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PREFACE

This analysis, undertaken as part of an active research contract
titled "The Interaction of a Blast Wave and the Base Pressure Region
of a Missile Re-Entering the Atmosphere," was completed under the
sponsorship of the‘Sandia Corporation, Albuquerque, New Mexico. The
area of analysis described in this dissertation concerns the transieﬁt
flow field which results when a plane blast wave intercepts a sta-
tionary cone at zero angle of attack. A companion dissertation, also
part of this current investigation, is being conducted by Mr. Lynn
Tyler and is concerned with the trénsient flow field properties re-
sulting from a plane shock wave emerging into both still and super-
sonic streams. Shock tube experiments are being conducted to verify
this analysis.

Future investigations relating.to this work are being conducted
by Mr. William Walker and Mr. Rogér Eaton, both Ph.D. candidates at
Okldhoma State University. Mr. Walker's concern will be the study of
blast waves interacting with turbulent jet mixing regions. Mf. Eaton
will perform studies to determine the various influencing parameters
affecting a missile as it emerges from a blast. Both of these investi-
gations should provide considerable knowledge of the mechanisms of
blast-missile interactions.

The author wishes fo take this opportunity to express his sincere

appreciation to his academic advisor, Dr. Glen W. Zumwalt, Associate
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Professor of Aerospace Engineering at Oklahoma State University, for
his genuine interest and suggestions. His guidance and instruction
have proven invaluable in the accomplishment of this work.

Appreciation is also extended to Professor L. J. Fila, Dr. J. A.
Wiebelt, and Dr. O. H. Hamilton, Ph.D. committee members, whose coopera-
tion and support during all phases of this research were of extreme
value.

Acknowledgment is also extended to the Air Force Institute of
Technology, United States Air Force, whose educational programs have
made this advanced study possible. 1In addition, gratitude is expressed
to the Air Force Weapons Laboratory (AFWL), Kirtland AFB, Albuquerque,
New Mexico, whose computing facilities were made available for this
work.

In accord with this opportunity, the author would be remiss if he
failed to mention the sacrifices made during the preparation of this
dissertation by his wife, Bobbie, and his two daughters, Patti and

Terri, to whom this paper is dedicated.
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CHAPTER I
INTRODUCTION

The problem concerning the transient flow field caused by a plane
blast wave intercepting a stationary blunt-based missile is one on which
a great deal of attention has recently been focused. Concern has in-
creased for the vulnerability of these missiles to structural failure up-
on flying through blast waves resulting from nuclear blasts. Such
blasts might occur from an anti-missile device.

In testing for structural or radiation effects, however, it is
often expedient to test the missile while it is stationary. This is
currently being performed both in shock-tube tests at various labora-
tories and by high-explosive blasts pastvstationary models. These tech-
niques provide excellent opportunities té evaluate the analytical methods
suggested in the literature, and to provide a strong foundation for ex-
tensions to more complex blast interaction problems.

The recent work of G. W. Zumwalt and H. H. Tang (38)1 was concerned
with the analysis of a blast wave after it had passed beyond the imme-
diate region of the body.‘ They considered only missiles at supersonic
speeds, having a highly evacuated base region and adjacent flow field
already formed. Thus, the blast became a disturbance on the flow field.

In Zumwalt and Tang's analysis, the very short time-pressure transients

1 () Refers to Selected Bibliography



in the base region due to wave reflections as the blast passes were

neglected. For the aerodynamicist, this is admissible since the ef-

fect on drag is small, The structural analyst, however, must know how

the forces are applied no matter how short their time duration.

Hence, the purpose of this study is to seek detailed knowledge of

the flow properties and wave patterns of a stationary blunt-based

conical vehicle during the transient blast passage leading to the

quasi-steady flow condition.

In conducting this study, the folloWing limitations are specified:

(a)

(b)

(c)

(d)

(e)

(£)
(8)
(h)

The blast wave is planar; that is, its radius of curvature
is extremely large in comparison to the conical body 1engtﬁ,
The blast wave approaches the conical body from the head-on
axial direction; that is, interception is at zero angle of
attack.

The velocity of propagatioﬁ of the blast wave is assumed
constant throughout; that is, decay of the wave strength is
negligible during passage around the body.

The flow behind the blast front is steady; that is, the de-
cay of the pressure field occurs very slowly compareq to
the rate of blast wave passage.

Body configurations are limited to axi-symmetric conical
shapes. Specifically, data is sought for a 13.347 degree
semi-apex angle conical body.

The conical body is considered stationary for all times.
Turbulent flow exists in the separated boundary layer.

Ionization and other real gas effects are not included in



the analysis.

Within the spectrum of these assumptions, the main objectives
include the establishment of techniques or methods of computing the
various physical parameters associated with the flow. Since the flow
is highly transient it is unsteady and contains both subsonic and
supersonic regions.

In order to determine the various physical and thermodynamic
parameters affecting the blast condition from the time the blast wave
intercepts the conical body nose ﬁntil the quasi-steady base flow con-
dition is established, it is feasible to consider the analysis in three
major phases:

Phase I: Blast wave diffraction over the stationary conical forebody.

Phase II: Interaction of the blast wave with the base region of the
conical body.

Phase ITI: Transition to a steady separated flow condition at the
base.

The Phase I problem will not, in this paper, be extended to in-
clude the transient conditions neaf the cone forebody which follow
the passage of the shock wave., However, a short exploratory work is in-
cluded to show the way to the solution of this phase of the phenomenon.
The main effort will be concentrated on the more troublesome base re-
gion; i.e., Phases II and III.

Although no exact system for solving this highly transient flow
problem can be found. in the literature, several methods and techniques
have been developed. Among the many existing theories or computation

methods are those of Whitham (35), Lighthill (18), Chisnell (4),

e



Bryson and Gross (1), Von Neumann and Richtmyer (31), Lax (12), Payne
(24), Ludloff and Friedman (19), Godunov (9), and Rusanov (27). Each
has a different approach so that the theories differ in their appli-~
cable cases,

These and numerous other authors (see Selected Bibliography)
have made significant contributions toward the understanding of shock
propagation problems and attendant phenomena. The methods they have
proposed, as well as other similar proposed methods, all share one
limitation: the difficulty in solving the non-linear equations of
motion reliably to describe the physical phenomena associatéd with a
highly transient flow field. Even with many simplifications, an accu-
rate determination of the time history of the expected flow properties
requires heavy reliance on numerical procedures. The methods proposed
in this analysis, however, attempt to utilize the most favorable com-
binations of these methods for the accomplishment of transient solu-
tions for all phases of the problem.

In reviewing the literature, the methods proposed by Whitham (35)
and Rusanov {27) appeared to possess tﬁe potential qualities necessary
to successfully apply to the existing flow problem. For the Phase I
condition, that is, diffraction ofia plane shock wave by the stationary
conical forebody, Whitham's (35) axi-symmetric similarity solution was
adopted. Associated with this soiution is the ability to predict the
locus of the shock triple point as well as the shape and curvature of
the Mach shock. TFor the Phase II solution, involving the interaction
of the blast wave with the base region of the conical body, Rusanov's

(27) finite difference technique was adapted. For Phase III, a mating



of the Phase II results with the steady-state base flow studies of
Zumwalt and Tang was required,

Details of Whitham's method and its specific application to the
cone of semi-apex angle of 13.347° aré presented in Chapter II. 1In
addition, Chapter II presents the experimental information from shock
tube tests provided by Sandia Corporation and compares this data with
results obtained from Whitham's technique. Chapter III outlines Rusanov's
numerical scheme and includes the extension of his method to the analysis
of flow conditions which occur at the base of the cone using Whitham's
shock ‘solution for the initial condition.

Various detailed computing procedures, computer programs, and
supporting information are included in appendices, figures, and tables,
The figures include shock propagations resulting from Whitham's solu-
tion, as well as numerous plots of the transient flow conditions ob-
tained 'as a result of the adaptation of Rusanov's technique to the coni-
cal body. Among these are plots showing lines of constant pressure,
constant velocity, and flow directions obtained for selected time planes
leading to the final quasi-steady flow conditions. From these conditions,
as diécuséed in Chapter III, the final base pressure analysis of Chap-
ter IV is obtainea. Finally, in Chapter V, a summary of conclusionsand

suggestions for continuing investigations is given.



CHAPTER II
BLAST-FOREBODY INTERACTION: WHITHAM'S THEORY AND TESTS

In this chapter, Whitham's technique. (35) for the approximate calcu-
lation of the diffraction of shock waves past stationary bodies is adopted
for the Phase I solution of the conical forebody. . Associated with this
solution is the ability to predict the locus of the shock triple point
as well as the shape and location of the Mach shock at any time, Since
this locus represents a Mach shock moving along the incident shock,
Whitham calls it a "shock-shock." As part of the description of a shock-
shock for a conical diffraction, it may be described as a discontinuity
in Mach number and shock slope. Specifically, a shock-shock locus may be
regarded as a straight line emanating from the cone apex and inclined
by -an angle x (shock-shock angle) with respect to the.conical axis of
symmetry. Details of Whitham's shock-shock relations are discussed in
Appendix C.

Essentially based on kinematic considerations, the theory predicts
only the shock wave pattern. It does not yield the pressure distribution
over the diffracted body, or the flow field following theé shock, nor does
it predict the shape or curvature of reflected shocks. éiven the shock
pattern, one must develop other techniques for the determination of
pressure distribution; for example, a numerical field-computation method

such as Rusanov's (27).



Initially, Whitham (34) investigated two-dimensional problems on
the interaction of a blast wave with various statlionary bodies, In these
investigations, disturbances to the flow are considered as wave propaga-
tions on the shocks. These wave propagations cause variations in the
Mach number and slope of the shock. In one particular investigation,
Whitham (34) compared his approximate calculation of a blast wave diffracted
past a stationary wedge with that calculated by Lighthill (17,18). 1In
Lighthill's analysis, the disturbed flow is regarded as a small perturba-
tion with respect to the uniform flows, separated by the blast wave,
Lighthill's conical flow techniques were later extended by Smyrl (28) to
a wedge traveling at supersonic speeds. Smyrl's closed form solution for
the pressure field behind an arbitrary plane shock was also applied to
thin, supersonic airfoils.

After ‘his two~-dimensional investigations, Whitham (35) extended his
approximate theory of shock dynamics to include general three-dimensional
problems. The extension is merely a mathematical manipulation of equa-
tions; the basic aséumptions remain the same. Generally, Whitham applied
his theories to cones of arbitrary semi-cone angles. Specifically, he
obtained results for a cone of 28.8° semi-apex angle.

Bryson and Gross (1) obtained experimental confirmation of Whitham's
axi-symmetric calculations for a cone. They also extended his technique
for blunt bodies and obtained experimentél confirmation for cylinders
and spheres.

In the present study, Whitham's axi-symmetric analytical results are
reproduced using the IBM 1410 electronic computer. A detailed discussion

of the techniques used, along with specific application to the cone of



semi-apex angle of l3.347°, is presented in the ‘following analysis.
Method Analysis: Phase I

For axi-symmetrical problems such as the diffraction of a plane
shock wave paét a cone, the flow may be described in terms of independent
variables based én purely kinematic relationships, fé establish these
relationships, Whitham considered the set of curves formed by the successive
posifions of a curved shock as it moves through a uniform medium. The
orthogonal "'trajectories'" or lines of progress of this set of curves,
termed rays, are introduced so as to form a general network of shock
positions and rays. This typical network can be considered as the basis
for orthogonal coordinates in the plane. Accordingly, the coordinates
(a, B) are introduced sugh that the shock positions are the curves a =
constant and the orthogonal trajectories are the curves B = constant.

In his analysis, Whitham considered a portibn-of the shock wave
moving along a narrow tube of neighboring rays. This was suggested by
the similarity of the propagation in a ray tube .to the propagation of a
shock in a tube with solid walls. 1In Appendix A, this analogy is discussed
with a view toward developing the appropriate mathematical relationships.
Whitham's basic theoretical assumption is that the Mach number, M, of the
shock wave and the area, A, of the ray tube are functionally related; that

is, A is a function of M only.
A= AQD . (D

This relationship was taken directly from results obtained from Chisnell (4),

and is further discussed in Appendix B.



To develop the relationships used in the analysis, consider the

cross section of & cone in the (x, r) plane.

Joccesswve Shoow Posrions
v

Shotk-Shecw,

In curvilinear coordinates, isolating the elemental region PQRS re-

sults in the following.

%Y
r
W -
3
AlMYdB
v
Al

i\

PL—dx~4

Note that the solid lines are -the constant o lines and represent

successive shock positions. The dotted lines are constant B lines and
represent the orthogonal trajectories, or rays, of the shock positions.
Further, the angle 6(a, B) is the angle of the tangent of the ray at a
fixed point from the axial direction. M, of course, is the shock Mach

number and is & function of o and R.

In this coordinate system, the choice of independent variables based
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on the shock positions and rays is formulated by describing the motion
of the shock as

cxt = a(x,r) . (2)

In this expression, t is the time at which the shock occupies a specific
position and Cy is the speed of sound in the undisturbed gas ahead of
the shock.

Geometrically, the above sketch yields the following relationships

in terms of M and 6 . That is,
cos 6 = ﬁi%;ﬁliﬁ and sin 6 = ﬂi%?ﬁliﬁ . (3)

Since a = a(x,r), it is possible to write these expressions as

- %90 _ cos 6 - %9a _-sin 6
% T %x M and o =37 ="y ) (4)

Taking the partial derivative of o with respect to r and the partial

derivative of o with respect to x, these expressions become

.
N _ B?u _ 9 lcos § and o - 32, - 9  {sin ®
Xr 9xX9r or M rx  9rdx 9x M ‘

However, for continuous functions,

320 _ 3%a

9X0or 9rox

Therefore, the expression above simply reduces to

0 sin 6 d cos O | _
9x M or M ’ (3)
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From his ray tube analogy (See Appendix A), Whitham obtained the

kinematic relations

(6)
| va|

In cylindrical coordinates, the first expression may be expanded as

| _12 | u o |u i
v | Va| = vl By (Va)r + % | A (Va)X =0 .

However, from the definition of gradient and from equation (4), the
relations

30, sin 6

ar M ’

30, cos 6

3% M

(Vu)X = and (Vu)r =

are obtained. Substituting these values into the equation above, the

expression reduces to

7. -MVu _ 8 {rsin 8 3 |cos 6
A or A ‘ X A

Since .r. is an independent variable, the resulting geometrical relation-

ship may be expressed as

d_ |r cos B 3 |r.sin 6 _
% | A *3w T a | 70 (7

In Whitham's cone solution, the only parameters prescribed are the
initial shock Mach number, MS, and the cone semi-apex angle, ec; there
is no length. Therefore, in the solution M and 8 must be functions of

the single variable n , where

n = tan"! r/x (8)



12

'
s

0f course, since A is functionally related to M , an expression in-
volviﬁg A and 6 as functions of n must also be obtained. Hence,
it is desired to write equations (5) and (7) in terms of the given variable.

