CONVERGENCE OF THE MATRIX CARRY-OVER PROCEDURE IN PLANAR STRUCTURES LOADED NORMAL TO THE PLANE

by

PAUL LOEL KOEPSELL

Bachelor of Science South Dakota State University Brookings, South Dakota 1952

Master of Science University of Washington Seattle, Washington 1954

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY May, 1965

OKLAHOMA STATE UNIVERSI**TY** LIBRARY

SEP 20 1985

CONVERGENCE OF THE MATRIX CARRY-OVER PROCEDURE IN PLANAR STRUCTURES LOADED NORMAL TO THE PLANE

Thesis Approved: Thesis Adviser School 1 Dean Gea dua

PREFACE

The problem and its solution presented in this thesis are the results of the author's studies at Oklahoma State University. Essentially, it represents the systematic solution for the statically indeterminate redundants in a rigid framework by an iterative procedure which is physically a systematic restoration of continuity at points where the redundants are located.

This research is the result of concepts expressed by Professor Jan J. Tuma in his lectures on Space Structures during the Summer of 1962 where he introduced the concept of the carry-over matrix. Again in the fall of 1963, Professor Tuma suggested the technique for formulation of the necessary equations which greatly simplified the process and enabled the author to write a much more general computer program.

The author has become indebted to many individuals and organizations for the opportunity to pursue his program of graduate study. Specifically, he must recognize and thank the following individuals and organizations:

To the National Science Foundation and the School of Civil Engineering at Oklahoma State University for the invitation to attend the Summer Institute in Structures

iii

and Soil Mechanics during the Summer of 1962. This Institute was primarily responsible for the author's return to his graduate studies.

To the National Science Foundation and South Dakota State University for providing a Science Faculty Fellowship and sabbatical leave which allowed the author to pursue his work on a full time basis from June 1963 until June 1964.

To the College of Engineering, South Dakota State University and Dean M. L. Manning, its School of Civil Engineering and its head Professor Emory E. Johnson for providing the facilities of the computer center for the author's use and for extending his educational leave so that he might complete his program.

To his major professor and adviser Professor Tuma, his committee members Dr. D. M. MacAlpine, Dr. O. H. Hamilton and Dr. R. W. Little, and his former committee members Dr. James W. Gillespie and Professor E. J. Waller for their council and instruction in the classroom and in private discussions.

To his wife, Delores; sons, Steven and Royal; and daughter, Pamela for the many sacrifices which they have made over the past several years to enable the author to continue his work to completion. This represents a

iv

personal debt which the author will never be able to repay.

V

January, 1965 Stillwater, Oklahoma P. L. K.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
	1-1 Statement of the Problem	1
	in Continuous Reams	2
	1-3 Historical Background	3
II.	MATHEMATICAL MODEL	9
	2-1 Assumptions	9
	2-2 Coordinate Systems	10
	2-3 Definitions	11
		TT
III.	EQUILIBRIUM	14
	3-1 Sign Convention and Notation, External	
	and Internal Forces and Moments	14
	3-2 Redundant Notation at the Cuts	16
	3-3 Redundant Notation Single Member	17
	3-5 Redundante Molacion, Single Rember	11
	and Redundants at the Cuts	18
TV	COMDATITITI	21
1.	COMPATIBILITI	21
	4-1 Sign Convention of Slopes and Angle Changes	21
	4-2 Analogy Between Load, Shear and Moment and Distributed Angle Changes, Slope	
	and Deflection	24
	4-3 Equivalent Elastic Weight Systems	28
	4-4 Elasto-Static Equilibrium of a Closed	
	Loop Containing a Single Member	31
	4-5 Elasto-Static Equilibrium of a Loop	
	Containing Several Members	33
V.	SOLUTION OF PROBLEM REDUNDANTS BY CARRY-OVER	
	TECHNIOUES	41
		41
	5-1 General	41
	5-2 Solution by the Matrix Carry-Over	41
	Mothod	1.2
	5-3 Block Cauce-Siddel Iterative Procedure	1.2
	J-J DIUCK GAUSS-DIEUEL ILEIALIVE FLUCEGUIE .	

Chapter

v.

(continued)

5-4 Point Gauss-Siedel Iterative Procedure

Page

	5-4 5-5	Point Gauss-Siedel Iterative Procedure Convergence of the Iterative Methods .	· 44 · 44
VI.	APPL	ICATION	. 47
	6-1 6-2	Two-Bay Framework	. 47 . 58
VII.	SUMM	ARY AND CONCLUSIONS	. 64
- · ·	7-1 7-2 7-3	Summary	. 64 . 65 . 66
BIBLIOG	RAPHY		. 68
APPENDI	X A: of C	Problem Solutions and Error Analysis	. 70
APPENDI	XB:	Flexibility Data - Circular Beam	. 122
APPENDI	X C:	Computer Analysis	. 125

LIST OF TABLES

Table		Page
4-3	Flexibility Notation	30
6-1	Two-Bay Framework, Basic System Moments, Flexibilities and Angular Load Functions	48
6-2.1	Summary of Problem Results	60
6-2.2	Comparison of Convergence Rates of Point vs. Block Gauss-Siedel Techniques	63
A-1.1	Percentage Deviation of Redundant Vector from Basis, Problem 1, After 1, 2, 3, 4, 5, 6, 8 and 10 Cycles of Iteration	73
A-1.2	Percentage Deviation of Moments from Basis, Problem 1, After 5 and 6 Cycles of Iteration.	74
A-2.1	Percentage Deviation of Redundant Vector from Basis, Problem 2, After 1, 2, 3, 4, 5, 6, 9 and 12 Cycles of Iteration	76
A-2.2	Percentage Deviation of Moments from Basis, Problem 2, After 5 and 7 Cycles of Iteration.	77
A-3.1	Percentage Deviation of Redundant Vector from Basis, Problem 3, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	79
A-3.2	Percentage Deviation of Moments from Basis, Problem 3, After 5, 10, 20 and 30 Cycles of Iteration	80
A-4.1	Percentage Deviation of Redundant Vector from Basis, Problem 4, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	82
A-4.2	Percentage Deviation of Moments from Basis, Problem 4, After 5, 10 and 20 Cycles of Iteration	83
A-5.1	Percentage Deviation of Redundant Vector from Basis, Problem 5, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	85

Table

A-5.2	Percentage Deviation of Moments from Basis Problem 5, After 5, 10 and 20 Cycles of Iteration	86
A-6.1	Percentage Deviation of Redundant Vector from Basis, Problem 6, After 1, 2, 3, 5, 10, 20, 30 and 50 Cycles of Iteration	88
A-6.2	Percentage Deviation of Moments from Basis Problem 6, After 10, 20, 30 and 50 Cycles of Iteration	89
A-7.1	Percentage Deviation of Redundant Vector from Basis, Problem 7, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	91
A-7.2	Percentage Deviation of Moments from Basis Problem 7, After 5, 10 and 20 Cycles of Iteration	92
A-8.1	Percentage Deviation of Redundant Vector from Basis, Problem 8, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	94
A-8.2	Percentage Deviation of Moments from Basis Problem 8, After 5, 10 and 20 Cycles of Iteration	95
A-9.1	Percentage Deviation of Redundant Vector from Basis, Problem 9, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	97
A-9.2	Percentage Deviation of Moments from Basis Problem 9, After 5, 10 and 20 Cycles of Iteration	98
A-10.1	Percentage Deviation of Redundant Vector from Basis, Problem 10, After 1, 2, 3, 5, 10, 20, 30 and 50 Cycles of Iteration	100
A-10.2	Percentage Deviation of Moments from Basis Problem 10, After 10, 20, 30 and 50 Cycles of Iteration	101
A-11.1	Percentage Deviation of Redundant Vector from Basis, Problem 11, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration	103
A-11.2	Percentage Deviation of Moments from Basis Problem 11, After 5, 10 and 20 Cycles of Iteration	104

Table

A-12.1	Percentage Deviation of Redundant Vector from Basis, Problem 12, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration 106
A-12.2	Percentage Deviation of Moments from Basis Problem 12, After 5, 10 and 20 Cycles of Iteration
A-13.1	Percentage Deviation of Redundant Vector from Basis, Problem 13, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration 109
A-13.2	Percentage Deviation of Moments from Basis Problem 13, After 5, 10 and 20 Cycles of Iteration
A-14.1	Percentage Deviation of Redundant Vector from Basis, Problem 14, After 1, 2, 3, 5, 10, 20, 30 and 50 Cycles of Iteration 112
A-14.2	Percentage Deviation of Moments from Basis Problem 14, After 10, 20, 30 and 50 Cycles of Iteration
A-15.1	Percentage Deviation of Redundant Vector from Basis, Problem 15, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration 115
A-15.2	Percentage Deviation of Moments from Basis Problem 15, After 5, 10, 20 and 30 Cycles of Iteration
A-16.1	Percentage Deviation of Redundant Vector from Basis, Problem 16, After 1, 2, 3, 4, 5, 10, 20 and 30 Cycles of Iteration 119
A-16.2	Percentage Deviation of Moments from Basis Problem 16, After 5 and 10 Cycles of Iteration
B-1	Flexibility Coefficients and Angular Load Function Coefficients, Circular Beam, Constant Section, EI=GJ

LIST OF ILLUSTRATIONS

Figure		Page
2-2	Coordinate Systems	. 10
2-3	Trees and Loops	. 13
3-1.0	Positive Applied Forces and Moments	. 14
3-1.1	Positive Internal Forces and Moments	. 15
3-2	Positive Directions of Redundants	. 16
3-3	Single Member Redundants and Moments	. 17
3∞4	Typical Tree	. 18
4-1.1	Vector Representation of Slopes and Angle Changes and Their Dependence Upon Direction of Path	. 22
4-1.2	Positive Deflections, Slopes and Rates of Change of Slope	. 23
4-2.1	Angle Change-Force, Slope-Shear, and Deflection-Moment Analogy for Bending About y Axis	. 25
4-2.2	Positive Internal Deflections and Rotations Member ij	. 27
4-3	Equivalent Sets of Elastic Weights	. 29
4⇔4	Elastic Weights, End Slopes and Displacements, Single Member Loop	. 32
4-5.0	Elastic Weights, End Slopes and Displacements, Multiple Member Loop	. 34
4-5.1	Linearly Dependent Closed Loops	. 39
4⊶5.2	Contribution of Member 5-9 to the Flexibility Matrix and Constant Matrix	. 40
6-1.0	Dimensions, Loads and Redundant Locations Two-Bay Framework	. 47

Figure

6-1.1	Equation 12a, Two-Bay Framework, Loop No. 1 Member 1-2 (Also Loop No. 2, Member 1-2)	49
6-1.2	Equation 12a, Two-Bay Framework, Loop No. 1 Member 2-3	50
6-1.3	Equation 12a, Two-Bay Framework, Loop No. 1 Member 3-4	51
6-1.4	Equation 12a, Two-Bay Framework, Loop No. 2 Member 2-6	52
6-1.5	Equation 12a, Two-Bay Framework, Loop No. 2 Member 5-6	53
6-1.6	Evolution of Flexibility Matrix, Member by Member, Two-Bay Framework	54
6-1.7	Solution of Two-Bay Framework by Matrix Carry-Over Technique	56
6-2	Convergence of Some Typical Redundant Matrix Elements of Problem 3	62
A-1	Problem 1, Member Properties, Dimensions, Loads and Comparison of Member Moments After 1 Cycle of Iteration with Correct Values	72
A-2	Problem 2, Diwan's Problem, Member Properties, Dimensions, Loads and Comparison of Member Moments After 1 Cycle of Iteration with Correct Values	75
A-3	Problem 3, Member Properties, Dimensions, Loads and Comparison of Member Moments After 5 and 10 Cycles of Iteration with Correct Values	78
A-4	Problem 4, Member Properties, Dimensions, Loads and Comparison of Member Moments for EI/GJ Variation of 0.5, 1.0 and 2.0	81
A-5	Problem 5, Member Properties, Dimensions and Loads	84
A-6	Problem 6, Member Properties, Dimensions, Loads and Comparison of Member Moments After 10 and 20 Cycles of Iteration with	07
	Gorrect values	01

Page

Figure

A-7	Problem 7, Member Properties, Dimensions, Loads and Comparison of Member Moments After 5 Cycles of Iteration with Correct
	Values
A-8	Problem 8, Member Properties, Dimensions, Loads and Comparison of Member Moments for EI/GJ Variation of 0.5, 1.0 and 2.0 93
A-9	Problem 9, Member Properties, Dimensions and Loads
A-10	Problem 10, Member Properties, Dimensions, Loads and Comparison of Member Moments After 10 and 20 Cycles of Iteration with Correct Values
A-11	Problem 11, Member Properties, Dimensions, Loads and Comparison of Member Moments After 5 Cycles of Iteration with Correct Values
A-12	Problem 12, Member Properties, Dimensions, Loads and Comparison of Member Moments for EI/GJ Variation of 0.5, 1.0 and 2.0 105
A-13	Problem 13, Member Properties, Dimensions and Loads
A-14	Problem 14, Member Properties, Dimensions, Loads and Comparison of Member Moments After 5 and 10 Cycles of Iteration with Correct Values
A-15	Problem 15, Member Properties, Dimensions, Loads and Final Moment Diagram 114
A-16	Problem 16, Member Properties, Dimensions, Loads and Final Moment Diagram 118
B-1	Geometry and Definition Sketch of Loads and Angular Load Functions, Circular Beam 123
C-1	Macro Flow Diagram of Computer Program 128

xiii

Page

NOMENCLATURE

Superscripts	Absence of superscript indicates a quantity in the basic reference system or a quantity not ordinarily transformed. A superscript m indicates the quantity is in the member reference frame.
Subscript 1	When used as a subscript it will always represent the numeral one rather than the alphabetic character to avoid confusion.
Subscript A	Indicates the collection of all similiar quantities associated with loop A.
Superscripts in parentheses, as	
_S (n)	Indicates the value of the quantity after the n th iteration.
A, B ₁ , B ₂	General matrices associated with Eq. 12a.
b _{ijk}	Coefficient whose value is 1, 0 or -1 depending on the orientation of member ij relative to cut k.
BMijx	Internal bending moment at i of member ij in the x direction due to a statically determinate system of loads.
BS _{ij}	Entire collection of BM values on member ij.
C _{ij}	Carry-over matrix
cijm	Coefficient, 1 or -1, depending upon orientation of member ij and positive direction of loop m.
F	Flexibility matrix of entire structure.
Fij	3x3 sub-matrix of F

f _{ij}	if element of F, or flexibility matrix of member ij in the member frame of reference.
f _{ijxy} g _{ijyx}	Near and far end flexibility coefficient.
M _{ijx}	Internal moment at i of segment ij in x direction. M _{ij} indicates entire set of internal moments of segment ij.
M _{ijz}	Internal deflection at i of segment ij in z direction.
N _{ijz}	Internal force at i of segment ij in z direction.
N _{ijx}	Internal slope at i of segment ij in x direction.
Pkz	Applied force at k in z direction.
P _{ijy}	Equivalent elastic joint force at i of segment ij in y direction.
p, p _{jx}	Rate of change of slope, distributed elastic weight. Subscript indicates point j, x direction.
Q _{kx}	Applied moment at k in x direction.
R	Residual matrix.
si	Redundant force and moment matrix at cut i.
^s ij	j th component of S _i .
t _{ijk}	Linear transformation matrix from point i to member jk.
U, U*, V	General parameters used in error analysis.
x ^m _{ij}	Individual member redundants, a subset of M $$.
x, y, z	Coordinate axes, basic reference system.
x ^m , y ^m , z ^m	Coordinate axes, member reference system.
Xoi, Yoi	Coordinates from o to i.

Δ_{i}	Deflection of point i.
Δ_{12}	Deflection of point i in z direction.
θ _i	Slope of elastic curve at i.
$^{ heta}$ ix	Slope of elastic curve at i in x direction.
$^{ au}$ ijx	Angular load function.
σij	Collection of all angular load functions associated with member ij.
^ω oij	Angle from positive x axis to positive x axis of member ij, or entire angular transformation matrix.
2	Indicates location of cut 2, or location of redundant S ₂ .
- ד ר	Indicates matrix transpose.
]	

CHAPTER I

INTRODUCTION

1-1. Statement of the Problem

The analysis of a planar, elastic, rigidly connected framework loaded by forces normal to the plane or moments in the plane is investigated. A minimum set of internal forces and moments are chosen as the basic unknowns in the system. Compatibility of the system is realized using a set of equivalent elastic weights applied at the member ends. Utilizing these equivalent elastic weights and the continuity of the elastic curve around specifically defined paths results in the formulation of a sufficient set of equations involving the basic unknowns in the system. For the purposes of this study the problem is considered to be solved when all redundant reactions for each individual member have been found.

The structure is assumed to be a linear system whose supports are rigid but may have known initial deflection or rotations. Only the effects of bending and torsion are considered in the formulation.

Solution of the set of simultaneous equations is accomplished by systematic restoration of the continuity

of the structure. This process leads to a multi-dimensional carry-over technique referred to as the matrix carry-over technique. Convergence of this process is investigated.

1-2. Analogy between the Matrix Carry-Over Technique and the Carry-Over Procedure in Continuous Beams

The matrix carry-over technique is an extension of the work of Tuma (1)* from a one-dimensional carry-over to, in this case, three dimensional carry-over.

By arranging the terms of the simultaneous equations in a particular way dictated by the structure, each step of the iterative procedure has a physical meaning which includes the following three steps:

1. Fictitious cuts are made at a sufficient number of locations such that the continuous structure is reduced to a series of determinate elements or trees.

2. From the end slopes and deflections of these simple structures starting values are computed. (The starting values are the internal force and moments at each cut to produce continuity at that cut when all of the other cuts are free of any force or moment.)

3. By means of a direct matrix carry-over procedure, the full continuity of the elastic curve is established. Since continuity is restored to the structure in three

directions simultaneously, the process involves a three

*Numbers in parentheses refer to references in the Bibliography.

dimensional carry-over, hence the term matrix carry-over. Tuma (1) outlines an equivalent set of steps in the solution of the redundant elements in continuous beams.

1-3. Historical Background

In the formulation of the equations necessary for the solution of the redundant quantities in a structural system, the analyst may choose as unknowns either a set of forces and moments or a set of deflections and rotations. This choice of moments and forces as the basic unknowns generally leads to a method of analysis referred to as the flexibility approach. Using slopes and deflections as unknowns leads to the stiffness approach.

Basically, the flexibility approach requires that a sufficient number of internal redundants be selected as unknowns. Since the structure must exhibit known continuity of the elastic curve, this continuity produces the required relationships to determine the set of internal redundants.

Similiarly, the stiffness approach requires that a sufficient number of slopes and deflections be selected as the unknown quantities and then uses the conditions of equilibrium to produce the required equations necessary to compute the values of the selected set of slopes and deflections.

Usually moments and forces can be considered as primary objectives in the analysis of structural frameworks. Slopes and deflections are considered to be secondary products of the analysis. This does not imply that deflections and slopes are less important but merely that a structural framework without the necessary strength requires little further consideration.

The first formulation of an analysis procedure for general redundant structures began with Clapeyron (2) over a century ago with the formulation of the three moment equation. Maxwell (2) followed shortly with a more general solution utilizing flexibility influence coefficients. Mohr (2) contributed the concepts of the elastic weights which could be applied to a beam as loads and produced slopes and deflections instead of shears and moments. This technique is referred to as the conjugate beam method. Just prior to the turn of the century, Müller-Breslau (3) applied the distributed elastic weights of Mohr as a set of concentrated forces at a series of joints.

Baron and Michalos (4) and Kinney (2) utilized the distributed elastic weights recently in the solution of planar frames and also applied the technique to beams in space. Diwan (5) extends the method of Baron and Michalos using an equivalent elastic system concept.

Within the last decade, Tuma and many of his students have applied the concept of the elastic joint force, distributed elastic weights and the string polygon to various structures. Works by Tuma (1), Tuma and Oden (6) and Oden (7) represent a few of these contributions and contain a more

extensive bibliography in this area than will be attempted here.

All of the investigations cited above give rise to sets of equations utilizing forces and moments as unknowns and are classified in the broad area of flexibility techniques.

Actually, at the present time, stiffness techniques are being used in a majority of the analytical procedures used in structural analysis. Using slopes and deflections as the basic unknowns was selected by Maney (8) whose formulation of the slope deflection equation produced a convienient manner of formulating a sufficient set of equations for the determination of all redundant elements in a structure. Mohr (2) is usually credited with the original use of this technique. Cross (9) produced an iterative technique, referred to as moment distribution which was in reality a rearrangement of the slope deflection equations. This method became an extremely popular method as it eliminated the necessity of actual solutions of large numbers of simultaneous equations. Southwell (10,11) developed a similiar technique independently of Cross and extended the technique to other engineering problems.

Modern high speed computing equipment has expanded the engineers capacity for the solutions of large numbers of simultaneous equations. Most computer analysis of large structural systems is accomplished using a generalized form of the slope deflection equations. As typical examples, Eisemann, Woo, and Namyet (12) describe a general formulation involving a space framework of well in excess of a thousand members, Carter (13) utilizes the technique in connection with the problem of critical buckling loads, and Fenves (14) has used similiar processes in the developement of a general computer program for structural analysis.

Theoretically, the comparison of which method is best, most efficient, or shortest can be answered at least in part by the results of Samuelson (15). He shows that mathematically the flexibility approach and stiffness approach are the duals of one another and thus require essentially the same technique.

Practically, the generalized slope deflection equation provides an almost automatic approach to the formulation if <u>all</u> of the slopes and <u>all</u> of the deflections at <u>each</u> joint are used as unknowns. This number is considerably greater than the minimum number of redundants necessary for the complete evaluation of the structural system. The method also provides rather simple procedures for including the effects of boundary conditions of a general nature. On the other hand, the flexibility technique usually leads quite naturally to the formulation of a smaller number of equations but requires a considerable amount of programming effort. Thus, if a trade must be made, usually the addition of a few unknowns is not as significant as an increase in programming effort.

Numerical techniques of solving the equations resulting from the particular choice of unknowns comprise a vast set of

algorithms and procedures which is expanding at an extremely fast rate. Two general classifications of iterative techniques are available. The first is a technique which utilizes a certain definite process over and over again until the answers of the required accuracy are obtained. The common Gauss-Siedel process is of this form. The second technique is a process whose next step is dependent upon the previous step or the magnitudes of the quantities involved. The method referred to as the method of steepest descent is a process of this form.

Two rather recent books by Varga (16) and Faddeev and Faddeeva (17) contain extensive discussions of the above iterative procedures. The technique employed in this investigation is referred to by Varga as the Gauss-Siedel process and by Faddeev as the method of Nekrasov. In this study, it will be referred to as the Gauss-Siedel process. In any event, both of the references show that positive definiteness of a real, symmetric matrix is a necessary and sufficient condition for the convergence of the process. Faddeev and Faddeeva also state that as a rule convergence of a group Gauss-Siedel process is more rapid than the convergence of a corresponding point Gauss-Siedel technique. Southwell (10) and Temple (18) among others have shown that any flexibility or stiffness matrix is positive definite as a consequence of the positive nature of internal strain energy.

The physical nature of the problems solved by the matrix carry-over process in this investigation is such that it

employs essentially the use of the Gauss-Siedel process taking blocks or groups of three equations at a time. Chapter V illustrates two different approaches to this iterative solution: specifically, the reduction of residual vectors to zero and straight forward convergence to the required solution.

CHAPTER II

MATHEMATICAL MODEL

2-1. Assumptions

The structure is assumed to be a system of members lying in a plane whose ends are rigidly connected with one another and whose supports are either fully fixed or have known initial deflection or rotations. Properties of each individual member are assumed to be known and are of such a nature that deflections in the plane or rotations normal to the plane do not occur. Deflections due to shearing forces are considered to be small compared with those due to moments and torsions and are neglected. Axial deformations are not considered. Members are identified by the numbers associated with the joints which coincide with the members end points. The member may have any shape or loading providing the above properties are realized.

Loads are stationary and may be either force vectors normal to the plane or moment vectors in the plane. The magnitude of the loading is constant.

All ordinary assumptions of linear elasticity are presumed.

2-2. Coordinate Systems

Two different coordinate systems are required. They are referred to as the basic or reference system for the entire structure and the member oriented system.

The basic system is a right handed orthogonal set of axes oriented in a convenient manner with the x and y axes in the plane of the structure and the positive z axis acting upward from the plane of the structure.

The member oriented system referenced to the undeformed structure has the z^m axis parallel to the z axis of the basic system but its x^m axis oriented such that the origin is at i and the positive x^m axis goes through j where i < j. The y^m axis is placed such that the system is right handed. The angle from the x axis of the basic system to the x^m axis of the member oriented system is designated ω_{oij} and is positive if it represents a right handed rotation about the z axis. See Figure 2-2.

Any values which are based on the member oriented reference system will be designated by a superscript m. Values referred to the basic system carry no superscript.

2-3. Definitions

Several terms are used throughout this paper which are of sufficient importance to be singled out here and defined rather carefully. They are terms borrowed from topological or linear graph treatments of various problems.

<u>Tree</u> - Every structure of the type considered in this paper can, with proper choice of redundants, be reduced to the consideration of a collection of statically determinate 'trees'. For the purposes of this paper, a tree will be considered one of the stable collections of members remaining after a sufficient number of cuts has been made to reduce the problem to a statically determinate one. The support of this tree is entirely contained at one joint referred to as its base. The number of trees is equal to the number of rigid supports.

Loop - A loop for the purposes of this paper will consist of an ordered sequence of joints which describes a complete path from either the base of one tree to the base of another tree or from one joint around a path completely contained in one tree and returning to the same joint. In the case of a loop contained in one tree the joint nearest the base is considered to be the beginning and end of the loop. In all cases a loop will contain one, and only one, cut.

<u>Path</u> - A path is an ordered sequence of joints such that in traversing the path no member is traversed more than once.

With the definitions and with the assumptions regarding the end restraints of the structure, it is possible to make the following observation: For each 'cut' or location of redundants, one, and only one, loop can be found which satisfies the definition.

These definitions are illustrated in Figure 2-3. The configurations of the trees and loops are not unique for any given structure but depend upon the choice of the redundant cuts.

a server and

n an an a' shi Nata

20.3

CHAPTER III

EQUILIBRIUM

3-1. Sign Convention and Notation, External and Internal Forces and Moments

External loads applied to the structure are force vectors normal to the plane and moment vectors in the plane. Forces are designated with single headed arrows and moments with double headed arrows. In either case they are positive when in the positive direction of the appropriate reference system, Figure 3-1.0.

Internal forces and moments, Figure 3-1.1, are also designated by single and double headed arrows as with applied forces and moments but consideration must be given to which face of the cut is termed the plus face. The positive face of any beam segment is always the face nearest end j of the beam ij where i < j. On this face internal forces and moments are plus when they coincide with the plus directions of the appropriate reference system.

Since reactions are treated as internal forces they require no special consideration.

Figure 3-1.1: Positive Internal Forces and Moments

3-2. Redundant Notation at the Cuts

The redundant forces and moments at each cut are designated by the matrix

$$\begin{bmatrix} S_{i} \end{bmatrix} = \begin{bmatrix} s_{i1} \\ s_{i2} \\ s_{i3} \end{bmatrix} = \begin{bmatrix} M_{ijy} \\ N_{ijz} \\ M_{ijx} \end{bmatrix} = \begin{bmatrix} M_{iky} \\ N_{ikz} \\ M_{ikx} \end{bmatrix}$$

where: i identifies the cut

Furthermore, these elements follow the same sign convention given for internal forces but are applied at the origin of the basic coordinate system, Figure 3-2, using a hypothetical set of rigid arms as a portion of the member.

Figure 3-2: Positive Directions of Redundants

(1)

3-3. Redundant Notation, Single Member

The redundant quantities associated with each member ij, i < j, are the torsional moment at end j and the bending moments at ends i and j. Figure 3-3 indicates these values in first the member frame of reference and then the basic reference system.

Obviously,

$$\begin{bmatrix} x_{ijy}^{m} \\ x_{jix}^{m} \\ x_{jiy}^{m} \end{bmatrix} = \begin{bmatrix} \cos \omega_{0ij} - \sin \omega_{0ij} & 0 & 0 \\ 0 & 0 & \cos \omega_{0ij} & \sin \omega_{0ij} \\ 0 & 0 & -\sin \omega_{0ij} & \cos \omega_{0ij} \end{bmatrix} \begin{bmatrix} M_{ijy} \\ M_{ijx} \\ M_{jix} \\ M_{jiy} \end{bmatrix}$$
(2)

 $\begin{bmatrix} \mathbf{x}_{ij}^{m} \end{bmatrix} = \begin{bmatrix} \omega_{oij} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{M}_{ij} \end{bmatrix}$ (3)

(a) Single Member Redundants Member Reference

(b) Single Member Moments Basic Reference

Figure 3-3: Single Member Redundants and Moments

It should be obvious that if the member loads plus member redundants given in equation 2 are available the undesignated forces in Figure 3-3a are easily evaluated from a consideration of static equilibrium of the individual member and their computation is not considered here.

3-4. Member Redundants in Terms of Loads and Redundants at the Cuts

Consider a portion of the structure shown in Figure 2-3 and repeated below in Figure 3-4.

