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THE iilAT;UitE AND· SIGNIFICANCE OF THE PROBLEM: 

the past half century a great manyreseareh artic:leso:n the 

;fixed point property have· ·a:p1Jeare-d·in the tnathematical Journals. Some 

of these articl:es involve a p,eriodic homeomorphic transfomi.ation of a 

space into its elf'.; The wor,k that has 'been done :b:r scattered· .. · · No attempt 

has b'een made to bring together the ideas expressed by the va:r'ioi.is math.,, 

emati.e:.ians who :have contributed to the development of this area 9;f 

thought. One purpose of this study is to examine the various contribu= 

tionsJ summarize the research on periodic: transformations:; and show the 

continuity and pattern of developm<ent. Other objectives a:re to present 

a brief h:Lstory of tol)lology· ~n.d :to .develo:vi a biblio_gr~phy for the area 

of fixed. uoints under a periodic transforma:t...~on. 

The material in this i~ intended to be readable op senior 

college or beginning g:radu8't~ leYel in mathematics. Dis.:mssions and 

explanations ar~ given in conu(l:)ction with the theoremsp and rexamrtl,e.s and 

counter=ex.amples are giv<en to illus'tra·te the tO:i))Ological concepts. 

Chapt~r II pres~nts a brief history of topologyJ som~ elementary 

theor®::ms, and som®i ~xamples suggies;ting the theorems that are proved 

later. In Chapter III a brief r~vi©W of algebraic to__pology is o1JJ;J..ined9 

and in Chapter 1V and V major emphasis :i.s placed on development of the 

specific topic of the thesis. Chapter VI delineates the educational 
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·l{eed fer the Study 

·!Jle-.. 11::now-l-ed:ge'··~J::osioo·nas·-ma.de·-·±t·· :practi:cal,-· perhaps, ·,n-e-eessary, 
·- - ·. .. ·. .. . ..... . .,. . ........ .. ... ,. . : .. . ' ....... ~. ·: .. :.:,.~ 

fi:)T--·t~ ;math-ema;tfcd;.-a.n'··to ·s:pecia;l:tz·e···· in--a-·particntl<Sl"'"8.rea·---sueb;· as· "to.PO-
.. ,. ' - -. . . _,.~ . 

-1:ogyy-geomet:ry,··-al:gebra;i;-·-or·anaiysi-s-.;···--··As-··a· .. result··of 'bhis"speeiaJ:tzation 
.,.;, . "' ·. ~ ... , . ._. . " .. ,. . .. -· . ... . - . - -· . 

· a:rtiel:es· .. ·pttb'li'sb:ed· :br-tb:er·re~lr--j·ournai"S""al'.':Er-':f'l°'eqn~t;l.y--m.i,i?en·.: in such 
'~ .. . .... - . . ' .... 

·s_p-eci~izri .. i~g~ that ·tb:ey-.. canm::it··~tre-·read±iy·-una:~rs:t10od-Jzy·"·a··matn:e·..,· ·· ··· ·· 
... 

·-mati-cta.n··outsidie-···tb:~ .. -sp-eci-a;li:z-ed·ar-ea.;·····-In"'ttla.nY·eas·ea--proofs····o;r-·theorems 
.... ... . .... '~ . ' ... ' .. . ....... - ..•. •. : ... ~ . - - • . . ~ " '·" . . ·r' . "'. :· ••. , ...... , .,, "•• .·. 

·· ·· · ·±n · ·one--arti-ohr:a.re··buil t --uporrd'Elfinit:t:ons ----and ·tJ:reorems·-·,that have been 
,',"": ... -···.. "! .. , . ,':",-::: . . . ' t "< ~ . ,. ............ , ' ·~ ·. . . ' .• . . - . ,. . ~: - -~ ... . 

· publish-ed · · in··other· journal."S ;;- --·Every--pereron·..mo--·att,empts ··to· und-er;rtand · ·· 
.!,.·• •• ~ • ." •• ' • •. ~ •" .. • ~I • ~ -

· these a.xticles ·1,11,Ust first·--g!)· back and--acquire· the·necessa.ry-baclcg:r':oundo 
,• - . . . ~··' .. . - . •. ; . '" . . . . . .• ·,· . 

This is not an easy task since many of the details are missing~ · Since 
~- ... . ........ , .. ·· . . .. . ·.. : , .... :·... .., ·,-, .... .' .. 

~~e j4?~rnals a.re .the maJor so11rce of inf?rma.tion fQr cont~nuing dev~.op= 

ments 3 1 t is imperative that somepne · digest the various contr.;l.butions and 
·-··- ,:·' ····:. ' .. ·, ·. 

express them in simpler and more complete languageo lflhe fixed point 
;,•·:.:.)·::.· . .... , .. · ..... ; ·- .. ,,")".• .: ... . ... , 

I • . 

chronol?g~cal d~elopmenthaa not been included in the text't>ooks .. 

Tb.ere is a definite need for someone to consolidate all the research 
"(•· ., -~ 

that bas been done on a particular topic and to present it in a. way that . . ,. '.' .. .. . .. 

a well=trained undergraduate or graduate studentJ or teacher of ma.the= 
....... ... .. ·.··, ...... ... . ' .,., ... 

ma.tics can comprehend it .. A study of this nature will also be 'of consid-.. , .......... ,,.. ... .,... . . . ...... , .... , .. , ... ······ . 

erap~e val.ue to t~~ -~o Do candidate who .is ;~terested in a review "!'_'! the . , .. ; . ' . ., .:~.. . 

research i~ ~ .. ~~!~ a.r~~o ~e>me ~~o;v:ed __ ~:r~bl~ms are stated in the ~hesis 

and these _may be o~ v~J:qe to any indi,vifi.ual interested in mathematical 

researcho 
,-... .··.·· 

\. 



Scope-·-ana:··L-fmi'tations 

Thi-s · thesis ·will -b-e ·l-f.m±t·ed .. to-· th~ .. pr~·:f:es···of · :fixed·points for 

:f)eri"Od±e· .. homeomo~hi-c-.. tran~ormat±ons-. l:Jnd:er- thrs ·li:niitat11,ri·"W'e ·· shall 

tinuoua, cmitinuws but n@t pffiodic1 -~a: -~t±--valu·ed· t~ormat1 ans. 

· :iu,so· "Otnitt-ed ·-will ·be· ·the-1>rop~±-es· -of f1.xed-points for periodic trans

:formati,ons · where- the ·tra.ns:f'ormation .. is-· an-·i11onret-ry-. 

· It is·· to ·be· not·ed-·that -none· ·of- · the·-theory-·in··thi-s-· thesi:s·- ±s· ~ig_inal. 

·Most· .. of-·the---proofs· ·a-re··taken·-from··the··papers··-and·b'ooks=-·li·sted·· in·-ttre-bib-
. ' . . . - --· -· - ... - .. - . 

liogra.phy. ·-- The · results obtained ·in · this paper are-not -the · most general 
,. - .. .... ~·.. -

ones ·tha~ --ha-ye ~een· o~tai·ned. , However, when more general results are 

available they will be discussed. 

Expected Outcomes 

As a result of reading this thesis, the mathematics ·student -·:~hould 

gain an awareness of the current and· past ·res-earch-· in this moderxrbranch 
" ·- ·- ,· 

of mathemattcs. He should b~ome acquainted with men who have contri'!'uted 

to its research and development. This thesis should arouse the student's 

interest · and challenge him to read and probe the periodical 11 tera.ture of 

mathematicso The presentatio:n of unsolved problems should impress upon 

him the fact that the frontiers of knowledge in this area of mathematics 

are being pushed back at a steady and continuing rateo 

The :tact that the reader, who is a potential teacher at either the 

public school or the college levelj may become sufficiently interested in 

this phase of ~thematics to cause .him to. undertake serious study in this 

area has great educational pot.ential o He will be confronted with the :pos-



4 

sibility of contributing to ~~s~~ _jJ.J.. mathemati·cs by extending the 

resu1 ts given in this th<esis and by offering so1utions :to un~olved prob00 

lems as well as by d~el.:oping new 'properties of' fixed points. The bib"" 

liography should be a valuabl<e aid to anyone interested in t}?.e -research 

o:t fixed point theory for periodic trans:tormationso 



CHAPTER II 

BRIEF HISTORY AND 

IlffROWCTION TO FIXED POINT THEOR!MS 

Topology, like most new branches of mathematics, bad its beginning 
• I . 

in already existing tields ot study. ~e basic ideas of hC!>lllology theory 

c~ be :round in Riemann.' -~ :J,nvestigation of tunct:f;qns which arise from 

· the integration ot total ditferentials • . . The theory of sets was develop-

ed by Cantor and used in the claritication and solution of problems in 

function theory. Both ideas are basic concepts in topology. 

It was not until the first part ot the twentieth century that topo-

logy developed into a self-sufficient branch of mathematics. R. L. 
• > 

Wilder, in an address to the Semicentennial 1!1istory ot the American 

Mathematical Society, said, 

Topology originated in the work of many mathematicians of the past 
century, including Cantor, Riemann, and Kronecker; it won recQgnition as 
a distinct branch of mathematics largely through the writings of Poincar~ 
about the beginning of the present century. Although having 111&ny rami
fications, it has progressi~ely become a ,unified subject, and due to its 
foundations in tbe theory of abstract spaces has come t o collaborate 
with a)stract group theory as a uni1'ying force in mathematics as a whole. 
It has p:rovided a tool tor classification and unification, as well as 
tor extension and generalization, in algebra, analysis, and g~ometry. 
Considered as a most specialized and abstract sub ject in the early 
1920's, it is today almost an indi&peneiple equipment for the investi
gator in modern mathematical theories [23]. 

I , 

l.Arabic numerals in brack~ts inq.ioate r~ercences to the Bib~io
graphyo 

5 
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~e ·grovth of topoio~ t~o~ place g~~rall! along _two lines; the 

combinatorial and the point set. 
._ . " . -· ·- ~ . ·-· . . ···- .. , .. -

The :tormer was that o:t Riemann and 
' ' 

~°.~!!~~:~!. and was distingUished by its _ !inite oharacter. The basic con

:tiguration was not -a point set, but a polyhedron consisting ot a finite 
.... - . ..... . . ., -

number ot taces of various dimensions. The point set was that of 

Schoentlies, Cantor, Brouwer, E. B. Moore, ·R. L. Moore and others. The 

b~~ic con:ti~:atiqn was a point set, and whereas in the combinatorial 

approach the properties in the large were th~ center of interest, in 
r , 

t~e .point aet _approach ~he local properties were those naturally stud-

ied. Hqwever, in more recent years the two lines ot topology have been 

unified to some extent. 

A problem in topology that has received much attention is the fixed 

point-property. A to:pological space X is said to have the fixed point 

property it, given any continuous function t from X into X, there 

exists a point p such that t(p) D p. 
I 

The first -results on fixed 

points were · obtained by Alexander on topological mappings of a 

2-dimensional manifold and by Brouwer tor continuous mappings of the 

n-cell and n-sphere. Brouwer's theorem was introduced in 1912 and is 

perhaps- one ot the best known. The next result was obtained by Lefschetz 

in 1923. ' He discovered a fixed point formula and the proof of its valid-

ity for ~ self-mapping of a closed manifOld. In the period 1925=35 

Lefschetz was able to extend his proot to relative mani:telds, to general 

complexes and, finally, to locally connected spaces. Since Letschetz•s 

theorem was published many fixed point problems have been sol Ted [ 2] • 
,. 

Yet, ~oday there is no known topological characterization ot t he fixed 

point property. 

The first fixed point problems were concerned with a continuous map-
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lll.ing from a space! into itself. How&Wer» some o:f the more re_c.ent results 

involve· non=continuous ·mappi ngs -and periodic lll8J)pi n_gs. The ..first :fixed 

' point th~orm for periodic mappings' was proved by H. A. Newman in 19,0. 

-'!'he theorem was t hat if M is a locally Euclidean metricized connected 
.J1 '-· -, · . 

n=-di:mensional space,jl K any domain in it fl and p an i nteger greater 
~ ·- . 

t han qnep there is a positive number d such that no uniform continuous 

repres_entation of M on itself' with period p moves every point of . n -· . , , -- . -
I 

K a .distance less than d .Jl.5]. In 1934 P. A. Smith proved that if a 
-n 

...compact Hausdorff space was simply connected in some sense then every 

homeomorphic periodic transformation of 'prime period would leave at lea~t 
- . - -

one point fixed. This theorem by Smith was perhaps stimulated by t he 
. - . . . . - - -

following r esults. Kerekjarto and Eilenberg proved t hat every periodic 
- -
transformation of an ordinary sphere i nto itself' is topologically equiv-

- . . 

&lent to a rotation or t o the product of a rotation and a -reflection 
- - - - - . 

across a diametral plan~. Lefschetz 0 s theorem was extended to a simples: . . . 

in 1933. Smith0 e gr~test contributions to this arcs came in 1937 and 
. . -

1939 when he completed the topological classification of the set of fix· 
. . 

~~ point s for an n- sphere n ~ 3 and for an arbitrary n~sphere if ~he 

__ period of' the transformation was a power of a prime. I n 1950 E. E. 
. . . 

Floyd gav~ ex&.mpl()B showing that P. Ao Smith0s theorem did not hold 
... 

_for an arbitrary periQd q. Th~ goal of this th<!s is is to p~iesent the 

r esults obtained by Eilenberg, .Smith[J and Floyd. · 
; 

Introduction 

Perhaps one should begin w~th a discussion of fixed points[J with 

def'ini tions',jl ~amples, and t heorems that illustrate t he concept s to which 



the··:i:dieas···in··topology··tha.t--have·bee..Tt·tts-ed··-ar-e··reviewed. 

Defin1:ti·on···2.;l.- A---set :t<t-;· -togetb:er-·vritrr·a c-oiiect±on··of·· sub-sets·· 
. .. ,, - . 

called: open:--Eiet-s3··is·· calJ.:·ed·-a topological spa~ 1 it and only: if the col-
• • I ~, ,• •' • 

.lection··o:r,ope:n·--s·et·,-·s-at_isfies····the--fol:1-owing~axionis·:··· ··· 
' . , r· •' .• • .••• • ' ~ ' , ,. , - • ,··• • .. ! ,.' - " , 

A:x±om--;);\·"· .1.'l:l:e:·un±oxr··of·· any collection of open sets is an open 
. set-.. . . . 

Axiom 2. ~he in:t~section of ·any finite coll·ection of open sets 
is a.n·o,eu-··s-et-.. - · · 

The- collection of ope~ sets {VJ is called the topology of the 

topological space. 

Definition 2 .. 2. A topological space M is said to be·.~ ftaudorff 

space if and only i:f, given any two distinct points p, q of lt there 

exist disjoint open sets U and V o:f' M such that p is in U a.nd 

q is in Vo 

Definition 2.3@ A collection of open sets (U} is said to.be an 

open covering of a set M if and only if Mc: U Uo 

Definition 2o4o A topological space M is said to be eo~pact if 

and only if f:!lfery open ·covering of M contains a finite subcovering 

of Mo 

The theorems in Chapters IV and V .a.re in a compact Hausdorff space 

~lild the existence ot a finite covering is very important in the' proo:f'so1· 

We shall also call upon the following definition and theoremo 

Definition 2o5• A space M is said to be normal i:f and only if, 
'l 



·given any two disjoint c;l:o,sed subsets F1·· a;nd; F'0 ot M, tl:ter.e exist 
'""' 

disjoi:p.t op-en subsets G1 and G2 - ot M containinf!; F1 · and F2 , re

spectively. 

9 

·disjoint ope:n subsets Q. · and - 0 of M containing F and q, respec

tively.; 

Proof',. For every open covering fuJ · of Ji' · thertr exists a--finite 

subset of (ul that· covers F, since a cl-osed-subs·et· of a compact space 
. \ 

is compact. For every po:int, p- ±n ··F and·f'or q; a fixed point in' 

M=F, there exist open sets u, V where p is is U and q is in V 

such that U n V =: ¢ (M Hausdorff)~ Let Q be the union of-a finite 

number o:r the U' s that cover F. Let O be the intersection of the · 

finite number of Vff s that correspond to the U' so · Now O and Q are 

open sets such that On Q = ~ and F is in Q and q is in Oq 

Theorem 2ol• If a Hausdorff space M is compactJ then it is normal. 

Proof. Let F 1 and F2 be closed subsets of M. 

F1 there exist open sets U» V such that U contains 

For every p 

F and V 
2 

in 

contains p,, Un V = ,P. A finite number of the V's cover F1 since 

F1 is cpmpact. Let Q be the union of these V'so The intersection of 

the corr~sponding U's, say O, is a., open set containing F2 i 

On Q = p. Therefore M is normal. 

Definition 206 through 2.11. define a homeomorphism which is an im= 

portant concept in this thesis and, indeed, in topology~ Other concepts 
.. 

defined are a periodic transformation, an n=sphere, and the fixed point 
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p:roperty. 

Befini-t±on--·fhtr,r ·!.-et-· M> and -R ve·-spa.ces;.,·a;· :imle-- :r ·±s calle<t·-a 

"ffla;P,ping · o:r·-- M ·--- fnto-· -R (:r·: M-- R) if· ·and··-onty ·if'-· . :f associa:tes· vith·-

·ea.ch ·element x of M · a unique- el·em-ent y. of R • 

..:pi:ng;;···Then -:r- ·:i--s· ·~id··to·be·:cont-inuou·s···at a poi-nt·· ·x · of·- -~ if ~nd 
~ .. - ... , . ~ . . " . 

. . . ~ . 
only if, ··given·any··op-en·· .. sttb·s·et·--·G of· ··R ·····where····x--··±s··-±n·--.r (G}, ·there 
•·. ... .. . ... .. .. . .. . , .. . . . '·• .... . . .. . . ..... - ...... .. 

exists' an . op·en:·. s--~t-· ··v· .. Qf·· ·'M-··· ·conta'in±ng··· x .... ·sucfr·that··for··ev·ery-_' ··-y- ···in· 
. .·1' . - ... 