This may be accomplished by differentiating equation (5) and simplifying

to give:
an _ : an 'l M - _ an . an | 36
cos © ot sin © ™ 'M-sa cos © ™ + sin e-g; -g; .

Differentiation of equation (8), gives

an _ =r an X
-—= and _— .
9x x24r? dr x24+1r2

SubStituting these two expressions and rearranging terms:

tann—tan;]_a_e__

L = tan(n-9) -2
M 3n 1+tan n tan gj an n an ’

Since the dependent variables are functions of a single independent

variable, this expression is written in its final form as

1dM _ . de
¥dn - tan(n-~8) an . (9)

Hence, equation (5) is shown to be written in terms of n , where M
and 6 are functions of n only.
Similarly, to obtain equation (7) in terms of n , it is.differentiated

and .simplified to

_laa_fae tan .!cot( -6)
A 9n an sin n cos n{l+tan n tan © 1] AN :
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Since A and 6 are functions of n only, the expression above, as

reduced from -equation (7), -is written in its final form as

1 dA M dAl 1 dM de tan 6
-.-—A--—-—= o o b — — —-—+

n AdM[ M dn |dn  sin n cos n(l+tan n tan ezJ

cot(n-6) . (10)

Thus, Whitham was able to express the changes in Mach number and
'shock wave area im the n~direction, for an element of the shock wave,
in terms of its n-direction and its direction of movement. Note that
for the undiffracted shock far from the body, 6 = 0 , and thus both
dM/dn and dA/dn equal zero.

As can be seen from the following sketch, a shock-shock separates

the uniform region from the disturbed region.

—fe- N = Mg
@‘5 es =0
/ Srock- Suotk,
UN\:og‘\,\ /
,\?E(‘:mu /

For the variable -angle, n , ‘equal to the shock-shock angle, x , the

equations L 1L =
(M 2_M 2) 2(A 2__A 2) 2
tan(6.-6 ) = L 2 S L
1 7s AM, + AM
171 s's
3 > (11)
and AS MlZ_MSZ
tan(x—@s) = ﬁ—- —
s A 2-A2
s 1
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must be satisfied (See Appendix C for details). Hence, a solution to

equations (9) and (10) is required such that at n =y ,

1 1
L L )
01,2-M 2) % _2-4,%)7
tan 8, = AM, + AN ’
171 s's
5 5 L > (12)
AS M1 —MS
tan n = — ’
Mg | 4 2.2
s 1 )
Similarly, at . the cone, 8 = ec and n = ec . These relations are

essentially the boundary conditions.
For strong shock waves, the A-M relation, developed in Appendix B

as n
A Ms
K;m o , where n = 5.0743 , (13)

is introduced into the calculations. The introduction of this relation-
ship allows -a solution for a given cone for all MS . To obtain such a
solution, the following procedure is utilized.

Designating M/Ms = R , then A/As =R ™. Since AM" 1is constant
across the shock-shock for any given shock, then differentiating At =

constant -yields

ALt M“%ﬁ- =0
Then
aa__ a™' an
dM M® M
such that
n=-2d48 (14)
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With this expression, ‘it is now possible to obtain a single equa-
tion for 6(n) from equations (9) and (10). Substituting equations (9)
and (14) into equation (10), then rearranging terms, the equation

de _ ‘tan 0 - (15)
- dn sin n cos n(l+tan n tan 9)(n tan?(n-6)-1)

is obtained.
In order to obtain a single expression for R(n), simply substitute
M = MSR, where MS is a known constant, into the left side of equation (9).

Then, ‘by differentiating the left side, it can be seen that

ZJH
sle
I
=l Lo
L

Therefore, equation (9) may be written in terms of R(n) and 6(n) as

L 4R _ a .
R dn - tan (n-98) an (16)

515

To complete the development of thek desired equations for a solution

for a given cone, equation (12), at n = x, becomes

1 1
2p 2_ um 2y7% 2_ A 2p —2my73
(Ms Rl Ms.) _(As AS”Rl )
tan 61 = -
(ASRl )(MSRl) + (ASMS)
and
A M R,2-M 2 g
S s 1 - s
tan y = o

s LA 2-A2R ~0
s s 1 '
These shock-shock relations reduce to final form in terms of R as

L .
2_ 1y% (1-p —2nyZ%
(R %= 1) 7 (1-R;™°%)

tan ©

1 (17)

1-n
1+ Rl

and

Ny

tan ¥ (18)
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From the solutions for 6(n) and R(n) , as-illustrated by equa-
tions (15) and (16), and the shock-shock relations of equation (17), the
position of the shock wave at any time can be -obtained. From similarity

relationships, Whitham considers o to have the form xf(n)/MS. Then

Q
]

1 a2 et _ cos 8
% Ms [f(n) sin“n f (n)] R

and -

1 . . _sin 6
. Ms sin n cos n £'(n) =T R

o

Combining these two expressions to solve for f(n) yields

cos 6 + sin 6 tan n

£(n) = R

Hence, at time t after the shock strikes the vertex of the cone,

xf() _ exxf(n)

a = cxt =5 -
S S
Therefore,
X _ 1 R
Ust - f(n) - cos 6 + sin 6 tan n . (19)
Also, since x = r/tan n ,
r 1 x
_r _ _ X . )
at fm N Ty e (20)

Thus, Whitham has established, through equations (19) and (20), the
position of the shock wave in terms of the parameter n V

Note that Whitham, from  the preceding analysis, has shown that
-x/ust, r/ust, X , and the distributions of 8 and R with n are

all independent of Ms. Hence, as specified for a given cone, all shock
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waves go through -exactly the same sequence of positions; the differences
in-uS affect only the time scale. This theory fails to predict the con-
ditions under which Mach reflection will not occur. For cone angles
greater than 50° , or for very weak shocks (MS < 1.5), regular reflection

may occur and the Whitham results would be invalid.
Computer Solution for Forebody Blast Passage

To validate the computer program of Whitham's method, conditions
were established ‘to verify his results for a 28.8° semi-apex angle cone.
Then the calculations were extended to include results for a 13.347°
semi-apex -angle cone. The equations for these solutions were programmed
in FORTRAN IV on -the IBM 1410 computer at Oklahoma State University.
‘The -detailed program is listed as Appendix D. Typical computer output
for the two -cones mentioned is ‘illustrated in Tables I and II. The
numerical integration of Whitham's first-order ordinary differential
equations was accomplished by using Euler's Forward Integration Method.

- To solve the problem, a value of Mach number ratio, Rl’ at the
‘shock-shock, was selected. Then the shock-shock relations of equations

(17) and (18) were solved to obtain the initial ray angle, and the

61,
shock-shock angle, ¥. These angles were taken at a point where ¥ equals
‘the ‘angle variable, n ; that is, at ngo= X o Using the initial values

of 61 and ny at Ny =X s the linear expression of equation (15) was
integrated numerically to obtain new values of ray angle, 6 , at successive
‘positions. Simultaneously, equation (16) was integrated for corresponding

values of R at the successive positions. The iteration procedure was

continued until 6 = n , at which time the common value was the cone
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semi-apex angle, ec . The position of the shock wave at any time was
then found directly from equations (19) and (20). Whitham especially
notes that the coordinate positions, as well as the other variables taken
with respect to n, are all independent of the shock Mach number, MS .

For the integration of equations (15) -and (16), Euler's method was
selected for two reasons, First, the procedure is a self-starting one;
that is, it depends only on the initial conditions in order to compute
the dependent variable approximation at the next increment of the inde-
pendent variable., Secondly, since no rapid changes in the slope of the
shock pattern was expected, the method, despite its limited accuracy,
was deemed -satisfactory.

- Euler's method is based on the approximation that the gradient of
the function at a specific point is the same ‘as the gradient at the next
succeeding point, Fach succeeding step depeﬁds only on the values at
the beginning of the step. Obviously, the increments must be taken very
small in order to achieve good overall accuracy. In the computer solu-
tion, an increment of .003 radians seemed to work well. Computer round-
off error, however, can limit the minimum usable value of this increment.

Referring to the computer printout results shown in Tables I and II,
the values enclosed in the printed box denote values which have been
linearly averaged to obtain the cone-surface solution. For example, the
enclosed values at the bottom of the ETXD and THXD columns denote the
values which have been averaged to obtain the cone semi-apex angle, ec
The symbols ETXD and THXD, as well as all other symbols used in the computer
program given in Appendix D, are defined in the computer nomenclature

tabulation following the tables.
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35.
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31.
31.
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ABLE I

COMPUTER CALCULATIONS FOR CONE OF 28.8 DEGREE SEMI-APEX ANGLE®*

ETXD

84954
67765
.50577
33388
16199
99010
81822
64633
47444
30255
13067
.95878
78689
61501
44312
27123
.09934
92746
75557
.58368
41179
.23991
.06802
89613
72424
.55236
38047

THXD

22.42310

©22.58502

22.74519
22,90379
23.06099
23.21694
23.37177
23.52563
23.67862
23.83086
23.98245
24,13351
24,28412
2443436
24.58434
24.73413

24.88381 |
25.03345 "

25.18314
25.33294
25,48293
25.63318

25.78375

25.93472
26.08614
26.23809
26.39064

ETD
THD

*For Nomenclature See Page 23

o e

35.84954

22.42310
1.20000

RX

.20000
.20080
.20158
.20234
.20306
.20376
. 20444
.20509
.20572
.20633
.20692
.20748
.20803
.20855
.20906
.20955
.21002
.21047
.21091
.21133
.21173
.21211
. 21247
.21282
.21315
.21347
.21376

e e e el =l = e R R N e e sl = = S Ry

DISTI1

.00000
.00000
.00146
.00293
.00441
.00589
.00738
.00887
.01037
.01188
.01339
.01491
.01644
.01797
.01951
.02106
.02262
.02418
.02574
.02732
.02890
.03049
.03208
.03368
.03529
.03691
.03853

DIST2

.72253
.72254
.71903
. 71553
.71205
.70858
.70511
.70166
.69821
.69478
.69136
.68794
.68453
.68114
.67775
67437
.67100
.66763
66428
.66093
.65759
.65426
.65094
64762
64431
.64101
.63772

19



31.20858 26.54385
31.03670 26.69779
30.86481 26.85252
30.69292 27.00812
30.52103 27.16465
30.34915 27.32219
30.17726 27.48080
30.00537 27.64057
29.83348 27.80155
29.66160 27.96384
29.48971 28.12751
29.31782 28.29265
29.14593 28.45933
28.97405 28.62764
28.80216 28.79768
28.63027 28.96955
Average = 28.7999°

TABLE T

el el el e = S S S e

(Continued)

.21404
.21431
.21455
.21478
.21499
.21519
.21536
.21552
.21566
.21578
.21588
.21596
.21602
.21607
.21609
.21609

.04017
.04181
;04345
.04511
.04677 -
.04845
.05013
.05181
.05351
.05522
.05693
.05866
.06039
.06213

.06389
.06565

N e el el el = S S e

Average=
1.06477

.63443
.63115
.62788
.62461
.62135
.61810
.61485
.61161
.60837
.60515
.60192
.59871
.59550
s59229

.58909
.58590

Average=
.587495

20
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25
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25.
25.
24,
_ 24,
24,
24,
24,
24,
23.
23.
23.
23.
23.

23

22.
22.

22

22.
22.
22.
21.

21

21.
21.
21.

20
20

TABLE TII
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COMPUTER CALCULATIONS FOR CONE OF 13.347 DEGREE SEMI-APEX ANGLE

ETXD

.32423
.15234
.98046
.80857
.63668
46479
29291
12102
94913
77724
60536
43347
26158
08970
91781
74592
57403
40215
23026
.05837
88648
71460
.54271
37082
19893
02705
85516
.68327
51139
33950
16761
.99572

.82384
20.

65195

OO ~NNNNINNN~NINNNYI~SN O OOV LT M TN T U

THXD

71434
.88251
.03666
.18037
.31595
44501
.56873
. 68800
.80350
.91580
.02535
.13251
.23759
.34088
44259
.54292
.64206
.74016
.83736
.93378
.02955
12476
.21950
.31388
40797
.50185
.59559
.68926
.78294
.87667
.97052
.06456
.15883
.25339

ETD
THD

FRRRPRRRPRRRRRRHEHEBPRRRRERREEHERPBPRRRRRRRRR &

26.32423
4.71434
~1.03728

RX

.03728
.03848
.03957
.04056
.04149
.04235
.04317
.04394
.04468
<04539
.04606
.04672
.04734
.04795
.04854
.04911
.04967
.05021
.05074
.05125
.05175
.05224
.05272
.05319
.05365
.05409
.05453
.05497
.05539
.05580
.05621
.05661
.05700
.05738

FRRRRRRRERRRRHEEHERPRRRRRERRRERRERBPRRRRBHRBRE RS A

DIST1

.00000
.00000
.00031
.00062
.00094
.00127
.00161
.00195
.00230
.00265
.00301
.00337
.00374
.00411
.00449
.00488
.00526
.00566
.00606
.00646
.00687
.00728
.00770
.00812
.00854
.00898
.00941
.00985
.01030
.01074
.01120
.01166
.01212
.01259

DIST2

49475
.49475
.49118
48761
.48406
.48052
.47698
47347
.46996
46646
46297
.45949
.45602
.45256
44911
44567
44224
.43882
.43540
.43200
.42860
.42521
.42183
.41845
.41509
.41173
.40838
.40504
.40170
.39837
.39505
.39173
.38843
.38512
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20. 8.34829
20.30817 8.44360
20.13629 8.53935
19.96440 8.63561
19.79251 8.73241
19.62062 8.82982
19.44874 8.92789
19.27685 9.02666
19.10496 9.12619
18.93307 9.22653
18.76119 9.32772
18.58930 9.42984
18.41741 9.53292
18.24553 9.63703
18.07364 9.74221
17.90175 9.84854
17.72986 9.95606
17.55798 10.06483
17.38609 10.17493
17.21420 10.28642
17.04231 10.39936
16.87043 10.51382
16.69854 10.62987
16.52665 10.74759
16.35476 10.86706
16.18288 10.98835
16.01099 11.11156
15.83910 11.23677
15.66722 11.36407
15.49533 11.49357
15.32344 11.62535
15.15155 11.75954
14.97967 11.89624
14.80778 12.03557
14.63589 12.17767
14.46400 12.32265
14,29212 12.47067 -
14.12023 12.62188
13.94834 12.77643
13.77645 12.93449
13.60457 13.09626
13.43268 13.26191
13.26079 13.43166 |
Average = 13.34676

TABLE II

T e S = S e e el e el el = e Sl i S R S ey

(Continued)

