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CHAPTER I
THE NATURE AND SIGNIFICANCE OF THE PROBLEM

In the past half century s -grest meny research articles on the
fiX@d;p@int"prﬁp@rtywh&ve“appearedminwthewmathematical“journglsg Some
of these srticles invoelve s periddic”h@meomerphic~transf®rmati@n“@f a
space iuto itéelfa' The”work’ﬁhat"h&steenjdcneWis*scattereﬁa~~N0’attempt
has been made Lo bring~t@g@th@r“the-ideas~expresse¢‘by~the>vari@us ma;he
ematicians who have coniributed to the development"of'thig’area'of
thoughtol‘One purpose of this study is @o examine @he vari@us~c0ntribuf
tions, summarizg the research on p@riodi@ transformatigns, and;showﬂthe
contipuity and patt@rg Qf developm@nﬁél Other objectiV@s are &@.pr@sent
&z brief hist@iy of tqpology,andwig develop a bibliography for the area
of fixea p@ints under a periodic transformation. -

The materisl in this thesis is intended to be readable op senior
college or beginning gradustie level in mgthematics. Discussions and.
explanations are given in c@nn@cti@n with the theorems, and examnleé and
counter-examples are giV@nrtQ illustrate theutwpg;ogical concegtsa

Chapter II presents a brief history of topology, some elementary
theorems, andﬁsgm@ examples suggesting the theor@ms‘that areﬂproved‘
later. In Ghaptgr IiT a brief review of algebraic topology is ou$lined9
and in Chapterklv and V masjor emphasis ig placed on devel@pmegt of the

specific topic of the thesis. Chapter VI delinestes the educational
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ignificence of the thesis-end contalns a sumnmary.

-Heed for the Study

*Thewkﬁ@wieﬁggm@xpiogionmhas~m&ﬂewitwpr&ctica;5~pe?hgp§“nec§ssa?y,
f@rwﬁh@ﬁmﬁﬁmmwﬁician“t@”sp@ciaiize“inwaﬁéarticg&arwafeamsuchmaSMtbpoa
'%nggwgeﬁmeﬁﬁygj@igébragjgr“&nalysissf“Aswé“result“ef'thisu&peci&lizatiqp‘
“grﬁicE@swpﬁbiiﬁh@dminfthewresear@h“j@urnals“arewfrﬁqmﬁntlywwritt@nwin such
‘specialized language that”th@y”cannwtmbewreadilymugggrsxm@d%hyMaﬂmathea““”
mticton outside the specialized ares, Tn-wany cgss procfs of theoreus
i ome article are built upon-definitlons end theorems that heve been
published in other- journales ~Every person who-sttenpts to understand -
these arti@lesjmust firgt“g@ backvén&“acquiré"the*necgssary'badkgr@ggga
This is not an @asy‘task.éinc@ gggy'of'tpe‘depails"arejmissigg;j“ﬁiyce'K
vthé'j?uryg;s are the m&éorIS©urcg of information for continuing develop-
nents, 1t 1s imperstive that somscne aigest the verious contribubions -
exp?§§§_th@m_in glmpler a@i more coypiete languaggy_'Tpe‘fixed”pgint

propertyMQQr”periOdic‘transzrmatiQns is one such-subj@ct~inasmu¢hmas a

chron@lqgicglvé@yelogment‘h&s not been incldded in the textbocks.

There is é definite need for someone 1o consolid&@@ all the research
that has been doﬁe\on & p@rticular toplc and‘p@ presentvit in & way that
‘%_wellfprained undergradugte @rvgr&duate student, or teaeh@f~©f matheéb
matics can mepreyéﬁd”iﬁﬁ A study §f this‘ﬁature will alsQ‘b@"Qfﬂcpgéid=
erab;@bvalgé to the Ph. Dolgahdidatg who is‘;ptérested in a review.qf the
resggfch_in & given aresa. Sq@e ﬁg§g%véd%p;oblems are stated in the thesis
»gpd thége’may'be of value to any iﬁdividual Interested in méthematieg;

research.



Scope and Limitations

This thesis will be limited to the properties of fixed points for
periodic-homeomorphic-transformations-. Under this limitation we shall
omit a survey and snalysis of the fixed point properties for noncon-
tinuous, continuous but not periodic, and multi-valued transformations.
Also omitted will be the properties of fixed points for periodic trans-
formations where the transformation-is an isometry.

It is to be noted that none of the theory in this thesis is original.
Most -of the proofs are taken from the papers and books listed im the bib-
liography. The results dbtained in this paper a:e-not-the most gene;al
ones that have been obtained. However, when more general results are

available they will be discussed.
Expected Outcomes

As a result of reading this thesis, the mathematics student should
gain an awareness of the current and past research in this mpdern'branch
of mathematics. He ahould,begome acquainted with men who have contributed
to its research and development. This thesis should arouse the student's
interest and challenge him to read and probe the periodical literature of
mathematics. The presentation of unsolved problems should impress upon
him the fact that the frontiers of knowledge in this area of mathematics
are being pushed back at a steady and continuing rate.

The fact that the reader, who is a potential teacher at either the
public school or the college level, may become sufficiently interested in
this phase of mathematics to cause him to undertake serious study in this

area has great educational potential. He will be confronted with the pos-



sibilitylof»contribuxiné'to g@sé&r@hdin math@matics by extending the
_reanlts given in this thesis and by offering solutions to unselved prob-.
1ems aé-w@llraS'by dgvgléping‘n@wfpr@perti@s of fixed pbihtsp The bibe
1iography;sﬁoﬁld be & valusble aid to anyone interested in the research

of fixed yoint»th@ory for periodic traneformationsav



CHAPTER II

BRIEF HISTORY AND

INTRODUCTION TO FIXED POINT THEOREMS

Topology, like mosp new branches of mathematics, had its beginning
in already existing fields of studf. The basic ideas of homology theory
can be found in Riemann's investigation of functions which arise from )
the integration of total differentials. The theory of sets was develop-
ed by Cantor and used in the clarification and solution of problems in
function theory. Both idea; are basic concepts in topology.

It was not until the first part of the twentieth century that topo-
logy developed into a self-sufficient branch of mathematics. R. L.
Wilder, in an address to the Semicentennial History of the American
Mathematical Society, said,

Topology originated in the work of many mathematicians of the past
century, including Cantor, Riemann, and Kronecker; it won recognition as
a distinct branch of mathematics largely through the writings of Poincaré
about the beginning of the present century. Although having many rami-
fications;, it has progressively become a unified subject, and due to its
foundations in the theory of abstract spaces has come to collaborate
with abstract group theory as a unifying force in mathematics as a whole.
It has provided a tool for classification and unification, as well as
for extension and generalization, in algebra, analysis, and geometry.
Considered as a most specialized and abstract subject in the early
1920's, it is today almost an indispensible equipment for the investi-
gator in modern mathematical theories [23].

larabic numerals in brackets indicate references to the Biblio-
graphy.



The growth of topology took place generally ﬂong two lines; the
combinatorial and the point set. The former was that of Riemann and
: Poil_aqg.z_'#_,_ and was distinguished by its finite character. The basic con=
figuration was not a point set, but a‘_polyhedron consisting of a finite
number of faces of various d:lmmjmipns-o The point set was that of
Schoenflies, Ca.ntor_, Brouwer, E. H. Moore, R. L. Moore and others. The
bq.gic configuration was a point set, and whereas in the combinatorial
approach the properties in the large were the center of interest, in
the point set a.ppraaéh the local properties were those naturally stud-
ied. However, in more recent years the two lines of topology have been
unified to some extent.

A problem in topology that has received much attention is the fixed
poin*_b- property. A topological space X is said to have the fixed point
propert;l if, given any continuous function f from X into X, there
exists z;. point p such that #£(p) = p. The first results on fixed
points 1;rere cbtained by Alexander on topological .happings of a
2-d:l.|nem;iona.1 manifold and by Brouwer for continuous mappings of the
n=cell and n-sphere. Brouwer's theorem was introduced in 1912 and is
perhaps one ‘of the best known. The next result was obtained by Lefschetz
in 1923;' He discovered a fixed point formula and the proof of its valid-
ity for a self-mapping of a closed manifeld. In the period 1925-=35
Lerschefz was able to extend his proof to relative maniféolds, to general
complexes and, finally, to locally connected spaces. Since Lefschetz's
theorem was published many fixed point problems have been solved [2].
Yet, today there is no known topological characterization of the fixed
point pz;operty,

The first fixed point problems were concerned with a continuous map=-



ping from a space into itself. However, some of the more recent results
involve non-continuous mappings and periodic mappings. The first fixed
point theorem for periodic mappings was proved by Ho A. Newman in 1930.
The theorem was that if MI; is a loca:_l_.ly Buclidean metricized connected
n-dimensional space, 1(n any domain in it; and p an integer greater
thah one, there iz a positive number d such that no uniform continuous
representation of M_ on itself with period p moves every point of
K, & distance less than d [15]. In 193 P. A. Smith proved that if a
compact Hausdorff space was sim_pl's-r connected in ao;ne sense then every
homeomorphic periodic transformation of prime period would leave at least
one point fixed. This theorem by Smitp was perhaps stimulated by the
following results. Kerekjarto and Eilenberg proved that every periodic
transformation of an ordina.r;r qphere into itself is topologica._lly equiv=-
alent to a rotation or to the product of a rotation and a reflection
across a diametral plane, Lefschetz’s theorem was extended to a simplex
in 1933, Smith's greatest contributions to this ares came in 1937 and
1939 when he completed the topological classification of the set of ﬂx:
e_d. points for en n-sphere n £ 3 and for an arbitrary n-sphere if the
period of the transformation was a power of a prime. In 1950 E. E.
Floyd gave examples showing that P. A, Smiths theorem did not hold

for an arbitrary period 'q- Tho goal of this thesis is to present the

results obtained by Eilemberg, Smith, and Floyd.
Introduction

Perhaps one should begin with a discussion of fixed points, with

definitions;, examples; and theorems that illustrate the concepts to which



this thesis-is devoteds A wminipal-background has been assumeds Most of -

the idess in topology -that-have besn used-are reviewed.

Definition-2:ls A-set M; together-with a collection of subsets

called open-sets, is called-a topological space' if and enly if the col-
lection of-open-setg satisiies the following' axioms:-

Axiomvlk“vThe*unionwof“any collection of open sets iz -an opén
- seba. : ' '

Axfom 2. The intersection of any finite collection of open sets
: is an open-sets ' \

The collection of open sets ({V} is called the topology of the

topological space.

Definition 2.2, A topological space M 1is said to be & Heusdorff
space 1f and only if, given any two distinct points p, q of M, there
exist d¢isjoint open sets U and V of M such that p is in U and

q is in V.

Definition 2.3. A collection of open sets {U} is said to be an

open covering of a set M if and only if Mec U U.

Definition 2.4. A topological space M is said to be compact if
and only if every open covering of M contains a finite subcovering

of M.

The theorems in Chapters IV and V are in a compact Hausdo:ff space
and the existence of a finité covering is very lmportant in thexproofsap

We shall also call upon the following definition and theorem.

Definition 2.5. A space M 1is said to be normal if and only if,
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-givenwany~tw0“disjoint~elgse@“subsets El ‘an&-'nguaf -M; there gxist

and Ggr‘of'~M containing F.

disjoint open subsets G 2 ~and Fa, re=

1
spechtively. .

v-bemm&~2&la' T M-'is a“compactwﬁausdorffwspace;“ﬁhen~givén“§ny »
cloged subset P of-“Mf‘an&~any-pointw~qw’of M not in P pheﬁe exist
disjoint open subsets Q ~and” O of M containing F and q,‘~fespecm
tively.

Proof. For every open covering {U] of F there exists & Tinite
sgbsetjof’;fU}_”that”cOverSj’F; since”a*glosed“sﬁpsetwof“g'cqmgact space
iS\¢0mpacﬁ§'VFbr“eve:yLPQint*'p“‘in~wFf"and“for jqu-a”fixéﬁtpoiptjin~
;MwF, there existvppen sets--U,;V wher¢~'p- is"in“;U:_and q isAin v
SLCh that UNV = ﬁ (M Hausdorff)a Let Q Dbe the uﬁioﬁ of-é finitg
number of the U's that cover F. Let O be the intersection of the -
finit@ﬂnumb@r of V's +that correspond to the U's., Now O and Q are

open sets such that 0N Q =P and F isin Q and q is in O.

Theorem 2.1. If a Hausdorff space M is compact, then it is normal.

cand Eb be closed subsets of M. For every P in

Proof, Let 'Fl
Fl there exist épen sets U, V such that U containg Fé and ¥
contains p, UNV = 95 A finite number of the V's cover F, sincé
Fl is ccmpactf Let Q‘ be the union of these ‘V*so The intersection of

the corresponding U's, say 0, is an open set containing ¥,

0NQ =@. Thersfore M is normal.

Definition 2.6 through 2.11. define a homeomorphism which is an im-
portant concept in this thesis and, indeed, in»topology, Other concepts

 defined are a periodic transformatiOn,van n=spheré, and the fixed point



property.

Befinition“2v6r et M- and ‘R Yerspaces; & rule I -is called a
mepping of M -into R (f3 M= R) if sndonly if f associates with-

each element x of M a unigue element y of R.

Definition 2.7. ,Let“"Mj“and“-Rurbewspaee§>and‘~f~:;M<ﬁ R a mep-
;ying;l~Then““f~3i$'said~to“b¢tconyinuouswat‘a pcint““ﬁ cof M if;and_ 
only‘if,'grven~énywopenf§ubset”;q‘ of ‘R~~where~"x*'iS”in“”fm;(G),-'theré
exists an @pen se*' Vooof M oontalning X such that for'every' ~yin
v, f(y) iq in- G. (i‘ J"(G) is the set of a;ll y in- M  such that
f(y) 1is in G{) The.function £ is continuous on M if and only if

£ 1is continuous at every point of M.

Definition 2.8. ﬁet M and R %be spaces and f: M~ R a'mapping,

Then £ 3is said to be onto if and only if for every y in R there

exists an x in M such that f£(x) =

Definition 2.9. Let M and R be spaces and f: M= R a mapping.
Then f is said to be cne-to-one if and only if for x, y € M,

£(x) = £(y) implies x = y.

Definition 2.10. Let M and R be spaces and f: M= R a mapping.
Then f is said to be 9 g if and only if for every open set U of M,

£(U) = V is an open set in R.

Definition 2,11, Let M and R be spaces and f: M+ R & mapping.

Then f is said to be a homeomorphism if and only if £ is continuous,

one-to-one, open, and onto.
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lkﬂﬂnitioﬁwE;lea_ Let £ be-a-msppiug-of-a-spacs M into-itself,
f is said towb@mgeriadic“provide&jthgremexistsman@int@ger“~p~>~1 “such
that £ (x) a.kj”forwev@ry-point x of M, where

£P(x) = 2(2( « « « (£(x) + + 2) (o of them).

Definition 2.13. An n-sphere is any homeomorphic image of the
sphere
n+l 2 _
Zﬁzl ¥ =1
Definition'Qalké A space” M- is'saidftO“havejthemfierWpoint pro=
perﬁy- (fpp) if for‘everywperi0d10”homeomorphicmtransfoymation”of“'MM

into itself there exists a point x such that £(x) = x.

We shall give examples to 1llustrate thg ebove definitipns-gnd per-

haps the examples will suggest some theorems.

Example 2.1. Let M be the interval [-1, 1] and define f(x) = =x
for x € M. Then fz(x) = x, therefore f is periodic of period 2,

The set of fixed poimts is the set {0].

Example 2.2. Let M be the set of points (x, y) such that
[ 52 + y2 €1 and define f(x, y) = (-x, ¥)e Then fe(x, v) = (x5 ),
therefore f dis periodic of‘period 2. The set of fixed points is the

set {(0, v) [ |v]| =1}

Example 2.3, Let M be the same az in Example 2.2 and define
f(x, y) = (y; =x). Then fh(x, y) = (x, y), therefore f is periodic

of period 4. The set of fixed points:is the set {(C, C)}.
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Any number of examples such as the ones above can be found.
However, one cannot find & periodic homeomorﬁhic transformation of a
connected subspace of the Euclidean space into itself that does not
leave a point fixed. In Chapter IV we shall prove that such a space
has the fpp.

