINE VALUE{B1sB2sB3+B4+85:B6sXsYsYSeYC)
Yo({({BOEX+B5)}#X+B4 ) RX+B3 ) ¥X+B2)#x+B)
YSaYRY
YC=Y#Y#Y
RETURN
END
MONSS ~  EXEQ LINKLOAD
PHASEENTIREPROG
CALL ALPHABET3
MONSS$ EXEQ ENTIREPROGsMJB



TABLE B-3

LISTING OoF LS02 FORTRAN IV PROCRAM

(X2 aVaTaNaRaXatakatakaXaNaXaXa)

MONSS JOB ' 211140007 D i MCCooL sAUGUSTs 19643 LINEARLSO2

MONSS ASGN MGOsA2
MONSS ASGN MJB,A3
MONS$S MODE GOSTEST
MONS $ EXEQ FORTRANJSOF»SIUs16s2094 »LINEARLSO2

PRGGRAM TO TRANSFORM DATA AND FIT LINEAR EQUATION BY LEAST SQUARE
THIS PROGRAM 1S FOR THE 1410

THIS PROGRAM WRITTEN BY We Re GWINN

IDENT 15 TWO CARDS CONTAINING HEADING

NOE=NUMBER OF EQUATIONS .

CONTROL CARDs ZERO=NO TRANSFORMATION

LOGX=0 OR ‘1 LOGX
ONX=0 OR 1 17X
XN=0 OR EXPONENT. X#®XN
LOGY=0 OR 1} LOGY
ONY=0 OR 1 17y
XONY20 OR 1 X/Y

N=NUMBER OF POINTS ,
SIX DIGIT ACCURACY» FIVE DIGITS IF LOG TRANSFORM

CAUTIONs WATCH NUMBER OF DIGITS TO LEFT OF DECIMAL.

BOTH PUNCH AND PRINT. QUTRUT

INTEGER ONXs XONY s ONY ¢ SUMX » SUMY o SUMXY » SUMX X s SUMYY 3 SXY » SXX» SYY
REAL NP

DIMENSION X{100)»Y(100)IDENT{16) N

100 FORMAT{ 8A10/ BAlU/ 22Xs13s 7Xs 125 5Xs [2s 4Xs ELR2e6s 7Xs 12+ 5Xa
112, 5Xs 121

101 FORMAT (18Xs 14/(32Xs F8e3s FlOs4))

102 FORMAT { B8A1l0/ B8Al0//)

103 FORMAT {1Hl, 27Xs 8A10/27Xs BALO//}

104 FORMAT {3E12.6s 43X 1ril)

105 FORMAT (44Xs12HINTERCEPT = 3E12+6s 9H SLOPE = '» E1246/ 25Xs31H STA
INDARD ERROR OF INTERCEPT = » EL246927H STANDARD ERROR OF SLOPE * »
2 E1246/715%y 1HX213Xs 1HY»8Xs11HESTIMATED Ys 1X» 14HDEVJATION OF Y
3y 2X» 16HSQe OF DEVIATIONs 5XsTHINPUT X 7TXsTHINPUT Y»5Xs11HINPUT. €
4STe¥/) )

106 FORMAT (29HSTANDARD ERRQR OF INTERCEPT =» EL12e6»25HSTANDARD ERROR
10F SLOPE =»E1246// BXs LHXs 13Xs 1HY» 8Xs 11HESTIMATED Yy 1Xs L4HD
2EVIATION OF Y» 2X916HSQ. OF DEVIATION/)

107 FORMAT { 4E14469E1746)

108 FORMAT { 7Xs 4Elbsbs E17e6+ EL60692E1446)

109 FORMAT {/ 1IHINTERCEPT. =9E12469 1X¢7HSLOPE =9E1206+1X923HSTANDA
1RD ERROR OF ESTea»E12.6/21X+2THCORRELATION COEFFICIENT R ®+E12.6
21/ .

110 FORMAT (/27Xs 11IHINTERCEPT 2sE124691X97HiSLOPE ®9E12a691X223HSTANDA
1RD ERROR OF ESTe=+E1246/48X+»27THCORRELATION COEFFKCIENT R IoElZ-b)
111 FORMAT (1H1}

17 CONTINUE
READ(l'lou)IDENT’NOE.LOGX.ONX’XN)LOGY’ON'.XONY
WRITE (3,103) IDENT
WRITE (251023 IDENT
READ. (151013 Ns {(X{I}sY{I}el=1laN}

NP = FLOAT (N}
L =4 .
K= 4
S8l = 040
SBO = 0.0
IF {LOGXsEQeV) GO TQ 3
L=1
J=0
DO 2 Is1sN
JaJ+ed
2 X(J) meh34294%ALOGIXIJ))
3 IF (ONX+EQeQ) GQ TO 5
L =2
J =0
DO 4 I=1sN
J = q + 1
4 XtJE = 1e/X{JY
§ IF (XNeEQs0o0) GO TO 7

-
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TABLE B-3 (CONTINUED)

L =3

J =0

DO & I=1sN

Ja g+l

IF{X1J)aGTa040) XiJ) = X{J)ERXN
IF(X1J)alTa06e0} X{J) = X{J)RH{IFIXIXN))
IF (LOGY<«EQ.0) GO TO 9

K =1

J=o

DO 8 I=l,sN

Jw J o+l

Y{Jl = o434294%AL0GIYEIY)

1F {ONY«EQ.0} GO TO 11

K =2

J =0

DO 10 lalsN

J=J 4+ 1

YiJ) = 1e/Y(J}

IF (XONY.EQ.0) GO TO 13

K & 3

J =0

DO 12 I=IsN

J = J o+l

YUJ) = XtJY/YiEd)

SUMY = 0

SUMXY. = 0

SuUMXx a 0

SUMXX = O

SUMYY = 0

4=0

D0 14 [Ix1sN

JxJ+ 1

NX = JTFIX{EX{J)®#10000004)40451
NY = IFEX{tY{iJ1%10000004)+05)
SUMX = SUMX+NX

SUMY = SUMY + NY

SUMXY = SUMXY .+ (NX#NY}

SUMXX = SUMXX + (NX®NX}

SUMYY = SUMYY -+ (NY®NY}

. SXY = SUMXY ~ {(SUMX#SUMY)/N)

15

19
16

18

20
21
22
23

24
25

SXX. = SUMXX - ((SUMX®S5UMX}/N)

SYY = SUMYY — {{SUMY#SUMY}/N)
Bl={FLOAT{1SXY*1000000)/5XX1}%,000001]
BO=({FLOAT{SUMY/N)}~B1*(FLOAT{SUMX/N}1}¥,.000001

IF (NPsLE«2.} GO TO 15

SSY=3{FLOAT{{SYY~{ {SXY®SXY}/S5XX}}/(N-2)})%.000000000001
SY = SQRTI{SSY)

SSB1 = SSY/{{FLOAT{SXX)}#,000000000001)

SB1 = SQRTiSS81} .