.05776
.05813
.05850
.05885
.05921
.05955
.05989
.06022
.06055
.06087
.06118
06149
.06179
.06208
.06237
.06265
.06293
.06320
.06346
.06371
.06396
.06420
06444
.06466
.06488
.06509
.06530
06549
.06568
.06585
.06602
.06618
.06632
.06646
.06658
.06670
.06680
.06688
.06696
.06701
.06706
.06708
.06709

.01306
.01353
.01402
.01450
.01499
.01549
.01599
.01649
.01700
.01752
.01804
.01857
.01910
.01963
.02017
.02072
.02127
.02183
.02239
.02296
.02353
.02411
.02470
.02529
.02589
.02650
.02711
.02772
.02835
.02898
.02962
.03027
.03092
.03158
.03225
.03292
.03361
.03430
.03500
.03571
.03643

.03716
.03790

P Tl R e e e T e R O = = N I e e N e N =l T S e el e e e e e
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.38183
.37854
.37526
.37198
.36871
.36545
.36219
.35893
.35569
.35244
.34921
.34597
.34275
.33953
.33631
.33310
.32989
.32669
.32349
.32030
.31711
.31393
.31075
.30757
.30440
.30123
.29807
.29491
.29175
.28859
. 28544
.28230
.27916
.27601
.27288
.26974
.26661
.26349
.26036
.25724
.25412

Average=
1.03753

.25100
.24788

Average=

.24944
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COMPUTER NOMENCLATURE

Symbols Used Corresponding

in
Computer Program Definitions

R R, = Ml/MS (initial value)
P n = 5.0743
A R,2 -1
B I
c 1+ R (Rlz_l)%(l_Rl-zn)*!
TH el = tan~ —
v 1+ R0
R,2-1 7%
ET n = tan"! 1
1-R ~%m
THX variable 6 (radians)
ETX variable n (radians)
RX variable R along Mach shock
TANET tan n = sin n/cos n
TANTH tan 6 = sin 6/cos 6
E sinn ¢ cos n
F l+ tann * tan 6
TANDF tan(n-6) = sin(n-06)/cos(n-9)
G n tan®(n-6)-1
DTH de/dn = tan 6/sin n cos n(l+tan n tan 6) =
(n tan?(n-6)-1)
DR dR/dn = R tan(n-6) d6/dn
ETD n (degrees) |
THD 6 (degrees
ETXD variable n (degrees)
THXD variable & (degrees)
DIST1 x/ust=R/cos g+sin 6-tan n(Shock Position-X direction)

DIST2 r/ust=(x/ust)tan n(Shock Position~Y direction)
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Shock Tube Pressure Tests

An experimental check of tﬁe preceding analysis was provided
under the sponsorship of Sandia Corporation, Albuquerque, New Mexicbib
For this experimental program, a series of tests to measure conical.
model pressures were run at the six-foot shock tube facility of the
Air Force Weapons Laboratory (AFWL) at Kirtland Air Force Base. The
results were published in Sandia Corporation Field Testing Data Reduc-.
tion Reports, Series 172, and are as shown in Table III. The experi-
mental data which resulted from these tests included pressure—timeb
histories of blast wave passage as well as blast wave photographs.

Randall (25) has provided an approximate analysis for the fore-
body pressure responses by using steady flow, second-order, supersonic
cone theory. His quasi-steady approach.to the transient flow re-

sulted in excellent predictions for the forebody pressure distribu-

tions for comparison with the experimental data.
Test Facility

The AFWL shock -tube test facility and installation arrangement
for these tests are shown schematically as part of Figure 1. As seen
in this figure, gauges Pl and P2 were installed to record a stagna-
tion and a static pressure measurement, respectively, near the -tube
exit. These gauges enabled the flow conditions for the tests to be
defined. 1In order to record the shock waye displacement-time history
in the shock .tube, three additional static pressure gauges, synchro-
nized in time, were mounted in the combustion chamber and at two

shock -tube stations. .



TABLE III

TEST INFORMATION FOR PRESSURE TESTS

Ambient
Run-Ne. Angle of Attack Ambient Pressure Temperature
172-1 0 %24.380 inches Hg 61°F
172-2 5 24,288 : 58
172-3 10 24,262 68
172-4 20 24.390 62
172-5 30 24,378 74
172-6 40 24,540 62
172-7 50 24.436 74
172-8 0 24.490 56
172-9 10 24,387 76
172-10 40 24,370 60

* Ambient Pressure was not available for this Run. A pressure of
24,380 "Hg was estimated from standard atmosphere tables for the
test altitude at Albuquerque.



SHOCK TUBE

INSTRUMENTATION TRAILER

CABLE Py , SIGNAL _ TAPE ,
THROUGH CONDIT. }-:1 RECORDER |.
CONDUIT _ _ _ e ©
STAND , . / e L
7 JUNCTION BOX : : i
o 7 E‘ N 1r_l(/—_ - U
TRANSDUCER : BYTREX SYSTEM AMPLIFIER TAPE RECORDER
CAL.
100' 4 CONDUCTOR SHIELDED CABLE RES.
TRANSDUCERS ARE INSULATED
FROM GROUND ON THE MODEL
TRANSDUCER SUSQUEHANA SYSTEM "EMITTER _FOLLOWER TAPE_RECORDER
or 100’ MICRODOT CABLE o o
o G
NOTE: ¢, ]-
S16 GEN CONNECTED TO SIGMAL GENERATOR
EMITTER FOLLOWER FOR
CALIBRATION.
Cx = Crransoucer ¥ CeapLe

Fig.| SCHEMATIC OF EXPER!MENTAL TEST FACILITY AND INSTRUMENTATION
SYSTEM FOR PRESSURE TESTS.

9T



27

The facility consists of short flanged sections of six-foot diam-
eter pipe bolted together to form a tube approximately 246 feet long.
The tube is open to the atmosphere at the downstream end, A shock
wave is generated by the ‘detonation of primacord at the upstream end
of the tube. During this series of tests, the maximum charge of 728
feet of 400 grain/foot primacord (approximately 41 pounds) was loaded
over the first~20vfeet‘of the tube. This produced peak shock over-
pressures of approximately 65 psi and a shock velocity of about 2800
feet per second - at the open end 'of the tube. Holt and Crist(10) de-

scribe this facility in greater detail.
Test Model

The model tested consisted of a 13.347° half—angle cone with a
spherical base formed by two tangent arcs. Six forebody pressures
and three base pressures were recorded during the blast passage. The
model configuration with dimensions and pressure locations is shown-
schematically in Figure 2. For the tests, the model was rigidly at-
tached to a sting and support structure which was bolted to rails in-
stalled in the concrete pad at the tube exit. Model orientatien was
determined by a series of angle blocks installed between the model and
sting, which resulted -in discrete model pitch angles of 0, 5, 10, 20,
30, 40, and 50 degrees. Only the zero degree pitch angle is analyzed
in this study; however, Randall considered all pitch angles. Figure 3
shows photographs of the shock passing the cone. The pressure-~time
history for the three transducers at the base of the cone is presented>

in Figure 4,
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'Fig.2 CONICAL MODEL CONFIGURATION FOR PRESSURE TESTS
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Fig. 3 Typical Test Photograph of Plane Shock Wave
Passing Stationary Conical Model
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Test Analysis and Results

In a preceding section, Whitham's theory was analyzed with a view
toward establishing the appropriate solution for the Phase I shock dif-
fraction problem. 1In this section, however, the experimental results
of the shock tube tests are compared with Whitham's approximate tech-.
nique. Although information is specifically sought for the 13,347o
semi-apex angle cone, application may be made to cones of various semi-
cone angles.

The analysis presented herein is based-on a self-similar solution;
that is, the size of the shock interaction configuration changes with
time but not its shape. Since the period of time taken for a blast wave:
to pass over the forebody is relatively small, quasi-steady state condi-
tions are assumed. .This forms the basis for all calculations. The ini-
tial starting time, that is, time equals zero, occurs at the moment the
blast wave intercepts the cone apex. The interaction begins with the
head-on collision of the blast wave at the cone apex.

From the experimental data, the distance along the cone surface
from pressure gauge P3 to pressure gauge P4'was_6.622 inches. The re-=
corded true time for the shock to travel the distance from gauges P2
to P3 was determined to be 166 microseconds, :and from gauges P2 to P4
was similarly recorded to be 337 microseconds. Hence, the true time for .
the shock wave to traverse the distance along the conical surface from
gauges P3 to P4 was 171 microseconds. Therefore, a shock velocity, uc,‘
of approximately 3227 feet per second was produced over the conical’ |

model surface.



Although the ambient pressure was not available for this run-
(See Table III), the ambient temperature was recorded as 61° Fahren-
heit. At this temperature, the velocity of sound was calculated to
be-1118.9 feet per second. Since the shock Mach number is a function
of the shock velocity and the speed of sound in the medium, the shock
Mach number, Mc’ at the conical surface was calculated to be 2.884,
This value is assumed constant along the surface of the cone for all
shock positions -during the forebody blast passage.

Due to the manmer in which the various pressure gauges and re-
cording instruments were located and mounted for the experimental
shock tube tests, minor difficulties were encountered in determining
the actual shock velocity and strength before it intercepted the con-

ical model. For example, the distance measurement between .gauges

used for the determination of the incident shock speed was not avail-
able in the data. Further, the quality of the test photographs (See

Figure 3) did not permit exact locations of the shock wave to be de-
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termined for all times. Therefore, in order to use the test program\'v

data, it became necessary to rely upon an assumption of similarity of
the wave pattern for determination of the incident -shock properties
and the attendant flow phenomenon.

To best illustrate this similarity relationship, consider the
following sketch. 1In this representation the incident shock is as-
sumed to be located a distance, ds, from .the cone -apex measured along
the axis of symmetry. For simplicity, this distance was specified as
unity. The Mach shock, MC, is assumed to be located a distance, dC.

from the cone apex measured along the surface of the cone. Hence,



Ms

luipeuT Suoce

MACH SHocw

Sc

ds %

the similarity yelationship states that the ratio of the shock Mach
number, Mc’ along the surface of the cone, and the incident shock
Mach number, MS; is proportional to the ratio of their respeetive

distances measured from the cone apex. That is,

Other physical dimensions relating to the sketch may be listed in the

following manner:

d=4d /fcos 8 =.1.02776
s c -

y = dS tan-eC =.0.23725

x=ytan ¢ = 0.05629

x'= x/cos 'ec =‘0f05785

d =d + x' = 1,08561
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Inserting the appropriate values into the similarity relationship,
the incident shock Mach number, Ms,may be obtained as 2.657. This
results in an experimental Mach number ratio, R(exp), of 1.0856.

Using this experimentally calculated value of MS and the calcu-
lated value of the Mach number ratio, R, at the shock-shock (R is as-
sumed constant along the Mach shock), the Mach number, M, at the
shock-shock is obtained:. From this wvalue of M, using normal shock
tables, the pressure, density, velocity, and other related properties
across the shock may be determined.

In the report by Randall, the experimental incident shock wave
velocity was estimated to be about 2800 feet per second. It was
pointed out, however, that a consistently accurate measurement of .the
static pressure variation at the tube exit was extremely difficult,
especially during passage of the shock front. The pressure response
at this station apparently included a slight vibration of the experi-
mental apparatus. As a result, it was necessary to use approximate
values. Instrument response times undoubtedly contributed to these
inaccuracies, at least to some degree. However, it is judged that
Randall's value shows good correspondence with the experimental values
obtained by the present analysis.

In comparing the results of these experimental calculations with
that of Whitham, it is seen that remarkable agreement ensues, espe-
cially for the relationship of R-at the surface of the cone. From the
computer calculations of Whitham's theory as shown for point B at the

cone surface in Table IV, the value of R(theory) is 1.067.
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It can be seen that the experimental value of R is slightly
larger than the value predicted by theory. However, agreement exists
within 1.7 percent between Whitham's theoretical calculations and the
experimental results as deduced above.

According to Whitham, the Mach shock is almost a straight line,
except for very small semi-apex angles. Actually, a slight curvature
occurs ﬁhich tends in the manner shown in Figures 5 and 6. These fig-
ures illustrate the calculated position and shape of the shock wave
. obtained from the computer output for two specific cones. 1In addition
to the 13.347° semi—apexlangle cone, several other semi~cone angles,
along with their corresponding Mach number ratios, were considered.
Several of the shock configurations obtained fromlthese;calculétions
wefe plotted and are presented in Figure 7. Note fhat in this figure
an expended scale along the abscissa was used to facilitate a.compari-
son 6f the variations in shock curvature for the vérious cones and
Mach numb;r ratios. In Figure 8, plots of various Mach number ratios,
R, versus shock-shock angle, X, semi~cone angle, Bc, and ray angle, 6,
are shown. These curves illustrate the relative relationships pre-
dicted by,Fhe theory for the variables indicated,

To defermine the thermodynamic flow properties in the uniform
flow'behing the moving shoék, a more complex procedure was employed.
Since the~§1ast is considered to be moving relative to a fixed coor=-
dinate system, the flow conditions arevtransient. In this physical
plane, the total energy is not constant acfoss the shock; therefore
it becomes convenient to treat such a problem using a transformation

of coordinates to a new transform plane having shock-fixed coordinates.
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Then, after finding the desired flow properties; re-transform}ié{"?déjto.
the physical plane. |

The calculations used to determine the Mach number of the incident
shock implied a stationary shock in the transform plane. In this trans-
form plane the blast wave 1s considered to be a normal shock wave. As
such, the Rankine-Hugoniot relations were used to determine the unknown
physical quantities in the flow field. For purposes of this analysis,
the qhantities in the transform plane are designated by a "prime" sym-
bol, and quantities in the physical plane are designated without a
"prime." Of specific note in this transformation, the stream properties
remain invariant but stagnation properties change.

If the physical state of the quantities in front of the shock are
denoted with an x subscript, the shock with an .8 subscript, and

those behind the shock denoted with a y subscript, the following re-

lationships are established.

Physical Plane (Mowving Shock) Transform Plane (Stationary Shock)
u u '=0
s s
—
—— R e
u u=0 u'=u-u u'=u
y x y sy x s
M M=20 M M
y X y X
= '= =
Py Py= Poy Py'= Py '™ Py
= ! '=
Py Py Pox Poy Pye'= Py
p T=T T '=T p..'
oy X 0X: y y ox
T ‘=T ! T '=T
y oy ox X x
T T 1
oy ox

T
oy ox
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The arrows indicate flow direction relative to the respective
coordinate systems. Note that the relationships in the transform
pl#ne are derived by superimposing an identical flow condition moving
in a direction opposite to that in the physiéal-plane. From the ac-
tual calculations; as shown in Appendix E, the flow Mach number be-
hind the incident shock wave was 1.25.

