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PREFACE
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CHAPTER I

INTRODUCTION

1-1. Statement of the Problem

The analysis of a planar, elastic, rigidly connected
framework loaded by forces normal to the plane or moments
in the plane is investigated. A minimum set of internal
forces and moments are chosen as the basic unknowns in the
system. Compatibility of the system is realized using a set
of equivalent elastic weights applied at the member ends.
Utilizing these equivalent elastic weights and the continuity
of the elastic curve around specifically defined paths
results in the formulation of a sufficient set of equations
involving the basic unknowns in the system. For the purposes
of this study the problem is considered to be solved when all
redundant reactions for each individual member have been
found.

The structure is assumed to be a linear system whose
supports are rigid but may have known initial deflection
or rotations. Only the effects of bending and torsion are
considered in the formulation.

Solution of the set of simultaneous equations is

accomplished by systematic restoration of the continuity



of the structure. This process leads to a multi-dimensional
carry-over technique referred to as the matrix carry-over
technique. Convergence of this process is investigated.

1-2. Analogy between the Matrix Carry-Over Technique and
the Carry-Over Procedure in Continuous Beams

The matrix carry-over technique is an extension of the
work of Tuma (1)* from a one-dimensional carry-over to,
in this case,-three dimensional carry-over.
By arranging the terms of the simultaneous equations
in a particular way dictated by the structure, each step of
the iterative procedure has a physical meaning which includes
the following three steps:
1. Fictitious cuts are made at a sufficient'number of
locations such that the continuous structure is reduced
to a series of determinate elements or trees.
2. From the end slopes and deflections of these simple
structures starting values are computed. (The starting
values are the internal force and moments at each cut
to produce continuity at that cut when all of the other
cuts are free of any force or moment.)
3. By means of a direct matrix carry-over procedure,
the full continuity of the elastic curve is established.
Since continuity is restored to the structure in three

directions simultaneously, the process involves a three

*Numbers in parentheses refer to references in the
Bibliography.



dimensional carry-over, hence the term matrix carry-over.
Tuma (1) outlines an equivalent set of steps in the

solution of the redundant elements in continuous beams.

1-3. Historical Background

In the formulation of the equations necessary for the
solution of the redundant quantities in a structural system,
the analyst may choose as unknowns either a set of forces
and moments or a set of deflections and rotations. This
choice of moments and forces as the basic unknowns generally
leads to a method of analysis referred to as the flexibility
approach. Using slopes and deflections as unknowns leads to
the stiffness approach.

Basically, the flexibility approach requires that a
sufficient number of internal redundants be selected as
unknowns. Since the structure must exhibit known continuity
of the elastic curve, this continuity produces the required
relationships to determine the set of.internal redundants.

Similiarly, the stiffness approach requires that a
sufficient number of slopes and deflections be selected as
the unknown quantities and then uses the conditions of
equilibrium to produce the required equations necessary to
compute the values of the selected set of slopes and
deflections.

Usually moments and forces can be considered as primary
objectives in the analysis of structural frameworks. Slopes

and deflections are considered to be secondary products of



the analysis. This does not imply that deflections and
slopes are less important but merely that a structural
framework without the necessary strength requires little
further consideration.

The first formulation of an analysis procedure for
general redundant structures began with Clapeyron (2) over
a century ago with the formulation of the three moment
equation. Maxwell (2) followed shortly with a more general
solution utilizing flexibility influence coefficients.

Mohr (2) contributed the concepts of the elastic weights
which could be applied to a beam as loads and produced slopes
and deflections instead of shears and moments. This tech-
nique is referred to as the conjugate beam method. Just
prior to the turn of the century, Miller-Breslau (3)

applied the distributed elastic weights of Mohr as a set of
concentrated forces at a series of joints.

Baron and Michalos (4) and Kinney (2) utilized the
distributed elastic weights recently in the solution of
planar frames and also applied the technique to beams in
space. Diwan (5) extends the method of Baron and Michalos
using an equivélent elastic system concept.

Within the last decade, Tuma and many of his students
have applied the concept of the elastic joint force,
distributed elastic weights and the string polygon to various
structures. Works by Tuma (1), Tuma and Oden (6) and Oden (7)

represent a few of these contributions and contain a more



extensive bibliography in this area than will be attempted
here.

All of the investigations cited above give rise to sets
of equations utilizing forces and moments as unknowns and are
classified in the broad area of flexibility techniques.

Actually, at the present time, stiffness techniques are
being used in a majority of the analytical procedures used in
structural analysis. Using slopes and deflections as the
basic unknowns was selected by Maney (8) whose formulation
of the slope deflection equation prodﬁced a convienient
manner of formulating a sufficient set of equations for the
determination of all redundant elements in a structure.

Mohr (2) is usually credited with the original use of this
technique. Cross (9) produced an iterative technique,
referred to as moment distribution which was in reality a
rearrangement of the slope deflection equations. This method
became an extremely popular method as it eliminated the
necessity of actual solutions of large numbers of simultaneous
equations. Southwell (10,11) developed a similiar technique
independently of Cross and extended the technique to other
engineering problems.

Modern high speed computing equipment has expanded the
engineers capacity for the solutions of large numbers of
simultaneous equations. Most computer analysis of large
structural systems is accomplished using a generalized form

of the slope deflection equations. As typical examples,



Eisemann, Woo, and Namyet (12) describe a general formulation
involving a space framework of well in excess of a thousand
members, Carter (13) utilizes the technique in connection
with the problem of critical buckling loads, and Fenves (14)
has used similiar processes in the developement of a general
computer program for structural analysis.

Theoretically, the comparison of which method is best,
most efficient, or shortest can be answered at least in part
by the results of Samuelson (15). He shows that mathematically
the flexibility épproach and stiffness approach are the duals
of one another and thus require essentially the same technique.

Practically, the generalized slope deflection equation
provides an almost automatic approach to the formulation if
all of the slopes and all of the deflections at each joint
are used as unknowns. This number is considerably greater
than the minimum number of redundants necessary for the
complete evaluation of the structural system. The method
also provides rather simple procedures for including the
effects of boundary conditions of a general nature. On the
other hand, the flexibility technique usually leads quite
naturally to the formulation of a smaller number of equations
but requires a considerable amount of programming effort.
Thus, if a trade must be made, usually the addition of a few
unknowns is not as significant as an increase in programming
effort.

Numerical techniques of solving the equations resulting

from the particular choice of unknowns comprise a vast set of



algorithms and procedures which is expanding at an extremely
fast rate. Two general classifications of iterative tech-
niques are available. The first is a technique which
utilizes a certain definite process over and over again
until the answers of the required accuracy are obtained.

The common Gauss-Siedel process is of this form. The second
technique is a process whose next step is dependent upon the
previous step or the magnitudes of the quantities involved.
The method referred to as the method of steepest descent is a
process of this form.

Two rather recent books by Varga (16) and Faddeev and
Faddeeva (17) contain extensive discussions of the above
iterative procedures. The technique employed in this
investigation is referred to by Varga as the Gauss-Siedel
process and by Faddeev as the method of Nekrasov. In this
study, it will be referred to as the Gauss=Siedel process.

In any event, both of the references show that positive
definiteness of a real, symmetric matrix is a necessary and
sufficient condition for the convergence of the process.
Faddeev and Faddeeva also state that as a rule convergence of
a group Causs-Siedel process is more rapid than the
convergence of a corresponding point Gauss=-Siedel technique.
Southwell (10) and Temple (18) among others have shown that
any flexibility or stiffness matrix is positive definite as a
consequence of the positive nature of internal strain energy.

The physical nature of the problems solved by the matrix

carry-over process in this investigation is such that it



eﬁploys essentially the use of the Gauss-Siedel process
taking blocﬁs or groups oﬁkthree equations at a tiﬁe.
Chaptér v iiiustrates two different approachés to this
iterative solution: specifically, ;he reduction of residual
vectors to zero and straight forward convergence to the

required solution.



CHAPTER II

MATHEMATICAL MODEL

2=-1, Assumptions

The structure is assumed to be a system of members
lying in a plane whose ends are rigidly connected with one
another and whose supports are either fully fixed or have
known initial deflection or rotations. Properties of each
individual member are assumed to be known and are of such a
nature that deflections in the plane or rotations normal to
the plane do not occur. Deflections due to shearing forces
are considered to be small compared with those due to moments
and torsions and are neglected. Axial deformations are not
considered. Members are identified by the numbers associated
with the joints which coincide with the members end points.
The member may have any shape or loading providing the above
properties are realized.

Loads are stationary and may be either force vectors
normal to the plane or moment vectors in the plane. The
magnitude of the loading is constant.

All ordinary assumptions of linear elasticity are

presumed.
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2-2, Coordinate Systems

Two different coordinate systems are required. They
are referred to as the basic or reference system for the
entire structure and the member oriented system.

The basic system is a right handed orthogonal set of
axes oriented in a convenient manner with the x and y axes
in the plane of the structure and the positive z axis acting
upward from the plane of the structure.

The member oriented system referenced to the undeformed

m

structure has the z axis parallel to the z axis of the basic

system but its x™ axis oriented such that the origin is at i
and the positive x" axis goes through j where i< j. The y™
axis is placed such that the system is right handed. The
angle from the x axis of the basic system to the x® axis of
the member oriented system is designatedubij and is positive
if it represents a right handed rotation about the z éxis°
See Figure 2-2.

Z Z

Figure 2-2: Coordinate Systems
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Any values which are based on the member oriented
reference system will be designated by a superscript m.

Values referred to the basic system carry no superscript.

2-3. Definitions

Several terms are used throughout this paper which are
of sufficient importance to be singled out here and defined
rather carefully. They are terms borrowed from topological
or linear graph treatments of various problems.

Tree - Every structure of the type considered in this
paper can, with proper choice of redundants, be reduced to
the consideration of a collection of statically determinate
'trees'. For the purposes of this paper, a tree will be
considered one of the stable collections of members remaining
after a sufficient number of cuts has been made to reduce
the problem to a statically determinate one. The support
of this tree is entirely contained at one joint referred to
as its base. The number of trees is equal to the number of
rigid supports.

Loop - A loop for the purposes of this paper will
consist of an ordered sequence of joints which describes a
complete path from either the base of one tree to the base
of another tree or from one joint around a path completely
contained in one tree and returning to the same joint. In
the case of a loop contained in one tree the joint nearest

the base is considered to be the beginning and end of the
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loop. In all cases a loop will contain one, and only one,
cut.

Path.- A path is an ordered sequence of joints such
that in traversing the path no member is traversed more than
once.

With the definitions and with the assumptions regarding
the end restraints of the structure, it is possible to make
the following observation: For each 'cut' or location of
redundants, one, and only one, loop can be found which
satisfies the definition.

These definitions are illustrated in Figure 2-3. The
configurations of the trees and loops are not unique for any
glven structure but depend upon the choice of the redundant

cuts,
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CHAPTER IIIL
EQUILIBRIUM

3-1. Sign Convention and Notation, External and Internal
Forces and Moments

External loads applied to the structure are force
vectors normal to the plane and moment vectors in the plane.
Forces are designated with single headed arrows and moments
with double headed arrows. In either case they are positive
when in the positive direction of the appropriate reference

system, Figure 3-1.0.

(a) Relative to Basic (b) Relative to Member
System s : System

Figure 3-1.0: Positive Applied Forces and Moments

14
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Internal forces and moments, Figure 3-1.1, are also
designated by single and double headed arrows as with applied
forces and moments but consideration must be given to which
face of the cut is termed the plus face. The positive face
of any beam segment is always the face nearest end j of the
beam ij where 1<j. On this face internal forces and moments
are plus when they coincide with the plus directions of the
appropriate reference system.

Since reactions are treated as internal forces they

require no special consideration.

| 2
Njiz
Mjiy
_é
] Hjix
M 3x
ijy Nijz
(a) Relative to Basic (b) Relative to Member
System System

Figure 3-1.1: Positive Internal Forces and Moments
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3-2. Redundant Notation at the Cuts

The redundant forces and moments at each cut are

designated by the matrix

Si1 Mijy Miky
[51] = |s12| = [Nijz| = |Nikz (1)
8i3 Mj 5% M kx
;hefé: ihideﬂfifi;s tﬂé cut

Furthermore, these elements follow the same sign
convention given for internal forces but are applied at the
origin of the basic coordinate system, Figure 3-2, using a

hypothetical set of rigid arms as a portion of the member.

A
i k <j
% ;
X
zJ ///IzI
i ¢ i 4
1
é// ky 2
Lnikx X 1"j[ijx X
A i s LT Ll
Nikz M35y, Nijz
]

Figure 3-2: Positive Directions of Redundants



3-3.

Redundant Notation, Single Member

17

The redundant quantities associated with each member ij,

i< j, are the torsional moment at end j and the bending

moments at ends i and j.

in first the member frame of reference and then the basic

reference system.

Obviously,
-3 L
xijy cos @01 -sin woij 0
X?ix = 0 0 cos woij
x?iag - 0 -sin wgyj
or
- T
%3] = [oons] |y
A
|
gi X
y

(a) s

ingle Member Redundants
Member Reference

Figure 3-3:

sin ©oij

CoOs woijJ

1<)

ijy

Mijy
Hijx

jix

Figure 3-3 indicates these values

(2)

(3)

Basic Reference

(b) Single Member Moments

Single Member Redundants and Moments



18

It should be obvious that if the member loads plus
member redundants given in equation 2 are available the
undesignated forces in Figure 3-3a are easily evaluated from
a consideration of static equilibrium of the individual

member and their computation is not considered here.

3-4, Member Redundants in Terms of Loads and Redundants at
the Cuts

Consider a portion of the structure shown in Figure 2-3
and repeated below in Figure 3-4.

2 () 3@9 4
s i

Figure 3-4: Typical Tree

Obviously, the redundants of each member are a function
of the loads and the redundants at the cuts. Specifically,
if all possible paths from any member are traversed in a
direétion away from the base beginning at the member end
farthest from the base all cuts affecting this member will be
encountered. In fact, if there are two paths to the same

cut then those redundants do not affect the member redundants.
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If the member contains a cut then the member redundants
are functions of the loads and the redundants at that one
cut only.

In Figure 3-4 the member redundants of member 7-10 are
functions of the loads plus the redundants at cuts 2 and 4.
The member redundants of member 7-8 are functions of the loads
plus the redundants at cuts 1, 2 and 4.

Finally, the relationship between these redundants may

-be stated as

Mijy 1 xoi 0 Sl BMijy
0 -yo1 1 S BM
Mijx = o3 [jbij llibijZIEbij3I:..”!bijml] < 4 A (4a)
Mysx| |0 -Yoj 1 i S3| [BMjix|-
[B3ay] |t Hes ¥ 3 [y
Sm

or

My

where: Si

[eo3) "[bu][] * [354] (b)

redundants at cut k, equation 1

Xoi»> Yoi = _coordinates of point i
measured from the origin of the
basic system to point i

bijk =0 if there are 2 or 0 paths
wholly contained in the tree
containing member ij from the member
to the cut k

bijk = 1 if the member containing cut k
is numbered in the same order as the
member ij when traversing the path in
one gireCtion, or member ij contains
cut '
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bijk = =1 if the member containing cut k
is numbered in the opposite order as
the member ij when traversing the path
in one direction.

I = a 3x3 unit matrix.

BS = basic system moments or moments due
to the applied loads in the determinate

system.

ij

Thus, the b coefficients applicable to the tree shown

in Figure 3-4 are

For Member 7-8 For Member 7-10
b7.8,1 = -1 b7,10,2 7 -
bys2 = 1 b7,10,4 © -1
b7,8,4 = 1) all others 0

all others 0

Some comments are appropriate at this point. Namely,
for any given loads, member and set of redundant values at
the cuts, equation 4a together with the three available
equations of static equilibrium are sufficient to establish
the equilibrium of the member in question. Furthermore,
since all redundants at the cuts are referenced to the origin
of the basic coordinate system the actual location of the cut
between the member ends has no effect upon the formulation
except for any necessary changes in the basic system moments.
Also, the product of the bij matrix and the S; matrix is
actually nothing more than the sums (with the proper sign)
of the S; matrices actually affecting the moments in the
member ij. Because all S; matrices are referenced to the

origin only one linear transformation matrix t is required.



CHAPTER IV
COMPATIBILITY

4-1. Sign Convention of Slopes and Angle Changes

Distributed angle changes along the continuous elastic
curve of a structure may be represented by vectors. 1In
addition, if the slopes of the members are sufficiently small
they may also be treated as a vector quantity. This assump-
tion regarding the magnitudes of the slopes will be made.

As with internal forces, it is necessary to associate
a direction along the curve with whatever angle changes are
involved. Figure 4-1.1 indicates the manner in which these
angle changes could be indicated for a segment of beam im.
The distributed angle changes or the rates of change of
slope are referred to as elastic weights.

Obviously, traversing the curve in the opposite
direction requires that the angle changes be reversed. For
the purposes of this paper the positive direction of the path
of each individual member will be taken from i to m if i<m.

Positive angle changes are defined as shown in
Figure 4-1.2, Deflections are measured from the elastic
curve to a horizontal reference and are plus if they are in

the positive direction of the appropriate reference system.

21
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Slopes are measured from the tangent of the elastic curve to
a horizontal reference and are plus if they are in the

positive direction of the appropriate coordinate system.

u W
W/

pjds

(a) Traversing the Path from i to m

P
6 0 ' g
1 m :
x we
i -~ #
. : L ’ m
E&ds;y— J T

(b) Traversing the Path from m to i

Figure 4~1.1l: Vector Representation of Slopes
and Angle Changes and Their Dependence
Upon Direction of Path



Figure 4-1.2: Positive Deflections, Slopes and
Rates of \Change of Slopes

23
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4-2. Analogy between Load, Shear and Moment and Distributed
Angle Changes, Slope and Deflection

-

Figure 4-2.1 indicates the analogy between internal
force and moment elements with slope and deflection.

Figure 4-2.la shows the elastic curve of a beam element ij
subjected to bending about the fm axis in a manner such that
all end slopes, end deflections and distributed angle changes
are plus.

