SPACES WITH THE FIXED POINT PROPERTY

FOR PERIODIC TRANSFORMATIONS

By
John Levi Kent
Bachelor of Science Arkansas Polytechnic College Russellville, Arkansas 1956
Master of Science University of Arkansas Fayetteville, Arkansas 1960

```
Submitted to the Faculty of the Graduate School
    of the Oklahoma State University
        in partial fulfoillment of the requirements
            for the degree of
            DOCTOR OF EDUCATMON
                    August, 1965
```


FOR PERIODIC TRANSFORMATIONS

Thesis Approved:

ACKNOWKGDTHMENIS

I wish to express my sincere thanks to Proxessors W. Ware Marsdens Paul Zo Long, Jeanne L. Agnew, and Vernon Troxel, my advisory committee for their help th planning my program of study and their assistance in the preparation of this thesis: to Dr: Le Wayne Johoson, Chairmen of the Wathematios Department, for his counsel and my assistantship. Additionally, I am deeply mare of and grateful for the many sacrifo dices which my witie Peggy and my two sons Johnny and Harvey have made in order for me to heve the opportunity to prepare this thesis.

PABLE OF COMIENTE
Chapter Page
I．THE HAMVRE AND SIGMIETCANCE OF THE PROBLEM 2
Heed tox the Study 2
Scope and Limitations 3
Expected Outcomes 3
IT．BRIE HISTORY AND INTRODUCTION TO ITXED POIMT THEORENS 5
Introduction 7
Blementary Fixed Point meorems 13
IIT．$⿴ 囗 十$ 19
IV．THE EXISTENCE OW RIXED POLNTS 29
Preliminaries 29
Spechal SyEtems and Coverings 33
chains and Special Homologies in a Complex 40
The Existence of Eixed Points 44
V．CLASSIMTCATIOM OF WHE SET OF FIXED POINLS 50
pochains in a Compleas 51
Special Honologies in a Comples 52
poHonology Crowes in Complex 54
A Decomposition 58
Projections of pukonolozy Classes 59
Imperse Systems 62
arromology Groups in a Compact Space 64
Homologies in L 67
Homological Spheres 7.
Examples 73
IV．SUMMARY AND EDUCATIONAL IMPLICATTORS 80
Suxamary 80
Educational Implications 81
BIBLIOORAFHY 83
APPENDIX：IMDEX 85

CRAFTER I

PHE TATURE AND STGIDICANCE OR THE PROETEM

In the past half century great many research axtioles on the fixed polnt property keve appeaxed ln the mathematical fournals. Some of these articues involve periode homeomorphit transfoxmation of a space into itsetfo The work that has been done ds scattered. No attempt has been made to bring together the ideas expressed by the various matho ematicians who have contributed to the development of thi area of thought. One purpose of this study is to examine the various contribur tions, summarize the research on periodic transformations, and show the continuity and pattern of development. other objectives are to present a brief histowy of topology and to develop a bibliography for the area of fixed ooints under periodic transtomation.

The materoial in this thesis is intended to be resdable on senior college or begnning greduete Iayel in methematics. Discmasions and explanetions are given in connection with the theorems, and examles and counter-exampes are given to ilimstrate the topological concepts.

Chapter IL presents a briex hutory or topology, some elementary theorems, and sone examples suggesting the theorems that are proved later. In Chepter ITI b briev review of algebraic topology is outjued, and in Cbapter IV and V major emphasis is placed on development of the specific topic of the thesis. Chapter W delineates the educational

Need for she Study

Wre"momletge explosiom hes made forectical, perheps necessary,
 Logys gecmetry, algetra, or unaysub As a resut of this sueciatization
 spectaitwed Manguak that they cannot be readity understood by mathew metribn ontwie the spectethed area In many cases proora or theorems in one artele are buist apon defindtons and theorems that bave been pubished in other fournals. prexy person mo attempts to moderstand these articles mast first go back and acquire the necessary background. This is not m easy task slnce many of the detaila are missing; since the foumnals are the najor cource of information for continuing develop ments, it is imperative that someone digest the various contributions and express them in simpler and more complete language. The fixed point property for periodic transfomations is one such subjectinasmuch as a chronological development has sot been fncluded in the textbooks.

There is a definte need por someone to consolddate all the weseareh that has been done on particuiax toric and to present it in a way that a well-trained undergraduete or gracuate students or teacher of matheo matics can comprekend it. A study of this nature will also be of consid erable value to the Ph. Do candidate who is interested in a review of the xesearch in a given ares. Some unsolved problems are stated in the thesis and these may be of value to may individuat interested in mathematicai researck.

Scope and Limitations

This thesis will be limited to the properties of fixed points for periodic homeomorphic transformations. Under this Iimitation we shall omit a survey and analysis of the fixed point properties for noncontinuous, continuous but not periodic, and multi-valued transformations. Also omitted will be the properties of fixed points for periodic transformations where the transformation is an isometry.

It is to be noted that none of the theory in this thesis is original. Most of the proofs are taken from the papers and books listed in the bibliography. The results obtained in this paper are not the most general ones that have been obtained. However, when more general results are available they will be discussed.

Expected Outcomes

As a result of reading this thesis, the mathematics student should gain an awareness of the current and past research in this modern branch of mathematics. He should become acquainted with men who have contributed to its research and development. This thesis should arouse the student's interest and challenge him to read and probe the periodical literature of mathematics. The presentation of unsolved problems should impress upon him the fact that the frontiers of knowledge in this area of mathematics are being pushed back at a steady and continuing rate.

The fact that the reader, who is a potential teacher at either the public school or the college level, may become sufficiently interested in this phase of mathematics to cause him to undertake serious study in this area has great educational potential. He will be confronted with the pos-
sibility of contriputing to research in mathematics by extending the results given in this thesis and by offering solutions to unselved prope lems as weil as by dereloping new properties of fixed points. The bibo liography should a valuable aid to anyone interested in the research of fixed point theory for periodic transformations.

CHAPTER II

BRIEF HISTORY AND
 INIRODUCTION TO FIXED POINT THEORIMS

Topology, like most new branches of mathematics, had its beginning in already existing fields of study. The basic ideas of homology theory can be found in Riemann's investigation of functions which arise from the integration of total differentials. The theory of sets was developed by Cantor and used in the clarification and solution of problems in function theory. Both ideas are basic concepts in topology.

It was not until the first part of the twentieth century that topology developed into a self-sufficient branch of mathematics. R. L. Wilder, in an address to the Semicentennial History of the American Mathematical Society, said,

Topology originated in the work of many mathematicians of the past century, including Cantor, Riemann, and Kronecker; it won recagnition as a distinct branch of mathematics largely through the writings of Poincare about the beginning of the present century. Although having many ramifications, it has progressively become a unified subject, and due to its foundations in the theory of abstract spaces has come to collaborate with abstract group theory as a unifying force in mathematics as a whole. It has provided a tool for classification and unification, as well as for extension and generalization, in algebra, analysis, and geometry. Considered as a most specialized and abstract subject in the early 1920's, it is today almost an indispensible equiprent for the investigator in modern mathematical theories [23].
$1_{\text {Arabic numerals in brackets indicate references to the Biblio- }}$ graphy.

The growth of topology took place generally along two lines; the combinatorial and the point set. The former was that of Riemann and Poincare, and was distinguished by its finite character. The basic conIiguration was not a point set, but a polyhedron consisting of a finite number of faces of various dimensions. The point set was that of Schoenflies, Cantor, Brouwer, E. H. Moore, R. L. Moore and others. The basic configuration was a point set, and whereas in the combinatorial approach the properties in the large were the center of interest, in the point set approach the local properties were those naturally studied. However, in more recent years the two lines of topology have been unified to some extent.

A problem in topology that has received much attention is the fixed point property. A topological space X is said to have the fixed point property if, given any continuous function I from X into X, there exists a point p such that $f(p)=p$. The first results on fixed points were obtained by Alexander on topological mappings of a 2-dimensional manifold and by Brouwer for continuous mappings of the n-cell and n-sphere. Brouwer's theorem was introduced in 1912 and is perhaps one of the best known. The next result was obtained by Lefschetz in 1923. He discovered a fixed point formula and the proof of its validity for a self-mapping of a closed manifold. In the period 1925-35 Lefschetz was able to extend his proof to relative manifolds, to general complexes and, finally, to locally connected spaces. Since Lefschetz's theorem was published many fixed point problems have been solved [2]. Yet, today there is no known topological characterization of the fixed point property.

The first fixed point problems were concerned with a continuous map-
ping from a space into itself. However, some of the more recent results involve non-continuous mappings and periodic mappings. The first fixed point theorem for periodic mappings was proved by H. A. Newman in 1930. The theorem was that if M_{n} is a locally Buclidean metricized connected n-dimensional space, K_{A} any domain in it, and p an integer greater that one, there is a positive number d such that no uniform continuous representation of M_{n} on itself with period p moves every point of K_{n} a distance less than d [15]. In 1934 P. A. Smith proved that if a compact Hausdorif space was simply connected in some sense then every homeomorphic periodic transformation of prime period would leave at least one point fixed. This theorem by Smith was perhaps stimulated by the following results. Kerekjarto and Eilenberg proved that every periodic transformation of an ordinary sphere into itself is topologically equivalent to a rotation or to the product of a rotation and a reflection across a diametral plane。 Lefschetz ${ }^{0}$ s theorem was extended to a simplex in 1933. Smith ${ }^{\circ}$. greatest contributions to this arce came in 1937 and 1939 when he completed the topological classification of the set of fixed points for an n-sphere $n \subseteq 3$ and for an arbitrary n-sphere if the period of the transformation was a power of a prime. In 1950 E.E. Floyd gave examples showing that PoA. Smith ${ }^{3}$ s theorem did not hold for an arbitrary period q. The goal of this thesis is to present the results obtained by Eilenberg, Smith, and Mloyd.

Introduction

Perhaps one should begin with a discussion of fixed points, with definitions, examples, and theorems that illustrate the concepts to which
this thests is devotedr A minimel beckeround has been assuned. Most of the idees in topology thet hare been used are xeviened.

Dedinition 2.l. A set M; together withe coltection or subsets called open sets, is called a topologieal space if and only if the col1ection or open sets satisfies the following axioms:

Axion W. The umion of any collection of open sets is an open set.

Axiom 2. The intersection of any fimite collection of open sets is an oper set.

The collection of open sets $\{0\}$ is called the topology of the topologicai space.

Definition 2,2. A topological space M is said to be faedorfe space if and only ife given any two distinct points p, q of Mg there exist disyoint open gets U and V of M such that p is in U and q is in V.

Definituon 2.3. A collection of open sets $\{0\}$ is said to be an open coyering of a set M if and only if $M \in U U$.

Definition 2.4. A topological spece M is said to be compact if and only if every open covering of M contains a finite subcovering of M 。

The theorems in Chapters IV and V axe in a compact Hasdorff space and the existence of a finite covering is very important in the proofs. We shall also call upon the following derinition and theorem.

Definition 2.5. A space M is said to be normal if and only if,
given any two disjoint olosed subsets F_{1} onct F_{2} or M_{y} there existo disjont open subsets G_{1} and $G_{2} o p M$ containing F_{1} and F_{2} re spectively.

Leme 2. If M is a compact Hausdorff space, then given any closed subset F of M and any point q of M not in F there exist disjoint open subsets Q and O of M containing F and q, respectively.

Proof. Fox every open covering \&u of F there exists a finite subset of fUl that covers F since a closed subset of a compact space Ls compact. For eycy point p in F and for q, a fixed point in $M-\mathbb{D}_{g}$ there exdst open sets U, V where p is in U and q is in V such that $U \cap V=W$ (M Eausdorffi). Let Q be the union of a finite number of the $U^{1} s$ that coyer F. Let 0 be the intersection of the finite number of $V^{i} s$ that correspond to the $U^{i} s$. Now O and Q axe open sets such that $O \cap Q=\emptyset$ and F is in Q and q is in 0 .

Theorem 2.1. If a Hausdorff space M is compact, then it is normal.
Proof. Let Fi and Fe be closed subsets of Mo For every p in
F_{1} there exist open sets. $U_{y} \quad V$ such that U contains F_{2} and V contains P, $U \cap V=\emptyset$. A finite number of the $V^{\imath} s$ cover F_{1} since Fi. is compact. Let Q be the union of these V s. The intersection of the conyesponding $U^{\prime} s^{\prime}$ say 0 , is an open set containing F_{2} $O \cap Q=\emptyset . \quad$ Therefore M is normal.

Definition 2.6 through 2.11. define a homeomorphism which is an important concept in this thesis and, indeed, in topology. Other concepts defined are a periodic transformation, an n-sphere, and the fixed point
property.

Definition 2.6. Det M and R be spaces; a rule f is called a mapping of M into $R(f: M \rightarrow R)$ if and oniy if f associates with each element x of M a unique element y of R.

Definition 2.7. Let M and R, be spaces and $P: M \rightarrow R$ a map: ping, Then f is said to be contimuous at a point x of M if and oniy if, given any open subset G of R where x is in $f^{-1}(G)$, there exists an openset V of M containing x such that for every y in $V_{,} f(y)$ is in $G_{0}\left(f^{-1}(G)\right.$ is the set of all y in M such that $f(y)$ is in G_{0}) The function f is continuous on M if and only if f is continuous at every point of M.

Derinition 2.8. Let M and R be spaces and $f: M \rightarrow R$ a mapping. Then f is said to be onto if and only if for every y in R there exists an x in M such that $f(x)=y$.

Definition 2.9. Let M and R be spaces and $f: M \rightarrow R$ a mapping. Then f is said to be one to one if and only if for $x, y \in M_{\text {, }}$ $\mathscr{L}(\mathrm{x})=\mathscr{X}(\mathrm{y})$ implies $\mathrm{x}=\mathrm{y}$ 。

Definition 2.10. Let M and R be spaces and $f: M \leadsto R$ a mapping. Then f is said to be open if and only if for every open set U of M_{s} $f(U)=V$ is an open set in R.

Definition 2.11. Let M and R be spaces and $f: M \rightarrow R$ a mapping. Then f is said to be a homeomorphism if and only if f is continuous, one-tomone, open, and onto.

Definition 2.12. Let f be a mapping of a space M into itself, f is said to be pertodic provided there exists an integer $p>1$ such that $f^{\prime}(x)=x$ for every point x of M, where $f^{p}(x)=\mathfrak{f}(f(\ldots(f(x)) \cdots))(p$ of them).

Definition 2.23. An n-sphere is any homeomorphic image of the sphere

$$
\sum_{i=1}^{n+1} x^{2}=1
$$

Definition 2.24. A space M is said to have the fixed point property (fpp) if for every periodic homemorphic transformation of M into itself there exists a point x such that $f(x)=x$.

We shall give examples to illustrate the above definitions and perw haps the examples will suggest some theorems.

Example 2.1. Let M be the interval $[-1,1]$ and define $f(x)=-x$ for $x \in M$. Then $f^{2}(x)=x$, therefore f is periodic of period 2 . The set of fixed points is the set $\{0\}$.

Example 2.2. Let M be the set of points (x, y) such that $\sqrt{x^{2}+y^{2}} \leq 1$ and define $f(x, y)=(x, y)$. Then $f^{2}(x, y)=(x, y)$, therefore f is periodic of period 2. The set of fixed points is the set $\{(0, y) /|y| \leq 1\}$.

Example 2.3. Let M be the same as in Bxample 2.2 and define $f(x, y)=(y,-x)$. Then $f^{4}(x, y)=(x, y)$, therefore f is periodic of period 4. The set of fixed points is the set $\{(0,0)\}$.

Any number of examples such as the ones above can be found. However, one cannot find a periodic homeomorphic transformation of a connected subspace of the Euclidean space into itself that does not leave a point fixed. In Chapter IV we shall prove that such a space has the fpp.

The next examples are concerned with an n-sphere. Recall that a 0 -sphere is homeomorphic to two points, a l-sphere is homeomorphic to the circumference of a circle, and a 2 -sphere is homeomorphic to the hull of an ordinary sphere.

Example 2.4. Let M be a 0 -sphere, say the points " a " and " b "; then $f(a)=b$ and $f(b)=a$ is the only possible periodic transformation and it leaves no fixed points.

Example 2.5. Let M be a l-sphere say the set of points (x, y) such that $\sqrt{x^{2}+y^{2}}=1$, Define $f(x, y)=(-x, y)$, then $f(x, y)$ is periodic of period two. The set of fixed points is the set $\{(0,1),(0,-1)\}$, which is a 0-sphere.

Example 2.6. Let M be the same as in Example 2.5. Define $f(x, y)=[\cos (\theta+\pi), \quad \sin (\theta+\pi)]$ where $x=\cos \theta$ and $y=\sin \theta$, then $f(x, y)$ is periodic of period two. The set of fixed points is the null set.

Example 2.7. Let M be a 2 -sphere say the set of points (x, y, z) such that $\sqrt{x^{2}+y^{2}+z^{2}}=1$. Define $g(x, y, z)=$ $(x, y,-z)$, then $g(x, y, z)$ is periodic of period two. The set of fixed points is the set of points $(x, y, 0)$ such that $\sqrt{x^{2}+y^{2}}=1$,
which is a l-sphere.

Example 2.8. Let M be the same as in Example 2.7. Define $h(x, y, z)=[\cos (\theta+\pi), \sin (\theta+\pi), z]$ where $x=\cos \theta$ and $y=\sin \theta$, then $h(x, y, z)$ is periodic of period two. The set of fixed points is the set $\{(0,0,1),(0,0,-1)\}$ which is a 0 -sphere.

Example 2.9. Let M be the same as in Example 2.7. Define $f(x, y, z)=\operatorname{gh}(x, y, z)$, where g and h are the same as in Examples 2.7 and 2.8 , then f is periodic of period two. The set of fixed points is the null set.

These examples indicate that the set of fixed points when an n-sphere, $\mathrm{n} \leq 2$, is mapped into itself by a periodic homeomorphic transformation can be an r-sphere, $r \leq n$, or the null set. In this section we shall show that this is the case. In Chapter V we shall obtain the same result for an arbitrary n-spere if the period of the transformation is a power of a prime.

Elementary Fixed Point Theorems

Definition 2.15. A mapping $f(X) \subset X$ is said to be pointwise almost periodic (p.a.p.) at a point p of a set X provided there exists, for any $\epsilon>0$, an integer N_{p} such that $\rho\left[p, f^{n}(p)\right]<\epsilon$, where $\rho\left[p, f^{n}(p)\right]$ denotes the distance between p and $f^{n}(p)$. Note that a periodic transformation is p.a.p. .

Lemma 2.2. If $f(X) \subset X$ is a homeomorphism and K is a compact subset of X such that $f(K) \subset K$, f cannot be p.a.p. at any point
of $K-f(K)$.
Proof. The relation $f(K) \subset K$ gives $f^{2}(K) \subset f(K)$, $f^{3}(K) \subset f^{2}(K) \subset f(K), \cdots, f^{n}(K) \subset f^{n-1}(K) \subset \cdots \subset(K)$, so that $x \in K-f(K)$ implies $f^{n}(x) \subset f(K)$ for all n. Hence $\rho\left[x, f^{n}(x)\right] \geq \rho[x, f(K)]$ for all n.

Lemma 2.3. If X is an arc, $X=H+K$ is a division of X into H and K such that $H \cap K=p \in X$ and $f(X) \subset X$ is a homeomorphism such that $H \cap f(H) \neq \varnothing \neq K \cap f(K)$ and f is p.a.p. at p, then p is fixed under f.

Proof. Suppose $f(p) \neq p$. Then $f(p)$ belongs either to $H-p$ or $K-p$, say to $K-p$. Since $f(H)$ is connected and intersects both H and K we have $f(H-p) \supset p$. Thus $p \in K-f(K)$. Also, $f(K) \subset K$ since $f(K) \cap K \neq \varnothing$. But by Lemma 2.2, f could not be p.a.p. at p.

Lemma 2.4. If the end points of an arc $\overline{\mathrm{ab}}$ are invariant, every element of the arc is invariant.

Proof. Let x be any point of the arc different from a or b. Then x divides $\overline{a b}$ into H and K such that the hypothesis of Lemma 2.3 is satisfied. Hence x is a fixed point.

Definition 2.16. A mapping, $f(x)$ is said to be pointwise periodic at a point x of X provided there exists an integer N_{x} such that $f^{n}(x)=x$. (A periodic mapping is pointwise periodic.)

Theorem 2.2. If f is a pointwise periodic mapping of an arc $\overline{\mathrm{ab}}$ into itself it must be periodic of period n ; furthermore, either
$n=1$（all points fixed）or $n=2$ and there is exactly one interior point p of $\overline{a b}$ which is fixed and f is equivalent to a reflection about p ．

Proof．If either a or b is fixed，they both must be fixed since end points map into end points；and every point is fixed by Lemma 2．4，so that $\mathrm{n}=1$ ．If neither a nor b is fixed，we hove $f(a)=b, f(b)=a, f^{2}(a)=a, f^{2}(b)=b$ and hence $f^{2}(x)=x$ for every x $\overline{\mathrm{ab}}$ ．Therefore $\mathrm{n}=2$ 。 Also，if p is a fixed point，we have $f(\overline{a p})=\overline{b p}$ and no $q \neq p$ is fixed．

Theorem 2．3．Any pointwise periodic mapping f of the circle S ， $|z|=1$ ，into itself is equivalent either to the reflection $w=\bar{z}$ of period 2 with two fixed points or to the rotation $w=z^{n} \quad(n=$ 1，2，．．．）all points fixed for $n=1$ ，no fixed points for $n>1$ ．

Proof．If all points of S are fixed，f is the identity $\mathrm{w}=\mathrm{z}$ ．Suppose there exist a fixed point p and a point x with $f(x) \neq x$ ．Let $\overline{p x}, \overline{p f(x)}$ and $\overline{x f(x)}$ be the arcs on S each con－ taining only two of the points p, x ，and $f(x)$ ．Then since $\overline{f(p x)}=$ $\overline{p f(x)}$ ，we have $f(\overline{x f(x)})=\overline{x f(x)}$ ．Hence from the above there is ex－ actly one fixed point q on $\overline{x f(x)}$ and also $f^{2}(x)=x$ and since $f(\overline{q \times p})=\overline{q f^{f}(x) p}, f$ is equivalent to the reflection $w=\bar{z}$ on $|z|=1$ 。

Assume there are no fixed points and $p_{0}=p \in s, p_{1}=f(p)$ ， $\therefore \therefore p_{n-1}=f^{n-1}(p), p=f^{n}(p)$ ，then $f\left(\overline{p_{0} p_{1}}\right)=\overline{p_{1} p_{2}}, f\left(\overline{p_{1} p_{2}}\right)=$ $\overline{p_{2} p_{3}}, \cdots, f\left(\overline{p_{n-1} p_{0}}\right)=\overline{p_{0} p_{1}}$ so that f is equivalent to the mapping $w=z^{n}, \quad n>1$ ，on $|z|=1$ 。

Notation：K_{1} is a topological circle，I_{1} its interior，S_{1} its
circumference, and S_{2} is a 2-sphere.

