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PREFACE 

This analysis, undertaken as part of an active research contract 

titled "The Interaction of a Blast Wave and the Base Pressure Region 

of a Missile Re-Entering the Atmosphere," was completed under the 

sponsorship of the Sandia Corporation, Albuquerque, New Mexico. The 

area of analysis described in this dissertation concerns the transient 

flow field which results when a plane blast wave intercepts a sta­

tionary cone at zero angle of attack. A companion dissertation, also 

part of this current investigation, is being conducted by Mr. Lynn 

Tyler and is concerned with the transient flow field properties re­

sulting from a plane shock wave emerging into both still and super­

sonic streams. Shock tube experiments are being conducted to verify 

this analysis. 

Future investigations relating to this work are being conducted 

by Mr. William Walker and Mr. Roger Eaton, both Ph.D. candidates at 

Okl~homa State U~iversity. Mr. Walker's concern will be the study of 

blast waves interacting with turbulent jet mixing regions. Mt'. Eaton 

will perform studies to determine the various influencing parameters 

affecting a missile as it emerges from a blast. Both of these investi­

gations should provide considerable knowledge of the mechanisms of 

blast-missile interactions. 

The author wishes to take this opportunity to express his sincere 

appreciation to his academic advisor, Dr. Glen W. Zumwalt, Associate 

iii 



Professor of Aerospace Engineering at Oklahoma State University, for 

his genuine interest and suggestions. His guidance and instruction 

have proven invaluable in the accomplishment of this work. 

Appreciation is also extended to Professor L. J. Fila, Dr, J. A. 

Wiebelt, and Dr. O. H. Hamilton, Ph.D. cormnittee members, whose coopera­

tion and support during all phases of this research were of extreme 

value. 

Acknowledgment is also extended to the Air Force Institute of 

Technology, United States Air Force, whose educational programs have 

made this advanced study possible. In addition, gratitude is expressed 

to the Air Force Weapons Laboratory (AFWL), Kirtland AFB, Albuquerque, 

New Mexico, whose computing facilities were made available for this 

work. 

In accord with this opportunity, the author would be remiss if he 

failed to mention the sacrifices made during the preparation of this 

dissertation by his wife, Bobbie, and his two daughters, Patti and 

Terri, to whom this paper is dedicated. 
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CHAPTER I 

INTRODUCTION 

The problem concerning the transient flow field caused by a plane 

blast wave intercepting a stationary blunt-based missile is one on which 

a great deal of attention has recently been focused. Concern has in-

creased for the vulnerability of these missiles to structural failure up-

on flying through blast waves resulting from nuclear blasts. Such 

blasts might occur from an anti-missile device. 

In testing for structural or radiation effects, however, it is 

often expedient to test the missile while it is stationary. This is 

currently being performed both in shock-tube tests at various labora-

tories and by high-explosive blasts past stationary models-.· These tech-

niques provide excellent opportunities to evaluate the analytical methods 

suggested in the literature, and to provide a strong foundation for ex-

tensions to more complex blast interaction problems. 

1 The recent work of G. W. Zumwalt and H. H. Tang (38) was concerned 

with the analysis of a blast wave after it had passed beyond the imme-

diate region of the body. They considered only missiles at supersonic 

speeds, having a highly evacuated base region and .adjacent flow field 

already formed. Thus, the blast became a disturbance on the flow field. 

In Zumwalt and Tang's analysis, the very short time-pressure transients 

1 () Refers to Selected Bibliography 
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in the base region due to wave reflections as the blast passes were 

neglected. For the aerodynamicist, this is admissible since the ef­

fect on drag is small. The structural analyst, however, must knowhow 

the forces are applied no matter how short their time duration. 

Hence, the purpose of this study is to seek detailed knowledge of 

the flow properties and wave patterns of a stationary blunt-based 

conical vehicle during the transient blast passage leading to the 

quasi-steady flow conditiono 

In conducting this study, the following limitations are specified: 

(a) The blast wave is planar; that is, its radius of curvature 

is extremely large in comparison to the conical body length. 

(b) The blast wave approaches the conical body from the head-on 

axial direction; that is, interception is at zero angle of 

attack. 

(c) The velocity of propagation of the blast wave is assumed 

constant throughout; that is, decay of the wave strength is 

negligible during passage around the body. 

(d) The flow behind the blast front is steady; that is, the de­

cay of the pressure field occurs very slowly compared to 

the rate of blast wave passage. 

(e) Body configurations are limited to axi-symmetric conical 

shapes. Specifically, data is sought for a 130347 degree 

semi-apex angle conical body. 

(f) The conical body is considered stationary for all times, 

(g) Turbulent flow exists in the separated boundary layer. 

(h) Ionization and 6ther real gas effects are not included in 

2 
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the . analysis .•. 

Within the spectrum of these assumptions, the main objectives 

include the establishment of techniques or methods of computing the 

various physical parameters associated with the flow. Since the flow 
.• 

is highly transient it is unsteady and contains both subsonic and 

supersonic regions. 

In order to determine the various physical and thermodynamic. 

parameters affecting the blast condition from the time the blast wave 

intercepts the conical body nose until the quasi-steady base flow con-

dition is established, it is feasible to consider the analysis in three 

major phases: 

Phase I: Blast wave diffraction over the stationary conical forebody. 

Phase II: Interaction of the blast wave with the base region of the 

conical body. 

Phase III: Transition to a steady separated flow condition at the 

base. 

The Phase I problem will not, in this paper, be extended to in-

elude the transient conditions near the cone. forebody which follow 

the passage of the shock wave. However, a short exploratory.work is in-

eluded to show the way to the solution of this phase of the phenomenon. 

The main effort will be concentrated on the more troublesome base re-

gion; i.e., Phases II and III. 

Although no exact system for solving this highly transient flow 

problem can be found, in the literature, several methods and techniques 

have been developed. Among the many existing theories or computation 

methods are those of Whitham (35), Lighthill (18), Chisnell (4), 



Bryson and Gross (1), Von Neumann and Richtmyer (31), Lax (12), Payne 

(24), Ludloff and Friedman (19), Godunov (9), and Rusanov (27). Each 

has a different approach so that the theories differ in their appli­

cable cases. 

These and numerous other authors (see Selected Bibliography) 

have made significant contributions toward the understanding of shock 

propagation problems and attendant phenomena... The methods they have 

proposed, as well as other similar proposed methods, all share one 

limitation: the difficulty in solving the non-linear equations of 

motion reliably to describe the physical phenomena associated with a 

highly transient flow field. Even with many simplifications, an accu­

rate determination of the time history of the expected flow properties 

requires heavy reliance on numerical procedures. The methods proposed 

in this analysis, however, attempt to utilize the most favorable com­

binations of these methods for the accomplishment of transient solu­

tions for all phases of the problem. 

4 

In reviewing the literature, the methods proposed by Whitham (35) 

and Rusanov ('27) appeared to possess the potential qualities necessary 

to successfully apply to the existing flow problem. For the Phase I 

condition, that is, diffraction of a plane shock wave by the stationary 

conical forebody, Whitham's (35) axi-symmetric similarity solution was 

adopted. Associated with this solution is the ability to predict the 

locus of the shock triple point as well as the shape and curvature of 

the Mach shock. For the Phase II solution, involving the interaction 

of the blast wave with the base region of the conical body, Rusanov's 

(27) finite difference technique was adapted. For Phase III, a mating 



of the Phase II results with the steady-state base flow studies of 

Zumwalt and Tang was required. 

Details of Whitham's method and its specific application to the 

cone of semi-apex angle of 13. 347° are presented in Chapter II. In 

addition, Chapter II presents the experimental information from shock 

5 

tube tests provided by Sandia Corporatipn and compares this data with 

results obtained from Whitham's technique. Chapter III outlines Rusanov's 

numerical scheme and includes the extension of his method to the analysis 

of flow conditions which occur at the base of the cone using Whitham's 

shock solution for the initial condition. 

Various detc1.iled computing procedures, computer programs, and 

supporting information are included in appendices, figures, and tables • 

. The figures include shock propagations resulting from Whitham's solu­

tion, as well as numerous plots of the transient flow conditions ob­

tained'as a result of the adaptation of Rusanov's technique to the coni­

cal body. Among these are plots showing lines of constant pressure, 

constant velocity, and flow directions obtained for selected time planes 

leading to the final quasi-steady flow conditions. From these conditions, 

as discussed in Chapter III, the final base pressure analysis of Chap-

ter IV is obtained. Finally, in Chapter V, a summary of conclusions and 

suggestions for continuing investigations is given. 



CHAPTER II 

BLAST-FOREBODY INTERACTION: WHITHAM'S THEORY AND TESTS 

In this chapter, Whitham's technique (35) for the approximate calcu­

lation of the diffraction of shock waves past stationary bodies is adopted 

for the Phase I solution of.the conical forebody. Associated with this 

solution is the ability to predict the locus of the shock triple point 

as well as the shape and location of the Mach shock at any time. Since 

this locus represents a Mach shock moving along the incident shock, 

Whitham calls it a "shock-shock." As part of the description of a shock­

shock for a conical diffraction, it may be described as a discontinuity 

in Mach number and shock slope. Specifically, a shock-shock locus may be 

regarded as a straight line emanating from the cone apex and inclined 

by an angle x (shock-shock angle) with respect to the conical axis of 

symmetry. Details of Whitham's shock-shock relations are·discussed in 

Appendix C. 

Essentially based on kinematic considerations, the theory predicts 

only the shock wave pattern. It does not yield the pressure distribution 

over the diffracted body, or the flow field following th~ shock, nor does 

it predict the shape or curvature of reflected shocks. Given the shock 

pattern, one must develop other techniques for the determination of 

pressure distribution; for example, a numerical field-computation method 

such as Rusanov's (27). 

6 
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Initially, Whitham (34) investigated two-dimensional problems on 

the interaction of a blast wave with various stationary bodies. In these 

investigations, disturbances to the flow are considered as wave propaga­

tions .on the shocks. These wave propagations cause variations in the 

Mach number and slope of the shock. In one particular investigation, 

Whitham (34) compared his approximate calculation of a blast wave diffracted 

past a stationary wedge with that calculated by Lighthill (17,18). In 

Lighthill' s analysis, the disturbed flow is regarded as a small perturba­

tion with respect to the uniform flows, separated by the blast wave. 

Lighthill's conical flow techniques were later extended by Smyrl (28) to 

a wedge trav:eling at supersonic speeds. Smyrl's closed form solution for 

the pressure field behind an arbitrary plane shock was also applied to 

thin, supersonic airfoils. 

After his two-dimensional investigations, Whitham (35) extended his 

approximate theory of shock dynamics to include general three-dimensional 

problems. The. extension is merely a mathematical manipulation of equa­

tions; the basic assumptions remain the same. Generally, Whitham applied 

his theories to cones of arbitrary semi-cone angles. Specifically, he 

obtained results for a cone of 28.8° semi-apex angle. 

Bryson and Gross (1) obtained experimental confirmation of Whitham's 

axi-symmetric calculations for a .cone. They also extended his technique 

for blunt bodies and obtained experimental confirmation for cylinders 

and spheres. 

In the present study, Whitham's axi-symmetric analytical results are 

reproduced using the IBM 1410 electronic computer. A detailed discussion 

of the techniques used, along with specific application to the cone of 
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. 0 
semi-apex angle bf 13.347 , is presented in the following analysis. 

Method Analysis: Phase I 

For axi-symmetrical problems such as the diffraction of a plane 

shock wave past a cone, the flow may be described in terms of independent 

variables based on purely kinematic relationships, To establish these 

relationships, Whitham considered the set of curves formed by the successive 

positions of a curved shock as it moves through a uniform medium. The 

orthogonal "trajectories" or lines of progress of this set of curves, 

termed rays, are introduced so as to form a general network of shock 

positions and rays. This typical network can be considered as the basis 

for orthogonal coordinates in the plane. Accordingly, the coordinates 

(a, S) are introduced such that the shock positions are the curves a= 

constant and the orthogonal trajectories are the curves f3 constant. 

In his analysis, Whitham considered a portion of the shock wave 

moving along a narrow tube of neighboring rays. This was suggested by 

the similarity of the propagation in a ray tube.to the propagation of a 

shock in a tube with solid walls. In Appendix A, this analogy is discussed 

with a view toward developing the appropriate mathematical relationships, 

Whitham's basic theoretical assumption is that the Mach number, M, of the 

shock wave and the area, A, of the ray tube are functionally related; that 

is, A is a function of M only. 

A= A(M) (1) 

This relationship was taken directly from results obtained from Chisnell (4), 

and is further discussed in Appendix B. 
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To develop the relationships used in the analysis, consider the 

cross section of a .cone in the (x, r) plane. 

In curvilinear coordinates, isolating the elemental region PQRS re-

sults in the following. 

Note that the solid lines are -the constant a lines and represent 

successive shock positions. The dotted lines are constant S lines and 

represent the orthogonal trajectories, or rays, of the shock positions. 

Further, the angle 8(a, S) is the angle of the tangent of the ray at a 

fixed point from the axial direction. M, of course, is the shock Mach 

number and is a function of a and S. 

In this coordinate system, the choice of independent variables based 



on the shock positions.and rays is formulated by describing the motion 

of the shock as 

c t = a(x,r) 
x 

(2) 

10 

In this expression, tis the time at which the shock occupies a specific 

position and c is the speed of sound in the undisturbed gas ahead of 
x 

the shock. 

Geometrically, the above sketch yields the following relationships 

in terms of Mand e That is, 

cos 8 = j'.".l(a, 13) da 
dx and sine M(a, S) da 

dr 

Since a a(x,r), it is possible to write these expressions as 

cos e 
M 

and a 
r 

cla 
- clr 

·sin e 
M 

(3) 

(4) 

Taking the partial derivative of a with respect tor and the partial 
x 

derivative of a with respect to x, these expressions become 
r 

a xr 

However, for continuous functions, 

a2a a2a --= clxclr clrclx 

a rx clrclx ax 

Therefore, the expression above simply reduces to 

a 
clx 

(5) 



From his ray tube analogy (See Appendix A), Whitham obtained.the 

kinematic relations 

and 1 M=--

J Vo. I 

In cylindric~l coordinates, the first expression may be expanded as 

V· [Mv1o. = 1i [r M. (Vo.) J + 1-.~M. (Vo.) J = 0 . A r ar A r ax A x 
·' 

However, from the definition of gradient and from equation (4), the 

relations 

(Vo.) 
x 

cos e 
M 

and (Vo.) 
r 

ao. -= - ar 
sine 

M 

are obtained. Substituting these values into the equation above, the 

~xpression reduces to 

11 

(6) 

Since· ,li, is an independent variable, the resulting geomet;rical relation-
.;. 

ship may be ex:pressed as 

(7) 

In Whitham's cone solution, the only parameters prescribed are the 

initial shock Mach number, M, and the cone semi-apex angle, 6 ; there 
:S C 

is no length. Therefore, in the solution Mand 6 must be functions of 

the single variable n , where 

n = tan- 1 r/x (8) 
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' Of course~ since A is functionally related to M • an ~xgression in-

valving A and a as functions of n must also be obtained. Hence, 

it is desired to write equations (5) and (7) in terms of t:he given variable. 

This ·m~y be accOJ¥1plished by differentiating equation (5) and simplifying 

to give; 

[cos a .!!l - sin ar - rcos a l.!1 + sin a l.!J.J ll L ax ar an 

Differentiation of equation (8), gives 

an -r -=--- and 
an. x -=---
ar x2+r2 

Stib~tituting these two expressions and rearranging terms: 

rtan n - tan J _il = tan( -9) _il 
l!+tan n tan ~ an . n an 

1 aM --= M an 

Since t~e ~ependent·variables are functions of a single independent 

variable, this ~xpression is written in its final form as 

l ~ = tan(n-a) de (9) 
M dn dn 

Hence, equation (5) is shown to be written in terms of n , where. M 

and 9 are functions of n only. 

Similarly, to obtain equation (7) in terms of n , it is,diffe-1:entiated 

and simplified to 

1 aA ... _ ........... 
·. A an ~

ae -+ an·. sin n cos 
tan e l 

n(l+tan n tan e ~ cot(n-e) 
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Since A and 6 are functions of Tl only, the expression above, as 

reduced from equation (7), is written in its final form as 

tf ~ * : = ~~ +-s-i_n_n_c_o_s_t_~""(--1--!-t-a_n_n _t_a_n___,a ~ cot ( n-a) (10) 

Thus, Whitham was able to. express the changes in Mach nUillber and 

shock wave area inc the n-direction, for an element .of the shock wave, 

in terms of its n-direction and its direction of movement. Note that 

for the undiffracted shock far from the body, 6 = 0 , and thus both 

dM/dn and dA/dn equal zero. 

As can be seen from the following sketch, a shock-shock separates 

the uniform region from the disturbed region. 

7 

V1STU\c136= 
'i<E<S,-\Ot,.:) 

For the variable angle, n , equal to the shock-shock angle, x , the 

equations 

and 

tan(x-e ) 
s 

A [M 2_M 2] ~ 
s 1 s 

Ms . A 2_A 2 
s 1 J 

(11) 



must be satisfied (See Appendix C for details). Hence, a solution to 

equations (9) and (10) is required such that at n = x , 

tan e1 = 

tan n 

Similarly, at the cone, 8 

k k (M 2_M 2) 2(A 2_A 2) 2 
1 s s 1 

A 

M 

AlMl + AsMs 

[ M/-M/T s 

s A 2_A 2 
s 1 

= 8 
c 

and n = 8 
c 

essentially the boundary conditions. 

These relations are 

14 

(12) 

For strong shock waves, the A-M relation, developed in Appendix B 

as 

-AAsn. [ MMs] n v , where n = 5.0743 (13) 

is introduced into the calculations. The introduction of this relation-

ship allows a solution for a given cone for all M 
s 

solution, the following procedure is utilized. 

Designating M/M = R, then 
s 

A/A = R-n • 
s 

Since 

To obtain such a 

AMn is constant 

across the shock-shock for any given shock, then differentiating AMn = 

constant yields 

Then 
dA AnMn-1 An - = -dM Mn M 

such that 
M dA (14) n A dM 
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With this expression, it is now possible to ob.tain a single .equa-

tion for e(n) from equations· (9) and (10). Substituting equations (9) 

and (14) into equation (10), then rearranging terms, the equation 

de ,tan e ·. 
-d-n = -s-in--n~c-o-s~n-(_l_+_t-an~n~t-a-n~e-)_(_n __ t-an-2.,._(n---8-)---1) (15) 

is obtained. 

In order to obtain a single expression for R(n), simply substitute 

M =MR, where M is a known constant, into the left side of equation (9). 
s s 

Then, by differentiating the left side, it can be seen that 

1 dM 
M'dn 

1 dR =-·-
R dn 

Therefore, equation (9) may be written in terms of R(n) and S(n) as 

1 dR 
tan (n-8) :~ R dn (16) 

To complete the development of th~ desired equations for a solution 

for a given cone; equation (12), at n = x, becomes 

and 

These 

and 

(A R1-n)(M R1) +(AM) 
s . s s s 

A 
s 

tan x =-

shock-shock 

tan e1 

tan x 

M 
s 

relations reduce to final 
1 . 1 

(R 2_ 1)~ (1-R -2n)''~ 
1 1 

1 + R 1-n 
1 

[ jl 

R 2 - 1 ~ 

11- R -2n 
1 

form in terms of R as 

(17) 

(18) 
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From the sqlutions for S(n) and R(n) , as illustrated by equa-

tions (15) and .(16) , and the shock-shock. relations of equation (17) , the 

position of the shock wave at any time can be ·obtained, From similarity 

relationships, Whitham considers ~ to have the form xf(n)/M. s Then 

"x = M~ ~(n) - sin2n f' (n~" co~ e 

and· 

ar = Ml sin n cos n f'(n) = 
s 

sine 
R 

Combining these two expressions to solve ·for f(n) yields 

f(n) cos e + s,in e tan n 
R 

Hence, at time t after the shock strikes the vertex of the cone, 

Therefore, 

a = c t 
x 

x 

xf(n) = = 
M 

s 

cxxf(n) 
u 

s 

1 R -u t 
s 

= f(n) = cos e + sin.e tan n 

Also, since x = r/tan n , 

r 1 
~ = f(n) 

s 
tan n x =·-

u t 
s 

tan n 

Thus, Whitham has established, through equations (19) and (20), the 

position of the shock wave in terms of the. parameter n . 

Note that whitham, from the preceding analysis, has shown that 

x/u t; r/u t, x , and the distributions of s . s e and R with n are 

(19) 

(20) 

all independent of M. Hence, as specified for a given cone, all shock 
s 
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waves go through exactly the same sequence of positions; the differences 

in u affect only the time scale. This theory fails to predict the con­
s 

ditions under which Mach reflection will not occur, For cone angles 

0 greater than 50 , or for very weak shocks (M < 1.5), regular reflection 
s 

may occur and the Whitham results would be invalid. 

Computer Solution for Forebody Blast Passage 

To validate the computer program of Whitham's method, conditions 

were established to verify his results for a 28.8° semi-apex angle cone. 

Then the calculations were extended to include results for a 13.347° 

semi-apex angle cone. The equations for these solutions were programm~d 

in FORTRAN IV on the IBM 1410 computer at Oklahoma State University. 

The detailed program is listed as Appendix D, Typical computer output 

for the two cones mentioned is illustrated in Tables I and II. The 

numerical integration of Whitham's first-order ordinary differential 

equations was accomplished by using Euler's Forward Integration Method, 

To solve the problem, a value of Mach number ratio, R1 , at the 

shock-shock, was selected, Then the shock-shock relations of equations 

(17) and (18) were solved to obtain the initial ray angle, 81 , and the 

shock-shock angle, X· These angles were taken at a point where x equals 

the angle variable, n ; that is, at n1 = x . Using the initial values 

of 81 and n1 at n1 = x , the linear expression of equation (15) was 

integrated numerically to obtain new values of ray angle, 8 , at successive 

positions. Simultaneously, equation (16) was integrated for corresponding 

values of Rat the successive positions. The iteration procedure was 

continued until 8 = n , at which time the common value was the cone 



semi-apex angle, e . 
c 

The position of the shock wave at any time was 

then found directly from equations (19) and (20), Whitham especially 

18 

notes that the coordinate positions, as well as the other variables taken 

with respect to n, are all independent of the shock Mach number, M • s 

For the integration of equations (15) ·and (16), Euler's method was 

selected for two reasons. First, the procedure is a·self-starting one; 

that is, it depends only on the initial conditions in order to compute 

the dependent variable approximation at the next increment of the inde-

pendent variable. Secondly, since no rapid changes in the slope of the 

shock pattern was expected, the method, despite its limited accuracy, 

was deemed satisfactory, 

Euler's method is based on the approximation that the gradient of 

the function at a specific point is the same as the gradient at the next 

succeeding point. Each succeeding step depends only on the values at 

the beginning of the step. Obviously, the increments must be taken very 

small in order to achieve good overall accuracy, In the computer solu-

tion, an increment of ,003 radians seemed to work well. Computer round-

off error, however, can limit the minimum usable value of this increment. 