In order to complete the analogy it is necessary to
introduce internal slopés and deflections similiar to shears
and moments. Figure 4-2.1la illustratés such a set. From a
comparison of Figure 4-1.2 and Figure 4-2.1 it is apparent
that the positive internal slopes and deflections correspond
to actual slopes and deflections at the far end and are in
the positive directions of the coordinate axes:. The set of
positive near end internal slopes and deflections is
opposite the direction of the coordinate axes.

Figure 4-2.1b indicates the geometric variables as loads
and internal forces and moments on the member. From

considerations of equilibrium of this analogous system

ﬁ?jz 3 |n?iz i jlsﬁyk?kd*m . “ﬁ&yxga

I m m m
PlyXiedx * Figyxys

|..I.
N
|
&1
.
N

(5)



(a) actual geometry of deflected beam
- .and positive sense of end slopes and
deflections for purpose of the beam analogy

o
|y
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Y

(b) equivaleﬁt elastic loads
on beam segment

Figure 4-2.1: Angle Change-Force, Slope-Shear and
Deflection-Moment Analogy for Bending about y axis
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Entirely equivalent results are obtained from considerations
of geometry. These equations are analogous to those
obtained for shears and moments in a beam loaded with a
positive set of distributed loads and represent the conjugate
beam analogy for this particular coordinate direction. The
equations will be referred to as the equations of elasto-
static equilibrium.

Physically, at i, the near end slopes and deflection
represent the angle from the horizontal reference plane to
the plane containing the tangent and bi-normal to the
elastic curve at i and the displacement of the horizontal
reference plane to point i. If these quantities are in a
direction opposite the positive direction of the appropriate
reference system, they are plus. Similiarly, at j, the far
end slope and deflection represent an angle and displacement
from the plane containing the tangent and bi-normal to the
elastic curve at j to the horizontal reference plane. If
these quantities are in the direction of the positive
direction of the appropriate reference system, they are plus.
Thus, the sense of these end effects is identical in form
to internal shear and moment.

Identical analogies in the other two bending directions
can be made. If the effects of shearing deformations, axial
force deformations or uniform changes in temperature are to

be included, they become analogous to a set of distributed
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moments rather than distributed forces. This class of
problem is not investigated in this study.
Figure 4-2.2 indicates positive sets of internal

slopes and deflections in the basic reference system and the

member reference system.

Nijx

(a) Positive Internal Deflections and Rotations
Basic System

(b) Positive Internal Deflections and Rotations
Member System

Figure 4-2.2: Positive Internal Deflections and Rotations

Member ij



28

4-3, Equivalent Elastic Weight Systems

For any segment of a beam used in the class of
structures considered in this investigation the distributed
elastic weights are in the plane of the member. Since the
distributed elastic weights are represented by an analogous
set of distributed forces, the idea of replacing the
distributed set with a statically equivalent concentrated
set occurs quite naturally.

Many equivalent sets are possible. Since the
distributed set of elastic weights is a function of the loads
and redundants, the set of redundants for the member ij of
Figure 3-3a will be used as a quide in the choice of this
equivalent set. In short, the distributed set of angle
changes will be replaced with the set ??EY’ ??iy and P?ix
of Figure 4-3b.

Additionally, if the beam ij is restrained as in
Figure 3-3a such that H?jz = E?iz = ﬁ@}x = 0, then the
internal slopes and deflections of the segment ij reduce
to the three rotations shown in Figures 4-3a and 4-3b.

This restraint provides a convenient method of
obtaining the equivalent elastic weights in terms of

available data, that is

- - - E — - - — — —

m
19| |Fisy| | Eigyy Bigyx Bigyy X;JY 3 iyy
'“H?ix » F?ix = |8yixy fyixx fjixy|| Xyix| *|73ix| (6)
m
i1y | Pty 8iiyy fiiyx fyiyy|| Xiiy| | ity
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i<j

P distributed gngle
changes in x -y plane

(a) Beam Restrained such that Ep Egiz ="ﬁ?jx =0
and Dlstrlbuted Elastlc Welgh S .

Z
ym . | , | 1< J
P‘:I’LIJ' ‘ 'F?iy
///,y B N?ix ' P?lx <0
/:’. ' _ T 4 j“ =
ﬁ?Lljy | ﬁ?iy

(b) Equivalent System of Elastlc Welghts
Applied at Joints :

Figure'4-3: ‘Equivalent Sets of Elastic Weights
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% 7 - [l + o3

where the £ and g flexibility coefficients and the 7 functions
are as defined in Table 4-3 and have been tabulated for a
number of beams and loadings, see Tuma, et. al. (24). This
also provides justification for the particular choice of
redundant system associated with each member. If the
flexibility coefficients are required, it is assumed that

they are available and their actual calculation is not

considered here.

A
V '

fijxy | Near end an%ular moment flexibility. £ indicates
cause and effect at same end. First and third
subscript indicate location and direction of cause.
Fourth indicates direction of effect. Hence, fjjxy
represents rotation at i in x direction due to a
unit moment at i in the y direction. Maxwell's
reciprocal theorem implies that fijxy = £ijyx

gjiyx | Far end angular moment flexibility. g indicates
cause is at end opposite effect. As for f above,
gjiyx represents the rotation at j in the y
direction due to a unit moment at' i in the x
direction. Maxwell's reciprocal theorem implies

8jiyx = 8ijxy

Tijy | Angular load function. Represents the end rotations
of basic determinate segment due to loads on segment.,
Tijy is the rotation due to loads on the span. The
rotazion is about the y axis at i of the segment ij.

Table 4-3: Flexibility Notation
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4-4, Elasto-Static Equilibrium of a Closed Loop Containing
a Single Member

All of the distributed elastic weights for the member jk

may be replaced with the set given by equation 6. However,
it is more convienient to transform these elastic weights

to the basic reference system as follows:

Piky
P.

] gy Lol
Py

Thus the advantages of the choice of equivalent elastic
weights of Figure 4-2 becomes apparent. The angular
transformation matrix is the transpose of the one previously
used in equation 3.

Since the internal slopes and deflections at the far
end of ﬁember ij are equal and opposite to those at the near
end of member jk, their mutual contribution to the elasto-
static equilibrium cancels and the only effective elasto-
static forces are those shown in Figure 4-4.

For the system to be in equilibrium in the sense of

equation 5
_Hijy_ [ 1 0 0 1 i -Nmky_
Hijz | ®oj Yoj “Yok ZXok [Pj%] + | Mpko (8)
Nij!ﬂ 0 1 1 0 H}] :



32

or

[Fas] = [Fosu] [Pa] + [ Mo

Again the judicious choice of equivalent elastic weights
and the extension of the member ends to the origin using the
fictitious rigid arms becomes apparent in the appearance of
the translational transformation matrix which is the same as

the transpose of the one used in equation 4a.

Figure 4-4: Elastic Weights, End Slopes and Displacements
Single Member Loop



33

If the end slope and deflection at j are required rather

than at i, then

R TR
[“ji} = |%s 1 -vye [“iﬂ
6. 0 1
Similiarly, 9)
e D
[“1_1] = |%15 1 -¥ij [“ji}
RS

where
1 ¢ 9 i B T ) Tl ¢ S
Xij 1 “Yijl| ®¥5i 1 “yji| = 9.3 9
0 . 0. 3 g 9 3 00 1

4-5. Elasto-Static Equilibrium of a Loop Containing Several
Members

Let the loop A be a collection of members jkmn as shown

in Figure 4-5.0. As before, assume the loop to be extended
by rigid arms ij and nq to the origin of the basic coordinate
system. Further assume that the positive #m axis for each
member including the rigid arms coincides with the direction

around the path from i to q. Then equation 8 becomes

A : [
. Yoik; Pk

[“ij] : [qu] " [tojk itokm Etomn] —EL“’okmi Pin| (10)
T
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or

Nijx

T"ij:,/ : |
J 1i<j<k<m<n<gq

Nq q
qnx
Mqnz

Nqny

Figure 4-5.0: Elastic Weights, End Slopes and |
Displacements, Multiple Member Loop
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At this point the assumption is made that there are no
relative displacements between i and m, then

- [ealleall®) - [o] (10b)

From equations 7, 6 and 4a, equation 10b may be
written in terms of the redundants at the cuts, the 7

functions and the basic sYstem.moments, as follows:

0 = tA“’AfA“’EtEbAS + tA‘*’AfA“’gBSA totpepos (A1)
- where
a7 | oty tojkg"""“itonq] | by = | biy
- - » b‘k
' .J
“oij)
e b
oy = | _'L_°J_k_;_ | “nq |
v ~ - -
. e '_‘_’w_ o S = ?l
! “onq -
. l U
fij | Sm
i IS | Fm ]
| Faq | .
£ = L—Jl‘a{-f BSy = |BS;;
R BSFQ
b
| £. .
L!:‘ | nq.- ®
BSnq
O'A = O'ij
o3k
| “nq
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While equation 11 looks rather formidable it should be
noted that it-can be broken down into a member by member

summation process around the loop A, namely,

z bijktoij‘*’oijfingijtgijsk o
T (12)
- Ztoijwoijfijwoistij - Ztoijwoij"ij
where the summation is over the m members in the loop.
Some important computational aspects should be pointed
out at this time. The contribution of member ij to this set
of equations takes on a particularly efficient form, as

follows:

o] velaTod oo+ vl ] e

In other words, the contribution of the member ij to the
coefficients of the redundant matrices S; to Sy is identical
except for signs as determined by the coefficient bijk'

As a result of the conclusions arrived at in Para. 4-1
all elastic weights must be reversed in sign if the path is
traversed in a manner opposite to its assumed plus direction.
Thus, if a path ijkm is traversed from i to m and member km
is such that m<k then the sign of the terms in equations 12
or 13 must be reversed to properly account for the effect of

member km on the formulation.
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Equation 12 is therefore modified to reflect this

possibility, as
zcijmbijk[A][sk] X3 ZCijm[Bl] i Zcijm’:r‘Z] (12a)

1 if positive axis of member
coincides with positive path around
loop m, otherwise, -1

Ll

where: ¢jjp

bijk = 0, 1 or -1 as indicated after eq. 4b
A = toij“’oijfij""gijtzij

By = toij%ij fij”cT;ijﬂsij

By = t5ij“ii%ij

Sy = redundants at cut k, see eq. 1

Bsij = moments in member ij, statically
determinate system

o35 *© angular load functions, member ij, eq. 6

Because of the restriction on the formation of the
loops, equation 12a properly summed for all loops results
in the formation of the flexibility matrix since the loop
containing the redundant S; includes all of the meﬁbers
whose internal moments are functions of Sy. Furthermore,
since equation 12a is merely an expansion of equation 10,
the coefficient matrix of the matrix Sy represents the
rotations and deflections at the cut containing S for
unit values of the redundants Si. The loop also contains

all of the members whose internal moments are functions of
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both S; and S and the resulting coefficient matrix of the
matrix S; represents the rotations and deflections at the
cut containing Sy for unit values of the redundants S;.
These are by definition the flexibility coefficients.

| Equation 12a could be used around any arbitrary closed
loop, as shown in Figure 4-5.la. This represents the sum of
the deflections and angle chgnges around the loop. However,
this is nothing more than the sum of the angle changes and
deflections arbund the loop of Figure 4-5.1b minus the sum
of the angle changes and deflections around the loop of -
Figure 4-5.1c. Hence, the deflection properties around any
loop containing more than one redundant cut can be made from
a linear combination of the basic loops defined in this paper.
These combinations do not result in the flexibility matrix
and for that reason are not considered further. If chosen
properly they do represent a perfectly satisfactory set of
simultaneous equations involving the redundant ﬁatrix as the
unknowns, but since they are not the flexibility matrix
convergence of the iterative technique cannot be assured.

Finally, since the matrices A, B and By contain nothing

but the parameters assoéiated with member ij, the terms A,
By and By for member ij represent its entire contribution to
the flexibility matrix. If for example Cijm = 1; Cijn = -1
and Cijq ~ 0, this means that the member is a part of the
mth loop and it is traversed in the plus direction, the

member is also a member of the nth loop but is traversed in
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the negative direction and the member is not contained in the
qth loop.

The significance of the preceding paragraph is simply
that the matrix multiplication need be performed only once
for each member and then properly added to the flexibility
matrix and the constant vector associated with the problem.
The above ideas are shown schematically in Figure 4-5.2 for
member 5-9 of Figure 2-3. 1If the loops are traversed such
that the member containing the cut is traversed in a

positive direction then bjjy = ¢jjp for all loops.

Flexibility Matrix Constant

| | ' | | " Matrix

(51 ® M bgog =1 ibsgg=cdi bags =0 et -
SR S0 Gl e Yo o Tl B T |
mmril 6 Y A B |0 b kol el
cs93=-1| 0 J’_ -A T o T 4 A +B1+By
oSSR U e 0 S S s S

e o N O A IS R T ) (e N T
cs95=-1| 0 | -A . A +B1+By

each partition of the flexibility matrix
represents a 3x3 matrix and each partition of
constant matrix represents a 3x1 matrix .

member and redundants refer to those shown in
Figure 2-3

Figure 4-5.2: Contribution of Member 5-9 to the Flexibility
Matrix and the Constant Matrix



CHAPTER V

SOLUTION OF PROBLEM REDUNDANTS BY
. CARRY-OVER TECHNIQUES

5-1. General

The set of equations formulated by equation 12a can be

written
Fi1 F1277"""""Fip| S1) | 21
Fa1 Fap™ """ Fan)| S2| | 22 (13)
—le szoooo.ath'mIE —SQ —zm—

or

] - [

where: [?ii] = a 3x3 flexibility matrix which is
, i physically the deflections at cut
"i-due to unit causes at cut j

wn
|
i

redundant matrix at cut i

con8tant vector, sum of terms

2 and 3 of equation 12a. Physically,
the initial displacements at cut i
due to the basic system moments

N
e
it
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5-2. Solution by the Matrix Carry-Over Method
If equation 13 is rewritten as follows

[ AT TR i -1 -1 | -
$1 Fl% 2 : -F11 F12 * * -F11 Fin|| S1

- - -1
So Fo9 Z9 -Fog Fo 0 + + =F F S
S2| _ 22| | P21 : 22 Fonl| $2| s
L] -1. -1l -1I - -
|Sw| |Fom Zw | “Fom Fol  “Fom Fm2 ° 0 || Sq

or in a somewhat
form, after Tuma (1)

1] -

shorter form, called here the carry-over

) = [sv] +le]ls]

where: I:SVi =

starting values, physically
the solution of the problem
for S; if all Sj =0, j=1i

the carry-over coefficient,
physically the induced forces
at cut i due to unit causes at
cut j while maintaining
compatibility at i

Now, if the first set of values for the redundant

S is assumed to be SV, the second approximation is given by

equation 14 using the first values of S on the right hand

side, or

[S](Z)

and, after n iterations

=)

1

i

jsvl + [els]®

(15)

[sv] « [e][s]*
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Let the last term be defined as the residual matrix, or
1 - [0+ )
(19 - (67« [ (12 - B
and after n trials
[s]® - [sv] + [R]D + [R]® oo [R]ED e
aere: [2]® = [c][z]@D

For convergence the nth residual matrix must approach

zero with n sufficiently large.

Equation 16 represents a form of iteration used by
Cross (9) in his moment distribution technique or Tuma (1)
is his carry-over technique with one rather important
difference. With these techniques it is not necessary to
process each set of values in its entirety each step of the
way. As in the carry-over technique or moment distribution
technique only the large residuals need be iterated
initially. If their cﬁrry-over effects are small, these
carry-over effects may be accumulated and their resulting

feedback accounted for all in one operation.

5-3. Block Gauss-Siedel Iterative Procedure

If equation 14 is used directly as the iterative

19 - ]« [ 1

procedure, then
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Additionally, if each new set of values for the S matrix is
computed from the most recent set of values available, then

in component form, equation 17 'becomes

-1 m

3]0 ]+ 5 o)+ 3 ] om

This form is preferable to equation 17 in that only one
matrix S need be retained at any time. This is the block
Gauss-Siedel process referred to by Varga (16).

5-4. Point Gauss-Siedel Iterative Procedure

For reference purposes, a simpler iterative technique
might be used on equation 13. It is referred to by Varga (16)
as the point Gauss-Siedel process and is essentially identical
to the technique of equation 18 except it deals with one
equation at a time and can be written

«] 3m
£i4 s£n+1)_ ¥ g ¥ ‘z £ix aé‘.‘ﬂ) + Z £k sén) (19)

k=1 k=1+1
Use of this process in the solution of the structural

problem péesented here is physically the restoration of
continuity at a cut in only one directi&n rather than
simuitaneously in all directions as given by the processes
of Para. 5-2 and 5-3.

3-5. Convergence of the Iterative Methods

Because of the restriction placed on the formulation

of the coefficient matrix associated with the redundants
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the following statements can be made:
a. The coefficient matrix is the flexibility matrix
as discussed in Para. 4-5 and is therefore real and
symmetric.
b. The positive nature of the internal strain energy
is sufficient assurance that the flexibility matrix is
positive definite, see Southwell (10) or Temple (18).
c. Positive definiteness of the flexibility matrix is
a necessary and sufficient condition for.the convergence
of all three of the techniques discussed in Para. 5-2,
5-3 and 5-4. Proofs of these are found in the references
given in the paragraphs indicated.
No general conclusions can be reached regarding which
of the three iterative processes converges the most rapidly.
However, while no general statement can be made regarding
- the convergence, physical interpretations favor the block
process. That is, it seems reasonable to assume that
simultaneous restoration of continuity in three directions
should usually converge to the answer in a more rapid fashion
than working with the one-dimensional counterpart. A
similiar conclusion is reached by Faddeev and Faddeeva (17).
' For the purposes of desk calculation, the carry-ovér
technique is ideally suited since the analyst can tell
immediately how the iteration is progression by the
convergence of the residual matrix to zero. However, round

off errors may accumulate or simple mistakes go uncorrected



46

unless frequent use is made of equation 15 to check the
progress., Automatic computation on the other hand favors
equation 18 as this avoids the round off problem with little

increase in actual computation time.



CHAPTER - VI

APPLICATION

6-1. Two-Bay Framework
The t;wo-bé;y frame shown in Figure 6-1.0 has members
whose properties are given in Table 6-1. All members have

equal EI values and all members have EI = GJ.