The next e_xa.mplea are concerned with an n-sphere. Recall that a
0 -sphere is homeomorphic to two points, a l-sphere is homeomorphic to
the circumference of a circle, and a 2-sphere is homeomorphic to the

hull of an ordinary sphere.

Example 2.4. Let M be a O-sphere, say the points "a" and "b";
then f(a) =b and f(b) = a is the only possible periodic transfor=-

mation and it leaves no fixed points.

. Example 2.5. Let M be a l-sphere say the set of points (x, ¥y)
such that Jxe + :,'2 =1, Define f(x, y) = (~x, y), then £(x, y)
is periodic of period two. The set of fixed points is the set

{(0o, 1), (0, 1)}, which is a O-sphere.

Example 2.6. Let M be the same as in Example 2.5. Define
£(x, y) = [cos(g + x), sin(® + x)] where x =cos ® and y = sin 6,
then r(x, y) is periodic of period two. The set of fixed points is

the null set.

Example 2.7. Let M be a 2-sphere say the set of points

(x, ¥, z) such that ng + y2 +2° =1. Define g(x, y, z) =

(x, y, -z), then g(x, y, 2) 1is periodic of period two. The set of

fixed points is the set of points (x, y, 0) such that ,\/xa + 32 =1,
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which is a l-sphere.

Example 2.8. Let M be the same as in Example 2.7. Define
h(x, y, z) = [cos(® + x), sin (8 + x), z] vhere x =cos ¢ and
y = sin 8, then h(x, y, z) is periodic of period two. The set of

fixed points is the set {(0, O, 1), (0, O, =-1)} which is a O-sphere.

Example 2.9. Let M be the same as in Example 2.7. Define
£(x, Y, z) = gh(x, y, z2), where g and h are the same as in Exam-
ples 2.7 and 2.8, then f 1is periodic of period two. The set of fixed

points is the null set.

These examples indicate that the set of fixed points when an
n-lsphere, n <2, 1s mapped into itself by a periodic homeomorphic
transformation can be an r-sphefe, r € n, or the null set. In this
section we shall show that this 1s the case. In Chapter V we shall
obtain the same result for an arbitrary n-spere if the period of the

transformation is a power of'a. prime.
Elementary Fixed Point Theorems

Definition 2.15. A mapping #£(X) ¢ X is said to be pointwise
almost periodic (p.a.p.) at & point p of a set X provided there
exists, for any € > 0, an integer Hp such that p[.P, fn(p)] < e,
vhere plp, £%(p)] denotes the distance between p and £ (p). Note

that a periodic transformation is p.a.p. .

Lemma 2.2. If f(X) € X 1is a homeomorphism and K is a compact

subset of X such that f£(K) € XK, f cannot be p.a.p. at any point
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of K- £(K).

Proof. The relation f£(K) c K gives fe(x) c £(K),
£9(K) ¢ £2(K) ¢ £(K), + - », £K) c I K) c - . . e £(K), so that
x € K -~ £(K) implies £ (x) c £(K) for all n. Hence

olx, £2(x)] = plx, £(K)] for all n.

Lemma 2.3, If X dis anarc, X =H + K is a division of X
into H and K such that HENK=pP € X and f£(X) e X is a homeo-
morphism such that HN £(B) # P A KN £(K) and f is p.a.p. at b,
then p 1is fixed under f.

Proof. Suppose f(p) # p. Then f(p) belongs either to H -Dp
or K-p, say to K - p. Since £ (H) is connected and intersects
both H and K we have f(H - p) Dp. Thus p € K - £(K). Also,
£(K) c K since f£(K) n K # p. But by Lemma 2.2, f could not be

p.a.p. at p.

Lemma 2.4, If the end points of an arc ab are invariant, every
element of the arc is invariant.

Proof. Let x be any point of the arc different from a or b,
Then x divides ab into H and K such that the hypothesis of

Lemma 2.3 is satisfied. Hence x 1is a fixed point.

Definition 2.16. A mapping, f£(x) is said to be pointwise peri-
odic at a point x of X provided there exists an integer Nx such

that f£°(x) = x. (A periodic mapping is pointwise periodic.)

Theorem 2.2, If f 1is a pointwise periodic mapping of an arc

ab into itself it must be periodic of peried n; furthermore, either
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n=1 (all points-fixed) -or nw&~2; and-there-is exactly-one-interior
point p of &b which is fixed and f 1is equivalent to a reflection
about p-

Proof. If_either_ a or b is fixed, they_bqth‘must'be fixed
s;qge4egd“p9ints map_into_end pqints; and every poinp iS“figed‘by
Lemmé 2.4, so that . n = 1. If neither a nor b is fixed, we have
t(a) = b, £(b) = a, fz(a) = a, fe(b) =b and hence fg(x) - x for
every x € EF; Therefore n = 2. Also, if p is a fixed point,:we

have f(ap) = bp and no q # p is Ffixed.

Theorem 2.3, Any pointwise periodic mapping f of the circle S,

IZI = 1, into itself is equivalent either to the reflection w = 2z of

period 2 with two fixed points or to the rotation w = z" (n =

1, 2, » « ») all points fixed for n = 1, no fixed points for n > 1.
Proof. If all points of S are fixed, f 1s the identity

w = 2z, OSuppose there exist & fixed point p and s point x with

f(x) # x. Let px, pflx) and xf(x) be the arcs on S each con-

taining only two of the points P, x, end f(x). Then since f(px) =

pf(x), we have f£{(xFf(x)) = xf(x). Hence from the above there is ex-

actly one fixed point ¢ on XF(x) and also fe(x) = x and since

f(gxp) = qf(x)p, f 1is equivalent to the reflection w = z on
.

Assume there are no fixed points and Py =P € s, p, = f(p),

" . _ on=l _oh 4 - ' =
» Py =% "(p), p=1(p), then f(pyp,) =p;p,, f(pyp,) =

p2p3, s 0 ey, f(pn_lpo) = PyP; 8O that f 1is equivalent to the mapbing
w=%, n>1, on Izl = L.

Notation: Ki is a topological circle, Il its interior, Sl its
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circumference, and S is. & 2-sphere.

2

':Lammai?éo.Let E =K, aéLnsl, bELﬂSM a#b and

A= §§°' where AN 8, = {x, ¥} and such that A cuts E between a

and b. Then there exislts'san arc BcU f~i(A) with end points on 8,5

and £(B) = B.
Emofo .‘ Let g be & homeomorphism between E and a gepmetric
circle. Extend f to g(E) such that fg(x) = gf(x) for xe E.

Form an S = E + g(E) by:identification of a :Qéint x and g(x) for

2

4‘ N .
x € 8, - The curve S.' = A + g(A) cuts S_. between & and b. Des= °

2
' that contains a and let

1

ignate by I.,' .the cdr‘aponent of 8, -8

2 l
' that contains a. The closure is a

1

1"'_' be the component of M :IE’iIl

topological cifcle Kl".v, Sl" cu fi(Sl'), f(Il") =TI ' and

I

1 ,
g 1) tr,
f(sl ) Sl

The set S,'" N E cuts E between & and b, hence theré exists

1
an arc B C Sl“ N E which cuts E between & 'a.nd b. Also,
g(B) < s') hemce B + g(B) 8,'", end BN g(B) contains points such

that B + g(B) contains a topological circumference or B + g(B) = Sl”.

Fow, B = Sl" A E and the end points of B are on 8. Also,

£(B) = B because f(Sl”) =8.'", and BcU fisi') because

1

2 S I | ] irl
8 cuf(sl),

Lemma 2.6. If E=K1 gnd S c.-fL, then -n'= 1.

A
Proof. Let p be any point in K1 =8, and A = xpy where

AN 8, = {x, y}. There exists an arec Bc U fi(A) such that’

BN S, = {x*, y'3, x', y' end points of B and f£(B) = B by

Lemma 2.5 and by Theorem 2,2 B L. Hence B = A and the arbitrary
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P €L, therefore E =L and n = 1.

Theo;em 2,4, Any periodic homeOmorphic mepping _f of & topo-

1ogi¢a1 sphere 8, into 1tse1f is of period one all points fixed, of

2

.period two a_l-sphere Fixed, or of period n two points fixed dr no

\

poiﬁts fixed.

Proof. Assume that L, the set of fixed points, is not null then

i

there exists an x € S, such that £(x) = x. Let I, be any open disk

2 1
such that a ¢ I, Then N fl(Il) is a collection of open disks cne of

which, call it If, contains a. Now f(Iii) =I' end
i c. . \ .
- ! = a e. . - . i . N :
f(sa Il ) SB Il Hence there exists a point y € s2 Il such

that £(y) = y by Brouwer's Theorem, Therefore if L{# $, then L
contains at 1east two points;

Let L, be the set of fixed points under £, L, the set of fixed
points under fg, o o e, Ln_1 the get of fixed pdints under fn'l.

n=l :
Tet A= iU1 Lﬁ, a and b points of Llu Now A either cuts 82

between a and b or it does not. Consider first the case vhere A

cuts S, between a and b. Let Sl' be a l-sphere in A such that

o between & and b. BSuppose a € Il' the interior of Sl'

and let Il" be the component of N fi(Il') which contains a. Then

it cuts S

b€s5, -U fi(Il'). Let S,'' De the boundary of I_'', then

1 1
TR i ) try 1y ' ~3R L AN gt .
8,'"cu £ (sl YN A, Also f(Il ) = I,'', hence f(Sl ) = 8"
And since more than two points of Sl" are contained in A then all
of Sl" is in A by Theorem 2.3. Then by Lemma 2.6 K"1 and S

S2 - Ki" are contained in A. Hence 82 cA and n =1,

Assume next that A does not cut S. between & and by 1£hen

_ 2
there exists an arc B such that fi(B) A B =1{a, b} for all i, Now
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B"' f(B) , . . . fn"l (B) divides s into n Sect‘iOns R

2 0’

31, Pty Rn~l 7where"thé“bound§ry”9f RO = B U £(B8), the boundary

of R

1= 14 @and T(B; ) =

B,,, &nd the boundary of f(Ri) is the same as the boundary of

£(B) U_fE(B)V et cetera. Now "f(Bi) = B

'R Hence f(Ri) =R, or f(Ri) = R If f(Ri) = R, then

i+1°
and if tf(Ri) = R

i+1° i

n=2 ad R UR; , =5, 141

Tt remains to show that if f(Ri) =R, then L=5,. Let A= xy

the boundary of R

i
then L = f{a, b}.

such that AN S is {x, y}. Then there ex-

i)
such that f(B) =B and B N sli is the set con-

14’
ists a BCQS A
Rt R |

"sisting of the end points of B. Since n =2, B contains one and
only one end point p such that f£(p) = p.  Also, f(B) contains the
same fixed point which implies'thét A contains at least one fixed
poiﬁt. Therefore, there exists an arc C between & and b such
that C « L. Furthermore, there exists a point c € S, - Ry guch that
£(¢) = ¢ and similarly arcs C', C'''c L betweenv,a and c, and b
and ‘ca Let Sl' be the l-sphefe cycruyct = L. The circle 'Ki’
with boundary B U B' U B'', where B' and B'' form the correspond-
ing arc between ac and bc; 1is mapped by f onto K,'' with bound-
ary f£(B) U £(B') U £(B''). Hence L=8".

_The following theorem.is a collection of the results in this sec-
tion. The results presented in this seétion may be found in [5] and

{a1].

Theorem 2.5 If an n-sphere n £ 2 is mapped into itself by a
periodic homeomorphic mepping, then the set of fixed points is an

r-gphere r S n.



CHAPTER III
HOMOLOGY THEORY

The proof of the existence of ‘Pfixed points and the classification
of the set of fixed points, Chapters IV and V, involve a great deal of
homology theory. ‘IWQe shall review the definitiens, concepts, and the~
orems :_tha.t Bre used." The theorems are not proved; hw&er , the pmofs‘

Bs well as the definitions given here can be found in [24].
Simplicial Complex

Definition 3.1. An sbstract simplicial complex M is a pair

(v, 2) where {U]E is & set of elements ca.lled vertices, and Z 1is a
p‘olle'gt‘ion: of finite subsets of, {ﬁ} with ‘the property that each ele-
ment of {U} 1ies in some element of = and, if E is any element of
§ then every subset of ‘E is again an element of Z. M 1is finite

1t {U} is finite.

D_efinition 3.2. A simplex: E 1is an element of the collection 2
and the dimension of E is one less than the number of vertices imn E.
Denocte & simplex with m + 1 vertices by E'. A face Ek of E' is a

k dimensional subset of Em.

Definition 3.3, The star-of a simplex E (St, E) is the col-

lection of all elements in = of which E is a subset.

19
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Note jflo vagry finite abstract simplicial -complex is isomorphic

to a geometric-simplicial -complest. -

_ Bxample 3.1. Let X be a compact Hsusdorff space, andlet (U}
be a finitejcp#éringfgf";x by opgn"ééts;M“Define”'M'gn(j,ZU by taking
{Vj ﬁo be the:cpl;ectioﬁ"”{U} and“by”say;ng“that”a‘sdﬁsetvxﬁb?$p‘,

s ey Ub _of elements of (U} is'a simplex E in Z if and only if
the intersection iﬁo Ui’ the Kernel of E, is not empty. T@en M

is en abstract simplicial complex or the nerve of the covering {U}.

To see thié, we need only note tﬁat ifi iﬁ@ U, is not empty, then any
subcollection of theorem sets Uo, o ’v., Qp
section and by definition must constitute an element of X.

also has a nonempity inter-

Oriented Complex

Definition 3.k. An oriented simplex is an abstract simplex with

an arbitrary fixeq ordering of its vertices.

Definition 3;5. An oriented simplicial complex is an abstract
simplicial complex with an arbitrary fixed orientation for each simplex

in the complex.
Incidence Number

Given an oriented simplicial complex M, we associate with every
pair of simplexes E°, and Em-l, which differ in dimension by unity,

and incident number [Em,:Em~l] defined as follows:

(2%, Em-l] 0 if ,Em"l is not a face 'of E°;
(B, 1] =41 ir ¥ is a fact of E

1



2l

If the orientatien of 2 ana T agree, then the incidence number

is +1., Otherwise it is -=l.

Example 3.2, If VB = (v.v,v,) and +E = (V.V,), then

s : _ ‘ 0'1'2 172 ;

(AAAYY ‘(vavl)] =1. But if +E = (Vp¥y), them [(VoV,V,), (V7)1 =
“l' ‘

~ The oriented simplicial complex M together with the system of in-

el

cidence nunmbers [ Em, constitutes the basic structure supperting

a simplicial homology theory.
Chalin

Let M denote an arbitrary oriented simplicial complex, and let G

be an arbitrary abelian group.

Definition 3.6. An m-dimensional chain of the finite complex M
with coefficients in the group & 1s & function c on the oriented
mfsimplexes of M with values in the group G sucp that if Cm(+Em) =
g, g€@, then cm(fEm) = <go

~ The collections of all such madimensional chains on M will be
. i \
denoted by the symbol & (M, G) We intfoduce addition»of ﬁ~chains by
means of the usual functmmnal addition, That is, we define

(c +c)(Em)~c E"‘+c £, |

whére tﬁe addition on the right is the group operation in G. Under
this oﬁération Cm(M, G) is an abeliah greup; the'médiﬁensional chain
group of M with coefficients in Gu An arbitrary m-chain on M can
be written as a linear combination>’23gi Eq,‘ vhere g, =C (+EF) This

notation tsbulates the functien c in such a way that addition of such
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fuqétions is the addition of linear comblhaticns. An elementary m~chain
on K 1is an m-chain such that Gm(iEg) = igc for some particular sime-

1

, m . ‘ Mot
plex E; in K and Cm(Em) ~.O for E # 1E,.
Boundary Operstor

The boundary operator F defines a homomorphism of the group
Cm(M,G) into the group Cmml(M,G)- as follows:
mo_ m o mel -1
Feg¥y = 2[R B lgE
This is extended linearly to arbitrary m-chains by
; m i
FC = F(Zﬁ giEi) =Z, F(giEi).
Also for any chain C  in Cm(M, @), F(FCm) = 0. That is, F(FCm)

is the (m-2)=chain with value zero on each (m=-2) simplex.
Cycle

An m-dimensional cycle on M with coefficients in G 1is a chain
z, in dm(M, G) with the property that F(zm) = 0,  the (m=1l)-chain
Z0 - E?Ala The collection of all m-cycles is precisely the kernel of
the homomorphism® P in the grdup Cm(M, G) and hence is a subgroup of
Cm(M, G). This subgroup is the m-dimensional cycle group of M with
coefficients in G and is denoted by :Zm(M’ G).