For the_13.‘3470 semi-apex angle cone, the property values, ob-
tained by using this technique, are tabulated in Table IV for 25
selected Mach numbers at points along.the Mach shock. 1In this table,
point A identifies_thé‘point at the intersection of the incident
shock and the Mach shock. Point B identifies the point where the
Mach shock intersects the surface of the cone:. The remaining 23
points correspond to selected intermediate shock Mach numbers along
the Mach shock which were obtained from the iterative computer calcu-

lations. The relative locations of these points may be seen in Figure 9.
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CHAPTER III

BLAST-BASE REGION INTERACTION: RUSANOV'S METHOD

When solving an inviscid transient flow problem, such as encourntered
in this Phase II analysis, the solution leads to many -mathematical com-
plexities, The systems of partial differential equations which describe
the complicated flow field are non-linear and cannot be integrated in
closed form. Consequently, approximate methods of solution must be utilized,
One of the most common and useful methods employed in the approximate inte-
gration of equations of this type, and which is of concern here, involves
replacing the terms of the partial differential equations by their equiva-
lent numerical relationships. Although many techniques have been devised
‘to obtain such solutions,; some of which are extremely ingenious from a
practical point of view, the task of solving these equations still remains
difficult.

Many authors have made significant contributions relating to
approaches to the problem. Von Newmann and Richtmyer (31), for example,
established an analysis for the stability of numerical calculations.

In addition, they found that the inherent instabilities of these calcu-

"artificial viscosity'" terms are intro-~

lations are nearly eliminated if
duced. Successively, Lax-(12), through modification of the time deriva-

tive in the finite difference technique, showed that these equations re-

main stable even without .these pseudo~viscosity terms.

44
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In contrast to Lax, Ludloff and Friedman (19) pointed out the ad-
vantages of leaving these equations in their original time-dependent
form, that is, without modifying the time derivatives. To this end,
they suggested solving these equations, whenever possible, not by‘re—
ducing the number of independent variables through some transformation
proceSs, but by explicitly taking into account the non~steadiness of
the problem. Later, Ludloff and Friedman formulated a two~dimensional
solution to solve the problem of the reflection and diffraction of
strong shocks around corners of arbitrary finite angles. They devised
two methods, both of which involved finite difference schemes applicable
to many non-linear problems.

Payne (24) used the finite difference technique of Lax to determine
the flow behind converging cylindrical shocks over a large range of Mach
numbers. In particular, his description of the increase in strength of
converging shocks was shown to be in excellent agreement with the earlier
studies of Chisnell (4). Payne's method introduced an artificial diffusion
term which caused the pressure at the axis of symmetry to remain finite.
However, a reflected diverging shock was obtained. Later, Chisnell ob-
tained a higher order of approximation to this same problem to include
re-reflected waves in his analysis.

Rusanov (27), ‘in modifying the concepts of Lax's one-dimensional
analysis, included solutions for both plane and axi-symmetric flows.

His finite difference scheme, which is of special interest here, was
applied successfully to the shock diffraction problem past the base of

a cylinder. The scheme is constructed in such a way that discontinuities,
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such és those caused by moving shock waves, can be included in the calcu-
lations. The discontinuities are actually considered as steep gradients
in the physical parameters.  Thus, the method permits calculations to

be performed "through'" discontinuities in the flow.

Rusanov's method -utilizes the Eulerian system of coordinates which
focuses attention on a fixed point in space. It specifies, at each
instant of time, the:physical paraﬁeters of the fluid particle which
happens to-occupy that point at that specific instant of time. Thus,
the physical properties become functions of both time .and location.

For the Phase II solution of this problem, that is, the interaction
of the blast wave with the base region of a conical body, Rusanov's finite
difference technique was utilized. An extension of his technique was
accomplished to obtain the transient flow properties and the shock
patterns from the time of blast-base interaction to the quasi-steady
flow condition. Application of these concepts, as shown later in this

chapter, yields excellent representations of the physical flow phenomena.
- Method Analysis: Phase II

To describe the motion of the non-steady compressible flow as exist-
ing in this problem, an ideal -gas with adiabatic index - y is assumed.
The non-linear partial differential equations of motion are written in
divergent form; that is, the coefficients of the derivatives are all
equal to unity. This form of the equations ensures that the conservation
laws are satisfied; hence, the unknown functions depend on the wvariables

describing the state of the physical system.
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The governing -equations, in their divergent forms, are of the form

X y
Jf oF oF
7t T Ty +¥=0 . (21)

This expression represents  the system of conservation equations which
is to be satisfied numerically in order to solve for the various com-

‘ponents -of -the.vectors f,'Fx3 Fy, and ¥ .  The components of these four

‘vectors -are

. _ - . 2 r . )
.o r» & ptru I su & o r
- ls [ 1 rv ’ "1 ptsu ’ Ty s ’
e. ' (et+p)u| - (etp)v et+p
L L J N J

where v= 1 when there is axial symmetry.. In complete form, the con-
servation equations may be written .as:

Conservation of mass:

3 , 3w | 3(pv)  wvp _ 4

It . 9x dy y ’ (22)
Conservation of two momentum components:
dr , 3(ptru) , 3(sw) , wvr _ 4 (x-direction) (23)
ot 90X ay y :
3s 3.(xv) 3 (ptsv) VVSs L. .
T + cy. + 5y + — 0 . (y-direction) (24)
Conservation of energy:
3e | 3{(etplu} a{(etp)v} | vv(etp) _
5T + x + 5y + y =0 s (2?)
where r, s, and e are defined as
24,2
r = pu, s = oV, apd e .= o (u+v7) + B . (26)

2 -1
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If the vector ¢  1is introduced such that

[

, with w = Vu?+ v2 and ¢ = /%? s (27)

© ¥ 4

then the components of ¢ may be uniquely expressed in terms of the

vector components of f as
r s
u= osvey , and p = (y=1) |e - TR . (28)

The dependence of the variables of ¢ on the various parameters of the
problem is of special interest in this solution., Therefore, it is con-
venient to consider the equations in non~dimensional form. The dimen-
sionalization technique used to satisfy thié requirement is fully des-
-~cribed in-‘a later section-of.this chapter.

Essentially, the numerical solution for -equations (22)»to.(25) con-
sists of obtaining the numerical Value of each unknown integral at
pivotal points spaced in the (x,y,t) plane. A numerical network of

pivotal points is established such that Ax=h;, Ay=hj,, and At= T.

Designating
h = /QIE;E;Eﬁ , where h) = h éos X and
h, = h sin x ,
and
ki=n T/hi , where k; = k sin x and

k) =k cos x -
then it follows that

A‘llz'l‘ h22. -
k = Vki%+ kp? = ———— 1 ., (29)

hihp
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This expression is used to obtain the incremental time values for
successive time planes :0f the entire flow region.

In the numerical analysis, the subscript (m,%) is used to denote -
‘the pivotal point at which the derivative is to be evaluated. The
~-gubscripts (m+l,4%) and (m=-1,%2) denote the pivotal points to the right
and to-tﬁe left ‘of (m,R), respectively., Similarly, the subscripts (m,%+1)
and (m,%-1) denote the pivotal points above.and below (m,%), respectively.
The superscript values denote the aggregate'of pivotal points to be evalu~-
ated for a specific time plane. For example, the superscripts n and
n+l denote .the'nth and the (n+l)th time planes, respectively,

The value of a quantity o at an interpolation point with coordinates

(mh;,%hy,nt) will be denoted by ol

SR Similarly, the value of a quantity
3

B at an interpolation point with the same coordinates will be denoted

by 83 %" These quantities are -defined as
b
n n . 2
am,l wk(w+c)m’2 sin“ ¥ R
and a 0
- 2
Bm,l wk(w+c)m,z cos“ x .

The parameter w is related to k and (W+C); . by the stability con-
b

dition given in Reference 27 as
k2 | (wte) T 2< kGw+e)d < 1 (30)
i my 2| =Y m,L — g

which must be satisfied for all (m,%). The quantity

n n-
om’2 —.k(w+c)mil

is the Courant number at the point in question.
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Designating

n n
0 =max o s
o} m, L
m, 4

then stability é¢ondition, equation (30), is satisfied if for all n

n n 1 '
o, o Suws . (31

g

2 1 and o]

o B

The value of o, may be established for all time planes before
the calculations are started. Then, once the calculations have started,

the value of k for each time plane may be determined from the equation

k" = co/max(w+c)n

. (32)
m, 2 m, %

Then, the value of % for each time plane can be calculated from
equation(29).‘ In computer computations, the walue of k" for each

time plane may be automatically selected. This, Rusanov has indicated,
is then sufficient for the constant parameters of the scheme, o and w ,
to satisfy the stability criteria of equation (31).

To evaluate the space derivatives of equation (21), it is most con-
venient to choose the central difference scheme involving pivotal points
symmetrically located with respect to the central (m,%) point. These
may ‘be obtained by-a Taylor's series expansion of the unknown function
about the pivotal point. The Taylor's series expansion of F* (x+A%)

about x 1is given by

F(xhix) = Fr(x) + (B0 F () + —(—33‘!—)—2'F’;x(x) ...
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where F?n)(x) stands for d"F /dx" . Applying this equation to the

expansions ‘at (x+ax) and at (x-Ax) for the existing grid:

X X X (Ax)? x
= + —-— e e s e e
Fm+l,2 Fm,ﬁ (AX)Fx(m,2)+ 2! Fxx(m,ﬁ) +
X X X (1x)2 _x
Fm—l,2~ Fm,l (AX)Fx(m,2)+ 2! Fxx(m,%) oot .

Neglecting higher order terms, an approximate expression for Fz(m %)
1

is immediately obtained by subtraction as

X P = Z(AX)F:

Fotl, 2™ Too1,g

(m, %)

Therefore, the approximate expression for the first derivative of the

term BFX/BX in equation (21) is

X _ 1 X X
Fx(m,l) © 2(6x) [Fm+1,z Fm~l,é] ’ (33)

A Taylor's series expansion of Fy(y+Ay) about y will yield a
similar expression for the term aFy/ay in equation (21). The resulting

expression is easily shown to be

n
y 1wy W
Fy(m,ﬁ) 2(ay) er,z+1 Fm,z—l] . (34)

Thus, equations (33) and (34) are obtained which satisfy the general
space-derivative approximations for the numerical scheme.

For the general time-derivative approximation, Rusanov introduced
an averaging technique similar to the one proposed by Lax. However,
his technique is somewhat more complicated in that it 'weighs" the

pivotal values according to the respective distances of the neighboring
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ences in addition to "dissipative' coefficients.
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for the time-derivative, which involves the general dependent variable

f , may be written explicitly as

3f _ 1.

t At

n+1
{ m,ﬁn

n
m,

f

11 . x X
2 2[¢m+1/2, p” S

where the "dissipative'" coefficients are defined as

Furthermore,

N N N e

fm+l,£_ fm,

an

Combining the finite difference schemes of equations (33), (34),

and (35), and substituting them for their corresponding differential

terms in equation (21), the total equation becomes

n
B fm,£

1
2 (Ax)

i
2

g

m+l,2—

X
- 9
L m-%s, %

X In
Fm—l,Q] *

&

- ]
m, 4+ © }

m, 4-%

N S y
2(Ay) [Fm,SL-H— F

n, N
m,l—ii + Wm,ﬁ—

Hence, the technique combines both forward and central differ-

The difference scheme



53

Multiplying through by At , and solving for fn+l yields
H

m, %

ntl_ .n n _ _At X X n_ _At V4 By n
fm,Z fm,Z bt Wm,% 2(Ax) [%m+l,2 Fm-l,é} 2 (Ax) [%m,2+l Fm,%—i}

1 .x X y y .
+ = - -
2 [®m+1/2 W (Dm—l/g s JZ,+ q)m s q)m . 2-1/;}

1 1

written in its final form as

fn+l=‘fn o YR Ei X - n_ Eg_';y -7 n
m,% “m,R m,% 2 mt+l,2 m-l,2 2 m,8+l "m,R-1

X _ X v .y
[¢m+%,2 on-35, 87 O, 0 (Dm’g,_l/J : (36)

Since At/Ax = t/h, = k., and At/Ay = t/h,= k,, this equation may be

Thus, a finite difference equation is established which is used as
the general flow field equation for the problem. This expression is
applied to the conservation equatioens, with p, r, s, and e as the un-

known variables, in the numerical iteration.
Boundary Conditions

Many of the difficulties encountered in solving a transient flow
field problem occur, not.only in solving the conservation equations, but
in satisfying the boundary conditions. The boundary conditions are
established by the physical geometry of the problem and must satisfy
all conservation requirements. Consequently, they must be handled
discretely. |

In Rusanov's analysis, the flow is considered to take place in
either finite or infinite regions bounded by motionless rigid walls.

Since flow discontinuities are not considered in the computations, the
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boundaries are restricted to the axis of symmetry and the solid walls.
The walls are all considered to be rectilinear and pass through the
poinfs of the net either parallel to the coordinate axes or along the
diagonals of the matrix. Thus, the equations for calculating f:’z
will differ, depending on whether the pivotal points are inside the
flow'région or on its boundary. 'Equation (36) has been established for
all interior flow conditions; hence, modification of this equation is
required to establish valid boundary conditionms.

To apply boundary conditions to the finite difference scheme of
equation (36), the row of . pivotal points lying parallel to the kfaxis was
considered, where the region of flow is above the wall, that is, at a

larger y value than the wall., The boundary equation, written explicitly,

n+l, n n kl X X n y n
o e " Ym, 3 [Fm+1,;f Fm—-l,;' ~ Ky | T, 041
-+ .:.':. q)x - Q)x . (37)
2 | 'mHs,2  m-¥5, 2

Note that in this scheme, only the influence of neighboring points is

is

considered. Although the lattice of points is assumed to be extended
one row below the boundary wall, novvariables are computed there. Thus,
the effect of this row is

Following this same procedure, if the region of flow is below (at

a smaller y than) the wall, the boundafy equation then becomes

n+l_ .n n y n
f, 8™ fma T l:m+1 2 Foo ;] +ky [F z-;l
1 o
2[m+15 L m-g,yl ' (38)
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From the physical boundary conditions, the value of the third component
of the vector fgfi , that is, (pv);Ti » 1s equal to zero and does not
need to be calculated. However, the remaining three components are
required.

For pivotal points lying on a wall parallel to the y-axis, where

the region of flow is to the right of the wall, the boundary equation

is written -explicitly as

- k
- X n__2|.y Y n
o™ T, T, 1 [Fm+l,&» 2 [%m,2+l Fm,Z—;]
Jlly L : (39)
2 | my+s  m,i-%

Similarly, for flow to the left of the wall the boundary equation

becomes

n+l n n Gﬂx m-n k2 7‘y v n
N S kl'{Fm—l,%‘ =72 Fn, k1 Foye-l

2 i@y - . (40)

In equations (39) and (40), the value of the second component of the
+ A

vector f- L , that is, (pu)n+l , 1s equal to zero and does not need to
m, R m, 4%

be calculated.