C _, '\ . 
V,·· f(y)_ is·in Go. f ""(G)_ i~ the·set·ofai:i · y·in· M·· such.that 

f(y) is in G.) Th~ function f is continuous on M it and only if 

:f' is continuous at erery point.of M. 

Definition 2.8. Let M and R be spaces and f: M ... R ~ ma,ppingo 

Then f is said. to be onto if and only if for ever:y y in R there 

exists an x in M such that f(x) = Y• 

Definition 2o9o Let M and R be spa~es and f: M-t R a-mapping. 

Then f is said to be one~to-one if and.only if for x, y EM, 

f(x) = f(y) implies x = Y• 

Definition 2.10.. Let M and R be spaces a.nd · f: M_.,. R a mappingo 

Then f is said to be opez;>. if and only i:f for every open set U of' M, 

f(tJ) = V is an open set in R .. 

Definition 2oll,.. Let M and R be spaces and· f: M ... R a mapping .. 

Then :f is said to be a homeomorphism if and only .ff · f is continuous, 

one-to-one, open, anq. onto. 



f is said to 'b-e· ~eri?~~ provided: there ·exists: ~ :i.:nt~g~ p > l su·ch 

that·· F(x) = x 'i;or (!!'-J'ery _p_oint x o:f M, where 

:rP(x) = f(:f'( •• @ (e(x)) • ~ ·)) (p of them)q 

Definition 2 .. 1:,. Ann-sphere isanyhomeomor:phic image of' the 

sphere 

Definition 2d4., A space M is sa.id·to have the fixed-point pro~ 

perty (tpp) if for every period.ic·homeomorphic·transto:rmation of' M 

into itself there exists a point x such that f(x) = Xe 

We shall give examples to illustrate the above definitions and per-

haps the examples will suggest s.ome theorems o 

Example 2.1@ Let M be the interval [-1, l] and define :f'(x) = ~x 

for x e Mo Th.en :r2(x) = x, therefore :f' is periodic of period 2., 

The set of fixed po~s is the set {oJ. 

Example 2.2. Let M be the set of points (x, y) such that 

J 2 2 · . 2 
x + y ~- 1 and define f(x, y) = (-x, y). Then f (x, y) == (x, y), 

therefore t: is periodic of period 2o The set of fixed points is the 

set [(o, y) / /y/ ~ lJ. 

:Example 2.3. Let M be the same as tn Example 2.2 and define 

f(x,.y),;,: (y, '-x). Then f 4(x, y) = (x., y), therefore f is periodic 

of period 4. The set of fixed points ·, is the set ( ( O, O )J • 



Any number of examples such a.s the ones above can be found. 

However, one cannot find a periodic homeomorphic transformation of a 

connected subspace of the Euclidean space into itself that does not 

leave a point fixed. In ·Chapter IV we shall prove that such a space 

has the :tpp. 

-'.?he-next examples are concerned with an n-sphere. · Recall that a. 

o -sphere is homeomorphic to two points, a 1-sphere is homeomorphic to 

the circumference of a circle, and a. 2-sphere is homeomorphic to the 
. . 

hull of' an ordinary sphere. 

Example 2.4. Let M be a 0-sphere, say the points "a" and "b"; 

then f(a) = b and f'(b) = a is the only possible periodic ~ransf'or-

mation and it leaves no fixed points. 

, Example 2.5. ~et M be a 1-sphere say the set of' points (x, y) 

J 2 2 such that x + y = 1. Define f'(x, y) = (-x, y), then f(x, y) 

{ ( o, 1), ( o, -1)}, which is a o ... sphere. 

Example 2~6. Let M be the same as in Example 2.5. Define 

f(x, y) = [cos(e + ~), sin(e + 1)] where x = cos 9 and y =sine, 

then f(x, y) is periodic of' period two. The set of fixed points is 

the null set. 

Example 2.7. Let M be a 2-sphere say the set of points 

2 2 + y + z = 1. Define g(x, y, z) = (x, Y, z) such that J x2 

(x, y, -z), then g(x, y, z) is periodic of' period two. '!'he set of 

12 

fixed points is the set of points (x, Y, OJ J 2 2 such that x + y = 1, 



which is a 1-sphl!l'e. 

Example 2.8. Let M be the same as in Example 2. 7. Define 

h(x, y, z) = [cos(e + 1), sin (e + ~), z] where x = cos e and 

13 

y = sine, then h(x, y, z) is periodic of period two. 'fhe set of 

fixed points is the set ( ( o, o, 1), ( o, o, -1)} which is a a-sphere. 

Example 2 .9. Let M be the same as in Example ?.· 7. Define 

~(x, y, z) = gh(x, y, z), where g and h are the same as in Exam

pl es 2 . 7 and 2.8, then f is periodic of period two . The set of fixed 

points is the null set. 

These examples indicate that the set of fixed points when an 

n-sphere, n ~ 2, is mapped into itself by a periodic homeomorphic 

transformation can be an r-sphere, r ~ n, or the null set. In this 

section we shall show that this is the case. In Chapter V we shall 

obtain t~e se.me result for an arbitrary n-spere if the period of the 

transformation is a power of a prime. 

Elementary Fixed Point Theorems 

Definition 2.15. A mapping f(X) c: X is said to be pointwise 

almost periodic (p.a.p.) at a point p of a set X provided there· 

exists, for any e > o, an integer NP such that p[P, :fl(p)] < e, 

where p[P, fn(p)] denotes the distance between p and :fl(p). Note 

' that a periodic transformation is p.a.p • • 

Lemma 2.2. If f(X) c: X is a homeomorphism and K is a compact 
' . 

subset of X such that f(K) c: K, f cannot be p.a.p. at any point 
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of K - f( K) . 

2 Proof. The relation .~(K) c K giv~s f (K) c: f(K), 

t 3(K) c :r2(K) c: :f'(K), • • ,•, fn(K) c: f n-l(K) c: • • • c:: f (lt) , so that 

x EK .. :f(K) implies fn(x) c: f(K) for all n . Hence 

p[x, r1(x)] ~ p[x, f(K)] for all n. 

Lemma 2. 3. If X is an arc, X = H + K is a division of X 

into H and K such t hat H n K = p € X and f'(X) c: X is a homeo

morphism such that H n, t(H) I¢ I Kn t(K) and :f' is p.a.p. at P, 

then p i s f ixed under :f' . 

Proof. Suppose :f'(p) f p. Then f(p) belongs either to H - p 

or K - P, say to K - p. Since t (H) is connected and intersects 

both H and K we have f'(H - p ) :::, p. Thus p E K - f(K). Also, 

f(K) c: K since f( K) n KI p. But by Lemma ~.2, f could not be 

p .a .p . at p. 

Lemma 2.4. If' the end points of .an arc ab are invariant, f!!lfery 

el ement of the arc is .invariant. 

Proof. Let x be any point of the arc different f rom a or b. 

Then x divides ab into .. H and K such that the hypothesis of 

Lemma 2.3 is satisfied. Hence x is a fixed point. 

Definition 2.16. A mapping, f(x) is said to be pointwise per~-

odic at a point 

that :fl(x) = x. 

x of X provided there exists an integer N 
x 

(A -periodic mapping is pointwise periodic.) 

such 

Theorem 2 .2·. If f is a pointwis e periodic mapping of an arc 

ab into itself it must be periodic of period n; furthermore, either 
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n = 1. (all points·fixed)or n·=2 a.ndther-e·is·exactly·on"e···interior 

point p of al:> which is fixed and f is equivalent to a reflection 

about p. 

Proof. If either a or b is fixed, they both must be fixed 

since _end points map into end points; and every point is fixed by 

Lemma 2. 4, so that . n = 1. If neither a nor b is fixed, we have 

f(a) = b, f(b) = a, :r2(a) = a, :r2 (b) = b and hence :r2 (x) = x for 

f':!Very x E it>. Therefore n = 2. Also, :Lf p is a fixed point, we 

have f (ap) = bp and no q ~ p is fixed. 

Theorem 2~3· Any pointwise periodic mapping f of the circle s, 
-jzl = l, into itself is equivalent either to the reflection 

period 2 with two fixed points or to the rotation w = zn 

w = z of 

(n = 

l, 2, • • •) all points fixed for n = 1, no fixed points tor n > l. 

Proof. If all points of S are fixed, f is the identity 

w = z. Suppose there exist a fixed point p and a point x with 

f(x) ~ x. Let px, pf(x) and x:f(x) be the arcs on S each con

taining only two of the points p.,. x, and f(x). Then since :f(px) = 

pf(x), we have f(xf(i'f) = x:f(x). Hence from the above there is ex

actly one fixed point q on xf(;x:) and also :r2 (x) = x and since 

f(qxp) = qf1x)p, f is equivalent to the reflection w = z on 

Assume there are no fixed points and p0 = p Es, p1 = f(p), 

• ·• ·, pn-l = fn-l(p), p = fn(p), th.en f(p0p) = P1P2 , f(P1P2 ) =. 

P2P3, • • ·, f(pn_1P0) = p0p1 so that f is equivalent to the mapping 

w = zn, n > l, on lzl = l. 

Notation: 1S_ is a topological circle, r1 its interior, s1 its 



circumference, and s2 is a 2-sphere. 

-~~emma 2., .. Let E = ~, a E L. n s1, b E L n SJ.! a ~- b . and 

A= x-f. where _4.. A_ s1 == {x', yJ .. an~ such that A cuts E betwe~ a 

1
and b. Then there existsran aro ;a c:: U t',"(A) with ~d poi:qt~ on sg, 

and t(:B) = :a • 
. J .• 

P:roQt. Let g be a homeomorphism .,between E and a geometric 

circle. Extend. t to g(E) ,uch that fg(x) = gt(~) for x EE .. 
I 

. .JI• 

Form an s2 = E +_ g{E) by, identification of a 1101:nt x and g(x) for 
. I . , ! 

x E s1 • ~El clilrve s1 ' = ,4. + g(A) cut~ s2 between a and b. Des-

ig.i:iate by I/ . the eornpone1;1.t of s2 - ~l-' that conta.inE$ a and let 

11 " be the oo~onent ot n fiI1 ' tha~ ·aontains a. The closure is a. 

tOl)OlogicaJ. circle 1S_ ff, Sl I t C: U :t1 (~1 •), f'(I1 1 t) "" I 1 tt anr 
t(S ") = S ' t. 1 ·. 1 

The set s1 • ' n E c'tlts E "between .. a and .. \l, he~ce ther~ exists .. 
'. 

~ arc I c: s1 " n E which cuts E b~~een a apd 1:,·. Also, 

g(B) c:: S''i he:nc~ Jl3 + g(B) c: s1 ' •, and :a n g(B) contains points such .. 

that B + g{:B) contains a. topological circu~erence or B + g(J) '·:i: 5i0 • 

ltew; I = t\f' ~ E and the ~n9- points of B are on s1 • .AJ..~o; 

f'(J) = l3 because f(s1 ' •) = s1 _• ', a.ni·., :B c: U :r1~~ •) becau!iJe 

S It C: LJ t 1 (S ')• 1 · "l -

Lemma 2.6. If E • K'i_; and S c:: ,. t., 
. - ""l. l them ·El··'= 1. 

Proof. L•t p b- uy point in . ~ ·, s1 ~qi A ... xpy where 

An s1 = {:it; yJ. Ther~ exists ap. arc J3 c:; U :r1(A) such tllat 

lf'n $1 = (x•, y'J, x', y'*, end pe!>ints of B and 't(B) = B l;)y:. 

Lemma 2 .. 5 ud by Theorem a.2 B c: L. · Hence :B = A and the arbitrary 

if .. 



p EL, therefore E = L and n = lo 

Theorem 2.li-. Any periodic homeomorphic mapping f of a. topo-

logic;:a.l sphere s2 into itself is of period one all points fixed, of 
'\ 

, period two a 1-sphere :fixed, or· of period n two points fixed or no 

points fixed. 
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Proof'. Assume that L, the set of fixed points, is not null then 

there exists an x E s2 such that f(~) = x. Let 11 be any open disk 

such that a E r1• Then n t 1(t1) is a collection of open disks one of 

which, call it Ii, contjains a. Now f(r1 •) t I 1 ' 

:r(s2 - I 1 ') = s2 .. Ili' • Hence there exists a point 
- . ~- ) 

that :f(y) == y by :Brouwer•s Theorem. Therefore if 

contains at least two points. 
' 

and 

y E s2 ... r1 • such 

L /. fJ, then L 

Let L_i, be the set of fixed points under t, L2 the set of fixed 

2 · n-1 points und,er f · , • • •, L the set of fixed points under f . 
n-1 

n-1 
Let A = U Li,' a and b points of t 1 .. Now A either cuts Sc 

i=l i:; 

between a and b or it does net. Consider first the case where A 

cuts s2 between a .and b ~ Let s1 ' be a. l-sphere in A such that 

it cuts s2 between a a.nd li>o Suppose a e r1 ' the interior of s1 ' 

e.nd let I1 •' be the component of n t 1(r1 ') which contains a. Then 

i ' 
b E s2 - U f (I1 •). ~et s1 •' be the boundary of I1 ' ', then 

s1" c: U f'1 (s1 •) n A. Also f (I1 tt) = I/ i, hence t(s1") = s1 " • 

And since mere than two points of s1 •' are contained in A then a.11 

of s1" is in A by Theorem 2. 3. Then. by Lemma. 2. 6 K' \ and S 

s2 - Kj_' • a.re c0nta.ined in A. Hence s2 c: A and n = 1. 

Assume next that A does not cut s2 between a and b, then 

there exists a.n a.re B such that ti(B) n B = fa., b} for all 1. Now 



B, :r(J>), • • •, r1-1 (B) divides S into n sectt,ons R, 
· ... 2 . · · ---0 

~l' • • ·! Rn-l _ where·the·boun~ry-,9~ R0 =BU f(B), _the boundary 

o:f' R~ ~ f~B) U :f'~(B) et cetera.. Now . f_(B1) = Bi+.l. !:loll~ f(B1+1 ) = 

B1+2 , and the boun~y, of :f'(R1 ) is the same a.s the boundary of 

', Ri+l • Hence f(Ri) = R1 or f(R1) = Ri+l • If f(R1) = R1 the~ _ 

n _= --~. and R1 U Ri+l = _s2 , and if ·.f(R1) = Ri+l then L = (a, b) .. 

It remains to show that if :f(R~) = Ri then L·= s1• Let A= i.y 

such that A n s1i., the boundary of Ri, is (x, y). 
- 2 

ists a B c: U A1 such that f(B) = B and B_ n s11 . i-l 

Then there ex-

is the set· con-

·stating of the end points of B. Since n = 2, B contains one and 

only one end point p such that f(p) = p •. Aliso, f(B) contains the 

same fixed point which implies.that A contains at least one fixed 

point. Therefore, t);J.ere exists an arc C · between a and b such 
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that Cc L. Further.more, there exists a point c E s2 - Ri · such that 

f(c) = c and similarly a.res C', e•' 1C L between .a. and c, and b 

and c. Let s1 ' be the l~sphere C -U C' U C'' =_,_L. The circle IS_' 

with boundary B U B' U B' t, where B' and B'' form the correspond

ing arc between ac and be; is mapped by f onto IS. t t with bound

ary .f(B) U f(B') U f(B"). Hence L = S1 ' • 

:. The following theorem -is a collection of the results in this sec

tion. The results presented in· this section may be found in [ 5] and 

[21]. 

Theorem 2.5 If an n-sphere· n s 2 is mapped into itself by a 
\. 

periodic '.l):omeomorphic mapping., then the set of fixed ,01pts is an 

r-Sphere r ~ n. 



CHAPTER III 

HOMOLOGY THJOORY 

The proof of the existence of .. fixed poin.ts and the classification 

of the set of fi?Ced points, Chapters IV and V, involve a great deal of 

ho111ology theory. We shall review the definitions, concepts, and the ... 

orems .that are used. · The theorems a.re not proved,; however, the proof's 

as well a.s the de:f'ini tions given here ca.n be found in [ 24]. 

Simplicia.l. Complex 

Definition 3.1. An-- a'bstrac~ simplieial complex M is a. pair 

(U, !: ) where {UJ is a. set of elements called vertices, and !: is a 

collection of finite subsets of. {UJ with the property that ea.ch ele

ment of {U} lies in some element of !: and, if E is any element of 

~ then every subset of · E is again an element of 2:. M is finite 

if {UJ is finite. 

Definition 3.2. A simplex E is an element of the collection 2: 

and the dimension of E is one less than the number ot vertices in E. 

Denote- a simplex with m + l vertices by Jf1. A face '!f' of 'if is a 

k dimensional subset of 'J!1. 

lection of all elements in 2: of which E is a subset. 

l~ 
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Note 3.1. -Every fin±Je· ·abstract si111pli~ie.l:·eompl-ex -is 1-somorphic 

to a· geometrlc···-s±m,vli;c;ta1: ·eomp-lex·.·-·-

Exampl·e-3.1 .. Let X bea::~Pll~t··~us~~·spae~; ~d-"le:t'..··.·{UJ .... 

b·e a fini~e-e?Veri~·--of·. X byopen:·sets. ·· De:f'ine· .. ·M· = (V, ~) 1:>Y t~ing 

{v) . to be the: c?~ec:-~iori- · {U} · and by ·say~g··tha.t·'.a··subs·~t- _u0 ~ -·~l' 

• • •, UP .. of., elements of (UJ is· a simplex E in ~ 1:f' tm,d only if 

the intersection -~ u1, the Kernel of E, is not empty. Then M 
i=O 

is an. abstraC!t_ simplicial complex or _the nerve of the covering (U). 
. p 

fo see this, we need only not'e that 1:t' · A u1 is not empty., then ·a.ny 
1=0 · 

subcollection of theO'J:!em sets u0 , • • •., UP also :ti,a;es a nonempty inter-

section a.nd by definition must. constitute ah elen\~nt of ~. 