Lema 2.5. Let $E=K_{1}, a \in L \cap S_{1}, b \in L \cap S_{1}, a \neq b$ and $A=\overline{x y}$. where $A \cap S_{2}=\{x, y\}$ and such that A cuts E between a and b. Then there exists an arc $B \subset U f^{i}(A)$ with end points on S_{2}, and $f(B)=B$.

Proof. Let g be a homeomorphism between E and a geometric circle. Extend f to $g(E)$ such that $f(x)=g f(x)$ for $x \in E$. Form an $S_{2}=E+g(E)$ by identification of a point x and $g(x)$ for $x \in S_{1}$. The curve $S_{1}^{\prime}=A+g(A)$ cuts S_{2} between a and b. Designate by I_{1}^{\prime} the component of $S_{2}-S_{1}^{\prime}$ that contains a and let $I_{1}{ }^{\prime \prime}$ be the component of $\cap f^{i} I_{1}$, that contains a. The olosure is a topological circle $K_{1}^{\prime \prime}, S_{1}^{\prime \prime} \subset \cup f^{1}\left(S_{1}{ }^{\prime}\right), f\left(I_{1}^{\prime \prime}\right)=I_{1}^{\prime \prime}$ and $f\left(S_{1}{ }^{\prime \prime}\right)=S_{I}{ }^{\prime \prime}$.

The set $S_{1} " \cap E$ cutcs E between a and b, hence there exists an arc $B \subset S_{1}{ }^{\prime \prime} \cap E$ which cuts E between a and b. Also, $g(B) \subset S_{1}^{\prime}$ hence $B+g(B) \subset S_{1}^{\prime \prime}$, and $B \cap g(B)$ contains points such that $B+g(B)$ contains a topological circumference or $B+g(B)=S_{1}{ }^{\prime \prime}$. Now, $B=S_{1}{ }^{\prime \prime} \cap E$ and the end points of B are on S_{1}. Also, $f(B)=B$ because $f\left(S_{1}{ }^{\prime \prime}\right)=S_{1}{ }^{\prime \prime}$, and $B \subset \cup f^{1} S_{1}{ }^{\prime}$) because $s_{1}^{\prime \prime} \subset \cup f^{\prime}\left(s_{1}^{\prime}\right)$ 。

Lemme 2.6. If $\mathrm{E}=\mathrm{K}_{1}$ and $\mathrm{S}_{1} \subset \mathrm{~L}$, then $\mathrm{n}=1$.
Proof. Let p be any point in K_{1}, S_{1} and $A=\overline{x p y}$ where $A \cap S_{1}=\{x, y\}$. There exists an arc $B \subset U f^{I}(A)$ such that $B \cap S_{1}=\left\{x^{\prime}, y^{\prime}\right\}, x^{\prime}, y^{\prime}$ end points of B and $f(B)=B$ by Lemma 2.5 and by Theorem $2.2 \quad B \subset L$. Hence $B=A$ and the arbitrary
$\mathrm{p} \in \mathrm{L}$, therefore $\mathrm{E}=\mathrm{L}$ and $\mathrm{n}=1$.

Theorem 2.4. Any periodic homeoworphic mapping if of a topow logical sphere S_{2} into itself is of period one all points ifxed, of period two a l-sphere fixed, or of period n two points fixed or no points さixed.

Proof. Assume that I, the set of fixed points, is not null then there exists an $x \in S_{2}$ such that $f(x)=x$. Let I_{1} be any open disk such that $a \in I_{1}$. Then $\cap f^{i}\left(I_{1}\right)$ is a collection of open disks one of which, call it I_{I}^{\prime}, contains a. Now $f\left(I_{1}{ }^{\prime}\right)=I_{I}^{\prime}$ and $f^{\prime}\left(S_{2}-I_{1}^{\prime}\right)=S_{2}-I_{1}^{\prime}$. Hence there exists a point $y \in S_{2}-I_{1}^{\prime}$ such that $f(y)=y$ by Brouwer's Theorem. Therefore if $L \neq \phi$, then L contains at least two points.

Let I_{1} be the set of fixed points under f, I_{2} the set of fixed points under $\mathbb{f}^{2}, \cdots \because I_{n-1}$ the set of fixed points under f^{n-1}. Let $A={\underset{i=1}{n} 1}_{U_{i}} L_{f}$ a and b points of I_{1}. Now A either cuts S_{2} between a and b or it does not. Consider first the case where A cuts S_{2} between a and b. Let S_{1} be a losphere in A such that it cuts S_{2} between a and b. Suppose $a \in I_{1}{ }^{\prime}$ the interior of $S_{1}{ }^{\prime}$ and let $I_{1}^{\prime \prime}$ be the component of $\cap f^{i}\left(I_{1}^{\prime \prime}\right)$ which contains a_{0} Then $b \in S_{2}-U f^{1}\left(I_{1}{ }^{\prime}\right)$. Let $S_{1}^{\prime \prime \prime}$ be the boundary of $I_{1}^{\prime \prime}$, then $S_{1}^{\prime \prime} \subset \cup f^{\prime}\left(S_{1}^{\prime \prime}\right) \cap$ A. Also $f\left(I_{1}^{\prime \prime}\right)=I_{1}^{\prime \prime}$, hence $f\left(S_{1}^{\prime \prime}\right)=S_{1}^{\prime \prime}$ 。 And since more than two points of S_{1} " are contained in A then all of $S_{1}{ }^{\prime \prime}$ is in A by Theorem 2.3. Then by Lemma $2.6 \mathrm{~K}^{\prime \prime}{ }_{I}$ and S $S_{2}-K_{1}^{\prime \prime}$ are contained in A. Hence $S_{2} \subset A$ and $n=1$.

Assume next that A does not cut S_{2} between a and b, then there exists an arc B such that $f^{i}(B) \cap B=\{a, b\}$ for all i. Now
$B, f(B), \cdots, f^{n-1}(B)$ divides S_{2} into n sections R_{0},
R_{1}, . . R_{n-1} where the boundary of $R_{0}=B \cup f(B)$, the boundary of $R_{1}=f(B) \cup f^{2}(B)$ et cetera. Now $f\left(B_{i}\right)=B_{i+1}$ and $f\left(B_{i+1}\right)=$ B_{i+2}, and the boundary of $f\left(R_{i}\right)$ is the same as the boundary of R_{i+1}. Hence $f\left(R_{i}\right)=R_{i}$ or $f\left(R_{i}\right)=R_{i+1}$. If $f\left(R_{i}\right)=R_{i}$ then $n=2$ and $R_{i} \cup R_{i+1}=S_{2}$, and if $f\left(R_{i}\right)=R_{i+1}$ then $L=\{a, b\}$. It remains to show that if $f\left(R_{i}^{\prime}\right)=R_{i}$ then $L=S_{1}$. Let $A=\overline{x y}$ such that $A \cap S_{1_{1}}$, the boundary of R_{i}, is $\{x, y\}$. Then there exists a $B \subset \bigcup_{i-1}^{2} A_{i}$ such that $f(B)=B$ and $B \cap S_{1_{i}}$ is the set consisting of the end points of B. Since $n=2, B$ contains one and only one end point p such that $f(p)=p$. Also, $f(B)$ contains the same fixed point which implies that A contains at least one fixed point. Therefore, there exists an arc C between a and b such that $C \subset I$. Furthermore, there exists a point $c \in S_{2}-R_{i}$ such that $f(c)=c$ and similarly arcs c^{\prime}, ct'c L between a and c, and b and c. Let S_{1}^{\prime} be the 1 -sphere $C \cup C^{\prime} \cup C^{\prime \prime}=$ L. The circle $K_{I}^{\prime \prime}$ with boundary $B \cup B^{\prime} \cup B^{\prime \prime}$, where B^{\prime} and $B^{\prime \prime}$ form the corresponding arc between $\overline{B C}$ and $\overline{b c}$, is mapped by f onto $K_{I}^{\prime \prime}$ with boundary $f(B) \cup f\left(B^{\prime}\right) \cup f\left(B^{\prime}\right)$. Hence $L=S_{1}^{\prime}$.

The following theorem is a collection of the results in this section. The results presented in this section may be found in [5] and [21].

Theorem 2.5 If an n-sphere $n \leq 2$ is mapped into itself by a periodic homeomorphic mapping, then the set of fixed points is an r-sphere $r \leq n$.

CHAPMER III

HOMOLOGY THEORY

The proof of the existence of fixed points and the classification of the set of fixed points, Chapters IV and V, involve a great deal of homology theory. We shall review the definitions, concepts, and theorems that are used. The theorems are not proved; however, the proofs as well as the definitions given here can be found in [24].

Simplicial Complex

Definition 3.1. An abstract simplieial complex M is a pair (U, Σ) where $\{U\}$ is a set of elements called vertices, and Σ is a collection of finite subsets of $\{U\}$ with the property that each element of $\{U\}$ lies in some element of Σ and, if F is any element of Σ then every subset of F is again an element of Σ, M is finite if $\{U\}$ is finite.

Definition 3.2. A simplex E is an element of the collection Σ and the dimension of E is one less than the number of vertices in E. Denote a simplex with $m+1$ vertices by E^{m}. A face E^{k} of E^{m} is a k dimensional subset of E^{m}.

Definition 3.3. Tre star of lection of all elements in Σ of which E is a subset.

Note 3.1. Every finite abstract simplicial complex is isomorphic to a geometric simplicial complex.

Example 3.1. Let X be a compact Hausdorff space, and let \{U\} be a finite covering of X by open sets, Define $M=(V, \Sigma)$ by taking $\{\mathrm{V}\}$ to be the collection $\{\mathrm{U}\}$ and by saying that a subset $\mathrm{U}_{0}, \mathrm{U}_{1}$, \cdots, U_{p} of elements of $\{U\}$ is a simplex E in Σ if and only if the intersection $\prod_{i=0}^{p} U_{i}$, the Kernel of E, is not empty. Then M is an abstract simplicial complex or the nerve of the covering \{U\}. To see this, we need only note that if $\prod_{i=0}^{p} U_{i}$ is not empty, then any subcollection of theorem sets U_{0}, \cdots, U_{p} also has a nonempty intersection and by definition must constitute an element of Σ.

Oriented Complex

Definition 3.4. An oriented simplex is an abstract simplex with an arbitrary fixed ordering of its vertices.

Definition 3.5. An oriented simplicial complex is an abstract simplicial complex with an arbitrary fixed orientation for each simplex in the complex.

Incidence Number

Given an oriented simplicial complex M, we associate with every pair of simplexes E^{m}, and E^{m-1}, which differ in dimension by unity, and incident number $\left[\mathrm{E}^{\mathrm{m}}, \mathrm{E}^{\mathrm{m}-\mathrm{l}}\right]$ defined as follows:

$$
\begin{aligned}
& {\left[\mathrm{E}^{\mathrm{m}}, \mathrm{E}^{\mathrm{m}-1}\right]=0 \text { if } \mathrm{E}^{\mathrm{m}-1} \text { is not a face of } \mathrm{E}^{\mathrm{m}} ;} \\
& {\left[\mathrm{E}^{\mathrm{m}}, \mathrm{E}^{\mathrm{m}-1}\right]= \pm 1 \text { if } \mathrm{E}^{\mathrm{m}-1} \text { is a fact of } E^{m} .}
\end{aligned}
$$

If the orientation of E^{m} and E^{m-1} agree, then the incidence number is +1 . Otherwise it is -1 .

Example 3.2. If $+E^{2}=\left(V_{0} V_{1} V_{2}\right)$ and $+X^{I}=\left(V_{1} V_{2}\right)$, then $\left[\left(V_{0} V_{1} V_{2},\left(V_{2} V_{1}\right)\right]=1\right.$. But if $+W^{T}=\left(V_{2} V_{1}\right)$, then $\left[\left(V_{0} V_{1} V_{2}\right),\left(V_{2} V_{1}\right)\right]=$ -1.

The oriented simplicial complex M together with the system of incidence numbers $\left[E^{m}, E^{m o l}\right]$ constitutes the basic structure supporting a simplicial homology theory.

Chain

Let M denote an arbitrary oriented simplicial complex, and let G be an arbitrary abelian group.

Definition 3.6. An m-dimensional chain of the finite complex M With coetficients in the group G is a function C_{m} on the oriented m-simplexes of M with values in the group G such that if $C_{m}\left(+E^{m}\right)=$ $\mathrm{g}, \mathrm{g} \in \mathrm{G}$, then $\mathrm{C}_{\mathrm{m}}\left(-\mathrm{E}^{\mathrm{m}}\right)=-\mathrm{g}$ 。

The collections of all such madimensional chains on M will be denoted by the symbol $C_{m}(M, G)$. We introduce addition of m-chains by means of the usual functional addition. That is, we define

$$
\left(C_{m}^{1}+C_{m}^{2}\right)\left(E^{m}\right)=C_{m}^{1} E^{m}+C_{m}^{2} E^{m}
$$

where the addition on the right is the group operation in G. Under this operation $C_{m}(M, G)$ is an abelian group, the m-dimensional chain group of M with coefficients in G. An arbitrary machain on M can be written as a linear combination $\Sigma g_{i} E_{i}^{m}$, where $g_{i}=C_{m}\left(+E_{i}^{m}\right)$. This notation tabulates the function C_{m} in such a way that addition of such
functions is the addition of linear combinations. An elementary m-chain on K is an mochain such that $C_{m}\left({ }^{\left(E_{0}^{m}\right)}=+g_{0}\right.$ for some particular simplex E_{0}^{m} in K and $C_{m}\left(E^{m}\right)=0$ for $E^{m} \neq \pm \mathbb{E}_{0}^{m}$.

Boundary Operator

The boundary operator F defines a homomorphism of the group $C_{m}(M, G)$ Into the group $C_{m \times 1}(M, G)$ as follows:

$$
\mathrm{Fg}_{0} \mathrm{E}_{0}^{\mathrm{m}}=\sum_{\mathrm{E}^{\mathrm{mol}}}\left[\mathrm{E}_{0}^{\mathrm{m}}, \mathrm{E}^{\mathrm{m}-1}\right] \mathrm{g}_{0} \mathrm{E}^{\mathrm{m}-1}
$$

This is extended linearly to arbitrary m-chains by

$$
F C_{m}=F\left(\Sigma_{i} g_{i} E_{i}^{m}\right)=\Sigma_{i} F\left(g_{i} E_{i}^{m}\right) .
$$

Also for any chain C_{m} in $C_{m}(M, G), F\left(F C_{m}\right)=0$. That is, $F\left(F C_{m}\right)$ is the ($\mathrm{m}-2$)-chain with value zero on each ($\mathrm{m}-2$) simplex.

Cycle

An m-dimensional cycle on M with coefficients in G is a chain z_{m} in $C_{m}(M, G)$ with the property that $\left.F^{\prime} z_{m}\right)=0$, the ($m=1$) -chain $\Sigma 0 \cdot E_{i}^{m}$. The collection of all mocycles is precisely the kernel of the homomorphism' F in the group $C_{m}(M, G)$ and hence is a subgroup of $C_{m}(M, G)$. This subgroup is the madimensional cycle group of M with coefficients in G and is denoted by $Z_{m}(M, G)$.

A Oodimension chain C_{O} is a cycle if and only if $C_{0}=\Sigma g_{i} E_{i}^{C}$ implies that $\Sigma g_{i}=0$ in the group.

Boundary

An moboundary on M with coefficients in G is a b_{m} chain in $C_{m}(M, G)$, such that there exists a C_{m+1} chain where $F\left(C_{m+1}\right)=b_{m}$.

The set of all m-boundaries is a subset of $Z_{m}(M, G)$ since $F\left(F\left(C_{m+1}\right)\right)$ $=0$. Thie set is a subgroup denoted by $B_{m}(M, G)$, the group of m woundaries of M with coefficients in G.

For FC_{O}, efther of two conventions may be made: (1) Define FC_{0} $=0$, ore (2) Augument the complex under consideration by an ideal simw plex C_{-1} and for all C_{0} of the complex let $\mathrm{FC}_{\mathrm{O}}=\mathrm{C}_{\mathrm{m}}$. If case (2) is used, the complex is called augumented.

Homology Group

Since both $B_{m i}(M, G)$ and $Z_{m}(M, G)$ are abelian groups we can define the dutference group $Z_{m}(M, G)-B_{n}(M, G)$, which is called the m homology groups of M over G and is denoted by $H_{m}(M, G)$. Each element of $H_{m}(M, G)$ is an equivalence class $\left[z_{m}\right]$ of m-cycles where z_{m}^{1} and z_{m}^{2} are in the same class if and only if the chain $z_{m}^{1}-z_{m}^{2}$ is an m-boundary. This equivalence relation is called homology and is written $\mathrm{z}_{\mathrm{m}}^{1} \infty \mathrm{z}_{\mathrm{m}}^{2}$. If $\mathrm{z}_{\mathrm{m}}^{0}$ is an m-boundary we write $\mathrm{z}_{\mathrm{m}}^{0} \sim 0$.

Example 3.3. Let M be the complex consisting of a single 3-simplex E^{3} together with all of its faces. This complex is the closure of a simplex E^{3} and is denoted by ${ }^{3} \mathrm{Cl}\left(\mathrm{E}^{3}\right)$." We will orient the complex M by choosing a fixed ordering of its vertices v_{0}, v_{1}, v_{2}, and v_{3} and letting this ordering induce the positive orientation of the simplexes. In this way, we have the following list of (representatives of) the oriented simplexes of M :

$$
+\mathbb{E}_{1}^{I}=\left(v_{2} v_{3}\right), \quad+\mathbb{E}_{3}^{I}=\left(v_{0} v_{3}\right), \quad+\mathbb{E}_{5}^{I}=\left(v_{0} v_{2}\right),
$$

$$
\begin{array}{ll}
+E_{2}^{1}=\left(v_{1} v_{3}\right), & +E_{4}^{1}=\left(v_{1} v_{2}\right), \quad+E_{6}^{2}=\left(v_{0} v_{1}\right), \\
+E_{1}^{2}=\left(v_{2} v_{2} v_{3}\right), & +E_{3}^{2}=\left(v_{0} v_{1} v_{3}\right), \quad+E^{3}=\left(v_{0} v_{1} v_{2} v_{3}\right) \\
+E_{2}^{2}=\left(v_{0} v_{2} v_{3}\right), & +E_{4}^{2}=\left(v_{0} v_{1} v_{2}\right) .
\end{array}
$$

(We ont a consideration of dimension zero.)
Now let G be any abelian group. The only 3-chains on M are the elementary chains $G E^{3}$, hence the chain group $C_{3}(M, G)$ is isomorphic to G. Since there are no 4 asimplexes in $M, C_{4}(M, G)=0$, and hence $B_{3}(M, G)=\mathrm{FC}_{4}(M, G)=0$. It follows that $H_{3}(M, G)=Z_{3}(M, G)$.

But let gE^{3} be any 3-chain. Computing its boundary we have

$$
\begin{aligned}
F\left(g E^{3}\right) & =\Sigma_{1=I}^{4}\left[\mathrm{E}^{3}, \mathrm{E}_{1}^{2}\right] g \mathrm{E}_{1}^{2} \\
& =g E_{1}^{2} \cdot g \mathbb{E}_{2}^{2}+g \mathrm{E}_{3}^{2}-g \mathbb{E}_{4}^{2} .
\end{aligned}
$$

It is easy to show that, in the present case, $\left[\mathrm{E}^{3}, \mathrm{E}_{i}^{2}\right]=(-1)^{i+1}$. This chain is the zero 2-chain if and only if $g=0$. Therefore, the only 3-cycle on M is the trivial 3-cycle $O E^{3}$. Hence, $Z_{3}(M, G)=H_{3}(M, G)$ is trivial. This illustrates one situation in which we obtain a trivial homology group, namely, the case where we have no cycles except the trivial cycle.

Another situation that results in a trivial homology group occurs when every cycle is a boundary, for if $Z_{m}(M, G)=B_{m}(M, G)$, then $Z_{m}-B_{m}=H_{m}=0$. This situation can be illustrated with this same example, Suppose that the 2-chain $\Sigma_{i=1}^{4} g_{i} E_{i}^{2}$ is a 2ocycle. Computing its boundary we have

$$
\begin{aligned}
F\left(\sum_{i=1}^{4} E_{i} E^{2}\right) & =\sum_{i=1}^{4} F\left(E_{i} E_{i}^{2}\right) \\
& =\sum_{i=1}^{4} \Sigma_{j=1}^{6}\left[E_{i}^{2}, E_{j}^{I}\right] g_{i} E_{j}^{1} \\
& =\sum_{j=1}^{6}\left(\sum_{i=1}^{4}\left[E_{i}^{2}, E_{j}^{1}\right] g\right) E_{j}^{1}
\end{aligned}
$$

If this is to be the zero l-chain, then for each fixed index j the sum

$$
\Sigma_{i=1}^{4}\left[E_{i}^{2}, E_{j}^{1}\right] g_{i}
$$

must be zero. For instance, if $j=1$ we have

$$
\left[E_{1}^{2}, \frac{E_{1}^{1}}{1}\right] g_{1}+\left[E_{2}^{2}, E_{1}^{1}\right] g_{2}+\left[E_{3}^{2}, E_{1}^{1}\right] g_{3}+\left[E_{4}^{2}, E_{1}^{1}\right] g_{4}=0
$$

But E_{1}^{1} is not a face of E_{3}^{2} and \mathbb{E}_{4}^{2}, so the last two terms are zero. Furthermore, $\left[E_{1}^{2}, E_{1}^{1}\right]=+1$ and $\left[E_{2}^{2}, E_{1}^{1}\right]=+1$, hence this equation reduces to nothing more than $g_{1}+g_{2}=0$ or $g_{2}=-g_{1}$. Similarly, working with $\mathrm{E}_{6}^{\mathrm{I}}$ we obtain $\mathrm{g}_{4}=\lg _{3}$, and working with $\mathrm{E}_{3}^{\mathrm{I}}$ we show that $g_{3}=g_{2}$. This means that $\Sigma_{i=1}^{4} g_{i} E_{i}^{2}$ can be a 2-cycle only if $g_{1}=g_{3}=$ $-g_{2}=-g_{4} ;$ that is, the only 2-cycles are of the form $\mathrm{gF}_{1}^{2}-\mathrm{gE}_{2}^{2}+$ $\mathrm{gE}_{3}^{2}-\mathrm{gE}_{4}^{2}$. But we have already seen that such a 2 -cycle is the boundary of the 3-chain $g E^{3}$. Hence, eyery 2-cycle on M is a 2-boundary, and it follows that $H_{2}(M, G)=0$.