A O=dimension chain Co is a cycle if and only if CO = ZJgiEg
implies that z:gi = 0 in the group.

Boundary

An m-boundary on M with coefficients in G 1is a bm chain in

C,(M, G) such that there exists a C,j Cchain where F(Cm+l) =D
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The set of all m-boundaries is a subset of Zm(M,‘G) since F(F(C ))

m+l.
= 0. Thie seét ig a subgroup demoted by Bm(Mj G), ‘the group of

m=boundaries of M with coefficients in G.
For ¥C,, either of two conventions may be made: (1) Define ¥C,,
s 0, or . (2) Augument .the complex under consideration by an idesl sime

plex C‘i ‘and for all CO of the compléx let FCO = C%ia If case (2)

1s used, the complex is called augumented.

Homology Group

Since both Bm(M, G) and _Zm(M, ¢) are sbelian groups we can de-
fine the differsnce group Zm(M, G) = Bﬂ(M, G¢), which is called the
m-homology groups of M over ¢ and is dencted by Hm(M, G)., Bach

element of Hm(M;{G) 18 sn equivalence class [zm] of m=cycles where

zi and 'zﬁ are in the same class if and only if the chain zi - zi _

is an\mAboundary: Thisg equivalence{relation is called homology and is

written Zi:w ziﬁ Is zz is an mébohndary we wrlte Zz-u 0.

[

Example 3;5. Let M be the complex consisting of a single

3

Z-gimplex E togéther with all of its faces. This complex is ‘the clo=

sure of a simplex E3 and is denoted by “Cl(E3)," We wlll orient the

‘complex M by choosing a fixed ordering of its vertices wv., W v

0 1’

and Vs and letting this ordering induce the positive orientation of

the simplexes. In this way, we have the following list of (representa-

2)

tives of) the oriented simplexes of M:

) = (vovs), +E§ = (vgvs)s +Eé = (vgv,),
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1 § ] \
By = (vyvy), 1 o'
2 . 5 '
+Ey = (vivov5), +E3 = (vovlJB), +B = (v vlv2v5)
2 2
+E, = (vovgva), +8), = (vovlvz)ﬁ

(We omlt & considerstion of dimension ZEeroc. )

Row let G be any abelian group. The only 3-chains on M are the
elementary chains gEB, hence the chain group 03(M’ G) is isomorphic
té G. Since there are no h-simplexes in M, ch(M, G) = 0, and hence
By(M, G) = FC, (M, G) = 0. It follows that H(M, G) = ZB(M, ).

But let gE5 be any 3-chain. Computing its boﬁndary we have
3, K 3 2.2

2 2
= gng + gE3
i+l

It is easy to show that, in the present case, [Ej, E?] = (=1)""", This

2 2
= gEi o= gEh_o

chain is the zero 2-chain if and only if g = 0. Therefore, the ohly
3-cycle on M is the trivial 3-cycle 0E°. Hence, ZB(M, G) = HB(M, G)
is trivial. This illustrates one situation in which we obtain a trivial
homology group, namely, the case where we have no cycles except the
trivial cycle.

Another situation that results in a trivial homology group occurs
when every cycle is a boundary, for if Zm(M, G) = Bm(M, G), then

Zm ~—me = Hm = 0., This situation can be illustrated with this same
)

2 o -
$=1 giEi is a 2-=cycle. Computing

example. Suppose that the 2-chain

its boundary we have



Ut 2 L R
(3 e = Ay FeE)

[ S - S R |

j 1 (?ﬁ -1 [E El]é>

If this is to be the zero l-chain, then for each fixed index § the sum

L 2 1
2y (B Byley

must be zero. For instance, if J = 1 we have

[El, Ei]gl + [E El]g2 + [E El]g3 + [Eh’ Ei]gh = Q,

But El is not a face of E and Eﬁ, g0 the last two terms are zero.,

1 3
2 El 2 1
Furthermore, -[El’ l] = +1 and [E2,4E1]= +1, hence this equation re-

duces to nothing more than g + 8, = G or 8y = "8y - Similarly, work-

ing with E% we ¢btain g, = agj, “and working with E; we show that

2
55 =1 giEi can be a 2=-cycle only if gl =

8y = B that is, the only 2-cycles are of the form gEl = gE2 +

gE§ - gEﬁ° But we have already seen that such a 2-cycle is the boundary

of the 3-chain gE5e

= gye This means that = g3 =

Hence, every 2-cycle on M 1is & 2-<boundary, and
it follows that HE(M, G) = 0. | |

By an ahalogous but much longer metﬁod, the reader can prove that
Zl(M, G) = Bl(M, G) and thereby show that Hi(M, G) is also trivial.
Geometrically, the complex M is carried by a homeomorph of the 3-cube

2

and is a 3-cell. Granting that the homology groups are topologlcal
invariants, we have found that the homology groups of a 3=cell are triv-

ial for dimensioné greater than zero.
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'Relativevﬁamalogywﬁr@ugs
If M is'an;&bstract'simplicial-ccmplex-anﬁ L is a closed
subcomplex, L < M, 'A@pnchainmfcé om M is called & p-cycleof M
moduls - L provided FQ?H is a chein on L?,.that is, FG# _bag’nonzeroh

coefficients only on simplexes of L. A p-boundsry of M module L is

. - y — l
& chain bn such that there exists a Gn+1 ;" bn4°bny

1 T L F o < ; g <K>._,
bn € L. We form the relative homology group of M mod L as Hp‘(g =

chain vhere FC
n+

gg:;ﬁ) m=-B§:§g>o By these»definitions, a relative chein Zp is a rel-
ative cycle 1if and only if sz = 0. That is, a chain on M represents
a relative cycle 1if and only if its boundary lies in - L. Similariy bp

is & relative boundary if and only if there is & chain Cm+1 such that

b, = FC 4 lies in L, that is, ‘bp together with some chain in L

B p+l ,
constitutes the boundary of a chain of M. We also have eguivalence

clasges of pwcycles med L. Two p-cycles z; and zp are in the same

-

class if and only 3f 2 - Z; is & p=boundary mod L. This will be de-

o]

1 2 -
nocted b Z_ 0 Z mod Lo
ey By Ep

o

Refinement of a Covering

A covering {V} of & space M is said to be a refinement of a
covering {U} if for easch element V of {V} there is an element U

of {U} such that U27V. We weite this as {1 < {1,
Projection

If {vV} >{U} in Z, then & projection is a simplicial mapping =
of {V} into {U}. It is defined by teking =(V) to be any fixed ele-

ment U such that V & U. There may be several elements of {U} con-

y
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teining the set V‘~anﬁwheﬁGEMseveralwahoices~for (Ve ‘This-means that
there may be many projections of {¥} into [U}y ‘However; if {U} < {V}
in Z, then any two projections =, ‘&nd %, of {vl into {U} induce

the same homomorphism of H@(V, ¢) into Hﬁ(U, G). That is, s, and

1

7« caincide.

2

Cech Cycle

A p;dimensional Cech cycle of a space M 1s a collection zp =
{zp(U)} ‘of p-cycles zp(U), one frqm each and every cyclé group ZP(U,GL
{U} in x(M), with the property that if {U} < {v}, then ';zzp(v) is
homologous to zp(U), Each cycle zp(U) in the collgction ZP is call~
ed & coordinéte bf the Cech cycle. Hence a Cech cycle has a coordinate
oh every covering of the space M.

The addition of Cech cyéles is defined in a natural way by setting
{z_ ()} + {22 (0)} = {2 (V) + 22(0))
P P P P

vhere the additién on the right is that of chains on the complex fU},
The homology relation between Cech cycles is defined as follows:
First a Cech cyéie z, = {zp(U)} is homologous to zero on M (or is a
bounding Cech cycle) if each coordinate zp(U) is homclogous to zéro
on the covering {U}, for all {ﬁ} in 2{M). In other words, {ZP(U?}
bounds if and only if there is & (p+1)=chaiﬁ CP+1(U) on each covering

{u} in Z(M) such that the coordinate zp(U) = FC_ . (U), Then two Cech

P+l

»

cycles Zp and z; are homologous Cech cycles if their difference
zP - z; is homologous to zerba The homology relation defined abofe is
an equivalence relation on the set of all Cech p=cycles, The correspond-

- ing equivalence classes [zp] of homologous Cech p~cYcles are the ele-
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: t . . ‘
ments of the 7P b Cech homology groups H_(M, G}, the group operation
_E:

being defined by

. o .
[Zp] + [Zi] = [zp + ?gjc
Cech homology groups are topologigal invariants of the space M.
If £ is a homeomorphism of M to M', then for each covering {U} in
Z(M) the collection {£(U)] of all images of elements of {U} is an
open covering of M' and conversely. The complexes {U} and {£(u)}
are isomorphic, and the homology groups Hé(M, G) anéd HP(M', G) are

isomorphic.
Cofinal Family of Coverings of M

A subcollection Z'(M) of =Z(M) is called a cofinal family of
coverings of M provided that for every covefing {U} of Z(M) there
is some covering {U'} in X'(M) such that {U'} > {U}.

Given suéh a cofinal family Z'(M), we may go through the develop-
ment of Cech theory again, restricting the cycles, homoioéies, et ceters,
t0 be elements of X'(M). The Cech groups cbtained from ' (M) are iso-

morphic to the full Cech groups Hﬁ(M; G).



CEAFTER IV
THE EXISTENCE OF FIXED POINTS

The fixedéﬁoint theorems for trensformations of finite periods which
assert that fixed points must exist, if e space M under transformatiecn
is simply connected in some sense, seem to be the simplest to prove.

‘The first theorem of this sort was proved by P. A, Smith in 193h4.
$inde that timé Samuel Eilenb@rg and P, A, Smith have:givgn differént
pr@ofs?'witﬁvsome generalization, for the same theorem. The proof that
is given here follows the second one given by P. A. Smith in [17].

To prove the theorem we first show the existence of a cofinal fami-
ly ofic@ver}ngs which-has desirable properties. This family, being co-
final; is sufficient for the study of the space M. Then different
types of chains, cycles, and boundaries are defined. %These new ch;ins,
called pméhainé, are shown to have certain properties. We then assume
that the space under 1nvéstigaticn has no fixed points under a periodic
transformation. This aééumpti@n leads to a resﬁlt which contradicts a
property of the p-chains,

Before proving the existence theorem on fixed=pointé, we shall give
some preliminary definitions and prd%e some needed theorems. The the-

orems on the existehce of a type refinement are of particular interest.
Preliminaries

For the remainder of this paper M will denote a Hausdorff space,

29



‘T & homecmorphic transformation-of - M into itself. - The transformation
T will always’beiperioﬁic of~p§riod~ q. 'The“identity”its§lfvwill not
be considered &as being pericdic. If A is a subset of M, the sets
&5 T(A), e ey, qu%(AQ will be called the T-images of A. Denote
g‘{_',;I(A) by oA. The totality of fixed points will be denoted by L.

izO \

Definition 4.1l. A subset K of M is invariant if T(K) = K.

Lemma 4.1. If A« M, then oA is invariant,
Proof. We have T(rA) = T(AUTMA)U - - - U TP"'J‘(A)) = (T(A) U

TE(A) Uoe oy TP(A)), therefore T(cA) = cA, since T (A) = A.

Definition 4.2. The transformation T is primitive if each point

of M-L has gq distinct T-images.

»A Lemma 4.2. The transformation T is primitive if g =p, p =&
prime.
Proof. Assume Ti(x) = Tj(x), x g M-L, and i< Jj<r<p,

where r is any other number such that Ti(x) = T (x). Then Tk(x) = X,

where J - 1

fore Tkz(x)

k <p. But Tp(x) = X since T has period p. There-

Tp(x), which implies p 1is not prime. . This is true be-

‘cause k is the smallest integer such that Tk(x) = X, hence p =1Lk

for some £,

Definition 4.3. If M is a closed finite Fuclidean simplicial
complex whose simplexes are pérmuted among themselves by T, #e say

(M, T) is simplicial. The totality of invariant simplexes will be de-

noted by MIn
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Detinition 4.4, A simpliciel (M, T) will be called primitive
if emch simplex in MaMI has g distinct (hence mutually exclusive)

T-imeges.

Lemma 4.%. A simplicial (M, T) is primitive if g =3p, p a
‘prime,

Proof, See Lemma 4.2,

Definition 4.5, A simplicial (M, T) is regular if the subcomplex

MTv is closed.

-

Definition 4.6. A system will mean a finite collection {U} of
point sets.in M. The compoﬁent sets of a system {U} are thé
U;vertiées,» A system vhere the vertices are permuted among themselves
by . T .is called a T;system, The vertices of {U},.{T(U)}, oo e,

quml(U)} taken together form a system denoted by o{U}.

Lemma 4.4. The collection o {U} 1is.a T-system.

Proof. Let U _ be any vertex of c{U}. Then U_= Ti(U) where
U € {U}, and hence T(U,) = Ti+l(U)o But Ti+l(U) € o{U} by defini-
tion of o {U}. Therefore the vertices of o¢{U} are permuted among
themselves.

Let {U} be a T-system and write {U} = {U'}J U {U''}, where {U'}
consiéﬁs~of the invariant U-vertices while {U''1 denotes the remaining

U-vertices.

4

‘

Note 4.1. The collections {U'} and {U''} are T-systems.

Definition 4.7. A T-system {U} dis primitive if each U'’-vertex
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‘has g wubually exclusive P=images.

Tinthion b.B: Let {u,} and {Uj} be Tsystems with {Ui} >

{Ujﬁe A projection w: {Ui} - {Ui} is a T-projection if T = Tx.

Lemma %.5. A T-projection w: {Ui}=¢ {Uj} carriss U', -vertices
into U?jéverticesa
Proof. Let U', 'be any U’ -vertex. Then ﬂT(U*i) = ﬁ(Uﬂi) =

Tw(0',) since Ts = #T. Therefore U, = T(U

. 18 - Y 7
3 ) where U', = x(U i)u

J J

Theorem hflo Let {U,} and {Uj} be T;Sysﬁems with {Ui}:>{Uj},
If {Uﬁ} is primitive, there exists a T-projection =3 {U,} — {Uj]a
Proof. Write (U} = fU%} U {U?} where {U?} consists of all
U, =vertices which are centained in U'“j=vertices and {Ui} consists
of all U,-vertices which are contained in U”jmverticeso Then {Ui} and
fUi} are T-systems and refinements of {U”j} and {U'' 3, respective-
ly. Moreover, since {U } is primitive,; each U*°j= vertex has q
mutually exclusive images and the same is true with Uzaverticbs since
they are c@ntained in the ﬁﬂ“jwverticeso Then {U?} can be represgnted
without repetition ss consisting of the T-images of a suitably chosen

2

subsystem of its verticesy 88y, Uil, U o s o, U? . Let =, bea
<]

2 .

over {Ui}

ig’
projection of this subsystem into {U””j} and extend N

- At __’q 2.., s o o S
by the formuls T (Uil) = T ﬁg(Uil)5 g = (1, 2, , P =1). In

this manner w, becomes a T-projection, from {U?} - {U"j}a Now let

ﬂl be a projection that takes 2ll T-images of a Uimvertex into the same

U“sﬂvertexa Thus . is then a T-projection since the U' -vertices are

3

invariant. Taken together, =, and . define a T-projection from

1 2
{Ui? .=.>. {Uj} °
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We arg!pafticul&rly’concerned.with systems that are finite open
coverings of - M. These finite open coverings will Yve referred to as

coverings.

Theorem k.2, Jvery covering {U} of M is refined by a T-covering.
~ Proof, Let {UY} be any covering of M, and {V} be the covering
made of intersections of {U}, {T(U)}, * ° -, {Tpml(U)}, Then {V} >
{U} since each V is ina U. If V is any element of {V}, then
V=1 A m{ug) fl o o o TP’l(Ur) vhere U, € {U}. DNow T(V)'=v$(U1)

N TQ(UQ) il ee i TP(UP) vhich is another element of (V3. Therefore

{v} 1is a T-covering.