Referring to the computer printout results shown in Tables I and II, 

the values enclosed in the printed box denote values which have been 

linearly averaged to obtain the cone-surface solution. For example, the 

enclosed values at the bottom of the ETXD and THXD columns denote the 

values which have been averaged to obtain the cone semi-apex angle, 8 
c 

The symbols ETXD and THXD, as well as all other symbols used in the computer 

program given in Appendix D, are defined in the computer nomenclature 

tabulation following the tables. 
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TABLE I 

COMPUTER CALCULATIONS FOR CONE OF 28.8 DEGREE SEMI-APEX ANGLE* 

ETD= 35.84954 
THD = 22.42310 
R = 1. 20000 

ETXD THXD RX DIS Tl DIST2 

35.84954 22. 42310 1.20000 1.00000 . 72253 
35.67765 · 22 .58502 1.20080 1.00000 • 72254 
35 .50577 22.74519 1.20158 1.00146 .71903 
35.33388 22.90379 1.20234 1.00293 . 71553 
35.16199 23.06099 1. 20306 1.00441 • 71205 
34.99010 23.21694 1. 20376 1.00589 .70858 
34.81822 23.37177 1.20444 1.00738 . 70511 
34.64633 23.52563 1.20509 1.00887 .70166 
34.47444 23.67862 1.20572 1.01037 .69821 
34.30255 23.83086 1.20633 1.01188 .69478 
34.13067 23.98245 1. 20692 1.01339 . 69136 
33.95878 24.13351 1. 20748 1.01491 .68794 
33.78689 24.28412 1.20803 1.01644 .68453 

•33.61501 24.43436· 1.20855 1.01797 • 68114 
33.44312 24.58434 1.20906 1.01951 .67775 
33.27123 24. 73413 1.20955 1.02106 .67437 
33.09934 24. 88381 ,' 1. 21002 1.02262 • 6 7100 
32.92746 25.03345 ).21047 1.02418 .66763 
32.75557 25.18314 1. 21091 1.02574 .66428 
32.58368 25.33294 1.21133 1.02732 .66093 
32.41179 25.48293 1. 21173 1.02890 .65759 
32.23991 25.63318 1. 21211 1.03049 .65426 
32.06802 25.78375 1. 21247 1.03208 .65094 
31.89613 25.93472 1.21282 1.03368 .64762 
31. 72424 26.08614 1. 21315 1.03529 .64431 
31.55236 26.23809 1. 21347 1.03691 .64101 
31.38047 26.39064 1. 21376 1.03853 . 63772 

*For Nomenclature See Page 23 
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TABLE I (Continued) 

31.20858 26.54385 1. 21404 1.04017 .63443 
31.03670 26.69779 1. 21431 1.04181 .63115 
30.86481 26.85252 1.21455 1;04345 .62788 
30.69292 27.00812 1.21478 1.04511 .62461 
30.52103 27.16465 1.21499 1.04677 .62135 
30.34915 27.32219 1. 21519 1.04845 .61810 
30.17726 27.48080 1. 21536 1. 05013 .61485 
30.00537 27.64057 1. 21552 1.05181 . 61161 
29.83348 27.80155 1. 21566 1.05351 .60837 
29.66160 27. 96384 1. 21578 1. 05522 .60515 
29. 48971 28.12751 1. 21588 1. 05693 .60192 
29.31782 28.29265 1. 21596 1. 05866 . 59871 
29.14593 28.45933 1. 21602 1. 06039 .59550 
28.97405 28.62764 1. 21607 1.06213 .59229 

Ll.Ll0216 28.79768 1.21609 ~89 1 · 58909 
3027 28. 96955 1. 21609 65 .58590 ---

Average = 28.7999° Average= Average= 
1.06477 .587495 
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TABLE II 

COMPUTER CALCULATIONS FOR CONE OF 13.347 DEGREE SEMI-APEX ANGLE 

ETD= 26.32423 
THD = 4.71434 
R = 1.03728 

ETXD THXD RX DIST! DIST2 

26.32423 4.71434 1.03728 1.00000 .49475 
26.15234 4.88251 1.03848 1.00000 .49475 
25.98046 5.03666 1.03957 1.00031 • 49118 
25.80857 5.18037 1.04056 1.00062 .48761 
25.63668 5.31595 1.04149 1.00094 .48406 
25. 46479 5.44501 1.04235 1.00127 .48052 
25.29291 5.56873 1.04317 1.00161 .47698 
25.12102 5.68800 1.04394 1.00195 .47347 
24.94913 5.80350 1.04468 1.00230 .46996 

. 24. 77724 5.91580 1.04539 1.00265 .46646 
24.60536 6.02535 1.04606 1.00301 .46297 
24.43347 6.13251 1.04672 1.00337 .45949 
24.26158 6.23759 1.04734 1.00374 .45602 
24.08970 6.34088 1.04795 1.00411 .45256 
23.91781 6.44259 1.04854 1.00449 . 44911 
23.74592 6.54292 1.04911 1.00488 .44567 
23.57403 6.64206 1.04967 1.00526 .44224 
23.40215 6.74016 1.05021 1.00566 .43882 
23.23026 6.83736 1.05074 1.00606 .43540 
23.05837 6.93378 1.05125 1.00646 .43200 
22.88648 7.02955 1.05175 1.00687 .42860 
22,. 71460 7.12476 1.05224 1.00728 .42521 
22.54271 7.21950 1.05272 1.00770 .42183 
22.37082 7. 31388 1.05319 1.00812 .41845 
22.19893 7.40797 1.05365 1.00854 .41509 
22.02705 7.50185 1.05409 1.00898 . 41173 
21.85516 7.59559 1.05453 1.00941 .40838 
21.68327 7.68926 1.05497 1.00985 .40504 
21. 51139 7.78294 1.05539 1.01030 .40170 
21.33950 7.87667 1.05580 1.01074 .39837 
21.16761 7.97052 1.05621 1.01120 .39505 
20.99572 8.06456 1.05661 1.01166 .39173 
20.82384 8.15883 1.05700 1.01212 .38843 
20.65195 8.25339 1.05738 1.01259 .38512 
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TABLE II (Continued) 

20.48006 8.34829 1.05776 1.01306 .38183 
20.30817 8.44360 1.05813 1.01353 .37854 
20.13629 8.53935 1.05850 1.01402 .37526 
19.96440 8.63561 1.05885 1.01450 .37198 
19.79251 8.73241 1.05921 1.01499 . 36871 
19.62062 8.82982 1.05955 1.01549 .3.6545 
19.44874 8.92789 1.05989 1.01599 .36219 
19.27685 9.02666 1.06022 1.01649 .35893 
19 .10496 9.12619 1.06055 1.01700 .35569 
18.93307 9.22653 1.06087 1.01752 .35244 
18. 76119 9.32772 1.06118 1.01804 . 34921 
18.58930 9.42984 1.06149 1.01857 .34597 
18.41741 9.53292 1.06179 1.01910 .34275 
18.24553 9.63703 1.-06208 1.01963 .33953 
18.07364 9.74221 1.06237 1.02017 .33631 
17.90175 9.84854 1.06265 1.02072 .33310 
17.72986 9.95606 1.06293 1.02127 .32989 
17.55798 10.06483 1.06320 1.02183 .32669 
17.38609 10.17493 1.06346 1.02239 .32349 
17.21420 10.28642 1.06371 1.02296 .32030 
17.04231 10.39936 1.06396 1.02353 .31711 
16.87043 10. 51382 1.06420 1.02411 .31393 
16.69854 10.62987 1.06444 1.02470 .31075 
16.52665 10.74759 1.06466 1.02529 .30757 
16.35476 10.86706 1.06488 1.02589 .30440 
16.18288 10.98835 1.06509 1.02650 .30123 
16.01099 11.11156 1.06530 1.02711 .29807 
15.83910 11. 23677 1.06549 1.02772 .29491 
15.66722 11.36407 1.06568 1.02835 .29175 
15.49533 11. 49357 1.06585 1.02898 .28859 
15.32344 11.62535 1.06602 1. 02962 .28544 
15.15155 11. 75954 1.06618 1.03027 .28230 
14.97967 11. 89624 1.06632 1.03092 .27916 
14.80778 12.03557 1.06646 1.03158 .27601 
14.63589 12.17767 1.06658 1.03225 . 27288 
14.46400 12.32265 1.06670 1.03292 .26974 
14. 29212 12.47067 · 1.06680 1.03361 .26661 
14.12023 12.62188 1.06688 1.03430 .26349 
13. 94834 12.77643 1.06696 1.03500 .26036 
13. 77645 . 12.93449 1.06701 1.03571 . 25724 
13.60457 13.09626 1.06706 1.03643 .25412 
13.43268 13. 26191 1.06708 1.03716 . 25100 
13. 26079 13.43166 1.06709 1.03790 .24788 

Average= 13.34676 Average=. Average= 
1.03753 .24944 



Symbols Used 
in 

Computer Program 

R 

p 

A 

B 

c 
TH 

ET 

THX 

ETX 

RX 

TANET 

TANTH 

E 

F 

TANDF 

G 

DTH 

DR 

ETD 

THD 

ETXD 

THXD 

DIS Tl 

DIST2 

COMPUTER NOMENCLATURE 

Rl = Ml/Ms 

n = 5.0743 

R 2 - 1 1 
1 - R-2n 

1 
1 + R 1-n 

1 
e1 = tan- 1 

Corresponding 

Definitions 

(initial value) 

1 + R -2n 

n - tan-1[:~::\f 1 

variable a (radians) 

variable n (radians) 

variable R along Mach shock 

tan n = sin n/cos n 

tan e =sine/cos e 

sin n • cos n 

1 + tan n • tan a 
tan(n-0) = sin(n-0)/cos(n-e) 

n tan2 (n-e)-1 

d0/dn = tan e/sin n cos n(l+tan n tan 0) • 
(n tan2 (n-e)-l) 

dR/dn = R tan(n-e) d0/dn 

n (degreeei) 

e (degrees 

variable n (degrees) 

variable e (degrees) 
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x/u8 t=R/cos e+sin S•tan n(Shock Position-X direction) 

r/u t=(x/u t)tan n(Shock Position-Y direction) s s . 
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Shock Tube Pressuie Tests 

An experimental check of the preceding analysis was provided 

under the sponsorship of Sandia Corporation, Albuquerque, New Mexico. 

For this exp.erimental program, a series of tests t.o measure conical 

model pressures were run at the six-foot shock tube facility of. the 

Air Force Weapons Laboratory (AFWL) at Kirtland Air Force Base. The 

resul.ts were published in Sandia Corporation Field Testing Data Reduc­

tion Reports, Series 172, and are as shown in Table !II. The experi­

mental data which resulted.from these tests included pressure-time 

histories of blast wave passage·as well.as blast wave photographs. 

Randall (25) has .provided an approximate ,analysis for the fore­

body pressure responses by using steady flow, second-order, supersonic 

cone theory~ His quasi-steady approach.to the transient flow re­

sulted in excellent predictions for the forebody pressure distribu-· 

tions for comparison with the experimental data. 

Test ·Facility 

The AFWL shock-tube test facility and installation arrangement 

for these tests a.re shown schematically as part of Figure L As seen 

in this figure, gauges.Pl and P2 were installed to record.a stagna­

tion and a static pressure measurement, respectively, near the tube 

exit. These gauges enabled the flow conditions for the tests tci .be 

defined. In order to: record the shock waye .displacement-time history 

in the shock tube, . three additional static pressure gauges·, synchro­

nized in time, were mounted in the combustion chamber and at two 

shock-tube stations; 



TABLE III 

TEST INFORMATION FOR PRESSURE TESTS 

Ambient 
Run.No. Angle of Attack Ambient Pressure Temperature 

172-1 0 1,24. 380 inches Hg 61°F 
172-2 5 24.288 58 
172-3 10 24.262 68 
172-4 20 24.390 62 
172-5 30 24.378 74 
172-6 40 24.540 62 
172-7 50 24.436 74 
172-8 0 24.490 56 
172-9 10 24.387 76 
172-10 40 24.370 60 

* Ambient Pressure was not available for this Run. A pressure of 
24.380 "Hg was estimated from standard atmosphere tables for the 
test altitude at Albuquerque. 
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The facility consists of short flanged-sections of six-foot diam­

eter pipe bolted togethe~ to form a tube approximately 246 feet long. 

The tube is open to the atmosphere at the downstream end. A shock 

wave is generated by the detonation of primacord at the upstream end 

of the tube. During this series of tests, the_maximum charge of 728 

feet of _400 grain/foot primacord (approximately 41 pounds) was loaded 

over the first 20 feet.of the tube. This produced peak shock over-, 

pressures of approximately 65 psi and a shock velocity of about 2800 

feet per second at the open end of the tube. Holt.and Crist(lO) de­

scribe this facility in greater detail.. 

Test Model 

The model tested consisted of a 13.347° half-angle cone with a 

spherical bas_e formed by two tangent arcs. Six forebody pressures 

and three base .pressures were recorded during the blast passage. The 

model_configuration with dimensions a~d pressure locations is shown· 

schematically in Figure 2. For the tests, the.model was rigidly at­

tached _to a sting and support structure which was bolted to rails in­

stalled in the concrete pad at.the tube exit. Model orientation was 

determined by a series of angle blocks installed betweeri the model and 

sting; which resulted.in discrete model pitch angles of O, 5, 10, 20, 

30, 40, and 50 degrees. Only th_e zero degree pitch angle is analyzed 

in this study; however, _Randall considered all pitch angles. Figure 3 

shows photographs -of the shock passing the cone. The .pressure-time 

history for the three transd1;1cers at the base.of the cone is presented 

in Figure 4~ 
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Fig. 3 Typi ca 1 .Test Photograph of Plane Shock Wave 
Passing Stationary Conical Model 
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Test Analysis and Results 

In a preceding section, Whitham's theory was analyzed with a view 

toward establishing the appropriate solution for the Phase I shock dif-

fraction problem. In this sec.tion, however, the experimental resu.lts 

of the shock tube tests are compared with Whitham's approximate·tech-

nique. 0 Although informa1:ion is specifically sought for the 13.347 

semi-apex angle cone, .application may be made to cones of various semi-

cone angles. 

The analysis presented herein is based·on a self-similar solution; 

that is, the size of·the shock interaction configuration changes with 

time but not its shape. Since the period of time taken for a blast ·wave·· 

to pass over the forebody is relatively small, quasi-steady state condi-

tions are assumed. This forms the basis for all calculations. The ini-

tial starting time, that is, time equals zero, occurs at the moment the 

blast wave intercepts the cone apex. The iriteractiori begins with the 

head-on collision of the blast wave at the cone apex. 

From the experimen1:al data, the .distance along the cone surface 

from pressure gauge P3 to pressure gauge P4 was 6.622 inches. The re..;; 

corded true .time.for the shock to travel the distance from gauges P2 

to P3 was determined to be 166 microseconds, ,.and .from .gauges P2 to P4 

was similarly recorded to be 337 microseconds; Hence, the true time for 

the shock wave to travers.e the distance along the conical surface from· 

gauges P3 to !>4 was 171 mi:cr-osectmd's. ·Theref·ore, a shock ve'locity, u , 
c 

of approximately 3227 feet per secOnd was produced over the conical· 

model surface. 



Although the ambient pressure was not available for this run 

(See Table III), the ambient temperature was recorded as 61° Fahren-

heit. At this temperature, the velocity of sound was calculated to 

be·ll18.9 feet per second. Since the shock Mach number is a function 

of the shock velocity and the speed of sound in the medium, the shock 

Mach number, M, at the conical surface was calculated to be·2.884. 
c 

This value is assumed constant along the surface of the cone for all 

shock positions during the forebody blast passage. 

Due to the manner in.which the various pressure gauges and re..;. 

cording instruments were located and mounted for the.experimental 

shock tube tests, minor .difficulties were encountered in determining 

the actual shock velocity and strength.before it intercepted the con-

ical model. For example~ the distance measurement between gauges 

used for the determination of the incident shock speed was not avail-

able in the data. Further, the quality of the test photographs (See 

Figure 3) did not permit exact locations of the shock wave to be de-

termined for all times. Therefore, in order to use the test program 

data, it became necessary to rely upon an assumption of similarity of 

the wave pattern for determination of the incident shock properties 

and the attendant flow phenomenon. 

To best illustrate this similarity relationship, consider the 

following sketch. In this representation the incident shock is as-

sumed to be located a distance, d , from the cone apex measured along s . 

the axis of symmetry. For simplicity, this distance was specified as 

unity. The Mach shock, M, is assumed to be located a distance, d . 
c c 

from the cone apex measured along the surface of the cone. Hence, 
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the sim:f,.larity relationship states that the _ratio of the shock Mach 

number, Mc, aloag·the .surface of the cone, and the incident shock 

Mach .number, Ms' is proportional to the ratio of .their r.espeetive 

distances measured from the cone.apex .. That is, 

M 
c 

M s 

d 
C· 

d 
s 

Other physical dimensic;ms .relating to the sketch may be listed in the · 

following manner: 

d = d /cos e = 1. 02776 s . c 

y d tan e = -0.23725 
s c 

x = y ·tan ec = 0.05629 

x·'=· x/cos ec = 0.05785 

d =-d + .x' == 1,08561 c 
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Inserting the appropriate values into the similarity relationship, 

the.incident shock Mach number, Ms,may be obtained as 2.657. This 

results in an experimental Mach number ratio, R(exp), of 1.0856. 

Using this experimentally calculated value of M and the calcu­
s 

lated value of the Mach number ratio, R, at the shock-shock (R is as-

sumed constant along the Mach shock), the Mach .number, M, at t.he 

shock-shock is obtained. From this value of M, using normal shock 

tables, the pressure, density, velocity, and other related properties 

across the shock may be determined. 

In the .report by Randall, the experimental incident shock wave 

velocity was estimated.to be about 2800 feet per second. It was 

pointed out, however; that a consistently accurate meastt!l'.'ement of the 

static pressure variation at the tube exit was extremely difficult, 

especially during passage of the shock front; The pressure response· 

at this station apparently included a slight vibration of the experi-, 

mental apparatus. As a result, it was necesi:;ary to use approximate 

values. Instrument response times undoubtedly contributed to these 

inaccuracies, at least to some degree. However, it is judged that 

Randall's value shows good correspondence with the experimental values 

obtained by the present analysis. 

In comparing the_results of thef;le experimental calculations with· 

that of Whitham, it is .seen that remarkable agreement ensues, espe-

cially for the relat:i,onship of R -at· the surface -of the cone. .From· the 

computer calculations of Whitham's theory as shown for point Bat the 

cone surface in Table IV, the value of R(theory) is 1.067. 
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TABLE IV 

CALCULATED MACH SHOCK PROPERTIES FOR CONE OF 13.347 DEGREE SEMI-APEX ANGLE 

Point 
RX DIS Tl DIST2 MX=Ml:!(RX) Py/px py/px No. u v 

y y 

A 1.03728 1.00000 .49475 2.75569 8.69304 3.61769 2.29557 .54463 
1 1.04672 1.00337 .45949 2. 78077 8.85505 3 .64377 2.32279 .55109 
2 1.04734 1.00374 .45602 2.78242 8.86575 3.64542 2.32457 .55151 
3 1.04795 1.00411 .45256 2.78404 8. 81°629 3.64704 2.32631 .55192 
3a 1.04854 1.00449 .44911 2.78561 8.88648 3.64861 2.32800 .55232 
4. 1.05409 1.00898 .41173 2.80035 8.98232 3.66435 2.34412 .55615 
5 1.05453 1.00941 .40838 2.80152 8.98991 3.66552 2.34538 .55645 
6 1. 05497 1.00985 .40504 · 2. 80269 8.99751 3.66669 2.34664 .55675 
6a 1. 05539 1.01030 .40170 2.80381 9.00476 3.66781 2.34784 .55703 
7 1.05989 1.01599 .36216 2.81576 9.08305 3.67976 2. 36072 .56009 
8 1. 06022 1.01649 .35893 2.81664 9.08883 3.68064 2.36167 .56031. 
9 1. 06055 1.01700 .35569 2.81751 9.09462 3.68151 2.36261 .56054 

10 1. 06087 1.01752 .35244 2.81836 9 .10023 3.68236 2.36353 .56075 
lOa 1.06118 1.01804 · . 34921 2.81919 9.10567 3.68319 2.36441 .56096 
11 1.06420 1. 02411 .31393 2. 82721 9.15862 3.69i21 2.37306 .56302 
12 1.06444 1.02470 .31075 2.82785 9.16283 3.69185 2.37375 .56318 
13 1.06466 1. 02529 .30757 2.82843 9.16668 3.69243 2.37438 .56333 
14 1.06488 1. 02589 .30440 2.82902 9.17054 3.69302 2.37501 .56348 
15 1.06509 1.02650 .30123 2.82958 9.17422 3.69358 2.37561 .56362 
16 1.06680 1.03361 .26661 2.83412 9.20421 3.69812 2.38051 .56478 
17 1.06688 1.03430 .26349 2.83433 9.20561 3.69833 2.38074 .56484 
18 1.06696 1.03500 .26036 2.83458 9.20723 3.69858 2. 38101 .56490 
19 1.06701 1.03571 . 25724 2.83468 9.20789 3.69868 2.38111 .56493 
20 1. 06 706 1. 03643 .25412 2.83481 9. 20877 3.69881 2.38126 .56496 

B 1. 06 708 1.03753 .24944 2.83488 9.20920 3.69888 2 .38133 .56498 

w 
V1 
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It can be seen that the expe:dmental value of R is slightly 

larger than the value predicted by theory. However, agreement exists 

within 1.7 percent between Whitham's theoretical calculations and the 

experimental results as deduced above. 

According to Whitham, the Mach shock is almost a straight line, 

except for very small semi-apex angles. Actually, a slight curvature 

occurs which tends in the manner shown in Figures 5 and 6. These fig-

ures iltust~ate the calculated position and shape of the shock wave 

. obtained from the computer output for two specific cones. In addition 

0 to the 13.347 semi-apex angle cone, several other semi-cone angles, 

along with.their corresponding Mach number ratios, were considered. 

Several of the shock configurations obtained from.these ;calculations 

were plotted and are presented in Figure 7. Note that in this figure 

an expended scale along the abscissa was used to facilitate a compari-

son of the variations in shock curvature for the various cones and 

Mach number ratios. In Figure 8, plots of various Mach number ratios,. 

R, versus shock--shock angle, X , semi-cone angle, e c, and ray angle, e , 

are shown. These curves.illustrate the relative relationships pre-

dieted by the theory for the variables indicated. 

To de~ermine the thermodynamic flow properties in the uniform 
! 

flow behinp the moving shock, a more complex procedure was employed.· 

Since the plast is considered to be moving relative to a fixed coor~ 

dinate system, the flow.conditions are transient. Iri this physical 

plane, the total energy is not constant across the shock; therefore 

it becomes convenient to treat such a problem using a transformation 

of coordinates to a new transform plane having shock-fixed coordinates. 
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Then, after finding the desired flow properties, re-transform :i~\i.n'ade'0'to ... ~\~: .. ,•.·. ·· . .:; < . 

the physical plane. 

The calculations used to determine the Mach number of the incident 

shock implied a stationary shock in the transform plane. In this trans-

form plane the blast wave is considered to be a normal shock wave. As 

such, the Rankine-Hugoniot relations were used to determine the unknown 

physical quantities in the flow field. For purposes of this analysis, 

the quantities in the transform plane are designated by a "prime" sym-

bol, and quantities in the physical plane are designated without a 

"prime." Of specific note in this transformation, the stream properties 

remain invariant but stagnation properties change. 

If the physical state of the quantities in front of the shock are 

denoted with an x subscript, the shock with an s · subscript, and 

those behind th.e shock denoted with a y subscript, the following re-

lationships are established •. 

Physical Plane (Moving ·Shock) 

u s 
-+--

u u = 0 
y x 

M M = 0 
y x 

Py p = x pox 

Py p = x Pox 

Pay T = T x ox 
T y 
T oy 

T +r oy o:,c: 

Transform Plane . (Stationary Shock) 

+-

u '= u -u 
y s ') 

M I 

y 
p '= p 

y y 

Poy 
I 

T '= T y y 
T '= T oy ox 

u '•O s 

+-

u , ... u 
x s 
M ' x 

PX '= Px 
PX 

I.,. 
PX 

Pox 
I 

T ., = T x x 
T ox 
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The·arrows indicate flow direction relative to the respective 

coordinate systems. Note that the relationships in the transform 

plane are·derived by superimposing an identical flow condition moving 

in a direction opposite to that in the physical plane. From the ac-

tual calculations; as shown in Appendix E, the flow Mach number be-

hind the incident shock wave was 1.25. 

0 For the .13.347 semi-apex angle cone, the property values, ob-

tained by using this technique, are tabulated in Table IV for 25 

selected .Mach numbers at points along .. the Mach shock. In this table, 

point A identifies the point at the intersection of.the incident 

shock and the Mach shock. Point B identifies the point where the 

Mach shock intersects the surface of the cone., The remaining 23 

points correspond to selected intermediate shock Mach numbers along 

the Mach shock which were obtained from the iterative computer calcu-

lations. The relative locations of these points may be seen in Figure 9. 
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CHAPTER III 

BLAST-BASE REGION INTERACTION: RUSANOV'S METHOD 

When solving an inviscid transient flow problem, such as encountered 

in this Phase II analysis, the solution leads to many mathematical com­

plexities, The systems of partial differential equations which describe 

the complicated flow field are non-linear and cannot be integrated in 

closed form, Consequently, approximate me.thods of solution must be utilized. 