By an analogous but much longer method, the reader can prove that $Z_{1}(M, G)=B_{1}(M, G)$ and thereby show that $H_{1}(M, G)$ is also trivial. Geometrically, the complex M is carried by a homeomorph of the 3-cube I^{3} and is a 3 -cell. Granting that the homology groups are topological invariants, we have found that the homology groups of a 3ocell are trivo ial for dimensions greater than zero.

Relative Fonology Groups

If M is an abstract simplician complex and is is closed
 modulo T provided FC_{p} is a chein on L, that is, NC_{p} has nonzero. coefficients only on simplexes of L. A peboundery of M modulo L is a chain b_{n} such that there exists a C_{n+1} chain where $F C_{n+1}=b_{n}+b_{n}^{1}$, $D_{n}^{1} \in$ L. We form the relatipe homology group of $M \bmod L$ as $H(K / L)=$ $Z_{p}\left(K / L_{M}\right)=B_{p}(K / L)$ By these definitions, a relative chein z_{p} is a rel. ative cycle if and only if $\mathrm{Tr}_{\mathrm{p}}=0$. That is, a chain on M represents a relative cycle $i f$ and only if its boundary lies in to Similariy b_{p} is a relative boundary if and only if there is a chain C_{m+1} such that $b_{p}=F C_{p+1}$ lies in L, that is, b_{p} together with some chain in I constitutes the boundryy of a chain of Mo We also have equivalence classes of p-cycles mod L. Two p-cycles z_{p}^{1} and z_{p}^{2} are in the same class if and only $2 f$ $z_{D}^{1}-z_{p}^{2}$ is a poboundary mod L_{0} This will be dem noted by $z_{p}^{1} \approx z_{p}^{2} \bmod I_{0}$

Rexinnement or a Covering

A covering $\{T\}$ of space M is said to be a refinement of a covering $\{U\}$ if for each element V of $\{V\}$ there is an element U of $\{U\}$ such that $U S$ V. We write thim as $\{U\}<\{V\}$.

Projection

If $\{V\}>\{U\}$ in Σ, then a projection is a simplicial mapping π of $\{V\}$ into $\{U\}$. It is defined by taking $\operatorname{lt}(V)$ to be any fixed element U such that $V \in U$. There may be several elements of $\{U\}$ con
taining the set V and hence several choices for $f(V)$. This means that there may be many projections of $\{V\}$ into $\{U\}$. However, if $\{U\}<\{V\}$ In Σ, then any two projections x_{2} and π_{2} of $\{V\}$ into \{U\} induce the same homomorphism of $H_{p}(V, G)$ into $H_{p}(U, G)$. That is, π_{1} and π_{2} caincide.

Cech Cycle

A podimensional Cech cycle of a space M is a collection $z_{p}=$ $\left\{z_{p}(U)\right\}$ of pocycles $z_{p}(U)$, one from each and every cycle group $Z_{p}(U, G)$, $\{U\}$ in $\Sigma(M)$, with the property that if $\{U\}<\{V\}$, then $\pi Z_{p}(V)$ is homologous to $z_{p}(U)$. Each cycle $z_{p}(U)$ in the collection z_{p} is called a coordinate of the Cech cycle. Hence a Cech cycle has a coordinate on every covering of the space M.

The addition of Cech cycles is defined in a natural way by setting

$$
\left\{z_{p}(U)\right\}+\left\{z_{p}^{1}(U)\right\}=\left\{z_{p}(U)+z_{p}^{1}(U)\right\}
$$

where the adaition on the right is that of chains on the complex \{U\}。
The homology relation between Cech cycles is defined as follows: First a Cech cycle $z_{p}=\left\{z_{p}(0)\right\}$ is homologous to zero on M (or is a bounding Cech cycle) if each coordinate $z_{p}(\mathrm{U})$ is homologous to zero on the covering $\{U\}$, for all $\{U\}$ in $\Sigma(M)$. In other words, $\left\{z_{p}(U)\right\}$ bounds if and only if there is a ($p+1$) uchain C_{p+1} (U) on each covering $\{U\}$ in $\Sigma(M)$ such that the coordinate $z_{p}(U)=F C_{p+1}(U)$. Then two Cech cycles z_{p} and z_{p}^{l} are homologous Cech cycles if their difference $z_{p} \cdots z_{p}^{1}$ is homologous to zero. The homology relation defined above is an equivalence relation on the set of all Cech p-cycles. The correspond ing equivalence classes $\left[z_{p}\right]$ of homologous Cech p-cycles are the elew
ments of the $p^{\text {th }}$ Gech homology groups $X_{F}(M, G)$, the group operation being defined by

$$
\left[z_{p}\right]+\left[z_{p}^{1}\right]=\left[z_{p}+z_{p}^{1}\right]_{0}
$$

Cech homology groups are topological invariants of the space M. If f is a homeomorphism of M to M^{\prime}, then for each covering \{U\} in $\Sigma(M)$ the collection $\{\mathbb{N}(0)\}$ of all images of elements of $\{U\}$ is an open covering of M^{\prime} and conversely. The complexes $\{U\}$ and $\{f(U)\}$ are isomorphic, and the homology groups $H_{p}(M, G)$ and $H_{p}\left(M^{\prime}, G\right)$ are isomorphic.

Cofinal Family of Coverings of M

A subcollection $\Sigma(M)$ of $\Sigma(M)$ is called a cofinal family of coverings of M provided that for every covering $\{U\}$ of $\Sigma(M)$ there is some covering $\left\{U^{\prime}\right\}$ in $\Sigma^{\prime}(M)$ such that $\left\{U^{\prime}\right\}>\{U\}$.

Given such a cofinal family $\Sigma^{\prime}(M)$, we may go through the development of Cech theory again, restricting the cycles, homologies, et cetera, to be elements of $\Sigma^{\prime}(M)$. The Cech groups obtained from $\Sigma^{\prime}(M)$ are iso. morphic to the full Cech groups $H_{p}(M, G)$.

The fixed-point theorens for transformations of finite periods which assert that fixed points must exist, if' a space M under transformation is simply connected in some sense, seem to be the simplest to prove.

The first theorem of this sort was proved by P.A. Smith in 1934. Since that time Samuel Thienberg and P.A. Smith have given difierent proots, with some generalization, for the same theorem. The proof that is given here follows the second one given by P. A. Smith in [17].

To prove the theorem wefirst show the existence of a cofinal family of coverings which has desirable properties. This family, being com final, is sufficient for the study of the spece M. Then different types of chains, cycles, and boundaries are defined. These new chains, called pochains, are shown to have certain properties. We then assume that the space under investigation has no fixed points under a periodic transformation. This assumption leads to a result which contradicts a property of the ochains.

Before proving the existence theorem on fixed-points, we shall give some preliminary definitions and prowe some needed theorems. The theo orems on the existence of a type refinement are of particular interest.

Preliminaries

For the remainder of this paper M will denote a Hausdorif space,

T a homeomorphic transformation of into itseli: The transformation T. will always be periodic of period q. The identity itself will not be considered as being periodic. If A is a subset of M, the sets $A, T(A), \cdots, T^{q-1}(A)$ will be called the T-images of A. Denote $q=1$ $U(A)$ by σA. The totality of fixed points will be denoted by L. $i=0$

Definition 4.1. A subset K of M is invariant if $T(K)=K$ 。

Lemma 4.1. If $A \in M$, then σA is invariant.
Proos. We have $T(\sigma A)=T\left(A \cup T(A) U \cdots \cup T^{p-1}(A)\right)=(T(A) U$ $\left.T^{2}(A) \cup \cup U T^{p}(A)\right)$, therefore $T(\sigma A)=\sigma A$, since $T^{p}(A)=A$.

Definition 4.2. The transformation T is primitive if each point of $\mathrm{M}-\mathrm{L}$ has q distinct T-images.

Lemma 4.2. The transformation T is primitive if $q=p, p a$ prime.

Proof. Assume $\mathbb{T}^{\mathcal{I}}(x)=T^{j}(x), \quad x \in M-L$, and $i<j<r<p$, where r is any other number such that $T^{i}(x)=T^{r}(x)$. Then $T^{k}(x)=x$, where $f-1=k<p$. But $\mathbb{T}^{p}(x)=x$ since T has period p. Therew fore $T^{k \ell}(x)=T^{p}(x)$, which implies p is not prime. This is true be cause k is the smallest integer such that $T^{k}(x)=x$, hence $p=\ell k$ for some ℓ 。

Definition 4.3. If M is a closed finite Euclidean simplicial complex whose simplexes are permuted among themselves by T, we say (M, T) is simplicial. The totality of invariant simplexes will be denoted by M_{I}.

Definition 4.4. A simpliciel ($M, ~$ T $)$ will be called pximitive if each simplex in $M-M_{I}$ has q distinct (hence mutually exclusive) T-imegen.

Lema 4.3. A simplicial (M, T) is primitive if $q=p, p$ a prime.

Proof. See Lemma 4.2.

Definition 4.5. A simplicial (M, T) is regular if the subcomplex M_{I} is closed.

Definition 4.6. A systern will mean a finite collection $\{U\}$ of point sets, in M. The component sets of a system $\{U\}$ are the Uwertices. A'system where the vertices are permuted among themselves by T is called a pasystem. The vertices of $\{U\},\{T(U)\}, \cdots \cdots$, $\left\{T^{q-1}(U)\right\}$ baken together form a system denoted by or\{U\}。

Lema 4.4. The collection $\sigma\}\}$ is a Tasystem.
Proof. Let U_{σ} be any vertex of $\sigma\{U\}$ 。 Then $U_{\sigma}=T^{\mathcal{1}}(U)$ where $U \in\{U\}$, and hence $T\left(U_{\sigma}\right)=T^{i+1}(U)$. But $T^{i+1}(U) \in \sigma\{U\}$ by definition of ofU\}. Therefore the vertices of $\sigma\{\mathbb{U}\}$ are permuted among themselves.

Let $\{U\}$ be a Twsystem and write $\{U\}=\left\{U^{\prime}\right\} \cup\left\{U^{p}\right\}$, where $\left\{U^{\prime}\right\}$ consists of the invariant U-vertices while $\left\{U^{\prime!}\right\}$ denotes the remaining U-vertices.

Note 4.2. The collections $\left\{U^{\prime}\right\}$ and $\left\{U^{\prime \prime}\right\}$ are Tasystems.

Definition 4.7. A wsystem $\{U\}$ is primitive if each $U^{i p}$-vertex
hes a mutually exclusive T－images．

Definition 4．8．Let $\left\{\mathrm{U}_{i}\right\}$ and $\left\{\mathrm{U}_{\mathrm{g}}\right\}$ be Pwsystems with $\left\{\mathrm{U}_{\mathrm{i}}\right\}>$ $\left\{U_{j}\right\}$ ：A projection $x:\left\{U_{i}\right\} \rightarrow\left\{U_{j}\right\}$ is a Paprojection if $x T=T r$ ．

Lemma 4．5．A．We projection $\pi:\left\{U_{i}\right\} \Rightarrow\left\{U_{j}\right\}$ carries U_{i}－vertices into U^{g} vertices．

Theorem 4．1．Let $\left\{U_{i}\right\}$ and $\left\{U_{j}\right\}$ be Imsystems with $\left\{U_{i}\right\}>\left\{U_{j}\right\}$ 。 If $\left\{W_{j}\right\}$ is primitive，there exists a Toprojection $\pi:\left\{U_{i}\right\} \rightarrow\left\{U_{j}\right\}$ 。

Proof．Write $\left\{v_{i}\right\}=\left\{U_{i}^{1}\right\} \cup\left\{U_{i}^{2}\right\}$ where $\left\{U_{i}^{2}\right\}$ consists of all U_{i}－vertices which are contained in $U^{\prime \prime}{ }_{j}$ vertices and $\left\{U_{i}^{l}\right\}$ consists of all U_{i}－vertices which are contained in $U^{\prime}{ }_{j}$ vertices．Then $\left\{U_{i}^{l}\right\}$ and $\left\{U_{i}^{2}\right\}$ are T_{∞} systems and refinements of $\left\{U_{j}{ }_{j}\right\}$ and $\left\{U^{\prime \prime}{ }_{j}\right\}$ ，respective Dy．Moreover，since $\left\{U_{j}\right\}$ is primitive，each $U^{\prime \prime} j^{\text {o vertex has }} q$ mutually exclusive images and the same is true with U_{i}^{2}－vertices since they are contained in the $U^{t y}$ vertices．Then $\left\{U_{i}^{2}\right\}$ can be represented without repetition as consisting of the T mages of a suitably chosen subsystem of its vertices，say，$U_{i_{1}}^{2}, U_{i_{2}}^{2}, \circ \circ, U_{i_{5}}^{2}$ 。 Let π_{2} be a projection of this subsystem into $\left[0_{j}^{2}\right\}$ and extend π_{2} over $\left\{0_{i}^{2}\right\}$ by the formula $\pi_{2}^{T} T^{q}\left(U_{i_{1}}^{2}\right)=T^{q} \pi_{2}\left(U_{i_{1}}^{2}\right), q=(1,2, \cdots, p \infty 1)$ ．In this manner π_{2} becomes a Toprojection，from $\left\{U_{i}^{2}\right\} \rightarrow\left\{U^{B \prime}{ }_{j}\right\}$ ．Now let π_{1} be a projection that takes all T－images of a U_{1}^{1} vertex into the same U^{0} jovertex．Thus x_{1} is then a To projection since the U^{1} vertices are invariant．Taken together，π_{1} and π_{2} define a Toprojection from $\left\{U_{i}\right\} \rightarrow\left\{U_{j}\right\} 。$

We are particulardy concerned with systems that are finite open coverings of M. These finite open coverings will be referred to as coyexings.

Theorem 4.2. Every covering $\{U\}$ of M is refined by a Tocovering.
Proof. Let $\{G\}$ be any covering of M, and $\{V\}$ be the covering made of intersections of $\{U\},\{T(T)\}, \cdots,\left\{T^{p-1}(U)\right\}$. Then $\{V\}>$ $\{U\}$ since each V is in a V. If V is any element of $\{V\}$, then $V=U_{2} \cap T\left(U_{2}\right) \cap \cdots \cap T^{p-1}\left(U_{p}\right)$ where $U_{1} \in\{U\}$. Now $T(V)=T\left(U_{1}\right)$ $\cap M^{2}\left(U_{2}\right) \cap \cdots \cap T^{p}\left(U_{p}\right)$ which is another element of $\{V\}$. Therefore $\{V\}$ is a T-covering.

Note 4.2. If $q=p, p$ a prime, then for every covering $\{U\}$ of a space M there exists a primitive T covering $\{V\}$ such that $\{V\}>$ $\{U\}$. This is an accumulation of results up to this point.

Special Systems and Coverings

Let $\{U\}$ be a T -system with X as its nerve. (See Example l, Chapter IX.) Then T induces in X a simplicial transformation T_{x} which is the identity or else is of period r, r divisor of q. Dew note by X_{I} the totality of X-simplexes which are invariant under T_{X} and by X_{L} the totality of $X-s i m p l e x e s$ which meet L 。

Definition 4.9. A T-system $\{U\}$ satisfies condition I_{a} if $\left\{U^{i}\right\}$ consists precisely of those U-vertices which meet $L ;\{U\}$ satisfies I_{b} if all nonempty intersections of U^{\prime}-vertices meet I. A wacovering which satisfies I_{a} and I_{b} will be called special.

Lema 4.6. If the corering $\{0\}$ is primitive and special, then $X_{I}=X_{L}$ and $\left(X, T_{X}\right)$ is primitive and regular.

Proor, A non-inyariant Xosimplex E has at least one non* invariant rertex U, the T-images of U are mutually exclusive sets since $\{U\}$ is primitive Assume that $\mathrm{m}_{\mathrm{x}}^{\mathrm{q}}(\mathrm{E})=\mathrm{E}$. Then T^{q} (Kernel $E)=$ Kernel E, which implies $T^{\mathrm{q}}(\mathrm{U}) \cap \mathrm{U} f \phi$. Therefore the T images of E are distinct, hence (X, T_{X}) is primitive, The vertices of an X_{I} simplex E are permuted among themselves by T_{x} and since as U vertices they have a non-empty intersection, each U-vertex of E must be invariant by the primitivity of $\{0\}$. The condition I_{a} implies that E is vertexwise invariant and ($\mathrm{X}, \mathrm{T}_{\mathrm{X}}$) is therefore regular. Moreover, condition I_{b} implies that E meets $L_{\text {, }}$ hence $X_{I} \subset X_{I}$. Also, the vertices of an X_{L}-simplex E_{L}, since they meet L , are in variant by L_{a}. Therefore, E_{L} is invariant and $X_{L} \subset X_{I}$ Hence X_{I} $=X_{L}$.

Definition 4.10. The set M has dimension less than or equal to m (dim M $\leq m$) if every covering is refined by a covering, the dimen sion of whose nerve does not exceed. m.

Theorem 4.3. If M is compact, T primitive, and if dim $M \leq m_{\text {, }}$ then every covering $\left\{\mathrm{U}_{\mathrm{g}}\right\}$ is refined by a special primitive covering. $\left\{U_{i}\right\}$ such that $\operatorname{dim}\left(X_{i}-X_{i I}\right) \leq k, \quad k=p m+p=1$. (The nerve of $\left\{U_{i}\right\}$ is $X_{i} \cdot$)

We shall first prove three lemmas in which it is convenient to say that a Twcovering $\{U\}$ satisfies L_{c} if, mong the Uwertices which meet L, each contains a point of L not contained in any other.

Lemer 4．7．If is compact and in primtive；then every covering $\left\{\mathbb{U}_{j}\right\}$ is refined by primitive Tecorering satisfying I_{a} and I_{c}

Proof．Let x be an erbitrary point of I and $U_{j}(x)$ be any U－ vertex containing x ．Then $O(x)$ ，the intersection of the T－images of $U_{j}(x)$ ，is an Lnvariant neighborhood of x such that $O(x)$ e $U_{j}(x)$ ． Sinme M is compact and I is closed，there exists a finite set of neighborhoods $\{O(x)\}$ say $O_{1}, O_{2}, \cdots, O_{s}$ such that $\operatorname{Le} U_{i} O_{1}$ ． Since wh is primitive and M is Housdoref，an arbitrary point y in the closed set $M-U O_{i}$ possesses a neighborhood $R(y)$ with p mu－ tually exciusive mpimages．These images do not meet L ，for it they did they would not be mutually exclusive．Now for every y in M ． $\bigcup_{i} O_{i}$ there exists a $U_{j} \in\left\{U_{j}\right\}$ such that $T^{i}(y) \subset T^{i} U_{j}$ ．Choose $R(y)$ so that $\mathbb{T}^{i} R(y) \in \mathbb{T}^{i} U_{j}$ and $R(y)$ satisfies the above．This can be done because T is a homeomorphism and M is a compact Hausdorff space， The system of T images of $\mathrm{R}(\mathrm{y})$ is a refinement of $\left\{\mathrm{U}_{\mathrm{j}}\right\}$ 。 Let R_{2} ， \cdots, R_{t} be a finite set of the $R(y)$＇s such that $M=\bigcup_{i} O_{\mathcal{L}} \subset \bigcup_{j} R_{j}$ 。 The collection $\left\{O_{i}\right\}$ together with the Twimages of the collection $\{R(y)\}$ forms a Tocovering $\left\{U_{1}\right\}$ ，such that $\left\{U_{1}\right\}>\left\{U_{j}\right\}$ ．Thus $\left\{U_{1}\right\}$ is primitive，and satisfies $I_{\text {a }}$ ．

Now suppose that $\left\{U_{i}\right\}$ is a covering which is a modification of $\left\{\mathrm{U}_{1}\right\}$ obtained by replacing each O_{1} by an invariant open set Q_{i} with $Q_{i} \in O_{i}, Q_{i} \cap L \notin \emptyset$ ．Then $\left\{U_{i}\right\}$ ，like $\left\{U_{i}\right\}$ ，is a refinement of $\left\{U_{j}\right\}$ ， is primitive and satisfies L_{E} ．We shail show that this modification can be carried out in such a way that the resulting $\left\{U_{i}\right\}$ also satisfies L_{c} 。 Choose distinct points $a_{1}, a_{2}, \cdots, a_{s}$ with $a_{i} \in O_{i} \cap L$ ．Then choose mutually exclusive invariant nerghborhoods $A_{1}, A_{2}, \circ \circ, A_{8}$ of
$a_{1}, a_{a}: \cdots, a_{s}$ such that for each i, \bar{A}_{i}, is contained in the intersection of these $0^{\prime} s$ which contain a_{1}. This can be done since a compact Hausdorff space is normal. Now consider the invariant open sets

$$
Q_{i}=O_{i}-U\left\{\bar{A}_{j} / j \neq 1\right\}
$$

The set Q_{i} contains Q_{j} if and only if $i=j$ and $\bigcup_{i} Q_{i} \subset \bigcup_{i} O_{i}$ 。 Also, $\bigcup_{i} Q_{1} \supset \bigcup_{i} O_{i}$. For a point $x \in O_{i}$ either is not contained in any $A_{j}(j \neq 1)$ in which case $x \in Q_{1}$, or it is contained say in A_{1} (1 $\neq 1)$ in which case $x \in Q_{1}$. In either case $x \in \cup_{1} Q_{1}$. Thus we have shown that $U Q_{1}=U_{i} O_{1}$, and hence that the system $\left\{U_{i}\right\}$ obtained from $\left\{U_{1}\right\}$ by replacing O_{i} by Q_{i} is a covering refinement of $\left\{U_{j}\right\}$. Each vertex Q_{1} meets L since $a_{i} \in Q_{1}$. Hence the passage from $\left\{U_{1}\right\}$ to $\left\{U_{i}\right\}$ is of the type described above and we conclude that $\left\{U_{i}\right\}$ is primitive and satisfies L_{a}. Moreover, O_{i} contains a_{j} if and only if $1=d$, so $\left\{U_{1}\right\}$ satisfies L_{c} o

Lemma 4.8. If M is compact, T primitive and dim $M \leq m$, then every primitive T cockering $\left\{U_{j}\right\}$ satisfying L_{a} and L_{c} is refined by a covering $\left\{\mathrm{U}_{\mathrm{i}}\right\}$ of the same sort and such that $\operatorname{dim} \mathrm{X}_{\mathrm{i}} \leq \mathrm{k}, \mathrm{k}=$ $p m+p-1$.

