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CHAPTER I 

INTRODUCTION 

1-1 . . Statement of the Problem 

'nle analysis of a planar, elastic, rigidly connected 

framework loaded by forces normal to the plane or moments 

in the plane is investigated. A minimum set of internal 

forces and moments are chosen as the basic unknowns in the 

system. Compatibility of the system is realized using a set 

of equivalent elastic weights applied at the member ends. 

Utilizing these equivalent elastic weights and the continuity 

of the elastic curve around specifically defined paths 

results in the formulation of a sufficient set of equations 

involving the basic unknowns in the system. For the purposes 

of this study the problem is considered to be solved when all 

redundant reactions for each individual member have been 

found. 

'nl.e structure is assumed to be a linear system whose 

supports are rigid but may have known initial deflection 

or rotations. Only the effects of bending and torsion are 

considered in the formulation. 

Solution of the set of simultaneous equations is 

accomplished by systematic restoration of the continuity 
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2 

of the structure. This process leads to a multi-dimensional 

carry-over technique referred to as the matrix carry-over 

technique. Convergence of this process is investigated. 

1-2. Analogy between the Matrix Carry-Over Technique and 
the Carry-Over Procedure in Continuous Beams 

The matrix carry-over technique is an extension of the 

work of Tuma (1)* from a one-dimensional carry-over to, 

in this case, three dimensional carry-over. 

By arranging the terms of the simultaneous equations 

in a particular way dictated by the structure, each step of 

the iterative procedure has a physical meaning which includes 

the following three steps: 

1. Fictitious cuts are made at a sufficient number of 

locations such that the continuous structure is reduced 

to a series of determinate elements or trees. 

2. From the end slopes and deflections of these simple 

structures starting values are computed. (The starting 

values are the internal force and moments at each cut 

to produce continuity at that cut when all of the other 

cuts are free of any force or moment.) 

3. By means of a direct matrix carry-over procedure, 

the full continuity of the elastic curve is established . 

Since continuity is restored to the structure in three 

directions simultaneously, the process involves a three 

*Numbers in parentheses refer to references in the 
Bibliography. 



dtmensional carry-ove~, hence the term matrix carry-over . 

Tuma (1) outlines an equivalent set of steps in the 

solution of the redundant elements in continuous beams. 

1-3. Historical Background 

3 

In the formulation of the equations necessary for the 

solution of the redundant quantities in a structural system, 

the analyst may choose as unknowns either a set of forces 

and moments or a set of deflections and rotations. This 

choice of moments and forces as the basic unknowns generally 

leads to a method of analysis referred to as the flexibility 

approach. Using slopes and deflections as unknowns leads to 

the stiffness approach. 

Basically, the flexibility approach requires that a 

sufficient number of internal redundants be selected as 

unknowns. Since the structure must exhibit known continuity 

of the elastic curve, this continuity produces the required 

relationships to determine the set of internal redundants. 

Similiarly, the stiffness approach requires that a 

sufficient number of s l opes and deflections be selected as 

the unknown quantities and then uses · the conditions of 

equilibrium to produce the required equations necessary to 

compute the values of the s elected set of slopes and 

deflections. 

Usually moments and forces can be considered as primary 

objectives in the analysis of structural frameworks . Slopes 

and deflections are considered to be secondary products of 



the analysis. This does not imply that deflections and 

slopes are less important but merely that a structural 

framework without the necessary strength requires little 

further consideration. 

4 

The first formulation of an analysis procedure for 

general redundant structures began with Clapeyron (2) over 

a century ago with the formulation of the three moment 

equation. Maxwell (2) followed shortly with a more general 

solution utilizing flexibility influence coefficients. 

Mohr (2) contributed the concepts of the elastic weights 

which could be applied to a beam as loads and produced slopes 

and deflections instead o~ shears and moments. This tech­

nique is referred to as the conjugate beam method. Just 

prior to the turn of the century, MUller-Breslau (3) 

applied the distributed elastic weights of Mohr as a set of 

concentrated forces at a series of joints. 

Baron and Michalos (4) and Kinney (2) utilized tQe 

distributed elastic weights recently in the solution of 

planar frames and also applied the technique to beams in 

space. Diwan (5) extends the method of Baron and Michalos 

using an equivalent elastic system concept. 

Within the last decade, Tuma and many of his students 

have applied the concept of the elastic joint force, 

distributed elastic weights and the string polygon to various 

structures. Works by Tuma (1), Tuma and Oden (6) and Oden (7) 

represent a few of these contributions and contain a more 



extensive bibliography in this area than will be attempted 

here. 

5 

All of the investigations cited above give rise to sets 

of equations utilizing forces and moments as unknowns and are 

classified in the broad area of flexibility techniques. 

Actually, at the present time, stiffness techniques are 

being used in a majority of the analytical procedures used in 

structur.al analysis. Using slopes and deflections as the 

basic unknowns was selected by Maney (8) whose formulation 

of the slope deflection equation produced a convienient 

manner of formulating· a sufficient set of equations for the 

determination of all redundant elements in a structure. 

Mohr (2) is usually credited with the original use of this 

technique. Cross (9) produced an iterative technique, 

referred to as moment distribution which was in reality a 

rearrangement of the slope deflection equations. This method 

became an extremely popular method as it eliminated the 

necessity of actual solutions of large numbers of simultaneous 

equations. Southwell (10,11) developed a similiar technique 

independently of Cross and extended the technique to other 

engineering problems. 

Modern high speed computing equipment has expanded the 

engineers capacity for the solutions of large numbers of 

simultaneous equations. Most computer analysis of large 

structural systems is accomplished using a generalized form 

of the slope deflection equations. As typical examples, 
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EisE!IJJSnn, Woo, and Namyet (12) describe a general formulation 
-

involving a space framework of well in excess of a thousand 

members, Carter (13) utilizes the technique in connection 
- -

with the problem of critical buckling loads, and Fenves (14) 

has used similiar processes in the developement of a general 

computer program for structural analysis. 

Theoretically, the comparison of which method is best, 

most efficient, or shortest can be answered at least in part 

by the results of Samuelson (15). He shows that mathematically 

the flexibility approach and stiffness approach are the duals 

of one another and thus require essentially the same technique . 

Practically, the generalized slope deflection equation 

provides an almost automatic approach to the formulation if 

all of the slopes and all of the deflections at each joint 

are used as unknowns. This number is considerably greater 

than the minimum number of redundants necessary for the 

complete evaluation of the structural system. The method 

also provides rather simple procedures for including the 

effects of boundary conditions of a general nature. On the 

other hand, the flexibility technique usually leads quite 

naturally to the formulation of a smaller number of equations 

but requires a considerable amount of progranming effort. 

Thus, if a trade must be made, usually the addition of a few 

unknowns is not as significant as an increase in progrannning 

effort. 

Numerical techniques of solving the equations resulting 

from the particular choice of unknowns comprise a vast set of 
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algorithms and procedures which is expanding at an extremely 

fast rate. Two general classifications of iterative tech­

niques are available. The first is a technique which 

utilizes a certain definite process over and over again 

until the answers of the required accuracy are obtained. 

The co1ID110n Gauss-Siedel process is of this form. The second 

technique is a process whose next step is dependent upon the 

previous step or the magnitudes of the quantities involved. 

1he method referred to as the method of steepest descent is a 

process of this form. 

Two rather recent books by Varga (16) and Faddeev and 

Faddeeva (17) contain extensive discussions of the above 

iterative procedures. The technique employed in this 

investigation is referred to by Varga as the Gauss =Siedel 

process and by Faddeev as the method of Nekrasov. In this 

study , it will be referred to as the Gauss-Siedel process . 

In any event~ both of the references show that positive 

definiteness of a real, symmetric matrix is a necessary and 

sufficient condition for the convergence of the process. 

F'addeev and Faddeeva also state that as a rule convergence of 

a group Gauss-Siedel process is more rapid than the 

convergence of a corresponding point Gauss-Siedel technique. 

Southwell (10) and Temple (18) among others have shown that 

any flexibility or stiffness matrix is positive definite as a 

consequence of the positive nature of internal strain energy. 

The physical nature of the problems solved by the matrix 

carry-over process in this investigation is such that it 



employs esse1:1tially the use of the Gauss-Siedel pr9c~ss 

taking blocks or groups of. three equations at a time. 

Chapter V illustrates two different approachJs to this 

iterative solution: specifically, the reduction of residual 

vectors to zero and straight forwa~d convergence to the 

required solution. 

8 



CHAPTER II 

MATHEMATICAL MODEL 

2=1. Assumptions 

The structure is assumed to be a system of members 

l ying in a plane whose ends are rigidly connected with one 

anot her and whose supports are either fully fixed or have 

known ini tial deflection or rotations. Properties of each 

i ndividual member are assumed to be known and are of such a 

natur e that deflections in the plane or rotations normal to 

the plane do not occur. Deflections due to shearing forces 

are considered to be small compared with those due to moments 

and torsions and are neglected. Axial deformations are not 

considered. Members are identified by the numbers associated 

with the joints which coincide with the members end points . 

The member may have any shape or loading providing the above 

properties are realized. 

Loads are stationary and may be ei~her force vectors 

normal to the plane or moment vectors in the plane. The 

magnitude of the loading is constant. 

All ordinary assumptions of linear elasticity are 

pr esumed. 

9 



2=2. Coordinate Systems 

Two different coordinate systems are required. They 

are referred to as the basic or reference system for the 

entire structure and the member oriented system. 

10 

The basic system is a right handed orthogonal set of 

axes oriented in a convenient ma.nner with the x and y axes 

in the plane of the structure and the positive z axis acting 

upward from the plane of the structure. 

The member oriented system referenced to the undeformed 

structure has the zm axis parallel to the z axis of the basic 

system but its xm axis oriented such that the origin is at i 

and the positive xm axis goes through j where i< j. The y11l 

axis is placed such that the system is right handed. The 

angle from the x axis of the basic system to the xm axis of 

the member oriented system is designated woij and is positive 

if it represents a right handed rotation about the z axis. 

See Figure 2=2. 

y 

i .. < j 

Figure 2=2~ Coordinate Systems 



Any val~es which are based on the member oriented 

reference system will be designated by a superscript m. 

Values referred to the basic system carry no superscript. 

2-3. Definitions 

11 

Several terms are used throughout this paper which are 

of sufficient importance to be singled out here and defined 

rather carefully. They are terms borrowed from topological 

or linear graph treatments of various problems. 

Tree - Every structure of the type considered in this 

paper can, with proper choice of redun9ants, be reduced to 

the consideration of a collection of statically determinate 

'trees'. For the purposes of this paper, a tree will be 

considered one of the stable collections of members remaining 

after a sufficient number of cuts has been made to reduce 

the problem to a statically determinate one. The support 

of this tree is entirely contained at one joint referred to 

as its base. The number of trees is equal to the number of 

rigid supports. 

Loop - A loop for the purposes of this paper will 

consist of an ordered sequence of joints which describes a 

complete path from either the base of one tree to the base 

of another tree or from one joint around a path completely 
' contained in one tree and returning to the ~ame joint. In 

the case of a loop contained in one tree the joint nearest 
I 

the base is considered to be the beginning and end of the 



loop. In all cases a loop will contain one, and only one, 

cut • 

12 

.f!.!:h,- A path is an ordered sequence of joints such 

that in traversing the pa·th no member is traversed more than 

once. 

With the definitions and with the assumptions regarding 

the end restraints of the structure, it is possible to make 

the following observation: For each 'cut' or location of 

redundants, one, and only one, loop can be found which 

satisfies the definition. 

These definitions are illustrated in Figure 2-3. The 

configurations of the trees and loops are not unique for any 

given structure but depend upon the choice of the redundant 

cuts. 
·--',"· 

l,.1,. . ,• :1, 

' ~. r' .. 
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Figure 2-3: Trees and Loops 
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CHAPTER III 

EQUILIBRIUM 

3-L Sign Convention and Notation, External and Internal 
Forces and Moments 

External loads applied to the structure are force 

vectors normal to the plane and moment vectors in the plane. 

Forces are designated with single headed arrows and moments 

with double headed arrows. In either case they are positive 

when in the positive direction of the appropriate reference 

system, Figure 3-1.0. 

z 

(a) Relative to Basic 
System 

m z 

i< j 

(b) Relative to Member 
System 

Figure 3-1. 0: Positive Applied Forces and Moments 
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Internal forces and moments, Figure 3-1 . 1, are also 

designated by single and double headed arrows as with applied 

forces and moments but consideration must be given to which 

face of the cut is termed the plus face. The positive face 

of any beam segment is always the face nearest end j of the 

beam ij where i < j. On this face internal forces and moments 

are plus when they coincide with the plus directions of the 

appropriate reference system. 

Since reactions are treated as internal forces they 

require no special consideration. 

zm m 
Njiz Njiz 

Mjiy 

z 

xm 
/ .F~ / i<j ~~x m 

j Mjix 

y 

x 

(a) Relative to Basic 
System 

y j 

i<j 

~jz 

(b) Relative to Member 
System 

Figure 3-1.1: Positive Internal Forces and Moments 



16 

3-2. Redundant Notation at the Cuts 

The redundant forces and moments at each cut are 

designated by the matrix 

Sil Mijy Miky 

[sJ = Si2 = Nijz = Nikz (1) 

SiJ Mijx Mikx 

where: i identifies the cut 

Furthermore, these elements follow the same sign 

convention given for internal for.ces but are applied at the 

origin of the basic coordinate system, FigQre 3-2, using a 

hypothetical set of rigid arms as a portion of the member . 

z 

i k <j 

j 

x 

z z 

i 
y 

j 

x x 

Figure 3-2: Positive Directions of Redundants 
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3-3. Redundant Notation, Single Member 

The redundant quantities associated with each member ij, 

i < j, are the torsional moment . at end j and the bending 

moments at ends i and j. Figure 3-3 indicates these values 

in first the member frame of reference and then the basic 

referencP. system. 

Obviously, 

m 
xijy cos 

m 
Xjix = 

m-
xj :i.y 

or 

Woij -sin 

0 

0 

Woij 

0 

0 

m 
x 

/ 

i<j 

(a) Single Member Redundants 
Member Reference 

0 

cos woij sin 

-sin woij cos 

z 

i<j 
1 

y 

0 

WOij 

woij 

Mijy 

Mijx 
(2) 

Mjix 

Mjiy 

(3) 

M.i J x 

x 

(b) Single Member Moments 
Basic Reference 

Figure 3-3: Single Member Redundants and Moments 
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It should be obvious that if the member loads plus 

member redundants given in equation 2 are avail.able the 

undesignated forces in Figure 3-3a are easily evaluated from 

a consideration of static equilibrium of the individual 

member and their compu:tation is not considered here. 

3-4. Member Redundants in Terms of Loads and Redundant& at 
the Cuts 

Consider a portion of the structure shown in, ,Figure 2-3 

and repeated below in Figure 3-4. 

9 

10 

Figure 3-4 : Typical Tree 

Obviously, the redundants of each member are a function 

of the loads and the redundants at the cuts. Specifically, 

if all possible paths from any member are traversed in a 
I 

direction away from the base beginning at the member end 

farthest from the base all cuts affecting this member will be 

encountered. In fact, if. there are~ paths to t:he same 

cut then those redundants do not affect the member redundants. 
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If the member contains a cut then the member redundants 

are functions of the loads and the redundants at that one 

cut only. 

In Figure 3-4 the member redundants of member 7-10 are 

functions of the loads plus the redundants at cuts 2 and 4. 

The member redundants of member 7-8 are functions of the loads 

plus the redundants at cuts 1, 2 and 4. 

Finally, the relationship between these redundants may 

·be stated as 

~jy 1 

Mtjx 0 
= 

Mjix 0 

Mjiy 1 

or 

Xoi 0 S1 BMijy 

-Yoi 1 [b1j1Ii b1j21:b1j31:· • • ·ib1jm1] 
S2 BMijx 

+ (4a) 
-y • 1 I I I I S3 BMjix -OJ . . . . 
Xoj O BMjiy 

(4b) 

where : Sk = rJ~~ndants ~t cut k, , equation t 

x0 i, Yoi = coordinates of point i 
measured from the origin of the 
basic system to point . i · 

,i,: : I ·~· 0 .;- • 

bijk =.~,:. 0 if there are 2sor O paths 
wli9lly contained in the tree' · 
containing member ij from the member 
to the cut k 

bijk = 1 if· ttie member containing cut k 
is numbered in the same order as the 
member ij when traversing the path in 
one direction, or member ij contains 
cut k 



in 

b· 'k 1.J 

20 

= -1 if the member containing cut k 
is numbered in the opposite order as 
the member ij when traversing the path 
in one direction. 

I = a 3x3 unit matrix. 

BS· · = basic system moments or moments due 
1.J to the applied loads in the determinate 

system. 

Thus , the b coefficients applicable to the tree shown 

Figure 3-4 are 

For Member 7-8 For Member 7-10 

b7,a,1 = -1 b7, 10 ,2 = -1 

b1,a,2 = 1 b7 10 4 = -1 
' ' 

b7,8,4 = 1 all others O 

all others O 

Some conunents are appropriate at this point. Namely, 

for any given loads, member anq set of redundant values at 

the cuts, equation 4a together with the three available 

equations of static equilibrium are sufficient to establish 

the equilibrium of the member in question. Fu-tthermore, 

since all redundants at the cuts are referenced to the origin 

of the basic coordinate system the actual location of the cut 

between the member ends has no effect upon the formulation 

except for a'ny necessary changes in the basic system moments. 

Also, the product of the bij matri.x and the Si matrix is 

actually nothing more than the sums (with the proper sign) 

of the Si matri,., es actually affecting the moments in the 

member ij. Because all Si matrices are referenced to the 

o~igin only one linear transformation matrix tis required. 



CHAPTER IV 

COMPATIBILITY 

4-1. Sign Convention of Slopes and Angle Changes 

Distributed angle changes along the continuous elastic 

curve of a structure may be represented by vectors. In 

addition, if the slopes of the members are sufficiently small 

they may also be treated as a vector quantity. This assump­

tion regarding the magnitudes of the slopes will be made. 

As with internal forces, it is necessary to associate 

a direction .along the curve with whatever angle changes are 

involved. Figure 4-1.1 indicates the manner in which these 

angle changes could be indicated for a segment of beam im. 

The distributed angle changes or the rates of change of 

slope are referred to as elastic weights. 

Obviously, traversing the curve in the opposite 

direction requires that the angle changes be reversed. For 

the purposes of this paper the positive direction of the path 

of each individual member will be taken from i to m if i<m. 

Positive angle changes are defined as shown in 

Figure 4-1.2 . Deflections are measured from the elastic 

curve to a horizontal reference and are plus if they are in 

the positive direction of the appropriate reference system. 

21 
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Slopes are measured from the tangent of the elastic curve to 

a horizontal reference and are plus if they are in the 

positive direction of the appropriate coordinate system. 

p 

(a) Traversing the Path from i tom 

p 

i~ A ·· ... A 

{b) Travers~~g th~ Path from m to i 

Figure 4-1.1: Vector Representation of Slopes 
· and Angle Changes and Their Dependence 

Upon Direction of Path 



i 

n 

-f Pydx 
m 

Afff 
JZ 

m x 

i <j 

·i <j 

Figure 4~1.2: Positive Deflections, Slopes and 
~tes of\Change of Slopes 
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4-2. Analogy between Load, Shear and Moment and Distributed 
Angle Changes, Slope and Deflection 

' 
Figure 4-2.1 indicates the analogy between internal 

force and moment elements with slope and deflection. 

Figure 4-2,la shows the elastic curve of a beam element ij 

subjected to bending about the ym axis in a manner such that 

all end slopes, end .deflections and distributed ~ngle changes 

ai-e plus. 

In order to complete the analogy it is necessary to 

introduce internal slopes and deflections similiar to shears 

and moments. Figure 4-2 _. la :1.llustrates such a · set. From a 

comparison of Figure 4-1.2 and Figure 4-2.1 it is apparent 
' ·I that the positive internal slopes and deflections correspond 

. - . 

to actual slopes and deflections at the far end and are in 

the positive directions of the coordinate axes, The set of 

positive near end internal slopes and deflections is 

opposite the direction of the coordinate axes. 