Figure 6-1.0: Dimensions, Loads and Redundant Locatlons
Two Bay Framework

47



48

Figures 6-1.1 thru 6-1.5 illustrate the step by step

formulation of the terms involved in the flexibility matrix

and the constant matrix.

by step formulation of the flexibility matrix.

Figure 6-1.6 represents the step
All of the

calculations are shown to emphasize the repetitive nature

of the calculations.

over technique is shown in Figure 6-1.7.

Table 6-1:

Two-Bay Framework,

Finally, the application of the carry-

Basic System Moments,
Flexibilities and Angular Load Functions

BS Values, Kip-feet

Member EMijy BMijx EHjix BHﬁiy
1-2 0 0 0 0
2-3 0 0 -40 -100
3-4 -100 -40 -140 -100
5-6 -100 140 40 -100
2-6 0 0 -40 100

Near and Far End Flexibilities from Appendix B

Member | fijyy| fiiyx| 8jiyy| Fjixx| Bjixy| fjiyy
1-2 3333 0 .1667 1.000 0 «3333
2-3 .7975 |-.2914 | .3059 2.2069 .2914 | .7975
3=4 B LY 0 .1667 1.000 0 I3
5=6 3333 0 .1667 1.000 0 3333
2-6 .7975 | .2914 | .3059 2.2069-.2914 | .7975

Angular Load Functions, from Appendix B

g iy Tjix T3ty
1-2 0 0 0
2-3 32.000 44,150 20.348
3-4 0 0 0
5-6 =, 0 0 0
2-6 32.000 -44.,150 20.348

Note:

L/EI deleted from Near and Far End Flexibilities
and from the Angular Load Functions.




1 0 o0
@J =10 0 -10
0 1 1

1.0000

o
=
N
Do

i

o
=
N
=

!
=

0 3333 0 .1667|l0 -1 0 0{l0 O
0 1.000 O 0 0 0 1{{6 O
é 1667 0 .3333

o
L]
'—l
o
OO0

0
= 0 33.333 —5.000]
. 0 -5.000 1.000

since angular load functions and basic system moments equal zero
since path around loops coincides with positive axis of member

since both redundants 1 and 2 are oriented in a positive manner
relative to member 1-2

Figure 6-1.1:

Equation 12a, Two-Bay Framework Loop No. 1, Member 1-2

(also Loop No. 2, Member 1- 2)
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LAJ =10 -10 =10 20
10

—

1 0 o0 1l[1 o o] .7975 .2914 .3059][1 0 o ol o] [-100.34
[}i}: 0 -10 -10 20||0 -0 0} .2914 2.207 -.2914/{0 0 1 ol o0]=1-770.5
0 1 1 oJlo 1 0] .3059 -.2914 .7975/{0 O O 1}| -40{ |-59.14%
0 0 1] o 1-100
: 1 0 0 1|1 o of[32.000] | 52.348
{?é}= 0 -10 -10 20||0 0 0||44.150 = |-34.540
0 1 1 ollo 1 0//20.3%8] | 44.150
' 7o 0 1 S

1 0
1 1 O

2.2068 22.068 O %}

OO
OO0

22,068 656.26 -27.89
0 -27.898 2,207

o .7975 .2914 .3059][1 0 0 O]f1 O O
ol .2914 2.207 -.2914{0 0 1 0}j0 -10 1
ol .3059 -.2914 .7975/[0 0 0 1]/0 -10 1
1 0 20 0

€931 = 1 since path around 1oop coincides with positive member axis
byg; = 1 since member contains redundant 1

b232 = 0 since member moments are not functions of redundant 2
Figure 6-1.2: Equation 12a, Two-Bay Framework, Loop No. 1, Member 2-3
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L
i
N
OO

!
=
=Oo

© 1.000
= | 20.00

EBéFEﬂ since-all angular load

€3y = 1
Py = 1
b3so

0 1
0 20
1 0

20.000
433.33
-5.000

0 1
0 20
1 0

|

OO

OO

3333 0
1.000

1

0 0 -10
.1667 O 0
1

20

3333 0  .1667]0 1 0 o][-100
0 1.000 0 |0 0 0-1]| -40
1667 0 .3333|l0 0 1 O0]-140
. “1-100

functions are equal to zero

0
0
1
0

since path around loop coincides with positive member axis

0 since member moments’are not ‘functions of redundant 2

O-HO

-100.00
= |-1633.33

-90.00

since redundant 1 is oriented positively relative to member 3-4

Figure

6-1.3: Equation 12a, Two-Bay Framework, Loop No. 1, Member 3-4
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€262
bog1
bog2

0
~10
1

1 H=1

-20 (| O
0j| O -

0

it a8 A1 .0 8
0 -10 -10 -20{| 0 0 O0]|-
| 0 L7 Ged} 8-1 ®
0 0 -1
2.2068 -22.068
22,068 656.26 -27.898
0 -27.898  2.207
L6 0.2l .88
0 -10 -10 -20{| 0 0 O||-
6 1 1 .0l 0.<10
; 0 0 -1

0
Ol =
0
1

.7975 -.2914 .3059
2914 2,207 .2914
.3059 .2914 .7975
.7975 -.2914 .3059
2914 2.207 .2914
.3059 .2914 (7975
32.000 -52.348
44,150 = [-34.540
20.348 44.150

<1
0

-l
0
0

0

0 0
-1 0
0 -1

0 0
-1 0
0 -1

since path around loop coincides with positive member

since member moments are not functions of redundant 1

since redundant is contained in member 2-6

0 -10
0 -10
1 -20

-40
100

axis

(=1 ol ol =]

0 110.34
0|=|-770.50

-59.14

Figure 6-1.4: Equation 12a, Two-Bay Framework, Loop No. 2, Member 2-6
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1 0 o 1o

[A} = {-20 0 -10 -20]| -1
0 0 0 -10

0 1 -20

0{| .3333 O .1667{{ 0 -1 0 0}{/0 -20
0 0 1.000 O 0O 0 0 10 O
-1
0

OoOrEro

[ 1.0000 -20.000
= |-20.000 433.33 -5.000
0 -5.000  1.00

’ _'l O 0 14 0 0 O]f.3333 O .1667{1 0 -1 0 0} ~-100 -100.00

[Bi] =1{=20 0 -10 -20}|}-1 O O 0O 1.000 O 0 0 0 1} 140 = |1633.33
0 1 1 04 0 0-1} .1667 O .3333j|0 0 -1 O 40 90.00
0 1 O -100

[Bz:, = [O] since all angular load functions are equal to zero
c562 = -1 since path around loop is opposite positive sense of member axis
bsgy = O since member moments are not functions of redundant 1
bsgo = -1 since redundants 2 are oriented in negative sense relative to

‘member 5-6 ‘

Figure 6-1.5: Equation 12a, Two-Bay Ffémework, Loop No. 2, Member 5-6
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(a) After member 1-2, Loop No. 1, is added to a 6x6 and 6x1 null matrix

1.000 0 0 1.000 0 0 s11 0

0 33.333 -5.000 0 33.333 -5.000 512 0

0 -5.000 1.000 0 -5.000 1.000 || s73]| - 0

0 0 0 0 0 0 $71 0

0 0 0 0 0 0 92 0

0 0 0 0 0 0 593 0

(b) After member 2-3, Loop No. 1, is added to (a)

13,2068 22.068 0 1.000 0 0 s11 57.99
22,068 689.59 -32.898 0 33.333 -5.000 s12 805.04
0 -32,898  3.207 0 -5.000  1.000 ||sj3|. | 14.99

0 0 0 0 0 0 s31 0

0 0 0 0 0 0 §92 0

0 0 0 0 0 0 $93 0

(c) After member 3-4, Loop No. 1, is added to (b)

4.2068  42.068 0 1.000 0 0 s11 157.99
42',068 1122,92 -37.898 0 33.333 -5.000 s12 2438.37
0 -37.898 3.207 0 -5.000 1.000 813] - 104.99

0 0 0 0 0 0 s31 0

0 0 0 0 0 0 $92 0

0 0 0 0 0 0 523 0

Figure 6-1.6: Evolution of Flexibility Matrix, Member by Member, Two-Bay Framework

®s



(d) After member 1-2, Loop No. 2, is added to (c)

4.,2068 42,068 0 1.000 0 0  |[sy1] [ 157.99
42,068  1122,92 -37.898 0 33.333  -5.000 || 72 2438.37
0 -37.898 3.207 0 -5.000 1.000 || s73 104.99
1.000 0 0 1.000 0 0 827
0 33.333  -5.000 0 33.333  -5.000 || s5
0 -5.000 1.000 0 -5.000 1.000 || s33
(e) After member 2-6, Loop No. 2, is added to (d)
(4.2068 42.068 0 1.000 0 0  |[s11] [ 157.99]
42,068  1122,92 -37.898 0 33.333  -5.000 || s72 2438.37
0 -37.898 3.207 0 -5.000 1.000 || s13 104.99
1.000 0 0 3.2068  -22.068 0 s21 -57.99
0 33.333  -5.000  -22,068 689.59  -32.898 || s57 805.04
0 -5.000 1.000 0 -32.898 3.207 || s53 14.99
(f) After member 5-6, Loop No. 2, is added to (e)
4.2068  42.068 0 1.000 0 0 |[s11] . [ 157.99
42.068  1122.92 -37.898 0 33.333  -5.000 |l s73 2438.37
0 -37.898 3.207 0 -5.000 1.000 || s73 104.99
1.000 0 0 4.2068  -42.068 0 s3] -157.99
0 33.333 . -5.000  -42.068 1122.92 -37.898 || s27 2438.37
0 -5.000 1.000 0 -37.898  3.207 || s3] 104.99
Figure 6-1.6: Continued

199



Premultiplying each set of 3 equations by the inverse of the 3x3 matrix

diagonal yields, from Figure 6-1.6,

1 0 0 .51483  .32443 -,11107 ]
0 s | 0 -.02771 -.03244  .01111
0 0 1 -.24963 -1.4808 .33776
51483 -.32443 .11107 1 0 0
02771 -.03244  .01111 0 1 0
24963  -1.4808  .33776 0 0 1
In carry-over form,
s11 -12.44 -.51483 =-.32443  ,11107|[s2;
s12| = 5.00| + 02771  .03244 -.01111(|s99 [Sé]
513 _ 70.00, | .24963 1.4808 -.33776]| sp3]
521 [ 12.44 -.51483  .32443 =.11107|[sqq]
829| = 5.00f + |-,02771 .03244 -.01111/| s75 [Sé]
$23 | 70.00] -.24963  1.4808 -.33776|| sy3
Which, when solved by the carry-over technique yield,
el b g y ¥ (after 2 cycles)
S11 -12.44 -.25 -1.5 -14.1
s12| = 5.00 * o] b d4| = 4.87| =
513 70.00| ¢ -13.14| ¢ 4.10 60.86
e =, ke —>(12 ->(12 - e -
oy t 20 e . _
s21 12.44] 2L 28] *hefaosgl [ 149
§22| = 5.00f + -,27] * 4| = &.87 = + v+
823 | 70.00 -13. 14 4.10] | 60.86

_,Cif indicates carry-over operation

(after 6) (solution)

-15.01 -15.06

* = 4.89 4,90
60.52 60.56

. > b -
19,01 15.06

ce o= 4.89 4.90
60.52| | 60.56

on the
e < _ =
s -12.44
s%% 5.00
813| = 70.00
821 12.44
822 5.00
_323_ i 70.0{1

1]

s + [oafsd
[sva] + [e21][s4]

]

Figure 6-1.7:

Solution of Two Bay Framework by the Matrix Carry-Over Technique

9§
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Once the redundants at the cuts are evaluated,
equation 4b can be used in the following form to obtain

the internal redundants for each member

1 %51 O BMijy
0 ~yo1 1 . BM;
- J¥
[Mij] = {bij 151 * bij 252} (4b)
: 0 -=yoj 1 ! BMj ix -
1 %03 0 BMJ iy

for member 1-2 this becomes, from Table 6-1, Figure 6-1.1 and

Figure 6-1.7

10 0 0 0
| -15.06  15.06
0 0 1 o] |121.12
[My,] = 4,90 + 4,90 +| | =
| 0-10 1]| 0 23.12
* 60.56  60.56
10 0 0 0

since this is in the basic reference system it should

probably be rotated to the member reference frame, or

)

™ - i

- ) _
Xlog| |01 0 0O -121.12
i | .

Kp1| = |0 0 0 1]j121.12 0
x21y 0 0-1 0| 23.12 ~23.12

.0

In this case, the summation of the S; matrices is
obtained prior to multiplication by the v and t matrices.
This operation is possible because all redundants are

referenced to the origin of the basic coordinate system.
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6-2. Summary of Problems

In the appendix the final results of sixteen different
problems are included along with an analysis of the
convergence of the individual redundants at the cuts as well
as an analysis of the convergence of the individual member
redundants.

To analyse the variation of the iterated answers, the

percentage deviation from the basis value is computed as

follows:
% Deviation of U = Y——T% 100
where: V = the absolute value of the

maximum basis value of all
quantities in the problem

U = value being investigated

U* = basis value of U

In the case of redundants at the cuts, the values
are mixed values regarding the nature of their units. That
is, some values are shears and some moments. For this
reason, whenever a shear value is encountered it is
multiplied by the absolute value of the largest coordinate
used in the problem prior to its comparison by the above
formula.

Problem 1 is the problem used as a sample problem
in Para. 6-1. Problem 2 is a problem solved by Diwan (5).
Problems 3 thru 14 all involve a 2 bay, 3 story framework
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with symmetrical, unsymmetrical and anti-symmetrical
loadings as well as a variation of relative torsional

to bending stiffnesses and two different choices of
redundants. Problem 15 is an extension of problem 3 to
three bays and three stories. Problem 16 is a hexagonal
framework symmetrically loaded.

Table 6-2.1 contains a summary of the significant data
relative to the convergence of the carry-over process that
is contained in the Appendix A. Figure 6-2 illustrates
graphically the nature of the convergence for problem 3.

A considerable amount of additional data relative to the
problems but not specifically associated with the convergence
of the carry-over process is also included in Appendix A.
Some general details involving the nature of the input and
output data as well as the overall nature of the computer
program used to obtain the solutions shown is included in
Appendix C.

Table 6-2.2 shows a comparison in the speed of
convergence of the point vs. the block Gauss-Siedel

techniques for problems nc. 1, 2 and 3.
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Prob.| Geometry, Loads, Maximum 7 Error*
and Redundants EI/GJ| S Values X Values
Error[Cycles [Ertor[Cycles
i)
1 4 7 1.0 00| 6 [o.0] @
fretd see
2 7/7 App. | 10.0RF 7 | o.0n] 2
A

3 1.0 1.54 20 0.35 20
4 XKX‘ 2.0 | 0.83] 20 | 0.21] 20
5 0.5 3.91| 20 Q.70 20
6 i /)ﬁk 1.0 2.29 50 1.02 50
7 1.0 0.66 20 0.13 20
8 {<<(‘ 2.0 | 0.40| 20 | 0.09| 20
9 0.5 Py - 20 0.33 20
10 f 2| 1.0 | 1.36] 50 | 0.27| 50

*for calculation of error see Para. 6-2

Table 6-2.1: Summary of Problem Results
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Prob. Geometry, Loads, Maximum 7 Errors*
and Redundants EI/GJ| S Values X Values |
Error|Cycles|Error|Cycles
11 1.0 | . 8.18 20 0.07 20
12 |} Xz‘ 2.0 | 0.12| 20 | 0.04] 20
13 0.5 0.96| 20 0.49| 20
14 ’ e 1.0 | 0.27| 50 0.24| 50
15 ((((g‘(jg/ 1.0 | 0.72] 20 | 0.50} 20
16 {Cf—]—* 1.0+ 0011 10 0.01| 10
* for calculation of error see Para. 6-2
Table 6-2.1: (continued)
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see Appendix A, Table A-3.1

_ ! for tabulation of
values shown
\,7/513
40 \\
. ANl
s \
H
o AN
: s e M b
g o fstu - — .
S
" / —t
-
a pd @
2~20 7
n /
-40 //
/ ¥
532
‘60 i
: | !
0 4 8 12 16 20

Cycles

Figure 6-2: Convergence of Some Typical Redundant
Matrix Elements of Problem No. 3
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Table 6~2.2: Comparison of Convergence Rates
of Block vs. Point Gauss-Siedel Techniques

Prob, | Iterative Iteration No. where All Values Changed
No. | Procedure Less Than the Indicated Percentage
During the Previous Cycle*
- .01% .001% ~.0001%
point - - 41
1 block 5 6 8
2 point - - 47
block 7 9 12
3 point 111 174 243
block 31 41 49

*Percentages are computed individually for each
.unknown using its own most recent value as a
basis of comparison.




CHAPTER VII
SUMMARY AND CONCLUSIONS

7-1. Summary

The following principal formulas were developed for the
solution of the problem stated in Para., 1-1. Briefly, the
internal redundant moments in each member are given by
equation 4b, as follows:

nd - ol ]

Then the flexibility matrix, F, was formulated from

equation 12a
z Cijmbijk[A][ Sk] - - Z Cijm[Bl] - Z cijmlsﬁj (122)

Finally, the solution was obtained by iterating»the
flexibility matrix in a manner described as a block Gauss-
Siedel process. Physically,‘this process representéd a
systematic restoration of the continuity at each cut in a
cyclic manner until continuity of the elastic curve was
achieved. It is therefofe'an extension of the one-dimensional

carryéover of Tuma (1) and for that reason was termed the

64
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matrix carry-over technique. This iterative procedure was

given by
i-1

[Si} €n+1? g [Svi] + Z[Cm][sk] (orl) Z[Clk}[sk:l @ (18

k=1 k~;+l
Equation 4b was then used to obtain the redundant moments in

each member.