SSBU = SSY®({1e/NP) +{{FLOATI{(SUMX/N]®{SUMX/N}®1000000}/SXX}}%
1000001141

580 = SQRTISSBO)

R=SQRT{ (FLOAT( ¢ {S5XY®1000000)/SXX}* 1 (SXY*100000Q)/SYY1)}
1#,000000000001)

WRITE (35105) BO»B1sSBO+SBL

WRITE (2+106) SBUsSBI1

J =0

SUMDES = 0.0

DO 16 I=1sN

J = J + 1

YHAT 3°'B0 + (Bl#X{J})

DEVY = Y{(J) - YHAT

SQDEV = DEVY * DEVY

- SUMDES = SUMDES + SQDEV

GO TO {20421922+233 8L

WRITE (25307} X{JisY(J}oYHATsDEVY s SQDEV
WRITE (351081 X6J}sY{JloYHAT4DEVYsSQDEVsXINsYINsYHATIN
SEREST = 040

IF {NPsLE+2+1 GO TO 18

SEREST = SQRT(SUMDES/INP-2e¢}}
WRITE (24104} BOs BLlsSEREST
WRITE (24109} BO»B1»SERESTR
WRITE (35110} BU»B1sSERESTR
NOE = NOE =~ 1

IF {NOE+GEe«1l} GO TO I

WRITE (3s111) '

GO To 17

XIN = 104%%E(X{J))

GO TO 24

XIN = 1a7X{J)

G0 TO 24

XIN = X(JI®#(1e/XN}

GO TO 24

XIN = XU{J}

GO TO (255264274281 sK

YIN = 10.%%(Y¢{J))

YHATIN = 10.¥8{YHAT)
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28

TABLE B-3 (CONTINUED)

GO TO 19
YIN = 1s/Y1J)
YHATIN = 1s/YHAT
GO TO 19
YIN = XtJ3/Y0Y)
YHATIN = X{J}/YHAT
GO TO 19
YIN » YJ}
YHATIN = YHAT
GO TO 19
END
MONSS EXEQ LINKLOAD
PHASEENTIREPROG
CALL LINEARLS02
MONSS EXEQ ENTIREPROGsMJB
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TABLE B-4

LISTING OF RETARDANCE 3 FORTRAN IV PROGRAM
USED TO COMPUTE RESISTANCE CONSIDERING

ONAOANNNOANNNNONNNNONNNNANAANNNONNNNNNNAANNANAANNNONANNNANNNNAN

BOUSSINESQ COEFFICIENT

MONSS JOB 211140007 MCCOoOoL FEBﬁUARV. 1965 RETARDANCE3

MONSS ASGN MGO»A2
MONSS ASGN 'MJBrA3’
MONS S MODE GO+ TEST
MONS S EXEQ FORTRANsSOF »SIUv6p 300 sMANNINGSN

RETARDANCE3 PROGRAM FOR 1410

RETARDANCE PROGRAM ALTERED TOQ UTELIZE BOUSSINESQ COEFFICIENTS

THIS 1S AN ADAPTATION OF A PROGRAM WRITTEN BY We Hes GWINN

DELTX =DISTANCE BETWEEN READINGS ACROSS CHANNEL

SCALE = MODEL LENGTA SCALE

NGT = TOTAL NUMBER OF GAGES

NT = TOTAL NUMBER OF TESTS

VISNUE(T} = KINEMATIC viSCOSITY (FT2/SEC) (l=} FOR 33 DEGREES F |}

STAU = UPSTREAM STATION DISTANCE IN FEET

NYU & NUMBER OF UY READINGS»UPSTREAM (EQUAL OR LESS THAN 1Q@¢)

NOGAU = UPSTREAM GAGE NUMBER (0 TO 9 ONLY) .

2EROU = UPSTREAM GAGE ZERO (PRDTO FEET){SHQULD BE THE SAME FOR
BOTTOM READINGS AND WATER SURFACE ELEVATION) .

Uy = ELEVATION OF GROUND SURFACE ACROSS SECTIONsUPSTREAM SECTION

NOTEy» UY AND DY » MAINCHANNEL - READ IN FIRST WlTH PEAKS FOLLOWING
MAIN CHANNEL

‘STAD = DOWNSTREAM STATION DISTANCE IN FEET SHDULD BE GREATER THAN

STAU}
NYD = NUMBER OF DY READINGSsDOWNSTREAM (EQUAL. OR LESS THAN 100)
NOGAD = DOWNSTREAM GAGE NUMBER { ‘0 TO'9 ONLY)
ZEROD = DOWNSTREAM GAGE ZERQ ETCa

DY = ELEVATION OF GROUND SURFACE ACRQSS SECTION» DOWNSTREAM SECTION

STA3 = THIRD STATION DOWNSTREAM (PROTOTVPE FEET)
NY3 = NUMBER OF Y3 READINGS

NOGA3 * THIRD GAGE DOWNSTREAM NUMBER (0 -TO 9.0NLVI
ZERO3 = THIRD GAGE -DOWNSTREAM ZERQ ETC.

¥3(1) = ELEVATION OF GROUND SURFACE ACROSS SECTION» THIRD GAGE DOWNS

NOTEST = TEST NUMBER

NEX 3 EXPERIMENT NUMBER

MO = MONTH

DAY = DAY OF MONTH

YEAR = LAST.IwO DIGITS OF YEAR

QM = MODEL DISCHARGE (CaFeSs)

TEMP = WATER TEMPERATURE (DEGREES F )

UELEVM = UPSTREAM WATER SURFACE ELEVATION (MODEL FEET)
DELEVM DOWNSTREAM WATER SURFACE  ELEVATION (MODEL FEET}

=
ELEVM2 = WATER SURFACE ELEVATION THIRD STATION DOWNSTREAM (MODEL. FT}

TIME FACTOR. (BETWEEN O AND 1)( 0 = BEFORE READINGS-
. 1 = AFTER TEST BOTTOM READINGS USED)
DURFLO = DURAT[ON OF FLOW (MIN.)
IDENT = IDENTIFICATION (13SPACES)
NREACH = REACH NUMBER {(COMPOSED OF GAGE NUMBERS)
QP 3 PROTOTYPE DISCHARGE (CeFeSel
AVHYRP = AVERAGE HYDRAULIC RADIUS (PROTOTYPE)
AVVEL. = AVERAGE VELOCITY
AVVR = AVERAGE VELOCITY TIMES THAE HVDRAUL[C RADIUS
AVAREA = AVERAGE AREA
CHEZY = CHEZY C
ROUGHN = MANNINGS N (PROTOTYPE!}
WETPER = WETTED PERIMETER .
CENDEP = CENTER DEPTH ( FEET )
SCOUR = RATE OF SCOUR (IN/HR )
KN = KUTTERS N
AVHYRM = AVERAGE HYDRAULIC RADIUS (MODEL)
RENOLD = REYNOLDS NUMBER
F = DARCY-WEISBACH RESISTANCE COEFFICIENT
ROUGNM = MANNINGS N (MODEL) |
REAL KNs+MAXD3 sMAXDUMAXDD sMAXD3E sMAXDUE +MAXODE » IDENTL1 4 1DENT 2
11DENT3