Fi~re 4-2.lb indicates the geometric variables as loads 

and internal forces and moments on the member. · From 

~onsiderations of equilibrium of this analogous system 
I 

?tfjz I H1.f iz + 1...m m d m + ~iyx!j = PkyXik x 
1 

H1Jiz ~ jz 
f...m m m + it;1. xll; · = - Pkyxjkdx 1.JY Jl. 1 (5) 

R!iy ~jy 
[~ m = - 1 Pkydx 

}t11. ~iy + f...m m = l Pkydx .1.Jy 



~jz i< j 

(a) actual geometry of deflected beam 
.. and positive sense of end slopes and 

deflections for pul,:'pose of the beam analogy 

m 
y 

-m 
Py 

it1. 
J.JY 

(b) equivalent elastic loads 
on beam segment 

m x 

Figure 4-2.1: Angle Change-Force, Slope-Shear and 
Deflection-Moment Analogy for Bending about y axis 
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Entirely equivalent results are obtained from considerations 

of geometry. These equations are .analogous to those 

obtained for shears and moments in a beam loaded with a 

posi t ive set of distributed loads and represent the conjugate 

beam analogy for t his particular coordinate direction . The 

equations will be referred to as the equations of elasto­

static equilibrium. 

Physically, at i, the near end slopes and deflection 

represent the angle from t he horizontal reference plane to 

the plane containi ng the tangent and bi=normal to the 

elastic curve at i and the displacement of the horizontal 

reference plane to point i. If these quantities are in a 

direction opposite the positive direction of the appropriate 

reference system, they a r e plus . Similiarly, at j, the far 

end slope and deflection represent an angle and displacement 

from the plane containing the tangent and bi - normal to the 

elastic curve at j to the horizontal reference plane. If 

these quantities are in the direction of the positive 

direction of the appropri ate reference system, they are plus. 

'lhus, the sense of these end effects is identical in form 

t o :$.n.ternal shear and moment. 

I dentical analogies in the other two bending directions 

can be made. If the effects of shearing deformations, axial 

force deformations or uniform changes in temperature are to 

be included, they become anal ogous to a set of distributed 
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moments rather than distributed forces. This class of 

problem is not investigated in this study. 

Figure 4-2.2 indicates positive sets of internal 

slopes and deflections in the basic reference system and the 

member reference system. 

z 

i <j 
y 

x 

(a) Positive Internal Deflections and Rotations 
'Basic .System 

m 

y~ 

·W:jx 

(b) Positive 

m 
z 

~jz 

Internal Deflections 
Member System 

i < j 

m 
x 

and .Rotations 

Figure 4-2.2: Positive Internal Deflections and Rotations 
Member ij 
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4=3. Equivalent Elastic Weight Systems 

For any segment of a beam used in the class of 

struc.tures considered in this investigation the distributed 

elastic weights are in the plane of the member. Since the 

distributed elastic weights are represented by an analogous 

set of distributed forces, the idea of replacing the 

distributed set with a statically equivalent concentrated 

set occu:cs quite naturally. 

Many equivalent sets are possible. Since the 

distributed set ?f elastic weights is a function of the loads 

and redundants, the set of redundants for the member ij of 

Figure 3-3a will be used as a quide in the choice of this 

equivalent set. In short, the distributed set of angle 

changes will be replaced with the set jfjy, ~iy and ~ix 

of Figure 4-3b. 

Additionally, if the beam ij is restrained as in 

F'igure 3··3a such that 'fC. "' ~- = rf11·J·x = 0, then the l.J Z J l.Z 

internal slopes and deflections of the segment ij reduce 

to the three rotations shown in Figures 4~3a and 4-3b. 

This restraint provides a convenient method of 

obtaining the equivalent elastic weights in terms of 

available data, that is 

~jy ~jy fijyy gijyx 
m m 

gijyy xijy 'T •• 
l.JY 

=~· ~ ix gjixy fjixx fjixy 
m + m -· :, Xjix 'T jix J l.X 

-fC. ~iy gjiyy fjiyx fjiyy 
m m 

J iy xjiy 'T jiy 

(6) 
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i <j 

distributed ingle 
changes: in x ~yu. plane 

(a) Beam Restrained such that ~jz = Rji. z = trijx = 0 
aQ.d Distri'buted Elastic Weights ··.. ..·· .·· 

i< j 

.'P'!li 
/ J y 

I/ P!1x 

(b) Equivalent System of Elastic Weights 
· Applied at Joints ·. 

Figure 4•3: Equivalent Sets of Elastic Weights 
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or 

where the f and g flexibility coefficients and the T functions 

are as defined in Table 4-3 and have been tabulated for a 

n\.DDber of beams and loadings, see Tuma, et. al. (24). This 

also provides justification for the particular choice of 

redundant system associated with each member. If the 

flexibility coefficients are required, it is assumed that 

they are available and their actual calculation is not 

considered here. 

fijxy 

8jiyx 

. t 

Near end angular moment !lexibility. f indicates 
cause and effect at same end. First and third 
subscript indicate location and direction of cause. 
Fourth indicates direction of effect. Bene~, fijxy 
represents rotation at i . in x direction due to a 
unit moment at i in they direction. Maxwell's 
·reciprocal theorem implies that fijxy = fijyx 

Far end angular moment flexibility. g indicates 
cause is at end opposite effect. As for f above, 
8ji~ represents ·,' the rotation at j in the ::i ", 
direction due td ·a unit moment at· i in the x 
direction. Maxwell's reciprocal theorem implies 
3j iyx = gij xy 

Angular lo~d function. Represents the end rotations 
of basic determinat~ segment due to loads on segment. 
Tijy is the rotation due to loads on the span. The 

rotation is about they axis at i of the segment ij. 

Table 4-3: Flexibility No~~tion 
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4~4. Elasto-Static Equilibrium of a Closed Loop Containing 
a Single Member 

All of the distributed elastic weights for the member jk 

may be replaced with the set given by equation 6. However, 

it is more convienient to transform these elastic weights 

to the basic reference system as follows: 

'Pjky 

[lSjk] = 
l'jkx 

= [wojk][~kJ 
'P'kjx 

(7) 

'Pkjy 

Thus the advantages of the choice of equivalent elastic 

weights of Figute 4-2 becomes apparent. The angular 

transformation matrix is the transpose of the one previously 

used in equation 3. 

Since the internal slopes and deflections at the far 

end of member ij are equal and opposite to those at the near 

end of member jk, their mutual contribution to the elasto­

static equilibrium cancels and the only effective elasto­

static forces are those shown in Figure 4-4. 

For the system to be in equilibrium in the sense of 

equation 5 

Nijy 1 0 0 1 Nmky 
Rtjz = Xoj -Yoj -Yok Xok [-Pjk] + Hmkz (8) 

wijx 0 1 1 0 R'mkx 
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or 

Again the judicious choice of equivalent elastic weights 

and the extension of the member ends to the origin using the 

fictitious rigid arms becomes apparent in the appearance of 

the translational transformation matrix which is the same as 

the transpose of tpe Qne used in equation 4a. 

z 

Figure 4-4: 

i<j<k<m 

x 

Elastic Weights, End Slopes and Displacements 
Single Member Loop 
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If the end slope and deflection at j are required rather 

than at i, then 

1 0 0 

[wji] =- Xji 1 -Yji [ Rj.j] 
0 0 1 

Similiarly, (~) 

1 0 0 

[ Rij] = :~ xi· . J 1 -Yij [nji] 
0 0 1 

where 

1 0 0 1 0 0 1 0 0 

Xij 1 -Yij Xji 1 -Yji = 0 1 0 

0 0 1 0 0 1 0 0 1 

4-5. Elasto-Static Equilibrium of a Loop Containing Several 
Members 

Let the loop A be a collection of members jkmn as shown 

in Figure 4-5.0. As before, assume the loop to be extended 

by rigid arms ij and nq to the origin of the basic coordinate 
m 

system. Further assume that the positive x axis for each 

member including the rigid arms coincides with the direction 

around the path from i to q. Then equation 8 becomes 

. 
I 

Wojk: 
,._ -,----; 

1wokm1 
L- - -J- -

iwomn 
I 

(10) 



or 
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i 
z 

"' 'W .... c'mkx rmnx 

Figure 4-5.0: Elastic Weights, End Slopes and 
Displacements, Muitiple·Member Loop 

x 
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At this point the assumption is made that there are no 

relative displacements between i and m, then 

From equations 7, 6 and 4a, equation lOb may be 

written in terms of the redundants at the cuts, the 'T 

functions and the basic system moments, as follows: 

0 = 

where 

.tA = [toij: t "k'" ••••• •'t J bA ;: bij OJ : : onq 
I b·k 

w • • I .J 
Ol.J I 

u)A ::; 

- .,- -,- - --, 
1Wojk I 
L_ - -1-, bnq 

.. 
··.-1----- s = 81 

·: wonq .. .. 
f .. I Sm l.J I -- .... , - --· 

I f ·k I 
fA = L_J_.s1__ BSA = BSij I • 

' BSjk -1- '-'--,.· 

I fnq • 
I ~ 

BS11q 

crA = (5:i.j 

(5 .k 
• J 

crnq 

(lOb) 

(11) 
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While equation 11 looks rather formidable it should be 
~:::~..:-. 

noted that it '·can be broken down into a member by member 

sUDID8.tion process around the loop A, namely, 

~ T T 
~ bijktoijwoijfijwoijtoijSk = 

I toijWoij fijW~ijBSij 
(12) · I toijwoij aij - · 

where . the sumnation is over them members in the loop. 

Some important computational aspects should be pointed 

out at this time. The contribution of member ij to this set 

of equations takes on a particularly efficient form, as 
I 

follows: 

In other words, the contribution of the member ij to the 

coefficients of the redundant matrices S1 to Skis identical 

except for signs as determined by the coefficient bijk· 

As a result of the conclusions arrived at in Para. 4-1 

all elastic weights must be reversed in sign if the path is 

traversed in a manner opposite to its assumed plus direction. 

Thus, if a path ijkm is traversed f~om i tom and member km 

1$ such that m < k then the sign of the terms in equations 12 

or 13 must be reversed to properly account for the effect of 

member .km on the formulation. 



Equation 12 is therefore modified to reflect this 

possibility, as 

where: = 1 if positive axis of member 
coincides with positive path around 
loop m, otherwise, -1 
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bijk = 0, 1 or -1 as indicated after eq. 4b 

A = 

B1 = 

B2 = 
sk:,: 

' . T T 
toijwoijfijwoijtoij 

. T 
toijwoijfijwoijBSij 

toij woij0 ij 

redundants at cut k, see eq. 1 

moments in member ij, statically 
determinate system 

crij = angular load functions, member ij, eq. 6 

Because of the restriction on the £ormation of the 

loops, equation 12a properly summed for all loops results 

in the formation of the flexibility matrix since the loop 

containing the redundant Sk includes all of the members 

whose in.ternal momen1!:s are funct~ons of Sk. Furthermore, 

since equation 12a is m~rely an expansion of equation 10, 

the coefficient matrix of the matrix Sk represents the 

rotations and deflections at the cut containing Sk for 

unit values of the redundants Sk. The loop also contains 

all of the members whose internal moments are functions of 



both Si and Sic and the resulting coefficient matrix of the 

matri~ Si represents the rotations and defle~tions at the 

cut containing Sk for unit values of the redundants Si. 

'lbese are by definition the flexibility coefficients. 
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Equation 12a could be used around any a.rbitrary closed 

loop, as shown in Figure 4-5.la. This represents the sum of 

the deflections and angle changes around the loop. However, 
' 

this is nothing more than the sum of the angle changes and 

deflections around the loop of Figure 4.-5 .lb minus the sum 

of the angle changes and . deflections around the loop of -

Figure 4~5.lc. Hence, the deflection properties around any 

loop containing more · than one redundant cut can be made from 
: I 

a linear combination of the basic loops defined in this paper . 

These combinations do not result in the flexibility matrix 

and for that reason are not considered further. If chosen 

properly they do represent a perfectly satisfactory set of 

simultaneous ·equations involving the redundant matrix as the 

unknowns, but since they are not the flexibility matrix · 

convergence .of the iterative technique cannot be assured ~ 

Finally, since the matrice~ A, Bi and B2 contain nothing 
' I 1 . .:. - i. • 

but the parameters associated with member ij, the terms A, 

Bi and B2 fo~ member ij represent its entire contribution to 

the flexibility matrix. If for example cijm = 1, cijn = -1 
.I 

and cijq = O, this means that the member is a part of the 

mth loop and it is traversed in the plus direction, the 

member is also a member of the nth loop but i s t r aver s ed i n 
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T7',77 

I 11 : 
,r-17 

(b) Closed Loop Containing 
One Cut 

(c) Closed Loop Containing 
One Cut 

Figure 4-5.1: Linearly Dependent Closed Loops 
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the negative direction and the member is not contained in t he 
th q loop. 

The significance of the preceding paragraph is simply 

that the matrix multiplication need be performed only once 

._for each member and then properly added to t he flexibi l i t y 

matrix and the constant vector associated with the problem. 

'!he above ideas are shown schematically in Figure 4-5 . 2 fo r 

member 5-9 of Figure 2-3. If the loops are traversed such 

that the member containing the cut is traversed i n a 

positive direction then bijm = cijm for all loops. 

Flexibility Matrix 
I I - I I I I 
lb591 = QI b592 = l l b593=-ll b594 = Q b595= - l1 

I I I I 
c591 = 0 0 ' 0 1 O I O I O 
- -- - -- --L---- I----+ - - --+-----

~592 _:_ ~ - ~--l_! __ l _ -A __ + __ o __ t--~---
c5g3=-l O I -A ! A I O I A 
- - --- ____ .J_ ___ ------+-----+-- ---
c594 = 0 0 1 0 : 0 I O I O _ _ _ _ _ . _ _ _ _ l ____ --t - · _ _ - L--- -+- - - - -
c595=-l O I -A I A I O I A 

I I I I 

Constant 
Matrix 

0 

0 

each partition of the flexibility matrix 
represents a 3x3 matrix and each partition of 
constant matrix represents a 3xl matrix _ 

member and redundants r efer t o t hose shown in 
Figure 2-3 

Figure 4-5 . 2: Contribution of Member 5- 9 to t he Flexibility 
Matrix and the Constant Matrix 



5-L. General 

CHAPTER V 

SOWTION OF PROBLEM REDUNDANT$ BY 

CARRY-OVER TECHNIQUES .. 

The set of equations formulated by equation 12a can be 

written 

or 

F11 F • • • • • • •F 12 lm S1 Z1 

F21 F • • • • • • ·r S2 Zz 
• .22 .2m • ;:: • .(13) . .. 
• • • 
• • • 
Fml F. 0 ...... ·r. 

m2 ·.. mm Sm Zm. 

[FJ [s J = [z] 
where: ~ij] = 

[s1] = 

[z1] = 

a 3x3 flexibility'"matrix which is 
physically the def1ections:at cut 

· i;due to unit causes at- ctit j 

redundant matrix at cut i 

constant vector, sum of terms 
2 and 3 of equation 12a. Physically, 
the initial displacements at cut i 
due to the basic system ~m.,ents 

41 
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5-2. Solution hI the Matrix Car!J:-Over Method 

If equation 13 is rewritten as follows 

S1 
-1 

0 
-1 -1 

F11 Z1 -F11 F12 . • -F11 F1zn 81 

S2 
-1 -1 

0 
-1 

82 F22 Z2 -F22 F21 . • -F22 F2m 
• = • + • (14) 

• • 

Sm F;.;· Zm -1 · -1 · 
0 Sm -Fmn Fml · -Funn Fm2 • . 

or in a somewhat shorter form, called here the carry-over 

form, after Tuma (1) 

[ s] = [sv] + [ c] [ s] 
where: [svJ = starting values, physically 

tpe solution of the problem 
for Si if all S j = 0, j ~ i 

the carry-over coefficient, 
physically the induced forces 
at cut i due to unit causes at 
cut j while maintaining 
compatibility at i 

Now, if the first set of values for the redundant 

Sis assumed to be SV, the second approximation is given by 

equation 14 using the first values of Son the right hand 

side, or 

[ s J ~2) = [ sv] + ~ J [ s] ~l) 

and, after n iterations 

[ s J ~n~ = [ sv] + [ c J [ s J ~n- l) (15) 



Let the last term be defined as the residual matrix, or 

[s ]<2) = 

[ s ]<3) = 

[ SV J + [ R J~l) 

[s ]~2) + [~ ][ RJ ~l) 
and after n trials 

= [s ]~2) + [ R ](2) 
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[sJ<n) = [svJ + [RJ~l) + [R ]<2> + · · · · · · +[R J<n-l) (16) 

where: [ R J<n) ;: [ C ][ R J~n-_l) 

For convergence the nth residual matrix must approach 

zero ·with n sufficiently large. 

Equation 16 represents a form of iteration used by 

Cross (9) in his moment distribution technique or Tuma (1) 

is his carry-over technique with one rather important 

difference • . With these techniques it is not necessary to 

process each set of val~es in its entirety each step of the 

way. As in the carry-over technique or moment distribution 

technique only the large residuals need be iterated 

initially. If their ca·rry-over effects are small, these 

carry-over ·effects may be accumulated and their resulting 

feedback accounted for all in one operation . 

5-3. Block Gauss-Siedel Iterative Procedure 

If equation 14 is used directly as the iterative 

procedure, then 

[s]~n~ = [ sv] + [c J[s J~n-l) (17) 
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Additionally, if each new set of values for the S matrix is 

computed from the most recent set of values available, then 

in component form, equation 17'becomes 
I . 

j·l m 

[sJJ~n+1) . [sv~ + k~ [cj~[skJ<°+l) +k·~JJ~[skt> (18) 

This form is preferable to equation 17 in that only one 

matrix Sneed be retained at a~y time. This is the block 

Gauss-Siedel process referred to by Varga (16). 

5-4. Point Gauss-Siedel Itefative Procedure 

For reference purposes, a simpler iterative technique 

might be used on equation 13. It is referred to by Varga (16) 

as the point Gauss-Siedel proce$S and is essentially identical 

to the technique of equatfon 18 except it deals with one 

equation at a time and can be written 
' 1 .. 1 

fii s~n+l~ == zi + I fik s~?+l) 
k=l 

s<n) 
k (19) 

Use of· this process in the solution of the structural 
I 

problem presented here is physically the restoration of 

continuity at a cut in only one direction rather than 

simultaneously in all directions as given by the processes 

of Para. 5-2 and 5-3. 

5~5. Convergence of the Iterative Methods 

Because of the restriction placed on the formulation .. 
of the coefficient matrix associated with the redundants 
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the following statements can be made : 

a. The coefficient matrix is the flexibility matrix 

as discussed in Para . 4-5 and is therefore real and 

symmetric . 

b. '1'he positive nature of the internal strain energy 

is sufficient assurance that the flexibility matrix is 

positive definite, see Southwell (10) or Temple (18) . 
- . 

c . Positive definiteness of the flexibility matrix is 

a necessary and sufficient condition for the convergence 

of all three of the techniques discussed in Para. 5-2, 

5-3 and 5-4 . Proofs of these are found in the references 

given in the paragraphs indicated. 

Ro general conclusions can be reached regarding which 

of the three iterative processes converges the most rapidly . 

However, while no general statement can be made regarding 

the convergence, physical interpretations favor the block 

process. That is, it seems reasonable to assume that 

simultaneous restoration of continuity in three directions 

should usually converge to the answer in a more rapid fashion 

than working with the one-dimensional counterpart. A 

similiar conclusion is reached by Faddeev and Faddeeva (17). 

For the purposes of desk calculation, the carry-over 

technique is ideally suited since the analyst can tell 

inmediately how the iteration is progression by the 

convergence of the residual matrix to zero. However, round 

off errors may accumulate or simple mistakes go uncorrected 



46 

unless frequent use is made of equation 15 to check the 

progress. Automatic computation on the other hand favors 

equation 18 as this avoids the round off problem with little 

increase in actual computation time. 



CHAPTER· VI 

APPLICATION 

6-1. Two-Bay Framework 
-

The two-bay frame shown in Figure 6-1.0 has members 
' ,. 

whose properties are given in Table 6-1. All members have 

equal EI values and all members have EI :;: GJ. 

'· 
Figure 6.-1.0: Dimensions, Loads and Redundant Locations 

Two-Bay Framework .,;, ·; .. 
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Figures 6-1.1 thru 6-1.5 illustrate the step by step 

formulation of the terms involved in the flexibility matrix 

and the constant matrix. Figure 6-1.6 represents the step 

by step formulation of the flexibility matrix. All of the 

calculations are shown to emphasize the repetitive nature 

of the calculations. Finally, the application of the carry­

over technique is shown in Figure 6-1.7. 

Table 6-1: Two-Bay Framework, Basic System Moments, 
Flexibilities and Angular Load Functions 

BS Values, Kip-feet 
Member BMijy BMijx BMjix BMjiy 

1-2 0 0 0 0 
2-3 0 0 -40 -100 
3-4 -100 -40 -140 -100 
5-6 -100 140 40 -100 
2-6 0 0 -40 100 

Near and Far End Flexibilities from Appendix B 
Member fijyy fjiyx gjiyy fjix~ gjixy fjiyy 

1-2 .3333 0 .1667 1.000 0 .3333 
2-3 .7975 -.2914 .3059 2.206S .2914 . 7975 
3-4 .3333 0 .1667 1.000 0 .3333 
5-6 .3333 0 .1667 1.000 0 .3333 
2-6 .7975 .2914 .3059 2.2069 -.2914 .7975 

Angular Load Functions, from Appendix B 
Member 'Tijy 'Tjix · _3jty .. .~ . , .... ,,. . 