Figure 3-4: Typical Tree

Obviously, the redundants of each member are a function of the loads and the redundants at the cuts. Specifically, if all possible paths from any member are traversed in a direction away from the base beginning at the member end farthest from the base all cuts affecting this member will be encountered. In fact, if there are <u>two</u> paths to the same cut then those redundants <u>do not</u> affect the member redundants. If the member contains a cut then the member redundants are functions of the loads and the redundants at that one cut only.

In Figure 3-4 the member redundants of member 7-10 are functions of the loads plus the redundants at cuts 2 and 4. The member redundants of member 7-8 are functions of the loads plus the redundants at cuts 1, 2 and 4.

Finally, the relationship between these redundants may be stated as

$$\begin{bmatrix} M_{ijy} \\ M_{ijx} \\ M_{jix} \\ M_{jiy} \end{bmatrix} = \begin{bmatrix} 1 & x_{oi} & 0 \\ 0 & -y_{oi} & 1 \\ 0 & -y_{oj} & 1 \\ 1 & x_{oj} & 0 \end{bmatrix} \begin{bmatrix} b_{ij1}I & b_{ij2}I & b_{ij3}I & \cdots & b_{ijm}I \\ \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ \vdots \\ S_m \end{bmatrix} + \begin{bmatrix} BM_{ijy} \\ BM_{ijx} \\ BM_{jix} \\ BM_{jiy} \end{bmatrix}$$
(4a)

or

$$\begin{bmatrix} M_{ij} \end{bmatrix} = \begin{bmatrix} t_{oij} \end{bmatrix}^{T} \begin{bmatrix} b_{ij} \end{bmatrix} \begin{bmatrix} S \end{bmatrix} + \begin{bmatrix} BS_{ij} \end{bmatrix}$$
(4b)

where: S_k = redundants at cut k, equation 1

- x_{oi}, y_{oi} = coordinates of point i measured from the origin of the basic system to point i
- bijk = 0 if there are 2 or 0 paths
 wholly contained in the tree
 containing member ij from the member
 to the cut k
- bijk = 1 if the member containing cut k
 is numbered in the same order as the
 member ij when traversing the path in
 one direction, or member ij contains
 cut k

- bijk = -1 if the member containing cut k
 is numbered in the opposite order as
 the member ij when traversing the path
 in one direction.
- I = a 3x3 unit matrix.
- BS_{ij} = basic system moments or moments due to the applied loads in the determinate system.

Thus, the b coefficients applicable to the tree shown in Figure 3-4 are

For Member 7-8	For Member 7-10	
^b 7,8,1 ⁼ -1	^b 7,10,2 ⁼ -1	
^b 7,8,2 = 1	^b 7,10,4 = -1	
$b_{7,8,4} = 1$	all others O	
all others 0		

Some comments are appropriate at this point. Namely, for any given loads, member and set of redundant values at the cuts, equation 4a together with the three available equations of static equilibrium are sufficient to establish the equilibrium of the member in question. Furthermore, since all redundants at the cuts are referenced to the origin of the basic coordinate system the actual location of the cut between the member ends has no effect upon the formulation except for any necessary changes in the basic system moments. Also, the product of the b_{ij} matrix and the S_i matrix is actually nothing more than the sums (with the proper sign) of the S_i matrices actually affecting the moments in the member ij. Because all S_i matrices are referenced to the origin only one linear transformation matrix t is required.
CHAPTER IV

COMPATIBILITY

4-1. Sign Convention of Slopes and Angle Changes

Distributed angle changes along the continuous elastic curve of a structure may be represented by vectors. In addition, if the slopes of the members are sufficiently small they may also be treated as a vector quantity. This assumption regarding the magnitudes of the slopes will be made.

As with internal forces, it is necessary to associate a direction along the curve with whatever angle changes are involved. Figure 4-1.1 indicates the manner in which these angle changes could be indicated for a segment of beam im. The distributed angle changes or the rates of change of slope are referred to as elastic weights.

Obviously, traversing the curve in the opposite direction requires that the angle changes be reversed. For the purposes of this paper the positive direction of the path of each individual member will be taken from i to m if i < m.

Positive angle changes are defined as shown in Figure 4-1.2. Deflections are measured from the elastic curve to a horizontal reference and are plus if they are in the positive direction of the appropriate reference system.

Slopes are measured from the tangent of the elastic curve to a horizontal reference and are plus if they are in the positive direction of the appropriate coordinate system.

(b) Traversing the Path from m to i

4-2. Analogy between Load, Shear and Moment and Distributed Angle Changes, Slope and Deflection

Figure 4-2.1 indicates the analogy between internal force and moment elements with slope and deflection. Figure 4-2.1a shows the elastic curve of a beam element ij subjected to bending about the y^m axis in a manner such that all end slopes, end deflections and distributed angle changes are plus.

In order to complete the analogy it is necessary to introduce internal slopes and deflections similiar to shears and moments. Figure 4-2.1a illustrates such a set. From a comparison of Figure 4-1.2 and Figure 4-2.1 it is apparent that the positive internal slopes and deflections correspond to actual slopes and deflections at the far end and are in the positive directions of the coordinate axes. The set of positive near end internal slopes and deflections is opposite the direction of the coordinate axes.

Figure 4-2.1b indicates the geometric variables as loads and internal forces and moments on the member. From considerations of equilibrium of this analogous system

$$\overline{\mathbf{M}}_{\mathbf{i}\mathbf{j}\mathbf{z}}^{\mathbf{m}} = \overline{\mathbf{M}}_{\mathbf{j}\mathbf{i}\mathbf{z}}^{\mathbf{m}} + \int_{1}^{-\overline{\mathbf{p}}_{\mathbf{k}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{k}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}}} + \overline{\mathbf{N}}_{\mathbf{j}\mathbf{i}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{x}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}} + \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{x}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}} + \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{x}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}} + \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{x}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}} + \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}y}^{\mathbf{m}} \mathbf{n}_{\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{x}}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}} d\mathbf{x}^{\mathbf{m}}$$

(5)

(a) actual geometry of deflected beam and positive sense of end slopes and deflections for purpose of the beam analogy

ing sin An Sin

(b) equivalent elastic loads on beam segment

Figure 4-2.1: Angle Change-Force, Slope-Shear and Deflection-Moment Analogy for Bending about y axis

Entirely equivalent results are obtained from considerations of geometry. These equations are analogous to those obtained for shears and moments in a beam loaded with a positive set of distributed loads and represent the conjugate beam analogy for this particular coordinate direction. The equations will be referred to as the equations of elastostatic equilibrium.

Physically, at i, the near end slopes and deflection represent the angle from the horizontal reference plane to the plane containing the tangent and bi-normal to the elastic curve at i and the displacement of the horizontal reference plane to point i. If these quantities are in a direction opposite the positive direction of the appropriate reference system, they are plus. Similiarly, at j, the far end slope and deflection represent an angle and displacement from the plane containing the tangent and bi-normal to the elastic curve at j to the horizontal reference plane. If these quantities are in the direction of the positive direction of the appropriate reference system, they are plus. Thus, the sense of these end effects is identical in form to internal shear and moment.

Identical analogies in the other two bending directions can be made. If the effects of shearing deformations, axial force deformations or uniform changes in temperature are to be included, they become analogous to a set of distributed

moments rather than distributed forces. This class of problem is not investigated in this study.

Figure 4-2.2 indicates positive sets of internal slopes and deflections in the basic reference system and the member reference system.

(a) Positive Internal Deflections and Rotations Basic System

(b) Positive Internal Deflections and Rotations Member System

4-3. Equivalent Elastic Weight Systems

For any segment of a beam used in the class of structures considered in this investigation the distributed elastic weights are in the plane of the member. Since the distributed elastic weights are represented by an analogous set of distributed forces, the idea of replacing the distributed set with a statically equivalent concentrated set occurs quite naturally.

Many equivalent sets are possible. Since the distributed set of elastic weights is a function of the loads and redundants, the set of redundants for the member ij of Figure 3-3a will be used as a quide in the choice of this equivalent set. In short, the distributed set of angle changes will be replaced with the set \overline{P}_{ijy}^m , \overline{P}_{jiy}^m and \overline{P}_{jix}^m of Figure 4-3b.

Additionally, if the beam ij is restrained as in Figure 3-3a such that $\overline{M}_{ijz}^m = \overline{M}_{jiz}^m = \overline{N}_{ijx}^m = 0$, then the internal slopes and deflections of the segment ij reduce to the three rotations shown in Figures 4-3a and 4-3b.

This restraint provides a convenient method of obtaining the equivalent elastic weights in terms of available data, that is

$$\begin{bmatrix} \overline{N}_{ijy}^{m} \\ -\overline{N}_{jix}^{m} \\ -\overline{N}_{jiy}^{m} \end{bmatrix} = \begin{bmatrix} \overline{P}_{ijy}^{m} \\ \overline{P}_{jix}^{m} \\ \overline{P}_{jiy}^{m} \end{bmatrix} = \begin{bmatrix} f_{ijyy} g_{ijyx} g_{ijyy} \\ g_{jixy} f_{jixx} f_{jixy} \\ g_{jiyy} f_{jiyx} f_{jiyy} \end{bmatrix} \begin{bmatrix} x_{ijy}^{m} \\ x_{jix}^{m} \\ x_{jiy}^{m} \end{bmatrix} + \begin{bmatrix} \tau_{ijy}^{m} \\ \tau_{jix}^{m} \\ \tau_{jiy}^{m} \end{bmatrix}$$
(6)

Figure 4-3: Equivalent Sets of Elastic Weights

$\begin{bmatrix} \overline{\mathbf{P}}_{ij}^{m} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{ij} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{ij}^{m} \end{bmatrix} + \begin{bmatrix} \sigma \\ ij \end{bmatrix}$

where the f and g flexibility coefficients and the τ functions are as defined in Table 4-3 and have been tabulated for a number of beams and loadings, see Tuma, et. al. (24). This also provides justification for the particular choice of redundant system associated with each member. If the flexibility coefficients are required, it is assumed that they are available and their actual calculation is not considered here.

p, dy co	url
fijxy	Near end angular moment flexibility. f indicates cause and effect at same end. First and third subscript indicate location and direction of cause. Fourth indicates direction of effect. Hence, fijxy represents rotation at i in x direction due to a unit moment at i in the y direction. Maxwell's reciprocal theorem implies that fijxy = fijyx
Sjiyx	Far end angular moment flexibility. g indicates cause is at end opposite effect. As for f above, Sjiyx represents the rotation at j in the y direction due to a unit moment at i in the x direction. Maxwell's reciprocal theorem implies Sjiyx = Sijxy
⁷ ijy	Angular load function. Represents the end rotations of basic determinate segment due to loads on segment. τ_{ijy} is the rotation due to loads on the span. The rotation is about the y axis at i of the segment ij.

Table 4-3: Flexibility Notation

or

4-4. Elasto-Static Equilibrium of a Closed Loop Containing a Single Member

All of the distributed elastic weights for the member jk may be replaced with the set given by equation 6. However, it is more convienient to transform these elastic weights to the basic reference system as follows:

$$\begin{bmatrix} \mathbf{\bar{P}}_{jk} \end{bmatrix} = \begin{bmatrix} \mathbf{\bar{P}}_{jky} \\ \mathbf{\bar{P}}_{jkx} \\ \mathbf{\bar{P}}_{kjx} \\ \mathbf{\bar{P}}_{kjy} \end{bmatrix} = \begin{bmatrix} \omega_{ojk} \end{bmatrix} \begin{bmatrix} \mathbf{\bar{P}}_{jk}^{m} \end{bmatrix}$$
(7)

Thus the advantages of the choice of equivalent elastic weights of Figure 4-2 becomes apparent. The angular transformation matrix is the transpose of the one previously used in equation 3.

Since the internal slopes and deflections at the far end of member ij are equal and opposite to those at the near end of member jk, their mutual contribution to the elastostatic equilibrium cancels and the only effective elastostatic forces are those shown in Figure 4-4.

For the system to be in equilibrium in the sense of equation 5

$$\begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}\mathbf{y}} \\ \overline{\mathbf{M}}_{\mathbf{i}\mathbf{j}\mathbf{z}} \\ \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ \mathbf{x}_{\mathbf{o}\mathbf{j}} & -\mathbf{y}_{\mathbf{o}\mathbf{j}} & -\mathbf{y}_{\mathbf{o}\mathbf{k}} & \mathbf{x}_{\mathbf{o}\mathbf{k}} \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \overline{\mathbf{P}}_{\mathbf{j}\mathbf{k}} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{m}\mathbf{k}\mathbf{y}} \\ \overline{\mathbf{M}}_{\mathbf{m}\mathbf{k}\mathbf{z}} \\ \overline{\mathbf{N}}_{\mathbf{m}\mathbf{k}\mathbf{x}} \end{bmatrix}$$
(8)

$$\left[\mathbf{\overline{N}_{ij}}\right] = \left[\mathbf{t_{ojk}}\right] \left[\mathbf{\overline{P}_{jk}}\right] + \left[\mathbf{\overline{N}_{mk}}\right]$$

Again the judicious choice of equivalent elastic weights and the extension of the member ends to the origin using the fictitious rigid arms becomes apparent in the appearance of the translational transformation matrix which is the same as the transpose of the one used in equation 4a.

Figure 4-4: Elastic Weights, End Slopes and Displacements Single Member Loop

If the end slope and deflection at j are required rather than at i, then

$$\begin{bmatrix} \overline{\mathbf{N}}_{ji} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{x}_{ji} & 1 & -\mathbf{y}_{ji} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \overline{\mathbf{N}}_{ij} \end{bmatrix}$$

Similiarly,

$$\begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{x}_{\mathbf{i}\mathbf{j}} & 1 & -\mathbf{y}_{\mathbf{i}\mathbf{j}} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{j}\mathbf{i}} \end{bmatrix}$$

where

$$\begin{bmatrix} 1 & 0 & 0 \\ x_{ij} & 1 & -y_{ij} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ x_{ji} & 1 & -y_{ji} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4-5. Elasto-Static Equilibrium of a Loop Containing Several Members

Let the loop A be a collection of members jkmn as shown in Figure 4-5.0. As before, assume the loop to be extended by rigid arms ij and nq to the origin of the basic coordinate system. Further assume that the positive x^{m} axis for each member including the rigid arms coincides with the direction around the path from i to q. Then equation 8 becomes

$$\begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{i}\mathbf{j}} \end{bmatrix} - \begin{bmatrix} \overline{\mathbf{N}}_{\mathbf{q}\mathbf{n}} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_{\mathbf{o}\mathbf{j}\mathbf{k}} & \mathbf{t}_{\mathbf{o}\mathbf{k}\mathbf{m}} \\ \mathbf{t}_{\mathbf{o}\mathbf{k}\mathbf{m}} \end{bmatrix} \begin{bmatrix} \omega_{\mathbf{o}\mathbf{j}\mathbf{k}} & \mathbf{v}_{\mathbf{o}\mathbf{k}\mathbf{m}} \\ \omega_{\mathbf{o}\mathbf{k}\mathbf{m}} & \mathbf{v}_{\mathbf{o}\mathbf{k}\mathbf{m}} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{P}}_{\mathbf{j}\mathbf{k}} & \mathbf{v}_{\mathbf{m}} \\ \overline{\mathbf{P}}_{\mathbf{k}\mathbf{m}} & \mathbf{v}_{\mathbf{m}} \\ \mathbf{v}_{\mathbf{o}\mathbf{m}\mathbf{n}} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{P}}_{\mathbf{j}\mathbf{k}} & \mathbf{v}_{\mathbf{m}} \\ \overline{\mathbf{P}}_{\mathbf{k}\mathbf{m}} & \mathbf{v}_{\mathbf{m}} \\ \overline{\mathbf{P}}_{\mathbf{m}\mathbf{m}} \end{bmatrix}$$
(10)

(9)

or

At this point the assumption is made that there are no relative displacements between i and m, then

$$\begin{bmatrix} \mathbf{t}_{\mathbf{A}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{\mathbf{A}} \end{bmatrix} \begin{bmatrix} \mathbf{\overline{P}}_{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \end{bmatrix}$$
(10b)

From equations 7, 6 and 4a, equation 10b may be written in terms of the redundants at the cuts, the τ functions and the basic system moments, as follows:

$$0 = t_A \omega_A f_A \omega_A^T t_A^T b_A S + t_A \omega_A f_A \omega_A^T B S_A + t_A \omega_A \sigma_A \quad (11)$$

where

While equation 11 looks rather formidable it should be noted that it can be broken down into a member by member summation process around the loop A, namely,

$$\sum_{ijktoij} \sum_{j} \sum_{ijktoij} \sum_{ijktoij} \sum_{j} \sum_{ijktoij} \sum_{j} \sum_{ijktoij} \sum_{i$$

where the summation is over the m members in the loop.

Some important computational aspects should be pointed out at this time. The contribution of member ij to this set of equations takes on a particularly efficient form, as follows:

$$b_{ij1}[A][S_1] + b_{ij2}[A][S_2] + \cdots + b_{ijk}[A][S_k] = [B] (13)$$

In other words, the contribution of the member ij to the coefficients of the redundant matrices S_1 to S_k is identical except for signs as determined by the coefficient b_{ijk} .

As a result of the conclusions arrived at in Para. 4-1 all elastic weights must be reversed in sign if the path is traversed in a manner opposite to its assumed plus direction. Thus, if a path ijkm is traversed from i to m and member km is such that m < k then the sign of the terms in equations 12 or 13 must be reversed to properly account for the effect of member km on the formulation. Equation 12 is therefore modified to reflect this possibility, as

$$\sum_{ijm} c_{ijm} b_{ijk} \left[A \right] \left[S_k \right] = -\sum_{ijm} c_{ijm} \left[B_1 \right] - \sum_{ijm} c_{ijm} \left[B_2 \right] \quad (12a)$$

here:	c _{ijm}	 I if positive axis of member coincides with positive path around loop m, otherwise, -1
	^b ijk	= 0, 1 or -1 as indicated after eq. 4b
	A =	^t oij ^w oij ^f ij ^w oij ^t oij
	B ₁ =	^t oij ^w oij ^f ij ^w oij ^{BS} ij
	B ₂ =	^t oij ^ω oij ^σ ij
	s _k =	redundants at cut k, see eq. 1
	BS _{ij}	moments in member ij, statically determinate system
	σ	= angular load functions, member ii, eq.

Because of the restriction on the formation of the loops, equation 12a properly summed for all loops results in the formation of the flexibility matrix since the loop containing the redundant S_k includes all of the members whose internal moments are functions of S_k . Furthermore, since equation 12a is merely an expansion of equation 10, the coefficient matrix of the matrix S_k represents the rotations and deflections at the cut containing S_k for unit values of the redundants S_k . The loop also contains all of the members whose internal moments are functions of both S_i and S_k and the resulting coefficient matrix of the matrix S_i represents the rotations and deflections at the cut containing S_k for unit values of the redundants S_i . These are by definition the flexibility coefficients.

Equation 12a could be used around any arbitrary closed loop, as shown in Figure 4-5.1a. This represents the sum of the deflections and angle changes around the loop. However, this is nothing more than the sum of the angle changes and deflections around the loop of Figure 4-5.1b minus the sum of the angle changes and deflections around the loop of Figure 4-5.1c. Hence, the deflection properties around any loop containing more than one redundant cut can be made from a linear combination of the basic loops defined in this paper. These combinations do not result in the flexibility matrix and for that reason are not considered further. If chosen properly they do represent a perfectly satisfactory set of simultaneous equations involving the redundant matrix as the unknowns, but since they are not the flexibility matrix convergence of the iterative technique cannot be assured.

Finally, since the matrices A, B_1 and B_2 contain nothing but the parameters associated with member ij, the terms A, B_1 and B_2 for member ij represent its entire contribution to the flexibility matrix. If for example $c_{ijm} = 1$, $c_{ijn} = -1$ and $c_{ijq} = 0$, this means that the member is a part of the mth loop and it is traversed in the plus direction, the member is also a member of the nth loop but is traversed in

Figure 4-5.1: Linearly Dependent Closed Loops

the negative direction and the member is not contained in the qth loop.

The significance of the preceding paragraph is simply that the matrix multiplication need be performed only once for each member and then properly added to the flexibility matrix and the constant vector associated with the problem. The above ideas are shown schematically in Figure 4-5.2 for member 5-9 of Figure 2-3. If the loops are traversed such that the member containing the cut is traversed in a positive direction then $b_{ijm} = c_{ijm}$ for all loops.

	Constant					
	b591 = 0	b592 = 1	b593=-1	b594 = 0	b595=-1	Matrix
c ₅₉₁ = 0	0	0	0	0	0	0
c592 = 1	0	A	-A	0	-A	-B ₁ -B ₂
c593=-1	0	-A	A	0	A	+B1+B2
c594 = 0	0	0	0	0	0	0
c595=-1	0	-A	A	0	A	+B1+B2

each partition of the flexibility matrix represents a 3x3 matrix and each partition of constant matrix represents a 3x1 matrix

member and redundants refer to those shown in Figure 2-3

Figure 4-5.2: Contribution of Member 5-9 to the Flexibility Matrix and the Constant Matrix

CHAPTER V

SOLUTION OF PROBLEM REDUNDANTS BY CARRY-OVER TECHNIQUES

5-1. General

The set of equations formulated by equation 12a can be written

$$\begin{bmatrix} F_{11} & F_{12} & \cdots & F_{1m} \\ F_{21} & F_{22} & \cdots & F_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ F_{m1} & F_{m2} & \cdots & F_{mm} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_m \end{bmatrix} = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_m \end{bmatrix}$$
(13)

or

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{S} \end{bmatrix} = \begin{bmatrix} \mathbf{Z} \end{bmatrix}$$

a 3x3 flexibility matrix which is physically the deflections at cut i due to unit causes at cut j

 $\begin{bmatrix} s_i \end{bmatrix} = \begin{bmatrix} z_i \end{bmatrix} =$

Fij

=

where:

redundant matrix at cut i

constant vector, sum of terms 2 and 3 of equation 12a. Physically, the initial displacements at cut i due to the basic system moments

5-2. Solution by the Matrix Carry-Over Method

If equation 13 is rewritten as follows

$$\begin{bmatrix} \mathbf{S}_{1} \\ \mathbf{S}_{2} \\ \vdots \\ \mathbf{S}_{m} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11}^{-1} \mathbf{Z}_{1} \\ \mathbf{F}_{22}^{-1} \mathbf{Z}_{2} \\ \vdots \\ \mathbf{S}_{m} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & -\mathbf{F}_{11}^{-1} \mathbf{F}_{12} \cdot \cdot -\mathbf{F}_{11}^{-1} \mathbf{F}_{1m} \\ -\mathbf{F}_{22}^{-1} \mathbf{F}_{21} & \mathbf{0} \cdot \cdot -\mathbf{F}_{22}^{-1} \mathbf{F}_{2m} \\ \vdots \\ \vdots \\ \mathbf{F}_{mm}^{-1} \mathbf{Z}_{m} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & -\mathbf{F}_{11}^{-1} \mathbf{F}_{12} \cdot \cdot -\mathbf{F}_{11}^{-1} \mathbf{F}_{1m} \\ -\mathbf{F}_{22}^{-1} \mathbf{F}_{21} & \mathbf{0} \cdot \cdot -\mathbf{F}_{22}^{-1} \mathbf{F}_{2m} \\ \vdots \\ \vdots \\ \mathbf{F}_{mm}^{-1} \mathbf{F}_{mm}^{-1} \mathbf{F}_{m1} - \mathbf{F}_{mm}^{-1} \mathbf{F}_{m2} \cdot \cdot \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{1} \\ \mathbf{S}_{2} \\ \vdots \\ \mathbf{S}_{m} \end{bmatrix}$$
(14)

or in a somewhat shorter form, called here the carry-over form, after Tuma (1)

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} sv \end{bmatrix} + \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} s \end{bmatrix}$$

where: SV_i = starting values, physically the solution of the problem for S_i if all S_j = 0, j ≠ i [C_{ij}] = the carry-over coefficient, physically the induced forces at cut i due to unit causes at cut j while maintaining compatibility at i

Now, if the first set of values for the redundant S is assumed to be SV, the second approximation is given by equation 14 using the first values of S on the right hand side, or

$$[s]^{(2)} = [sv] + [c][s]^{(1)}$$

and, after n iterations

$$\begin{bmatrix} s \end{bmatrix}^{(n)} = \begin{bmatrix} sv \end{bmatrix} + \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} s \end{bmatrix}^{(n-1)}$$
(15)

Let the last term be defined as the residual matrix, or

$$\begin{bmatrix} s \end{bmatrix}^{(2)} = \begin{bmatrix} sv \end{bmatrix} + \begin{bmatrix} R \end{bmatrix}^{(1)}$$
$$\begin{bmatrix} s \end{bmatrix}^{(3)} = \begin{bmatrix} s \end{bmatrix}^{(2)} + \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^{(1)} = \begin{bmatrix} s \end{bmatrix}^{(2)} + \begin{bmatrix} R \end{bmatrix}^{(2)}$$

and after n trials

$$\begin{bmatrix} s \end{bmatrix}^{(n)} = \begin{bmatrix} sv \end{bmatrix} + \begin{bmatrix} R \end{bmatrix}^{(1)} + \begin{bmatrix} R \end{bmatrix}^{(2)} + \cdots + \begin{bmatrix} R \end{bmatrix}^{(n-1)}$$
(16)
where:
$$\begin{bmatrix} R \end{bmatrix}^{(n)} = \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^{(n-1)}$$

For convergence the nth residual matrix must approach zero with n sufficiently large.

Equation 16 represents a form of iteration used by Cross (9) in his moment distribution technique or Tuma (1) is his carry-over technique with one rather important difference. With these techniques it is not necessary to process each set of values in its entirety each step of the way. As in the carry-over technique or moment distribution technique only the large residuals need be iterated initially. If their carry-over effects are small, these carry-over effects may be accumulated and their resulting feedback accounted for all in one operation.

5-3. Block Gauss-Siedel Iterative Procedure

If equation 14 is used directly as the iterative procedure, then

$$[s]^{(n)} = [sv] + [c][s]^{(n-1)}$$
 (17)

Additionally, if each new set of values for the S matrix is computed from the most recent set of values available, then in component form, equation 17 becomes

$$\begin{bmatrix} s_j \end{bmatrix}^{(n+1)} = \begin{bmatrix} sv_j \end{bmatrix} + \sum_{k=1}^{j-1} \begin{bmatrix} c_{jk} \end{bmatrix} \begin{bmatrix} s_k \end{bmatrix}^{(n+1)} + \sum_{k=j+1}^{m} \begin{bmatrix} c_{jk} \end{bmatrix} \begin{bmatrix} s_k \end{bmatrix}^{(n)}$$
(18)

This form is preferable to equation 17 in that only one matrix S need be retained at any time. This is the block Gauss-Siedel process referred to by Varga (16).

5-4. Point Gauss-Siedel Iterative Procedure

For reference purposes, a simpler iterative technique might be used on equation 13. It is referred to by Varga (16) as the point Gauss-Siedel process and is essentially identical to the technique of equation 18 except it deals with one equation at a time and can be written

$$f_{ii} s_{i}^{(n+1)} = z_{i} + \sum_{k=1}^{i-1} f_{ik} s_{k}^{(n+1)} + \sum_{k=i+1}^{3m} f_{ik} s_{k}^{(n)}$$
 (19)

Use of this process in the solution of the structural problem presented here is physically the restoration of continuity at a cut in only one direction rather than simultaneously in all directions as given by the processes of Para. 5-2 and 5-3.

5-5. Convergence of the Iterative Methods

Because of the restriction placed on the formulation of the coefficient matrix associated with the redundants the following statements can be made:

a. The coefficient matrix is the flexibility matrix as discussed in Para. 4-5 and is therefore real and symmetric.

b. The positive nature of the internal strain energy
is sufficient assurance that the flexibility matrix is
positive definite, see Southwell (10) or Temple (18).
c. Positive definiteness of the flexibility matrix is
a necessary and sufficient condition for the convergence
of all three of the techniques discussed in Para. 5-2,
5-3 and 5-4. Proofs of these are found in the references
given in the paragraphs indicated.

No general conclusions can be reached regarding which of the three iterative processes converges the most rapidly. However, while no general statement can be made regarding the convergence, physical interpretations favor the block process. That is, it seems reasonable to assume that simultaneous restoration of continuity in three directions should usually converge to the answer in a more rapid fashion than working with the one-dimensional counterpart. A similiar conclusion is reached by Faddeev and Faddeeva (17).

For the purposes of desk calculation, the carry-over technique is ideally suited since the analyst can tell immediately how the iteration is progression by the convergence of the residual matrix to zero. However, round off errors may accumulate or simple mistakes go uncorrected unless frequent use is made of equation 15 to check the progress. Automatic computation on the other hand favors equation 18 as this avoids the round off problem with little increase in actual computation time.

CHAPTER VI

APPLICATION

6-1. Two-Bay Framework

The two-bay frame shown in Figure 6-1.0 has members whose properties are given in Table 6-1. All members have equal EI values and all members have EI = GJ.