Note 4.2, If ¢ =P, P a prime, then for every covering {U} of
8 space M there exists a primitive T-covering {V} such that {V} >

{U}. This is an accumulation of results up to this point.
Special Systems and Coverings

_Let {U} be a T-system with X as its nerve. (See Example 1,
Chapter IT.) Then T induces in X a simplicial transformation Tx
vhich is the identity or else is of period r, r a divisor of gq. De=~

note by X, the totality of X-simplexes which are invariant under Tx

I

and by X, the totality of X-simplexes which meet L.

L

Definition 4.9. A T-system {U} satisfies condition L  if {U'}
consists precisely of those U-vertices which meet L; {U} satisfies Lb
if ell nonempty intersections of U“=vertiées meet L. A T=-covering which

satisfies La and Lb will be called special.
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Lemma it .6 _If"the'cqveriﬁg--{ﬁﬁ" is;primitive snd special, then
X; = iLM and - (X, T;}h‘is-primitive~andﬂregﬁlara-

Proof. A non-invariant Xmsimplex E has at leastvone non=
invariant vertex, Y, tbe T-images of U .are mutually‘exclusive sets
since ({U}‘ is primitive. Assume that TE(E) = E., Then T% (Kernel
E) = Kernel E, ‘wﬁiéh imﬁlies dw) nu # $. Therefore. the T;im&ges.of
E -are distinct, hence (X, Tx) is primitiw;ea The vertices of an X -
simplex E arevﬁermuted among themselveg by Tx and since as U~
v#erticeS»they havé a2 non-empty iniérsection,,each U-vertex of E must
ﬁe invariant by thg primitivity of {U}. 'The condi@ion La implies
that E is vertex-wise invariant and (X, Tx) is éheréfore regular,
Moreover, condition Lb implies that E meets L, hence XI c:’:XL,T
Also, the wvertices of an XLasimplex EL’ gince they meet 1L, are in-

variant by Laa Therefore, EL is invariant and X C:XIa Hence X

L I

= XL,

Definition %.10. The set M has dimension less than or equal to
m (dim M € m) 1if every covering is refined by a covering, the dimen-

sion of whose nerve does not exceed . m.

Theorem 4.3, If M is compact, T primitive, and if dim M < m,
then every covering {Uj] is refined by;a special primitive covering.
{Ui} - such that dim(Xi - xﬂ) £k, k=pm+p-=21. (The nerve of {u,}
is Xio)-' ‘

We shall first prove three lemmas in which it is convenient to say
that a T-covering {U} satisfies Lc if, among the U-wertices which

meet L, each contains a point of I not contained in any other.
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Lemma 4.7, IF M is comvact and T primitive; then eyery covering

{Uj} is refined by a-primitive“T£c©vering'éatisfying L&"andj ch

-

Proof., Let x be an arbitrary point of L and Gj(x} be any U-
" vertex conbaining x. Then Q(x)? the intersection of the Tmiﬁages of

Ujix), 1s an invariant neighborhood of x such that 0(x) c:Uj(x)u

Since M is compact and L 1is closed, there exists a finite set of

neighborhoods {0(x)} say © » » o, O, such that LU 0.

12 O !
Since T ig primitive and M is Hsgusdorff, an arbitrary point y in

the closed set M - y 0, possesses a neighborhood R{y) with p mu-

tually exclusive T=images. These images do not meet L, for if they
did they would not be mutually exclusive. Now for every y in M -

U oy there exists a Uj € {Uj} such that Ti(y) c:TiU . Choose R{y)

i J
80 that TiR(y) CiTin and R(y) satisfies the sbove. This can be done
becavse T  4is a homeomorphism and M 1is a compact Hausdorff space.
The system of T-images of R(y) 1i& a refinement of {Uj}, Let Ry,
© + o, R be a Tinite set of the R(y)'s such that M - g 0, c:g R
The collection {0,] together with the T-images of the collection
{R(y)} forms a T-covering {U,}, such that {Ui? > (Uj?, Thus  {U; }
is primitive, and satisfies L&o

Now suppose that {Ui} is a covering:which is a modification of
N bj an invariant open set Qi with
Q, =0, Q NL £ $. 'Then U}, like {Ui}, is a refinement of ~{UjL

{Ul} cbtained by replacing each 0

is primitive and satisfies L_. We shall show thst this modification can
be carried out in such a way that the resulting {U,} also satisfies

L. Choose distinct points 815 Byy © 0 0y B with e, € 0, N L. Then

choose mutually exclusive invariant neighborhoods Al’ AE’ o o ?, Aé of
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8y, 8y, * ° v, &, suchthat-for each i, Ki( is contained in the

intersection of these O's which contain a,. This can be done since a

i

compact Hausdorff space ie normal. Now cpnside: the in#afiant open sets
Qi—soimU{‘?&j/}jiéi}°

The setx Qi ~con'ba,ins aj ifand only if 1 = 3 and g Qi C:g Oio

Also, g Qi:D g Oio For a point x € Oi either is not coﬁfained in any

A5 (J #1) 4in which case x € Q» or it is contained say in A, (1

% i) 4in which case x € Qle In either casse x € g Qio Thus we have

shown that- % Qi = g Oi’ and hence that the system {Ui} obtained from

4 DY @ 1is a covering refinement of {Uj]n Each

vertex Qi meets L since ai €& Qia' Henge the passage from (Ui} to

{Ulj by replaciﬁg_ 0

{Ui} is of the type described above and we conclude that {Ui} is
primitive and satisfies L&a' Moreover, Oi contains a.j if and only

if 1= j, “so {Ui} satisfies Lco ;

Lemma %.8. If M is-comﬁact, T primitive and dim M 2 m, then
every primitive T-covering {Uj} satisfying La .and Lb is refined by

£k, k=

‘a covering {Ui} of the ssme sort and such that dim Xy

pm + p = L,

Proof. The hypothesis dim M € m implies the existence of a cov=-

ering {Ug] >'{Uj} with dim Xg <€ m, Let [Ul} = w{Ug}, then dim X, €k.

Moreover, T {Ug} > T{Uj} and T{Uj} = {Uj} since {Uj}' is a T=-
covering, Therefore {U} =o~{u§} > {u 3. write {U,3 = (U} U (U]

where, as always, {U”j} consists of the invariant U -vertices. Write

J

{Ulj = {Ui} U {Ui} where {Ui} censists of all Ulavertices which are

subsets of U' -vertices and {Ui} consists of the remaining vertices.

J
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Then {U%f

{3f{ﬁ}; By Theorem 1 there exists & T-projection “:”{053 - {U’j}o

. 2 . U _ :
ang ,igl}' ara~T~systemswwnerew~{313»>v{U‘j} »and.,{Uij >

Wreite fUT Y = {U'. , U',, ¢« o, U', 3. Let 0O, be the union of the
Ujj {. Jl’ - 32’ : 4 jk} i : ke

vertices which constitute ﬁmlU’jir Let {U%i} = {Ci}° Then iuil} >

{U'j} since the only sets projected intec U* are the ones contained .

31

in U‘jia The Ullmvertices are open sets since Ull is thefunion’bf

L 1
ssﬁs_f:om {Ui}; andnihey are inva:iant since =« vis 2 Tmprojegtion,
The umion of alliﬂil=vertices is identical with the union Qf the Ui -
vertices since all Uimvertices were projected into {U'j}o Hence,

1 , ' : .
{U% } eand {Ui} together form a T-covering ({U,} such that {u;} >
“ . 1 _ 2
(U] enawhere ('} = (U} > (U',] and (U] = (6} > U'" 3.
The primitivity of {Uj} and the relation {U'',} > {U"j} imply that
{Ui} is primitive,
We assert that {Ui} satisfies L_. A U -vertex vhich meets L

must be a U'iavertex, since each U'' < U'! which does not meet L.

i 3
Conversely, every U*i»vertex meets L.  Fach U'i is an O

ﬁmlU'. for some U'
Ji

;> Which is

The vertex U’ meets L (dondition L,

3 31

for {Uj}) and U’ ‘contains & point 'a, of L not contained in

Jq i

U’jj, J % i (condition L, fer {Uj}), Therefore, ﬂ‘lU'Ji =0

contains ai and U'i meets L. Thus our assertion ig proved.

Now {Ui} was formed from {UI} by replacing a number of vertices
by the union of those vertices. Since this does not raise the dimension
of the nerve, we have dim Xi < Xl £ k. A primitive covering satisfying
Lc is obtained in the same way as in Lemma 4.7, by replacing the verti-
ces of the first covering with suitable subsets of themselves. This

operation does not raise the dimension of the nerve and hence it is ap-
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plied to {U,} to yleld the required refinement of {Ui}o

Lemma k.9, If M is compsct; T primitive, and dim M £ m, then

for every primitive T-covering {Uj} satisfying;”La, Lc and heving dim

Xj £ k, there exists a special primitive covering {Ui} such that {Ui}

> {U*j}? dim (Xi - XiI) £ k, where [U*j} denotes the covering

{st U:?,
&

Proof: Let {U,1 = U, e o 0o, U and for each 1 choos
B _ t J} 5’ » g, n r each c ea

point &, contained in LN U’ where U', € {U'j}, but not in

B i d1’ 3
Uﬂjj’-‘J £ i (condition Lc)a Choose invariant open sets A, A,, - © o
A such that a, € A, € U',
8 e - i i 'Ji
meets any U““5=vertex° (Recall that the U“j~vertices do not

; AN U’jj =@ for 14 j, end such that

no A,

meet L.) Then A, N Aj = ¢ when 1 # J. For esch i choose a set of

h set if and only if U!', N

A's by the foliowing rule: A, is in the 1i° ;
ﬁ e £ .

J
U”js £ p. Let B, be the union of the A's in the ith set and let

=- A °
(1? 0 =U 5 U By
The set 0y together with the U"jevertices forms a covering {Ui},

and since 0, is invariant, then vy} = {0, and {U"i] = {U"j},

Hence ({U,} is primitive and {U,} > {U*j}a Bach O, meets L because

Ut does, hence {Ui} satisfies L+

B} |
We assert that {Ui] satisfies I, . Suppose

J = Gq no, e NoO, # g

If U‘jq e+ f U'jt # $, we have from (1) and the definition of By,

AqUAon o oUAtCO%n“’."’ °ﬂ0t=J

so that J contains By 7 ° s By and hence meets L. If U'j N oo
‘ ‘ q

n U’jt = §, it follows from (1) that J 1s the intersection of sets of



39

B's -and setS“of';U&ﬁwV@rticggy Bince-each B is theunion of mutually
exclusive gets Ai’ it follows that J 1s a union of A's, hence
meets L and the asgertion is proved.

Now we need to show that dim (Xi - XiI) € k. The existence of &

nonuinvariant_x 7simplex E implies a relation of the form

i

(2) kernel E= (U, UB, )A(U', UB, )N o«
: o 1o 14

J 3
N (U”jh U Bih) nNs ¢

Y

~where S8 1is an intersection of £U’13~vertices, £ 21, The B's do
not meet any U"“jnvertices'beeause the A's do not and hence'(2)
implies

(U’Uai)ono o s f) (Ugji)hn S }L ¢° ’

Hence £ +h + 1 € dim X, € k., Therefore dim (X

o £ k R
j Xjp) Sk

i

~ Lemma 4,10, If M is compact and {Uj} is any covering of M,
then theie exists a coverlng {U,} such that [U%,} > {UJ}°
Froof, Let {U} = {Uj, Uy, - - -, U} and let it be shrunk to
{v'} = {U“l, U°2,'w ° ey UL U“i c U;. This shrinking is possible
since M is normal. Then Bi = { Ui’ Mwﬁ;} is a binary open covering
~and {B} = {U'} N BN~ -+ NB, is a finite open covering. Let {B}

= {Vy, Vo = ooy Vh}. and suppose V, N Vj £ p. The set 'V, 1s con-

17 "2
tained in & set U', of (U'}, snd V, 1is in one of, the sets of B,
tee., VyeU, or V, c:M;ﬁwio The second inclusion is ruled out since
V, meets,the subset V

j 4 of Ui° Therefore the first holds. Thus Vi

. and all sets of {B} meeting it are in U, -

Theorem 4.3 follows from Lemmas 4.7, 4.8, 4.9 and 4.10. Let {UJ]

be any covering of M. By Lemma 4,10, there exists a {U;} such that
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fgfl}'> {Uj}’ and by Lemmas 4.7, 4.8 and b9 there-exists-a {U;} such
that {Q;} > {U*i] > {U$} with all the properties reguired by Theo-
rem h.3, -

Corollary 4.1. If M is compact and T primitive, then every co-
vering is refipgd‘by 8 gpecia; primitive COVeringo

Proof° The proef of this corollary is contalned in the proof of
Theorem 4.3, |

Thg apcve theorems are»of fundamental importance in the work fhat
fo}lgwsylbecause from ﬁhis ppint on we only need to consider thg special
coverings, if dim M = m. These coverings form a cofinal family{ Zk of
M; the‘homology properties of M can be studied solely in terms of

this family as' long as the period is a prime.
o-Chains and Special Homologies in a Complex

Assume throﬁghout this section that (M, T) 1is simplicial and
primitive. | |

Let G be an -abelain coefficient-group fof chains and homologies
in M. The transfbrmation T induces a chain-mapping which is denoted
by T. We may regard T as an additive operator acting on chains over
& and permutable with the boundary operator F.

The operators

c=l+ TP+ o s 4 Tpal, £ &£1-7
bear useful reciprocal relations to each other and play an important
part in the work that follows We shall denote these operators by p
and bﬁ and agree that p may stand for o, F for { or vice versa,

but the meanings of P and P shall remain fixed in any given discus-
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sion,

A chain € is of type p if there-exists a chain Cl such that

C = pclc The null chein is cf'bsth type p and type .

Lemma 4.11. If (M, T) 4is simplicial and primitive, an h~chain C

in M-M; is of type p if and only if oC = C.

Proof. Assume C is of type p say C = pC’l° Then

U

- 1 p=1
p\Gl + Cl + o + Cl )

= (Cl + Ci 4 0 o o+ c?”l) - (ci + ci F o0 o 4 Ci)
= Qe
Also,
pC =~pﬁbl

it

I
p(Cl - “1)

2)

(c 1

1

ol 1 ) p-1 _ .p
cl) + (cl o) + o + (c‘ cl)

1
=o

. Now guppose that p€ = 0. We may write

5oy sp-1 44

vhere g 1is an element of the coefficient group for chains and homoloe-
gies, E, 1is an h-simplex, and Ei

J J
(M, T) is primitive, therefore &, El, s e e, Epml are distinct. The

is Ti(EJ). This is true since

condition pC = O then becomes;

i 1
1 = S P E. = 0.
(1) 1 g, 7 Ej

Consider the case where p = . Then we have



ko

(E i+1

Ey) =0

i.iﬂ

where t_-hé .Jwpper indices are ’t'o"‘be-“?educed mod P. Hence,

i iel, .1
> . - -
Zy (83 v,g‘,j" )Ej_‘ ,O.

i-1

1 o 1 Bl |
and therefore = » Then o= = o o0 o o= = s0 C=0C, .
re g = g gy = 8 gy~ = &, 1
Where
h) ‘
c = 2 ( !
J=1 J J’ i

v

this concludes the proof for the case p = [
Suppose P =0. Then (1) becomes

i i i

- g o &) Pl
zij gjcrr'Ej-Z o B zjl(z 120 j)crE

13 837 %

Hence

(2) =P-L g:;' = 0.

1=0
Lét c, = ?ﬁ‘) z,{ao ZLO ggf’ Elg
Then C, - C »z?<1£> =P 211:0 g (£ - £;")
L2 [ ok sjs 2o el i)
oS [ 2+ 3pt ok f - S e - oEh o ]

a(h ' -1 1
j(1> [Zﬁ =0 83 ES - o ga-}ﬂ

Z§<§_j’> ZEE% gg Et; (On account of (2))

Hence € =pC, @and the proof is complete.

1
If C is a cycle of type (o, MI) (1.ec € =pC' mod MI) and  C

is the bBoundsry of a chain of the seme type, we write C = O mod M.