7-2. Conclusions

1. The matrix carry-over technique was found to
converge in a rapid mannef. For the class of problems
investigated, the membef?moments converged to within 0.70%
after 20 cycles\of iteration if the redundants were chosen
such as to make the individual trees relatively compact
Problems 1, 2 and 3 1ndlcated the convergence to be
approx1mate1y 4 times faster than the point Gauss-Siedel
process. | |

2, Formulatlon of the problem by equation 12a proved
to be relatlvely simple. By defining the redundants in each
member in the same mannef as the equ1va1ent elastlc\welghts,
the terms of equation 12a become highly repetitious. Use of
the origin of the basic coordlnate system as a reference for
redundants at the cuts and deflection matrix at the cuts
produced eiﬁiliar simplifications‘ As can‘Be seen from
Figures 6-1.1 thru 6-1.5, the only quantities involved in
equation 12a were the coordinates, flexibility coefficiehts

and statically determinate loads for the individual member.
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A general computer program was developed to solve any type
of structure satisfying the statement of the problem. This
includes problems having a large variety of different linear
gfaphs. Samuelson (19) was able to program problems subject
to.the requirement éhaf they have the séme linear graph.

3. Choices of compact trees indicated better|or faster
rates of'conQergence than trees formed in a less compact
manner. This is indicateq by a comparison of problems 3, 7
and 11 with problems 6,‘10iand 14. The latter group of
problems was identical with the first except for the choice
‘of redundant cuts.

4. Since the formulation resulted in a minimum set of
simultanéous equations, the method can be applied to a
structure having stiffness variations within each member b9
replacing the ﬁembers with a number of straight segments of
constant. section. This would be accomplished with no
.increase in the number of simultaneous equations.

Boéh the technique of fdrmulation‘and its accompanying
simplifications as well as the use of the multi~dimensional
carry-over technique are believed to be original with this

investigation.

7-3. Exténsi@ns of the Technigue

Probably the most important result of the problem
studied in this work is actually a by»product, This is the
formulation procédure which produces a minimum set of
simultaneous equations. Therefore, foﬁr immediate extehsions

should be investigated:
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1. Produce the analogous technique for the solution
of planar structures with loads in the plane. This extension
is in a one-to-one correspondence with the techniques used
for the problem considered here. The only differences are
the terms within the t and w matrices and the flexibility
factors for the individual members.

2. Investigate the errors introduced by replacing
curved members or members having a varying stiffness with
short segments of constant section properties. This
procedure would eliminate the need of a large number of
tables or formulas for the proper evaluation of member
flexibilities.

3. Extend the technique to a three dimensional
structure with arbitrary loading. This would utilize the
same logical process involved in determining the bij and Cij
factors but would deal with all 6 internal force and moment
elements at each redundant cut.

4. Investigate the technique of introducing hinges
and other discontinuities into the structure. A 'simple'
solution to this problem would greatly increase the value of

all of the methods described.
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APPENDIX A
PROBLEM SOLUTIONS AND ERROR ANALYSIS OF CONVERGENCE

The following pages contain the results of sixteen
different problems formulated and solved by the iterative
technique described in this thesis. All results are shown
in a similiar fashion, that is, Figure A-1, Table A-1.1 and
Table A-1.2 summarize problem 1; Figure A-2, Table A-2.1 and
Table A-2.2 summarize problem 2; etc. A summary of all of
these problems in contained in Table 6-2.1.

In all instances, the figure associated with the
problem contains the problem dimensions, loads, member
properties and a sketch showing the variation of bending
moments throughout the structure. Wherever possible,
bending moments after 1, 5, 10 or 20 cycles of iteration are
also shown to indicate the regularity of the convergence.

For brevity, a similiar sketch of torsional moments is not
shown. The convergence of the torsional moments are similiar
to fhose shown for bending moments.

Tables A-1.1, A-2,1, etc. contain an analysis of the
convergence of the redundant matrix for each problem.

Tables A-1.2, A-2.2, etc. contain an analysis of the

convergence of the actual member moments and torsions
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computed from the redundant matrices at each indicated cycle
of iteration.
Percentage deviation is always computed as discussed in

Para. 6-2.



MOMENT DIAGRAMS
(plotted on compression side)

121.12 kip-feat

—— Correct Vaiues
------ After 1 Cycle
(" Location of Redundant

MEMBER PROPERTIES

All mémbers-haVe equal EI
All members have EI=GJ

Figure A~1: Problem 1, Member Properties, Dimensions,
Loads, and Comparison of Member Moments after 1 Cycle
of Iteration with Correct Values
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TABLE Axl.l ' '
PERGENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS» PROBLEM 1
AFTER.lv 2% 3 49 53 69 B AND 10 GYCLES OF ITERATION

) g ITERATION : : . BASIS#*
1 J S 'R 2 -3 4 - 5 6 8 10 KsK~FEET
I 1 2467 «88 »23 - - e06 - «01 « 00 «e00 - 400 - =15406
1 2 le¢96 “e61 - “we2l ~e06 - =e@l « 00 «00 ¢ 00- 4490
1 3 9462 o411 “oeQ4 “a02 « 00 "« 00 200 « 0D 6056
2 1 “2e4] “e51 “el2 ~e03 “e@1l « 00 «00 e 00 15,06
2 2 b3055 “y60 ~o k2 ~-403 “woe@1l ‘OO' " 200 « 00 4490
Z 3

=34 77 o4 @ “e06 “001 « 00 « 00 «00 « 00 6056

## BASIS IN THIS PROBLEM TAKEN AFTER 13 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN +00001 PERCENT DURING LAST ITERATION.

A
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TABLE A-1.2 |
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 1,
- AFTER 5 AND 6 CYCLES OF ITERATION = -

,MEMBER* ITERATION BASIS**
S : 5 C 6 KIP-FEET
1 2 N 01 «00 121412
- T «02 - .00 : 5-0@

2.3 N «01. -~ .00 ~15.06
0 F "« 00- -~ +00 ~16+99

- F « 00 «00 ~16.99

T +00 <00 284,47

3 4N « 00 « 00 =~2Be47

. F « 00 e Q0 “ 79 o bty

. «00 «00 16599

5 6 N +00 « Q0 =79 o4t
F + 00 | +00 ~28e47

T «00 .80 -16499

PERCENTAGE = 100X(VALUE*BASIS VALUE } /MAXSBASIS VALUE
* Ny F- AND T REFER TO'NEARs “FAR:AND TORSIONAL MOMENTS
*# IASIS MOMENTS ARE RESULTS AFTER 13 CYCLES '
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MOMENT DIAGRAMS

~ (plotted on compression side)

—— Correct Values
----- After 1 Cycle
(D" Location of Redundant

MEMBER PROPERTIES LOADS AND DIMENSIONS
Member — ET  EL/GJ —

1-2 1.3333 1.0 |

2-3 1.2000 1.2

3-4 1.3333 1.5

3-7 1.3333 1.0

5-7 . .8333 2.0

5-6 1.0000 1.0

Figure A-2: Problem 2, Diwan's Problem, Member Properties,
Dimensions,; Loads and Comparison of Member Moments after
1 Cycle of Iteration with Correct Values



TABLE A«2.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 2
: AFTER 19 2+ 39 43 59 69 9 AND 12 CYCLES OF ITERATION

S : : ITERATION BASISx*

I B 1 2 3 4 5 7 9 12 KsK-FEET
1 1 le68 24 « 06 «02 «01 « 00 «00 «00 «28
1 2 =2.19 20 18 08 +03 01 «00 00 ~5.92
1 3 ~3483 ~q22 + 04 +03 «01 «00 «00 s 00 “45409
2 1 135 «40 14 e 06 «02 2+ 00 «00 «00 —6e65
2 2 “~leb4 ~e40 “~el3 <¢05 ~e02 «00 «00 «00 o 76
2 3

~1e36 “~e20 -e¢05 ~e02 ~e01 « 00 « Q0 «00 10.48

*¥¥ BASIS IN THIS PROBLEM TAKEN AFTER 17 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN 00001 PERCENT DURING LAST ITERATION.
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TABLE A-2.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS; PROBLEM 25
AFTER 5 AND 7 CYCLES OF ITERATION

MEMBER* , ITERATION BASIS#*%
. 5 £l KIP-FEET
1 2 N ?902 : Qoo 145‘09
L .F ‘.Ol «00 . ”2.27
T «Q1 «C0 1428
2 3N «01 « 00 » «28
E 004 : 001 .76V//
T ~s01 - «00 2627/
3 4N ~s02 « 00 ~2s16
3 +03 ' 0«01 40643
T *001 «00 wZ 86 P
3 7N «02 <00 “2e11V
- F «01 « Q0 © 92 /
- T 001 iOO '4#43V
5 6 N « G0 - «00 6470
F “e01 «00 11424
T '000 QOO “3095
5 T N «00 « 00 T.18
F $02 « 00 3.39
T « 00 «00 2.99

PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE
¥ Ns» F AND T REFER TO NEAR, FAR AND TORSIONAL MOMENTS
#%* BASIS MOMENTS ARE RESULTS AFTER 17 CYCLES
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MOMENT DIAGRAMS
(plotted on the compression side)

55.88 kip-feet

— Correct Values
-—== After 5 Cycles
- After 10 Cycles
,@ Location of Redundant

MEMBER PROPERTIES

All members have equal EI.
All members have EI=GJ

Figure A-3: Problem 3, Member Properties, Dimensions,
Loads, and Comparison of Member Moments after 5 and 10

Cycles of Iteration with Correct Values



TABLE A%3.1
PERCENFAGE DEVIATI@N OF REDUNDANT VECTOR FROM BASIS» PROBLEM 3
AFTER 1s 29 35 4% 59 10y 20 AND 30 CYGLES OF ITERATION

K ~ 1TERATION - BASIS#%#

I @ L 2 3 G 5 10 20 30 KsK=FEET
I 1 =709  7¢40 11453 11474 10450  4.04 A $04 15,94
1 2 B0elZ2 40477 36438 30584 25.63 B«B7 o 78 203 2403
1 3 58612 42:32 34092 28490 23,73 7+89 "eb61 «01 33.84
2 1 2838 Set&tl Se 66 Be66 Te53 3659 «58 BT 15.94
2 2 21354 =21elk 20473 *19s27 =1T7e49 =9¢11 =le54 “e18 =-2203
2 3 %l@&Qé “1799 =18e4B =17e53 -~16.13 “8s62 =le49 ~el8 “B3+B4
3 1 %1173 +13.47 %1831 “11e76 —=9+482 3438 ">~¢33 “oep2 Te23
B 2 %52653 =45443 “3T7.64 “30e83 *24096 789 e 57 “s@1 o 72
3 3 446497 “B3809 <31s10 25432 =20e45 ~He39 ~e&43 ¢ 00 10.86
& 1 ‘51“12599 =106 7T8@ '“‘-9e®"3 L7663 ~5e50 =307 - o 49 -eB6 7023
4 2 126844 23406 20096 1B:95 16696 8a61 le43 16 weT2
4 3 18683 18¢61 1768 %6628 la4e69 7650 le24 14 “]10+86
b 1 T 693 e 24 =G4 *‘“1016 wlel? = e 66 -s11 —-e@1 1455
5 2 =2eB4 =3,68 ~341l4 ‘*‘2973 =2 ¢ 48 ““’1.43 ~e25 ~e03 e 02
5 3 “5,01 “3¢26 “2e78 w2450 ~2+25 “1008 “q¢15 ~e01 236
6 1 “36T9 %2692 =209 =le51 ~1lel5H “ o 4G =o @8 ~-e01 1l:55
& 2 T+39 4097 218 2a26 1e 79 «96 o 19 02 “~502
& B

158 1468 l.63 1:55 lesb «88 17 2002 “2.a36

#% BASIS IN THIS PROBLEM:TAKEN AFTER 116 CYCLES OF ITERATION. REPRESENTS
VALWES WHICH CHANGED LESS THAN 00001 PERCENT DURING LAST ITERATION.
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MEMBER %

1

2

22

10

11

12

PERCENTAGE = 10OX{VALUE-BASIS VALUE) /MAX«BASIS
F AND T REFER TO NEAR,

%

T4 MZANZANMZAANZANZANZANZANZ AN ATNEZANZANZANZANEZ +NE

Ns

AFTER 5,

5
~3e¢99
6¢36
-1915
115
*4.02
“3399
4456
-2450
"i.82
-1.98
6e73
~1480
4082
~2s71
?2.50
4,13
~5¢95
_2031
~1le71
. as
“014
-394
2,91
2,05
2437
2661
é.Zl
- 66
&.7@
“obl
'029
071
~e86
~+99
~e62
‘e &3
*069
.03
52
1.23
'061
623
.24
«01
o b4

TABLE A=-3.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs; PROBLEM 3,
109 20 AND 30 CYCLES OF ITERATION oo

ITERATION
1o - 20
~lei3 we Q4
245 +28
‘059> “ole
.59 .10
~-1e20 ~e 06
”1b13 —e 04
2.17 035
=]1e51 —-a27
.30 .03
“089 “013
207# §34
g’02:7 007
930 003
“105@ ?028
1.51 .27
lelé 03
-2004 “;20
5069 =,03
;q5l “;63
&071 “oO?
;ool‘ é’”0@1".’
“1086 ¢330
le61 «28
loQ? Ql&
99 " el3
1e29 «19
~o¢ 09 §ooz
~e 48 ~+10
5058 “AIS
~o11 ”ooi
18 403
”QQO “oQ?
“Q&? ‘;@4
“934 003
~i25 ~402
.18 502
“OBQ 905
«09 «02
e 34 006
+58 .09
o 4D 207
0% 00
-2 24 006
qu@ 3095
='20 “CQB

30
"e01
202
-e01
«01
.01
-00
04
’003
<00
-a01
«03
01
«00
"003
003
“o01
fool
«00
<00
«00
<00
-¢03
«03
«02
01
02
<00
=e01
—e02
<00
000
=s01
«00
200
200
Yelc)

~e0l
- 00

'000

.&01

e01
«Q0
m°01
“qu
» 00

80

BASIS**
KIP~FEET
o mlie 34

15494
- 3e42
- =3e42
=13 456
~4 ¢34
15+94
54.34
~3e42
584
~22488
1400
*3.@2
~13+56
4e34
.03
7.23
3.55
'“11021
“30e96
*4032
7423
'.03
~3 65
=1557
“38009
5;00
~17421
~3096
4932
le 38
1.55
Za 28
~33 423
247 06
ﬁ2b93
1455
I 38
=2 o 28
~33.53
“55»88
f.QD
~33 .23
a47066
2.93
VALUE -

FAR AND TORSIONAL MOM“NTS
®** BASIS: MOMENTS ARE RESULTS AFTER 100 CYCLES ;



MOMENT DIAGRAMS
{pilotted on compression side)

—

55.88 kip-feet

R EI/G’Q] =

—— EI/GJ =

——— EI/EJ =

MEMBER PROPERTIES LOADS AND DIMENSIONS
All members have equal EI "~

All members have EI = 2GJ

G

o}
y ey

Figure A-4: Problem &, Member Properties, Dimensions,
Loads and Comparison of Member Moments for EL/GJ
Variation of .5, 1.0 and 2.0 -
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TABLE A-4.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 4
AFTER 15 2» 35 45 5, 10, 20 AND 30 CYCLES OF ITERATION

5 ITERATION BASISH*

S - 1 2 3 4 5 10 20 30 KsK=FEET
1 1 =21e74 +T7e93 =1le34 1.83 3.16 2433 «38 06 18¢74
1 2 “s68 11218 11453 1063 9652 b o lely « 70 10 221
1 3 27¢35 16011 11.75 10425 892 4401 63 «09 = 35,75
2 1 ~9+98 5033 2471 3065 370 le80 - 930 o Q4 - 18.74
2 2 485 &7601 =9,13 =926 ~8B8e65 —4e17 ~o 70 —=¢10 =2s21
2 3 =203 =Tebh4 =891 =«8.84 =820 =3.,95 ~ebb -s10 ~ =35,75
3 1 =Be09 “6e53 <6654 26038 ~5,92 ~2,77 -e43 -406 8515
3 2 =38e80 =27e482 =20672 —16¢41 =13.45 =5,41 ~e83 ~o12 “ o 16
3 3 =27670 19,086 ~14+51 ~11e66 =963 =3.93 =,60 ~+09 10,08
4 1 =13e39 =9,89 =T7695 =651 =536 ~2.07 =633 ~e05 ‘8515
4 2 26667 20a71 16088 14,08 11.82 4489 «80 012 ~s 76
4 3 15.84 1371 1190 10.28 8¢82 3.78 062 .09 =10,08
5 1 1.81 2.11 1456 1404 .64 %403 ~e02 « 00 © le68
5 2 o18 . .70 110 1.13 “ 296 15 =501 «00 : 0 0&
5 3 “eﬂl 1021 «718 046 e 2B =406 “a(2 « GO rn54
6 I =1.99 ~-e81 ~e40 ~e28 *025 =¢17 —o03 «00 l1.68
6 2 3667 1.36 «18  =,16 =el7 .09 03 200 -5 04
& 3

=140 =]1,06 =362 =429 ”9@7 “el5 -03 .OQ ~=Le 5%

#% BASIS IN THIS PROBLEM TAKEN AFTER 42 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.

z8
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TABLE A-4,2
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 4,
“AFTER 5s 10 AND 20 CYCLES OF ITERATION

