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CHAPTER I
INTRODUCTION

An important result of linear-graph theory is the dévelopment of
systematic methods for formulating the equations.describing,lihear
electrical networks. Koenig.and Blackwell (1) have‘extended the use
of linear-graph theofy to obtaining the characteristics of multiport
networks and te the analysis of complex systems containing electrical
and mechanical components. As a rgsult of this extension, systematic
methods are available for obtaining the characteristics of multiport
networks.

The existence.bf systematic methods for the analysis of electri-
cal networks suggests the possibility of employing a digital computer
to formulate and selve the-necéésary set of equations. Digital com=~
puters have been used for this purpose for certain ﬁypes.of electri~
cal network problems. . Branin (2) has described a program for use. on
the IBM 704 computer, whiéh,computes the d=-c and transient response
of transistor switching circuits of arbitrary configuratien. This
program has the important feat@re that the necessary equations are
formulated from input -data describing the circuit parameters and the
circuit interconnectiens. The General Motors Research Laboratories
DYANA program is intended for thé.analysis.of mechanical and electri-
cal network problems, and it includes the_ability to formulate the

necessary equatioens from input data (3). Reid (4) has presented a

1



program somewhatlsimilar to the DYANA program which accepts input data
and from this formulates and solves the necessary equations.

The digital computer programs that have been developed for solving
electrical network problems have been written so that multiport com-
ponents may be included in the network. They have not, however, in-
cluded the possibility of obtaining the multiport characteristics of a
network from simple input data. This thesis is devoted to applying the
digital computer to obtaining the multiport characteristics of a linear
electrical network. The approach to determining the multiport charac-
teristics is that used by Koenig and Blackwell (1). This method con=-
sists of applying conceptual voltage or current sources at the ports
and determining the resulting currents or voltages at the ports as
functions of the applied sources. The determinations of the relation-
ship between voltages and currents at the ports of the network is made
quite systematic by using linear-graph theory and it is this volt~-
ampere relationship that is used to characterize the multiport com-
ponent. Koenig and Blackwell (1) have shown how to analyze an electri-
cal network made up of an interconnection of multiport components using
the multiport representation of the components. Therefore, to take
advantage of these techniques, a mechanized method for determining
multiport representations is quite desirable.

The type of network which is considered in this study is a linear
network containing both two-terminal devices and multiport components.
The two-terminal devices may be resistances, ideal voltage sources or
ideal current sources. The multiport components may be subnetworks of
two-terminal devices of the type just described, they may be devices

described by h~-parameters, or they may be ideal transformers.



The program employs the FORTRAN ianguage and it is intended that |
the input data required be easily obtained. The input data consists
of network intercomnection information, the edges in the tree and the
edges in the co~-tree, network parameters, and a small number of con-
stants. This type of progrém,makes possible its application to a net-
work of any configuration and relieves the user from the task of de-

veloping the necessary equations to solve.



CHAPTER II

AN ALGORITHM FOR FINDING THE B MATRIX

Z.1 Inéroduction. The ahalysis of an electrical network requires
that the mathematical expreséions relating voltage and currentlfor each
component be known and also that it is possible to write mathematical
expressioﬁs describing the interconnection of the components. The
volt-ampere equations, Kirchhoff's voltage law equations and Kirchhoff's
current law equations provide the needed mathematical expressions. When
linear-graph theory is used, Kir;hhoff's voltage and current law equa-
tions are included in the circuit and cut-set matrices respéctively.
Both of these matrices are obtained from the directed grapﬁ after the
formulation tree has been selected. Only one of these matrices need
be obtained from the directed graph as one is the negative transpose
of the otber if they are obtained from the same formulafibﬁ tree (1).

In formulating the necessary set of equations to analyze an
electrical network or to obtain its multiport characteristics, using
linear-graph theory; the coefficient mﬁtrix'of Ehé'fundﬁmental circuit
equations or the coefficient matrix of the cut-set equations is used
(1). In this study the coefficient matrix of the fundamental circuit
equations is selected because of a saving in computer programllength.
The coefficient matrix of the fundamental circuit equations shall be
denoted by the symbol B in this thesis.

It is a simple matter to determine the B matrix for a given
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formulation tree by applying the definition of this ﬁatrix 3). To
produce the B matrix by means of a digital computer requires that an
algorithm be developed which reduces the process to a series of steps
that can be programmed for execution by the digital computer. The ob-
jective of this chapter is to describe such an algorithm.

2.2 The B Matrix Algorithm, The information that is used in

finding the B matrix is the directed linear graph, the formulation tree
and the co-tree. From the definition of fundamental circuits it is
known that each chord (elements of the co-tree) together with branches
(elements of the tree) forms a circuit, and that each node in the cir-
cuit is incident to two and only two edges in the circuit (1),
The problem is to determine which branches are in the circuit with a
particular chord and also to determine the orientation of the branches
in each circuit with respect to the chord in the circuit. It is ob-
vious that a means must be found to furnish to the digital computer
either as input data or as programmed instructions
(a) the interconnection information for the directed
graph,
(b) the orientation information for the edges of the
_graph,
(c) the branches in the tree and tﬁe chords in the
cb-tree, and
(d) a series of steps which will yield the entries in
the B matrix for each of the chords.
The first to be considered is tﬁe interconnection information, the
orientation information and the tree and co-tree information. This

set of information will depend upon the particular electrical network



and its associated directed grapﬂ. Iﬁ-will, then, be sﬁpplied.as input
data and in this study it will be preéented,in matrix form. The defi-
nitions of the matrices used aré now given.

| Definition 2.2.1. The intérconnection.matrix,-g. Given a directed
graph with n noedes numbered 1, 2,,...; n, b edges numbered 1, 2, ...,

b and with the nede of maximum degrée-having_degree~m. The matrix

K = ﬁ< J is defined by
ij ,

kij = the number from the set @V 2, ..., ﬁ} identifying edge j -
incident at nede i if node i is.of degree m.

If node i is of degree p<&{m then X = ':kij:I is defined by

the number frem‘the set {?, 2, c.e, E} identifying
k,, = edge j incident at nede i for 1 < jfg P

0 forp<j < m

Definitien 2.2,2. The.orientation matrix, D. Given a directed
graph with n nodgs numbered 1, 2, ..., n . and b edges numbered 1, 2,

«s+, b, The matrix D = Eij] is defined by

_dil = the number from the -set {}, 2, v.a, g} identifying
the node from wﬁiéh,edge i is directed,
di2.= the number frem the set {i, 2, seay g} identifying

the node to which edge i is directed.

Definitioen 2.2.3. The branch matrix, T. Given a directed graph
with n noedes numbered 1, 2,,.,., n and b edges numbered 1, 2, ..., b

and a foermulation tree contained in the graph. The :matrix T = &j}



is defined by

tj = the number from the set {}, 2, «.e, E} identifying

edge j in the formulation tree. ¢t, t,. .
g J u = J< (J+'1')

Definition 2.2.4, The cherd matrix, C. Given a directed graph
with n nodes numbered 1, 2,,,..,7n and b edges numbered 1, 2, ..., b
and a fermulatien,tree~cOnpainédlinﬁtheﬂgraph} .The'matrix C = [Ejl

is defined by

cj = .the number from the.set'{l, 2, o.., é} identifying

~edge j in thé~ce-treee c, ¢ . .
ge iSCG+

To illustrate the matrices K, D, :.and C, the directed graph of
Figure 2,2.1 will be considered whefévthe formulation tree is shown
by heavy-lines. This graph has 5 nodes and 8 edges and the maximum
degree.of any nede .is 4. Thus K will be 5 x 4, D will be 8 x 2, T
>Will be 1 x 4 and C will be 1 x 4.

The K, D, T and Q.matricesfcorresponding to the directed graph

in Figure 2.2.1 are

1 2 3 &4
4 5 6 7
K={(8 7 0 of (2.2.1)
1 2 6 8
305 0 o
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Now with K, D, T and C available as input data for the computer,
the problem is how to determine the entries in the B matrix by a series
of steps that can be accomplished by the digital computer. The K
matrix identifies the edges which are incident at each node. Now if
one chord is selected and the entries which represent the other chords

in the K matrix are made zero, a modified K matrix, K., is obtained.

1?
The entries in El are either
(a) zero,
(b) numbers identifying branches of the formulation tree,
or
(c) the number identifying the chord selected.
Examination of El will yield
(a) branches that are incident at a node with other branches,
(b) branches that are incident at a node with the chord
selected, and
(c) branches that are incident at a node with no other
edges.
This latter case will be evident for the row in the 51 matrix which
represents such a condition will contain only one non=-zero entry.
A branch which is incident at a node with no other edges may be
removed from consideration for the circuit involving the chord selected
because it cannot form a part of the circuit. To remove this branch

from consideration, examine the rows of K. and replace with zero all

1
numbers which equal the number identifying this branch. This pro=

cedure may reveal other branches which cannot form a part of the cir-

cuit since other rows of K, may now have all entries zero except one.

1

These branches are removed from consideration in the same manner. By
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repeating the procedure at most n-2 times, where n is the number of

nodes, a matriX‘Ez, will be obtained containing rows that have

(a)
(b)

all elements are zero, or
two non-zero elements with the remaining elements

Zexo.

The non=-zero elements identify the edges .in the circuit. One of these

edges will be the chord selected and the rest of the edges will be

branches.

The orientation of the branches with respect to the chord in the

circuit is obtained by use of the D matrix. By means of this matrix

it is poessible to determine -if the branches are oriented in the same

direction or in the opposite direction to the chord. .For those

branches oriented in the same_difectién the B matrix entry is +1, for

those oriented in the opposite direction the B matrix entry is.=-1, and

for those branches that do not appear in the circuit the:B matrix entry

is zero.

The steps to follow in producing the :B matrix are now given.

! (a)

(b)

(c)

(d)

‘entries of T. Call the resultinggmatrix.g

k

Select the chord,‘cj, from C that will form a circuit
with some or all of the branches of T.

Make all entries in.K zero that do not equal cj or the

1

Examine the rows .of. K If there is a row with only

1

one non~zero entry, make this entry, and all others

-equal to it, zero.

Repeat (c) until the rows contain either all zeros .or
only two non-zero entries, Call the resulting matrix

9 The non-zero . entries in.gz.will be either Cj or



(e)

n

11

entries from T that form a circuit with cj.
Go to row cj of D and note the entry in column 2. Call
this entry n

Now from row n, of K, select the non-

1 1 2
zero entry ?é cj and call this entry tl. Go to row tl
of D and compare .the column 1 entry, n, with n. If

n, = n

9 1 the B matrix entry for t

1 1s +1, if n, Z ny

the entry is.-1. If n_, = n, replace n

2 with the row

1

t;, column 2 entry of D. If n, Z n; replace n, with

and go to row n

1

9" In either case, use the new n

of K

1

Select the non~zero entry that has noet been

1
9
used and proceed as before. If beth have been used

the row of B corgesponding to cj is complete.

To illustrate this algorithm consider the K, D, T and C matrices

of equations 2.2.1, 2.2,2, 2.2.3, and 2.2.4.

(a)
(b)

(e)

Select ¢, = 4,

1 0 3 4
4 5 0 7
K, = 0 7 0 .0
1 0 0 0

3 5 0 O

Rows 3 and 4 each contain enly one non~zero entry.

.Make all of the entries that are 1 and all that are

7 zero.
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(d) lo o 3 4

K, 0 0 0 O
0o 0 0 O
3 5 0 0

(e) By inspecting K, it is apparent that branches 3 and 5

2
form a circuit with chord 4. Hence branches 1 and 7
are not in the circuit and'the,g matrix entries corre-
sponding to these branches are beth zero.

(f) Now c, = 4 so go to row 4 of.D where n, = 2. On row

1

2 0£K, find t; = 5. Onrow 5 0f Dn, = 5. Now

n =+ n, so the entry in B corresponding te branch 5

is -1. Since n, ;f ny rgplace 2 with 5 so that n. = 5.

1
Go to row 5 ofg2 and find' branch tl = 3 that has not
been used. On row 3 6f:2 n, = 5, hence‘n2 =y and

the entry in.:B corresponding to branch 3 is +1. Now

make n, = 1 and go to row 1 of K Both.oef the non-

1 2°
zero entries have been used previously so the row in.JB
corresponding to chord 4 is complete and is 0 1 - 1 0.
The steps that have been described in this algorithm censist of
locating entries in,matrices; eﬁaminingvfor zero, and comparing one
number with another. Each of these .can be executed by a digital com=
puter. A program that has been written for execution on the IBM .1620
computer is given in Appendix A. Part I of this three part program
produces the B matrix. A progrém written for execution on the IBM 1410

computer is given in Appendix C. Part I of this nine part. program

produces the.B matrix,
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The task of producing this algorithm was undertaken after a search
of the literature failed to reveal an algorithm suitable for the purpose
intended. The objective was to produce the.B matrix based on data
easily obtained from the directed graph. The choice of K, D, T and C
to designate the matrices defined in this chapter is arbitrary. The
only precedent available to guide in designating matrices was in the
case of the fundamental circuit matrix which is designated B to con-

form te the designation used by many writers in this field.



CHAPTER III

COMPUTER . CHARACTERIZATION OF AN n-PORT
NETWORK CONTAINING TWO-TERMINAL

DEVICES

3.1 Introduction. By means of the algorithm described in Chapter

II, it is possible to utilize a digital computer to produce the B
matrix from input data which describes the circuit ihterconnectiQﬁs and
edge oriéntétion° The B matrix with any volt=-ampere eddations fbr the
two-terminal devices and the voltages or currents for thevi&eal séurces,
makes it possiblé to determine the volt-amperé equatioﬂs at the n-poris.
These equations characterize the network at tﬂese ports and,'by pioper
attention to‘the’sign‘of the parameters, fhese equations may be used
1£o represent the network if’ié is a sqbnetwork;of;a la;ger’network°

'ip is Eﬁe purppse of this qhépter Eé describe!thelhethod fsi'ob-
taining the volt-ampere equations at the n ports and to descriﬁe.the
computer program which determines the parameters of the Golt-amﬁere
equations, At this point,‘the two-férminal devices are restricted to

be linear resistances, ideal voltage sources or ideal current sources.

3.2 Partitioning of the B Matrix. In partitioning the B "matrix
it will be necessary to consider edgesicontaining_the following types
of two-ferminaltdevices:

(a) resistance elements (these may be in chords or

branches).

14
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‘

(b) ideal current sources (these will be in chords).

(¢) ideal voltaéé sources (fhese wiil'bexin brancheé);;
The ideal sources mentioned in (b) and (é) are those that are a part of
the network itself. The technique to‘be-used to determine the volt=
ampere equations at the n pofts consists of placing conceptual sources
(vol;age or current) at the ports and finding‘the-fésponse (cufrent'or
voltage) at tﬁe5ports in terms bf thesevsourcesn. In tﬁis;sfudY»tﬁe
voltages are obtained in terms‘of'the currents by applyiﬁé_condeptua1=
current sources. Thus;iin;partitionigg thejg matrix, there are two
types of ideal current sources to identify. “

The: B matrix is partitioned as follows:

l B“T %
=11 | =12 1
B B X _ : :
B= -_?'L:__z_?_ _2 S (3.2.1)
‘531{ B3z %3
g )
1 1 "2
X, = the cHords containingvfesisténCeveleménts,

't

Xi = the chords containing ideal current sources - in the
‘network itself.

X, = the chords containing ideal current sources at.the pd%ts;

3
Y1 = the branches containing;résistance»eiements,f'
Y2 = the branches containing ideal voltage sources.

‘The partitioning of the B matrix in equation .3.2.1 is arbitrary
in the order of placing the groups: of chords and branches. The placing

of the ideal current sources at the ports as the last group of chords
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has certain advantages because of the way in which the B matrix is

v’

produced by the éomputer, This will be considered in more detail when

the computer program is discussed.