Cps ©

“y.i 8re cycles of type p and ;5 respectively and there exists a
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chain Xh such that
Cp = pXyo Gy = By

we write Ch Ch 1°

We assume during the remainder of this chapter that the coefficient

group G is the group p of integers reduced mod p. Denote this group

by Fo.
7 %

Lemms k.12. Let C_, C, , be cycles of type p, p such that
chgch‘wl“ If chf_l C mod MI, then Ch 1 0 mod.- N&

Proof. Assume that C 0 mod M. "Then there exist, by defini-

h =2 T°
tion of C, :C chains X

0 Che1 hel, Xh, XI’ with Xh+l of type p, such
that '
(1) Cp=PX, Cp g =Fh, F, =C +X, X M.
We may write
(2) FRq =%, +%+2; (ZI cM, Zc M-MI)
;s _ : ’, 1
becguse C, = pX, e&nd pX Xh + %+ ZI°
Then
) N PRy = Oy + P2+ 2y = Gy + 0%,
since pZI = 0,
If p=o and X, =c¥ ., then oFX , = ofe¥, , = 0. From (1)
o*FXh+l = (rCh, therefore ach = O, | This implies Ch = 0 in M“MIo Iir
p={ and Xh 1 ﬁh+l’ then G'FCYh+1 = 0 and Ch =0 in M»MI.,

Therefore from (2), pFX, ,, = pX, + pZ vhich implies that pZ =0 or

h+l
7 1is of type p by Lemma %4.11. Hence, if we operate on both sides of

(2) with F we find that Cp_q = O mod M.
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Lemms-%.1%, Let E Veavertex of M. If ﬁI =-¢;»fthe»c§cle CE
= B - P(E) cannot be 0,

‘Proof. Suppose there exists & chain X such that ¥{X = (E.
Let ‘
(1) Z=FK=-E | I
Then ; Z = (FX - {E = 0 and therefore, since MI,= ¢, Z is of type o.
Hepce ﬁhere exists & w such that Z =ow. Consequently the sum of the
coefficients of Z 'is zero mod p and Z is & cycle. Since FX 1is'a

cycle it follows from (1) that =-E is a cycle, which is impossible.

K2

The Existence of Fixed Points

Definition 4.11% A set M is acyclic mod p if for every compact
set A, ACM, there exists a compact sét A' ® A such that relative
to the coefficient group » cyélés'in‘ A are ~ 0 in A'. (Example:

Euclidean n-space, G arbitrary.)

Definition &.12. 'The set M is finite dimensional if there exists

‘an m such that every finite covering by open sets of M has a refine-
‘ment whose nerve is ¢f dimension £ m. (This condition allows the use

of :zk from Theorem 4%.3.).

Theorem 4.4, Let p be a prime and M a finite dimensional com;
péct space which is acyclic mod p. Then every homeomorphic transforma-
tion T of period p of M into itself admits at least one fixed
- point.

Proof. ‘Let B, be & non-empty compact set of M. Then 0B, is

compact because Tf is & homeomorphism. Also, UBO :>BO, and -wBO is
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invarignt:by”ﬁemma~4aia Liet AD ;*JBOV-an&“@hwsse'a"compact“set Bl

containing A, such that cycles in AO are ™0 in Ble Let Al =

0

oh: If this process is continued we have

lo
jﬁf-AOCvAl.C © e o CA) ‘(Il-"—“.-Pm+pv).
~ vhere each Ai is" an invariant compact subset of M such that cycles
in A, are ~O in A, .. Let N =2ZA and consider it as a subspace
i 1+1 m

of Ms T induces & transformation of period p of N into itself
and it is sufficlent to show that this transformation, denoted by T,
admits a fixed point. In the topology of N, where N i1s regarded

as a subspace of M, it is still true that cycles in Ai are ~ 0 in

Ai+l and since dim N £ m, the homology groups of (N, T) can be based

on the family 2. .- T induces a simplici@lwtransformation in the com-

k@
plexes of N. Assume that L = ¢° Then by Lemma 6.6 Mi = ¢‘ where

MI is the invariant simplexes.

k

positive integers, there exists a X

Consider a definite = covering {Uj]° If h and k are glven

K refinement [Ui} of {Uj} such

that by projecting an h-dimensional U,-cycle in Ak into ‘{Uj] we ob=

i
tain & ancycle which is the Uj@eoordinate of a c¢ycle in Ak and will
therefore be =~ 0 in . Ak+l [3]. Consequently, if {Un} is an arbi-
trarily chosenuﬁik covering there exist IZk eoverings {Uﬁ=l} N

{UG} suéh that {UO} > {Ui} S s s e >){Uﬁ3. If = is a projecﬁion

i
[Ui} - {Ui+l} and ?i is an i-dimensional Uiacycle in A, then

) j{iCiM 0 in Ai+l°

Let po, pl, ¢« ¢ o stand alternately for [ and o starting with

Choose =, O be a T-projection by Theorem k4.l1.

Py =7CO° ‘Lep XO be a anvertex in Aoa Since AO is invgriant, TX

is also in Abo Hence pOXO‘= XO - T(XO) is a O-dimensional cycle in

0
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A-Of." snd therefore :rropoXo~O in Al’ say %, pOO~H X c:Al

Then- ple ig-a c?ei:e-’oecaqsve

FPyXy = PPy = Py RTeg = O
Since P X Al we have stlple~ 0 in A _say Anlelxl = FX,.
continuing in this manner we obtain chains Xo? ° + +, X such that
() Py = 1Py (=0, « =X 4)

Let L lhne.,theq.dentity p‘rojectionlof {Un} in-to itself and let Ci =

pﬂ(it‘.'f °,xti)Xi (1 =0, « «+, n), Then C,C’ s o o, C

n-1> n-1’ 0

ar'e; ‘Un-w_c-ycles of type Pps Ppyr s P respectively, and as a-:con~

n-1
CE which is a Un-'ve'rtex. Since dim U <n, we have Cn =0~ 0 and

scquence of (1) above .Cn-zC Lte e o:Co. The cycle CO is of the form

therefore by Lemms 4.12 (with M. = ) we have Chg® 0y = = =, Cy =

CE~ 0. By Lemma h.,l3, this is impossible, therefore the assumption

that L = § is false.

Theorem 4.6. The set L, which Theorem L.k asserts to be non-

empty, is acyeclic mod Do

[

Proof. Let B be a compact set containing peoints of L. It will

be sufficient to prove that there exists a compact set B' DB such

ol

e e ey An in the proof of Theorem k.k. AO can be any non-empty invar-

iant compact set, therefore suppose AO =gB. Let BY be a bounded

that cycles in BN L are ~ O in B' N L. Consider the set A

open set containing K « It will be shown that B' can be Kn’

Let {U} be an element of = N = A- - Every cycle in Iy N B

k’
is ~ 0 in LN Since dim Lst' m, we need to consider only cycles of

dimension < m. From the special coverings choose ({U.}, « - <, {U}
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defined ag inthe proof of Theorem .4, and-let ey Py ‘also be defined
as before.  Now let H_th1 be & cycle in LN s with h -1 £ m. Since

BN LN Lot A‘hml’f we have Za 0O  in Ah; we may write

Zpa U} = 7 (g = (0] e 4).
Since the simplexes of Z{Uh} are in LN they are in UhI and we have
Py, (U} =0 Therefore py¥, 18 a cycle in A . Hence m gX ~ O in
Ah=>1° This is the first step in a éo’nstruction process which leads to
the relation
€ :C _j2o o *:Cy (c:h = ¢ °itipixi," i="h, s < o, n)

in {U_ }. Since C, 1s of the form p Z, it is in fu - {U_nI} be-
cause pZ'' =0 if Z'' < {U _}. But all simplexes of {Un} - {UnI}

are of dimension = m, therefore C_= 0= O mod {UnI}., Hence by Lem~

me 4,12, € =~ 0 mod {Uhl}o

h=
Let 2' = o o »mZ. From the definition of Cech Cycles 2'{U } ~
] £ o ! . o o o . r
Z{Un} in BN LNo Let  p= pp; X' = L % X Then

pX* ~ O mod {UnI}; FX' = 7',

The first of these relations implies the existence of {Un}wcha.ins XI,'

Y such that

(1) " FpY = X! - X o

Let W; be that subchain of FY - X' - X; which is in {u,;} end W
the remeinder. Then |

= ¥?! / " R
(2) FY =X'+ X +Wawy (W {UHI}, we {u) - (U]

Operate on both sides of (2) by p and take into account the relation
(1) end the fact that pX, = PW; = O« Then pW =0 in (U]} - {u,11-

Hence by Lemma %.11 there exists a D such that w = pD. insert this
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inte (2) and operate-on both-sides of (2) by F to obtain

+ FWI) + Fpb.

0= (2" + FxI
The chain in parenthesis is in {Uni}ﬁ whereas F;b is in
N {Umz}e Consequently, both chains are null and Z° is therefore
the boundary of a chain in {Unr}o' By the properties of speclal cover-
Frr o : IR ) -
ye Hence Z{U }~ 2 {Un}fv O in ILy.

NQW return to space M. Let K be a cycle in B {i L. - Then since

ings, ghains‘in {v;} arein L

B Ciﬂn5 K may be regerded as being identical to & cycle which belongs
to the space N This cycle is in B N LN and therefore homologous to
zero in Ly, Hence K O in NN L. Therefore, since N = Kg': B',

Ke O in B' 1 L, which completes the proof.

Theorem 4.7, If p is a prime and M a Ffinite dimensional local;

ly compact Esusdorff space which is acyclic mod p, then every homeo-
morphic t}ansformation T of period % of M into itself admits at '
least one fixed point.
. Proof. Assume the theorem to be true for P<a. Let T be a
transformation of period p(L operating in M and let L' be the to-
tality of points whicﬁ are invariant under 74 where ¢ = paml° Since
™ i85 or periocd p, L' is non-=empty by Theorem h.h, and acyclic mod p
by Theorem 4.5. Mpreover,z L' 1is transformed into itself by T. The
trangformation induced in L' by T is the identity or is periodic'of'
period pF where B <a. Henpe T aduits at least one fixed point in
L',

We have now proved that if T is a homeomorphic transformation

from n-space into itself and is of pericd g where q 1s a prime,
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then the set L of"fixed“points-is~not—nﬁlla Ia the next chapter we

exemine the set L to determine its topolegical structure.



~CHAPTER V
CLASSIFICATION OF THE SET OF FIXED POINIS

It was proved in Chapter II that_if an‘nfsphere, n €2, is mapped
into.itself by a»periédic thggmo;phiq‘transfqrmgtion,‘then the seﬁ L‘
of fixgd”pointswis an r=sphe:e, r £ n. The purpose of this chapter is
?Q ghgw thgt thg_same is true for an ;;sphere in general if the period
of the”t;gnsfprmation4is a power of & prime. |

Tpmqbtaiprthis'resulp p;hqmology groups are formed from the p=cycles -
%P@ﬂR;EOUQQQriéS_Of Ghapter IV,_ There is a FQhomology group of each di;
mension assoclated with.each.special covering of the.space, It is shown
that-the p;homology g;oups can be decomposed into the cross product of
twd subgroups of which one is associatéd with the invariant simplexes
andwtpglqphermis associated with.the nonfinvariant simplexes, Next»the‘
p%ﬁq@olqu g?ogps’of the space are defined using the concgpt?of inverse
syétems? Then, based on the properties of the pnhomologies of theico;
ve;ingg; it is shown that the r;homolog# groups of the spacebgag pe de;
composed- into the cross product of two subgroups. One'of these sub-
grdups is the same'ﬁs the ordinary homology groups of the fixed pbiﬂt
set L, and the structure of this subgroup is known to be the same as
that of the homology groups of an r-sphere.

Examples are given to show that I 1s not necessarily an r-sphere

" if the period is not a power of s prime. But the form of L is not

50
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-,kn@wm“fqrmanfgrbitra;ymygricd'fg;  Befcre“p:qvimg“thejtheorem~concerning

L~~wéwshallvfirstwdevelquseveralmpreliminary-resultso

p=Chains in a Complex

We assume ﬁprogghout.this_sggtiop that (M, T) is simplicial andv
primitive, G @s an gbelian cogff;cieptngrogp, 7 ;s a Qhainmmapping,
and that"_Igg»q,LC, end p are defined as in Chapter'IV,  From Lem~
ma, k.11 in Chapter IV »dﬁ-:_;p = 0 (the gnnihilator)e Note that in

the following definition the p-chain is the p-chain of Chapter IV,

Definition 5.1. A chain which is annulled by P 1is called a p-

chain, A chain which is annulled mod M. by p 1is called & PI-chain.

Lem@a 5%1, A necessary and sufficient condition for a chain C to
be a pIéqhgin is that thgre*exist a chain X such that C = pX mod_MI°

Proof. The sufficiency is implied by the relation pP = 0.

Assume that PC = O mod M;, then by Lemma 4.11 there exists a chain

X such that X = C mod M.

We shall use the subscript I with the symbol of a chain to show

that the chain is in M.

Lemma 5.2, If G =‘EP’ all chains in MI are P~chains.

" = y -~ = g0, = "4= -
Proof. We have CCI CI CI 0 and GI pcI = 0, therefore

v

the Lemma is proved.

Lemma 5.3, If G = F_ and C 1is a chain, then pGC < MM

Proof. We can write C =X + XI where X c:M-=MI° Then by Lem-

ma 5.2, pC = pX CM=MI,
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ﬁemma“5z¥o “Tf 'G“a“ﬁ;, “a-necessary and-sufficient condition-for

~C~~teLhE"§ pwchain“iSMtﬁat’>C bé“exp;essiblefin-the;form X +’XI.

-~ then pC = pgk +pX. = 0 which

- Proof. Assume that € = Bk + X 1

I;
implies~ﬁhewsnfficiency;“

’Assuﬁe that ¢ is & pwchaing Write‘ C = B + B where B C:M~MIo

I)

' 8ince C and B, - are p-chains, sc is B. In fact, B 1is a pil~chain,

T.

hence by Lemms 5.1 € = ?k+ chﬂ

Lemms 5.5. If G = Fb, 8 necessary and sufficient cogdition for
C to be a p-chain in M-M; 1is that C be of the form X,

Proof. Lemmas 5.3 and 5.k.
Special Homologies in a Complex

Assume in this section that (M, T) is simplicial, primitive, and

regular,

Definition 5.2. ‘A p-cycle is & p=-chain which is a cycle. If a p-

L]

cycle X is the boundary of a p-chain, we write Xz O mod MI

These homologies, which we shall refer to as p and pI-homologies,
have the séme algebraic properties as ordinary homelogies. A chain
which is identically zero may be regarded as a p-cycle, and as such,

O~ 0., Alsc a chain which is identically zero in ‘MaMI may be regarded

as a pI-cycle, and as such, XIfr 0 mod MIa

Lemma 5.6. The boundaries of chains in MI are in MI°

Proof. Reguiarity implies that MI is closed.

Lemma 5.7. If G = Ep; and 1f pC + C_ 1is a cycle, hence a p=

I
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cyele by"hemmg; '591#3 then _FC -and €. are p-cycies. If oC + C o,

I I~

then pC= O and ¢ 0.

" Proof'., We have, by definition of a cycle and by the fact that Fp
""’»,PF)

@

(1) 0 = F(pC + ¢y = FpC + FC;

But FpC = FFC < MM, by Lemma 5.3 and FC. c M, by Lemma 5.6. Hence,

by (1) FpC = C and FC, = O, Therefore pC and C

"

1 Bare pméyclesu

Now suppose that SG + C; 2 G. This implies that oC + cp =

CI - FAI The left side of the last equa-

i

FlpA +4;) or o(FA - ©)

tion is ih MmM1 and the right side is in M

and the fact that °p—B

1 because of Lemms 5.6

T = 0 for every BI c MI Hence both sides van-

igsh. Therefore pl=~ 0 and Cp= 0.

Lemma 5.8, Let G=Fp, X be a cycle in MI’ and X* bea p-

eycle in M““MIo Then, X2~ 0 if and only if X~ O in MI’ and X'
~ C if and only if X* = 0 'in M-»MIo

Proof. Let X = C; and X' = pC in Lemma 5.7. Now X' + X~ 0

because X~ 0 and X' = 0. Also, by the proof of Lemms 5.7, X'z O

in M-»MI gand X2~ 0 in MI" But every cycle in MI is a p~cycle,

hence X~ O in MI" The if part follows by definition of X2~ C and -

Xg':;Oo

Lemma 5,9; Let G = Fp and let Xh’ Ch + Ch and Xh_:L =

pChul + C?ml be p &nd Er-cycles such that Xhm:L = ZF‘Cho It Xh:‘:

then Xh -1 ~ O,

Proof. Assﬁme Xh:_'v 0. Then by Lemmas 5.7 and 5.8, E-Ch::.‘ 0 in

MwMIo Hence, there exists & B such that F’T)'BE —F;Ch by Lemma 5.5.
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Let A= Ch - FB: Then FA w'ﬁch— FFB =0, 80 that A 1is & Encha,ina

Also, FA = P = 3% Hence x271 o~ 0.