TIMEFA
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TABLE B-4 (CONTINUED)

INTEGER DAYsYEARSTEMP ¢BRYUSERYU'BRYD»ERYDeBRY34ERY3sDURFLO
DIMENSION UY{100)sVISNUEI68)+Y3(100),0Y{100)

90 FORMAT (14XsFBe2524X215512Xs1395XsF943/19F843))

91 FORMAT (7XsF6e2513XsF7e2517X912+20X+14/(8E10eh}}

92 FORMAT (13s412+E1045513 3(J2+sE1065)9F4e2:13+A69A6IAlL)

93 FORMAT (////19X»BHCHANNEL +A635ABsAL1TH EXPERIMENT NOe»l3}

94 FORMAT(i3418s1X9313sF9¢20F902s F6e34F7e2FBa20FTe341507Xs1lH1s/13s
11BsF6e2sFBe5eF7a20FTatsFBeabsFT7e39F13409FP0403Xs1H2)

9% FORMAT (80X}

96 FORMAT (1H1 /46Xy 8HCHANNEL +A61A6sAl916H EXPERIMENT NOe»13}

97 FORMAT ( 6Xs13+1691X9313sF9424FB8a2+F7e21FBa2sFBe3sFT049F74214215»
1F8e20FTa2+FBebsFTeksF943)

‘99 FORMAT (////1X}

100 FORMAT (//71X}

101 FORMAT{1H1}

103 FORMAT(8OHTEST REACH MEAN MEAN WE
1TTED  HYDs WATER 1/80H NO. NOs DATE DI SCHARGE AREA
2 VEL. BETA  PERIMs RADIUS TEMP, 1//80H
3 VALUE FRICTION 2/
5B80HTEST REACH CENTER CHEZY MANNING KUTTER OF REYNOL
6DS FACTOR 2/80H NQo NO: DEPTH SLOPE ° C N N
7 VR NO. F 273 .

104 FORMAT(2E12.6) .
106 FORMAT {/19Xs4HDATE» 14X »2THMEAN MEAN WETTED HYDas 17Xs4HDURS s
17Xs 4HRATE $ 27X SHVALUE/ 5X»122HTEST REACH OF DISCHARGE AREA
2 VEL. PERIMe RADIUS SLOPE CENTER OF WATER OF CHEZY M
3ANNING KUTTER QF 7 6Xs 19HNO.
4 NO. TESTINGs13Xs1HA» 7Xs 1HVs7Xs1HP 16X 9 1HR» 12X+ 28HDEPTH FLOW TE
5MPs SCOUR Cr7Xs HNs 7TXs LHNs7Xe . 2HYR27/ TX+1H1s5Xe1H2 27X 2 1H348Xs
61HA9TXs 1 HS 9 TX s 1HEs TX s 1HT 06X 1HBs TXs 1HI 96X s 2H1094Xs2H11 93K 2H12s4X s
T2H1355X92H1436Xs2H1596Xs2H163TX92H1T7//28X+35HCeFeSe  S5QeFTs  FePo
85, FTe FT-»lJX’ZIHFTq MIN. DEGeF IN/HR/1}
200 WRITE (3,101)
READ (1s91)DELTXsSCALE«NGTsNTs VISNUE
READ{ 15104 )COEFFsEXPON
23 NOT=NT
NOL = 40
READ (1-90)STAU.NYU:NOGAU.ZEROU.(UY(I)»I'].NYU)
PO 3011 = 1sNYY
301 UY(I) = UYil) + ZEROU
READ {190} STADoNYDbNOGAD-ZEROD»(DV(llol'loNVDl
DO 302 | = 1sNYD
302 DYtly = DY{1) + ZEROD
IF (NGTWLT»3160 TO 21
READ (1590) STA3»NV3|NOGA3-ZER03i(V!(I)»l'l»NVB)
- D0 303 I = 1sNY3
303 Y3(l) = Y3({I) + Z2ERO3
21 k=1
INDEX=0Q

11 READ {14927 NOTESTsNEXsMOr DAYsYEAR +QM» TEMP sNQGAUSUELEVM ¢NOGAD -

lDELEVH»NOGAB;ELEVMS-TlMEFA-DURFLO-lDENTl IDENIZ-IDENT3

IF {ELEVM3.EQe0:0}GO 1O 13

ELEV3P=(ELEVM3*SCALE}+2ZERO3 .

CALL AREAHR{ELEV3P,AREA3sHYRAD3sY3sDELTX. sNY3 3 MAXD3)}
13 NREACH® {NOGAU®*10}+NOGAD

QP= QM¥* {SCALE#*2,5)

UELEVP={UELEVM*SCALE}+ZERQU

DELEVP=IDELEVM®SCALE}+2EROD .

CALL AREAHR{UELEVPyUAREASUHYRADUY+DELTX SNYUsMAXQU}

CALL AREAHR{DELEVP3sDAREAsDHYRAD DY sDELTX »NYD +MAXDD }

IF {TIMEFA«NE«VU«0}GO TO: 24

SCOURD = Us0

SCOURU = 0.0

SCOUR3 = 040

SCOURA = 0.0
14 |F {DAREAJEQ.0.0) GO TO 5

1IF (UAREA+EQ.0+0} GO TO §

BETAU=COEFF #QP##EXPON

1000 BETAD=BETAU

BETA=BETAU

SLOPE=(UELEVP+{ (( BETAU'QP'QP;I(UAREA'UAREA))Iﬁb-B)—DELEVP-

14(({ BETAD®QP#QP}/{DAREA®DAREA) } /64431 )/(STAD-5TAU}

}FUSLOPEJLE«D.0)GO TO 5 i

AVAR235 (UAREA% {UHYRAD##,666667 }+{DAREA®{DHYRAD##,666667 11)/24

ROUGHN={1+4B84/QP } ®*AVAR23%{SLOPE#*®,5)

AVR16=({ {LUHYRAD*#, 166667 1+{DHYRAD##,166667 11/2+

CHEZY = (1¢486/ROUGHN}*AVR16

AVAREA=AVARZ3/{AVR16#%#4,0) .