MEMBER* ITERATION BASIS**
' E 5 10 20 - KIP-FEET
-1 2N ~2405 ~e40. - «a05 - =3,36
:‘F 2(01 19@8 .21 ,~!-18p76

T ~e39 ~e27 . ~s04 2460

14 N 639 427 w04 =260
CF =165 ~e66 “e09 ~13466

T - “2.025 ’-“o[f'.@ ""'0_05 "'3036

2 3 N 2437 lel# Ty 18.76
F ‘1.32 “;62 *009 . %363@

T ' .29 :014 602 —2061

2 5 N “~e67 ~ o4l “006 5021
: F 3.21 1e40 «20 -22.67
T 936 ~a34 *005 ?”900

3 6N 429 o14 402 =261
F ~1456 —o T4 ~oll -13.67

) T 1.32 662 o@g 30@6
4 5 N l1.96 .53 «07 1e53
F «3,79 ~1475 —e24 8.13

T ~o42 -edl 4?03 : 2045

4 7N -1422 el ~206 -16.12
F “038 +~e25 ~e04 f30.97

T “«s09 013 e 02 =2 483

5 6 N ’3644 “1031 ?018 8013
’ F le61 75 .11 7 a54
T «60O «33 «05 ﬂ‘204‘!-5

5 8 N 2.18 «87 ¢12 ~1777
F «66 «51 208 ~38.05

T 71 oll «01 «00

& 9 N ~e96 ~e4] ~-e06 -16412
F ~e28 —-e26 ~e 04 -30.,98

T “«e29 —elé -e02 2483

7 8 N 'QOO '008 . *001 1.33
F -42 faOl ~e(01 ) l.e68

T ~e04 foo7 ~a01 le36

7 10 N ’034 'olg ~e03 °32}33
F «30 401 -« 00 -47437

T ~.09 405 +01 ~1450

8 9N ~e16 ~el1 -e02 1,68
. ~e23 ~e07 -e01 1.33

T ~.01 e 07 01 ~1le36

8 11 N «63 * 37 e 06 =35.33
’ F = e 65 003 ;01 ”5?026

T o1l4 .02 .00 «00

9 12 N =029 “019 #003 “32034
F «35 ~-e02 ~a01 =47 437

T «406 -e07 ~e01 1.50

PERCENTAGE = 10OX{VALUE-BASIS VALUE)/MAX.BASIS VALUE
®¥ ‘N9 F AND T REFER TO NEAR,s FAR AND TORSIONAL MOMENTS
*% BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES
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LOADS, DIMENSIONS AND LOCATION
OF REDUNDANTS

\ z

MEMBER PROPERTIES

All members have equal EI
All members have EI = 0.5GJ

Figure A-5: Problem 5, Member Properties, Dimensions and
Loads



TABLE A=«5.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 5
AFTER 1s 2s 35 4 55 10, 20 AND 30 CYCLES OF ITERATION -

S : ITERATION - BASISx*#*

I J 1 2 3 4 5 10 20 30 KsK~FEET
1 1 8e73 22438 23.06 20.21 16497 676 66 ~e07 13417
1 2 6428 T1le06 6247 5291 44,16 16451 1.07 “e32 1.83
1 3 88e47 Tle34 59¢98 50403 41.42 14.84 67 ~o38 31.54
2 1 1295 15462 1363 1198 1079 6 o34 le4l «17 13.17
2 2 =31e50 =32e81 “30e37 —28¢30 =-26e39 ~16.53 ~3.91 ~e51 ~1e83
2 3 =21le42 ~26e22 =260l =25.04 =23.75 —~15e48 —3,82 ~e53 ~31453
3 1 ~16e51 =19424 =17e45 =14¢52 =11.86 —4411 -.10 el3 6420
3 2 ~64e73 “59¢54 =50e94 =42530 -34464 -11,40 04 46 ¢ 70
3 3 ~66eb66 —5T7e69 =48e45 ~40,04 ~32.75 «10.74 03 &3 11490
4 1 %1083 “Be40 =Te29 =679 =6.46 =—4418 -e96 -el2 6420
4 2 24417 2lel4 20e42 19499 19431 12.75 3.01 39 =470
4 3 20663 20476 20669 20420 1935 12.63 3601 39 “]11490
5 1 =1sl9 =3.28 =3¢56 3422 +2480 ~1e43 -e30 ~e04 le46
5 2 %9,93 ~11e30 =994 ~8462 —-Te52 -3.88 ~e80 ~e09 905
5 3 =13¢01 ~10e1% =850 =730 =6233 =3,07 ~e54 - 04 3456
6 1 #5471 =4e31 ~2,95 =2,19 =~1.80 ~+98 - 24 -e03 ls46
& 2 1298 9.53 6+86 5440 &e58 2.65 70 ¢1l1 ~e05
& 3

HelD 560 489 4429 3¢873 2e34 63 10 «3456

#% BASIS IN THIS PROBLEM TAKEN AFTER 61 CYCLES OF ITERATION. REPRESENTS
YVALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.
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TABLE A-5.2

36

PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 5,
: AFTER 59 10 AND 20 CYCLES. OF ITERATION

9

MEMBER#*
1. 2N
- F
‘ T
1 4N
2 3N
] F
|

2 5N
* F
T

3 6N
f F
: T
4 5N
' F
T

4 7N
F .

T

5 6 N
- F

T

5 BN
F

- T
6 9N
- F
T

7 8N
. CF
T

7 1@ N
. : F
T

8 9 N
. S
8 11 N
.T

12 N

F

T

PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE

5

-7.10

9460
~-le51
1,51
-6 84
~7410
5498
“3473
1450

. =3401

10.19
"3061

1450

"’3036
3.73
6642

~6e 715

“"5.51

~1,33

"‘3009
".‘0-68

"‘3_057
3453
3457
l1s12
4418
- o 43

«21
~1410
20
1.23
~1le55

"‘2.15
=294

“lé31

*55
%499

T .69

1.26
l.61
.13
Cel7
“*030
- e49

ITERATION
10
"2‘47

384
~s 21
~Z2e25
~247
3448
"2053
«60

' "'l 051
4e65
"037
e 60
253
2.06
-2e39
~l.84
~o42
—e&l
~2429
2435
2e25
57
2.19
~e27
—‘084
.18
.64
”079
"099_
~+36
“é58
22

- —e83
<42
041
.84
"‘001'
"006
"'026
~e24

20

=91l
041 !

~-20

"'007
~ell
«70
-e58
«06
~e25
«65
29
«06
58
«03
“plg
-a07
«00
“al8
“o09
"“047
«51
o 49
«09
o 42
“‘006
~e09
““024
« 07
«12
"’015
~¢15
~e03
““0309
T +Q3
“‘912
e11
«19
«08
$ 17
""'002
“005
~e08
=04

BASIS*#
KIP~FEET
© ~5.11

1315
4403
“4 403
“13016
=511
13422
~4 405
8.08
~23e57
07
-13,27
5421
~e82
624
“30979
-5 494
“Belb
T~ 13
~4 489
~13.71
~38439
"‘18016
*30082
5494
1,01
1445
3433
""34012
-47.00
=4492
1.02
-3431
56400
«00
~34413
—‘#7000
4492

* Ny F AND T REFER TO NEARs ‘FAR AND TORSIONAL MOMENTS
**”BASIS'MOMENTS'ARE RESULTS AFTER 30 CYCLES



MOMENT DIAGRAMS
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—— Correct Values

_____ After 10 Cycles :
- After 20 Cycles

b Location of Redundant

MEMBER PROPERTIES LOADS AND DIMENSIONS

All members have equal EI
All members have EI=GJ

Note: Problem 6 is identical
with problem 3 except for
choice of redundants

Figure A-6: Problem 6, Member Properties, Dimensions,
Loads and Comparison of Member Moments after 10 and
20 Cycles of Iteration with Correct Values

(plotted on compression side)
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TABLE A=6.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 6
AFTER 1y 25 3+ 5 10s 20s 30 AND 50 CYCLES OF ITERATION

5 ITERATION BAS IS
I J 1 2 . 3 5 10 20 30 50 KsK~FEET
1 1l ~4e56 “11la46 «15433 ~16433 =10.98 —4.44 =«1487 ~s37 =154 94
1 2 =20e39 =27e63 ~35404 =32e14 —~19e84 =747 =~2.95 —~e52 ~2+03
1 3 =10e27 =19e10 =29¢85 —29e356 =16e49 =~5.84 =2+22 —+36 ~33e84
2 1 1093 9621 -~ 8498 Be52 513 1.85 « 70 12 0 00
2 2 656564 59451 52446 41,62 26435 10629 G014 77 5494
2 3 61436 5S54448 47415 35457 20499 7+88 3,07 +53 -82¢32
3 1 5669 —=9402 ~15405 ~16e45 ~12e15 ~64086 =3,01 ~e 15 «23017
3 2 2465 ~26e¢56 =29a10 =26e77 =19609 =957 ~4¢78B ~1el9 =275
3 3 1356 —~17640 =23433 ~20e66 ~11e62 ~5422 =2.50 ~e59 44470
4 1 619 10443 Be56 608 395 le94 96 «24 s 00
4 2 54633 40643 40620 386422 28.15 14.20 7«10 1677 =450
& 3 48.91 35.34 30631 23482 15420 Te27 3,53 «85 “60.60
5 1 =482 ~13e33 ~15459 ~15412 =-11e31 =6.16 —3,27 -+ 88 ~24,72
5 2 =2Te48 =27 624 —25e1ll ~21483 ~16e24 =942 ~5.14 ~1lat2 =2 F7
5 3 =981 =17¢37 16497 —12e88 ~6.88 =333 -~1.70 ~ o bl ~47406
& 1 21»1@ l1le14 6623 3.17 2.15 1031 ,71’.’;. o271 "6 00
6 2 21433 3288 37630 36650 2778 15449 84356 2429 “hok
& 3

28070 22623 18446 13491 8eF4 4e66 2043 «b4 =55, 88

#% BASIS IN THIS PROBLEM TAKEN AFTER 160 CYCLES OF ITERATIOMes REPRESENTS
VALUES WHICH CHANGED LESS THAN 1 DIGIT IN FIFTH SIGNIFICANT FIGURE
DURING THE PREVIOUS 10 CYCLES OF ITERATION.
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MEMBER ¥
1 2N
F

. T'
1 4N
F

T

2 3N
E

T

2 5 N
F

‘ o T
3 6 N
, F
T

4 5 N
F

T

4 7T N
| F
T

5 6 N
F

T

5 8 N
CF
: T
& 9 N
CF

T

7 8N
F

T

7 10 N
T

8 9 N
: F
T

8 11 N
- F

T

9 12 N
F

T
PERCE
¥ Ny

10
»"3.57
17.53
=535
'5.35
~5.20
~3e57
9433
2440
3.21
*8.55
5646
-B+19
321
“026
‘204@
2465
1.85
=697
1e77
m8'38
=092
3.74
1.03
4418
‘5.69
9429
“6930
3492
‘“090
=343
138
“1033
~6e21
,“2018
~10.97
‘0 46
-lab4
*077
3459
“051
144,27
~3e43
2:69
~32429
“2.66

NTAGE = 100XUVALUE-BASIS VALUE)}/MAX.BASIS
F AND- T-REFER TO NEAR,
¥# BASIS MOMENTS ARE RESULTS

TABLE A-642
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 63
AFTER 10s 20, 30 AND 50 CYCLES OF ITERATION

' ITERATION

20 30
‘086 “015
7.09 2499
=260 “lelb
2460 le16
~1e37 ~e40
-e 86 “qls
4414 l1.86
1e15 o559
le24 55
~3¢84 ~1e71
le63 o &9
—2.95 -lel2
le24 55
“026 “009
-lel5 -~ ¢ 59
034 “012
2.57 1.82
-3.22 ~1.50
1484 1,09
~3¢24 ~1e45
~e51 - 27
2042 le4l
e 48 ‘o2l
1.91 290
-3.50 =191
4405 187
«-3e¢10 ‘1054
le66 81
“081 “042
+1e63 ~eBO
«32 «02
'916 o4l
“2.95 «] e47
~e29 «02
~5,31 ~2472
“020 “625
lel7 076
«~e35 ~=;19
1.91 «97
~e81 ~e57
Te43 3.87
“2.10 ‘1919
1.10 «55
“2.12 “1015
“1-28 “062

50
« 04
=60
“025
25
“002
«03
o4l
«15
11
~e37
04
*018
012
“001
~el5
-ell
«60
”034
«32

.“031

- 06
o4l
+05
21

Y
042

~e37
«20

~oll
<19

o 04
21

~e36
05

”070

“010
e 25

~e05
.25

“aZO

1,02

~o34
ol4

”032

‘ol4

89

BASIS**
KIP-FEET
”4334
15494
3642
=3 642
“«]13456
wly o B4
15,94
“~l o 34
~3¢42
684
«22488
.00
“3042
~1356
4434
03
7423
'3.65
17621
~30496
“4.32
- Te23
~e03
~3e65
“15057
~38+09
+ 00
“17021
“30096
4e32
1.38
1055
2428
=33.23
=47 4 06
“2»93
1e55
1.38
“2028
“«33:53
“55088
* Q0
”33923
“47066
293
VALUE

FAR AND TORSIONAL MOMENTS -

AFTER 100 CYCLES,

PROBLEM

73

»



] MOMENT DIAGRAMS
| (plotted on compfession side)

'178.36 kip ~feet

—— Correct Values
----- After 5 Cycles -
(Y’ Location of Redundant

MEMBER‘PROPERTIES

All members have equal EI
All members have EI = GJ.

Figure A-7: Problem 7, Member Properties, Dimensions,
Loads and Comparison of Member Moments after 5 Cycles
of Iteration with Correct Values
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TABLE A=«T.l
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 7

AFTER 1s 2» 35 45 55 10% 20 AND 30 CYCLES OF ITERATION

3 - R "ITERATION : . BASIS%*

I J 1 L2 3 4 5 10 - 20 30 KesK—=FEET
1 1 571 = o 64 ~3653 who48 —~he3H '1069 - =e 1B ~e01 =24 T2
1 2 =10e63 =14485 —13423 ~11439 -9461 =3,25 ~¢22 «00 ¢34
1 3 «“28e99 T15¢67 =12e36 =10421 =—Bo&4 ~2.73 *e15 «01 13.82
2 1 “e67 =5¢90 =620 “5¢4B «h4e61l =—1e8& =o24 =402 = =13,22
2 2 10476 16656 15414 13419 11431 4483 66 «06 2.37
2 3 12627 1535 1402 12435 10468 44,63 64 «06 47466

"3 1 *90 3¢40 GeT4 hel5 4el6 le34 o 11 « 00 ~3,77
3 2 1722 16418 13.79 11447 9,31 2.70 .13 =e01 ~e31
3 3 18427 14400 11e17 9406 730 2411 «08 =401 6618
4 1 7 e b6 709 6e15 5406 4e11 1.58 21 «02 “F gl -
4 2 "2@046 “‘17.94 "'15043 -13011 "“11095 454 "’061 -~a06 - o4l
h 3 ~15e52 =l4e4l =12483 ~11410 +9¢47 =3495 “453 -e05 1703
5 1 «1423 =o79 %407 ‘+33 - &9 " o33 «05 «00 «3407
5 2 o222 253 86 1.02 1-09 N ell 01 “'052
5 3 1e26 e 91 92 #6493 a9l 49 e 06 « 00 4659
6 1 “woly3 70 290 . 80 65 “ 025 e 04 « 00 1452
6 2 “~e@2 ~leT2 ~1le60 «1e33 "1.10 ~¢53 ~e08 -e01 ~e50
6 3

“le84 ~1428 =1e15 1,05 ~¢96 —e49 =—.08 ~401 6495

*# BASIS IN THIS PROBLEM.TAKEN AFTER 41 CYCLES OF ITERATION« REPRESENTS
VALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.
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MEMBER#*

 TABLE A-T.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 7,

AFTER 5 10 AND 20 CYCLES OF ITERATION

92

ITERATION BAST S##

: 5 10- 20 KIP-FEET

<1 -2 N 1425 «30 «00 ~64¢10

: - F ”2.64 1402 ~e09 - —2e72

‘ T R & | .- e31 04 ‘Bel6

~1 7 4 N '#071 .-031 “bOﬁ ‘8076

' . 1.24 11035 QOl *10044

T 1425 30 «00 ~6410

2 3N -2.79 ~l.11 ~a13 ~13,23

- F 1e77 - e83 +11 10445

T ~¢38 ~el2 -0l 1217

-2 5 N 1409 43 «05 “3e42

S F- ~34¢14 ~1.19 12 ~13,57

T “e15 ~.08 ~e04 -10.51

3 6 N ~e¢38 *gla ﬁle 12917

: CF 1@90 "‘085 pll “25099

T “1.?? ‘053 -1l ~10.4+45

&4 5 N “1‘25 *629 ”001 ~eb4

' F 2053‘ 981 e @6 ~3¢77

T' f-67 019 OGO 930

& 7 N «57 e16 +00 ~19.75

- F L e63 27 «02 ~19.87

, T . .00 .01 «00 ~6eT4

5 6N 2449 95 11 ~3.45

_ F ~1,97 R4 “ell .61

T 1427 -e55 -7 12495

5 8 N ~1,21 ~+45 =405 ~17.22

- F ~1432 ~e62 ~e07 -30.96

T ~418 .06 +01 ~10,19

6 9 N ¢63 ¢29 e 04 ~13404

B "‘F 068 035 «05 ~49 617

;'$ 020' 904 oQ@ ”11006

7 8N —el3 —-+09 -0l 2410

v F 29 3020 “@3 «3406

T 433 .15 .01 7417

7 10 N 5930 612 ,601 ?27004

F o 14 .08 +01 ~24458

T =el4 -.08 ~.01 ~b 064

8 9 N 39 ~e1B .02 le52

¥ ‘o F ~e05 -+06 “eB1 ~3 449

T =435, -.19 ~e03 9 . 444

8 11 N ~e63 “028 —‘03 —33024

F _030 -020 *.03 —47006

T -+09 «01 .OO -5 661

9 12 N 033 016 03 ”39072

’ F el6 o1l «02 =78.36

T : «25 . ¢ 10 «01 ~Te57

PERCENTAGE = 100X{VALUE-BASIS VALUE)/MAX.BASIS VALUE

# Ns F AND T REFER TO NEARs -FAR AND TORSIONAL MOMENTS

#% BASIS MOMENTS ARE RESULTS AFTER

30 CYCLES



® MOMENT DIAGRAMS

/1 (plotted on compression side)