1-2 0 0 0 
2-3 32.000 44.150 20.348 
3-4 0 0 0 
5-6 :-' 0 0 0 
2-6 ' 32.000 -44.150 20.348 

Note: L/EI deteted from Near and Far End Flexibilities 
and from the Apgular Load Functions. 



[A] " [8 0 0 gJH o oj[·3333 o .1661][0 -1 o o][o o 
iJ 

0 -10 0 0 0 1.000 0 0 0 0 1 0 0 
1 1 ~ -5 .1667 o .3333 o o -1 o ~ -1g 

• 0 -

a [1.ro 0 0 ] 33.333 -5.000 
-5.000 1.000 

[B1] = [:s2] = 0 since angular load functions and basic system moments equal zeJ:o 

c122·"' c121::: 1 since path around loops coincides with positive axis of member 

b122 = b121 = l 

Figure 6=1.l! 

since both redundants 1 and 2 are oriented in a positive manner 
rel~tive to member 1-2 

Equation 12a, Two-Bay Framework, Loop No. 1, Member 1-2 
(also Loop No .• 2, .Member 1-2) . 

.p,, 
\0 



r J ul O · 0 l]l l O o~[. 7975 .2914 .305~[1 LA = 0 -10· -10 20 0 0 0 .2914 2.207 -.2914 0 
0 1 1 0 0 1 0 .3059 -.2914 .7975 0 
.· 0 0 1 - -l2 • 2068 22 • 068 0 ~ 

= 22.068 656.26 -27.898 
0 ~27.898 2.207 

o o 0~[1 o 0 1 0 .o -10 
0 0 1 0 -10 

. 0 20 11 

. [1 0 0 
2gJU 

0 o ][· 7975 ,2914 .3o:;:J[ 1 0 0 Oj[ OJ [:100,3j [B1] = g -1~ -1~ 0 0 .2914 2.207 -.2914 0 0 1 0 0 =.-770.5 
1 0 .3059 -.2914 .7975 0 0 0 1 -iig -59.14 0 1 .•. -

· . ll O O 1][1 0 0][32.000~ [ 52.348J ~2] = g -1~ ·it 2g . g 0 0 44.150: = · -34.540 
1 0 20.348 44.150 
0 1 .. . 

since path around loop coiQ.cides with positive member axis 
" ,. . , . , . . "- ~r - -~ , 0 231 = 1 

'b231 = 1 sin9e member contains redundant 1 

b232 = 0 since member moments are not functions of redundant 2 

Figure 6-1.2: Equation 12a, Two-Bay Framework, Loop No. 1, Member 2-3 

IJ1 
0 



~] = [2g -1~ 0 lJ[° 0 OJ3333 0 . .1667][ 0 1 0 ~][1 20 
IJ 

0 20. 1 0 0 0 1.000 0 0 0 0 -1 0 -10 
1 0 0 0 1 .1667 0 .3333 0 0 1 0 0 0 

0 -1 0 . · 1 20 

[ 1.000 20.000 
O J = 20.00 433.33 -5.000 

0 -5.000 1.000 := .·;., ,:··: ~- <; 

[ 1 o · o 1][0 o 0][·3333 r B1J = 20 -10 0 20 1 0 ._ 0 0 
[ o 1 1 o o o 1 · .1667 

0 -1 0 

0 
1.000 

0 
• 16. 6_ 7][ 0 1 0 OJ[-100~ t-100. 00~ ,Q O O O -1 -40 = -1633.33 
.3333 0 0 1 0 -140 -90.00 · -100 . 

[:s2]={~ ·since,.,all angular load functions are equal to zero 
- -

C341 = 1 

b341 = 1 

b342 = 0 

since path around loop coincides with positive member axis 

since redundant 1 is oriented positively relative to member 3-4 

s,ince member moments{;ate-·not'iiunctions of li'edundant 2 

figure 6-1.3,: Equation 12a, Two-Bay Framework, Loop Ho •. 1, Member 3-4 

V1 
...... 



[A]= 0 -10 -10 -20 0 0 0 -.2914 2.207 [ l O O lJ[-1 0 OJ[ .7975 -.2914 
0 1 1 0 0 -1 0 .3059 .2914 

0 0 -1 

[ 
2.2068 -22.068 0 l 

= .:.22 ."068 6S6. 26 -27. 898 
0 -27.898 2.207 

.3059][-1 0 0 OJ[l O .2914 0 0 -1 0 0 -10 

.7975 0 0 0 -1 0 -10 
1 -20 !] 

[B~ = 0 -10 -10 ~20 0 0 0 -.2914 2.207 [ 1 0 0 lJ[-1 0 OJ[ . 7975 -.2914 
. ~ 0 1 1 0 0 -1 0 .3059 .2914 

0 0 -1 

.3059J[-1 0 0 OJ[ OJ [ 110.34~ .2914 0 0 -1 0 0 = -770.50 

.7975 0 0 0 -1 -40 -59.14 
. 100 

[ 1 0 0 lJ[-1 0 OJ[ 32.000] l-52.348~ [Bzl = 0 -10 -10 -20 0 0 0 -44.150 = -34.540 
. j O 1 1 0 0 -1 0 20.348 44.150 
. 0 0 -1 · · •, · · 

c262 = 1 since path around loop coincides with positive member axis 
·~ ·.,. 

b261 = 0 since member moments are not functions of redundant 1 

b262 = 1 since redundant is contained in member 2-6 

Fi gure G~l .4 : Equation 12a, Two-Bay Framework, Loop No. 2, Member 2-6 

\J1 
N 



[A] = [-28 0 0 l][ 0 0 0 ][ .3333 -0 .1667J[ 0 -1 0 01[° -20 
!] 0 -10 -20 -1 0 0 0 1.000 0 0 0 0 1 0 0 

1 1 0 0 0 -1 .1667 0 .3333 0 0 -1 0 0 -10 
0 1 0 . . . l -20 

[ LOOOO -20.000 -s.goo] = -200000 433.33 
-5.000 1.000 

[ BJ = [-28 0 0 lJ[ 0 0 0][·3333 0 .16610 -1 0 OllOi] [-100.0] 0 -10 -20 -1 0 0 0 l. 000 0 0 0 0 1 140 = 1633.33 
1 1 0 0 0 -1 .1667 0 .3333 0 0 -1 0 40 90.00 

0 1 0 -100 

[ Bz] = [o] since all angular load functions are equal to zero 

cs62 = -1 since path around loop is opposite positive sense of member axis 

b56l = 0 since member moments are not functions of redundant 1 

8562 = -1 .since redundants 2 are oriented in negative sense relative to 
::member 5-6 · .·, ·, ··· 

Figure 6-1.5: ·Equation 12a, Two-Bay Framewotk, Loop No. 2, Member 5-6 

VI 
v.> 



(a) After member 1-2, Loop No. 1, is added to a 6x6 and 6xl null matrix 
- - - - -

1.000 0 0 1.000 0 0 8 11 0 
0 33.333 -5.000 0 33.333 -5.000 s12 0 
0 -5.000 1.000 0 -5.000 1.000 s13 = 0 
0 0 0 0 0 0 8 21 0 
0 0 0 0 0 0 s22 0 
0 0 0 0 0 0 8 23 0 

'- - ~ - .~ -

(b) After member 2- 3, Loop No. 1, is added to (a) 
- - - - -3.2068 22.068 0 1.000 0 0 8 11 57.99 

22.068 689.59 -32.898 0 33.333 -5.000 s12 805.04 
0 -32.898 3.207 0 -5.000 1.000 8 13 = 14.99 
0 0 0 0 0 0 8 21 0 
0 0 0 0 0 0 8 22 0 
0 0 0 0 0 0 8 23 0 

~ - .... - ,_ -

(c) After member 3~4, Loop No. 1, is added to (b) 
- - - - - -
4 •. 2068 t,-2. 06.8 0 1.000 0 0 8 11 157.99 
42'.068 1122.92 -37.898 0 33.333 -5.000 8 12 2438.37 

0 -37.898 3.207 0 -5.000 1.000 8 13 = 104.99 
0 0 0 0 0 0 8 21 0 
0 0 0 0 0 0 8 22 0 
0 0 0 0 0 0 8 23 0 ,_ - - ~ -

Figure 6-1.6: Evolution of Flexibility Matrix, Member by Member., Two-Bay Framework 

Vt 
.i::-. 



(d) After member 1-2, Loop No. 2, is added to (c) 

4.2068 42.068 0 1.000 0 0 5 11 157.99 
42.068 1122. 92 -37.898 0 33.333 -5.000 8 12 2438.37 

0 -37.898 3.207 0 -5.000 1.000 8 13 104.99 
1.000 0 0 1.000 0 0 = 0 8 21 0 33.333 -5.000 0 33.333 -5 .000 5 22 0 

0 -5.000 1.000 0 -5.000 1.000 5 23 0 

(e) After member 2-6, Loop No. 2, is added to (d) 
-
4.2068 42.068 0 1.000 0 0 8 11 1~7.9.9 
42.068 1122.92 -37.898 0 33.333 -5.000 8 12 2438.37 

0 -37.898 3.207 0 -5.000 1.000 5 13 = 104.99 
1.000 0 0 3.2068 -22.068 0 5 21 -57.99 

0 33.333 ~5.ooo -22.068 689.59 -32.898 5 22 805.04 
0 -5.000 1.000 0 -32.898 3.207 8 23 14.99 -

(f) After memb.er 5-6, Loop No. 2, is added to (e) 

4.2068 42.068 0 1.000 0 0 5 11 157.99 
42.068 1122.92 · -37.898 0 33.333 -5.000 5 12 2438.37 

0 -37.898 3.207 0 -5.000 1.000 8 13 = 104.99 
1.000 0 0 4.2068 -42.068 0 5 21 -157.99 

0 33.333 -5.000 -42.068 1122.92 -37.898 8 22 2438.37 
0 -5.000 1.000 0 -37.898 3.207 8 23 104.99 

Figure 6-1.6: Continued 

U1 
U1 



Premultiplying each set of 3 equations by the inverse of the 3x3 matrix on the 
diagonal yields, from Figure 6-1.6, 

1 0 0 .51483 .32443 -.11107 s11 
0 1 0 -.02771 -.03244 
0 0 1 -.24963 -1.4808 

.51483 -.32443 .11107 1 0 

.02771 -.03244 .01111 0 1 

.24963 -1.4808 .33776 0 0 
In carry-over fonn, _ 

~
s1~ ll2.44~ [-.51483 -.32443 .11107J[s21~ s12 = 5.00 + .02771 .03244 -.01111 s22 
s13 70.00_ _ .24963 , l.4808 - .33776 s23 

.01111 s12 

.33776 s13 = 0 s21 
0 s22 
1 5 23 

[sJ = 

[s2J = 

[svJ + 

[sv2] + l-s2~ 112.44 l=.51483 .32443 ._-: .11107][s11J 
s22 = l 5 .00 + - .02771 .03244 - .01111 s 12 
s23 70.00 -.24963 1.4808 -.33776 s13 

Which, when solved by the carry-over technique yield, 

-12.44 
5.00 

70.00 
12.44 
5.00 

70.00 

[c1aj~aj 

[c2J[s1J 
(afttr 2 cyJles) (after 6) lolution) Sli -12.44 -.25 -1.50 -14.14 -15.01 _QlS.O 

s12 = 5.00 + -.27 + .14 = 4.87 = •·•••• = 4.89 4.90 [~J [ 70,0~ c1{[-13.1J c1il ud] 60.86 r 60.5~ 60.5~ 

[ x~ Cz1 [ x~ Cz1 [ ~ 12.44 ~ .25 ~ 1.50 -
5 • 00 + - • 2 7 + • 14 = 

70.00 -13.14 4.10 
[ 15 .06~ 4.90 

60.56 
·[s2~ s22 = 
s23 

[ 14 . l~ [ 15 . 0 ~ 4.87 = · • • • · • = 4.89 
60.86 60.52 

.,,. Cfz indicates carry-over operation 

figure 6=1. 7: Solution of Two Bay Framework by the Matrix Carry-Over Technique 
VI 

°' 



,;, Once the redundants at the cuts are evaluated, 

equation 4b can be used in the following form to obtain 

the internal redundants for each member 

1 Xoi 0 BMijy 

[M1j]. 
0 -Yoi 1 

~ijls~ bij2s~ 
BMj_jx = + + 

0 ·Yoj 1 BMjix 

1 Xoj 0 BMjiy 
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(4b) 

for member 1-2 this becomes, from Table 6-1, Figure 6-1.1.and 
t 

Figure 6-1.7 

1 0 0 0 0 
-15 .06 15.06 

[M12] 
0 0 1 0 121.12 

:;: 4.90 + 4.90 + = 
0 -10 1 0 2.3.12 

60.56 60.56 
1 0 0 0 0 

since this is in the basic reference system it should 

probably be rotated to the member reference frame, o; 

[x!j] = [ w • il T [ M. 11 Ol.J l.J 
- -

m-
Xl2y 0 =l . b 0 0 ... 121.12 
·m 
X21x. = 0 0 0 1 121.12 - 0 

m 
Xz1y 0 0 =l 0 23.12 -23.12 

0 

In this'case, the summation of the Si matrices is 
I 

obtained prior to multiplication by thew and t matrices . 
... :\ 

This operation is possible because all redundants are 

referenced ~o the origin of the basic coordinate system. 
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6-2. Sun:mary of Problems 

In the appendix the final results of sixteen different 

problems are included along with an analysis of the 

convergence of the individual redundants at the cuts as well 

as an analysis of the convergence of the individual member 

redundants. 

To analyse the variation of the iterated answers, the 

percentage deviation from the basis value is computed as 

follows: 

% Deviation of U = U U*~ 100 v 
.where: v = the absolute value of the 

maximum basis value of all 
quantities in the problem 

u = value being investigated 

U* = basis value of U 

In the case of redundants at the c~ts, the values 

are mixed values regarding the nature of their units. That 

is, some values are shears and some moments. For this 

reason, whenever a shear value is encountered it is 

multiplied by the absolute value of the largest coordinate 

used in the problem prior to its comparison by the above 

formula. 

Problem 1 is the problem used as a sample problem 

in Para. 6-1. Problem 2 is a problem solved by Diwan (5). 

Problems 3 thru 14 all i nvolve a 2 bay, 3 s tory framewor k 



with syumetrical, unsyumetrical and anti-symmetrical 

loadings as well as a variation of relative torsional 

to bending stiffnesses and two different choices of 

redundants. Problem 15 is an extension of problem 3 to 

three bays and three stories . Problem 16 is a hexagonal 

framework symmetrically loaded. 
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Table 6-2.1 contains a summary of the significant data 

relative to the convergence of the carry-over process that 

is contained in the Appendix A. Figure 6-2 illustrates 

graphically the nature of the convergence for problem 3. 

A considerable amount of additional data relative to the 

problems but not specifically associated with the convergence 

of the carry-over process is also included in Appendix A. 

Some general details involving the nature of the input and 

output data as well as the overall nature of the computer 

program used to obtain the solutions shown is included in 

Appendix C. 

Table 6-2.2 shows a comparison in the speed of 

convergence of the point vs. the block Gauss - Siedel 

techniques for problems no. 1, 2 and 3. 
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Prob. Geometry, Loads, ximum% Error* 
and Redundants EI/GJ S Values X Values 

trror C cle's Er' or C cles 

1 fl?. 1.0 0.0 6 0.0 6 

f i t t , see 
2 L7~ App. 0.01 7 0.01 7 

A 

3 1.0 1.54 20 0.35 20 

4 2.0 0.83 20 0 .21 20 

5 0.5 3.91 20 0.70 20 

6 
..?"-.,..,,.. 

1.0 2.29 50 1.02 so 
I 

'! 

7 1.0 0.66 20 0.13 20 

8 2.0 0.40 20 0.09 20 

9 0.5 1.51 20 0.33 20 

10 1.0 1.36 so 0.27 so 

*for calculation of error see Para. 6-2 

Table 6-2.1 : Sum:nary of Problem Results 
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Prob. Geometry, Loads, Maximum% Errors* 
and Redundants EI/GJ s v x 

Error c 

11 1.0 0.18 20 0.07 20 

12 2.0 0.12 20 0.04 20 

13 0.5 .0. 96 20 0 . 49 20 

14 1.0 0.27 50 0.24 50 

15 1.0 0.72 20 0 . 50 20 

~ 
16 c!z~~ ,.. 1.0 0 . 01 10 0.01 10 

* for calculation of error see Para. 6- 2 

Table 6- 2 . 1 : (continued) 
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see Appendlx A, Table A-3.1 
- for-tabulation of 

values shown 
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Figure 6-2: Convergence of Some Typical Redundant, 
Matrix Elements of Problem Bo. 3 __ 



Table 6-2.2: Comparison of Convergence Rates 
of Block vs •.. Point Gauss-Siedel Techniques 
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Prob. Iterative Iteration No. where All Values Changed 
Ro. 

1 

2 

3 

ProceduX'e Less Than the Indicated Percentage 
During the Previous Cycle* 

.. 
.01% .001% .0001% 

point - - 41 
block 5 6 8 

point - - 47 
block 7 9 12 

point 111 174 243 
block 31 41 49 

*Percentages are computed individually for each 
-unknown using its own most recent value as a 
basis of comparison. 

. -.--,. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7-1. Summary 

The following principal formulas were developed for the 

solution of the problem stated in Para. 1-1. Briefly, the 

internal redundant moments in each member are given by 

equation 4b, as follow~:· 

Then the flexibility matrix, F, was formulated from 

equatioJ.?, 12a 

(4b) 

Finally, the solution was obtained by iterating the 

flexibility matrix in a mann~r described as a block Gauss­

Siedel process~ Physically, this process represented a 

systematic restoration of the continuity at each cut in a 

cyclic manner until continuity of the elastic curve was 

achieved. It is therefore an extension of the one-dimensional 

carry-over of Tuma (1) and for that reason was termed the 
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matrix carry-over technique. This iterative procedure was 

given by 

i-1 m 
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+ L [ ciJ[ sk] (n+ l) + L [ciJ [sk] (n) (18) 
k=l k=i+l 

Equation 4b was then used to obtain the redundant moments in 

each member. 

7-2. Conclusions 

1. The matrix carry-over technique was found to 

converge in a rapid manner. For the class of problems 

investigated 1 ~he member moments converged to within 0.70% 

after 20 cycles of iteration if the redundants were chosen 
' 

such as to make the individual trees relatively compact. 

Problems 1, 2 and 3 indicated the convergence to be 

approximately 4 times faster than the point Gauss-Siedel 

process. 

2. · Fo.rmulation pf the problem by equation 12a proved 

to be relatively simple. By defining the redundants in each 

member in the same manner as the equivalent elastic weights, 

the terms of equation 12a become highly repetitious. Use of 

the origin of the basic ~oordinate system as a reference for 

redundants at the cuts and deflection matrix at the cuts 

produced sim~liar simplifications. As can.be seen from 

Figures 6-1.1 thru 6-1.5, the only quantities involved in 

equation 12a were the coordinates, flexibility coefficients 

and statically determinate loads for the individual member. 
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A general computer program was developed to solve any type 

of structure satisfying the statement of the problem. This 

includes problems having a. large var.iety of different lin•ar 

graphs. Samuelson (19) ~as able to program.·problems subject 

to tne requirement that they have the same linear graph. 

lo Choices of compact trees indicated better or faster . . . 

rates of convergence than tre~s fo~ed in a l~ss compact 

manner. This· is indicated by a comp.arison of problems 3, · 7 . . 

and 11 with problems 6, io·and 14. The latter group of 

problems was identical with the first except for the choice 

·· of redundant cuts. 

4. Since the formulation resulted in a minim.um. set of' 

simultaneous equations, the method can be applied to a 

structure having stiffness variations within each member by 

replacing the members with a number of straight segments of 

constant .. s,ec.tion. This would be accoq,lisped with .no 

.inc~ease in the number of simultaneQJJS equations. 

Both the technique of formulation and its accompanying· 

simplifications as well as the use of the multi-dimensional 

carry-over technique are believed to be original with this' 

investigation. 