One of the most common and useful methods employed in the approximate inte­

gration of equations of this type, and which is of concern here, involves 

replacing the terms of the partial differential equations by their equiva­

lent numerical relationships. Although many·techniques have been devised 

to obtain such solutions, some of which are extremely ingenious from a 

practical point of view, the task of solving these equations still remains 

difficult. 

Many authors have made significant contributions relating to 

approaches to the problem, Von Newmann and Richtmyer (31), for example, 

established an analysis for the stability of numerical calculations. 

In addition, they found that the inherent instabilities of these calcu­

lations are nearly eliminated if "artificial viscosity" terms are intro­

duced. Successively, Lax·(l2), through modification of the time deriva­

tive in the finite difference technique, showed that these equations re­

main stable even without .these pseudo-viscosity terms. 
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In contrast to Lax, Ludloff and Friedman (19) pointed out the ad­

vantages of leaving these equations in their original time-dependent 

form, that is, without modifying the time derivatives. To this end, 

they suggested solving these equations, whenever possible, not by re­

ducing the. number of independent variables through some transformation 

process, but by explicitly taking into account the non-steadiness of 

the problem. Later, Ludloff and Friedman formulated a two-dimensional 

solution to solve the problem of the reflection and diffraction of 

strong shocks around corners of arbitrary finite angles. They devised 

two methods, both of which involved finite difference schemes applicable 

to many non-linear problems. 

Payne (24) used the finite difference technique of Lax to determine 

the flow behind converging cylindrical shocks over a large range of Mach 

numbers. In particular, his description of the increase in strength of 

converging shocks was shown to be in excellent agreement with the earlier 

studies of Chisnell (4), Payne's method introduced an artificial diffusion 

term which caused the pressure at the axis of symmetry to remain finite. 

However, a reflected diverging shock was obtained. Later, Chisnell ob­

tained a higher order of approximation to this same problem to include 

re-reflected waves in his analysis. 

Rusanov (27), in modifying the concepts of Lax's one-dimensional 

analysis, included solutions fori both plane and axi-symmetric flows. 

His finite difference scheme, which is of special interest here, was 

applied successfully to the shock diffraction problem past the base of 

a cylinder. The scheme is constructed in such a way that discontinuities, 
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such as those caused by moving shock waves, can be included in the calcu­

lations. The discontinuities are actually considered as·steep gradients 

in the physical parameters.· Thus, the ·method permits calculations to 

· be performed "throughll discontinuities in the flow. 

Rusanov's method ·utilizes the Eulerian system of coordinates which 

focuses attention on a·fixed point in space. It specifies, at each 

instant of .time, the :Physical parameters of the fluid particle which 

happens to occupy that point at that specific instant of time. Thus, 

the physical properties become functions of both time and location. 

For the Phase II solution of this problem, that is, the interaction 

of the blast·wave with the base region of a conical body, Rusanov's finite 

difference technique was utilized. An extension of his·technique was 

accomplished to obtain.the transient flow· properties and the shock 

patterns from the.time of blast-base _interaction to the quasi-steady 

flow condition. Application of th.ese conc~pts, as shown latet: in this 

chapter, yields excellent, representations of the physical flow phenomena. 

Method Analysis: Phase II 

-To describe the motion of.the non-steady compressible flow as exist­

ing in this pr9blem; an ideal gas with adiabatic index· y is assumed. 

The non-,.linear partial-differential equations of motion are written in 

divergent form; that is, the coefficients ·of the derivatives are all 

equal to unity. This form of the equations ensures that th,e conservation 

laws are satisfied; hence, the unknown functions depend on the variables 

describing the state of the physical system. 
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The governing equations, in their divergent -forms, are of the form 

af 
at 

+ oFX + aFY + IJI = O 
ax ay 

This expression represents-the system of conservation equations ·which 

is to be satisfied numerically in 01:der.to solve for the various com-

(21) 

h . x. y d ·ponents ·of t e vectors f, -F ·, F , an IJI • The components of these four 

vectors ·are 

p r s· p 

r p+ru SU r 
Fx FY vv 

f = = = ljl =- _, s rv p+su y s 

e ·- (e+p)u (e+p)v e+p 

where v= 1 whert there. is a-x-ial symmetry •. In complete· form, the con-

servation equations may be written.as: 

Conservation of mass: 

l£. + o(pu) + a(pv) + ~ = 0 
at. ax ay y 

Conservation of two momentum components: 

or a(p+ru) a(su) + .Y.Y!. = o 
at + ax + ay y 

as + o.(tv) + a (p+sv) + ~ = 0 
at ak ay y 

Conservation of energy: 

l=_ + a{ (e+p) u} + o { (e+p)v-} + vv(e+p) =: O 
at ax ay y 

where r, s, and e are·defined as 

- - p (u2+v2) 
r = pu, s ·= pv, a.p.d e - - 2 +-L 

y-,1 

(x-direction) 

(y--direction) · 

(22) 

(23) 

(24) 

(25) 

(26) 



If the vector ¢ is introduced such that 

,). 
'i' = 

u 

v 

p 

p 

, with w = lu2+ v21 and c = ~ 

then the components of ¢ may be uniquely expressed in terms of the 

vector components of f as 

r s , and p (y-1) [· - r2+ 8 2 J u=- ' v .= - = p p 2p 
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(27) 

(28) 

The dependence of the variables of ¢ on the various parameters of the 

problem is of special intetes t in this solution, Therefore,. it is con-

venient to consider the equations in non-dimensional form. The dimen-

sionalization technique used to s~tisfy this requirement is fully des-

cribed in a later section of this chapter. 

Essentially, the numerical solution for equations (22) to (25} con-

sists of obtaining the numerical value of each unknown integral at 

pivotal points spaced in the .<x,y,t) plane. A numerical network of 

pivotal points is established such that llx=h1, Ay=h2, and lit= T. 

Designating 

h = fh-;z+h2 2 ' , where h 1 = h cos X and 

h2 = h sin X 

and 

k.=. T/h. ' where k1 k sin x and 
1 1 

k2 k cos x 

then it follows that 

I~ 
lk12+ 

I 

k k22 = T (29) 
h1h2 
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This expression is used to obtain the incremental time values for 

successive time planes of the entire flow region. 

In the ·numerical analysis, the subscript (m, .Q.) is used to denote · 

the pivotal point at which the derivative is to be evaluated. The 

subscripts (m+l, .Q.) and ··(m-1, .Q.) denote the pivotal points to the right 

and to the left of (m, .Q.), respectively. Similarly, the subscripts (m, Hl) 

and (m,t-1) denote the pivotal points above and below (m,t), respectively. 

The superscript values denote the aggregate of pivotal points to be evalu-

ated·for a specific time plane. For example, the superscripts n and 

n+l denote the nth and the (n+l)th time planes, respectively. 

The value of a quantity a at an interpolation point with coordinates 

n (mh1,.Q,hz,n,) will be denoted by a n • Similarly, the value of a quantity 
m, X, 

(3 at an interpolation point with the same coordinates will be denoted 

n by (3 n' These quantities are defined as 
m, X, 

an = wk(w+c)n n sin2 X 
m,.Q. m,X, 

and 
Sn = wk(w+c)n n cos 2 X m,.Q. m,X, 

The parameter w is related to k 
n 

and (w+c) n by the stability con-
m' X, 

dition given in Reference 27 as 

[ n J 2 n k 2 (w+c) n ,;, wk(w+c) · 0 < 
m., X, m, X, 1 (30) 

which must be satisfied for all (m,!l). The quantity 

n n 
a k(w+c) n m,.Q. m,X, 

is the Courant number at the point in question. 



Designating 

n n a = max a 
0 0 m, fl m,x, 

then stability conqition, equation (30), is satisfied if for all n 

and 
n 1 a <w< o n 

a 
0 

The value of a may be established for all time planes before 
0 
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(31) 

the calculations are started. Then, once the calculations have started, 

the value of k for each time plane may be determined from the equation 

Then, the value of 

n 
= a /max(w+c) 0 

0 0 m, x, 

n 
T 

m,x, 

for each time plane can be calculated from 

equation (29), In computer computations, the value of kn for each 

(32) 

time plane may be automatically selected. This, Rusanov has indicated, 

is then sufficient for the constant parameters of the scheme, a and w 
0 

to satisfy the stability criteria of equation (31). 

To evaluate the space derivatives of equation (21), it is most con-

venient to choose the central difference scheme involving pivotal points 

symmetrically located with respect to the central (m,fl) point. These 

may be obtained by a Taylor's series expansion of the unknown function 

about the pivotal point. The Taylor's series expansion of Fx(x+~x) 

about x is given by 

x F · (x+~x) x x (~x) 2 x 
F (x) + (~x)Fx(x) + 2 ! Fxx(x) +, , , · 

oo n 
l <~~) 
O n. n= 

x 
F(n)(x) 



where F(n)(x) stands for dnFx/dxn, Applying this equation to the 

expansions at (x+6x) and at (x-6x) for the existing grid: 

+ ..... 

Fx = Fx ( ) x (6x) 2 Fx 
m-1,t m,t- 6x Fx(m,t)+ 2! xx(m,t) - ..... 

Neglecting higher order terms, an approximate expression for F:(m,t) 

is immediately obtained by subtraction as 
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Therefore, the approximate expression for the first derivative of the 

~erm oFx/ax in equation (21)'is 

1 =---2(6x) [ Fx 
m+l ,t 

(33) 

A Taylor's series expansion of Fy(y+6y) about y will yield a 

similar expression for the term aFY/ay in equation (21), The resulting 

expression is easily shown to be 

1 (34) 2(6y) 

Thus, equations (33) and (34) are obtained which satisfy the general 

space-derivative approximations for the numerical scheme. 

For the general time-derivative approximation, Rusanov introduced 

an averaging technique similar to the one proposed by Lax. However, 

his technique is somewhat more complicated in that it "weighs" the 

pivotal values according to the respective distances of the neighboring 
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points. Hence, the technique combines both forward and central differ-

ences in addition to "dissipative" coefficients. The difference scheme 

for the time-derivative, which involves the general dependent variable 

f, may be written explicitly as 

(35) 

where the "dissipative" coefficients a;re defined as 

x 
an [f - f ~n <Pm+~,JI, = 
m+~,JI. m+l ,JI. m,JI. 

<PX 
m-~,JI. 

= n [f f Jn am-~,JI. m,JI.- m-1,JI. _ 

<Py 
m,JI.+~ = f3 f - f [ Qn m, JI.+~. m,-Jl.+l m, JI, 

<Py [ Jn .. f3 1 f - f m,Jl-~ m,Jl-~ m,JI. m,t-1 

Furthermore, the following definitions apply: 

a = - a + a n l[ J'n m+~,Jl 2 m+l,Jl m,Jl 

a = - a + a n l[ ]n 
m-~,JI. 2 m,Jl m-1,Jl 

Sn = .!f s . + 13 1 n 
m;JI.+~ 2Lm,Jl+l m,:J 

(3. 1= ._. f3 + f3 l~ Jn m,JI.-~ 2 m,Jl m,Jl.-1 

Combining the finite difference schemes of equations (33), (34), 

and (35), and substituting them for the·ir corresponding differential 

terms in equation (21), the total equation becomes 

1 [ fn+ 1 _ fn _ 1 ~x . _ q,x + <Py _ <Py l } 
~t L m,Jl m,JI. 2 L m+~,Jl · m-~,Jl m,Jl+~ m,JI.-~ 

+ 1 ~x _ Fx l n + 1 [FY _ FY l n + 
2(~x) L"m+l,JI. m-1,:J 2(~y) m,Jl+l m,Jl-~ 

'¥n = 0 
m,Jl 



Multiplying through by At , and solving for fn+l yields 
m, R. 

q,n . _ l\ t rFx _ Fx l n _ l\ t 
m,R. 2(l\x) Lm+l,R. m-1,:J 2(l\x) 

a;Y l 
m, R.-~ 

Since l\t/Ax = ,/h 1 = k 1 and At/Ay = ,/h2= k2 , this equation may be 

written in its final form as 
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(36) 

Thus, a finite difference equation is established which is used as 

the general flow field equation for the problem. This expression is 

applied to the conservation equations, with p, r, s, and e as the un-

known variables, in the numerical iteration. 

Boundary Conditions 

Many of the difficulties encountered in solving a transient flow 

field problem occur, not.only in solving the conservation equations, but 

in satisfying the boundary conditions. The boundary conditions are 

established by the physical geometry of the problem and must satisfy 

all conservation requirements. Consequently, they must be handled 

discretely. 

In Rusanov's analysis, the flow is considered to take place in 

either finite or infinite regions bounded by motionless rigid walls. 

Since flow discontinuities are not considered in the computations, the 
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boundaries •re restricted to the axis of symmetry and the solid walls. 

The walls are all considered to be rectilinear and pass through the 

points of the net either parallel to the coordinate axes or along the 

diagonals of the matrix. Thus, the equations for calculating 

will differ, depending on whether the pivotal points are inside the 

flow region or on its boundary. Equation (36) has been established for 

all interior flow conditions; hence, modification of this equation is 

required to establish valid boundary conditions. 

To apply boundary conditions to the finite difference scheme of 

,equation (36), the row of pivotal points lying parallel to the x-axis was 

considered, where the region of flow is above the wall, that is, at a 

larger y value than the wall. The boundary equation, written explicitly, 

is 

fn+l:b fn _ T '¥n _ ~ f";,x _ r" l n k IFY J n 
m,i m,R. m,R. 2 L1 m+l,R. m-1,~ - 2 Lm,R.+1 

+ ..!.. 
2 

Note that in this scheme, only the influence of neighboring points is 

considered. Although the lattice of points is assumed to be extended 

(37) 

one row below the boundary wall, no variables are computed there. Thus, 

the effect of this row is 

Following this same procedure, if the region of flow is below (at 

a smaller y than) the wall, the boundary equation then becomes 

k G n n 1 _x 
f ,-T1f -- l'"' -m,R. m,R. 2 m+l,R. 

+ ll<l>X _ <t>X l 
2 L m+~, R. m-~, :J (38) 
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From the physical boundary conditions, the value of the third component 

of the vector fn+l that is, 
m' 9, ' 

(pv)::! ' is equal to zero and does not 

need to be calculated. However, the remaining three components are 

required. 

For pivotal points lying on a wall parallel to the y-axis, where 

the region of flow is to the right of the wall, the boundary equation 

is written explicitly as 

fn+l= [ -i k fn n Fx n 2 [FY FY J n 
m' 9, m, 9, 

- T '±'m,9.- kl m+l,~ 2 m, 9.+ 1- m, 9.-1 

+ .l 
2 [ i;pY 

m,H~- 'd i;pY 
m, fl-~ 

(39) 

Similarly, for flow to the left of the wall the boundary equation 

becomes 

(40) 

In equations (39) and (40), the value of the second component of the 

vector that is, (' ) n+l · 1 d d d pu O , is equa to zero an oes not nee to 
m, !<, 

be calculated, 

The pivotal points which lie on the axis of symmetry, however, must 

be handled in a slightly different manner. As before, the lattice of 

points is extended one row below the axis of symmetry but no variables 

are computed there, Instead, the variables in this row are set equal. 

to their calculated values one row above the axis except the signs of 

the vertical velocity terms are reversed, The purpose of this change 
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is to allow for the convergence of the moving shock wave at the axis. 

The finite difference equation may therefore be written explicitly in 

the form 

kl 

[ J ~~J" fn+l fn ;n Fx Fx n - T m, o m,o m,o 2 _ m+ 1 , o m-1 , o - k2 

l +l q,x q,x + 2 q,Y 
2 .·-m+~,o- m-~,o m ~ 

' 2 

where the quantity v/y in ;n is taken at the point (m,1), 
m, o 

physical considerations, note also that on the axis of symmetry 

v = lE. 
8y 

c)p dU ay = ay = 0, 

From 

Thus, boundary equations for the solid walls and the axis of 

symmetry of the flow problem are established. 

( 41) 

Since there is a series of pivotal points which lie on the surface 

of the cone and which pass along the diagonal of the points of the 

matrix, the equation for fn+~ must be obtained by rotating the (x,y) 
m' x, 

coordinates through an angle x • Equation (21) is transformed to 

coordinates orthogonal to the wall and then replaced by the difference 

equations. Explicitly, the intermediate vector 

written as 

fn _ 1 ;n 
m,!l m,!l 

X ,~x 
_ m+l, !l+l-

cos 2 X 
+-·-.-

2 

~fn+l is then 
m~!l 

Fx l n 
m-1, !l-ij 

(42) 
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The quantities on the right side of the equation, with the"' sign, are 

computed in the same manner as the corresponding quantities without this 

sign. However, u and v are replaced everywhere by 

u = u cos X + v sin X and v v cos X - u sin X 

The vector fn+l is obtained, after 
m,JI, 

fn+l has been calculated, from 
m, JI, 

the relations . 

where 

n+l 
Pm JI, 

' 
n+l e m,JI, 

-n+l 
s = 0 m, Q, 

= 

-n+l. n+l -n+l 
Pm JI, r. JI, = r cos x 

' m, m,JI, 

n+l n+l -n+l e s = r sin x m,JI, m,t m, JI, 

is a boundary condition. 

In order to use the numerical boundary equations thus far proposed, 

the flow matrix must include a large number of points. This is to preclude 

reflected boundary influences from propagating back into the flow field 

during the number of time increments used in the calculations. Physically, 

these propagations may be overcome by locating the boundaries at infinity. 

Numerically, however, this is hardly possible due to the limited memory 

capacities of present computers. Therefore, some means to allow the 

shock to "pass out through" the exterior boundaries must be devised. In 

the calculations.for this analysis, several procedures were attempted, 

none of which were ideal. One of these methods, however, proved satis-

factory and was used throughout. For the upper boundary, conditions were 

specified which assigned the pivotal points the same values which were 

calculated in the row of points just below the boundary during the pre-

vious time plane. This created an overlapping effect which tended to 
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prevent unwanted reflections from affecting the flow region of interest. 

At the left upstream boundary of the flow matrix, all the variables 

were set equal to their initial values. At the right boundary, a scheme 

similar to that. used for the upper boundary was devised. The right end 

downstream column of pivotal points, designated as (m,Q.) points in the 

(n+l)th time plane, were replaced by the computed values of the (m-1,Q.) 

column obtained from the nth time plane. Thus, the shock wave was·allowed 

to pass "through" the boundary. It must be acknowledged, however, that 

. although this method produced results which were independent of tQe ex-

terior boundaries, some room for improvement possibly exists. For the 

calculations in this problem, no better method could be devised. 

Initial Shock Wave Representation 

In Chapter +I, Whitham's solution was shown to yield shock waves 

similar to those obtained from the experimental shock tube tests. Both 

of these analyses were performed to determine flow conditions which could 

be made compatible to the initial requirements of Rusanov's solution, 

the object being to ensure that similar flow conditions prevail during 

all phases of the problem, 

As initial conditions for the Phase II cone solution, the shock wave 

configuration obtained from Whitham's solution was utilized. Figure (9) 

illustrates the·technique used to adapt this shock to the network of 

points representing the Phase II flow matrix, In this figure, the dotted 

curve denotes the moving shock obtained from Whitham's solution, for which 

the variations in_shock Mach number are known. Hence, the properties 
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behind the shock may be determined easily (See Appendix E}, Property 

values for pre-selected points, labeled A through B in the figure, 

are tabulated in Table II. 

To relate these known properties to the numerical network of Phase II, 

ray lines were drawn through the grid points from the cone apex to inter-

sect the shock. The grid points were then assigned the same property 

values behind the shock as those computed for the pre~selected points. 

At points where a ray line did not exactly intersect a known point, the 

known values for points on bot.h sides of the ray line were averaged 

linearly, This averaged value was then assigned to the corresponding 

_.,# 

grid point. Points which were averaged in this manni:;.t''have the letter 

"a" following the number, 

The Phase II shock wave was approximated through the network of 

points which most closely corresponded to the Phase I shock. This is 

shown as the dark solid line in the figure. Note that this shock is now 

assumed to possess the same property values as possessed by the original 

shock, but at slightly different locations. Thus Whitham's shock con-

figuration is adapted for the initial conditions in the Phase II solution, 

For later times, the flow field near the cone is transient, approach-

ing the steady-state conical-shock field. To determine the extent of 

these transient changes behind the shock, the velocity profile obtained 

from Whitham's calculations was compared to one obtained from a steady-

state solution having identical free stream flow properties. In Whitham's 

solution, the Mach number ratio, M /M , where M = 1. 25, was calculated 
C 00 00 

to be L067. This corresponds to a velocity ratio, u /u , of approximately c 00 ' 



60 

1.05. Hence, it can be seen that the velocity tends to increase as the 

cone surface is approached. In contrast to this, the steady-state 

solution yields a Mach number ratio, M /M, of 0,865, which corresponds c 00 

to a velocity ratio, u /u, of 0.893. Thus, this velocity profile tends c 00 

to show a decreasing velocity near the cone surface. Further, the steady-

6 state shock angle would be 55.75 compared to the shock-shock angle of 

26,32°, The tihie µistory of this transient is not known without a com-,:, 

plete numerical computation of the forebody field. An exploratory work 

on this problem will be described later in this chapter. 

This transient just described is the transition from a wave-induced 

flow to the steady-state condition for a continuing, steady, flow field 

following the shock. A second transient is superimposed upon this one. 

Flow following shocks cannot continue to be steady, but must eventually 

decay. Thus, the decay rate behind the shock influences the conditions 

of the flow past the base. Again, this can only be determined from a 

numerical solution to the forebody field. 

For the present computation, these two transients were assumed to 

be changing very slowly, so that the flow properties at the left side 

of the computed field (points 1, 4, 7, 11, and 16 in Figure 9) were held 

constant. After a forebody solution becomes available, the values of the 

various fluid properties at these points can·be inserted as boundary con-

ditions at each time plane with no other change in the program. It is 

believed that the influence of such changes would be small for the problem 

which was treated in this study, but for high blast strengths or thin 

blast waves, i. e, , rapidly decaying blasts, this could alter the results 

significantly, 
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To accommodate the moving shock as adapted for Rusanov's solution, 

it is represented, not as a finite discontinuity, but as a steep con­

tinuous function of the physical flow properties ahead of and behind the 

shock. Then, after the difference equations have been applied over the 

entire flow region, the shock wave is detected by rapid changes in the 

gradients of the physical parameters. This concept lends itself to 

a new approachwherein the shock wave·is initially defined over two 

mesh thicknesses. Details of this approach, including the assumptions 

made, are discussed in Appendix G. 

Dimensionalization Technique 

Before discussing the method used to dimensionalize the quantitie~ 

in the computer solution, two important considerations must be recalled. 

First, the gas properties were initially made dimensionless with respect 

to the gas properties in front of the shock wave. Second, the velocities 

were made dimensionless with respect to the sonic velocity in front of 

the shock. Thus, it can be logic.ally reasoned that the procedure for 

dimensionalizing. these quantities must be i:nade with respect to the refer­

ence sonic velocity, that is, the sonic velocity in front of the shock. 

In the following analysis, consider the "unprimed" conditions to be 

the initial dimensionless quantities. Similarly, consider the 11 primed11 

conditions to be the final quantities having the proper physical dimen­

sions. In terms of x and y , the general system may be represented 

as in the following sketch. 
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Further, it should be noted that the magnitude of the velocity ·vector 

may be expressed by the relationship 

.w' "'w /
1;;--·y 
p I 

x 

When actual calculations for the general system represented above 

are performed, the system in physical dimensions may be represented by 

the following sketch. 

u ' s 
3080 ft/sec 

' 18,390 lbf/ft 
2 I 2117 lb f/ft 

2 
Py = PX -

3 ~ 

Py ' 0.00859 slugs/ft PX 
I 0.002378 slugs/fY' 

T ' 1246°R (I) 
T I 519°R i> y <:ti x 

:,: 
c ' 1730 ft/sec c I 1116 ft/sec 

y x 
~ 

' 2165 ft/sec u ' 0 u 0 u 
y ,.c: x 

(I] 

v ' - 514 ft/sec v I - 0 
y x 
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The physical conditions shown in the above sketch actually represent the 

flow conditions determined for Point A indicated in Table IV and shown 

in Figure 9. 