£ 78.36 kip-feet

— EI/GJ
~~~~~~ EI/GJ
-—- EL/GJ

MEMBER PROPERTIES

All members have equal EIL
All members have EI = 2GJ

Figure A-8: Problem 8, Member Properties, Dimensions,
Loads and Comparison of Member Moments for EL/GJ
Variation of .5, 1.0 and 2.0



TABLE A-8.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 8
AFTER 1y 29 35 49 54 105 20 AND 30 CYCLES OF ITERATION

s ' ITERATION - BASIS**

I J 1- 2 3 4 5 100 - 20 30 KsK~FEET
1 1 1080 578 2654 - 53 —e60 —1.09 -el9 ~-«03 =4487
1 2 =350 ~4e53 ~3e42 “'209_4 ~2e T4 "‘1081 —e34 ~e05 011
1 3 =20e66 =6413 =3.69 “2483 ~2446 ~1458 ~+30 ~e05 9¢31
2 1 6e45 e51 =1442 =2,07 =2414 =496 =415 =402  =13487
2 3 105 576 6e24 5.92 527 216 e33 «05 45406
31 e12 «69 lel4 1.86 2019 l.36 o 21 «03 “heb1
3 2 14026 9425 6e61 ) 537 4065 2.37 040 e 06 ~e 46
3 3 '1l.78 6.61 4e57 364 313 le67 = o29 «05 3.08
4 1 5695 5.1l L4ets9 3083 3e18 lell 16 e 03 "‘3054
& 2 =16e40 =13466 «1lelb =415 =Te4T =-2.66 - 039 -~e 06 "¢30
4 3 ~1053 ~G e 27T ~Te94 “6 666 ~5453 -2404 “03'1 ~e05 13,17
5 1 —~ o659 ~1e63 "'1.42 “‘1.{} ~eT1 “qe04 001 000 "‘2..93
5 2 2496 017 ~e75 ~e95 ‘“088 w el 9 - ¢0Q0 « 00 g B3
5 3 l1e26 = o4 “e3l -e35 ~-e31 “oe(3 001 000 2092
6 1 “2407 ~1le36 ~e78 =~ e 40 ~el7 e 06 «02 « 00 1,24
6 2 526 275 1e69 1.03 e650 « 00 ~eQ1 «00 ~e50
6 3

183 1e40 «79 40 «17 ~o Q6 ~e02 « G0 4046

%% BASIS IN THIS PROBLEM TAKEN AFTER 49 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.
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TABLE A-842

95

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS,y PROBLEM 8,

AFTER 59

MEMBER%*

l

9

2

19

11

12

—4112-4312J411z~a712-ﬂﬂ12~411z-q1m2-4112-4ﬂ1z~411244112-#112f4ﬂ1z~4ﬂ12-an1z :

PERCENTAGE

* . Ny

R BASIS MOMENTS ARE RESULTS AFTER

=

5
63
“-e29
ol4
~olé4
32
63
. “1.09
« 78
‘012
« 26
~lsl4
~+80
‘012
«82
—-e18
o4

le11

+02
31
-+02
«17
le63
-e92

<28

~ ¢85
‘018
“028
.54
«20
o l4
‘007
~e37
=401
“001
“018
‘10
*'09
o 12
“001
".l8
23
«00
+19
~e04
«02

ITERATION
10 -
.06
”.55
«12
~ek2
~e19
«06
-« 48
.28
—005
W17
~e51
‘006'
“005
«33
~e28B
~sll
- +68
W04
o k4
«05
_005
56
’033
”014
—e33
_017
f.Oé
~el®
l2
«06
<04
fQOZ
«02
+03
_.03
_001
«03
<03
-.03
7013
00
000'
«09
«03
«03

20
«02
—+08
e02
~e02
203
«02
~e06
« 04
~e01
“e02
*008
.02
~s01
<04
~e04
“002
<09
.01
«02
.01
~-e01
« 07
wo Q4
-e02
u,05
~e03
«00
s 02
«02
«01

«00

<00
200
<01
«00
«00
201
+00
+00
~402
00
<00
«01
«00
« 00

10 AND 20 CYCLES OF ITERATION -

BASIS#¥
KIP-FEET
'“5991
—~4488
Te74
~Telk
“8.25
“5091
-13.88
9,28
10434
=260
-13.67
“9.@1
10434
-28408
“9.28
400
~4e59
T«70
“15095
‘14.1?
f5091
“3053
7.54
10,15
~16412
‘30.9§
“7094
~17+93
“54‘85
“8074
2640
«~2+93
. 5458
‘19075
~15.31
~3+51
1.25
~3.73
6694
-32.34
—47 437
~3477
-47s91
~874¢32
~5401

100X {VALUE~BASIS VALUE )} /MAX «BASTS VALUE
FAND T REFER TO NEARs FAR AND TORSJONAL MOMENTS
30 CYCLES



96

LOADS, DIMENSIONS AND LOCATION
OF REDUNDANTS _

MEMBER PROPERTIES

All members have equal EI
All members have EI = 0.5GJ

Figure A-9: Problem 9, Member Properties, Dimensions and
Loads



TABLE A=9%9e1 '
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 9
AFTER 1s 29 39 49 54 10s 20 AND 30 CYCLES OF ITERATION

] ITERATION : BASIS*¥*

1 J 1 2 3 4 5 10 20 30 KsK~FEET
1 1 2017 +5096 =8417 ~Te7l =650 =223 e .08 - ~1,03
1 2 "'14053 ‘“22055 —20096 "18009 "15063 "‘4068 024 026 0 46
1 3 =33,49 =22.51 =19+02 —=15498 =13413 ~3.79 40 27 15.88"
2 1 %798 =11¢21 =952 “T7e83 -64¢62 =3422 -e52 ~e03 ~12414
2 2 2Be23 28,21 23.75 2024 17.54 877 1.50 10 2429
2 3 25435 25443 22.00 19.06 16463 Bell 1e51 12 47041
3 1 2438 6429 6461 5.45 401_9 «97 -e1l7 ~e09 ~2e59
3 2 19697 21622 18020 14449 1lel4 2423 o665 —e28 ~s13
3 3 23¢62 20625 16042 1299 10.07 2.08 ~eb61 ~e26 9423
4 1 Be71 7¢38 6601 5.07 4 o2 2.21 36 02 ~3461
4 2 =23e62 ~19.78 —17el6 =15e19 ~13e51 —6485 =—1l.15 -e07 L e57
4 3 ~20s76 ~18e78 =16489 ~15¢07 ~13¢38 =~6¢79 ~—1616 ~e08 21013
5 1 =239 “e32 B4 le18 1420 o 67 o1l « Q1 "“2073
5 2 3445 F et 8 2415 2.80 2.95 1¢79 «28 e 01 ~o&2
5 3 o8 1.06 1.81 2420 2428 130 17 « 00 6458
6 1 2451 296 2415 1e49 lell 51 10 e 01 1627
6 2 ~BaT2 ~T7e86 =5450 +3¢91 =3.01 =~le&4 ~e29 ~e03 ~637
6 3

~Te92 ~5460 ~4412 ~3419 —~2e60 "'1031 —e27 "‘003 10414

#% BASIS IN THIS PROBLEM TAKEN AFTER 58 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.
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TABLE A-=942

98

PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 95
AFTER 5»s 10 AND .20 CYCLES OF ITERATION

MEMBER™*
;.,Zp
»
-
2 s
3 6
4 5
4 7
5 6
5 . 3
6 9
7 10
§ 9
8 11
? 12

PERCENTAGE
# N

F AND T REFER TO NEAR,
%% BASIS MOMENTS ARE RESULTS AFTER

A NMZAMEZEATNZANZANZANMZANMZANZANZANZANZANZANZANZ 4 N2

=

028

100X {VALUE-BASIS VALUE) /MAX.BASIS VALUE
FAR AND TORSIONAL MOMENTS

-TTERATION
10
466
+=1553
+59
~.59
51
e 66
“2.12
1.72
~e23
81
*059
—023
1.69
“1072
-kl
’ «70
&4
.07
«60
o 24
1445
~1e55
~e30
”1026
16
e 24
c e65
”017
*n34
o 45
47
013
27
-.10
233
“929
w.sa
“024
"’04"9
05
W12
22
13

20
-«07
~e08
«10
~e10
&.09

~e¢07

“033
29
_.01
«10
~e21
-e25
“001
«30
~ea29
o11
a.OS
“e06
~e03
.06
04
022
—e25
~e24
—-e03
-el9
903
206
ol3
m.oq
w.OS
.07
205
«00
«03
=qe01
«06
- e 06
~s10
-0k
~908
«02
«03
«05
«02

BASI S¥#
KIP=FEET
?5067
-e99
9400
~9400
-11433
5467
~-12.15
10.80
13.05
-4 405
-13,19
-11.16
13405
“25048
—10.80
'?1027
42063
10447
-21.480
“23046
=694
<3460
2.07
1542
”1801A
“30.80
~12413
~10.06
*45975
~12.87
led?2
=273
8065
=-32.11
eai3.1.6.9
~5451
1428
~2443
11498
~344%2
“47600
“8013
“33077
=71l431
~10¢44

30 CYCLES



MOMENT DIAGRAMS
(plotted on compression side)

78.36 Kip-feet

— Correct Values

‘‘‘‘ After 10 Cycles

-~ After 20 Cycles
Location of Redundant

MEMBER PROPERTIES

All members have equal EIL
All members have EI = GJ

Note: Problem 10 is 10 Hips
identical with Problem 7
except for choice of
redundants.

Figure A-10: Problem 10, Member Properties, Dimensions,
Loads, and Comparison of Member Moments after 10 and
20 Cycles of Iteration with Correct Values
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PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS,

TABLE A=10.1

PROBLEM 10

AFTER 1s 25 35 55 10s 20s 30 AND 50 CYCLES OF ITERATION

1

575
953
23403
~20+36
59.98
- 63461
~-13.63
lebd
2374
=2187
B7409
80e61
~-20e27
~32eT4
~14423
1240
3225
49630

OV WS LD LLWNNRN - e
N = VWN R OWNRFRWRE WD BN =

2

""5.84
264
8495
~12485
44457
46458
—-11.89
”22055
~17e17
“10@4
44043
4689
~1670
—28438
«23.,79
8+15
33.04
3le4l

-3
*4.49
-G, 70

~1Q0420
~3452
25484
28435
~1198
=-23.90
~25421

3653
33464
32436

‘14.49
“23081
“22918

518
33.04
21.88

ITERATION
5 10

~5e73 ~{4 e82
‘11089 ”7.83
14482 ~6473
2655 2402
1365 10416
14401 T80
~11e41 =8435
~20e58 -13e70
*2002@ “8.29
4450 2691
2729 19.74
1938 10427
~11e92 -B8.42
~18e52 =12.99
~14¢36 «5431
284 1.80
2982 21.39
12.84 6661

*% BASIS IN THIS PROBLEM TAKEN AFTER 77
VALUES WHICH CHANGED LESS THAN 140 PERCENT DURING LAST ITERATION.

20
”2018
~323
‘2.33

A

4463
3431
“~4e07
-6 054
‘3.35
1.33
Ge67
hLel5
~4e42
~T700
~2428
le02
11435
3627

30 50
o398 -6 19
~1e38 ~e25
~e96 ~-el7
«31 «05
2402 38
legl «26
~1.98 ~e43
~3415 —~+69
~1le58 - o34
«63 o1&
44,68 leD2
2027 e 49
~2626 ~¢52
—34563 ~e85
“1.14 “026
54 «13
584 1436
l.65 «38

CYCLES OF ITERATION.

-BASTS**
Ko K~FEET
2470

-~ o34
“13083
10.50
“2.03
=~33,82
6645

-+ 03
“20&03
10,20
~2s74
<44 466
9451

o 49
~244+61
5062
~2476

“4 7403

REPRESENTS

00T



101

TABLE A-10.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 10,
© AFTER 10y 20s 30 AND 50 CYCLES OF ITERATION

MEMBER¥* o : : ITERATION E BASIS#*
oo ‘10 20 30 - - 50 KIP~-FEET

1 2N —-e273 «03 ’ « 05 «02 ~6610
F 2.92 1134 '061 14 '“2&72

T - =e68 ~e55 ~e26 ~e06 ‘BeT76

1 4 N «68 «55 ’ 26 « 07 “BeT6H
F ~e¢90 «o10 o “iQZ 01 -10+44

T *023 o .QB 005 002 “6.10

2 3 N l1.71 «89 . ;43 ell *13.23
F A «30 A .03 10645

T .76 e26 $12 .02 12417

2 5 N ~le&4 ~e81 *038 “099 «3 042
F 562 614 004 «01 “13657

T -l.21 - o 44y ~e18 ~e02 =~10e651

3 6N ‘076 26 «12 «03 12417
' F +28 ~a 04 -¢02 ~s01 -25+99
T ~e T4 ~-e¢30 —elé ~¢02 ~10e45

4 5 N ~e25 ~e21 ~-e13 ~a04 e bk
' F 2614 ls18 62 «17 «3 477
T ~le&2d ~e73 ~e35 ~e08 9430

4 7 N 52 62 33 «09 ~19.75
. F “2025 ~e71 ~e33 ~-¢08 ~19487
T “e 48 -el18 -+ 08 ~e01 ~6e T4

5 6 N l1e59 «79 ohl 210 ~3 e &45
’ F oll 011 006 002 061

T 95 45 22 « 06 12.95

5 8 N -1le75 ~1s04 ~e53 ~alh 17622
F ‘2.24 94 645_ o1l1 “30¢96

T ~1la77 ~e82 ~e40 ~e09 ~10619

6 9 N l1.23 T a4l : « 20 «05 ~13.04
F «01 ~e273 -e12 - e 04 “~49417

T ~e 86 - o &40 —~ 420 =e05 ‘11.06

7 8N 33 «02 - —e02 ~eQ1 2410
F «05 022 «18 e 06 “36@6

. T “1066 ,“975( - e 37 ﬂ¢09 7017
7 10 N ~e58 o 04 « 05 ¢ 02 “27(04
F ~3422 ~1le40 “~eT1 —-¢18 ~24¢58

T ~e 15 ~¢15 e 10 ~¢03 b o 64

8 9N «72 o4l 24 .07 1452
‘ F “QZQ -4 09 -9 05 ~e01 “3049
T « 89 «51 «26 006 Qo bl

8 11 N ~e32 -s31 ~el9 ~e05 ~33424
e F - 4401 2601 _ 1.03 27 =47.06

: T ~1e10 ~e 63 ~e34 ~+09 =5e61
9 12 N « 90 «28 o 14 «03 «39672
: F ~e79 ~e61 ~e32 ~e09 ~78436
T ~eb2 ~e31 - | ~elb = o Q3 ~T7657

PERCENTAGE = 100X{VALUE~BASIS VALUE)/MAX.BASIS VALUE
‘#:° No F AND T REFER TO NEAR» FAR AND TORSIONAL MOMENTS
*% BASIS MOMENTS ARE RESULTS AFTER 30 CYCLESs PROBLEM 7
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MOMENT DIAGRAMS
(plotted on compression side)

53.77 kfp-:fec' ‘
12
6,
1.
3 6 s
— - ;\, T
2 S Ol
O]
— Correct Values |
----- After 5 Cycles .
@“ Location of Redundant
MER ?ROPERTIES LOADS AND DIMENSIONS'

A1l members have equal EI
All members have EI = GJ.

1O kips

Figure A-=1l: Problem 11, Member Properties, Dimensions,
Loads and Comparison of Member Moments after 5 Cycles
of Iteration with Correct Values



AFTER ls 29

s

I J 1 2

1. 2 10 ~e57
1 3 =12.96 “499
2 1 #27 =3.97
2 2 923 1l4.06
2 3 13.00 13,90
3 1 =5.06 =2.14
3 2 =2.23 07
3 3 2e47 «73
4 1 HGel3 5.11
4 2 ~17+418 =15,12
4 3 ~13.70 -12.11
5 1 =1439 =1.36
5 2 =]aZ22 =] o2l
5 3 ~e80 ~e39
6 1 =2.75 “e52
6 2 405 206
6 3 =l.99 -1 96

*H BASIS IN THIS PROBLEM TAKEN AFTER

TABLE A=1ll.1l
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISo

39 Gy 59 109

3

3 88 !

~e 49
e 06
~4430
12.06
11.61

'j003'

066
«20
4e56
«~12¢39
’10017
%“062
o 40
“e11
24
“o73
~e 88

ITERATION

4 . .5
- 45 ."997‘
-« 68 ’979
-«08 “eQ2
“3eT4 fBQQO
9.84 7492
9451 Te69
«90 le04
- e 80 «69
-0 10 ~e05
3.65 2480
~“9490 =~7.81
-8e26 "6.59
~e¢l3 o11
.09 433
06 o 17
40 37
.82 "'-'073
.78 —~e68

VALUES WHICH CHANGED LESS THAN

10 -

-e 40
o1l1
#6488
2448
2e44
e22
~el5
~25
e 76
—2¢31
—-2.00
15

" 032
«16
«12
~e29
.27

20
.00
09
ell
~e06
.18
+18
~e02
~912
~9 11
«05
—-e 16
"'01‘!'
«01
«03
+01
01
~e03
-02

PROBLEM 11

30

«Q1
«02
«02
«00

« 06

«00

-s01
-092
—~e02

«00
« G0
« 00
« 00
«00
« 00
« 00
« 00
.OO

48 CYCLES OF ITERATION.

20 AND 30 CYCLES OF ITERATION

- BASTSH*#*
KsK~FEET
1050
2470
61.48
=10+50
2,70
61.48
~e31

e 10
23.22
«31

‘e 10
23422
--Z}. 58
=-1s02
11,53
4458

"'1 e 02
11453

REPRESENTS

«001 PERCENT DURING LAST ITERATION.

€01



TABLE A=11le2
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PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 11,
AFTER 5s 10 AND 20 CYCLES OF ITERATION

MEMBER*

9

5
~e51
~1e12

«87
-s87
“ BT
~e51
‘3543
260
?026
1,13
-2+19
~2:31
~e26

2.

“2060
666
1.20
‘046
”oll

615
3420
*2075
“1059
“1006
“1.14
~e31
1417
l.21

- e15
“012
12
07
“olb4
~e23
«03
42
“013
%450
7057
~e25
~s01
:.?l
o 47
«28

10

11

12

ATMZEAMEANZANMZANZANZANZANZANZANMNZANZANZARZANZTANZ

2.76

“Q@?_

ITERATION
10
'”033
~odb
«31
’.31
~e 24
_.33
~1400
.89
~.05
<1
~eb66
‘054
=05
90
~e89
«36
.26
~el6
~‘08
2~
" «03
87
~-«89
"053
”930
~e 4B
+«08
«37
NA
«00
—.07
18
«06
-402
-¢02
—¢04
;e L3
‘009
‘§20
~e22
*017
”604
- 023
« I9
«09

20

~&e06
«00
02

wo(2

. =s05

~e06
~-eQ7
oO?
~+00
e 02
“-02
-e06
.00
- eQ7
“-07
e 06
*001
~¢03
“QOZ
~e01
o01
«06
“eQ6
“004
-e01
“003
«01
«03
04
«Q0
=e01
01
« 00
~-s01
é;Ol
« 00
e01
~e01