7 ... 3. Extensio.ns of the Technique 

Probably the most important result of the problem 

studied in this work is actually a by-product. This is the 

formulation procedure which produces a minimum set of 

simulta..neous equations o fllerefore, four immediate extensions 

should be investigated: 
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1. Produce the analogous technique for the solution 

of planar structures with loads in the plane. This extension 

is in a one-to-one correspondence with the techniques used 

for the problem considered here. The only differences are 

the terms within the t and w matrices and the flexibility 

factors for the individual members. 

2. Investigate the errors introduced by replacing 

curved members or members having a varying stiffness with 

short segments of constant section properties. This 

procedure would eliminate the need of a large number of 

tables or formulas for the proper evaluation of member 

flexibilities. 

3. Extend the technique to a three dimensional 

structure with arbitrary loading. This would utilize the 

same logical process involved in determining the bij and cij 

factors but would deal with all 6 internal force and moment 

elements at each redundant cut. 

4. Investigate the technique of introducing hinges 

and other discontinuities into the structure. A 'simple' 

solution to this problem would greatly increase the value of 

all of the methods descri bed. 
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APPENDIX A 

PROBLEM SOLUTIONS AND ERROR ANALYSIS OF CONVERGENCE 

The following pages contain the results of sixteen 

different problems formulated and solved by the iterative 

technique described in this thesis. All results are shown 

in a similiar fashion, that is, Figure A-1, Table A-1.1 and 

Table A-1.2 sumnarize problem l; Figure A-2, Table A-2.1 and 

Table A-2.2 sumnarize problem 2; etc. A summary of all of 

these problems in contained in Table 6-2.1. 

In all instances, the figure associated with the 

problem contains the problem dimensions, loads, member 

properties and a sketch showing the variation of bending 

moments throughout the structure. Wherever possible, 

bending moments after 1, 5, 10 or 20 cycles of iteration are 

also shown to indicate the regularity of the convergence. 

For brevity, a similiar sketch of torsional moments is not 

shown. The convergence of the torsional moments are similiar 

to those shown for bending moments. 

Tables A-1.1, A-2.1, etc. contain an analysis of the 

convergence of the redundant matrix for each problem. 

Tables A-1.2, A-2.2, etc. contain an analysis of the 

convergence of the actual member moments and torsions 
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computed from. the redundant matrices at each indicated cycle 

of iteration. 

Percentage deviation is always computed as discussed in 

Para. 6 .. 2. 



MOMENT . DIAGRAMS 
(ploteed on compression side) 

-.~ Correct Values 
------ After 1 Cycle 
· Gr' Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI=GJ 

121.12 ~Ip-feet 

LOADS AND DIMENSIONS 
z 

Figure A· l: Problem 1, Member Properties, Dimensions, 
Loads, and Comparison of Membe~ Moments after 1 Cycle 
of Iteration with Correct Values 
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s 
1 
l 
1 
1 
2 
2 
2 

TABI..E M·•l el 
PERGENlAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM l 

AFTiR l, 2• 3, 4• 5• 6, 8 AND ~O CYCLES OF ITERAT10N I . . 

J l 2 3 
1 2·67 .aa .23 
2 1.96 -.61 ""e21 
3 9·62 .41 '"'e04 
1 "'-2.41 ..... 51 ---.12 
2 ... 3. 55 ;....60 -.12 
3 ... 3.77 -.40 ""'•06 

lTERftTlON 
4· 5 

.06 .01 
-.06 ~.01 
'"'.02 .00 
--.03 ..... ,n 
-.os .... 01 
-.01 .eo 

6 
.oo 
.oo 
.oo 
.oo 
.oo 
.oo 

8 
.oo 
.oo 
oOO 
.oo 
.oo 
.oo 

10 
.oo, 
.oo 
.oo 
.oo 
.oo 
.oo 

BASIS** 
· K,K•FEET 

~15.06 
4.90 

· 60.56 
15.06 
4.90 

60.56 

**BASIS.IN THIS PROijLEM TAKEN AFTER 13 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED bESS THAN oOOOOl PERCENT DURING LAST ITERATION• 

......i 
(.,.) 



TABLE A-1.2 
Pf2RC~NTJlGE DEVIATION OF·MOMENTS FROM BASIS, PROBLEM lt 

AFTER 5 AND 6CYCLES OF ITERATION 

MEMBER* ITERATION BASIS** 
5 6 KIP-FEET 

1 2 N .01 .oo ~121.12 
F .ao .oo ~23.e, 
T J01 .oo .oo 

2 • N .q1 ~ob ""li.06 
F . •00 •00 7+6·~9 
T • QO • ~p "1"28.47 

2 6 N • 0 l .i • ~0 1"" 15 • 0 6 
F • 00 • QO ~l6e99 
T .oo .op · 28,47 

3 4 N .oo .o~ -2.a.47 
F •00 .QO ...,79.44 
T .oo .qo ·. Hi>.99 

~ f N ~op .ao ~19.44 
F .oo .oo -2~~47 
, .Qo .Qo ~16.t9 

PERCENTAGE,.. lOOXlVALUE..,.BASIS VALUEl/MAX .. BASIS VALUE 
* Nt F AND T REFER TO NEAR; FAR AND TORSIONAL MOMENTS 
** BASIS\ MOMENTS ARE RESULTS AFTER; 13 CYCLES 
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MOMENT DI.A.GRAMS 
(plotted on compression side) 

40.43 
kip-tut 

MEMBER PROPERTIES 
Member EI EI/GJ 

1-2 1.3333 1.0 
2~3 1.2000 1.2 
3-4 1.3333 1.s 
3-7 1.3333 1.0 
s~1 .8333 2.0 
5-6 1.0000 1.0 

-· Correct Values 
----- After 1 Cycle 
(iJ Location of Redundant 

LOADS AND DIMENSIONS 

x 
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Figure A-2: Problem 2, Diwan' s Problem, Member Properties, 
Dimensions, Loads and Comparison of Member Moments after 
1 Cycle of Iteration with Correct Values 



TABLE A ... 2.1 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 2 

AFTER l~ z- 3, 4• 5• 6, 9 AND 12 CYCLES OF ITERATION 

s ITERATION BASIS** 
I () 1 2 3 4 5 7 9 12 K,K-FEET 
1 1 le68 .24 006 .02 .01 .oo .oo .oo .28 
l 2 -2 .19 .20 .10 .oa 003 .01 .oo .oo -5.92 
l 3 .. 3.a3 -.22 .04 .03 .01 .oo .oo .oo -45.09 
2 1 1.35 .40 .14 e06 .02 .oo .oo .oo -6.65 
2 2 -1.64 .... 40 .... 13 -.os -.02 .oo .oo .oo .76 
2 3 -1.36 ..... 20 -.05 -.02 -.01 .oo .oo .oo 10.48 

** BASIS IN THIS PROBLEM TAKEN AFTER 17 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN .00001 PERCENT DURING LAST ITERATION. 

-..J 
CJ' 
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TABLE A-2.2 
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 2, 

AFTER 5 AND 7 CYCLES OF ITERATION 

MEMBER* ITERATION BASIS** 
5 7 KIP~FEET 

l 2 N ~.02 .oo 45.09 
F .01 .OO -2.27 
T .01 .oo .28 

2 a N .01 .oo .ze ~ 

F .04 .01 .76./ 
/ 

T -~01 .oo 2.27~ 
3 4 N -~02 .QO -2.16 

; •03 .01 40.43 
T ~.01 .OO ~2.86 . 

/ 3 7 N • O 2 • 00 ... 2 • 11 v 

F- .01 .oo ·.92 / 
T .01 eOO 4.43v 

5 6 N ~QO .OO 6.70 
F ~~01 .oo 11.24 
T .oo .oo -3.95 

5 7 N .Oo .QO 7.18 
F • 02 • po 3. 39 
T • 00 • 00 2 • 99 

PERCENTAGE .: lOOX (VALUE-B.AS I 5 VALUE l /MAX.BASTS VALUE 
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 
** BASIS MOMENTS ARE RESULTS AFTER 17 CYCLES 



Correct Values 
After 5 Cycles 
After 10 Cycles 
Location of Reµundant 

MEMBER PROPERTIES 

All members have equal EI . 
All members have EI= GJ 
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MOMENT DIAGRAMS 
(plotted on the compression side) 

!55.88 kip-fttt 

LOADS AND DIMENSIONS 
I 

Figure A-3: Problem 3, Member Properties, Dimensions ~ 
Loads, and Comparison of Member Moments after 5 and 10 
Cycles of Iteration with Correct Values 
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i 'i 
i 
l 
1 
2 
a 
2 
3 
3 
3 
4 
4 
4 
5 
5 
fj 

(:, 

6 
t, 

TABL.E Ai...3•1 
PERCENTAGE DEVIATION OF REDlJNIDANT VECTOR FROM BASIS• PROBLEM 3 

AFiER 111 2, 1 3~ 4• 5, lGl, 20 AND 30 CYGLES OF ITERATION 

ITERATION BASIS** 
..) 1 2 3 4 5 10 20 30 KtK"'-FEET 
i ""7•®9 1.4e 11.53 11•74 10.5@ 4.04 .. 46 .©4 15.94 
2 2Hhl2 40.77 36.38 30.-84 25.63 8.87 • 78 .03 2.03 
3 58012 42;,,32 34,,92 28.90 23 .. 73 7,.99 .61 .Ql 33.84 
l 21>38 9 .. 41 9.66 8.66 7.53 3.139 .58 .GT 15.94 
2 ful3~54 ~21 .. 11 ~21.79 •19 .. 27 ~17.49 ...,9.11 -1.54 - .. 18 -2.,03 
3 ~11196 ~17.99 •1a.43 ~11.13 -16.13 .... 8,62 ""le49 -.1s -:a3.84 
1 ~11~13 ~13.,47 ~13.31 ~11.1, ·-9.82 -3.38 .:....33 -.()2 7.23 
2 ~52,53 -45.43 ~37.64 -31.83 ~24 .. 96 -?.89 """'• 57 ..... G) 1 .12 
3 ~46•97 -aa.;9 ~31.1; -2s.j2 -20.45 -6.39 -.43 .oe 10.86 
1 ""l2ia99 ""'1@.70 '""9oG3 A7.63 -6.50 -3.07 -·'+9 -.06 7o23 
2 i20~44 ·2311©6 2©o96 18~95 16 .. 96 .. 8•61 :1.43 .16 "".72 
3 18•83 i8c6l 17•68 3:6628 14.~9 7•5i 1.24 .14 ""10 • 86 
1 .. · .,93 ""e24 ""o 94 ""1.1$ ... 1.11 ...... 66 -.11 -.Ql 1.55 
2 '"·2 .. 84 -3 .. 68 -3.14 ..,.2 0 7:i -2~48 -1.43 -.25 -.03 •. 02 
3 8 5e01 ... 3 • .26 ·2.78 -2.so -2 .. 25 -1.oa ""'• 15 -.01 2.36 
1 ""3e 79 .J&.2 .. 92 -2~.Q9 .,_ l. 51 -1.15 =.49 ..... QB -.01 1.55 
2 7.,39 4.,97 3el8 2.26 le79 .96 .19 .02 "'o02 
3 l<i>68 1 .. 68 lo63 1,55 1.46 .se .17 • G)2 -2.36 

'!Ht BASIS IN THIS PROBLEM TAKEN AFTER 116 CYCLES OF ITERATION. REPRESENTS 
VALU WH~CH CHANGED LESS THAN .,OOO©l PERCENT DURING LAST ITERATION. 

-...J 
\.0 
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TABLE A-3.2 
PERCENTAG.EOEVlATION OF-MOMENTS FROM BASTS, PijOBLEM 3, 

AFTER 5, 10, 20AND 30 CYCLES OF 1TERATlON, 

MEMElER* ITERATION 
5 10 20 30 

1: 2 N -3.99 -1~13 ~.04 .01 
F 6 • 36 2 • 4-5 • 28 • 0 2 
T -1.JS -.59 -.10 -.01 

l 4 N 1.15 .59 .10 .01 
F -4.02 -1.20 -.06 .OJ 
T -~.99 -1.13 -.04 .~o 

2 3 N 4 • 5 6 2 • 17 • 35 • 0 4 
F -2.so -1.s1 -.21 -.oi 
T eE32 .30 .03 .oo 

2 5 N ~l.98 -.89 -.13 -~01 
F '6e71 2.74 t34 .0$ 
T ~l.80 -.27 007 .01 

3 6 N f.82 .30 .Q3 .ot 
F -ZeVl -1.§4 -.28 -.Q3 
r 2.so 1.i1 .21 .os 

4 5 N 4.13 1.14 003 -.01 
F .-5i95 -2.04 -.20 -.01 
T -2.fl ~o69 -.ea .OO 

4 7 N "l.71 -.51 -~03 .oo 
F -i.js -011 -.01 .oQ 
T ~.14 .01 •oOl .60 

5 6 N ..... 3.94 -1.86 -.30 -.03 
F z.91 h6l .28 .03 
T 2o05 le07 tlP .oi 

5 8 N 2 • 37 • 99 • 13 • 01 
F ?•61 le29 .19 .02 
T :.21 -.G9 ~o~R oQO 

6 9 M -.e,9 -.4a -.10 .... 01 
F -·76 -·5t -;f3 -.02 
T - 0 41 -.li -.6i ~09 

1 8 N •zt .18 . d0J obC 
F -.11 -·40 -.q7 •oOl 
T -ii6 -o$7 -ol4 eOO 

1 10 N •e99 - .. 14 -.¢3 -Jo 
F ··62 ~.25 -~02 .O-O 
T '•~$ ·lB ,ba •dO 

~ 9 N -.61 -.30 -:ci~ -.qi· 
P .oa .oi .02 .oo 
r · • s2 • 34 • oe · • oo 

~ 11 N · 1. 2~ • 5~ .. 09 ~ 01 
f .6i .49 .. 07 .01 
T 023 ,dl .o© •. QO 

9 12 N -.z4 -.24 -.06 -~01 
F .Ol -.14 -.Q5 -~01 
T -.44 -.20 -.03 .. ao 

PERCENTAGE= 100XtVALUE-6ASIS VALUE)/MA.Xe8ASIS 
* Nt F AND T REFER TO NEAR1 FAR AND TORSIONAL 
*-* BASIS MOMENTS ARE RESULTS AFTER 100 CYCLES 

BASIS** 
KIP-FEET 

· .... 4.34 
· 15.94 

3·.42 
· -3.4,2 
-l>le56 

... 4.3,4 
15.94 
-i+.3A 
-3.42 

$e84 
-22e88 .. 

".oo 
... 3.42 

-lle56 
4-~'+ 
.• (!)$ 
7.23 
~·61:? 

·-1 t.ai 
=3(). 96 
-4.32 
1.23 

-.03 
-3.65 

-15.5,1 
-36.09 

•..•. oo 
-17.21 
-30.96 

4.32 
1.ls 
+ ·-~-·~ 2.ia 

-33e23 
=47e06 -2.,s 

·i .. ,? 
1.;3e 

=Z.28 
=3J.t3 
=sf.a~ 

.. ·. ·00 
-33 .,,23 
='47 • 06 

2.93 
VALUE 
MOMENTS 



3 

- EI/GJ - 1.0 
----- EI/GJ = 2 .O 
-·-·- EI/GJ = 0. 5 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI ~ 2GJ 

MOMENT DIAGRAMS . 
(plottea on compression side) 

55.88 kip-feet 

LOADS AND DIMENSIONS 
. z 

Figure A-4: Problem 4, Member Properties, Dimensions, 
Loads and Comparison of Member Moments for EI/GJ 
Variation of .5, LO and 2.0 
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TABLE A'-4•1 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS• PROBLEM 4 

AFTER 19 2, 3, 4, 5, 10, 20 AND 30 CYCLES OF ITERATION 

s ITERATION BASIS** 
1 .J l 2 3 4 5 10 20 30 K,K-FEET 
1 l -21.74 ,;.7e93 ""1.34 1 .. 83 3 .. 16 2.33 .38 .06 . 181)74 
1 2 ""11168 11 .. 18 11.53 10.,63 9 .. 52 4.44 .10 .10 2.21 
1 3 27035 14 .. 11 1le75 10.25 8e92 4.01 .63 .09 35075 
2 1 -9e98 -.,33 2&71 3.65 3.70 1.so .30 .04 18. 74 
2 2 4·85 "-7 .. 01 -9 .. 13 -9 .. 26 -8.65 !-4.17 -.10 -.10 -2.,21 
2 3 ""'e03 ""'7.64 "'.'"8e9i -8 .. 84 -8 .. 20 -3 .95. -.66 -.10 -35a75 
3 l ""8·09 '"'6. 53 "C"6e54 =6 .. 38 -5e92 --2 • 77 -.43 -.06 8,. 15 
3 2 -38.80 =27.82 =20e72 =16.41 -13.45 -s.41 -.83 -.12 e76 
3 3 -27 .. 70 ~19,.04 -14 .. 51 -11.66 -9.63 -3.93 -.60 -·09 10.oa 
4 1 ... 13. 39 -9.89 =7 .. 95 =6.51 -5.36 -2.01 '""o33 -.05 8015 
4 2 u,.67 20.71 16 .. 88 14.08 11.82 4.89 .so .12 -.76 
4 3 15e84 13.71 11.90 10.28 8.82 3.78 062 .09 -10$08 
5 1 1 .. a1 2 .. 11 le56 1.04 .64 ''+ o 03 -.02 .oo 1.68 
5· 2 • 18 o 70 1.10 1.13 .96 .15 ""'o0l .oo .. 04 
5 3 · oi4l L,21 .78 · .46 026 ..,. 06 -.02 .oo 1.54 
6 1 -l .. 99 =oi81 """•40 -.28 ""'• 25 ..,...11 -.03 .oo 1.68 
6 2 3i,67 1.36 .18 ""•16 ~.17 .09 .03 .oo '"",:i04 
6 3 ""lo40 =1.06 ":'"•62 =.29 -c07 • is 003 .oo '.""1a54 

** BASIS IN THIS PROBLEM TAKEN AFTER 42 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN .. 001 PERCENT DURING LAST ITERATJO~. 

00 
N 
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TABLE A-4.2 
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 4, 

· AFTER 5, 10 ANO 20 CYCLES OF lTERATION 

MEMBER* JTERATION 
5 10 20 

1 2 N -2,05 ~.40 ••05 
F 2.01 1.48 .21 
T ~.39 -.21 ••04 

1 4 N e39 e27 •04 
F '""l.65 ..... ,6 ..... 09 
T -2.os -.40 --os 

2 3 N 2 • 37 1. J;4 · • 16 
F -1.B2 -.62 -.ol 
T .29 .· .14 .02 

2 5 N -.67 ~-41 -.06 
F 3.21 1•40 .20 
T .36 -.34 -.01 

3 6 N · .29 •14 •02 
F -1.56 -.74 -.11 
T 1.~j •62 ·09 

4 5 N le96 .53 •07 
F •3.19 -1.1~ -.24 
T -.42 ~.21 ~.03 

4 7 N -li22 -.46 -.06 
F -.38 ~.25 ~104 
T ~.09 .l~ .02 

5 6 N -3.44 -1.31 -.1~ 
F 1.61 .75 ell 
T .60 .33 .o5 

5 8 N 2.18 .87 •12 
F .66 .s1 .oa 
T • 71 • 11 .01 

6 9 N -.96 -.41 -·06 
F -.28 -.26 -.04 
T -.29 ~.14 -.02 

1 8 N .oo -.oa -.01 
F .42 -.01 -.01 
T -.04 -.07 -.01 

7 10 N =•34 -.18 -.03 
P .10 ~.ei eOO 
T -.09 '•05 •Ol 

8 9 N -.16 -•ll -.02 
F -.zs ~.07 ~.oi 
T -.01 · .07 · .01 

8 11 ~ .63 .37 ·06 
F -.65 .03 .01 

BASIS** 
KIP~FEET 

· .,.3 .36 
18.76 
. 2.60 
... 2.60 

,...1~.69 
"f3.36 

· }8.76 
43,36 
.:..a .6i 

5.21 
-22.67 

, '.00 
--2.61 

-li.67 
a.?,o 

• !53 
8 .13 
2.45 

-16.1.? 
-30.97 
·-2.83 

8.13 
.54 

-2.45 
-17. 77 
-38.05 

.oo 
-16.12 
-30.98 

2.83 
1.33 
l.68 
1.36 

-32.33 
-47.?,7 
-1.50 

1 .. 68 
1.33 

-1.36 
-35.33 
-55.26 

T .14 .02 .oo .oo 
9 12 N -.29 -.19 -.03 -32.34 

F .35 -.02 -.01 -47.37 
T ~.06 -.07 -.01 1.50 

PERCENTAGE= lOOXfV~LUE-BASIS VALUE)/MAX.BASIS VALUE 
>.-f' N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 
** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES 



LOADS, DIMENSIONS AND LOCATION 
OF REDUNDANTS 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI= O.SGJ 

z 
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Figure A-5: Problem 5, Member Properties, Dimensions and 
Loads 



TABLE A""-5. l 
PERCENTAGE OEV-IATION OF REDUNDANT VECTOij FROM BASIS., PROBLEM .5 

AFTER 1, 2, 3, 4, 5, 10, 20 ANO 30 CYCLES OF ITERATION 

S ITERATION- BASIS** 
I J 1 2 3 4 5 10 20 30 K,K~FEET 
1 l 8e73 22.38 23.06 20.21 L6e97 6.76 .66 -.07 · ·· 13.17 
1 2 64e28 7le06 62e47 52.91 44016 16e51 le07 -.32 le83 
l 3 88.47 71.34 59.98 so.oj 4lo42 14.84 .67 ....... 3$ 31.54 
2 1 12·95 15.62 13.6'3 11.98 ).Q.79 6.34 1.41 .17 13.17 
2 · 2 -31.50 -32.Bl -3@.37 -28.3~ -26.39 -16053 -3.91 -.51 -1.83 
2 3 -21.42 -26.22 -2:6.01 -25.Q4 --23.75 -15•48 -3~8.2 -.§3 -31.53 
3 l ·l6o5l -19.24 --17.45 --14!s;i --1,.1.a6 -4.11 -.10 .13 6.20 
3 2 -64e73 ""'59.54 -5t}.94 --42~30 --34.64 -11 0 40 004 .4:6 e70 
3 3 -6&066 -57069 -48.45 -40.04 -32.75 -10~74 .03 .43 11.90 
4 1 -io.53 ..:.a.40 -1.29 ~6.79 -6.46 -4.1s -.96 -.12 6.20 
4 2 ·24017 21.i4 20.42 19.9'9 19.31 12~75 3.01 .39 =.70 
4 3 20.6a 20.16 20.69 20.20 19.3~ 12.63 3.01 ~39 ·~1.io 
5 l ~1.19 -3.28 ~3.56 4 3.22 ..-2.BQ -1.43 -.30 -.04 lt46 
5 2 ~9.93 -11.3Q ~9.94 -S.62 -7.52 -3.88 -.80 -.09 :e05 
s 3 ~13.01 -10.19 -a.so ~1.30 -6.33 -3.07 -.54 -.04 3.56 
6 1 ""'"5•71 --4.31 -2.95 "'-2.19 -1.80 --.98 -.24 -.03 lo4o 
, 2 12.9a 9.53 6.86 5.4-0 4.ss 2.65 .10 .11. .....os 
6 3 6·10 5.60 4.8~ 4.29 3.83 2.34 .63 .10 -3.56 

** BASIS IN TH IS PROBLEM TAKEN AFTER 61 CYCLES OF ITERATION. REP·RESENTS 
VALUES WHICH CHANGED LESS THAN 0001 PERCENT DURING LAST .ITERATION. 