Proof. The hypothesis dim $\mathrm{M} \leq \mathrm{m}$ implies the existence of a cove bring $\left\{U_{j}^{0}\right\}>\left\{U_{j}\right\}$ with $\operatorname{dim} X_{j}^{0} \leq m_{0}$. Let $\left\{U_{1}\right\}=\sigma\left\{U_{j}^{0}\right\}$, then dim $X_{1} \leq k_{0}$ Moreover, $\left.T\left\{U_{j}^{O}\right\}>\mathbb{T}^{0} U_{j}\right\}$ and $T\left\{U_{j}\right\}=\left\{U_{j}\right\}$ since $\left\{U_{j}\right\}$ is a $T=$ covering. Therefore $\left\{U_{1}\right\}=\sigma\left\{U_{j}^{O_{j}}\right\}>\left\{U_{j}\right\}$. Write $\left\{U_{j}\right\}=\left\{U_{j}\right\} \cup\left\{U_{j}^{\prime \prime}\right\}$ where, as always, $\left\{U^{0}{ }_{j}\right\}$ consists of the invariant U_{g} overtices. Write $\left\{U_{1}\right\}=\left\{U_{1}^{1}\right\} \cup\left\{U_{1}^{2}\right\}$ where $\left\{U_{1}\right\}$ consists of all U_{1}-vertices which are subsets of $U^{\gamma}{ }_{j}$-vertices and $\left\{U_{1}^{2}\right\}$ consists of the remaining vertices.

Then $\left\{U_{1}^{7}\right.$ and $\left\{U_{1}^{2}\right\}$ ere Twaystems mither $\left\{U_{1}^{\}}\right\}>\left\{U_{j}^{i}\right\}$ and $\left\{U_{1}^{2}\right\}>$

 vertices which constitute $\pi^{w I_{j}}{ }_{j}$. Let $\left\{U_{1}^{11}\right\}=\left\{0_{i}\right\}$. Then $\left\{U_{1}^{11}\right\}>$ [U' $]^{\prime}$] slice the only sets projected into $U_{j}{ }_{j}$ axe the ones contained in U^{\prime}. The U_{L}^{11} vertices are open sets since U_{1}^{11} is the union of sets from $\left\{U_{1}^{1}\right\}$, and they are invariant since π is s Toprojection. The union of ell U_{1}^{11} vertices is identical with the union of the U_{1}. vertices since all U_{2} vertices were projected into $\left\{U_{j}\right\}$. Hence, $\left\{U_{1}^{1}\right\}$ and $\left\{U_{2}^{2}\right\}$ together form a T covering $\left\{U_{i}\right\}$ such that $\left\{U_{i}\right\}>$ $\left\{U_{j}\right\}$ and where $\left\{U_{i}^{i}\right\}=\left\{U_{1}^{I I_{i}}\right\}>\left\{U_{j}^{\prime}\right\}$ and $\left.\left\{U_{i}^{\prime \prime}\right\}=\left\{U_{I}^{2}\right\}>\left\{U^{\prime \prime}\right\}_{j}\right\}$ The primitivity of $\left\{U_{j}\right\}$ and the relation $\left\{U^{\prime \prime}{ }_{i}\right\}>\left\{U^{\prime \prime}{ }_{j}\right\}$ imply that $\left\{U_{i}\right\}$ is primitive.

We assert that $\left[U_{i}\right\}$ satisfies L_{a}. A U_{i} w vertex which meets I must be a $U_{i}^{\prime \prime}{ }_{i}$ vertex, since each $U^{\prime \prime}{ }_{i} \in U^{\prime \prime}{ }_{j}$, which does not meet L. Conversely, every $U_{i}{ }^{\text {w vertex meets }} L$. Each $U_{i}{ }_{i}$ is an O_{i}, which is $x^{-I_{1}} j_{j}$ for some $U^{\prime} j_{j}$. The vertex $U^{\prime} j_{i}$ meets $I_{\text {(condition }} L_{a}$ for $\left.\left\{U_{j}\right\}\right)$ and $U_{j} j_{1}$ contains a point a_{i} of L not contained in $U_{j}^{\prime}{ }_{j} \quad j \neq i \quad$ condition L_{c} for $\left[U_{j}\right\}$). Therefore, $\pi^{-1} U_{j}^{\prime}=U_{i}^{\prime}$ contains a_{i} and U_{i} meets L_{i} Thus our assertion is proved.

Now $\left\{U_{i}\right\}$ was formed from $\left\{U_{1}\right\}$ by replacing a number of vertices by the union of those vertices. Since this does not raise the dimension of the nerve, we have dim $X_{i} \leq X_{1} \leq k$. A primitive covering satisfying I_{c} is obtained in the same way as in Lemma 4.7, by replacing the vertues of the first covering with suitable subsets of themselves. This operation does not raise the dimension of the nerve and hence it is ap-
plied to $\left\{U_{i}\right\}$ to yield the required refinement of $\left\{U_{j}\right\}$.
Lemma 4.9. If M is compact; T primitive, and dim $M m$, then for every primitive Trcovering $\left[U_{j}\right\}$ satisfying L_{a}, L_{c} and having dim $X_{f} \mathrm{k}$, there exists a special primitive covering $\left\{U_{i}\right\}$ such that $\left\{U_{i}\right\}$ $>\left\{U_{j}^{*}\right\}_{j}, \operatorname{dim}\left(X_{i}=X_{i I}\right) \leq k$, where $\left\{U_{j}^{*}\right\}$ denotes the covering $\left\{5 t \mathrm{U}_{\mathrm{j}}\right\}^{\circ}$

Proof: Let $\left\{U_{j}\right\}=U_{j_{1}}, \cdots, U_{j_{1}}$ and for each i choose a point a_{i} contained in $L \cap U^{\prime}{ }_{j_{i}}$, where $U_{J_{i}} \in\left\{U_{j}^{\prime}\right\}$, but not in $U^{\text { }}{ }^{\text {jg' }} \mathfrak{j} \notin i$ (condition L_{c}). Choose invariant open sets A_{1}, A_{2}, \cdots, A_{s} such that $a_{i} \in A_{i} \in U^{\prime}{ }_{j_{i}} ; A_{i} \cap U^{\prime}{ }_{j_{j}}=\varnothing$ for $1 \neq j$, and such that
 meet I_{0}) Then $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$. For each i choose a set of A's by the following rule: A_{j} is in the $i^{\text {th }}$ set if and only if $U^{\prime} j_{i} \cap$ $\mathrm{U}^{\text {g }}$ j $\neq \phi$. Let B_{I} be the union of the $A^{\prime} \mathrm{s}$ in the $\mathrm{I}^{\text {th }}$ set and let (1)

$$
O_{i}=U_{j_{i}} U B_{i} .
$$

The set O_{i} together with the $V^{\prime \prime}{ }_{j} \times$ vertices forms a covering $\left\{U_{i}\right\}$, and since O_{1} is invariant, then $\left\{U^{8}{ }_{i}\right\}=\left\{O_{i}\right\}$ and $\left\{U^{\prime \prime}{ }_{i}\right\}=\left\{U^{\prime \prime}{ }_{j}\right\}$. Hence $\left\{U_{i}\right\}$ is primitive and $\left\{U_{i}\right\}>\left\{U_{j}\right\}$. Each O_{i} meets L because $U^{*}{ }_{j 1}$ does, hence $\left\{U_{i}\right\}$ satisfies L_{a}.

We assert that $\left\{U_{1}\right\}$ satisfies I_{b}. Suppose

$$
J=o_{q} \cap o_{r} \cap \cdots \cap o_{t} \nLeftarrow \phi .
$$

If $U^{\gamma}{ }_{\mathrm{j}} \cap \cdots \cdots \mathrm{U}_{j_{t}} \neq \varnothing$, we have from (1) and the definition of B_{i},

$$
A_{q} \cup A_{r} \cup \cdots \cup A_{t} \subset O_{q} \cap \cdots \cap O_{t}=J
$$

so that J contains a_{q}, \ldots, a_{t} and hence meets L. If $U{ }_{j} \cap \ldots$ $\cap U^{\prime} j_{t}=\phi$, it follows from (1) that J is the intersection of sets of
 exclusive sets A_{1} ，it fallows thet J is a union of $A^{\circ} s$ ，hence meets I and the assertion is proved．

Now we need to show that $\operatorname{dim}\left(X_{i}-X_{i I}\right) \leq k$ ．The existence of a nonoinvariant X_{i}－simplex E implies a relation of the form

$$
\begin{gather*}
\text { kernel } E=\left(U^{8} j_{0} \cup B_{i_{0}}\right) \cap\left(U_{j 1}^{*} \cup B_{i_{l}}\right) \cap \ldots \tag{2}\\
\cap\left(U_{j_{h}} \cup B_{i_{h}}\right) \cap s \neq \phi
\end{gather*}
$$

where S is an intersection of $l U^{8 i} j$ wertices，$l \geq 1$ ．The $B^{2} s$ do not meet any $\mathrm{U}^{0 n}$ overtices because the $\mathrm{A}^{\prime} \mathrm{s}$ do not and hence（2） implies

$$
\left(U_{j_{i}}\right)_{0} \cap \cdots \because \cdot \cap\left(U_{j_{i}}\right)_{h} \cap S \neq \phi .
$$

Hence $L+h+1 \leq \operatorname{dim} X_{j} \leq k$ 。 Therefore $\operatorname{dim}\left(X_{i}-X_{i I}\right) \leq k$ ．
Lemma 4．10．If M is compact and $\left\{U_{j}\right\}$ is any covering of M ， then there exists a covering $\left\{U_{i}\right\}$ such that $\left\{U_{i}\right\}>\left\{U_{j}\right\}$ 。

Proof．Let $\{U\}=\left\{U_{1}, U_{2}, \cdots, U_{r}\right\}$ and let it be shrunk to
 since M is normal．Then $B_{i}=\left\{U_{i}, M-\overline{U_{i}}\right\}$ is a binary open covering and $\{B\}=\left\{U^{3}\right\} \cap B_{1} \cap \cdots \cap B_{r}$ is a finite open covering．Let $\{B\}$ $=\left\{V_{1}, V_{2}, \cdots, V_{h}\right\}$ and suppose $V_{i} \cap V_{j} \neq \phi_{0}$ ．The set V_{i} is con tained in a set $U^{q}{ }_{i}$ of $\left\{U^{\dagger}\right\}$ ，and V_{j} is in one of the sets of B_{i} ， i．e．，$V_{j} \subset U_{i}$ ，or $V_{j} \in M-\widetilde{U}_{i}$ ．The second inclusion is ruled out since V_{j} meets the subset V_{i} of U_{i} ．Therefore the first holds．Thus V_{i} and all sets of $\{B\}$ meeting it are in U_{i} 。

Theorem 4．3 follows from Lemmas 4．7，4．8，4．9 and 4．10．Let $\left\{\mathrm{U}_{\mathrm{j}}\right\}$ be any covering of M ．By Lemma 4.10 ，there exists a $\left\{U_{1}\right\}$ such that
$\left\{\mathrm{UF}_{\mathrm{I}}\right\}>\left\{\mathrm{U}_{j}\right\}$, and by Lemas $4.7,4.8$ end 4.9 there exists a $\left\{U_{i}\right\}$ such that $\left\{\mathbb{U}_{i}\right\}>\left\{U_{I}^{*}\right\}>\left\{U_{j}\right\}$ with all the properties required by Theorem 4.3.

Corollary 4.1. If M is compact and T primitive, then every covering is refined by a special primitive covering.

Proof. The proof of this corollary is contained in the proof of Theorem 4.3.

The above theorems are of fundamental importance in the work that follows, beceuse from this point on we only need to consider the special coverings, if dim $M \leq m_{0}$. These coverings form a cofinal family, Σ_{k} of M; the homology properties of M can be studied solely in terms of this family as long as the period is a prime.
$\rho-$ Chains and Special Homologies in a Complex

Assume throughout this section that (M, T) is simplicial and primitive.

Let G be an abelain coefficientogroup for chains and homologies in M. The transformation T induces a chain mapping which is denoted by T. We may regard T as an additive operator acting on chains over G and permutable with the boundary operator F.

The operators

$$
\sigma=1+T+\cdots \cdots+T^{p-1}, \quad \zeta=1=T
$$

bear useful reciprocal relations to each other and play an important part in the work that follows. We shall denote these operators by ρ and $\bar{\rho}$ and agree that ρ may stand for $\sigma, \bar{\rho}$ for b or vice versa, but the meanings of ρ and $\bar{\rho}$ shall remain fixed in any given discus-
sion.
A chain C is of type p if there exists a chain C_{1} such that $C=\rho C_{1}$. The null chain is of both type ρ and type ρ_{0}

Lema 4.11. If (M, T) is simplicial and primitive, an hochain C in $M-M_{I}$ is of type ρ it and only if $\overline{\rho C}=0$ 。

Proor. Assume C is of type β say $C=\rho C_{1}$. Then

$$
\stackrel{\rightharpoonup}{\rho C}=\bar{\rho} \rho C_{1}
$$

$$
=\bar{\rho}\left(c_{1}+c_{1}^{1}+\cdots+c_{1}^{p-1}\right)
$$

$$
=\left(c_{1}+c_{1}^{1}+\cdots+c_{1}^{p-1}\right)-\left(c_{1}^{1}+c_{1}^{2}+\cdots+c_{1}^{p}\right)
$$

$$
=0
$$

Also,

$$
\begin{aligned}
p C & =\rho \rho C_{1} \\
& =p\left(C_{1}-c_{1}^{2}\right) \\
& =\left(c_{1}-C_{1}^{2}\right)+\left(c_{1}^{1}-c_{1}^{2}\right)+\cdots+\left(c_{1}^{p-1}-c_{1}^{p}\right) \\
& =0 .
\end{aligned}
$$

Now suppose that $\overline{\mathrm{p}}=0$. We may write

$$
C=\Sigma_{j=1}^{0(h)} \Sigma_{j=0}^{p-1} g_{j}^{i} E_{j}^{1},
$$

where g is an element of the coefficient group for chains and homolo gies, E_{j} is an h-simplex, and \mathbb{E}_{j}^{i} is $T^{i}\left(E_{j}\right)$ 。This is true since (M, T) is primitive, therefore $E, E^{\perp}, \cdots, E^{p-1}$ are distinct. The condition $\overrightarrow{\rho C}=0$ then becomes;

$$
\begin{equation*}
\Sigma_{i_{j}} g_{j}^{i} \bar{p} \mathbb{E}_{\mathfrak{j}}^{i}=0 \tag{1}
\end{equation*}
$$

Consider the case where $\vec{\rho}=\zeta$. Then we have

$$
\Sigma_{11} g_{j}^{1}\left(\mathbb{E}_{j}^{1}-E_{j}^{1+1}\right)=0
$$

where the upper indices are to be reduced mod P. Hence,

$$
\Sigma_{i j}\left(g_{j}^{I}-g_{j}^{I-1}\right) E_{j}^{1}=0
$$

and therefore $g_{j}^{i}=g_{j}^{i-1}$. Then $g_{j}^{0}=g_{j}^{1}=00=g_{j}^{p-1}=g_{j}$ so $C=\sigma C_{1}$. Where

$$
C_{1}=\Sigma_{j=1}^{C(h)} g_{j} E_{j},
$$

this concludes the proof for the case $\bar{\beta}=6$ 。
Suppose $\bar{\rho}=\sigma$. Then (1) becomes

$$
\Sigma_{1, j} g_{j}^{1} \sigma E_{j}^{1}=\Sigma_{i j} g_{j}^{i} \sigma E_{j}=\Sigma_{j=1}^{\mathbb{e}(h)}\left(\Sigma_{i=0}^{p-1} g_{j}^{1} \gamma_{j} E_{j}=0\right.
$$

Hence
(2) $\sum_{i=0}^{p-i} g_{j}^{i}=0$.

Let $\quad c_{1}=\sum_{j=1}^{\infty(n)} \sum_{k=0}^{p-1} \sum_{i=0}^{k} g_{j}^{1} \sum_{j}^{k}$.
Then

$$
\begin{aligned}
& C_{1}-C_{1}^{1}=\sum_{j=1}^{O(h)} \sum_{k=0}^{p-1} \sum_{i=0}^{k} g_{j}^{i}\left(E_{j}^{k}-E_{j}^{k+1}\right) \\
& =\sum_{j=1}^{\alpha(h)}\left[\Sigma_{k=0}^{p-1} \sum_{i=0}^{k} g_{j}^{1} z_{j}^{k}-\sum_{k=1}^{p} \sum_{l=0}^{k-1} g_{j}^{i} k_{j}^{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\Sigma_{j \leq 1}^{(h)}\left[\Sigma_{k=0}^{p-1} \mathrm{E}_{j}^{k} \mathbb{Z}_{j}^{k}-\sum_{i=0}^{p-1} g_{j}^{i}, \mathbb{E}_{j}^{p}\right] \\
& =\sum_{\mathfrak{j}=1}^{\alpha(h)} \sum_{k=0}^{p-1} g_{j}^{k} g_{j}^{k} \quad \text { (On account of (2)) }
\end{aligned}
$$

Hence $C=P C_{1}$ and the proof is complete.
If C is a cycle of type (P, M_{I}) (ide. $C=\rho C^{0} \bmod M_{I}$) and C
is the boundary of a chain of the same type, we write $C \approx 0 \bmod M_{\perp}$. If $C_{h} C_{h-1}$ are cycles of type ρ and \vec{P} respectively and there exists a
chain X_{h} such that

$$
C_{h}=\rho X_{h}, \quad C_{h-1}=F X_{h},
$$

we write ${ }_{\cdots h}: C_{h-1}$.
We assume during the remainder of this chapter that the coefficient group G is the group p of integers reduced mod p. Denote this group by ${ }^{F}{ }^{p}$.

Lemma 4.12. Let $C_{h}, C_{h o l}$ be cycles of type $\rho, \vec{\rho}$ such that $C_{h}: C_{h-1}$ 。 If $C_{h} \approx 0 \bmod M_{I}$, then $C_{h-1} \approx 0 \bmod M_{I}$.

Proof. Assume that $C_{h} \approx 0 \bmod M_{I}$. Then there exist, by definio tion of $C_{h}: C_{h-1}$, chains X_{h+1}, X_{h}, X_{I}, with X_{h+1} of type ρ, such that

$$
\begin{equation*}
C_{h}=p X_{h}, \quad C_{h-l}=F X_{h}, \quad F X_{h+1}=C_{h}+X_{I}, \quad X_{I} \subset M_{I} \tag{1}
\end{equation*}
$$

We may write

$$
\begin{equation*}
E X_{h+I}=X_{h}+Z+Z_{I} \quad\left(Z_{I} \in M_{I}, \quad Z \in M \sim M_{I}\right) \tag{2}
\end{equation*}
$$

because $C_{h}=\rho X_{h}$ and $\rho X_{h}=X_{h}+\mathbb{L}+Z_{I}^{I}$
Then

$$
\begin{equation*}
\rho E X_{h+1}=C_{h}+\rho Z+\rho Z_{I}=C_{h}+\rho Z, \tag{3}
\end{equation*}
$$

since $\beta Z_{I}=0$.
If $p=\sigma$ and $X_{h+1}=\sigma Y_{h+1}$, then $\sigma F X_{h+1}=\sigma F_{h+1}=0$. From (1)
$\sigma \mathrm{FX}_{h+1}=\sigma \mathrm{C}_{\mathrm{h}}$, therefore $\sigma \mathrm{C}_{\mathrm{h}}=0$. This implies $C_{h}=0$ in $M=M_{I}$. If $\rho=\zeta$ and $X_{h+I}=\int Y_{h+1}$, then $\sigma E \zeta Y_{h+1}=0$ and $C_{h}=0$ in $M-M_{I}$. Therefore from (2), $\rho F X_{h+1}=\rho X_{h}+\rho Z$ which implies that $\rho Z=0$ or Z is of type $\vec{\rho}$ by Lemma 4.11. Hence, if we operate on both sides of (2) With F we find that $C_{h \rightarrow I} \cong 0$ mod M_{I}

Seman 4.13. Leti E be a vertex of M. If $H_{I}=\phi$, the cycle GE $=E$ m (E) cannot be 0 。

Proof. Suppose there exists a chain X such that $F G=G E$. Let

$$
\begin{equation*}
Z=E X-E_{0} \tag{i}
\end{equation*}
$$

Then $\zeta Z=G F X-\xi E=0$ and therefore, since $M_{I}=\varnothing, Z$ is of type σ_{0} Hence there exists a w such that $Z=\sigma w$. Consequently the sum of the coefficients of Z is zero mod p and Z is a cycle. Since $F X$ is a cycle it follows from (1) that E is a cycle, which is impossible.

The Existence of Fixed Points

Definition 4.11. A set M is acyclic mod p if for every compact set $A_{9} A \subset M$, there exists a compact set $A^{v} D A$ such that relative to the coefficient group p cycles in A are ~ 0 in A^{\prime}. (Example: Euclidean n-space, G arbitrary.)

Definition 4.12. The set M is finite dimensional if there exists an m such that every finite covering by open sets of M has a refine ment whose nerve is of dimension $s \mathrm{~m}$. (This condition allows the use of Σ_{k} from Theorem 4.3.).

Theorem 4.4. Let p be a prime and M a finite dimensional come pact space which is acyclic mod p. Then every homeomorphic transformation T of period p of M into itself admits at least one fixed point.

Proof. Let B_{0} be a non-empty compact set of M. Then σB_{0} is compact because T is a homeomorphism $A l s o, \sigma B_{0} \supset B_{0}$, and σB_{0} is
invariant by lemma 4.I. Let $A_{O}=\sigma B_{O}$ and choose eompact set B_{1} contaning A_{0} such that cycles in A_{0} are O in B_{1} Let $A_{1}=$ UB. If this process is continued we have

$$
\left.\phi \neq A_{0} \subset A_{1} \subset \cdot \in A_{n}\right) \quad(n=p m+p)
$$

where eech A_{1} is an invariant compact subset $0 x M$ such that cycles in A_{i} are 0 in A_{i+1}. Let $N=\vec{A}_{m}$ and consider it as a subspace of M. T induces a transformation of period p of N into itself and it is sufficient to show that this transformation, denoted by T, admits a fixed pointe In the topology of $N_{\text {s }}$ where N is regarded as a subspace of M, it is still true that cycles in A_{i} are 0 in A_{i+1} and since dim $N \leq m$, the homology groups of (N, T) can be based on the family Σ_{k}. T induces a simplicial transformation in the com plexes of N. Assume that $L=\phi$. Then by Lemma $6.6 M_{I}=\phi$ where M_{I} is the invariant simplexes.