3.3 The Volt=-Ampere Equations. In determining the desired volt-

ampere equatiohs, use will be made of the well known“equations (1)

'XC = -E'XT’ ( | ' . (3.3.1)

I = -Q L, N ' (3.3.2)

Q = -p, (3.3.3)
where XC = the matrix of chord vgltages,- |

!T = the matrix of branch voltages,

EC = the matrixléf chord currents, : S

lT = the matrix of branch currents, énd

Q = the coefficient_matrix~pf the éﬁtuset equations.

Using the partitioned form of B ahq'partitioning V., XT’ ET and

EC in a corresponding manner, equations 3.3.1 and 3.3.2 may be written

as ) . ’ . . ; X s\
Yex | Bi1 B |
Ver || 821 B22| |¥re| > (3.3.4)
E-CIP By By
- e —
7 T T T 7
Iy B By By | L
. 1= BT BT BT . ~ (3.3.5)
=TE =12 =22 =32 =CI |,
_ L
1
| | ZcIp
where XCR = the matrix of.chord voltages for resistance .elements,

XCI = the matrix of chord voltages for ideal current sources,



XCIP = the-matrix of
at the ports,

R = the" i f

!TR the matrix o

XTE = the matrix of
sources,

ECR = the matrix of

lCI = the matrix of

ECIP = the matrix of
at the ports,

lTR = the matrix of
and

ETE = the matrix of

sources.

17

chord voltages for ideal current sources

branch voltages for resistance elements,

branch voltages for ideal voltage

chord .currents for resistive elements,
chord currents for ideal current seurces,
chord currents for ideal current sources

branch currents for resistive elements,

branch currents for ideal voltage

Two additional sets:of equatioens are available. These are the

volt-ampere -equations for the branches and chords .containing resistance

-elements. They are

<
j

Yrr = By Ippo

T TR Lere

<
"

where ‘R

oo
[]

the matrix of

(3.3.6)
(3.3.7)

branch resistances, and

the matrix of chord resistances.

Using equations -3.3.4, 3.3.5, 3.3.6, and 3.3.7, it is possible to

solve forJXCIP in terms.ofLECIP, Loro and_yTE;

set of equations, First write.V

1 This. is the desired

cp 1M terms of the branch veltages.
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This set of equations is

Yo T - E31

Yorp = " B3y Y 7 B3 Vg -

(3.3.8)

If equation 3.3.6 is substituted inteo equation~3.3t8,'XCIP may be

-expressed as

(3.3.9)

Yorp = B3y Bp g 7 Bap dpg
Using eQuation:3,3.5, ETR may be expressed as

N T R R

I = @.1 B B3| | der |
-1701
e
T T T

I+ I, + 384 'I-CIP , (3.3.10)

I = B11 der T By Lor
and when equation 3.3.10 is substituted into equation 3.3.9 the result

is : ‘
o o T _ o T ) T
Jerp T | 331 Rr 2y1 Leg " E31 8 By ;CI " B3y By B3y Lorp

" Byp Ypg - (3.3.11)

It is possible to write/xCR in terms of branch voltages:by making

~use of equation 3.3.4. The result is

Yr = - {%;1 ;E:g] Y
| =
_ L :

Ter = - '§11‘¥TR"'§_12'~YTE* ’

(3.3.12)
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and if this result is combined with equations 3.3.7 and 3.3.10 then

T T T

BoLIer = 7 Byp By (Byy Iep * gy Lor *+ By Lopp)
=B ¥ - (3.3.1.3)

The solutien fer:I from equation 3.3.13 is_

CR

-1 )
) o i T o T
Ler ™ E T By Bp B 1] (=Byy Ry By Zor = Bpy Bp By Iope
=B, V), (3.3.14)

and if this equation .is substituted into-equatioen 3.3.11 the equation

for!CIP becomes
T [ | 7! T
Tore ” Ea1 Bp Py |Bo T B Rp B | B R Byt B Rp B31)ICIP.
T [, |t T
T (ByrBp By Bo tEyg BpByy | By Bp By By By By Loy
T [T ot
* (B3 Bp By RBot By Bpdyy | Byt Byy) Yppe

(3.3.15)

It is noted that this sét of equations expresses the voltages,

\') p’ at the ports in terms.of the currents,

Y1 p? at the ports, the

Lo

ideal current sources, 1 I° in the network and the .ideal voltage sources,

C

‘ZTE’ in the network. This set: of equations is of the form

Y =RI+E _ ' (3.3.16)
wheré

X = Yerpe | -1

R = (B B |R.+.B,. R B B R.B. -.B. R.B. )

R = (Byy RpByy |Bg By Bp By 21137 =31 T =31 21 23170

-I = ICIP’,and
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T [ 7] "1 T ' T
E= By By Byy Ec TR By '5]-3-11] By1 Bp Byy - By By Bpplier

: -1
* By &y B Ec TRy BE} Bip = B3p) Yoy -

The n-port network may be characterized by this set of velt-ampere
equations. If the n-port network is a subnetwork of a larger network,
it may be represented by these equations if thevsigns associated with
-R and E porrespend to the reference direction for the voltages and
current§ a£ the perts. In this study/the signs for R andgglgorrespond
to port voltages which are posifive at the temminal where .current enters.

It is evident that the volt-ampere-equations at the ports can be
determined for any arbitrary network of two-terminal devices, within
fhe restrictions,imposed, by applying equatien.3.3.15. The availability
of the B matrix, p&rtitioned.as described in this chapter, is nécessary,
A computer program for determining the'B matrix for any arbitrary
directed graph has been presented in'Chapter II. A method for incoerpo-
rating this program .into a larger program,for determining thé coefficient

matrices . of equatioen 3.3.15 will now be considered.

.3.4 The Computexr Program. Theucomputer program for producing the
B matrix places the réws_and célumns.iﬁ ascending numerical order
corresponding te the numbers aésignéd to the.chords and branches. This
feature must be kept in mind insnumbering:the edges.of the gfaph.so
that the rows and columns of the.B matrix will appear in the preper
order for partitiening as previously described. A method for numbering
the edges to achieve .the desired result is presented here. If it is
assuméd that the network.contains:f resistances, i1 ideal current sources,
e ideal voltage -sources and p poerts, number the edges as follows:

(a) edges containing resistances are numbered 1 through r.
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(b) edge; conﬁaining ideal current or voltage sources are
numbered r + 1 through r + i + e.

(c) edges.representiﬁg the coﬁceptual sources at the ports
are numbered_r‘+ i + e+ 1 through r>+ i+ e+ p.

This numbering system will insure that the choerds and branches
.containing resistance -elements will appear first in the B matrix pro-
duced by the computer. The chords and branches containing sources .in
the network Qill appear next and the.chords»containing_the conceptual
current sources will appear last. The advantage -of placing the chords
containing the cenceptual ;urreﬁt sources -last in the:B matrix can now
be seen;_for it is possible to change the number of ports on a given
network and net change the numbéring'of the edges representing elements
in the network itself.

When the computer executes;the{§ matrix progfam, the result will
be stored aé an array in the coemputer memory. With the chérds and
branches in the order just descfibed, it is a simple matter to perform
.operations with the desired’submgtrices;of the. B matrix. This.is
-accomplished by including, as a part.of the input data, constants which
identify

(a) the-number;of cﬁordé which. contain resistance -elements,
(b) the number of branches which contain resistance -elements,
(c) the nﬁmber of idéél_current sources .in the network,

(d) the number of ports, and

(e) the number of ideal voltage sources in the network.

In additien to the.intercomnection matrix, the orientation matrix,
the branch-matrix3 the choerd matrix, the degree. of the node of maximum

degree and the constants just defined, it is necessary to supply-R
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the matrix of branch resistances, and R,, the matrix of chord resist-

—C’
ances, as input data. BT and._I_{.C are diagonal matrices. In the case
of R the diagonal entries are resistances appearing in branches taken

Bpo

in the same.order as the branches corresponding to the-columns.ofwgll.

The diagonal entries of the R, matrix are resistances appearing in

C
chords taken in the same order as the chords corresponding to the rows
.of,gll. The ECI and:_\_/_'_TE matrices may also be supplied as input data.

In this particular program the coefficient matrices of lC and:XTE are

I
determined with.;CI andkyﬁE considered as variables.

The limitation in.meﬁory‘size in the IBM 1620 computer available
for execution of the program necessitates the division of the program
_into three parts. Thése»are as;follows:

I. Production of the.B matrix.
II. Production of the coefficient matrix OE'ECIP'

IIT. Production of thév¢oefficientﬂmatrices,of~lCI and

Yrg-

The input data for Part I cdnsists.of the intercennectioﬁ matrix
(KONN), the-orientatién.matrix (INTO), the branch matrix (NTRE), the
chord matrix (KORD), the degreeiof the»node-of highest degree (MOD),
and the éonstants indicating the number of the various. types.of elements
in the branches and chords. The constantS-arebnot fequired_in the pro-
ductiqn;of the B matrix, but thé§ are used in seme tests that are in=-
pluded.in the program. These tests invelve checking the total number

-of branches and chords' against the:sum,df-the‘various types of devices
appeafing_in the branches and cherds. The output data for Part I is

the B matrix in the form of punched cards.

. The input data fer Part II consists .of thie constants indicating
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the number of the various types:of elements in the branches and cherds,

the B matrix from Part I, the R matrix and the-

T gcvmatrlx. The . output

from Part II is a typed output, which is the coefficient matrix for
LECIP’ and a punched output for use in Part III.

The input data,for‘Part III is the same as for Part II with the
addition of the punched output from Part II. The output from Part III
is a typed_oqtput which is the coefficient matrix for lCI and the co-
efficient matrix forJyTE.

The cénstants supplied as part of the input data are fixed point

constants and are identified as follows:

KO = the number of chords.

MTRE = :the number of branches.

.NT = the number of branches containing resistances.
NC = the number of chords containing resistances.
NE = the number of ideal voltage sources.:

NI = ‘the number of ideal current sources.
NIE = the number of ports.

Flow charts for Parts I, II;Eahd.III'bf.ﬁhgfprogram.afesshdwn in
Appendix A aleng with a ﬁomﬁlete 1istingJef the FORTRAN statements. The
logical transfer statement, IF, is used throughgut this program se that
only the necessary operations are éérried,out.

A number of.examples*have been worked using this .three paft pro=-

gram. Some of these examples and the results are included here.

Example 3.4.1

The network and its associated directed graph shown in Figure 3.4.1

(the formulation tree is shown in heavy lines) will be considered.
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(3) (1) (3)
1.0 - A b
(4)
s
(C)
1 (562 3 (3)

(4)
(B)

Figure 3.4.1. (A) The Electrical Network for Example 3.4.1.

(B) Its Associated Directed Graph.
(C) Its Terminal Graph.

Chords .7 and 8 in Figure.3.4.1 represent the conceptual current
sources. The input data is as follows:

KO = 4, MTRE = 4, NT = 3, NE = 1, NC = 2, NI = 0, NIE = 2, MOD =

Interconnection matrix (KONN) = 3 4 8 0 0
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1 5
4 2
2 3
3 4
Orientation matrix (INTO) =
1 4
5 2
4 1
4 3
Branch matrix (NIRE) = {{:2 3 6|, Chord matrix (KORD) = [{ 57 %]
2 0 0
R = 0 1 0
0 1
T1 o
R =
C 0 1/2

The typed output from Part II is
.42105270
5.2631600E~02
909
5,2631600E-02
.63157890
909
The first two lines are the entries .in the first row of the coefficient

matrix OE“EC. The number 909 is simply a flag indicating a complete

IP’

row has been typed. The two lines following the first 909 are the entries

in the second row of the coefficient matrix of ECIP' There are only
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two rows since there are only two ports in this case. The coefficient

matrix obtained by manual calculations. is

0.422 0.0527

0.0527 0.632

The typed oeutput frem Part III is
111
.15789480
33
-.10526316

33

The number 111 is é flag to indicate that there are no current
sources in the network. The next number is the first row of the co-
efficient matrix of.XTE. Theré‘is;only,one-column in this coefficient
matrix'since.there>is;only-one voltage source ‘in the netwerk. The
number 33 is a flag‘to.indicate that a»complete-rew-has been typed. The
number following the first.33 is the=Second row of the coefficient

matrix, The coefficient matrix.ebtained by manual calculations is

0.157

{=0.1051

The computer results: for Example 3.4.1 may be summarized in the
set of eQuations

.42105270 .052631600 ia .15789480

. _ + e (3.4.1)
.052631600. .63157890 i -.10526316 -
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The reference directions for the voltages and currents used in equatien

3.4.1 are shown in Figure 3.4.1(C).

Example 3.4.2

The network and its associatéd directed graph shown in Figure 3.4.2

will be considered.

(L)
(1)
300 t a
+ 45
: (3)
(3 (©)
‘5

(3)
(B) /

Figure 3.4.2. (A) The Electrical Network for Example 3.4.2.
(B) Its Associated Directed Graph.
(C) Its Terminal Graph.
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Input data:

KO = 3, MTRE = 2, NT =1, NE= 1, NC = 1, NI =1, NIE = 1, MOD = &
5 1 2 4 1 2
KONN = 1 3 0 0 INTIO = 1 3
5 3 2 4 2 3
3 1
3 1
NTIRE = [g %:] KORD = [Ej 4 E}
‘ET = 45 BC'= 30
Computer Manual
Results .Calculations
Part II 18.000000 18
909
Part III 18,000000 18 (coefficient of lCI)
11
.59999999 : .6 (coefficient oijTE)
33

The computer results for Example 3.4.2.may be summarized in the

equation
v, ='18.0000001a +-18.000000T + .59999999E. (3.4.2)

The reference directions for the voltages and currents used in equation

3.4.2 are shown in Figure 3.4.2(C).

Example 3.4.3

The network and its associated directed graph shown in Figure 3.4.3
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will be considered.

2Q 30 4O
(1)~—/\,/\Nv_v\,—[—w\/v\/\/\/-—l (6)
<
20.2 4 0. 6.0 100
(4)a - (4)
(a)
(1) (6)
a b
(4)
(c)

(B)

Figure 3.4.3. (A) The Electrical Network for Example 3.4.3.
(B) Its Associated Directed Graph.
(C) Its Terminal Graph.



Input Data:

KO = 4, MIRE = 5, NT

8 1 0 0
1 2 3 0
2 4 0 0
KONN = 8 3 4 5
5 6 0 0
Lfi 7 9 0
—_ —
1 2
2 3
4 2
4 3
INTO = 4 5
5 6
4 6
4 1
4 6
(2 0 o0 o
0 3 0 0
R, = 0 0 20 0
0 0 0 4
o 0 0 O
2 0
.B_C= _0 ]

NTRE

KORD

-30
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Computer Manual
Results - Calculations
Part II v 6.0000000
6 0
-.00000000
0 5
909
- .00000000

5.0000000

Since there are ne sources in the network .of Figure.3.4.3 Part III
of the program was not executed.
'The computer results .for Example 3.4.3 may be summarized in the
set of equations
v, |= ]6.0000000 -.00000000 || i_

. (3.4.3)

v ~.00000000  5.0000000 |1 i

b b

The reference-directions for the voltages and currents used in equation
3.4.3 are shown in Figure 3.4.3(0).

Tﬁe‘preceding,examples.are intended to demonstrate that the pro-
gram written will preduce accurate results. Within the limitations
imposed, it is shown that the parameters.of an n-port‘network can be
determined from input data determinedbfrom the circuit interc;nnections
énd the circuit-pérameters. The next chapter considers the probleﬁ
of determining the parameters.of an n-pert network-éonsisting'of two-

terminal devices, multipert subretworkd and ideal transformers..