AVVEL = QP/AVAREA

AVHYRP=AVR16##640

C=4ls65 +(e00281/SLOPE}

RN=({{ {{C~CHEZY ) ¥{C~ CHEZY })+{7. 2448 CHEZY#C/ {AVHYRPREJ5) ) RE 5]~

1CHEZY+C) /1 ¢ 24 #CHEZY#C) /{AVHYRP#&,5})
6 AVVR = AVHYRP®#AVVEL

AVHYRMeAVHYRP/SCALE

225
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15

w

89

24

25
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TABLE B-4 (CONTINUED)

ROUGNM3ROUGHN/ { SCALE## ¢ 166667)

SCOUR>{ SCOURU+SCOURDY /2.

RENOLO=44U®AVVR/LISCALE##1,5) #(VISNUELTENP-32)))

WETPER 2 0.0

IF (AVHYRPoNE.OsO)} WETPER = AVAREA/AVHYRP

CENDEP = (MAXDU + MAXDD)/2+

IF (NOLJNE.40) GO TO 8

WRITE (Zv93)lDEN11-lDENIZ.lDENIJ.NEx

WRITE{2+103)

WRITE (3,96)IDENT15IDENT2+IDENT3NEX

WRITE (3,106) -

NOL = O

WRITE (3+97)INOTEST sNREACHsMO1DAY » YEAR+ QP 1 AVAREAYAVVEL s WETPER s
1AVHYRP s SLOPE » CENDEP «DURFLO» TEMP s SCOUR » CHEZ Y s ROUGHN o KN+ AVVR

Fx257+2/{CHEZYSCHEZY)

WRITE(2594)INOTEST sNREACHIMOsDAY » YEAR+QP » AVAREASAVVEL Y BETAWWETPER
IAVHVRP-TEMP-NOTESI-NREACH-CENDEPoSLOPEtCHEZYpROUGHN-KNpAVVR.RENOLD
2sF

NOL=NOL+1

Aa{FLOAT(NOL}) /440

8 = FLOAT(NOL/4)

IF (A'NE.B) GO .TO 9

WRITE (395}

WRITEI2+95)

IF (NOLeNE+40) GO TO 9

If (ELEVM34EQ.040) GO TO 19

GO TO (15516517191 +K

IF (ELEVM34EQ.040) GO TO 19

ABETA=BETA :

AMAKD = MAXDD .

ASTAD = STAD

AELEVP=DELEVP

AAREA =DAREA

AHYRAD=DHYRAD

ASCOUR#® SCOURD

SCOURD= -SCOUR3

STAD = STA3
"MAXDD. = MAXD3

DELEVP = ELEV3P

DAREA = AREA3

DHYRAD = HYRAD3

NREACH = (NOGAU¥10)+NOGA3

AHRP = AVHYRP

AV = AVVEL

AVR = AVVR

AA = AVAREA

AS = SLOPE

AC = CHEZY

ANP = ROUGHN

ANK=KN

AHRM = AVHYRM

AR = RENOLD

ANM = ROUGNM

K22

AVMAXD = CENDEP

GO TO 14

ROUGHN = 040

SLOPE . = 040

F = 0,0

CHEZY "= 0.

AVAREA = 0.

BETA=0,0

AVVEL = 0.0

AVHYRP = 040

KN = 0.0

INDEXa1

GO TO (6+696¢89)1K

AVVR=0,0

AVHYRM=040

WETPER3040

ROUGHM=0,0

GO TO 18

READ (1,90} STAUIBRYUERYUs2ZEROUs(UY (1) 1=BRYUSERYU}

READ (1490) STADsBRYDSERYD»ZERODy{DY( 1)y I=BRYDSERYD)

IF (NGT.LTe3) GO TO 25
" READ (1490} stAs.BRva.Esz.ZERos.(vslll.l-sRVS.Eszn

CALL AREAHR{ELEV3PyAREA3E yHYRA3E»Y3»DELTX sNY3 9 MAXD2E)

IF (HYRAD3+NE+Os0O) SCOUR3I={({AREA3E~AREA3)#7204)/{{{AREA3/HYRAD3 )+
1{AREA3E/HYRA3E) )/24))/FLOAT (DURFLO)

MAXD3= (MAXD3%{1,0-TIMEFA})+{MAXD3E*TIMEFA)

AREA3 = (AREA3#(1,0~TIMEFA)}+(AREA3E #TIMEFA)

HYRAD3® (HYRAD3#(140-TIMEFA))}+{HYRAJE#TIMEFA)

IF(HYRAD3+,EQe0aU} SCOUR3= HYRAZE® 7204/ FLOATIDURFLO}

CALL AREAHR(UELEVP UEAREASUEHYRASUY»DELTX sNYU+MAXDUE )

IF{URYRADJ«NE«O4U) SCOURUH(((UEAREA-UAREA)‘?ZO-)/((lUAREAIuHYRAD)+
1 {UEAREA/UEHYRA) }1/24 ) ) /FLOAT(DURFLO)

MAXDU = {MAXDU*(le0-TIMEFA))+{MAXDUE #*TIMEFA)

0
0
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TABLE B-4 (CONTINUED)

UAREA = (UAREA®(140-TIMEFA}}+{ UEAREA®TIMEFA)
UHYRAD®= (UHYRAD®#{1,0~TIMEFA) )+ {UEHYRARTIMEFA)

IF (UHYRAD«EQ.040) SCOURU = {UEHYRA#720.)/FLOAT{DURFLO)
CALL AREAHR(DELEVP yDEAREAsDEHYRA DY ¢DELTX sNYDsMAXDDE}
IF tDHYRADeNE+Oe9) SCOURD * (((DEAREA-DAREAIO720.)/I((DAREA/DNYRAD
13+ (DEAREA/DEHYRA}) /241 } /FLOAT{DURFLO}

IF (DHYRADsEQeUes0} SCOURD = {(DEHYRA2720+3/FLOATIDURFLO}
DAREA= (DAREA *{140-TIMEFA}) + (DEAREA # TIMEFA}
DHYRAD® {DHYRAD#{1+0-TIMEFA}} + (DEHYRA # TIMEFA)
SCOURA = {SCOURU+SCOURD+SCOUR31/30
MAXDD » [{MAXDD #{1,0-~TIMEFA)) + (MAXDDE #TIMEFA)
GO TO 14 .
UELEVvPs AELEVP