Consider a definite Σ_{k} covering $\left\{U_{j}\right\}$. If h and k are given positive integers, there exists a Σ_{k} refinement $\left\{U_{i}\right\}$ of $\left\{U_{j}\right\}$ such that by projecting an h-dimensional U_{j} weycie in $A x$ into $\left\{U_{j}\right\}$ we obo tain a $U_{j}=$ cycle which is the $U_{j}=c o o r d i n a t e$ of a cycle in A_{k} and will therefore be 0 in A_{k+1} [3]. Consequently, if $\left\{U_{n}\right\}$ is an arbitrarily chosen Σ_{k} covering there exist Σ_{k} coverings $\left\{v_{n-1}\right\}$. . $\left\{\mathrm{U}_{0}\right\}$ such that $\left\{\mathrm{U}_{\mathrm{O}}\right\}>\left\{\mathrm{U}_{1}\right\}>\cdots \cdots>\left\{\mathrm{U}_{n}\right\}$. If x_{i} is a projection $\left\{U_{i}\right\} \rightarrow\left\{U_{i+i}\right\}$ and C_{i} is an imamensional U_{i} ocycie in A_{i}, then $\pi_{i} C_{i} \infty 0$ in A_{i+1}. Choose π_{i} to be a I-projection by Theorem 4.1 .

Let $\rho_{O}, \rho_{1}, \cdots$ stand alternately for σ and σ starting with $\rho_{O}=\sigma_{0}$. Let X_{O} be a U_{0} vertex in A_{O}. since A_{O} is invariant, TX O is also in A_{0}, Hence $p_{0} X_{O}=X_{O}-T\left(X_{0}\right)$ is a O-dimensional cycle in
A_{0}, and therefore $\pi_{0} \rho_{0} X_{0} \sim 0$ in A_{1}, say $\pi_{0} \rho_{0} X_{0}=H_{1}, X_{1} \subset A_{1}$. Then $\rho_{1} X_{1}$ is a crole because

$$
F \rho_{1} X_{1}=\rho_{1} F X_{1}=\rho_{1} \rho_{0} \pi_{0} X_{0}=0 .
$$

Since $\rho_{1} X_{1} \in A_{1}$, we have $\pi_{1} \rho_{1} X_{1} \sim 0$ in A_{2}, say, $\pi_{1} \rho_{1} X_{1}=\mathrm{FX}_{2}$. continuing in this manner we obtain chains. X_{O}, \cdots, X_{n} such that

$$
\begin{equation*}
E X_{i+1}=\pi_{i} \rho_{i} X_{i} \quad\left(i=0, \cdots, X_{n-1}\right) \tag{1}
\end{equation*}
$$

Let π_{n} be the identity projection of $\left\{U_{n}\right\}$ into itself and let, $C_{i}=$ $\rho_{1}\left(\pi_{n} \pi_{n-1}, \cdots, \pi_{1}\right) X_{i} \quad(i=0, \cdots, n) \quad$ Then $C_{n}, C_{n-1}, \cdots, C_{0}$ are U_{n} cycles of type $\rho_{n}, \rho_{n-1}, \cdots, \rho_{C}$ respectively, and as a consequence of (1) above $C_{n}: C_{n-1}:: C_{0}$. The cycle C_{0} is of the form ζE which is a U_{n}-vertex. Since $\operatorname{dim} U_{n}<n$, we have $C_{n}=0 \simeq 0$ and therefore by Lemma 4.12 (with. $M_{I}=\emptyset$) we have $c_{n-1} \simeq 0,0, c_{0}=$ $\zeta E \simeq 0$. By Lemma 4.a13, this is impossible, therefore the assumption that $L=\varnothing$ is false.

Theorem 4.6. The set L, which Theorem 4.4 asserts to be nonempty, is acyclic mod p.

Proof. Let B be a compact set containing points of I. It will be sufficient to prove that there exists a compact set $B^{\prime} \supset B$ such that cycles in $B \cap L$ are ~ 0 in $B^{3} \cap \mathrm{~L}$ 。 Consider the set A_{0}, - , A_{n} in the proof of Theorem 4.4. A_{0} can be any non-empty invar. iant compact set, therefore suppose $A_{O}=\sigma B_{0}$ Let $B^{\text {b }}$ be bounded open set containing \bar{A}_{n}. It will be shown that B^{\prime} can be \bar{A}_{n}.

Let $\{U\}$ be an element of $\Sigma_{k}, N=\bar{A}_{n}$. Every cycle in $L_{N} \cap B$ is ~ 0 in L_{N}. Since dim $I_{N} \leq m$, we need to consider only cycles of dimension $\leq m_{a}$ From the special coverings choose $\left\{U_{0}\right\}, \cdots a,\left\{U_{n}\right\}$
defined as in the proot of pheorem 4.4, and let ris P_{i} also be defined as before. Now let Z hal be a cycle in $I_{N} \cap$ with $h-1 \leq m$. Since $B \cap I_{N} \in A_{h-1}$, we have $Z \propto 0$ in A_{h}; we may write.

$$
Z_{h-I}\left\{U_{h}\right\}=E X_{h} \quad\left(X_{h}=X_{h}\left\{U_{h}\right\} \subset A_{h}\right) .
$$

Since the simplexes of $Z\left\{U_{h}\right\}$ are in $I_{L N}$ they are in $U_{h I}$ and we have $\rho_{h}\left\{U_{h}\right\}=0$. Therefore $\rho_{h} X_{h}$ is a cycle in A_{h}. Hence $\pi_{h} \rho_{h} X_{h} \propto 0$ in A_{h-1}. This is the first step in a construction process which leads to the relation

$$
C_{n}: C_{n-1}: \circ: C_{0} \quad\left(C_{h}=\pi_{n} \circ \circ \pi_{1} \rho_{i} X_{i} ; \quad i=h, \cdots, n\right)
$$

in $\left\{U_{n}\right\}$. Since C_{n} is of the form $\rho_{n} Z$, it is in $\left\{U_{n}\right\}-\left\{U_{n I}\right\}$ bew cause $\rho Z^{i}=0$ if $Z^{10} \subset\left\{U_{n I}\right\}$. But all simplexes of $\left\{U_{n}\right\}-\left\{U_{n I}\right\}$ are of dimension $s m$, therefore $c_{n}=0 \simeq 0 \bmod \left\{U_{n I}\right\}$. Hence by Lemw me 4.12, $C_{h} \approx 0 \bmod \left\{U_{h I}\right\}$ 。

Let $Z^{\prime}=\pi_{n} \cdot \circ{ }^{\circ} \pi_{h} Z$. From the definition of Cech Cycles $Z^{\prime}\left\{U_{n}\right\} \infty$ $Z\left\{U_{n}\right\}$ in $B \cap L_{N^{\prime}}$ Let $\rho=\rho_{h^{\prime}} X^{0}=\pi_{n} \circ \circ \cdot \pi_{h} X$. Then

$$
\rho X^{\prime} \cong 0 \bmod \left\{U_{n I}\right\} ; \quad F X^{\prime}=Z^{\prime}
$$

The fiirst of these relations implies the existence of $\left\{U_{n}\right\}$-chains X_{I}, Y such that
(1)

$$
F \rho Y=\rho X^{0}-X_{I^{0}}
$$

Let W_{I} be that subchain of $F Y-X^{8}-X_{I}$ which is in $\left\{U_{n I}\right\}$ and W the remainder. Then

$$
\begin{equation*}
F Y=X^{\prime}+X_{I}+W+W_{I} \quad\left(W_{I} \subset\left\{U_{n I}\right\} ; W \subset\left\{U_{n}\right\}-\left\{U_{n I}\right\}\right. \tag{2}
\end{equation*}
$$

Operate on both sides of (2) by ρ and take into account the relation
(1) and the fact that $\rho X_{i}=\rho W_{I}=0$. Then $\rho W=0$ in $\left\{U_{n}\right\}-\left\{U_{n I}\right\}$ 。 Hence by Lemma 4.11 there exists a D such that $W=\rho D$. Insert this
into (2) and operate on both sides of (2) by F to obtain

$$
0=\left(Z^{0}+E X_{I}+E W_{I}\right)+F \overline{\rho D}
$$

The chain in parenthesis is in $U_{n I}$, whereas $F_{\rho D}$ is in $\left\{U_{n}\right\}=\left\{U_{n}\right\}$. Consequentiy, both chains are null and Z^{\prime} is therefore the boundary of a chain in $\left\{U_{n I}\right\}$. By the properties of special cover. inge, chains in $\left\{U_{n I}\right\}$ are in L_{N}. Hence $Z\left\{U_{n}\right\} \infty Z^{\prime}\left\{U_{n}\right\} \infty 0$ in $I_{N o}$

Now return to space M. Let K be a cycle in $B \cap$. Then since $B \subset A_{n}, K$ may be regarded as being identical to a cycle which belongs to the space No This cycle is in $B \cap I_{N}$ and therefore homologous to zero in \mathbb{T}_{10}. Hence $K \propto 0$ in $N \cap$ Lo Therefore, since $N=\bar{A}_{n}=B^{\prime}$, $K \approx 0$ in $B^{\prime} \cap I$, which completes the proof.

Theorem 4.7. In p is a prime and M a finite dimensional localIy compact Hausdorfe space which is acyclic mod p, then every homeomorphic transformation T of period p^{a} of M into itself admits at least one fixed point.

Proof. Assume the theorem to be true for $\beta<a$. Let T be a transformation of period $\mathrm{p}^{\text {a }}$ operating in M and let $L^{\text {b }}$ be the tow tality of points which are invariant under T^{q} where $q=p^{a-1}$. Since T^{q} is of period. p, L^{s} is nonempty by Theorem 4.4, and acyclic mod p by Theorem 4.5. Moreover, $L^{\text {i }}$ is transformed into itself by To The transformation Induced in L^{8} by T is the identity or is periodic of period p^{β} where $\beta<a$. Hence T admits at least one fixed point in L^{p} 。

We have now proved that if T is a homeomorphic transformation from nospace into itself and is of period q where q is a prime,
then the set L of fixed points is not null. In the next chapter we exmine the set I to determine its topological structure.

CIASSIFICATION OF THE SET OF FIXMD POINHS

It was proved in Chapter II that if an n-sphere, $n \leq 2$, is mapped into itself by th periodic homeomorphic transformation, then the set I of fixed points is an r-sphere, $r \leq n$. The purpose of this chapter is to show that the same is true for an n-sphere in general if the period of the transformation is a power of a prime.

No obtain this result p-homology groups are formed from the pocycles and ρ aboundaries of Chapter IV, There is a ρ-homology group of each dimension associated with each special covering of the space. It is shown that the p-homology groups can be decomposed into the cross product of two subgroups of which one is associated with the invariant simplexes and the other is associated with the non-invariant simplexes. Next the ρ-homology groups of the space are defined using the concept of inverse systems. Then, based on the properties of the ρ-homologies of the coverings; it is shown that the pamology groups of the space can be decomposed into the cross product of two subgroups. One of these subw groups is the same as the ordinary homology groups of the fixed point set L, and the structure of this subgroup is known to be the same as that of the homology groups of an rosphere.

Examples are given to show that L is not necessarily an r-sphere if the period is not a power of a prime. But the form of I is not
known for an arbitrary period q. Before prowing the theorem concerning I we shall first develop several preliminary results.

poChains in a Complex

We assume throughout this section that (M, T) is simplicial and primitive, O is an abelian coefficientogroup, T is a chainmapping, and that F_{p}, σ, G, and ρ are defined as in Chapter IV. From Lem ma 4.11 in Chapter IV $\bar{\rho}=\bar{\rho} \rho=0$ (the annihilator). Note that in the following definition the pochain is the $\bar{\rho}$-chain of Chapter IV.

Definition 5.1. A chain which is annulled by ρ is called a ρ. chain. A chain which is annulled mod M_{I} by ρ is called a ρI-chain.

Lemma 5.1. A necessary and sufficient condition for a chain C to be a $P I$ chain is that there exist a chain X such that $C=\overline{\rho X} \bmod M_{I}$.

Proofo The sufficiency is implied by the relation $\rho \vec{\rho}=0$.
Assume that $\rho C=0 \bmod M_{I}$, then by Lemma 4.11 there exists a chain X such that $\bar{\rho} X=C \bmod M_{I}$.

We shall use the subscript I with the symbol of a chain to show that the chain is in M_{I}.

Lemma 5.2. If $G=F$, all chains in M are p-chains.
Proof. We have $\zeta C_{I}=C_{I}-C_{I}=0$ and $\sigma_{I}=p C_{I}=0$, therefore the Lemma is proved.

Lemma 5.3. If $G=F_{p}$ and C is a chain, then $\rho C \subset M-M_{I}$.
Proof. We can write $C=X+X_{I}$ where $X \subset M \sim M_{I}$. Then by Lemma 5.2, $\quad \rho C=\rho X \subset M \propto M_{I}$.

Eemme 5.4. If $G=F p$, necessary and sufftcient condition for C to be a pochain is thet C be expressible in the form $\bar{X} X+X_{I}$.

Proof. Assume that $C=\bar{\rho} X+X_{I}$, then $\rho C=\rho \bar{\rho} X+\rho X_{I}=0$ which implies the sufficiency.

Assupe that C is a pochain: Write $C=B+B_{I}$, where $B C M-M_{I}$. Since C and B_{I} are p-chains, so is B. In fact, B is a pI-chain, hence by Lemma $5.1 \quad C=\bar{\rho} \bar{X}+X_{I}$.

Lemma 5.5. If $G=F_{p}$, a necessary and sufficient condition for C to be a pechain in $M M_{I}$ is that C be of the form $\bar{\rho} X$.

Proof. Lemmas 5.3 and 5.4.

Special Homolagies in a Complex

Assume in this section that (M, T) is simplicial, primitive, and regular.

Definition 5.2. A pocycle is a ρ-chain which is a cycle. If a $\rho \sigma$ cycle X is the boundary of a ρ-chain, we write $X \simeq 0 \bmod M_{I}$.

These homologies, which we shall refer to as ρ and ρI-homologies, have the same algebraic properties as ordinary homologies. A chain which is identically zero may be regarded as a ρ-cycle, and as such, $0 \simeq 0$. Also a chain which is identically zero in $M-M_{I}$ may be regarded as a ρI-cycle, and as such, $X_{I} \approx 0 \bmod M_{I}$.

Lemma 5.6. The boundaries of chains in M_{I} are in M_{I} 。
Proof. Regularity implies that M_{I} is closed.

Lemma 5.7. If $G=F_{p}$, and if $\overline{\rho C}+C_{I}$ is a cycle, hence a ρ^{-}
cycle by lemme 5．4，then，$\overline{\rho C}$ and C_{I} are pecycies．It $\overline{\rho C}+C_{I} \approx 0$ ， then $\overline{\rho C} \approx 0$ and $C_{I} \approx 0$ ．

Proof：We have，by definition of a cycle and by the fact that $F \rho$ $=\rho \mathrm{F}$,

$$
\begin{equation*}
0=F\left(\overline{\rho C}+C_{I}\right)=\overline{F P C}+F C_{I} \tag{1}
\end{equation*}
$$

But $\overline{F \rho C}=\overline{\rho F C C} \subset M-M_{I}$ by Lemma 5.3 and $V_{I} \subset M_{I}$ by Lemma 5．6．Hence， by（1）$\quad \mathrm{F}^{\prime} \mathrm{\rho C}=0$ and $\mathrm{FC}_{I}=0$ ．Therefore $\overline{\rho C}$ and C_{I} are pocycles． Now suppose that $\bar{\rho} C+C_{I} \approx 0$ ．This implies that $\overline{\rho C}+C_{I}=$ $F\left(\bar{\rho} A+A_{I}\right)$ or $\bar{\rho}(F A-C)=C_{I}-F A_{I}$ ．The left side of the last equa－ tion is in $M^{\circ} M_{I}$ and the right side is in M_{I} because of Lema 5.6 and the fact that $\overline{\rho B}_{I}=0$ for every $B_{I} \subset M_{I}$ ．Hence both sides van－ ish．Therefore $\overline{\rho C} \approx 0$ and $C_{I} \cong 0$ 。

Lemma 5．8．Let $G=F_{p}, X$ be a cycle in M_{I} ，and X be a p ． cycle in $M \sim M_{I}$ ．Then，$X \approx 0$ if and only if $X \propto 0$ in M_{I} ，and X ， ≈ 0 if and only if $X^{2} \approx 0$ in $M-M_{I^{\prime}}$

Proof．Let $X=C_{I}$ and $X^{\prime}=\overline{\rho C}$ in Lemma 5．7．Now $X^{\prime}+X \simeq 0$ because $X \simeq 0$ and $X^{8} \simeq 0$. Also，by the proof of Lemma 5．7，$X^{\prime} \simeq 0$ in $M_{I} M_{I}$ and $X \approx 0$ in M_{I} ．But every cycle in M_{I} is a p－cycle， hence $X \propto 0$ in M_{I} ．The if part follows by definition of $X \simeq 0$ and $X^{2} \simeq 0$ 。

Lemma 5．9．Let $G=F_{p}$ and let $X^{h}=\bar{\rho}^{h}+C_{I}^{h}$ and $X^{h-1}=$ $\rho C^{h-1}+C_{I}^{h-1}$ be ρ and $\bar{\rho}$ cycles such that $X^{h-1}=F C^{h}$ ．If $X^{h} \simeq 0$ ， then $x^{h-1} \approx 0$ 。

Proof．Assume $x^{h} \simeq 0$ ．Then by Lemmas 5.7 and $5.8,-\overline{\rho C}^{h} \simeq 0$ in $M-M_{I}$ ．Hence，there exists a B such that $\overline{F P B}=\overline{\rho C} \bar{h}^{h}$ by Lemma 5.50

Let $A=C^{h}$ - FB, Then $\overline{\rho A}=\bar{\rho} C^{h}-\bar{\rho} F B=0$, so that A is a $\bar{\rho}$ chain. Also, $F A=\mathrm{FC}^{h}=\mathrm{X}^{h-1}$. Hence $\mathrm{X}^{\mathrm{h}-1} \approx 0$.

Lemma 5.10. Let $G=F$, and let C be a cycle. If $C \infty 0$, then $\rho C=E X$ where $\overline{\rho X}=0$.

Froof. The relation $C \propto 0$ implies there exists an A such that $\mathrm{FA}=0$. Therefore $\mathrm{FPA}=\rho C$, and $\rho \mathrm{A}$ is a $\bar{\rho}$ whain since $\rho \bar{\rho}=0$.

ρ-Homology Groups in a Complex

It is assumed in this section that ($M, ~ I$) is simplicial, primio tive, regular and that $G=F_{p}$. Denote the additive groups of ρ and PI-homology classes of (M, T) over G by

$$
H_{p}^{h}(M, T ; G) \quad H_{P I}^{h}(M, T ; G)
$$

Lemma 50.21. Let X_{ρ}^{h} be a pohomology class of dimension h. If one pocycle x in X_{ρ}^{h} is ∞, then every pocycle in X_{p}^{h} is ~ 0. Proof: Let y be any pacycle in x_{p}^{h}, then $y \infty x=b_{n}, b_{n} a$ bound. Therefore $y=b_{n}+s$ is a bound, which implies $y \approx 0$.

Lemma 5.12. The totality of classes X_{ρ}^{h} whose pocycles are $\infty 0$ is a subgroup of $H_{p}{ }^{h}$

Proof. Let X_{ρ}^{h} and Y_{ρ}^{h} be two classes whose ρ-cycles are $\infty 0$. Then $x \in X^{h}$ and $y \in Y^{h}$ implies that $x=b_{h}$ and $y=b_{h}$ where b_{h} and $b_{h}{ }_{h}$ are bounds. Therefore $x-y=b_{h}-b^{p} h^{\prime}$ which is a bound. Hence $x-y$ is an element of a class $z^{\text {h }}$ whose ρ-cycles are $\infty 0$ 。

Denote the subgroup in Lemma 5.12 by $B_{\rho}^{h}(N, T ; G)$. The corresponding subgroup of $H_{\rho I}^{h}(M, T ; G)$ is denoted by $B_{P I}^{h}(M, T ; G)$.

Let x^{h} be a pocycle that is an element of X_{ρ}^{h}. Then by Lemma 5.4 we know that $x^{h}=\bar{\rho} C+C_{x}$.

Tema 5.13. The totality of classes $X_{\rho}^{\text {h }}$ with the property that $X^{h}=\overline{R C}+C_{I^{g}} \quad X^{h} \in X_{p}^{h}, \quad C$ a cycle, is a subgroup of $H_{\rho^{\circ}}^{h}$

Proof. Let $x_{\rho}^{h} y_{p}^{h}$ be tro such classes. We have $x^{h}-y^{h}=$ $\left(\overline{\rho C}+C_{I}\right)-\left(\bar{\rho} C^{g}+C_{I}^{\prime}\right)=\bar{\rho}\left(C-C^{p}\right)+\left(C_{I}-C_{I}{ }_{I}\right)$. But $C-C^{8}$ is a cycle and $C_{I}-C_{I}$ is in M_{I}, therefore $x^{h}-y^{h}$ is contained in some \dot{z}_{ρ}^{h} of the sane type.

Denote this subgroup by $K_{p}^{h}(M, T ; G)$. The corresponaing subgroup of $H_{\rho I,}^{\mathrm{h}}$ denoted by $\mathrm{K}_{\mathrm{PI} \text {, }}^{\mathrm{h}}$ consists of the $\rho \mathrm{I}$-homology classes which contain ρI-cycles of the form $\rho \mathrm{PC}$ where C is a cycie mod M_{I}.

Let x^{h} be an ordinary cycle which is an element of an ordinary homology class X^{h}. Since $\bar{\rho} \rho=0, \rho x^{h}$ is a $\bar{p}^{\text {cocycle。 }}$

Lemme 5.14. The totality of classes X^{h} with the property that for at least one x^{h} in $x^{h}, \rho x^{h} \simeq 0$, is a subgroup of H^{h}.

Proof. Let X^{h}, Y^{h} be two such classes, then $\rho x^{h}-\rho y^{h}=$ $P C_{h+1}-\mathcal{F C}_{h+1}$ where $\overline{\rho C}_{h+1}=\overline{\rho C}_{h+1}=0$. Hence $\rho\left(x^{h}-y^{h}\right)=$ $F\left(C_{h+1}-C_{h+1}\right)$ is an element of some z^{h} of the same type.

Denote this subgroup by $H_{(P)}^{h}(M, T ; G)$ and the corresponding subgroup of $H_{I}^{h}(M, T ; G)$ by $H^{h}(\rho I)(M, T ; G)$.