The pivotal points which lie on the axis of symmetry, however, must
be handled in a slightly different manner. As before, the lattice of
points is extended one row below the axis of symmetry but no variables
are computed there. Instead, the variables in this row are set equal

to their calculated values one row above the axis except the signs of

the vertical velocity terms are reversed. The purpose of this change
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is to allow for the convergence of ‘the moving shock wave at the axis.

The finite difference equation may therefore be written explicitly in

the form
n+1 n “n kl x X 1n In
f = f -1 VY - == IF - F ]
m,0 m,0 m,0 2 {_m+l,o m—l,?- - k2 [%Z’L
L ..X . , -
+ 3 ®m+%’o @m_%,o+ 2 @m,% , (41)

~

where the quantity v/y in Wg o is taken at the point (m,1). From
?

physical considerations, note also that on the axis of symmetry

Thus, boundary equations for the solid walls and the axis of
-symmetry of the flow problem are established.

Since there is a series of pivotal points which lie on the surface
of the cone and which pass along the diagonal of the points of the
matrix, the equation for f;Ti must be obtained by rotating the (x,y)
coordinates through an angle X . Equation (21)is . .transformed to
coordinates orthogonal to the wall and then replaced by the differenge

~

. . . . +1
equations. Explicitly, the intermediate vector £ is then

m, L
written as
jf‘n+l= En . ;n B kl cos X ix _ %x n
m, L m, L m, L 2 mt+l, 4+1 m-1,2-1
- = y 2 v "y 1 2 7 n
k {Fm’2+lcos X + Fm-l,l sin Xq]
cos? ¥

o* - o
s, 1m0k

(42)
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The quantities on the right side of the equation, with the n sign, are
computed in the same manner as the corresponding quantities without this

sign. However, u and v are replaced everywhere by

u=ucos X +vsin X and v = v cos X - u sin X .
The vector f;+i is obtained, after f$+; has been calculated, from
- : L]

the relations.

n+l _ "n+l . rn+l _';n+l cos
P, " Pmye ? Tmye T Tm, e X o
n+l _ en+l sn+l - ;n+l sin »
m, % m,8 > “m,i m, R X s
where s;+i = 0 dis a boundary condition.
b

In order to use the numerical boundary equations thus far proposed,
the flow matrix must include a large number of points. This is to preclude
reflected boundary influences from propagating back into the flow field
during the number of time increments.used in the calculations. Physically,
these propagations may be overcome by locating the boundaries at infinity.
Numerically, however, this is hardly possible due to the limited memory
. capacities of present computers. Therefore, some means to allow the
shock to 'pass out through" the exterior boundaries must be devised. In
the calculations for this analysis, several procedures were attempted,
none of which were ideal. One of these methods, however, proved.satis-
factory and was used throughout. ' For the upper boundary, conditions were
specified which assigned the pivotal points the same values which were
calculated in the row of points just below the boundary during the pre-

vious time plane. This created an overlapping effect which tended to
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prevent unwanted reflections from affecting the flow region of interest.
At the left upstream boundary of the flow matrix, all the variables
were set equal to their initial values. At the right boundary, a scheme
similar to that used for the upper boundary was devised. The right end
downstream column of pivotal points, designated as (m,%) points in the
(n+1)th time plane, were replaced by the computed values of the (m-1,2)
column obtained from the.nth time plane. Thus, the shock wave was allowed
to pass -"'through" the boundary. It must be acknowledged, however, that
although this method produced results which were independent of the ex-
terior boundaries, some room for improvement possibly exists. For the

calculations in this problem, no better method could be devised.
Initial Shock Wave Representation

In Chapter II, Whitham's solution was shown to yield shock waves
similar to those obtained from the experimental shock tube tests. Both
of these’analyses were performed to determine flow conditions which could
be made compatible to the initial requirements of Rusanov's solution,
the object being to ensure that similar flow conditions prevail during
all phases of the problem.

As initial conditions for the Phase II cone solution, the shock wave
configuration obtained from Whitham's solution was utilized. Figure. (9)
illustrates the-technique used to adapt this shock to the network of
points representing the Phase II flow matrix. - In this figure, the dotted
curve denotes the moving shock obtained from Whitham's solution, for which

the variations in shock Mach number are known. Hence, the properties
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behind the shock may be determined easily (See Appendix E). Property
values for pre-selected points, labeled A through B in the figure,
are tabulated in Table II.

To relate these known properties to the numerical network of Phase II,
ray lines were drawn through the grid points from the cone apex to inter-
sect the shock, The grid points were then assigned the same property
values behind the shock as those computed for the pre-selected points.

At points where a ray line did not exactly intersect a known point, the
known values for points on both sides of the ray line were averaged
linearly. This averaged value was then assigned to the corresponding
grid point, Points which were averaged in this manner”ﬁzve the letter
"a" following the number.

The Phase II shock wave was approximated through the network of
points which most‘closely corresponded to the Phase I shock, This is
shown as the dark solid line in the figure. Note that this shock is now
assumed to possess the same property values as possessed by the original
shock, but at slightly different locations. Thus Whitham's shock con-
figuration is adapted for the initial conditions in the Phase II solution.

For later times, the flow field near the cone is transient, approach-
ing the steady-state conical-shock field. To determine the extent of
these transient changes behind the shock, the velocity profile obtained
froﬁ Whitham's calculations was compared to one obtained from a steady-
state solution having identical free stream flow properties. In Whitham's
solution, the Mach number ratio, Mc/Mw’ where M_ = 1.25, was calcuiated

to be 1,067. This corresponds to a velocity ratio, uc/uw, of approximately
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1.05, Hence, it can be seen that the velocity tends to increase as the
cone surface is approached. In contrast to this, the steady-state
solution yields a Mach number ratio, Mc/Mw, of 0.865, which corresponds
to a velocity ratio, uc/um, of 0.893, Thus, this velocity profile tends
to show a decreasing velocity near the cone surface. Further, the steady-
state shock angle would be 55.75° compared to the‘shdck—shbck'angle of
26.32°. The tie history of this transient is not known without a com-
ﬁlete numericai coﬁputation of the forebody field. An exploratory work
on this problem will be described later in this chapter.

This transient.just described is the transition from a wave-induced
flow to the steady-state condition for a continuing, steady, flow field
following the shock. A second transient is superimposed upon this one.
Flow following shocks cannot continue to Be steady, but must eventually
decay. Thus, the decay rate behind the shock influences the conditions
of the flow past the base. Again, this can only be determined from a
numerical solution to the forebody field.

For the present computation, these two transients were assumed to
be changing very slowly, so that the flow properties at the left side
of the computed field (points 1, 4, 7, 11, and 16 in Figure 9) were held
constant. After a forebody solution becomes available, the wvalues of the
various fluid properties at these points can be inserted as boundary con-
- ditions at each time plane with no other change in the program. It is
believed that the influence of such changes would be small for the problem
which was treated in this study, but for high blast strengths or thin
blast waves, i.e., rapidly decaying blasts, this could alter the results

significantly.
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To ‘accommodate the moving shock as adapted for Rusanov's solution,
it is represented, not as a finite discontinuity, but as a steep con-
tinuous function of the physical flow properties ahead of and behind the
shock. Then, after the difference equations have been applied over the
entire flow region, the shock wave is detected by rapid changes in the
gradients of the physical parameters. This concept lends itself to
a new approach wherein the shock wave is initially defined over two
mesh thicknesses. Details of this approach, including the assumptions

made, are discussed in Appendix G.

Dimensionalization Technique

Before discussing the method used to dimensionalize the quantities
in the computer solution, two important considerations must be recalléa.
First, the gas properties were initially made dimensionless with respect
to the gas properties in front of the shock wave. Second, the velocities
were made dimensionless with respect to the sonic velocity in front of
the shock, Thus, it can be logically reasoned that the procedure for
dimensionalizing these quantities must be made with respect to the refer-
ence sonic velocity, that is, the sonic velocity in front of the shock.

In the following analysis, consider the "unprimed" conditions to be

"primed"

the initial dimensionless quantities. Similarly, consider the
conditions to be the final quantities having the proper physical dimen-

sionss In terms of x and y , the general system may be represented

as in the following sketch.
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Further, it should be noted that the magnitude of the velocity wector

may be expressed by the relationship

A

A
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X

When actual calculations for the general system represented zbove
are performed, the system in physical dimensions may be represented by

the following sketch.
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The physical conditions shown in the above sketch actually represent the
flow conditions determined for Point A indicated in Table IV and éhown
in Figure 9.

The problem involved in the dimensionalization of the time values
used in the coﬁputer solution is somewhat more complex. However, the
technique follows & very similar development to the one just developed
except that a scaling parameter has been included. The scaling effect
was introduced as a result of using rectangular mesh relationships con~
sistent with the stability criteria required for Rusanov's time equation.
The mesh relationship introduced into the computer solution required

that the relationship between the h, increment along the axis of symmetry

1

and the h2 increment along the y direction be-a function of the cone

semi-apex angle SC . That is,

tan 6_ = tan 13.347° = 0.237254 = h /b, . (43)

Dividing the numerator and the denominator by 1/20, the ratio is pre-

served and hl equals 0.0119 and h2 equals 0.05. These values of hl and

h2 were programmed into the computer solution. Since 6 mesh points (5

intervals) were considered along the cone base radius, h, may further

2

be defined. as

By = RS e

This relationship implies, by substitution of -the h, value, that the

2
cone base radius, Rb’ is equal to a diménsionless value of 0.25, There-

fore, to reference the base radius to a dimensionless value of unity,

the value obtained above must be amplified by a factor of 4.
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Since the time increment expression’ used in the computer solution
is a function of mesh spacing and of the dimensionless value of k where
k = o /(wtc it may be expressed as

o/( )max? y be expies '

L)

T = e (45)

% h12+ h22
The value of o, has previously been defined as a constant resulting
from stability considerations and is equal to 0.5. Note also that the
overall time t, for any specific timé plane printout, equals the summa-
tion of all' time increments T ;3 that is,; t = I1 .

Substituting expressions (43) and (44) into equation (453), the

total dimensionless time for any time plane becomes

{i?}ztan 0 k R tan &
t=szb < . ¥ —=— . (46)
%g’h/tanzec+l SN/tan 8 *1

By .inserting the wvalue of tan-eC and the expression for k, this equation
further reduces to

0.0231 Rb

R o | “

The solution of this expression 1is actuallybthe dimensionless time value
obtained from the computer solution printout.

If the dimensional values of Rb’ w, and ¢, that is, Rb‘, w', and
c', are substituted into equation (47), the dimensionless time may be
expressed in terms of dimensional terms as

0.0231(Rb'/4)
t= E (w'+c")

(48)

max a X
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To obtain a time reference factor necessary for conversion from
dimensionless times to corresponding dimensional times, consider the

following relationship.

_te tle !
X X

BoOR

Solving this general relationship for the dimensional time factor

yields
c

1
t'giba_._}i.t “
Rb c

!
X

Specifically applied to the cone with a hase radius of 4 inches, the

dimensional time factor becomes

_ (0.333)ft(1.1832)
0.25(1116) ft/sec

t! *t = 0,001415 t seconds .

This expression yields a time conversion factor of 1415 X lO-—6 which

(49)

(50)

(51)

provides a simple relationship between the dimensionless' times-obtained

from the computer solution and the corresponding real times in physical

units. For convenience, and as an aid to rapid conversion, time calcu-

lations for selected time planes from the computer solution were per-

formed. These are listed in Table V. 1In addition, a plot of time plane

versus dimensionless time from the computer solution was accomplished.

This plot, depicting the linear relationship between the two variables

in the solution, is shown as Figure. 10.



TABLE V

SELECTED TIME PLANES WITH CORRESPONDING
TIME CALCULATIONS FROM COMPUTER SOLUTION

TIME TIME#*
TIME PLANE (Dimensionless) (Microseconds)

1 ,001341 1.898417
16 .021508 30.434840
36 .048094 68.053936
66% % .087029 123.146872
86 112612 159.347295
106 .138041 195,328807
126%% .162121 229,401299
146 .187439 265.226637
166 .212809 301.125357
186 .238340 337.251807
196%=* .251201 355.449797
240 .308301 436,245943
260%* .334114 472,772427
280 .359976 509.367285
320%* 412024 583.014681
340 438227 620,091417
360 : 464440 657.183746
380%* .490675 694.305719
400 : .516945 731.478406
420 .543262 768.716621
440%% _ .569626 806.021214

*# Note time reference.  factor equals 0,001415, that is,
t'(seconds)=0.001415¢+ t(dimensionless)

*% Time planes -plotted for pressure distribution, velocity distribu-
tion, and flow direction.
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Computer Solution for Blast-Base Interaction

In.order.to illustrate the feasibility of solving the blast-base
interaction Eroblem using the fiﬁite difference technique proposed by
Rusanov, a program was written in FORTRAN IV, with format, for solution
on the IBﬁ 1410 computére The results of this program were used to val-
idate Rusanov's calculations for a moving shock past the base of a
cylinder. Then, the finite difference equations were modified for adap-
tion to the blast-base interaction problem for the 13.347° semi-apex
angle come.

However, due to the limited memory capacity of this computer, the
flow field matrix could not be made large enough to obtain satisfactory
results, Consequently, arrangements were made to expand this flow ma-
trix for use on a larger capacity computer. The Air Force Weapons Lab-
oratory (AFWL), Kirtland AFB, Albuquerque, New Mexico, provided the use
of their IBM 7044 computer which was able to accommodate this problem.
The computer program was converted to the DIKEWOOD system to facilitate
solution on this larger computer. This program is listed as Appendix H.

The flow field for each variable consisted of a matrix having 27
points radially and 105 points in the axial direction, or 2835 points.
Approximately 35 hours of computing time were involved to obtain results
for 440 time planes. This amount of computing time, however, should not
be considered representative since it included numerous runs to convert
to fheinew system.

To solve the problem, the program was written in six subroutine

phases. The initial phase was used primarily to read into memory the
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initial flow field matrices for p, p, u, and v. Using these known values
and their explicit relationships previously defined, the matrices for r,
s, and e were calculated and also read into memory. lThus, the entire
flow field for the initial time plane, n=0 was established.

Sincé the solution to this problem is explicit in time, that is,
from knowledge of all variables in the nth time plane, the variables in
the n+lth time pléne can be computed, the next four phases were estab-
lished to calculate the arrays for p, r, s, and e, respectively, for the
n+lth time plane. ' Each of these arrays were successively stofed on mag-
netic tape.