Oriented Cor,nplex 

Definition 3.4. An orieJlted simplex is an abstra.ct·simplex w:f.th 

a.n arbitrary fixe~ ordering of its vertices. 

. . 

Definition 3.5. An oriented simplicial com;plex is an abstract 

simplicial conrplex with a.n arbitria.ry ftxed or;i.enta.tion for eacll simplex 

in the complex. 

Incidence Number 

Given an oriented simplicial cbmplex M., we associate with every 

pair of simplexes ~, and '!f"-l, which differ 1n dimension by unity, 

- · m m-1 and incident number [E ,.E ] qefined as follows: 

[Em, ~-l] = o 1.:f Em-l is not a face 'of Em; . 
[~m., ~~1 ] = tl if !fl-l is a tact qf Em. 
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I ... t ...... e· · ,,...ient ... t·i""'·"" o.o., _m and ....m-l .i. 1,;1; ....... .... ... a ill .l!i f; agree, then the incidence number ... ,... . ·, 

is +.l. Othe;rwise it is -L 

~le 3·~· It. +/ = {v0v1 V2) and +r = (V1V2), then 

.~_(V~V1V~, (V2V1)] • 1. But it +r = (V2V1), then [(V0v1v2), (V2V1)] == 

. -1. 

'l'h.e oriented simplicia1 complex M together with tb.e system of in-

[ ID m-1 ] ciden?e numbers E , E • constitutes tb.e basic structure supporting 

a simplicia.l he::,mology theory .. 

Cha.in 

Let M denote a.n arbitrary oriented simplicial complex, and let G 

be an arbitrary abel.ian. group. 

Definition :,.6. An m-.dimen.sicmal. chain of the finite complex M 

with coefficients in the group G is a function a on the.oriented ··-. -·. - m 
m-simplexes ot M with i,alues in the greup G such that if O (+!fl)== . . m 

g, g E G, then cm(-..i") = -s~. 

The collections of all su.ch m"'dimensional chains on M will be 
·. ,' . ' 1· ,· • \ 

denoted by the s1111bol C {M, O). We introduce addition of m-chains by . , , . · . m . , , 
, l' ." ; , : I 1 ,• . i . . . ' 

means et the usual functional addition .. ',t'h.at i~, we define 

(e; + () (:/1) ~ e!, E'11 + c; J:'11, 

where the addition on ~~e right is the group operation. in. G~ Under ' ' 
• I 

this o~eration c (M, ~) is an abeli~ group, the'm~dimensional chain . m . -. . ·-

grou:, ot M with coefficients in G. An ar"bitrary m-chaim en· M can . . 

be Wl;'i tten as a linear .combination ,. ~ g1 Z:, where g1 = pQI ( +1i) . This 
I • l O • , .f 

notation tabala.tes the :f'unction C in such a way that ad~tion of sucli 
,, ·. , , , 1 : . m 
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fUifctions is the addition of i1near combinations. An elementary m-chain 

on K is an m-chain such that Ctn(±()= ±g0 for some particular sim-
1 ' ' . 

plex E~ in K · and Cm(i'1) = o for Em I, ~· 

Boundary Operator 

The.boundary operator F defines a homomorphism of the group 

into the group cm ... l (M,G)' as follows: 

Jll m m-1 1 _m-1 
Fgo~o = ~t'1-1[Eo, E -So~ • 

This is extended.linearly tQ arbitrary m-cb.ainsi by 

FCm = F(~i giE~) = ~i F(gi~). 

Also for any chain C in C (M, G), F(FC) = O. That is, F(FCm) m m m 

is the (m-2)-chain with value zero on each .. ,(m-:2) simplex. 

Cycle 

An m-dimensional. cycle on M with coefficients in G is a chain 

z .in C (M, G) with the property that Ffz) = o, · the (m0 l)-chain m m m 
m..:.1 

~ 0 • E1 • · The collection of all m-cycles is precisely the kernel of 

the homomorphism' F in the group c (M, G) and hence is a subgroup of m 

Cm(M, .G). This subgroup is the m-dimerisional cycle group of M with 

coefficients in G and is denoted by .zm(M, G). 

0 
A O•dimension cha.in c0 is a cycle if and only if c0 = ~giEi 

implies that ~ g1 = O in the group. 

Boundary 

An m-boundary on M with coefficients in G is a bm c'.b,ain in 

C (M, G) such that there exists a C 1 chain where F(C 1) = b • m , m+ m+ m 
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' .. 

The set of all m~bound.a.r1es is a subset of Zm(M,.G) since .F(F(Cm+l)) 

~ O. This set if! a. subB1"'.~':\P denoted by Bm (M, G) 1 the gr'oup of 

m•bounda.riee of M with coefficients in G. 

For FC0., eith~r o:f' two conventiots may be ma.de: (l) Define FCO. 

9 o., or . (2) Augument ·-the complex under ~ons:Lderation by- a.n ideal sim· 

plex c.1 ~d for all d0 of the o~mplex let FC0 = c_1• It case (2) 

is used., the complex is· ca.lled. !lt1mmented. 

Homology Group 
I • 

Since both Btn(M, 0) and "~m(M., G) ,a.re abel:La.n groups we can.de~ 

fine the difference group Zm (M, G) ... l\,_ (M, O), which is called the 

m ... homology groups o:t · M over G and is denoted by l\n (M., G) • :Es.ch 

element of Rm. (M,;' G) is en. equivalence class [ z J o:f' m .. cycles where , m I 

l · .. ' 2 . · . · l 2 
z and z are in the same ola.ss i:f' and only if the cha.in z .. z · 
m m . m m 

is a.n m .. bounde.ry. .This equivalence .. relation is called homology a.nd is 
\ I 

· l 2· 
written z - z · ·• m. m 

I 

. 0 . · · 0 
If zm is an m-·bounda.ry we write z - o. 

.. , . m 

Exa.mpl~ 3.3. Let M be the complex consisting of a. single 
·\., 

3-simplex E3 together with all of its faces• This complex is "the clo-

. sure of a sim.:plex E3 and is denoted ·by "Cl{E3)." ;e will orient the 

complex M by choosing a fixed. ordering of its vertices v0, v1 , v2, 

and v3 and letting this ordering induce the positive orientation of 
I ~ \ '., \ ', 

the simplexes. In this way, we have the :following· list of (representa-

tives .of) the oriented simplexes of M: 

.,. 
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1 
(vlv3), +E = 2 

2 
(vlv2v3), +El.. = 

+E2 
2 

::, (v0v2v3), 

(We om!t a consideration o:f dimension zero~) 

Now let G be any abelian group. The only 3-cha.ins on M a.re the 

elementary chains gE', hence the chain group c3(M, G) is isomorphic 

to G. Since there are no 4-simplexes in . M, c4 (M, G) = o, and hence 

. B,(M, G) = FC4(M, G) = O~ It :follows that H3(M, G) = z3(M, G)~ 

But let · gE3 be any 3=chain o Computing its boundary we have 

E2 ""2 = g i .. gl' .. 2 + 
2 2 

gE.3 - gE4 o 

It is easy to show that, in the present case, [E3, E~] = (·l)i+lo This 

chain is the zero 2-chain if' and only if g = Oo Therefore, the only 

3-cycle on M is the trivial 3-cycle OE3o Hence, z3(M, G) = H3(M, G) 

is trivialQ This illustrates one situation in which we obtain a trivial 

homology group, namely,. the case where we have no cycles except the 

trivial cycle., 

Another situation that results in a trivial homology group occurs 

when every cycle is a ·boundary, for if Z (M, G) = B (M, G)p then m m 

Z - B = H = o. This situation can be illustrated with this same m m m 
:4 E2 . 2 .. l example. Suppose that the 2-chain l::i=l gi i is a ":'eye eo Computing 

its boundary we have 
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= ~t=l ~=l [~, ES]gi~ 

= ~=l c~~=l [Ei, ~]~) ~ • 
If this is to be the zero 1-chain, then ;for each fixed index j the sum 

must be zero. For instance, U j = 1 we have 

-2 ,;L 2 _l 2 ,;i... 2 ,;L 
[El' ""'J..]gl + [E2, Ei]g2 + [E3, ""'J..]g3 + [E4, .""'J..Jg4 = o. 

l 2 2 
But · E1 is not a face of E3 and E4, so the last two terms are zero. 

Furthermore, [Ei, E:i] = +l and [~, .Ei:l = +l, hence this equation re

duces to notbing more than g1 + g2 = O or g2 = ... g1 • Similarly, work-

.. ing with ~ we obtain g4 = ... g3, ·. and· working with ~ we show that 

g3 == g2 • This means that ~i=l gi~ can be a 2-cycle only if gl = s3 = 

-g2 = -g4; that is, the only 2Qcycles are of the form. gEi - -~ + 
. ' 

g~ - gE!. But we have already seen that s.uch a 2-cycle is the boundary 

of the 3-c:hain gi5. . Hence 3 every 2-cycle on M is a 2-·boundary., and 

.it follows that H2 (M, G) = o. 

By an analogous but much longer method., the reader can prove that 

z1 (M, G) = B (M, G) and thereby show that Hi(M., G) is also trivial. 
. . l 

Geometrically, the complex M is carried by a homeomorph of the 3-cube 

r3 and is a 3-cello Granting that the !!,gmology groups~ topological 

invariants, we have found that the homology groups of a 3-cell a.re tr:Lv-

ial for dimensions greater than zeroo 



If M is an abstracrl, simplicial complex a,n-d L is a ~losed 

moduJo. L provided FC is a chain on Lj that is, FC has'nonzero p p 

coefficients only on simplexes of L. A p=boundary of M modulo L is 

a chain b,,, such that there exists a C chain where FC 1 u n+l n+ 

We form the relative homology group of M mod L as 

By these defini ti.ons, a relathre chain z 
p 

is a rel-

ative cycle if and only if Fzp ""o. That is, a chain on M represents 

a relative cycle if and only if its boundary lies in .. L. Similarly bp 

is· a rela,t::l.ve boundary if and only if there is a chain Gm+l such that 

bp ~ FCp+l lies in L, that is, b together with some chain in L 
p ' 

constitutes the boundary of a chain of' M. We also have equivalence 

classes of p=cycles mod L. .Two p=cycles l d 2 z an z p p are in the same 

class· if and only if l 2 i L h 11· t = z s a p~boundary mod · • T . is wi be de-

noted by 

:P p 
1 2 

z """" z mod L. p p 

Refinement of' a Covering 

A covering { VJ of' a [,pace M is said to be a refinement of a 

covering (U} if f'or each element V of. [V} therft'l is an element U 

of (U} such that U :::> V. We writ;e this as fUl < (V1. 

Projection 

If [VJ> {U} in ~, then a projection is a simplicial mapping ~ 

of fV} into {U}. It is defined by taking 1it(V) to be any fixed ele-

ment U such that Ve; U. There·may be several elements of {U} con-



ta.i:ning the set V and··nenc-e-"severeJ.- eho:t.-ces-·fo.r :n{V). 'Th:is""·m·~s., that 

there ma.y·:b'e··numy·-projection~:.·of fv} _;nt·o [tl}.. ·However;,. i:t' {tJ} < (VJ 

. in I:, then any two projections .'lt1 and ,r of f. VJ into (U} induce 
2 ' 

the same homomorphism of II (V, G) into H (u., G). 'fha.t is., :1t1 a.nd p p 

,c2 coincide. 

Cech Cycle 

A p-dimensional Cech cycle of a space M is a collection z = 
p 

( zp (U) J 'o:f' p-cycles . zp (U)., one from each and et/ery cycI;e group. Zp (U~ G), 

{UJ in ~(M), with the property that if (ti) < [VJ., then ·:rtZP (V) is 

homologous to zp(u). .F.ach cycle zp(U) in the collection zp is call

ed a coordinate of the Cech cycle. Hence a Cech cycle has a coordinate 

on f!V'ery covering of the space M. 

The addition of Cech cycies is defined in a natural way by setting 

{z (U)l + (z1(u)} = (z (U) + z1(u)J p p . p p 

where the addition on the right is tQ.at of chains on the complex (U}. 

The homology relation between Cech cycles is defined as follows. 

First a Cech cycle z = (z (U)} is homologous to zero on M (or is a 
P· p 

bounding Cech cycle) if each.coordinate z (U) 
p 

on t~e covering (U), for all {uJ in ~(M): 

is homologous' to zero 

In other words, (z (u~} p 

~ounds if and only if there is a (p+l) =cha.in cp+l (U) on each ·covering 

(U} · in I:(M) such t;ha.t the c,oordina.te zp (U) = FCp+l (U) • Then two Cech 
l . . 

cycles zp and zp are homologous Cech cycles if their dif:t'erenc~ 
1 ,', 

zp - zp is homologous to zeroo The homology relation defined above is 

an equiva.lence relation on the set of all Cech p=cycles o The correspond

ing equivalence classes [zp] of homologo~s Cech p-cycles are the ele~ 



· -- -ments of the Cech homology g:roups 

being defined by 

H (M, G), 
p 

the ·group operation 

Cech homology groups are topological invariants of the space M. 

If f is a homeomorphism of M to M1 , then for each covering (u} in 

I;(M) the collection (f(U)) of all images of elements of [uJ; is an 

open covering of M' and conversely. The complexes [TJ) and (f(U)} 

are isomorphic, and the homology groups H (M, G) and HP· (M', G) are . p 

isomorphic. 

Cofinal Family of Coverings of M 

A subcollection 2:' (M) of I;(M) is called a coi'inal family of 

coverings of M provided that for every covering [U} of 2: (M) there 

is some covering {U' J in 2:' (M) such that (U'} > (UJ. 

Given such a co:final · family L ' (M), we may go through the develop-

ment of Cech theory a.gain, restricting the cycles, homologies, et cetera, 

to be elements of 2:1 (M). The Cech groups obtained from LJ(M) are iso

morphic 'to the full Cech groups H (M, G)o 
p 



'rRE.EXISTENCE OF FIXED POINTS 

The fixed-point theorems tor transformations of finite periods which 

assert that fixed points must iexist, if' a space M under transformation 

is simply connected in some sense, seem to be the simplest to proveo 

The first theorem of this sort was proved by Po A. Smith in 19:,1+. 

Since tha.t time Samuel Eilenberg and P.A. Smith have given different 

proof's, with some generalization, for the same theorem. 'fhe proof that 

is given here follows the second one givffll by P., A. Smith in [17]. 

·.To ~r£We the theorem we first show the existence of a cofina.l fa.mi ... 

ly of coverJngs which bas desirable properties. This family, being co ... 

final, is sufficient for th~ study of the space M. Then different 

types of cha.ins, cycles, and boundaries are defined. These new chains, 

called p-chains, are shown to have certain properties. We then assume 

that the space under investigation has no fixed points under a periodic 

transformation. This assumption leads to a result which contradicts a 

property of the P -cha.ins • .. , , 

Before proving the existence theor~m cm fixed~points, we shall give 
·, 

some preliminary de:f'ini tions and prove some :needed theorems. 'fhe the-

orems on the existence of a type refinement are ot particular interest~ 

Preliminaries 

For the remainder of this pa.per M will denote a Hausdorff space, 
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T· ··a ··homeomorphi-e-tra.ns-f'ormat-ion·of ···· M · into· itself. ·· TJ:ie trans;f'orma.tibn 

T "Will always be periodic- of ·pe:rtod · q. · The- identity ·itself -will not 
• . i • .. . ...... .,. 

be consider,d.~s b_g_ing periodic.. If . A is a sub·set of M~ the sets 

A:;-T(A), ., • • ~ Tq .. ~,(A.) will be ca~ed the '!'-images of A. Denote 
q-1 
··u (A) by <TA. The totality of fixed points will be denoted by L. 
i=O 

Definition 4 .. 1. A subset K of M is invariant if 1(K) = K. 

Lemma 4.,.1.. If Ac: M, then <TA is invariant. 

Proof. We have T(<TA) = T(A U T(A) U • • • U ~-l(A)) = (T(A) U 

•:r2(A) U • • • U ~(A)), therefore '!'(<TA) = rrA, since ~(A) = A • 

. 
Definition 4~2. The transformation T is primitive if each point· 

of M-L has q distinct T-images. 

Lemm.a. 4.2. The transformation T is primitive if q = Pi p a 

prime. 

Proof. Assume Ti(x) = Tj(x), x e M-L; a.nd i < j < r < p:, 

where r is any other-number such tha.t Ti(x) = Tr(x). Then ~(x) = x, 

where j - i = k < p. But 1?1'(x) = x since T has period p. Th~r~

:fore rf1 (x~ = !1'(x), which implies -· p is not prinie •. Tb.is is true l;>e ... 

· cause k is the smallest integer such that ~(x) = x, hence p == t t 

for some t. 

Definition 4.3. If M is a closed finite Euclidean simplicia.l 

complex whose simplexes are p~rmuted among themselves by T, we ~ay 

(M, T) is simpliGia.l. The totality of invariant simplexes will be de-

not_ed by ~· 



Definition 4~4. A si111;g;1cial (M, T) will be called :grimitive 

if each simplex in M-~ has q distinct (hence mutually exclusive) 

T-ima.ges. 

Lemma 4o3• A simplicial (M, T) is primitive if q = p, p a 

'prime. 

Proo!. See Lemma 4 • 2. 
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Definition 4~5. A simplicia.l (M, T) is regular 1:f' the subcomplex 

MI .·· is closed. 

Def:tni tion 4. 6. . A system will mean a :f'ini te collection (UJ of 

point sets;in M. The component sets of a system (U} are the . . . . 
tr-vertices.. A' system where the' vertices a.re permuted among themselves 

by, '!' , is called a T-system. The vertices of {U}, (T(U)}, • • •, 

{Tq-l (U)) taken together form a system denoted by er {U}. 

Lemma 4 .4. The collection · er { UJ is'. a T-system. 