Homomorphic mappings g and h of the groups $H_{p}^{h}\left(M, T ; F_{p}\right)$ are defined as follows:

By Lemma 5.4 a p-cycie x^{h} in $\mathrm{X}_{\rho}^{\mathrm{h}}$ has a representation $\mathrm{x}^{\mathrm{h}}=$ $\overline{\rho C}^{h}+C_{I^{0}}^{h}$ Let $x^{h-1}=E C^{h}$. Then x^{h-1} is a $\bar{\rho}-$ cycle. Because $\bar{\rho} C^{h}$ is a cycle by Lemma 5.7 and $\overline{\rho X}^{\text {hol }}=\overline{F P C}^{\mathrm{h}}=0$ 。

Lemin 5．25．The class x^{h-1} containing x^{h-1} is independent of the choice of x^{h} in x^{h} and C^{h} in the representation $\overline{\rho C}^{h}+C_{I}^{h}$ for x^{h} 。

Eroef．Suppose $x^{h} \pm x^{h}, x^{h}=-C^{h}+C^{h} I^{h}$ and $x^{h}{ }^{h} I=\mathrm{FC}^{h}$ 。 Then $x^{h}-x^{h}=0, x^{h}-x^{h}=\bar{\rho}\left(C^{h}-C^{h}\right)+\left(C_{I}^{h}-C_{I}^{h}\right)$ and $x^{h-1}-x^{h-1}=F\left(C^{h}-C^{h}\right)$ ，hence by Lemma 5.9 we bave $x^{h-1}-x^{h-1}$ $\infty 0$ ．Thus x^{h-1} and x^{h-1} are contained in the same class．

Thus the correspondence $g\left(x^{h}\right)=x^{h-1}, g s X_{p}^{h} \rightarrow X_{p}^{h-1}$ ，is a homom morphic mapping of H_{p}^{h} into a subgroup $H_{p}^{h \omega l}$ ．Since $x^{h o l} \infty 0$ ，the image of H_{p}^{h} under g is a subgroup of $\frac{h_{p}^{h-1}}{p}$ ．

Lemma 5．16．The image of H_{ρ}^{h} under g is $B_{p}^{h m i}$ 。
Proof．Let X_{p}^{h-1} be any element of $B_{\bar{\rho}}^{h-1}$ and $x^{h \omega l}$ be a $\bar{p}-c y c l e$ in $X_{\frac{p}{p}}^{h-1}$ ．We have $x^{h-1} \infty 0$ by definition of $B_{\bar{\rho}}^{h-1}$ ，which implies there exists a C^{h} such that $\mathrm{FC}^{h}=\mathrm{X}^{\mathrm{h}-1}$ ．But $\overline{F \rho C}^{h}=\overline{\rho X}^{h-1}=0$ 。 Therefore，$x^{h}=\bar{\rho} c^{h}$ is a cycle．In fact，x^{h} is a pocycle，hence we have $g X_{\rho}^{h}=X_{\rho}^{h-I}$ where X_{ρ}^{h} is the p homology class containing x^{h} ．

Lemma 5．17．The kernel of g is K_{p}^{h} ．
Proot．If $g X_{\rho}^{h}=0$ ，then $x^{h}=\overline{\rho C}+C_{I}$ where $F C \approx 0$ ．There $=$ fore，$F C=F\left(\rho A+A_{I}\right)$ since $F C$ is a pecycle．Then $B=C-\rho A=A_{I}$ ， Is a cycle．Thus $\overline{\rho B}=\overline{\rho C}$ so that $x^{h}=\overline{\rho B}+C_{I}$ Hence $X_{\rho}^{h} \subset K_{\rho}^{h}$ ． Conversely，every element of K_{p}^{h} is carried into the zero of $B_{p}^{\text {hol }}$ by g ．For every element X_{ρ}^{h} of K_{ρ}^{h} we bave $x^{h}=\overline{\rho C}+C_{I}$ ，where C is a cycle，therefore $F C=0=x^{h-1}$ 。

The elements of a pohomology class X_{p}^{h} are contained in a uniquely determined ordinary homology class X^{h} and the correspondence
$h: X_{\rho}^{h} \Rightarrow X^{h}$ is a homomorphism of H_{ρ}^{h} into H^{h}. The kernel of h is B_{ρ}^{h} by Lerma 5.12.

Lemma 5.18. The image of H_{ρ}^{h} under h is $H_{(\rho)^{h}}$.
Proof. Let $X_{\rho}^{h} \subset H_{p}^{h}$ A pocycle x^{h} which is a member of X_{ρ}^{h} satisfies the relation $\bar{\rho}_{x}^{h}=0$, hence trivially $\bar{\rho}_{x}^{h} \simeq 0$ 。 Therefore X_{ρ}^{h} $\subset H_{(\rho)}^{h}$. Conversely, let $X_{(\rho)}^{h}$ be an element of $H^{h}(\rho)$. To demonstrate that $X_{(p)}^{h}$ has a pre-image under h, it is sufficient to show that $X_{(p)}^{\mathrm{h}}$ contains a ρ cycle. In any case, $X_{(\rho)}^{h}$ contains a cycle X^{h} such that $\rho x^{h} \approx 0$. This implies a relation $F\left(\rho C+\alpha_{I}\right)=\rho X^{h}$. The relations $p x^{h} \subset M-M_{I}$ (Lemma 5.2), $F \rho C \subset M_{M}$ (Lemma 5.3), and $F_{I} \subset$ M_{I} (Lemma 5.6) imply $F \rho C=\rho x^{h}$. Let $x^{h}=x^{h}-$ FC. Then $\rho x^{h}=0$ and $x^{h} \sim x^{h}$, thus $x^{t^{h}}$ is the desired pocycle in $X_{(\rho)}^{h}$.

Theorem 5.1. For a simplicial regular primitive ($M, ~ \Psi$),
(a) $H_{\rho}^{h}\left(M, T ; F_{p}\right)-K_{\rho}^{h}\left(M, T ; F_{p}\right)=B_{\rho}^{h-1}\left(M, T ; F_{p}\right)$, and
(b) $H_{\rho}^{h}\left(M, T ; F_{p}\right) \propto B_{\rho}^{h}\left(M, T ; F_{p}\right)=H_{(\rho)}^{h}\left(M, T ; F_{p}\right)$ 。

These formulas hold for arbitrary G if ρ is replaced by ρI.
Proof. The mapping g is a homomorphism from H_{ρ}^{h} onto B_{ρ}^{h-1} by Lemma 5.16, and K_{ρ}^{h} is the kernel of g by Lemma 5.17. Therefore, by the fundamentai theorem of homomorphism of groups; (a) is true. Now h is a homomorphism from H_{ρ}^{h} onto $H_{(\rho)}^{h}$ by Lerma 5.18, and B_{ρ}^{h} is the kernel of h. Therefore, (b) is true.

The proof of these formulas for f Imomology groups depends on the properties of the corresponding homomorphisms g_{I}, h_{I}, of $H_{p I}^{h}$.

A Decomposition

It is assumed in this section that (M, T) is simplicial, primitive, regular and that $G=F_{p}$.

Lemme 5.29. The totality of classes $X_{\rho}{ }^{h} X_{\rho}^{h} e^{h}$, with the prom perty that $x^{h} \subset M=M_{I}$ for at least one element x^{h} in X^{h}, is a sub$\operatorname{group} D_{p}^{h}$ of H_{p}^{h}

Proof. Let $X_{\rho}^{h} Y_{\rho}^{h}$ be two such classes, then there exist $x^{h} \in$ $X^{h}, y^{h} \in Y^{h}$ such that $x^{h}, y^{h} \in M-M_{I}$. But the difference of two elementis in $M \Rightarrow M_{I}$ is also in $M \sim M_{I}$, therefore D_{ρ} is a subgroup.

The totality of classes X_{ρ}^{h} with the property that $x^{h} \subset M_{I}$ for at least one X^{h} in $\mathrm{X}_{\rho}^{\mathrm{h}}$ is also a subgroup, $\mathrm{H}_{\mathrm{O} \rho}^{\mathrm{h}}$, of $\mathrm{H}_{\rho}^{\mathrm{h}}$ 。

Lemma 5:20. The subgroup $H_{O p}^{h}$ can be regarded as being identical to $H_{\rho}^{h}\left(M_{I}, F_{p}\right)$.

Proof". See Lemma 5.8.

Lemma 5.21. The homology group H_{ρ}^{h} can be decomposed into the subgroups D_{ρ}^{h} and $H_{O \rho^{\circ}}^{h}$

Proof. Let $X_{\rho}^{h} \in H_{\rho}^{h}$ and x an element of X_{ρ}^{h}. A pocycle x is a ρ chain and by Lemma $5.4 \quad x=\overline{\rho B}+B_{I}$ Now $\overline{\rho B}$ is a pacycle by Lem ma 5.7 and $\overline{\rho B} \subset M \rightarrow M_{I_{h}}$. Also, B_{I} is a pocycle and $B_{I} \subset M_{I}$. There* fore, every $X_{\rho}^{h} \in H_{\rho}^{h}$ can be expressed as $Y_{\rho}^{h}+Z_{\rho}^{h}$, where $Y_{\rho}^{h} \subset D_{\rho}^{h}$ and $Z_{\rho}^{h} \in H_{O \rho^{\circ}}^{h}$

Lemma 5.2?. The images of D_{ρ}^{h} and H_{ρ}^{h} under g are equal to $\mathrm{B}_{\overline{\mathrm{p}}}^{\mathrm{h}-1}$

Proof. Let $X_{\rho}^{h} \subset H_{\rho}^{h}$. Then by Lemma $5.21 ~ g X_{\rho}^{h}=g Y_{\rho}^{h}+g z_{\rho}^{h}$, where
$Y_{p}^{h} \in D_{p}^{h}$ and $z_{p}^{h} \subset H_{0 \rho}^{h}$ Therefore, $g X_{\rho}^{h}=g Y_{\rho}^{h}+0$ by definition of g. Hence, H $_{\rho}^{h} \subset g D_{\rho}^{h}$. Conversely; if $X_{p}^{h} \subset D_{\rho}^{h}$, then $X_{\rho}^{h} \subset H_{\rho}^{h}$ Hence $g D_{\rho}^{h}$ $c g_{\mathrm{p}}^{\mathrm{h}} \quad \mathrm{Also}, \quad \mathrm{gH}_{\rho}^{h}=B_{\bar{p}}^{\mathrm{h}-1}$ by Lenaia 5.16.

Lemma 5.23. If f is the projection $D_{\rho}^{h} \times H_{O P}^{h} \rightarrow H_{O P}^{h}$ and if $k=$ fg (g followed by f), then $k H_{p}^{h}=k D_{\rho}^{h} \subset H_{0-1}^{h-1}$.

Proof. By Lemma 5.22, $g H_{\rho}^{h}=G D_{\rho^{\circ}}^{h}$ Hence $\mathrm{kH}_{\rho}^{\mathrm{h}}=\mathrm{kD} \mathrm{D}_{0}^{\mathrm{h}}$. HOw $\mathrm{gD} \mathrm{D}_{\rho}^{\mathrm{h}}=$ D_{p}^{h-1} and f is the projection $D_{\bar{p}}^{h-1} \times H_{O \bar{\rho}}^{h-1} \rightarrow H_{O \bar{\rho}}^{h-1}$, hence $k D_{\rho}^{h}$ is contained in $H_{o p}^{\mathrm{h}} \mathrm{O}_{\mathrm{p}}$.

For the remainder of this paper no distinction is made between a cycle and its homology class (por ordinary). We will regard H as being composed of cycles, H_{p} as being composed of pocycles, K_{ρ} as being composed of pocycles of the form $\overline{\mathrm{C}}+\mathrm{C}_{I}$ where C is a cycle, D_{ρ} as being composed of ρ-cycles of the form ρC, and $H_{(\rho)}^{h}$ as being composed of cycles X such that $P X \cong 0$ 。

Projections of $\rho \mathrm{mHomolog}$ Classes

Let $\{U\}$ be a Tosystem with nerve X, and T_{x} the transformation induced in X by T. Let $\rho_{X}=1-T_{x}$ or $1+T_{x}+\cdots+T_{x}^{p-1}$ according as $\rho=6$ or σ. We may think of ρ_{x} as an operator induced in X by ρ. Let $\{V\}$ be a second Im -system with nerve Y. Suppose that $\{U\}>\{V\}$ and π is a Ioprojection $\{U\} \Rightarrow\{V\}$. The chain mapping induced by π will also be denoted by π_{0}. The relation $\pi T=$ Trt implies that

$$
\begin{equation*}
\pi \rho_{x}=\rho_{x} \pi \tag{5.1}
\end{equation*}
$$

An important consequence of (5.1) is that π carries ρ_{x} whains and homologies into $\rho_{y \infty}$ chains and homologies.

In general, ρ_{x}, y will be denoted by ρ, since the meaning of p is clear in the context.

Lemma 5.24. Let $\{U\}$ and $\{V\}$ be Tosystens with nerves X and Ψ respectively and such that $\{V\}$ is primitive and $\{U\}>\{V\}$. Let x_{2} and π_{2} be $\mathbb{L}-$ projections $\{U\} \Rightarrow\{V$. If x is a pecycle in X, $\pi_{1} \approx \pi_{2} x$.

Proof. Suppose that the passage from π_{1} to π_{2} can be effected by rewdefining x_{1} over the T images of a single U-vertex. In any case the passage from x_{1} to π_{2} can be obtained by a finite number of such steps. Suppose then that π_{1} differs from π_{2} only with respect to the Toimages of U. Assume first that U is contained in a non . invariant V-vertex. Then, since $\{V\}$ is primitive, the images $U^{q}=$ $I^{q} U$ are mutually exclusive. Let $\pi_{1} U^{q}=V_{1}^{q}(i=1,2)$. Define an additive operator D over X-chains as follows. A simplex E either has just one vertex among the images of U (regarded now as vertices of X), or has none. If none, $D E=0$. If one, suppose $E=\left(U^{h} S\right)$ where S is a simplex with no vertex v^{i}, then define $D E=\left(V_{l}^{h} v_{2}^{h} S^{\prime}\right)$ where $S^{B}=\pi_{1} S=\pi_{2} S$. Let the definition of D be extended additively to all Pochains. Now $F D=x_{2}-x_{1}-D F$ and $D T=T D$ for individual simplex es. In the case where E has no vertex among the images of U, then $F(D E)=0$, and $\pi_{2} E-\pi_{1} E-D(F E)=0$ since $\pi_{2} E=\pi_{1} E$ Also, $D I E=$ $0=T D E$. If E has one vertex among the images of U_{s} then

$$
\begin{aligned}
F(D E D) & =F\left(v_{1}^{h} v_{2}^{h} s^{i}\right) \\
& =\left[\left(v_{1}^{h} v_{2}^{h} s^{i}\right),\left(v_{2}^{h} s^{i}\right)\right]\left(v_{2}^{h} s^{i}\right)+\left[\left(v_{1}^{h} v_{2}^{h} s^{p}\right),\left(v_{1}^{h} s^{\prime}\right)\right]\left(v_{1}^{h} s^{\eta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{p-1}\left[\left(v_{I}^{h} v_{2}^{h} s^{v}\right), s_{i}{ }_{i}\right]\left(v_{1}^{h} v_{2}^{h} S_{i}{ }_{i}\right) \\
= & v_{2}^{h} \pi_{2} s-v_{1}^{h} \pi_{1} s+\sum_{i=1}^{p-1}\left[\left(v_{1}^{h} v_{2}^{h} s^{s}\right), S_{i}\right]\left(v_{1}^{h} v_{2}^{h} s_{j}{ }_{j}\right),
\end{aligned}
$$

where S_{i} is a face of S^{9} with the $i+2$ vertex removed. Also,

$$
\begin{aligned}
D\left(F E_{P}\right) & =D\left\{\left[\left(U_{h} S\right), S\right] S+\sum_{i=1}^{p-1}\left[\left(U_{n} S\right), s_{i}\right] S_{i}\right\} \\
& =0+D \Sigma_{i=1}^{p-1}\left[\left(U_{n} S\right), S_{i}\right] S_{i} \\
& =\sum_{i=1}^{p-1}\left[\left(U_{n} S\right), S_{i}\right] D S_{i} \\
& =\sum_{i=1}^{p-1}\left[\left(U_{n} S\right), S_{i}\right]\left(V_{1}^{h} V_{2}^{h} S_{i}\right)
\end{aligned}
$$

Therefore, $F D=\pi_{2}-\pi_{1}-D F$. The relation $D N=T D$ follows because π_{1} and π_{2} are Toprojections.

Since D was extended additively to all chains these formulas hold for all chains. From the first of these formulas it follows that $\pi_{2} x-\pi_{1} x=F D x$ and from the second that $P D x=D P x=0$ since x is a p-cycle. Hence $D x$ is a pacycle and $\pi_{2} x \approx \pi_{1} x$.

Now assume that U is not a subset of a nonهinvariant V-simplex. In this case $\pi_{1} U$ and π_{2}^{U} are invariant, thus $\pi_{i}^{U} U_{i}^{Q}=V_{i} \quad(i=1 ; 2)$. Suppose the X-simplex E has just one vertex among the images of U, say $E=\left(U^{h} s\right)$. Then in this case take $D E=\left(V_{1} V_{2} s\right)$ but in all other cases take $D E=0$. Then $F D=x_{2}-x_{1}-D F$ and $D P=T D$ again hold, but in the verification it is necessary to examine the case in which the vertices of E include more than one image of $U_{\text {s }}$ say for example $E=\left(U^{h} U^{k} S\right)$. Here $D E=0$ by definition, hence $D F E=0$. Also, $\pi_{i} E$ equals ($V_{i}^{h} V_{i}^{k} S$ which is degenerate, hence zero, and DFE vanishes by cancellation and definition.

The theory of inverse systems which is introduced here is an important concept in this chapter, for the purpose of this thesis it is sufficient to restrict the treatment of inverse systems to Hausdorff spaces and topological groups. (A topological group will be defined later.) The following definitions and theorems can be found in [14].

Definition 5.3. A set S is said to be partially ordered or merely ordered, if certain pairs of elements (a, b) or S satisfy an ore dering relation which is denoted by $a<b$ and is subject to the sole condition of transitivity: $a<b$ and $b \in c$ implies $a<c$.

Definition 5.4. Let S be ordered by $<$, Then S is said to be directed by $<$ (by $>$) whenever given any two elements a, b of S there exists a third element c such that $c<a$ and $c<b$ ($c>a$ and $c>b)$. Denote this relation by $S=\{s ;<\}[\{s ;>\}]$.

Derinition 5.5. Let $\left.M_{4}\right\}$ be a system of Hausdorff spaces indexed by a directed set $S=\{i ;>\}$ and suppose that whenever $i>j$ there is given a mapping, also known as a projection, $\pi_{j}^{i}: M_{i} \rightarrow M_{j}$ such that $i>j>k$ implies $\pi_{k}^{j} \pi_{j}^{i}=\pi_{k}^{i}$. The system $\Sigma=\left\{M_{i} ; \pi_{j}^{i}\right\}$ of the M_{i} and the π_{j}^{i} is called an inverse mapping system.

Definition 5.6. Let $M^{\text {R }}$ be the product space, and in M^{π} let M be the set of all the points $x=\left\{x_{i}\right\}$ such that $i>j$ implies $\pi_{j}^{i} x_{i}$ $=x_{j}$. Then M is called the limitospace of the inverse mapping system Σ. If $i<j$, we have $\pi_{j}^{i} x_{i}=x_{j}$ and $\pi_{i}^{i}=1$.

As a subset of $M^{\text {r }}$ the limit-space M receives the relative to
pology and is a Hausdorif space．

Theorem 5．2．If each M_{i} is compact and not empty then the limit－ space is likewise not empty．

The remainder of this section is concerned with systems of topolo－ gical groups which are indexed by a directed set．

Definition 5．7．Let the group $G=\{g\}$ ，as a set of elements，be assigned a topology thus turning it into a topological space．Then G thus topologized is called a topological group whenever it is a To space （a Hausdorff space is a T_{0} space）and in addition $g-g$ is a con－ tinuous function of $G \times G$ to G in the topology．

Definition 5．8．Let $\left\{G_{i}\right\}$ be a system of topological groups and Let the projection π_{j}^{i} be a homomorphism。 Then $S=\left\{G_{i} ; \pi_{j}^{i}\right\}$ is said to be an inverse system of groups，or merely an inverse system．

Theorem 5．3．Let $S=\left\{G_{i} ; \pi_{j}^{i}\right\}$ and $\Sigma=\left\{H^{i} ; \tilde{j}_{j}^{i}\right\}$ be inverse sys tems both indexed by $A=\{1 ;>\}$ and with limitogroups＇G ，＇H．Sup＇s pose that for each i there is a homomorphism $f_{i}: G_{i} \rightarrow H_{i}$ such that $\xi_{j}^{i} \mathbb{I}_{i}=f_{j} \pi_{j}^{i}, i>j$ ．Then there exists a homomorphism $f:{ }^{i} G \rightarrow{ }^{\prime} H$ such that if $g=\left\{g_{i}\right\} \in{ }^{\prime} G_{g}$ then $f g=\left\{f_{i} g_{i}\right\}$ 。

Theorem 5．4．Under the same assumption as in Theorem 5.5 let the G_{i} be compact．If $H_{j}^{\prime}=f_{i} G_{i}$ ，then $\Sigma^{\prime}=\left\{H_{i}^{r} ; j_{j}^{i}\right\}$ is an inverse system with limitmgroup，say ${ }^{\prime} H^{8}$ ，and I is an open homomorphism of ${ }^{\prime} \mathrm{G}$ onto ${ }^{\prime} \mathrm{H}^{\prime}$ 。

PoHomology Groups in a Compact Space

It in assumed in this section that M is compact and that T is primitive.

Let $\Sigma=\left\{U_{j}\right\}$ be the totality of primitive special coverings of $M_{,}$and let T_{j} be the transformation induced by T in X_{j}, the nerve of $\left\{U_{j}\right\}$. Each $\left(X_{j}, T_{j}\right)$ is primitive and regular by Lemma 4.6. Primo itivity implies that each T_{j} is of period p.

By Theorem $4.4 \quad \Sigma$ is a directed set relative to ordering by rea dinement and is cofinal with the totality of all finite open cover* ings of Me Hence Σ is adequate for carrying the ordinary homology theory of Mo It is now shown that Σ carries a pohomology theory for (M, T) 。

Let $\left\{\mathrm{U}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{U}_{\mathrm{j}}\right\}$ be coverings in Σ with $\left\{\mathrm{U}_{\mathrm{i}}\right\}>\left\{\mathrm{U}_{\mathrm{j}}\right\}$: Since $\left\{U_{j}\right\}$ is primitive, there exists a Teprojection $\pi_{j}^{i}{ }_{j} \quad\left\{U_{i}\right\} \rightarrow\left\{U_{j}\right\}$ by Theorem 4.1. Since π_{j}^{i} is permutable with ρ and F, it carries ρ_{a} cycles into p-cycles and preserves ρ-homologies. The projection π_{j}^{i} induces a mapping

$$
\begin{equation*}
\frac{i}{\pi_{j}}: H_{\rho}^{h}\left(X_{i}, T_{i} ; G\right) \Rightarrow H_{\rho}^{h}\left(X_{j}, T_{j} ; G\right) \tag{5.2}
\end{equation*}
$$

It is a consequence of Lemma 5.25 that $\frac{\pi_{j}}{j}$ is independent of the particular choice of the T projection π_{j}^{i}. Thus the groups $H_{p}^{h}\left(X_{i}, T_{i} ; G\right)$ and associated mappings $\frac{i}{\pi}$ form an inverse system invariantly related to (M, P).