00 
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TABLE A...:5.2 
PERCENT~GE DEVIATION OF MOMENTS FROM eASIS, PROBLEM 5, 

AFTER 5, 10 AND 20 CYCLES,OF ITERATION 

MEM!3ER* 
5 

ITERATION 
· 10. 20 

·l . 2':N -1.10 -2.41 . -.11 
·f 9.60 3e&4 .41 · 
~ -1.,1 -·91 --20 

· l 4 N l,51 ,.91 •20 
F -e,.3;4 -2.25 -.07 
T -i~lO -a.41 -~11 

a· , N ,~,s 3.4a ,10 
F •3.)3 -2.~1 -.sa 
T 1.50 ·.66 •06 

2. 5 ~ -~.01 -1.5i -.25 
F l0el9 4e6,6 e65 
T ~3.~1 ~.37 ~19 

f}ASIS** 
KIP-FEET 

. -~ .11 
13· lS 
1 4,03 

... 4.03 
-13.16 . ' .·, . 

-5·+1 
13.2? 
-~·2i 
-4,0S 
a.oa 

-23.,57 
• .• 07 

3 6 N 1.50 ie60 .06 ~4,0I 
F -j•j~ ~z.41 -.sa -13.27 
T 31173 Z~jj , .,. 5.z1 

4 s N 6.42 2~0~ .oa -.a2 
~ -,.1, -2.39 -,13 6.ii 
f •S.jl -1.~4 -.97 4,,7 

4 1 N ... 1.$3 -'...4.z •OG -Hh13 
F -3.d9 -l•~I -.1$. -36,7• 
T -··~8 -~41 -~oi ~5.t, 

5·6N -l.57 -2.29 .... 47 ·&.i6 
~ 3.59 2.35 .~1 -~~73 
T -~,~ 2.29 .49 -4~89 

, a N 1.12 .,, .of -13.11 
F 4.~e ~·l9 ,4-2 -38.~~ 
T ...... 43 ".'.:"'o27 -.06 ·•.oo 

6 9 N .21 -.16 -•09 -18,16 
F ~1.10 -,$4 -,24 -36.,2 
T .20 .ia •07 5,94 

1 a" 1,13 .~4 .1? 1.01 
ff -1 ~ 5 5, - • 79 "".' .1 § 1. 4? 
T -2.i~ -.~9 ~115 3~S3 

7 10 N .... ,94 -.,, ··O~ -34,12 
F· -1j31 +.,diS '""•~9 -1+1.oe 
T ·.ts ,.2 ·· ~©3 -4.,9~ 

8 9 ~ +.9'9 · -·5$ -.12 ·1.4$ 
F ' · ' • ~9 • 42 · • 1 i 1. 02 
T 1.J~ r.J9 .1, -3,ll 

El. 1i ~. .t;a .41 .oa · .-s1.1, 
F i.a1 •t# •ll -s,.ob 
t ~13 -.01 -.02 ·.oa 

'12 N ;.i7 -.06 -.Q5 -34,l' 
F -.io -.26 -.o~ -41.6a 
T -.49 -.24 -,04 4.92 

PE~CENT~GE = 1.o·ox t.'VAL.UE-BAS IS ·VALUE> /MAX.BASIS VALUE 
*:.· ,f!i, F AND T • REFER TO NEAR, .:FAR AND TORSIONAL MOMENTS 
f*~1SIS'MOMENTSARE RESULTS AFTER 30 CYCLES 



MOMENT DIAGRAMS 
(plotted on compression side) 

'~·. 
'-I:·. 

"~·. ,·~··. , ·. ,· .. 
'~·· .. ,· .. '·. ' ~·· ... ' ··. '~·· ... ' · .. 

'<t~·~-~---~~·:.-~~·;,· 
-- Correct Va•lues 
----- After 10 Cycles 
·-·-······ After 20 Cycles 
G) Location of Redundant 

MEMBER PROPERTIES 

All. members have equal EI 
All members have EI=GJ 

Note: Problem 6 is identical 
with problem 3 except "for 
choice of redundants 

,,.ea k1p-tett 

LOADS AND DIMENSIONS 
z 

Figure A-6: Problem 6, Member Properties, Dimensions, 
Loads and Comparison of Member Moments after 10 and 
20 Cycles of Iteration with Correct Values 
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TABLE A-6.1 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 6 

AFTER 1, 2, 3, 5t 10, 20, 30 ANO 50 CYCLES OF ITERATION 

$ 
l 2 I J 

l 1 
l . 2 
l 3 
2 1 
2 · 2 
2 

-4.56 -11.46 
'"'20a39 -27a63 
-10.21 -19.10 

lQ.93 9.21 
65·64 59.51 

3 61.36 54.48 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 

1 5.69 -9.02 
2 2a65 -26a56 
3 13.56 -17.40 
1 6,.19 10.43 
2 54.33 40.43 
3 48·91 35.34 
1 "'"4a82 -13.33 
2 -27.48 -27 .. 24 
3 
l 
2 
3 

-9.81 -17.37 
21.10 11.14 
21.33 '.32.88 
2e.10 22.23 

ITERATION 
3 5 10 

.... 15.33 -16.33 -10.98 
-35.04 -32.14 -19.84 
~29.85 -29.35 ~16~49 

a.gs s.sz s.13 
52a46 41.62 26.35 
47.15 35.57 20.99 

-15.05 -16.45 -12.15 
-29.10 -26.77 -19.09 
-23.33 -20.66 -11.62 

a.56 ~.oa 3.95 
40.20 38.22 28.15 
30.31 23.82 15.20 

-15.59 -15.12 -11031 
-25.11 -21.83 -16.54 
-16.97 -12.ee -&.as 

6.23 3.17 2.15 
37.30 36.50 27.78 
1e.46 13.91 a.94 

20 
-4.44 
-7.47 
~5e84 
1.es 

10.29 
7.88 

-6.06 
-9.57 
-5.22 

1.94 
14.20 
7.27 

~6.16 
-9.42 
-3.33 
· 1. 31 
15.49 

4.66 

30 
-1.87 
-2.95 
-2.22 

.10 
4.14 
3.07 

-3.01 
-4.78 
-2.50 

.96 
7.10 
3.53 

-3.27 
-5 .. 14 
-1.70 

.74 
8.36 
2.43 

50 
-.37 
.,...52 
~.36 

.12 

.77 

.53 
....... 75 

-1.19 
-.59 

.24 
1.11 
.85 

-.sa 
-1.42 
-.44 

.21 
2.29 
.64 

BASIS** 
K,K-FEET 

-15.94 
-2.03 

-33 .. 84 
.oo 

-5094 
-82.32 
-23.17 
-2. 75 

-44.70 
.• oo 

--4.50 
'-'60.60 
-24.72 
-2.11 

-47.06 
.oo 

•4o47 
-55.88 

** BASIS IN THIS PROBLEM TAKEN AFTER 160 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN 1 DIGIT IN FIFTH SIGNIFICANT FIGURE 
DURING THE PREVIOUS 10 CYCLES QF ITERATION. 

co 
co 
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TABLE A-ra2 
PERCENTAGE DIEVIATION OF MOMENTS FROM BASIS, PROBLEM 6; 

AFTER 10• 20, 30 ANO 50 CYCLES OF ITERATION 

MEMBf;:R* ITERATION 
10 20 30 50 

1 2 N -3.17 -.86 ~.15 .04 
F 17.53 7.09 2e19 ·~O 
T =5.35 ~2.60" -1.lt -.25 

1 4 N s.35 2~,o 1.16 .as 
F -s.20 -1.31 -.40 -.oa 
T -J.57 -.86· -,15 •03 

2 3 N 9.33 4•14 1.a6 .41 
F 2.40 1.15 .&9 .15 
T 3eil 1.24 .55 .1i 

2 5 N ~a.55 -3.84 -1.71 -.37 
F 5e46 le63 e49 ~04 
T -8.19 -2.95 -1.12 -.16 

' 6 N ~·21 1.24 e55 .12 
F ...... 26 -.26 -.09 -.01 
T -~.40 -1.15 -.59 -.15 

4 5 N 2.~S e34 -.12 ~.11 
F le85 2.,7 1.82 e60 
T -~.,7 -3.22 -1.50 ~.34 

4 7 N 1•77 1•84 le09 .32 
F -a.is -i.a4 -1.45 -.~1 
T ~4~ti ~.~1 -.27 -.06 

5 6 N 3.74 2e42 1.4~ .41 
F 1.03 .4a .21 e0$ 
T 4e]I 1.9~ e90 .21 

5 8 ~ -5.69 -3~5~ -1~91 ~,52 
~ ,.19 4.0s 1.a1 •42 
T -6.JO -3~10 -1.54 -;37 

" .• '1 

~ 9 N 9•92 · le66 .81 .20 
F -·90 -.81 -.42 -.11 
T -3.43 •le~3 -.80 -•19 

1 "8 N 1.1a .J2 .~2 -.04 
F -~.,s •16 .41 .21 
T -6.21 -2.-i -1.47 -,3~ 

7 10 N -2.18 -.29 .02 .cis 
F -10.,1 -5.31 -2~72 -.to 
r -•46 -.te -.25 -.10 

S 9 N "le$4 1.17 .76 .25 
F •e77 -.35 -~l~ -.05 
T J,5~ 1.91 ~97 e25 

8 11 N -.SI -.~1 -.5? -.aa 
F l4e27 7•~3 3.87 l.b2 
T -3.4J -2.io -1.19 ~.34 

9 12 N 2•69 l~JO .55 .14 
F ~3.29 •2.12 -1.15 -.32 
T -2.66 -1.28 -.62 -.14 

PERCENTAGE ::: 100:){'.fVALUE,;,.~ASIS VALUE> /MAX.BASIS 
* N~ F AND-T\REFER TO NEAR, FAR AND TORSIONAL 
** BASIS MOMENTS ARE RESULTS AFTER 100 CYCLES, 

BJ\SIS*·~ 
KIP ... fEET 

-4.3'+ 
15.~-4 
3.42 

... 3.42 
... 13.S6 

... 4.34 
15.94 
~4.34 
-3•42 

6e84 
-22.a~ 

.oo 
-3.42 

-13.~6 
4.34 
.os 

1.23 
3.6~ 

-11.21 
-30e96 

-4.32 
7.23 

·03 
-3.65 

-15.57 
-38.09 

.• op 
-11.21 
-30.96 

4.32 
1.~a 
1.55 
2.28 

-33.23 
-47e06 
-2.93 

l • 5,B 
1 .. 3~ 

-2.2s 
-33.53 
=55 • 88. 

.oo 
-33.23 
-47.06 

2.93 
VALUE 
MOMENTS·, 
PROBLEM 3 



3 

-- Correct Values 
----· After 5 Cycles 
(u" Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = GJ 

MOMENT DIAGRANS 
(plottea on compression side) 

78.36 kip-feet 

LOADS AND DIMENSIONS 
z 

Figure A-7: Problem 7, Member Properties, Dimensions 1 

Loads and Comparison of Member Moments after 5 Cycles 
of Iteration with Correct Values 
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s 
I. 
1 
1 
l 
2 
2 
2 

... 3. -

3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 

TAt3L.ti A•7.l 
PEfiCENTAGE DEVIATION OF ~~OUNDANT VECTOR FROM B:ASIS-, NOBLE~ 7 

A.FTti:R 1, 2 t 3, 4t 5,,, 10'• 20_ AND 30' ,CYCLES. OF I T.ERATlQN 

J 
l 
2 
3 
1 
2 
3 
l 
2 
3 
l 
2 
3 
l 
2 
3 
1 
2 
3 

1 
5~71 

..... 10.63 
""28.99 

...... 67 
10e76 
12.21 

.90 
11.22 
1a.21 

7·46 
-20.46 
-15.52-
-1.23 

.22 
le26 
.... 43 
..... 02 

-1.84 

2 , 3 
.... 64 -3.53 

-14.85 -13.23 
'.'."'l5 .. {,7 ._l2e3f, 
·-5~90 -6.2© 
16.56 15.14 
1s. 35 14. o~ 

3e40 4e74 
H,.18 13.79 
14.0Q 11.11 
7.09 6el5 

-17e9'4 J..15e4i5 
-14;.41 "."12.83 

-. 79 · '""··07 
e53 e86 
.91 ,,.92 

• • 70 ;, e9Q 
--1.72 -1.60 
-1.2s -1.15 

ITERATION BASIS** 
4 · · 5 10 20 ·. 30 K,K~-FEET 

•4.46 -4.36 -1.69 -.16 -.01 -2.72 
-11.39 -9-61 ~3~25 ""'~22 .oo ··. • 34 
.,..10.21 ·· --8.~4 -2.7~ ••15 eOl l3•e82 

~s.48°. -4•61 -1.84 - .. 24 -.02 -13i22 
13~1· 11~i1 4.~3 .66 .06 i.37 
12.3$ 10.68 4e63 · e64 e06 47e66 
4.75 4•16 1.34 .11 .oo ~3.77 

lle47 9.ii 2e70 el3 ~~01 ~.31 
·t.06 - 1.~e 2.11 .oa - .. 01 ,.1a 
s~46 4•ii 1.~a ~21 .02 ~•·•6 

-l~ell ..-11;.Q5 -4'~54 ..... ot .... 06 · .41 
-11.iQ. --9~41 -3.95 ""'•53 "':"•05 l7·.03 

, ~ai · .• 49 .. , • 3.3 ;os .oo ... 3_.01 
1.oi - . i.09 :.72 .11 .oi -.s2 
:':,.9,3 ,;:,.91 .4~ .06 .oo 4.59 
, e80 .f>S -·· .25 .0-4 eOO 1.52 

-1~93 -1ilb •• 53 -.oa -.ol ..... 50 
~1.@5 -.96 -.49 -.Os -.cu 6e95 

** BASIS IN THIS PROBLEM TAKEN AFTER· 41 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED t.ESS THAt4 .OOl PERCENT DURING, LAST ITERATION. 

\0 ..... 
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TABLE A-7,2 
PERCENTAGE DEVIATION OF MOMENTS.FROM BASIS, PROBL.EM 7, 

. .. AFTER 5, · 10 AND 20 CY~LES OF ITERATION · 

MEM8ER* · ITERATION BASIS** .. 5 10, 20 KIP-FEET 
· l ·2 N l•l5 .30 .• oo -6.16 

F -?•64 •l.02 -~09 · -2•72 
T ·.11 · :.31 · .Q4 8.76 

'· l. '4 N· ""'•71 · ~.ql · ••O'*" -8.76 
F i.~4 · .35 ,Ol -10.44 
T 1,is .• j@ .oo ... 6.10 

2 3 N -2·~~ -i.11 -·+3 ..:.1:3.2~ 
F · 1~71 ···I .11 10.45 
J .,..~38 -.1j -~Ol 12~}7 

· 2 '* 1~0~ ~4- ·05 ~~·42 
F ""l~ii ·-l.l9 -~12 -1~•57 
T ·.is .,...oa ~-o• -10.si 

3 , N ~;3e ~.1~ ~·Ql 1a.1v 
F l,9b 0-· .. ·.1 .. ! .11 -,~.99 
T -1,tf ~~ ~~ll -10.45 

4 5, 'N .;.;.1. 25 ~. ?9 .• ()1 ~ • 64 
F . 2~~~ ·.•81 ··06 ~3.77 
t . ,67 · •l9 .Qo 9.30 

4 1 ~ ~,1 .1, · .eo -19.75 
F , ~63 < e21 ~02 ... 19.1p 
T .· .• ~o .0.1 .oe .... 6.74 

S 6 ·~ 2.,, ·~$ .11 -3.41 
F. -1.•t -,81 ~·1J .&l 
t ~1~ij7 ~.ss -.01 12.,s 

5 8 J •1,21 -~~5 ~··5 -11.22 
~ ~1.j1 -.6• ~.o, -30.~6 
1 •.18 1106 •Oi ~10.19 

4 9 N ~63 •29 · .o~ -,..12.04 
f ••6 ~3i •• 5 •49.17 
·t .20. .04 ••• ~11.06 

1 J - -.rs -~~9 -~oi 2.10 
F ;2, \•20 · ~f9 ¥3.06 
:r ~ 33 .. , 1 s , e 1 . . 1 .11 

7 1, i 1,30 . ~12 ~01 ~27.Q4 
# .i~ · .oa .:01 -24.sa 
T .;...14 ..... QS ~.Ol '>'"4e64 

8 ~ N .• 39 :.is .QZ le&2 
F -.Q5 -,d36 .... ~ CH -l 11149 
T -,95 -~l9 ~~~j 9.44 

s 11 N -.63 -,ae -~03 -3~.24 
F -.30 -.20 -.03 -47.06 
T -.09 .01 ,00 -5.61 

9 12 M .31 .I~ •03 -39.72 
F .16 .11 .02 -78.36 
T • 25 .• 10 • CU -7 • 57 

PERCENTAGE= lOOXtVALUl;-BASIS VALUEl/MAX.BASIS VALUE 
it- N, F :AND T REFER TO ·NEAR, -,FAR AND TORSIONAL MOMENTS 
** BASIS MOM~NTS AR.E ~ESI../LTS AFTER 30 CYCLES 



- EI/GJ = 1.0 
-----· EI/GJ = 2. 0 
--·- EI/GJ = 0. 5 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = 2GJ 

MOMENT DIAGRAMS 
(plotted on compression side) 

78. 36 kip-'"' 

LOADS AND DIMENSIONS 

Figure A-8: Proplem 8, Member Properties, Dimensions, 
Load~ and Comparison of Member Moments for EI/GJ 
Variation of .5, 1.0 and 2.0, 
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TABLE A"-8•1 
PERCENTAGE DEVIATION OF ~~DUNtlANT VECTOR FROM BASIS• PROBLEM 8 