Proof. · .· Let U be any vertex of o- {UJ • Then tJ = T1 (U) where er er 

u_e {U}, and hence T(Uo-) = T1+1 (u). But Ti+l(u) E o-(U} by defini-

tion of er {UJ • Therefore the vertices o:f' er f u) are· permuted among 

themselves. 

Let {U} be a T-system and write {U} = [u•) U {U''}, where {U'} 

consists 'of the invariant U-vertices while {tT' '} denotes the remaining 

U-vertices. 

·\. 

Note 4.L The collections [U' J and [U' v} are '?-systems. 

Definition 4.7. AT-system [UJ is primitive i:f' ea.ch U''-vertex 



· has q ·mutually .. exclusive T~ima.ges. 

Definition 4 .8. Let {u1) and {U } be· T-systems with (U J ::> 
. j i· 

{Uj}• A projection ~: {u1J - {Uj} is a T-projection if ~T = T~. 

Lernma 4.5. A T~projection ~: {U1} -o (Uj) carries u11-vertices 

into u.'.j :-ir~rti?es. 

32 

Proof. Let U11 be any U' 1-vertex. Then :lfT(U11) = ~(U' 1) = 

T~(u1 1) since T~ = 'Jtf. Therefore U1 j = T(U'j) where U'j = tt(u• 1). 

Theorem 4.1. Let {u1) an~ (UjJ be T-systems with {U1} > {Uj}. 

I:f' {U:j) is primitive, there exists a T-projection ,r: (U1} -o (Uj}. 

Proof. Write {l11) = (~} U {~) where {~} consists o:f' all 

u1 ~ertices which are contained in U''j=vertices and {~} consists 

of all u1-v~rtices which are contained in U1 j=vertices. TJ:?.en {Ui} and 

. {Ui} are T-systems and refinements of {U' j} and (U' 1 .1), respect! ve

ly. Moreover,, since {Uj} is primitive.l' each U'' - vertex has q 
j 

mutually exclusive images and the same is true with ~ .. vertices since 

they are contained in the u1 tj=vertices. Then {~) can be repres~nted 

without repetition as consisting of' the T-images of a. suitably chosen 

subsystem o:f' its vertices, say, ~ 1 , u~2, " • •, ~s" Let ,c2 _be a 

pro~ection ot this subsystem into (U' 1·j) and extend ,i:2 over (~} 

by lbe formula :ic2Tq(~1) ~ !q:ic2(~1), q = (1, 2.l' • 0 •, p - 1). In 

this manner ,c2 becomes a T-projection3 :f'rom (~) ""'° (U''j}" Now let 

2t1 .be a. projection that takes all T-images of a t1i-vertex into the same 

U' ~-vertex.. Thus :ic1 is then a ~-projection since the U1 {"vertices .are 

invariant. Ta.ken together, :ic1 and :ic2 define a T-projection from 
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We are particularly·concerned with systems that are finite open 
'-,.-,., I , , ····•· ••' 

coverings of M. These finite open coverings will be referred to as 

coverings. 

Theorem 4.2., Every covering (U} of M is refined by a T-covering.. 

Proof.. Let (UJ be any covering of M, 

ma.de of intersections of {U}, . {T(TJ)}, • . .. ., 
and (V} be the covering 

{T1'-l (U)} • '.l'hen [V} > 

{UJ since ea.ch V is in a. u. If V is any element of {VJ., then 

V = tr1 fl T(U2 ) rt • • • n ~-l(Up) where u1 E {UJ., Now T(V) =· T(U1 ) 

2 ~ . n T (U2) n • ., • n 1- (Up) which is another element of {VJ. ·.Therefore 

(v) is a T-cove~ing. 

Note 4.2. If -q = p, pa prime., then for every covering {UJ of' 

a space M there exists a primitive T-covering fV} such that {V} > 

(U}. This is a.n accumulation of results up to this point. 

Special Systems and COIT erings 

. Let {U} be a. '!'-system with X as its nerveo (See Example l, 

Chapter II .. ) Then T induces in X a s implicial trans:f'ormation Tx 

which is the i·denti ty or else is of period r, r a divisor of q o De-

note by XI the totality of X-simplexes which a.re invariant under Tx 

and by XL the totality of X-simplexes which meet L. 

Definition 4.9. AT-system {U} satisfies condition La if (U'} 

consists precisely of those u-vertices which meet L; (U} satisfies ~ 

if all nonempty intersections of U'-vertices meet L. AT-covering which 

satisfies La and ~ will be called special. 



Lemma;,·4·.-6·.· _If ·thEr cqvering fttl is·-pri-mi~ive and special, then 

X = X and--· (X, T )- is ·primitive··and regular.;· I t~ . · _x .. 

Proo±", A non .. inve.riant X-simplex E has at least one non-

invariant vertex_ u, t~e T·ima.ges of U .are mutually exclusive sets 

since fU} is primitive. Assume that T~(E) . ·. , . x· 

E) = ICernel E, which implies Tq(U) n U .,.-p. 
= E. Then Tq ( Kernel 

( 

Therefore·. the T:.;.::i.mages of 

. E ar~ dis.tinot, hence (X, Tx) is primitive. The vertices of an XI

simplex -. E are p.ermuted among themselves by Tx and since as· U

yertices they have a non-em:pty intersection, each u~vertex of E must 

be invarian.t by the primitivity of · {U). _The concli~1on La. implies 
\ 

that E is vertex 00wise invariant and (X, Tx) is therefore regular. 

Moreover, condition ~ implies that E meets L, hence XI c: XL~ 

Also, the vertices of an x1 "'simplex E_r,, since they meet L, a.re in· 

variant by La.. Therefore, E1 is invariant and x1 c: XI. Hence XI 

= x • L 

Definition 4.10. The set M has dimension less tha.n or equal to 
.. .,,! 

m (dim M ~ m) if f!!'fery covering is r~fined by a covering, the dimen-. 

sion of whose nerve does not exceed·- m. 

'fheorem 4o3• If M is compact, '11 primitive, and if dim M~ m, 

then f!!V'ery covering {UjJ is refined by, a. special primitive covez:ing. 

(Ui} such that d1m(x1 - Xi!)~ k, k =pm+ p ·- 1. (The nerve of (u1J 

is Xio) -
'I 

We shall first prove three lemmas in which it is convenient to say 

that a '!'-covering (U) satisfies L if, among the u ... vertices which 
c 

meet L, each contains a point of L not contained in a.ny other. 
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fU .1 - J J 
is refined by a primit:bre !;""covering satisfying L and L • a c 

Proof" Let x be an arbitrary point of L and lL(x) 
J 

be. any u-

vertex containing x. Then O(x), the intersection of the T=ima.ges of 

U j(x), is an invariant neighborhood of x such that O(x) e U, (x). 
. J 

Sin!""' M is compact and L is closed, there exists a finite set o:f 

neighborhoods [o(x)j say o1 , o2, • • ~, 05 such that L c U o1• 
i 

Since T is primitive and M is Hausdorff, an arbitrary point y in 

the closed set M = U 0, possesses a neighborhood R(y) with p mu= 
i 1 

tually exclusive T""i.mages. These i.mages do not meet L, for if they 

did they would not be mutually exclusive. Now for f;V'ery y in M = 

i i 
~ o1 there exists a Uj e (Uj} such that T (y) c: T uj. Choose R(y) 

so that T1R(y) c T1U, and R(y) satisfies the above" This can be done 
,J 

because T' :ts a homeomorphism and M is a compact Hausdorff space. 

The system of T=images of R(y) is a refinement of (ujJ. Let R1 , 

• • • , Rt·. be a finite set of the R(y) vs such that M = ~ o1. c ~ Rj. 

The collection [01} together with the T=images of the collection 

[R(y)} forms a 'I'"'coveri:r;tg {U1}, such that (U1J > {U jJ. Thus (U1} 

is primiti-ve7 and satisfies L • a 

Now suppose that {U1} is a covering whicl:l is a modification of 

(u1} obtained by replacing each o1 by an invariant open set Q1 with 

is primitive and satisfies 

is a refinement of ·f U, }7 
J 

L • We shall show that this modification can a 

be carri~d out in such a way that the resulting (U1J also satisfies 

Lc. Choose distinct points a1, a2, • • ·, a8 with a1 E o1 n L. Then 
'. 

choose mutually exclusive invariant neighborhoods A)., A2, 0 • 0 , A8 of 



~l.! ~a! • " ··, ~EL such·:t~··f~ _ea-cih i, Ai . is contai·n.ed in the 

intersection of these O's which contain a.i.. This can be done since a 
· .. 

compact Hausdorff space is norma..l. Now consider the invariant open sets 
...... 

Q1 = o1 - u fAj /j r 1J • 

. . 
The set Qi contains aj if and only if i = j and ~ Qi c: ~ o1• 

~so,_ ~Qi::::,~ o1• For a point x e oi either is not coritained in any 

Aj (j ~ i) in which case x E Qi, or it is contained say in ~ (1 

r i) in which case x E Q1 .. In either case x E ~ Qi. '!'hus we have 

shown that· -~ Qi = ~ o1, and hence that the system (U1J obtained from 

{u1) _by replacing O 1 by Qi is a covering refinement of (U j}. Fa.ch 

vertex Q1 meets L since a.1 E Q1• Hence the passage from {U1} to 

{Ui} is of the type described above and we c;:onclude that (u1J is 

primitive and satisfies Lo· Moreover, o1 contains aj if and only , a . 

if i = ,j, ' so {U 1} sati~fies· L c. 

Lemma 4.8.; If· M is compact, T primitive and dim M ~ m, then 

every primitive If-covering {Uj) satisfying La .fllld _L0 is refined by 

·· a. covering {u i} of the ea.me sort and such that_ dim x1 ~ k, k = 

pm +p - L 

Proof. The hypothesis dim M 5i: m implies the existence of a cov-

0 0 · 0 
ering (Uj} > (Uj) with ~m Xj ~ m. Let {U1} = cr[U j 1, then dim x1 ~ k. 

Q . . 
Moreover, '!' [U j J > T{U j} and T(U j 1 = (U j} since (U J J is a '!'-

covering. Therefore (u1} = u {U~} > {U j}. Write (U j} = {U' j} U (U" j} 

where; as always, {U' j} consists of the invariant u.fvertices. Write 

{U1) ={~JU {Ui} where [U1J consists of all u1 ... vertices :which are 

subsets of U' ,fvertices a.nd f lli.} consists of the remainingi vertices .. 
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Then ru±--· a.n( (tJE1 are-·lf' .. ·sn;t'efils· .. where- ·-fl.Cl > {U' •. } and . f ~} > 
~ l ... 1J ·-- 1-- . j l-

t~~.~-~} ~ By ~eorem l ther~ ~+~~~- a T"'p~oj~ctio3:1 ,c: .. f°i) : fu• .j} • 

Writ.'1'> fU' J = {U' · , U' , :. 0 o, U' l · Let o1 be_ the union of the 
.. j --· · -- -- -- j l · · .12 jk -

vertices which constitute 11:-1.u, ji. Let (tJi~} = {o1). Then (tJi:1} > 

(~' j} .. since the on:y sets_ projected into W ji a.re the ones contained 
-- .. .11 11 

~?-... u• ji o The , ~ ... vertices a.re c,>Pen sets since '!Ji is the ·union of' 

s ~~s _ f~?~ (~), an~. ~hey ~e invariant since ,c .. is e. '!'-projection-_. 

~~-~ '"?-~e>n o~ ~ll u;:1 =v_~ryices is identical with the union of t~e Ui -
vertices_ since all_ lJi-vertices wer~ projected into {Ui j}.. Hence, 

{Ui1} and {Di) together form a T-covering (U1) such that {u1J. > 

{U. } a.nd where {U' } = (Ti-1} > (U' 1 and {U" l = plJ > (U" } • J··· ... . i 1 - .. j i l j 

The primitivity of (U.jJ -• and the relation (U' 1 } > (U'' } imply that 
I i . j 

(U1} is primitive. 

We assert that {u1J satisfies La. A u1~vertex which meets L 

must be a U' -vertex, since ea.ch u•' c: U'' , which does not meet L. 
- - - - i i j 

Cp_nversely, every U' 1-vertex meets L. - Each U' i is an oi, which is 
-1 ·-

'Jt U' for some U' j • ?"ne vertex U' j meets L (condition L 
.11 i i a 

:for _ (U j}) and U' Ji contains a. point I ai of L not contained in 

U'jj' j Fi (condition 10 for (Uj})o Therefore, ~-1u, Ji= U'i 

contains ai and u• 1 meets Lo Thus our assertion is prove4. 

Now (U1} was formed from {U1) by replacing a number of vertices 

by the union of those vertices. Since this _does not raise the dimen_sion 

of the nerve, we have dim Xi :!5: x1 :!!.: k. A primitive covering satisfying 

L is obtained in the same way a.s in Lemma 4. 7, by replacing the verti.c 

ces · of the first covering with suitable sul;,sets of themselves. This 

operation does not raise the qi111ensio~ of the nerve a.Ild hence it 115 ap-



·Lemma··4o9• ·If M · ts-··c-qmpact·· "T···pr:tmiti-ve •·· and dim M st· m- then 
,, ,,,,' ~ .. ,,. '"' ,,, ·:·· ·: ' ' . ' -'. •)···· ,, 

for every primitive T-covering {U .) sa.tis:f'ying;··L , L and ~ng dim .. ': J ,, ',, .. , ..... ',,,',,, ', a. c 

Xj !1' k,. there exists a spec~al. P!iinitive covering_· fl!1J such t.b.at {U1} 

> (U* j J ~ dim (Xi = XiI) ~ k, where {U* j} denotes the covering 

· {St Ujl_: _ 

Proof: Let {Uj} = Uj, • • •, Uj and for each i choose a 
· 1 1 · 

point ~i . ~ontailled in L n TJ' ji' where U1 ji E {U' jl, but not in 
.. 

u_~ .ij~- j l i (condition Lc). Choose invariant open sets -\, A2, 0 • •, 

'.'-s such that a1 E A1 : ~· ji' . Ai n u• jj = ¢ for i l= __ .i, and such that 

no Ai , meets any U' 'j-vertex .... (Recall that the U' '.,-vertices do_ not 

meflt_ .L.)_ Tb.en Ai n Aj = ¢ when i -/= j. For each i choose a set of 

A 1 ~ by the f~llowing rule: Aj· is in the i th set if and only if U' ji n 
U' jj; ¢. Let B1 be the union of the A's in the ith set and let 

(1) 0 = U' U B. 
i. 'ji i 

The set . o;J.. together with tl:le U' '{"vertices forms a .covering {U1J, 

and since o1 is invariant, then {U' 1J = (01} and {U' 'i) = {U' 'j~ ~ 

Hence {u1) is primitive and {U1} > {U*j)" F.a.ch o1 meets L because 

U'ji does, hence (Ui} satisfies La. 

We assert that (U1} :satis:fies 1i,o Suppose 

J ... o n o n • • • n ot f.,. ¢. q r 

If U9 n • • • n U'j f.,. ¢, we have from (1) and the definition of Bi, 
jq t .· 

Aq U Ar U • • • U At c Oq n •. • • 0 Ot = J 

so 'J:;hat J contains aq, ... • •, at ai;i.d b,enoe meets L. If u• .iq n ... 
n U' jt = ¢, it follows from (l) that· J is t)le intersectioµ of sets of 
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13 9 s ·and sets-··o:f' ·U'·; ·...y-ert:J:ces. ·Si:nce'-•ch ·B "i __ s .. t_ he·ttnion of ·mutually . . j . . . 

exclusive-sets -~i'. it ±'~lows t.hat _J is_e.union o:t' A•s, hence 

meets L and the assertion is proved. 

Now _..,,e need to ~how that dim (x1 - XiI) ~ k. 'i'he existence of a 

non-invariant_Xi~simplex E implies a relation of the form 

(2) kernel E = .. . . 

where· S i~ an in~e~section ot i. U' 'j -vertices, t :a 1. 'l'he B' s do 

n?~ m!et any U' \(vertices because the A's do not and hence (2) 

implies 

(u' .,1 )0 'n • ~ .. n (u'.11 >Q. n s /,, ¢. 

Hence t + h + 1 :!: dim X j !ii: k.. Therefore dim (xi ... x1I) ~ k. 

Lemma 4 .. 10. If M is compact and {Uj} i~ any covering of M, 

then there. exists a covering {Ui} such that {U\} > {Uj}. 

Proof. Let (U} = (u1, u2, • • •, Ur} and let it be shrunk to 

{U'} = {U' 1 , U' 2, · • 0 •, u• r}, u0 1 c u1 • This shrinking is possible 

since M is normal. Then Bi = { u:1, M-~) is a binary open covering 

and {B) = (U'} 0 Bl n • o • n Br is a finite open covering. Let {BJ 

= (Vl, v2, • • ~, vh) and suppose "1 n vj F ¢. The set vi is con

tained in a set U'i of (U'J, and Vj is in one o~ the sets of B1, 

Le., Vj e u1, or Vj c: M:0:.ifi 1 • The second inclusion is ruled out since 

V j meets, the subset Vi of u1 • Therefore the first holds. Thus V 1 

and all sets of (BJ meeting it are in u1 • 

Theorem 4.3 follows from Lemmas 4.7, 4.8; 4.9 and 4.10. Let (Uj) 

be any covering of M. By Lemma 4 .. 10, there exists a (U1J such that 
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such 

with all· the properties required by Theo-

rem 4.3. 

Col"olle.ry 4 .. 1. If M is compact and T pr~mitive, then every co

vering is refined by a special primitive covering. . ..... ., 

Proofo The proof of this corollary is contained in the proof of 

Theorem 4.,. 
The above theorems are ot fundamental importance in the wor~ that 

follows, beca.use from this point on we only need to consider the special . .. "' . ~ ' ' ,. " . 

coverings, if dim Ms:: m.. These coverings form a. cofinal family~ ~ of' 

M; the homology properties of M can 'be studied solely in terms of 

this family a.s'long as the period is a prime. 

p·Chains and Special Homologies in a Complex 

Assume throughout this section that (M, T) is simplicial and 

primitiveo 

Let G be an ·abela.in coef:f'icient ... group :for chains and homolegies 

in M. The transformation T induces a chain-mapping which is denoted 

by T. We m.ay regard T as an additive operator acting on cha.ins over 

G and permutable with the boundary operator F. 