CHAPTER IV

COMPUTER CHARACTERIZATION OF AN n-PORT NETIWORK

CONTAINING MULTIPORT SUBNETWORKS

“4.1 Introduction. An n-port network consisting of two-terminal

devices may be contained in a larger network (l1). It may be desirable
in such cases to obtain the n-port representation of the larger network
utilizing the multiport representation of thg subnetwork. This chapter
is devoted to the consideration-of networks éonsisting‘of
(a) two-terminal devices limited fo resistances, ideal
current soeurces and ideal voltage sources,
(b) multiport subnetworks consisting of two-terminal
deVices listed under (a) and represented by volt=
ampere'equationsfat the ports, and
(c) ideal transformers.
The objective -is to/obtain_theun-poft representationwof such a network
utilizing_a digital computer which is supplied with input data describ=
ing the circuit interconnections and barameters.
The multiport subnetworks embeddéd_in the. larger network may be

represented by velt-ampere equations of the form

¥Y=RI1I+E, (4.1.1)

and

I=GY+H | ‘ (4.1.2)

32
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For purposes of this study the form_shown ingequation_A.l,l will be
 considered. This does.not.dethCt ffom thergengralitngf the»method
developed, for equatioﬁs in fhe form.of 4.1.2 can be placed in the form
of 4,1,1. |

An ideal transformer is represented by

, ' | (4.1.3)

where v, = eutput voltage,
A\ = input voltage,
io‘= output .current,
;i = input current; and
n = turns ratio.

A somewhat more genéral ;epresentation will be used in this study.
vSpecifically the‘(é, l)yelement in the:coefficieﬁt matrix will net be
required te be thevnegativevof the (1, 2) element as it is in equatien
4.1.3. This;increased'generality is to allow ﬁhe @ethod developed to

be extended readily to components represented by h-parameters.

4.2 Pértitioning the;g Matrix; .The'B matrix will be‘partitigned
in a mannef similér to that reported in Chapter III. The. eéxception is
that the partitiening will,necessarily‘be<finer since .there are more
types.of,circuit’elements to be considered. The. B matrix will be par-

titioned as féllowss
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N

3

,Y4

the branches containin

the branches containing

-elements.

the branches containing

the branches containing

It will be necessary as in the case.of

34

iy I !
By B2 1 B30 3| %
A
1. I .
Bo1 | Bop (Bas By %
5. B B, | Bl X (4.2.1)
B3y | B3p [ B33 1 B3| %3 - s
S U G L U
Bu1 | Bap 183 Bas| %4
_'___I___L___I_.____n_w
B51 | &2 | 53 : Bsu| %5
b l f—
N | ]
Y1 Y2 ,Y3 Yﬁ
the chords containing-ideal transformers.
the chords.containing_tWo-terminal_resistance;
”i'elementé,
the chords containing multiport subnetworks.
the chords containing ideal current sources in the
network.
the chords containing ideal current sources at the
ports.

ideal transformers.

two=terminal resistance

multiport subnetworks.
ideal voltage sources.

networks consisting only of two-

terminal devices, te number the-edgésvin the directed graph properly.

This.willrbe discussed in more détail later.

4.3 The Volt-Ampere Equations. Using the B matrix partitioned
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as shown in equation 4.2.1, the chord voltages may be written as

XCI

Yerp |

and the branchgéurrents

where

— T
B

T
B

B3

T
214

SO

= the matrix

= the matrix

the matrix

= the matrix

= the matrix

Bio
222
By,
B4

25,

B3 By,
Bys By
By By,
B3 L
Bsy sy |

may be written as

T
By

T
5,9

T
Bys
T

By

-B-gl 521
B, B,
By, B4y
By B

- | , (4.3.1)

oy | [Zen |
Egz Ler
-}-3"_51:3 ECM (4.3.2)
By | | Zer
| Lot |

of chord voltages for ideal transformers,

of chord voltages for resistance elements,

of chord voltages for multiport subnetworks,

of chord voltages for ideal current sources,

of chord voltages for ideal current sources

at the ports,

= the matrix

= the matrix

the matrix

the matrix

of branch voltages

of branch voltages

of branch voltages

of branch voltages

for ideal transformers,
for resistance elements,
for multiport subnetworks,

for ideal voltage sources,
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ETH = the matrix of branch gurrents for ideal transformers.
ETR = the matrix of branch currents for resistance elements,
ITM = the matrix of branch currents for multiport subnetworks,
ITE = the matrix of branch currents for ideal voltage sources,
ECH = .the matrix of chord currents for ideal transformers,
ICR = .the matrix of chord currents for resistance -elements,
ECM = the matrix of chord currents for multiport subnetworks,
ICI = the matrix of chord currents for ideal current sources,
and
lCIP = the matrix of chord currents for ideal current sources

at the ports.

The volt-ampere equations for the resistances, the multiport sub=-
networks and the ideal transformers will be used with equations 4.3.1
and 4.3.2 to obtain the desired characterization of the network. The
volt~ampere equations for the resistances are given in equations 3.3.6
and 3,3.7 in Chapter III. The set of volt-ampere equations .for the

multiport subnetworks is

Ym | = [Bma Bon I By
' ’ + , (4.3.3)
Yo Bowa | | Eo Eon
where ”BTMl = the matrix of r-parameters relating branch voltages
and currents,
BCMl = the matrix of r~-parameters relating branch voltages
and chord currents,
'BTMZ = the matrix of r-parameters relating chord voltages and

branch currents,
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'ECMZ = the matrix of r-parameters relating chord voltages and
currents,
ETM = the matrix of voltages which are constants appearing in

the volt-ampere equations for the voltages of the branches
.assigned to multiport subnetworks, and

E = the matrix of VOlfages which are constants appearing in
the volt-ampere equations for the voltages of the chords

‘assigned to multiport subnetworks.

The set of volt-ampere equations for the ideal transformers. is

Yy LIrg
= , : (4.3.4)
Loy e

where 4§12 = the matrix of constants,relating branch and chord
voltages assigned to ideal transformers, and
§21 = .the matrix of constants relating branch and chord

currents assigned to ideal transformers.

_Equations 3.3.6, 3,3.7, 4.3.1, 4.3.2, 4.3.3 and 4.3.4 can be com-

‘in terms of I I Vv

bined to yield Lorps Lers -TE”ETM

and The. de-

Yorp By

tails of combihing these equations are shown in Appendix B. The desired

equation is

e
Iz
|[=
“
[ Lc]
N’
=
+

where B, = [531 Bsy Bs3| s

|
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. ~  er e
0 o 0 B B
e T T
E = R3A R O Bio Bsy | o
T T T
Rna B2 0 By B3 353
- _ | .
Lor
i = »
Lerp
B3 By O
L = 13.23 '§24 0 >
B33 B L
_ _
By ™ |Bs3 By O ,oand
By
E = Y | .
Bou_

The set of equations shown in equation 4.3.5, with the proper sign
on the coefficients of I and E is the set desired to represent the
n-port network.

4.4 The Computer Program. In order to program the set of equa-

tions of 4.3.5 it is necessary to number the edges of the directed graph
properly for the reasons set forth in Chapter iII. The method of
numbering the edges is similar to that reported in Chapter III. If

the directed graph contains h edges assigned to ideal transformers, r

edges assigned to resistances, m edges assigned to multiport subnetworks,
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i edges assignéd to ideal curréﬁt éources,_e edges assigned to ideal
voltage sources.and p edges assigﬁed to the conceptualvsoqrces at the
ports, a metﬁod for numbering the edges to insure the proper order for
the rows and columné of 3 is
(g) number thexedgés assigned to ideal transformers
| 1 through h,
(b) number the edges-assigned to resistances h + 1
through h + r, |
(c) number the edges assigned to multiport subnetworks
h+r+ l‘through h + r:f m,
(d) ﬁumbér the edges assignea to ideal sources h + r + m +i1
through h + r + m+ i + e, and
(e) number the edges assigned to the conceptual sources at
vthe ports h+r+m+ i+ e+ 1 throughh+r+m+ i+
et p.
It is evident, as in Chapter III, that placing the chords assigned
-to the conceptual sources last in the B matrix allows the number of
ports to be.changed without changing the numbering of the edges'ép the
network.
The procedure for producing the program is the same as was used
in Chapter III. The B matrix is produced from interconnection data
and the desired submatrices of B and then used with the appropriate
circuit‘parameters in calculating the solution. In order that the proper
submatrices oflgrmay be -selected a number of constants are supplied as
input data.  The constants include those mentioned in Chapter III and,
in addition, contain

.(a) the number of chords which contain ideal transformers,
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(b) the number of chords which contain multiport subnetworks,

(c) the number of branches which contain ideal transformers,
~and

(d) the number of branches which contain multiport subnet-
works.

The parameters which must be supplied as input data are

(a) R, the matrix of two-terminal resistances (this matrix
includes both branch and chord resistances with the
branch resistances appearing first in ascending numerical
order of the edge numbers),

(b) EM’ the matrix of r-parameters shown in equation 4.3.3,
and

(c) §12 and,§21, the matrices of constants shown in equation
4,3.4,

As in the program described in Chapter III, the voltage and current
sources are treated as variables. The coefficient matrices for the
sources are determined and are printed as output data.

The program that has been prepared to compute the coefficients of
I and E in equation 4.3.5 is written in FORTRAN IV language for exe-=
cution on the IBM 1410 computer., The length of the program is such that
is impractical to execute on the IBM 1620 computer. The program is
divided into é.parts and each part is executed in sequence and supplies
data for the succeeding parts.

The card input data for Part I consists of the matrices K, D, T and
C, the degree of the node of highest degree, the fixed point constants

named in Chapter III, plus the fixed point constants for the additional
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types of circuit elements to be considered. These constants are

NCH

the number of chords containing ideal transformers,
NCM = the number of chords containing multiport subnetworks,

NTH

the number of branches containing ideal transformers,
and
.NTM = the number of branches containing multiport subnetworks.

All of these constants are stored on magnetié tape for use in succeed-
ing parts of the program. The B matrix is the output of Part I. It is
typed and is also stored on magnetic tape for use by other parts of
the program.

The card input data for Part II consist of the matrices R, EM’

and N ‘This data is stored on magnetic tape for future use.

l\]-12 21° ‘
The output of Part II is used in Part III etc. through Part IX where

the output consists of the desired coefficient matrices and is typed

with appropriate headings. The signs for the coefficient matrices con-
form to voltages at the ports which are.pbsiti&e-at the terminal at

which current enters. -A‘flow chart and a complete ‘listing of the FORTRAN
statements for this. program is included in Appendix C. It will be

noted that the IF statement is used.so that only operations .necessary

for .a particular problem are carried out.

- A number of examples have been worked using this program and some

-of them are included here to demonstrate the use of the program.

Example 4.4.1

The network in. Figure 4.4.1 will be considered ,
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1) 34 10 - i
. N . (

20 TI 10,

(5) *(6)

Figure 4.4.1. The Electrical Network for Example 4.4.1.

The following will be represented as multiport

200 4+ 10 1 —
VA 4 2

2
-
VE 0
iF -1/2

Using these multiport subnetworks the directed
to Figure 4.4.1 is shown in.Figure 4.4.2.

In Figure . 4.4.2, the formulation tree is shown

subnetworks:

05T 1
lA e
+
B 0
g — —
e 21
+ .
Mo 21
—_a . —t
1/2 'E
0 Vg

graph corresponding

in heavy lines -and

the relationship between edge voltages and the voltages. shown in the

multiport representations is

v, = v
1 e’
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<
I
<

2 CR?

Ve = Yy

\b. = Vg

Vg = Ves apd

Vg =V -

- RS (3) (4)
(1) (4)

ab
(5,6)
(B)

(5, 6)
(A)

Figure 4.4.2. (A) The Directed Graph Corresponding to Figure 4.4.1.
' (B) The Terminal Graph.
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The input data is
KO = 7, MIRE = 4, NT = 0, NE = 0, NC= 3, NI =0, NIE = 2,

MOD = 11, NCH =1, NCM = 1, NTH = 1, NIM = 3

1o 4 6 0 0 0 0 0 0 0 O

KONN .= 2 8 0 0 O O o o0 0 o0 O s

9 51 o 0 o0 O o O 0 o

2 5]
3 5 NTRE = E 6 8 gl
2 5 KORD=|:2 3 4 5 7 10 1{,,
1 5
4 5

INO = |1 .5/,
2 5
3 s
4 s
51
|5 4
— —
1 0 0

R= [0 1 0|, _1_112=|:1/a , Ny = l:—~1/gl ,

o o0 1




L 0 0 2

0 5 2 9]
i) s
By ¢

The computer results aye shown in Table H.4.1,

be sumnarized in the set of equations

v 1 ‘77 B0 18518

L918518 . 71296 |
~

+25925 037037 ~,018518 -, 14814

N> @

N

~, Q18518 -, 07078 28703 LOhER290 0

The results cbtained manually by another wethod are

06,0185 i

(; 0,74 a
|
L

- . " e .
.L 0.,0185 0,713 le

0.25¢  0.037  -0,0185 -0.148|!e

~0,0185 ~0,0742 0,287 0.0u463 0 1

( Ll’ . L" € A.~ j

L

These results may

-

L,
~

(4, %,.9)

The vreference directions for the voltages and currents used in equation

W,4.1 and 4,4.2 are shown in Figure 4,4.2(B).

Example 4,4.2

The network shown in Fipuve 3,4.1 will be considered,

The input

data is the same as shown in Chapter III with the additional data

NCH = 0, NCM =0, NTH = 0, NCH = 0,
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The computer results are shown in .Table 4.4.2. These results

may be summarized in the set of equations

vl .42105 .052631 i, .15789

o +
v .052631 .63157 i -+10526

e . '(4.4.3)

b b

The reference directions for the voltages and currents used in equation

4.4.3 are shown in.Figure 3.4.1(C).

' .Example 4.4.3

The network shown in Figure 3.4.2.will be considered. The input

data is the same as shown in Chapter III.with the additional .data
NCH =0, NCM = 0, NTH = 0, NCH = 0.

‘The computer results are shown in Table 4.4,3. These results may

be summarfzed_in the set of equations
v, = 18i_+ 18 I + .59999E. C(4.4.4)

The reference directions for the Voltages and currents used in
equation 4.4.4 are shown ih‘Figﬁrer3.4:2(C).

It is noted that the computer results for Example 4.4.1 compare
well with the results obtained by manual means. It is also noted that
the resglts for Example 4.4.2 and 4.4.3 are the same as those .obtained
by the program. described in Chapter III. Hence it is demonstrated that
the pfogram of Chapter III is contained in the program for use on the
IBM 1410.coﬁputer.