- Lemms 5.10. Let G = FP, and let C be & ecycle. If Ca~ O, then

pC = FX where pX = Ou
?roofo The relation €~ G implies there exists an A such that
- FA = C, Therefore FpA =pC, and pA is a f;mchain since p?) = O,

p-Homology Groups in a Complex

It is assumed in this section that (M, T) is simplicial, primi-
tive, ‘regular and tha,t G = Fpa _De‘note the additive groups of p and

pI-homology clagses of (M, T) over G by

HI:)(M,BT;G) HEI(M’T;G) °

Lemmsa 5011; Let Xz be a p-homology class of dimemsion h. If
one p-cycle x in Xlg 4B O, then every p-eycle in Xg is ~ O,

Proof. Let ¥ be any p-cycle in X?, then y - x =bn, bn a

bound. Theréfore y = bn + g 1is a bound,; which implies y ~ C.

Lemma»‘jolzo The totality of classes Xh wvhose p=cycles are ~ O

p
is a subgroup of H,I;o

Proof. Let Xlg and Y}; be two classes whose p-cycles are ~ O,

Then x € Xh and yGYh implies that x -—:bh and y=b’“h where bh

and b° are bounds. Therefore x - y=b, = b’ which is a bound.

h h h’
Hence x -y 1is an element of & class Zh whose p -cycles are = O.
Denote the subgroup in Lemma 5.12 by B%(M,T;G) . The corresponding

subgroup of HI;I(M,T;G) is denoted by BF]?I(M,'.E;G)°
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Let xh -bEHawpﬁcycieTthatwiS“am”element'of ”X?a “Then by Lemma 5.4

we know that x° = o0 + C.e

~hemms -5.1%. The totality of classes Xﬁ with the property. that

xh = pC + C_, xh € Xh
I o

Proof. Let X?; X? be two such classes. We have xh - yh =

, C & cycle, is a subgroup cof Hia

(Pt + ) = (PC" +¢'y) = p(C = C") + (Cp~C'p). But C=-C' isa
cycle and GI = C"I is in MI’ therefore xh - yh is contained in
some Zb of the same type.

p
Denote this subgroup by KS(M,T;G)° The corresponding subgroup of

=Hh denoted by Kf consists of the pl-homology classes which con-

pI’? _ pT?
tain pl-cycles ¢f the form ;b vhere C 1is a cycle mod M

]

I

Let xh ke an ordinary cycle which is an element of an ordinary

homology class x%. Since pp = 0, o> is a o-cycle.

Lemme. 5.14%, The totality of classes Xh with the property that

for at least one xh in Xh, thzr O, 1s a subgroup of Hha

Proof. Let" Xh, Yh ‘be two such classes, then pxh - pyh =

- - h h
o 8 Y e s 2 == ° 1= = =
FCp,, - FC'y,; vhere oC . =pC% . =0, Hence o(x y)
h
- OF & " °
F(Ch+l ¢ h+l) is an element of some Z  of the same type
Denote this subgroup by H%p)(M,T;G) and the corresponding sub-
P h
group of H};(M,T;G) by H(vpl)(myﬂr;@)o

Homomorphic mappings g and ‘h of the groups H?(M,T;Fp) are
defined as follows:

By Lemms 5.4 a p-cycle xh in X% has & represenfation xh =

Bbh + Cga Let xh=1 = ECho Then xhal is a p-cycle., Because Bbh is
& cycle by Lemma 5.7 and Ekhul = Fﬁbh = O
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Lemma 5.15. The class XL containing ghfl is independent of

t . oo
the choice of xh in ¥° and Gh in the representation pch + C? for
h
X o

h

h =>B’Cﬁ + F

Proof. BSBuppose xh'z x”h,

Then xh - x“hﬁ 0, xh - x“h = p(C

BoL gl pch

h
I

- c”h) + (C? - G”h) and
I I

- C“h), hence by Lemma 5.9 we have xhal - x'

x! ho

end x'2°% . FC!
h

7(c h-1

thl' and x’hul are contained in the same class.

Thus the correspondence g(xh) = thl, gabxg(w ngly
morphic marping of 'H% into a subgroup Hgfl, Since xhalﬁw 0, the

phi=l
5 0

~ G, Thus

is a homo=~

image of H? under ‘g -is a subgroup of

Lemma 5.16. The image of B under g is L,

p T
=1

“Proof. Let X, be any element of Bgfl and % e a p-cycle
xB-1

5 o We have L0 by definition of B.g“’l, which implies

there existé a Ch such that Fch = xh"aln But Fﬁbh = Ekhml = 0.

Therefore, xh = Ebh is 8 cycle. In fact, 2 is & p~cycle, hence we

1

in

have gX% = X where X% is the p-homology class containing xho

e
I
Lemma 5.17. The kernel of g is Kio
h h

Proof. If gXp = 0, then x" = Bb + CI vhere FCsz 0. There-

fore, FC = F(pA + AI) since FPC is a p-cycle. Then B =C = pA = AI/
is a cycle. Thus PB = PC  so that ‘xh = Eﬁ + C_. Hence X? C:Kls°

I
~ Kh ° . o h“’l
Conversely, every element of 0 is carried into the zero of Bﬁ by

—

g. FPor every element :xg of K? we have xh = pC + C
| h-1
X o

1o where C is
a cycle, therefore FC = O =
Thé elements of a p=homology class X? are contained in a uniquely

determined ordinery homology class Xh and the correspondence



57

N
n
a

hy X* = Xh is a homomorphism of Hls into 'Hh. The kernel of h is B};:

2

by Lemms 5.12.

Lemmg, 5.18. The image of HI; under h is H?p)ok

V_P:roo‘if, Let Xh q/.HE., A p=cycle xh' which is a member of lel sat~-

. p
isfiles the relation Fxh = 0, hence trivially Fxh:: 0. ‘Therefore Xg
< Hl(lo), Conversely, let XI(l 0) be an element. of (p)° To demonstrate

that 'X?P) has a pre-image under h, it is sufficient to show that
Xz?p) containg & p«-cyeleo In any case, Xk(l 0) contains a cycle xh
such that pth: 0. 'This implies a relation F(pC + OI) = pxh., The re-

lations pxh e M-M. (Lemma 5.2), FpC < M-M, (Lemma 5.3), and FC; €

I
Mo (Lemma 5.6) imply FeC = pxh. Let x'® = x® - FC. Then pX‘h = 0

h _h .h

and x' e~ X, thus x is the desired p-cycle in Xr(lp ),;,

Theorem 5.l. For a simplicial regular primitive (M, T),

(a) E,BE,) - KOLTE) = B N0GTE,), and

i

K h . '

b) HEM,T;F.) - BA(M,T; B\ (M,T5F ).

( ) P(M,T’Fp) Bp.( 3 ’FP) (P)( =3 _P)

These formulas hold for arbitrary G if p 1s replaced by pI.

Proof. The mapping g is a homomorphism from HE onto BEQJ‘ by
P

Lemma 5.16, and K:)l is the kernel of g by Lemma 5.17. Therefore, by
the fundamental theorem of homomorphism of groups,' (a) is true. Now h

is a homomorphism from HI; onto Hl(lp) by Lemma 5.18, and Bh is the

P
kernel of h. Therefore, (b) is true.
The proof of these formulas for pIl-homology groups depends on the

properties of the corresponding homomorphisms &r» hI, of ngl'
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A Decompositicon

It iz assumed in this section that (M, T) is simplicial,

primi‘bi’ve, regular and that G = Fpa

h h

~ Lemma 8.19. The totality of classes X};, Xé & H, with the pro=-

perty that xh c M-M_. for at least one element xh in Xh, ‘is & sub-

I
group Dh of Hh
P P _

Proof., Let Xl;, YE be two such classes, then there exist xh €
Xh, yh € Yh such that xh, yh < M“MIa But the difference of two ele~
menf\s. in M=MI is also in MmMI, therefore D? is & subgroup.

The totality of classes Xl; with the property that = M, for
at least one x* in Xlg is also a subgroup, ng, - of HIS

Lemma 5.20. The subgroup Hgo ca.h be regarded as being identical
s
h,
£0 H,o(MI’ Fp)a

Proof. See Lemma 5.8,

Lemma 5.21. The homology group HIS can be decomposed into the

E subgroups Dh and ng.,

Proof. Let XECZHI; and x an element of XI;., ‘A p=cycle x is

a p-chain and by Lemma 5.4 x =pB + B Now pB 1is a p-cycle by Lem-

IO

ma 5.7 and 'FB c MaMIh., Also, B. 1s a p=cycle and B. < M_. There-

I I I
fore, every X:l < H’s can be expressed as Yls + Z:?, where Yg - D};
h 1l
. 7 pacs N
and 0 c EJOp
Lemma 5.22. The images of Dp and 0 under g are equal to
BE”'l.

5 .
Proof. Let XE Loeg Hﬁa Then by Lemma 5.,2;1 gX_IS = SYI; + ng;, where



59
Y?ﬂff., Dl';, andzlf;czﬂgp Therefore; X = gﬁf’f“@ by definition of g.
Nes :g‘ﬂl;w Also, gﬂ? Bk; 1 by Lemma 5.16.

$~’\">~Convers*eﬂ;y;'if""ixl;.c:-bg, “then XISCH?, : *'Eehce ng

Lemma- -55259' -IE £ ie th*e*pf@,jectibn D% x ng =0 Hh

op ondif k=
fg (g folloved by f), then K} = kDS c Hi R
Proof . :By‘Lemma--fjaee,? th m-:g’Dh.' Hence ka:) =’k131;}__' Now gDI; =
: D%ml and f 1is the projection D Hh -1 Hg:;l, hence le; is

»contained in Hh 1
- For the rema,inder of this pa,per no distinction is made between a

_c:ycle and its homology_ cla,ss (p=~ or ordinar_y)r. We willvregaxf_d H as

P o

being compogled‘ of Pécycles of the form ©C + ,CI where C is s cyc;j:e,

Dp as being composed of P=cycles of the form £C, and I—Ilgp) a8 being

composead of cyc:le!s X such that PX 2~ 0O,

”?b»_eing cOmpos‘ed,of‘cycles » H, as being composed of P_wcyeles s K as

¢
{ Projections of p ~Homology Classes

Let {U} "be a T-system with nerve X , and Tx the transforma-

tion induced in X by T. Let p_=1~-T or 1+ T + ¢ » 9+Tp~l
. x X b4 X

according as p={ or ¢, We may think of p, 88 an operator induced
in X by p. Let {V}] bea second T-system with nerve Y. Suppose
that (U} > {V] and = 1is a T-projection (U} = {V}. The chain-
mapping induced by =z will also be denoted by «x. The relation =T =
Tx implies that

| (591) ‘v J'EP = pxﬁ

An important cohée'c;uencé of (5.1) is tha,t x carries wacha,ins and

homologies into py'wchains and homologies.
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In general, Px, Py will be denocted by P, - since the meaning of

¢ ig clear in the context.

Lemma 5.24k. Let {U}] and {V} be T-systems with nerves—X - and
Y respectively and such that -{V} is primitive and {U} > {V}. Let
%, and =, be T-projections {U} = {V}. If x is a p-cycle in X,
x

"Prpofo Suppose that tbe passage from 2o to Ry

by re-defining %, Over the T=imég¢s of a single U=vertex. In any case

Xo

can be effected

the passage from~ W to m,

steps. Suppose then that =«

can be obtained by g_finite number of such

differs from =, only with respect to

1 2

the Twimages of U. Assume first that U is contained in a non=~
invariant V-vertex. Then, since {V} is primitive, the images Uq_=

™3y are mutually exclusive. Let = = V? (1 =1, 2)¢ Definevan

i
additive operator D oVer ¥=chains as fOllows. A simplex E either

has just one vertex among the images of U (regarded now as vertices of
X), or has none. If none, LE =0, If one, suppoée "E = (Uhs) where
S 1is a simplex with nc versex Ui, then define DE = (V? Vg S') where

§' = mS = n,5. Let the definition of D be extended additively to all

1

p=-chains. Now FD = ﬁ2 = ﬁl = DF and DI'=TD for individusl simplex-

es. In the case where E has no vertex among the images of U, then
F(DE) = 0, and 7 E - 1E - D(FE) = 0 since m E+ mE. Also, IIE =
O =TDE. If E has one vertex among the images of U,

. then

o) -
N

F(pEp) = F(V, V, 8')

-[0R s, 0psn] (s «[(F] s, O s1)] (s
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P= ho t ol 1
i [ A )’ 1 (V; Vh
X e § 3§ %
Vg_"es vvi‘ﬂls *Ziﬁ V? 8 )’ S ] V? 5
where 8', - is a face of S' with the i + 2 vertex removed.

i
Also;

D(FEp)

#

D{[(U S), S] S +z [(U S), S ] si}

o+sz l[(U s), s ] 5, -

[}

i}

zP l[(u s), 5,108,
vpml ‘ ‘ h .
“1:1“%5)’ 8,1 (V) Vg 8'y)

Therefore; FD = Ty < Wy o DF. The relation IT = TD follows because

Ty and ﬁe are T=projéctionsa

Since D was extended additively to all chains these formulas hold
for all chains. From the first of these formulas it follows that
mx - %X = FIx and from the second that PIx = DPx = 0 since x 1s a
P§éyclea Hence Ix is a P=qycle and ﬁgx:: X Xe

Now assume thaf U is not a subset of a non-invariant V-simplex.
In this case n,U and wU are invariant, thus nqu = Vs, (i =1,2)
‘ Suppose the X-simplex E has just one yertex among the images of U,
say E = (UhS)o Then in this case take DE = (ViVQS) but in all other

cases take IE = O. Then FD = = - DFF and DT = ¥D again hold,

‘ 2~ ™
but in the verification.it is\necessary to examine the case in which
the vertices of E include more than one image of U, say for example
E = (UhUkS). ‘Here DE = 0 by definition, hence DFE = 0. Also, 2, B
equals (V?VES) which is degenerate, hence zero, and DFE vanishes

by cancellation and definition.
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Inverse Systems

"The“theory“ofWinverse“systemsmwhich“ismintroﬁnced“herewiS‘an
imppytant'concept"in“this chapte:am‘For"the”puTPOSE'cf thisthesis it
is suffiéient‘to restrict~theAtreatment'of"inverSEMsystémS'to»ﬂausdprff
spaces and ﬁbpological groups . -(A.topological'group“wilifbe\defined'

later.) The following definitions and theorems can be Ffound in [lh]“

Dgfinition 5959 A set 5 1is said to be partially ordered or meres
1y ordered, if certain pairs of elements (a, ) or S satisfy an or-
dering relation which is denoted by & <b and is subject to the sole

condition of transitivity: a <b and bcc 1mplies a < c.

Definition 5.4. Let S be ordered by <. Then S is said to be
directéd‘by < (by >) whenever given any two elements a, b of 8§
there exists a third element ¢ such that c<a and c<b (¢c>a

end ¢ >b). Denote this relation by S = {s; <} [{s; >}].

Definition 5.5. Let {Mi} be a system of Hausdorff spaces indexed

by a directed set S = {i; >} and suppose that whensver 1 > 3 there
ic
3 .
The system Z= {Mi; ﬁj} of the Mi

is given a mapping, also known as a projection, = Mi‘w Mj such that

. 3.1 _ i
i>j>k implies %k ﬂj = M.

and the K§ is called an inverse marbing system.

Definition 5.6. Let M" be the product space, and in M® let M

be the set of all the points x = {xi} such that 1 > j implies ﬂg Xy

= xjo Then M 1is called the limit-gpace of the inverse mapping system

>« If 1< j, we have xi X, = x, and 'ﬁ; = 1,

d i J

As a8 subset of Mﬂ the limit-space M receives the relative to-
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>peldgy~andiis~avﬁausdorff space.

 Theorem 5:2: If-each- M, ie compact and not-empty then the limit-
spaee>is*likewisemnot“emptyv
'-~Thewremainder~of“thiS*sectionVis~concerne&-with systems of topolo-

‘gical groups which are indexed by & directed set.