The operators 

bear useful reciprocal relations to each other and play an important 

part in the work that follows. we shall denote these operators by p 

and p and agree that p may stand for ~, p for C or vice versa, 

but the meanings of' . P and P sllal+ remain fixed in any giV(?Jl discus-



sion. 

A i:hain C is of' typ'e p if ,,·there ·EQCi.Sts a cha.in . c1 such that 

C ,.. pC1 • The null cha.in , is of bot~ type p and type p. 
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Lemme, 4.11. If (M, T) is simplicial and,primitive, an h-chain C 

in M-~·.· ~e of type p if and only if pC = o. 

Proof. Assume C is of type p say C = pc1• Then 

pC = pp c1 

-( 1 p-1) = P cl + cl + • • • + cl 

= (c +cl+ ••• + cP-1) -
l l 1 

(cl+ c2 + ••• + cP) 
l 1 1 

= o. 

Also, 

= o .. 

Now suppose that p\O "" o. We may write 

where g is an element of the coei'ficient group for chains and homolo

gies, Ej is an h-simplex, and E~ is Ti(Ej). This is true since 
l _p-l 

(M, T) is primitive, therefore E, E, q O ·, ~ are distinct. The 

condition pC = O 

(1) 

then becomes, 

:t:i ,/j P E1 = O. 
j ' j 

Consider the case where , p = C· Then we have 



where the,:µpper indices are- tQ""t"e··-r«iueed mod :Po Hence, 

l i-1 0 l 
and therefore gj = gj o Then g~ ... gj = 

Where 

P'(h) 
Cl= ~j=l gj Ej, 

t~i~ ~oncludes the proof for the case P = Co 

Suppose P = (> o Then (1) becomes 

Hence 

( ) p=l 1 
2 ~ i=O gj = Oo 

Let c • ~a(h) P=l k 1 If: 
~ ~1•0 gj j 0 l j=l k==O 

Then c - cl =~a(h) 
l 1 j=l 

~p-1 
k=O 

k i ('.Pt Ef.-+l) 
~1-0 gj j ... j 

Hence C ... p c1 . and the proo:r is com:pletieo 
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_It C is a cycle of type (P,. ~) (i.e. C = pC 8 mod~) and C 

is the boundary of a chain of' the same type, we write C:::::, 0 mod ~o If 

eh, Ch=i are cycles of type p and p -respectively and there exists "-
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cha.in Xh such that 

we write ~h:~h-.l" 

We assume during the remainder of this chapter that the coefficient 

group .G is the group p of integers reduced mod p. Denote this group 

by F. 
p 

Lemma. 4 .12. Let ch, ch ... l be cycles .of type p, p such that 

ch :ch-l. If ch~ o mod~, then ch-l:: o mod M:r· 
Proof. Assume that Ch~ o mod MI" Then there exist, by defini-

tion of Ch:Ch-l' chains Xh+l, Xh, XI, with Xh+l of type p, such 

that 

we may write 

(2) 

because 

FXh+l = xh + z + ZI (zI c: ~' 
. l 

ch = pXh and p xh = xh + :2ll + zI. 

Then 

since pZI = o. 

If p = fI' and Xh+l = cr-Yh+l' then crFXh+l = aFcrYh+l = o. From (1) 

~FXh+l = ~ch, therefore ~ch= o. This implies ch= o in M-MI. If 

p = C ·and Xh+l = CYh+l' then o- FtYh+l = o and ch = o in M-MI. 

Therefore from (2), pFXh+l = pXh + pZ which implies that pZ = O or 

Z is of type p by Lemma 4.11. Hence, if' we operate on both sides of 

(2) with F we find that Chgl ~Omo~~· 
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~~4.J-.·.;1·3· Le:h E ~,e ·a ·vert-ex. of ·1L, I:f' ··M:r = ¢,· · 'the etcle CE 

= E ·- '.'.!:'{~ cannot ·be ~- 0. 

Proof. Suppose there exists a. cha.in X such that FCX = ,E • 

. Let 

(1) Z = FX - E .. 

'!'hen C Z = CFX - CE = 0 and therefore, since MI.= ¢, Z is of type <To 

Hence there exists a w such that z = o-w. Consequently the sum of the 

coefficients of' z ·is.zero mod p and z is a cycle. Since FX is·a. 

cycle it fo;t.lows from (1) that. -E is a. cycle, which is impossible. 

The Existe}lce.of Fixed Points 

Definition 4 .11:~ A set M · is a.ayclic mod p if for every compact 

set A, A e: M, there exists a compact set. A'::> A au.ch· that relative 

to the coefficient group p cycles' in. A are N O in A' 0 (Example: .... 

Euclidean n:-spa.c.e, G arbitrary.) 

Definition 4.12. The set M is finite dimensional if there exists 

an m such that every finite cc>vering by open sets of M has a refine

. ment whose nerve is of dimension ~ m. .(This condition allows the use 

of :z:;k frOQt Thee>rem 4 .. :, o ) • 

'!heorem 4.4. Let p be a. prime and M a finite dimensional com

pact space which is a.cyclic mod p. Then every homeomorphic transform.a.-

tion T of period p of M into itself admits e.t least one f~ed 

.· pointo 

. ' 
Proof. . Let B0 be a non-empt;y compact set of M.. Then <rB0 is 

compact becE.iuse '!'. · is a home~orp~ismp Also, o-B0 :::::> B0, a.Ild ·c:rB0 is 



i __ n_:var_ i_~_:'·:·: _:by·:faemma·4_·;.l._ :Let A =«B and·choosera--compact·$et B . -.... 0 .. o· . .. . ·... 1 

con~aining A0 _ such that· cycles .. in· . A0 . El.re· "":'--o in B1 • Let ~ = 

<rB1.. If thi:s ·proc-ef S". -is·· corrtinu~d·: we-· have 

¢ /= A0 c ~--C • .... c:: An) (n = 'pm + p) 

where.each Ai is· an inva.,ria.nt compact subset of M such that cycles 

Let N = A a.nd consider it as a subspace 
m . 

of M~ T induces a transformation of period ~ ot N into itself 

a~d it is sufficient to show that this transformation, denoted by T, 

~dmits a. fi.:xed pointo · In the topology of N, where N is regarded 

as a subspace of M., it is still true that cycles in A1 a.re ..... O in 

Ai+l and since dim N ~ m, the homology groups of (N., T) can be based 

on the family ~k .. · T induces a simplici~ ·transformation in the co~

plexes o:f' N.. Assume that L = ¢. Then by Lemma 6.6 ~ = rp where 

~ is the invariant simplexes. 

Consider a definite. ~k covering (Uj}• If h and k are given 

positive integers, there exists a ~k refinement (U1} of {UJ} such 

that by projecting an h-d.imensional u1-cycle in .\: into [UjJ we ob

tain a Uj-cycle which is the uj-coord,inate of a cycle in \: and will 

therefore be -. O in. \:+i [3]. Consequently., if (Un} is an arbi

trarily. chosen. ~k covering there exist ~k coverings (TJn-l} 0 .. 0 

{U0J su~h that {U0) > {U1) > 0 • • > (Un). If_ ,ci is a. projection 

{Ui} - (Ui+ll and ?i is an 1 ... dimensiona.l Ui-cycle in Ai, then 

,c1c1 ..... O in Ai+l· Choose ,c1 to be a T-projection by ~heorem 4.1. 

Let PO' pl' 0 9 0 stand alterna;tely for. , and o- starting with 

p O = -,0 o _ Le~ x0 be a u0 -vertex in A0 • Since A0 is il'lvaria.nt, TX0 

is also in Ao. Hence p 0x0 = x0 - T(X0 ) is a O-din1ensional cycle in 



A and ··therefore ·,c·· p X - o i·:o A.. ,_ a! .. o o .. o . ---i 

Then · P1X1 is a. Rfele··be~S"e 

, FP1X1 = Pi FXl_ = P1 Pouoxo = o. 

Since ~1; 1_~'\, we have ,c1 p1x1 -o in~~ _say __ 1t1p1X1 = FX2 • 

c?lltinuing in this manner we obtain chains. x0~ • • ·, .xn such that 

(1) FXi+l = ,cipi.Xi (i =.O, ••• , xn-1) .. 
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Let ,en ~e, t~e. identity projectic:,n . o:t' {Un} 

Pi_(,cn~n-1' • • •, ,ci)Xi (i = o, • " •, n). 

into itself and let c = 1-
... 

Then en, cn-l' • • •, c0 

ar~ '!In-cycles of type pn' pn-l' • • ·, p0 respectively, and as a.,con• 

sequence of' (l) above CntCn_1 : • • ·:C0 • The cycle c0 is of the form 

CE which is a Un -vertex.. Since dim Un< n, . we have Cn . = O:: o and 

therefore by Lemma 4.12 (with, ~ = ¢) we have Cn-l ~ O, • • •, C0 = 

CE::O· By Lemma 4.13, this is impossible, therefore the assumption 

that L = ¢ is false. 

!b.eorem 4.6. The set ·1, which Theorem·4.4 asserts to be non-
-~! 

empty, 1s·acyclic modp. 

Proof. Let B be a compact set containing points of L. It will 

be sufficient to prove that there exists a com.pact set B' :::, B such 

that cycles in B n L are - o in B' n L. Consider· the set A0, 

• • •, An in the proof of Theorem 4 .4. Ao. can be any non-empty invar

iant compact .set, therefore suppose A0 = <TB. Let B' be a 1:>ounded 

open set containing An· It will be shown that B' can be An. 

Let {UJ be an element of ~k' N = An. Every· cycle ill liw n B 

is - O in 1iv· Since dim 1. :II: m, we need to consider_ only cycles of 

dimension ~ m. From the special coverings choose {u0J, 0 • ·, {Un) 



def.in:ed: as in··tla.·e··mroot-,,of·Theor-em··4~4 and:·i:et n p also be de, fined 
· · L~ J:' · ·,; . , . i ! · · i 

a.s before~·· Now let Z be ~-- cycle in·· ·L n B with h - 1 !!!: m. Since , · ·. - ·- .. , h-1 -·. · · ·· ·· N · .. · .. · · 

. B 11 ~ c -\_·:1 ,_ we have · Z ,.., O . in '\; we may write. 

zh:l{uh} = ~ (xh = ~fuh} c J\i) • 

Since the simplexes of Z{Uh) a.re in ~ they a.re in UhI and we have 

ph(Uh} =, Q. Tb.ereforie phXh is a. 6yc1e in -\_• Renee "b_fhXh - o in 

A. This is the first step in a 6Q:µ.struction process which leads to -11 ... 1 ° 

the relation 

in _{Un}• Since C is of t~e form p z, it is in {U} - {U rl be-n n n· n 

cause pZ e' = O if Z8 ' c {UnI}. But all simplexes of (U ) - {U ) n p.I 

· are of dimension :s: m, therefore C . = o = o mod {U } • n · nI Hence by Lem-

Let Z' == :J£ • • •:n: z .. 
n h 

From the definition of Cech Cycles 

ZfUn} in B n ~· Let . p::: ph' X9 ::: :n:11 ° • ·~X.. Then 

pX' :;:: G mod {UnIJ; FX' = Z' .. 

The :first of these relat.i.ons implies the existence of . (Un)-cha.ins XI' 

Y such that 

(1) 

Let w1 be that suboha.in of FY - X 1 - XI which is in {'tJnI} and W 

the remainder. Then 

Operate on both sides of (2) by p and take into account the relation 

(1) and the fact that pX1 == pWI = o~ Tb.en pW = O in .. (tJJ:lJ ..; (TJnI) • 

Hence by Lemma 4- .. ll there exists a :O such that W == pD. Insert this 



into (2) and opere.te-·-on-··both·s-ides·:-of · (2) by·· F ~o obtain 

O = (Z' + F.XI + FWI) + FpD. 

The cha;n i~ pa~enthesis is in (UnI), whereas FpD is in 
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(U} = fU }• Consequently, both cha.ins are null and Z' is therefore ... n ... ···· nI ·. 

~~e ~ounda.r! of a chain in_ (UnI} • . By the properties of special cover-

ings, ?hai~s _ in (UnI) are. in Lw· Hence Z{Un} ,,.;,, Z' (Un} :;.,,, o .. in ~· 

Now return to space _ M. Let K be a cycle in B n L. :. Then sir:,~e 
' 

K ''may be regarded as being identicE!,l to a cycle which belongs 
. . 

to the space ·N. This cycle is in B n Lw and therefore homologous to 

zero in 1:N" Renee K- o in N n L. Therefore, since N = A · = B', 
n 

K .... o in B' n L, which completes the proof. 

Theorem 4.7. If p is a prime and M a finite dimensional loca.:J,-

ly compact Hausdorff space which is acyclic mod p, then elfery homeo

morphic transformation T of ·period pa of M into itself admits at 

least one fixed point. 

Proof. Assume the theorem to be true for . ~ <a • Let T be a 

transformation of peripd p u operating in M and let L' be the to-

a.-1 tality of points which are invari~t under Tq where q = p • Since 

Tq is of' period . p, L' is non=empty by Theorem 4 .4, and acyclic mod p 

by Theorem 4.5. Moreover, L• is transformed into itself by T. The 

transformation i.-ng;uaed i-n L' ~ or .is the identity or is periodic of · 

period pf3 where f3 < a. Hen~e ·ar ad.mi ts at least one fixed point in 

L'" 

We have now proved that if' T is a homeomorphip transformation 

from n-space into itself and is of period q where q is a prime, 



then the-· set L. of f'ix·ed: 'POint·s is ·not· ·nttl-1. In the next chapter we 

-·examine the set · L · to· det-erm::me its '.topol:ogical structure. 



···GHA.PfER V 

CLASSIFICATION OF TRE SE'l'·OF FIXED POINTS 

It was proved .in Chapter II that if an n-sphere, n s: 2, is D1$pped 

in:to it.se;:f' by a periodic h?m~~orphic ,transf'orllll:!l.~ion, then .the set L 

-<:>~ fix~d __ :,;>oints,. is ~ r~sphe:re, r :l!': n. The purpose of this chapter is 

to show that the same is true for a.n n-sphere in general if the period 
~ .. .. " ' 

of the trl1risformation is a power of a. prime. 

!'o obtain thiEr result p-hom.ology g:i;-oups are formed from the p-cycles 

and P-bou.ndaries o:f' Chapter IV. There is a p-homology group of each di-
~ ............ ~ .,_ .. --· . '.,. . .. .. . 

mension associated with each special covering of the space. It is shown 

that the p-homology groups can be decomposed in:to the cross product of 

two subgroups of which one is associated with the invariant simplexes . . 

and the other is associated with the non-invariant simplexes. Next the 

p~~~~~1.~gy groups o~·the space a.~e defined using the concept of inverse 

~!stems~ Then, based on :the properties of the p-homolog;ies of the co:

vez:~ng~, it is shown :that the P-hom.ology groups of the space CSJ} be de-
. . . . . -

composed' into the cross product of two subgroups. One of these sub-
--

groups is the same as.the ordinary homology groups of the fixE!d point 

set L, and the structure of this subgroup is known .to be the same a.s 

that of the homology groups of an r-sphere. 

Examples are given to show that L is not necessarily a.n ·r-sphere 

if the period is not a power of a prime. But the form of L is not 

50 
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·· lm~·-f()r~"Ml::·~;'-°8.1?. '.p'~Od ··q·.: ·;B~PTOVf,;ng--·tne·:·theerelll· ·eoncerning 

:L ' Wi!" s-ball: <fil'St·· ·dev-el:op····l:'5·everal;··11re11.-mfnary results • 

p-Chains .!!, !. ~Complex 

yfe assume throughout this section that (M, T) is simplic'ial and 

primitive, G ~s ~ abelian co~:f:f'~ci~t-gr~p, T is a chain-mapping, 

$.Ild that F , cr ,' C, and p a.re defined as in Chapter IV. From Lem-. . .... p ..... 

me. 4.11 in Chapter IV pp·= pp = O (the annihilator). Note that· in 

the following definition ;the P=chain is the P-chain of' Chapter IV. 

Definition 5.1. A chain' which is annulled by P is called a P-

chain. A cha._in which is ·annulled mod~ by p is· called a. Pl-chain. 

Lemma 5.L A necessary a.nd sufficient condition :f'or a chain C to 

be a pl-chain is that there 'exist a chain X .such that C = PX mod.~· 

Proof. The sufficiency is implied by the relation p P = O. 

Assume that pC = o mod to;:, then by Lemma 4.11 there exists a chain 

X such that PX= C mod M1• 

We shall use the subscript I with the symbol of a chain to show 

that the chain is in ~· 

Lemma 5.2. If G = F, all chains.in L are P·chains .. . p ''I 
. . ' 

Proof. We have CCI = CI - c1 = 0 and crc1 = pCI ·~ o, therefore 

the Lem.Dia 1s·proved. 

Lemma.5.3. · I:f' G = FP and C is a chain, then pC c: M-~. 

· Proof. We can write C = X + x1 where X c:: M-~. Then by Lem

ma 5.2, pC = pX c M-MI. · 

\ 

\ 
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L~··5·.4. If ·G = F ·:, '!:'rnec·essary·and'°sufi'±c±·ent con:diti:-on-for ' .. p· ,, . 

C · to· b-e·a p .. ·cha.i;n· ±-s that C ln:r·expressible· in the. :form pX + xr.• 

Proo:f. :Assuµie that O = pX + X , 
I 

then pC = ppX + pXI = 0 which 

impl:ies· the sufficiency. 

As'SUiD,e that C is a p-cha.in~ Write C = B + BI, where B c M-~· 

Since O and ~I· a.re p=chain~, so is B. In fact, B is a p[.-cha.in, 

hence by Lem.ma 5.1 C = ~+ XI •. 