The final phase of this program was used to calculate the remaining
variables, that is, u, v, and p for the n+lth time plane. Then, all of
the arrays which were calculated for the n+lth time plane were printed
out before replacing those in the nth time plane. This method was con-
tinued until calculations were performed for each of the 440 time planes.
To reduce computer time, only pre-selected time planes were printed out.
Later, this program was modified to include printout arrays for the ve-
locity modulus vector, w, and the direction, tan—lv/u, which were subse-
quently needed to plot the results.

Referring to the computer program of Appendix H, the nomenclature

listed on the following page was used.
Analysis and Results of Computer Solution

In the preceding discussion of Rusanov's method, with regard to the
Phase II solution, an attempt has been made to illustrate the various

influences which govern the flow pattern at the base of a conical bedy.
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NOMENCLATURE FOR THE BLAST-BASE INTERACTION -PROGRAM

Corresponding Symbol
Used in Text
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Al

H2
H1M
H2M
M,L

X

NU
GAMMA
OMEGA
SIGMAO
RHO

P

U

\'

W
TEST
MAX

K1
K2

PST
FX

PHIX
PHTY

By

h,

Maximum number of hi increments

Maximum number of h2 increments
m,2 subscripts
-1
tan hz/hl
v

Y
W

Q

©

u

v

W
Yul4 v2 + /&p/p
Maximum [Yu2+ v + VYP/D]
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NOMENCLATURE
(Continued)

Corresponding Symbol
Used in Text

ALPHA
ALPHAL
ALPHA2
BETA
BETAlL
BETA2
RHOL
R1

S1

El

CNT

YL
T1

Count (Number of Time Planes)
T

y
T
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Specifically, the differential equations of motion, the finite differ-
ence equations, the associated boundary equations, the blast wave repre-
sentation, and the dimensionalization technique all contribute to the
overall solution.of the problem. In addition, and perhaps of greater
signifiéance, these elements have all been formulated into a computer
solution, for which results are presented in graphical form.

The results of this analysis are presented as Figures 1l through
36. Included are plots of lines of constant pressure, constant veloc-
ity and velocity vector distribution for time planes 0, 66, 126, 166,
196, 260, 320, 380, and 440. These time planes were pre-selected for
plottiné since they are considered to be representative of the overall
solution. They will later be used in mating the blast passage with the
formation of the separated flow region behind the body.

Figure 11 illustrates the initial shock position and configuration
which has been superimposed upon the 27 by 105 point network, which
represents the undisturbed flow matrix. The coordinate axes are meas-
ured with respect to the cone base radius. Note that although the
pressure ratio for the unrefracted shock is 8,6930:1, this ratio in-
creases to 9.2092:1 at»the cone corner point. Thus, the initial shock
wave is represented as a non-uniform discontinuity in the flow.

Figures 12, 13, and 14 illustrate the results obtained for time
_plane 66, after the shock has progressed beyond the corher and has trav-
eled part of the way down the cone base. As the shock wave travels
toward the axis of symmetry, its area decreases; hence the base pressure
increases. 'Figure 12, the velocity vector plot, depicts the relative

flow direction, the approximate centerline of the shock, the constant
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Fig. 26 Constant Velocity Lines for Base Region -- Time Plane 260
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Fig. 28 Constant Pressure Lines (Isobars) for Base Region --
Time Plane 320
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HORIZONTAL VELOCITY BEHIND
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Fig. 29 Constant Velocity Lines for Base Region -- Time Plane 320

L6



92

08¢ aue|q awL] -- uoLbay aseg ul 30|d 40309\ A312013) Q€ "BLd

g

T T e oy e ey v e e e A

- ey ey vy g g 1/.4/.:/./././7././‘/./././(/((('-..~\.\!¥v.?.fff/////.~

et ey~ e T e T T T T TR R R R S S e s g ! /M

_______
0000000
———— T

S T T S T .

] |

- %, T YV Y T T T,
e T

—

-~
e )
————————————— — e — e
777 L 1
\\\ /
S

/ /
—_——————————— — e —— — = /L.

,————rr e T T T T —— T ——— IJP
e

zzzzzzzzzzzzz

zzzzzzzzzzz
ooooooooooo




PRESSURE BEHIND UNREFRACTED
SHOCK = 8.6930

{ UNDISTURBED FIELD
PRESSURE = | —=).
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2 3

Fig. 31 Constant Pressure Lines (Isobars) for Base Region
’ Time Plane 380
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Fig. 34 Constant Pressure Lines (Isobars) for Base Region --

Time Plane 440
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Fig. 35 Constant Velocity Line for Base Region -- Time Plane 440
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Fig. 37 Blast Wave Simulation on a Water Table
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M=1 line separating the supersonic region of flow from the subsonic
region, as well as lines of constant turning angle. Figure 14 shows
the velocity modulus distribution and Figure 13 shows lines of constant
pressure (isobars). Note that in these last two figures, the shock
wave is represented as a rapidly varying gradient of its physical
parameters.

Time Plane 126, illustrated in Figures 15, 16, and 17, depicts the
flow pattern after the shock has converged and reflected at the axis of
symmetry. Of special significance is the development of a circulation
region near the base. This may be attributed to the non-uniform shock
passing and reflecting -in the base region. Associated with this circu-
lation phenomenon is the region of reverse flow in the base. This region
is clearly shown in the velocity vector plot of Figure 15. It will be
noted that on the axis.of symmetry, the stagnation point, which separates
this region of reverse flow, may be easily located.

In Figure 16, the high pressure region behind the shock near the.
axis of symmetry may be seen clearly. Also, in this same figure, the.
reduced pressure-region, representing the separated flow region, may
be noted on .the cone. base near the separation corner.

Time Planes 166 through 440, shown as Figures 18 through 35, illus-
trate the transient phenomenon that occurs.behind the shock as it pro--
gressively moves downstream. Particularly, it will be noted that in
Time Plane 260 the shock has traveled nearly four cone radii downstream
from the base. In subsequent .time planes the shock wave is not visible.

This is attributed to the shock passing '"through" the boundary at the right
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side of the flow matrix . and beyond the region of interest. TFurther time
planes depict the base region as ‘a steady-state condition is approached.
The region of subsonic flow may also be seen to increase progressively as
the fluid is evacuated from the base region. The general pattern can be
seen in the water analogy photographs (Figure 37) of a wave passing a
wedge.

As the shock converges toward the axis of symmetry, the base pressure
tapidly increases to a peak. This is illustrated in Figure 36 which shows
the pressure pattern for various -base positions during the time calculated.
‘The second large pressure response for positions 1 and 2 appears to be due
to a backflow surge.

The computation results can be compared with the shock tube test
described in Chapter II, since both had an 8.693 to 1 pressure-ratio shock
wave passing a 13,347° cone. Points 4 and 1 of Figure 36 correspond to
Points 10 and 11 of Figure 4, respectively. After adjusting time and -
pressure scales to coincide, the comparison is given in Figure 38. . For
the point on the axis, the first pressure peak and its time of occurrence
are almost the same as in the experiment. At the 60 percent radius point,
the first peak is somewhat low. For both points, the computed pressure -
fails to drop as greatly as in thé test and an-exaggerated second peak-
appears. = This may be due to several factors:

(a) The non-uniform flow behind the shock at the left boundary was

kept -constant throughout the calculations. This is-in contrast
to the transient decay of.the wvelocity near the cone surface

as the bow wave forms. This has been discussed previously
(page 60).
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(b) In the experiments, expansion waves were overtaking the shock,
decaying the general pressure field around the cone.:

(c) Viscous entrainment by the jet mixing region occurs and tends
to prevent backflow while increasing the evacuation of mass
from the base.

All of these would tend to decrease the second pressure peak, since-

their effects become greater with time. In addition, the tested -cone
had a rounded, rather than a flat, base, affecting the 60 percent radius

point. In view of these differences, the agreement is considered to be

very good.
Forebody Exploratory Problem

This section presents an exploratory investigation of the cone fore-
body problem treated by the numerical field computation method of Rusanov.
The aims are two-fold: (a) develop techniques which can be used to
describe the transient phenomena of the forebody flow field;‘ (b) estab-
lish accurate initial shock and transient upstream field conditions for
the blast-base interaction problem. The solution to both of these
problems may be accomplished only by obtaining a continuous solution
over the conical forebody. If viscous forces are neglected, the transient
phenomena behind the shock may be considered entirely wave-dominated.

In an.effort to determine the time history of the transient phenomena
and the associated shock patterns, an extension of Rusanov's finite differ-
ence technique was attempted. This method has previously been discussed.
A problem arises, however, in dealing with the cone apex. The boundary
conditions of both a wall point and an axis point apply. This requires

that both velocity components be zero, and thus the apex becomes a
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stagnation point. The effect is that the cone is blunted for one mesh
width. Appendix I shows the detailed calculations used to obtain these
values for the stagnation point.

A second complexity occurs in representing the boundary conditions
for a sloping wall. The mass flux perpendicular to the wall must be zero,
and a local coordinate rotation transformation is required at each wall
point in applying this boundary condition. Rusanov's original paper (27) ex-—
plains the method for dealing with such boundaries when the rectangular
mesh is so chosen that the wall lies on the diagonal of the mesh points.

Results of this analysis were somewhat disappointing. The stagna-
tion values, being somewhat larger than the values of the original shock
wave, apparently created calculation influences which distorted the field
during the first several time planes. If s larger computer were available
such that this sclution were allowed to continue until these initial dis-
turbances became absorbed in the field, i.e., until the stagnation values
have actually reached their peak, perhaps a more satisfactory solution
could be obtained. The knowledge obtained from this attempt, however,
should provide the basis for a more successful solution at some future
date, It must be emphasized that this forebody attempt was not the
principal purpose of this study. A successful solution would have pro-
vided a method of introducing arbitrary upstream boundary field conditions
instead of fixed conditions for the base region computatiocus.

The computer program written for this exploratory sclution and run
on the IBM 1410 computer is shown as Appendix J. The nomenclature used

is identical to that used in the Phase Il computer program.



CHAPTER IV
BASE PRESSURE ANALYSIS

For a full coﬁsideration of the transient flow field and shock
pattern in the base region, covering all the time from the blast approach
to the quasi-steady flow condition, a base pressure analysis must be per-
formed. The numerical computations considered no viscous effects. Essen-
tially, the computed flow field is the result of a shock wave diffracting
around the reaf of a body, then reflecting from the axis and/or the body
base. If sufficignt time is allowed to pass, the waves move downstream
and a steady flow situation is approached: in the vicinity of the body.
However, the steady~state base flow is known to be one determined by vis-
cous effects, namely, the character of the jet mixing in a flow separating
from the base corner. Thus, some sort of transition from a wave~dominated
phenomenon to a viscosity-dominated phenomenon takes place.

For the Phase III analysis, that is, transition to the quasi-steady
separated flow condition at the base, a method for mating the Phase II
conditions with phe steady-state base flow studies of Zumwalt and Tang
(38) was developed. It will be shown that the base flow ‘analysis of the
above authors, herein offered as a~suggestéd approach, is well adapted to
this type of problem. The one feature of this approach which is of pri-
mary interest for the base region application is that it introduces a

basic theoretical flow model (See Figure 39) for the jet mixing region
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which occurs as a result of flow separation. This conical-wake flow
model, along with its associated assumptions, is used to predict the
steady~state bgse pressure for comparison wifh the base pressure ob-
tained from the Phase II computer solution. The highly complex nature
of the separated flow in the base region necessitates the introduction
of several simplifying assumptions. In this regard, the quasi-steady
approach will bF adopted in conjunction with a time iteration technique.
This technique treats the highly transient flow condition as a finite
number of time steps and assumes steady flow for each increment of time.
Thus, successive iterations can be performed with resulting property
predictions at each increment. In the method, at each iteration step,
the amount of mass trapped in the separated flow region must be adjusted
toward the stable steady-state condition.

However, the question arises: When do the viscous effects begin
to predominate over the shock wave influence? To answer this, the
growth of the boundary layer as the wave moves downstream will be con-

sidered.
Method Analysis: Phase III

The basic assumptions in this chapter are conveniently illustrated-:
by a series of anggerated sketches shown in Figure 40. These sketches
portray, in chrbnological sequence, the development of the boundary layer
at arbitrary blgst wave positions over the entire range of blast passage.

At blast Wave position A, the blast has just intercepted the cone
apex. For this condition, the forebody has not yet begun to feel the ef-

fects of the blast. At blast position B, however, after the blast has
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moved to a location on the forebody, the boundary layer formation on the
forebody surface can be detected. The initial disturbance caused by the
blast passage during the segment of travel from position A to position B
will cause a particle, initially at rest near the surface at the cone
apex, to accelerate along the surface to some position behind the blast.
The particle velocity will be considerably less than the blast velocity
so the particle will tend to lag behind the blast wave. The boundary
layer thickness depends upon the distance a particle has travelled along
the frictional surface, resulting in an instantaneous boundary layer
thickness distribution as shown in the figure.

After the shock -passes the corner of the cone;, as shown in blast
position C, boundary layer separation is seen to occur. However, the
same particle originally near the apex has still not yet reached the
corner. Up to this point, the characteristics of wave action behind the
blast predominantly -influence the flow and the effects of viscosity will
be ignored.

At blast position D, the figure shows the flow field resulting,
after -boundary layer separation, when the blast is .far downstream. At
this condition, the particle previously considered is assumed to have
reached the corner and the blast is assumed to have-progressed far enough
downstream such that a quasi-steady condition can be assumed in the base
region. Also, at this time, it is assumed that the turbulent boundary
layer is fully formed, wave influence is negligible, and viscous forces:
in the separated shear layer suddenly predominate to such a degree that
mass -entrainment begins. From this time on; as in blast positioen E, only

the viscous effects are.considered in the turbulent mixing layer.-
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It should be noted that for all separatéd flows, due to the viscous
effects of the fluid, jet mixing occurs. Although it is possible for the
mixing region to exist as a laminar shear layer, the mixing region in
this analysis is considered to be turbulent, since this is generally the
case. A similar method could be developed for laminar mixing.

Since viscous mass entrainment is assumed to begin when a nearby
particle has travelled the length of the cone surface, this time may be

expressed as

_ cone length A 3b/81n ec Rb . (52)

v~ particle speed along surfaée h ﬁy/cos GC - uy tan GC

Specifically, for the 13.347° cone with a 4-inch base radius and the com-

puted blast, the time becomes

= 649 X 10‘6 \ (53)

_ (0.333)£t/(0.23725)

tv 2165 ft/sec

Using the time conversion factor previously developed, and shown in Figure

10, this corresponds to a dimensionless computer solution time of

-6
g =8 X10 453 (54)

v 1415 X 10~

From Figure 10, it can readily be seen that this corresponds to Time
Plane 354. However, since this time plane was not included in the com-
puter printout, Time Plane 360 was used as the approximation of the vis-

cous starting time. The base pressure at this time is taken to be the sum



of the pressure forces exerted on the base surface divided by the base

area.