Figures 6-1.1 thru 6-1.5 illustrate the step by step formulation of the terms involved in the flexibility matrix and the constant matrix. Figure 6-1.6 represents the step by step formulation of the flexibility matrix. All of the calculations are shown to emphasize the repetitive nature of the calculations. Finally, the application of the carryover technique is shown in Figure 6-1.7.

Table 6-1: Two-Bay Framework, Basic System Moments, Flexibilities and Angular Load Functions

		BS Valu	es, Kip	-feet		19. 200	
Member	BM	BM _{ijy}		BMji	Lx	BMjiy	
1-2 2-3 3-4 5-6 2-6	0 0 -100 -100 0	2	0 0 -40 140 0	0 -40 -140 40 -40		0 -100 -100 -100 100	
Nea Member	r and Fai f _{iivy}	End Fle	xibiliti gjiyy	es from A	Appendix Siixy	B f _{iivv}	
1-2 2-3 3-4 5-6 2-6	.3333 0 .79752914 .3333 0 .3333 0 .7975 .2914		.1667 .3059 .1667 .1667 .3059	1.000 2.2069 1.000 1.000 2.2069	0 .2914 0 0 2914	0 .3333 14 .7975 0 .3333 0 .3333 14 .7975	
Member	Angular I	Load Func	tions, $ \tau$	from Appo jix	endix B	jiy	
1-2 2-3 3-4 5-6 2-6	0 32.000 0 32.000		-44	0 .150 0 .150	0 20.348 0 0 20.348		

Note: L/EI deleted from Near and Far End Flexibilities and from the Angular Load Functions.

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & -10 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} .3333 & 0 & .1667 \\ 0 & 1.000 & 0 \\ .1667 & 0 & .3333 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -10 \\ 1 & 0 \end{bmatrix}$ 0 1 0 0 1 0 0 = 0 0 33.333 -5.000 1.0000 = 0 -5.000 1.000 = 0 since angular load functions and basic system moments equal zero $|\mathbf{B}_1| = |\mathbf{B}_2|$ $c_{122} = c_{121} = 1$ since path around loops coincides with positive axis of member $b_{122} = b_{121} = 1$ since both redundants 1 and 2 are oriented in a positive manner relative to member 1-2 States States .

Figure 6-1.1: Equation 12a, Two-Bay Framework, Loop No. 1, Member 1-2 (also Loop No. 2, Member 1-2)

[A] =	[1 0 0	$ \begin{array}{c} 0 & 0 \\ -10 & -10 \\ 1 & 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	22	.2068 22 2.068 65 0 -27	.068 0 6.26 -27.898 .898 2.207
	[1 0 0	0 0 -10 -10 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 0 0	0 0 -10 -10 1 1	$ \begin{array}{cccc} 1\\20\\0\\0\\0\\0&1\\0&0&1 \end{array} \end{bmatrix} \begin{bmatrix} 32.000\\44.150\\20.348 \end{bmatrix} = \begin{bmatrix} 52.348\\-34.540\\44.150 \end{bmatrix} $
c ₂₃₁	=	1 since	path around loop coincides with positive member axis
^b 231	=	1 since	member contains redundant 1
^b 232	8	0 since	member moments are not functions of redundant 2

Figure 6-1.2: Equation 12a, Two-Bay Framework, Loop No. 1, Member 2-3

$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 20 & -10 & 0 & 20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} .3333 & 0 & .1667 \\ 0 & 1.000 & 0 \\ .1667 & 0 & .3333 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 20 & 0 \\ 0 & -10 & 1 \\ 0 & 0 & 1 \\ 1 & 20 & 0 \end{bmatrix}$	
$= \begin{bmatrix} 1.000 & 20.000 & 0\\ 20.00 & 433.33 & -5.000\\ 0 & -5.000 & 1.000 \end{bmatrix}$	
$\begin{bmatrix} \mathbf{B}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 20 & -10 & 0 & 20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} .3333 & 0 & .1667 \\ 0 & 1.000 & 0 \\ .1667 & 0 & .3333 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -100 \\ -40 \\ -140 \\ -100 \end{bmatrix} = \begin{bmatrix} -100.00 \\ -1633.33 \\ -90.00 \end{bmatrix}$	
$\begin{bmatrix} B_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ since all angular load functions are equal to zero	
$c_{341} = 1$ since path around loop coincides with positive member axis	
$b_{341} = 1$ since redundant 1 is oriented positively relative to member 3-4	
b ₃₄₂ = 0 since member moments are not functions of redundant 2	

Figure 6-1.3: Equation 12a, Two-Bay Framework, Loop No. 1, Member 3-4

 $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -10 & -10 & -20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} .7975 & -.2914 & .3059 \\ -.2914 & 2.207 & .2914 \\ .3059 & .2914 & .7975 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 1 \\ 0 & -10 & 1 \\ 1 & -20 & 0 \end{bmatrix}$ $= \begin{bmatrix} 2.2068 & -22.068 & 0 \\ -22.068 & 656.26 & -27.898 \\ 0 & -27.898 & 2.207 \end{bmatrix}$ $\begin{bmatrix} B_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -10 & -10 & -20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} .7975 & -.2914 & .3059 \\ -.2914 & 2.207 & .2914 \\ .3059 & .2914 & .7975 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 110.34 \\ -770.50 \\ -59.14 \end{bmatrix}$ $\begin{bmatrix} B_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -10 & -10 & -20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 32.000 \\ -44.150 \\ 20.348 \end{bmatrix} = \begin{bmatrix} -52.348 \\ -34.540 \\ 44.150 \end{bmatrix}$ c262 = 1 since path around loop coincides with positive member axis = 0 since member moments are not functions of redundant 1 b261 = 1 since redundant is contained in member 2-6 b262

Figure 6-1.4: Equation 12a, Two-Bay Framework, Loop No. 2, Member 2-6

$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -20 & 0 & -10 & -20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} .3333 & 0 & .1667 \\ 0 & 1.000 & 0 \\ .1667 & 0 & .3333 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -20 & 0 \\ 0 & 0 & 1 \\ 0 & -10 & 1 \\ 1 & -20 & 0 \end{bmatrix}$	
$= \begin{bmatrix} 1.0000 & -20.000 & 0 \\ -20.000 & 433.33 & -5.000 \\ 0 & -5.000 & 1.000 \end{bmatrix}$	
$\begin{bmatrix} B_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -20 & 0 & -10 & -20 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} .3333 & 0 & .1667 \\ 0 & 1.000 & 0 \\ .1667 & 0 & .3333 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -100 \\ 140 \\ 40 \\ -100 \end{bmatrix} = \begin{bmatrix} -100 \\ -100 \\ -100 \end{bmatrix}$	100.00 .633.33 90.00
$\begin{bmatrix} B_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ since all angular load functions are equal to zero	•
$c_{562} = -1$ since path around loop is opposite positive sense of member ax	is
b ₅₆₁ = 0 since member moments are not functions of redundant 1	
b562 = -1 since redundants 2 are oriented in negative sense relative to member 5-6	
	۰

Figure 6-1.5: Equation 12a, Two-Bay Framework, Loop No. 2, Member 5-6

აკ

			, op alot 1,	is added	to a 6x6 a	nd 6x1 nul	1 matrix	ĸ
	1.000	0	0	1.000	0	0 -	[[s11]	F 0]
	0	33.333	-5.000	0	33.333	-5.000	S12	0
	0	-5.000	1.000	0	-5.000	1.000	S13	0
(0	0	0	0	0	0	S21	0
	0	0	0	0	0	0	\$22	0
	0	0	0	0	0	0	s23	O
(Ъ)	After meml	ber 2-3, Lo	oop No. 1,	is added	to (a)			
1	3.2068	22.068	0	1.000	0	0 -	I sil	57,99
1	22.068	689.59	-32.898	0	33.333	-5,000	S12	805.04
1.1.1.1	0	-32.898	3.207	0	-5.000	1.000	S12	14.99
	0	0	0	0	0	0	S21	0
12.	0	0	0	0	0	0	522	0
	0	0	0	0	0	0	s23	0
(c) I	After meml	oer 3-4, Lo	oop No. 1,	is added	to (b)			
1	4.2068	42.068	0	1.000	0	0	[s11]	[157.99]
	42'.068	1122.92	-37.898	0	33.333	-5.000	S12	2438.37
	0	-37.898	3.207	0	-5.000	1.000	S13	104.99
	0	0	0	0	0	0	\$21	0
	0	0	0	0	0	0	\$22	0
	0	0	0	0	0	0	\$23	0

Figure 6-1.6: Evolution of Flexibility Matrix, Member by Member, Two-Bay Framework

(d)	After mem	ber 1-2, Lo	pop No. 2,	is added	to (c)			
	$\begin{bmatrix} 4.2068 \\ 42.068 \\ 0 \\ 1.000 \\ 0 \\ 0 \end{bmatrix}$	42.068 1122.92 -37.898 0 33.333 -5.000	0 -37.898 3.207 0 -5.000 1.000	$1.000 \\ 0 \\ 0 \\ 1.000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 33.333 -5.000 0 33.333 -5.000	0 -5.000 1.000 0 -5.000 1.000	\$\$11 \$\$12 \$\$13 \$\$21 \$\$22 \$\$23	[157.99 2438.37 104.99 0 0 0
(e)	After mem	iber 2-6, Lo	pop No. 2,	is added	to (d)			
	$\begin{bmatrix} 4.2068 \\ 42.068 \\ 0 \\ 1.000 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{r} 42.068\\1122.92\\-37.898\\0\\33.333\\-5.000\end{array}$	0 -37.898 3.207 0 -5.000 1.000	1.000 0 3.2068 -22.068 0	0 33.333 -5.000 -22.068 689.59 -32.898	0 -5.000 1.000 0 -32.898 3.207	s11 s12 s13 s21 s22 s23	157.99 2438.37 104.99 -57.99 805.04 14.99
(f)	After mem	ber 5-6, Lo	oop No. 2,	is added	to (e)			1.00
	$\begin{bmatrix} 4.2068 \\ 42.068 \\ 0 \\ 1.000 \\ 0 \\ 0 \end{bmatrix}$	42.068 1122.92 -37.898 0 33.333 -5.000	0 -37.898 3.207 0 -5.000 1.000	$1.000 \\ 0 \\ 0 \\ 4.2068 \\ -42.068 \\ 0 \\ 0$	0 33.333 -5.000 -42.068 1122.92 -37.898	0 -5.000 1.000 0 -37.898 3.207	s11 s12 s13 s21 s22 s23	157.99 2438.37 104.99 -157.99 2438.37 104.99

Figure 6-1.6: Continued

Premultiplying each set of 3 equations by the inverse of the 3x3 matrix on the diagonal yields, from Figure 6-1.6, -.11107 -12.44 1 0 0 .51483 .32443 S11 0 -.03244 1 0 -.02771 .01111 5.00 s12 0 0 1 -.24963 -1.4808.33776 70.00 s13 = .51483 -.32443.11107 12.44 1 0 0 ^s21 .02771 -.03244 0 .01111 0 5.00 1 s22 -1.4808.24963 .33776 0 0 1 70.00 s23 In carry-over form, -12.44 -.51483 -.32443 .11107 s11 s21 C12 S2 .03244 5.00 .02771 -.01111 S₁ SV1 22 + = + s12 S22 70.00 .24963 1.4808 -.33776 s13 S23 -.51483 12.44 .32443 s21 -.11107 S11 IS2 sv2 .03244 C21 S1 5.00 -.02771 S22 = + -.01111 -+ s12 1.4808 70.00 -.24963 -.33776 s23 s13 Which, when solved by the carry-over technique yield, (after 2 cycles) (after 6) (solution) -12.44 .25 -1.50 -14.14 -15.06 s11 -15.01 -.27 5.00 4.89 s12 .14 4.87 4.90 = + = = • • = -13.14 70.00 C12 4.10 60.86 60.52 60.56 s13 C12 C21 12.44 15.01 1.50 14.19 15.06 s21 .27 5.00 .14 4.87 4.89 s22 4.90 = = == .. = 70.00 -13.14 4.10 60.86 s23 60.52 60.56 C12 indicates carry-over operation

Figure 6-1.7: Solution of Two Bay Framework by the Matrix Carry-Over Technique
Once the redundants at the cuts are evaluated,

equation 4b can be used in the following form to obtain the internal redundants for each member

$$\begin{bmatrix} M_{ij} \end{bmatrix} = \begin{bmatrix} 1 & x_{oi} & 0 \\ 0 & -y_{oi} & 1 \\ 0 & -y_{oj} & 1 \\ 1 & x_{oj} & 0 \end{bmatrix} \begin{bmatrix} b_{ij1}S_1 + b_{ij2}S_2 \end{bmatrix} + \begin{bmatrix} BM_{ijy} \\ BM_{ijx} \\ BM_{jix} \\ BM_{jiy} \end{bmatrix}$$
(4b)

for member 1-2 this becomes, from Table 6-1, Figure 6-1.1 and Figure 6-1.7

$$\begin{bmatrix} M_{12} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -10 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -15.06 & 15.06 \\ 4.90 & + & 4.90 \\ 60.56 & 60.56 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 121.12 \\ 23.12 \\ 0 \end{bmatrix}$$

since this is in the basic reference system it should probably be rotated to the member reference frame, or

$$\begin{bmatrix} X_{ij}^{m} \end{bmatrix} = \begin{bmatrix} \omega_{oij} \end{bmatrix}^{T} \begin{bmatrix} M_{ij} \end{bmatrix}$$
$$\begin{bmatrix} x_{12y}^{m} \\ x_{21x}^{m} \\ x_{21y}^{m} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 121.12 \\ 23.12 \\ 0 \end{bmatrix} = \begin{bmatrix} -121.12 \\ 0 \\ -23.12 \\ 0 \end{bmatrix}$$

In this case, the summation of the S_i matrices is obtained prior to multiplication by the ω and t matrices. This operation is possible because all redundants are referenced to the origin of the basic coordinate system.

6-2. Summary of Problems

In the appendix the final results of sixteen different problems are included along with an analysis of the convergence of the individual redundants at the cuts as well as an analysis of the convergence of the individual member redundants.

To analyse the variation of the iterated answers, the percentage deviation from the basis value is computed as follows:

%	Deviation of U	=	U	<u>- U*</u> x 100
	where:	v		the absolute value of the maximum basis value of all quantities in the problem
		U	=	value being investigated
		U*	=	basis value of U

In the case of redundants at the cuts, the values are mixed values regarding the nature of their units. That is, some values are shears and some moments. For this reason, whenever a shear value is encountered it is multiplied by the absolute value of the largest coordinate used in the problem prior to its comparison by the above formula.

Problem 1 is the problem used as a sample problem in Para. 6-1. Problem 2 is a problem solved by Diwan (5). Problems 3 thru 14 all involve a 2 bay, 3 story framework with symmetrical, unsymmetrical and anti-symmetrical loadings as well as a variation of relative torsional to bending stiffnesses and two different choices of redundants. Problem 15 is an extension of problem 3 to three bays and three stories. Problem 16 is a hexagonal framework symmetrically loaded.

Table 6-2.1 contains a summary of the significant data relative to the convergence of the carry-over process that is contained in the Appendix A. Figure 6-2 illustrates graphically the nature of the convergence for problem 3. A considerable amount of additional data relative to the problems but not specifically associated with the convergence of the carry-over process is also included in Appendix A. Some general details involving the nature of the input and output data as well as the overall nature of the computer program used to obtain the solutions shown is included in Appendix C.

Table 6-2.2 shows a comparison in the speed of convergence of the point vs. the block Gauss-Siedel techniques for problems no. 1, 2 and 3.

Geometry, Loads,	ET /CT	Maximum % Error*				
and Redundants	111/00	Frror	Cycles	Error	Cycles	
	1.0	0.0	6	0.0	6	
	see App. A	0.01	7	0.01	7	
×	1.0	1.54	20	0.35	20	
XX	2.0	0.83	20	0.21	20	
~~	0.5	3.91	20	0.70	20	
	1.0	2.29	50	1.02	50	
×	1.0	0.66	20	0.13	20	
XX	2.0	0.40	20	0.09	20	
\times	0.5	1.51	20	0.33	20	
1 XXX	1.0	1.36	50	0.27	50	
	Geometry, Loads, and Redundants	Geometry, Loads, and Redundants EI/GJ Image: Construction of the second seco	Geometry, Loads, and Redundants EI/GJ Ma S Va Error Image: See App. 0.01 Image: See App. 0.03 Image: See App. 1.00 Image: See App. 0.5 Image: See App. 1.00 Image: See App. 1.00	Geometry, Loads, and Redundants Maximum S S Values Error Cycles Image: Cycles 1.0 0.0 6 Image: Cycles 1.0 0.0 6 Image: Cycles See App. 0.01 7 Image: Cycles See App. 0.01 7 Image: Cycles 1.0 1.54 20 Image: Cycles 1.0 0.83 20 Image: Cycles 1.0 0.83 20 Image: Cycles 1.0 2.29 50 Image: Cycles 1.0 0.66 20 Image: Cycles 1.0 0.40 20 Image: Cycles 1.0 1.36 50	Geometry, Loads, and Redundants Maximum % Error Image: Second sec	

*for calculation of error see Para. 6-2

Table 6-2.1: Summary of Problem Results

Prob.	Geometry, Loads,	ET/GT	Ma S V	aximum 3	K Error	rs*
	and Reddindants	D1/00	Error	Cycles	Error	Cycles
11	~	1.0	0.18	20	0.07	20
12	XXX	2.0	0.12	20	0.04	20
13		0.5	0.96	20	0.49	20
14		1.0	0.27	50	0.24	50
15	A A A A A A A A A A A A A A A A A A A	1.0	0.72	20	0.50	20
16	K.	1.0	0.01	10	0.01	10

Table 6-2.1: (continued)

Figure 6-2: Convergence of Some Typical Redundant Matrix Elements of Problem No. 3

ł

Prob. No.	Iterative Procedure	Iteration Less Than During the	Iteration No. where All Values Changed Less Than the Indicated Percentage During the Previous Cycle*								
<u> </u>		.01%	.001%	.0001%							
1	point block	- 5	- 6	41 8							
2	point block	-7	- 9	47 12							
3	point block	111 31	174 41	243 49							

Table 6-2.2: Comparison of Convergence Rates of Block vs. Point Gauss-Siedel Techniques

*Percentages are computed individually for each unknown using its own most recent value as a basis of comparison.

CHAPTER VII

SUMMARY AND CONCLUSIONS

7-1. Summary

The following principal formulas were developed for the solution of the problem stated in Para. 1-1. Briefly, the internal redundant moments in each member are given by equation 4b, as follows:

$$\begin{bmatrix} M_{ij} \end{bmatrix} = \begin{bmatrix} t_{oij} \end{bmatrix}^{T} \begin{bmatrix} b_{ij} \end{bmatrix} \begin{bmatrix} S \end{bmatrix} + \begin{bmatrix} BS_{ij} \end{bmatrix}$$
(4b)

Then the flexibility matrix, F, was formulated from equation 12a

$$\sum c_{ijm} b_{ijk} [A] [S_k] = -\sum c_{ijm} [B_1] - \sum c_{ijm} [B_2]$$
(12a)

Finally, the solution was obtained by iterating the flexibility matrix in a manner described as a block Gauss-Siedel process. Physically, this process represented a systematic restoration of the continuity at each cut in a cyclic manner until continuity of the elastic curve was achieved. It is therefore an extension of the one-dimensional carry-over of Tuma (1) and for that reason was termed the matrix carry-over technique. This iterative procedure was given by

$$\left[\mathbf{s}_{\mathbf{i}} \right]^{(n+1)} = \left[\mathbf{s}\mathbf{v}_{\mathbf{i}} \right] + \sum_{k=1}^{\mathbf{i}-1} \left[\mathbf{c}_{\mathbf{i}k} \right] \left[\mathbf{s}_{k} \right]^{(n+1)} + \sum_{k=\mathbf{i}+1}^{m} \left[\mathbf{c}_{\mathbf{i}k} \right] \left[\mathbf{s}_{k} \right]^{(n)}$$
(18)

Equation 4b was then used to obtain the redundant moments in each member.

7-2. Conclusions

1. The matrix carry-over technique was found to converge in a rapid manner. For the class of problems investigated, the member moments converged to within 0.70% after 20 cycles of iteration if the redundants were chosen such as to make the individual trees relatively compact. Problems 1, 2 and 3 indicated the convergence to be approximately 4 times faster than the point Gauss-Siedel process.

2. Formulation of the problem by equation 12a proved to be relatively simple. By defining the redundants in each member in the same manner as the equivalent elastic weights, the terms of equation 12a become highly repetitious. Use of the origin of the basic coordinate system as a reference for redundants at the cuts and deflection matrix at the cuts produced similiar simplifications. As can be seen from Figures 6-1.1 thru 6-1.5, the only quantities involved in equation 12a were the coordinates, flexibility coefficients and statically determinate loads for the individual member.

A general computer program was developed to solve any type of structure satisfying the statement of the problem. This includes problems having a large variety of different linear graphs. Samuelson (19) was able to program problems subject to the requirement that they have the same linear graph.

3. Choices of compact trees indicated better or faster rates of convergence than trees formed in a less compact manner. This is indicated by a comparison of problems 3, 7 and 11 with problems 6, 10 and 14. The latter group of problems was identical with the first except for the choice of redundant cuts.

4. Since the formulation resulted in a minimum set of simultaneous equations, the method can be applied to a structure having stiffness variations within each member by replacing the members with a number of straight segments of constant section. This would be accomplished with no increase in the number of simultaneous equations.

Both the technique of formulation and its accompanying simplifications as well as the use of the multi-dimensional carry-over technique are believed to be original with this investigation.

7-3. Extensions of the Technique

Probably the most important result of the problem studied in this work is actually a by-product. This is the formulation procedure which produces a minimum set of simultaneous equations. Therefore, four immediate extensions should be investigated:

1. Produce the analogous technique for the solution of planar structures with loads in the plane. This extension is in a one-to-one correspondence with the techniques used for the problem considered here. The only differences are the terms within the t and ω matrices and the flexibility factors for the individual members.

2. Investigate the errors introduced by replacing curved members or members having a varying stiffness with short segments of constant section properties. This procedure would eliminate the need of a large number of tables or formulas for the proper evaluation of member flexibilities.

3. Extend the technique to a three dimensional structure with arbitrary loading. This would utilize the same logical process involved in determining the b_{ij} and c_{ij} factors but would deal with all 6 internal force and moment elements at each redundant cut.

4. Investigate the technique of introducing hinges and other discontinuities into the structure. A 'simple' solution to this problem would greatly increase the value of all of the methods described.

BIBLIOGRAPHY

- Tuma, Jan J., "Analysis of Beams by Carry-Over Moments", <u>Journal of the Structural Division</u>, Vol. 84, Proceedings Paper No. 1762, American Society of Civil Engineers, New York, Sept. 1958.
- Kinney, J. S., <u>Indeterminate Structural Analysis</u>, Addison-Wesley, Reading, Massachusetts, 1957, Chap. I.
- 3. Müller-Breslau, H., <u>Die Graphische Static der Bau-</u> <u>konstruktionen</u>, Vol.11, Verlag, Leipzig, 1925, Chap. VI.
- 4. Baron, F. and Michalos, J. P., "Laterally Loaded Plane Structures and Structures Curved in Space", Paper No. 2493, <u>Transactions</u>, American Society of Civil Engineers, 1962.
- 5. Diwan, A., "Continuous Structures Loaded Normal to Their Plane", Proceedings Paper 3343, <u>Journal of</u> <u>the Structural Division</u>, American Society of <u>Civil Engineers</u>, 1962.
- 6. Tuma, Jan J. and Oden, J. T., "String Polygon Analysis of Frames with Straight Members", Journal of the <u>Structural Division</u>, Proceedings Paper No. 2956, American Society of Civil Engineers, 1961.
- Oden, J. T., "The Analysis of Fixed-End Frames with Bent Members by the String Polygon Method", <u>Masters Thesis</u>, Oklahoma State University, 1960.
- 8. Maney, G. A., <u>Studies in Engineering No. 1</u>, University of Minnesota, 1915.
- 9. Cross, Hardy, "Analysis of Continuous Frames by Distributing Fixed End Moments", <u>Proceedings</u>, American Society of Civil Engineers, May, 1930.
- Southwell, R. V., "Stress Calculation in Frameworks by the Method of Systematic Relaxation of Constraints", <u>Proceedings of the Royal Society</u>, A151, 1935, 56-59.
- 11. Southwell, R. V., <u>Relaxation Methods in Engineering</u> <u>Science</u>, Oxford University Press, London, 1940.

- 12. Eisemann, K., Woo, L., and Namyet, S., "Space Frame Analysis by Matrices and Computer", Journal of the Structural Division, Proceedings Paper No. 3365, Vol. 88, American Society of Civil Engineers, New York, Dec. 1962.
- Carter, W. O., "Stability Analysis of Rigid Jointed Plane Frames by Matrix Methods", <u>Doctoral</u> <u>Dissertation</u>, Stanford University, October, 1963.
- 14. Fenves, Steven J., "Stress", <u>Technical Report No. T63-2</u>, Department of Civil Engineering, Massachusetts Institute of Technology, 1963.
- 15. Samuelson, Alf, "Linear Analysis of Frame Structures", <u>Doctoral Dissertation</u>, Chalmers Technical College, Goteborg, Sweden, 1962.
- 16. Varga, R. S., <u>Matrix Iterative Analysis</u>, Prentice Hall, New Jersey, 1962.
- 17. Faddeev, D. K. and Faddeeva, V. N., <u>Computational</u> <u>Methods of Linear Algebra</u>, W. H. Freeman and <u>Company</u>, San Francisco, 1963. (Russian edition published in 1960)
- Temple, G., "The General Theory of Relaxation Methods Applied to Linear Systems", <u>Proceedings of the</u> <u>Royal Society</u>, A169, 1939, p. 476.
- 19, Tuma, Jan J., et al, ""Flexibilities", Vol. I, II and III, <u>School of Civil Engineering Research</u> <u>Publications No. 10, 11 and 12</u>, Oklahoma State University, 1963.
- Reddy, M. N., "Influence Lines for Continuous Curved Members with Lateral Loads", <u>Masters Thesis</u>, Oklahoma State University, 1963.

APPENDIX A

PROBLEM SOLUTIONS AND ERROR ANALYSIS OF CONVERGENCE

The following pages contain the results of sixteen different problems formulated and solved by the iterative technique described in this thesis. All results are shown in a similiar fashion, that is, Figure A-1, Table A-1.1 and Table A-1.2 summarize problem 1; Figure A-2, Table A-2.1 and Table A-2.2 summarize problem 2; etc. A summary of all of these problems in contained in Table 6-2.1.

In all instances, the figure associated with the problem contains the problem dimensions, loads, member properties and a sketch showing the variation of bending moments throughout the structure. Wherever possible, bending moments after 1, 5, 10 or 20 cycles of iteration are also shown to indicate the regularity of the convergence. For brevity, a similiar sketch of torsional moments is not shown. The convergence of the torsional moments are similiar to those shown for bending moments.

Tables A-1.1, A-2.1, etc. contain an analysis of the convergence of the redundant matrix for each problem.

Tables A-1.2, A-2.2, etc. contain an analysis of the convergence of the actual member moments and torsions

computed from the redundant matrices at each indicated cycle of iteration.

2.0

Percentage deviation is always computed as discussed in Para. 6-2.

MEMBER PROPERTIES

All members have equal EI All members have EI=GJ

Figure A-1: Problem 1, Member Properties, Dimensions, Loads, and Comparison of Member Moments after 1 Cycle of Iteration with Correct Values

PERGENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 1 AFTER 1, 2, 3, 4, 5, 6, 8 AND 10 GYCLES OF ITERATION 1 - 1 - - -ITERATION S BASIS** 3 4 5 K.K-FEET 1 j, 2 8 10 1 **1** - A 6 1 1 .23 .00 -15.06 2.67 .88 .06 •01 .00 .00 4.90 $\mathbf{1}$ 2 -.61 -.06 1.96 -.21 -.01 .00 .00 .00 1 3 9.62 •41 -.02 .00 .00 a 04 •00 .00 60.56 2 1 -2.41 -.51 -.12 -.03 -.01 .00 .00 .00 15.06 2 2 -.03 -3.55 -.60 -.12 -.01 .00 .00 .00 4.90 2 3 -3.77 -.40 ****•06** -.01 .00 .00 .00 .00 60.56

TABLE A=1.1

** BASIS IN THIS PROBLEM TAKEN AFTER 13 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .00001 PERCENT DURING LAST ITERATION.