—~e02
-s01
~+01

;000'

«02
202
«01l

BASIS**
KIP~FEET
~1645%4
10450
20692
~20892
15,55
.~16454
"1@550
16.54
20492

- <00
409
~21.00
120,92
~15456
~16 ¢ 54
"l 26
032
22426
~6471
29.30
“1?.80
5031
la26
22426
"« 00

"o 00
~20¢38
671
=29430
~17480
5458
=4 458
16461
12469
53477
=12621
4458
=5e58
16 62
.00
TDQQ
~11:21
“120&9
“53.??
ﬁ"].2022

PERCENTAGE = 100X(VALUE-BASIS VALUE)/MAX.BASIS VALUE
F-AND T REFER TO NEARs FAR AND TORSIONAL MOMENTS
30 CYCLES

* 'N’

#* ¥ BASIS MOMENTS ARE RESULTS AFTER
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MOMENT DIAGRAMS
(plotted on compression side)

72.01 kip-feet

= ]..0 ) N :I .
-—-—EI/GJ = 2.0 AN
-~~EIL/GJ = 0.5 i
MEMBER PROPERTIES LOADS AND DIMENSIONS
All members have equal EI “\\\ d

All members have EI = 2GJ

10 kips g

1
y l
10 kips

Figure A-12: Problem 12, Member Properties, Dimensions,
Loads and Comparison of Member Moments for EL/GJ
Variations of .5, 1.0 and 2.0



TABLE A=12.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 12
' AFTER 1s 25 3s 45 55 105 20 AND 30 CYCLES OF ITERATION

$ . - . LTERATION S BASIS#%

1 d 1 - 2 3 4 5 10 20 30  KsK=FEET
1 1 3660 . 4e3B 3633  2.08° 1409 © =¢27 : =¢05 =401 9401
1 2 =624 =415 1491 2414 = 1472 =407 =409 =401 2642
1 3 =18e25 %88 1le62 2.05 1.78 e02  =,08 «¢01 - 54437
2 1 - 413 64  =e¢57 =103 ~1,410 =4l =404 =401 -9.01
2 2 =3450 3492 4450 4406  3.41 1.01 e1l1 .01 2442
2 3 le71 4451 4e48 3499 333 e 97 «10 «01 54037
3 1 =513 =4415 =242 =ls1l1 ~e27 o 42 «06 +01 ~1e06
3 2 =1e89 —2497 «2¢67 =1e91 =1.15 .36 o1l .02 relb
3 3 1e¢30 =157 =198 =1le65 =-1e15 .18 «08 .01 16025
& 1 1405 le96 2421 2406 1.75 .48 s05 «01 1406
4 2 “9464 =901 =Teh0 ~5+89 ~4460 ~lel9 =412 =402 016
4 B =703 =6e34 =5432 =428 =335 =~e90 =e09 =401 16425
5 1 405 =1e31 =132 =1405 =476 «.09. «00 « 00 4o l7
5 2 562 e T4 “e51 ~e83 ~s82 =q21 «00 « Q0 =103
5 3 2435 e73  =e0l. =428 ~e34 =,09 «00 «00 7437
& 1 “4eT73 =2,7B =1456 =¢84 =ob44 =401 «00 «00 4417
& 2 11s413 5.45 2491 1459 +88 005 «00 «00 ~1,03
6 3

2612 le62 490 &7 ¢24  =.01 00 400 7437

*% BASIS IN THIS PROBLEM TAKEN AFTER 43 CYCLES OF ITERATION. REP‘RESE.NTS
VALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.

901
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TABLE A-12.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 12,
'AFTER 5s 10 AND 20 CYCLES-OF ITERATION

~ MEMBER+* ITERATION v ' BASTS¥#
SR 5 10+ 20 - KIP-FEET
1 2 N ~s04 - “017 000 '15019
N g F 083 : -.20 403 "9000
T 05 «07 «01 - - 18.07

1 4 N *005 ~¢07 —-e01 '18607
- F “048 “006 001 '19083

T ~e04 —~el7 «Q0 ‘15019

2 3N ~e83 =30 ~e03 ~9401
F .88 «20 .02 1519

T ~.06 -+03 +00 1807

2 5 N o111 10 «01 - «00
. F “031 ‘017 -e03 000

T ~le66 -e10 «01 ~18.02

3 6N ~e06 -+03 « 00 18407
- F « 79 022 002 “19.83

. T “088 ’020 “002 ”15019

4 5 N » 37 14 «eo01 ".54
F ~¢21 .31 e 04 ~1406

S ¢ C we29 -.05 <00 17485
4 7 N ~el9 —~e01 001 1098
F =34 ~e0B8 500 40068

T’ . «33 _003 OOQ "14.65

5 6 N 1.31 .36 .03 1.07
F ~e99 ~e23 ~e02 + o 54

T ~e22 -.08 ~e01 17.85

5 8 N -438 ~elt -a02 <00
F «06 -e03 *001 OQQ

T “013 °006 cOO %15089

6 9 N +58 15 «01 ~1.97
F «28 .10 .01 ~40 468

T 011 ¢O3 ' OOO “14.65

7 8 N ~el6 « 04 «00 613
F “;57 —.07 000 “4517

T “e0D5 ~e02 « 00 12452

7 IO-N “928 ~e06 OGO 28416
F -e22 =08 « 00 7201

T «17 01 « 00 =8452

8 9 N ao33 ~;oo « 00 . 4@17
F oll 02 000 “6.13

T =e 04 -.02 .00 1252

8 11 N e 04 =203 = a0l +00
F 006 003 OOO ¢ :000

T o 11 .01 « 00 =7 54

9 12 N $24 <09 <0l ~28.16
- F e 16 .05 <00 =~72e01
T « 00 01 «00 ~8e 52

PERCENTAGE = 100X{VALUE-BASIS VALUE)/MAX.BASIS VALUE
¥ Ny F-AND T REFER:TO NEARs FAR AND TORSIONAL MOMENTS
¥% BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES
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LOADS , DIMENSIONS AND LOCATION
OF REDUNDANTS

10 kips

MEMBER PROPERTIES

All members have equal EI
All members have EI = 0.5GJ

Figure A-13: Problem 13, Member Properties, Dimensions and
Loads



TABLE A-13.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 13
AFTER 1s 2s 35 .45 55 105 20 AND 30 CYCLES OF ITERATION

S : : ITERATION : BASIS*¥*

I J 1 2 3 4 5 10 20 30 KyK=FEET
11 760 2423 ~e75 =le48 =~1.28 e 03 27 «08 = 11,11
1 2 10.26 1.63 “~o28 - =eT4 ~e51 1622 e90 23 2e75
1 3 =6010 183 1438 ‘099 .96 1e72 .93 022 63429
2 1 “5¢50 =940l ~Te&47 =577 =455 =—1l.66 -.08 o004 - =1le11
2 2 2660 25,92 20445 16022 13.13 4090 «30 ~e10 2475
2 3 27631 25,04 20400 16408 13.09 4494 «35 “e09 63,29
3 1 =4 o 66 =elb le21 «94 ‘637 - ~e60 ~e30 -e07 le02
3 2 =2e33 2e¢13 1 eB9 63 —¢57 —2+34 ~e 926 "“il? o &4
3 3 2617 1.59 46 —eh49 . =1e24 —2e23 ~e90 ~¢18 30436
4 1 Teb65 687 537 4421 3¢40 1622 06 ~e¢03 ~1402
4 2 =23e34 ~19409 ~15654 ~12480 =10e62 =-3.91 we22 «08 o 44
4 3 =20482 =17¢79 «15400 =12+51 =10.41 ~-3.88 ~e23 «08 30436
5 1 =4¢17 =2e11 ' =452 = 17 Lebl "e30 «01 ~e01 =4 400
5 2 =10e1l 4490 =~1lo74 =410 «68 S e 76 03 “e03 =479
5 3 =6eBHO =3449 =1.52 ~a35 27 42 ~e02 “e03 16,72
6 1 091 2429 1.75 1413 76 o 27 «02 “e01l 4400
6 2 “'6059 “Tes02 "4‘82 ""3017 —2e¢22 -84 ~¢09 «01 ~o 19
6 3 “8482 =5.60 ~3¢T4 ~2464 —1.98 “e79 ~¢08 01 16672

*#% BASIS IN THIS PROBLEM TAKEN AFTER 56 CYCLES OF ITERATION. REPRESENTS
YALUES WHICH CHANGED LESS THAN 001 PERCENT DURING LAST ITERATION.

601
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TABLE A-13.2
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 13,
. "AFTER 55 10 AND 20 CYCLES OF ITERATION

- MEMBER* ITERATICN S - BASIS#®
o R - R ¥ o I 20 - .KIP-FEET
“1-38 . *1olh= L 2! 516044
-2417 .f.08. +30 :11’16
2437 «82 «07 22,02
~2437 ~e82 ~e07 -22.02
~1497 " «1e35 - 43 14417
~1438 T A —etl ~16 o 44
~T7433 ~2.72 ~el9 ~11.08
6476 2460 24 16438
Fooe - o0& «0Q6 22004
2.45 *078 ’001 : :002
~4 499 ~1e435 e15 “xoOQ
-5416 -2e64 - 49 ~22e24
f;OB '904 «06 22004
6+97 2.70 «27 ~14423
“6.7§ —2.60 ‘024 ‘1@.38
1009 1043 644 ;3.36
Y-1) ~e85 “.35 ﬁ.98
71.28 “1000 -§33 25.91
-469 -+35 ~410 -11.73
~¢310 026 ~e05 22.29
“~e29 o29 003 —19081
5.48 2.00 jla *1004
-5492 ~2e26 -618 3.42
”5036 *2.08 *olB 25995
~e92 “927 0l '1501
~Z2¢86 *10&2 “olo '.02
~e38 $21 002 ~24427
lu61 .62 <09 11.73
2.96 1.16 .ls ~22431
-o84 =35 ~+06 ~19.80
?099 - o34 *002 :3686
67 49 04 ~4.01
409 «30 “e02 20,463
~e1l9 ~e04 ~»03 1466
203 015 =501 39462
”.38 —006 .Ol -Iﬁigs
1.22 obh «Q5 4400
~lel6b -e 46 ~e06 ~3+85
~2400 ~eB2 409 20465
~old -« 30 ~e02 ’ s00
«“]lelH '.58 «~o0bH «01
.18 216 .03 ~16 425
.96 «34 <06 ~1.66
ls12 042 .06 ”39.62
32 12 «00 ~15495
PERCENTAGE = 100X{VALUE-BASIS VALUE)/MAX.BASIS VALUE
* Ny F AND T REFER TO NEARs FAR AND TORSIONAL MOMENTS
*% BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES

1.2

9 12

—4*\2-%7121H11Z-41]Z-41T2—4712-4112-4312‘4712-41T2-4112-47T2Jﬂ1TZ-4112-4112
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e MOMENT DIAGRAMS
(plotted on compression side)

53.77 kip-feet

——Correct Values
---—-After 5 Cycles
+After 10 Cycles

t) Location of Redundant

MEMBER PROPERTIES LOADS AND DIMENSIONS

All members have equal EI
All members have EI = GJ

Note: Problem 14 is 10 kips
identical with problem 11
except for choice of
redundants

lmmm

Figure A-14: Problem 14, Member Properties, Dimensions,
Loads and Comparison of Member Moments after 5 and
10 Cycles of Iteration with Correct Values



TABLE A=1l461
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 1l4
AFTER 1s 29 33 5 109 299 30 AND 50 CYCLES OF ITERATION

S ITERATION . BASIS**
I J 1 2 -3 5 10 20 30 50 KeK=~FEET
1. 1 =23.93 ~10e45 =1lsll 3.22 2442 94 «37 «06 89452
1 2 =10.92 #2406 5450 6 e84 Le54 l1.68 +63 «09 T30
l 3 =6.93 “ehB5 3.82 558 3.72 1.36 50 + 06 88B.54
2 1 =21e70 #1309 =—6e1B =2.44 =1.18 ~e43 ~ e 16 -s02 20499
2 2 1733 5013 «5,57 =9.21 ~6e08 =—2.28 ~e87 —el2 « 00
2 3 1443 B3e64 “5elb “Te6HT ~4oeB88 ~1.79 —e67 -e09 »e03
3 1 =36e696 “11e60 ~lsé4 2493 2640 1.11 «51 «10 89,85
3 2 =24429 42 4017 543 4401 1.82 s 84 016 Te¢21
3 3 ~1%.54 +«l.68 1445 3.03 2¢46 1.06 46 «08 65634
4 1 «23.79 =12,90 —-6432 =2.02 ~eQ1 - e 40 ~e18 ~+03 20636
4 2 2561 8e¢99 ~1e67 =Telb =575 <2464 -l.22 ~e23 ~e01
4 3 13028 405@ “"1016 "‘4026 ~3 624 ~1le42 -o b4 "‘012 ~4505
5 1 =25621 <8418 2,00 ‘099 " le26 «82 46 o1l1 94 ¢ 44
5 2 “5e19 ~2¢15 “e&2 69 le32 1.10 67 917 8022
5 3 =510 =le&47 -4l o 64 «92 «51 26 «06 53+80
6 1 =19¢57 =~Te82 =—2485 -«30 —e0b ~¢12 -e09 -e02 11,20
6 2 3lel6 1197 3628 =~1le69 2461 =1692 =1l.13 —-e27 -e01
6 3 B8e98 3e49 ‘e 73 “1403 -1.17 ~ o &8 ~e36 —e08 ~e03
¥¥ BASIS IN THIS PROBLEM TAKEN AFTER 70 CYCLES OF ITERATIONs REPRESENTS

VALUES WHICH CHANGED LESS THAN 5 DIGITS IN THE FOURTH SIGNIFICANT
FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.

49!
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TABLE A-1442
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM l4s
AFTER 10s 20, 30 AND 50 CYCLES OF ITERATION

MEMBER* ITERATION : BASIS#*
o 10 20 30 , 50 KIP~FEET
1 2N le40O &2 ’ e 12 o 01 :°16954
F =559 ~220- - =¢90 ~al7 10450

T l1.89 e 17 - 33 « 06 20692

1. 4 N =189 =77 ~¢33 ~«07 =20e92
*fHva *_LpéO‘”- _' 654 L ) 018 Co .002 15!55
T 1e40 T W42 ¢12 . 400 ~1l6e5&4

2 3N ~2487 ~1620 =652 =ell =10450
F “oJO =a28 “014 “004 16654

T ~e88 ~e37 ~«l6 ~e03 20992

2 5 N 2677 lels «49 «10 500
F ”1091 . “~o 6573 “021 “003 s 00

T 2672 1.00 «38 «06 ~21s00

3 6N ~a88 —o 37 =16 ~%03 20.92
F e 31 009 -« 03 ¢ 00 =15656

T e50 «28 o l& +03 =~16e54

4 5 N ~e76 ~.18 ~e02 <01 ~1.26
F «01 o2 ~e36 ~»13 ~e32

T 2.10 «91 ol e 09 22426

4 T N ~e50 ~e36 -~ 623 ~eQ7 «“6e71
F 2660 107 o 45 » «09 2930

T " eb63 «25 s 10 «01 “17.80

5 6 N ~e60 ~ o &9 ~e31 ~s10 «31
F “027 —~o 12 “905 “001 ’ 1.26

T =1e20 ~e53 ~a b ~-e05 2226

5 8 N 139 s81 o445 12 a 00
F “3006 ”1127 ~-e55 ~oll 'OOQ

T 2.10 093 43 009 “20038

6 9 N -+89 o bd ~e21 ~+05 6871
F e 46 «20 «10 «03 ~29030

T o T7 0 40 «20 e 05 ~17480

7T 8 N =150 ~ o b d4 —el2 e Q0 5658
F 2.60 c 65 011 “903 =44658

T 150 o d «37 0% 16061

7 10 N 1,19 032 «08 <00 12.69
F 2415 1.21 e 64 017 5377

T ~s86 “619 m.01 001 =12@21

8 9N e 65 «02 ~ 409 ~+05 4058
F =e 01 = Q& 203 001 m5958

T “089 ‘046 “92@ moQ@ 16062

8 11 N “067 -~ 07 + 06 e 04 e 00
F =26 74 ~1a61 ~o 89 A 00

T .15 930 022 DO? *11021

9 12 N ~ols3 ~e25 =a13 o4 ~12+69
F 259 e 40 o 24 e Q7 “536 77

T 078 035 -16 003 ‘12@22

PERCENTAGE = 100X{VALUE=-BASIS VALUE)/MAX.BASIS VALUE
# No F AND T REFER TO NEARs FAR AMD TORSIONAL MOMENTS
¥%® BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES: PROBLE
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MOMENT DIAGRAMS
{plotted on compression side)
. '—'T

44.70 kip-feet

—— Correct Values
CY Location of Redundant

MEMBER PROPERTIES LOADS AND DIMENSIONS

All members have equal EI
All members have EI = GJ.

Figure A-15: Problem 15, Member Properties, Dimensions,
Loads and Final Moment Diagram .



3y &4

3

~12425 ~10.94
~18479 -16433
=19.63 ~16.21

AFTER 1o

S

I J 1 2

1 1 ~11.99

1 2 »l1:295

1 3 =23.47

2 1 =2.66 2,27
a2 2 +00 2.75
2 3 «00 68
3 1 278 4613
3 2 wTe25 =Te33
3 3 "10060 =TeTl
4 1 Te25 10e41
4 2 15455 18.07
4 3 20632 1l6e44
5 1 “e24 +48
H. 2 ~e31 -2.47
5 3 =48 ~1.75
65 1 =6«%1 =54,30
6 2 10e48 7.81
6 3 8439 6e1l6
T 1 #1335 e 1B
T 2 =203 =102
7 3 e 64 leo11
8 1 “~e49 «02
8§ 2 1.85 o 42
g8 3 «75 «19
9 1 =I:89 4<lg¢li
9 % 1.90 Lol
9 3 185 1.00

¥# BASIS IN THIS PROBLEM TAKEN AFTER

_1.37
327
1.69
3467

~He il

*5072

10646

164,22

13.87

29

-3.20

-2¢38

-4e17
589
4470
welll
~e10

«99
e1l5
“e45
L
~e87
1.20
62

TABLE A=~15.1
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASIS»
29

ITERATION

4 5
“9444 -T7.95
=13465 ~11.28
~13e34 =10.94
= T2 ~e34
3.60 3.74
2440 2480
3.12 263
~4:49 -3.62
~4440 —-3.48
9.26 ToT4
13.69 11.26
11.55 948
«07 ~+06
“3e43 ~3.48
-2.71 -2085
~3e31 -2465
4657 3.63
3469 26496
22 44
¢33 «54
«87 «79
+15 ell
~e 75 ~e 19
—e34 =40
- 66 =e51
82 «60
43 32

10
_2089
~3.97
373

« 00

2489
256
1,20
=1l.56
—1043
264
3.73
3.12
~«05
-2066
=227