The problem involved in the dimensionalization of the time values 

used in the computer solution is somewhat more complex. However, the 

technique follows a very similar development to the one just developed 

except that a scaling parameter has been included. The scaling effect 

was introduced as a result of using rectangular mesh reiationships con-

sistent with the stability criteria required for Rusanov's time equation. 

The mesh relationship introduced into the computer solution required 

that the relationship between the h1 increment along the axis of symmetry 

and the h 2 increment along the y direction be a function of the cone 

semi-apex angle 8 That is, 
c 

tan 8 = tan 13.347° 
c 

Dividing the numerator and the denominator by 1/20, the ratio is pre-

(43) 

served and h1 equals 0.0119 and h2 equals 0.05. These values of h1 and 

h2 were programmed into the computer solution. Since 6 mesh points (5 

intervals) were considered along the cone base radius, h2 may further 

be defined as 

(44) 

This relationship implies, by substitutibn of the h2 value, that the 

cone base radius, ~·, is equal to a dimensionless value of O. 25, There­

fore, to reference the base radius to a dimensionless value of unity, 

the value obtained above must be amplified by a factor of 4. 



Since the time,increment expression used in the computer solution 

is a function of mesh spacing and of the dimensionless value of k where 

k = cr / (w+c)max' it may be expressed as. 

The value of cr 0 . has previously been defined as a constant resulting 

from stability considerations and is equal tq 0.5. Note also that the 

(45) 

overall time t, for any specific ti,me pl'ane .printout, equals the summa-

tion of all• tittie increments , ; . that is, t .= E, 

Substituting expreesions (43) and (44) into equation (45), the 

total dimensionless time for any time plane becomes 

~ 
{-}2tan 8 k 1\ tan e c 

t l k 
5 ' c l (46) = = 

{~}j 2 5 Jtan2 sc+l -· - tan 8 +1 5 . c 

By .inserting the value of tan 8 and the expression for k, this equation 
c 

further reduces to 

t = l 
0.0231 1\ 
(w+c) · 

max 
(47) 

The solution of this expression is actually the dimensionless time value 

obtained froni the, computer solution. printout. 

If the dimensional values.of 1\, w, and c, that is; 1\', w'., and 

c', are substituted into equation (47), the dimensionless time· may be. 

expressed in teri;ns of dimensional terms as. 

t 
, 0.0231(1\' /4)ftx .. ' 
l (w'+c') · p · max. x 

(48) 
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To obtain a time reference factor necessary for conversion from 

dimensionless times to corresponding dimensional times, consider the 

following relationship. 

t 1 C I 
x 

Solvi.ng this general relationship for the dimensional time factor 

yields 

t' = 
c x . c'. t 
x 

Specifically applied to the cone with a base radius of 4 inches, the 

dimensional time factor becomes 

t' = (0.333)ft(l.1832) •t 
0,25(1116)ft/sec 

0,001415 t seconds 

-6 This expression yields a time conversion factor of 1415 X 10· whicTu 

(49) 

(50) 

(51) 

provides a simple relationship between the dimensionless times·obtained 

from the computer solution and the corresponding real times in physical 

units. For convenience, and as an aid to rapid conversion, time calcu-

lations for selected time planes from the computer solution were per-

formed. These are listed in Table V, In addition, a plot of time plane 

versus dimensionless time from the computer solution was accomplished. 

This plot, depicting the linear relationship between the two variables 

in the solution, is shown.as Figure 10, 



TIME PLANE 

1 
16 
36 
66* * 
86 

106 
126ic* 
146 
166 
186 
196** 
240 
260** 
280 
320** 
340 
360 
380** 
400 
420 
440** 

TABLE V 

SELECTED TIME PLANES WITH CORRESPONDING 
TIME CALCULATIONS FROM COMPUTER SOLUTION 

TIME 
(Dimensionless) 

.001341 

.021508 

.048094 

.087029 

.112612 

.138041 

.162121 

.187439 

.212809 

.238340 

.251201 

.308301 

.334114 

.359976 

.412024 

.438227 

.464440 

.490675 

.516945 

.543262 

.569626 

* Note time reference factor equals 0,001415, that is, 

t' (seconds) =0. 001415.,. t (dimensionless) 

TIME* 
(Microseconds) 

1.898417 
30.434840 
68.053936 

123.146872 
159.347295 
195.328807 
229.401299 
265.226637 
301.125357 
337.251807 
355.449797 
436.245943 
472. 7'72427 
509.367285 
583,014681 
620.091417 
657.183746 
694,305719 
731. 478406 
768.716621 
806.021214 

** Time planes plotted for pressure distribution, velocity distribu- . 
tion, and flow direction, 
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Computer Solution for Blast-Base Interaction 

In nrder to illustrate the feasibility of solving the blast-base 

interaction problem using the finite difference technique proposed by 

Rusanov, a program was written in FORTRAN IV, with format, for solution 

on the IBM 1410 computer. The results of this program were used to val­

idate Rusanov's calculations for a moving shock past the base of a 

cylinder. Then, the finite difference equations were modified for adap­

tion to the blast-base interaction problem for the 13.347° semi-apex 

angle cone. 

However, due to the limited memory capacity of this computer, the 

flow field matrix could not be made large enough to obtain satisfactory 

results. Consequently; arrangements were made to expand this flow ma­

trix for use on a larger capacity computer. The Air Force Weapons Lab­

oratory (AFWL), Kirtland AFB, Albuquerque, New Mexico, provided the use 

of their IBM 7044 computer which was able to accommodate this problem. 

The computer program was converted to the DIKEWOOD syst~m to facilitate 

solution on this larger computer. This program is listed as Appendix H, 

The flow field for each variable consisted of a matrix having 27 

points radially and 105 points in the axial direction, or 2835 points. 

Approximately 35 hours of computing time were involved to obtain results 

for 440 time planes. This amount of computing time, however, should not 

be considered representative since it included numerous runs to convert 

to the new system. 

To solve the problem, the program was written in six subroutine 

phases. The initial phase was used primarily to read into memory the 
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initial flow field matrices for p, p, u, and v. Using these known values 

and their explicit relationships previously defined, the matrices for r, 

s, and e were calculated and also read into memory. Thus, the entire 

flow field for the initial time plane, n=O was established. 

Since the solution to this problem is explicit in time, that is, 

from knowledge of all variables in the nth time plane, the variables in 

th the n+l time plane can be computed, the next four phases were estab-

lished to calculate the arrays for p, r, s, and e, respectively, for the 

n+lth time plane. Each of these arrays were successively stored on mag-

netic tape. 

The final phase of this program was used to calculate the remaining 

th variables, that is, u, v, and p for the n+l time plane. Then, all of 

the arrays which were calculated for the n+lth time plane were printed 

out before replacing those in the nth time plane. This method was con-

tinued until calculations were performed for each of the 440 time planes. 

To reduce computer time, only pre-selected time planes were printed out. 

Later, this program was modified to include printout arrays for the ve­

locity modulus vector, w, and the direction, tan-1v/u, which were subse-

quently needed to plot the results. 

Referring to the computer program of Appendix H, the nomenclature 

listed on the following page was used. 

Analysis and Results of Computer Solution 

In the preceding discussion of Rusanov's method, with regard to the 

Phase II solution, an attempt has been made to illustrate the various 

influences which govern the flow pattern at the base of a conical body. 



NOMENCLATURE FOR THE BLAST-BASE INTERACTION PROGRAM 

Symbol Used in 
Computer Program 

Hl 

H2 

HlM 

H2M 

M,L 

x 
NU 

GAMMA 

OMEGA 

SIGMAO 

RHO 

p 

u 

v 

w 
TEST 

MAX 

K 

Kl 

K2 

R 

s 
E 

PSI 

FX 

FY 

PRIX 

PHIY 

hl 

h2 

Corresponding Symbol 
Used in Text 

Maximum numqer of h1 increments 

Maximum number of h2 increments 

m, Q, subscripts 

tan- 1 h2/h1 
\) 

y 

w 

0 
0 

p 

p 

u 

v 

w 

lu2+ v 2 '+ lyp/p' 

Maximum [/u2+ v 2 '+ /yp/pj 

k 

kl 

k2 

r 

s 

e 
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Symbol Used in 
Computer Program 

ALPHA 

ALPHAl 

ALPHA2 

BE.TA 

BETAl 

BETA2 

RHOl 

Rl 

Sl 

El 

CNT 

T 

YL 

Tl 

NOMENCLATURE 
(Continued) 

a m,R. 
a m+l,R. 
a m-1, .Q, 

s m,R. 
13m,Hl 

8m,R.-l 
pn+l 
n+l 

r 
n+l 

s 
n+l 

e 

Corresponding Symbol 
Used in Text 

Count (Number of Time Planes) 

T 

y 

LT 
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Specifically, the differential equations of motion, the finite differ-

ence equations, the associated boundary equations, the blast wave repre-

sentation, and the dimensionalization technique all contribute to the 

overall solution of the problem. In addition, and perhaps of greater 

significance, these elements have all been formulated into a computer 

solution, for which results are presented in graphical form. 

The results of this analysis are presented as Figures 11 through 

36. Included are plots of lines of constant pressure, constant veloc-

ity and velocity vector .distribution for time planes O, 66, 126, 166, 

196, 260, 32d, 380, and 440. These time planes were pre~selected for 
> 

plotting since they are considered to be representative of the overall 

solution. They will later be used in mating the blast passage with the 

formation of the separated ,flow region behind the body. 

Figure 11 illustrates the initial shock position and configuration 

which has been superimposed upon the 27 by 105 point network, which 

represents the undisturbed flow matrix. The coordinate axes are meas-

ured with respect to the cone base radius. Note that although the 

pressure ratio for the unrefracted shock is 8.6930:1, this ratio in-

creases to 9.2092:1 at the cone corner point. Thus, the initial shock 

wave is represented as a non-uniform discontinuity in the flow. 

Figures 12, 13, and 14 illustrate the results obtained for time 

. plane 66, after the shock has progressed beyond the corner and has trav-

eled part of the way d?wn the carte base. As the shock wave travels 

toward the axis of symmetry, its area decreases; hence .the base pressure 

increases. Figure 12, the velocity vector plot, depicts the relative 

flow direction, the approximate centerline of the shock; the constant 
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Fig. 37 Blast Wave Simulation on a Water Table 



M=l line separating the supersonic region of flow from the subsonic 

region, as well as lines of constant turning angle. Figure 14 shows 
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the velocity modulus distribution and Figure 13 shows lines of.constant. 

pressure (isobars). Note that in these last two figures, the shock 

wave is represented as a rapidly varying gradient of its physical 

parameters. 

Time Plane 126, illustrated in.Figures 15, 16, and 17, depicts the 

flow pattern after the shock has converged and reflected at the axis of 

symmetry. Of special significance is the development of a circulation 

region near the base. This may he attributed to the non-uniform shock 

passing and reflecti~g in the base region.· Associated with this circu­

lation phenomenon is the region of reverse flow in.the base. This region 

is .clearly shown in the velocity vector plot of Figure 15. It will be 

noted that on the axis . of symmetry, · the stagnation point, which separates 

this region of reverse flow, may be easily located. 

In Figure 16, the high pressure reg:l,on behind the shock near the .. 

axis of symmetry may be seen clearly. Also, in this same figure, the .. 

reduced pressure region, reppesen:tling .the separated flow·region, may 

be noted on the cone. base near the separation corner. 

Time Planes 166 through 440; sh.own as Figures. 18 through 35, illus­

trate .. the transient phenomenon tha.t occurs. behind the. shock as it pro-· 

gressively moves downstream. Particularly, it will be noted that in 

Time.Plane 260 the shock has traveled nearly four cone radii downstream. 

from the base. In subsequent .. time planes the shock wave is not visible. 

This is attributed to. the shock passing "throughll the .boundary at the right 
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side of the flow mat.rix and beyond the region of interest. Further time 

planes depict the base region as a steady-state condition is approached. 

The region of subsonic flow may also be seen to. incre_ase progressively as 

the fluid is. evacuated from the base region. The general pattern can be 

seen in the water analogy photographs (Figure 37) of a wave passing a 

wedge. 

As the shock converges toward the axis of symmetry, the base pressure 

rapidly increases to a peak. This is illustrated in Figure 36 which shows 

the pressure pattern for various bas.e positions during the time calculated. 

The second large pressure response for positions 1 and 2 appears to be due. 

to a backflow surge. 

The computation results can be compared with the shock tube test 

described in Chapter II, since both had an 8.6_93 to 1 pressure-ratio shock 

wave passing.a 13,347° cone. Points 4 and 1 of Figure )6 correspond to 

Points 10 and. 11 of Figure 4, t;espectively. After adjusting time and.· 

pressure scales to coincide, the comparison is .given in Figure 38. For 

the point on the axis, the first pres.sure peak and its time of occurrence 

are· almost·. the same as in the experiment.. At the 60 percent radius point, 

the first peak is somewhat. low. For both points, .the computed pressure· 

fails to drop as greatly as .in the test and an exaggerated seco_nd peak· 

appears. This may-be due·to several factors: 

(a) The non-uniform flow behind the shock at . the left .boundary was 
kept ·constant· throughout_ the calculations. This is .. in contras.t 
to the transient decay of.the velocity near the cone surface· 
as the bow wave·forms. This has beendiscusseg·previously 
Jpage 60). 
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(b) In the experiments, expansion waves were overtaking the. shock, 
decaying the general pressure field around the cone. 

(c) Viscous entrainment by the jet mixing region occurs and tends 
to prevent backflow while increasing the evacµation of mass 
from the base. 

All of these would tend to decrease the second pressure peak, since 

their effects become greater wi.th time. In addition, the tested -cone 

had a rounded, rather than a flat, base, affecting the 60 percent radius 

point. · In view of these differences, the agreement is considered to be 

very good. 

Forebody Exploratory Problem . 

This section presents an exploratory investigation of the cone fore-

body problem treated by the numerical field computation method of Rusanov. 

The aims are two-fold: (a) develop techniques which can be used to 

describe the transient phenomena of the forebody flow field; (b) estab-

lish accurate initial shock and transient upstream field conditions for 

the blast-base interaction problem. The solution to both of these 

problems may be accomplished only by obtaining a·continuous solution 

over the conical forebody. If viscous forces are neglected, the transient 

phenomena behind the shock may be considered entirely wave-dominated. 

In an effort to determine the time history of the transient phenomena 

and the associated shock patterns, an extension of Rusanov's finite differ-

ence technique was attempted. This method has previously been discussed, 

A problem arises, however, in dealing with the cone apex. The boundary 

conditions of both a wall point and an axis point apply. This requires 

that both velocity components be zero, and thus the apex becomes a 
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stagnation point" The effect is that the cone is blunted for one mesh 

width. Appendix I shows the detailed calculations used to obtain these 

values for the stagnation pointo 

A second complexity occurs in representing the boundary conditions 

for a sloping wallo The mass flux perpendicular to the wall must be zero, 

and a local coordinate rotation transformation is required at each wall 

point in applying this boundary conditiono Rusanov's original paper (27) ex­

plains the method for dealing with such boundaries when the rectangular 

mesh is so chosen that the wall lies on the diagonal of the mesh pointso 

Results of this analysis were somewhat disappointingo The stagna­

tion values, being somewhat larger than the values of the original shock 

wave, apparently created calculation influences which distorted the field 

during the first several time planeso If a larger computer were available 

such that this solution were allowed to continue until these init:ial dis­

turbances became absorbed in the fie.ld, Leo, until the stagnation values 

have actually reached their peak, perhaps a more satisfactory solution 

could be obtainedo The knowledge obtained from this attempt, however, 

should provide the basis for a more successful solution at some future 

dateo It must be emphasized that this forebody attempt was not the 

principal purpose of this studyo A successful solution would have pro­

vided a method of introducing arbitrary upstream boundary field conditions 

instead of fixed conditions for the base region computations" 

The computer program written for this exploratory solution and run 

on the IBM 1410 computer is shown as Appendix J, The nomenclature used 

is identical to that used in the Phase II computer p1rngramo 



CHAPTER IV 

BASE PRESSURE ANALYSIS 

For a full consideration of the transient flow field and shock 

pattern in the ba~e region, covering all the time from the blast approach 

to the quasi-steady flow condition, a base pressure analysis must be per­

formed. The numerical computations considered no viscous effects. Essen­

tially, the co~puted flow field is the result of a shock wave diffracting 

around the rear of a body, then reflecting from the axis and/or the body 

base. If sufficient time is allowed to pass, the waves move downstream 

and a steady flow situation is approached: in the vicinity of the body. 

However, the steady-state base flow is known to be one determined by vis­

cous effects, namely, the character of the jet mixing in a flow separating 

from the base cqrner. Thus, some sort of transition from a wave-dominated 

phenomenon to a viscosity-dominated phenomenon takes place. 

For the Phase III analysis, that is, transition to the quasi-steady 

separated flow condition at the base, a method for mating the Phase II 

conditions with the steady-state base flow studies of Zumwalt and Tang 

(38) was developed. It will be shown that the base flow analysis of the 

above authors, herein offered as a-suggested approach, is well adapted to 

this type of problem. The one feature of this approach which is of pri­

mary interest for the base region application is that it intrqduces a 

basic theoretical flow .model (See Figure 39) for the jet mixing r~on 
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which occurs as a result of flow separation. This conical-wake flow 

model, along with its associated assumptions, is used to predict the 

steady-state b~se pressure for comparison with the base pressure ob-

tained from the Pµase II computer solution. The highly complex nature 

of the separated flow in the base region necessitates the introduction 

of several simplifying assumptions. In this regard, the quasi-steady 

approach will br adopted in conjunction with a time iteration technique. 

This technique treats the highly transient flow condition as a finite 

number of time steps and assumes steady flow for each increment of time. 

Thus, successive iterations can be performed with resulting property 

predictions at each increment. In the method, at each iteration step, 

the amount of ma~s trapped in the separated flow region must be adjusted 

toward the stable steady-state condition. 

However, the question arises: When do the viscous effects begin 

to predominate over the shock wave influence? To answer this, the 

growth of the boundary layer as the wave moves downstream will be con-

sidered. 

Method Analysis: Phase III 

The basic assumptions in this chapter are conveniently illustrated 

by a series of ~xaggerated sketches shown in Figure 40. These sketches :; .. 

portray, in chronological sequence, the development of the boundary layer 

at arbitrary blfst wave positions over the entire range of blast passage. 

At blast wave position A, the blast has just intercepted the cone 

apex. For thH condition, the forebody ·. has not yet begun to feel the ef-

fects of the blast. At blast position B, however, after the blast has 
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moved to a location on the forebody, the boundary layer formation on the 

forebody surface can be detected. The initial disturbance caused by the 

blast passage during the segment of travel from position A to position B 

will cause a particle, initially at rest near the surface at the cone 

apex, ·to accelerate along the surface to some position behind the blast. 

The particle velocity will be considerably less than the blast velocity 

so the particle will tend to lag behind the blast wave. The boundary 

layer thickness depends upon the distance a particle has travelled along 

the frictional surface, resulting in an instantaneous boundary layer 

thickness distribution as shown in the figure. 

After the shock-passes the corner of the cone, as shown in blast 

position C, boundary layer separation is seen to occur. However, the 

same particle originally near the apex has still not yet reached the 

corner; Up to this point, the characteristics of wave action behind the 

blast predominantly influence the flow and the effects of viscosity will 

be ignored. 

At blast position D, the figure shows the flow field resulting, 

after boundary layer separation, when the blast is far downstream. At 

this condition, the particle previously considered is assumed to have 

reached the corner and the blast is assumed to have 0 progressed far enough 

downstream such that a quasi-steady condition can.be assumed in the base 

region. Also, at this time_, it is assumed_ that the turbulent boundary 

layer is fully formed, ,wave influence is negligible, and viscous forces 

in the separated shear layer suddenly predominate to such a degree that 

maas-entrainment begins. From this time on; as in blast position E, only 

the viscous effects are considered in the turbulent mixing layer,· 
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It should be noted that for all separated flows, due to the viscous 

effects of the fluid, jet mixing occurs. Although it is possible for the 

mixing region to exist as a laminar shear layer, the mixing region in 

this analysis is considered to be turbulen.t, since this is generally the 

case. A similar method could be developed for laminar mixing. 

Since viscous mass entrainment is assumed to begin when a nearby 

particle has travelled·the length of the cone surface, this time may be 

expressed as 

t 
v 

cone length ~ 
\/sin ec 

u ./ cos 8 
(52) 

particle speed along surface 
y c 

u tan 8 
y c 

Specifically, for the 13.347° cone with a 4-inch base radius and the com-

puted blast, the time becomes 

t 
v 

(0.333)ft/(0.23725) 
2165 ft/sec 

649 X 10-6 (53) 

Using the time conversion factor previously developed, and shown in Figure 

10, this corresponds to a dimensionless computer solution time of 

t 
v 

649 X 10-6 
1415 X 10-6 0.458 (54) 

From Figure 10, it can readily be seen that this corresponds to Time 

Plane 354. However, since this time plane was not included in the com-

puter printout, Time Plane 360 was used as the approximation of the vis-

cous starting time. The base pressure at this time is taken to be the sum 



of the pressure forces exerted on the base surface divided by the base 

area. 

In mathematical form, the average base pressure may be written as 

R 
21r f O pb rdr 

21r JR rdR 
(55) 

0 

Written in summation form, this equation is 

(Sf>) 

wh,ere i=l,2,3,4,5, and n=5 for the computer solution presented in Chap-

ter III. The solution of equation 56 gives pb of 3.333 atmospheres. 

Before outlining the method used to mate these Phase II results to 

Zumwalt's and Tang's analysis, several important features of the conical 

flow model should first be noted. Referring to Figure 39, which depicts 

the flow model which has been superimposed on the Phase II flow field, a 

small cylindricat surface extension is assumed to exist with an infini­

tesimal length, Li}, in the limit. The flow passing the modeL then in,-

duces an initial conical shock followed by two Prandtl-Meyer expansions 

before it forms a free jet mixing layer in the base region. For small 

boundary layer thicknesses, where boundary layer interaction is ignored, 

the use of two-dimensional expansions at the turning corners is satis-

factory . 

. To outline the calculation procedure used to obtain the steady-

state base flow conditions, reference is again made to the conical model 

shown in Figure 39, In the analysis, the base pressure can be determined 
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as a function of the free stream Mach number, M00 ; pressure, pco; and the 

cone semi-angle, ec 

Since the free stream Mach number is known, the free stream conditions are 

easily determined from standard compressible flow charts or tables as in 

the following sequence. The symbol ~ means "yields." 

-{isentropic~ Pco T 
()() 

1. M 
' T ()() relations Poco ooo 

Poco T 
2. T 

ooo 
T Paco =-- Poo =-

Pco ooo T 00 

M ()() M 
00 ()() 

To evaluate conditions behind the conical shock: 

3• ·McoHconical]-+ 6 ---+- M 6 -1normal1_____,_ Poe 
6 shock c oo sin wLshock ~ p ~ Poe 

4. 

5. 

c ooo 

M00 H conical J---+-
6 shock Pc 
c 

~ HisentropicL___.._ M ~ v . 
p relations r-'"" c c oc 

To evaluate conditions on the cylindrical section: 

6. v· = v + 6 -{isentropic1_____,_ M ~ P1 __ 
1 c c relations ~ 1 p P1 

oc 

After the foregoing properties have been determined, Zumwalt's 

steady-state, ~on-bleed, base pressure solution, as shown in Figure 41, 

is used. This allows determination of the base flow conditions to in-

elude the steady-state base pressure, pb 
st 

the following steps. 