In mathematical form, the average base pressure may be written as
2
2w f p, rdr

R (55)

2t /7 rdR

Py

Ajo o

avg=

e}

Written in summation form, this equation is

n
pbavg= izlpbi{i}i {Az}i j (59)

where i=1,2,3,4,5, and n=5 for the computer solution presented in Chap-
ter III. The solution of equation 56 gives Py of 3.333 atmospheres.

Before outlining the method used to mate these Phase II results to
Zumwalt's and Tang's analysis, several important features of the comical
flow model should first be noted. Referring to Figure 39, which depicts
the flow model which has been superimposed on the Phase II fléw field, a
small cylindrica} surface extension is assumed to exist with an infini-
tesimal length, AL, in the limit. The flow passing the.model. then in-
duces an inifial ;onical shock followed by two Prandtl-Meyer expansions -
before it forms a free jet mixing layer in the base region. For small
boundary layer thicknesses, where boundary layer interaction is ignored,
the use of two-dimensional expansions at the turning corners is satis-
factory.

.To outline the qalquiation procedure used to obtain the steady-
state base flow conditions, reference is again made to the conieal model

shown in Figure 39. 1In the analysis, the base pressure can be determined
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as a function of the free stream Mach number, M_; pressure, p_; and the

cone semi-angle, ec .

Since the free stream Mach number is known, the free stream conditions are
easily determined from standard compressible flow charts or tables as in

the following sequence, The symbol —- means "yields."

T
1sentrop1c] S .
1. M, [relatlons *T '
ooo o
P T
- 9% = 22
2. Pow = P Po . Toa° T_ MT°°

To evaluate conditions behind the conical shock:

M conical, R ; normal; &,poc .
3. =H shock ] > 8, M_ sin e'_{shock > Poun " Poe  *

M conicall
4 e:H shock Pe )
5 Eg‘}{isentrOPic}_*.M v"
’ Poc lrelations c c )

To evaluate conditions on the cylindrical section:

= isentropicy R X El .
6. Vi = Vet 8 —{relations - My Poe " P )

After the foregoing properties have been determined, Zumwalt's
steady-state, QOn—bleed, base pressure solution, as shown in Fiéure 41,
is used. This allows determination of the base flow conditions to in-
clude the stead?—state base pressure, pb' . This may be shown in

st
the following steps.
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p P P
8 st _ pbst . E; - bst P1 . _oc Poo »
Pe Py ® Pp Po1 Pow  Pw st |
P
9 —P—ﬁ--—{P'M" - M - v >0, = (v, -v,)—= tan 0
" Tp,,  ‘tural 2 2= W21 an b2 .

Following this procedure, the actual calculations for existing condi-
tions are shown in A@pendix F. ‘The base pressure value is seen to equal
3.30 atmospheres. Thus, in spite of the relatively complicated flow ex~
isting in the base region during the wave passage, the base pressure value
given by the computer solution at time tV‘is almost identical to the steady-
state value given by Zumwalt's (37) wake analysis. This, however, must be
regarded as fortuitous, and the values cannot generally be expected to
agree so closely.

Note, howéver, that the base pressure created by the shock wave ac~-
tion is slightly higher than that which will exist at steady-state. This
may be:interpretéd as an indication of a slight mass bleed-out rate which
must occur during a transient period. Some amount of mass will be pumped
in or out of the baée region thrbugh the mixing region until a stable
steady-state condition is reached.

As given by Zumwalt and Tang for the transient period, the mass in
the separated region (the 'wake") at the base at any instant of time may

be determined from

3
Ppe T R° cot et
= = . 5
me = (o V), RT 7
ot
Further, the mass in the base at time t+At is given as
m =m_ -+ m At s (58)
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where m is the rate of mass pumped into the "wake" at time t. For this
latter assumption, an isoenergetic jet mixing condition is assumed.
That is, the stagnation temperature of the base region and of the adja-
ﬁeﬁt stream are the same. Of course, the quasi-steady concept is still
maintained. The value of mass bleed rate, m, is calculated from the ¥
curves shown as Figure 18 in Reference (38).

Knowing the m value, the base pressure at time t+At can be

(t+At)

determined from equation (57). However, the value of 6 must be

(t+At)
iterated until Py (t+at) reached by Prandtl-Meyer expansion at the separa-

tion corner is equal to the steady—state base pressure, Py s calculated

t
previously. That is, the pressure across the jet-mixing sirface must be
constant at any particular time. Calculation details of this procedure
may be found in Appendix F.
Thus, a procedure has been developed to compute the conditions at

the base during the transient period from the blast wave passage to the

steady flow condition.,



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

As part of a research program to study the principles involved in
the interaction of a blast wave and the base pressure region of a mis-~
sile re-~entering the atmosphere, methods were sought to compute the
transient phenomena which occur. The primary objective of this phase
of the investigation, which has been completed, was to perform a tran-
sient flow field analysis of a plane blast wave intercepting a stationary
cone at zero angle of attack. This type of analysis, though difficult,
has provided considerable knowledge about methods and techniques which
may be used to predict such phenomena.

Numerical solutions provide the best means of producing results for
complicated flow fields, thereby permitting the influencing parameters
to be calculated. The mechanisms for numerical techniques are relatively
simple, although a computer capable of large storage capacity is required.
With computer programs specifically designed for these large computers,
larger flow fields may be considered thereby yielding more accurate re-
sults.

The approximate methods developed and investigated in this anaiysis

are shown to be very satisfactory and may be applied, with reasonable
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assurance, to othér geometries. The results of this analysis have pro-
vided close representations of physical phenomena within the accuracy of
the assumptions made.

To summarize, the method for the transient analysis for the station-
ary cone has been developed. Extensions of several methods were utilized
and made compatible with existing flow conditions to provide a continuous
flow solution. JIn Chapter II, Whitham's approximate solution was used to
obtain the shock diffraction pattern past the forebody. This solution
was shown to be in close agreement with experimental shock tube tests.
The shock wave configuration and flow field properties were adapted to
provide initial conditions for the blast-base interaction. 1

Chapter III discloses some of the difficulties encountered with fi-
nite difference representations of governing differential equations of
motion. Even though the problem is complex, the numerical solutions show
the feasibility of solving complicated axi—symmétric flow fields to deter-
mine the effects of governing variables. The method of Rusanov, as pro-
posed in this analysis, has been demoﬁstrated to yield excellent repre-
sentations for 440 time planes, 9 of which were selected for presentation.
With the introduction of satisfactory boundary conditions, this method
may be applied to numerous types of flow problems. Further, a water
table experiment, using several conical modeis, was performed to provide
qualitative verification of the physical phenomena,

In Chapter IV, the results of the blast-base interaction solution
were used to mate the blast passage with the formation of the separated

flow region behind the body. It is shown that the steady-state base flow

studies of Zumwalt and Tang provided the method used to accomplish this.
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The use of Zumwalt's conical wake analysis introduced a satisfactory
physical model for the jet mixing region which occurs as a result of
flow separation.

Thus, a continuous flow solution, from the time the blaét wave in-
tércepts the conical body to the quasi-steady state condition has been

performed.

Specific Recommendations

The theories and calculation techniques discussed herein can be ap-
plied to many shock diffraction problems utilizing a variety of physical
geometries., In order to treat a wider range of such problems, the follow-
ing suggestions are enumerated for further analytical and experimental
work:

1. To modify this present analysis to be applicable to general
cases, a solution should be attempted, using the same numerical tech-
niques proposed in this analysis, to solve the axi-symmetric forebody
problem of a blast wave intersecting a moving vehicle at arbitrary angles
of attack. This problem would include several discontinuities in the
flow and should consider various shock strengths.

2., Throughout this analysis, ionization and real gas effects have
been completely neglected. Future analytical studies should consider
these effects in addition to the force contributions from forebody pres—
sure, forebody viscous effects, heat conduction, and base pressure for
bodies which are either at rest or moving at supersonic speeds.

3. The flow field behind the shock has been assumed non-uniform

but constant in this analysis. Studies of boundary conditions should be
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undertaken to simulate the effect of a decaying flow field béhind the
shock. Thus, the boundary equations would change, but the méthod of
solution would be the same.

4., An understanding of the mechanisms of blast wave interaction
on the base region when encountering the wave front at arbitrary orien-
tations should be pursued. This study should include blasts interacting
with fully formed turbulent mixing regions.

| 5. This analysis has been designed to provide an understanding of
the transient flow field resulting from the intercept of a blast wave
and a conical body. Extensions of this analysis should be considered
for application to blunt or spherical geometries.

6. When a supersonic missile flies head-on into a "fire-ball",
such as might be encountered in a nuclear blast, the resulting effect
on the missile is‘a functioﬁ of the interaction of the bow shock and
the incident blast wave. Studies should be performed to determine the
influencing parameters which affect the missile when it exits from the
blast. This should include both axial exit.and exit at arbitrary orien-
tations.

7. Numerous computing techniques are available for solving flow
problems of this type. The most effective of these should be combined
into a very general program which would provide as much flexibility,
efficiency, and accuracy as possible.

8. Experimental programs should be initiated to verify the analyt-
ical results of all proposed studies.

If the above work is accomplished, the complex mechanisms of blast-
intercept phenomena will be more completely understood and the solutions

to such problems can be more accurately computed.
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APPENDIX A
WHITHAM'S RAY TUBE ANALOGY

In order to describe Whitham's analogy of the similarity of wave:
propagation in a ray tube to the propagation of a shock wave in—a tube
with solid walls, the choice of independent variables must be 'carefully
selected. In two dimensions, the .choice of these variables is based on
the shock positions and the rays. However, if an attempt is made to
apply such a coordinate system to an axi-symmetric problem,  the'solution
becomes formidable. Because of this, the analogy must be formulated in
a three-dimensional Cartesian coordinate system. The motion of the
shock is then described as

c t = o(x,y,2) . (A-1)

where t 1is the time at which the shock occupies that position -and
Cy is the speed of sound in the undisturbed gas ahead of the shock.

The problem now is to determine the function o(x,y,z). Since the
ray is normal to the shock, the distance ds along a ray between the shock

positions at t and t+dt is given by
c dt = ds | Vo . (A-2)

To illustrate this relationship, differentiate equation (A-1). This

yields

- - o i) da -
cxdt = do(x,y,2z) = 5x dx + 5y dy + az»dz . (A-3)

124



125

However, note that

>
s

= ix + jy + kz s

which when differentiated becomes

ds = idx + jdy + kdz .

Also, note that

- 490 (82 81,
Va = 1 + Jay + kaz»
and
= 2 ) Z
ol = Yo 2+ a2+ o, :

Now, equation (A-3) may be written as

,aa,+ kﬁg? ,

_ s ; c(1 90 L 00
cxdt = (idx + jdy + kdz) (lax + Jay 3z

which reduces to

cdt = ds * Va . (A-4)

“However, Vg= ilVa] and ds = ids , which when substituted into equatioen
(A-4) yields

cxdt = (ids)-(i]Va|) = ds|Va| .

Thus, equation (A-2) is obtained. Writing this expression in terms of
the Mach number, M, where M = (ds/dt)/cx, then equation (A-2) may further

be written as

M o= & (A-5)

|va]

Next, let i(x,y,z) be the unit vector in the ray direction. Since it is
normal to the surfaces a(x,y,z), it mdy be expressed as

i = L% - Myg . (A-6)

| 7]
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Now, consider a small length of narrow ray tube with end sections as

parts of surfaces o = constant as in the following sketch,

—

? :

Let A be proportional to the cross sectional area of the tube (measured
by the surface o= constant inside the tube at that section) where the
subscripts 1 and 2 represent the areas at the respective ends of the

tube. In addition, the following terms are defined:

-

v = outward normal to the surface s

v = volume inside the ray tube

e

i . .

{K}= unit vector normal to surfaces Al and A2 in the

ray direction

Applying the Divergence Theorem to the ray tube sketch, it is shown

that

e
Gl av=| 3} - Yas . (A-7)

Note that is*v = 0 on the sides of the tube and i°v = * 1 on the

ends of the tube, so that the contributions from the ends cancel. There-
fore, the right side of equation (A-7) vanishes; then from continuity
considerations

Ve {i} = 0 everywhere . (A-8)
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Substituting for the value of i from equation (A-6), then the above

equation may be written as

v v} =0 (4-9)

Thus, equations (A-5) and (A-9) are obtained and are used in the develop-
ment shown in Chapter II. Whitham has stated that these equations show
that the flux of MVa/A through a closed surface ‘is zero in regions where
MVa/A is continuous. Further, these equations are always hyperbolic,
corresponding to wave motions. The Basic assumption is that A is a

known function of M, hence equations (A-5) and (A-9) are used to

determine o .



APPENDIX B
WHITHAM'S A-M RELATION

In addition to the geometrical relationships for A and M, Whitham
established the functional dependence A = A(M) as the only assumption
in his theory. The qualitative results are independent of the precise
choice of A provided only that A is a decreasing function of M. Simply,
the theory assumes that as dA is increased, dM must decrease, and the
converse must hold.

In an earlier paper, Chester (3) found that for a small change

dA in a channel area, the corresponding change in Mach number is given

by

dA _ -2MdM (3-1)

OMP—1)R (M)

where K(M) is a slowly varying function decreasing from 0.5 at M = 1
to 0.3941 (for vy = 1.4) as M—— » , The function K(M) is given by

Chester as

K)

2 1% 71
2 [{1+m—f—} (2u+1+M} (B-2)

where

02 = Gt 4 2
234 (v-1)

For weak shocks, Chisnell (4) suggested that the integrated form of

eqﬁation (B-1) should give a good approximation for a channel of slowly
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varying cross section.. His work on cylindrical shocks confirm this

view. On integrating, equation (B-1) yields

A M

da -2MdM s K(M)~v 0.5 .

A 2
L)y ef-Drep
S S
Therefore, A M
In A _ 4MdM
- - HE
A M M -1)
S
so that A o 2-1) M+ 1) (M- 1)
In == 2 lp —2—— = 2 1n — S
A_ o 1) M+ D)t - 1)

"However, as M— 1, M + 1—- 2, and MS + 1——> M.+ 1. Therefore,

M, - D
A s
1n N v o2 1n o= 1)
S
SO M -1
A 2=} whereM-1<<1 (8-3)
Al M -1 )

Similarly, for strong shocks,

A M M

This may be written as

2

ln%=i-%4-)—{%ln M-1
s (MZZ -1
However, K(M) ~ 0.3941 as M ——. Then M2 - 1— MZ, MSZ— 1—

MSZ, and n = 2/K(«%) = 5.0734. Therefore,
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M
A S
1n AS ~vn 1ln M

Integrating this expression yields
n

M
=S
M

ﬁi n where n = 5.0743 and M >> 1 . (B-4)
s
This is equation (13) in the text which for strong shocks is ex-

tremely useful since it covers the most important range of shock

strengths. It becomes a good approximation for M > 3, for example.