.44,5 Application of Program to Transistor Problem. The computer

program that has been devised may be -applied to problems involving



TABLE 4.4.1
COMPUTER OUTPUT FOR EXAMPIE 4.4.1

MONS S EXEQ PARY1.Mif
B MATRIX
0 0-1 0
-1¢.0 ¢
¢e-1 0 0
0 0.0 -}
=1 0.0 0
0 10 3
0 0 0
TNTERCONNECTION MATRIX
104 6.0 0.0 0 0 0 0 0
73 1L 0 0 0 0 0 0 0 0
2 8.0 0. 0 0.0 0°0 0. 0.
9 S1IL 0 0 00 0 @ 0 0
10 4 &6 7 3 )} 2 8 9 51} .
ORIENTATION MATREX
2 5
15
2.5
15
H -85
1 5
2.5 .
15 .
3 5
5 1
5 4
BRANCH MATRIX
16 8 9
MONS S EXEQ PART24M40
R MATRIX '

«1000€ 01 +0000E~99 «0000E-99

-0000E-99 »1000¢t 01 +0000E~99
«0000E~-99 «0000E~-99 «1000L vl

H12 MATRIX

.5000€ 00

H21 MATRIX

- ~,5000E 00

RM_MATRIX

+4000E 01 «0000E-99 «0000E~99 «2000E O}
«0000E~99 _ ..5000€ 01 22000k 01 «0000E~99

« 0000E-939 «2000E 01 «3000t 01} »0000E-99
.2000€E 01 «0000E~99 - .0000E-99 «3000E Q)

MON$ S EXEQ PART3,MJB
MONSS  ~ EXEQ PART4MJB
MONS'S EXEQ PART5,MJB
MONS $ EXEQ PARTG,MJB
MONS § EXEQ PARTT,MIB
MONS § EXEQ PARTS,MJB
MONS§ EXEQ PART9,MJB

COEF MATRIX OF PORT CURRENTS

+74074E 00 .18518E-01

+18518E-01  .71296E 0O

COEF MATRIX OF VOLTAGE DRIVERS

+25925E 00 .37037E~01 -.18518£~01 _~.14814E 00

~+18518E-01 ~.74074F~01 .28703E 00 .46296E-01



TABLE 4.4.2

COMPUTER OUTPUT FOR EXAMPIE 4.4.2

MONS$ $ EXEQ PART1,MJB
8 MATRIX
0 1 1 o
-1 1 _0-1
}-1 0 1
0-1-1 0

INTERCONNECTION MATRIX

=~ w0 =~
[« J[C, VR |
oNEIN ~
ol Ol O
(_DUDOCO

ORIENTATION MATRIX

1 5 ;
& 2 :
2 3
3 _ 4
1 4
5 2
& 1
4 3
BRANCH MATRIX
1 2 3 6
MONS $ EXEQ PART2,MJB
R MATRIX ‘
+2000E 01 . .0000E-99 +0000E-99 .0000E-99  .0000E-99
"«0000E~99 ~ .1000E 01 «0000E-99 «0000E-99 «0000E-99
. 0000E=99 «0000E~-99  «1000E 01 «0000E-99 «0000E-99
.0000£-99 +0000E-99 +0000E-99 .1000€ O1 «0000E-99
.0000E-99 «0000E-99 «0000E-99 . 0000E=-99 -5000E_04
MONSS EXEQ PART3,MJB
MONS$ EXEQ PART4,MJB
MONS$ $ EXEQ PARTS,MJB
MON$ $ EXEQ PART6,MJB
MONS$$ EXEQ PART7,MJB
MONS $ EXEQ PARTS8,MJB
MONS $ EXEQ PARTI,MJB

COEF. MATRIX OF PORT CURRENTS

.42105E 00 .52631E-01

«52631€E-01 © .63157E 00

COEF MATRIX OF VOLTAGE DRIVERS

«15789€ 00

~+10526E 00



MONSS

COMPUTER OUTPUT FOR EXAMPLE 4.4.3

EXEQ

TABLE 4.4.3

PART1,MJB

X

B8 MATRI

e s

1
Q
0]

INTERCONNECTION MATRIX

—

1
3
3

N O N

SO

ORIENTATION MATRIX

1 2
1 3
2 3
1 1
3 1
BRANCH MATRIX
2 3 :
MONS$ $ EXEQ PART2,MJB
R MATRIX
«4500E 02  .0000E-99
.0000E-99 - .3000E 02
MONS $ _EXEQ PART3,MJB
MONS$ EXEQ PART4,MJB
_MONS$$ EXEQ PARTS,MJR
[MONS$$ EXEQ PART6,MJB
MON$S . EXEQ PARFT,MJB
. MON§$& ~ EXEQ PARTB,MJB
MONS$ EXEQ PART9,MJB
COEF _MATRIX OF PORT_CURRENTS
.18000E 02
COEF MATRIX OF CURRENT DRIVERS

+18000E 02

COEF MATRIX OF VOLTAGE DRIVERS

-59999E 00_

50
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transistors by properly representing the transistor. Using the
common hybrid model to represent a transistor,; the set of equations

relating voltages and currents is:(6)

V1 Bip P 1
= . (4.5.1)
Y2 hop Py A
Now equation 4.5.1 may be written as
Y1 by O 1 0 Bigl |11 |
= + s (4.5.2)
12 0 h22 v2 h21 0 v2

and it may be seen that the second term on the right side of equation
4.5.2 has the same form as the ideal transformer coefficients. The
first term on the right hand side is a matrix containing a resistance,

hll’ and a conductance h22. This suggests a representation as shown in

Figure 4.5.1(b). : o

| /
Ve

Figure 4.5.1. Equivalent Directed Graph for the Represen-
tation of a Transistor.

(90
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The volt-ampere equations are

Ve = Bty
vy = Byovpe
iy = By
1p = hyrfp-
Now
Ve = Vet Yy
i, = ip +»1D,
Vg = v2, and
11 = iA'
50 v‘1 ='h1111 + h12v2,
1y =hyi) #hyvy
or V1 by Py 1
- ) (4.5.3)
) hor Bl |2

Thus the representation of Figure 4.5.1(b) is equivalent to that of
Figure 4.5.1(a). With this fepresentation of a transistor, the multi-
port representation of a tramsistor amplifief circuit in the mid-
frequency range may be obtained using the program described in Section

4.4, The technique. for achieving this is shown in Example’4.5.1.

a0

Example 4.5.1

The transistor amplifier shown in Figure 4.5.2 will be considered.



<},L ~230Y
200\
\OO/uf %\OKQ—.
1 | i
—Anr A | (@
5/{4; 5RLL P zlo/mc
() o }} 2 1275
§\OK.D. 1K OQM@
100 .

® -

Figure 4,5,2. The Transistor Amplifier for
Example 4.5.1.

The transistor characteristics are

v. 2000 6 x 1004 | i
. in 1n

. =5 :
ot 70 4 x 10 Vout

The directed graph for the mid-frequency range case is shown in
Figure 4.5.3.

The volt«ampere equations for the edges of Figure 4.5.3(A) are

— = - g_ o
vy 0 6 x:10 1,
- = ’
12 70 0 v2
v3 = 2000 is,
v, = 5000 i,
v, = 25,000 i_,
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vg = 10,000 16;

vy =100 i,

Vg = 290,000 18’ and .
vy = 10,000 ig.

Edges 1, 2, 3 and 5 represent the transistor and edges 10 and 11 repre-

sent the conceptual current sources.

a )

(5)
(B)

(5)
o @)

Figure 4.5.3. (A5 Directed Graph for Mid-frequency Range of
e Amplifier of Figure 4.5.2.
(B) The Terminal Graph,
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The input data is as follows

KO = 7, MIRE

KONN =

INTO

NTRE

KORD

=12

=21

=4, NI =3, NE=0, NC= 4, NI =0, NIE = 2, MOD = 6,
NCH = 1, NCM = 0, NTH = 1, NIM = 0
jo 9 8 3 4 O]
31 0 0 0 0
1 2 5 7 0 0
4 2 5 6 11 0
(10 9 8 7 6 11
)
_4 3
1 2
b1
4 3
=1 4 5
3 5
1 s
1 5
.
5 4

[é 3. 4 5 9 10 1}]
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Tlox1w® o o o o 0o 0o ]
0 0 0 o0 0 0 0
0 0200x10°0 0o 0 0
R=| o o o0 2x10°0 0 0
0 0 0 0 5x 1030 0
o o0 0 0 0 25x 10° 0
0 0 0 0 0 0 10 x 10° |

The computer results are shown in Table 4.5.1. These results may

be summarized in the set of equatioms

v |- [187.20  123.15

i
a a
= (4.5.4)
vy «4599.8  255.08 lb‘
The results obtained manually by another method are
v 189 124 i
a | a
= ' . (4.5.5)
vy -4560 257 iy

The reference»directions for the voltages and currents used in equa-
tions 4.5.4 and 4.5.5 are shown in Figure 4.5.3(B).

These results demonstrate the applicability of the program to a
transistor amplifier in the mid-frequency range. This ability ﬁo
accommodate actiQe'devices greatly increases the versatility of the

program.



‘TABLE 4.5.1

CQMPUTER‘OUTPUT FOR EXAMPIE 4.5.1

. HON$$ EXEQ PARYL,MJB’

8 MATRIX.

0-1 1.0

1.0 1-1 .
0L 01 ’
0-1-1 o

0 0.0 -1

0 0 -0 1

010 0

“INTERCONNECTION NATRIX
i0 9 8.3 40
3 1 0 0 0 0

1 25 1.0 0

“ 275 611 0
10 9 8 71 611

ORIENTATION MATREX

2 3.
4 3
12
4 1
4 3
4 5
3 5
1 5.
1 5
5 1
G5 4

BRANCH MATRIX

1 6 7 8 .
MONSS EXEQ PART2,MJB
R MATRIX
.1000€ 05 -0000E-99 +00U0E-99 -0000E-99 -0000E-99 .0000E-99
-0000E~-99 )
. 0000E~-99 .1000E 03 <0000E=99 . 000QE-99 +0000E~99 «0000E~99
.0000E~99 ] e . o
.0000E~99 «0000E~99 < 2000E 06 +0000E~-99 <0000E-99 . .000Q0E-99
.0000E-99 ‘
.0000E-99  .000D0E-98 <U0Q0E=99 . 2000E 04 «0000E-99 -0000E-99
-~ 7« 0000E-99 e
.. DO00E-99 . .0000DE-99 <60U0E-99 . Q00QE~99 .5000E_04 - 0000E-99
. +0000E~99 : . )
_«U000E-99 - - .0000E-99 +0000E-99 . 0000E-99 +0000E-99 +2500E_05
" .0000E<99 - : :
.0000E-99 +0000£-99 .00Q0E-99 . ,0000E-99 .0000E-99 . 0000€-99
.1000E 05
H12 MATRIX
.6000E-03
H21 MATRIX
. 1000E 02 .
MONS$S$ EXEQ PART3,MJB
MONS $ EXEQ PART4,MJB
MONS S EXEQ _PARTS;MJB
MONSS EXEQ PART6,MJB
MONSS EXEQ PARIZ,MJ4H
MONS$ $ EXEQ PART8,MJB
MONSS - EXEQ PARTIMJB

COEF MATRIX OF PORY CURRENTS

a18720E 03

<12315E 03
<25508E_03

. ~+%5998E 04

57



CHAPTER V

SUMMARY AND CONGCLUSIONS

-

5.1 Summary. A motivating force in this investigation has been

the need for a mechanized method for determining the multiport repre-
sentation of»an electrical network. This is needed_in order to better
take advantage of existing_formulation techniques involving the inter-
connection ofbmultiterminal components. This investigation has led to
the develobment of two digital computer programs for calculating the
n-port representation of electrical networks of arbitrary configu-- -
ration. One of tﬁese'progfams is for‘use.on the IBM 1620 computer and
is limited to two-terminaltdevices which may be

(a) :esistgnces,

- (b) 1ideal current sources, or

(c) 1ideal voltage sources.
.The maximum number of each variable which the program, as it is now
written, will accommodate is included iﬁ Appendix A. A part of this
list is restated here. The program will accommodate a maximum of four
ports, three ideal voltage sources and three ideal current sources,
five resistances in the tree and five in the co-trée, and a total of
fifteen edges.

The second program is written for the IBM 1410 computer and will

accommodate ideal transformers;'multiport subnetworks and two-terminal

devices. The limitations on the two-terminal devices are the same as

58
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for the first program and the multiport subnetworks must consist of
these same types of two-terminal devices. The program for the IBM 1410
computer will accommpdate transiétors which are represented by h=-
parameters. Appendix C incluaes the maximum value that each of the
variables may have for_the-progtam as it is now written. A part of this
list is restated here. The pfogram will accommodate fou; ports, three
ideal voltage sources and three ideal current sources, six resistances
in the tree and six in the co-tree, two ideal transformers or two
transistors, and three edges for multiport components in the tree -and
three in the-co-tfee and a total of twenty edges.

In order that the networks considered may be of arbitrary con-
figuration, an algorithm for finding the B matrix which can be pro-
grammed for execution by a digital computer was developed. This algo=
rithm is described in Chapter II.

The technique for obtaining the Volt-amperé-equafions at the ports
of the network is not new. It involves using the B matrix and the
parameters of the network along with conceptual current sources at the
ports. The.topological 1hnitations are that it must be possible to
place -all of thé idéal voltage sources in the formulation tree, all of
the ideal current sources in the co-tree, and one edge representing the
ideal transformer in the formulation tree while the other edge is in
the co-tree. The applicaﬁion of the digital computer to the solution
of these equations requires a particular ordering for the B matrix and
for the hetwork parameters. The method for obtaining this ordering is
~included in Chapters IIIL and Iv.

A number of examples that have been worked using the two programs

are included in this study to demonstrate how the input data is obtained
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from the network. These examples also serve to illustrate that the
programs do achieve the correct results.

'5.2 Suggestions for Further Investigation and Program Improve-

ments. It is apparent that the size of the networks which may be
agcommodated by the programs described in this sfudy is 1iﬁited. ‘This
may £evimpfoved fo a certain extent by dividing tﬁe;programs into‘more
parts. For examﬁle, it may be feasible . to ﬁake the program of
Chapter III into four or more parts instead of three and és a result
increasé the size of the network which may bg gccommodated. It may
also Be feasible to divide thé program of Chapter IV into ten or
more parté instead of nine. éuch a prdcedure coulé increase the size
: ofbthe neﬁworks which could be handledvbut-there would be a limit to
this size. HoWever,.it does appear that an invgstigatidn to determine
tﬁe optimum number o%,parts'for each of the computer programs ﬁould be
.useful. |

‘The possibilify.of applfing the progfams.to.ﬁéﬁdle’a”netﬁdrk of
any size by dividing the netﬁork into parts is one which could be the
subject of fuffhér investigation. - It is.feasible to divide the net-
work into parts, obtain the multipoft répresentation of each part and
then combine the multipoft representations tovoﬂfain the multiport
‘representation of the entire network. A useéul investigation would be
to consider the ﬁassibilityvof determining the optimum method fdr\di-
viding the network. A desirable feature wouid be to write the program
so that theAdetermination'of the multiport representations of the
various parts of the ﬁetwdrk and the combinétion.of these into the

multiport representation of the-entire network would be accomplished by

the computer,
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An area of inveétigatioﬁ which could lead to added versaﬁilityb
of the programs is to increase their scope so that inductors and
capacitors may be included in the networks. The techniques developed
for the programs described in this study should be suitable for
sinusoidal steady-stafe analysis, while considérable additional re-
search would be‘necessary‘to adapt the computer to state~variable
formulation or the determination of the‘s-domain representation.

A number of changes that may make the programs more convenient to
use have been suggested through application of the programs. These
changes are

(a) ailow the T matrix elements to be placed in random
order and include instructioﬁs in the programs which
would cause the éiements of the matrix to be placed in

.- proper order,
~ (b) ‘include iﬁstructions so that the gvmatrii would be
generated from T and the total number of edges in the
graph,

- (c) &Eead the diagonal matrices ET and EC into the computer
'aé column matrices and arraﬁge the multiplication and
addition'instructionsmso that they are considered as
square matrices,

- (d) arrange the-program,so that the parameters of the two-
terﬁinal passive eleﬁents may be supplied as either
resistances or cénductances, and

(e) 'include instructions so that the g~ and h~parameters

may be obtained if desired.
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5.3 ‘Conclusions. This investigation has demonstrated that the

digital computer can be applied to the problem of obtaining the n-port
representation of electrical networks whose elements are

(a) resistances,

(b)_‘ideal current sources,

(¢) ideal voltage sources,

(d) multiport subne tworks consisting of two-terminal

devices listed under (a), (b), and (c),

(e) 1ideal transformers, or

(f) transistors.
Although the programs produced as a result of this investigation are
limited in the class of devices which may be considered, they may be
applied to networks of considerable complexity. It hés been shown
how a transistor, which is described by means of h-parameters, may be
represented by a coupling similar in form to an ideal transformer with
a series resistor and a parallel resistor. This increases the class of
networks which may be accommodated.