=1 sk}
1.51
1.27

«4l

«51

o4l

«02

“ol47
-e 32
~s20

«22

el4

20
-032
-e37
‘032

«03

e 72

66

«36
—~e48
“.4‘&

26

«31

«24
~-e03
~e65
~e54
”¢32

«45

«39

«09

«11

«06

«00
e 13
-009
—.05

<06

«05

PROBLEM 15
55 105 20 AND 30 CYCLES OF ITERATION

30
—002
-«01

«00

«01

o1l1

+09

«08
-ell
‘011

«01

«00

«00
-e01
-+09
-e07
-+07

el1

«09

01

«02

«01

«00
-+03
-002
—001

«01

«01

60 CYCLES OF ITERATION.

BASIS*#*
KsK-FEET
8.99

«86
17.60
23487
5,00
75.00
8499

-s 86
=17.60
5646

042

9.38
5455

« 00

« 00

5046
~ob2
~9.38
~e34
~s11
3432
1.92

+ 00

« 00

"‘.3"'

«11
"3.32

REPRESENTS

VALUES WHICH CHANGED LESS THAN 2 DIGITS IN THE FOURTH SIGNIFICANT
FIGURE DURING THE PREVIOUS 10 CYCLES OF ITERATION.
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MEMBER %
1 2N
" R . F

- T
1 5N
' F
T

2 3N
4 F
T

2 6 N
F

T

3 4N
F

T

3 7N
F

T

4 8 N
E

T

5 6 N
. F

T

5 9 N
F

T

6 7 N
| F
T

6 10 N
~F

T

7 8N
F

T

7 11 N
'R

T

8 12 N
F

T

9 10 N
.. F
T

9 N
F

T

13

5
558
~Te03
657
~e57
S5¢T4
5e¢58
=2 ¢ 66

1652

—1057
. 2el4
~6.+26
4T
2e39
~le66
22
~1479
2432
‘e 86
«22
_1080
1466
~5e92
6468
331
2e43
2e44
“034
1:85
’2005
“089
~2e06
-2021
foﬁﬁ
-2e&2
le65
«%0
BrY-1
o867
<49
=¢ 90
“990
401
-s17
o 44
1,02
lets2
lol2
“051

TABLE A-1542
PERCENTAGE DEVIATION OF MOMENTS FROM BASISs PROBLEM 15,
AFTER 55 10s 20 AND 30 CYCLES OF ITERATION

ITERATION
20

10

1+81.

~2062
¢ 40
-0 40
1.82
le81
“1;62
ls61
—e56
96
“2088
1.01
ledsa
661
621
“977
1e772
—e 4B
o221
=o 66
261
=1e83
2834
1.06
e 76
+89
‘002
l.40
“1058
e 82
“099
=125
o 07
~1e01
67

o b4
045
51
'009
*021
o224
=607
r‘*0.1.8
« 40
040

o 48
033
“920

«10
~e32
10
“010
«11
.10
“035
«45
-.10
«20
“041
«o03
e33
=420
«06
“.16
«50
«06
~e21
«20
’008
26
.06
«05
«09
Q1
«31
“941
=419
=416
—=o 28
«02
“529
22
s 15
e 16
«22
0 00
“0@5
“007
*002
=094
.08
«05
s04
8G2
~o02

3

a5

<m.

P

o

0
.01
.02
.01
.01
.01
.00
«04
<08
0l
.03

«03

201
«08
«05
«01
+03
« 09
« 00
+01
« 35
+05
201
«01
« 00
« Q0
«01
« 00
203
6«07
«02
.02
«03
«00
+ 06
o 05
«Q3
e03
« 05
2 G0
«02

402

+00
«01
«01
«00
« 00
« 00
00

i16

BASIS®%
KIP-FEET
~3+95
4468

4 e 66
~4 ¢ 66
~Be97
=3,95
~1413
=1e13
« 00

4o b6
”16003
~5481
468
“3095
“beb6
4e66
“16.03
5.81
“4066
~8497
3.95
“073
3.38
523
“14026
*20059
4473
5055
5655
<00
“1008@
“29.41
=363
3438
:.78
=5.23
”10080
=2G 541
‘3463
=14.,20
?20059
473
1.30
20
387
“24046
«=30+30
=343



MEMBER*

1o 11
1o 14
11 12
11 15

12 16

PERCENTAGE = 100X{VALUE-BASIS VALUE)/MAX.BASIS
FAR AND TORSIONAL

#*¥ N

HATMZAMZANZANZANEZ

TABLE A-=15.2 (CONTINUED)

ITERATION

5 10 - 20
563 «31 « 07
~e25 ~922" -e 07
. - e23 ““9_27 “’_008
~+96 ~e58 -1l
~a37 ~e29 =a06
-¢28 ~e02 .01
~e52 ~e22 ~+06
«15 «03 « 01
«21 ol1 « 04
«23 ‘ 24 «10
“ofl «00 « 05
“e23 «10 «02
“068 “’-14 ‘3002
-e34 ~+05 200
’*“014 ~=a09 "003

F AND T REFER TO NEAR,

30
"e01
“"’002
“‘001
«=.02
“”001
"« 00
-201
« 00
«01
02
«01
- 00
‘=OOl
«00
.00

¥%* BASIS MOMENTS ARE RESULTS AFTER 60 CYCLES

117

BASIS*#*
KIP=FEET
1092
192
200
~25¢54
~bly o TO
“"1 092
«20
l1.30
=3.87
"25954
~44,70
1.92
“24.@»6
=30430
i 343
VALUE
MOMENTS



1
110.92 kip~feet

MOMENT DIAGRAMS
(plotted on compression side)

—— Correct Values
(Yl Location of Redundant

MEMBER PROPERTIES

LOADS AND DIMENSIONS

All members have equal ET \\\\ .
All members have EL = GJ.

10 kips A

10' (typ. ali members)

Flgure A-16:
Loads and Final Moment Dlagram

Problem 16, Member Properties, Dlmen31ons,'
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TABLE A~1641
PERCENTAGE DEVIATION OF REDUNDANT VECTOR FROM BASISs PROBLEM 16
AFTER 1s 2» 35 45 54 105 20 AND 30 CYCLES OF ITERATION

$ ~ '  ITERATION : - BASIS®%

1 J 1 2 3 4 5 10 20 30 - KsK=~FEET
1 1 12,03 Te42 4 03 2400 o 92 « 00 « &0 « 00 “13653
1 2 « 00 00 « 00 000 oOO . <00 .00 «00 ’ .OO
1'. 3 200 eOO OOO 000 QOO .OO .00 000 Lo '000
2 1 12.77 5662 Zo&l 94 «31 “s0i1 «00 «00 «57+85
2 2 8+64 404 _2@08 «97 ¢ 40 cwe ] QOO « 00 ~3.99
2 3 276 2eltd 1e49 e 16 034 e Q1 «00 + 00 =112449
3 1 12.77 5062 204l «94 31 =“e01 Q0 0D =57.85
3 2 =80 64 :““4004 =208 =297 =240 «01 000 «Q0 : 3099
3 3 “R2eT6 =2.46 =1o49 =76  “o34 «01 «00 «00 11249
4 1 ©1e1I9 =231 =1s72 %1,01 “a53 « 00 + 00 «Q0 ~11.76
& 2 « G0 »00 + 00 200 s G0 » 00 « 00 «00 s 00 .
4 3 - 00 « 00 - 000 «30 .00 : .OO : 000 « 00 '.'. oOO
5 1 1687 - 81 34 «16 09 .01 <00 <00 «25
5 2 598 2626 265 o 15 .02 «01 +00 « Q0 s 11
5 3 045 =69 =s62  =a37  =.18 e 01 <00 +00 ~8.11
6 1 1.87 «81 s 34 elb «09 o1 ) QOO « 00 e dS
6 2 *=Hs+98 ""2.26 “e65 ~eol5 =02 EaOl « 00 «00 ~ell
6 3 e fh o 69 662 037 018 001 .00 GGO 8011

% BASIS IN THIS PROBLEM TAKEN AFTER 50 CYCLES OF ITERATION. REPRESENTS
VALUES WHICH CHANGED LESS THAN 1 DIGIT IN THE SIXTH SIGNIFICANT
FIGWRE DURING THE PREVIOUS 10 CYCLES OF ITERATION.
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11

MEMBER*
1 2N
_ '

: T
1 4N
: F
T
2 5 N
F
T
3 4 N
: F
T
3 7N
- F
T
4 8 N
F
T
5 6 N
‘ F
T
5 9 N
F
T
6 10 N
F
T
7 11 N
A
T
8 9N
' F
T
8 12 N
F‘
T
9 13 N
F
T
10 14 N
: F
T
N
F‘
T

- AFTER 5 AND

12

TABLE A~16.2"
PERCENTAGE DEVIATION OF MOMENTS FROM BASIS, PROBLEM 165
: 10 CYCLES OF ' ITERATION

ITERATION

5

.82
82
.00
o4l
&1
.71
«41

" o&l

-e 71
« 00
o 14

-s05
.05

~o 09

“e02

~+38

«325
656
o144
» 00
0 B5

~+38

-625

=956
05

=08
202
~-¢02

“016

=009

”047

“ofy7
0« 00
el3
026
« 09
213
0«26

=09

“002

“olé
«09
06
507

“ol?

10
« 00
<00
900
+ 00
.00
«00
« 00
+ 00
« Q0
° 00
“001
« 00
“oOL
00
000
« 00
«00
.01
-e01
« Q0
00
«Q0
00
“001
“001
00
00
« 00
001
.00
« 00
000
« 00
s 00
Q0
0 00
o 00
- 00
« 00
s 00
01
200
« 00
« 00
0 00

120

BASIS*¥
KIP-FEET
c~=13.53

“13053
i 00
=G e 16
~6e 76
~1l1le72
~6e 76
—~6e76
11.72
21.89
~17.98
“8.84
18,59
===41,57
l4.54
=9,88
~49.77
~056
-17098
"21.89
884
“9.88
“49077
«56
18:59
=41657
914054
=33:40
~93,56
“28071
=lle76
“11e76
.‘OOO
-31+28
m?lol?
32.61
—-31.28
~71.17
”32061
=33a40
-93,56
28,71
=1 695
) ~5'085
=9,08



121

TABLE A=16.2 {(CONTINUED)

MEMBER* ITERATION : BASI S##

5 10 KIP-FEET

11 15 N 602 » 00 ~64081
F ~el13 200  =126,08

T e 07 .00 60e41

12 16 N =o 05 « 00 ~72s13
F +10 » 00 =110.92

T 6«13 « 00 =49.,08

13 14 N « 07 200 ~e85
F pQé 2«00 “1095

T 017 .00 T 9,06

13 17 N =005 " 00 =72.13
: F <10 + 00 -~110,92
T a013 000 49008

14 18 N 202 a0 =64 .81
F -.13 <00  =126.08

T =07 » 00 =60,41

PERCENTAGE = 100X{VALUE-BASIS VALUE ) /MAX.BASIS VALUE
¥ Ns F AND T REFER TO NEARs FAR AND TORSIONAL. MOMENTS
*¥ BASIS MOMENTS ARE RESULTS AFTER 30 CYCLES



'APPENDIX B
' FLEXIBILITY DATA - CIRCULAR BEAM

The‘féliowing two pages contain flexibility coefficients
and angulafi}oad functioég for a circular beam ofvéénstant
cross sectiéﬁ. This beéﬁwconfigﬁration is used in example
problem 1. The coefficients were evaluated from equations
presented by Reddy (20) suitably modified to satisfy the

sign conventions indicated in Figure B-1.
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™

Figure B-1: Geometry and Definition Sketch of Loads and
Angular Load Functions, Circular Beam

Angular Load Functions

Positive in direction shown, right hand rule.
2
Timn " PEZ(TIQQI\‘T)L /EI

where: (TKMN) is the appropriate
coefficient tabulated in
Table B-1
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TABLE B-1 ‘FLEXIBILITY COEFFICIENTS AND ANGULAR LOAD
FUNCTION COEFFICIENTSs CIRCULAR BEAM
CONSTANT SECTION, EI=GJ

.20
43+56028 DEGREES

GEOMETRIC DATA ¢
RADIUS = 725 L ¢

[ H

FLEXIBILITY FACTORS

FJIXX) = 1610347 L/EI

FOJIYY) = FLIJYY) = 439877 L/EI

G{JIYY) = G(IJYY) = 4152986 L/EI

FOJIXY) = FLIJYX) ==G(JIXY) =-G{lJYX)} ==14568 L/EI

SEE PREVIOUS PAGE FOR DEFINITION SKETCH AND
EXPLANATION OF COEFFICIENTS. -

“LOCATION | LOAD FUNCTION VERTICAL
COEFFICIENT FORCE

N = 1 COTJIX 00000
: TJIY « 60000

TIJY « 00000

N = 1 TJIX « 01617
TJdlY 01284

T1JY 0« 02946

N = 2 TJIX «03913
TJIY 202582

TI1JY « 05308

N = 3 TJIX 06520
TJIY 03738

TIJY 0 06969

N = &4 TJIX 209033
TJIY 004612

TIJY 07869

N = 5 TJIX 11035
TJIY 005087

Trdy 08000

N = 6 TJIX s12112
TJSIY 2+ 05078

TIJY 07404

N = 7 TJIX 011872
TJIY 006541

T1JY « 06166

N = 8 TJIX 09960
' TJIY 03476
TIJY # 04413

N = 9 TJIX 206079
TJIY 201930

TIJY + 02300

N = 10 . TJIX 2 03000
OTJly 2 Q0000

TIJy - 00000




APPENDIX C
COMPUTER ANALYSIS

The pages which follow indicate the procedure used in
assembling the computer program used to determine the
information shown in Appendix A.

A macfo flow diagram, Figure C-1, illustrates the
basic logic of the process.” Required input data are
indicated below. Actual output consisted of much more data
than would normally be produced. Since it was necessary
to iterate by several methods, it was necessary to print
the actual formulated flexibility matrix both before and
after it had been conditioned for the carry-over process..
Also, to study the convergence, the redundant matrix was
printed out after 1, 2, 3, 4, 5 and 10 cycles of iteration’
and every 10th. cycle thereafter. Final member moments were
obtained from these iterated redundant vectors upon analysis
of the nature of the convergence. In an actual problem, the
only necessary output would be the final ﬁember moments .

Since it was not the purpose of this thesis to develop
an efficient program, the programming effort te:mipated ﬁhen
results were obtained. 1In retrospect;>ﬁany of thé internal

-details of the program ldgic could be made somewhat more -
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efficient and this is left to another time. For this reason
the details of the program are omitted. The program was
written for a computer having a total storage capacity of
40,000 decimal digits, therefore the structure was restricted
in size to 24 joints, 12 loops (36 redundant elements) and

30 members.

INPUT DATA

Joints and Coordirates

First npumber I indicates joint number.

Wext 6 numbers J indicate joints connected with I.

X and Y are'coordinates of I in the basic system.

Up to 24 such joints are possible and may be read in
any order.

Flexibility and Stiffness Properties

I-J £ EI EI/GJ

ijyy’ 8jixy> €te

I-J indicates member.

Next six numbers are all six flexibility factors, if
member is straight program will compute proper
values.

EI is member moment of inertia, or reference moment of
inertia if member has non~-uniform section,

EL/GJ is the ratio of bending stiffness to torsional
stiffness, or reference values if member has non-
uniform section.

Up to 30 such cards are.possible in any crder.

Redundants

1, J1 19 Iy Iy dg I, Jy

Ii Ji represent member containing redundants.,
Up to 12 such pairs are possible in any order.
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Angular Load Functions and Basic System Moments

T values, 3; BS values, 4

Up to 30 cards, one per member, in any order,

Loops

Il 12 13 140 * e s * & e e In

Each‘I répreéents a joint in thelloop and must be
ordered to coincide with either a clockwise or
counterclockwise traversal of the loop. Up to

24 joints are possible in any of 12 loops.
May be read in any order.



Read Joints and L

128

Coordinates
<iRead Flexibility Coef. )
and Member Stlffnesses

<:ead Redundant5;><2§§<

Different Redundants
SO

Is Same
Structure But

To Be Used

Read Angular Load
Functions and Bgﬁic System Mom.

D

f .
,\jiead Loop :)

Determine Loop
Number

Evaluate b and_

l ¢ coetf.
Determine .
Next Member Evaluate
In Loop eq. 12a

Eas Last
Menmber Been
Traversed

Print Out or Store
Flexibility Equations
Associsted with Loop

Has Last

no

oop Been Processed

u&eMber End Moments

Is Same
Structure But
New Loads To Be
™. Solved

-

Print Out
lember Moments

Determine

Iterate |
3

Print Out 1, 2, 3,
4, 5 and 10th. and each
Succeeding 10th. Iteratior

Flgure C-1

Is
Iteration
Complete.

yes

Macro Flow Diagram of

Gompater Program
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