AFTER l• 2, 3, 4, 5• 10• 20 AND 30 CY<:LES OF TTERATIOl4 

s ITERATIQ-N S')SIS** 
l .J l· 2 3 4 5 10, 20 30 K,;"-FE~T 
1 1 10.ao 5.78 2.54 ', .53 -.60 -1.09 -.19 -.03 -4.87 
1 2 -3.5G) -4.53 -3.42 -2.94 -2.74 -1.ai -.34 -.05 • ~l 
l 3 -20.60 -6.13 -3.69 ... 2.83 -2.46 -1.s,s -.30 -.os ~·31 
2 1 6e45· • 51 ..... 1.42 -2.07 -2.14 -.96 -.15 -.02 -13.3.7 . 
2 2 "4•03 5.15 6. ~l4. 6.1,3 5.49 2.27 .35 .os 2.31 
2 3 1·05 5.76 6.24 · 5.92 5.,z1 2.1~ .33 .0-5 45.()6 
3· 1 .12 .09 lel4 1.86 2·+~ l.36 .21 e03 --4.61 
3 2 l4e26 9.25 6.61 5_.37 4·65 2.31 .40 - .06 -.46 
3 3 lle78 6.61 4.57 3.6,4 3el$ l.67 .2·9 .os 3.08 
4 l 5.95 s.11 4.49 3.83 3el8 1.11 .16 .03 ... ~.5-4 
4 2 -l6e4G -13.6-6 -11.16 -9 .-:i:5 -7.47 -2.66 .... 39 -jo6 e30 
4 3 -10.53 -9.27 -7.94 ... 6.66 -s.53 -2.04 ..... 31 ... ~05 13.17 
5 l ..... 69 .... 1.63 -1.42 -1.@4 -.1i "'"e04 •Ol ~00 -2.,a 
5 2 2·96 .17 .... 75 --.96 -.se .... 19 - .oo .oo ..... 53 
5 3 le26 ..... 04 .... 31 -.35 -.3i .... 03 .01 .oo 2.92 
6 1 -2.01 -1.36 -.78 ..... 40 --. lt7 .06 .02 .CH) 1.24 
6 2 5·26 2.1~ le69 1.03 .60 .oo .... 01 .oo -.so 
6 3 le83 l.4G> .79 e4G .17 -.06 '-.02 .oo 4e46 

** BASIS IN·THIS PROBLEM TAKEN ,A.FTER 49 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING LAST ITERATION.·· 

\0 
~ 
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TABLE A-8.2 
PERCENTAGE DEVIATION OF MOMENTS.FROM BASIS, PROBLEM 8t 

AFTER 5t 10 AND 20 CYCI..ES OF ITERATION 

MEMBER* ITE:RATION 
10 

EMS IS** 
KIP-FEET 5 20 

.. l 2 N .63 .06 .02 -5.91 
F .... 29 -.55 -.oa -4~88 
T • 14 .12 ,02 1.74 

1 4 N -.14 -.12 ~o02 -7.74 
F .32 .19 .o~ -8025 
T ·63 .06 002 ~s.91 

2 3 N -1.09 -.48 -006 -13.88 
F .:ra .28 004 9.28 
T -.12 -.05 -~01 10,34 

2 5 N 1126 .17 .02 ~?.60 
F -1. 14 -.51 -ooa -1j,6J 
T --.so .06 .02 -9.0l 

3 6 N -.12 -005 -,01 10.34 
F .82 .33 .04 -2a.oa 
T -.78 .... 28 ··04 -9.2~ 

4 5 N ...... 47 -.11 -.02 .o, 
F 1.11 •68 .09 ·4.59 
T .02 .04 .01 7.70 

4 7 N .31 .14 002 -15095 
F -.02 ,05 .Ql -14el7 
T .17 -.05 -oOl ~5o9l 

5 6 N le63 056 .07 -3.53 
F -.92 -.33 ~o04 -.54 
r ..... za -.14 -.02 10.15 

5 '3 N ·.85 -033 -.os -16.12 
F -. 18 -.17 •oO~ -30.9~ 
T -.2s -.06 oOO -7.94 

6 9 N ~54 ol9 ,oa -17·9~ 
F .20 .12 .02 -54.85 
T • 14 006 .01 -8.74 

7 8 N -.01 .04 .oo. 2,40 
F ..... :37 -.02 .oe -2.93 
T ""•01 .02 aOO 5e58 

7 lf) N -.01 .03 .01 -19,75 
F -.18 -.oi .oo -1s.31 
1 • 10 -oOl .oo ~3.,1 

8 9 N •,09 003 •Ol 1,25 
F .12 .oa .oo -3.73 
T -.01 -.03 ,QO 6.94 

8 11 N ~.lS -.13 -,02 -32e34 
F 023 oOQ .oo -47.31 
T .oo .oo .oo -3.17 

9 12 N tl9 .09 oOl -47e91 
F -.04 003 .oO -87.32 
T .02 .03 .oo -5.0l 

PERCENTAGE= lOOX(VALUE-BASIS VALUEJ/MAX.BASIS VALUE 
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 
** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES 



Figure A·9: 

LOADS, DIMENSIONS AND LOCATION 
. OF REDUNDANTS 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = 0 :SGJ 
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Problem 9, Member Properties, Dimep.sions and 
Loads 
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I 
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TASb.E A ... 9.1 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS-, PROBLEM 9 

AFTER 1-, 2-, 3, 4, 5-, 10-, 20 ANO 30 CYCLES OF ITERATION 

J l 
1 2.17 
2 -14.5.3 
3 ... 33.49 

2 
-5.96 

-22.55 
-22.51 

1 
2 

~1.91 -11.21 
28.23 28.21 

3 25.35 25.43 
l 2·38 6.29 
2 19~97 21.22 
3 23.62 20.25 
1 8·71 7.38 
2 ~23.62 -19.78 
3 -2&.76 -18.78 
1 ~2.39 ~.32 
2 ~~.45 ~.48 
3 ~.os 1~06 
I 2·51 2.96 
2 ~s.12 -7.86 
3 -7.92 ~s.60 

3 
-8.17 

--20.96 
·~9.02 

-9~52 
23 e 7'5 
22.00 
6.61 

18.20 
16.42 
·6·01 

-17.16 
-16.89 

084 
2.15 
1.81 
2.15 

--5.50 
-4el2 

ITERATION 
4 5 

-1.11 
--18~09 
-15.98 

.;.1·.a~ 
20.24 
19.06 
5.45 

14.49 
12.99 
5.01 

--15.19 
-1s.01 

1.1a 
2.eG 
2.20 
1~49 

&3.91 
-3.19 

-6.50 
... 15.03 
--l~ol3 
.··"'."6;&2 
11.s4 
16.63 
.4.19 
11.14 
Hl.07 
·4o42 

--13.51 
--13.38 

.. 1.20 
·2.95 
2.2a 
1.11 

-3.0l 
-2.60 

10 
-2.23 
-4.68. 
-3.79 
"'."3.22 
a.11 
8044 

.97 
2.23 
2.08 
2.21 

-6.85 
-6.79 

.67 
le79 
lo30 

.51 
-1.44 
-J.31 

20 
-.04 

.24 

.40 
-.52 
1.50 
1.51 
-.17 
-.65 
--.61 

.36 
--1.15 
-I.16 

.11 

.28 

.17 

.10 
--.29 
-.27 

30 
.os 
.26 
.27 

-.03 
.10 
.12 

-.09 
-.2a 
-.26 

.02 
-.01 
-.oa 

.01 

.01 

.oo 

.01 
-.-03 
-.03 

BASIS** 
K,K-FEET 

--1.03 
·46 

15.88· 
--12.14 

2.29 
47.41 
-2.59 
-.13 
9o23 

-3.61 
.. 57 

21.13 
-2.13 

.... 42 
6.58 
1.21 
.,. • 37 

10.14 

** BASIS IN THIS PROBLEM TAKEN AFTER t>8 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN .001 PERCENT DURING·LAST ITERATION. 

\0 ...... 
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TABLE A..-9•2 
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 9, 

AFTER 5, 10 AND 20 CYCLES OF ITERATION 

MEMBER* ITERATION BASIS** 
5 10 20 KIP-FEET 

1 2 N 2.41 e66 -.07 -5.67 
F -4.37 · -1.53 -.oa -.99 
T 1.25 e59 .10 9e00 

1 4 N -1.25 -.59 -·10 -9.00 
. · F 2 .14 • 51 .... • 09 -11. 33 

,. 2.41 ·66 -.01 -5.67 
2 3 N -4.39 -2.12 •• 33 -12el5 

F 3.34 1.72 .29 lQ.80 
r ~·61 -·?3 -.01 11.os 

2 5 N 1.86 .81 .16 -4.05 
F -5.39 -2.20 ~.21 -13eli 
T -.02 -.59 ~.25 -ll•J6 

3 6 N -.61 -.23 -.01 19.05 
F 3;;25 1.69 .30 -25.49 
T -3e34 •l.72 -.i9 -1d.qo 

4 5 N -!.22 -.41 .11 -1.27 
F 2.a4 .10 ~.os -2.,a 
T 1.81 .44 •~06 10t47 

4 7 N .a, .01 -.03 -21.so 
f 1.19 .60 .06 -23.46 
T el9 .24 e04 -6;;94 

5 6 N 2.92 le45 .22 -3e60 
F -3.~3 -1.55 ~.25 2e07 
T -2.89 ~1.46 -.24 15.42 

5 8 N .,..69 -.30 -.03 -18.14 
F -2.44 -1.26 -.19 -30.80 
T e06 j}6 e03 -12.13 

6 9 N e36 e24 •06 -10e06 
F le25 .65 .13 -45e75 
T ~,31 -.11 -.04 -12,B7 

1 8 ~ -.51 -.34 -.05 1.42 
F .so .45 .o7 -2.73 
T .87 .47 e05 8•65 

7 10 N .J2 .13 •00 -32.11 
F .52 .27 •03 -31.69 
T ~.32 -~10 -•Ol -5.51 

I 9 N .73 .33 •06 1.28 
F -.59 -.2~ -.06 -2.43 
T -1~os -.$4 -.10 11.9a 

8 11 N -.52 -.24 -•04 -34.12 
F -.95 -.49 -.oe -41.00 
i .09 .05 .02 -8.13 

9 12 N .20 .12 •03 -33.77 
F .43 .22 ~05 ~11j31 
T 028 .13 .02 -10.44 

PERCENTAGE:"" lOOXtVALUE-BASIS VALUE)/MAX.BASIS VALUE 
* N, F ANO T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 
~-* BASIS MOMENTS ARE RESULTS AFTEf~ JO CYCLES 
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-- Correct Values 
----- After 10 Cycles 
-·-- After 20 Cycles 
~ Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = GJ 

Note: Problem 10 is 
identical with Problem 7 
except for choice of 
redundants. 

MOMENT DIAGRAMS 
(plotted on compression side) 

78.36 !(ip-feet 

LOADS AND DIMENSIONS 
z 

Figure A-10: Problem 10, Member Properties, Dimensions, 
Loads, and Comparison of Member Moments after 10 and 
20 Cycles of Iteration with Correct Values 
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TABLE A--10.1 
PERCENiAGE DEVIATION OF REDUNDANT VECT-OR FROM BASIS• PROBLEM 10 

AFTER 1, 2, 3, 5, 10, 20, 3,0 AND -SO CYCLES OF ITERATION 

ITERATION · BASIS** 
J l 2 3 5 10 20 30 50 K,K=FE-ET 
1 -5. 7'5 -5. 8,4 -.4.49 -5.73. -4.62 -2.18 -.98 -.19 2.10 
2 9e5.3 2•64 -9.7G -11~a9 -7.83 ..... 3.23 -l.38 -.25 -.34 
3 23.03 8.95 -10.2Q -14.&2 -6.73 -2.~3 -.96 -.17 -13.83 
l -20.36 '"'12.85 .... 3.52 '2e55 2e(l2 .74 .31 .os 10.50 
2 59.98 44.57 25.84 13.65 10.16 4e63, 2.02 .38 .... 2.03 
3 63.61 46.58 28.35 14.01 1.ao 3.31 1.41 .26 -33.82 
l -13.63 -11.89 -11.98 -11.41. -8.35 -4.07 -1.98 .... 43 6.45 . 
2 le64. -22.~5 -23.90 -20.sa -11.7~ -6.54 -3.15 -.69 - .. 03 
3 23.74 -11.i1 ~2s.21 ·2b.2@ ~a.2, -·3 • 3'5 -1.58 -.34 -20.03 
1 ... z1.a1 -1.04 3.53 4.!,0 2•91 1.33 .63 .14 10.20 
2 87.09 44.43 33.6'4 21.29 19.74 9.67 4.68 1.02 '-2.74 
3 8Q.€>1 46e&9 32.'.36 19.38 lQ .. 27 4.75 2.21 .49 =44.66 
1 -20.21 ~16.79 -14.49 ~11.92 -S.42 -4.42 -2.26 .... 52 9eS.l 
2 -32.74 -28.38 -23.8! -18.52 -12.99 -1.oe -3.63 .... 85 .49 
3 -14.23 -23.79 -22.is -14.36 .... 5.31 -2.28 -1.14 -.26 -24.61 
l 12.40 a.1s 5el8 2.a4 1.ao 1.02 .54 .13 5.62 
2 32.25 33.04 33.04 29.82 21.39 11. 35 5.84 1.36 '-2 • 76 
3 49.30 31.41 21.88 12.84 6e6l 3.27 1.65 .38 "-47.03 

** BASIS IN THIS PROBLEM TAKEN AFTER 77 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS TH~N 1.0 PERCENT DURING LAST ITERATION. 

I-' 
0 
0 
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TABl,.E A-10e2 
PERCENTAGE DEVIATION OF MOMf:NTS FROM ~ASIS, PROBLE"1 10, 

. . AFTER 10, 20, 30 AND· 50 CYCLES OF ITERATION 

MEMf3ER* ITERATION 
10 20 30 50 

1 2 N -.23 .03 .05 .02 
f 2.92 1~34 ·61 ·14 
T -.68 -.55 -•26 ~.06 

1 4 N •6'8 .55 .i6 •07 
F -.90 -•10 -~Q2 .Ol 
T -.as .es .ds •O? 

2 J N 1.11 ·~9 ~49 •ll 
f .7"' .30 .14 .03 
T • 1f:, , 2 6 • 12 • 0 2 

2 5 N ... 1.44 -.al -e38 -.09 
F .&i el4 .04 .01 
T -1~21 -•44 -.18 -.02 

l 6 N '•76 .26 ~1- .03 
F .28 -,04 -.02 -•01 
T -.74 -~30 -.14 -.02 

4 5 N -.25 -.21 -.13 -.04 
F 2.14 lel6 .62 .17 
T -1.42 -•73 -.35 ~.eij 

4 7 N .52 .62 .33 .o9 
F -2.as -.11 ..... 3·3 -.os 
T ~.4e -•la -.oa -.01 

5 6 N le59 .19 ~41 ~10 
F ell .11 .06 .o? 
T • 95 • 45 • 22 • 06 

5 a N -l.15 -1.04 -.53 -•14 
F 2.24 .94 .45 ell 
T -1.77 -.82 -.40 -.09 

6 9 N le23 e4l .20 .05 
F .01 -.23 -.12 -.04 
T -.86 -.40 -.20 -.os 

7 8 N .33 e02 -.02 -.Ol 
F .05 .22 .18 e06 
T -1.&6 -•75 -.37 -,09 

1 10 N ~.sa .04 .05 .02 
F •3e22 -1.40 -.71 •el8 
T ~.1~ -•15 -.10 -.03 

8 9 N .12 .41 .24 .01 
F -~24 -.09 -.05 -.Ol 
T •89 .51 .26 .06 

8 11 N -~,2 -,jl -.19 -.05 
F 4eOi 2.01 1.03 .21 
T -1.10 -.63 -.~4 -e09 

9 12 N .90 .28 .14 ~O~ 
F - • 7 9 - • 61 - .• 3 .2 .... • 0 9 
T ..... &2 -.31 --.15 - .. 03 

PERCENTAGE ;:; lOOX(VALUE,.,.BASIS VALUE >IMAX.BASIS 
·, *· N, · F AND T REFER TO NEAR, FAR AND TORSIONAL 
** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES, 

~ASIS** 
KIP-FEET 

-6.JO 
·-2 .14 
·8.76 
-a .• 76 

-10.44 
-·6e l0 

-13.23 
10.45 
l2el7 
.;..3.4i 

-13.57 
-10.51 

12.11 
-2s.9, 
-10.45 

-.64 
... 3.77 
9.30 

--19.75 
-19.87 
-6.74 
-3.45 

,61 
12 • 9·5 

-rl 7 • 22 
.... 30.96 
-10.19 
-13.64 
-49.17 
-11.06 

2.10 
-3.06 
1.17 

-27.04 
-24,58 

-4;,64 
1.52 

=3.49 
9e44 

-33.24 
-47.06 
-5.61 

... 39.72 
-78.36 
-7.57 

Vf\LUE 
MOMENTS 
PROBLEM 7 



- Correct Values 

MOMENT DIAGRAMS 
(plotted on compression side) 

53.77 kfp-ftet 

----- After 5 Cycles · 
if Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All meinbers have EI :: GJ 

LOADS AND DIMENSIONS 
I 
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Figure A·ll; Problem 11, Member Properties, Dimensions, 
Loads and Comparison of Member Moments after 5 Cycles 
of '.tte:i:-ation with Correct Values · 
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TABL..E A--llel 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 11 

AFiER 1, 2, 3t 4, S, 10, 20 ANO 30 CYCLES OF ITERATION 

ITERATION BASIS** 
J l 2 3 4 5 10 20 30 K,K-FEET 
1 4.94 3.08 .88· -.45 :- .. 97 ..... 40 .oo .01 10050 
2 .10 -.57 .... 49 -.68 -.79 -.16 .09 .02 2.10 
3 i...12.96 .... 99 .06 .os .... 02 .11 .11 .02 6:). o4~ 
l .27 -3.91 -4 .. 3Q -3.14 '.""3., 00 ,,..as ..... 06 .oo -10.50 
2 9.23 14.06 12.06 9.84 7.92 2.48 .18 .oo 2.10 
3 13.00 13.90 11.61 9.51 7.69 2.44 o 18 .oo 61.48 
l -5.06 ""'2.14 .03 .90 1.04 .• 22 --.02 -.01 ..... 31 
2 .... 2.23 .01 .66 .ao .69 -.15 --.12 -.02 .10 
3 2.47 .73 .20 .10 .os -;25 -.11 -.02 23.22 
1 4.43 5.11 4.56 3e65 2.ao .76 .05 .oo .31 
2 ~17.18 -15.12 -12.39 .:...9.i)Q -7.81 -2.31 -.16 .oo · .10 
3 ~13.70 -12.11 -10.11 .:...s.26 -6.59 -2.00 -.14 .oo 23e22 
l .... 1.39 ... l.36 """• 62 -.13 .11 .15 .01 .oo -4.58 
2 ... 1.22 -1.21 - "'-e40 .09 .33 .32 .03 .oo --1.02 
3 '-•80 .... 39 ""'ell .o~ .11 .16 .01 .oo 11.53 
1 ""2• 75 ... 52 .24 .40 .37 .12 .01 .oo 4.58 
2 4•05 .06 ..... 73 ""• 82 -.73 -.29 -.03 .oo -1. 02 
3 ""'1•99 -1.06 -.88 -.78 -.68 .... 21 '-.02 .oo 11.53 

** BASIS IN THIS PROBLEM TAKEN AFTER 48 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED b.ESS THAN .OOl PERCENT DURING LAST ITERATION. 