Lemma 5.5. If' G = :F' , a necessary and sufficient condition for 
p 

C to be a p-cha.in in. M-MI is that C 'be of the form pX. 

ProO:fo Lemmas 5~3 and 5.4. 

Special Homologies in a Complex 

Assume in this section that (M, T) is simplicial, primitive, and 

regular. 

Definition 5.2. AP-cycle is a p-chain which is a cycle. If a p-

cycle X . is the· boundary of a p-chain, we write X :::! 0 mod MI. 

These homologies, which we shall refer to as p and PI-homologies, 

have the same algebraic properties as ordinary homologies. A chain 

which is identically zero may be regarded asap-cycle, and as such, 

O === o. Also a chain which is identically zero in M-~ may 'be regarded 

as a PI-cycle, and as such, XI~ O mod Mio 

Lemma 5.6. The boundaries of chains in MI are in MI. 

Proof. Regularity implies that MI is closed .. 

Lemma 5. 7. If G = FP, and if pC + CI is a cycle, hence a p-
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then pC :::.- o and C ·:;:: o. . . . I_, 

Proof. We ha:ve, by definition of a cycle and by the fa.ct that F p 

(1) 

But FpC = pFC c: M=!'1I by Le~a 5.3 and . FCI c: MI by Lemma. 5.6. Renee, 

by (1) FpC = O and FCI = o. The!'e:fore pC and CI are p-cycles. 

Now suppose that pC + CI::: Qo This implies that pC +CI= 

F(pA + A1) or p(FA - C) = CI - F~. The left side of the last equa

tion is in M=MI and the right side is in MI because of Lemma 5.6 

and,the :fact that pBI = O :for every BI c: MI. Hence both sides van;.. 

ish. Therefore 

Lemma 5.8. 

Pc """= o and c - ©. I-

Let G = F, X be a cycle in MI' p 
and X' be a p-

cycle in M-MI. Then, X ~ 0 if and only if X - O in MI' and X' 

~ o if and only if X1 ~ o in M-MI. 

Proof. Let X = CI and X' = pC in Lemma 5. 7. Now X' + X ~ O 

because X :::.;' 0 and x~ ~ o. Also, 'by the proof of Lemma 5.7, X' .::::' O 

in M-M1 and X-:::: O in M1 • But every cycle in MI is a p-cycle, 

hence X - O in MI" The if part follows by definition of X ':::! O and 

X'-::= O. 

Lemma 5.9. Let G = F and let xh = pCh + ch and 
P I 

pCh-l ;- C~-l pe p and p-cycles such tha.t xh=l ,= FCh. 

then xh-l ::: o. 

xh-1 = 
h 

If X ~ o, 

h -h Proof'. Assume X ~ o. Then by Lemmas 5.7 and 5.8, pC ~ O in ,· 
- -h 

Hence, there exists a B such that FpB == pC by Lemma 5.5. 



h . -. - h -
Let A = C - n. If!?;~ pA =· ,xJ -·':::: . .- p,F.B = o, so that A · is a p-chain. 

··. h h-l la l 
Also, FA=FC =X··-·., Hence·X- ~o. 

···· Lemnd\ 5·~10. Let G = F , 
p 

pC = FX where pX = o-..-

and let C b.e a cycle. If C..., o, then 

Proof. The relation ··· C,... O implies there··exii!Jts an A . such that 
. ... . 

FA = o. Therefore FpA = pC, and pA is a p-chain since p·p = o .. 

P-Homology Groups in a Complex 

It is assumed in this section that (M, T) 
' ' 

is simplicial, primi-
··· .... '" . 

tive, rcagular and that G = F o Denote the additive groups of p and ,. p 

PI-homology classes ·ot (M, T) over G by 

~(M,'l';G) p 

Lemma 5.u.. Let Xh be a p-homology class of dimension ho 
p . .. . .. .. ····· 

I:f' 

h ' h one p-cycle x_ in XP . is · ..... e, then every p-aycle in XP · is ....,, o. 

Proof. Let y be any p .. cycle in X~, then y - x = bn' bn a 

bound •. Therefore y = bn + s is a bound, which implies y...,, o. 

Lemma 5.12. Th.e totality of classes ~ whose p ... cycles are - O 

is a subgroup of ·. ~· 

Proof. Let xh and 
p 

h h '?hen x e x and y e y 
r1' be two classes whose p-cycles are - o. p . . 

implies that x = bh and y = b' h where bh 

,µid b 'h are bounds. Therefore x - y· ·= b11 - b' h' which is a boundo 

.. •. . h 
Hence x ... y . ::t.s an element· of, a class Z whose p -cycles are ....,, o. 

Denote the sub~roup in Lemma 5.12 by B!(M/i';G) ~ '!he. correspondin~ 

subgroup of ~I(M/f,;G) is denoted by B: I(M,T;G) o 
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h ·Lemma-.. 5 .. 1·3.,' lfhirtotaJ.ity of classes XP with the property that 

h - h h __ h 
x = f?C + CI, x E X p' C a cycle, is a. subgroup of ~· 

Pr .,. Lt h yh . ha; h h 00.1.. e XP, ·.· P be two such classes.. We :ve x ... y = 

(PC+ OI) - (pe' + C'r) = p(C "'C') + (CI - C'r). But c - C' is a 
. ' h h 

cycle and c1 - C' I is in M1, therefore x - y is contained in 

·h some zp of the same typeo 

Denote this subgroup by K~'(:M:,':l';G). The corresponding subgroup of 

d~moted by ·~I' consists of' the PI-homology classes which con-

ta.in. pI .. cycles of the form pC where C is a; cycle mod~· 

Let xh be an ordinary cycle which is a.n element of an ordinary 

homology class Xh" S,inc'le PP = o, Pxh is a ;;..:cycle. 

Lemma. 5.14. The totality of ·classes Xh with the property that 

f t 1 t Xh in xh. h o i b f Hh . or a. ea.a one , Px ~ , s a su group o · · • 
h __ h - h h 

Proof. Let X , r- , be. two such classes, then px - py = 

FCh+l "' FC\+i where pCh+l = pC\+i = o. Hence p(xh "' yh) = 

F(Ch+l - C'h+l) is an el~ent of some Zh of the same type. 

Denote this subgroup by ~P) (M,T,,G) and the corresponding sub

group of ~(M,T;G) by H(pI)(M,T;G). 

Homomorphic mappings g and h of the groups 

defined as .follows: 

lf(M T;F) 
p ' p 

4;•' 

are 

h h h 
By Lemma 5.4 a P=cycle x in XP has a representation x = 

- h h h-1 h - h=l · - h 
pC + CI. Let x = FC • Then x is a p=cycle.. Because pC is 

. . .... h .. l - h 
a cycle by Lemma 5. 7 and PX = FPO = a. 



h-l h-1 -~~mma. 5.15. The cla.ss X containing x is independent of 

h h h . -h h 
the choice of x in X a.nd C in the representation pC + CI for 
h 

x .• 

·, h-1 . h-1 
Thus x · and xt are contained in the same class. 

Thus the correspondence g(xh) = xh-l, g: 

mo:rphic mapping of ·i¢ 
image of . . '!(: under . g . . p 

into a subgroup ~wl. 

. h ... 1 
· is a subgroup of · :i,;. • 

x! o,,j) x;;.-1 , is a homo

h ... 1 Since :x .... o, the 

Lemma. 5.16. Th~ image of 1¢ under g is 
h .. l 

B"P • 
h~l . h~l 

·Proof. Let X'P' be any element o:f' ~ and xh·l be a p-cycle 

h-l h~l h-1 
in X"p • We have x ·"""· o by definition of BP , which iniplies 

there exists a. Ch such that FCh = xh~l. But FpCh = p:xh-l = o. 
h -h Therefore, x = P'C is a cycle • In fa.ct, xh is a p-cycle, hence we 

h . h h-l h 
have gX P "" X'P' where X P is the p-homology class containing x. 

fore, 

Lemllia. 5 .. 17. . The kernel of 

Proof. If g~ = o, p then 

g i~ IC\ 
p 

h 
x "" pC + CI where FC ~ o .. There-

FC_ ".' F(pA + ~) since FC is a j;" .... cycle. Then B "" C - pA - AI, 

h - h _h 
is a cycle. Thus pB = PC so that ·x = pB + CI. Hence X c: r .. 

. p p 

Conversely, every element of If' is carried into the zero of ~-l by p p 

go For· rf!Very element ;Xh of r1 we have xh = pC + CI' where C is 
. p p 

· h-1 
a cycle, therefore FC = 0 ""x o 

h The ele11ents of a p=homology class X are contained in a uniquely p . 
. h 

determined ordinary homology class X and the correspondence 
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h _h . 
ht X ~ x-- is a homomorphism of 

p ' 
-~ 

p 
into -Hh. The kernel of h is "Jf 

-p 

by Lemma 5~12~ 

Lemma 5.18. The im.i:aae of ~ under .._ . p h is 
h _h h 

X p c:,. K"p• A P-cycle x · which is a member of Xb sat
P 

Proof. Let 

-h -h h is-fies the relation pX = o, hence trivially px !::! o. Therefore XP 
h .h _h 

c: Ii ( P) • Conversely, let X ( P) be an element of fff P )" To dem.onstrate 
h . 

that X(P) has a. pre-image under h, it. is sufficient to show that 

h h h 
X(p) contains a p-cycle. In any case, X(P) contains a cycle x 

h ' h such that px ::: o .. -- This implies a relation F( pC + OI) = px .. The re-

lations pxh C: M"'MI (Lemma 5.2), FpC c:M-MI (Lemma 5.3), and FCI C: 

h h h h 
~ (Lemma 5 .. 6) imply FpC = px -• Let x' Q x - FC. Then px' = O 

h h h h . 
and x' - x , thus x' is the desired p-eycle in X(p ). 

(a) 

(b) 

Theorem 5.1. For a simplicial regular primitive 

Hh(M/t';F.p) • If(M/t';Fp) = ~-l(M,T;Fp), and p . p . . p 

If(M,T;F ) .. Bh(M,T;F ) = if,(· ) (M,T;F ) .-p . p p . p p- p 

(M, T), 

These :formulas hold for arbitrary G if' p is replaced by pI. 

Proof' .. 
h h•l The mapping g is a hpmomorphism from H onto :a:: by 
p p 

Lemma 5.16, and "If- is the kernel of' g by Lemma 5.17. Therefore, by 
p ', . .· 

the :f'widamental theorem of' homomorphism of groups,' (a) is true. Now h 

is a homomorphism from ~ on"Tuo He P) by Lemma 5 .18, and B~ is the 

-kernel of h. The:i;-efore, (b) ,is true~ 

The proof' of 1:;hese formulas for pl-homology groups depends-on the 

properties of' the corresponding homomorphisms gI' hI' - of ~I· 



A Decomposition 

It is assumed in this section that (M, T) is simplicial, 

primitive, regular and that G = Fp· 

Lemma 5,,19. The totality of classes Xb Xh c: Rh, 
P' p 

with the p. ro-

h .perty that x c:: M~M;r for at lea.st one ·element xh in Xh, ·is a sub-

group Dh of If. 
p p 

Preot. Let xh, ·../>- be two such -classes, then there exist xh E p p 

Xh, yh E r1' such that xh, yh c:M"'~o But the difference of two ele-

men"tis in M-~ is also in M .. MI' therefore it is a subgroup. 
h : h 

The totality of classes XP with the property that x c: Mx for 
h h . . . . _h :h 

at least one x in XP is also a subgroup, Hop'· of Hpo 

Lemma 5'o20. The subgroup ~P can be regarded as being identical 

to lf(L, F ) • 
p ---r p 

Proof. See Lemma 5.8. 

Lemma 5.21. The homology group Jfl · can be decomposed into the 
p 

subgroups Dh and ~0 .. 
. p p 

h __ h h 
Proof. Let XP c: Jr~ and x an element o:f' X P. . A p -cycle x is· 

a. p-chai~ and by Lemma 5.4 x = pB + BI. Now PB is a p ... cycle by Lem

ma ~· 7 and · p~ c: M=I\h• Also, BI 1.s a p-cycle and BI c: MI. There

fore; every x: c ~ can be expressed as ~ + z!, where ~ c: D! 

and z! c: <p· 
Lemma 5 .. 2~ ... The image~ of n! and ~ under g a.re equal to 

h-1 
B_ • 

p 

Proot. 
h _h tet x c: :EC. p p where 
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Lemma- 5.;25. ·· ·It f is the-·p~e>J-eetfon ~ X ~ ... ~ . and if k = .. · ·' . · P ·· . OP OP' 

· fg (g followed·by f), 1,hen ··~ = kif. c: ..):1:1 • . . .. .. . . . P . P - nap 
Proof., · By Lemma 5 .. 22 .,-· g~ = gDl:l. H~u·e kif, = k'd:.'. Now g11: = . .. .. - . . p p p. . .. .p.. p 

~-l and f is tlie projection ~-l x ~t ... n11o;1, hence k~ is 

contained in ~ -1'· - . . p 
,. 

. For the remainder of this paper no distin~tion ·· is made between a. 
' I " "~• 

c:rcle and it~ homology class ( p- or ordinary),._ We will re~&:d. H as 

· ·ii,~n~ compos~d o:f' c~oles, HP as being com.posed of P-cycles, KP as 

being eornpo!ed of P..cycles of the form PC + CI whel;"e · C :ts a eyc;l;.ie, 
. I . . 

DP as bein~ composed of P""cycles of the form PC,· and llcP) as being 
> I 

com.posed of cycles X such that P X =::: O. 

Projections of p -Homology Classes 

Let (U} "be a T-system .with nei.we x, and !fx the transforma

tion induced in X by T. Let p = 1 - T or 1 + T + • • • + ~-l x x x .x 

according as p ;.. C or er • We may think o:f' p as an operator induced x ... 

in X by · P• Let fVJ be a sec,ond T-syste,m with :t1:erve Y. Suppose 

th,~t, {U} · >: (V} and ,r is a T-projection {U} ... {VJ. The chain-
,. . ! 

1,i$;pp:ing induced by ,c will also be denoted by ,c. The relation d· = . "\. . 

h implies that 

(5.1) ,rp ... p ,r 
x x 

An important conseguence o:f' (5.1) is tll.at ,c carri~s Px-.chai:ns and 

homologies · into Py-chains and homoJ.,ogies .. 
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In general 3 P P will· be denoted ·bv P .• · sine. e th. e meanina of x,1 . y " ~ o 

P is clear in the context. 

Lemma 5 .. 24~ Let {UJ and [V) be T=systems·with·nerves-· ;X ~11d 

Y l:"especti-vely and: such that [VJ is primitive and· {U} > (V'}'. Let 
i ' .... . ' 

1i1 and ,t2 be T=pro.jections (U} ""' (V}. If x is a P-cycle in x, 

Proof. Suppose that the passage from n1 to ~2 . can be effected 
i 

by re-defining 'J!l overtheT.,,images of a single U'.*'vertex4 In any case 
. '!. _.. 

the passage from · ,tl to rt'2 can be obtained by a finite number of such 

steps. Suppose then that :it1 differs from .,i:2 only with respect to · 

the T=im.ages of U. Assume first that U is contained in a non- . 
} . 

invariant v ... ver,texo · Then, since {V) .is primitive, the images Uq = 

TqU are mutually exclusive. Let ~1uq = Vi (i = 1, 2). Define an 

additive operator D over X=chains as followso A simplex E either 

has just one vertex among the images of U. (regarded now as vertices of' 

X), or has none. If none, I.iE ""'Oo If one, suppose . E = ('tfs) where 

S is a simplex with no viertcex u\ the.n define DE = (~ { S') where 

S' = 1t1S = 1t2So Let the definition of D be extended additively to all 

P =cha.ins. Now FD = 1t2 .. 1e1 = DF and JJr = TD for individual simplex= 

es. In the case where E has no vertex among the images of U, then 

F(DE) = O 3 and 1t~ ... 1r1E = D(FE) = O sinc'e ,r2E :!: ,c1E4 , .Also, IFE = 

0 = TDE. If E has one vertex among the images of U, 

then 

F(DEp) = F(V~ ~ S') 



where si 1 is a face of 8 8 with the i + 2 vertex removed. 

Also, 

Therefore, FD= 'Jf,2 = 'Jf.l = DF. The relation DI'= TD follows ·because 

'J(l and ~2 are T=projections. 
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Since D was extended additively to all chains these formulas hold 

for all cha.ins. From the first of these :formulas it follows that 

~ x - ~ x = FDx and from the second that PDx = DPx = 0 since x is a 2. 1 

P-cycle,, Hence Dx is a P=cycle and :it~?~ ,t1x. 

Now assume that U is not a subset of a non=invariant V=simplex~ 

Inthiscase "JC1U and 'Jf.2U areinvaria.nt,thus ,c1tl1 =v1, (i=l,2). 

Suppose the X=simplex E has just ope vertex among the images of u, 

say E = (Uh$'). Then in this ,case take DE = (v1 v2s) but :i.n all other 

cases take DE = o. Then FD.= n:2 = :ic1 - DF and DT = TD again hold, 

but in the verification.it is necessary to examine the case in which 

the vertices of E include more than one image of UJ say for example 

E = (lt1tfs). Here DE= O by definitionfl hence DFE = o. Al.so, ~iE 

equals (v:3v1 ~S) which is degenerate, hence zero, and DFE vanishes 
' 1, 

by cancellation a.ndde:f'inition. 
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Inverse Systems 

in,tP()~tml'r·~-oncept ·in·th±s-·chapt-e:t"",;·· .!or· the··purpose···CY£·· th±B"···thesis it 

is sufficient to restrict the tr.ea.tment ot' inverse· systems·· to·· Hausdorff . . 

spaces and topological groups o · · (A topological group·· will· be· d;ef'ined 
' . 

I 

,later.) The following definitions and theorems can be found. in [:l;.4) . 