Based on experience gained in using these programs, it is concluded
that considerable use can be méde in the determination of equivalent re-
sistance of networks that are quite complex, the analysis of multiport
network problems and the investigation of the variation of the parameters
in the multiport representatioﬁ aé the elements in the network .are
varied.

It is also concluded that the availability of a mechanized method
of obtaining the multiport representation of a network can reduce the
effort required in deterﬁining the multiport representation of a net-

work of great complexity, even though the repetitive combination of



multiport subnetworks would be manual at this time.
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" APPENDIX A

THE COMPUTER PROGRAM FOR CHARACTERIZATION OF

n-PORT NETWORK OF TWO-TERMINAL DEVICES
PART 1

This prbgram is written in FORTRAN without format for execution
by an IBM 1620 éomputér. The entire program is written using fixed
point variables and constants. It is the first part of a three part
program.

The input data is read into the machine as shown in Table A-1.

TABLE A-1

ORDER?QF;INPUTHDATA%FORQPARTfI OF THE PROGRAM .

Card Group - Variable Name and Order on Card
1 \ : KO, MTRE, NT, NE, NC, NI, NIE, MOD
2 , KONN (one row per card)
3 INTO (one row per card)
4 ' NTRE
5 .. KORD

The input data consists of punched cards which contain the B
matrix. Each card will contain one element from B, the first being
the (1, 1) element, the second being the (1, 2)ve1ement, etc. Through

the (KO, MIRE) element.
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The variable names are shown in Table.A-S.
The program contains Ewo diagnostics. These are as follows:
1. 1If MIRE =£ NT + NE the typewriter will type §9 and
control will be traﬁsferred to statement 1 which is -
Atheffirst READ statement. If MIRE = NT + NE the
program execution is performed normally.
2. 'If KO == NC + NI + NIE the typewriter will type 999
and control will be transferred to statement 1. If
MIRE = NC + NI + NIE the program execution is per=-
formed normally.
.When the output data (I0OP) has been punched into cards control

is transferred to statement 1.
PARTS 1I AND III

 These parts of the program‘are'wfitten in FORTRAN without format

for execution by an IBM 1620 computer. Both fixed point and floating
point variables are used in this program.

The input data is read into the machine as shown in Table A-2,

The output data for Part II consists of both typed and punched
data. The typed data is the coefficient matrix of the port currents.
It appears in a single column. ‘The first element is the (1, 1) ele-
mént,rthe next is the (1, 2) element, etc. through the (1, NIE) ele-
ment then the number 909 is typed. The next element is (2, 1) etc.
until all of the elements have beén typed. The number 909 is typed
after a complete-fow éf elements have been typed. The punched data

is used as inputvdéta for Part III.
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TABLE A-2

ORDER OF INPUT DATA FOR PARTS II AND III OF THE PROGRAM

C#td Group ' Variable Name and Order on Card
Part I |
1 KO, MTRE, NT, NE, NC, NI, NIE, MOD
2 IDOP (output from Part I)
3 .RT (one row per card)
4 ' RC (one row per card)
Part IIT
1 KO, MIRE, NT, NE, NC, NI, NIE, MOD
2 I00P (output from Part I)
3 RT (one row per card)
4 | R1 (output from.Part II)
5 ‘ . U (output from Part II)

6 _ .. RC (one row per card)

Note: If there are no resistances in the branches, card group
3 isvomitféd in Pérts II and iII. If there are no re-
sistances in the éhords, card group 4 in Part II and group
6 are omitted. If ﬁl or U or both are not punched out of
- Part II, they are omitted as input data for Part III.

The -output data for Part III is typed. It consisté of the co-
efficient matrices of the ideal current sources in the network and of
the ideal voltage sources in the network. The coefficient matrix for
the ideal currént sources appears in a single column. The number 11 is
typed to indicate that a complete row has been typed. If there are no

ideal current sources in the network, the number 111 is typed. The
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coefficient ﬁatrixjfof the ideal voltage sources appears in a single
column., The number 33 is typed to indicate that a complete row has
been typed. If there are no ideal voltage sources in the network, the
number 333 is typed.

The variable names are shoﬁn in Table A-=3.

In Part II and Part III of the program, when typing and punching
are cqmpleted{ control is transferred to statement 1, the first READ
statement.

The maximum number of each variable which the program, as it is

now written, will accommodate is as follows:

KO = 8.
MTRE = 7.
MOD = 8.

NC = 5.

NT = 5.

NI‘= 3.

NE = 3.

NIE = 4,



TABLE

A-3

VARIABLES USED IN PROGRAM

KO = thé number of chords.

MTIRE = the number of Branches,

NT = -the number of branches containing resistances.
NE = the number of ideal‘vqltage sources.

NC = the numbef‘df chords containing resistances.
NI = the numbéf of ideal current sources.

NIE = the number of ports. .-

MOD = the degree of the nodé of maximum degree.

KONN (I,J) = the interconnection matrix,,g,

INTO (I, 2) = the orientation matrix D.

NTRE (I)

KORD (I) the chord matrix, C.

KONNMM(I,J) = a modified K matrix, K

NER(1)

NOT(L)

MESH(I) = the branches forming a circuit with the ith chord.

100P(I,J) = the B matrix.

the branch matrix,  T.

2'-

the sum of the elements in the ith row of K,.

RT(L,J) = the'gT matrix.
RC(I,J) = the'gC matrix.
- T
RL (I,9) = By;Rp By, - |
_ | T
R2 (1,3) = Re + By By LR
- T | '
U (I,J) —[%C +'§11.5T51:]L
. T
R3 (1,3) = Byy Ry By, - |
. T Tl T
Ri (1,0) = Byy Ry Byy Bo + By By Byy 3

Big By B gy -

70

the branches which are not in the circuit with the ith chord.
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o T
R3S (1,3) = By Ry By -
RS (1,3) = B3y Ry By, )
R7 (1,J) = B,  R.B.[R.+ B .. R.B B . R. B - B R BL.
' ? =31 =T =11)/=C = =11 =T <1113 =T =21 . =31 =T.=21"
T T =]
RS (1,9) = Byy Rp By [Ro + Byy Ry Byy ] By
- T o T i
RO (1,3) = By) Ry By)[Ro + Byy By Byy | By, B3

COFF = cpevff1c1ents of ;CIP'
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Figure A-l., Flow Chart for Part I of the Program of Chapter III.
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Reas,
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lvpyr Oara_
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Figure A-2. . Flow Chart for Part II
of the Program of Chapter TIII.
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Figure A-3. Flow Chart for Part III of the Program.of Chapter III.



o v s ow

O oo

10 .
35

36

40

45

50
55

60

CIF(NBR{J)-KONNM(J

TABLE A-4

* FORTRAN STATEMENTS FOR IBM 1620 PROGRAM

COMP CHAR OF N- PORT NETWORK PART ONE

DIMENSION KONN(8,8),INTO(15,2), NTRE(7) KORD(B) NBR(S) NOT(8)
DIMENS |ON KONNM(S, 85 MESH (8] ,LO0P (

READ, KO, MTRE ,NT,NE, NC,NI', N1 E,MOD

NV=MTRE+1

D0ZI=1,NV

D02J=1.MOD
READ ,KONN(1,J)
NX=KO+MTRE

D03 I=1,NX
003J=1,2

READ, INTO(l J)
00L =1 ,MTRE
READ,NTRE(1)

: DOSI-I KO

READ,KORD(1)

| F(MTRE=(NT+NE) )6, 8 6
NZ=99

TYPE,NZ

GOTO1

I F (KO- (NC+NI+NIE))9 10,9

NZ=999

"TYPE,NZ -

GOTO1

0035 I=1,KO0
D035J=1,MTRE
LOOP( 1, J)m0
00180 1=1,KO0
0036Jm=1,NV
D036Ks=1,MOD

- KONNM(J,K)=0

D037J=1,NV

MESH(J)=0

DO4S5 J=1,NV

DO45Ke= I,MOD

1F(KORD( | —KONN(J K) 45,40, 45
KONNM(J,K)=KONN{J,K)

CONT I NUE

DO55Jm1,NV

DO55K=1,M0D -

DO55L=1,NV

IF(NTRE(L ~KONN(J,K))55,50, 55
KONNM( J,K }=KONN(J,K)

CONT INUE

DO8OLL=1,MTRE

D060J=1, NV e

NOT( J JmO - - :

NBR(J)=0 -

DO60K=1,MOD

'NBR(J)-NBR(J)+KONNH(J K)
“ LAml
- DO70Jm 1 ,NV

D070Km=1,MOD'
LF (KONNM(J,K))61,70,61
5)70 65,70
NOT (L A)=KONNM(J, KS

NASLA.

LA-LA+]

"CONT I NUE

D080J=1,NV

DOBOK=1, MOD

DO8OLB -‘

IF(KONN(J, K))7l 80,7
LF(KONN(J,K)~NOT (LB)

1
( )80,75,80
-KONNM(J,K)-O :

~ CONTINUE

MESH(1)=KORD(1)

LM=KORD (1)

LN=INTO(LM,2)

LPa2

DO115J=1 ,MOD .

I F(KONNM{LN, J)~LM) 105,115,105
{F(KONNM{LN,J)) 110,115,110
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135

140

145

150
160
165
170

175
180

190

15
18
" 20
22
25

205
206

- DIMENSION RL(k,4}

TABIE A-4 (Continded)

‘LQuKONNM(LN, J)

CONT INUE

- 1F(KORD(1)-LQ) 120,135, 120
MESH(LP)=LQ

DO130K=1,2
IF(INTO(LQ, K)—LN)IZS 130 125

5 . LR=INTO(LQ,K

CONT INUE
LM=LQ

LN=LR

LPaLP+1

GOTO104

00180Js1,NV
{F(MESH(J)) 140,180, 140
KD=MESH(J) ,
IF(J=-1) 145, 145 150
KE=|NTO(KD,2

GOTO180-

DO165M=1,

_IF(NTRE(M) KD)I65 160, 165

KG=M

CONT | NUE

TF(INTO(KD, 1)-KE) 170,175, 170
LOOP (1 ,KG)=(~1)

KE=INTO (KD, 1)

- GOTO0180

LOOR (1 ,KG)=1
KE=1NTO(KD, 2)
CONTINUE -
D01901i=1,K0
D0190J=1,MTRE
PUNCH, LOOP (1, J)
GoTO1 -

END

coMP CHAR OF N-PORT NETWORK PART TWO
DIMENS1ON LOOP(8,8) ,RT(5,5),RC(5,5),R1(4,5),R2(5,5),U(5,5), JR3(L, L)

READ,KO MTRE,NT,NE,NC,Ni ,NIE,MOD
KluNC+Nl+]

K2aNC+1

K3=NC+N |
NV=MTRE+1

.00151al,K0 -~ N\~

DO 15Jm 1 ;MTRE
READLOOP (1,J)

IF(NT)18, h75 18

D020/ ,NT.

D020Jd=1,NT
READ,RT(1,J)

IF(NC)22, 206, 22

D0251=1, NC

D025Ja1,NC

READ RC(I J)

M1=0

D0205 t=K1,KO

M1=M1+1.

D0205J=1,NC
RI(MI.J)=0.0

DO205K=1{,N

D0205L=1, NT
X=LOOP (1 .L)

Y=L00P(J,K)
R“MIJFRHMIJ¥HXWTH JK)y*v) .
M1=0 R
D02101=K1,KO

D0210J=K1,K0

-M2=M2+1

R3(Ml M2)=0. 0
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210
236

237
240

245

250
260

2390

306
310

s

Lug
L50
480
48s

486

TABLE A-4 (Continued)

D02 10K=1,NT
D02 10L=1,NT
X=LOOP (1, L)
Y=LOOP (J,K

R3(M1,M 5=R3(MI M2)+(X*RT(L K)*Y)
lF(NC5236 uhs,236

00240 1=1,NC

D0240J= 1,NC

1=0.0

002 L4OK=1,NT

DO24OL=1,NT

X=LOOP21 ,L)

Y=LOOP (J,K)

Z=Z+(X*RT (L,K)*Y)
IF(K-NT)240,237,240

R2(1,J)=RC(i,d)+L

CONT INUE

D02601=1,NC

D0260J=1,NC

IF(1-4)2h5,250,245

u(t,J)=0.0

GOT0260

U(i,J)=10

CONT INUE

M=1

D0285L=1,NC

t4=M+1

1F (M- Nc)265 265,275

D02701=M,N

R2(L, l)=R2(L 1)/R2(L,L)

D0280J=1,NC

u(L J)=U(L JY/R2(L,L)

00285 =1,NC

IF(L~ ~J)281,285,281
iF(M-NC)282 283,284
D02831=M,NC
R2(J1)=R2(J, 1 )=(R2(L,1)*R2(J,L))
D02851Q=1,NC
U(J,1Q)=U(J, 10)-(U(L,1Q)*R2(J,L))
CONT INUE

D0290i=1,NIE
D0290J=1.NIE

R4(1,J)=0.0
DO290K=1,NC
D0290L=1,NC
RE(1,J)=RE(1,I)+(R1(1,L)*U(L,K)*R1(J,K))
D03101=1,NIE
D0310J=1,N{E
COFF=(-1.)*(RL(1,J)-R3(1,J))

TYPE,COFF
1F(J-NIE)310,306,310
KZ=909

TYPE,KZ

CONT INUE

GOTO480
DO450L=1,NIE

D0450|= 1 NlE

TYPE,R3(L

PE(= NiE)Lso 446,450
KZ=909 .

TYPE ,KZ

CONT INUE

GOTO!

DOLBS =1, NIE .

DOLB5J=1,NC

PUNCH, Rl(l J)

DO4B6I=1,NC

DOLB6J:=1,NC

PUNCH,U(1,J)

GOTO!

END
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15
18
20
21
25

30

35
500

505
510

515

Ui
N —
o

522
525
600

TABLE A~4 (Continued)

COMP CHAR OF N- PORT 'NETWORK ~ PART THREE

DIMENSION LOOP(8,8
DIMENSION R7(4,5), Ré(h

KI=NC+NI+I
K2=NC+1
K3=NC+N!
Kb=NT+1
DO15t=1,K0
DO15J=1,MTRE
READ,LOOP(t,J)
IF(NT)18,616,18
D020 I=1,NT -
D020J=1.NT
READ ,RT(!,J)
IF(NC)21,499,21
D025i=1,NIE
D025J=1,NC
READ ,R1(1,J)
D030{=1,NC
D030J=1,NC
READ,U(1,J)
D0351=1,NC
D035J=1,NC
READ,RC{1,J)
IF{N1)500,635,500
M1=0 -

00505 I=K1,KO
MI=M1+1

M2=0
D0505J=K2,K3
M2=M2+1
R6{M],M2)=0.0
DO505Ka1,NT
DO505L=1,NT
X=LOOP (1, L)
Y=LOOP (J,K

R6(MI1, M2$=R6(M1 M2)+(X*RT (L,K)*Y)

IF(NC)SIO 625, 510
DO5151=1,NC

M1=0

DO515J=K2 ,K3

MI=M1+1

R5(1,M1)=0.0
DO515K=1,NT
X=L00P(1,L)
Y=LOOP(J,K)

RS(1,M1)=R5 (1 ,M1)+{X*RT(L,K)*Y)

DOSZOI =1,NIE
DOSZOJ=I,NI
1=0.0

DO520K=1,NC
DO520L=1,NC
2=2+(R1(1,L)I*U(L K)
TF((L+K)~- (Nc+Nc)55
R7(1,J)=Z=R6(1,d)
CONT I NUE
D05251=1,NIE
DOSZSJ-I Nl
R7(1,J)=(=1.)*R7(1,J)
TYPE.R7 (I, J)
FF(J=N1)525,522,525
KZ=11.

TYPE,KZ.