Definitiqn_5,7.’ Let the group G = {g},‘ as a set of ¢1emenﬁ$, be

assigne@ a topplogy thus‘turning it into a toPologic;l’spacee Then G

thusvtopologized is called a topological group whenevérfit.is'a4T0~space
(e Hausdorff space is a Tomspace) and in addition g'u g' is a con=

tinuous function of G X G to G in the topology.

Definition 5.8. Let {Gi} be a system of topological groups and

let thevprojection ﬁi be & homomorphism. Then 8 = {Gi; ﬁ;} is said
_ 5 )

to be an inversegéystem\gg groups, or merely an inverse system.

Theorem 5.3. Let S = {G,; ﬂi} and T = {Hi; §§} be inverse sy;;
tems both indexed by A = {1; >} and with limit-groups 'G, 'H. Sup-
pose that for each 1 there is a homomorphism fi: Gi - Hi such that
gj g = f xi, o> g XThen there exists a homomo;phisp f:-'¢ - 'H
such that if g = {g } €'G, then fg = {figi}.

Theorem 5.4, Under the same assuﬁption-as in Theorem 5.5 let the

- _ .' — ‘ r vi, gl : '
-Gi be compact. If H j= fiGi, then X' = {H“i’ ga}AvlS an inverse
éystemvwithvlimitmgroup, say 'H'; and f is an open homomorphism of

‘G onto 'H!.
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- p-Homology Groups in-a Compact Space

It ig-assumed in this section that M “ichompéét~and'that T is
primitive; |
Let AZ = {Uj} be the totality of primitiveispecialwcoveringg of
M;vwandwlét-“Tj ~be the transformation -induced by~ T in-vxj,-vtge,nervg
of {Uj}a Fach’ (Xj,-Tj) is primitive and regular by Lemma h.6; Prim-

itivity implies that each T, 1is of peribd Pe

J
By Theorem 4.4 = 1is a directed set relative to ordering by re-
dinement and is cofinel with the totality of all finite open cover-
ings éf M., Hence Z is adequate for carrying the ordinary/homolqu
theory of M. It is now shown,tﬁat 2 carries a P-homology theor& for
(M, 7).
Let {U;} and [U;} be coverings in Z with ({U;} > {Uj]; Since
{Ujj is primitive, there exists a T-projection xgs {u,3 - {Uj] by
Theérem ho;. Since ﬁg is permutable with P and F, it carries pP-
cycleé into p-cycles and preserves p-homologies. The prdjection n?
induces a mepping
(5.2) Toi BO(K0T;50) = Ho(X,,T,50).
It ié a consequence Of Lemma 5.25 that iﬁ is indepéndent of thé par-
ticular choice of the T-projection ﬂ?. Thus the groups Hg(xi;Ti;G)
and associated mappings ﬁ§ form aﬁ inverse system invariantly related
to (M, T).

Let
- h oy,
p(M,,T;G) = lim {Hp(Xi,Ti,G_), :rj},

The elements of %(M,T;G) may be regarded as a P-homology of (M, T).
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b

A pweyc;e>'zh being a collectianwg{Z?} vhere Z?~~is a (p, Xi)ncycle

(p=cycle in Xi) and where {Ui}'> {UJ} implies
i h h
e3P w, L, 2
(59)» 31 3

h

We have Z =~ 0 if-snd only if Z. =~ O for each i. We call Z° a

e 5

Cech p-cycle.

As iﬁ-the simplicial case, we frequently make no distinction be=
tween pwéycles and their class.

The totality Z is a topologically definite entity uniquely de;_

termined by M and T. It follows that the grbups Hh

p(M,T;G)‘ are

topological invariants of M, T)«

Lemma 5.25. The homomorphism iﬁ carries B?(Xi,Ti5G) into a

subgroup of BE(_X j,Tj;G) .
o v h h h i,h__ ,h . h
Proofs If Zi € B, then Zi ~ 0. Also, “j Zi o Zj' Hence thw

0, since ﬂi ‘carries P-cycles into p-cycles and preserves P-homologies.

J

Also, ﬁi

J
and in the same way the homomorphism Hh(Xi,G) = HP(XJ,G) induced by

h N} __ .c
carries H(p)(xi,Tigﬁ) ‘into a subgroup of H(p)(xj’Tj’G)° Thus

carries K%(Xi,TisG) into a subgroup of K%(XJ,TJ;G),

T
HE(M,T;G) and Hh(M,G)‘ admit subgroups

i

h \ o :. . h e °
BO(M,T5G) = 1im {Bp(xi,mi,c), ﬁ},

]

'xc;‘(M,T;G) 1im {K%(X:,L,Ti;G)s 553'},

and 1{‘(M,T;G) |

i

1im {ﬁl(lp) (Xi"Ti;G)‘\'ﬁ}’

The rélation xi T="T xi implies that ﬁ§ carries invariant Xia

J J

simplexes into invariant X -simplexes, hence ﬁ; XiI c:lec

into (PI,Xj)=chains and PI-homolo-

Thus

}(PI,Xj)mchains are carried by ni
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gles are presgerveds ~This leads t6 inverse-systems of groups

H%I{X1$T15G> et cetera. The relation X . = X (see Lemma~h@6) im=-

il iL
plies that elements in “the resultlng limit-groups- are p-cycles modulo L
and their limit-groups dre therefore properly denoted by H;L(M;L;G) et
. : . |
cebera.

The following remarks are made for future references

Remark (5.1). A topology in the coefficient group G will lead to

a topology in Hh; Hh

N g b cetera. In what follows; the groups are
[t l

considered as discrete.

Remark {5.2). Like the groups H?s the groups - Bﬁy K%, H?p)

d the ¢orresponding groups Hh et ceters-are topological invariants

oL
of (M, Ty,

Remark (5.3). Suppose that dim M < m.» Then < can be replaced in
the preceding discussion by 23 = {U }} the totality of primitive spe-
cial coverings {U;} such that dim (Xi - in) € k, by Theorem k.3,

Let hiy_gi denote the meppings h, g defined as before for

(Xi’ Ti)o‘ The meppings h, and g, do exist since (xi’ Ti) is regu-

lar and primitive.

Lemma 5.26. If {U,} and {Ué} are contained in Z with {U,]

> {Ujj and if ﬁ§ is a T-projection; then E? g = gj R? and R? hi
] )

= h,, j[c_.;o
J d

Proof. By definition of g, %§ gi(Zh) = ﬁi 7Pl here ZPT -

Fﬁh and Zh = Ebh + Cgo Henceg since ¥ 1is permutable with =, we

have ﬁf}" z%‘“l o 3P = 7, T P Now 8, ¥ (z)

3 (DC + C. )

gjj
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gj(éaﬁi Ca f‘%§~ﬁg} = P ﬁ?-@h since P 15 permutsble with = .and by
definitionvof1 gy

The -gecond part holds similarly. If Zh = {Z?} is a P=cycle which
is g§~e1ement»of H%(M;T;Fb), 'thEn‘ Lemma 5.26 implies~£hat {th?} is
2 ?Léyclee Denote this B;cycle'by gzhe

Using' ii: H?

i)
(%

(xigmi;e)(@ H?(XJ,TJ;G) and the fact that the groups
H?(MQT;FP) are finite and compact, it follows from the géneral theory
of inverse systems that g actually covers B?fl' by Theorem 5.%. -
Moreover, the fact that the kernel of g, 1is K%(Xi,Ti;Fé) for evefy )
(0;} in 2 iwplies that the kemel of g is K%(M,T;Fp)b Similar re-
marks lead to a homomorphism h: H%(M9T3Eb) - H?b)(M,T;Ep) with kernel
B?(M5T53§)@ Therefore the formulas of Theorem 5.1 hold for every com-

pect M and primitive T,
Homologies in L

In this seection M is compact, T primitive and G = F .

P
Let “3 be a T-projection and {Ui}y [Uj} € Z. Also, recall that
i, . L . « 4
ﬂj XiI C:XJI» The elements of HSP(Xi”Ti’Eb) are cycles in XiI and

ng(xigmisgp) is identical to Hh(xil, Fs) by Lemma 5.20.

Lemma 5.27. The projection %i

f carries H%F;Xi,Ti;Fb) into a

h -
subgroup of Hop(ijTj,Fb)o

Proof. There exists an element 2 € Hﬁp such that 27 € XiI and

ﬁ% (z) € XJI by Lemma 4.5. Hence the lemme is proved.

Let

1 . h s Y. e
HEP(M,TJFE) = 1lim {Hop(xini,Fb), ﬁ?},



»The relation XiI z-XiL a,nd, Lemma 5»5'20-'»-i:mp~ly that Hh ie the
group of -ordinsry -hemology classes | of L.

That 1s |

(5.1) - Hy, (TR ) = E(LE ).

Lemme. 5.28. The image of 'D%(Xi ,'J.‘i;Fp) under ?fi is contained in

h ' !
Dp(xj,‘l“j;Fp)e )
Proof. There exists Zh € D% such that Zh € Xi - X 4T by défini-
tion of Dgs end by Lemma 5.5 Zh = PAs Also, rr? TA=p ::? A. There=_
i.h
fore, %, Z X, = &, .00
SRR T
Let '
h . _ h RN |
Dp(MgTVBFP) A lim {Dp(xi"Ti’Fp)’ ﬁj}o
h ' , . hy. | h
If 2= 1is a p-¢ycle that is an element of DP(M,T;FP.), then Z, may
be taken as & P=cycle in Xi - XiI° if XiJ is the totality of‘ Xi-=

simplexes whose kernel meets M - L, then Xi - XiI = Xi = XiL C,XiJo

Lemma 5.8 and the relation Z? c Xi - XiI imply thaﬁ Zh is a P=cycle
of M -~L or at least is p-homologous to such a cycle.
The decomposition of Lemms 5.21, which holds in each (Xi, Ti)’ im-

plies the decomposition

_ h h..h )
(5.5) Hy = Dy X Hy for (M,T;F)
and Lemma 5.22 implies

h h-1 _ .
(5.6) gD, = gy = RUT for (4BE).

Hence, if we denote by £ the projection mapping D? % ng - ngp and

by k the mapping fg, then we have by Lemma 5.23

h=1

. ‘ h -
‘ (507) kH%S = kDP [ HO?}T f@r (M'yTgFP) o
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Dencting by k, the mspping of H{l_(xinist) induced by~ k; k; 1s

precisely“thewmapping' k"'defigsa'for simplicial (M, T) with M =

and T « T,. Moreover, Lemma 5.26 implies

¢

(s, Lo ok

N i
where 1 >» J and ﬁi is a T-projection.
g

Lemms 5.29., If ﬁgml = O, then the kernel of k, =as applied to

Proof, If D~ =0, then gHX}CHh‘;"L since th Bhl

ﬁbml X thl = 0 X Hg:}o Hence fgﬁh = gH%y thus k has the same kernel

Lemma %5.30. If ﬁgal =0 and H?p) = th then k transforms ﬁ%

isomorphically.

Proof., The kernel of k acting on ﬁ% is ﬁ% N Kg by Lemma 5.29
L

An element in D N K? is of the form Z" = {”C 4} vhere C {G 3 1s

an ordinary cycleo Because x € ﬁg implies x € M=-MI .and‘by Lemma 5.5,

= pC., Also, y & K% implies y :'50 + CI where € 1is & cycle.

Thus Ch is an element of H% and is therefore an element of H?p> by
the hypothesiso This implies that ﬁbhfx 0 by definition of H?p),
hence . Zh ig the zero of ﬁ?o Thus the kernel of k is the zero.

Therefore %k is an isomorphism.

Lemma 5.31. I Hhul = 0, then k acting on H% is egqual to

Hh=l

0F
Proof. We need to show that a given cycle Z in Eha

0w
g b= . Zi }y where Zh -1 cX,.. Since P-

o Write Z 1 1T

pre~image in H
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-

homGlagi@s imply ordinary -homologies, th‘L ~may be regardﬁd“asjan

; . 51 _

element of Hh 15 hence Zh ~ ~ 0. Thus ea@hmelemeﬂt‘-z? t is con-

tained in Hh l(x VT'°F in Bh 1’ T,;F ) and so has a pre-image in
17717 T iy 1%p

H (Xo,ngﬁé) under- k,; by Lemma 5,22, Let B, denote the totality of
L, i o«

}-:'q<
Heu

is a T-projection, the relation

, e i, - i poh=ly i h=l
(5.8) impllus that w5 Ry c:Rj, since Ty k, (2, ) = ky nj(Z )
kg (”% L) Caﬂﬁn The sets R, being finite (hence compact) means that

these p re- images of Z

v
e 13

s

the limit of the inverse system {Ri; ﬁ%} is not empty. (See Theo-
rem 5.2.) Therefore the limit elements are pre-images of Zhal under

k.

Lemma 5.32. Assume that M is finite-~dimensicnal; ¥ a prime.
Assume further that H 2 (m 5F } =0 for h>n while H (M,Fp) is cy=

clic of erder p. Then

g

Proof. Suppose that the dim M £ m; then n € ms The definition of

n n n .
o) = B, = H B, = 0 Hﬁ =0, h>n, for (M,TsFP)u

the P-homology groups can he based on ZL, k=pn+p -1, in place of

Z by Remark 5.3. The i-coordinate of a cycle _Zh of Iﬁ is an h-
dimensional (%&Xi)=cycle in XiniIQ Therefore, if h >k and {Ui]
is in 2= then Zh = 0 . and Q? = 0, Let ¥ be an integer larger

k’ i
than k such that ¥ -k is even. Then Dg = 0. Now I—I%l = 0 since

y =1 >n, hence H%fl =87t . gﬂz = g0 = 0, and ngfl = 0. From
e 'i.z\ 14

this Hife - DZ“g = 0, thus réfl :‘Hifl = 0, and hence

|
(=]
Na

BE = gHF*l 0.
From Theorem 5.1, part (b), Hz = H%m)o Now we need to show that H?O>
nd N h

-

=7 .
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Let ‘ZF ,be-anMnaayclE“j%yoo Toen TZs xZ (x & nonzery integer),
Tazaw XQZ, ° 0y Zv='TpZzw~xPZ““sinc6"Hn is- cyelic of-order P.
-Hen@e;; xp-& 1 mod;p“ ggdWSince“”p iiS'prime*“x“z'lfmod“ps Thuéﬁfor

each 1, Tzi,w Z., hence ‘32 ~ 0. The collection {Ezi} is a p-

i? i
cycle sipce if ﬁ? is a T-projection we have ﬁg BaZi E'Zj, This is
‘true since Ki ~ O and by Lemma 5.10, E(ﬁg Zi = Zi)'v O as

J J
" required. ‘Now BZVM 0 implies that BZ is an element of the subgroup

Z, =%
i

Bz of Hﬁo Therefore, since BE = O implies Ekfg,og we see that 27"

is & nonzero element of H?p)o Thus H?p) £ and since it is a sub-

group of a cyclic group of prime order, Hn must be identical to H?p),
Homological’Spheres

Definition 5.9. A'space M is n-cyclic over G if H (M,G) =¢
and E'(M,6) = 0, i #n.

Definition 5.10. A space M is saild to be augumented if each of

>

its coverings considered as s complex are augumented.

Definitioh_5ollﬂ‘ A compactAfiniteédimensional gspace is called s
homological n-sphere over G if, when éugumented, it is‘n=cyclic over

“G. The empty set is regarded as & homological (=1)=-sphere over G.

Theorem 5.5. Let T he a transformation‘opérating in M, of pef=
iod p = qa with a8 @1, q a prime., If M is a homological n-=sphere
over ’Fq; then the fixedmﬁoint set L is & homological r-sphere over
F ~=1 g r = N

q’ _ ,
Proof., Assume that a =1, p=gq, and L # f.

Let Pos Px ® °° stand alternately for (, ¢ beginning with
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pé-\_=-c.- Let -r be "l@:e~<dimensional-~i&e‘:’c of the first vanishing group in
' --thésequ-ence

* . »

. . n n-1
i : D D -
( ) ”pn) anwl’
The definition of r has meaning since Dgc = 0. Consider an element
of bgo. It contains & p-cycle of the form EAge {p } and since H°

= 0, Xi is connected by section 1}, Chapter VII of [14]. Hence if E

: o
X, - o~ . X,
is an Xi vertex, then E ~ O mod X iT It follows that Ai. ~ O mod iT?