7. M1 { Figure 41 }- ::· 

This may be shown in 
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8. = 

9. 
Pb 

st --{P.M.~ M-\!-8 
p0 c turn 2 2 2 

Following this procedure, the actual calculations for existing condi-

tions are shown in Appendix F. The base pressure value is seen to equal 

3.30 atmospheres. Thus, in spite of the relatively complicated flow ex-

isting in the base region during the wave passage, the base pressure value 

given by the computer solution at time tv is almost identical to the steady­

state value given by Zumwalt's (37) wake analysis. This, however, must be 

regarded as fortuitous, and the values. cannot generally be expected to 

agree so closely. 

Note, however, that the base pressure created by the shock wave ac- · 

tion is slightly higher than that which will exist at steady-state. This 

may be interpreted as an indication of a slight mass bleed-out rate which 

must occur during a transient period. Some amount of mass will be pumped 

in or out of the base region through the mixing region until a stable. 

steady-state condition is reached. 

As given by Zumwalt and Tang for the transient period, the mass in 

the separated region (the "wake") at the base at any instant of time may 

be determined from 

pbt TI R3 cot et 
mt (pb Vb\ = RT ot 

(5 7) 

Further, the mass in the base at time t+1h is given as 

+ m tt (58) 



0 

where mis the rate of mass pumped into the "wake" at time t. For this 

latter assumption, an isoenergetic jet mixing condition is assumed. 

That is, the sta$nation temperature of the base region and of the adja-

cent stream are the same. Of course, the quasi-steady concept is still 

maintained, The value of mass bleed rate, m, is calculated from the :,.C 

curves shown as Figure 18 in Reference (38). 

Knowing the m(t+~t) value, the base pressure at time t+~t can be 

deter'!l1.ined from equation (57), Howevel'.', the value of e(t+M) must be 

iterated until pb(t+~t) reached by Prandtl-Meyer expansion at the. separa-

tion corner is equal to the steady-state base pressure, pb calculated 
st 

previously. That is, the pressure across the jet-mixing surface must be 

constant at any particular time. Calcul.ation details of this procedure 

may be found in Appendix F. 

Thus, a procedure has been developed to compute the conditions at 

the base during the transient period from the blast wave passage to the 

steady flow condition. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

As part of a research program to study the principles involved in 

the interaction of a blast wave and the base pressure region of a mis­

sile re-entering the atmosphere, methods were sought to compute the 

transient phenomena which occur. The primary objective of this phase 

of the investigation, which has been completed, was to perform a tran­

sient flow field analysis of a plane blast wave intercepting a stationary 

cone at zero angle of attack. This type of analysis, though difficult, 

has provided considerable knowledge about methods and techniques which 

may be used to predict such phenomena. 

Numerical solutions provide the best means of producing results for 

complicated flow fields, thereby permitting the influencing parameters 

to be calculated. The mechanisms for numerical techniques are relatively 

simple, although a computer capable of large storage capacity is required, 

With computer programs specifically designed for these large computers, 

larger flow fields may be considered thereby yielding more accurate re­

sults. 

The approximate methods developed and investigated in this analysis 

are shown to be very satisfactory and may be applied, with reasonable 
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assurance, to other geometries. The results of this analysis have pro­

vided close representations of physical phenomena within the accuracy of 

the assumptions made. 

To summarize, the method for the transient analysis for the station­

ary cone has been developed, Extensions of several methods were utilized 

and made compatible with existing flow conditions to provide a continuous 

flow solution. In Chapter II, Whitham's approximate solution was used to 

obtain the shock diffraction pattern past the forebody, This solution 

was shown to be in close agreement with experimental shock tube tests, 

The shock wave configuration and flow field properties were adapted to 

provide initial conditions for the blast-base interaction. 

Chapter III discloses some of the difficulties encountered with fi­

nite difference representations of governing differential equations of 

motioµ. Even though the problem is complex, the numerical solutions show 

the feasibility of solving complicated axi-symmetric flow fields to deter­

mine the effects of governing variables. The method of Rusanov, as pro­

posed in this analysis, has been demonstrated to yield excellent repre­

sentations for 440 time planes, 9 of which were selected for presentation. 

With the introduction of satisfactory boundary conditions, this method 

may be applied to numerous types of flow problems. Further,,a water 

table experiment, using several conical models, was performed to provide 

qualitative verification of the physical phenomena. 

In Chapter IV, the results of the blast~base interaction solution 

were used to mate the blast passage with the formation of the separated 

flow region behind the body. It is shown that the steady-state base flow 

studies of Zumwalt and Tang provided the method used to accomplish this. 
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The use of Zumwalt's conical wake analysis introduced a satisfactory 

physical model for the jet mixing region which occurs as a result of 

flow separation. 

Thus, a continuous flow solution, from the time the blast wave in­

tercepts the conical body to the quasi-steady state condition has been 

performed. 

Specific Recommendations 

The theories and calculation techniques discussed herein can be ap­

plied to many shock diffraction problems utilizing a variety of physical 

geometries. In order to treat a wider rartge of such problems, the follow­

ing suggestions are enumerated for further analytical and experimental 

work: 

1. To modify this present analysis to be applicable to general 

cases, a solution should be attempted, using the same numerical tech­

niques proposed in this analysis, to solve the axi-symmetric forebody 

problem of a blast wave intersecting a moving vehicle at arbitrary angles 

of attack. This problem would include several discontinuities in the 

flow and should con~ider various shock strengths. 

2. Throughout this analysis, ionization and real gas effects have 

been completely negl~cted. Future analytical studies should consider 

these effects in add~tion to the force contributions from forebody pres­

sure, forebody viscous effects, heat conduction, and base pressure for 

bodies which are either at rest or moving at supersonic speeds. 

3. The flow field behind the shock has been assumed non-uniform 

but constant in this ~nalysis. Studies of boundary conditions should be 
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undertaken to simulate the effect of a decaying flow field behind the 

shock. Thus, the boundary equations would change, but the method of 

solution would be the same. 

4. An understanding of the mechanisms of blast wave interaction 

on the base region when encountering the wave front at arbitrary orien­

tations should be pursued. This study should include blasts interacting 

with fully formed turbulent mixing regions. 

5. This analysis has been designed to provide an understanding of 

the transient flow field resulting from the intercept of a blast wave 

and a conical body. Extensions of this analysis should be considered 

for application to blunt or spherical geometries. 

6. When a supersonic missile flies head-on into a "fire-ball", 

such as might be encountered in a nuclear blast, the resulting effect 

on the missile is a function of the interaction of the bow shock and 

the incident blast wave. Studies should be performed to determine the 

influencing parameters which affect the missile when it exits from the 

blast. This should include both axial exit and exit at arbitrary orien­

tations. 

7. Numerous computing techniques are available for solving flow 

problems of this type. The most effective of these should be combined 

into a very general program which would provide as much flexibility, 

efficiency, and accuracy as possible. 

8. Experimental programs should be initiated to verify the analyt­

ical results of all proposed studies. 

If the above work is accomplished, the complex mechanisms of blast­

intercept phenomena will be more completely understood and the solutions 

to such problems can be more accurately computed. 
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APPENDIX A 

WHITHAM'S RAY TUBE ANALOGY 

In order to describe Whitham's analogy of the similarityof wave· 

propagation in a ray tube to the propagation of a shock wave. in a tube . 

with solid walls, the choice of independent variables must be· ·carefully 

selected. In two dimensions, the.choice of these variables is :based on 

the shock positions and the rays. However, if an attempt is made to · 

apply such a coordinate system .to an axi-symmetric problem, the· ·solution 

becomes formidable. Because of this, the analogy must be .formulated it1 . 

a three-dimensional Cartesian coordinate system. The motion of the 

shock is then described as 

ct =.a.(x,y,z) 
x 

where t is the time at which the shock occt,ipies that position and 

c is the speed of sound in the undisturbed gas.ahead of the shock. 
x 

(A-1) 

The problem now is to determine the function a.(x,y,z). Since the 

ray is normal to the shock, the distance ds along a ray between the shock 

positions at t and t+dt is given by 

c dt = ds Iva.I (A-2) x. 

To illustrate this relationship, differentiate equation (A-1). This 

yields 

c dt - da.(x y z) = h dx + h dy + h dz x . ,. ' a~ ay az (A-3) 
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How2ver, note that 

-+ 
s· =ix+ jy + kz 

which when differentiated becomes 

-+ 
ds = idx + jdy + kdz 

Also, note that 

Va - .aa. + i-
ax 

.aa. + ~ 
Jay az 

and 

I val. = la 2 + a.y 
2 + a 2 

x z 

Now; equation (A-3) may be written as 

cxdt (idx + j dy + kdz) • (i~: + j ~; + k~:) 

which reduces to 

c dt 
x. 

-+ 
ds • Va. 

-+ 
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(A-4) 

. However, Vo,= i Iva. I and ds = ids , which when substituted into equation 

(A-4) yields 

c dt = (ids)•(ilVa.l) = dslva.l x 

Thus; equation (A-2) is obtained. Writing this expression in.terms of 

the Mach number, M, where M = (ds/dt)/c, then equation (A-2) may further 
x 

be written as 
1 

M = -- (A-5) 
lval 

Next, let i(x,y,z) be the .unit vector in the ray direction. Since it is 

normal to the surfaces a.(x,y,z), it may be expressed as· 

i = -5!.£_ = MVa 
I va. I 

(A-6) 
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Now, consider a small length of narrow ray tube with end sections as 

parts of surfaces a= constant as in the following sketch. 

Let A be proportional to the cross sectional area of the tube (measured 

by the surface a= constant inside the tube at that section} where the 

subscripts 1 and 2 represent the areas at the respective ends of the 

tube. In addition, the following terms are defined: 

-+ 
v outward normal to the surface s 

v volume inside the ray tube 

-+ 

{f}= unit vector normal to surfaces A1 and A2 in the 
ray direction 

Applying the Divergence Theorem to the ray tube sketch, it is shown 

that 

I .. 
v 

-+ 
• vds (A-7) 

Note that i·v O on the sides of the tube and i•v ± 1 on the 

ends of the tube, so that the contributions from the ends cancel. There-

fore, the right side of equation (A-7) vanishes; then from continuity 

considerations 

V• {f} = 0 everywhere (A-8) 
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Substituting for the value of i from equation (A-6), then the above 

equation may be written as 

V·{~<va} =O (A-9) 

Thus, equations (A-5) and (A-9) are obtained and are used in the develop­

ment shown in Chapter II. Whitham has stated that these equations show 

that the flux of M'va/A through a closed surface is zero in regions where 

M'va/ A is continuous. Furthe-s these equations are always hyperbolic, 

corresponding to wave motions. The basic assumption is that A is a 

known function of M, hence eq~ations (A-5) and (A-9) are used to 

determine a. 



APPENDIX B 

WHITHAM'S A-M RELATION 

In addition to the geometrical relationships for A and M, Whitham 

established the functional dependence A= A(M) as the only assumption 

in his theory. The qualitative results are independent of the precise 

choice of A provided only that A is a decreasing function of M. Simply, 

the theory asstµnes that as dA is increased, dM must decrease, and the 

converse must hold. 

I-n an earlier paper, Chester (3) found that for a small change· 

dA in a channel area, the corresponding change in Mach number is given 

by 

dA -2MdM 

A - (M2-l)K(M) 

where K(M) is a slowly varying function decreasing from 0.5 at M = 1 

to 0.3941 (for y = 1.4) as M~ oo 

Chester as 

where 

K(M) 

2 
µ 

= 2 [{1 +-2_. 1-i/} 
y+l µ 

2 
(y-l)M + 2 

2 
2yM -(y-1) 

The function K(M) is given by 

~-1 
(2µ + 1 + M:- ~ (B-2) 

For weak s~ocks, Chisnell (4) suggested that the integrated form of 

equation (B-1) should give a good approximation for a channel of slowly 
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varying cross section. His work on cylindrical shocks confirm this 

view. On integrating, equation (B-1) yields 

IM _-_2M_dM __ _ 

M (M2-l)K(M) 
K(M)'v 0.5 

s 

Therefore, 
A r ln A 4MdM = -

M (M2 -1) A s s 

so that (M 2 -1) (M + 1) (M - 1) 
A 

2 ln s 2 ln s s 
ln - = 2 (M + 1) (M - 1) A s (M - -1) 

However, as M--+ 1, M+ 1--+ 2, and M + 1-M+ 1. Therefore, s 

A 
(M - 1) 

'v 2 ln s ln- (M - 1) A s 

so 
M -1 

A 
{Ms-1} where M - l << 1 (B-3) -'\., 

A s 

Similarly, for strong shocks, 

A rM~ M 

ln A 
-2 -2 1 2 
K(M) 

=- ln(M -1) 
m -1 K(M) 2 

A M M s s s 

This may be written as 

A -2 { 1 . (M2 - 1) } 
ln A = K (M) 2 ln 

s (M22 - 1) 

However, K(M) 'v 0.3941 as M --= 

Ms 2, and n = 2/K(00 ) = 5.0734. Therefore, 
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A ln­
A s 

M 
"' n ln __§.. 

M 

Integrating this expression yields 

where n 
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5.0743 and M >> 1 (B-4) 

This is equation (13) in the text which for strong shocks is ex-

tremely useful since it covers the most important range of shock 

strengths. It .becomes a good approximation for M > 3, for example. 



APPENDIX C 

WHITHAM'S SHOCK-SHOCK RELATIONS 

As stated in Chapter II, Whitham regards a shock-shock as a curve 

across which the shock Mach number, M, and the shock slope, e, are s 

discontinuous. This curve is described as the locus of the shock-shock 

as it moves along the shock wave. In a diffraction problem, it thus 

represents the motion of the shock triple-point. 

To establish mathematical relationships for the propagation of 

shock-shocks, two specific conditions must be satisfied. First of all, 

since the portions of the shock wave representing the incident shock 

and the Mach shock must be connected, a must be continuous across the 

shock-shock. It follows, therefore, that the tangential derivatives of 

a on the two sides of the shock-shock must be equal. If the unit vector 

nonnal to the surface of the shock-shock is n, this condition may be 

written as 

(C-1) 

where the subscript s and 1 denote values on the two sides of the 

shock-shock. 

The second condition to be satisfied concerns the jump in the 

normal derivative of a, This may be illustrated by considering 1 as in 

the following diagram, the passage of a narrow ray tube across a shock-

.shock in three dimensions. 
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If i and il are the directions of the ray on the two sides s 

and A and Al are the corresponding cross sectional areas of the s 

ray tube, it can be seen that the projections of these areas on the shock-

shock are equal. This may be expressed as 

In terms of a, this condition may further be written as 

M s -n 
A s 

(C-2) 

(C-3) 

Equations (C-1) and (C-3) are indicated by Whitham as the shock-shock 

relations for the three-dimensional problem. 

As stated in the method analysis section, equation (11) must be 

satisfied in order to validate the analysis. To establish the relation-

ships in this equation, recall that Va= i/M (See Appendix A). Equa-

tion (C-1) then becomes 

(C-4) 

However, from the following figure, 



it can be seen that 

n Xi= lnl Iii sin (n,i) = sin (90-e+x) 

= sin (90+¢(-6)) = cos (-(x-e)) 

Therefore, 

n X i cos (x-s) 

Substituting this value into equation (C-3) yields 

cos <x-e ) s -----= 
M 

s 

Similarly, from the figure, 

n • i = lnl Iii cos (n,i) = cos (90-B+x) - sin (-(x-8)) 

and equation (C-2) then becomes 

sin (x-s ) . s 
A 

s 
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(C-5) 

(C-6) 

Equations (C~S) and (C-6) can be solved to yield e1 ?nd X in 

terms of M, 6 , and M1 . This may be seen by considering the following 
s s 

figure. 
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S~OC:..\<.. - S 1-'.0C.I(.. 

where from geometry, 

Rearranging, factoring, and solving for dS/da, this equation reduces 

to 

(C-7) 

Whitham has defined this rate of change of S with respect to a as the 

shock...;shock velocity c . Also, from the figure, note the following 

relationship. 

tan (8 1 - 88 ) = cot . { <x-81)+ [9o -<x-8 1)] - (81 -88)} 

1 - tan (x~e1) tan (90 - x+ 8 ) s 
= 

<x-e1) (90 8 ) tan tan - x+ s 

A1dS M da AM 
1 

s 
1 Ls -- . --M1da A dS Ml As s 

A1ds·· M8 da Al M 
s 1 --+-- c +--

M1d a A8 d S Ml A c s 
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Further reduction yields 

A1M1(A Ml - M A1) +AM (A Ml - AM) s s s s s s s 

Therefore, 

• (C-8) 

Also, by resolving equations (C-5) and (C-6), the following relation can 

be obtained. 

tan Cx- e ) 
s 

tan (x-e ) 
s 

Ml As 

Al Ms 

Ml As 
=--

Al Ms 

sin Cx-e1) Ml As 
=-- tan Cx-e1) cos Cx-e1) Al Ms 

A1dB A 
~ s =-

M1da M da s 

(C-9) 

Thus, equations (C-8) and (C-9) are the shock-shbck relations listed 

as equation (11) in Whitham's Method Analysis. 



APPENDIX D 

COMPUTER PROGRAM FOR AXI-SYMMETRIC CONE SOLUTION 
(Symbols defined on Page 23) 

MON$$ JO~ 252740031 (~LAST WAVE DIFFRACTION! 
MON$$ ASGN MJb,A2 
MON$$ ASGN MGO,A3 
MON$$ ASGN MW1,A4 
MON$$ ASGN MW2,A5 
MON$$ MODE GO,TEST 
MON$$ EXEO FORTRAN 

1001 FORMAT 14Fl0.51 
2001 FORMAT (8(1X,Fl0o511 
2002 FOR~AT (7H ERROR , Fl0.5, 14H IS LESS THAN , Fl0o5l 
2003 FORMAT (5H RMAXI 
2004 FORMAT (/5X,3HETD,8X,3HTHD,9X,1HR~9X,4HETXD, 

17X,4HTHXD,8X,2HRX,8X,5HPIST1,6X,5HDIST2) 
4 READ tl,1001) R, H, RMAX, DELR 

R = R - OELR 
H = -H 
P=5o0743 

62 WRITE (3,2004) 
5 R = R + DELR 

!FIR .GT. RMAX) GO TO 105 
A= R*R - loO 
B ~ 1.0 - R**<-~.O*P) 
C = (1.0 + IR**lloO ~ Pl I) 
TH = ATAN I I SQRJ< A*B) I/CI 
ET= ATAN(SQRT(A/BI) 
IFIET .LE. THI GO TO 61 
NDX = 1 
ETX = ET 
THX = TH 
RX= R 
TANET = SINl~TX)/COS(ETXl 
GO TO 7 

6 TANET = SINIETX)/COS!ETXl 
TANTH = SIN(THXI/COSITHXl 
E = (SIN(ETXll*(COS!ETXl l 
F = loO + TANET*TANTH 
TANDF = SIN!ETX-THXI/COS(ETX-THX) 
G = P*TANDF*TANDF ~ l.O 
DTH = TANTH/(E*F*Gl 
DR= R*TANDF*DTH 
THX = THX + IH•DTHl 
RX= RX+ (DR~Hl 
ETX = ETX + H 
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7 DISif = ~j/(tOS(THXl+(SIN(THXJ*TANETl I 
DIST2 = DISTl*TANET 
ETD= (180.0/3.14159265l*ET 
THD = (180.0/3.14159265l*TH 
ETXD = 1180.0/3.141592651*ETX 
THXD = (180.0/3.14159265)*THX 
WRITE (3,20011 ETD, THD, R• ETXD, THXD, RX, DISTl, b!ST2 
IF(NDX .GT. 1000> GO TO 62 
NDX = NDX + 1 

60 IFIETX oGT. THXl GO T0'6 
GO TO 62 

61 WRITE ,3,2002) ET, TH 
Go TO 4 

105 WRITE 13,2003) 
GO TO 4 
END 

MON$$ 

MON$$ 

EXEQ LI NKLOAD 
PHASEENTIREPRG 
CALL MAINPGM 
EXEQ ENTIREPRG,MJB 
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APPENDIX E 

MOVING BLAST WAVE TRANSFORMATION 

From the information tabulated in Table IV, several flow properties 

relating to the·shock wave are known. However, in order ·to determine the 

flow Mach number behind ·the shock in the physical (moving shock) plane; 

the transformation relationships outlined in the test analysis s·ection of 

Chapter II must be used. The calculations may be illustrated from the 

following representation. 

Physical Plane (Moving. Shock) Transform Plane (Stationary Shock) 

u u I = 0 s s -
u = ? u = 0 u '=· u - u u '= u y x y s y x s 
M = ? M = 0 M I M·'= 2. 755 7 y x y x 

Py 8.6930 PX pox= 1.000 p '=p = 8.6930 p '=p = 1.000 
y y x x 

Py = 3.6177 PX Pox= 1.000 p '=p = 3.617 p '=p = 1.000 
y y x x 

It should be noted that the properties of the gas in the disturbed 

region behind the shock are made dimensionless with respect to the 

properties of the gas in the undisturbed region ahead of the shock. 

The velocities of the moving shock1 usJ and the flow velocity1 uy1 behind 

the shock are made dimensionless with respect to the sonic velocit~ cxJ 

in the undisturbed medium ahead of the shock. Therefore, by designating 

both the static and stagnation values of pressure and density ·as unity 
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ahead of the shock, the corresponding values of pressure and density 

behind the shock are equal to the values of the pressure and density 

ratios across a normal stationary shock wave •. 

From the known quantities, the speed~of·sound is determined as 

C = C I = ~·= /1.4(1.000)1 1.1836 
x x /~ 1.000 

x 

From the Mach number relationship, u' is determined·to be 
x 

u' = u = c '(M ') = 1.1832(2.7557) = 3.2605 
x s x x 

Since the density ratio is the inverse of the velocity ratio across the 

shock, then 

u' 
y 

U I 

x 
-- p '/p ' 

y x 

3.2605 
3.6177 - o. 9013 

Therefore, ·u is found from the transform plane relationships as 
y 

u = u 
y s 

U I = 3.2605 - 0.913 = 2.3593 
y 

If this shock is the one measured on the cone front, described in· 

Chapter II, the free-field flow component lies in the-horizontal 

direction; then u. becomes 
y 

. u = 2.3593 cos 13.347° = 2.2955 
y 

The values of and are known quantities so it· is new possible 

to determine the speed of sound behind the shock as 

c = I a.py' = I 1.4(8.6930)1 

y p . 3.6177 . 
y 

1.834 
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Knowing both the flow velocity1 uy 1 behind the shock and the sonic velocit~ 

c behind the shock, the value of the flow Mach number behind the un-y; 

diffracted shock away from the cone is 

Thus, it is seen that by using this transformation technique; all of the 

physical properties behind a moving shock wave can be determined. 



APPENDIX F 

CALCULATIONS USING THE ANALYSIS OF ZUMWALT AND TANG 

To illustrate the calculations performed for the base pressure 

analysis of Chapter IV, known flow conditions were applied to Zumwalt's 

conical flow model. The model, and the applicable calculations, are 

shown by the following. 

1.25 } 8.6930 
3.617698 -

= 2.402 

Although the calculation procedure has already been described in 

Chapter IV, details of the numerical values are p,resented here. As 

before, ---+- means "yields, 11 

Free Stream Conditions: 

1. M = 1.25----{isent:opic}- Poo = 0 386 
00 relations p · ·. · 

2. 

T = ooo 
2.402 
. 7619 
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ooo 

22.5 

3.16 

T 
00 

' T ooo 
0.7619 



Conditions Behind Nose Shock: 

3. 

4. 

5. 

M00 = 1.25 0bconical}-+.e ,., 55 •75 0 
e • 13.347 shock w 
c : 

M sin a = 1.032-{normal}-+ Poe = 1.00 --+ p = 22.5 · 
co ·w shock p · oc coo 

M = 1.25 bconical} 10 •95 
eco = 13.347° shock ---+Pc= 

c 

l --{isent7opic}-+ M 
p relations c oc 

1. 0 70--+- v 
c = .7973° 

Conditions on the Imaginary Cylindrical Section: 
I 
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6. v = v +a= 14.144o---1isent:opic}-+M = 1.574-+ Pi= 0 2444 5 5 
1 c Ye ------irelat1ons 1 p0 c • -+pl=· 

Conditions on the Base: 

7. 