CONT I NUE
{F{NE)600,640, 600

D0605 =1 ,NIE

M1=0

D0605J=Kl ,MTRE
M1sM1+1

R8(1,M1)=0.0

R
}

3§ R

RT(5,5), Rc(s
" READ, KO, MTRE,NT,NE,NC, N1, le MOD

K,d))
8.520

3

5),R1(k,5),u(5,5),R5(5, 3) R6(4,3)
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605

610

608
615
616

618
620
625

628
630
631
635

640

TABLE A-4 (Continued)

' DO605K=1,NC

D0605L=1,NC

X=LOOP (K,J)
RB(1,M1)aRB(1,M1)+(R1(1,L)*U(L,K)*X)
M1=0 :

DO6101=K1,KO

M1=M1+1

M2=0

D0610JaK4 MTRE

M2=M2+1

X=LOOP(1,J) :
RI(M1,M2)=(RB(M1,M2)=X)*(~1.)
D06151=1 ,NIE

D0615J=1,NE

TYPE,R9{1,J) (
IF(J-NE}610,608,610

KZ=33 .

TYPE,KZ

CONT INUE

GOTO1

D0620 1=K 1,KO

D0620J=K4,MTRE
-~ X=LO0OP(l,J)

TYPE,X
IF(J-MTRE)620,618, 620
KZ=33

TYPE ,KZ

CONT INUE

GOTO1

D0630i=1,NIE
D0630J=1,NI
TYPE,R6(1,J)
IF(J-N1)630,628,630
KZ=11

TYPE,KZ

CONT INUE
1F(NE)616,640,616
KZ=111

TYPE ,KZ
IF(NC)526,631,526
KZ=333 S
TYPE,KZ

GOTO1

END
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APPENDIX B
DEVELOPMENT OF THE VOLT-AMPERE EQUATIONS
FOR AN n-PORT NETWORK CONTAINING

MULTIPORT SUBNETWORKS

The voltage at the ports, XCIP’ may be written in terms of the

branch voltages by using equation 4.3.1. The result is

] ] ol 5 B
Yerp = - Eﬁl 353 -B-_si TH | = Bgyy Ypg- B-1

LR

| Vo |

Using equations 3.3.6, 4,3.3:and,4.3.4 it is possible to write

;THﬁ. .'E‘I-lz 0 ° - 0. ) . _—-YCH;- _—0_

I | |0 O fma Bon| | Em S|
|

and this may be rearranged to be
XT}: —’51_2 o | =CH 0
= +
XTR 0 0 lCM BT
L O Ran 0
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~The currents lTR and ETM can be expressed in terms of the chord

currents by making use of 4.3.2. The desired expression is

B2 B3 By Bsp| | Ly

T
B3 B33 Bz Bs3| | I

: lCM . B-4

Lor

Lerp |

If equations 4.3.2 and 4.3.4 are used together it is possible to

obtain _
r o oo ot x| |
Loy = Hpp Iry = Bpy (Byp Boy B3y By Bsy| | Ley
Lor
fon |,
Lor
Lerp
- T , T T |, 7
Lon = Bpy Byy Loy T By |Bpp B3y | | Zpof o
Lon
T oo |
T B E || da
B~5
Zere




The solution for lCHrls

-1
T w85 B

Iop = (U Moy By Bo1) 221331

=CH

1-1
T N

and if A =10 - Rpy Byg) By

then equation B-6 may be rewritten as

_ T T
ch"-'é’ Eﬂ%li] Ler T4

iéH

-1
| T
U=y 3
o
T T
N1 (81 Bs1] | L
L— > B-6
1 Lee
/- —
B-7
T T
B41 Bs1 || Lex
B-8
Lot

Now, if equation B-8 is combined with B-4 the result is

T T T
Irr Bo| | & ‘:—EZl 33J
. T

T, T
Lrr B4 IO £
= T T

Ly 834 0 L 222
T

| 223

» ToT LT
| * &[5 2) [1n
ou Lore
T T ,
B2 Eso| | dex ‘ B-9

2,3 Bss| |Lere
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T T

T T

T T

Bs;
E5

Bs4

Using equation 4.3.1 it is possible to obtain

!CH

B1 Bo B3| | Yrm
By1 By Bps| | ¥m| -
E31 B3y Baz| | Y
L I — p—

B3
By,

By,

and if this is combined with B-3, the result is

=11

21

=31

Big B3| | Hpp O
By By | [0 0
B35 B33 ,__0 Ban
E_ll 212 '31; KR
By Byy Bps) | Bp O
231 B2 B33) | O Ena
— J— __.‘__‘
B11 B2 213 0
Bo1 By Bpy| | O
SR

‘B-11

B-12
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The volt-ampere equations 3.3.7 and 4.3.3 may be utilized to

yield

Yeu

R

&

y

-CM

and combining this result with equation B-12, the result is

U

=CM2

Bavo

0

BTMZ

212
£y

232

By
By,

23,

then

312
2y,

=32

o

, B-13

-
Bz [ O
B3] | ©
B33] 19 Reyy]
Byl [0 o] o
B3| |Bp O lTR
B33 O Rpg Em
- e
B3 By O |Epy
T 223 B O [Ypg
_533 B3, 5 fcn_
-51:: —'1‘112 o |
B)3 0 0 ||t
I
Zo| [0 Bag|




ol

and this may

Lo

0 R

0 0
+ .

T
351 .

: =cI
BT '
=52 I

=CIP
.BT '
=53

rearranged be

iy 513_ 0
Byo Bas | |Er
Byp B53 | |0
: _
L I
13-;:2 Lo | i
523_
1’%‘1 -1533:1_
By By
__512:3 Eﬁ{
813 214
" | 223 B
| 233 Ba
311“-}-3-_12
= N |Bar B
B31 23
o 0
RB.A R
RiBiA By
RppBysh O
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o | _gjljzé.,,g 0
0 BA 0 U
R

7

B Es1 I

T T

B2 Bso| V1,
By s

S -
.

0| |Ep,

Ol | B~15
] |
31; ‘l_'-ﬁlz o o |
s 0 o 0
233 0o o Rt
J— e : —
o | o 13»21 -.I-%l-—
0 0 B, By,
2o | |° By B
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= T T T - — =
0 o 0 0 By By Yen
T T
M 0 0 0 By By Lor
T T T
RnoBis 4 O By | O By By Lay
B B B3| | 0 o 0
- B, B., B RB.A R, O
=21 =22 =23 =T=12 = =T
B B B R BT A O R
=31 =32 33 =TM1~12= =M1
— _— ~T T —
0 0o 0 B 351 .
T T —CI
o0 0 0 B0 Esy .
R BT A | 0 R BT BT R
=TM2~=13~ —TMZ—J =43 =53
B3 By O L
T By By O Yrg B-16
B B U .E
_33 34 L -CM ]
The solution for “V-YCH may be obtained from equation B-=16 and it is
Ler
Lou
Len
Ip,| =Y=-DJI-DGE B-17
o
where D, J, L, G-and E have the meanings given in Chapter IV,
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It is possible to combine equation B~10 with equation B=3 to ob=-

tain
Vg N, 0 0 0 0 0 O B B3| | Len
_ T T T
Yp| =40 © 0 TR A By O 0 By B3\ | Ler
v o o R BEAO R o 3. Bl |z
LY Ran Brndi2 O 2na B23 B33} | Far
- =T T —
0 o o | [B; B o
T . »I T .
. ‘ ~-18
* |RBA R O Bi2 Bsy A Be1e
T T T :
B3 @ Bpn|  |Ba3 EBss - Eyy-
I — l— —
This result may be combined with B«l and B-17 to yield the desired
solution for MCIP' This is
VCIP=‘§‘P (QE.‘l-E)l.F.EP (QE.L.;)E_.];)’Q.:E_:’ , B-19
where B, G, H, J, E, LI, L, E and-B, have thé same meanings given in

P’ =’ = : =
Chapter IV.
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APPENDIX C

THE CdMPUTﬁR PROGRAM FOR'CHARACTERIZATION

| OF'AN n=-PORT NETWORK COﬁTAINING K |
MULTIPORT SUBNETWORKS
. This brogram is written in FORTRAN IVEWith forﬁat fof’exeéuﬁion

by an IBh 1410 compgter. It is divided into 9‘parts. . Card ‘input daté

is fequi;ea for Parts I and II. The output dafa from farté I'through
VIII is biébed on magnetic tape for use in the succeeding parts of thé
program,  The éutput of Part I is also printea as is the output of Part
IX. The card ihﬁuf dafa‘for Part II is priﬁted for ihformatiog pur=
poses. |

The card inputbaata is arranged as shown in Table C-1.

TABLE C-1

ORDER OF CARD INPUT DATA FOR THE PROGRAM

Card Group Variable Name and Order on Card
Part I -
1 KO, MIRE, NT, NC, NI, NIE, MOD, NCH,

NCM, NTH, NTM (I3 form)

2 ; . .KONNJ(one roﬁ per: card, I3 form)
3 v INTO.(one row per card, I3 form)
4 B NTRE (I3 form)
5 KORD (I3 form)
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TABLE C~1 (Continued)

Card Group | | Variable Name and Order oﬁ Cafd
| | Part II | |
1 R (E12.4 form)
2 H12 (E12.4 form)
3 H21 (E12.4 form)
4 RM (E12.4 form)

Note: The program is written so that if any of the variables R,
H12, H21, or RM are blank, the particular variable or
variables are omitted as input data.
The order and labeling of the printed output data is
(a) B MATRIX,
(b) INTERCONNECTION MATRIX,
(c) ORIENTATION MATRIX,
(d) BRANCH MATRIX,
_(e) R MATRIX,
(£) H12 MATRIX,
(g) H21 MATRIX,
(h) .RM MATRIX,
(i) COEF MATRIX OF PORT CURRENTS,
(j) COEF MATRIX OF CURRENT DRIVERS, and
(k) COEF MATRIX OF VOLTAGE DRIVERS.
If any of the above are not applicable for a particulaf problem, this
is denoted by their,absence.from-the-output data.
The variable names are shown in Table C-2. The maximum value that
the variables may have is

NT = 6,



NE

NC

NI

NIE

NCH

NCM

NTH

NTM

MOD

KO

MTRE

10, and

10.
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TABLE C-2

VARTABLES USED IN PROGRAM

KO = the number of chords.

ﬁTRE = the number of branéhes.

NT = the number of branches containing resistances.
‘NE = the number of ideal wvoltage sources.

NC = the number of éhords containing resistances.
NI = the number of ideal current sources.

NIE = the number of ports.

.MOD = the degree of the node of maximum degree.

NCH = -the number of chords containing ideal transformers.

NCM = the number of chords containing multiport subnetworks.

NTH = the number of branches containing ideal transformers.,

]

NTM = the number of branches containing multiport subnetworks.

KONN (I, J) the interconnection matrix, K.
INTO (I, 2) = the orientation ﬁatrix,vg.
NTRE (I).= the-branch matrix,, T..

KORD (I) = the chord matrix, C.

a modified K matrix, K

KONNM (I, J) .

the sum of the elements in the ith row of 52.

NBR(I)

NOT(I) the branches which are not in the circuit with the .ith chord.
.MESH(I) = the branches forming a circuit with the ith chord.
LOOP(I, J) = the B matrix.

‘R (I, J) = the matrix of branch and chord resistances, R.

H12(I, J) = the matrix of ideal transformer constants relating voltages,

Rpo-



TABLE C-2 (Continued)
H21(I, J) = the matrix of ideal transformer constants relating

currents, N

21°
RM(I, J) = the matrix of r-parameters for the multiport subnetworks,
A(I, J) = U-N BT
? = =21 -11
e -1
Al (I, J) = E.- Ezl .Ell:l ot

Tt
A2(I, J) = [H" _1\121 Ell:] EZl'

T N
A4(1, J) = Rpy By El" B «51] Bar-

T r 1
AS(L, J) = Ryyp Byy | B - Ny 1311] o1

RI(L, ) = |R, Bj,A R, O
R, B.A 0O R ]
BBz 2 O Epg
[ T
R2I, ) = |RyoBlaA 0 Rool .
r 1 . o —
B 345 BpBipd By O B B3
R3(I, J) = |B,, B. BT, A 0 Bl BT
’ B22 B3 Bng B3 & Boa | B2z B32 -
' T T
232 B33 Bys  Bys
- 1 -
R&(1, J) = | Rpyy §$3—4 0 &.LM;_I —B-rgl §-§1
T T
By B3
Tl
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R5(I,
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~
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R6(I,

o
Nt
1l

R7(L,

o
g
1l

R8(I, J)

RI(I, J)

R10(I, J)

R11(I, J)

R12(I,

o
Nt
[}

R13(I, J)

R14(I, J)

[

R15(I, J)

I
I

RIL(I, J) + R2(I, J).

T}
I
l

Bll TABLE C-2 (Continued)
By Yo
By
54
B3l Rany
L?33
'Eﬁl-
' ’I' T T ]
B’T‘EIZ'A l—"_[‘ 0 221 §31
T T T
BB 0 Bpg B2 35
T T
Byz B35
BT 212 A BT 0 241 551
T T T
Bna B34 0 Rpg| |2 sy
T T
243 Bss |
. —— it‘ T
Biy Byg| | By B, & Ry O
B.. B R__B.A 0 R
=22 =23 =TM1 =13 = 21
Byy EByj
G.
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R16(T,
R17(I,
R18(I,
R19(I,
R20(I,

R21(I,

]

TABLE C-2 (Continued)

R15(I, J) - R10 (I, J).

[1319} R16(I, J)
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o
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I
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 TABLE C~3

FORTRAN STATEMENTS FOR IBM 1410 PROGRAM

MON%% EXEQ FORTRAN,SOF,SiU,08,04,, MAINPGM} ,
DIMENSION KONN(11,11), INTO(20.2) ,NTRE(10),KO RD(IO),NBR(]O),NOT(IO)
DIMENSION KONNM(11,11),MESH(10),L00P(10,10) :

1 FORMAT(1213)
2 FORMAT(1113)
21 FORMAT (74X, BHB MATR!X//)
3 FORMAT (101 3) :
22 FORMAT /hX,ZZHiNTERCONNECTlON MATRIX//)
4 FORMAT (1113)
5 FORMAT (/4X, 1BHORIENTAT ION MATRIX//(213))
6 FORMAT (/4X, 13HBRANCH MATRIX//(1113))
READ (1, 1)KO,MTRE,NT,NE,NC,NI,NIE,MOD, NCH, NCM, NTH, NTM
REWINDé
WRITE(G)KO MTRE,NT,NE,NC, NI, NIE,MOD,NCH, NCM, NTH, NTM
V-MTRE+I
: D0201i=1,
20 READ(1, 2)(KONN(I J), J=1,M0D)
X-K0+MTRE
DO19i=1,NX

19 READ(1, 2) lNTO(l J),J=i,2)
READ(1.2) (NTRE(1}, =1, ,MTRE)
READ(1,2) (KORD{i ), 1=1,KO0)
D035 I=1,K0
D035J=1,MTRE

35 LOOP (1,d)=0

. DO180I=1,KO
D036Jm1, NV
, DO36Ka1,MOD .