I-' 
0 
w 
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T~BLE A~11.2 
PERCENTAGE DEVIATION OF MQr,,tEt,jTS FRO~ BASIS, PROBL.EM ll, 

·A~TER 5, 10 AND 20 CYCLES OF ITERATIO~;, 

ITERATION 
5 10 20 

1 1 2, N -.51 ·-.33 -•06 
F .... 1.12 -.46 eOQ 
T ~87 ,3i e02 

l 4 ~ -.a, r,31 -.02 
F ~.s1 ~.24 ~.os 
r -.s1 -.,a ~~o~ 

a JIN -3,.;3 -1,00 -•Q7 
F 2.60 ;a; .en 
T ~.26 -.dj -,06 

a 5 N 1.13 '-.~! ~02 
F -2~il -~61 ~·d2 
T ,2~3l -.~4 -.06 

3 6 N ••26 ~.p5 ·~O 
F ~•l6 .9Q ~d7 
T -1~60 ~-~~ ~.01 

13,ASIS** 
KIP .... FEET 

~16.~4 
:·10.so 

20.9.2 
~20.92 
15.55 

..-it;,54 
-1Q~50 

16,54 
20~92 

.oo 
I . ·' 

,.;GO 
-21.00 
. 20"Q2 
-u,.s6 
-:t:~: 4 s ~ '•&6 .36 ~o~ 

, 1.20 .a6 ~.•1 ;~jj 
T ~~4i -~16 •~03 21.ai 

4 1 ~ -.11 -~oa k~ea i,~11 
F -,01 e04 ~•Ol a,~io 
T ••15 .03 .01 -11~10 

, 6 ~ ,.ao .av .06 .;.31 
F -2.1~ -~~9 =ici6 1.26 
T -le59 -.53 -.04 22,2~ 

5 8 N -l..06 ~,30 -.01 ' .oo 
F -1.:l,4 -.48 -.03 .oo 
T -.31 .oa .01 -20,3a 

6 9 N lel7 .37 .03 6•11 
F l.il .44 .04 -29.30 
T .1s .oQ .oo -11.ao 

7 a N ~.12 -.ot ~.01 ,.,a 
F .li .1. ~01 ~4.,a 
r .07 .oe .rio 16~,1 

7 10 ~ ~.14 -~02 ~.01 lit69 
F ~.23 -.02 -.Ol 53~77 
T ~03 -~04 .oo ~12.11 

~ 9 ~ ~42 ~13 .• Ql 4~5$ 
F -.13 -.p9 •edl ~1.,s 
, *•~o -~ap ~.o~ 1,~~~ 

{l 11 N ,;;, • 5 7 ..,. • 22 -- • 0 -l • Q,() 
F ~~is ~.17 ~.~i ~.&o 
T ;.01 ~.04 ~cit -Il~Ql 

• JZ N :~)i .23 ·•2 -12;~i 
F ~41 .19 .02 -53.¥1 
r • z·a • o 9 • o 1 - i. 2 • 22 

PERCENTAGE= lOOXtVA~UE-B~SIS VAl.UEJlMAX.l;lASIS VALUE 
*. N, FAND T REFER·TO NEARt FAR ANO TORSIONAL MOMENTS 
** 5ASIS MOMENTS ARE RESULTS AFTER 30 CYC!..ES .. . 
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-.-EI/GJ = 1.0 
----- EI/GJ = 2. 0 . 
--·- EI/GJ = 0. 5 

MEMBER PROPERTIES 

All members have equal EI 
All members have ·El = 2GJ 

l.05 

MOMENT DIAGRAMS 
(plotted on compression side) 

72.01 kip-feet 

LOADS AND DIMENSIONS 
z 

Y l,o kips 

Figure A-12: Problem 12, Member Properties, Dimensions, 
Loads and Comparison of Member Moments for EI/GJ 
Variations of .5, 1.0 arid 2.0 



TABLE A""'l2.l 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASlSt PROBLEM 12 

AFTER lt 2, 3, 4,. 5, 10, 20 AND 30 CYCLES OF ITERATION 

s lTERATION BASIS** 
l d l 2 3 4 5 10 20 30 K,K--FEET 
1 l 3116(i) ·4.3a 3.33 2.oa 1.09 ..... 21 -:-. 05 -.01 9.01 
1 2 ""6·24 ..... 15 . l.91 · 2.14 1.12 ..... 07 -.09 -.01 21142 
1 3 ""'16.25 '"'. 88 1.62 2.05 1.1a .-02 .... os -.01 54.37 
2 1 4·13 .64 ...... 57 ;...1.03 -1.10 ..... 41 --.04 -.01 -9.0l 
2 2 '""'3e50 3.92 4e50 4.06 3.41 1.01 .11 .01 2.42 
2 3 1.11 4.51 4e48 3.99 3.33 .97 .10 .01 5.4.37 
3 l --5.13 -4.15 -2.42 "-1.11 -.21 .42 e06 .01 -1.06 
3 2 -1.89 -2.97 --2.67 '-le9l -1.15 .36 .11 .02 .,,..16 
3 3 le3G -1.57 -1.98 .... 1.65 -1.15 .1a .oa .01 16.25 
4 1 1.05 1.96 2.21 2eG6 1.1s e48 .. os .01 ·· le06 
4 2 "'"9e64 --9.0l -7.49 -5.8~ -4.60 -:-le 19 ..... 12 -.02 -016 
4 3 ... 7 • Q3 .... 6.34 -5.32 ""4.28 -3;.35 ..:..90 -.09 -.01 16e25 
!5 1 .Q5 -1. 31 -1.32 ... 1 ~05 -.76 .... 09 .oo .oo "."4e l7 
5 2 5e02 •.· • 74 ... 51 ...... 83 -.82 ""',:n .oo .oo --1.03 
5 3 2e35 .73 ""• 01. -.28 ..... 34 .... 09 .oo .oo 7e37 
6 l """4e73 .;.z. 78 -1.56 -.84 -.44 ;...01 .oo .oo 4e l7 
0 2 11.13 5.45 2.91 1. 5'9 .88 .or; .oo .oo .... l.03 
6 3 2•l2 1.62 .90 .47 .24 ..... 01 .oo .oo 7/J,37 

** BASIS IN THIS PROBLEM TAKEN AFTER 43 CYCLES OF ITERATION. REPRESENTS 
VALUES WHICH CHANGED LESS THAN .ool PERCENT DURING LAST ITERATION. 

........ 
0 
0\ 
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TABLE A-12.2 
PERCENTAGE DEVIATION OF MOMENTS FROM f3ASIS, PROBLEM 12, 

AFTER 5, 10 AND 20 CYCLES OF ITERATION 

MEMBER* ITERATION BASIS** 
5 10 20 KIP-FEET 

1 2 N -.04 -.17 .oo -15.19 
F e83 -.20 ~.03 9.00 
T e05 .07 .01 18.07 

1 4 N -.05 -.07 -.01 -18.07 
F -.48 -.06 .01 lt.q3 
T -.04 -.11 ~oo -1~.1, 

2 3 N ~.83 -.30 -.03 -9.0l 
F e88 .20 .Q2 15el9 
T ~.06 -.03 •00 18.07 

2 5 N ell olO .01 .00 
F -.31 -.17 -.03 .OO 
T -1.66 -olO .01 -18.02 

3 6 N -.06 ~.03 000 16.07 
F .79 .22 .02 -19.83 
T -.88 -.20 -.02 -l5oi9 

4 5 N 037 .14 ~.01 .54 
F -.21 .~l .04 -lo06 
T ~.29 -.05 .oo 17085 

4 7 N -.19 ~.01 .01 1.98 
F -.34 -.oa .oo 40.68 
T .33 -.03 .oo -14.~5 

5 6 N 1.31 036 003 le07 
F -.99 -.23 -~02 "7'o54· 
r -.22 -.oa -.01 11.05 

5 8 N =o38 =.14 -.02 .oo 
F .06 -.03 -.01 .qo 
T -.13 -.06 .oo -15.89 

6 9 N .58 .15 oOl ~1.97 
F .28 .10 .01 -40.68 
T .11 .0$ .oo -14.65 

7 a N -.16 .04 .oo 6.13 
F -.57 -.01 .oo -4.17 
T ~.os -.02 .oo 12.s2 

7 10 N -.2a -.06 .do 2a.16 
F -.22 -.oa .oo 12.01 
T .17 .01 .oo -8~52 

8 9 N -.33 .oo .oo 4.17 
F oll .02 .oo ~6.13 
T =o04 -.02 .oo 12.52 

8 11 N .04 -.03 -.01 .oo 
F .o& .03 .ao .oo 
T .11 .01 .oo -7.54 

9 12 N .24 .09 .01 -28.16 
F .16 .05 .oo =72~01 
T .oo .01 •00 -8.52 

PERCENTAGE= lOOXCVALUE-BASIS VALUEJ/MAX.BASIS VALUE 
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 
t* BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES 



LOADS, DIMENSIONS AND LOCATION 
OF REDUNDANTS 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI= O.SGJ 

z 
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Figure A-13: Problem 13, Member Properti~s, Dimensions and 
Loads 
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TABLE A...,...13.1 
PERCENTAGEDEVlATlON OF REDUNDANT \/ECTOR FROM BASISt PROBLEM 13 

AFTER lt 2t 3, 4t- 5, 10, -20 AND 30 CYCLES _OF ITERATHlN 

.J l 
1 7·60 
2 10.26 
3 -6·10 
l ""'5·50 
2 26.60 
3 27031 
l ... 4 .. 66 
2 -2.33 
3 2.17 
1 7·65 
2 -23. 34 
3 -20.s2 
1 .... 4.17 
2 -10.11 
3 ... 6.60 
i 
2 
3 

.91 
-6.§9 
""8•82 

2 3 
2.23 .... 75 
1.63 .... za 
1.a3 1.3e 

'"'-9.Ql -7.47 
25.92 20.45 
25.04 20.00 
-.16 1.21 
2.13 1.89 
1.59 e46 
6.a1 s.31 

-19.-09 -15.54 
-17. 79 .... 15.0Q 
-2.11 ~.52 
--4.90 -1.74 
... 3.49 ... 1.s2 
i.29 1.75 

,;;_7.02 -4.82 
... 5.60 -3.74 

ITERATION·· 
4 .·. ,5 

-1.48 
..... 74 
· e99 

-5.T1 
16.22 
16e08 

, .94 
.63 

-.49 
4.21 

-12.ao 
-12~51 

.17 
""'aiO 
-.35 

·· l.13 
..,.3.17 
-2.61+ 

--1.213 
-.s1 

·96 
-4.55 
13.13 
l3aG9 

· ... 37 
-.57 

-1 • .¢4 
3.40 

-10.6>2 
-10.4i 

, e41 
.~s 
• 27 
.16 

-2.22 
-1.~8 

10 
.03 

1.22 
1.72 

-1.6·6 
4.90 
4e94 
...;..6Q 

-2.34 
-2·.zs 
1.a2 

-3.(}l 
-3~88 

• .30 
•·e76 
.42 
.27 

-.84 
•.79 

20 
.27 
.90 
.93 

--.os 
.30 
.35 

..... 30 
-.96 
--.90 

.06 
.... 22 
.... 23 

.01 

.03 
-.Cl2 

.02 
-.09 
:....oa 

3-0 
.oa 
·Zl· 
.22 
.04 

-.10 
.... 09 
-.01 
-.19 
-.18 
..... 03 
.os 
.oa 

.... 01 

.... ~s 
-.03 
..... 01 

.01 

.01 

BASIS** 
1<,K-Ff:ET 

11. 11 
?·75 

63.29 
-11.11 

2e75 
6'.3.29 

1.02 
.44 

3f:).36 
-1.02 

.44 
30.~6 
-4.00 
...... 79 
l6.72 
4.00 
-.19 

16.72 

** BASIS IN THIS PROBLEM TAKEN AFTER 56 CYCLES OF ITERATIQN. REPRESENTS 
\/AL.UES WHICH CHANGED LESS THAN .001 PERCENT OURINGLAST 'ITERATlGN.: . . ,: '-. ~ . . . , 

.I-' 
0 
\.0 
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TABLE A-13.2 
PERCENTAGE DEVIATION OF MOMENTS FROM ijASIS, PRQB.LEM 13, 

'AFTER 5, 10 AND 20 CYCLES Of ITERATION 

MEMBER* ITERATION BASIS-it* 
5 10 20 KlP-.FE.ET 

l 2 N -1.38 -1.14 -.41 ,16.44 
F -2.~7 ~.o, ~30 11•16 
T z.37 .p2 e07 za.02 

1 4 N ~2~~7 -.82 -.07 -22.02 
F -1.97 . -1.35 -·~3 14.17 
T -1.,a -1.14 -.41 -16.44 

2 3 N -7.33 ,..2.72 ..... 19 -11.08 
F 6.76 · 2.61 .a4 · }i.~i 
r ~.oe 0 .04 ,o& 2g.04 

2 5 N 2.45 · .7~ ·Ol ~.oi 
F -4.99 -1.35 el5 eOi 
T ...,5.u, -2.64 -•49 -22•24 

3 , N ..... oa .o4 .o& 22.04 
F 6.97 2.10 ,27 -14e2i 
T -6.7.f:> -2.60 -.24 -16.38 

4 5 N 1.69 1.43 •44 ~9.36 
F , .69 .,...85 -·3f3 · .• 913 
T ..,.l.28 -1.0Q -·31 25.91 

4 7 N -,69 -.,5 -,le -11~73 
F -.10 .26 -·05 22.2, 
T -.J9 .2, e03 -19.81 

5 6 N 5.48 2.00 •14 ~1.04 
F -5.92 -2.26 -~1~ 3.42 
T -5.36 -2.08 -.18 25.95 

5 8 N -.92 -.27 .01 •01 
F .... 2.86 -1.42 -.10 .02 
T -.38 .11 .02 -24.27 

6 9 N 1.~l e&2 •09 11,73 
F 2.96 1.16 el5 -22.31 
T ~.s4 · -.is -.o, -19.ao 

7 8 N -.09 ~.34 -.62 3.86 
F .,7 .49 i04 -4.0l 
T .09 .30 -.02 20e6~ 

7 10 N ~.19 -.,04 •,03 1.66 
F ~og .15 -101 39.62 
T Pe38 -.06 .oi -15.95 

a 9 N 1.12 .44 .os 4.oe 
F -1.16 -.46 -.Q6 -J.B5 
T ~2.00 -.$2 -,09 20.6~ 

8 11 N -.77 -.30 -.o~ ~00 
F -1.15 -.58 -.QS eOl 
T .le ,16 .03 -16.25 

9 12 N .96 .34 .Q6 -1.6~ 
F 1,12 .42 ·O~ -39.62 
T •32 el2 e0-0 -16,95 

FERCENTAGE = lOOXCVALUE-:BASIS VALUE>/MAX.BASIS VALUE 
* N, ,F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS ** BASIS MOMEt-HS. ARE RESULTS AFTER 30 CYCLES 
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--Correct Values 
-----After 5 Cycles 
-~ After 10 Cycles 
<.!J Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = GJ 

Note: Problem 14 is 
identical with problem 11 
except for choice of 
redundants 

MOMENT DIAGRAMS 
{plotted on compression side) 

53.77 kip-feet 

LOADS AND DIMENSIONS 
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Figure A-14: Problem 14, Member Properties, Dimensions, 
Loads and Comparison of Member Moments after 5 and 
10 Cycles of Iteration with Correct Values 



TA8b.E. A=14• l 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 14 

AFTER 1, 2, 3,· 5, 10~>20, 30 AND SO CYCLES. of ITERATIQf'll 

$ · ITERATION BASIS** 
I' J l· 2 3 5··· lo 20 io 50 K,K-FEET 
1 l -23.93 -10.45 .· ... 1.11 3·?Z 2.42 .94 .37 .06 84P.52 
l 2 --10e92 •.06 5e50 6e84 4e5-4 le68 e63· .09 7e30 
l 3 '"'6•93 .... 55 3e82 5e5-8 3.72 le36 e50 e06 88e54 
2 1 --21.10 ~13.09 -6.1s r...z.44 -1.1s ..... 43 -~·1.6 -~02 20.99 
2 2 17.33 5.13 ... 5.57 ... 9.a1 -6~08 -2.28 -'eQ7 -.12 .• o'o 
2 3 l4e43 3e64 -5el6 "!-7e6·7 ... 4.88 "'."'le79 -.67 -.09 ~.03 
3 1 -36.96 -11.60 -.-1.44 2.93 2.40 1.11 .51 .10 89.85 
3 2 "-24e29 .42 4.17 5e4l 4~01 1.sa .. 84 · el6 1.21 
3 3 -15.54 -1.68 1.45 3.03 2.46 1.06 .46 .oe 65-.34 
4 1 -23.19 ~12.90 -6.32 ~2.Qi ~.91 ~~~o -.1~ -~01 20.3• 
4 2 2s.61 a.99 ... 1.61 -....1.!+6 -5.15 -2.64 -1.22 -.23 -.01 
4 l 1~.za 4.5Q •l.16 -4.26 -3.24 ~1.42 -.64 -.12 w.05 
s i i...zs-.21 ... a.1s .... z.oQ · .99 · 1.26 .e2 .46 .11 94 •. ~4 
5 2 ·6·19 -2.15 a.62 .69 1.32 lelQ .67 .11 s.22 
5 3 ... 5.1(;) -1.47 ..... 41 .&4 .92 •51 .26 ~06 53.80 
6 i -1e.s1 ·1~s2 -z.as -.30 -.o5 -;~2 -.09 -~oa 11.ao 
6 2 3lel6 11.97 3e28 ~l.69 -2.&l -1•92 -lel3 -•27 · -.01 
6 3 8e9'8 3.49 .73 ... 1.03 -1.17 -.~a -.36 -.oa ~.03 

** BASIS IN THIS P-ROBLEM TAKEN AFTER 70 CYCLES OF ITERATI0"4. REP.RESENTS 
VALUES WHICH CHANGED LESS THAN 5 DlG,I TS IN THE FOURTH SI,GNlFlC.ANT 
FiGURE DUR'ING THE PREVIOUSrlO CYCLES OF ITERATION. 

I-' 
I-' 
N 
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TABLE A-14e2 
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 14, 

AFTER 10, 20, 30 AND 50 CYCLES OF ITERATION 

MEMBER* ITERATION BASIS** 
10 20 30 50 KIP=FEET 

1 2 N 1.40 .,42 ., 12 .01 -16.54 
F -5.59 -2.20 =.90 - .. 17 10.50 
T 1.s9 "77 e33 ,. 06 20e92 

l 4 N -1.89 -,..77 -.33 -.07 -20.9i 
.. F h60'· .54 .18 .02 15.55 

T ·r •. 4o .42 .12 .oo -16.54 
2 3 N -2.87 -1~20 -052 - .. 11 -10.so 

F -.50 =o28 -.14 -.04 16 .. 54 
T -.88 -.37 -.16 -.03 20.92 

2 5 N 2.77 1.14 .49 .10 .. qo 
F -1 .. 91 - .. 63 =o21 - .. 03 .oo 
T 2.72 1.00 .38 .06 -21.00 

3 6 N -.88 -.,37 - .. 16 - .. 03 20 .. 92 
F .31 .. 09 .. 03 .. oo =l5o56 
T .50 .as ., 14 .. 03 ..,.16 • 54 

4 5 N -.76 =.18 -.02 .01 -1 .. 2fu 
F .01 -. '•2 -.36 -·13 -.32 
T 2.10 .91 .41 .09 22.26 

4 7 N =·50 -.36 -·· 23 -.07 -6.71 
F 2.60 1.07 .,45 .09 29.30 
T .63 .25 ,;10 .01 -11.ao 

5 6 N -.60 ~". 49 -.31 -.10 .31 
F -.27 -.12 -.05 -.01 1.26 
T -1 .. 20 -., 53 -.24 -.05 22.2.6 

5 8 N 1.39 .. 81 • t+5 .12 "00 
F -3.06 -1.27 -.55 -.11 .oo 
T 2.10 093 .. 4.3 .09 ~20 .. 3s 

6 9 N -.89 -.,44 -.21 ..... 05 6e7l 
F .46 .20 .10 .03 -29 "30 
T .77 .. 40 .. 20 e05 ..... 17<>80 

7 8 N -1.50 -.44 """el2 .oo 5,. 58 
F 2.60 .. 65 ,. 11 - .. 03 ~4 .. 58 
T le50 .74 ,. 37 .09 16 C> 61 

7 10 N 1 .. 10 e32 .08 .oo 12.69 
F 2.15 1 .. 21 ·64 .. 17 53077 
T -.86 -r, 19 -· .. 01 .01 =12 .. 21 

8 9 N ,. 65 ,.02 ~ .• 09 -.05 4 .. 58 
F ~.01 .. 04 ..,03 .01 =5e58 
T -e89 -e46 -· .. 24 ~" • 06 16 .. 62 

8 11 N ,- 0 6 7 -.07 .. 06 .. 04 .. oo 
F -2,,74 -1 .. 61 - .. 89 =.,24 .. oo 
T .15 .. 30 ,. 22 .. 07 --IL,21 

9 12 N -.43 =e25 = .. 13 = "()t:~ -12.69 
F .,59 .. 40 .. 24 ., 07 =53 .. 77 
T .78 "35 .16 "03 ~12 .. 2 

PERCENTAGE = 100X(VALUE...-BASIS VALUEl/MAX.BA.SIS VALUE 
* N, F AND T REFER TO NEAR~ FAR MW TORSIONAL MOMENT 

** BASIS MOMENTS ARE f.,>ESUL TS AFTER 30 CYCLES, PROB EM 11 
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~ Correct Values 
@' Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
All members have EI = GJ. 