8. 

Pb"' 
= 1.574 -(Figure 41)--+ - = 0.60 

pl 

Pb Pb P1 Pb 
-=r--•-=-· 
Pco ftl · P00 P1 

Pb = 3.3 atmospheres 
st 

The above cs).culations all apply to the steady state solution. 

From Time Plane 360, pb was determined. to be 3. 3328 atmospheres. 

To determine th~ mass in the base region at the time of viscous mass 

entrainment, the following calculations apply. 

9. 

10. 

= 9 .596--+ tan e2 = .169 

Pb 1r R 3 cot a t · tv = ____ v ______ __ 

R T 
Qt 

v 

= 0.0554 lb 
m 
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• To- determine the mass bleed rate, m, for the base region; 

Pb 
11. v .606 --= 

P1 Fig, ;:}~:J<:~ 1.0005 Ref, . 
Ml = 1.574 

12. Ii\ 
Po~ /if' -6 = - :J,C-- -88.9 X 10 16 lb /sec 
/ir' m v 

0 

The negative mt value implies that mass is being extracted from the 
v 

base region by mixing action. 

At time t + 8t, the mass in the base is 

13. 
I\, 

0.552 lb /sec, where 8t 
m 

The base pressure at this same time becomes 

14. 19.65 tan 8(t .+8t) 
v 

0 
Iterating, it can be seen that when 8(t +8t)= 9.54, then 

v 

2 seconds .• 

p = 3.3 
b (t +8t) 

v 
atmospheres. Note that this is the same value as the steady-state. base 

pressure~ The mass in the base at this time is found from the following. 

15. 

16. 

Pb 
. (t +8t) 

v 

= 9.725----+- tan 82 = .1708 

Pb TI R3 cot 82 
(t +H) 

v 

(RT 
0 

= 0.544 lb 
m 



• Repeating the procedure for finding m, using the new values, 

the solution coµtinues as 

Pb (t +flt) v . '\, _ __,.....,-...,..,_.. = • 60 

17. pl 

= 1.574. 

18. met +flt)= o 
v 

Fig. 18} -+ :tC ~ O 
Ref. 38 
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These values indicate that no mass is feeding_ in or out of the mixing 

region. Hence, tne solution has reached the stable condition. 



APPENDIX G 

CALCULATIONS FOR SHOCK WAVE INITIAL CONDITIONS-PHASE II 

This appendix serves to illustrat.e the calculation techniques used 

to determine the initial shock conditions for the Phase II solution. In 

this analysis, the properties in front of and behind the shock are assumed 

to be known. These were obtained from the transformation technique illus­

trated in Appendix E. 

The shock initial conditions have been universally represented as 

a simple discontinuity between two mesh points. That is, the adjacent 

points are giv~n property values corresponding to conditions before and 

after the shock. However, this pure discontinuity fails locally to 

satisfy the conservation laws. It has been found (See Reference 15) that 

this causes a "ripple" in the various flow properties to be propagated 

upstream, where conditions should be constant for plane waves. A similar 

calculation ripple may propagate downstream (ahead of the shock) but this 

is not apparent since the field itself is changing. 

To eliminate this erroneous initial shock condition, a method was. 

devised which has essentially eliminated the ripple phenomenon. For the 

finite difference calculations, the initial shock wave is assumed to be 

defined over two mesh widths. The pressure is taken to be the arithmetic 

mean of the pressures in front of and behind the wave. The other physical 

parameters, that is, density and velocity, at the. shock center are made 
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compatible with the average pressure value. This may best be illustrated 

by considering the following T-S diagram, 

T 

s 
In this diagram, the barred symbols represent values .at the cent.er of 

the· shock. The. symbols . x and y represent conditions\ in front ·of and. 
\ :~;;: 

behind a normal shock corresponding to px and py , ~espect::i, vely. 

To determine the value of u and p which correspond to the know!\ 

value of p at the center of the shock, it is suggested that the problem 

be solved in two segments. The first segment consider.s a normal shock 

relationship with known pressure ratio, p /p, and conditions u and y y 

p , The second segment considers a normal shock relationship with' 
y 

known pressure ratio, p/px and conditions u and p . 
x x 

Solving both of 

these segments in the transform plane, then.re-transforming back to the 

physical plane, the value of u and p at points a and b are 

determined. These values are then averaged to yield a good approximation -

of the values of u. and p to satisfy the conservation equations 

locally, The shock wave representation for this technique may -be illus-

trated by the following diagram. 

p yields p, u 
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The calculations perfonned for the first segment of the problem 

are as follows, 

Physical Plane (Moving Shock) Transfonn Plane (Stationary Shock) 

M = y 

Py = 

Py = 

u s 

1. 25 

8.6930 Pb = 4.8465 

3.6177 Pb = ? 

u '=u -u 
y s y 

p '=p =8.6930 
y y 

p '=p =3.6177 
y y 

U I 

s 
0 

u. '=u -u 
b s x 

pb'=4.8465 

pb'= b=? 

1. p I /p I 

y b 
-{nonnal} 1.7937 --+-M. '= 1.2962 p '/p '=u. '/u '= 1.5092 shock . -o 'y b o y 

2. p = p I = p 1 /(u, 1 /u 1 ) = 2,3971 
b b y b y 

3. "i,' = ~ = 1.6824 

4. U I 

b 

5. U I= U, 1 /(p 1 /p 1 ) = 1,4450 
y b y b 

6, U = U I+ U = 3,7406 
s y y 

7. ~ I = 1.5598 

Thus,~ and pb are detennined. Similarly, the u and p calculations 
a a 

for the second segment are as follows. 
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Physical Plane (Moving Shock) Transform Plane (Stationary Shock) 

u s 
---+-

Pa 4.8465 PX = 1.000 u I 

a 

Pa = ? PX = 1.000 Pa 
I 

u = ? u = 0 Pa 
I 

a x 

1. p , /p , = 4 • 8465 -{normal}~ M , 
a x · shock x 

2. p = Pa 
I = p I (u I /u I) 2. 7731 a x x a 

~\ 
3. I = 1.1832 · ex P 

x 

4. u I = u = c. I (M I) 2.4528 
x s x x 

5. u I = u '/(p '/p ') = 0.8845 
a x a x 

6. u = u u I = u - u I 1.5683 a s a x a 

= 

= 

= 

u '= 0 s 

u u u I = u s a x s 

Pa = 4.8465 PX 
I = PX = 1.000 

Pa = ? PX 
I 

PX = 1.000 

2.0730 p '/p '=u '/u '= 2.7731 
' a x x a 

Therefore, from the first and second segments, the average values of p 

and u, corresponding top are 

- 1 u = -(u + u.) = 1.5640 
2 a o 

Thus, a sample calculation for the initial conditions at the shock 

center, as used for the computer solution, has been shown. Note that 

these calculations were determined for Point A of Figure 9. For the 

other shock points in Figure 9, the conditions across the shock locally 

were used. to determine the p , p, and u at these shock points, namely, 
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points A, 3, 6;, 10, 15, and B, For example, Point 14 is the "y'' point 

and an undisturbed field condition is the "x" point for "s" Point 15. 



... * * 

APPENDIX H 

COMPUTER SOLUTION FOR BLAST-BASE INTERACTION - PHASE II 

COMMON RHOll05,27),Pll05,.27),U(105,.27l,Vll05,27l,R(l05,271, 
1Sll05,2?)1Ell05,27l,.HlM,H2M,SINX,COSX,SIN2X,COS2X,NU;GAMMA,OMEGA~ 
2 SIGMAO,Hl,H2 1 K1Kl,K2,T,CNT,Tl 

COMMCN XXQ(l05,27) 
INTEGER HIM, H2M, CNT 
REAL NU,MAX,K 1 Kl,K2 

·REWIND 4 
1001 FOKMAT (lOX, 7Fl0.4l 
1002 FORMAT (lOX, 215,3F10.4,15) 

READ 1002,HlM~H2M,Hl,H2,X,CNT 
fl =O. 0 
X = X-ta-(3.141592653/180.0l 
SINX = SIN(Xl 
SIN2X = SINX•SINX 
COSX = COS(X) 
COS2X = COSX•COSX 
NU = 1. 0 
GAMMA= 1.4 
OMEGA= 1.345 
SIGMAO = 0.5 
READ 1001,llRHO(M,Ll,M=l,HlMl,L=l,H2Ml 
READ 1001,llPlM,Ll,M=l,HlMl,L=l,H2Ml 
RE 1\D l O O 1 , ( ( U ( M, L l , M= l, H 1 Ml , L = 1 , H 2 Ml 
READ 1001,((V(M,Ll,M=l,HlM),.L=l,H2Ml 
MAX= O.O 
00 lOOL = l,H2M 
DO lOOM = l,HlM 
IF(RHOIM~Ll-.9E6)400,100 1 400 

400 CONTINUE 
TEST=SQRT(U(M,Ll•U(M,l)+V(M,Ll•V(M,Lll+SQRT(GAMMA•P(M,Ll/RHOIM,Ll l 
IF(TEST-MAXll00,100,401 

401 MAX=TEST 
100 CONTINUE 

K = SIGMAOI.MAX 
Kl = SINX•K 
K2 = COSX•t<. 
T = K•Hl•H2/(SQRT(Hl•Ht+H2•H2)l 
DO 10 L·=l,H2M 
DO 10 M=l,HlM 
IF(RHOIM,Ll-.9E6)402~9i402 

402 CO:.J TI NUE 
R(M,Ll = RHO(M,Ll•U!M,L) 
GO TO 10 

4 R(M,Ll = 0.9E+6 
10 COiHINUE 

DO 20 l = 1,H2M 
DO 20 M = 1,HlM 
IF(RHOIM,Ll-.9E6l403,19,403 

401 co·n I NUE 
S(M,Ll = KHO(M,Ll•V(M,Ll 
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GO TO 20 
19 SIM,Ll = 0.9E+6 
20 CONTINUE 

DO 30 L = l~H2M 
GO 30 M = 1,HlM 
IF(RHDl~tll-.9E6l404,29,404 

404 CONTI NU[ 
. W = SORT(U(M,Ll*UIM,Ll + VIM,Ll*V(~,Ll l 

EIM,L} = (RHO(M,Ll*W*W*0.5) + (P(~,Ll/(GA~~A-1,0l l 
GO TO 30 

29 E(M,Ll = 0.9E+6 
30 CONTINUE 

510 CO\TINUE 
IFISENSE SWITCH 1)880,881 

BBO RE~l~D 5 
CALL DOT(5) 
~EWIND 5 
END FILE 4 
KEWIND 4 
PAUSE 1 

H81 CO~TINUE 
CALL bLAiT2 
GO TO 510 
E~D 
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SUBROUTIME 8LAST2 
COMMON RHO(l05,27l,P(l05~271,Ull05,27l,Vll05,27J,R(l05,27), 

1Sll05,27J,E(l05,27J,H1M,H2M,SINX,COSX,SIN2X,COS2X,NU,GAMMA,UMEGA, 
2 SIGMAO,Hl,H2,K,Kl,K2,T,CNT,Tl 

COMMON RIIOl I 105, 27 l 
INTEGER HlM, H2M, CNT 
RFAL NU,MAX,K,Kl,K2 
on aoo J=l,2160 

800 RHUllJ)=O. 
2001 FORMAT (l0(1X,El2.6JJ 

DO 120 L=l,H2M 
DO 120 M=l,HlM 
IFl~HOIM,L)-.9E6l405,210,405 

405 COI\ITINUE 
PSI = 0.0 
FX = 0.0 
FY= O.O 
PHIX = 0.0 
PHIY = 0.'-0 
IFIL-1)406,114,406 

406 COI\IT[NUE 
YL = L-.l 
PSI = -T•NU•VIM,LJ•~HOIM,Ll/(YL•H21 
GO TO 115 

114 V(M,L) = O.O 
115 ALPHA= UMEGA•K•ISQRT(UIM,Ll•UIM,Ll+V(~,Ll•VIM,L) l 

l +SQRTIGAMMA•PIM,LJ/RHOIM,Ll)J 
BErA = ALPHA•C052X 
ALPHA= ALPHh•SIN2X 
IFIL-1)407,300,407 

407 CONTI.NUt: 
IF(KHO(M,L-ll-.9E6l408,ll6,40R 

408 CONTINUE 
IF(L-H2Ml500,l32,500 

~DO CON r I ~WF 
IF ( f-', HCl I 11 1 L + l ) - • ') F 6) 410, 11 7, 41 () 

4 1 o UH r I:J u 1: 
FY= -0.5•K2•1SIM,L+ll-S(M,L-ll I 

300 UETAl = OMEGA•K•ISQRTIU(M,L+ll•Ul~,L+l)+VIM,L+ll•V(M,L+ll l 
l + S lJR T I GM' MA* P I ~~ , L + l l IR H n ( M , l + 1 l l l * C n S 2X 

IFIL-1)411,301,411 
411 CDI\JffNUE 

BETA2 = OMEGA*K•IS~RT(UIM,L-ll•UIM,L-ll+VIM,L-l)•VIM,L-ll l 
I +SORTIGAVMA•P(~,L-ll/~HOIM,L-l)ll•(OS2X 

PHJY = 0.25•((BETAl+BETAl•(RHO(M,L+ll-RHO(~,Lll 
l -IBETA+BfTA2l•IRHO(M,Ll-RHOIM,L-l)l l 
en ro 200 

301 PHIY = C.5•(1ElETA1+HETAl•IRHO(M,L+ll-RHO(r1,Ll)) 
PSI = -T•NU•V(M,L+ll•RHO(M,L)/H2 

116 FY= -K2•S(~,L+ll 
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200 
412 

413 

414 

415 

118 

1 1 CJ 
110 

130 

132 

20() 

210 
12 ') 

SUBROUTINE BLAST2. 

GO TO 200 
FY= K2•SIM•L-l) 
1F1r-11412~2oi,412 
CONT l NUE .· 
JF(KHOIM-l,L)-.9E6)413,ll8,4l3 
co·n I NUE 
l~(M-H1M)414,130,414 
cnNTI\IUE 
IF(~HU(M+l,L)-.9E6l415,l19,415 
CO\JTINUF. 
FX = -0.5•Kl•(K(M+l,Ll-~(H-l,Lll 
ALPHA! = OMEGA•K•(SQKT(U(M+l,Ll•U(M+.l,Ll+V(M+L,Ll•V(M+l,Ll) 

l +SQRTIGAMMA•P(M+l,Ll/~HOIM+l,Llll•SIN2X 
,\LPHA2 = 0MFGA•K•(Sl.liHIIJU1-l,Ll•U(M-l,Ll+V(M-1,Ll•V(t,:-1,Ll l 

l +Sl)i<T(GM~,M•P(M-1,Ll/iHiO(M-1,Lll l•~IN2X 
PHIX -= 0.25•( (AU1H1-H+ALPHAl•IRHn(M+l,Ll-f~l-ffl(M,Ll l 

1 - ( ,\ L PHA+ AL PH A2 l * ( RH fl IM, Ll -RHO ( '·1-1 , L l l l 
GO TO llO 
FX = -Kl•klM+l,Ll 
GD TO 110 
F X = K 1 * tU M-1, Ll 
tUIIHIM,Ll = l).HO(M,Ll+PSI+FX+FY+PHIX+PHlY 
GO TO 120 
kHOl(M,Ll - RHUIM-1,Ll 
GD TO 120 
l<tHll rn I Ll = RIIO (t1, L- ll 
GO TO 120 
MHOl(M,Ll = RHO(M,Ll 
GO TO 120 
KH011M,Ll = 0.9E+6 
CUNrlNUE 
WklTE(?) RHOl 
CALL BLAST3 
Rf. TURN 
EMU 

153 



154 

SUB~OUTl~E BLAST3 
CO~MON RHOll05~27J~Pll05,27),Ull05,27),Vll05,27),Rll05,271, 

lS(l05,27l,Ell05,271,HlM,H2M,SINX,COSX,SIN2X,COS2X,~U~GAMMA,OMEGA, 
2 SIGMAO,Hl,H2,K,Kl,K2,T~CNT,Tl 

COMMON ~11105,27) 
INTEG~~ HlM, H2M, CNT 
REAL NU,MAX,K,~l~K2 
DO 800 J=l,2160 

800 R.l{J)=O. 
2001 FORMAT ll011X,El2.6)l 

DO 120 L=l,H2M 
DO 120 M=l,HlM 
IFIRHU(H,Ll-.9E6)416,210,416 

416 CO\fflNUE 
PSI = 0.0 
F-X :: O.O 
FV = O.O 
PHIX =:. o.o 
PHIY = O.O 
IF1L-ll417,114,417 

417 crnHINUF. 
VL = L-1 
PS[:: -T•NU•V(M,Ll•k1M,Ll/(YL•H2l 
GO TIJ ll~ 

114 VIM,Ll :: 0.0 
115 ALPHA= OMEGA•K•ISQkTIUIM,L)•UIM,Ll+VIM,L)*V(~,L)I 

I +SQRTIGAMMA•PIM,LI/RHUIM,LI) l 
BETA= ALPHA•C0~2X 
ALPHA= ALPHA•SIN2X 
IFIL-1)418,300,418 

418 CONTINUE 
IF(RHOIM,L-l)-.9E615Cl,116,501 

501 CONTINUE 
IFIL-H2~1502,132,502 

502 CONTINUE 
IFIRH01M,Ltl)-.9E6l503,1171503 

503 CONTINUE 
FY= -0.5•K2•1S(M,l+ll•UIM,L+LI-S(M,L~ll•UIM,L-lll 

300 tiETAl = OMEGA•K•lSQRT(UIM,L+ll•UIM,L+ll+VIM,L+ll•VIM,L+lll 
l tSQRTIGAMMA•P(M,L+l)/RHOIM,l+llll•COS2X 

IFIL~ll422 1 301,422 
422 CONTINUE 

tiETA2 = OMEGA•K•(SQRT(UIM,L-ll•U(M,L-ll+V(M,L-ll•V(M,L-11) 
l +SQRTIGAMMA•PIM,L-l)/RHO(M,L-llll•COS2X 

PHIY = 0.25•1 (~fTAl+dETAl•IRIM,L+ll-~IM,Lll 
l -IBETA+BET~·)•IRIM,L)-RIM,L-llll 

Gtj TO 200 
301 PHIY = 0.5iq I Fl Alt, :Cf.\l•(<IM,L+ll-,~IM,LI I I 

P S I = · - T * "'J lJ * v :< , L +l I ~ ·{ I M , LI I H 2 
116 FY = -K2•SIM, t l)•U(::.,L+ll 
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200 
504 

424 

425 

426 

1113 

SUBROUTINE BLAST3 

GO TO 200 . 
FY= K2•S(M,L-t)•U(M,L-l) 
IF(M-1)504,209,504 
cnr-.JT I NUE 
IF(RHO(M-l,L)-.9Eb)424,l18,424 
CQI\Jf I NUE 
lF(M-HlM)425,130,425 
CONT[NUE 
1FIUHOIM+l,L)-.9E6)426,ll9t426 
CO~H I NUE 
FX = -0.~•Kl•I IPIM+l,L)+RIM+t,l>•U(M·t.l,,U} 

1 -IPIM-l~Ll+RIM-1,L)•U(M-l,ll)) 
ALPHA l = _0:'1EGA•I<• ( SQRT HH M+l, L l •l:H M·H ,, L} +Vt M:+li "IL t •'lrn:-tdl 11U I) 

l +SQRT(GAMMA•PIM+l.L}/RHOIM+l,l1}}•SlN2X 
ALPHA2 -= U:--IEGA•K .t (SQRT I U ( M-1, LI •U l M- l, l t, +V tM'-1,, L_} it.It H1Hi.,dd » 

1 tSQijf(GAMHA•PIM-1,L)/KHOIM-1 1 Ll)l•SfN2X 
PH[X = 0.25•( l,:\LPHAl+/\LPHA)•IRIM+l,Ll-iUM,Ul• 

1 -IALPHA+ALPHA2l~(RIN,Ll-~(M-1,Llll 
GO HI 110 
Rllr~,Ll = O .. O 
GO TO 120 

119 FX = Kl•IPIM-l,Ll+RIM-l,Ll•UIM-1,Lll 
110 RllM,LI = RIM,Ll+PSl+FX+FY+PH[X+PHIY 

GO. TO 120 
130 RllM,Ll = RtM-1,L) 

GO TO 120 
132 Rl(H,L) = R(M,L-ll 

GO TO 120 
2 0 9 K 1 ( ~'. , l ) = ·RI r1, L ) 

GO TD 120 
210 Rl(M~Ll = 0.9F+6 
l 2 0 CO/\! T I N U.E 

WRITE(5) Rl 
CALL 8LAST4 
RfTUf{I\J 
END 
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SUBROUTlNE 6LAST4 
CO t-i 110 N R IIO (.10 5 , 2 7) , P I 1 0 5 , 2 7 l , lJ I 10 5 , 2 7 l , V I l O 5 , 2 7 l , R I 10 5 ', 2 7 l , 

1Sll05,27l,E(,105,27l,H1M,H2M,SINX,COSX,SIN2X,COS2X,NU~GAMMA,OMEGA, 
2 SIGMAO,Hl,H2,K,Kl,K2,T,CNT,.Tl . 