36 KONNM (J,K)=0
D037J=1,NV

37 MESH(J)=0

: D045 J=1,NV
DO45K=1,MOD
o IF(KORD(I)-KONN(J K).EQ.O)KONNM(J, K)uKONN(J K)
ks CONT INUE
DO5S5J=1, NV
DO55Kat, MOD
DO55L=1,
IF(NTRE(L)-KONN(J K).EQ.0)KONNM{J,K)=KONN(J,K)

55 CONT INUE
D08OLL=a],MTRE
D060J=1, NV
NOT (J )=0
NBR(J)=0
DO60K=1,MOD -

60 NERSJ)-NBR(J)+KONNM(J .K)
0070J=1,N
DQ70K=1, MOD
IF (KONNM(J,K) . EQ.0)GOT070

- 1F{NBR(J)~KONNM(J,K) . NE.0)GOTO70
NOT(LA)=KONNM(J, K}
NA=LA -
L AmLA+]
70 CONT I NUE -

‘ D080 Js= 1, NV
DO8OK=1,MOD
DOBOLB={ , NA
1F(KONN(J,K).EQ.0)GOTDBO
IF(KONN(J K- NOT(LB) NE.0)GOT080
KONNM(J, K)=0

80 CONT I NUE
MESH(1)=KORD(1)
LM=KORD$))
LN=iNTO(LM,2)
LP=2

105 DO115J=1,MOD
lF(KONNM(LN J)~LM.E0.0)GOTO115
{F (KONNM(LN, J) £Q.0)GOTO115
LQ=KONNM(LN,J)

115 CONTINUE
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TABLE C-3 (Continued)

1F(KORD (1)~-L0Q.EQ, O)GOTOIBS
MESH(LP)-LQ
DO130K=1,2
IF(INTO(LQ,K)~LN,NE.O)LRaINTO(LQ,K)
130  CONT INUE
LM=LO
LN=sLR
LP=LP+1"
GOTO104
135 D0180J=1,NV
IF(MESH(J).EQ.0)GOTO180
KD=MESH(J)
1F(J-1.GT.0)GOTO150
KE=1NTO (KD, 2)
GOT0180
150  DO165M=1,MTRE
IF(NTRE(M)~KD, EQ.0)KG=M
165  CONTINUE
IF{INTO(KD, 1}-KE.EQ. 0)GOT0175
LOOP (1,KG)=(~1)
KE=iNTO (KD, 1)
GOTO180
176  LOOP{!,KG)=1
. KE=INTO(KD,2)
180  CONTINUE -
WRITE(3,21)
D01811=1,K0
181 WRITE(B,g)(LOOP(I,J),J-I,MTRE)

182 WRITE( D) ,
, I=1,NX)

2)
NV
)
)¢
(L TRE) I=1,K0)
MON4 4 EXEQ FORTRAN,SOF,SiU,08,04,, ,MAINPGM2
DIMENSION LO0P(10 10).R(12,12),H12(2.8),H21(2,2),RM(6,6),A(2,2)
DIMENSION A1(2,2
7 FORMAT (6E12.4)
8 FORMAT (2E12.4)
9 FORMAT (2£12.4 )
10 FORMAT (6E12.4)
30 FORMAT (6E12.4)
23 FORMAT { /4X , 8HR MATRIX//)
31 FORMAT (6E12. 4
32 FORMAT (2E12.4)
24 FORMAT (74X, 10HH12 MATRIX/ )
25 FORMAT (/4X, 10HH21 MATRIX//)
26 FORMAT (/74X . 9HRM MATRIX//)
33 FORMAT {6E12. 4

REWIND4

REWIND5

REWLND6 :

READ (6)KO,MTRE,NT,NE,NC, NI ,N1E,MOD,NCH,NCM, NTH, NTM

WRI{TE(5)KO,MTRE,NT,NE,NC,NI,NIE,MOD,NCH, NCM,NTH,NTM

K2=NTH+NT

KL= NTHNT+NTM

K6=NT+NTM

K19=NT+NC

READ(6) ((LOOP(1,J) J-I MTRE), I=1,K0)

WRITE(5)((LOOP ({,J},y=1,MTRE}, 1=1,KO)

{ F{NT+NC, €O, 0)5010201 :

WRITE(3,23)

. D02001=1 K1

READ(1,7)(

WRITE(3, 3
200 WRITE(Ss
201 IF(NCH E£Q

NOA



202

203
204

205
206

230
235
240

243
244

250

251
252

TABLE C-3 (Continued)

00202 [=1,NTH

READ (1,8 (H12(1,d),J=1,NCH)
WRITE(3,31)(H12(1,J), J=1,NCH)
WRITE(5)(H12(1,J),Ja1,NCH)
WRITE(3,25)

D02031=1,NCH

READ(1,9} (H21(1,4), J=1,NTH)
WRITE(3,32)(H21(1,J),J=1,NTH)
WRITE(SY(H21(1,J) . J=1,NTH)

I F(NCM+NTM. EQ. 0)G0T0206
WRITE(3,26)

NM=NCM+NTM

D0205 I=1, NM

READ(1,10)(RM(1,d),Jd=1,NM)
WRITE(3,33) (RM(],d},da1 NM)
WRITE(SY(RM(1,J),J=1,NM}
IF(NCH.EQ.0)GOT0252
D02101=1,NCH
D0210J=1,NTH
A(1,4)=0.0
X=L00P(I,J)
A(L,J)=A (1, ) +(H12(1,3)*X)
1F(i.E0,J)GOT0207

AL, )=(~1.)*A(1,d)

GOT0210

A(1,Jd)=1.0-A00,d)

CONT.INUE

D02201}=1,NCH

D0220J=1,NCH

1F(1.EQ.J)GOTO215

A1(1,4)=0.0

G0T0220

Al{1,4)=1.0

CONT INUE

M= |

D0250L=1,NCH

M=M+ 1

IF(M.GT.NCH)GOT0235
D02301=M, NCH

AL, t)=ACL,1)/A(L,L)
00240J=1,NCH
AL(L,J)=A1(L,d)/A(L,L)
D0250J=1,NCH
1F(L.EQ.J)GOTO250

IF(M.GT .NCH)GOTO24}4

DO243 j=M, NCH

AC, 1)=A(d, 1) =(A(L,1)*A(J,L))
D02501Q=1,NCH
ATCE,10)=A1(i,10)~(A1(L,1Q)*A{J,L))
CONT INUE

D02511=1,NCH
WRITE(4)(A1(1,J),d=1,NCH)
CALLEX1IT

END

MON“* EXEQ FORTRAN,SOF,SiU,D8,04,, ,MAINPGM3
DIMENSION LOOP(10,10),R(12,12},H12(2,2),H21(2,2) ,RM(6,6),A1(2,2)
DIMENSION A2(2,2),A4(6,2),R1(9,11),A3(6,3)

REWINDL *

REWINDS

REWIND6

READ(5 )KO ,MTRE,NT ,NE,NC, N} NI £,MOD,NCH,NCM,NTH, NTM
READ (5) ((LOOP (1 ,J)},J=1,MTRE), 1=1,K0)
K1=NTH+1 ' ,

K7=NT+1

K2=NTH+NT

K3=K2+1

Ki=aNTH+NT+NTM

K6=NT+NTM

K19=NT+NC

IF(NT+NC.E0.0)GOT0255
READ(S)((R(1,J),J=1,K19),1=1,K19)
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255,

256

257

258

261
262

265

271

275-

276

280
281

285
286
287
294

296

298

TABLE C-3 (Continued)

{F(NCH.EQ.0)GOT025
READ(S)((H|2$I,J) J-I NCH) = | NTH)
READ(5)( (H21{1,J),J=1.NTH) =1 NCH)
IF(NCM+NTM. EQ. 0)GOT0257

NMaNCM+NTM

READ(5) ((RM(1,J),J=1,NM), =1, NM)
IF(NCH. EQ.0)GOT0296

READ (4) ((A1(1,J),J=1,NCH), I=1,NCH)
D02581=1,NCH .

D0258J=1,NCH

A2(1,J)=0.0

D0258K=1, NCH
A2(1,d)=A2(1,d)+(A101, J)*HZI(I J))
WRITE(6) ((A2{1,J),J=1.NCH), NCH)
IF(NT.EQ.0)G0TH260

D02591=1,NT

D0259J=1.NCH

A3(i,4)=0.0

D0259K=1,NCH

M=0

D0259L=K 1,K2

MaM+1 -

X=LOOP (K,L)

A3(1, J¥=A3(1,0)+(RI JMI*X*A2 (K, J))
IF(NTM.EQ.0)G0T0262

D02611=1,NTM

D0261J=1,NCH

AL((,J)=0.0

D026 1K=a1,NCH

M=0

D0261L=K3,Kk

M=M+1

X=L00P(K,L)

LG J)=Ah(l J)}+(RM( 1, M)*X*A2(K,J))

IF(K6 EQ. 0)GOT0299
D0265 I=1,K6

-D02654=1, TKh

R1(1,4)=0.0

IF(NT. EQ 0)GOT0271
D0270i=1,

D0270Jal, NCH
R1(E,J)=A3(1,J)
[F(NTM. EQ. 0)GOT028|
M=0

" D02751=K7,K6"

M=M+1

D0275J=1, NCH
R1(150)=A4(M,J

I F(NTH. EQ. O)GOTOZBI
M1=0

D02801=K7,K6
M1=M1+1

M2=0

D0280J=K3, Ky
M2=M2+1
R1(1,J)=RM(M1,M2)
1F(NT. EQ 0)GOT029u
D02851=1,

M=0 _
p02854=aKi, K2

Me=M+1

R1(1,J)=R(1,M)
D02871=1,K6

WRITE(6) (R1(1,J);Jal,Kk)
G0T0299

{F(NTH+NTM. NE,0)G0OT0286
G0T0299
IF(NT+NTM.EQ.0)G0OT0299
D0298i=1,K6

D0298J= 1 ,K‘{

R1(1,4)=0.0

GOT0276
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106

TABLE C=3 (Continued)

CALLEXIT
END :

* MON%4 EXEQ FORTRAN,SOF,S1U,08,04,,,MAINPGMY -

300

301

302

303

304

305

310

315

320

322

325

DIMENSION R1(9,11),A5(6,2),R2(3,11),R3(11,9), RS(II 2),R6(11,3)

DIMENSION LOOP(10, 10),R(12,12),H12(2,2) ,H21(2, 2) RM(6,6), A2(2 2)
REWINDA
REWIND5
REWIND6
READ (5 )KO,MTRE,NT  NE,NC,NI ,NIE,MOD,NCH,NCM, NTH, NTM
READ(5) ( (LOOP (1,4}, J=l JMTRE), I=1,KO0)
KL4=NTH+NT+NTM
K2=NTH+NT
K3=K2+1
K 14=NCH+NC+NCM
K15aNC+NCM
K6=NT+NTM
K18=NCH+NC
K19=NT+NC
K2B=NTH+1 '
tF(NT+NC.EQ.0)GOT0300
READ(5) ((R{1,J),J=1,K19),1=1,K19)
IF(NCH, EQ.0)GOT0301
READ(5) ({H12(1,J),J=1,NCH), I=1,NTH)
READ(5)((H21(1,J),J=1.NTH), =1 NCH)
IF(NCM+NTM. EQ.0)GOT0302
NM=NCM+NTM
READ(5) ((RM(1,J),J=1,NM), =1, NM)
I F (NCH. EQ. 0)GOT0303
READ(6) ((A2(i,J),J=1,NCH), I=1,NCH)
IF (NT+NTM. E% 0)GOTO30k
READ(6)( (R1(),J),J=1,Kk) 1=1,K6)
WRITE(W) ((R1(1,4), 9=1 Kb, 1=1,K6)
IF(NCH. EQ.0)GOT0322
D03051=1,K14
D0305J=1, NCH
R5(1,J)=0
00305K=1,NTH _
X=LOOP (!, Kz e (XHH12L0 . K))
RS(1,d)=R5(1,d)+(X*H K
WRITE( )((Rs11,4),d=1,NCH), |
IF(NCM.EQ.0)GOT0337
D03101=1,NCM
D0310J=1, Ku

=1,K14)

R2(),J)=0:

IF(NTM EQ. 0)GOT0337
Mi1=NTM ’

D03151=1, NCM
Mi=Mi+1 :
D0315J=1, NTH
A5(1,d4)=0

D0315K=| NCH

M=0

D0315L=K3,Kk4

M=M+|

X=L0OP (K,L}

A5(1,, J)=A5(l J)+(RM{M1,M)*X*A2(K,J))
00320I=| NCM

D0320J=1,NTH
R2(1,J)=A5(1,J)
IF(NCM.EQ.0)GOTO0337
{F(NTM.EQ.0)GOT0337
D03251=1,NCM
D0325J=K28, Kk
R211,J4)=0.0 .

M1=NTHM

D03301=1,NCM
M1=M1+1

M2=0

D0330J=K3,Kl
M2=M2+1



330

335
337

340
34

345
346
347
348
349
350

351

352

TABLE C-3 (Continued)

R2(1,J)=RM{M1 M2}
WRITE(M)((RZ(I J) Ja=1,K4), 1=l NCM)
D0335i=1,K14

M=NTM

D0335J=1,NCM

MaM+1

R6(1,J)=0.0

M1aNTH+NT

D0335Ks1,NTM

M1=M1+1

X=L0OP (1 ,M1)

R6(I, J)=R6(I J)+{X*RM(K, M))

: WRITE(“)((R6(I J),Jd=1, NCM) I=1,K14)

LF(NT+NTM. £Q. 0)GOTO341
IF(NC+NCM, EQ.0)GOTO341
DO3L4O}=1,K14
M2=NCH
D0340J=1,K15
M2aM2+1
R3(1,J)=0,0
DO34O0K=1, Kk
M1=NTH
D0340L=1,K6
M1=M1+1
X=LOOP (i ,M1)
YsLOOP (M2 ,K)
R3(1,d)=R3(1,4)+ (X*RI(L,Kg*Y)
,J),J=1,K15),

WRITE (4) ((R3{1 I=1,K14)

CALLEXIT ’ :

END
MON44 EXEQ FORTRAN,SOF,StU,08,04,, MAINPGMS

DIMENS!ON LOOP(10,10), R(IZ 12) H12(2 2),H21(2,2) ,R

DIMENSION R2(3,113,R3{11, 9) RL{3,9),R5(11,2),R6(11,3 ) R

REWIND.

REWINDS

REWIND6

READES)KO MTRE,NT,NE,NC,Ni,Ni{E,MOD,NCH,NCM, NTH, NTM

READ{5)((LOOP(I,J J=1 MTRE), 141,K0)
K4aNTH+NT+NTM

K6=NT+NTH

K 14=NCH+NC+NCM

K15=NC+NCM

K18=NCH+NC

K21=Ni+NIE

K19aNT+NE

K8&=NCH+1

K16=K18+1

{F(NT+NC. E? 0)GOTO0345

READ(5)((R{1,J), J=l K19), I=1 Kl9)

I F(NCH, EQ. 0)60T03

READ(S)((H]Zél J) J= ,NCH), 1=1,NTH)

READ(5) ((H21{1 . J)  J=1 NTH),tal,NCH)
LF(NCH+NTM. EQ. o)G0T03L7

NMss N CM+NTM

READ(5) ((RM(1,Jd),J=1,NM), 1=1 NM}
IF(NT+NTM. E? 0)G0T0348
READ(4)Y((R1{1,J),J=1,Kh4),1=1,K6)
WRITE(6) ((RT(1,J} J= JKh), 1=1,K6)
1F(NCH, E? 0)GOTO03!