Let

$$
H_{\rho}^{h}(M, T ; G)=\lim \left\{H_{\rho}^{h}\left(X_{1}, T_{i} ; G\right) ; \pi_{j}^{j}\right\}
$$

The elements of $H_{\rho}^{h}(M, T ; G)$ may be regarded as a ρ momology of (M, T).

A pocycle Z^{h} being a collection $\left\{Z_{i}^{h}\right\}$ where Z_{i}^{h} is a $\left(\rho, X_{i}\right)$-cycle (pocycle in X_{i}) and where $\left\{U_{i}\right\}>\left\{U_{j}\right\}$ implies

$$
\begin{equation*}
\pi_{j}^{i} z_{i}^{h} \approx z_{j}^{h} \tag{5.3}
\end{equation*}
$$

We have $z^{h} \cong 0$ if and only if $z_{i}^{h} \approx 0$ for each i. We call z^{h} a Sech procycle.

As in the simplicial case, we frequently make no distinction be tween pocycles and their class.

The totality Σ is a topologically definite entity uniquely de termined by M and T. It follows that the groups $H_{\rho}^{h}(M, T ; G)$ are topological invariants of (M, T).

Lemma 5.25. The homomorphism π_{j}^{i} carries $B_{p}^{h}\left(X_{i}, F_{i} ; G\right)$ into a subgroup of $\mathrm{B}_{\mathrm{p}}^{\mathrm{h}}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{T} ; \mathrm{G}\right)$.

Proof If $Z_{i}^{h} \in B_{p}^{h}$ then $Z_{i}^{h} \infty 0$. Also, $\pi_{j}^{i} z_{i}^{h} \cong Z_{j}^{h}$. Hence $Z_{j}^{h} \sim$ 0 , since π_{j}^{i} carries $\rho=$ cycles into $\rho-c y c l e s$ and preserves ρ-homologies.

Also, \mathbb{r}_{j}^{i} carries $K_{p}^{h}\left(X_{i}, T_{i} ; G\right)$ into a subgroup of $K_{p}^{h}\left(X_{j}, T_{j} ; G\right)$, and in the same way the homomorphism $H^{h}\left(X_{1}, G\right) \not H^{h}\left(X_{j}, G\right)$ induced by π_{j}^{i} carries $H_{(p)}^{h}\left(X_{i}, T_{i} ; G\right)$ into a subgroup of $H_{(\rho)}^{h}\left(X_{j}, T_{j} ; G\right)$ 。 Thus $H_{\rho}^{h}(M, T ; G)$ and $H^{h}(M, G)$ admit subgroups

$$
\begin{aligned}
& B_{p}^{h}(M, T ; G)=\lim \left\{B_{p}^{h}\left(X_{i}, T_{i} ; G\right) ; \pi_{j}^{i}\right\}, \\
& K_{p}^{h}(M, T ; G)=\operatorname{Iim}\left\{K_{p}^{h}\left(X_{i}, T_{i} ; G\right) ; \bar{\pi}_{j}^{i}\right\},
\end{aligned}
$$

and

$$
H_{p}^{h}(M, T ; G)=\lim \left\{H_{(\rho)}^{h}\left(X_{i}, T_{i} ; G\right) ; \cdot \frac{j}{\pi_{j}}\right\}
$$

The relation $\pi_{j}^{i} T=T \pi_{j}^{i}$ implies that π_{j}^{i} carries invariant $X_{i}=$ simplexes into invariant X_{j}-simplexes, hence $\pi_{j}^{i} X_{i I} \subset X_{j I}$. Thus ($\rho I, X_{j}$) wains are carried by π_{j}^{i} into ($P I, X_{j}$)-chains and ρI-homolog
gies are preserved. Fhis leads to daverse bystems of groups
 plies that elements in the resulting limit-groups axe p-cycles modulo L and their limitogroups are therefore properly denoted by $H_{P L}^{h}\left(M_{s} L ; G\right)$ et cetera.

The following remarks are made for future reference.

Remark (5.1). A topology in the coefficient group G will lead to a topology in H_{p}^{h}, $H_{p J,}^{h}$ et cetera. In what follows, the groups are considered as discrete.

Bemark (5.2). Like the groups H_{p}^{h} the groups $B_{p s}^{h} \quad K_{p}^{h} \quad H_{(p)}^{h}$ and the corresponding groups $H_{\mu L}^{h}$ et cetera are topological invariants of (M, mis) 。

Remark (5.3). Suppose that dim $M \leq m$, Then Σ can be replaced in the preceding discussion by $\Sigma_{k}=\left\{U_{i}\right\}$, the totality of primitive special coverings $\left\{U_{i}\right\}$ suck that $\operatorname{dim}\left(X_{i}-X_{i I}\right) \leq k$, by Theorem 4.3.

Let h_{i}, g_{i} denote the mappings h, g defined as before for $\left(X_{i}, T_{1}\right)$. The mappings h_{i} and g_{i} do exist since $\left(X_{1}, T_{i}\right)$ is regu lar and primitive.

Lemma 5.26. If $\left\{U_{i}\right\}$ and $\left\{U_{j}\right\}$ axe contained in Σ with $\left\{U_{i}\right\}$
 $=h_{j}-\pi_{j}$ 。
 FC^{h} and $\mathrm{z}^{\mathrm{h}}=\overline{\mathrm{P}}^{h}+\mathrm{C}_{I^{\circ}}^{\mathrm{h}}$ Hence, since F is permutable with π, we

 defintion of g_{i} 。

The second part holds similarly: If $z^{h}=\left\{Z_{i}^{h}\right\}$ is a pocycle which is an elenent of $H_{p}^{h}\left(M_{s} x_{\%} F_{p}\right)$, then Lemma 5.26 implies that $\left\{g_{h} Z_{i}^{h}\right\}$ is a proycle. Denote this pacycle by $\mathrm{g}^{\text {h }}$.

Ualng $\frac{\mathcal{F}}{H_{j}}: H_{p}^{h}\left(X_{1}, T_{i} ; G\right) \Rightarrow H_{p}^{h}\left(X_{j}, T_{j} ; G\right)$ and the fact that the groups $H_{p}^{h}\left(M_{p} T_{p} F_{p}\right)$ are finite and compact, it follows from the general theory of inverse systems that g actually covers $B_{\bar{P}}^{\mathrm{h}-1}$ by Theorem 5.4 . Moreover, the fact that the kernel of g_{j} is $K_{p}^{h}\left(X_{i}, T_{i} ; F_{p}\right)$ for every $\left\{U_{i}\right\}$ in Σ implies that the kernel of g is $K_{p}^{b}\left(M_{9}\right.$ Tis $\left._{p}\right)$. Similar remarks lead to a homonorphism $\mathrm{h}: \mathrm{H}_{\rho}^{\mathrm{h}}\left(\mathrm{M}, \mathrm{T}_{;} \mathrm{F}_{\mathrm{p}}\right) \Rightarrow \mathrm{H}_{(\rho)}^{\mathrm{h}}\left(\mathrm{M}, \mathrm{T} ; \mathbb{F}_{\mathrm{p}}\right)$ with kernel $B_{p}^{h}\left(M_{2}, w_{p}\right)$. Therefore the formulas of Theorem 5.1 hold for every comm pact M and primitive T.

Homologies in L

In this section M is compact, T primitive and $G=F_{p}$.
Let x_{j}^{i} be a T projection and $\left\{U_{i}\right\}$, $\left\{U_{j}\right\} \in \Sigma_{6}$ Also, recall that
 $H_{O \rho}^{h}\left(X_{i}, P_{i} ; F_{P}\right)$ is identical to $\mathcal{H}^{h}\left(X_{i I}, F_{p}\right)$ by Lemma 5.20.

Lemma 5.27. The projection $\frac{{ }_{j}}{j}$ carries $H_{0}^{h}\left(X_{i}, T_{i} \xi_{p}\right)$ into a subgroup of $H_{O p}^{h}\left(X_{j} s T_{j} \rho F_{p}\right)$ 。

Proof. There exists an element $Z \in H_{O P}^{h}$ such that $Z \in X_{i I}$ and $\pi_{j}^{i}(Z) \in X_{j I}$ by Lemma 4.5. Hence the lemma is proved.

Let

$$
H_{O R}^{h}\left(M_{,} T_{9} F_{p}\right)=\lim \left\{H_{O p}^{h}\left(X_{i}, T_{i}, F_{p}\right) ; \frac{\pi_{j}}{\pi_{j}}\right\}
$$

The selation $X_{i I}=x_{i L}$ and Leama 5.20 imply that $H_{O p}^{h}$ is the group of ordinary bomology classes of I .

That i.s

$$
\begin{equation*}
\mathrm{H}_{\mathrm{O} \rho}^{\mathrm{h}}\left(\mathrm{M}, \mathrm{~T}, \mathrm{~F}_{\mathrm{p}}\right) \equiv \mathrm{H}^{\mathrm{h}}\left(\mathrm{I}_{,} \mathrm{F}_{\mathrm{p}}\right) \tag{5.4}
\end{equation*}
$$

Lemma 5.28. The image of $D_{p}^{h}\left(X_{i}, T_{i} ; F_{p}\right)$ under \bar{r}_{j}^{i} is contained in $D_{p}^{h}\left(X_{j}, T_{j} g F_{p}\right)$.

Eroof. There exists $Z^{h} \in D_{p}^{h}$ such that $Z^{h} \in X_{1}-X_{1 I}$ by definio tion of $\mathrm{D}_{\mathrm{p}}^{\mathrm{h}}$ and by Lemma $5.5 \mathrm{z}^{\mathrm{h}}=\overline{\mathrm{p}} \mathrm{A}$ 。 Also, $\pi_{j}^{i} \overline{\mathrm{p}} \mathrm{A}=\overline{\mathrm{p}} \pi_{j}^{i}$ A. Therefore, $x_{j}^{i} Z^{h} \in X_{j}-X_{j} X^{\circ}$

Let

$$
D_{p}^{h}\left(M_{,}, T_{p}\right)=\operatorname{Iim}\left\{D_{p}^{h}\left(X_{i}, T_{i} ; F_{p}\right) ; \frac{j}{\pi_{j}}\right\} .
$$

If Z^{h} is a p-eycle that is an element of $D_{\rho}^{h}\left(M, T ; F_{p}\right)$, then Z_{i}^{h} may be taken as a pocycle in $X_{i} \circ X_{i I}$. If $X_{i, J}$ is the totality of $X_{i}{ }^{\infty}$ simplexes whose kernel meets $M=L_{\text {, }}$ then $X_{i} \propto X_{I I}=X_{i}=X_{i L} \in X_{1} J_{0}$ Lemma 5.8 and the relation $\mathrm{z}_{\mathrm{i}}^{\mathrm{h}} \subset \mathrm{X}_{1}-\mathrm{X}_{1}$ imply that Z^{h} is a pocycle of $M-I$ or at least is pohomologous to such a cycle.

The decomposition of Lemaa 5.21 , which holds in each $\left(X_{i}, T_{1}\right)$, im plies the decomposition

$$
\begin{equation*}
H_{p}^{\mathrm{h}}=\mathrm{D}_{p}^{\mathrm{h}} \times \mathrm{H}_{O p}^{\mathrm{h}} \text { for } \quad\left(M, T ; F_{p}\right) \tag{5.5}
\end{equation*}
$$

and Lemma 5.22 implies

$$
\begin{equation*}
g D_{\rho}^{h}=g H_{\rho}^{h}=R_{\Gamma}^{h-1} \quad \text { for } \quad\left(M, T ; F_{p}\right) \tag{5.6}
\end{equation*}
$$

Hence, if we denote by f the projection mapping $D_{\rho}^{h} \times H_{O P}^{h} \Rightarrow H_{O p}^{h}$ and by k the mapping fig, then we have by Lemma 5.23

$$
\begin{equation*}
k H_{p}^{h}=k D_{p}^{h} \subset H_{O p}^{h-1} \text { for }\left(M, T_{p} ; F_{p}\right) \tag{5.7}
\end{equation*}
$$

Denoting by k_{i} the mapping of $H_{p}^{h}\left(X_{i}, P_{i} ; F_{p}\right)$ induced by $k_{i} k_{i}$ is precisely the mapping k defined for simplicial (M, T) with $M=X_{i}$ and $I T=T_{5}$. Moreover. Lena 5.26 implies

$$
\begin{equation*}
\bar{x}_{d}^{1} k_{1}=k_{j} \frac{1}{J_{j}} \tag{5.8}
\end{equation*}
$$

where $i>3$ and x^{i} is a Toprojection.
Lemma 5.29. If $D_{\beta}^{\mathrm{h}-1}=0$, then the kernel of k , as applied to H_{p}^{h} is k_{p}^{h}.

Proof, If $p_{p}^{h-1}=0$, then $\mathrm{gH}_{p}^{h} \times H_{O p}^{\mathrm{h}-1}$ since $\mathrm{gH}_{\mathrm{p}}^{\mathrm{h}}=\mathrm{B}_{\bar{\rho}}^{\mathrm{h}-1}=$ $D_{p}^{h-1} \times H_{0}^{h-1}=0 \times H_{0}^{h-1}$. Hence $\mathrm{IgH}_{\mathrm{p}}^{\mathrm{h}}=\mathrm{gh}_{\mathrm{p}}^{\mathrm{h}}$, thus k has the same kernel as g_{9} namely K_{p}^{h}.

Lemma 5.30. if $D_{p}^{h-1}=0$ and $H_{(P)}^{h}=H^{h}$, then k transforms D_{p}^{h} isomorphicaily.

Proof. The kernel of k acting on D_{p}^{h} is $D_{p}^{h} \cap K_{\rho}^{h}$ by Lemma 5o29. An element in $D_{p}^{h} \cap k_{p}^{h}$ is of the form $Z^{h}=\left\{\rho C_{i}^{h}\right\}$ where $C^{h}=\left\{C_{i}^{h}\right\}$ is an ordinary cycle. Because $x \in D_{p}^{h}$ implies $x \in M \rightarrow M_{I}$ and by Lemma 5.5 , $x=\overline{\rho C}$. Also, $y \in \mathbb{K}_{F}^{h}$ implies $y=\overline{\rho C}+C_{I}$ where C is a cycle. Thus C^{h} is an element of H^{h} and is therefore an element of $H^{h}(\rho)$ by the hypothesis. This implies that $\overline{p C}^{h} \approx 0$ by definition of $H^{h}(P)^{2}$ hence z^{h} is the zero of D_{p}^{h}. Thus the kernel of k is the zero. Therefore k is an isomorphism.

Lemma 5.31. If $H^{h-1}=0$, then k acting on H_{β}^{h} is equal to H_{0-1}^{h-1}.

Proof. We need to show that a given cycle $\mathrm{z}^{\text {hel }}$ in $\mathrm{H}_{\mathrm{Op}}^{\text {hel }}$ has a premimage in H_{p}^{h}. Write $z^{h-1}=\left\{z_{i}^{h o l}\right\}$, where $z_{i}^{h-1} \subset X_{i I}$. Since po
homologies imply ordnexy homologies, $x^{h} i$ may be regarded as an element of H^{h-1}, hence $Z^{h-1} \approx 0$. Thus each element $\mathrm{Z}_{\mathrm{i}}^{\mathrm{h}-1}$ is cono

 (5.8) implies that $\mathbb{R e}_{j}^{i} R_{i} \in R_{j}$, since $\pi_{j}^{i} k_{i}\left(Z_{i}^{h-1}\right)=k_{i} \pi_{j}^{i}\left(Z_{i}^{h-1}\right)=$ $k_{i}\left(2_{j}^{K=d}\right) \mathcal{R}_{j} \mathcal{R}_{j}$ The sets R_{i} being finjte (hence compact) means that
 rem 5.2.) Therefore the limit elements are presimages of z^{h-1} under k.

Lemma 5.32. Assume that M is finitemimensional, 9 a prime. Assume further that $H^{h}\left(M, g_{p}\right)=0$ for $h>n$ while $H^{n}\left(M_{p} F\right)$ is cy clic of order po Then

$$
H_{(\rho)}^{n}=H_{\rho}^{n} \sum_{g}^{n} \quad B_{\rho}^{n}=0_{g} \quad H_{\rho}^{n}=0_{g} \quad n>n_{2} \text { for } \quad\left(M, M_{g} F_{p}\right)
$$

Proof. Suppose that the dim $M \leq m_{2}$ then $n \leq m$. The definition of the pohomology groups can be based on $\sum_{k}, k=p m+p=1$, in place of I by Remark 5.3. The pocomadnate of a cycle Z^{h} of D_{p}^{h} is an ho dimensional $\left(P_{9} X_{i}\right)$-cycle in $X_{i}=X_{i L}$. Therefore, if $h>k$ and $\left\{U_{i}\right\}$ Is in $\Sigma_{k^{2}}$ then $Z_{d}^{h}=0$ and $D_{0}^{h}=0$. Let y be an integer larger than k such that $y=k$ is even Then $D_{\rho}^{y}=0$. Now $H^{\gamma-1}=0$ since $\gamma-1>n_{,}$hence $H_{\gamma}^{\gamma-1}=B_{\hat{\beta}}^{\gamma-1}=g_{\beta}^{y}=g 0=0$, and $D_{p}^{\gamma-1}=0$. From this $H_{P}^{y-2}=D_{P}^{y-2}=0$, thus $D_{P}^{n+1}=A_{P}^{n+1}=0$ y and hence

$$
B_{p}^{n}=g h_{p}^{h+1}=0
$$

From Theorem 5.1, part $(b), H_{p}^{n}=H_{(p)}^{n}$. Now we need to show that $H_{(p)}^{n}$ $=\mathrm{H}^{\mathrm{n}}$ 。

Let z^{n} be an necycle of 0 . Then $\operatorname{PZ} \approx x Z$ (x a nonzero integer), $T^{2} Z \propto x^{2} Z, \circ \circ, Z=M_{Z} p_{Z} X_{Z}$ since H^{n} is cyclic of order p 。 Hence, $x^{p}=1 \bmod p$ and since p is prime $x=1 \bmod p$. Thus for
 cycle since if π_{j}^{i} is a $T=$ projection we have $\pi_{j}^{i} \bar{\rho} Z_{i} \quad \bar{\rho} Z_{j}$. This is
 required. Now $\overline{\rho Z} \approx 0$ implies that $\overline{\rho Z}$ is an element of the subgroup B_{p}^{n} of H_{p}^{n}. Therefore, since $B_{p}^{n}=0$ implies $\bar{\rho} Z \infty 0^{n}$ we see that Z^{n} is a nonzero element of $H^{n}(\rho) \quad$ Thus $H_{(\rho)}^{n} \neq 0$ and since it is a subo group of a cyclic group of prime orders H^{n} must be identical to $H^{n}(\rho)$.

Homological Spheres

Definition 5.9. A space M is n-cyclic over G if $H^{n}(M, G) \cong G$ and $\mathrm{H}^{i}\left(\mathrm{M}_{\mathrm{g}} \mathrm{G}\right)=0, \quad i \neq \mathrm{n}$ 。

Definition 5.10. A space M is said to be augumented if each of Its coverings considered as a complex are augumented.

Definition 5.11. A compact finite-dimensional space is called a homological nusphere over if, when augumented, it is nocyclic over G. The empty set is regarded as a homological (-1)-sphere over G.

Theorem 5.5. Let T be a transformation operating in M of per. iod $p=q^{a}$ with $\geq 1, q$ a prime. If M is a homological n-sphere over F_{q}, then the fixedopoint set L is a homological rosphere over $F_{q}, \quad-1 \leq r \leq n_{0}$

Proof. Assume that $a=1, \quad p=q$ and $L \neq \neq$
Let $\rho_{0} P_{1}, P_{1}$. stand alternately for $\zeta_{S} \sigma$ beginning with
$\rho_{0}=6$. Let r be the dimensional index of the first vanishing group in the sequence

$$
\begin{equation*}
D_{\rho_{n}}^{n}, D_{\rho_{n-1}}^{n-1}, \cdots \tag{i}
\end{equation*}
$$

The definition of r has meaning since $D_{\rho_{O}}^{0}=0$. Consider an element of $D_{P_{O}}^{0}$. It contains a ρ-cycle of the form $Z^{0}=\left\{\bar{\rho}_{O_{i}} A_{i}^{0}\right\}$ and since H^{0} $=0, X_{1}$ is connected by section 11, Chapter VII of [14]. Hence if E is an X_{i}-vertex, then $E \sim 0 \bmod X_{i I}$. It follows that $A_{i}^{0} \sim 0 \bmod X_{i I}$, say, $F B_{i}^{\prime}=A_{i}^{0}+A_{i I}^{0}$. Then $\overline{F P}_{0} B_{i}^{\prime}=\bar{P}_{O} A_{i}^{0}=Z_{i}^{0}$ and so $Z_{i}^{0} \approx 0$ for each i which implies $z^{0} \in B_{\rho_{0}}^{0}$. Hence our assumption is true.