COMIION S l I 105, 27 l 
INTEGER HlM, H2M, CNT 
REAL NU,MAX,K,Kl,K2 
DO BOO J=l,2160 

800 SllJl=O. 
2001 FOR~Af llOllX,[12.6)) 

00 120 L=l,H2N 
I.JO 120 M=-l;HlM 
IFIRHOIM,L)-.9E6l427,210,427 

427 COrtTINUE 
PSI= O.O 
FX = o.o 
FY= 0.0 
PHIX = 0.0 
PHIY = O.O 
IFIL-1)428,114,428 

428 CONTINUE 
YL = L-1 
PSI = -T*NU*VIM,Ll*SIM,ll/lYL•H2l 
GO Tn 115 

114 VIM,Ll = 0.0 
115 ALPHA= OMEGA*k•ISURTIUIM,Ll*UIM,L)+VIM,L)*VIM,L) l 

l tSQRT(CAMMA•PIM,Ll/RHO(M,L)) l 
BETA= ALPIIA*CUS2X 
ALPIIA = ALPHAttSIN2X 
IF(L-1)429,300,429 

429 CO'JT INUE 
IFIKH01M,L-l)-.9E6)430,ll6,430 

4·30 COiJTIMUE 
IF(L-H2Ml43l,132,43l 

4 3 1 CON TI I~ U E 
1FIHHOIM,L+l)-.QE6)43?,117,432 

432 CONT I ~JUE 
FY= ~0.5ttK2tt( IPIM,Ltl)tS(M 1 L+ll*VIM,L+lll 

I -IPIM,L-ll+S111,L-llttVIM,L-lll l 
300 UETAl = OMEGA1tK1t(SQRT(UIM,L+l)1tU(M 1 L+ll+VIM,L+ll•VIM,L+l)) 

1 +St:JHl(C,AMMA•PIM,L+ll/RHOltl,L+ll l }ttCOS2X 
lFIL-11433,301,433 

4, 3 COrJTI NUE 
BFT/\2 = DMEGf,*K*ISQRT(UIM,L-ll*UIM,L-l)+V(M,L-ll•VIM,L-1)1 

1 +SURT(GAMMA•PIM,L-11/KHOIM,L-lll)ttCOSU 
PHIY = 0.2~*((nE1Al+UFTA)tt(S(M,L+l)-Slr,L)) 

1 -IBETA+bETA2lttlS(M,Ll-S(H,L-llll 
GO TO 200 

301 PHIY: O.~tt((b[TAl+BETA)tt(SIM,L+l]-SIM,Lll l 
PSI = -TttNUttV(M,l+ll•~IM,LI/H2 



suenouTINE BLAST4 

FY= -K2•1PIM,L+ll+SIM,L+ll•V(M,L+ll l 
116 Slltl,LI = 0.0 

GO TO 120 
117 FY= K?•IPIM,L-ll+S(M,L~ll•V(M,L-11 l 
200 IFlt·i-11434,209,434 
4'i4 CONTINUE 

I F I k HU I 1,-1 , L l - • 9 E 6 l 4 3 5 , 118 , 4 3 5 
'd 5 CONl TNUE 

IF(~-H1Ml436,130,436 
436 CONT !NUE 

IF(RHO(M+l,L)-.9E6l437,ll9,437 
437 CONTINUE 

FX = -0~5•Kl*(R(M+l,Ll•V(M+l,Ll-R(M-l,Ll*V(M-l,Ll l 
ALPHAl = OMEGA•K•(SQRTIU(~+l,Ll•LJ(M+l,Ll+V(M+l,Ll•VIM+l,Ll l 

l +SORT(GAMMA*PIM+l,Ll/RHO(M+l,Ll l l•SIN2X 
AU'HA2 "' OtlF.GA•·K•(SQRT(U(r'-1,Ll•UIM-1,Ll+V(t'.-1,Ll•VIM-1,Ll I 

l +SQ~T(GAMMA•PIM-l,Ll/RHO(M-l,L))l•SIN2X 
PHIX = 0.25•1(i1LPHAl+J\LP~Al*(S(f.+l,Ll-SIM,LII 

l -(ALPHA+ALPHA2l•ISIM,Ll-SIM-1,Lll I. 
GO TO 110 

118 FX = -Kl•(RIM+l,Ll*V(M+l,Lll 
Gfl TO 110 

119 FX = Kl•lk(M-1,Ll*VIM-1,LI I 
110 51111,LI = S(M,ll+PSI+FX+FY+PHIX+PHIY 

GO TO 120 
130 Sll~,LI = SIM-1,Ll 

GO TO 120 
132 Sl(M,LI = SIM,L-ll 

GO TO 120 
209 Sl!M,LI = S(M,LI 

GO TO 120 
210 51111,LI = 0.9E+o 
120 CONTINUE 

~JR l TE I 5 l S l 
C.t\LL tlLAS T 5 
RI: TUR~·, 
EN fl 
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SUBROUTINE BLAST5 
COM~ON RH01105,27),Pl105,27),Ull05,27),Vll05,27),Rll05~27), 

lS(l05,27),E(lOS,27)~HlM•H2M,SINX,COSX,SIN2X,COS2X,NU,GAMMA,OMEGA1 
2 SIGMAO,H(,H2,K,Kl,K2,T,CMT,Tl 

COMMON El(l05,27l 
INTEGEk HlM, H2M~ CHT 
REAL NU,MAX,K,Kl,K2 
on aoo J=l,2160 

800 EllJ)=O. 
2001 FORMAT (1011X,Fl2.6l) 

on 120 L=l,H2M 
DO 120 M=l,HlM 
IFIRHOIM,Ll-.9Eb)438,210,438 

438 CONTINUE 
PSI = O.O 
FX = O.O 
FY= O.O 
PHIX = o.o 
PHIY = 0.0 
IF(L-1)439,114,439 

439 CClNfINU[ 
YL = L-1 
PS1 = -T•NU•VIM,L)*(E(~ 1 Ll+P(M,Lll/lYL•H2l 

. GO rD 115 
114 VIM,Ll. = O.O 
115 ALPHA= OMEGA•K•(SQRTIUIM,L)•UIM,L)+V(M,Ll•V(M,L)) 

1 +SQRT(Gl\MMA*P0',,U/RHOIM,L))) 
BETA~ ALPHA•COS2X 
ALPHA= ALPHA•SIN2X 
IF(L-1)440,300,440 

440 cmn I MUE 
IFIRHO(M,L~l)-.9f6)441,116,441 

441 CO'HINUE 
IF(L-H2M)442,1~2,442 

442 CONTINUE 
IFIRHOIM,L+l)-.9F6)443,117,443. 

443 CO\JTINUE 
FY -= -0 • ':> * K 2 * ( I I [ I M, L + l ) + P ( M, L + l l l * V (t1 , L + 1 I I 

1 -(IFIM,L-ll+P(M,L-l)l•VIM,L-ll)l 
300 UETAl = OMEGA•K•ISWRTIUIM,L+ll•UIM,L+ll+V(M,L+ll•VIM,L+ll) 

1 +SQMT(GAMMA•PIM,L+ll/KHOIM,L+l)l)*COS2X 
IFIL-1)444,301,444 

444 CONTINUE . 
dETA2 ~ OMEGA•K*ISQRTIUIM,L-l)•UIM,L-l)+VIM,L-ll•V(M,L-ll) 

l +SQRT(GAMMA•PIM,L-ll/RHOIM 1 L-llll•COS2X 
PHIY = 0.25•(1DETAl+BETAl•(EIM,L+l)-EIM,L)l 

1 -IBETA+bETA2l•IEIM,Ll-E(M,L-ll)I 
Go·rn 200 

301 PHIY = 0.5~((UETAl+HETAl•IEIM,L+ll-E(M,Llll 
PSI = -T•NU•VIM,L+ll•(EIM,Ll+P(M,Ll 1/H? 



116 

117 
200 
445 

446 

447 

448 

118 

119 
110 

130 

132 

209 

210 
120 

SUUKOUTlNE BLAST~ 

FY= -K2•lCEIM,Lfl)+PCM,L+ltl•V1M,L+1).) 
corn 200 
FY= K2•1lEIH,L-l)+P1M,L-l))•VCM,L-ll) 
JFIM-1)445,209,445 
CO~TINUE 
1F(RHOIM-1,Ll-.9E6)446,118,446 
CONTINUE _ 
IFIM-HlM)447,130,447 
CONTINUE 
IFIKHOIH+l,L)-.qE6)448il19,~48 
CONTINUE 
FX = -0.5•Kl•(IIEJM+l,L)+PIM+l,L))*U(Mfl,L)) 

l -(IEIM-l,L)+PIM-1,Ll)•UIM-1,Llll 
ALPHAl = OMEGA•K~(SQRT(U(M+l~L)•U(M+l,~l+V(M~l,L)•VC~+l,L)l 

1 tSQRT(GAMMA•P(M+l,LI/RHO(M+l,.Lll}•SI~2X 
ALPHA2 = OMEGA•K•(SQRT(U(M-l,L)•UIM-1,L)+VIM-l,L)*VtM-1,L) l 

1 +SQMJIGAMMA•P1M-l,Ll/RHOI.M-1,Llll•SIN2X 
PHIX: 0.25•11ALPHAl+ALPHAl•IEIM+l,Ll-EIM,L)) 

l -(ALPHA+ALPHA2)•1EIM,L)-E(M-1,Lll). 
GO TO 110 
FX = -Kl•ClEIM+l~L)+P1M+l,Ll)•UIM+l,Llt 
GO TO 110 
FX = Kl•l(E(M-l,L)+P(M-l,Lll•UIM-1,Lll 
El(M,L) = EIM,Ll+PSI+FX+FY+PH1X+PHIY 
GO TO 120 
El(M,L) = EIM-1,() 
GQ TO 120 
EllM,Ll = EIM,L-1) 
GO TO 120 
EllM,Ll = EIM,Ll 
GO TO 120 
El(M,Ll = 0.9E+6 
CONTINUE 
WRITE15l El 

'CALL 8LAST6 
RF.TURN 
END 
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2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 

2010 

900 

SUSROUTIN~ BLAST6 
COMMON RHO(l05,27)~P(l05,271,UC105 1 271,V(l05,27),RC105,27), 

1S(l05,27l,Etl05127l1Hltt,H2H,SINX,COSX,SIN2X,COS2X,NU~GAMMA,OMEGA~ 
2 SIGMAO,Hl,H2,K,Kl~K2,T,CNT,Tl 

INTEGER HlM, H2M, CNT, CNT1,.CNT2 
REAL NU, MAX~ K, Kl, K2 
FORMAT ll2H RHO= 0 AT 12,lH,12) 
FOiU1AT (10f1X,Fl2.5ll 
FORMAT l//9H DENSITY/) 
FO~MAT (//lOH PRESSUKF/l 
FORMAT (//21H HORIZONTAL VELOCITY/) 
FORMAT l//19H VERTICAL VELOCITY/) 
FORMAT l//22H HORIZONTAL MASS FLUX/) 
FORMAT (//20H VERTICAL MASS FLUX/) 
FORMAT l//8H ENERGY/) 
FORMATflHl60X 1 llHTlME PLANE 13,2X,4HPAGE,12/57X,7HTIME - El4.Al 
REWIND 5 
kEAU(5l RHO 
READl5) R 
kFADl5l S 
READ ( 5 l E 
DO 900 M=l,HlM 
M~rn=H2M-l 
KHOIM,H2M)=kHO(M~MMM) 
R(M,H2M)=R(M,MMM) 
S(M,H2Ml=SIM,MMM) 
EIH,H2Ml=E(M,MHM) 
DO 10 L=l.tl2M 
DO 10 M=l.HlM 
IF(kHOIM,Ll-.9E6l449,l00,449 

449 CONTlNUE 

450 
IFIRHOIM,Ll)450,200,450 
CONTINUE 
UIM,Ll = RIM,Ll/RHO(M,Ll 
VIM,Ll = SIM,Ll/RHOIM,Ll 
PIM,Ll = (GAM~A-l~Ol•(E(M,L)-RH01M~L) 

1 *(UlM,Ll•U(M,Ll+V(M,Ll•V(M,Ll)*0.51 
10 CONTINUE 

MAX=O.O 
on 20 L=l,H2M 
l)(l 20 M=l,tHM 
IFIRHOIM,L)-.gE6)451,20,45l 
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451 CONTINUE 
TEST=SQRT(U(M~Ll•U(M,L)+V(M,Ll•V(M,Lll+SQRT(GAMMA*P(M,Ll/RHOIM,Lll 
IF(TfST-MAX)20,201452 

452 MAX=TEST 
20 CONTINUE 

K=SIGMAO/MAX 
l<l=S[NX•K 
K2=f.OSX•K 



SUBROUTINE BLAST6 

Tl=l l+T 
T=K•Hl•H2/SORT [Hl•Hl+H2•H2 I 
CNT=CNT-1 
RFIH NO 5 
CNT2 = CNTl-CNT 
IPL=IPL+l 
lPl=l 
IP2=10 
l ll=O 
HHlSV=HlM 
WRITE(4l IPL,Tl,KHO 
WRITE (41 P 
1,iR[TE 14) U 
WIUTF. (41 V 
WRITE (41 R 
WRITE 141 S 
WRITE l'tl E 
lf-(MOD( IPL-l,ll l507,b02,507 
IF(MODI IPL-l,311507,602,507 
IFIMODIIPL-1~5))507,602,507 
IF(SENSE SWlTGH 1)602,507 

602 DO 601 KK=l,HlM 
D!l 600 J.J=l,H2M 
IFIUIKK,JJl 1601,600,601 

600 COiH I NUE 
HlMSV=HlM 
Hrn=KK 
GO TO 603 

601 CONTINUE 
603 cmn- 1 \IUF. 
520 CD1'JTINUE 

lll=[ll+l 
PRINT 2010,lPL,Ill,Tl 
P~PH 2003 
DO ~O L=l,H2M 
Ll=H2M-L+l 

50 PRlNT 2002,l~HO!M,Lll,M=IPl,IP2) 
PRINT 2004 
DO ~l L=l,H2M 
Ll =H2M-L+ 1 

51 PRINT 2002,IPIM,Lll,M=IPl,IP2) 
PRINT 2005 
DO ':i:~ L=l,H2M 
Ll=H21~-L+1 

5.2 PRPH 2002, IUIM,lll ,M=IPl, IP2l 
PRINT 2006 
DO 51 L=l,H2M 
Ll=H2M-L+l 

53 PR!~H 2002,IV(M,lll,M=IPl,IP2) 
Pk PH 2007 
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SUH~DUTINE BLAST6 

DO 54 L=l,H2M 
Ll=H2M-L+l 

54 PRINT 2002,ll<IM,Lll,M=IP1,1P2l 
PRINT 7008 
DD 55 L=l,H2M 
Ll=H2M-L+l 

55 PRINT 2002,ISU1,,Lll,M-=1Pl,IP2l 
PRINT 2009 
DO 56 L=l,H2M 
Ll=H2M-L+l 

56 PKHH 2002,IEIM,Lll,M=IP1,IP2l 
JF(IP2-HlM)521,522,522 

521 1Pl=IP2+1 
IP2=IP2+10 
IF(IP2-H1Ml520,520.523 

52~ lP2=HlM 
GO TO 520 

522 CO'HINUE 
IF(CNT}506,506,507 

506 STOP 
100 U(M,L)=0.9f+6 

VIM,Ll=0.9H6 
P(1",ll=0.9E+6 
GO TO 10 

200 PRINT 2001,M,L 
U(M,L)-=O.O 
VIM,L)=O.O 
P(M,Ll=O.O 
GO TO 10 

507 CONTINlJf 
HlN=HlMSV 
i{ETURN 
END 
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APPENDIX I 

STAGNATION POINT CALCULATIONS 

The purpose of this appendix is to illustrate the calculation pro-

cedure used to optain the stagnation values of pressure and density at 

the cone apex for the exploratory solution. The subscript 11 0 11 denotes 

stagnation values, and primes here indicate the transform plane. 

Physical Plane (Moving Shock) 

M = 2.657 
s -

M 1. 254 M = 0 
y x 

Py 8.0673 PX pox= 1.000 

Py 3. 5123 PX Pox= 1.000 

T f T oy OX 

M 
y 

u u u I u I c 
2. M=...:L=~-_L_=~ x M I 

y c c c c c y y y y x y 

Transform Plane (Stationary Shock) 

u I 
y 

M I 
y 

p '= 
y 

p I= 
y 

I 

= 

-
u - u s y 

0.4991 

M '= 0 
s 

u 
x 

M 
x 

I 

I 

p = 8.0673 p '= 
y x 

3.5123 p I= 
y x 

T T oy OX 

0.4991, T I /T 
y x 

I 

......._ 

u s 

2.657 

p = 1.000 x 

p = 1.000 x 

2.2974 

~ - M I 1. 254 M' 
x . T 

y y 

-{" . 1 p e_y_ = 3. M 1 . 254 1sentrop1c ___ :_:y_ 
= 0.384 0.5048 

relations J p ' y oy Pay 

4. Poy 
Py 

P/Poy 
= 21.0085, Poy 

Py 

py/poy 
= 6.9578 
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The following con;eiguration now exists: 

shock 

M = 1. 254 M = 0 y x 
poy= 21.01 p = 1.000 x 
Poy= 6.958 p = 1.000 x 

stagnation point (pitot value) 

5. 

6. 

7. 

M = 1. 254~normal}--+- Poy(pitot) 
y shock p 

Poy(pitot) 0.9865, 
oy 

· poy(pitot) 
{Poy(pitot)} = 20. 7249 Pay p 

oy 

Poy(pitot) = Pay 
{Poy(pitot)} = 6.8639 

Pay 

Poy(pitot) =0.8965 
poy 

Thus, the values indicated in steps 5 and 6 are the stagnation values 

of pressure and density used for the computer solution. These values are 

the stagnation values that exist at .the cone apex for a steady-state 

solution. 



APPENDIX J 

COMPUTER PROGRAM FOR FOREBODY EXPLORATORY PROBLEM 

MON$$ JOB 252740031 (BLAST WAVE DIFFRACTION) 
MON$$ ASGN MGO,A2 
MON$$ ASGN MJB,A3 
MON$$ ASGN MW1,A4 
MON$$ ASGN MW2,A5 
MON$$ MODE GO,TEST 
MON$$ EXEQ FORT?AN,,,,,,,BLSTWVl 

INTEGER HIM, H2M, CNT 
REAL NU,MAX,K,Kl,K2 
DIMENSION RH0(9,13l ,P(9,13l ,U(9,13) ,V(9,13l 

l ,R(9,13l,Sl9,13l,E(9,13) 
1001 FORMAT (lOX, 7Fl0.41 
1002 FORMAT (lOX, 2I5,3Fl0.4,I5) 

READ 11,10021 HlM, H2M, Hl, H2, X, CNT 
REWIND 4· 
Tl=C!.O 
X = X*(3ol41592653/180.01 
SINX = SINIXI 
SIN2X = SINX*SINX 
COSX = COS(Xl 
COS2X = COSX*COSX 
NU= 1.0 
GAMMA= lo4 
OMFGA = 1 .345 
SIGMAO = 0.5 
READ (1,10011 RHO 
READ ( 1,1001 I P 
READ (1.,1001) U 
READ 11,lOOll V 
MAX= OoO 
DO lOOL = 1,H2M 

-DO lOOM = l,HlM 
JF(RHO(M,L).EQ.0.9E+61 GO TO 100 
TEST=SQRT(U(M,L!*U(M,Ll+V(M,Ll*V(M,Lll+SQRT(GAMMA*P(M,L)/RHO(M,Lll 
!F(TESToGT.MAXl MAX= TEST 

100 CONTINUE 
K = SIGMAO/MAX 

. Kl = SINX*K 
K2 = COSXi~K 
T = K*Hl*H2/(SQRT(Hl*Hl+HZ*H2l l 
WRITE(4l HlM,H2M,SINX,COSX,SIN2X,CUS2X,NU,GAMMAtOMEGA,SIGMAO,Hl,H2 

1 ,K,Kl,K2,T,CNT,CNr,Tl 
WRITE ( 4 l RH() 
WRITE ( 4 l P 
WRITE(4l U 
\>.JR I TE ( 4 I V 
DO 10 L=l,H2M 
DO 10 M=l,HlM 
IF(RHO(M,Ll•EQ.0.9E+6) GO TO 9 
R(M,Ll = RHOIM,Ll*U(M,Ll 
GO TO 10 

9 R(M,LI = Q.9E+6 
10 CONTINUE 
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WRITEl4l R 
DO 20 L = 1,H2M 
DO 20 M = l,HlM 
IFIRHO(M,Ll.EQ.0.9f+6) GO TO 19 
SIM,Ll = RHO(M,Ll*VIM,Ll 
GO TO 20. 

19 S(M,Ll = 0.9E+6 
20 CONTINUE 

WRITEl4l S 
DO 30 L = 1,H2M 
DO 30 M = 1,HlM 
IFIRHOIM,L)oEQ.0.9E+6) GO TO 29 
W = SQRTIUIM,Ll*UIM,L) + VIM,Ll*V(M,Lll 
E(M,Ll ; (RHO(M,Ll*W*W*O.~I + IP(M,Ll/(GAMMA-1.01) 
GO TO 30 

29 E(M,Ll = 0.9E+6 
30 CONTINUE 

WRITEl41 E 
CALL NEXTPH 
END 
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MONS$ EXEQ FORTRAN,,,,,,,BLSTWV2 
INTEGER HlM, H2M, CNT 
REAL NU,MAX,K,Kl,K2 
DIMENSION RH019,13l,Pl9,13) ,U19,13l,V19,13) 

1 ,R19,13l ,519,131 ,E19,13) ,l~H0119,13) 
2001 FORMAT (10(1X,El2.61 l 

REltiIND 4 
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READ(4) HlM,H2M,SINX,COSX,5IN2X,C0~2X,NU,GAMMA,OMEGA,SIGMAO,Hl,H2 
1 ,K,Kl,K2,T,CNT,CNT,Tl 

READ(4l RHO 
READ(4l P 
READ(4l U 
READ(4l V 
READ(4l R 
READ(4l S 
READ(4l E 
DO 120 L=l,H2M 
DO 120 M=l ,Hlr"1 
IF(RHO(M,LloE0.0.9E+6l GO TO 210 
PSI = OeO 
FX = O.O 
FY= O.O 
PHIX:: OoO 
PHIY = O.O 
IFIL.EO.ll GO TO 209 
YL = L-1 
PSI = -T*NU*VIM,Ll*RHO(M,Ll/(YL*H2l 

115 ALPHA= OMEGA*K*(SQRT(U(M,Ll*U(M,Ll+V(M,Ll*V(M,Ll I 
1 +SQRT(GAMMA*P(M,L)/RHO(M,Ll ll 

BETA= ALPHA*COS2X 
ALPHA= ALPHA*SIN2X 
IF(RHO(M,L-l).EQ.0.9E+6l GO TO 116 
IF(L.EQ.H2Ml GO TO 117 
FY = -0.5*K2*(S(M,L+l)-SIM,L-lll 

300 BETAl = OMEGA*K*(SQRT(U(M,L+ll*U(M,L+l)+V(M,L+ll*V(M,L+l l l 
1 +SQRT(GAMMA*P(M,L+ll/RHO(M,L+ll l )*COS2X 

BETA2 = OMEGA*K*(SQRT(U(M,L-ll*U(M,L-ll+V(M,L-ll*VIM,L-1) l 
1 +SQRT(GAMMA*P(M,L-l)/RH0(1,,L-l)) ,~~cos2x 

PHIY = Oo25*((BETAl+BETAl*(RHO(M,L+l)-RHO(M,Ll l 
l -(BETA+BETA2l*(RHO(M,Ll-RHO(M,L-ll l) 

GO TO 200 
116 U(M,Ll=U(M,Ll*COSX+V(M,Ll*SINX 

V(M,Ll=-R(M,Ll*SINX/RHOIM,Ll+V(M,Ll*COSX 
PSI=-T*NU*V(M,Ll*RHO(M,Ll/(YL*H2l 
FY=-K*(S(M,L+ll*COS2X+S(M-1,L)*SIN2Xl 
GO TO 200 

117 FY= K2*SIM,L-ll 
200 IF(M.EOoll GO TO 209 

IF(RHO(M-l,LloE0.0.9E+6l GO TO 118 
IF(M.EQ.HlMl GO TO 130 
IF(RHO(M+l,Ll.EO.Oo9E+6) GO TO 119 
FX = -0.5*Kl*(R(M+l,L)-R(M-l,Lll 
ALPHAl = OMEGA*K*(SQRT(U(M+l,Ll*U(M+l,Ll+V(M+l,LJ*V(M+l,Ll l 

1 +SQRT(GAMMA*P(M+l,Ll/RHO!M+l,Ll l l*SIN2X 
ALPHA2 = OMEGA*K*ISQRT(U(M-l,Ll*U(M-l,Ll+V(M-l,Ll*V(M-1,Lll 

1 +SQRT(GAMMA*P(M-l,Ll/RHO(M-1,Ll l)-l:-SJN2X 
PHIX = 0.25*((ALPHAl+ALPHA)*(RHO(M+l,L)-RHO(M,Ll l 

1 -(ALPHA+A'_PHA2l*IRHO(M,Ll-RHO(fll-l ,L) l l 



GO TO 110 
118 FX = -Kl*R(M+l,Ll 

GO TO 110 
119 FX=-0.5*Kl*COSX*(R(M+l,L+l)-R(M-l,L-11 I 

ALPHA=OMEGA*K*(SQRT(U(M,Ll*U(M,Ll+V(M,Ll*V(M,Ll I 
1 +SQRT(GAMMA*P(M,Ll/RI-IO(M,Ll) l 
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ALPHA=ALPHA*SIN2X 
ALPHAl=OMEGA*K*(SQRT!U(M+l,L+ll*U(M+l,L+lf+V(M+l,L+ll*V(M+l,L+lll 

1 +SORT(GAMMA*P(M+l,L+l)/RHO(M+l,L+ll l l*SIN2X 
ALPHA2=0MEGA*K*(SQRT(U(M-1,L-ll*U(M-1,L-ll+V(M-1,L-ll*V!M-1,L-lll 

0 1 +SORT(GAMMA*P(M-1,L-ll/RHO(M-1,L-11 l l*SIN2X 
PHIX=0.25*COS2X*( (ALPHAl+ALPHAl*(RHO(M+l,L+l)-RHO(M,Ll l 

1 -(ALPHA2+ALPHAl*(RHO!M,Ll-RHO(M-l,L-ll l l 
110 RHOl!M,Ll RHO!M,Ll+PSI+FX+FY+PHIX+PHIY 

GO TO 120 
130 RHOl!M,Ll RHO(M-1,Ll 

GO TO 120 
209 RHOl!M,Ll = RHOIM,Ll · 

GO TO 120 
210 RHOl(M,Ll 0.9E+6 
120 CONTINUE 

RfWIND 5 
i,,/R IT EI 5 l RHO 1 
CALL NfXTPH 
END 



MON$$ EXEQ FORTRAN,,,,,,,BLSTWV3 
INTEGER HlM, H2M, CNT 
REAL NU,MAX,K,Kl,K2 
DIMENSION RH0(9,13) ,P(9,13) ,U19tl3l ,V19,13) 