1.15

TABLE A-1.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 1, AFTER 5 AND 6 CYCLES OF ITERATION

MEMBER* ITERATION BASIS** 5 6 KIP-FEET 1 2 N 01 00 -121.12 F 00 00 -23.05 00 T 01 00 -23.05 T 01 00 -23.05 T 01 00 -15.06 F 00 00 -16.99 T 00 00 -16.99 T 00 00 -28.47 F 00 00 -79.44 T 00 00 -79.44 F 00 00 -79.44 F 00 00 -28.47 T 00 00 -79.44 F 00 00 -79.44 F	an ang tao ang Po	1997 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		· · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MEMBER	*	ITERATION		BASIS**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i e e e	5	6	KIP-FEET
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1	N° ST	•01	• 00	-121.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ê sak	.00	.00	-23.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e e si interesta	T	•01	.00	•00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 1	Ň 1	.01	• 00	-15.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ê j	.00	.00	-16.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ť	.00	.00	-28.47
F 00 00 -16.99 T 00 00 28.47 3 4 N 00 00 -28.47 F 00 00 -79.44 T 00 00 16.99 5 6 N 00 00 -79.44 F 00 00 -79.44 T 00 00 -79.44 F 00 00 -79.44 F 00 00 -79.44 F 00 00 -79.44	26	N -	.01	.00	-15.06
T .00 .00 28.47 3 4 N .00 .00 -28.47 F .00 .00 -79.44 T .00 .00 16.99 5 6 N .00 .00 -79.44 F .00 .00 -79.44		F	.00	.00	-16.99
3 4 N .00 .00 -28.47 F .00 .00 -79.44 T .00 .00 16.99 5 6 N .00 .00 -79.44 F .00 .00 -79.44	r d	T	.00	.00	28.47
F .00 .00 -79.44 T .00 .00 16.99 5 6 N .00 .00 -79.44 F .00 .00 -79.44 F .00 .00 -28.47 T .00 .00 -16.99	3 4	Ň	• 00	.00	-28.47
T .00 .00 16.99 5 6 N .00 .00 -79.44 F .00 .00 -28.47 T .00 .00 -16.99		F	• 00	•00	-79.44
5 6 N •00 •00 -79•44 F •00 •00 -28•47 T •00 •00 -16•99	4 A	Т	.00	•00	16.99
F •00 •00 -28•47 T •00 •00 -16•99	56	N	.00	• 00	-79.44
T •00 •00 -16•99		F	•00	.00	-28.47
		त	•00	•00	-16.99

PERCENTAGE = 100X(VALUE BASIS VALUE)/MAX, BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 13 CYCLES

SIS NOMENIS AN

Figure A-2: Problem 2, Diwan's Problem, Member Properties, Dimensions, Loads and Comparison of Member Moments after 1 Cycle of Iteration with Correct Values

		IABLE A-ZOI	
PERCENTAGE DEVIATION	OF	REDUNDANT VECTOR FROM BASIS, PROBLEM	2
AFTER 1 . 2 . 3 .	4 9	5. 6. 9 AND 12 CYCLES OF ITERATION	

S			•		ITER	ATION				BASIS**
I	0	1	2	3	4	5	7	9	12	K,K-FEET
1	1	1.68	•24	• 06	•02	•01	• 00	•00	• 00 •	•28
1	2	-2.19	•20	•18	•08	•03	•01	•00	•00	-5.92
1	3	~ 3•83	22	• 04	•03	•01	•00	•00	.00	-45.09
2	1	1.35	•40	•14	•06	•02	•00	•00	•00	-6.65
2	2	-1.64	~ •40	~ •13	05	02	•00	•00	•00	•76
2	3	-1.36	~ •20	-•05	02	01	•00	•00	•00	10.48

** BASIS IN THIS PROBLEM TAKEN AFTER 17 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .00001 PERCENT DURING LAST ITERATION.

TABLE A-2.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 2, AFTER 5 AND 7 CYCLES OF ITERATION

MEMBER* ITERATION BASIS** 5 7 KIP-FEET 1 2 N -02 00 45.09 F 01 00 -2.27 T T 01 00 28 2 3 N 91 00 228 F 04 01 76^{-7} T -01 00 228 F 04 01 76^{-7} T -01 00 2.27^{-7} 3 4 N -022 00 -2.16 F 03 01 40.43 -76^{-7} T -01 00 -2.86 3 7 N 02 00 -2.86 3 7 N 02 00 -2.86 3 7 N 02 00 -2.11^{-7} F 01 00 44.43^{-7} -70 T 01 00 -73.95 5 <t< th=""><th></th><th></th><th></th><th>TTERATION</th><th></th><th>DACTORY</th><th></th><th></th></t<>				TTERATION		DACTORY		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MEMBE	K *	TIERATION		BASIS**		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5	7	KIP-FEET		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	N	֥02	•00	45.09		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ς		F	.01	.00	-2.27		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T	• 01	.00	.28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3	N	.01	.00	.28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5	04	01	76/	and the second se	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · ·	F	•04	.01	2 27		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · ·		UI	•00	2.21		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34	N		•00	-2.16		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ज स्	• 03	.01	40.43		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.:	Т	-••01	.00	-2.86		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		37	N	.02	.00	-2.11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			F	• 01	.00	.92 /		
5 6 N •00 •00 6.70 F 01 •00 11.24 T •00 •00 -3.95 5 7 N •00 •00 7.18		μ.	Т	• 01	00	4.43		
F01 .00 11.24 T .00 .00 -3.95 5 7 N .00 .00 7.18		5 6	N	.00	-00	6.70		
T •00 •00 +3.95 5 7 N •00 •00 7.18			F	- (0) - (0)	00	11 24		
5 7 N • 00 • 00 7•18			1 -	-001 -001	•00	2 05		
5 7 N • 00 • 00 7 • 18			4	• • • • • • • • • • • • • • • • • • • •	.00	~ 2 • 7 2		
		57	N	• 00	• 0.0	7.18		
F 402 400 3+39			F	÷02	•00	3.39		
T •00 •00 2•99			Т	• 00	•00	2.99		
PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	PER	CENTAGE =	100X(VA	LUE-BASIS VA	LUE),	MAX.BASIS	VALUE	
* N. F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS	¥	N. F AND T	REFER	TO NEAR, FAR	AND	TORSIONAL	MOMENTS	
** BASIS MOMENTS ARE RESULTS AFTER 17 CYCLES	**	BASIS MOME	NTS ARF	RESULTS AFT	'ER	17 CYCLES		

•

77

Figure A-3: Problem 3, Member Properties, Dimensions, Loads, and Comparison of Member Moments after 5 and 10 Cycles of Iteration with Correct Values

		AFIE	1K 19 21	39 41	5, 10,	20 AND	30 CYGL	E2 OF 1	ERATIO	N
S	,				ITER	RATION				BASIS**
1	ş	1	2	3	4	5	10	20	30	K•K-FEET
1	ĺ	-7.09	7.40	11.53	11.74	10.50	4.04	•46	• 0 4	15.94
1	2	30.12	40.77	36.38	30.84	25.63	8 • 87	•78	.03	2.03
1	3	58.12	42.32	34.92	28.90	23.73	7•89	•61	•01	33.84
2	1	2:38	9.41	9.66	8.66	7.53	3.59	•58	•07	15.94
2	2	<u>⊨</u> 13•54	-21.11	-20.73	-19:27	-17.49	-9.11	-1.54	18	-2.03
2	3	410096	-17.99	-18.43	-17.53	-16.13	-8.62	-1.49	18	-33.84
3	1	-11.73	-13.47	413.31	-11.76	-9.82	-3.38		~•0 2	7.23
3	2	₩52+53	-45.43	-37.64	-30.83	-24.96	-7.89	≈ •57	01	•72
З	3	-46•97	-38.09	<u>-</u> 31•1©	-25.32	-20.45	-6.39	43	.00	10.86
4	1	+12.99	-10.70		-7.63	-6.50	-3.07	49	06	7.23
4	2	26+44	23.86	20096	18.95	16.96	8.61	1.43	•16	**•72
éş.	3	18•83	18.61	17•68	16.28	14.69	7.50	1.24	•14	-10.86
5	1	· • 93	~• 24		-1.16	$-1 \cdot 17$	66	11	01	1.55
5	2	-2.84	-3.68	-3.14	-2.73	-2.48	-1.43	25	03	.02
5	3	-5.01	-3.26	-2.78		-2.25	-1.08	15	01	2.36
6	1	-3.79	-2.92	-2.09	-1.51	-1.15		08	01	1.55
6	2	7.39	4.97	3.18	2.26	1.79	•96	•19	•02	02
6	3	1.58	1.68	1.63	1.55	1.46	•88	•17	•02	-2.36
		and the					and the second	i di		ан Алан
**	BA	SIS IN	THIS PRO	OBLEM T	AKEN AF	TER 116	CYCLES	OF ITER	ATION.	REPRESENTS
. !	VA	UES WH	ICH CHÀI	VGED LES	SS THAN	.00001	PERCENT	DURING	LAST I	TERATION.
							1 1 1 N			

 TABLE
 A=3.1

 PERCENTAGE
 DEVIATION OF REDUNDANT VECTOR FROM BASIS.
 PROBLEM 3

TABLE A-3.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 3, AFTER 5, 10, 20 AND 30 CYCLES OF ITERATION

in the second				
MEMBER*	ITERAT	ION	-	BASIS**
5 5	10	20	30	KIP-FEET
1 2 N -3.99	-1.13	 •04	•01	-4.34
F 6.36	2.45	•28	•02	15.94
T −1•15	-•59	10	01	3.42
1 4 N 1.15	• 59	•10	•01	-3.42
F -4.02	-1.20	06	•01	-13.56
T -3.99	-1.13	~ •04	•00	-4.34
2 3 N 4.56	2.17	• 35	•04	15.94
F -2.50	-1.51	27	03	-4.34
Τ	• 3.0	•03	•00	-3.42
2 5 N -1.98	89	13	01	6.84
F 6.73	2.74	• 34	•03	-22.88
T -1.80	27	.07	•01	•00
36N •82	•30	•03	.00	-3.42
F -2.71	-1.54	28	03	-13.56
T 2.50	1.51	.27	.03	4.34
4 5 N 4.13	1.14	.03	01	.03
F -5.95	-2.04	- 20	01	7.23
T -2.31	- 69	03	.00	3.65
4 7 N -1.71	- 51	- 03	.00	-17.21
		07	.00	=20.04
T 14	.01	- 01	.00	- 20 - 20
5 6 N -3 04	-1.84		-00	7.22
F 2.91	1.41	- 20	09	1.25
T 2.05	1.07	● <u>4</u> 50 ↓ 1• Ω	•03	-2-65
	1.01	•±0 12	•02	
	1 20	•13 10	•01	-12.07
Π ΔθΟ1	1.29	• 17	•02	-20.09
		02	.00	•00
		-•10 12		-1/•21
		- 6 1 D	-•04 ·	
	*•11 10	~.01	•00	4.32
	• 1 8	- 60 <i>3</i>	000	1.38
	-• 4 0		~.01	1.55
		04	•00	2.28
7 10 N + 99	~• 34	03	•00	-33.23
÷ 14 h + 62		02	•00	-47.06
• 43	• ‡8	• O2	•00	-2•93
8 9 N - 69	-•30	05	-•01	1.55
	• 09	• 02	•00	1.38
• 1 • 52	•34	• 06	•00	-2.28
8 11 N 1•23	• 58	• 0 9	•01	-33.53
	• 40	• 07	•01	-55.88
T • 23	•01	• 0.0	•00	00 •
9 12 N24	24	06	01	-33.23
F • 01	-•14	05	01	-47.06
T -• 44	-•20	03	• 00	2.93
PERCENTAGE = 100X(V	ALUE-BASI	S VALUE)/M	AX.BASIS	VALUE
* N, F AND T REFER	TO NEAR,	FAR AND T	ORSIONAL	MOMENTS
** BASIS MOMENTS AR	E RESULTS	AFTER 100	CYCLES	e e Alexandre

All members have equal EI All members have EI = 2GJ

Figure A-4: Problem 4, Member Properties, Dimensions, Loads and Comparison of Member Moments for EL/GJ Variation of .5, 1.0 and 2.0

PERCENTAGE	DE	VIA'	TION	V OF	R	EDUNI	DAN	T VE	CTOF	FROM	BAS	[5.	PROBLEM	4
AFTER	1,	2,	3,	4,	5,	10,	20	AND	30	CYCLES	OF	ITE	RATION	
													- 1 L	

Ŝ					ITER	RATION			:	BASIS**
1	J	1	2	3	4	5	10	20	30	K,K-FEET
1	1	-21.74	-7.93	≈1.3 4	1.83	3.16	2.33	•38	•06	18.74
1	2	⊶•68	11.18	11.53	10.63	9.52	4.44	•70	.10	2.21
1	3	27.35	14.11	11.75	10.25	8.92	4.01	•63	•09	35.75
2	1	-9.98	~•33	2.71	3.65	3.70	1.80	• • 30	•04	18.74
2	2	4 • 85	-7.01	-9.13	-9.26	-8.65	-4.17	70	10	-2.21
2	3	-•03	-7.64	-8.91	-8.84	-8.20	-3.95	66	10	-35.75
3	1	-8•09	-6.53	-6.54	-6.38	-5.92	-2.77	43	06	8.15
3	2	-38.80	-27.82	-20.72	-16.41	-13.45	-5.41	83	12	• 76
3	3	-27.70	-19.04	-14.51	-11.66	-9.63	-3.93	60	09	10,08
4	1	-13.39	-9.89	-7.95	-6.51	-5.36	-2.07	33 ه	05	8.15
4	2	26.67	20.71	16.88	14.08	11.82	4.89	•80	.12	76
4	3	15.84	13.71	11.90	10.28	8.82	3.78	.62	•09	-10.08
5	1	1.81	2.11	1.56	1.04	•64	₩•03	02	• 0 0	1.68
5 ·	2	•18	.70	1.10	1.13	•96	•15	~. 01	•00	• 04
5	3	•41	1.21	•78	• 46	•26	~ • 06	02	•00	1.54
6	1	-1.99	81	-•40	28	25	17	03	•00	1,68
6	2	3.67	1.36	•18	16	-•17	•09	•03	•00	04
6	3	-1.40	-1.06	=•62	-•29	07	•15	۰03	•00	-1.54

** BASIS IN THIS PROBLEM TAKEN AFTER 42 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

TABLE A-4.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 4, AFTER 5, 10 AND 20 CYCLES OF ITERATION

MEMBER	> ¥	· · · ·	TTERATION		RACICXX
Pi Ciri O Gi		5	10	20	VID_EEET
1 2	N	-2.05	- 40	- 05	-3 34
	E C	2.01	1 4 8		10 74
	т Т	- 20	1.40	- 04	10•70 2 40
1 4	- I _ ; 			7104	2.00
1 1	IN E	• 3 7	•21	•04	+2+60
	ГГ	-1.65	-•00	09	-12.66
<u> </u>	1 ' 1647	-2.05			-3.30
2 3	NA	2.31	1.4.4	•16	18.76
		-1.32		09	+3+36
9 E	- I - Mi	• 29	•14	•02	-2.61
2 7				-•06	5.21
· · ·	E T	2081	1.40	•20	-22.67
	1	• 90	4		• • • • •
2 0		• 29	÷ ± 4	• UZ	-2.61
	Ъ.	-1.56	- • /4	-•11	-13.67
		1.32	•62	• 0 9	3.36
4 5	N.	1.96	• 53	•01	•53
۹.	F	-3.79	-1.75	-•24	8.13
	T	-•42	21	03	2.45
4 7	N	-1.22	46	-•06	-16.12
	F	38	25	-•04	-30.97
u* .	T	09	•13	•02	-2.83
56	N	-3.44	-1.31	-•18	8.13
	F	1.61	•75	•11	• • 54
	T	•60	•33	•05	-2.45
5 8	N	2.18	•87	•12	-17.77
	F	•66	•51	•08	-38.05
	Т	•71	•11	•01	•00
69	N	96	-•41	-•06	-16.12
	F	28	26	-•04	-30.98
	Т	29	14	-•02	2.83
78	N	•00	-•08	-•01	1.33
	F	•42	01	⊷ •01	1.68
	Т	04	07	-•01	1.36
7 10	N	34	18	-•03	-32.33
· · ·	E	• 30	- 01	• 0 0	-47.37
	T	֥09	•05	•01	-1.50
89	N	16	11	-•02	1.68
$\infty = -k_1$	F	23	֥07	-•01	1.33
	Т	01	•07	•01	-1.36
8 11	Ň	•63	•37	•06	-35.33
	F	65	•03	•01	-55.26
1 	T	•14	•02	•00	• 00
9 12	N	29	19	-•03	-32.34
	F	• 35	02	-•01	-47.37
	T	06	07	01	1.50
PERCENTAC	5E = 10	OXIVAL	JE-BASIS V	ALUE)/MAX	BASIS VALUE
* N, F /	AND T R	EFER TO	D NEAR, FA	R AND TOR:	SIONAL MOMENTS

** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

MEMBER PROPERTIES

All members have equal EI All members have EI = 0.5GJ

Figure A-5: Problem 5, Member Properties, Dimensions and Loads

TABLE A-5.1

PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 5 AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

S			:		ITEF	RATION				BASIS**
I	ال	1	2	3	4	5	10	20	30	K,K-FEET
1	1	8•73	22.38	23.06	20.21	16.97	6.76	•66	07	13.17
1	2	64.28	71.06	62.47	52.91	44.16	16.51	1.07	32	1.83
1	3	88•47	71.34	59.98	50.03	41.42	14.84	•67	38	31.54
2	1	12.95	15.62	13.63	11.98	10.79	6.34	1.41	.17	13.17
2	2	-31.50	-32.81	-30.37	-28.30	-26.39	-16.53	-3.91	51	-1.83
2	3	-21.42	-26.22	-26.01	-25.04	-23.75	-15.48	-3.82	53	-31.53
3	1	-16.51	-19.24	-17.45	-14.52	-11.86	-4.11	10	•13	6.20
3	2	-64.73	-59.54	-50.94	-42.30	-34.64	-11,40	•04	• 46	• 70
3	3	-66.66	-57.69	-48.45	-40.04	-32.75	-10.74	•03	•43	11.90
4	1	-10.83	-8.40	-7.29	-6.79	-6.46	-4.18	96	-•12	6.20
4	2	24.17	21.14	20.42	19.99	19.31	12.75	3.01	•39	~. 70
4	3	20.63	20.76	20.69	20.20	19.35	12.63	3.01	•39	-11.90
5	1	-1.19	-3.28	-3.56	-3.22	-2.80	-1.43	30	04	1.46
5	- 2	<u>~9•93</u>	-11.30	-9.94	-8.62	-7.52	-3.88	80	09	• 05
5	3	-13.01	-10.19	-8.50	-7.30	-6.33	-3.07	54	04	3.56
6	1	-5.71	-4.31	-2.95	≈2.1 9	-1.80	-•98	24	03	1.46
6	2	12.98	9.53	6.86	5.40	4.58	2.65	•70	•11	֥05
6	3	6.10	5.60	4.89	4.29	3.83	2.34	•63	•10	-3.56

** BASIS IN THIS PROBLEM TAKEN AFTER 61 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION. TABLE A-5.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 5, AFTER 5, 10 AND 20 CYCLES OF ITERATION

	MEMPERX		TTEDATION		OACICYX	
	MEMOEK*	_	TIERATION	~~	BASIS**	
		25	10	20	KIP-FEEI	
	1 2 N	-1.10	-2.47	-•11	-5.11	
	F	9.60	3.84	•41	13.15	
	Ť	-1.51	91	- 20	4.03	
	1 4 N	1.51	•91	•20	-4.03	
	F.	-6.84	-2.25	07	-13.16	
	т. т.	-7.10	-2.47	11	-5.11	
	2 3 N	5.98	3.48	.70	13.22	
•	F	-3.73	-2.53	- 58	-5.21	
	T	1.50	- 60	-06	-4-05	
	2 5 N	-3.01	-1-51	- 25	8.08	
		10 10	-1•21		0.00	
	г. Т		4.00	• 0 2	-22.07	
		-2001		• 2 9	•07	
	2014	1.20		•06	-4.05	
	E E	-3.36	-2.41		-13.27	
	· · · · · ·	3.13	2.53	• 5 8	5.21	
	4 5 N	6.42	2.06	•03	82	
	F	-6.75	-2.39	-•13	6.24	
	$\mathbf{T} = \mathbf{T}$	-5.51	-1.84	07	4.97	
	4 7 N	-1.33	42	•00	-18.13	
	F	-3.09	-1.35	-•18	-30.79	:
	Т	68	41	•09	-5.94	
	56N	-3.57	-2.29	-•47	6.16	
	F	3.53	2.35	•51	~ .73	
	T	3.57	2.25	•49	-4.89	
	5 8 N	1.12	•57	• 0 9	-13.71	
	.	4.18	2.19	.42	-38.39	
	Т	- 43	27	06	.00	
	6 9 N	.21	- 16		-18-16	
	F	-1.10	84	- 24	-30-82	
	т	- 20	-18	-07	5.94	
	7 8 N	1,23		•01	1 01	
		-1.55	- 70	• 16		
	् ज	-216	- 90		1.442	
	7 10 1	2.12	- 37	-•15	2022	
					34 • 12	
		-1.51		······································	-47.00	
	1	• 5 5	• 2 2	•03	-4.92	
	8 9 N	# 99	53	~•12	1.45	
		•69	• 42	•11	1.02	
	Т	1.26	• 79	•19	-3.31	
	8 11 N	•78	•41	•08	-31.75	
	F	1.61	•84	•17	-56.00	
	T	•13	01	02	•00	
	9 12 N	•17	06	05	-34.13	
	F	30	26	-•08	-47.00	
	. T	49	24	-•04	4.92	
PEF	RCENTAGE	= 100X(VAL)	UE-BASIS VA	ALUE)/MAX.	BASIS VALU	E
*	N. F AND	T REFER 1	O NEAR, FAF	R AND TORS	IONAL MOME	NTS
**	BASIS MC	MENTS ARE	RESULTS AFT	FER 30 CY	CLES	

Figure A-6: Problem 6, Member Properties, Dimensions, Loads and Comparison of Member Moments after 10 and 20 Cycles of Iteration with Correct Values

TABLE A-6.1 PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 6 AFTER 1, 2, 3, 5, 10, 20, 30 AND 50 CYCLES OF ITERATION

S					ITER	RATION				BASIS**
I	J	1	2.	. 3	5	10	20	30	50	K•K-FEET
1	1	-4.56	-11.46	-15.33	-16.33	-10.98	-4.44	-1.87	37	-15.94
1	. 2	∽20•3 9	-27.63	-35.04	-32.14	-19.84	-7.47	-2.95	-•52	-2.03
1	3	-10.27	-19.10	₩29 • 85	-29.35	-16.49	-5.84	-2.22	36	-33.84
2	1	10.93	9.21	8.98	8 • 5 2	5.13	1.85	•70	•12	.00
2	2	65•64	59.51	52.46	41.62	26.35	10.29	4.14	•77	-5.94
2	3	61.36	54.48	47.15	35.57	20.99	7.88	3.07	•53	-82.32
3	1	5.69	-9.02	-15.05	-16.45	-12.15	-6.06	-3.01	75	-23.17
3	2	2.65	-26.56	-29.10	-26.77	-19.09	-9.57	-4.78	-1.19	-2.75
3	3	13.56	-17.40	-23.33	-20.66	-11.62	-5.22	~2.50	59	-44.70
4	1	6.19	10.43	8.56	6.08	3.95	1.94	•96	•24	• 00
4	2	54.33	40.43	40.20	38.22	28.15	14.20	7.10	1.77	-4.50
4	3	48.91	35.34	30.31	23.82	15.20	7.27	3.53	.85	~60.60
5	1	÷4•82	-13.33	-15.59	-15.12	-11.31	-6.16	-3.27	88	-24.72
5	2	-27.48	-27.24	-25.11	-21.83	-16.54	-9.42	-5.14	-1.42	-2.77
5	3	-9.81	-17.37	-16.97	-12.88	-6.88	-3.33	-1.70	-•44	-47.06
6	1	21.10	11.14	6.23	3.17	2.15	1.31	•74	•21	• 00
6	2	21.33	32.88	37.30	36.50	27.78	15.49	8.36	2.29	÷4047
6	3	28 . 70	22.23	18.46	13.91	8.94	4.66	2.43	•64	-55.88

** BASIS IN THIS PROBLEM TAKEN AFTER 160 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN 1 DIGIT IN FIFTH SIGNIFICANT FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.

TABLE A-6.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 6, AFTER 10, 20, 30 AND 50 CYCLES OF ITERATION