SCOURU = ASCOUR .
UAREA = AAREA
MAXDU = AMAXD
UHYRAD = AHYRAD
BSTAD = STAU
NREACH = {(NOGAD#10} + NOGA3

STAU: = ASTAD
K =.2
ABETA-ABETA+BEIA
AHRP = AHRP + AVHYRP
AV = AV _+ AVVEL
AVR = AVR + AVVR
AA = AA + AVAREA

AS & AS. + SLOPE
AC = AC + CHEZY
ANP = ANP + ROUGHN
ANK3ANK+KN
AHRM -= AHRM + AVHYRM
AR = AR + RENOLD
ANM = ANM + ROUGNM

AVMAXD = AVMAXD + CENDEP
GO TO 14 )
NREACH = (NOGAU®#100) + (NOGAD#10) + NUGA3

STA3 = STAD )

STAD = STAU

STAU = BSTAD

SCOUR = SCOURA

BETA=(ABETA+BETA} /3,
AVHYRP = (AHRP + AVHYRP)/3-
AVVEL = {AV + AVVEL)/3.
AVVR = tAVR * AVVR) /3,
AVAREA = (AA + AVAREA}/3.
- SLOPE = {AS + SLOPE}/3,

CHEZY = (AC + CHEZY1/3%

ROUGHN = {ANP + ROUGHNI}/3.

KN={ANK+KN1 /3,

AVHYRM- = {AHRM + AVHYRM}/3.

RENQLD = {AR + RENOLDI/3,

ROUGNM = {ANM + ROUGNM173,

CENDEP= {AVMAXD + CENDEP)/B-
WETPER=AVAREA/AVHYRP

K » 4

IF{INDEXJEQyl) GO TO 5

GO TO 18

NDT=NQT-1

IF(NQToNE<O) GO TO 21}

NGT = NGT ~ 1

IFI{NGT.LTe3}) GO TO 200

GO T0 23

END .
MONSS EXEQ FORTRANsSOFsSlU»603 .
SUBRQUTINE AREAHR(ELEV;AREA:HYRAD.Y #DELTX sNY +CENDEP)
DIMENSION Y{100} .
CENDEP = 0.0

1 =0

AREA = 0.0
" HYRAD = 0.0

WIPER = 040

DELTXS = DELTX #DELTX

I =1 +1

IF {1+EQeNY) GO TO 100

Yl = ELEV ~ Y{I}.

Y2 * ELEV. - Y{l+1}

1F (Y24GEs Y1) CENDEP = AMAXI(CENDEP¢YZ)

IF (Y24GE»0.0} GO TO 2

{F (AREAJEQ.040) GO TO 1

GO TO 4

IF (Y1leLTo0s0) GO TO 3

AREA = AREA -+ {4{(Y1l + Y2)#DELTX)}/2+0}

WTPER=WTPER+{{(Y2=Y1}#{Y2~Y1} ) +DELTXSI®##a5 -
GO.TO.1

X = {(Y2/1Y2 ~ Y1))#DELTX -

AREA = AREA + {((Y2 % X)/240)°

WTPER = WIPER + {({X # X)+{Y2 #y2))R¥5)
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TABLE B-~4 (CONTINUED)

GO TO 1
& X = (Y1/(Y1l - Y2})#DELTX
AREA =« AREA + ({Y1#X)/2,0)
WTPER = WTPER + (L(X#X) + (Y1®Y1))##,.5)
HYRAD = AREA/WTPER
100 CONTINUE
‘RETURN
END
MONSS EXEQ LINKLOAD
PHASECHANNEL
CALL MANNINGSN
MONSS EXEQ CHANNELsMJB



LISTING OF
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300
309
310
311
323
500
600

N

-

1000

1003

11

o

15
20

1002
le

401
402

TABLE B-5

MULTIVARIATE FORTRAN

IV PROGRAM

MONSS JOB. 211140007 MCCOOL 1964
MONSS ASGN MGOsA2
MONSS ASGN MJBsA3
MONSS MODE GO
MONSS EXEQ FORTRAN» ¢s083059 s +RESPONSURF
MULTIVARIATE PROGRAM

THIS PROGRAM 1S FOR THE 1410

MULTIVARIABLE FUNCTIONAL RELATIONSHIPS

M= NOs OF OBSERVATIONS

N= NO. OF COLUMNS OF INDEPENDENT VARIABLES

COLUMNS
X1 X2 X3 Xg-mooomammenETCemm ¥

TO PASS THROUGH THE ORIGIN READ X0 IN AS U,

TO ELIMINATE FORCING THE PLANE THROQUGH THE ORIGIN READ XO IN AS 1,

B1¥X0%X0
BleX1%X0

BI#X{K~1)#X0 +

NORMAL EQUATIONS
B2EXU¥X] +  —-BK¥XO#*X{
B2¥X1x] +  —-BKEX1#X(
B2EX{K-1)#X] + ===meo-

DIMENSIONXiSs5U19A(3+9)+81(8)
FORMAT{213+F542)
FORMAT{10XsFlze0s12XsF12401}
FORMAT{1Xs7EL246)}
FORMAT(1Xs3F 1244}

FORMAT(41X+1HB+13:9XsE12461}

FORMAT{ 1H1)

FORMAT{//
WRITE(3+5

READ{1+30U3INsMeX0

NM1=aN-1
NP1=2N+1
NP2=N+2
DO 1 J=l»
X{1sJ)=X0
READ( 1,30
WRITE(3+3
CONTINUE

3
00y

M

91
11

{extly
yeexdt

J)e1329NP2)sJ=1eM}
sJIrIRLaNPZ) s U= 10M)

THESE CARDS PRINT OUT XX AND XY MATRIX
INSERT BEFORE 1003

WRITE(3s6

(3]

NRXTE(B'BIU)((X(!oJ)yI'l’NPZ)-JiliHl

DO 20 =1
DG 20 J=]

sNP1
*NP2

IF(JeGEel} GO TO &

J=J+l

G0 T0 11
AllvJi=0s
DO 15 K=1

oM

AlLsJi=AtLs )} +X{IsKI*XTJIK?