MOMENT DIAGRAMS 
(plotted on compression side) 

44.70 kip-feet 

LOADS AND DIMENSIONS 
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Figure A~lS: Problem 15, Member Properties, Dimensions, 
Loads and Final Moment Diagram 



TABLE A-15el 
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS, PROBLEM 15 

AFTER l' 2, 3, 4; 5, 10, 20 AND 3Q CYCLES OF ITERATION 

s ITERATION BASIS** 
l .J l 2 a 4 5 10 20 30 K,K--FEET 
1 1 -11.99 -12.25 -10.94 ... 9.44 -7.95 -2.89 -.32 -.02 8.99 
1 2 ~ 11.25 -18.79 '-16.33 - 13.65 - 11.28 -3.97 -.37 -.01 .86 
1 3 '-23.47 -19.63 ~ 16.21 -13.~4 -10.94 -3.73 -.32 .oo 17.60 
2 1 '-2 • 66 - 2.27 -1.37 ""' • 72 -.34 .oo .03 .01 23.87 
2 2 .oo 2.15 3.27 3.60 3.74 2.69 • 72 .11 s.oo 
2 3 .oo · "68 1.69 2.40 2.80 2.!?6 .66 .09 75.00 
3 1 2.1a 4 .13 3.67 3.12 2.63 1.20 .36 .oa 8.99 
3 2 - 7.25 '-7 .33 - 5071 - 4.49 - 3.62 -1.56 - .48 -.11 - .86 
3 3 - 10.60 - 7.71 - 5.72 '-4.40 - 3.48 - 1.43 - .44 -.11 - 17.60 
4 1 7 .25 10.41 10.46 9.26 7o74 2.64 .26 .Q l 5.46 
4 2 15 .55 18.07 16.22 13.69 llo26 3.73 .3 1 .oo .42 
4 3 2 0 .32 16.44 13 087 11.55 9.48 3.12 .24 .oo 9.38 
5 1 ... . 24 .48 . 29 .01 ... . 06 -.os - .03 -.01 5.55 
5 2 - .. 31 - 2.47 - 3.20 "'- 3.43 -3.48 -2.66 - .65 -.09 .oo 
5 3 - .48 - 1.75 - 2.38 .... 2.71 -2.85 - 2.21 . - .54 -.07 • 00 
6 1 - 6.71 - 5.30 - 4.17 .... 3.31 - 2.65 -1.11 - .32 -.07 5o46 
6 2 10 .48 7.81 5.89 4.57 3.63 1.51 .45 .11 - .42 
6 3 a.39 6. 16 4.7 0 3.69 2.96 1.21 .39 .09 - 9.38 
7 1 -1 .35 ... . 75 - .11 .22 .44 .41 .09 .01 ..... 34 
1 2 - 2.73 -1 .02 .... . 10 .33 .54 .5i • 11 .02 -.11 
7 3 e64 1 .11 .99 .87 .79 .41 .06 .01 3.32 
8 1 - .49 .G2 .15 .15 .11 .02 .oo .oo 1.92 
8 2 l e85 .42 .... . 45 -.75 -.79 .... 47 - .13 -.03 .oo 
8 3 .75 .19 ~ .11 - .34 -.40 .... 32 - .09 -.02 .oo 
9 1 --1 .09 -- 1. lil .. ... . 87 -.66 - .51 .... . 20 - .05 -.0 1 -.34 
9 2 1 .90 1 .12 1.20 .a2 e60 .22 .06 .01 .11 
9 3 l e8 5 1 . QO · .62 .43 .32 .14 .05 .0 1 ... 3. 32 

** BASIS I N THIS PROBLEM TAKE N AF TER 60 CYCLES OF ITE RATION. REPRESEN TS 
VALUES WHICH CHANGED LE SS THAN 2 DI GITS IN THE FOU RTH SIGN IFICANT 
FIGURE DU RING THE PRE VI OUS 10 CYC LES OF ITERATION. ...... 

...... 
Vl 
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TABLE A.,-15.2 
PERCENTAqE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 15, 

AFTER 5j 10, 20 AND 30 CYCLES OF ITERATION 

MEMBERif ITERATION BASIS** 
5 10 20 30 KlP=FEET 

1 2 N 5.5e le8l • 10 -.01 =3.95 
F -7.03 -2.,62 -.32 -.02 4.68 
T • 57 .4o • 10 .01 4e66 

1 5 N -e 57 -;,40 -. 10 -.01 -4.66 
F 5.74 lo 132 • 11 -.01 -8.97 
T 5e58 1•81 • 10 .oo =3.95 

2 3 N -2.66 -1 .62 -.35 -.04 =l • 13 
F 1 .. 52 1 .. 61 e45 .oa =l • 13 
T -1. 57 -·· 56 -. 10 -.01 .oo 

2 6 N 2.14 .. 96 • 20 .03 4e66 
F -6.26 -2e88 =.41 -.03 -16.03 
T 4.37 1.01 ... 03 -.01 -5.81 

3 4 N 2.39 1 • :L,4 • 3.3 .08 4e68 
F -1.66 -.()1 ~. 20 -.05 -3.95 
r .~2 ,21 .06 .01 -4·49 

3 7 N -1•79 -.11 -. 16 - .. 03 4.66 
F 2.32 1 .. 12 • 50 .09 -16.03 
t e86 -·48 -. 12 .oo 5.81 

4 8 N .22 • 21 • 06 .. oi .... 4.66 
F -1 .. ao "'"""·Ci 66 -.21 -.05 -8.97 
T 1•66 061 • 20 .05 3.95 

5 6 N ... 5.92 -1.83 -.oa .. 01 -. 1a 
F 6.68 2o34 • 26 • 01 3 • 38 
T 3e3l le06 • 06 .oo 5 • 23 

5 9 N 2.43 .76 .05 .oo -14 .. 20 
F 2.44 .89 .09 .01 '.""20 .. 59 
T -.34 .... 02 oOl .oo -4.7~ 

6 7 N 1'85 1.40 • 31 .. 03 5 .. 55 
F ... 2 • 05 -1 • 513 -.41 - .. ()1 5 e55 
T -.89 -.82 =· 19 -.02 .e,o 

6 10 N -2.06 =.99 -. 16 -.02 -10.ao 
F -2.21 -1.25 =.24 -.03 =29041 
'r -.46 .01 .02 .oo ...,3 e 63 

7 8 N -2.42 -1. 01 -.29 ~-. 06 3,.30 
F 1 .65 • 67 .22 .. os =.7~ 
T .90 .44 .. 15 e03 =5 .. 23 

7 11 N .54 .,45 • 16 .. 03 -10.a0 
F • 67 .61 • 22 .os =29 .. 41 
T .49 e09 .oo .. oo 3 e63 

8 12 N =.90 - .. 21 =.05 -.02 =l4c20 
F -.90 =e24 - .. 01 - .. 02 "':"20. 59 
T .01 -007 -. 02 .oo 4,. 73 

9 10 N -. 17 =.18 =., ()4 =e01 1 e30 
F ~44 .40 .oa .01 .20 
T 1.02 .,40 .05 • 00 3.81 

9 13 N 1.42 •48 .04 .oo -24 .. 46 
F lel;2 .33 • (J2 .oo -30 .. 30 
T -.51 =o20 ·..= e 02 .. oo .,,,.,3.43 



TASLE A-15.2 lCONTlNUEDl 

MEMBER* ITERATION 
5 10 20 30 

10 11 N ·63 .31 .07 .01 
F -.25 -,22 -.01 -.02 
T -.z3 -.21 -.oa -.01 

10 14 N -.96 -.58 -.11 -.02 
F -.37 -.29 ~.06 -.01 
T -~28 -.02 .01 .oo 

11 12 N -.52 ~.22 -.o, --01 
F • 15 .03 .01 .oo 
T .21 .11 .04 .01 

11 15 N .23 ~24 .10 .02 
F ...... 41 ~00 .o, .01 
T .23 .10 .02 .oo 

12 16 N =.68 -e14 =.02 -.Ol 
F -.34 -.05 .OO .oo 
T -.14 -~09 -.03 .ob 

PERCENTAGE:::: lOOX(VALUE=BASIS VALUE)/MAX.&ASIS 
* N, F AND T REFER TO NEAR, FAR AND TORSIONAL 
** BASIS MOMENTS ARE RESULTS AFTER 60 CYCLES 
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BASIS** 
KIP-FEET 

1.92 
1.92 

,.oo 
.... zs.s4 
-44.70 
-1.94 

"'4() 
1.30 

-3.81 
-25 .. 54 
-44.70 

1.92 
-24.46 
"".'30.30 

3o43 
VALUE 
MOMENTS 
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Correct Values 
Gf' Location of Redundant 

MEMBER PROPERTIES 

All members have equal EI 
A 11 members have EI = GJ . 

10 kips 

MOMENT DIAGRAMS 
(plotted on compression side) 

LOADS AND DIMENS I<»lS 

z 
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Figure A-16: Problem 16, Member Properties, Dimensions, 
Loads and Final Moment Diagram 



TASL.E A-16•1 
PERCENTAGE OEVl:JHION OF REDUNDANT VECTOR FROM tlASISt PROBLEM 16 

AFTER lt 2, 3, 4,; 5 ,_ 10{ 20' ANO 30 CYCLl;S QF ITERATION -

S ITERAftON. ElASIS** 
1 J l 2 3 4 - • 5 10 20 30 ~,K-FEET 
1 1 12.03 1.42 4.03 2.00 - - .92 .oo .oo .ao --1s,.s3 
l 2 oOO oOO .oo .oo .oo oOO .oo .oo .oo 
l 3 .oo .oo .oo .oo eOO .oo ~00 .oo oOO 
2 1 12.71 5002 2e41 .t.l4 ~31 a.oil .qo .oo -s1.ss 
2 2 8•64 4.04 2o08 e97 •40 · ""•01 .OO eOO -3099 
2 3 2e76 2.46 le4"9 e76 •!3"4 .... Ol - eOO eOO .,..112e49 
3 1 l2e77 5.62 2~41 e94 <!i31 "e01 e(W eOO ..,.57085 
3 2 "'"'8•&-4 "'"4e04 '""2e08 -e9'7 ""e40 eOl ~00 eOO ·3.99 
3 3 "'"?o76 •2r.4€> '""le49 ..... 16 ... .,34 -.Ql •00 eOO llil114-9 
4 1 """lel9 -2.3-1 .... 1.7'.2 a..1.01 - .. s, .oo .oo .Qe ""'lle16 
4 2 .oo .oo eOO .QO .oo .oo .ob .do oOO 
4 3 -- aoOO .oo _._ eOO .GO _ .oo -.oo - .oo .oo .-. eOO 
5 l le87 - .81 .•34 .16 .09 .ei .oo .oe .2~ 
s 2 5.9e 2.26 .,s .1, .oa ~01 .oo .oo _ .11 
5 .3 .45 ""•69 ""'•62 -.37 .... l:S eOl .oo .oo -8.:1,1 
6 1 le87 .81 .34 .16 .09 .oi .cio .oo : .2-13 
6 2 ~5.9s '""2.26 ~.es -.15 ~.02 ~,01 .ao .ae -.11 
6 a b.45 .~9 .e2 .Ji ~ia w~ol .QQ .ijo O•ll 

** BASIS IN THIS PROBLEM TAK.EN AFTER iO CYCLES OF ITERATI0"1. REPRESENTS 
VAbUE:$ WHICH -CHANGED LESS T-HAN it OIGfT IN THE SIXTH- SIGNlPICANT -
FlGli.JRE DURING THE PREVIOUS 10·-cvCLES OF ITERATION· -

I-' 
I-' 
\0 
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TABLE A'"".16.2· 
PERCENTAGE OEVlATION Of .•MOMENTS FROM 8.ASIS~. PROBLEM 16, 

. . . AFTER .5 AND 10 CYCLES OF ITERATION . 

MEMBER'lf' ITERATION BASIS*~ 
~· 10 KIP-FEET 

1 2,,N .82 .Qo -13.53 
F .a2 .oo ...:.13.5~ 
T .oo .op ' .oo 

l 4. N •41 ,oo -6.76 
F .41 .oo --6. 76 
T .11 .. Qo -11.12 

2 5 N .41 .po -6.76 
f 041 .Qo -6.7(,; 
T -.11 .. oo 1i.12 

3 4 N .oo .. oo 21.89 
F .14 --.01 -11.98 
T -e05 .oo -6.84 

3 7 N ~05 -.01 1a.59 
F -~09 .. oo -41,S7 
T -.02 ~oo 14.54 

4 8 N -.q8 .oo -·9. 86 
R -d!5 .oo ... 49.77 
t • 56 • Oi ' ...:..56 

5 Q N .14 -.en -17 .. 98 
F .,oo .;.QO 2;.~9 
T .05 .. oo 8084 

5 9 N - .. 38 . ', .oo ":'"9.~8 
F -~25 oOO -49.77 
r - .. 56 -001 .· .. ·.~e; 

6 10 N .05 -.01 18059 
F -~09 .oo -41.57 
T .. 02 .oo -14 .. 54 

7 11 N -~02 .oo -3?e40 
F -.'16 .01 =93 .. 56 
T -.,09 .oo -2~.71 

~ 9 N -047 .op =ll .. 76 
F ...... 47 .. oo -I}.76 
T .. oo .. oo .. oo 

& 12 N cl3 .. oo -3le28 
F 026 .. oo -Tl o 17 
T .. 09 .,OQ 32.61 

9 13 N .. 13 c.00 =3lo28 
F 026 oO·O -71.17 
T -.09 .oo -32~6];. 

10 14 N -.02 oOO -33.,40 
F =-.16 .. 01 -93 .. 56 
T .09 .oo 2~. 71 

ll 12 N 06 .oo -l.95 
F 07 .oo ..... 135 
T .... J,7 c.00 =9306 
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TA~LE A-1602 (CONTlll4lJEO') 

MEMBER* ITERATION BASIS** 
5 10 KIP-FEET 

11 15 N .02 .oo -64.81 
F -.13 .oo =126'~08 
T 007 .oo 60.41 

12 16 N -.05 .oo -12.1~ 
F .10 .,oo -110<)'\}2 
T ., 13 .oo -49.oa 

:J.,3 14 N .01 .. oo =.85 
F e06 .. oo '-1.95 
T el? &00 9.06 

13 17 N =o05 .bo -12 .. 13 
F .10 ·00 --110.92 
T .... 13 .oo 49e08 

14 1'8 N .. 02 .oo -64e8:L 
F .... 13 .oo -126.0~ 
T = .. 07 .oo -60.41 

PERCENTAGE :: 1 OOX {VALUE "".'BASIS \/ALUEl/MAX~BASIS VALUE 

* N, F AND, T REFER TO NEAR, FAR AND TORSIONAL MOMENTS 

** BASIS MOMENTS ARE RESULTS AFTER 30 CYCLf:'.S 



AFPENDIX B 

FLEXIBILITY DATA - CIRCULAR BEAM 

The following two pa$e~ contain flexibility coefficients 

and angular load functiona for a circular beam of constant 
:' ,; / : ,:','C : 

cross section. This beam configuration is used in example 

problem 1. The coefficients were evaluated from equations 

presented by Reddy (20) suitably modified to satisfy the 
,, . 

sign conventions indicated in Figure B-1. 

122 
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'T •• 
Jl.X 

~ 

Figure B-1: Geometry and Definition Sketch of Loads and 
Angular Load Functions, Circular Beam 

Angular Load Functions 

Positive in direction shown, right hand rule. 

'Tkmn = Pm (TKMN)L2 /EI kz 

where: (TKMN) is the appropriate 
coefficient tabulated in 
Table B=l 
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TABLE B-1 · FLEXIBILITY COEFFICIENTS AND ANGULAR LOAD 
FUNCTION COEFFICIENTS, CIRCULAR BEAM, 

CONSTANT SECTION, El=GJ 

GEOMETRIC DATA ' - ,20 
RADIUS ::,: • 725 L {3 ;:; 43.6028 DEGREES 

FLEXIBILITY FACTORS 
F(JIXXl = 1.10347 L/EI 
F(JIYY) = f<IJYY> z .39877 L/EI 
G(JIYY) = G ( IJYY) "' .15296 LIE! 
F(JU<Y) .;: F( IJYX) =-G(JIXY) =-G ( IJYX) """"•14568 

SEE PREVIOUS PAGE FOR DEFINITION SKETCH .AND 
EXPLANATION OF COEFFICIENTS.· •: 

LOCATION LOAD FUNCTION VERTICAL 
COEFFICIENT FORCE 

N = 1 TJIX • 00000 
TJIY • 00()00 
TIJY • 00000 

N = l TJIX .01617 
TJIY .01284 
TI.JV .02946 

N ;:: 2 TJIX II! 03913 
TJIY ~025$2 
TIJY e05308 

N :,: 3 TJIX .06520 
TJIY .03738 
TIJY • 06969 

N "' 4 TJIX .Q9033 
TJIY G04612 
TIJY .07869 

N :: 5 TJIX .11035 
T.JIY 005087 
TIJY ,oaooo 

N w 6 TJIX &12112 
T~JI y .05078 
TIJY .. 07404 

N = 7 T.JIX .. 11872 
T .JI Y .. 04541 
TIJY ,. 06166 

N "' 8 TJIX 009960 
T.JIY .03476 
TIJY .,Of-i<413 

N "' 9 T.JIX e06079 
hJIY .. 01930 
TIJY .. 02300 

N = 10 TJIX ,. OOC}OO 
T°JI Y. 

' 

.. 00000 
TIJY .. 00000 

--· 

L/J?:I 



APPENDIX C 

COMPUTER ANALYSIS 

The pages which follow indicate the procedure used in 

assembling the computer program used to determine the 

information shown in Appendix A. 

A macro flow diagram, Figure C-1, illustrates the 

basic logic of the process. Required input data are 

indicated below. Actual output consisted of much more data 

than would normally be produced. Since it was necessary 

to iterate by several methods, it was necessary to print 

the actual formulated flexibility matrix both 1:,efore and 

after it had been conditioned for the carry-.over process •. 

Also, to study the convergence, the redundant matrix was 

printed out after 1, 2, 3, 4, 5 and 10 cycles of iteration·: 

an~ every 10th. cycle thereafter. Final member moments were 
-

obtained from these iterated redundant vectors upon analysis 

of the nature of the convergence. In an actual problem, the 

only necessary output would be the final member moments. 

Since it was not the purpose of this thesis to develop 

an efficient program, the programming effort teraj.nated when 
. . 

results were obtained. In retrospect, many of th'.e internal 

. details of the program logic could be made somewhat more 

1.25 
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efficient and this is left to another ti.me. For this reason 
-

the details of the program are omitted. The program was 

written for a computer having a total storage capacity df 

40,000 decimal digits, therefore the structure was restricted 

in size to 24 joints, 12 loops (36 redundant elements) and 

30 members. 

INPUT DATA 

Joints and Coordinates 

(
I Jl J2 J3 J4 J5 J6 X y 

First number I indicates joint number. 
Next 6 numbers J indicate joints connected with I. 
X and Y are'coordinates of I in the basic system. 
Up to 24 such joints are possible and may be read in 

any order. 

Flexibility and Stiffness Properties 

I-J fijyy' gjixy' etc. EI EI/GJ 

I·J indicates member. 
Next six numbers are all six flexibility factors, if 

member is straight program wiiI compute proper 
values. 

EI is member moment of inertia, or ref'erence moment of 
inertia if member. has non-uniform section. 

EI/GJ is the ratio of bending stiffness to torsional 
stiffness, or reference values if member has non­
uniform. section. 

Up to 30 such cards are.possible in any order. 

Redundants 

11 31 12 J2 I3 J3 I4 J4 

Ii Ji represent member containing redundants. 
Up to 12 such pairs are possible in any order. 



;Angul~rLo.§td Functions.and Basic System Moments 

T values, 3; BS values, 4 

Up to 30 cards, one per member, in any order. 

Loops 

I1 Iz !3 I4• . • .. • • • . In 

Each I represents a joint in the loop and must be 
ordered to coincide with eit;her a clockwise or 
counterc.lockwise traversal of the loop. Up to 
24 joints are possible in any of 12 loops. 
May be read in. any order.· 
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Read Joints and 
Coordinates 

Read Flexibility Coef. 
and Member Stiffnesses 

Read Redundants 

128 

Is Same 
Structure But 

,-!?_ifferent Redundants 
'- To Be Used 

Read Angular Load 
Functions and Basic S stem Mom. 

Read Loop 

Determine Loop 
Number 

Evaluate band 
i------.i,,t 

c coef. 
Determine 
Next Member 
In Loop 

Evaluate 
eq. 12a 

no 

no 

Print Out or Store 
Flexibility Equations 
.Associated with Loop 

Iterate 

Print Out 1, 2, 3, 
4; 5 and 10th. and each 
ucceeding 10th. Iteratio 

, no 

Is Same 
Structure But 
ew Loads To Be 

""'~. Solved ,, 
"· 

Determine 
, Member End Moments 

yes 

Figure C= 1: Macro Flow Diagram of 
Computer Program 
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