Definition 5.3.. A set S is said to be partially ordered or mere-
-. . .. 

ly ordered, if certain pairs of elements (a, :b) or s satisfy an or-
'.. " .. 

dering relation which is denoted by a< b and is subject to the sole 

cond.itio~ of transitivity: a< 'b and b c: c implies a< c. 

Definition 5.4. Let s be ordered by <. Then S is said to be 

directed by < (by > ) whenever given any two elements a, ~- of s 

there exists a third element c such that c < a and c < ·b (c > a 

and c > b). Denote this relation by S = fs; <J [(s; >J]. 

Definition 5.5. Let [M1J be a system of Hausdorff sp~c~~ indexed 

by a directed set S = (1; >1 and suppose that whenever 1 > j there 

i. is given a mapping, also known as a projection, j(j. Mi ..p Mj such that 

i > j > k implies ~ ,c~ = {o The system ~= {Mi; 2t~} of t.he Mi 

and the j(~ is called an inverse maP£,ing system. 

Definition 5.6. Let ~ be the product ~pace, and in ~ let M 

be the set of all the points x = [x1} such that i > j implies ;e~ xi 

= xjo Then M_ is called the limit-space of the inverse mapping system 

i i 
~. If i < j, we have ,cj x1 = :icj ~d 1t1 = 1. 

. ', ii'. 
As a subset of M the limit-space M receives the relative to-



·\ 

· ~eorem--,. .. ih···If' ·each· M is· compact ·and not···empty· then th-e limit-···· ................. , ...... , ,, ........... ' i 

spaee···±s·· l±kewi·stEi' ·not· errqrty-.· 

· · ·The-· r~inder-of:· this·- sect~on:. ·is· con-c.~ned. with systems· of topolo

gical groups which a.re indexed by a directed ·set. . . . 

,· D~firiitio11: 5.7. ·· Let the group G = {g}., as a set ?f ~lemen~~, be 

a.ssigne~ a top?logy thus_ turning it into a to:J?olo~ic~.6.~a.ce. fien · G 

thus topologized ie caJ.led~a topol:ogical group whenner·it.is a!r0•spaoe 

(a,' Hausdorff space is a '1'0-space) a.nd in addition g .. g• is a con

tinuou.s · :f'unction of G x G to G in th_e topology. 

Definition 5.8 •. Let (G1J be a sy~:tem of topplogic~ groups a.nd 
· . · i · 1 

let the projeetiqn :rcj b.e a homomorphism~. '!'hen S • {Gi; -~ j} is said 

to be an inverse ;szstem .!! groups, or merel7 an inverse syste111. 
I . . 

Theorem 5.3. Let S = (Gi; ,c~} and 2: = (Hi; I~) be inverse sys;.. 

terns both indexed by A = {i; >J and with limit-groups 1'0, 'H. Sup' .. 

pose that for each i there is a. homomorphism fi: G1 ... Hi such that 

~~ti-= fj ,c~, \t > .j. Then there ·exists a homomorphispi f:~-•o ... 'H 

such that if g = (s1) E, 'G, then fg = (f1g1J .. 

Theorem 5.4. Under the same assumPtion -~s in Theorem 5 .. 5 let the 

. o1 be_c"Ompact. If ~'j = f 1G1, then 2:' = (H'.t; ,~J is a.n inverse 
~\ . 
system·witb, limit ... group, say 'H'j and :f is an open homom@rphism of 

'G onto 'R' o 
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It is assumed in this section that M is compact andtha.t T is 

primitive., 

Let . ~ ,.. (U j J 'be the totality of primitive special -coverin~~ o~ 

M, · and let · ·T·~.··· · · :b-e the transformation induced by· T in X. · the nerve 
d . J' 

of (Uj)o Ea.ch (Xj, Tj) is primitive and regular by Lemma 4.6. Prim-

1 ti vi ty implies that each T j is of period p. 

By Theorem 4.4 ~ is a directed set relative to ord:ering by re-

' dinement and is cofinaJ. with the totality of aJ.1 finite open cover-

ings of Mo Hence ~ is ade~ua~e for carrying the ordinary homology 

theory of Mo It is now shown that ~ carries a P-homology theory for 

(M, T). 

Let {Ui}. and (Ujj be coverings in ~ with {Ui) > (Uj);. Since 

{Uj) is primitive, there exists a T-projection :n:~: {Ui} ... (Uj) by 

Theorem 4 .L Since :n:~ is permutable with P and F., it carries P~ 
r J 

cycles into P-cycles 'and preserves P·-homologies. The projection :n:~ 

induces a mapping 

(5.2) 

It is a consequence of Lemma 5.25 that ~ is indep~ndent of the par

ticular choice of the T-projection ~~. Thus the groups ~(x1,T1;G) 
. J 

and as~ociated mappings ~ form an inverse system invariantly related 

to (M, T) o 

Let 

~(M,T;G) = lim {H~(xi,Ti;G); ~}· 

The elements of i¢(M,T;G) may be regarded as a P-homologJ of (M, T). 



h . h h 
A p-cycle Z being a collectic,n· Jz1 j wl:l:ere z1 ·is a (p, Xi)-cycle 

(p=cycle in Xi) and whe:r:-e (U1} > (Uj) implies 

i h h 
,rj z1 ::: zj. 

We have h 
Z '::::? 0 if and only if' z: ~ o for each i.. we call zh a 

Cech r-cycle .. 

As in the simplicial case, we frequently make no distinction be~ 

tween P-cycles and their class. 

The tota:l.i ty ~ is a topologically definite entity uniquely de=. 
. h 

termi:ned'by M and To It follows that the groups HP(M,T;G) a.re 

topological invariants of (M, T) o' 

Lemm.a 5.25., The homomorphism ~ carries B~(x1,r;r1;G) into a 

subgroup of B:(xj/l\1;o) .. 

he. h h l 1 h h , h Proofo If z1 'lo; BP then z1 ...., O. A so, ,cj z1 ~ zj. Hence Zj -

1 0, since ,r j 'carries P -cycles into p-cycles and preserves P .. homologieso 

Also, 11:} carries · ~(x1 , Ti; G) into a subgroup of ~(X j, T /G), 

and in the same way the homomorphism Hh(x1 ,G) -a> If(x .,G) induced by 
·J 

:ir} carries Jicr) (Xi,Ti;G) into a subgroup of R(P) (Xj,Tj;G) o Thus 

~(M,T;G) and If(M,G) admit subgroups . ' 

and 

~(M,T;G) = lim {~(xi,Ti;G); ~}, 

1¢<M,T;G) = lim {1\r)<xi,Ti;G)r·~h 

The relation ~~ T = T ~~ implies that ~~ carries invariant x1 d 

simplexes into invariant Xj-simplexes, henc~ ~~ XiI c Xjr• Thus 

(PI,Xj)-chains are carried by ,c~ into (PI,Xj)=chains and. PI-homolo-
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g:Les are pr~iei!"V'ed.;· ····-This leads to· invers·e,·,systrems of' groups 

h 
H

1
,j,1· _(X~ ,T1ia) et" cetera .. · The relation X = X (see Lem.ma--·4;.6) im-

.A. . . iI . iL . ... . . 

plies that el:ements ·in ·the resulting limit-groups· aTe p 00cycles m9,dulo L 

and th®ir limit .. groups a.re therefore properly denoted by ~L(M,L;G) et 

ceterao 

The following remarks are made for future refere:n.ce6 

Remark (5 .. 1).. A topol.ogy in the coefficient gro-u:p G will lead to 

a. topology in t~ H~L'~ et ceterao In "!'hat follows, the groups a.re 

considered as discrete. 

_h . h _ _h _h 
Remark ( 5 o2) .. Like the groups ~., the groups - BP' K"p, H""( P) 

and the corresponding groups If-PL et. cetera -are topological invariants 

of (MI, T) o 

Rem.ark (5o3) o Suppose ·that dim M ~- m. Then ~ can 'be replaced in 

the preceding discussion by ~""' (U1}, the t(lDta.lity of primitive spe

cial coverings (U1} such that dim (Xi .. x11) :!!i: k, by Theorem 4o}o 

Let h1, gi denote the mapp;tngs h, g defined as before for 
... -

(Xi 9 T1)o · T~e mappings .h1 ·and g1 do exist since (x1, Ti) is regu= 

lar and primitiveo 

Lem.ma. 5o26o If (U1} an~ (Uj) 

i > (Uj) and if ,tj is a T=projection, 

03 hj ~o 

a.re contained in ~ with (UJ 
...i . ...i 

then ,cj g1 = gj ~ and ,cj h1 

-1 ( h) -i h=l h=l Proot •. By d~inition of s1, ~j g1 Z = ,cj Z where Z . = 
h h -h h 

FC and Z "" pC + Cio Hence, since F is permutable with ,c_, we 

,., __ , ~ .. e J zh=l _ wi 1.i\'-.h _ ·,11 ~ ,..h N ....i (Zh) _i (--0h Ch) 
UQ,, ,cj .- - :nj .i:.., - .A." ,cj "" o ow gj ,cj "." gj ~ p + I = 



(=~ J c•h -i ch) ·- · .. "'' __ ;1. ch i g. :c 11:. + :l11 ,- I. - 1: ~j· . s nee 
J . J J 

P is permutable with ;r and by 

d®finition of_ gio 

The ·second part holds simila:r-ly. I:f' Zh = fZ~} is ~- P=cycle which 
. l. 

is 

Denote this P=cycle by 

J h . . h 
Using :n-j: HP(X1 »T1.;G) '"'° HP(xj,Tj;G) and the fact that the groups 

H~(M/11;F ) are finite and compact; it follows from the general theory 
I p 

h=l· I, of i.nverse systems that g actually covers B by Theorem 5 o'+o .. 

r 
Moreove:rp the fact thl;.l.t the kernel of s1 is ~(x1JlT1;FP) for cVery 

fu1 j in :Z: implies that the kernel of g is ~(MJT;FP).. Similar re= 

marks lead to a homomorphism h: H!(M,T;Fp) =;; 1\P) (M..,T;Fp) with kernel 

B~(MJT;Fp)~ Therefore the formulas of Theorem 5.1 hcr!a for every com

pact M and primitive To 

Homologies in L 

In this 'section M is compact, T primitive and G = F. p 
i 

Let :n;j be a T=projection and fU1J, {Ujl E z;-'4 Also1 recaJ.l that 

i 
,i:j XiI c Xj1• The elements of' ~P(x1,T1;FP) are cycles in x1I and 

is identical to lf(X,I' F) by Lemma 5o20o ~p(Xi.9T1 ;Fp) 
1. . p 

Lemma 5 .. 27. The :projection ~ carries ~ p<xi,.T1;FP) into a 

h 
subgroup of :a:0P(xj,Tj,Fp) • 

Proof.. There exists an element Z E ~P such that Z e x1I and 

1t1 (Z) E XjI by Lemma 405.. Hence the lemma is proved. 

Let 
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The :re-lation· X =·X · and ~ma ·5.sJ20···ifflPlY that ,µh is the . .. . . iI . iL . . . ~P 

$roup of'·ordinary··hemol<>gy·-·elasses ot L. 

(5 .. 4) ·· it· (M T·F·) iee-If-(L F ) • 
OP ' ' p ' p 

h 
~~mm.a 5.280 The image of. DP(x1,T1;FP) -1 under ,c .1 is contained in 

n!(x~j'T .j;Fp). 
m'I.. h h . 

Proof o J.:.u.ere exists Z E JJP such that h z E xi - xtI by detini-

b. h -tion of Dr.,, and by Lemma 5o5 Z = PAo Also, 1 - - 1 
,cj p A • p ,rj .A. There-. 

1 h 
fore, ,cj z e x.j "" xjIO 

Let 

~(M,~;Fp) = lim {n:(xi,Ti;Fp); ~}· 

If Zh is a P-oycle that is an element of ~(M/l';FP), then Z~ may 

be ta.ken as a p .. cycle in Xi .. x1I. If x1J is the tota.l.i ty of xi -

simplexes whose kernel meets M - L, then Xi - XiI =Xi .. x11 c:,x1Jo 
h ; h Lemma 5.8 and the relation · z1 c x1 ... x11 imply that z is a p .. cycle 

of M .. L or at least is p~homologous to such a cycle. 

The decomposition of Lemma. 5o2l, which holds in ea.ch (Xi, T1), im

plies the decomposition 

and Lemm.a 5.22 implies 

h h _ _h 
Hence, if we denote by f the projection mapping DP X HOP .... lioP and 

by k 'the mapping fg, then we have by Lemma 5.23 

(5 .. 7) _ __h h h-1 ( ) 
klr.:- • kn-.::: c H for M., '1'; Fp o p p Op 



Denoting by k the mapping ·of If(x T ·F-) induc·ed-by·· · k, · ki is 
. 1 . ·· .... - . . p. 11 i'.' p · 

~:reciaely tl:re-~!)Pin~- k· d-e:t'irred· for simplicia.l (M, T) with , M = Xi 

and T ""'Tj. Moree>ver, Lemma 5~26 implies 

where 

Lemma. 5.29.. If then the kernel of k, as applied to 

is ~o 

h=l _ _h h=l __ h h=l 
Proo;t. If DP =. o, then g~ c HOIT since g~ = BP = 

Dh .. l x ~=l = o x ~"'1 ,, Hence_ fg~P· = g~.I' thus k has the same kernel -p f\)p Op ,-

a.s g 1 D4mely ~ .. 

Lemma. 5 .. 300 If n!"'1 = o a.nd Hc'P) = H\ then k transforms ~ 
isomorphically. 

h 
Proof.. The kernel of k acting on DP is 

h uh . .' h -h 
An element in DP n ~ is o:t' the_ form z = {rci} 

~ n ~ by Lemma. 5,,29, 

h { h'l where · C . = c1, is 
. . . h 

a.n or_dinary cycle. Because x e DP implies x E M-~ . and by Lemma. 5.5, 

_x = pc. Also.I' y E ~ implies y = re + CI where C is a cycleo 

Tb.us Ch is an element of "ff" and is there.fore an element of H( P) by 

' -h h 
the hypothesis. ~is implies that PC ~ 0 by definition of H(P)' 

h . h 
hence. Z is the zero o:t' Dp" Thus the kernel of k is the zeroo 

Therefore k is an isomo:rphismo 

_h=l :a;p O 

_ _h .. l 
Lemma. , ., 31.. If ir- "" O, then k acting on ~ is equal to 

Proof .. We need to show that a given cycle 

pre-image in h h=l h=l 
Hpo Write Z = (Zi }, where 



el:eme:nt of' h=l H ... i 
h=, z ~""" o. h=l Thus eaerr element z1 is con= 

tai.ned. ·· in H~:'.:1 (X, "T1; F ) n Bh=l (x1 , T1; :r ) and so hi-ls a pre.,,,image in . vp l., . . p . 'P' :· , p 
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H:(xi,Ti?~) under k1 'by Lemm.a 5.,22. Let R1 denote the totality of 

. h=l i 
these pre'"0 images of Z, • If 1ll(, is a T=projection, the relation 

:L J 

(5.8) :implies that :r.r~ R1 c Rji since :re} k1 (zi""1 ) = k1 1t} (z:=l) "' 

. h=l) k, (Z, c: .:a, o The sets R, being finite (hence compact) means that 
1 J J 1 . 

i the limit of the inverse system {R1; :rfjJ is not empty. (See Theo= 

Therefore the limit elements are pre=im.ages of h=l Z · under 

Lemma 5.32. Assume that M is :finite=dimens:i.onal; p a prime. 

. n 
Assume further th.at Hn(MJFp) = O for h > n while E (MJFp) is cy~ 

clic of order p" '.I;ihen 

. .n nm.. n 

.ti(' ) = H - H :, p p 

Proof. Suppose that the dim M ~ m» then n s: m. The definition of 

the P=homology groups can be based on 2it, k =pm+ p = 1 9 in place of 

.~ by Remark 5,,3. . h h 
The i""coordinate of a cycle Z of D. is an h= p 

dimensional ( P.sX1 ) =cycle in x1 =XiI ~ 

then z: = O and Jf ~ 
than k such that i "'k is even~ 

o. Let 1 be an integer larger 

Then D7 = o. Now Hr=l = o since 
p 

r = .1 > n,, 'll.~1 1=1 "" 1=1 
hence a:, "" B-~ · = gDf "" go = 0:, and D'r'f "' o. From p p p ~ 

this = D1 '~2 "" O:; thus Dn+l "" :ie+l = O 
p ~ . p J 

and hence 

From Theorem 5 ~lJ :part (b) » Now we need to show that 

- un - n o 
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Tp.us- for 

ea.ch i, tz1 - zi., · hence _'pz1 ...... o.. Tlle collection (RZ1} is a p-

i i -_cycle ~ince if ,tj is a T=projection we hsa,ve ,rj p Zi p zj. · This is 

. . i . . . -( i 
t:r~e s~nce ,cj z;i ... ·zj ..... o a.nd'by Lemma ; .. 10, p :n:j zi ... Zi).'¥ o as 

· required.. . Now pZ ..... O implie~ that pZ is .lm element of the subgroup 

Bn of If.. 'fheref'ore, since Bn = O implies pZ ..... o, we see that Zn 
p p . p 

is a nonzero element.of Hep)'" Thus H(p) .; O and since it is. a sub-

group of a ~yclic group of prime orde:r., t1 must be identical to il'p)" 

Homologica;l Spheres 

Definition 5 .. 9.. A.· space M is n;..cyeli~ over G if ~(M.,G) !II G 

and ~i(M,G) = o., i f, n .. 

Definition 5.10. A space M is said to be augumented if' each of 

its coverings considered a.s ~.~omplex are a.~gumented. 

Definition 5.11. A compact.finite".'dimensional space is called a 

homological n..;s·phere over G if~ when augumented., it i.s ·n=cyclic over 

· w• The empty set is .regarded as a h0mologica.l (-1)-sphere over Go 

Theorem 5 .. 5. Let T )e a transformation· operating in M, · of per=. 

a iod p = q with a~ 1, q a prime .. If M is a homological.n=sphere 

over Fq; then the fixed=point set L is a.homological r-sphere over 

.-1 ~ r ~ n. 