AtJdsly=At

{203

THESE CARDS PRINT OUT COEFFICIENT MATRIX
INSERT BEFORE 10u2

WRITE{3.6

a0y

WRITE{3»3101((AL1+J1sJ213NP2)s1=1sNPL}

DOlé I=1s
Bi{l1a0,
DO 420 K=
KP1zK+1
L=K

DO 402 113KP1sNPL

6

1N

IFCABS{ACII K1) eLE2ABSIA(LIK) 1IGO TO 402

L=l
CONTINUE

1F{L.LE2K)IGO TO 420

K-11
K=11}

=
E]

XO®y
X1y
X{K=1)#Y
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40%

410
420

200

111

12

101
102

103

77

76

1001

TABLE B~5 (CONTINUED)

DO 410 Jx1lsNP2
TEMP=A{K»J)
AlKsJieAlL s ))
AlLsJ)=TEMP

CONTINUE

DO 102 I=1sN
TF(ATLe114EQeQail=l+]
REC=1e/At]s1)

IPl=l+1

DO 111 J=1IP1.NP2
AlIsJ)=A({IsJ)2REC

DO 102 K=1P1sNP1
IF{A{Ks112EQe0+1GO TO 102
REC=1e /ALK I}

DO 101 J=1P1sNP2
AlKsJI=ALKs JIRREC-ALL )
CONTINUE

BINPLIEA(NPLINP2I/AINPLINPL)

NNN=Q

DO 103 MM=1.N

ImNP1 MM

B{I}=ALlsNP2)

NNN=NNN+1

DO 103  J=1:NNN
M3=NP2~J
Bil}mBII)-A(I+M2)#BIM3)
WRITE (3,600)

WRITE{343231(1+Bti1sl=1sNPL}
WRITE122323)(1sBUI3si=1sNP1)
THESE "'CARDS COMPUTE CALCULATED VALUES AND DEVIATIONS AND

STANDARD DEVIATIONS

INSERT BEFORE STATEMENT NO.

WRITE{3,600)
SRSQ=0,.

DO 76 K=1sM
YCAL=0.

DO 77 JalsNPl
YSUM=B{J} #X(JsK}
YCAL=YCAL+YSUM
RES=X{NP2+K}-YCAL

WRITE(343111 X{NP24K)+YCALIRES

RESSQ=RES*#*2
SRSQ=5RSQ+RESSQ
D=N
C=M
VAR={14/7(C-(D+X0} )} #SRSQ
SDEV=SQRT ¢ VAR)
WRITE(3,600)
WRITE(3+311)SDEV,
GO TO 2
END
HMONSS EXEQ LINKLOAD
PHASECALCRF
CALL RESPONSURF
MONSS EXEQ CALCRFsMJB
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TABLE B-6

LISTING OF HYDEL 2 FORTRAN IV PROGRAM

MONSS JOB  211)40U07 MCCOOL FALL¥1964
. MONSS ASGN MGOsA2
MONSS ASGN MJBs+A3
MONSS MODE. GOsTEST
MONS $ EXEQ FORTRAN+SOFsSIUs83s6ss »HYDEL2
HYDEL?2

THIS PROGRAM IS FOR THE 1410
THIS PROGRAM COMPUTES HYDRAULIC ELEMENTS FOR ANY CHANNEL WiTH
BOTTOM READINGS AT EVEN INTERVALSe THE ONE EXCEPTION 1S A
CHANNEL WI1TH A VERTICAL SiDEe
HYDEL2 GiVES TABULAR OUTRUT OF AREA AND HYDRAULIC RADIUS WHICH CAN
BE USED IN THE S5VF SERIES PROGRAMS
DELTX = INTERVAL AT WHICH READINGS ARE TAKEN
NY = NUMBER OF BOTTOM READINGS
CHANGY = TABLE INTERVAL
HIGH = HIGHEST ELEVATION IN TABLE
HIGH CAN BE GREATER THAN ANY HBOTTOM READING
Y{}11=BOTTOM READINGS IN SEQUENCE. SHOULD 8E ROUNDED TO SAME
ACCURACY AS CHANGY.
BOTU~LOWEST ELEVATION IN CROSS SECTION
DIMENSION AREAU(3U0) sHYRADUL3003sY(460)
95 FORMAT(13)
110 FORMAT(8F10,3)
115 FORMAT(4F10s306Xe13}
120 FORMAT{SE1l4.8}
READ{1+95) NS
WRITE{2+s951NS
DO 300 K=1sNS
READ(1+115}) DISTUsHIGHICHANGY +DELTXsNY
READCLs 1EUM{Y{IVelulaNY)
DO 2 N=1,300
AREAU(NI =0,
HYRADU{N}=04
BOT=10000,
DO 12 I=1sNY
12 BOT=AMINI(BOTsY(1))
ELEV=BOT
NYU={ (HIGH-BOT}/CHANGY }+140
1=0
{af+] .
IFEYL{1+134GTaY(E)2GO TO 4
JFEYEI+1)elTey(l}) GO TO 5
IFIY{1+1)eEQaYil}} GO TO 6
IF(Y{11+GEsHIGHIGO TO 13
SLOPE=LY(I+1)=-Y{1)}/DELTX
MIN2{{Y{]}~-BOT)/CHANGY )+2.0
MAX={{Y{1+1}=BOT)/CHANGY 1 +1+0
GO TO 7 )
IFLY(I+1)«GEWHIGHIGO TO 13
SLOPE={Y{1)=Y{1+1}}/DELTX
MIN=((Y{1+1}1-BOT}/CHANGY)+2+0
MAX*{{Y{]}~BOT)/CHANGY 14140
GO TO 7
1FLY{1)4GE«HIGHIGO TO 13
MAX3(4Y(141)=BOT)/CHANGY}+1.0
NaMAX
IF(NeEQs1} NzMAX+] ) &
HYRADU(N} =HYRADU(N 1 +DELTX
GO TO 9
DIFF=0.
DO 8 N=MINsMAX
AREAU(Nl-AREAU(N)*CHANGYO((CHANGV/SLOPE)¢2-'DlFF)/Za
HYRADUlN)=HYRADU(N)+SQRT(CHANGV'CHANGY'(l.+(l./($LOPE'bLOPE)l))
DIFFECHANGY /SLOPE+DIFF
IFENeGEsNYU) GO TO 13
IF4MAXeGE«NYU) GO TO 13
CONTINUE
IF{NeGEWNYU} GO 1013
MAX=MAX+Y

nNANNANNANNANNANNNN

N -

w

w &

~ -3

>0
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TABLE B-6 (CONTINUED)

DO 10 N=MAX»NYU
10 AREAU(NI=AREAU{N)+CHANGY#DELTX
- 13 IF{{1+1).LT.NY)GO TO 3
DO 11 N=2sNYU
ELEVeELEV+CHANGY
AREAU(N)=AREAUIN-1)+AREAUIN)}
11 HYRADU(N)=AREAU(N}/ {HYRADU{N)+{ AREAUIN-13/HYRADU(N-1)}1}
80TuU=BOT
DYU=CHANGY
WRITE(2+115)0(STUsHIGHsDYU»BOTUSNYU
WRITE{24120) {AREAUL L) s I=1oNYV)
300 WRITE{2+1203{HYRADU{IYsI=1sNYU)
END
MONSS EXEQ LINKLOAD
PHASEENTIREPROG
CALL HYDEL2
MONSS EXEQ ENTIREPROGsMJB