MEMBER* ITERATION BASIS** 10 20 30 50 KIP-FEET 1 2 $n = 3.57$ $n = 86$ $n = 15$ 0.4 -4.34 F 17.53 7.09 2.99 60 15.94 1 4 N 5.35 2.60 1.16 -2.5 3.42 F -5.20 -1.37 -4.0 -0.2 -13.56 T -3.57 866 15 0.3 -4.34 Z 3 N 9.33 4.14 1.86 411 15.94 T 3.21 1.24 $.55$ 11 -3.42 2.5 $n = -2.6$ $n = 0.9$ $n = -1.12$ $n = 1.8$ $n = 0.00$ 36 $n = -2.40$ $n = 1.5$ $a = 3.42$ F -2.66 $n = 0.9$ $n = 1.3.56$ $n = 2.7$ $n = 0.1$ $n = 3.42$ F 1.65 $a = 3.24$ -1.12 $n = 3.42$ $n = 3$		and the second			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MEMBER*	ITERATI	ON	1 No. 6 1 1 2 4	BASIS**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 10 -	20	30	50	KIP-FFFT
$ \begin{array}{c} 1 & 2 & N & 3 + 3 & 1 & -7 + 0 & 2 + 9 & -6 & -1 + 4 + 2 + 4 \\ 1 & 4 & N & 5 + 3 & 5 & -2 + 6 & -1 + 16 & -2 & 5 & -3 + 4 & 2 \\ 1 & 4 & N & 5 + 3 & 5 & 2 + 6 & -1 + 16 & -2 & 5 & -3 + 4 & 4 \\ 1 & 4 & N & 5 + 3 & 5 & 2 + 6 & -1 + 16 & -2 & -1 & 3 + 5 & -1 & -3 + 5 & -1 & -3 + 5 & -1 & -3 + 5 & -1 & -3 + 5 & -1 & -3 + 5 & -1 & -3 + 4 & -5 & -1 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -3 + 4 & -5 & -1 & -2 + 4 & -1 + 1 & -3 + 4 & -5 & -1 & -2 + 4 & -1 + 1 & -2 + 3 + & -1 + 1 & -3 + 4 & -5 & -1 & -2 + 4 & -1 + 1 & -2 + 3 + & -1 + 1 & -3 + 4 & -2 + & -2 + & -2 + & -2 + & -2 + & -2 + & -1 + & -1 & -1 & -3 + & -2 + $	1 2 NI -2 57	- 84		04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 Z N 2027	7 00	12	• 04	-4094
T -5.35 -2.60 -1.1625 3.42 1 4 N 5.35 2.60 1.16 .25 +3.42 F -5.20 -1.374002 -13.56 T -3.578615 .03 -4.34 2 3 N 9.33 4.14 1.86 4.1 15.94 F 2.40 1.15 .59 .15 -4.34 T 3.21 1.24 .55 .11 -3.42 2 5 N -8.55 -3.84 -1.7137 6.84 F 5.46 1.63 .49 .04 -22.88 T -8.19 -2.95 -1.1218 .00 3 6 N 3.21 1.24 .55 .12 -3.42 F26260901 -13.56 T -2.40 -1.1559 .15 4.34 5 N 2.65 .341211 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T -6.97 -3.50 +1.9152 -15.57 F 1.03 .48 .21 .05 .03 T -6.97 .50 -1.912706 -4.32 7 -6.97 .50 -1.912706 -4.32 7 -6.90 .50 -1.9152 -15.57 8 N -5.69 -3.50 +1.9152 -15.57 F63 -3.50 -1.9152 -15.57 F90814211 -30.96 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F343 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 .2.28 F -1.09814211 .33 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 .2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 +5.31 -2.7270 -47.06 T .462025102.93 8 9 N 1.54 1.17 .76 .25 1.55 F7735 +1905 1.38 T 3.59 1.91 .91 .97 .25 -2.288 1 N5181572035.53 F -1.33 .16 .41 -21 .2.55 F77 .35 +19 .05 1.38 7 3.59 1.91 .91 .97 .25 -2.288 9 N 1.54 1.17 .76 .25 1.55 F77 .35 +19 .05 1.38 7 3.59 1.91 .91 .97 .25 -2.288 9 N 1.54 1.17 .76 .25 1.55 9 A 1.42 .72 .43 3.87 1.02 -55.88 7 -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 7 4.60 .10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 .4.286214 2.93 PERCENTAGE = 100XIVALUE-BASIS VALUE /MAX.BASIS VALUE ** N, F AND T REFER TO NEAR, FAR AND TORSIONAL M	F 17.95	1.09	2.99	•60	12.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T -5•35	-2.60	-1.16	25	3.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4 N 5.35	2.60	1.16	•25	-3.42
T -3.578615 .03 -4.34 2 3 N 9.33 4.14 1.86 41 15.94 F 2.40 1.15 .59 .15 4.34 T 3.21 1.24 .55 .11 -3.42 2 5 N -8.55 -3.84 -1.7137 6.84 F 5.46 1.63 .49 .04 -22.88 T -8.19 -2.95 -1.1218 .000 3 6 N 3.21 1.24 .55 .12 -3.42 F26260901 -13.56 T -2.40 -1.1559 .15 4.34 4 5 N 2.65 .341211 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.97 -3.52 -1.6127 .06 -4.32 7 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.91 .52 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .000 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 .55 T -6.21 -2.951.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7200 -47.06 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 .55 F77 -3.55 -1.92530 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77 -35 -19 .02 .05 -33.23 F -10.97 -5.31 -2.72 .70 -47.06 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 .55 F77 -35 -19 .02 .55 -33.23 F -10.97 -5.31 -2.72 .70 -47.06 T -3.43 -1.638019 4.32 7 8 N 1.54 1.17 .76 .25 1.55 F7735 -19 .05 1.38 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 1.4 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.28 -2.28 8 11 N51915720 -33.53 F -3.29 -2.12 -1.1532 -47.06 F -3.29 -2.12 -1.15	F -5.20	-1.37	-•40	02	-13.56
2 3 N 9.33 4.14 1.86 4.1 15.94 F 2.40 1.15 .59 15 -4.34 T 3.21 1.24 .55 11 -3.42 2 5 N -8.55 -3.84 -1.71 -37 6.84 F 5.46 1.63 .49 .04 -22.88 T -8.19 -2.95 -1.12 -18 .00 3 6 N 3.21 1.24 .55 12 -3.42 F 26 260901 -13.56 T -2.40 -1.15 -59 -15 4.34 4 5 N 2.65 34 -12 -11 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.50 -34 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.45 -31 -30.96 T92 .5127 -06 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.91 -52 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.54 -37 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F8.30 -3.10 -1.54 -37 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F6.30 -3.10 -1.54 -37 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F6.20 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.54 -37 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7200 -47.06 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77 -351905 1.38 T 3.59 1.91 .97 .5522 .28 8 11 N51815720 -33.53 F 1.4.27 7.43 3.87 1.02 -55.88 T 3.29 -2.12 -1.1532 -47.06 T .2.46 -1.286224 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F 3.29 -2.12 -1.1532 -47.06 T .42.93 PERCENTAGE = 100XIVALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS * RAD T REFER TO NEAR, FAR AND TORSIONAL MOMENTS	T -3.57	86	15	.03	-4.34
$\begin{array}{c} 2 & 5 & N & 7 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9$	2 2 N 0.22	4 14	1 86	• 0 J 6 1	15 04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1 m 1 1 m	T • 00	● 4 ±	12094
T 3.21 1.24 .55 .11 -3.42 2 5 N -8.55 -3.84 -1.71 -37 6.84 F 5.46 1.63 .49 0.4 -22.88 T -8.19 -2.95 -1.12 -18 0.00 3 6 N 3.21 1.24 .55 1.2 -3.42 F2626 -09 -01 -13.56 T -2.40 -1.1559 -15 4.34 4 5 N 2.65 .34 -12 -11 0.3 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.50 -34 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.45 -31 -30.96 T9251 -27 -06 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F908142 -11 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .02 -04 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.47 -36 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.72 -70 -47.06 T -4.642025 -10 -2.93 8 9 N 1.54 1.17 .76 .25 .135 F10.97 -5.31 -2.72 -70 -47.06 T -4.642025 -10 -2.93 8 9 N 1.54 1.17 .76 .25 .1.55 F10.97 -5.31 -2.72 -70 -47.06 T -4.642025 -10 -2.93 8 1 N -5.1 -81 -5.57 -20 -33.23 F -10.97 -5.31 -2.72 -70 -47.06 T -4.662025 -10 -2.93 8 9 N 1.54 1.17 .76 .25 .1.55 F10.97 -5.31 -2.72 -70 -47.06 T -4.662025 -10 -2.93 8 9 N 1.54 1.17 .76 .25 .1.55 F10.97 -5.31 -2.72 -70 -47.06 T -4.662025 -10 -2.93 8 1 N -5.1 -81 -5.57 -20 -33.53 F -10.97 -5.31 -2.72 -70 -47.06 T -4.662025 -10 -2.93 8 1 N -5.1 -81 -5.5 .14 -33.23 F10.97 -5.31 -2.72 -70 -47.06 T -4.662025 -10 -2.93 9 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS	F 2•40	1.12	• 5 9	• 1 5	-4.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T 3•21	1.24	• 5 5	•11	-3.42
F5.461.63.49.04-22.88T-8.19-2.95-1.1218.0036N3.211.24.55.12-3.42F26260901-13.56T-2.40-1.1559154.3445N2.65.341211.03F1.852.571.82.607.23T-6.97-3.22-1.50343.6547N1.771.841.09.32-17.21F-8.38-3.24-1.4531-30.96T92512706-4.3256N3.742.421.41.417.23F1.03.48.21.05.03T4.181.91.90.21-3.6558N-5.69-3.50-1.91.52-15.57F9.294.051.87.42-38.09T-6.30-3.10-1.5437.0069N3.921.66.81.20-17.21F90814211-30.96T6.30-3.10-1.5437.0069N3.921.66.81.20-17.21F90814211-30.96T6.30	2 5 N -8.55	-3.84	-1.71	37	6.84
T -8.19 -2.95 -1.1218 .00 3 6 N 3.21 1.24 .55 .12 -3.42 F26260901 -13.56 T -2.40 -1.155915 4.34 4 5 N 2.65 .341211 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.91 .52 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 .30.96 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.03 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F 1.03 .16 .41 .21 1.55 F 9.29 4.05 1.87 .42 .28 7 10 N -2.1829 .02 .0533.23 F -10.97 .5.31 -2.72 .70 -47.06 T -4.462025 .10 .2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 .5.31 -2.72 .70 -47.06 T .462025 .10 .2.28 7 10 N -2.1829 .02 .05 .33.23 F -10.97 .5.31 -2.72 .70 -47.06 T .462025 .10 .2.28 7 10 N -2.1829 .02 .05 .33.23 F -10.97 .5.31 -2.72 .70 -47.06 T .462025 .10 .2.28 7 10 N -2.1829 .02 .05 .33.23 F -10.97 .5.31 -2.72 .70 .47.06 T .4620 .25 .10 .2.28 7 10 N -2.1829 .02 .05 .33.23 F -10.97 .5.31 -2.72 .70 .47.06 T .4620 .25 .10 .2.28 7 10 N -2.1829 .02 .05 .33.23 F -10.97 .5.31 -2.72 .70 .47.06 T .4620 .25 .10 .2.93 8 9 N 1.54 1.17 .76 .25 1.55 F .77 .20 .33.23 F .10 .97 .25 .2.28 8 11 N .51 .61 .55 .14 .33 T .3.43 -2.10 .1.19 .34 .00 9 12 N 2.69 1.10 .55 .14 .33.23 F .3.29 .2.10 .1.19 .34 .00 9 12 N 2.69 1.10 .55 .14 .33.23 F .3.29 .2.12 .1.1532 .47.06 T .2.66 .1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESUT 50 ACEFER 100 CYCLES	F 5•46	1.63	•49	• 04	-22.88
3 6 N 3.21 1.24 .55 .12 -3.42 F26260901 -13.56 T -2.40 -1.155915 4.34 4 5 N 2.65 .341211 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 F -1.03 .16 .41 .21 1.55 T -6.21 -2.95 .1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 -5.31 -2.7270 -47.06 T .343 -1.638019 4.32 7 8 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 F -1.097 -5.31 -2.7270 -47.06 T .343 -1.642025510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .252.28 8 11 N5181572033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.01 .55 .1433.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1432.247.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS AFE FERLITS AFEFE 100 CYCLES DODELET 5	T -8.19	-2.95	-1.12	18	• 00
F2626090113.56 T -2.40 -1.155915 4.34 4 5 N 2.65 .341211 03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T -46202510 -2.98 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .252.28 8 11 N51815727 .2033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1433.23 F -1.23 .92 1.06 .22252.28 8 11 N5181572025 .88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1433.23 F -1.266 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESUT 5 A FEFE 100 CYCLES DDDPLETE	3 6 N 3.21	1.24	.55	.12	-3.42
T -2.40 -1.155915 4.34 4 5 N 2.65 .341211 .03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .3217.21 F -8.38 -3.24 -1.4531 -30.96 T925127064.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.915215.57 F 9.29 4.05 1.87 .4238.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .2017.21 F9081421130.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 -5.31 -2.7270 -47.06 T .462025102.93 8 9 N 1.54 1.17 .76 .25 1.55 F908157277047.06 9 N 3.59 1.91 .97 .252.28 8 11 N518157 .2033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.19322.28 8 11 N518157 .2033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .143247.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PERU TS AREFER TO NEAR, FAR AND TORSIONAL MOMENTS ** RASIS MOMENTS ARE PERU TS AREFER TO NEAR, FAR AND TORSIONAL MOMENTS ** NA F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS	F = 26	26	09	- 01	-13.56
4 5 N 2.65 .34 -12 -11 03 F 1.85 2.57 1.82 .60 7.23 T -6.97 -3.22 -1.50 -34 3.65 4 7 N 1.77 1.84 1.09 32 -17.21 F -8.38 -3.24 -1.45 -31 -30.96 T -9251 -27 -06 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.91 .52 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.54 -37 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F908142 -11 -30.96 T -3.43 -1.6380 .19 4.32 7 8 N 1.38 .32 .02 -04 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 .2.88 7 10 N -2.18 -29 .02 .05 -33.23 F -10.97 -5.31 -2.72 .70 -47.06 T -3.43 -1.6319 -05 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 .2.88 7 10 N -2.18 -29 .02 .05 -33.23 F -10.97 -5.31 -2.72 .70 -47.06 T -3.43 -1.6319 .05 .3.32 7 8 N 1.54 1.17 .76 .25 1.55 F773519 -05 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N518157 -20 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 1.4 -33.23 F -1.02 -7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 1.4 -33.23 F -3.29 -2.12 -1.15 .32 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE DESUTE OF COULTS ADDED	T -2.40	-1 16	- 59		1 26 20
4 9 N 2.69		-1.1.9		~•1>	4.54
F1.852.571.82.607.23T-6.97-3.22-1.50343.6547N1.771.841.09.32-17.21F-8.38-3.24-1.4531-30.96T92512706-4.3256N3.742.421.41.417.23F1.03.48.21.05.03T4.181.91.90.21-3.6558N-5.69-3.50-1.9152-15.57F9.294.051.87.42-38.09T-6.30-3.10-1.5437.0069N3.921.66.81.20-17.21F908142.11-30.96.38T-3.43+1.6380194.3278N1.38.32.02041.38F-1.33.16.41.211.55T-6.21-2.95-1.4736.228710N-2.1829.02.053.23F-10.97-5.31-2.72.70-47.06T.462025.10-2.9389N1.541.17.76.251.55F-77-35.19.02.55.88T3.43	4 5 N 2.65	• 34	12	• I I	•03
T -6.97 -3.22 -1.5034 3.65 4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N.F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PERU TS AFFER ADD CONSIONAL MOMENTS	F 1.85	2.57	1.82	•60	7.23
4 7 N 1.77 1.84 1.09 .32 -17.21 F -8.38 -3.24 -1.4531 -30.96 T92512706 -4.32 5 6 N 3.74 2.42 1.41 .41 7.23 F 1.03 .48 .21 .05 .03 T 4.18 1.91 .90 .21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESULT 6 AETED 100 CYOLAL MOMENTS	T -6•97	-3.22	-1.50	-•34	3.65
F -8.38 -3.24 -1.45 31 -30.96 T 92 51 27 06 -4.32 56N 3.74 2.42 1.41 41 7.23 F 1.03 $.48$ $.21$ $.05$ $.03$ T 4.18 1.91 $.90$ $.21$ -3.65 58N -5.69 -3.50 -1.91 -52 F 9.29 4.05 1.87 $.42$ -38.09 T -6.30 -3.10 -1.54 37 $.00$ 69N 3.92 1.66 $.81$ $.20$ -17.21 F -90 81 42 11 -30.96 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 1.38 F -1.33 16 $.41$ $.21$ 1.55 T -6.21 -2.95 -1.47 36 2.28 710 -2.18 29 $.02$ $.05$ -33.23 F -10.97 -5.31 -2.72 -70 -47.06 T $.46$ 20 25 -10 -2.93 89 1.554 1.17 -76 $.25$ 1.55 F 77 363 97 20 33.53 T 3.43 -2.10 -1.19 34 $.00$ 912 N 69	4 7 N 1.77	1.84	1.09	• 32	-17.21
T -92 -51 -27 -06 -4.32 5 6 N 3.74 2.42 1.41 41 7.23 F 1.03 48 21 05 03 T 4.18 1.91 90 21 -3.65 5 8 N -5.69 -3.50 -1.91 -52 -15.57 F 9.29 4.05 1.87 42 -38.09 T -6.30 -3.10 -1.54 -37 00 6 9 N 3.92 1.66 81 20 -17.21 F -90 -81 -42 -11 -30.96 T -3.43 -1.63 -80 -19 4.32 7 8 N 1.38 32 02 -04 1.38 F -1.33 16 41 21 1.55 T -6.21 -2.95 -1.47 36 2.28 7 10 N -2.18 29 02 05 -33.23 F -10.97 $+5.31$ -2.72 70 -47.06 T -46 20 25 10 -2.93 8 9 N 1.54 1.17 7.6 25 1.55 F 77 35 19 57 228 8 11 N 51 81 57 20 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.19 34 00 9 12 N 2.69 1.10 -55 14 -33.23 F -3.29 -2.12 -1.15 32 -47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE = $100X(VALUE + BASIS VALUE)/MAX.BASIS VALUE * N.F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** N.F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS$	F -8.38	-3.24	-1.45	- 31	-30.96
5 6 N 3.74 2.42 1.41 $.41$ 7.23 F 1.03 $.48$ $.21$ $.05$ $.03$ T 4.18 1.91 $.90$ $.21$ -3.65 5 8 N -5.69 -3.50 -1.91 52 -15.57 F 9.29 4.05 1.87 $.42$ -38.09 T -6.30 -3.10 -1.54 37 $.00$ 6 9 N 3.92 1.66 $.81$ $.20$ -17.21 F 90 81 42 11 -30.96 T -3.43 -1.63 80 19 4.32 7 8 N 1.38 $.32$ $.02$ 04 1.38 F -11.33 $.16$ $.41$ $.21$ 1.55 T -6.21 -2.95 -1.47 36 2.28 7 10 N -2.18 29 $.02$ $.05$ 33.23 F -10.97 531 -2.72 70 -47.06 T $.46$ 20 25 10 293 8 9 N 1.54 1.17 $.76$ $.25$ 1.55 F 2.28 8 11 N 51 81 57 20 33.53 F 14.27 7.43 3.87 1.02 55.88 T -3.43 -2.10 -1.19 34 $.00$ 9 12 N 2.69 1.10 $.55$ $.14$ 33.23 F -3.43 -2.10 -1.19 34 $.00$ 9 12 N 2.69 1.10 $.55$ $.14$ 33.23 F -3.29 -2.12 -1.15 32 -47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE = $100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE DESULTS AFTER 1.00 CYCLES DEDENTS$	T	- 51	27	06	-4.32
F 103 .42 1041 05 03 T 4.18 191 90 21 -3.65 5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 20 -17.21 F90814211 -30.96 T -3.43 -1.638019 4.32 7 8 N 1.38 .32 0204 1.38 F -1.33 .16 .41 21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESULTS AFTER 100 CYCLES DODULT	5 6 N 3.74	2.42	1.41	E A	7 22
T4.181.91.90.21.3.6558N -5.69 -3.50 -1.91 -52 -15.57 F9.294.05 1.87 $.42$ -38.09 T -6.30 -3.10 -1.54 37 .0069N 3.92 1.66 .81 $.20$ -17.21 F 90 81 42 11 -30.96 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 T -6.21 -2.95 -1.47 36 2.28 710N -2.18 29 272 70 F -10.97 -5.31 -2.72 70 -47.06 T -46 20 25 10 -2.93 89N 1.54 1.17 $.76$ $.25$ 1.55 F 77 35 19 05 1.38 T 3.59 1.91 $.97$ $.25$		2 • 4 2 7 0		• 11	
14.18 1.91 .90.21 -3.65 58N -5.69 -3.50 -1.91 52 -15.57 F9.294.05 1.87 .42 -38.09 T -6.30 -3.10 -1.54 37 .0069N 3.92 1.66 .81.20 -17.21 F 90 81 42 11 -30.96 T -3.43 $+1.63$ 80 19 4.32 78N 1.38 32 02 04 1.38 F -1.33 $.16$.41.21 1.55 T -6.21 -2.95 -1.47 36 2.28 710N -2.18 29 02 05 -33.23 F -10.97 -5.31 -2.72 -70 -47.06 T $.46$ 20 25 -10 -2.93 89N 1.54 1.17 $.76$ $.25$ T 3.59 1.91 $.97$ $.25$ -2.28 811 N 51 81 57 20 89N 1.54 1.17 $.76$ $.25$ -2.28 811 N 51 81 57 20 -33.53 F 14.27 7.43 3.87 1.02 55.88 T -3.43 -2.10 -1.19 32 -47.06 T -2.66		•40	· • 21	• 0 2	• 0 2
5 8 N -5.69 -3.50 -1.9152 -15.57 F 9.29 4.05 1.87 .42 -38.09 T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.15 .32 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESUM TS AFE PE 100 CYCLES DOPTIEM 20	1 4•18	1.91	•90	•21	-3.65
F $9 \cdot 29$ $4 \cdot 05$ $1 \cdot 87$ 422 $-38 \cdot 09$ T $-6 \cdot 30$ $-3 \cdot 10$ $-1 \cdot 54$ -37 000 69N $3 \cdot 92$ $1 \cdot 66$ 81 20 $-17 \cdot 21$ F -900 -81 -42 -11 $-30 \cdot 96$ T $-3 \cdot 43$ $+1 \cdot 63$ -80 -19 $4 \cdot 32$ 78N $1 \cdot 38$ 32 02 -04 $1 \cdot 38$ F $-1 \cdot 33$ 116 41 21 $1 \cdot 55$ T $-6 \cdot 21$ $-2 \cdot 95$ $-1 \cdot 47$ -36 $2 \cdot 28$ 710 $-2 \cdot 18$ -29 02 05 $-33 \cdot 23$ F $-10 \cdot 97$ $-5 \cdot 31$ $-2 \cdot 72$ -70 $-47 \cdot 06$ T -46 -20 -25 -10 $-2 \cdot 93$ 89N $1 \cdot 54$ 117 76 25 F -77 -35 -19 -05 $1 \cdot 38$ T $3 \cdot 59$ $1 \cdot 91$ 97 25 $-2 \cdot 28$ 811N -51 -81 -57 -20 912N $2 \cdot 69$ $1 \cdot 10$ 55 14 T $-3 \cdot 43$ $-2 \cdot 10$ $-1 \cdot 19$ -34 000 912N $2 \cdot 69$ $1 \cdot 10$ 55 -14 $-33 \cdot 23$ F $+3 \cdot 29$ $-2 \cdot 12$ $-1 \cdot 15$ -32 $-47 \cdot 06$ T $-2 \cdot 66$ $-1 \cdot 28$ -62 -14 $2 \cdot 93$ <td>5 8 N -5.69</td> <td>-3.50</td> <td>-1.91</td> <td><u>~</u>•52</td> <td>-15.57</td>	5 8 N -5.69	-3.50	-1.91	<u>~</u> •52	-15.57
T -6.30 -3.10 -1.5437 .00 6 9 N 3.92 1.66 .81 .20 -17.21 F90814211 -30.96 T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.975.31 -2.727047.06 T .462025102.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .252.28 8 11 N5181572033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1432.23 F $+3.29 -2.12 -1.153247.06$ T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PERSURTS AFFED 100 CYCLES. DDOPLEM 2	F 9.29	4.05	1.87	•42	-38.09
6 9 N 3.92 1.66 .81 .20 -17.21 F -90 81 42 11 -30.96 T -3.43 -1.63 80 19 4.32 7 8 N 1.38 $.32$ $.02$ 04 1.38 F -1.33 $.16$ $.41$ $.21$ 1.55 T -6.21 -2.95 -1.47 36 2.28 7 10 N -2.18 29 $.02$ $.05$ -33.23 F -10.97 -5.31 -2.72 70 -47.06 T $.46$ 20 25 10 -2.93 8 9 N 1.54 1.17 $.76$ $.25$ 1.55 F 77 35 19 05 1.38 T 3.59 1.91 $.97$ $.25$ -2.28 8 11 N 51 81 57 20 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.19 34 $.00$ 9 12 N 2.69 1.10 $.55$ $.14$ -33.23 F $+3.29$ -2.12 -1.15 32 -47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PERSULTS AFTER 100 CVCLES DDOPLEM	T -6.30	-3.10	-1.54	37	•00
F 90 81 42 11 -30.96 T -3.43 -1.63 80 19 4.32 78N 1.38 $.32$ $.02$ 04 1.38 F -1.33 $.16$ $.41$ $.21$ 1.55 T -6.21 -2.95 -1.47 36 2.28 710N -2.18 29 $.02$ $.05$ -33.23 F -10.97 -5.31 -2.72 70 -47.06 T $.46$ 20 25 10 -2.93 89N 1.54 1.17 $.76$ $.25$ F 77 35 19 05 1.38 T 3.59 1.91 $.97$ $.25$ -2.28 811N 51 81 57 20 $.743$ 3.87 1.02 -55.88 T -3.43 -2.10 -1.19 34 00912N 2.69 1.10 $.55$ $.14$ $.743$ 3.87 1.02 -55.88 T -3.43 -2.10 -1.19 32 -47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE $= 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE*N, FANDT*N, FANDTREFER1.00CYCLESDDDDIE*N, FANDTREFERTOCYC$	6 9 N 3.92	1.66	. 81	.20	-17.21
T -3.43 +1.638019 4.32 7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N5181572033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1433.23 F +3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESUHTS AFTER 100 CYCLES. DDOPLEM 2	F		- 42		
7 8 N 1.38 .32 .0204 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .0533.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N5181572033.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1433.23 F $+3.29$ -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS APE PESULTS AFTER 100 CYCLES. DDOPLEM 2	T	-1.43	- 80	10	6 23
7 8 N 1.98 .32 .02 04 1.38 F -1.33 .16 .41 .21 1.55 T -6.21 -2.95 -1.47 36 2.28 7 10 N -2.18 29 .02 .05 33.23 F -10.97 -5.31 -2.72 70 -47.06 T .46 20 25 10 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F 77 35 19 05 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N 51 81 57 20 33.53 F 14.27 7.43 3.87 1.02 55.88 .00 T -3.43 -2.10 -1.19 34 .00 .00 .01 9 12 N 2.69 1.10 .55 .14 33.23 .7 3		-1•00	00	-•13	4.54
F-1.33.16.41.211.55T-6.21-2.95-1.47362.287 10 N-2.1829.02.05-33.23F-10.97-5.31-2.7270-47.06T.46202510-2.938 9 N1.541.17.76.251.55F773519051.38T3.591.91.97.25-2.288 11 N51815720-33.53F14.277.433.871.02-55.88T-3.43-2.10-1.1934.009 12 N2.691.10.55.14-33.23F-3.29-2.12-1.1532-47.06T-2.66-1.2862142.93PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE*N. FAND TREFER TO* N. FAND TREFER TONEAR, FARAND TORSIONALMOMENTS	7 8 N 1.98	• 32	• 02	• 04	1.98
T -6.21 -2.95 -1.4736 2.28 7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PESULTS AFTER 100 CYCLES DEOPLEM 2	F -1•33	• 1 6	•41	•21	1.55
7 10 N -2.1829 .02 .05 -33.23 F -10.97 -5.31 -2.7270 -47.06 T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F $+3.29$ -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PESULTS AFTER 100 CVCLES. DPOPLEM 2	T -6.21	-2.95	-1.47	-•36	2.28
F -10.97 -5.31 -2.72 70 -47.06 T.46 20 25 10 -2.93 89N 1.54 1.17 $.76$ $.25$ F 77 35 19 05 1.38 T 3.59 1.91 $.97$ $.25$ -2.28 811N 51 81 57 20 811N 51 81 57 20 912N 2.69 1.10 $.55$ $.14$ 912N 2.69 1.10 $.55$ $.14$ T -2.66 -1.28 62 14 2.93 PERCENTAGE = $100 \times (VALUE-BASIS VALUE) / MAX.BASIS VALUE$ *N.FANDT*N.FANDTREFERTONEAR, FARANDTORSIONAL**BASISMOMENTSAFFER 100 $CVCIES$ DDOPLEM	7 10 N -2.18	29	• 02	• 05	-33.23
T .46202510 -2.93 8 9 N 1.54 1.17 .76 .25 1.55 F .77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.0255.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .1433.23 F $+3.29$ -2.12 -1.153247.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PESULTS AFTER 100 CYCLES. DDOPLEM 2	F -10.97	-5.31	-2.72	70	-47.06
8 9 N 1.54 1.17 .76 .25 1.55 F77351905 1.38 T 3.59 1.91 .97 .25 -2.28 8 11 N51815720 -33.53 F 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F +3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PESULTS AFTER 100 CYCLES. DPOPLEM 2	T •46	20	~.25	10	-2.93
F 77 35 19 05 1.38 T 3.59 1.91 $.97$ $.25$ -2.28 8 11 N 51 81 57 20 8 11 N 51 81 57 20 7 343 -2.10 -1.19 34 $.00$ 9 12 N 2.69 1.10 $.55$ $.14$ -3.29 -2.12 -1.15 32 -47.06 T -2.66 -1.28 62 14 2 -93 PERCENTAGE = $100 \times (VALUE + BASIS VALUE) / MAX \cdot BASIS VALUE$ ** N, FANDTREFERTONEAR, FARANDTREFERTONEAR, FARAND** BASISMOMENTSAFFER $100 \times (VCLES)$ DDOPLEM	8 9 N 1.54	1.17	• 76	.25	1,55
T 3.59 1.91 .97 .25 -2.28 8 11 N 51 81 57 20 -33.53 F 14.27 7.43 3.87 1.02 55.88 T -3.43 -2.10 -1.19 34 .00 9 12 N 2.69 1.10 .55 .14 33.23 F +3.29 -2.12 -1.15 32 47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N.F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS *** BASIS MOMENTS AFF PERCIPATIONAL MOMENTS	F 77	- 35	- 19	05	1.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	т 3 БО	1 01	• 1 /	-05	-2.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1071	• 7 1	• 2 9	-2.020
H 14.27 7.43 3.87 1.02 -55.88 T -3.43 -2.10 -1.19 34 $.00$ 9 12 N 2.69 1.10 $.55$ $.14$ -33.23 F $+3.29$ -2.12 -1.15 32 -47.06 T -2.66 -1.28 62 14 2.93 PERCENTAGE $= 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ * N.F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS * * BASIS MOMENTS AFF PESULTS AFF DOD CVCLES DDOD DDOD EM	8 11 N 51	~• Ø1	5/	~.20	-33.53
T -3.43 -2.10 -1.1934 .00 9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE PESULTS AFTER 100 CVCLES. DPOPLEM 2	⊢ 14•27	7•43	3.87	1.02	-55.88
9 12 N 2.69 1.10 .55 .14 -33.23 F -3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 100 CYCLES, DROPLEM 2	T -3•43	-2.10	-1.19	-•34	• 00
F +3.29 -2.12 -1.1532 -47.06 T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 100 CVCLES, DROPLEM 2	9 12 N 2.69	1.10	• 55	•14	-33.23
T -2.66 -1.286214 2.93 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 100 CVCLES DROPLEM 2	F -3.29	-2.12	-1.15	32	-47.06
PERCENTAGE = 100X(VALUE+BASIS VALUE)/MAX.BASIS VALUE * N. F AND TOREFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 100 CYCLES, DROPLEM 3	T -2.66	-1.28	- 62	14	2.93
* N; F AND T REFER TO NEAR; FAR AND TORSIONAL MOMENTS	PERCENTAGE = 100	XIVAL HE-RASIS	S VALHEN	MAX RASIS	VALUE
** RASIS MOMENTS ARE DESHITS AFTED TOO OVCIES, DOODLEM S		FED TO NEAD	FAD AND	TODETONAL	MAMENITO
	HAR RACIC MOMENTS	ADE DECHITC	ASTED 1	AD CYCIEC	DDARIEM 2

Figure A-7: Problem 7, Member Properties, Dimensions, Loads and Comparison of Member Moments after 5 Cycles of Iteration with Correct Values

IO

IO kips

		. 1		i en atig	स्तिति हो के जिल्ला है।	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	л Л			
S				, se sur	ITÉR	RATION				BASIS**
1	J	1	2	· 3 ·	4	5	10	20	30	K•K-FEET
1	1	5•71	- 64	-3.53	-4.46	-4.36	-1.69	16	01	-2.72
1	2	-10.63	-14.85	-13.23	-11.39	-9.61	-3.25	22	•00	• 34
1	3	-28.99	-15.67	-12.36	-10.21	-8.44	-2.73	~ ₀15	•01	13.82
2	1	67	-5.90	-6.20	-5•48	-4.61	-1.84	24	02	-13.22
2	2	10.76	16.56	15.14	13.19	11.31	4.83	•66	•06	2.37
2	3	12.27	15.35	14.02	12.35	10.68	4.63	•64	•06	47.66
3	1	•90	3•40	4.74	4.75	4.16	1.34	•11	•00	-3.77
3	2	17.22	16.18	13.79	11.47	9.31	2.70	.13	01	→•31
3	3	18.27	14.00	11.17	9.06	7.30	2.11	•08	01	6.18
4	ĺ	7.46	7.09	6.15	5.06	4.11	1.58	•21	•02	-3.46
4	2	-20.46	-17.94	+15.43	-13.11	-11.05	-4.54	61	06	•41
4	3	-15.52	-14.41	-12.83	-11.10	-9.47	-3.95	53	→ •05	17.03
5	- 1	-1.23	79	07	•33	•49	• 33	.05	•00	-3.07
5	2	•22	•53	• 8:6	1.02	1.09	•72	•11	•01	52
5	3	1.26	• 91	•92	•93	•91	•49	.06	•00	4.59
6	1	-•43	•70	÷90	•80	.65	•25	•04	• 0 0	1.52
6	2	-•02	-1.72	-1.60	-1.33	-1.10	53	08	01	+.50
6	3	-1.84	-1.28	-1.15	#1.05	96	49	08	01	6.95
				1.	1 · · ·			·		i i A