Next it is shown that $H_{\mathrm{Op}_{r}}^{r}$ is cyclic of order r while $H_{O p_{i}}^{i}=0$ for if r . This implies that L is a homological r-sphere since the groups $H_{\mathrm{OPh}}^{\mathrm{h}}$ are identical to the ordinary homology groups of $\mathrm{I}^{\text {b }}$ by (5.4, page 68). Note that

$$
\begin{equation*}
B_{\rho_{i}}^{i}=H_{\rho_{i}}^{1}, \quad i \neq n, \tag{ii}
\end{equation*}
$$

since $H^{i}=0$ for $i \neq n$. By Lemma 5.32, $H_{\rho_{n}}^{n}$ is cyclic of order p. Assume $r<n$. Then $D_{\rho_{n}}^{n} \neq 0$ by definition of r, hence $D_{\rho_{n}}^{n}=H_{\rho_{n}}^{n}$ We have $g D_{\rho_{n}}^{n}=B_{\rho_{n-1}}^{n-1}$ by (5.6, page 68) and consequently $B_{\rho_{n-1}}^{n-1}$ is cyclic, possibly zero. If $r<n-1$, then $D_{\rho_{n-1}}^{n-1} \neq 0$ and $D_{\rho_{n-1}}^{n-1} e$ $H_{\rho_{n-1}}^{n-1}$, so that $B_{\rho_{n-1}}^{n-1} \neq 0$ by (ii). Hence, $B_{\rho_{n-1}}^{n-1}$ is of order p and so is $D_{\rho_{n-1}}^{n-1}$. By repeating this argument we conclude that the groups (1) with dimensional index exceeding r are cyclic of order p. We have also shown that

$$
\begin{equation*}
H_{\rho_{i}}^{1}=D_{\rho_{i}}^{i}, \quad i=n, \quad n+1, \cdots, \quad r+1 \tag{iii}
\end{equation*}
$$

Now we need to show that the remaining groups of (i) vanish. We have $D_{\rho_{r}}^{r}=0$ by definition of r and $D_{\rho_{r-1}}^{r-1} \subset H_{\rho_{r-1}}^{r-1}=B_{\rho_{r-1}}^{r-1}=g D_{\rho_{r}}^{r}=0$ by
（ii）and（ 5.6 ，page 68）．Replacing r by $r-1$ and so on we have $D_{\rho \ell}^{\ell}=0$ for all $\ell s r_{0}$
Now by Lema 5.31 and（iii）
（iv）$\quad H_{O P_{i}}^{i}=k H_{\rho_{i+1}}^{i+1}=k D_{\rho_{i+1}}^{k+1}=k 0=0 \quad i<r_{0}$
Using the fact that $H_{p_{i}}^{1}=0$ for $i>n_{\text {，}}$（iv）also holds for $i>n$ ． Moreover，$H_{o \rho_{i}}^{i}$ vanishes for $i=r+1, \circ$ 。，n ，since $H \rho=$ $D_{\rho} \times H_{O \rho}$ and since $H_{\rho}=D_{\rho}$ ．Therefore $H_{O \rho_{i}}^{i}=0$ when $i \neq r$ ．

It remains to be shown that $\mathbb{H}_{\mathrm{OP}}^{\mathrm{r}}$ is cyclic of order p 。 If $\mathrm{r}=$ $n_{\text {，then }} D_{\rho_{n}}^{n}=0$ ．Also，$H_{\rho}=D_{\rho} \times H_{O \rho}$ hence $H_{\rho}=H_{0 \rho^{\circ}}$ Now $H_{\rho_{n}}^{n}$ is cyclic of order p_{9} therefore，$H_{O p}^{r}$ is cyclic of order p ．If r $<n$ ，then $D_{P_{r+1}}^{r+1}$ is cyclic of order p and $k D_{P_{r+1}^{r+1}}$ is isomorphic to $\mathrm{H}_{\mathrm{Opr}}^{r}$ by Lemmas 5.30 and 5.31 ；therefore，$H_{O p_{r}}^{r}$ is cyclic of order p_{0} The theorem is proved for $a=1$ 。

Assume $a>1$ and that the theorem has been proved for $p=q^{b}$ ， $b<a$ ．The transformation $T^{s}, s=q^{a-1}$ ，is a prime of period q ． Hence its fixed point set，$I_{s,}$ is a homological rosphere，$r \leq n$ ． Now T transforms I_{s} into itself，and the transformation T^{\prime} induced in L_{s} is either the identity or it is of period q^{c} where $c<a$ ．In the first case $L=L_{s}$ and the theorem is established．In the second case the fixed point set I^{\prime} of T^{\prime} is a homological r^{\prime}－sphere，r^{\prime} $\leq r$

Examples

The results of Theorem 5.5 do not hold for a transformation of pere iod $p_{\text {，}} p$ arbitrary．E．E．Floyd constructed examples to show this fact in 1952 ［6］and in 1956 ［8］：Some of Floyd＇s examples are given in
this section. First we shall stabe theorems and definitions that are used in constructing the examples.

Definition 5.12. A decomposition of a space M is a partition of M into a family of disjoint subsets of M whose union is M.

Definition 5.13. Let M be a compact Hausdorfif space and T a periodic mapping on H_{h}, then $\sigma \mathrm{x}, \mathrm{x} \in \mathrm{M}$, is an orbit.

Definition 5.14. The oxbit decomposition space M^{*} of (M, T) is the space whose elements are the sets $\sigma x, x \in M$, with an open set in M^{*} being the images of an open set in M under the orbit decomposition mapping $f: M \rightarrow M_{g}$ where $f(x)=\{\sigma x\}$.

The following theorems are used in the construction of our exam= ples. They can be found in [6] and [7].

Theorem 5.6. Let X be a finite complex and let A be a subcomplex of X. Suppose A is invariant under a simplicial periodic mape ping T on X. Let $A *$ denote the orbit decomposition of the pair ($A, T / A$) and let $F: A \Rightarrow A *$ the oroit decomposition mapping, Suppose that the induced homomorphism I^{*} of the homology groups $H_{n}(A ; G)$ into $H_{n}(A ; G)$ are isomorphisma onto for each n, where G is a give en coefficient group. Consider the decomposition of X consisting of orbits of points of A and of individual points of $X=A$. Let $X *$ denote the resulting decomposition space. Then $X *$ may be triangulated so as to be a finite complex with A* a subcomples. Moreover, $H_{n}(X * ; G) \approx H_{n}(X ; G)$ 。

Theorem 5.7. Let A be an n-dimensional finite complex; let T
be e simplicial periodic homeomorphsm of period troor A onto A With exsctiy onefixed point p and such that if C_{a} denotes the close ed star of a vertex a of A, $A P$, then $P\left(C_{a}\right) C_{a}$ is edther empty or is p. There exists a homeomorphism i of A into. Eucludean
 x © $\mathrm{S}_{2 n+1}$ and such that f is linear on each simplex of A.

Notation Let n be a positive integer 2. Let P denote the solid undt cixcle in the plane, where we use polar coordingtes. Consider the decomposition of P which has as its elements the individual points (x, θ) for $x<1$ and the sets $\{(1, \theta),(1, \theta+2 \pi / n), 0$, $(1, \theta+(2 n-1) x / n)\}$ for $r=1$. Denote the resulting decomposition space by $P(n)$. If $(x, \theta) \in P$ let $(x, \theta) n$ denote the generated point of $P(n)$. An involution R of $P(n)$ onto $P(n)$ is defined by $R\left((r, \theta) n=(r, \theta+\pi) n_{0}\right.$

Theorem 5.8. If n is odd, then R has a single fixed point, and the orbit decomposition spsee $P *(n)$ is homeomorphic to $P(n)$. Also, if $g: P(n) \Rightarrow P *(n)$ denotes the orbit decomposition mpping, then $g^{*}:$ $F_{n}(P(n) ; I) \Leftrightarrow H_{n}(P *(n) ; I)$ is an isomorphism onto for each n, where I denotes the group of integers.

Theorem 5.9. If X is locally connected and locally simply connected, then so is $X *$.

Example l. Let n be an odd positive integer. There exists a finite complex K and a simplicial mapping T of K onto K of pera iod two such that K is contractable (and thereby homologically tri-
vial over all groups) and such thet the fixed polnt set of it is homeomorphic to $P(n)$.

Proof Let X denote the 5-cube In Euclidean 5apace consisting of all points whose coordinates are between -1 and 1 . Denote by $S: X \Rightarrow X$ the involution $S(X)=-X$ for all $x \in X$. Trianguiate $P(n)$ so thet the hypothesis of pheorem 5.7 is satisfied with respect to a mapping R. (See notation above.) By Theorem 5.7 we, can considef $P(n)$ as being imbedded in the interior of X so that R is equal to S on $P(n)$. Define K to be the decomposition space generated by the decomposition of X whose elements are the individual points of $X=P(n)$ bogether with tine set $\{x,-x\}, \quad x \in P(n)$. Let $h: X \rightarrow K$ be the natural decomposition mappingo Define $T \mathrm{~m}=\mathrm{h}^{-1}$. Then T is a decomposition mepping of K onto K of period two. The transformation T Leaves the sets $\left\{x_{3}-x\right\}$ fixed. These sets are homeomorphic to P*(n). Thexefore, by Theoren 5.8 they are homeomorphic to $P(n)$. More over, $S / P(n)=R_{i}$ hence R : $H_{n}(P(n): I) \rightarrow H_{n}(P *(n) ; I)$ is an isomorphism onto for earh n. Thus by Theorem $5.6 h_{n}(K ; I)$ a $H_{n}(X, I)$ and since $H_{n}(X ; I)$ as homologicaliy trivial, $H_{n}(K ; I)$ is also. We now prove that K is simply connected. It will then follow by [10] that. K is contractible. Let X_{I} and X_{2} be disjoint nopies of the 5-cube X. Let S_{1} and S_{2} denote the involution $2 \Rightarrow-x$ in X_{1} and X_{2} respectively Let $P_{7}(n)$ and $P_{p}(n)$ de note the copies of $P(n)$ in X_{1} and X_{2} respectively. If x_{1} E X_{2}, let x_{2} beits copy in X_{2} Form the decomposition of $X_{1} \cup X_{2}$ with elements that are individual points of X_{i} a $P_{i}(n)$, for $i=1,2$ tocether with the sets $\left\{x_{2}, x_{0}\right\}$ for $x_{1}, P_{1}(n)$. The resulting decomposition space X^{8} is simply connected being the
union of two simply connected subcomplexes with a connected intersec. tion. Moreover, there can be defined an involution s^{\prime} on X^{\prime} as folm Iows: If $x \in X_{1}$, define S^{\prime} on the element of X^{\prime} determined by x_{1} to be the element of X ' determined by $S_{2}\left(x_{2}\right)$; similariy for points $X_{2} \in X_{2}$. Points in the orbit decomposition apace of the pair ($X^{*} ; S^{\prime}$) are of the form $\left\{x_{1}, \cdots x_{2}\right\}$ for $s_{1} \in X_{1}-E_{2}(n)$ and $\left[\left\{x_{1},-x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right]$ for $x_{1} \in P_{1}(n)$. Now $h: K \Rightarrow X^{\beta}$, where h is a mapping such that $h\left(x_{1}\right)=\left\{x_{1},-x_{2}\right\}$ for $x_{1} \in X=P(n)$ and $h\left\{x_{1},-x_{1}\right\}$ $=\left[\left\{x_{1} ;-x_{2}\right\},\left\{\infty x_{1}, x_{2}\right\}\right]$ for $x_{1} \in P(n)$, is an homeonorphism fro K to X°, The set S^{0} has fixed points since S_{1} and S_{2} have fixed points and they must be copies of each other. Therefore the orbit dem composition space of $\left(X^{2}, S^{2}\right)$ is simply connected by Theorem 5.9. Hence K is simply connected.

Example 2. Let G be a nonotrivial abelian group. There exists a prime period p such that K is homologicaliy trivial over G but such that the fixed point set L is not homologically trivial over G.

Proof. If $P(3)$ is not homologically trivial over G then the statement follows from Example l. If $P(3)$ is homologically trivial over G, then let $K=P(3)$, and define $T((r, \theta) n)=(r, \theta+2 \pi / 3) n$. Then T is a periodic mapping of K onto K of period 3 whose fix ed point set is the union of a point and a simple closed curve. The point is $(0,0)$, and the simple closed curve is $(r, \theta), r=1$.

Example 3. Let n be an odd integex. Thexe exist a finite comm plex K and a periodic cimplicial mapping T of K onto K of per. Lod two such that K has the homology groups of a 5 -sphere (over the
integers) and such that the fixed point set of T is a union of a set M homeomorphic to $P(n)$ and a point not on M.

Proof. Make the following changes in the construction of K in the prooi of Example 1 . Let X be 5-space compactified with a point at infinity so that X is a 5sphere. Let S be the same as in Example 1 , and consider $P(n)$ as being embedded in X, just as in Example 1 . $D e=$ fine K, h, and T as before. Then K has the homology groups of a 5-sphere over the integers by theorem 5.6. Moreover, I has a fixed point set $h(\infty) \cup(h P(n))$.

Example 4. Let G be the group of integers. There exist a prime number p, a finite complex K, and a periodic simplicial mapping T of K onto K of period p such that K has the homology groups of a sphere of some dimension over G but such that the fixed point set does not have the homology groups of a sphere of any dimension over G. Proof. If $P(3)$ is not homologically trivial over G, the conclusion follows from Example 3. Suppose, then, that $P(3)$ is homow logically trivial over G o Let $P_{1}(3)$ and $P_{2}(3)$ be disjoint copies of $P(3)$. Let A_{1} be the set of all $(1, \theta) 3 \in P_{1}(3)$ and let A_{2} be its copy in $P_{2}(3)$. In the set $P_{1}(3) \cup P_{2}(3)$ identify a point $a_{1} \in$ A_{1} with its copy a_{2} in A_{2}. Call the result K. Then K is the union of two complexes that are homologically trivial over G and whose intersection is a simple closed curve. Hence K has the homology groups over G of a 2-sphere. on each $P_{i}(3)$ define a mapping of period 3 as follows: $(r, \theta) 3 \rightarrow(r, \theta+2 \pi / 3)$. These induce a mapping T of K onto K of period 3 whose fixed point set is the union of two points and a simple closed curve, which does not have the homology
groups of a sphere.
The above results also hold for G nonetrivial abelian group. E. E. Floyd has shown in [8] that there exist a simply-connected homological 2asphere, B, and a periodic mapping on B of period six (the lowest period not covered by Smith"s Theorem) whose fixed point set is the disjoint union of two points and a simple closed curve.

The structure of L when the period of T is not a power of a prime is one of the unsolved proflems. P.A. Smith originally thought that his results could be extended to an arbitrary period. Recall that most of the results in this thesis are obtained in a compact space. It is not known whether or not the compactness is necessary; however, it plays a major part in the proofs of the theorems.

CHABMER VI

SUMWARE AND EDUCAMONAL MPLTCATYONS

Whis thesis presente a collection of mathenatical research reports, each concerned mith the fixed point property of a space mapped into it self by a periodic homomorphic transformetion. A numbex of research ifndings me consolidated in this paper so that understandings in this area can be moxe accessible to students who might not have the skilis necessary to read the technical mathematical journals. A brief history of the fixed point problem and topology in generad is included for developing background in this general area. Discussions, explanations, and examples which illustrate the theory are given along with some un solved problems.

Summery

Chapter I contains the statement of the problem and discussions on the justifications, procedures, limitations, and expected outcomes of the thesis. Chaptex II. following a brief history of topology, presents definitions of the basic terms such as bomeomorphism, a periodic transformation, gausdorfe space, and the tixed point property. Some theorems that can be proved by elementary methods are given at this point. Chaptex III is a review of homology theory. It includes defini tions and some results that are basic in the proofe of the theorems in

Chapters IV and
Chapter IV contains aroot of the existence theorem which follows the one given by P. A。 Smith in [17]. This theorem is one of the imm protent results presented in this thesis. The existence theorem, in sonewhat dfferent form, has appeared in the journals at least three times and was one of the first results obtained. In Chapter V the set of fixed points of en nosphere wes ciassified for a periodic homeomorph ic transtormation of period q, q a power of a prime Examples are given to show that the same classification is not possible in general. Many reeulte are obtained in Chapters IV and V that are not of primary importance in this thesis. These results are presented because the proofs of the major theorems are based upon them.

Educational Implications

Since the study of mathematics is becoming increasingly widespread and the body of knotledge in all areas is expanding rapidy, a colleco tion of the research done in any one area is needed, because it is timemonsuming for each interested person to do the library research necessary to collect such information. A study such as this one, in addition to consolideting the research, presents the aecessary back ground needed for understanding the problem and therefore brings this collection of knowledge to many students of mathematics.

As a result of reading this thesisg the student should gain an awareness of the current and past research in this modern branch of mathematics. Ie should become acquainted with wen who have contributed to its research and development. It is of great educational signifio
cance that the reader, who is a potential teacher at either the public school or the college level, may become sufficientiy interested in this phase of mathematics to undertake serious study in this area. He may be challenged by the possibility of contributing to research in mathematics by extending the results given in this thesis and by suggesting solu* tions to the unsolved problems or by developing new properties of fixed points. The bibliography should be a valuable aid to anyone interested in the research of fixed point theory for periodic transformations.

SELEETEED BIBLIOGRAPHY

1. Alexandroffs, Po and Hopfi, Ho, Topologie, Berlin, 1935.
2. Bedgood, D. Ro, Properties of Fixed Point Spaces in Point Set. Topology, Doctoral Dissertation, Stillwater, Oklahoma, 1964.
3. Cech, E., Theorie Generale de I'Homologie dans un Espace Quelconque Fund. Matho, Vol. 18 (1932), ppo 149-183.
4. Eilenberg, Samuel, on a Theorem of Po Ao Smith Concerning Fixed Points for Periodic Transformations, Duke Matho.J.s Vol. 6 (1940), pp. 228.237.
5. \qquad Sur les Transformations Periodiques de La Surface de Sphere; Fund. Matho, Vol. $22(1934)$, pp. 28-41.
6. Floyd, E. Eo, Examples of Fixed Point Sets of Periodic Maps, Ann. of Math. g. Vol. 5 (1952) s. pp. 167-172.
7. \qquad - On Related Periodic Maps, Amer. Jo Matho, Vol. 7^{4} (1952), pp. 54.7 .554.
8. \qquad , Examples of gixed Point Sets of Periodic Maps, II, Ann of Matho, Vol. 55 (1952), ppo 167-172.
9. Haddock, A. Go, Flxed Point Theorems; American Math. Monthly ${ }_{\text {, }}$ Yo1. $71(1964)$ pp. 1095-1099.
10. Hurewicz, Wo, Beitrage Zur Topology der Deformationen. II Homotopier und Homologieagruppen, Proc. A. Kad. Amsterdam (1935), pp. 521.528.
11. Kelley, Jo In g General Topology, New York: Ven Nastrand, 1955.
12. Klee, V. Log Jrog FixedoPoint Sets of Periodie Homeomorphisms of Hilbert Spaces, Anno of Matho, Vol. 64 (1956) \&p. 393*394.
13. Lefschetz, S., Introduction to Topology, New York: Princetion 3riversity Press, 1949.

14 。 \qquad Alsebraic Topology, American Math. Soc., Colloquium Publication, Vol. 27, 1942.
15. Newman, MoH. Aog A Theorem on Periodic Transformations of Spaces, Quart. H. V Vol. $94 .(1925), \mathrm{pp} .39 \mathrm{mI}$.
16. Smith, P. A., A Theorem on Fixed Points for Periodic Transformm tions, Anno. of Mathes Vol. 35 (1934), Pp. 572.578.
17.
—— Fixed Points for Periodic Transformations, American J. Vol. 63 (1941), pp. 1-8.
18.
——Hixed Points for Periodic Transformations, Appendix B in S. Lefschetz Algebraic Topology, American Math. Soc., Colloquium Publications, Vol. 27, New York, 1945.
19.
—— Transformations of Finite Period, Ann. of Math. 8 Vol. 39 (1938), pp. 127*164.
20. - Transformations of Finite Period, II, Ann. of Math., Vol. 40 (1939), pp. 690-771.
21. Whyburn, G. To, Analytic Topology, American Math. Soco, Colloquium Fublications, Yol. 28, 2942.
22. Wilder, R. Io, Topology of Manifolds, American Matho Soc., Colloquium Publications, Vol. 39, 1949.
23. ___ et alo American Mathematical Society Semicentennial Publication, Vol. 2 (1931), p9. 136.
24. Young, Go S. and Hocking, Jo Go, Topology, Reading, Massachusetts: Addison-Wesley Pub. Coo, Incos 1961.

INDEX

Acycile, 44
Augument, 23
Boundary, 22
of a cycle, 22
of a 0-cycle, 23
group, 23
operator, 22
Chain, 21
modimensional, 21
Pochain, 51
PIcchain, 51
group, 21
Cech cycle, 27
coordinate of: 27
Compact, 8
Complex, 19
oriented, 20
Continuous, 10
Covering, 8
cofinal family, 28
special. 33
Cycle, 22
O-cycle, 22
p-eycle, 52
○I~cyel巴, 52
groups, 22
Decomposition, 58, 74
Dimension, 34
Directed set, 62
Examples, 11, 12, 13, 23, 73
Finite dimensional, 44
Fixed point property, II

Hausdorfi space, 8
Homological sphere, 71
Homologies in $L, 67$
Homology group, 23 pohomology group, 54 relative, 26
Homeomorphism, 10
Homomorphic
mapping $g, 55$
mapping h, 55
Incident number, 20
Invariant, 30
Invariant set, 30
Inverse mapping system, 62
Inverse system, 63
Kernel, 20
Iimit space, 62
Mapping, 20
one-to-one, 10
onto, 10
open, 10
continuous, 10
periodic, 11
Nerve, 20
n-sphere, 11
Normal, 8
Ordered, 62
Operator
σ operator, 40
S-operator

Partinily ordered. 62
Periodic function, 11
Polntwlse almost periodic function, 13
Pointrise periodic function, 14
Primutwe, 30
Projection, e6
of pohomology classes, Poprojection, 32

Fefinement, 26
Regular: 31

Simplex, 19
star of 19
ordented. 20
Simplicial, 30
Simpliciel complex, 19
oriented, 20
System, 31
T-system; 31
primitive, 31
I-image, 30
T-covering, 31
Topological group; 63
Topological space, 8
Topology, 8

VITA
JOHN L. KENP
Candidate for the Degree of
Doctor of Educetion

Thesis: SPACES WITH THE FIXED FOINT FROPERTY FOR PERIODIC TRARSFORMATIONS

Major Field: Mathematics
Biographical:
Personal Data: Born in Mt. Judea, Arkansas, January 13, 1934, the son of Burl Do and Edna Johnson Kent.

Erucation: Attended grade school in Mt. Judea, Arkansas, and Oakland, California, and was graduated from Mt. Judea High School, Mt. Judea, Arkansas, in 1952; attended Arkansas Polytechnic College, Russellville, Arkansas, from 1952 to 1956; received the Bachelor of Science degree from Arkansas Polytechnic College, with a major in mathematics, in May, 1956; received the Master of Science degree in mathematics from the University of Arkansas, Fayetteville, Arkansas, in June, 1960; completed requirements for the Doctor of Education degree at Oklahoma State University, Stillwater, Oklahoma, in August, 1965.

Professional experience: Served in the United States Army from 1956 to 1958; teacher of mathematics at Harrison High School, Harrison, Arkenses, from 1958 to 1959; Graduate Assistant at the University of Arkansas, from 1959 to 1960; instructor of mathematics at Arkansas Polytechnic College, Russellville, Arkansas, from 1960 to 1962; Graduate Assistant at Oklahoma State University, from 1962 to 1964; Assistant Professor of mathematics at Arkansas State College, Jonesboro, Arkansas, from 1964 to 1965.

Organizations: Member of the Mathematical Association of America.