TABLE B-7

LISTING OF SVF 5F FORTRAN IV PROGRAM
USED TO CALCULATE SPATIALLY VARIED

n

C

NNNANAONNONNANNANNNNNAOCNNANNNNOOONNNNNNN

95
115
125

-

FLOW PROFILES USING METHOD 4

MONSS - J0B 211140007 MCCooL SVF 5F MAYs 1965
MONSS ASGN MGOsA2
MONSS ASGN MJB:A3
MONSS MODE GOsTEST
MONS S EXEQ FORTRAN»SOF3SIUs8B45ss 95VFH
SVF 5F

THIS PROGRAM IS FOR THE 1410

PROGRAM TO COMPUTE SPATIALLY VARIED STEADY FLOW PROFILE IN FC 31
USING TABLES OF AREA AND HYDRAULIC RAOIUS FOR EACH CROSS SECTION
STATION

AREA AND HYDRAULIC RADIUS TABLES ARE COMPUTED WITH HYDEL 2 PROGRAM
READ IN TABLES FROM DOWNSTREAM END

STORE TABLES ON TAPE

DISTUsDISTANCE OF CROSS SECTION FROM UPPER END OF CHANNEL
HIGH =ELEVATION AT wHICH TABLES STOP

BOTU=ELEVATJON OF CHANNEL BOTTOM

DYU=VERTICAL INTERVAL BETWEEN TABLE VALUES

NYUzNUMBER OF VALUES IN TABLE

PROGRAM USES5 ACTUAL INFLOW DISTRIBUTION.

PROGRAM COMPUTES CHANGE IN DEPTH BETWEEN TWO POINTS USING AN
EULER METHOD wlTH I1TERATION

SET CLOSENESS OF ITERATION AT STATEMENT 25.

SOLUTION STARTS FROM SOME DOWNSTREAM ELEVATION AND WORKS UPSTREAMs
PRINT OUT INTERVAL CAN BE CONTROLLED.

DITCH=CHANNEL NOo

DATE=DAY »MONTH» YEARSETC,

NSaNUMBER OF CROSS SECTION STATIONS

EXP=EXPERIMENT NOs

TEST=TEST NOs

QD= TOTAL DISCHARGE .

DELX=DISTANCE BETWEEN COMPUTATION POINTS (NEGATIVE IF WORKING
UPSTREAM) |

GL=GRASS LENGTH,

NO=NUMBER OF DISCHARGE READINGS

MANNINGS N=Cle{(VER}##C2}

C1*Bl+B2#X+B3#GL

C23B4+B58X+B6#GL

BOUSSINESG COEFFICIENT» BETA=CI#((Q)#%C4)

C3=C5#({XI#2C6)

C4H=CTR{(X)E#CB)

START=STARTING POINT FOR PROFILE(MUST BE CROSS SECTIDN STATION}
ELEV=ELEVATION AT START

QU1}aTOTAL DISCHARGE AT X{I}

DIMENSION AREAU{295)1HYRADU(295)

THIS PHASE READS IN TABLES OF AREA AND HYDRAULIC RADIUS
FORMAT{13)

FORMAT(4F104344Xs13)

FORMAT{5E1448}

REWIND 6

READ{1+93} NS

DO1K=1sNS

READ{1»115)DISTUsHIGHDYUsBOTUSNYU

READ(1+125) {AREAULT ) »T=lsNYU}

READA 1+4125) (HYRADUL F 14121 NYU)

WRITE(6) DISTUsBOTUSDYUSNYUs {AREAUL T} +Ew1sNYU}

WRITE(6) {HYRADUL T} s I=1vNYY)

REWIND 6

CALL NEXTPH .

END - .
MONS$ EXEQ FORTRAN»SOF»STUs89599»SVF5HP2

INTEGER EXPoTEST

THIS PHASE. READS IN PRELIMINARY INFORMATION AND PRINTS HEADER
DIMENSIONX1221sQ122) : B
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100
105
110
115
120

125

-

119
129
125
130
131
135

44

w

300

301

362
303

TABLE B-7 (CONTINUED)

FORMAT(BXsABsA3+9XsABsABA2»21Xe13)

FORMATI3Xe1392X01343XeFTe306XsF6a204X9F54294X0213)

FORMAT(8F1043)

FORMAT(6E1246)

FORMAT(1H1//30Xs14HPROGRAM SVF 5Fs BXeBHCHANNEL »ABeA349X»SHDATE
10AB8sA85A27/30XeBHEXPe NOe»[3410Xs BHTEST NOweI13910Xe2HQ=sF743410Xs
26HDELX= +» F642//6UX23HGLEsF5427/35Xs16HN=C1#{{VER)##C2) 430X
317HBETAIC3'(lO)"Ch)IIBSX'leCl'Bl’BZ'X+83'GL032X.l5HC3'C5'((X)"C
46) /35Xy 16HC2mB4+B58X+B6OGLY 32Xs 15HCA=CTS{(X)#8CB8)//35Xs3HB1=,
5E12¢6+33Xs 3HCS529E1246/35%X93HB22sE1246y 33Xy 3HCE®3EL266735X43HB3
63EL1206% 33Xe3HCT=9E12467/35Xs 3HBUT9sEL1246933Xs3HCEBR1E1246/35X93HBYn

T+E1206/35X03HB6=91E1266/7/7/33Xs L1HX 46X+ FHDISCHARGE s 4Xe9HELEVATION,.

84Xs SHDEPTHs4Xs BHVELOCITYs4Xs 16HHYDRAULIC RADIUS/)
FORMAT{1HI//3Xs 14HPROGRAM SVF S5Fs BXsBHCHANNEL +A8» AJ-?X.SHDATE
15A84A8sA27/3Xs BHEXPe NOas»I3910Xs SBHTEST NOer13410Xe2HQ=sFTe3910Xs
26HDELX® » F602//33X03HGL=9F542//8Xe L16HN=CLO((VE*R)##C2))»30Xs

31THBETA=CI*{(Q)##C41//8Xs 16HC1=Bl+B82¥X+B3#GL 32X 9 15HC32(50((X)®eC.