TABLEA=7.1PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS.PROBLEM 7AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

** BASIS IN THIS PROBLEM TAKEN AFTER 41 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION. TABLE A-7.2

and the second second

 $a \rightarrow b$

C

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 7, AFTER 5, 10 AND 20 CYCLES OF ITERATION

					a de la companya de la		. : 		
	MEMBER	۲¥			ITERA	TION		BASI	S**
		÷ į		5	1	0	20	KIP-F	FFT
	1 2	М		1.25		ั้ <u>ล</u> ก	- 00		10
-		Ē		-2 66		02	- 00		• 10 . 70
		F T		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- I	•UZ 21	09	-4	• [2
		1		• / 1		• 21	•04	8	• 7.6
	×1 4	N		- *• 11		•31	04	-8	• 76
		۴		1.24	an the second	• 35	•01	-10	• 44
	1 A - 1	T		1.25		•30	• 00	-6	•10
	23	N		-2.79	-1	•11	13	-13	•23
		F		1.77	1997 - 1997 - 1997 1997 - 1997	•83	•11	10	•45
		Т		38		•12	01	12	•17
	2 5	Ň		1.09		•43	•05	-3	• 42
		F		-3.14	·]·	.19	12	-13	.57
		т.				.08	04	-10	- 51
	2 6	. NI		_ 20		12	- 01	12	•21 17
	9 0	11		1 00	275. 275	• ± <u>4</u>	· · · · · · · · · · · · · · · · · · ·	14	• 1 7
		۲ 4		1070	·	• 0 2	• 1 1	-49	•99
		1		-1.44		•83		-10	• 45
	4 5	N	•	-1.25		•29	•01	.	•64
		F		2.53	*	•81	•06	-3	•77
		Ť		•67	· *.	•19	• 0 0	9	• 30
	4 7	Ν		• 57		•16	•00	-19	• 75
		F		.63		.27	•02	-19	•87
		Т		.00		.01	.00	-6	• 74
	56	N		2.49		95	•18	-3	. 45
		F	•	-1-97		.87		4	- 61
		1) 1		-1.27		55	- 07	12	•01 05
	5 0	- Alt				• J J		_17	22
	5 0	101				942 23		-11	•
		Т <u>р</u>		-1.JZ		• 5 2	07	06	•96
	5 5	1		* •±8		•06	•01	+10	•18
	69	Ν		•63		•29	•04	-13	•04
	÷ Provincia de la companya de la company	F		• 68		•35	• 0 5	-49	•17
		Ŧ		•20	*	•04	• 0 0	-11	•06
	78	N		15	. –	•09	01	2	•10
		F		•29	5	•20	•03	-3	•06
		Ť		.33		.15	.01	7	•17
	7 10	N		.30	л.	.12	. 01	-27	.04
		F		.14		08	.01	-24	- 58
		ਾ ਹ		. 14		00	- 01		• 50 6 h
	0 0	- 1 - 61		2.0		1 E	-•01		●04 ¢ 2
	0 7	1N				• ± 9	• 0 2	1	•74
		17				.00		- 2	• 4 9
	~	1		· · • 39	· · · · · ·	•19	+ •⊎≤	. 9	• 4 4
	8 11	N		~ ∙63		•28	-•03	-33	•24
		F		~ •30	-	•20	03	-47	•06
		Т		09		•01	• 0.0	-5	•61
	9 12	N		• 3 3		•16	•03	-39	•72
	. 3	F		•16		•11	• 02	-78	•36
		T	·	•25	-	.10	•01	-7	•57
PEF	RCENTAC	δE	= 10	OX (VA	LUE-BAS	IS VAL	UE)/MAX	BASIS	VALUE
*	N. FA	AN	DTR	EFER	TO NEAR	, FAR	AND TORS	SIONAL	MOMENTS
**	BASIS	M	OMENT	S ARE	RESULT	S AFTE	R 30 C	CLES	

Figure A-8: Problem 8, Member Properties, Dimensions, Loads and Comparison of Member Moments for EI/GJ Variation of .5, 1.0 and 2.0

		TABLE A	-8.1			
PERCENTAGE	DEVIATION OF	REDUNDANT	VECTOR FRO	M BASIS,	PROBLEM	8
AFTER	1, 2, 3, 4,	5, 10, 20 A	ND 30 CYCL	ES OF ITE	RATION	

5					ITER	ATION			·	BASIS**
I	ل	1	2	3	4	5	10	20	30	K.K-FEET
1	1	10.80	5.78	2.54	•53	60	-1.09	19	- •03	-4.87
1	2	-3•50	-4.53	-3.42	-2.94	-2.74	-1.81	34	05	•11
1	3	-20.66	-6.13	-3.69	-2.83	-2.46	-1.58	30	-•05	9.31
2	1	6•45	•51	-1.42	-2.07	-2.14	96	15	02	-13.87
2	2	-4.03	5.15	6.34	6.13	5•49	2.27	• 35	•05	2.31
2	3	1.05	5.76	6.24	5.92	5.27	2.16	•33	• 05	45.06
3 -	1	•12	•09	1.14	1.86	2.19	1.36	•21	•03	-4.61
3	2	14.26	9.25	6.61	5.37	4.65	2.37	•40	• 06	-•46
3	3	11.78	6.61	4.57	3.64	3.13	1.67	•29	•05	3.08
4	1	5.95	5.11	4.49	3.83	3.18	$1 \cdot 11$	•16	•03	-3.54
4	2	-16.40	-13.66	-11.16	-9.15	-7.47	-2.66	39		• 30
4	3	-10.53	-9.27	-7.94	<u>-6.66</u>	-5.53	-2.04	31	05	13.17
5	1	-•69	-1.63	-1.42	-1.04	-•71	[₩] •04	•01	•00	-2.93
5	2	2•96	•17	-•75	95	88	~.19	• • • • •	•00	53
5	3	1.26	04	-•31	35	31	03	•01	•00	2.92
6	1	-2.07	-1.36	-•78	-•40	17	• 06	.02	•00	1.24
6	2	5.26	2.75	1.69	1.03	•60	•00	-•01	• 0 0	50
6	3	1.83	1.40	•79	• 40	•17	∽ •06	02	• 00	4.46

** BASIS IN THIS PROBLEM TAKEN AFTER 49 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

TABLE A-8.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 8, AFTER 5, 10 AND 20 CYCLES OF ITERATION

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MEMB	ER*		ITERATION	-	BASIS**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5	10	20	KIP-FEET
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1 , 1	2 N	•63	•06	•02	-5.91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n)	F	29	- • 55	-•08	-4.88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. '	Т	•14	.12	• 02	7.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4 N	14	12	02	-7.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	=	. 32	.19	•03	-8.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Т	•63	•06	• 02	-5.91
F $\cdot 78$ $\cdot 28$ $\cdot 04$ $9 \cdot 28$ T $- 12$ -05 -01 $10, 34$ 2 5 N $\cdot 26$ $\cdot 17$ $\cdot 02$ $\cdot 24.60$ F -114 -511 -08 -13.67 T T -800 06 02 -9.01 3 6 N -12 -055 -011 10.34 F 82 33 004 -9.28 808 T 78 28 $+04$ -9.28 4 5 N 47 11 -02 000 F 1.11 -66 09 -4.59 T 0.2 004 01 7.70 4 7 N 31 14 02 -15.95 F -022 055 011 -14.17 7.70 4 7 N 6.33 -05 -16.12 F 92 33 -065 <td< td=""><td>2</td><td>3 N</td><td>-1.09</td><td>48</td><td>06</td><td>-13.88</td></td<>	2	3 N	-1.09	48	06	-13.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F	•78	.28	•04	9.28
2 5 N .26 .17 .02 .2.60 F -1.1451		Ť	- 12	- 05	01	10.34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5 N	-26	.17	-02	+2.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	F	-1.14	- 51	08	-13.67
3 6 N -12 -05 -01 10.34 F .82 .33 04 -28.08 T7828 +.04 -9.28 4 5 N47 -11 -02 00 F 1.11 .68 09 -4.59 T .02 .04 01 7.70 4 7 N .31 .14 02 -15.95 F02 05 01 -14.17 T .1705 -01 -5.91 5 6 N 1.63 .56 07 -3.53 F92330454 T .2814 -02 10.15 5 8 N853305 -16.12 F18 -1703 -30.98 T2806 00 -7.94 6 9 N .54 19 02 -17.93 F .20 .12 02 -54.85 T .14 06 01 -8.74 7 8 N07 04 00 2.40 F3702 06 -2.93 T01 02 00 5.58 7 10 N01 03 01 -19.75 F .12 03 00 -15.31 T .10 -01 00 -15.31 T .10 -01 00 -3.51 8 9 N09 03 01 1.25 F .23 00 -0 -7.94 6 9 N .54 19 00 -15.31 T .01 00 -15.31 T .01 -02 00 -15.31 T .01 -03 00 -15.31 T .00 00 -3.73 T -01 -03 00 -17.97 9 12 N .19 09 01 -47.91 F .02 03 00 -8.732 T .02 03 00 -8.732 T .02 03 00 -75.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE		т	- 80	-06	-02	-9.01
F $\cdot \cdot $	3	6 N	- 12	05	01	10.34
T782804 -9.28 4 5 N471102 .00 F 1.11 .68 .09 -4.59 T .02 .04 .01 7.70 4 7 N .31 .14 .02 -15.95 F02 .05 .01 -14.17 T .170501 -5.91 5 6 N 1.63 .56 .07 -3.53 F92 .33 .0454 T .281402 10.15 5 8 N8533 .05 -16.12 F .1817 .03 -30.98 T .28 T.06 .00 -7.94 6 9 N .54 .19 .02 -17.93 F .20 .12 .02 -54.85 T .14 .06 .01 -8.74 7 8 N07 .04 .00 2.40 F .3702 .00 5.58 7 10 N01 .03 .01 -19.75 F .1803 .00 -15.31 T .01 .03 .01 -19.75 F .12 .03 .00 -3.51 8 9 N09 .03 .01 1.25 F .23 .00 .02 .32 F .23 .00 .00 -47.37 T .00 .00 .00 -47.420 .00 .00 .40 .40 .40 .40 .40 .40 .		E	.82	.33	-04	-28.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T	78	- 28	- 04	-9.28
F 1.11 .68 .09 -4.59 T .02 .04 .01 7.70 4 7 N .31 .14 .02 -15.95 F 02 .05 .01 -14.17 T .17 05 01 -5.91 5 6 N 1.63 .56 .07 -3.53 F 92 33 04 54 T +.28 14 02 10.15 5 8 N 85 33 05 -16.12 F 18 17 03 30.98	4	5 N	47	- 11	02	.00
T 02 04 01 7.70 4 7 N 31 14 02 -15.95 F -02 05 01 -14.17 T 17 -05 -01 -5.91 5 6 N 1.63 56 07 -3.53 F -92 -33 -04 -54 T -28 -14 -02 10.15 5 8 N -85 -33 -05 -16.12 F -18 -17 -03 -30.98 T -28 7.06 00 -7.94 6 9 N 54 19 02 -17.93 F 20 12 02 -54.85 T 14 06 01 -8.74 7 8 N -07 04 00 2.40 F -37 -02 00 -2.93 T -01 02 00 5.58 7 10 N -01 03 01 -19.75 F -18 -03 00 -15.31 T 01 -01 00 -3.51 8 9 N -09 03 01 1.25 F 12 03 00 -3.73 T -01 -03 00 6.94 8 11 N -18 -13 -02 -32.34 F 23 00 00 -47.37 T 00 00 00 -7.97 9 12 N 19 09 01 -47.91 F -04 03 00 -87.32 T 02 03 00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE		F	1.11	-68	-09	-4.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		т	•02	.04	• 01	7.70
F 02 .05 .01 -14.17 T .17 05 01 -5.91 5 6 N 1.63 .56 .07 -3.53 F 92 33 04 54 T 28 14 02 10.15 5 8 N 855 33 05 -16.12 F 18 17 03 -30.98 $$	4	7 Ň	.31	.14	•01	-15.95
T $\cdot 17$ 05 01 -5.91 5 6 N 1.63 $\cdot 56$ 0.7 -3.53 F 92 33 04 54 T 28 14 02 10.15 5 8 N 85 33 05 -16.12 F 18 17 03 -30.98 T 28 06 0.0 -7.94 6 9 N $\cdot 54$ 19 0.2 -17.93 F $\cdot 20$ 12 0.2 -54.85 T $\cdot 14$ 0.6 01 -8.74 7 8 N 07 0.4 0.0 2.40 F 37 02 0.0 -2.93 T 01 0.2 0.0 5.58 7 10 N 01 0.3 0.1 -19.75 F 18 03 0.0 -15.31 T 01 0.03 0.01 -19.75 F 18 03 0.0 -15.31 T 01 03 0.0 -3.51 8 9 N 09 0.3 0.01 1.25 F 12 0.03 0.0 -3.73 T 01 03 0.0 -3.73 F 23 0.0 -3.73 F 01 03 0.0 -3.73 F 01 03 0.0 -3.77 9 12 N 19 0.9 0.0 0.0 -3.772 F 04 0.3 0.0 -3.772 F 04 0.3 0.0 -3.772 F 04 0.3 0.0 -5.01 PERCENTAGE = $100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$	Ŧ	- F	02	• • •	-01	
5 6 N 1.63 .56 .07 .351 F92 .33 .04 .54 T .28 .14 .02 10.15 5 8 N .85 .33 .05 .16.12 F .18 .17 .03 .30.98 T .28 .06 .00 .7.94 6 9 N .54 .19 .02 .17.93 F .20 .12 .02 .54.85 T .14 .06 .01 .8.74 7 8 N .07 .04 .00 2.40 F .37 .02 .00 .5.58 7 10 N .01 .03 .01 .19.75 F .18 .03 .00 .15.31 T .10 .01 .03 .01 .19.75 F .18 .03 .00 .15.31 T .01 .02 .00 .5.58 7 10 N01 .03 .01 .19.75 F .18 .03 .00 .15.31 T .00 .01 .00 .3.51 8 9 N .09 .03 .01 1.25 F .12 .03 .00 .3.73 T .01 .02 .32.34 F .23 .00 .00 .3.73 T .00 .00 .00 .3.77 T .00 .00 .00 .3.77 9 12 N .19 .09 .01 .47.91 F04 .03 .00 .47.37 T .02 .03 .00 .3.77 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE		Ť	.17	05	01	-5.01
F = -92 = -33 = -04 = -54 $T = -28 = -14 = -02 = 10.15$ $F = -18 = -17 = -03 = -30.98$ $T = -28 = -06 = 00 = -7.94$ $6 = 9 = -18 = -17 = -03 = -30.98$ $T = -28 = -06 = 00 = -7.94$ $6 = 9 = -37 = -06 = 00 = -7.94$ $6 = 9 = -37 = -06 = 00 = -7.94$ $6 = -37 = -02 = 00 = -2.93$ $T = -01 = 02 = -00 = -2.93$ $T = -01 = -02 = -00 = -2.93$ $T = -01 = -02 = -00 = -2.93$ $T = -01 = -02 = -00 = -2.93$ $T = -01 = -03 = -15.31$ $F = -18 = -03 = -15.31$ $F = -12 = -03 = -15.31$ $F = -18 = -13 = -02 = -32.34$ $F = -23 = -00 = -3.73$ $T = -01 = -03 = -00 = -3.73$ $T = -01 = -03 = -00 = -3.73$ $T = -01 = -03 = -00 = -3.73$ $T = -01 = -0.3 = -0.0 = -3.73$ $T = -0.0 = -0.0 = -0.0 = -3.73$ $T = -0.0 = -0.0 = -0.0 = -3.73$ $T = -0.0 = -0.0 = -0.0 = -0.0 = -0.0$ $T = -0.0 = -0.0 = -0.0 = -0.0 = -0.0$ $T = -0.0 = -0.0 = -0.0 = -0.0 = -0.0$ $T = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0$ $T = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.0 = -0.$	5	4 M	1.63	.56	- 07	-2.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5 g	- 02	- 33	• 0 4	- 5.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		у - Т	72 72	• J 9 - 14	07	10 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	R NI	- 420	- 33	02	-16.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- 17	03	-20.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ं व		- <u>.</u> 06		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	O N	•20	.10	-00	-17 03
T $.14$ $.06$ $.01$ -8.74 7 8 N 07 $.04$ $.00$ 2.40 F 37 02 $.00$ -2.93 T 01 $.02$ $.00$ 5.58 7 10 N 01 $.03$ $.01$ -19.75 F 18 03 $.00$ -15.31 T $.10$ 01 $.00$ -3.51 8 9 N 09 $.03$ $.01$ 1.25 F $.12$ $.03$ $.00$ -3.73 T 01 03 $.00$ 6.94 8 11 N 18 13 02 32.34 F $.23$ $.00$ $.00$ 47.37 T $.00$ $.00$ $.00$ 47.37 9 12 N $.19$ $.09$ $.01$ 47.91 F 04 $.03$ $.00$ 87.32 T $.02$ $.03$ $.00$ 5.01 PERCENTAGE = $100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$	0	9 N	- 20	•19 -12	•02	-11079
7 8 N07 .04 .00 2.40 F3702 .00 -2.93 T01 .02 .00 5.58 7 10 N01 .03 .01 -19.75 F1803 .00 -15.31 T .1001 .00 -3.51 8 9 N09 .03 .01 1.25 F .12 .03 .00 -3.73 T0103 .00 6.94 8 11 N181302 -32.34 F .23 .00 .00 -47.37 T .00 .00 .00 -3.77 9 12 N .19 .09 .01 -47.91 F02 .03 .00 -87.32 T .02 .03 .00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE		τ	. 1.4	• <u>+</u> • • 0 6	•02	
F = -37 = -02 = 00 = -2.93 $T = -01 = 02 = 00 = 5.58$ $7 = 10 = -01 = 03 = 01 = -19.75$ $F = -18 = -03 = 00 = -15.31$ $T = 10 = -01 = 00 = -3.51$ $8 = 9 = -09 = 03 = 01 = 1.25$ $F = -12 = 03 = 00 = -3.73$ $T = -01 = -03 = 00 = -3.73$ $T = -01 = -03 = 00 = -3.73$ $T = -01 = -03 = 00 = -47.37$ $T = -00 = 00 = -47.37$ $T = -04 = 03 = 00 = -47.91$ $F = -04 = 03 = 00 = -47.91$ $F = -04 = 03 = 00 = -87.32$ $T = -04 = 03 = 00 = -5.01$ $PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ $F = AND = T BEFER TO NEAR = 500 AND TOPS TONAL MOMENTS$	7	8 M	• + +	•00	•01	2.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			37	02	-00	
7 10 N01 .03 .01 -19.75 F1803 .00 -15.31 T .1001 .00 -3.51 8 9 N09 .03 .01 1.25 F .12 .03 .00 -3.73 T0103 .00 6.94 8 11 N181302 -32.34 F .23 .00 .00 -47.37 T .00 .00 .00 -47.37 9 12 N .19 .09 .01 -47.91 F04 .03 .00 -87.32 T .02 .03 .00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. F. AND T REFER TO NEAR. FAR AND TORSTONAL MOMENTS		् स्	- 01	02	- 00	5.59
F =18 =03 = .01 = -19.73 $F =18 =03 = .00 = -15.31$ $T = .10 =01 = .00 = -3.51$ $8 = 9 = N =09 = .03 = .01 = 1.25$ $F = .12 = .03 = .00 = -3.73$ $T =01 =03 = .00 = -3.73$ $T =01 =03 = .00 = .00 = -3.73$ $F = .23 = .00 = .00 = -47.37$ $T = .00 = .00 = .00 = -47.37$ $T = .00 = .00 = .00 = -47.37$ $T = .00 = .00 = .00 = -47.91$ $F =04 = .03 = .00 = -87.32$ $T = .02 = .03 = .00 = -5.01$ $PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ $T = .01 = .002$	7 1	O N	01	.03	•00	-10.75
T 10 01 00 -3.51 8 9 N 09 03 01 1.25 F 12 03 00 -3.73 T 01 03 00 6.94 8 11 N 18 13 02 F $.23$ $.00$ $.00$ -47.37 T $.00$ $.00$ -47.91 F 04 $.03$ $.00$ -87.32 T $.02$ $.03$ $.00$ -5.01 PERCENTAGE = $100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ MOMENTS	· 1		••• 1 	03	-00	-15.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		्र	. 10	01	-00	-12.51
$F = \frac{12}{-03} = \frac{00}{-3.73}$ $T = -01 = -03 = 00 = -3.73$ $T = -01 = -03 = 00 = 6.94$ $8 = 11 = -13 = -02 = -32.34$ $F = 23 = 00 = 00 = -47.37$ $T = 00 = 00 = -00 = -47.37$ $T = 00 = 00 = -47.91$ $F = -04 = 03 = 00 = -87.32$ $T = 02 = 03 = 00 = -5.01$ $PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ $F = NE F AND T BEFER TO NEAR = FAP AND TOPS TO NA' MOMENTS$	8	O N		.03	-00 -01	1 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0		.12	.03	•01	-2.73
8 11 N 18 13 02 32.34 F $.23$ $.00$ $.00$ 47.37 T $.00$ $.00$ $.00$ 47.37 9 12 N $.19$ $.09$ $.01$ 47.91 F 04 $.03$ $.00$ 87.32 T $.02$ $.03$ $.00$ 5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. F. AND T REFER TO NEAR. FAR AND TORSIONAL MOMENTS		T		- 03	•00	- 2 • 7 2
F = 23 = 00 = 00 = -47.37 $T = 00 = 00 = -47.37$ $9 = 12 N = 19 = 09 = 01 = -47.91$ $F =04 = 03 = 00 = -87.32$ $T = 02 = 03 = 00 = -5.01$ $PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$ $T = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$	8 1		- 18	- 13	- 02	-22.24
T 00 00 00 -3.77 9 12 N 19 09 01 -47.91 F -04 03 00 -87.32 T 02 03 00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. F. AND T REFER TO NEAR. EAP AND TOPSIONAL MOMENTS	9	- 13 E	- 23	.00	- 02	-47 27
9 12 N .19 .09 .01 -47.91 F04 .03 .00 -87.32 T .02 .03 .00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. F. AND T. REFER TO NEAR. EAR AND TORSTONAL MOMENTS		T T	• 2 9	.00	-00	-2.77
F =04 = .03 = .00 = -47.91 $F =04 = .03 = .00 = -5.01$ $F =02 = .03 = .00 = -5.01$ $F =04 = .003 = .00 = -5.01$ $F =04 = .003 = .000 = -5.01$ $F =04 = .000 = -5.01$	Q 1	2 N	•••	- 00	•00 - 01	
T .02 .03 .00 -5.01 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. E.AND T REFER TO NEAR. EAR AND TORSIONAL MOMENTS	2 1		• ± 7 04	.03	- 00	
PERCENTAGE = 100X (VALUE-BASIS VALUE)/MAX.BASIS VALUE * N. E. AND T REFER TO NEAR. EAR AND TORSTONAL MOMENTS		е Т	- 04	. ∩ 3	•00 200	-6101
* N. F. AND T REFER TO NEAR. EAD AND TORCIONAL MOMENTS	DERCENT	AGE	= 100¥///A	NE-BASTS VAL		RACTC VALHE
	* N. F		T REFER T	O NEAR - FAR	AND TOPS	IONAL MOMENTE

** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

MEMBER PROPERTIES

All members have equal EI All members have EI = 0.5GJ 5

Figure A-9: Problem 9, Member Properties, Dimensions and Loads

TABLEA=9.1PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS,PROBLEM9AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

s					ITER	RATION	1		· .	BASIS**
I	J	1	2	3	4	5	10	20	30	K,K-FEET
1	1	2.17	-5.96	-8.17	-7.71	-6.50	-2.23	-•04	•08	-1.03
1	2	-14.53	-22.55	-20.96	-18.09	-15.03	-4.68	•24	•26	• 46
1	3	-33.49	-22.51	-19.02	-15.98	-13.13	-3•79	•40	•27	15.88
2	1	-7•98	-11.21	-9.52	-7.83	-6.62	-3.22	52	03	-12.14
2	2	28•23	28.21	23.75	20.24	17.54	8•77	1.50	•10	2.29
2	3	25.35	25.43	22.00	19.06	16.63	8 • 44	1.51	•12	47.41
3	1	2.38	6.29	6.61	5.45	4.19	•97	17	09	2.59
3	2	19.97	21.22	18.20	14.49	11.14	2.23	65	28	13
3	3	23.62	20.25	16.42	12.99	10.07	2.08	61	26	9.23
4	1	8•71	7.38	6.01	5.07	4•42	2.21	•36	•02	-3.61
4	2	-23.62	-19.78	-17.16	-15.19	-13.51	-6.85	-1.15	07	•57
4	3	-20.76	-18.78	-16.89	-15.07	-13.38	-6.79	-1.16		21.13
5	1	-2.39		•84	1.18	1.20	•67	•11	•01	-2.73
5	2	-3.45	≜ ∙4 8	2.15	2.80	2.95	1.79	•28	•01	42
5	3	~ ∙08	1.06	1.81	2.20	2.28	1.30	•17	•00	6.58
6	1	2•51	2.96	2.15	1.49	1.11	•51	.10	•01	1.27
6	2	~8•72	-7.86	-5.50	-3.91	-3.01	-1.44	29	03	37
6	3	-7•92	-5.60	-4.12	-3.19	-2.60	-1.31	27	~ •03	10.14

** BASIS IN THIS PROBLEM TAKEN AFTER 58 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

TABLE A-9.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 9, AFTER 5, 10 AND 20 CYCLES OF ITERATION

			,			
MEN	MBER	¥	· · · · · ·	ITERATION		BASIS**
			5	10	20	KIR-FFET
1	.2	N	2.41	- 66	07	-5.67
		F	-4.37	-1-53		- 00
	:	, т	1 25	-1,00		
7		- E - KA	1.020	• 29	•10	9.00
T	4	N		7.07	-•10	-9.00
		r 	2.14	• 51	····09	-11.33
		1	2.41	•66	-+07	-5.67
2	3	N	-4.39	-2.12		-12.15
	1	5	3.34	1.72	•29	10.80
	•	T.	 61		-•01	13.05
2	5	Ņ.,	1.86	•81	•10	-4.05
1		F	-5.39	-2.20	21	-13.19
		Ť	02	59	- • 25	-11.16
3	6	N	61	23	-•01	13.05
		F	3.25	1.69	•30	-25.48
		Т	-3.34	-1.72	29	-10.80
4	5	N	-2.22	41	•11	-1.27
47 	-	F	2.84	.70	→ . 05	-2.63
	, . ,	Ť	1.81	.44		10.47
4	7	N	.33	.07	- 03	-21.80
-		5	1.10	• • • •	- 05	-21000
		ч Т	1017	•00	•00	~23.40
F	4	l' Ni	•⊥7 2 02	• 4 4	●U4 つう	
Ð.	D	EN . ET	2 02	1 649	• 2 2	
		r T				2.07
-	ć	-1 	-2.89	−1 •46	-•24	15.42
5	8	N	T •69	30	-•03	-18.14
		F	-2.44	-1.26	-•19	-30.80
	· · ·	T	•06	•16	•03	-12.13
6	9	Ņ	•36	•24	•06	-10.06
		F	1.25	× • 65	•13	-45.75
	·	Ť	~ •31	17	-•04	-12.87
7	8	Ń.	⊷ •51	34	-•05	1.42
	· * * .	F	•80	• 45	•07	-2.73
		T	•87	• 47	• 05	8.65
7	10	N	• 32	.13	• 0 0	-32.11
	, i	F	.52	•27	•03	-31.69
		T	֥32	10	01	-5.51
8	9	N	.73	.33	• 06	1.28
9	-	F	59	- 29	06	-2.43
		Т	-1.05	- 54		11.98
8	11	Ň	- 52	- 24		-24.12
Ť	-	Ē	. 05	······································		-47.00
		, †	· · · · · · · · ·	• 1 7 0 5		
ò	15	n Al	• • • •	•UU 10	• 02	
7	14	EN E	020	• ± č	• 0 5	-71-11
	÷ .	1	•4.3	• 4 2	• () >	-/1.31
ocr.	it to	1 1 -	• 28 • 100 × 111			-10-44
ホーニア	v A(7	E. 8	- LUGAIVAL	UETDADID VAL	口巴丁了四角关系指。	asis VALDI

PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS
** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

Figure A-10: Problem 10, Member Properties, Dimensions, Loads, and Comparison of Member Moments after 10 and 20 Cycles of Iteration with Correct Values

INDEE ATIO • 1													
PERCENTAGE	DE\	/IA	TIO	N OF	REI	DUND	ANT	VECT	IOR	FROM BA	ASTS	PROBLEM	10
AFTER	1,	2,	3,	5,	10,	20,	30	AND	50	CYCLES	OF	ITERATION	
					12							· · · · · · · · · · · · · · · · · · ·	

S				· .	ITE	RATION				BASIS**
I	J	- 1	2	3	5	10	20	30	50	K•K-FEET
1	1	-5•75	-5.84	-4.49	-5.73	-4.82	-2.18		19	2.70
1	2	9•53	2.64	-9.70	-11.89	-7.83	-3.23	-1.38	25	34
1	3	23.03	8.95	-10.20	-14.82	-6.73	-2.33	96	17	-13.83
2	1	-20.36	-12.85	-3.52	2.55	2.02	•74	•31	•05	10.50
2	2	59•98	44.57	25.84	13.65	10.16	4.63	2.02	•38	-2.03
2	3	63.61	46.58	28.35	14.01	7.80	3.31	1.41	•26	-33.82
3	1	-13.63	-11.89	-11.98	-11.41	-8.35	-4.07	-1.98	43	6.45
3	2	1.64	-22.55	-23.90	-20.58	-13.70	-6.54	-3.15	69	03
3	3	23.74	-17.17	-25.21	-20.20	-8.29	-3.35	-1.58	34	-20.03
4	1	-21.87	-1.04	3.53	4.50	2.91	1.33	•63	•14	10.20
4	2	87.09	44.43	33.64	27.29	19.74	9.67	4.68	1.02	-2.74
4	3	80•61	46•89	32.36	19.38	10.27	4.75	2.27	•49	-44.66
5	1	-20.27	-16.70	-14.49	-11.92	-8.42	-4.42	-2.26	52	9.51
5	2	-32.74	-28.38	-23.81	-18.52	-12.99	-7.00	-3.63	85	•49
5	3	-14.23	-23.79	-22.18	-14.36	-5.31	-2.28	-1.14	26	-24.61
6	1	12.40	8 • 15	5.18	2.84	1.80	1.02	•54	•13	5.62
6	2	32.25	33.04	33.04	29.82	21.39	11.35	5.84	1.36	-2.76
6	3	49.30	31.41	21.88	12.84	6.61	3.27	1.65	•38	-47.03
									<i>i</i>	÷

** BASIS IN THIS PROBLEM TAKEN AFTER 77 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN 1.0 PERCENT DURING LAST ITERATION.