- : - 0
' = ! = = / =
S&8y, FBi A + AiI Then ngBi ROAi Z 1 end sO Zi 0 for each

i which implies Z € ]30 « Hence our assumption is true.

Next 1t 1s shown that Hi  is cyclic of order r while H. =0

~0Pi
Pr

fO;‘ 14, Th;l.s implies that L is a homological "r-sphere since the
groups Hg oh a.ré{ identical to the ordinary homology g‘r@_ups of I by
(5.4, page 68). Note that

i i :
ii B = H i n
(11) Pt pi’ £ 0,

since B - 0 for i # n. By.Lemma. 5.32, H? is cyelic of order bp:
. . n *

Assume r < n. Then D ;é 0 by definition of r, hence I’)::n-r- H‘Eno
We have gD = Bo. -1 by (5.6, page 68) and consequently B2l s
Pn Pn-1 Pn-1

_ - n-l n-l
;c':yc':l.‘ccy possibly.zero. If r<n-1, then D on-1 £0 and DF’na-l c
n-l

;o -1 . 80 that B p-1 ,é 0 by (ii). Hence, B is of order P
pn_ : Pna1 ‘
and so is D;:ll. By repeating this argument we conclude that the

groups (1) with dimensional index exéeeding r are cyclic of order

p. We have also shown that
i i
(i11) Hpiszi, i=mn, n+l, « ¢+, r+1,

Now we need to show that the rem!a_ining 'groups of (i) wvanish. We have

D, =0 by definition of r amd D, CHj Lo et -0 vy

Py p1*'--1 Pra1 Pr-n Pr
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(i1) and (5.6, page 68). Replacing r by r =1 and so on we have
i ' " ,
= 17 ! 2 v,
Doy =0 for all ° r
Now by Lemma 5.31-and (1ii)

i i+l k+1
iv H = kH = kD =kO=C 1i<r,
( )‘ | OP4 P14l il
Using the fact that H%i =0 for i >n, (iv) elso holds for i >n.
Moreover, 'ngn vanishes for i =r +1, = ¢ ¢, n, since Hp=
UPy
\ : i _ ; _
D, X Hy, &nd since H, = D. Therefore Hy, =0 when i £ r.
It remains to be shown that ngi is eyclic of order p. If r =
n ¥ =
n, then Dpn = 0., Also, HF)“ Dp X HOP’ hence Hp Hop° Now Hﬁn
is cyclic of order p, therefore, ng ig cyelic of order p. If r
< n, then If+l is cyelic of order p and kl‘)r+l is isomorphiec to
' Pral Pr+l
ngr by Lemmas 5.30 and 5.3); therefore, ng is c¢cyclic of order ©p.
The theorem is proved for a = l.
Assume a > 1 and that the theorem has been proved for p = Qb,

b <&, The transformation Ts, s = qawl, is & prime of period ¢.

Hence its fixed point set, Lsg is a homolegicel r-sphere, r < n.

Now T +transforms Ls into itself, and the transformation T' induced
in L_ 1is either the identity or it is of period q® where ¢ <a. In
the first case L = LS and the theorem is established. In the second

'

case the fixed point set L' of T' 1is a homological r'=sphere, r

£ r,
- Examples

The results of Theorem 5.5 doinot hold for & transformation of per-
iod p, p arbitrary. E. E. Floyd constructed examples to show this

fact in 1952 [6] and in 1956 [8]. Some of Floyd's examples are given in



Th
this section., PFirst we ghall state thévrems and definitions that are

used in constructing the examples.

Definition 5.12. A dechposition of a space M 1s a partition of

M into a family of disjoint subsets of M vwhose union is M.

Definition 5.13. Let M be a compact Hausdorff spece and T a

periodic mapping on M, then ox, x € M, is an orbit.

Definition 5.lhk. The orbit decomposition space M* of (M, T) is
the space whose elements are the sets Gx§' x € M, with an open set in
M* being the images of an open set in M under the orbit decomposition
mapping £: M — M#*, wvhere f(x)fz fox}.

The following theorems afe used in the construction of our exanm-

ples. They can be found in {6] and [7].

Theorem 5.6, Let X be a finite complex and let A be a subcom-
plex of X. Suppose A is invariant under a simplioial periodic map=
ping T on X. Let A% d@npte_the orbit decomposition of the pair
(A, T/A) and let F: A= A% the orbit decomposition mepping. Suppose
that thg induced homomorphism  £#* of the homology groups Hn(A;G)
into Hn(A*;G) are isomorphisms onto for each n, where ¢ is a giv-
en coefficient group. Consider the decomposition ef X consisting of
"orbits of points of A and of indiwvidusl points of X - A. Let X*%
denote the resulting decomposition space. Then X* mgy be triangu-
lated so as to be a finite complex'with A% g subcompies° Moreover,

Hn(X*;G) a3 Hn(X;G) .

Theorem 5.7. Let A be an n-dimensional finite complex; let T
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be & simplicial perfodic homeomorphism of perlod two-of A onto A
with exactly one fixed point P snd such thet if C, denotes the clos-
ed ster of & vertex 'a of A, afp, then T(CgJMC, is elther empty
or‘is T _There exists a homeomorphism £ of A into Buclidean

{(2n + 1)-space E23+1 such that fT = 5f where B5{x) = -x for every

x & 32n+l and such that £ 18 linear on each simplex of A.

Hétation@ Let n be a positive integer 2 2. Let P denote the
g01id unit circle in the plane; where we use polar coordinates. Con-
sider the‘decompasition of P which bas as its elements the individval
points (r, 8) for r <1 - and the sets {(1, 8), (1,8 + 2x/n), » » =,
(1, 8 + (2n = 1)w/n)] for r = 1. Denote the resulting decomposition
space by P(ﬁ)a If (r, 8) € P let (r, 8)n denote the generated
point of P(n). An involution R of P(n) onto P(n) is defined by

R((rD e)n = (rg e + Tﬂ:)na

Theorem 5.8, If n is odd, then R has a single fixed point, and
thé orbit decomposition space P*(n) 4is homeomorphic to P(n). Also,
if g: P(n) » P#(n) denotes the orbit decomposition mepping, then g#:
Hn(P(ﬁ);I) - Hn(P*(n);I) is an isomorphism ento for each n, where I

denotes the group of integers.

Theorem 5.9. If ¥ 1is locally connected and locally simply con-

nected; then so is X*.

Example 1. Let n be an odd positive integer. There exists a
finite complex K and a simplicial mapping T of K onte K of per-

iod two such thet K 4is contractable (and thereby homologically tri-
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vial over sll grcups}lanﬁ such that the fixed point set of T is
homeomorphic to P{n).

?roofq Let X denote the S5=cube in Fuclidean 5;épace consisting
of all points whose coordinates are between‘ <1 &and 1. ‘Denots by
8: X = X the involution s{x) = -x for all x € X. Triangulate P(n)
50 that the hypbthesis of\Theofem 5.7 is satisfied’wiﬁh respect 1o a
mepping R. (See notation above:) By Theorem 5.7 we;can consider
P{n} as being imbedded in the interior of X so that R is equal to
8 on P{n). Define K +0 be the decomposition spage generated by the
decompesition of X whose elements are“the individual p@ints.of .
X - P(n) together with the set {x, -x}, x € P(n). Let h: X = X b,e ;
the nétural decomposition mepping. Define T = h s hnle Then‘ T is a
decomposition mapping of K onto K of period two. The transformatibn
T leaves the sets ({x, =x} fixed. ﬂﬁese sets are homeomorphic to
?*(n)q Therefore, by Theorem 5.8 they are homeomorphic to P(ﬁ)a More;
over, S/P(n) = R, hence R: B (P(n);I) = H _(P*(n);I) 1s an isomorphism
onto for each n. Thus by Theorem 5.6 hnKKSI)5¥ Hn(X§I) and since
.Hn(X;I) 18 homologically frivial, Hn(K;I) is also. .

We now prove‘that K is simply connected. It will then follow

by [10] that. K is contractible. Let X, and  X., be disjbint

ok 2
copies of the S-cube X. Let Sl and S2 denocte the ipvelution
>~ -x in X; and X, respectively. Let E](n) and Pé(n) de-
note the copies of P(n) in X, end X, 'respecﬁivelyo If'lxl
€ X2, let Xo be its copy in Xao Form the decomposition of
X, U X, with;elements that are individual points‘of Xy - Pi(n),

1 2
for 1 =1, 2 tosether with the sets {x,, xs}s for x, € Pl(n)°
s E

The resulting decomposition space X' is simply connected being the
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gnion-ofutyo.gigply;cpnnegte@ suchmpiexestith a_conuected=interséc;»
tion. Moreover;“thergwcan“be"definedjan“inyolution“~s9- 0@" Xi. as fol-
lqws; If ‘x”e”xl, define S" on the element of X°* detérmipediby Xy
to be the e;ement of X! determined_by Sa(xe); similarly'fof polnts
x2~€ X,. Points in the orbit decomposition space of the pairm (X“;g')
are of the form {x;, -x,} for s, €% - Pl(n) and
[{xl, mx2j’-{nxl, xE}] for x, € Pi(n?. Now h: K= X', vhere h is
a mapping such thaﬁ h(xl) = {x,, = 2} for xl.éﬂX'F ?(n) and h§H3=xﬁ
= [{xl; cxajy {uxl, xe}] for x € P(n), is an homeomorphism fro K
‘ﬁo X', The set 8' has fixed polnts since §

1
points and they must be coples of each other. Therefore the orbit de-

and 82 have fixed

composition space of (X!, 8') 1s simply connected by Theorem 5.9.

Hence K 1is simply connected.

Exampieﬂzo Let G be & non-trivial abelian group. . There exists
& prime period P such that K 1s homologically trivial over G dbut
such that the fixed point set L is not homologically trivial over G.
Proof. If P(3) is not h@mologicallj trivial over G, then the
statement follows from Example 1. ‘If P(3) 1is homologically triviai
over G, then let K = P(3), and definé T({r, 8)n) = (r;, 6 + 22/3)n.
Then f is a periodic mepping of X onto K of period 3 whose fix-
ed point set 1g the union of a point and a simple closed curve. The

point is (0, 0);, and the simple closed curve is (r, ), r = l.

Example 3. Let n be an odd integer. There exist a finite com=
plex- K and s periodic cimplicial mapping T of X onto K of per-

iod two such that K tas the homology groups of a S-sphere (over the
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integers}m&nﬁwsﬂ§h~th&@wtheffixedﬁpcintmgetwof T is 8 union of & set
M homeomorphic-to- P(n)-'ggd a“peint’nwtwon~'Mz”

» Prpof3 Meke the following‘changes:in_thg;gongtrgctiog;qf ‘$h_ip N
the proof of Example 1. Let X be 5-space compactified with_a point at
and consider .P{(n) as being embedded in X, Just as in Exar‘nple‘l° De-
fine K, h, and T as before. Then K has the homology groups of &
S-sphere over the integers by Theorem 5...,6o Moreover, T has a fixed

point set h(e) U (hP(n)).

Example 4, ILet G Ye the group of intégerso Theré exist a prime
number p, & finite complex K, and & per;odic simplicialjmapping T
of X 6nto K of‘period p such that K has the hbholog& groups of
e sphére of some dimension over G but such that the fixed point set
does not have the homology groups of a sphere of any dimension over G.

Proof. If P(3) 4is not homologically triviaiyovér’,G? £he'con~
clusion follows from Example 3. Suppose; then, that P(3) is homo-
logically trivial over G. Let Pl(3) and P2(3) ‘be disjoint copies
of P(3). Let A be the set of all (1, 6)3€ P (3) and let A, be
its copy in P, (3). 1In the set P (3) U P,(3) identify a point a €

A1 with its copy &, in A_ . Call the result K. Then K is the

2 2

union of two complexes that are homologically trivial over G and whose
intersection is a simple closed curve. vHence K has thé ﬁomology
groups over G of a 2-sphere. On each Pi(B)‘ define a mapping of per-
iod 3 as follows: (r, )3 = (r,ze + 21/3)3. These induce a mapping

T of K onto K of period 3 whose Tixed point set is the union of

1

two points and a simple closed curve, which does not have the homology
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groups of & sphere:

e above results also hold for G a mon-trivial sbelian group.
E? EolFloydmbas_§hoyn in (8] that therg existva simplyfqonnected hqm9=
;Qgipa1_2%;phe;e, B;vanﬂ a.per;odic mapping on B of_period siX_(theH
loyesphperiodhnot‘covered'by Smith's Theorem) whose fixed point set is
the disjoint union of two points and a slimple closed curve.

The structure of L when the period of T i1s not a power of a
prime is one of the unsolved proflems. P. A. Smith originally thought
that his results could be extended to an arbitrary period. Reballtthat
most of the results in this thesls are obtalned in a compact space. It
is not known whether or not the compactness is necessary; however, it

plays a major part in the proofs of the theorems.



CHAYTER VI
SUMMARY AND EDUCATIONAL IMPLICATYONS

, This“th@sis presents a collection of mathematical research reports,
each cona@rn@d with the fixed point property of a space mapped into»itm
seif by & p@ri@ﬁic homomorphic transformation. A number of research
findings sre consolidated in this paper so that understandings in this
area can be more asccessible to students who might not have the skills
necessary to read the technical mathematical journals. A brief history
of the fixed,poinﬁ vroblem and topology in general is included for de-
veloping background in this genersl area. Discussions, explanations,
and examples which illustrate the theory are given along with some un=

sclved problems.
Sﬁmmary

Chapter I contains the statement of the problem and discussions on
the justifications, procedures, limitations, and expected outcomes éf
the thesis. Chepter II, following a brief history of topology, presents
definitions of the basic terms such as a homeomorphism, = periodic
transformation, & Hausdorff space, and the fixed point property. Some
theorems that can be proved by elementary methods are given at this
point. Chapter III is a review of homology theory. It includes defini=

tions and some results that are basic in the proofs of the theorems in

80
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Ghaptersuivlan&~vé_

Chepter IV comtains s proof of the existence theorem which follows
the one given by P A. Saith in [17]. This theorem is one of the in-
kfgyant;resulté_presented in this thesisa The exisi@nce theo?em, in
somgwhat different form,.has appeared in thg journals at least three
times &nd was one of the first results obtained. In Chapter V the set
of fixed points of an n;sphere'was clagssified for a pe:iadic homeomgrphé
ic transformation of peried q; q a power of a prime. Eiamples are
given to show that the same classification is not possible in genéraiq
Many results are obtained in Chapters IV and.v that are not of primary

importance in this thesis. These results are presented because the

proofs of the major thecrems are based upon them.
Edqucational Implications

Since the study of mathematics is becoming increasiﬁgly widespread
:and the bedy of knowledge in all sreas is expanding ragpidly, a collec;
tion of the research done in any one area is needed, because it is
time~consuming for egch interested person to do the librafy research
necéssary to collect such informstion., A study such as this one, in
eddition to consolideting the research, presents the necessary back-
ground geeded for understanding the problem and therefore brings this
collegtion’of knowledge t0 many students of mathematics., k

As a result of redding this thesis, the student should gain an
awareness of the cqrrent and past research in this modern branch of

: maihematicsa He should become acquainted with men who have contributed

to its research and development. It is of great educational signifi-
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cance that'tﬁéwre&der;'whomiS“a~p@tential>teacher“at"either~thejpﬁblic“
ggpool#orjthejcqliggejlevelj~mayfb¢comewsufficiently~int§r¢sted intthis

phage of mathematics to undefﬁakelseripus study in this area. He may be

by extending the results given in this thésis and Yy suggesting solu-

ticns io the unsolved problems or by developing new properties of fixed
points. ‘The bibliography should be a valuable aid to anyone interested

in the research of fixed point theory for periodic transformations.
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of & cycle, 22
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operator, 22
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m-dimensional, 21
P-chain; 5L
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Cech cycle, 27
coordinate of, 27
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. Complex; 19
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Decomposition, 58, Tk
Dimension,
Directed set, 62
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Finite dimensional, 44

Fixed point property, 1l
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relative, 26
Homeomorphism, 1O
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mapping g, 55
mapping h, 55
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Inverse mapping system, 62

Inverse system, 63
Kernel, 20
Limit space, 62

Mepping, 10
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periodic, 11
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n-sphere, 1l
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Operator
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Simplicial, 3C
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