46)/8Xs  16HC23BL+BSEX+BOICL 32Xs 15HCL2CT®U{X)#®C8)//BXs 3HBl=,
SE1206533X» 3HCS5=sEL12e6/8Xy 3HB2=3EL12469 33Xy 3HC6=1E1246/BXs 3HB3=
60EL12060 3IXW3HCT2)EL1246/8Xs 3HB4=1E12+6933X»3HCB=4EL2,6/68Xs 3HB5S=
T+E1246/8Xs 3HB6®+EL1246/7//6Xs 1HX96XsIHDISCHARGE s 4X+9HELEVATIONS
84X» SHDEPTHe4Xes BHVELOCITYs4Xs 16HHYDRAULIC RADIUS/) ’
READ{19100)DI+TCHsDAsT+EINS

READ{ 15 105)EXP»TEST+QDsDELXsGLINO

READI1+115)B1982+839B4+85,86

READ({14115)C5+Co4CT7sCH

READLLy110)STARTHELEV

READ(15110)(X{J1sQ(2)s2=13NO)
WRITE(34120)DI»TCHe DAY E2E+EXPITEST2GDsDELX sGLIB19CS59B24C6083yCT
1B4:CBB5,B6

WRITE(24125)D1 4 TCHyDAST4E+EXPSTESTsQDsDELXsGLB13C5+820C64B83,CT,
1B4yC8sB5+86
WRITE(4)STARTJELEV QD +DELXsGL»BL+82+B33B44B541B6sC5+C6+CT4CEINOS
1UX{J)9QUJ) 1J219NO)

REWIND &

CALL NEXTPH

END
MONSS EXEQ FORTRAN)SOF 1510989550 95VF5P3

DIHENSIONX(ZZ)oQ(ZZ)oAREAD(295).HVRADDIZ?S)nAREAu(Z?SIpHVRADU(295I

FORMAT(3X»20HERROR)y XD +4GTs X(NO))
FORMAT(30Xs20HERRORs XD +GTe X(NO))
FORMAT(29XsF70254XsF70396X9FBa394XsFb66324XsF6a3)F16e3)
FORMAT(1H1)

FORMATI80X)
FORMATI2X1FTe2s4X0FT7e336XsFBa394XeFbe3+4XsF6a30Flbe3)
READ (kISTART'ELEV'QD'DELX'GLOBIIBZlB3)BkDB5:B¢!C5'C6|C7'C5'NOl
1IX(JIrQUI) 2 JU=L sNO)

J=NO

XD=START

CHANGY=+,001

GO TO 303

1F({XDeGTeX(J})..GO TO 7

IF(XDeEQaXiJ}) GO TO 4&

IF{XDeGTaXtJ~1)) GO TO 44

JeJd-~1

GO TO &

YD=ELEV-BOTU

MD=YD/DYU+1.

DM=MD

PROPU=(YD~DYU®(DM-14)}/DYU
AD=AREAU(MD)+PROPU® { AREAU(MD+1) ~AREAU(MD } }
RO=HYRADU(MD )} +PROPU* {HYRADU{MD+1)-HYRADU IMD} )

QDaG{ I~ 1)+ (XD=-X{J=13 I 24 XLI)=X{J=1) 1 1®UQJ}-QII=1))
VD3Q@D/AD

80=BOTU

ACCX=5,

ACCX=3ACCX~-DELX

1IF{ACCXeGEeSe) GO TO 300

GO TO 301

WRITE(34125) XDsQODsELEVsYDsVDRD
WRITE(25135)XDsGD+ELEVIYDsVDIRD

ACCX=0,0

XU=XD+DELX

IF1XUeLTe25+) GO TO 2

IF{XUslLEeX{J-1}) J=J=~]

QUaAE =13+ EXU~XTJ=1) I ZEXEJI=X(U-1) 21 %(Q(I)-Q{J-11)
IF{XUaGE«DISTU} GO TO 304

DI5TD=DISTU

BOTD=BOTUL

OYD=DYU

NYD=NYU

DO 302 I=1sNYD

AREADI I} =AREAUL 1)

HYRADD! 1) 3HYRADUL 1)
READS&-DISTUsBOTUrDYUSNYUs { AREAULK )} 9sKELINYUY
READIG . (RYRADUIK) sK=laNYU}

{F1xDs1TaDISTU) GO TO 304
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304

20

25

50

TABLE B-7

IF(XDEQeDISTU) GO TO &

60 TO 303 :
PROP= {XU-DISTUIZ(DISTD-DISTU
BU=PROP28BOTD +{1s~PROP)#80OTU
XA= (XD+XU} /24
C1aBl+B2#XA+B3#GL

C2=B4+B5# XA+B64GL

C3U=CS# ((XU)#2C6H)
C4UsCT#{(XU)##CB)
C3D=C5% { (XD ) R¥C6)
C4D=CTH{(XD)®#RCB)
BETAU=C3U®( (QU)#¥C4U)
BETAD=C3D#( {QD) ##C4D)

YU= YD+CHANGY

MU=YU/DYU+1le

MD=YU/DYD+1.

UM=MU
PROPU=({ YU-DYU# {UM=141)/DYU
DM=MD
PROPD={YU-DYD#{DM—1,)}/DYD

AU=PROP#{ AREAD (MD) +PROPD# (AREAD (MD+1 I ~AREAD(MD) } ) +(1+~PROP}#

(CONTINUED)

1{AREAUIMU} +PROPU* (AREAU(MU+1)-AREAU(MUL))

RUHPRéP'(HYRADD(MD)+PROPD'IHVRADD(MD+1I—HYRADD(HDl))0(;--PROPI‘

1L{HYRADU{MU) +PROPU¥ { HYRADUIMU+1) -HYRADU{ MU} } }

VU=QU/AU

RA= {RD+RU} /2.4

VA= (VD+VU) /24
RUFFAZC1#{ [ VASRA) #5C2)

SE= {RUFFARRUFFARVARVA) /(2218 (RARR(4,/34)))

50=tBD-BU) 7/DELX

DELY=QU®{VU+VD}*{BE TAD¥VD-BETAU¥VU+BETAD#VD*(QD~QU)/QU) /(32.+15%

1(QU+QD) ) +( SO*DELX ) - (SE*DELX}
DIFF=ABS(DELY-CHANGY)
IF(DIFF«LT+400001) GO TO 50
CHANGY=DELY .

G0 To 20

XD= Xy

QD=Gu
ELEV=ELEV+CHANGY-{SO®DELX)
YD=YU

RD=RU

AD=AU

8D=8Y

vD=vu

60 TQ 5
IF(ACCX4EQaOe) GO TO 3

WRITE(351251XD+QDsELEVsYD2VDsRD
WRITE(2»135)XD+QD+ELEVsYDsVD4RD

G0 T0 3

WRITE(34120)

WRITE{2s119}

WRITE(3,130)

WRITE(2,131)

REWIND 6

REWIND &

CALL PHASE(002)

END

MONS$ EXEQ LINKLOAD
PHASEENTIREPROG
CALL SVF5
"PHASE
BASE1SVFS
CALL SVF5p2
PHASE
BASEL1SVFS5P2°
CALL SVFSP3

MONSS EXEQ ENTIREPROG)MJB
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