TABLE A-10.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 10, AFTER 10, 20, 30 AND 50 CYCLES OF ITERATION

ME	IBE	{ *		a e	· ·	TER	ATIC)N				BASIS**
		, i	10)	20)		30	۰,	-	50	KIP-FEET
1	2	N		23		03			05		.02	-6.10
		F	2.	92	1	34			61	2	•14	-2.72
	· .	T	.	68		55			26		- 06	8.76
1	4	N	-	68		55			26		•07	-8.76
		F		90		10			02		.01	-10.44
		T		23		03			05		•02	-6.10
2	3	N	1.	71		89	÷ .		43		.11	-13.23
	-	F	•	74		30			14		.03	10.45
	• •	Ť		76		26			12		.02	12.17
2	5	N	-1.	44		81			38		- 09	-3.42
	-	F		6.2		14		•	04		.01	-13,67
		Ť	-1	21		44			18		- 02	-10+51
3	6	N		76		26		1	12		.03	12,17
-	Ň	F		28		04			02			-25.99
		Ť	***	74		30			1.4		- 02	-10.45
4	5	M		25		.21			12			-10.49
	.	F	2	14	1.	16		•	62		17	
		, T		42		73			25			0.30
4	7	ă.		5.2		. 62		•	22			-10 75
	•	F	2	25		.71		-	22		•09	
		्य		. 68		1.9			22		- 00	
5	6	M	1.	50		70		•	60 //1			
م	Ŷ	F	±•	. 1 1		11		•	74 06		•10	~J•4J 61
		τ	•	05		45		•	22		•02 04	12 05
5.	Ŕ	N	-1.	.75		04		•	6.Z. 5.2		•00	12079
2		Ē	2.	24		04		•	75 45		- ≁ €44 13	
		τ		:77		87		• •	49 60		• 1 1	
6	Q	N	1.	.22		. 41		•	20		05	-10.19
	1	F		.01		22		••	12		• U J	-1 3 04
		Ţ	۳۵	86		40		•	20			-47017
7	ß	N		22		0.02		•	02			2 10
	U	F		.05		22		•	10			2.10
		Ť	• •••1•	44		75		•	27		•00	-2.00
7	10	I Ni		60	, — (012 ·		•	0 F		- • 0 7	1.11
ę	10	194 - 121		22		40			29 71		•UZ	-21.04
		ू जन्म		16	- T	15		•	10		···• 10	~24038
0	0	-1 -1		1 70		(キン) (人) T		•	70 TO		~•U2	-4.64
ø	. 7	114	Ú.	21	•	41 00		•	24		•07	1.52
		r +		24	-	509 51		•	05			3 • 49
0	1 3	- 1 - #1	•	27		ックエ - カコ		•	26		•06	9.44
0	11	1N 		01		01		*** •	19 19			-33.24
3 13		i. T		10	20	201			22		• 21	=41.00
ີ. ດ	רו	1 N I	-1.	oru. or	C	202		•••• • ·	24			
7	12	5N E	•	70	-	20		•	14 27		•03	- 37 . 12
		г Т	•	17 よう		21		. •	ライ 1 c		₩•09	-10.30
ſ		- - E A	TAGE -	1004	•*** • • • • • • • • • •		CIC	• • • • \\{\}	10.1	2 NA A 32	- • U3 0 A C T C	1001
t L		u ⊑.∦ a ::		TOOL	1 VALUE ED TA		012		JEI	Z MAX (DADID	VALUE
	• · · · P	4.9	F AND I	REP		NCA	K + F	AK	чŅD	TORS	SIUNAL	MUMENIS

** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES, PROBLEM 7

Figure A-11: Problem 11, Member Properties, Dimensions, Loads and Comparison of Member Moments after 5 Cycles of Iteration with Correct Values

TABLE A-11.1PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 11AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

S				a the second	ITEF	RATION			• •	BASIS**
1	J	1	2	3	4		10	20	30	K,K-FEET
1	ŀ	4.94	3.08	•88	45		40	• 00	•01	10.50
1.	2	•10	57	49	68	79	 16	•09	•02	2.70
1	3	-12.96	99	• 06	•08	֥02	•11	• 11	•02	61.48
2	1	•27	-3.97	-4.30	-3.74	-3.00	֥88	06	.00	-10.50
2	2	9.23	14.06	12.06	9.84	7.92	2.48	•18	•00	2.70
2	3	13.00	13.90	11.61	9.51	7.69	2.44	.18	•00	61.48
3.	1	-5.06	-2.14	• 03	•90	1.04	•22	~ ∳02	01	31
3	2	-2.23	.07	•66	• 80	•69	- .15	12	02	.10
3	3	2•47	•73	•20	.10	•05	- 25	11	02	23.22
4	1	4.43	5.11	4.56	3.65	2.80	•76	•05	•00	• 31
4	2	-17.18	-15.12	-12.39	-9.90	-7.81	-2.31	16	• 0 0	•10
4	3	-13.70	-12.11	-10.17	-8.26	-6.59	-2.00	14	•00	23.22
5	1	-1.39	-1.36	° ≁ ∙62	13	•11	•15	•01	•00	-4.58
5	2	-1.22	-1.21	₩•40	•09	•33	• 32	•03	•00	-1.02
5	3	80	₩•39	⊶ •11	.06	.17	•16	•01	• 00	11.53
6	1	-2•75	∽ •52	•24	•40	•37	•12	•01	• 00	4.58
6	2	4.05		73	82	73	29	03	• 00	-1.02
6	3	-1.99	-1.06	-•88	78	68	27	02	•00	11.53
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				24 ¹¹ 4	100 A. 100 A. 100 A.	1 (j. 1	

** BASIS IN THIS PROBLEM TAKEN AFTER 48 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

TABLE A-11.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 11, AFTER 5, 10 AND 20 CYCLES OF ITERATION

MEMBER*ITERATIONBASIS**12N 51 33 06 $+.16.54$ F -1.12 46 $.00$ 10.50 T $.87$ 31 $.02$ 20.92 14N 87 31 02 -20.92 F $+.57$ 24 $+.05$ 15.55 T 51 33 06 -16.54 23N -3.43 -1.00 07 -10.50 F 2.60 $.89$ 0.7 16.54 T 266 055 $.00$ 20.92 25 1.13 $.35$ $.02$ $.00$ T 2.19 66 02 $.00$ T 2.31 54 06 -21.00 36 $+.26$ 05 $.00$ 20.92 F 2.76 $.90$ $.07$ -16.54 T -2.60 89 07 -16.54 F 1.20 $.26$ 01 32 T 66 16 02 00 T 15.56 02 07 T 66 16 02 F 2.76 90 0.7 T 260 89 07 T 260 89 07 T 266 16 02 F 07 01 29.30 T 15 03 01 F $-$	· ·			and the second			1+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MEI	MBER	} ⊀		ITERATION		BASIS**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		e a tri ge eg	••	5	10	20	KIP-FEET
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1	.2.	N	- 51	- 33	- 06	-16.54
T 87 31 02 20.92 F -87 -31 -02 -20.92 F -57 -24 -05 15.55 T -51 -33 -06 -16.54 2 3 N -3.43 -1.00 -0.7 -10.50 F 2.60 $.89$ 0.7 16.54 Z 3 N -3.43 -1.00 -0.7 -16.54 T -2.60 $.89$ 0.7 16.54 -0.2 $.000$ T -2.19 66 $+.02$ $.000$ 20.92 $.00$ T -2.60 -90 0.7 -16.56 $.00$ 20.92 F 2.76 90 -0.7 -16.56 $.02$ $.900$ T -2.60 89 02 -6.71 $.03$ $.01$ -1.26 F 1.20 2.6 -01 -2.32 $.07$ $.16.54$ T 16 02 <th></th> <th>-</th> <th>F</th> <th>-1.12</th> <th>- 46</th> <th>. 00</th> <th>10 50</th>		-	F	-1.12	- 46	. 00	10 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·	н. . тт	1012	0 1	•00	20 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		1	• 8 7	• 5 4	•04	20.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T.	4	N.	- • 87	~ •31	-•02	-20.92
T 51 33 066 -16.54 Z 3 N -3.43 -1.00 07 16.54 T 260 .89 .07 16.54 T 260 .89 .00 20.92 2 5 N 1.13 .35 .02 .00 F -2.19 66 02 .00 J -7.231 54 06 21.00 3 6 N 266 05 .00 20.92 F 2.76 .90 .07 -15.56 4 5 N .666 .36 .06 -1.26 F 1.20 .26 +.01 32 .2.6 4 7 N +.11 08 +.02 -6.71 F 07 .04 +.01 .29.30 .31 .5 F 07 .04 +.01 .29.30 .31 F 275 89 +.06 1.26 T		2	F	+ •57	24	-•05	15.55
2 3 N -3.43 -1.0007 -10.50 F 2.60 .89 .07 16.54 T2605 .00 0.92 2 5 N 1.13 .35 .02 .00 F -2.196602 .00 3 6 N2605 .00 20.92 F 2.76 .90 .07 -15.56 T -2.608907 -16.54 4 5 N .66 .36 .06 -1.26 F 1.20 .26 +.0132 T4616 +.03 22.26 4 7 N110802 .671 F07 .0401 29.30 T .15 .03 .01 -17.80 5 6 N 3.20 .87 .06 .31 F -2.7589 +.06 1.26 T31 .08 .01 -20.38 6 9 N 1.06 7.3001 .00 F 1.144803 .00 T31 .08 .01 -20.38 6 9 N 1.17 .37 .03 6.71 F 1.21 .44 .04 -29.30 T15 .00 .00 -17.80 7 8 N1207 +.01 5.58 F 1.2 .44 .04 -29.30 T15 .00 .00 -17.80 7 8 N1207 +.01 5.58 F2 .7589 +.06 1.26 T31 .08 .01 -20.38 6 9 N 1.17 .37 .03 6.71 F2.18 .01 -4.58 F2 .0201 12.69 F2 .00 .00 -17.80 7 8 N1207 +.01 5.58 F2 .0201 12.69 F33 .01 .45.8 F2 .0201 12.69 F2 .00 .00 -17.80 7 8 N120701 .00 F2 .01 .558 F2 .0201 .2.21 8 9 N .42 .13 .01 4.58 F2 .0201 .2.21 8 9 N .42 .13 .01 4.58 T572201 .00 F2 .01 .558 T572002 16.62 8 11 N +.572201 .00 F2 .01 .558 T3 .0901 .00 F2 .01 .00 F2 .01 .00 F2 .01 .00 F2 .01 .2.21 8 9 N .42 .13 .01 4.58 F2 .0201 .2.21 8 9 N .42 .13 .01 4.58 F2 .0201 .2.21 8 9 N .42 .13 .01 4.58 F2 .0201 .2.21 8 9 N .42 .13 .01 4.58 F2 .0002 .01 .2.21 8 9 N .42 .13 .01 4.58 F2 .0002 .02 .03 .00 F2 .01 .00 F2 .00 .00 .00 .00 .00 .00 .00 .00 .00			T	51	33	-•06	-16.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	N	-3.43	-1.00	07	-10.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	F	2.60	• 89	•07	16.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ť	26	05		20.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5	Ň	1,13	35		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			E.	-2.10	- 66	- 02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1) 17		•00	04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			*	T L • 2 ±	~ ● 24		-21.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	þ	N	*•20	05	• 00	20.92
T -2.608907 -16.54 4 5 N .666 .36 .06 -1.26 F 1.20 .260132 T4616 +.03 22.26 4 7 N110802 -6.71 F07 .0401 29.30 T .15 .03 .01 -17.80 5 6 N 3.20 .87 .06 .31 F -2.758906 1.26 T -1.595304 22.26 5 8 N -1.063001 .00 F -1.144803 .00 T31 .08 .0120.38 6 9 N 1.17 .37 .03 6.71 F 1.21 .44 .0429.30 T .15 .00 .00 -17.80 7 8 N120701 5.58 F .12 .18 .014.58 T .07 .06 .00 16.61 7 10 N140201 12.69 F +.230201 53.77 T .0304 .0012.21 8 9 N .42 .13 .01 4.58 F130901 .558 T .0304 .0012.21 8 9 N .42 .13 .01 4.58 F13 .01 4.58 F2517 .01 .00 F2517 .01 .00 F2612 .01 .00 F2612 .00 F26 .00 F2612 .00 F2612 .00 F26 .00 F26 .00 F			F.	2.16	•90	•07	-15.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ţ	-2.60		07	-16.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	5	Ŋ	•66	• 36	•06	-1.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			F	1.20	•26	… •01	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Т	46	16	+ 03	22.26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	7	N			02	-6.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·		F	07	.04		29.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, Т	1 S	0.3	01	-17 90
F = -2.75 =89 = .06 = 1.26 $T = -1.59 =53 = .04 = 22.26$ $5 = N = -1.06 =01 = .00$ $F = -1.14 =48 = .03 = .00$ $T =31 = .08 = .01 = -20.38$ $6 = 9 = N = 1.17 = .37 = .03 = .07$ $F = 1.21 = .44 = .04 = -29.30$ $T = .15 = .00 = .00 = -17.80$ $7 = N =12 =07 = .01 = 5.58$ $F = .12 = .18 = .01 = -4.58$ $T = .07 = .06 = .00 = 16.61$ $7 = 10 = N = .14 =02 = .01 = 12.69$ $F = .23 =02 = .01 = .03.77$ $T = .03 =04 = .00 = .12.21$ $8 = 9 = N = .42 = .13 = .01 = .558$ $F =13 =09 = .01 = .558$ $F = .12 = .17 = .01 = .00$ $F = .25 = .17 = .01 = .00$ $F = .28 = .09 = .01 = .12.22$ $F = .28 = .09 = .01 = .12.22$	F	4	L Ni	3 20	.07	•01	-1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Ö	PN C	2020	• 0 1	•06	* ≥ 3 L 1 - 3 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Г Ŧ	-2.15			1.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_	1	-1.59		• 04	22.20
$F = -1 \cdot 14 =48 =03 = .00$ $T =31 = .08 = .01 = -20 \cdot 38$ $6 = 9 \text{ N} = 1.17 = .37 = .03 = .6.71$ $F = 1.21 = .44 = .04 = .29 \cdot 30$ $T = .15 = .00 = .00 = -17 \cdot 80$ $7 = 8 \text{ N} =12 =07 = .01 = .5.58$ $F = .12 = .18 = .01 = -4 \cdot 58$ $T = .07 = .06 = .00 = 16 \cdot 61$ $7 = 10 \text{ N} = .14 =02 =01 = .269$ $F =23 =02 =01 = .269$ $F =13 =09 =01 = .5.58$ $T = .03 =04 = .00 = .12 \cdot 21$ $8 = 9 \text{ N} = .42 = .13 = .01 = .458$ $F =13 =09 =01 = .5.58$ $T = .50 =20 =02 = 16 \cdot .62$ $8 = 11 \text{ N} = .57 = .22 =01 = .00$ $F =25 = .17 =01 = .00$ $F =25 = .17 =01 = .00$ $T = .01 = .04 = .00 =12 \cdot .21$ $9 = 12 \text{ N} = .71 = .23 = .02 =12 \cdot .69$ $F = .47 = .19 = .02 = .53 \cdot .77$ $T = .28 = .09 = .01 =12 \cdot .22$ $PERCENTAGE = 100X (VALUE - BASIS VALUE) / MAX \cdot BASIS VALUE$	5	8	N	1.06	- •30	•01	• 0.0
T31 .08 .01 -20.38 6 9 N 1.17 .37 .03 6.71 F 1.21 .44 .04 -29.30 T .15 .00 .00 -17.80 7 8 N120701 5.58 F .12 .18 .01 -4.58 T .07 .06 .00 16.61 7 10 N140201 12.69 F230201 53.77 T .0304 .00 -12.21 8 9 N .42 .13 .01 4.58 F130901 -5.58 T502002 16.62 8 11 N572201 .00 F25 T.1701 .00 F25 T.1722 .00 F25 T.1720 .00 F25 T.17		11 A.	H	-1.14	-•48	···• 03	• 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T	31	•08	•01	-20.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	9	N	1.17	•37	•03	6.71
T $.15$ $.00$ $.00$ -17.80 7 8 N 12 07 01 5.58 F $.12$ $.18$ $.01$ -4.58 T $.07$ $.06$ $.00$ 16.61 7 10 N 14 02 01 12.69 F 23 02 01 53.77 T $.03$ 04 $.00$ -12.21 8 9 N $.42$ $.13$ $.01$ 4.58 F 13 09 01 -5.58 T 50 20 02 16.62 8 11 N 57 22 01 $.00$ F 25 17 01 $.00$ PERCENTAGE = $100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$			f	1.21	• 44	•04	-29.30
7 8 N120701 5.58 F .12 .18 .01 -4.58 T .07 .06 .00 16.61 7 10 N140201 12.69 F .230201 53.77 T .0304 .0012.21 8 9 N .42 .13 .01 4.58 F1309015.58 T502002 16.62 8 11 N572201 .00 F25 T.1701 .00 T01 .04 .0011.21 9 12 N .71 .23 .0212.69 F .47 .19 .0253.77 T .28 .09 .0112.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE			T	.15	•00	•00	-17.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	8	N	12	07	•01	5.58
T 07 06 00 1661 7 10 N -14 -02 -01 12.69 F -23 -02 -01 53.77 T 03 -04 00 -12.21 8 9 N 42 13 01 4.58 F -13 -09 -01 -5.58 T -50 -20 -02 16.62 8 11 N -57 -22 -01 00 F -25 -17 -01 00 F -25 -17 -01 00 T -01 04 00 -11.21 9 12 N 71 23 02 -12.69 F 47 19 02 -53.77 T 28 09 01 -12.22 PERCENTAGE = $100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE$			F	•12	.18	•01	-4.58
7 10 N140201 12.69 F230201 53.77 T .0304 .0012.21 8 9 N .42 .13 .01 4.58 F1309015.58 T502002 16.62 8 11 N572201 .00 F251701 .00 T01 .04 .0011.21 9 12 N .71 .23 .0212.69 F .47 .19 .0253.77 T .28 .09 .0112.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE			Т	.07	.06	• 00	16.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	10	Ň	14	02	01	12.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			F	23	02	01	53.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Т	•03	04	•00	-12.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	. 9	N	.42	-13	• 01	4.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Į.	Ē	13	09	- 01	-5.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			τ.	- 50			14.49
F -25 -17 -01 00 T -01 04 00 -11:21 9 12 N 71 23 02 -12:69 F 47 19 02 -53.77 T 28 09 01 -12:22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	9	11	N	- 57	- 22	•02 01	10.02
T -01 04 00 -11.21 9 12 N 71 23 02 -12.69 F 47 19 02 -53.77 T 28 09 01 -12.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	U	* *	EN .		- 17		• • • •
9 12 N •71 •23 •02 -12.69 F •47 •19 •02 -53.77 T •28 •09 •01 -12.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	÷		E T	- 4 2	$\mathbb{T} \bullet 1$	•01	•00
9 12 N •11 •23 •02 -12.69 F •47 •19 •02 -53.77 T •28 •09 •01 -12.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	<u>_</u>	10	가 ***		• 0 4	•00	-119%1
# .47 .19 .02 -53.77 T .28 .09 .01 -12.22 PERCENTAGE = 100X (VALUE-BASIS VALUE) / MAX.BASIS VALUE	9	12	Ņ.	• (1	• 23	• 02	-12.69
T •28 •09 •01 -12.22 PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE	N.		۲.	• 4 7	• 19	•02	-53.77
PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE			T	•28	•09	•01	-12.22
	PERCE	NTAG	ΞĒ	= 100X(VAL(JE-BASIS VALU	E)/MAX.	BASIS VALUE

* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

Figure A-12: Problem 12, Member Properties, Dimensions, Loads and Comparison of Member Moments for EI/GJ Variations of .5, 1.0 and 2.0

PERCENTAGE	DEVIATION	I OF REDUNI	DANT VECTO	R FROM BASI	S, PROBLEM 12							
AFTER	1, 2, 3,	4, 5, 10,	20 AND 30	CYCLES OF	ITERATION							
in the second second			and the second second		and the second							

						· ·				
S			e en e		ITER	ATION			· -	BASIS**
I	ک	1 ji	2	3	° <u>s</u> ⊷ 4 ⊷, °	5	10	20	30	K•K-FEET
1	-1 -	3.60	4.38	3.33	2.08	1.09	27	05	01	9.01
1	2	-6.24	⊷ .15	1.91	2.14	1.72	07	09	01	2.42
1	3	-16.25	-88	1.62	2.05	1.78	•02	08	01	54.37
2	1	4.13	•64	-•57	-1.03	-1.10	41	04	01	-9.01
2	2	<u>~</u> 3∙50	3.92	4.50	4.06	3.41	1.01	•11	•01	2.42
2	3	1.71	4.51	4.48	3.99	3.33	•97	•10	•01	54.37
3	1	-5.13	-4.15	-2.42	-1.11	27	• 42	•06	•01	-1.06
3	2	-1.89	-2.97	-2.67	-1.91	-1.15	• 36	•11	•02	7.16
3	3	1.30	-1.57	-1.98	-1.65	-1.15	•18	•08	•01	16.25
4	1	1.05	1.96	2.21	2.06	1.75	• 48	•05	•01	1.06
4	2	-9.64	-9.01	-7.40	-5.89	-4.60	-1.19	12	02	16
4	3	-7.03	-6.34	-5.32	-4-28	-3.35	90	09	01	16.25
5	1	•05	-1.31	-1.32	-1.05	76	09	• 0 0	•00	-4.17
5	2	5.02	•74	51	83	82	₩ •21	•00	• 00	-1.03
5	3	2.35	•73	···01	28	34	09	•00	.00	7.37
6	1	-4.73	-2.78	-1.56	-•84	44	01	•00	•00	4.17
6	2	11.13	5.45	2.91	1.59	•88	.05	•00	•00	-1.03
6	3	2.12	1.62	•90	•47	•24	01	•00	•00	7.37
	-	l de la companya de l) A			1.7	e di b	4.

** BASIS IN THIS PROBLEM TAKEN AFTER 43 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

TABLE A-12.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 12, AFTER 5, 10 AND 20 CYCLES OF ITERATION

1.1				and the second second second		· ·
MEN	ABE	R*		ITERATION		BASIS**
			5	10	20	KIDSFEET
1	. ว	K1	- COA	- 17	200	
L.	2		04		•00	-12013
		H	•83	20	≁ ∙03	9.00
		T	•05	•07	•01	18.07
1	4	N	05	07	01	-18.07
		F	48	06	•01	19.83
		Ť	04	17	- 00	-15.10
2	2	- J - Mi	02	- 20	•00	1201
2	2	19				-9.01
		٣	•88	• 40	• 0 2	12.18
		Т	~•06	03	• 0 0	18.07
2	5	-N	•11	•10	•01	• 00
		F	31	17	-•03	.00
		Т	-1.66	10	•01	-18.02
3	6	N	06	03	- 00	1.8 07
		E.	-00	20	•00	-10 02
		P≏ +¥	● Y 7 00	• 4 2	• 0 2	-19.02
		1	~•88	20	-• 0×	-15.19
4	2	N	•37	• 14	-••01	•54
		F	21	• 31	•04	-1.06
15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	**	Ť	÷ 29	05	•00	17.85
4	7	N	19	01	•01	1.98
		F	- 34	08	.00	40.68
		Ť	. 33	03	- 00	-14 65
Б	6	NI	1 21	- 36	•00	1 07
2	0	11	1021	• 20	• 0 5	1.01
		r	**•99	- Z 3	02	• 24
		T	- 22	08	-••01	17.85
5	8	N	~•38	•14	-•02	•00
		F	•06	03	-•01	•00
		T	13	06	•00	-15.89
6	9	Ν	• 58	.15	•01	-1.97
		F	-28	•10	•01	-40.68
		Ť	.11	- O 3	-00	-14:65
77	8	- NI	• • •	0.4	•00	4 12
1	0	12	- • I O	•04	•00	0.10
		Ę	- D /	07	•00	-4.11
_	• •			02	• 00	12.52
7	10	٠Ņ	28	 .06	• 0 0	28.16
		F	22	÷08	•00	72.01
		Т	•17	•01	• 00	-8.52
8	9	Ν	33	.00	• 0 0	4.17
		F	.11	.02	• 00	-6.13
		Ŧ	- 04	02	• 00	12.52
8	1.1	N	.04	- 03	01	- 00
Ň		F	06	03	001	•00
		۲ ۳	•00 1 1	e U e	•00	
~	1.0	I N	• 1. 1. • 1. 1.	• U I	•00	-1.94
. 9	12	N	• 24	•09	•01	-28.16
		F	•16	•05	•00	-72.01
		Т	• 0.0	•01	• 00	-8.52
PERCE	NTA	GE	= 100X(VAL)	UE-BASIS VAL	UE)/MAX.	BASIS VALUE
* N,	F - /	ANI	D T REFER T	O NEAR, FAR	AND TORS	IONAL MOMENTS
** BA	SIS	M	MENTS ARE	RESULTS AFTE	R 30 CY	-1 E C

MEMBER PROPERTIES

All members have equal EI All members have EI = 0.5GJ

Figure A-13: Problem 13, Member Properties, Dimensions and Loads

		AFIE	EK 19 20	9 29 49	J 9 I U9	ZU AND	SU CHEL	ES UF	LIERALIU	IN 19
S					ITER	RATION				BASIS**
I	لي	1	2	3	4	5	10	20	30	K,K-FEET
1 ·	1	7.60	2.23	75	-1.48	-1.28	•03	•27	•08	11.11
1	2	10.26	1.63	-•28	74	51	1.22	•90	•23	2.75
1	3	~6.10	1.83	1.38	•99	•96	1.72	•93	•22	63.29
2	1	 "5∙50	-9.01	-7.47	-5.77	-4.55	-1.66	08	•04	-11.11
2	2	26.60	25.92	20.45	16.22	13.13	4.90	•30	10	2.75
2	3	27.31	25.04	20.00	16.08	13.09	4.94	• 35	~ •09	63.29
3	1	-4.66	~. 16	1.21	•94	•37	60	30	-•07	1.02
3	2	-2.33	2.13	1.89	•63	~ •57	-2.34	96	19	• 44
3	3	2.17	1.59	•46	49	-1.24	-2-23	90	18	30.36
4	1	7.65	6.87	5.37	4.21	3.40	1.22	•06	03	-1.02
4	2	-23.34	-19.09	-15.54	-12.80	-10.62	-3.91	22	•08	• 44
4	3	-20.82	-17.79	-15.00	-12.51	-10.41	-3.88	23	•08	30.36
5	1	-4.17	-2.11	÷ - • 52	•17	•41	• 30	.01	01	-4.00
5	2	-10.11	-4.90	-1.74	10	•68	•76	•03	03	79
5	3	-6.60	-3.49	-1.52	35	•27	•42	02	03	16.72
6	1	•91	2.29	1.75	1.13	•76	•27	•02	~ •01	4.00
6	2	-6.59	-7.02	-4.82	-3.17	-2.22	84	09	•01	79
6	3	<u></u> ≊8∙82	-5.60	-3.74	-2.64	-1.98	֥79	⊷ •08	•01	16.72