Proof'., Assume tha.t a. "" 1, p = q, a.nd L J ¢ ~ 

0 0 0 stand altern1;a.tely fo:r ,, 0- beginni:q.g with 
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Po·= C. Let r be tb-e ·dimensional i11dex of the -first vanishing group in 

the sequence 

(i) 

0 The definition of r has meaning since DPO = o. Consider an element 
o o• - o · o 

of DP • It contains a p ... cycle of the form Z - = (P0A1} and since H 
. 0 

= o, x1 is connected by section 11, Chapter VII of [14]. Hence if E 

0 
is an xi-vertex, then E - o mod x1I. It follows tmt A1 - O mod XiI' 

, 0 0 -- -. -o O _ 0 say, FB1 =Ai+ AiI~ Then Fe0B1 = 8oAi = Z~ and so z1 ..... 0 for each 

1 whicll implies z0 E Bi0 -. Hence our assumption is true~ 

Next tt is shown that H~P is cyclic of order r while ~~Pi= O 
r 

:for if r. This implies that L is a homological·r .. sphere since the 

groups ~Ph are identical to th,e ordinary homology group$ of Il1 by 

(5.4, page 68). Note that 

(ii) Bi =Hi, 1· 1 n 
F ' Pi Pi 

since Hi= O for if:. n. By Lemma 5,32, if. is, cyclic Of order P? 
Pn 

Assume r < n. Then Dn /= O by definition of r, hence tlp1 = lfp- • 
- Pn n n 

We•ha.ve gDnp· = Bnp·,,.l by (5.6, page 68) a.nd conseqti~tly Bnp-l is 
n n-1 . n-1 

--· 11 i'"l - I:f' - < - 1 t-hen· D n-l 1. o- ~-"' Dn-l ,.., , ere .c, poss .u y zero. , r n - , Pn-l r c:w..1.1. Pn-l ._ 
_;n.:.1 - n•l 1 ( n-1 
.ttPn-l, so that BPn'.'"l r O by ii). Hence, ~Pn ... l is of order p 

n-1 " and so ,is DPn-l o By repeating this argument we conclude that the 

groups (i) with dimensional index exceeding r ~re cyclic of order 

.P• We have also shown that 

(iii) i = n, n + 1, • ~ •, r + 1. 

Ncn.r we need to show that the remaining groups of' (i) vanish. We have 

r r-1 .....Jt-1 r-1 r 
DP = 0 by definition o:f' r ~nd DP - c lip == BP . = gDP = 0 by 

r r•l r-1 ~-~ r 



(ii) and ~5-.6, pa.ge·68) •.. Replacing r by r .. · 1 and so on we ha.ye 

l 
D =0 :fora.11 e i:ro 

Pf ··· ···· · ·· .... · · · 

Now by Le• 5 .. 31,Sitld (iii) 

·. (iv) Hi ""kHi+l = kJt+l = kO = 0 i < r. 
OPi Pi+l Pi+l 

U~i~g.the fa.ct that -a!1 • O for i > n, (iv) also holds for i > n. 

Moreover, · ~ vanishes for 1 = r + 1, 0 " 0 , n, since Hp= 
OPi 

DP X HOP and since HP = Pp • Therefore H~ Pi == O when i F r·. 
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1It remains to be shown tha.t ~Pi is cyclic of order p. If r == 

h n Al H h • .n n, t en DPn = o. so, - P == DP X H0 Pjl ence ~ = Hop• Now t1Pn 
r is cyclic of order P, therefore, Hop is cyclic of order p. If r 

h. r+l 1 _r+l < n, t en D is eye ic of order p and k.u is isomorphic to 
Pr+l Pr+l 

(Pr by Lemmas 5.30 and 5.31; theretorejl H~Pr is cyclic of order p .. 

The theorem is proved for a== 1. 

Assume a> 1 a.nd that the theorem has 'been proved for p = qb, 

b< a. .. The transformation Ts, s = qa.-l, is a prime of period q. 

Hence its fixed point set 11 L13 , :ts a homological r=sphere, r 1: n. 

Now T transforms Ls into itself~ and the transformation T' induced 

. in Ls is either the identity or it is of period qc where c < a. In 

the first case L = L and the theorem is establishedo In the second s 

case the fixed point set L' of' T' is a. homological r'-sphere, r' 

. Examples 

The results of' Theorem 5~5 do not hold for a transf'orrna.tion of per .. 

iod p, p arbitrary. E .. Eo Floyd constructed examples to show this 

fact. in 1952 [ 6] and in 1956 [ 8] ~ Some of Floyd' s examples· are given in 



this section., First we shflll sta.t·e theO-r-ems and definitions that are 

used in constructing the examples •. 

Definitio?l 5.12@ A d~compositio1; of a spa.a~ ~ is a partition of 

M _into a family of disjoi~t subsets of M whose union is M. 

Definition 5 .l;o Let M be a. compact Heiusdorff' space and · T a 

periodic mapping on M, then crx, x EM, is a.n orbit. 

Definition 5.14. The orbit decomR_9sit~ space M* of (M, T) is 

the space ~hose elements a.re the sets cr-x, x E M, with an open set in 

M* being the images of an open set in M under the orbit decomposition 

mapping f: M .... M*, where f{:x) = (crx}. 

The :following theoreml:3 a:t'e used in the construction of our exam-

ples o They can be found in [ 6] and [ 7]. 

Theorem 5.6. Let X . be a finite complex and let A be a. subcom-

plex of x. Suppose A is invariant u~der a. si~plioia.l. periodic ma.p~ 

ping ? on x. Let A* denote _the orbit decomposition o:f' the pair 

.' (A~ T/A) and let F: A<"*> A* th~ orbit decomposition rnappi:ngQ Suppose 

that the induced homomorphism· f* of the homology ~oups H (A;G) 
n 

into H (A*;G) a.re isomorphisms o.nto for each n, where G is a. giv
~ 

en coef~icient group. Consider the decomposition of X consisting of 

· orbits of points of A a.p.d of individual points of X. = A,, Let X* 

denote the resulting decomposition space. Then .X* may be triangu-

lated so as to be a finite complex 'with A* a sube:omples. Moreover., 

Tb.e<Drem. 5. 7. Let A be an n-dimensional finite complex; let T 
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and such that if C, denotes the . a . ., clos-with ~actly · one :fixed· point· · p 

a f,_~ p 1 then T(C ) f"I C is either . a a . . empty 

or is p~ There exists a homeomorphism t of A into.Euclidean 

(2n + 1) =space E2n+l such that fT = Sf where S (x) = ~~x for every 

x E E2 _ 1 and such that f is linear on each simplex of A. 
n+ . 

Notation., Let n be a positive integer ~ 2. Let P denote the 

solid unit circle in the plane, where we use polar coordinateso Con= 

sider the decomposition of P which has as its elements the individual 

points (r, 0) for r < l · and the sets ( (lp a), (l.1 0 + 2.-'Jf/n), ~ .4 .. , 

(1, a + (2n = l)tr/n)} for r = L Denote the resulting decomposition 
'· 

space by P(n) o If (r » El·) E P let (r, 9) n denote the generated 

point of P(n) ~ An involution R of P(n) onto P(n) is defined by 

R((r, e)n = (r 1 ~ + •)n. 

Theorem 5.8 .. If n is odd, then R has a single :fixed point, and 

the orbit decomposition space P*(n) is homeomorphic to P(n). Also, 

if g: P(n) '""' P*(n) denotes the orbit decomposition mapping, then g*: 

H (P{n);I) "'° H (P*(n);I) :i.s an isomorphism onto for each n, where I 
n n 

denotes the group of integersQ 

Theorem 5.9., If X i.s locally connected and locally simply con= 

nected.i then so is X*. 

Example L Let n be an odd positive integer. There exists a 

finite complex K and a simplicial mapping T of K onto K of per= 

iod two such that K is contractable (and thereby homological.ly tri'." 



vial over all groups) and such that the fixed point set of T is 

homeomorphic to· P(n)~ 

Proof.. Let X denote the 5=cube in Euclidean 5-space consisting 

of all pointEJ whose coordinates are between .. 1 and l. Denote by 

S: X-=!) X the involution S(x) = -x for all x E Xo Triangulate P(n) 

· so that the hy;Pbthesis oi 'Theorem 5" 7 · is satisfied wi ~h respect to a. 

mapping R;, (See ;notation above .. ) By Theorem 5o7 we, can consider 

P(n) as being imbedded in the interior of X so that R is equal to 

S on P(n)~ Define K to be'the deco~osition space generated by the 
,, ' 

decompos.it:l,on of X whose elements are the individ"Q.al points. of 

X = P(n) together with. the set {x, -xh ::J{. E P(n). Let h: · X .... K b,e , 

the natural decomposition mapping. 
. -1 ' 

De~ine T::; h sh o Tnen T is a. 

decomposition mapping of K onto K. of pe;rioq. two •. The transformation 

T .leaves the sets {x., "".x:) fixedo ~ese sets are hOf!leol!lOI'Phic to 

P*(n). There:rore, by Theorem 5o~ they.a,re·homeomQrph.ic tQ P(:n)o ~ore= 

over, S/P(~) = R, hence R: B (P(n); I) -o .. H (P*(n), I) n . "' . is M isomorphism 

onto for eat.'!'.h n.. Thus by Theorelll 5.6. ltn\K,:C) ~ Hn(X;I) and since 

.Hn(X;I) i~ homqlogic~ly trivial, Hn(K;I) is also. 

We now proye that K is siqtply connected. ,It will tl:iel'l follow 
·, .. 

by (10] that K ie contractible. Let x:1 and c. x 2 be disjoint 

~o-pies o:f' .the 5.-cube :X. Let s1 and s2 denot.P the --1D.,rolution 

i =D -x in, 1i and :x2 r~spectively., Let F'1 (n) and 

note the copi~s: o:f' P(n) . in x1 and x2 respeo~ively. 

;p P ( n) l,ie-

I:f'' x .. l 

E x2 , · let ;x:2 be its r!OPY in x2• Form tll~ decomposit.ion o:f' 

x1 U x2 with elements that are individual points of Xi ~ Pi(n~, 

for 1 = l, 2 together.with the sets (x1 , x;-}, f'or x,. E P1(n). 

The resulting decomposition space X' is simply conneat.ed being the 
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uniOJ? of two simply_ connected subcomp1.exes ~ith a connected ·inter_sec

tion.. Moreoverp there·ca:n be· defined an involution· St on·· X' a.s fol-

lows~ I~ x_ E x 1 , define 8 8 on the element of X' determined by x1 

to be the element of X' determined by s2 (x2); s:i.milarly for points 

x2 E x2 .,. Points in the orbit decomposition space of the pair (X' ;S') 

are of the form (x1 ., ·~x2} for s1 e x1 = P1 (n) and 

[{x1, -x2)i {-x1, x2)] for x1 E P1 (n)o Now h: K~ X', where h is 

a mapping such that h(x1 ) = (x1 , -x2} for x1 € .X -- P(:n) and h{xl' -xi} 

m [(x1 , =x2), (=~, x2}] for x1 E P(n) 9 :ts an homeomorphism fro K 

to X 1 "' The set St has fixed points since s1 and s2 have fixed 

points and they must be copies of each othero •Tuerefo:re the orbit de

composition space of (x•, S') is simply connected by Theorem 5o9o 

Hence K is simply connected. 

Example 2o Let G be a. non-trivial a.belian groupo There exists 

a prime period p such that K is homologically ·trivial over G but 

such that the fixed point set L is not homologically trivial over Go 

Proof~ If P(3) is not homologically trivial over G, then the 

statement follows from Example 1.. If P(3) is homologically trivial 

over G, then let K"" P(3), and define T((r, e)n) = (r, e + 21t,/3)n. 

Then T is a periodic mapping of K onto K of period 3 whose fix= 

ed point set is the union of a point and a simple closed curve. The 

point is (o, o), and the simple closed curve is (r., e), r = L 

Example 3. Let n be an odd integero There exist a finite com-

pl.ex K and a periodic cimplicial mapping T of K onto K of per= 

iod two such that K has the homology groups o:f' a 5-sphere (over the 
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int·egers-} .. and;·su-cn·tnat·the-fi:xed·point·sret of .T is a union of a. set 

· M homeomorphic to P(n) ·· and a point not on M. 

Proof. Make the following· changes·· in the· construction o:f · K in 

the proof of :Example 1. Let X be 5=space compactified with a point a.t 

infinity so that X is a. 5=sphereo Let S be the same as in Example 1, 

and consider· . P(n) a.s being embedded in x, just as in Example l. De= 

fine K3 h, and T · as beforeo Then K has the homology groups of a 

5=sphere over the integers by 'Theorem 5 o 6. Moreover, T has a. fixed 

point set h(~) U (hP(n)). 

Example 4. Let G be the group of' integers.,, There exist a prime 

number p, a. finite complex K, and a periodic simplicial mapping T 

of K onto K of period p such that K has the homology groups of 

a sphere of some dimension over G but such that the fixed point set 

does not have the homology groups o:f a sphere of any dimension over G. 

Proof. If P(3) is not homologically trivial over· ,G, the con

clusion follows from Example 3. Suppose, then, that P(3) is homo-

logically trivial over Go Let P1 (3) and P2 (3) be disjoint copies 

of P(3). Let ~ be the set of all ·(1; e):, e pl (3) and let A2 be 

its copy in P2 (3). In the set pl (3) U p2 (3) identify a·point a1 E 

~ with its copy a.2 in A2• Call the result K .. Then K is the 

union of two complexes that are homologically trivial over G and whose 

intersection is a simple closed curve. Hence K has the J:i.omology 

groups over G of a 2=sphere. On each Pi(:;) define a mapping of per= 

iod 3 as follows: (r, e):;· .... (r, 'e + 2'P,/;};. These induce a mapping 

T of K onto K of period 3 whose fixed _point set is the uµion of 

two points and a simple closed curve, which does not have the homology 



groups of a sphere;;· 

'rb:e above results also hold for G - a non ... trivial abelian group. 

E. E. Floyd has shown in [8] that. there exist a simply-connected homo

lc,gical 2-sphere, B, . and a periodic mapping on B of period six _ (the 

lowest period not covered by Smith ts Theorem) whose fixed point set is 

the disjoint union of two points and a simple closed curve. 
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The structure of L when the period of T is not a. power of a 

pr}me is one of the unsolved proflemsq P. A,, Smith originally thougnt 

that his results could be extended to an arbitrary period. Recall that 

most of the results in this thesis are obtained in a compact space. It 

is not known whether- or not the <compactness is necessary; however, it 

plays a major pa.rt in the proof's of the theorems~ 



CHAPTER VI 

stTh'llV'tllRY A.:ND EDUCATIONAL IMPLICA"l'IONS 

This thesis present,s a coll~ction of mathematical research reports..9 

each concerned with the fixed point property of a space mapp~d into it= 

self by a periodic homomorphic transformation" A number of research 

:findings are consolidatied.in this paper so that understandings in this 

area can be more accesi:.dble to students who might not have the skills 

necessary to read technical math~matical journalso A brief history 

of th:e fixed point pr6blem and topology in general is included for de= 

veloping background in this general area. Discussions:; explanationsJ 

and examples which illustrate the thii:!ory are given along with some un= 

solved problemso 

Summary 

Chapter I contain.s the state;ment o:f the problem and discussions on 

the justifications; procedur(l':S 1 limitations, and expected outcomes of 

the thesiso Chapter II:; following a brief history of topologyj pres~nts 

definitions of the basic terms such as a homeomorphism, a periodic 

transformation 1 a Hausdorff space:; and the :fixed point property, Some 

theorems that can be proved by elementary methods. are given at this 

pointo Chaptier III is a review of homology theory" lt includes de:fini= 

tions and some results that are basic in the proofs of the theorems in 

80 



81 

Chapters IV and V. 

Chapter IV contains · a proof of ·~he existence theorem wh:l::c:h :follows 
.'.'a,,, : . I 

the on(!'; given by P~ A. Smith in [17L This theorem is one of :the im= ~. 
~rotant results presented in this thesis. The existence theorem, in 
·'-..;:_,/ . .. . 

somewhat different form 1 has appeared in the journals at least three . . 

times and was one of the first results obtained. In Chapter V the set 

of fixed points o:f an 11=sphere was classified for a pe!'.iodic homeomorph-

ic transformation of period Q.;, q a power of a prime. Examples are 

given to show that the same classi:ficat:Lon is not 1possible in generaL 
I 

Many results are obtained in Chapters IV and V that ar~ not of primary 

importance in this thesiso These results are presented ·because the 

proofs of the major theorems are based upon them. 

Educational Implications 

Since the study of mathematics is becoming increasingly widespread 

· and the body of knowledge in all areas is expanding rapidly, a collec= 

tion of' the research done in any one area. is needed? bees.us~ it is 

time=consuming for each inter~st<E:d person to do the library research 

necessary to collect such information. A study such as this one7 in 

addition to consolidating the research, presents the necessary back= 

ground needed for understanding the problem and therefore brings this 

colle~tion of knowledge to many students of mathematicso 

As a result of reading this thesisJ the student should gain an 

awareness of the current and past research in this modern branch of 

mathema.ticso He should become acquainted with ~en who have contributed 

to its~research and development. It is of great educational. signifi-
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ca.nee that the- rea·der,· wh:o·is· apotent±al teacher at either the public 

' 
school. orthe·co11~gtr level, may become sufficiently interested in ,this 
.,. •.. ,.., .',.... , '•'"··· • '• ,,<-, I• , •• •• 

phase_ of mathematics to under:take serious study in this area. He may be 

challenged by the possibility of contributing t;o research in mathematics 

'by extending the· results given in this thesis and ·by suggesting solu-

tions to the unsolved problems or by developing new properties of fixed 

points. The bibliography should be a valuable aid to anyone interested 

in the research of fixed point theory for periodic transformations. 
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