READ(L4) ({R5(1,J), J=1 NCH), I=1,K1k)
{F(NCM.EQ.0)GOTO035

IF(NTH+NTM. EQ. o)coro;so
READ (&) ({R2(1,J),J=1,Kh4) 1=1,NCM)

WRITE(6)((R2(! 33, 9=1, kb, 1=1, NEM)

ENCM EQ. 0)G0T0351
F{NTM.EQ.0)GOTO0351

READ(M)((R6(| J),d=1,NCM) , 1=1,K14)
IF(NT+NTH. EQ.0)GOT0352
{F(NC+NCM.EQ.0)GOT0352

READ (&) ((R3{1,4),d=1,K15),1=1,K14)
IF(NCM, EQ. o)coro356
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363
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370

W
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381

385'

390

- 395
396
397

TABLE C-3 (Continued)

|F(Kh.EQ.0)GOT0356
DO355 =1, NCM

M=NCH
D0355J=1,Ki15
M=M+1
R4(1,J)=0.0
00355K=l Ku
X=LOOP (M,

RA(1, J)=Ru(| J)+(R2(1,K)*X)
IF(KIM EQ. 0)G0T0397
D0360i=1,K14
D0360J=1.K1k

R7(1, 4)=0.0

i F(NCH, EQ 0)GOT0376
003651= N

D0365J=1, NCH
I1F(}1.£Q.J)GOT0363
R7(1,J)=R5(},J)
GOT0365
R7(1,J)=1.+R5(4,J)
CONTINUE
IF(K15.EQ.0)GOT0396
D03701=K8,K14
D0370J=1,NCH
R7{1,J)=R5(1,J)
1F(NC.EQ.0)GOT0381
DO3751=1,NCH

M=0 _
0037?J=K8 K18
R7(| J)=R3(1, M)
M=N

00380|-=K8 K18

M=M+l

M1=0

M2=NT

D0380J=K8,K18
Mi=M1+1

M2=M2+1
R7(1,J)=R(M,M2)+R3 (I ,M1)
I F(NCM.EQ.0)G0T0396
p03851=1,K18

M=0

Ml=N

00385J=K|6 K1k
M=M+l

R7(l J)-R6(| M)+R3 (4, Ml)

M=0
00390I=Kl6 Ky
M=M+1
M=
00390J=K8 th
Ml=M1+1
R7(4,J)=R3(1,M1)+RE(M, M1)
M=NT M
D03951=K16,K14
M=M+1
M1=NTM
M2=0
D0395J=K16,K1k4
M1=M1+1
M2=M2+1
R7(!,J)=R7(} ) +RM{M,M1)+R6( 1 ,M2)

CWRITE(6)(( R_ ,J), J=l th) l=i,K1k)

CALLEXIT
END -

MONA 4 EXEQ FORTRAN, SOF, 5|u 0
DIMENSION LOOP(10,10),R{ 12,12},
DIMENSION R1(9,11),R2(3, 11}, R7(
D IMENS 1ON Rll(li 1), R|3(Il 1)

) RM(6,6)
,R9(9,9),R10(9, 7)

.;\
—=NZ
VN

108



400

401
402
403

Lok

4os
406

k15
416

423
424

430
L32

435

TABLE C-3 (Continued)

REWINDL
REWIND5S
REWIND6

READ(5)KO,MTRE,NT ,NE,NC,NI ,NIE,MOD,NCH,NCM,NTH,NTM
WRITE(M)KO MTRE NT NE NC Ni NIE MOD NCH NCM NTH NTM

READ(5) ((LOOP(1.J) J=1,MTRE), t=1,KO

WRITE(4) ((LOOP(1,J}, =i, MTRE), 1=1,KO)
K4=NTH+NT+NTM

K6=NT+NTM

K1L4=NCH+NC+NCM

K15=NC+NCM

K18=NC+NCH

K19=NT+NC

- K21=N1+NIE

K16=K18+1

| F(NT+NC. E% .0)GOT0400

READ(5) ((R | J), J=I ,K19),1a1,K19)
IF(NCH, EQ. 0)GOTO

READ(5) ((H12(1, J) J=I ,NCH), 1=1,NTH)
WRITE(M)((HIZ(I J) J=1 NCH) |=| NTH)
READ(5)( (H21(1,J), J=l NTH), =1, NCH)
WRITE(M) ((H21(1,d),J=1, NTHS t=1,NCH)
{F (NCM+NTM. EQ. 0 JGOT 0402

NM=NCM+NTM

READ(s)(ERM( ,J) J=1,hM) |=1 NM)
WRITECH) C(RM(T ), d=1 , NMY, 1=1,NM)
LF(NT+NTM., E% oSGOTouo

READ(6) ((R1(1,d),Jd=1,Kl), 1=1,K6)
IF(NCM.EQ.0)GOTOkLO

IF(NTH+NTM, EQ.0)GOTOLOL

READ(6) ((R2(1,d),J=1,Kl4),1=1,NCM)
IF(K1k4 . EQ.0)GOTOA432

READ(6) ((R7(1,d),d=1,K14), 1=1,Kik)
DOLO6 I =1 K1k

D0406J=1, K14

1F(1.EQ.J)GOTOLOS

R8(1,4)=0.0

GOT0406

R8(},4)=1.0

CONT | NUE

M=1

DOL430L=1,K14

M=p+1
IF(M.GT.K14)GOTOL16
DOL151=M,K1h

R7(L, |)=R7(L 1)}/R7(L,L)
DOL4204=1,

R8(L, J)=R8(L J)/R7(L,L)
D04304=1,K 1k

lFiL EQ.J)GOTOL30
IF(M.GT.K14)GOTOL24

. DO4231=M, K1k

R7(J,1)=R7(J, 1)=(R7(L, 1 )*R7(J,L))
D04301Q=1,K14

R8(J, IQ)=R8(J IQ) (R8(L, IQ)*R7(J L))
CONT {NUE

WRITE(4) ((RB() J) J=l K14),1=1,K14)
{F(NT+NTM.EQ.O GOTOLLS

DD4351=1,K6

M=K 14

DO4354=1,K21

M=M+1 -

R10(1,4)=0.0

DOL35K=1,Kh

X=L.00P (M,K)

R10(}, J)=R10¢( I,J)+(RI(I K)*X)
WRITE(M)((RI (1, J) K2|) 1=1,K6)
I F(NC+NCM.EQ.0)GOTO

DOLLOI=1,K6

M=NCH

DOLLO J=1,K15
M=M+1
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TABIE C=3 (Continued)

R9(1,d)u0.0 -

DOLLOK=1 Kk

X=LOOP (M.K)
RI(1,d)=RI(1,J)+(R1(I,K)*X)
WRITE(k) ((RO(1,4), J-! K15), 1=1, Ké)
IF(K14.EQ.0)GOTO4B6

DOLLS I=1,K1k

DOL45J= 1, Kl

M=NTH

R11(1,J)=0.0

DOL4SK=1,K6

M=M+1
~ X=LOOP (1 ,M)

R11(1, J)=RII(I J)+(X*RI(K )
1F (Kb EQ. 0)GOTO4B6
tF(K18.EQ,0)GOTOL57

DOhSSIuI K18

- DO4S5 =],

CR13(1, J)=Rll(| J)
iF(NCM.EQ.0)GOTO458

M=0

DO4851=K16,Kik

MaM+1

DOL85 Im1 Kb

R13(1,J)=R11(1, J)+R2(M J)
C1F(K18.EQ.0)GOTOL86

WRITE(h) (R13(1,J), J=1 Kh) la1,K1k)
CﬁLLEXIT _
END

MONSS EXEQ FORTRAN, SOF,SIU

08,0“,,,MAINPGM7
DIMENSION LOOP(10,10),H12(2

j,H21(22),RM(6,6) R

DIMENSION R15(11,7)
REWINDG
REWINDS

- REWIND6
READsh)KO ,MTRE NT ,NE,NC,NI ,NIE,MOD,NCH, NCM,NTH, NTM .

READ(4) ((LOOP(i, JS J=1,MTRE), I=1,K0)
KL4aaNTH+NT+NTM

K9=NTH+NT '
K18=NCH+NC
" K2taNI+NIE

K1 4=NCH+NC+NCM

K6=NT+NTM

K15=NC+NCM

K1aNTH+1 -

K8aNCH+1

K16=K18+1

K11=K9+1 .
{F(NCH.EQ.0)GOT0500
READ (4) ((H12(t,J),Jd=1,NCH), I=1,NTH)
READ(B) ((H21(1,J),J=1 . NTH), =1, NCH)
i F(NCM+NTM. EQ. 0)GOT0501

NM=NCM+NTM

READ(4) ((RM(1, J) Ja1,NM), i =1, NM)
1F(K14 .EQ. o)co 502

READ(k)g( 8(1,J) J-l JK14)  i=1,K1k)
WRITE(6) ((RB(i,4),Jmi, K14, 1=, K1h)
IF(K6.E?.0)GOT0 503

READ (4 ) $RIO(I, ), J=1,K21),1=1,K6) -
WRITE(6) ((R10(i,d),J=1,K21},1=1,K6)
IF(KIS.E?.O)GOTO 503

READ (&) RSSI,J) J=1,K15), t=1,K6)
IF(K14.EQ.0)GOTO hl

IF(K4.EQ.0)GOTO

READ (L) (R|3(|,J),J—l,Kh),l-l,th)
D050k =1, Kl : o
DO50LJ=1,K14 :

R12(1,J)=0.0

|F(NTH.EQ.0)GOT0506

D05051=1,NTH

2 1"
DIMENSION R9(9,9),R12{11,11],R10(9,7,R13(11,11}, R ,;)
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TABLE C~3 (Continued)

D0505Ju ], NCH
R12(1,J)=H12(1,d) -
IF(NT.EQ.0)GOTO511
AFéKIS.EQ.O)GOTOSZI
DO5101=K1,K9

M=M+1

M1=0

D0510J=K8, K14
Ml=M1+1

R12(1,J)=R9(M ;M1)
IF(NTM.EQ.0)GOT0521
“IF{NC.EQ.0)GOTO0516
M=NT ‘
D05151=K11 Kk

M=M+1

M1=0

D0515J=K8,K18
MlaMl+]
R12(1,J)=R9(M,M1)
1F(NCM.EQ.0)GOT0521
M=0

M2=NT

D05201=K11,Kk

M=M+1

M2=M2+1

M1=NTM

M3sNC
D0520J=K16,K1L
M1=M1+1

M3=M3+1
R12(1,J)=RM(M,M1)+R9(M2,M3)
WRITE(6) ({(R12(1,J),J=1,K14),1=1,Kb)
D05301=1,K14

M=K14
D0530J=1,K21

M=M+1

R14(1,4)=0.0
DO530K=1,Kk
X=L00P(M,K)
RI1G(1,J)=R14(1,J)+(R13(1,K)*X)
DOS5L4O1=1,Kh
DO540J=1,K21
R15(1,J)=0,0
DOSLOK=1 K14
DO540L=1 K1

A

Rls(l.J;=R15(t.J)+(R12(|.L)*RS(L.K)*RIh(K.J))

WRITE(6) ((R15(1,J4),J=1,K21),i=1,KkL)

CALLEXIT

END
MON4 # EXEQ FORTRAN,SOF,S1U,08,04,, ,MAINPGMB ,
DIMENSION LOOP(10,10),R8(11,11),R10(9,7),R15(11,7),R16(11,7)
DIMENSION R17(4,75,R18(4,11),R19(11,3),R20(4,9) ,R12(11, 11}
REWINDA

REWIND5

REWINDG

READ (4 )KO,MTRE,NT ,NE,NC, NI ,NILE, MOD,NCH,NCM, NTH, NTM
READ (L) ((LOOP(1,J},J=1,MTRE), I=1,K0)

KU=NTH+NT+NTM

K9=NTH+NT

K18=NCH+NC

K21=N1+N{E

K14=NCH+NC+NCM

K6=NT+NTM

. K15=NC+NCM

K22=K 14+N]

K25=NTM+NE

K23=K25+NCM

K1=NTH+1 \
K16=K18+1

K26=K25+1
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TABLE €-3 (Continued)

IF(KIh £Q.0)GOT0600

READ(6) ((R8(1,d),d=1, th) =1, th)

IF(NT+NTM. EQ.0)GOT06 01

READ(6)((RIO(! J),Jd=l1,K21), 1=1,K6)
sxu £Q.0)GOT0602
K14,EQ.0)GOT0602

READ(6)(3R12(I J), =1 th; 1,K4)

READ(6)((R15(1,J),J=1,K21 |=| Kb

IF(Kh4 EQ, 0)GOT0631

DO605 i=1,Kk

D0605J=1,K21

R16(1,J)=0.0

I'F(K6.EQ.0)GOTO611

M=0
DO610i=K1 Kk

M=M+1

D0610J=

R16(1, J)-RlS(t J)}-R10(M,J)
I F(NTH.EQ.0)GOT0616
DO6151=1,NTH

DO615J=1,K21
R16(1,Jd)=R15(},J)}

M=K22

D06201=1,NIE

M=M+1

D0620J=1,K21

R17(1,J)=0.0

D0620K=1,Kk

X=LO0P(M K)
R17(1,J)=R17(1,J)+(X*R16(K,J))
D0621i=1,NIE

D062 1J=1,K21
R17(1,d)=(-1.)*R17(1,J)
WRITECS) ((R17(1,4), J=1,K21),1=1,NIE)
IF(K14,EQ.0)GOT0656

M=K22

D06301=1,NIE

D0630J=1,K14
R18(1,J)=0.0
D0630K=1,K14
DO630L=1 Kk

X=LO0OP (M, L)
R18(1,J)=R18(1,J)+(X*R12(L,K)*R8(K,J))
TF(K25, EQ.0)GOT0656
D06351=1,K1k4
p0635J=1,K23 "
R19(1,J)=0.0
IF(K25. EQ. o)GOTosul
DO64O =1 K14

M=K9 :
DO640J=1,K25

M=M+1

'Rl9(1,J)=LO0P(l,M)

iF(NCM.EQ.0)GOTO0651
M:

' DO650\=K16 K1k

M—M+I

M=

DOGSOJ:KZé,K23

M1=M1+1

JF(M.EQ.M1)R19(1,d)=1.0

CONT INUE

D06551=1,NIE

DO655J=1, K23

R20(1,J4)=0.0

DO655K=1,K14

R20(1, J)—RZO(i J)+(R1B(1 ,K)*R19(K,J))
WRITE(S)((RZO(I J),d=l, K23) {=l, NIE)
CALLEXIT

END
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TABLE C-3 (Continued)

HONAA EXEQ FORTRAN,SOF,S1U,08,04,,,MAINPGM9
DIMENSION LOOP(10,10).R17(k,73,R20(5.9),R21(4,9)
FORMAT (4X,6E12.5)

FORMAT (4X,3E12.5)

FORMAT (4X,4E12.5)

FORMAT (/10X , 28HCOEF MATRIX OF PORT CURRENTS7/)
FORMAT (/10X . 30HCOEF MATRIX OF CURRENT DRIVERS//)
FORMAT (/10X,30HCOEF MATRIX OF VOLTAGE DRIVERS//)
REW [ NDY

REWINDS

READEM)KO ,MTRE,NT NE,NC,NI,NIiE,MOD,NCH, NCM, NTH, NTM
READ h)((LOOP(I JY, 351 4TRE), I=1,KE)

K21=N1+NiE
K14=NCH+NC+NCM
K22=NCH+NC+NCM+NI
K23=NTM+NE+NCM
K9=NTH+NT
K25=NTM+NE
Kh=NTH+NT+NTM
K26=K25+1

K27eN|+1 ,

070702 -
(1,d),d=1,K21),i=1 NIE)

¥

J),J=K27,NIE)

IF(K23.
{F(K1h4 E
READ(5) ((R20
D07051=1,NIE
D0705J=1, K23
R21(1,4)=0,0
IF(K25.EQ.0)GOTO7 11
M=K22
DO7101=1,NIE
M=M+1
M1=K9
D0710J=1 KZS
M1=Mi+1
X=LOOP (M,M1)
R21(1,J)=R20(1,J)=X
F(NCM.EQ, 0)GOT0721
DO7151=1,NIE

DO718J=K26,K23
R21(1,J)=R20(1,4)
G0TG721
M=K22

D07201=1,NIE

M=M+1
M1aK9

D0720J=1,K25
Mi=Mi+1

X=L00P (M,M1)

R21(1,d)=(=-1.)*X

D07301=1,NIE

p0730J=1,K23
R21(1,J)=(=1.)*R21(1,J)
WRITE(3,23)

007351=1,NIE
WRITE(3,20)(R21(1,d), ,J=1,K23)
CALLEX1T

END
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