TABLE A-13.1

PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 13 AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

** BASIS IN THIS PROBLEM TAKEN AFTER 56 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.

)

TABLE A-13.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 13, AFTER 5, 10 AND 20 CYCLES OF ITERATION

		• • •	<u> </u>	4 · · · · · · · · · · · · · · · · · · ·				DAGTON	
. 1 .	MEN	IRF	K¥	n an an an Al Steady and	IIERA	TION	n sin s	BASIS**	t
			6.54	5	· 이 · 이 · 이 · · · · · · · · · · · · · ·	0	20	KIP-FEE	F
	1	2	N	-1.38	-1	•14	-•41	-16.44	4
			F	-2.17		.08	-30	11.10	- -
			Ť	2 27	1. I.	••••	07	22 0	י ר
	-		1	2.57		• 0 2	•07	44.0	4
	· 1	- 4	N	-2-31	· · · · ·	•82	-•07	-22.02	2
			F	-1.97	-1	• 35	-•43	14.1	7
			T	-1.38	-1	.14	-•41	-16.44	¥.
• .	2	3	N	-7.33	2	.72	- 19	-11.00	8
			-	6 76	2	20	24	1.2 20	5
			F T	0.10	4	• • • •	• 44	10.00	3
			Ļ,	-•08	<i>.</i>	•04	•06	22.04	+
	2	- 5	N	2.45	· · · ·	•78	•01	− •0	2
			F	-4.99	-1	• 35	•15	•00	6
			Ť	-5.16	-2	64	49	-22.24	4
	3	6	N		7	.04	-06	22.0/	
	-			6 07	2	70	-00	-14 0	7
			F -	0.71	2	• 10	• 4 1	-14•2	2 -
		-	1	-0./6	-2	•60	-•24	-16.3	5
	- 4	- 5	N	1.09	1	• 43	• 44	-3.30	5
			F	- • 69	. . .	• 85	38	.91	3
	•		T	-1.28	-1	.00	33	25.9	1
	4	7	Ν	69	~~	35	-10	-11.7	े 2
	4. ⁵	- I	F	- 10		.26		22 20	1 D
	÷		т Т			• <u>⊷</u> 0		10 0	2
	e	,		29	· ·	• 27	• 0 5	-17.8	1
	2	0	N	2.48	2	• 0:0	● <u>1</u> :4	-1.04	+
	÷.,			-5.92	-2	•26	-•18	3.4	2
,			T	-5.36	-2	•08	-•18	25.95	5
	5	8	N		-	•27	•01	• 0	1
			F	-2.86	1	• 42	10	• 02	2
			T	38		.21	• 02	-24.2	7
	6	ġ	Ň	1.61		.62	-09	11.7	a
		1	Ē	2.04	r	14	- 16		i
			_	4.070		9 I Q	•19	-22.09.	1
			- 1	- 04	-	• 22	00	-19.80	j
	l l	8	Ň	~ •09		•34	•0Z	3.86	5
			F	•67		•49	•04	-4.0	1
		•	Т	•09		• 30	02	20.63	3
	7	10	N	19		•04	03	1.60	5
			F	.03		15	- 601	39.6	2
			т	- 38		06	-01	-15.99	5
	۵	G	NI	1.20		6.6	05	+	5
	0	2	- Fill	1 1 1		• ** **	•09	4.00	-
			г т	-1.10		• 40		-2.8	2
	_			-2.00		•82	~• 09	20.65	2
	8	11	· N	77		• 30	-•02	• 0 ()
			F	-1.15	-	• 58	05	•0	1
			T	•18		.16	•03	-16.25	5
	9	12	N	• 96		• 34	• 06	-1.60	5
			F	1.12		.42	.06	-39.6	2
			т	22		12	- 09		5
ਿਸ਼		A T I	۔ ح			TS MAL		12473 RACTO VAI	
	CUEP A	A I A	0C	- IUUA(VA	LUC DAS	IO VAL	UEJ/MAX.	DASIS VAL	
★	N.	· •	AN	U I KEFER	IO NEAR	• FAR	AND TORS	IONAL MON	PENTS
大家	BAS	15	M	DMENTS ARE	RESULT	5 AFTE	R 30 CY	CLES	
							· · · ·		

.

Figure A-14: Problem 14, Member Properties, Dimensions, Loads and Comparison of Member Moments after 5 and 10 Cycles of Iteration with Correct Values

PERCENTAGE	DEV	/ I A '	TION	OF	RED	UND	ANT	VECT	OR	FROM BASIS,	PROBLEM	14
AFTER	1,	2,	3,	5,	10,	20,	30	AND	50	CYCLES OF IT	ERATION	
								- 11 - F	1 g -			

s			i.		ITER	ATION				BASIS**
T	ل	1	2	3	5	10	20	30	50	K•K-FEET
1.	1	-23.93	-10.45	-1.11	3.22	2.42	•94	•37	•06	89.52
1	2	-10.92	~ •06	5.50	6.84	4.54	1.68	•63	•09	7.30
1	3	-6.93	~ •55	3.82	5.58	3.72	1.36	•50	•06	88.54
2	1	-21.70	-13.09	-6.18	-2.44	-1.18	43	16	02	20.99
2	2	17.33	5.13	-5.57	-9.21	-6.08	-2.28	87	12	• 00
2	3	14.43	3.64	-5.16	-7.67	-4.88	-1.79	67	09	₩ •03
3	1	-36.96	-11.60	-1.44	2.93	2.40	1.11	•51	•10	89.85
3	2	-24.29	•42	4.17	5.43	4.01	1.82	.84	.16	7.21
3	3	-15.54	-1.68	1.45	3.03	2.46	1.06	•46	•08	65.34
4	1	-23.79	-12.90	-6.32	-2.02	91	40	18	03	20.36
4	2	25.61	8.99	-1.67	-7.46	-5.75	-2.64	-1.22	23	01
4	3	13.28	4.50	-1.16	-4.26	-3.24	-1.42	64	12	· 🕶 🛛 05
5	1	-25.21	-8.18	-2.00	•99	1.26	• 82	•46	•11	94.44
5	2	-6.19	-2.15	· ~ •62	•69	1.32	1.10	•67	•17	8.22
5	3	-5.10	-1.47	-•41	•64	•92	•51	•26	•06	53.80
6	1	-19.57	-7.82	-2.85	30	05	-•12	09	02	11.20
6	2	31.16	11.97	3.28	-1.69	-2.61	-1.92	-1.13	27	01
6	3	8•98	3.49	•73	-1.03	-1.17	68	-•36	-•08	-•03

** BASIS IN THIS PROBLEM TAKEN AFTER 70 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN 5 DIGITS IN THE FOURTH SIGNIFICANT FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.

TABLE A-14.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 14, AFTER 10, 20, 30 AND 50 CYCLES OF ITERATION

MEN	MEMBER*			ITERATI		BASIS**	
	1		10	20	30	50	KIP-FEET
.1	2	Ň	1.40	• 42	.12	•01	-16.54
		F	-5.59	-2.20	-•90	17	10.50
		Т	1.89	•77	•33	.06	20.92
1	4	N	-1.89	77	33	07	-20.92
		F	1.60	•54	.18	.02	15.55
		Т	1.40	• 42	•12	•00	-16.54
2	3.	Ν	-2.87	-1.20	52	11	-10.50
		F	50	28	14	-•04	16.54
		T		37	16	03	20,92
2	5	Ν	2.77	1.14	•49	•10	• 00
		F	-1.91	~• •63	21	03	• 00
		Т	2.72	1.00	• 38	€06	-21.00
3	6	Ν	88	37	16	•03	20.92
		F	•31	۵Ô9	.03	•00	-15.56
		Т	• 50	• 28	b 14	¥03	-16.54
4	5	Ν	-•76	18	02	•01	-1.26
		F	•01	-•42	36	13	32
		Т	2.10	•91	•41	.09	22.26
4	7	Ņ	-•50	36	23	07	6.71
		F	2.60	1.07	•45	.09	29.30
		T	• 63	•25	.10	•01	-17.80
5	6	Ν	-•60	•49	31	10	• 31
		F	-•27	12	- <u>,</u> 05	01	1.26
		Т	-1.20	53	24	05	22.26
5	8	N	1.39	•81	• 45	•12	• 0 0
		F	-3.06	-1.27		-•11	• 0 0
		Т	2.10	•93	•43	•09	-20.38
6	9	Ν	-•89	-• 44	21	֥05	6.71
		F	• 46	•20	.10	•03	-29.30
		Ť	•77	• 40	•20	• 05	-17.80
7	8	Ν	-1.50	-• 44	12	• 0 0	5.58
		F	2.60	• 65	•1ł	-•03	-4.58
		Ť	1.50	•74	•37	•09	16.61
7	10	Ν	1.10	• 32	•08	•00	12.69
		F	2.15	1.21	•64	.17	53.77
		T	-•86	19	01	•01	-12.21
8	9	N	•65	• 0 2	09	05	4.58
		F	-•01	· 04	.03	.01	-5.58
-		Т		-•46	24	-•06	16.62
8	11	N	67	07	•06	• 04	•00
		F	-2074	-1.61		24	• 00
_		1	• 1 5	• 30	• 22	•07	-11.21
9	12	N	-•43	25	13	- 04	-12.69
		+	• 59	• 40	• 24	•07	-53.77
	~~~	-    	•78 •78	o 35	• 16	°03	-12.22
ļ	~ER(	したれ	NIAGE = 100)	CIVALUE-BASIS	> VALUE)/	MAX BASIS	VALUE
1	nr ∘f vov r	N 9 N 4 -	F ANU I KET	ER IU NEAR	FAR AND	TORSTONAL	MUMENIS
1	ল সা চ	SAS	SIS MUMENIS	AKE RESULIS	AFIEK 3	OU LYCLES,	PROBLEM 11



MEMBER PROPERTIES

All members have equal EI All members have EI = CJ LOADS AND DIMENSIONS



Figure A-15: Problem 15, Member Properties, Dimensions, Loads and Final Moment Diagram

### TABLE A-15.1 PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 15 AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

S					ITE	RATION				BASIS**
I	J	1	2	3	4	5	10	20	30	K.K-FEET
1	1	-11.99	-12.25	-10.94	-9.44	-7.95	-2.89	32	02	8.99
1	2	-17.25	-18.79	-16.33	-13.65	-11.28	-3.97	37	01	.86
1	3	-23.47	-19.63	-16.21	-13.34	-10.94	-3.73	32	.00	17.60
2	1	-2.66	-2.27	-1.37	72	34	.00	.03	.01	23.87
2	2	.00	2.75	3.27	3.60	3.74	2.89	.72	.11	5.00
2	3	.00	.68	1.69	2.40	2.80	2.56	.66	.09	75.00
3	1	2.78	4.13	3.67	3.12	2.63	1.20	.36	.08	8.99
3	2	-7.25	-7.33	-5.71	-4.49	-3.62	-1.56	48	11	86
3	3	-10.60	-7.71	-5.72	-4.40	-3.48	-1.43	44	11	-17.60
4	1	7.25	10.41	10.46	9.26	7.74	2.64	.26	.01	5.46
4	2	15.55	18.07	16.22	13.69	11.26	3.73	.31	.00	• 42
4	3	20.32	16.44	13.87	11.55	9.48	3.12	.24	.00	9.38
5	1	24	.48	.29	.07	06	05	03	01	5.55
5	2	31	-2.47	-3.20	-3.43	-3.48	-2.66	65	09	.00
5	3	48	-1.75	-2.38	-2.71	-2.85	-2.27	54	07	.00
6	1	-6.71	-5.30	-4.17	-3.31	-2.65	-1.11	32	07	5.46
6	2	10.48	7.81	5.89	4.57	3.63	1.51	.45	.11	42
6	3	8.39	6.16	4.70	3.69	2.96	1.27	.39	.09	-9.38
7	1	-1.35	75	17	.22	.44	•41	.09	.01	34
7	2	-2.73	-1.02	10	.33	.54	.51	.11	.02	11
7	3	•64	1.11	.99	.87	.79	•41	.06	.01	3.32
8	1	49	.02	.15	.15	.11	.02	.00	.00	1.92
8	2	1.85	•42	45	75	79	47	13	03	.00
8	3	•75	.19	17	34	40	32	09	02	.00
9	1	-1.09	-1.11	87	66	51	20	05	01	34
9	2	1.90	1.72	1.20	.82	.60	.22	.06	.01	.11
9	3	1.85	1.00	.62	•43	• 32	.14	.05	.01	-3.32
**	BAS	SIS IN	THIS PRO	OBLEM TA	AKEN AF	TER 60	CYCLES (	OF ITER	ATION.	REPRESENTS
	VAL	UES WH	ICH CHAI	NGED LES	SS THAN	2 DIGIT	S IN THE	E FOURTI	H SIGNI	FICANT

FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.

TABLE A-15.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 15, AFTER 5, 10, 20 AND 30 CYCLES OF ITERATION

		TTEDAT	ION		DACTCMM
MEMDER	с. С	10	20	20	VID FEFT
о 1 о м	5 50	101	20	20 . 01	KIP=FCCI
	2020		•10		~
r T	-7.05	-2.02		02	4.68
	•51	• 40	•10	•01	4.66
1 5 N		•40		•01	-4.66
	5•74	1,82	• 11	-•01	-8.97
T	5.58	1.81	• 10	•00	-3.95
2 3 N	-2.66	-1.62	35	04	-1.13
F	1.52	1.61	•45	•08	-1.13
1	-1.57	-•56	<b>~</b> •10	01	•00
2 6 N	2.14	• 96	•20	•03	4.66
· F	-6.26	-2.88	-•41	03	-16.03
Ţ	4.37	1.01	<b>~</b> ∙03	01	-5.81
3 4 N	2.39	1•14	• 33	•08	4.68
F	-1.66	61	20	05	-3.95
T	•22	•21	•06	•01	-4.66
3 7 N	-1.79	77	<b>~.</b> 16	03	4•66
F	2.32	1.72	• 5 0	• 0 9	-16.03
Т	• 86	-•48	12	•00	5.81
4 8 N	• 2 2	•21	•06	•01	-4.66
F	-1.80	66	21	05	-8.97
т	1.66	.61	• 20	• 05	3.95
56N	-5.92	-1.83	08	•01	-•78
F	6.68	2.34	• 26	•01	3.38
, <b>T</b>	3.31	1.06	.06	•00	5.23
5 9 N	2.43	•76	.05	• 0 0	-14.20
• <b>F</b>	2.44	•89	•09	•01	-20.59
T	34	02	.01	•00	-4.73
6 7 N	1.85	1.40	•31	•03	5.55
E F	-2.05	-1.58	-•41	07	5.55
т			-•19	-•02	•00
6 10 N	-2.06	99	16	02	-10.80
F	-2.21	-1.25	24	03	-29.41
Ť	-•46	•07	.02	•00	-3.63
7 8 N	-2.42	-1.01	29	06	3.38
F	1.65	•67	•22	• 05	78
Т	. • 90	• 44	.15	•03	-5.23
7 11 N	•54	o 45	•16	•03	-10.80
F	•67	•61	• 22	• 05	-29.41
Ţ	• 49	· • 09	•00	•00	3.63
8 12 N	90	21	05	02	-14.20
F	- 90	-•24	07	02	-20.59
T	•01	07	02	• 0 0	4.73
9 10 N	17	18	04	01	1.30
F.	•44	•40	•08	•01	•20
T T	1.02	• 40	.05	•00	3.87
9 13 N	1.42	• 48	<u>.</u> 04	•00	-24.46
te 🗗	1.12	•33	• 02	•00	-30.30
Т	-•51	20	02	•00	-3.43

### TABLE A-15.2 (CONTINUED)

MEMBER	<b>*</b>		ITERAT	ION		BASIS**
	•	5	10	20	30	KIP-FEET
10 11	N	•63	•31	.07	• • 01	1.92
4 A B	F	25	22	07	02	1.92
	Т	-•23	27	08	01	•00
10 14	N	96	58	11	02	-25.54
	F	37	- 29	06	01	-44.70
	Т	28	02	.01	.00	-1.92
11 12	Ν	52	22	06	01	•20
	F	.15	.03	•01	•00	1.30
	T	•21	•11	.04	.01	-3.87
11 15	N	•23	• 24	.10	.02	-25.54
	F	<b>-</b> •41	.00	.05	•01	-44.70
	T	•23	•10	•02	.00	1.92
12 16	Ν		14	02	01	-24.46
	F	34	05	.00	.00	-30.30
	Т	14	~ • 09	03	.00	3.43
PER	ENTA	SE = 100X(	VALUE-BASI	S VALUE)/M	AX.BASIS	VALUE
* 1	N. F /	AND T REFE	R TO NEAR,	FAR AND T	ORSIONAL	MOMENTS
** E	BASIS	MOMENTS A	RE RESULTS	AFTER 60	CYCLES	
				:		



Figure A-16: Problem 16, Member Properties, Dimensions, Loads and Final Moment Diagram

### TABLE A-16.1PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 16AFTER 1, 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION

S			- 1 -		ITER	ATION	2 17		an san	BASIS**
I	ωJ.	1	2	3	4	5	10	20	30	K•K-FEET
1	1	12.03	7.42	4.03	2.00	。92	•00	.00	•00	-13.53
1	2	•00	。00	• 00	.00	.00	.00	•00	.00	.00
1	3	• 00	。00	.00	.00	• 0 0	•00	.00	•00	.00
2	1	12.77	5.62	2.41	•94	.31	01	.00	•00	-57.85
2	2	8•64	4.04	2.08	•97	• 40	<b>•01</b>	.00	.00	-3.99
2	3	2.76	2.46	1.49	•76	•34	01	•00	•00	-112.49
3	1	12.77	5.62	2.41	•94	•31	<b>~</b> •01	.00	.00	-57.85
3	2	-8.64	-4.04	<b>⇒2</b> •08	97	<b>⊷ ₀</b> 40	•01	.00	.00	3.99
3	3	-2.76	-2.46	-1.49	76	<b>~~</b> 。34	•01	.00	•00	112.49
4	1	-1.19	-2.31	-1.72	-1.01	- • 53	•00	.00	•00	-11.76
4	2	•00	•00	• 00	•00	•00	.00	.00	•00	。00
4	3	• <b>0</b> 0	• 00	00	•00	•00	• 0:0	.00	.00	• 00
5	1	1.87	•81	•34	.16	•09	•01	• 00	.00	•25
5	2	5.98	2.26	.65	.15	•02	•01	•00	•00	.11
5	3	• 45	<b>≈ ₀6</b> 9	-•62	37	18	.01	.00		-8.11
6	1	1.87	•81	• 34	•16	•09	•01	.00	•00	.25
6	2	<b>~5</b> •98	-2.26	<b>ť65</b>	15	02	01	.00	•00	11
6	3	<b>⊷</b> •45	.69	•62	.37	•18	···••01	.00	.00	8.11
λ.			. A		i.	44			2 ¹	· · · · · ·

** BASIS IN THIS PROBLEM TAKEN AFTER 50 CYCLES OF ITERATION. REPRESENTS VALUES WHICH CHANGED LESS THAN 1 DIGIT IN THE SIXTH SIGNIFICANT FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.

TABLE A-16.2

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 16, AFTER 5 AND 10 CYCLES OF ITERATION

	· · · ·	· · · ·		
MEMBER	¥	ITERATIC	)N	BASIS**
		5	10	KIP-FFFT
1.2	N	.82	- 00	-13,53
	F	- 82	-00	-13.53
	י ד	- 00	.00	00
1 4	, N		.00	
1 4	PA C	• 4 1	+00	-0 • 10 6 - 76
	r Ŧ	°41	•00	-0.10
	1	• / 1	.00	-11.72
25	N	•41	•00	-6 • 76
	E j	o 41	•00	-6.76
	т -	-•71	•00	11.72
3 4	N	•00	• 00	21.89
	F	•14	01	-17.98
	Т	÷05	•00	-8.84
37	N	• 05	01	18.59
	F -	09	00	-41.57
	T -	••02	.00	14.54
4 8	N -	38	.00	-9.88
	- H	- 25	.00	-49.77
	T .	. 56	.01	56
5 6	N	14	- 01	-17.98
	F	• <u>-</u> •	-00	21.89
	' T	.05	.00	8.84
5.0	ŇI -	- - - - -	.00	
J 3		- 0 0 C	•00	
	Г - -	**•***********************************	00	-49011
( 10	-)		~~01	• 20
6 10	N C	.05		18.59
· .	F *		.00	-41.57
	1	<b>6</b> 02	•00	-14.54
7 11	N ~	-02	•00	-33.40
	F -	-•16	.01	-93.56
	T -	-。09	•00	-28.71
8 9	N -	- ₀ 47	。00	-11.76
	F .	*•47	• 00	-11.76
	Ť	• 00	٥0 ه	•00
8 12	N	.13	• 00	-31.28
	F.	。26	• 00	-71.17
	T	• 09	٥O ه	32.61
9 13	Ň	.13	.00	-31.28
	F	.26	。00	-71.17
	T -	-•09	.00	-32.61
10 14	N -	02	.00	-33.40
· · · ·	F -	16	.01	-93.56
	T	.09	.00	28.71
11 12	N	• 06	.00	-1.95
	F	07	.00	- 85
	T -		.00	-9,06
		- <u></u> -		1444

### TABLE A-16.2 (CONTINUED)

MEMDER	- <del>-</del>	TTEDA	TION	<b>РАСТСЖЖ</b>
PICPIDEP	( )	LICKA	I LON -	DASISAA
		5	10	KIP-FEET
11 15	Ν	•02	• 00	-64.81
2	F	13	•00	-126.08
	T	。07	•00	60.41
12 16	Ν	05	•00	-72.13
	F	.10	。00 。	-110.92
	Т	.13	•00	-49.08
13 14	N	•07	•00	85
	F	• 06	.00	-1.95
	Т	.17	. 00	9.06
13 17	N	05	•00	-72.13
	F	.10	• 00	-110.92
	Т	13	.00	49.08
14 18	Ň	.02	•00	-64.81
	F	13	.00	-126.08
	Т	07	.00	-60.41

PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS
** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

### APPENDIX B

### FLEXIBILITY DATA - CIRCULAR BEAM

The following two pages contain flexibility coefficients and angular load functions for a circular beam of constant cross section. This beam configuration is used in example problem 1. The coefficients were evaluated from equations presented by Reddy (20) suitably modified to satisfy the sign conventions indicated in Figure B-1.



Figure B-1: Geometry and Definition Sketch of Loads and Angular Load Functions, Circular Beam

### Angular Load Functions

Positive in direction shown, right hand rule.

$$\tau_{\rm kmn} = P_{\rm kz}^{\rm m} (\rm TKMN) L^2 / EI$$

where: (TKMN) is the appropriate coefficient tabulated in Table B-1

TABLE B-1 FLEXIBILITY COEFFICIENTS AND ANGULAR LOAD FUNCTION COEFFICIENTS, CIRCULAR BEAM, CONSTANT SECTION, EI=GJ

ELEVIDILITY SACTORS		
F(JIXX) = 1.	10347 L/FI	
F(JIYY) = F(	IJYY) = .39877	L/EI
G(JIYY) = G(	IJYY) = .15296	L/EI
F(JIXY) = F(	IJYX) = -G(JIXY)	=-G(IJYX) =145
SEE PREVIOUS	PAGE FOR DEFIN	ITION SKETCH AND
EXPLANATION	OF COEFFICIENTS	
		VEDTICAL
LUCATION	LUAD FUNCTION	
·	CUEFFICIENT	FURCE
N = 1	TJIX	.00000
	YILT	.00000
	YLIT	.00000
N = 1	TJIX	.01617
	TJIY	.01284
	TIJY	•02946
N = 2		.03913
		02382
N - 3		04520
<u>د</u> ۲۹		.03738
	TIJY	.06969
N = 4	TJIX	.09033
	YILT	.04612
	YLIT	.07869
N = 5	TJIX	.11035
	TJIY	.05087
	TIJY	000800
N == 6	TJIX	05070
		.050/8
N = 7		00/404
· · · · · · · · · · · · · · · · · · ·		.04541
	TIJY	.06166
N = 8	TJIX	.09960
	TJIY	.03476
	TIJY	.04413
N = 9	TUIX	•06079
	TUIY	.01930
	YIJY	.02300
N = 10	TJIX	00000
		.00000
	117A	••••••

#### APPENDIX C

### COMPUTER ANALYSIS

The pages which follow indicate the procedure used in assembling the computer program used to determine the information shown in Appendix A.

A macro flow diagram, Figure C-1, illustrates the basic logic of the process. Required input data are indicated below. Actual output consisted of much more data than would normally be produced. Since it was necessary to iterate by several methods, it was necessary to print the actual formulated flexibility matrix both before and after it had been conditioned for the carry-over process. Also, to study the convergence, the redundant matrix was printed out after 1, 2, 3, 4, 5 and 10 cycles of iteration and every 10th. cycle thereafter. Final member moments were obtained from these iterated redundant vectors upon analysis of the nature of the convergence. In an actual problem, the only necessary output would be the final member moments.

Since it was not the purpose of this thesis to develop an efficient program, the programming effort terminated when results were obtained. In retrospect, many of the internal details of the program logic could be made somewhat more

1.25

efficient and this is left to another time. For this reason the details of the program are omitted. The program was written for a computer having a total storage capacity of 40,000 decimal digits, therefore the structure was restricted in size to 24 joints, 12 loops (36 redundant elements) and 30 members.

### INPUT DATA

Joints and Coordinates

^I J₁ J₂ J₃ J₄ J₅ J₆ X Y

First number I indicates joint number. Next 6 numbers J indicate joints connected with I. X and Y are coordinates of I in the basic system. Up to 24 such joints are possible and may be read in any order.

Flexibility and Stiffness Properties

I-J f_{ijyy}, g_{jixy}, etc.

EI EI/GJ

I-J indicates member.

Next six numbers are all six flexibility factors, if member is straight program will compute proper values.

- EL is member moment of inertia, or reference moment of inertia if member has non-uniform section.
- EI/GJ is the ratio of bending stiffness to torsional stiffness, or reference values if member has nonuniform section.

Up to 30 such cards are possible in any order.

Redundants

 $I_1$   $J_1$   $I_2$   $J_2$   $I_3$   $J_3$   $I_4$   $J_4$ I₁ J₁ represent member containing redundants. Up to 12 such pairs are possible in any order. Angular Load Functions and Basic System Moments

 $\tau$  values, 3; BS values, 4

Up to 30 cards, one per member, in any order.

Loops

 $\mathbf{I}_1 \quad \mathbf{I}_2 \quad \mathbf{I}_3 \quad \mathbf{I}_4 \cdots \cdots \cdots \cdots \quad \mathbf{I}_n$ 

Each I represents a joint in the loop and must be ordered to coincide with either a clockwise or counterclockwise traversal of the loop. Up to 24 joints are possible in any of 12 loops. May be read in any order.




# VITA

## Paul Loel Koepsell

## Candidate for the Degree of

### Doctor of Philosophy

### Thesis: CONVERGENCE OF THE MATRIX CARRY-OVER PROCEDURE IN PLANAR STRUCTURES LOADED NORMAL TO THE PLANE

Major Field: Engineering

Biographical:

Personal Data: Born June 17, 1930, at Canova, South Dakota, the son of Paul F. and Anna Koepsell.

- Education: Graduated from Canova High School, Canova, South Dakota, in May, 1948. Received the degree of Bachelor of Science in Civil Engineering from South Dakota State University in May, 1952. Elected to Who's Who in American Colleges and Universities, Phi Kappa Phi, Blue Key, Sigma Tau and Student Senate. Received the degree of Master of Science in Civil Engineering from the University of Washington in December, 1954. Elected to associate membership in Sigma Xi. Attended the National Science Found-ation Summer Institute in Computer Programming and Numerical Methods at Louisiana Polytechnic Institute during the summer of 1961 and the NSF Summer Institute in Structures and Soil Mechanics at Oklahoma State University during the summer of 1962. National Science Faculty Fellow at Oklahoma State University from June, 1963 until June, 1964. Completed requirements for the degree of Doctor of Philosophy in May, 1965. Elected to membership in Pi Mu Epsilon.
- Professional Experience: Stress Analyst, Boeing Airplane Company, 1952-57. Assistant Professor of Civil Engineering at South Dakota State University, 1957-58. Associate Professor of Civil Engineering at South Dakota State University, 1958-64. Registered Professional Engineer in South Dakota, member of South Dakota Engineering Society, National Society of Professional Engineers, American Concrete Institute, American Society of Civil Engineers and American Institute of Aeronautics and Astronautics. State director of the South Dakota Engineering Society, 1962. President of the South Dakota Section of the American Society of Civil Engineers, 1962.