1 ,R19,13l,S19,13),F19,13),Rl(9,13l 
2001 FORMAT (10(1X,El2.6ll 

REWIND'4 
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READ(4) H1M,H2M,SINX,COSX,SIN2X,COS2X,NU,GAMMA,OMEGA,SIGMAO,Hl,H2 
1 ,K,Kl,K2,T,CNT,CNT,Tl 

READ(4l RHO 
READl4l P 
READ(4l U 
READ(4l V 
RF.AD(4l R 
RFAD(4l S 
READ(4l E 
DO 120 L=l,H2M 
DO 120 M=l,HlM 
1F(RHO(M,LloE0.0.9l+6) GO TO 210 
PSI = o.o 
FX = O.O 
FY= O.O 
PHIX = O.O 
PHIY = O.O 
IF(L.EQ.l) GO TO 209 
YL = L-1 
PSI = -T*NU*V(M,L)*R(M,Ll/(YL*H2l 

115 ALPHA= OMEGA*K*(SQRT(U(M,Ll*U(M,Ll+V(M,Ll*V(M,L)) 
1 +SORT(GAMMA*PIM,Ll/RHO(M,L) ll 

BETA= ALPHA*COS2X 
ALPHA= ALPHA*SIN2X 
IF(RHO(M,L-ll.EQ.0.9E+6l GO TO 116 
IF(L.EOoH2M) GO TO 117 
FY = -0.5*K2*(S(M,L+l)*U(M,L+l)-S(M~L-l)*U(M,L-ll) 

30U BETAl = OMEGA*k*(SQRT(U(M,L+ll*U(M,L+l)+V(M,L+ll*V(M,L+ll l 
1 +SORT(GAMMA,fP(M,L+l l/R/-iO(M,L+l l l )lf(:JS2X 

BETA2 = OMEGA*K*(SQRT(U(M,L-l)*UIM,L-l)+V(M,L-ll*V!M,L-1) l 
1 +SQRT(GAMMA*P!M,L-l)/RHO(M,L-1) ll*COS2X 

PHIY = 0.25*( (BETAl+BETA)*(R(M,L+ll-R(M,L)l 
1 -(8ETA+8ETA2)lf(R(M,L)-R(M,L-ll l) 

GO TO 200 
116 U(M,Ll=U(M,Ll*COSX+V(~,Ll*SINX 

V(M,Ll=-R!M,Ll*SINX/RHO!M,Ll+V(M,Ll*COSX 
PSI=-T*NU*V(M,L)*R(~,L)/(YC*H2) 
FY=-K*(S(M,L+ll*U(M,L+ll*COS2X+S(M-l,L)*U(M-l,L)*SlN2Xl 
GO TO 200 

117 FY= K2*S(M,L-l)*U!M,L-ll 
200 IF(M.EQ.l) GO TO 209 

IF(RHO(M-1,Ll.EQ.0.9E+6) GO TO 118 
IF(M.EQ.HlMl GO TC 130 
IF(RHO!M+l,L).£Q.0.9E+6l GO TO 119 
FX = -o.5i:-K1,q(P!M+l,L)+r~(M+l,L),,LJ(M+l,Lll 

1 -(P(M-1,Ll+R(M-l,L)*U(M-l,L)) l 
ALPHAI = OMFGA*K*!SORTIU(M+l,Ll*U!M+l,L)+V(M+l,L)*V(M+l,Ll l 

1 +SOR T ( GA M ;,.1 A ·Y<· P ( M + 1 , L ) I RHO ( M + 1 , L ) ) ) sf S I N 2 X 
ALPHA2 = OMEGA*K*(SCRT(U!M-l,Ll*U(M-1,L)+V(M-l,Ll*V(M-1,Ll I 

1 + S (,)R T ( G M1 MA * P ( M - 1 , L ) I f-frl u ( M- 1 , L ) ) ) * S I N 2 X 
PHIX = 0.25*( !ALPHAl+ALPHA)*(R(M+l,L)-R(M,L)) 



1 -(ALPHA+ALPHA2l*(RIM,Ll-R(M-l,Ll l l 
GO TO 110 

118 Rl(M,Ll = O.O 
GO TO 120 

,li9 FX=-0.5*Kl*COSX*((P(M+l,L+ll+R(M+l,L+ll*U(M+l,L+ll l 
1 -(P(M-1,L-ll+R(M-1,L-ll*U(M-1,L-llll 

ALPHA=OMEGA*K*(SQRTIUl~,Ll*UIM,Ll+V(M,Ll*VIM,Ll) 
1 +SORT{GAMMA*P(M,L)/~HO(M,Ll l) 

170 

ALPHA=ALPHA*SIN2X 
ALPHAl=OMEGA*K*(SQRT(U(M+l,L+ll*U(M+l,L+l)+V(M+l,L+ll*V(M+l,L+lll 

1 +SQRT(GAMMA*P(M+l,L+ll/RHO(M+l,L+ll) l*SIN2X 
ALPHA2=0MEGA*K*(SORT(U(M-1,L-ll*Ul~-1,L-l)+V(M-l,L-ll*V(M-l,L-lll 

1 +SORT(GAMMA*P(M-1,L-ll/RHO(M-1,L-ll l l*SIN2X 
PHIX=0.25*COS2X*(.(ALPHAl+ALPHAl*(R(M+l,L+ll-R(M,Ll l 

1 -(ALPHA2+ALPHAl*(R(M,Ll-R(M-l,L-ll l) 
110 Rl(M,Ll = R(M,Ll+PSI+FX+FY+PHIX+PHIY 

IF(ABS(Rl(M,Ll ).LT.O.OOOOUl) Rl(M,L)=O.O 
GO TO 120 

130 Rl(M,Ll = R(M-1,Ll 
GO TO 120 

209 Rl(M,Ll = R(M,Ll 
GO TO 120 

21J Rl(M,Ll = 0.9E+6 
120 CONTINUE 

WRITE(5l Rl 
CALL NEXTPH 
END 



MON$$ EXEU FORTRAN,,,,,,,BLST~V4 
INTEGER HlM, H2M, CNT 
REAL NU,'liAX,Y..,1(1,KZ 
D IM ENS ION RHO ! 9 , 1 3 ) , P ! 9 , l 3 l , U ( 9 , 1 3 ) , V ( 9 , 13 ) 

1 ,Rl9,l3) ,S!9,13) ,E!9,J.3) ,Sl(9,13l 
2001 FORl,~M (10!]X,Fl2.6) l 

RF1,n ND l, 
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RfAD!4l hlM,H2M,SINX,COSX,SIN2X,C052X,NU,GAMMA,OMEGA,S!GMAO,Hl,H2 
1 ,K,Kl,K2,T,CNT,CNT,Tl 

READ(4) r-rno 
READ(4l P 
READ(4l U 
READ(4l V 
READ(4) R 
READ(4) S 
READ(4l E 
DO 120 L=l,H2M 
DO 120 M=l,HlM 
IF!RHO(M,L).F0.0.9E~6) GO TO 210 
PSI = O.O 
FX = 0 • U 
FY= 0.0 
PHIX = O.O 
PHIY = OoO 
IF<L.EO.l) GO TO 209 
YL = L-1 
PSI = -T*NU*V(M,L)*S(M,L)/(YL*H2l 

115 ALPHA= OMFGA*K*(SQRT(U!M,Ll*U!M,L)+V!M,Ll*V!M,Ll l 
1 +SORT!GAMMA*P(M,Ll/RHO!M,Ll l l 

BFTA = ALPHA*COS2X 
ALPHA= ALPHA*SIN2X 
JF(RHO(M,L-l).F0.0.9E+6l GO TO 116 
IF!L.EO.H2M) GO TO 117 
FY= -0.5*K2 1f( (P(M,L+l)+S!M,L+l){fV(M,L+l) l 

l -(P(M,L-l!+S(M,L-l)1EV(M,L-ll )l 
300 BETAl = OMEGA*K*(SORT(U(M,L+l)*U(M,L+ll+V(M,L+ll*V(M,L+l) l 

1 +SQRT(GAMMA*P!M,L+l)/RHO(M,L+ll l l*COS2X 
BETA2 = OMEGA*K*(SQRT(U(M,L-ll*U(M,L-ll+V(M,L-ll*V{M,L-1) l 

1 +SQRT!GAM/v\A{fP(M,L-ll/RHO(M,L-1 l l )1f(OS2X 
PHIY = 0.25*((CETAl+AFTA)*(S!M,L+l!-S{M,Ll l 

1 -(BFTA+BETA2l*(SCM,L)-S{M,L-ll) I 
GO TO 200 

116 Ul"1,Ll=l.l(M,Ll*COSX+V(M,Ll*.SINX 
V(M,Ll=-R(M,Ll*SINX/RHO(M,L)+VCM,Ll*COSX 
GO TO 200 

117 Sl!M,Ll=O.O 
GO TO 120 

200 IF(M.EQ.l) GO TO 209 
IF(RHO(M-1,L).FQ.0.9E+6l GO TO 118 
IF(M.EQ.HlMl GO TO 130 
IF(RHO(M+l,L).E0.0.9E+6l GO TO 119 
FX = -O.S*Kl*(R(M+l,Ll*V(M+l,LI-R(M-1,Ll*V(M-l,L l l 
!-1 L p HA 1 = OM E G 1-\lf K 1, ( .S (.j R T ( lJ ( 1,1 + 1 , L ) if U ( Iv!+ l , L_ l + V { M + l , L. l l, V { ~-; -1- ·1 , L l I 

1 +SORT{GAMNA*P(M+l,LJ/RHO{M+l,Ll ll*SIN2X 
A L pH l:\ 2 = 0 (.1 F C Alf K ,f { SO I~ T ( l.' { ,,1- 1 , L ) ,fl J { 1, I- l , I _ l + \! I !'1- 1 , L ) * V { f,' - 1 , L. ) l 

l + s orn ( GAMM A-:, p ( 1,; - l • L. ) I RH (J { M- 1 ' L ) ) ) * s I i\12 x 
PH I X = 0. 2 ", if ( ( ALP I Ji\1 +;\LP HA ) " { S { "1+ 1 , L I - S { M , L l l 

1 - ( .ALPHA+ i\ LP 1-Ji~ 2 ) ,, ( S ( :,1 , L l -S { M- 1 , L I l I 



GO TO 110 
118 FX = -Kl*(R(M+l,L)*V(M+l,Ll l 

GO TO 110 
11? S 1 ( M, LI =O • 0 

GO TO 120 
110 Sl(M,Ll = S(M,Ll+PSl+FX+FY+PHIX+PHIY 

IF(ABS(SllM,Lll.LT.0.0000011 SllM,Ll=O.O 
GO TO 120 

130 Sl(M,L) = SIM-1,Ll 
GO TO 120 

2U9 Sl(M,LI = S<M,Ll 
GO TO 120 

210 Sl<M,LI = 0.9E+6 
120 CONTINUE 

WRITE(5l 51 
CALL NEXTPH 
E:ND 
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MON$$ EXEQ FORTRAN,,,,,,,BLSTWV5 
I~TEGER HlM, H2M, CNT 
REAL NU,MAX,K,Kl,K2 
DIME N 5 ION RHO I 9 , 13 I , P I 9 , 1 3 l , U I 9 , 1 3 l , V I 9 , 1 3 l 

1 ,R19,13l~519,13l,El9,131,Ell9,13l 
2001 FORMAT 110(1X,El2.6l l 

REWIND 4 
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READ14l HlM,H2M,SINX,COSX,SIN2X,C052X,NU,GAMMA,OMEGA,SIGMAO,Hl,H2 
1 ,K,Kl,K2,T,CNT,CNT,Tl 

READ(4l RHO 
READ I 4°) P 
RFADl4l. U 
READ(4l V 
READl41 R 
READ(4l 5 
READl4l E 
DO 120 L=l,H2M 
DO 120 M=l,HlM 
IFIRHOIM,Ll•EQ.0.9E+6) GO TO 210 
PSI = o.o 

.FX = o.o 
FY= O.O 
PHIX = o.o 
PHIY = O.O 
IFIL.EO.ll GO TO 209 
YL = L-1 
PSI = -T*NU*V(M,Ll*IE(M,Ll+P(M,LI l/(YL*H21 

115 ALPHA= OMEGA*K*ISQRTIU(M,Ll*UIM,Ll+VIM,Ll*V(M,Ll l 
1 +SQRT(GAMMA*PIM,LI/RHO(M,LI II 

BETA= ALPHA*COS2X 
ALPHA= ALPHA*SIN2X 
IF(RHO(M,L-lloEQ.0.9E+6l ~OTO 116 
IF(L.EQoH2Ml GO TO 117 
FY = -O.!:>*K2*1 I !EIM,L+l l+P(M,L+ll l*VIM,L+l l l 

1 -((EIM,L-ll+P(M,L-lll*V(M,L-1111 
300 BETA! = OMEGA*K*(SQRT(U(M,L+l)*U(M,L+l)+V(M,L+ll*VIM,L+l)l 

1 +SQRT(GAMMA*P(M,L+ll/RHO(M,L+ll I l*C052X 
BETA2 = OMEGA*K*(SQRT(UIM,L-l)*U(M,L-ll+V(M,L-l)*V(M,L-1)) 

1 +SQRT(GAMMA*P(M,L-1)/RHO(M,L-ll ll*COS2X 
PHIY = 0.25*( (BETAl+BETAl*(EIM,L+ll-EIM,Lll 

1 -IBETA+BETA21*1E(M,L)-EIM,L-11)1 
GO TO 200 

116 UlM,Ll~UIM,Ll*COSX+VIM,Ll*SINX 
VIM,L>=-RIM,Ll*S)NX/RHOIM,Ll+V(M,L>*COSX 
PSI=-T*NU*V(M,Ll*(E(M,Ll+P(M,LII/IYL*H21 
FY=-K*I I ((E(M,L+ll+P(M,L+l) l*VIM,L+ll l*COS2XI 

1 +I ( IE(M-1,Ll+P(M-1,L) l*V(M-1,LI l*SIN2XII 
GO TO 200 

117 FY= K2*11EIM,L-ll+P(M,L-l))*VIM,L-lll 
200 IF(M.EQ.11 GO TO 209 

IFIRHO(M-1,LI.FOeOo9E~61 GO TO 118 
IF(M.EQoHlMI GO TO 130 
IF(RHO(M+l,LloEQ.0.9E+61 GO TO 119 
FX = -0.5*Kl*I I IEIM+l,Ll+P(M+l,LI l*UIM+l,LI l 

1 - ( IE ( M-1, Ll +P ( M-1, L l I *U I M-1, LI ) I 
ALPHA!= OMEGA*K*ISQRT(U(M+l,L)*U(M+l,L)+V(M+l,Ll*V(M+l,LI I 

1 +SQRT(GAMMA*P(M+l,LI/RHO(M+l,LI l)*SIN2X 
ALPHA2 ~ OMEGA*K*(SQRT(U(M-1,Ll*UCM-1,L)+V(M-l,Ll*V(M-l,LI I 



1 +SQRT<GAMMA*PIM-1,Ll/RHO(M-l,Ll ll*SIN2X 
PHIX = Oe25*((ALPHAl+ALPHAl*IEIM+l,Ll-EIM,Ll l 

1 -IALPHA+ALPHA2l*(E(M,Ll-E(M-1,L) ll 
GO TO 110 

118 FX = -Kl*( (EIM+l,Ll+P(M+l,Lll*U(M+l,Ll l 
GO TO 110 

119 FX=-Oe5*Kl*COSX*I ( IE(M+l,L+ll+P(M+l,L+ll l*UIM+l,L+lll 
l -!(E(M-1,L-ll+PIM-1,L-lll*UIM-1,L-lll l 
ALPHA=OMEGA*K*ISQRT(U(M,Ll*UIM,Ll+VIM,Ll*V(M,L) l 

1 +SQRTIGAMMA*P(M,Ll/RHOIM,Ll) l 
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ALPHA=ALPHA*SIN2X 
ALPHAl=OMEGA*K*(SQRTIUIM+l,L+ll*UIM+l,L+ll+VIM+l,L+ll*VIM+l,L+l)l 

1 +SQRTIGAMMA*PIM+l,L+ll/RHO(M+l,L+llll*SIN2X 
ALPHA2=0MEGA*K*(SQRT(U(M-1,L-ll*UIM-1,L-1J+VIM-1,L-ll*VIM-1,L-lll 

1 +SORTIGAMMA*P(M-l,L-1)/RHOIM-1,L-lll l*SIN2X 
PHIX=0.25*COS2X*(IALPHAl+ALPHAl*(EIM+l,L+l)-E(M,Ll) 

1 -(ALPHA2+ALPHAl*IE(M~Ll-E(M-1,L-ll)) 
110 El(M~Ll = E(M,Ll+PSI+FX+FY+PHIX+PHIY 

GO TO 120 
130 El(M,Ll = E(M-1,Ll 

GO TO 120 
209 EllM,Ll = EIM,L) 

GO TO 120 
210 El(M,Ll = Oo9E+6 

. 120 CONTINUE 
WRITEl5l El 
CALL NEXTPH 
END 



MON$$ EXEQ FORTRAN,,,,,,,BLSTWV6 
INTEGER HlM, H2M, CNT, CNTl, CNT2 
REAL NU, MAX, K, Kl, K2 
DIMENSION RHO( 9,13l ,P(9,13) ,U19,13J ,V19,13l 

1 ,R19,13l,Sl9,13l,E(9,13),Wl9,13l 
2001 FORMAT 112H RHO= 0 AT I2,1H,I2l 
2002 FORMAT (10(1X,El2o6l) 
2003 FORMAT (//9H DENSITY/I 
2004 FORMAT (//lOH PRESSURE/) 
2005 FORMAT (//21H HORIZONTAL VELOCITY/) 
2006 FORMAT (//19H VERTICAL VELOCITY/) 
2007 FORMAT (//22H HORIZONTAL MASS FLUX/) 
2008 FORMAT (//20H VERTICAL MASS FLUX/) 
2009 FORMAT (//8H ENERGY/) 
2011 FORMAT (//18H VELOCITY MODULUS/) 
2010 FORMAT 11Hl60X,11HTIME PLANE I2/57X,7HTIME = El4o8l 

REWIND 4 
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READ(4) HlM,H2M,SINX,COSX,SIN2X,COS2X,NU,GAMMA,OMEGA,SIGMAO,Hl,H2 
1 ,K,Kl,K2,T,CNT,CNTl,Tl 

REI/JI ND 5 
READ(5l RHO 
READ(5l R 
READ!5l S 
READ(5l E 
DO 10 L=l,H2M 
DO 10 M=l,HlM 
IF(RHO(M,L).EQ.0.9E+6) GO TO 100 
IF(RHO!M,L).EQ.O.Ol GO TO 200 
IF(RHO!M,L-ll.EQ.0.9E+6l GO TO 30 

.GO TO 15 
30 RHO(M,L)=RHO(M,L) 

E(M,Ll=E(M,Ll 
U(M,Ll=R!M,Ll/RHO(M,Ll 
V!M,Ll=S!M,Ll/RHO(M,Ll 
PIM,Ll = !GAMMA-1.0l*!E!M,Ll-RHO(M,Ll 

1 *(U(M,Ll*U(M,L)+VIM,Ll*V!M,Ll l*0.5) 
RIM,Ll=R(M,Ll*COSX 
IF(ABS(RIM,Ll ).LT.0.000001) R(M,Ll=O.O 
S(M,Ll=RIM,Ll*SINX/COSX 
IF(ABS(SIM,Ll ).LT.0.000001) SIM,L)=O.O 
U(M,Ll=R!M,Ll/RHO(M,Ll 
V(M,Ll=S(M,LI/RHO!M,L) 
W(M,Ll=SQRT!U!M,Ll*UIM,L)+V(M,Ll*V(M,L)) 
GO TO 10 

15 U!M,Ll=R(M,Ll/RHO(M,Ll 
V(M,Ll=S!M,LI/RHO(M,Ll 
P(M,Ll=(GAMMA-1.0l*!EIM,Ll-RHO(M,Ll 

1 *(U(M,Ll*U(M,LJ+V(M,Ll*VIM,L) l*0.5) 
W(M,Ll=SQRT(U(M,Ll*U<M~Ll+V(M,Ll*V!M,L) l 

10 CONTINUE 
40 MAX=O.O 

DO 20 L.=1,H2M 
DO 20 M=l,HlM 
IF(RHO!M,LleEQ.0.9E+6) GO TO 20 
TEST=SQRT(U(M,L)*U!M,L)+V!M,L)*V(M,Ll )+SQRT(GAMMA*P!M,L)/RHO!M,LJ l 
!~!TEST.GT.MAX) MAX= T~ST 

20 CONTINUE 
K=SIGMAO/MAX 



Kl=SINX*K 
K2=COSX*K 
·Tl=Tl+T 
T=K*Hl*H2/SQRT(Hl*Hl+H2*H2) 
REWIND 4 
CNT=CNT-1 
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WRITEl4l H1M,H2M,SINX,COSX,SIN2X,COS2X,NU,GAMMA,OMEGA,SIGMAO•Hl,H2 
1 ,K,Kl,K2,T,CNT,CNT1,Tl 

WRITE(4) RHO 
WRITE(4) P 
WRITE(4l U 
WRITE ( 4 l V 
\<JR IT E ( 4 l R 
1.JRITE(4l S 
WRITE(4) E 
WR I TE ( 4 l W 
REWIND 5 
CNT 2 = CNTl-CNT 
WRITE i3,2010l CNT2,Tl 
WRITE 1.3, 2 0 0 3 l 
DO 50 L=l,H2M 
Ll=H2M-L+l 

50 WRITEt3,2002l' (RHO(M,Lll, M=l,HlMl 
WRITE(:3,20041 
DO 51 .L=l ,H2M 
Ll=H2N-L+l 

51 WRITE!'3,2002l (PIM,Lll, M=l,HlMl 
WRITE!3,2005) 
DO 52 L=l,H2M 
Ll=H2M-L+l 

5 2 WR I T E ( 3 , 2 0 0 2 l ( U ( M , Ll l , M= 1 , H 1 M l 
WRITE{3,2006l 
DO 53 L=l,H2M 
Ll=H2M-L+1 

53 WRITEl3,2002l (V(M,Lll, M=l,HlMl 
WRITE!3,2007l 
DO 54 L=l,H2M 
Li=HZM-L+l 

54 WRITE(3,2002l !R!M,Lll, M=l,HlMl 
WRITE(3,2008) 
DO 55 l=l,H2M 
Ll=HZM-L+l 

55 WRITE!3,2002l (S!M,Lll, M=l,HlMl 
WR I T E 13 , 2 0 0 9 l 
DO 56 L=l,H2M 
Ll=H2M-L+.l 

56 ~RITE!3,2002l !E!M,Lll, M~l,HlMl 
WRITE ( 3 , .2 0 11 ) 
DO 57 L=l,H2M 
Ll=HZM-L+l 

57 WRITE(3,2002l (W!M,Lll,M=l,HlM) 
IF(CNT.EQ.O) CALL EXIT 
CALL PHASE (2) 

100 U(M,Ll=0.9E+6 
V(M,Ll=0.9E+6 
P!M,Ll=0.9E+6 
W(M,Ll=0.9E+6 
GO TO 10 

200 WRITEt3,200llM,L 
U(M,Ll=O.O 
V(M,Ll=O.O 
P!M,L)=O.O 



WIM,ll=O.O 
GO TO 10 
END 

MON$$ 

MON$$ 

EXEQ LI NKLOAD 
PHASEOPBLSTWV 
CALL BLSTWVl 
PHASE 
BASElBLSTWVl 
CALL BLSTWV2 
PHASE 
BASE1BLSTWV2 
CALL BLSH/V3 
PHASE 
BASE1BLSTWV3 
CALL BLSTWV4 
PHASE 
BASE1BLSTWV4 
CALL BLSTWV5 
PHASE 
BASE1BLSTWV5 
CALL BLSTWV6 
EXEQ OPBLSTWV,MJB 
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