APPENDIX C
WHITHAM'S SHOCK~SHOCK RELATIONS

As stated in Chapter 1I, Whitham regards a shock-shock as a curve
across which the shock Mach number, Ms, and the shock slope, 6, are
discontinuous. This curve is described as the locus of the shock-shock
as it move; along the shock wave. In a diffraction problem, it thus
represents the motion of the shock triple-point.

To establish mathematical relationships for the propagation of
shock-shocks, two specific conditions must be satisfied. First of all,
since the portions of the shock wave representing the incident shock
and the Mach shock must be connected, o must be continuous across the
shock-shock., It folloﬁs, therefore, that the tangential derivatives of
a on the two sides of the shock-shock must be equal. If the unit vector
normal to the surface of the shock-shock is n, this condition may be

written as

n X (Vu)s = n X (Va)1 > (C-1)

where the subscript s and 1 dénote values on the two sides of the
shock~-shock.

The second condition to be satisfied concerns the jump in the
normal derivative of . ‘This may be illustrated by considering, as in
the following diagram, the passage of a narrow ray tube across a shock~

.shock in three dimensions.
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If 1S and 1l

and AS and Al are the corresponding cross sectional areas of the

ray tube, it can be seen that the projections of these areas on the shock-

are the directions of the ray on the two sides

shock are equal. This may be expressed as

S - Lo (c-2)

In terms of o , this condition may further be written as

Ms Ml
K; n . (Vq)S = KI n (Va)l . (Cc-3)

Equations (C-1) and (C-3) are indicated by Whitham as the shock-shock
relations for the three-dimensional problem.

As stated in the method analysis section, equation (11) must be
satisfied in order to validate the analysis. To establish the relation-
ships in this equation, recall that Vo = i/M (See Appendix A). Equa-

tion (C-1l) then becomes

{n X i} - {n X i} ) (C-4)

However, from the following figure,
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Deck- D noce

it can be seen that

nXi-= inl |i] sin (n,i) = sin (90-6+)

sin (90+K -0)) = cos (-(x-6)) .

Therefore,

n X1i= cos (x-8) .
Substituting this value into equation (C-3) yields

cos (X—es) cos (X—Ol)

= (C-5)
Ms Ml
Similarly, from the figure,
n-+i-= |ni Ii[ cog (n,1) = cos (90-6+x) = sin (-(x-6)) .
and equation (C-2) then becomes
sin (x-6 ) sin (x-96,)
S - (C-6)
A A ’
s 1

Equations (C-5) and (C-6) can be solved to yield 61 and X in
terms of Ms’ es, and Ml' This may be seen by considering the following

figure.
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Swock -Swock

where from geometry,

2 2 2 2
(MSda) + (ASdB) = (AldB) + (Mlda)

Rearranging, factoring, and solving for dR/do , this equation reduces

to 2 2 |y
M. - M
dp 1 s
o - |72 7 . (C-7)
A% - A
s 1

Whitham has defined this rate of change of B with respect to o as the
shock-shock velocity ¢ . Also, from the figure, note the following

relationship.

tan (8 - 6) = cot {(x-6)+ [90 ~(x-8))] - (8, -6}

1 - tan (x—el) tan (90 - x+ es)
tan (X-el)'tan (90 = x+ ) B

A_dR M da A M
1- Mldu ) ASdB - Mlks
I Sl s
AldB+Msd0L fch,Es__l_
Mlda ASdB Ml AS c
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Further reduction yields

MlAs B AlMs
M1As
1 1
‘ 2_ 2N 2_ 2772
Al(Ml MS ) . MS(AS A1 )
) 2\ % M2 M 2)73
Ml(As - A1 ) As( 1 s )

tan (61 - SS)

1 1
_ 2 a 2\Bm 2w 243
(A =AM (A2 422002 12)
2_ 2 2 2
) ALAM 2= AJAM 2+ M A 2= MM A
1
_ 2 a 2\Fy 2. w2
A= AMO) (A= A7) "(M 7~ M%)

AlMl(ASMl - MSAl) + ASMS(ASMl - ASMS)

&=

Therefore,
1 1
2_ A 2V34v 2w 243
(As Al ) (Ml Ms )

tan (g1=0;) = AM. + AM
171 s's

* (C-8)

Also, by resolving equations (C-5) and (C-6), the following relation can

be obtained.

MlAS sin (X—el) MlAs

tan (y—- 8 ) = — = tan (x-6.)
s AlMs cos (¥ el) AlMs 1
e G S Y
AlMs Mlda MS da
i
As Mlz_ M32 :
tan (X—SS) x| = (c-9)
s | A2- 42
S 1

Thus, equations (C-8) and (C-9) are the shock-shock relations listed

as equation (11) in Whitham's Method Analysis.



APPENDIX D

COMPUTER PROGRAM FOR AXI-SYMMETRIC CONE SOLUTION
(Symbols defined on Page 23)

MONS$ $ JOoB 252740031 (BLAST WAVE DIFFRACTION)

MONS$$ ASGN MJIBsAZ
MONS$ S ASGN MGO»sA3
MON$$ ASGN MWl sA4
MONS$ % ASGN MW25A5
MONS S MODE GOLTEST
MONS S EXEQ FORTRAN

1001 FORMAT {(4F1045)
2001 FORMAT {(8{1XsF1l0«5}) )
2002 FORMAT (7H ERROR s F10e5s 14H IS LESS THAN s F1l0e5)
2003 - FORMAT (5H RMAX)
2004 FORMAT (/5Xs3HETDs8X»3HTHDs9X s IHR »9X s 4HETXD s
17X s4HTHXD 98X s ZHRX 38X sSHPDIST1 96X s5HDIST2)
4 READ (1,1001) Rs Hs RMAXs DELR
R = R - DELR
H = -H
P=5.07473
62 WRITE (3+2004)
5 R = R + DELR
IF{R «GTe RMAX) GO TO 105

A = R¥R = 1.0
B = 140 = R¥¥(=2.,0%P)
C = (140 + (R¥%(1,0 = P)))

TH = ATANC{SQRT(A*B))/C)
ET = ATAN{SQRT(A/B))
IF(ET oLE. TH) GO TO 61
NDX =1
ETX =

THX =
RX = R

™
SIN(ETX)/COS(ETX)

6 TANET SIN(ETX)/COS(ETX)
TANTH SIN(THX) /COS{THX)
£ = (SINIETX))*{COS(ETX))
F = 140 + TANET#TANTH
TANDF = SIN(ETX~THX)/COS{ETX-THX)
G = P*TANDF*TANDF = 1.0
DTH = TANTH/{L*F*G)

DR = R*¥TANDF*DTH
THX = THX + (H¥DTH)
RX = RX + (DR#*H)
ETX = ETX + H

9]
O
—
o
LR I
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7 DISTL = RX/{COS(THX)+(SIN{THX)*TANET))
DIST2 = DISTL#TANET
ETD = (18040/3414159265)%ET
THD =.(180.0/3.14159265)%TH

ETXD = (1B040/3414159265)%ETX
THXD = (18040/3+14159265)%THX !
WRITE (3,2001) ETDs THD» Rs ETXDs THXDs RX» DISTLs DIST2
IF(NDX «GTe 1000} GO TO 62
NDX = NDX% + 1 I

60 IF(ETX «GTs THX} GO TO 6
GO TO 62 :
61 WRITE §3,2002) ET, TH
GG 10 4
105 WRITE (3,2003)
GO TO 4
END
MONS$ S EXEQ LINKLOAD
PHASEENTIREPRG
CALL MAINPGM:
MONS $ EXEQ ENTIREPRGsMJB



APPENDIX E

MOVING BLAST WAVE TRANSFORMATION

From the information tabulated in Table IV, several flow properties
relating to the shock wave are known. However, in order ‘to determine the
flow Mach number behind the shock in the physical (moving shock) plane,
the transformation relationships outlined in the test analysis section of
Chapter II must-be used. The calculations may be illustrated from the

following representation,

Physical Plane (Moving Shock) Transform Plane (Stationary Shock)
u u'=20
s s
N ——

— — ——

u = ? u =0 u'=u-u u '=u

y X v s v X s
M =2 M =0 M M '= 2,7557

y X y

py = 8.6930 Py = Py 1.000 p.'=p. = 8.6930 p.'=p.= 1.000
py = 3,6177 Op = Py 1.000 o '=p = 3.617 p '=p = 1,000

It should be noted that the properties of the gas in the disturbed
region behind the shock are made dimensionless with respect to the
properties of the gas in the undisturbed region ahead of the shock.

The velocities of the moving shock, u_, and the flow velocitx, uyybehind

s/
the shock are made dimensionless with respect to the sonic velocity Cy
rd

in the-undisturbed medium ahead of the shock. Therefore, by designating

both the static and stagnation values of pressure and density -as unity
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ahead of the shock, the corresponding values of pressure and density
behind the shock are equal to the values of the pressure and density
ratios across a normal stationary shock wave.

From the known quantities, the speed~of sound is determined as

) / '
_ _ X _ 1.4(1.000) -
cx = cx = 3 = 1.000 .1.1836

X

\

From the Mach number relationship, u is determined-to be

u'=u =¢'"M"') =1.1832(2.7557) = 3,2605 .
X s X X

Since the density ratio is the inverse of the veloeity ratio across the

shock, then
u ' '
X 3.2605
u ' =— T = = 0.9013
y py /px 3.6177

Therefore,»uy is found from the transform plane relationships as
u =u_ - uy' = 3.2605 -~ 0.913 = 2.3593 .

If this shock is the one measured on the cone front, described in
Chapter II, the free-field flow component lies in the-horizontal

direction; then uy becomes
‘u, = 2.3593 cos 13.347° = 2.2955

The values of py and py are known quantities so it is now pessible

to determine the speed of sound behind the shock as

/0‘p / 1.4(8.6930)
c = -7 = ==t 07 00) - 1.834
y o 3.6177
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Knowing both the flow velocity, uy) behind the shock and the sonic velocitx
cy}behind the shock, the value of the flow Mach number behind the un-

diffracted shock away from the cone is

Moo ¥ 2.2956

y cy T 1.83% =1.25

Thus, it is seen that by using this transformation technique; all of the

physical properties behind a moving shock wave can be determined.



APPENDIX F
CALCULATIONS USING THE ANALYSIS OF ZUMWALT AND TANG

To illustrate the calculations performed for the base pressure
analysis of Chapter IV, known flow conditions were applied to Zumwalt's
conical flow model. The model, and the applicable calculations, are

shown by the following,

M= 1.25

p, = 8.6930

p, = 3.617698
- T _ = 2.402

Although the calculation procedure has already been described in
Chapter IV, details of the numerical values are presented here. As
before, — means "yields."

Free Stream Conditions:

. , P, T,
LM = 1.25—{1%%0FOPICL L = - 0,386, , =~ = 0.7619 .
pO°° o®
p
_ Po= 8.6930
e Poa” 3 y Do T 3861 22.5
T
- 2,402
Toe T, |, T= T 7619 T 21
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Conditions Behind Nose Shock:

3. M = 1,25 conical o
ec = 13.3470} [shock }-*tew = 35.75

p

_ normal oc _ -
M, sin 6 = 1.032—{ ~ \ "}— P " 1.00 — Poc 22,5,
b, M_=1.25 conical _
6, = 13.3470} [shock } Pe = 10.95
P .
c isentropic - - o]
5. ———poc ——{relations j=M, = 1.070—— v = .7973

Conditions on the Imaginary Cylindrical Section:

i

. : P
_ - o isentropic - o1 _
6. vy= v + 8 = 14.144 ——[relations }—»ml 1.574— poc— 0.2446—p,=5.5
Conditions on the Base:
7. M, = 1.574 —(Figure 41)—> —2 = 0.60
1 12
P; Py, P P P, P P
s b B P M Poe Toe L eheres
Po P1 P P; Py Pow Po st

The above célculations all apply to the steady state solution.

From Time Plane 360, P, Wwas determined to be 3.3328 atmospheres.

To determine tlie mass in the base region at the time of viscous mass

entrainment, the following calculations apply.

p : ;
9. =2 = 0.148—" M Jon = 1.90546—>v,= 23.74— 6= v~ v
P turn '

2 2 2= V2™V,
ocC
= 9.596— tan 9, = .169
pb, T R’ cot g,
10. m, = (p.V,) \4 Y = 0.0554 1b
. t b'b't R T ' m
v v ot

v



To determine the mass bleed rate, m,

Py,
11. —Z = .606
p Fig. 18 e
1 mres. 38
M| = 1.574
P
12, @ = - sc-iiﬁl /ng‘ = -88.9 X
v

The negative ht
v
base region by mixing action.
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for the base region;

1.0005 .

-6

10 16 1b /sec-.
m

value implies that mass is being extracted from the

At time t + At, the mass in the base is
"
13. m(t +at)~ mt+ m, At = 0.552 lbm/sec, where At = 2 seconds.
v v
The base pressure at this same time becomes
m.T
tytAt
l4. py \( vHat) = 19.65 tan 0 . L0
t +At 3
( v ) TR cote(t +At) v
v
Iterating, it can be seen that when e(t +At)_ 9.54%, then Py = 3.3
(tv+At).
atmospheres. Note that this is the same value as the steady-state base
pressure. The mass.in the base at this time is found from the following.
%
b(tV+At) P.M.
15, ————— = 147 " }> M,=1.91—v,= 23.869% 8= v,-v
P 2 2 271
oc
= 9,725— tan 62 = .1708
3
Py T R° cot 62
(tv+At)
16. M = = 0,544 1b .
_ (tv+At) ® T m

(o}
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»
Repeating the procedure for finding m , using the new values,

the solution continues as

p

b(t +At) N
—_— 2 60
17. Py
Ml = 1.574
18. m = 0
(tV+At)

-

;__{

Fig. 18
Ref. 38

}

A"

— =0 ;

These values indicate that no mass is feeding in or out of the mixing

region.

Hence, the solution has reached the stable condition.



APPENDIX G
CALCULATIONS FOR SHOCK WAVE INITIAL CONDITIONS-PHASE II

This appendix serves to illustrate the calculation techniques used
to determine the initial shock conditions for the Phase II solution. In
this analysis, the properties in front of and behind the shock are assumed
to be known. These were obtained from the transformation technique illus-
trated in Appendix E.

The shock imitial conditions have been universally représented as
a simple discontinuity between two mesh points. That is, the adjacent
points are given property values corresponding to conditions before and
after the shock. However, this pure discontinuity fails locally to
satisfy the conservation laws. It has been found (See Reference 15) that
this causes-a "ripple" in the varioﬁs flow properties to be propagated
upstream, where conditions should be constant for plane waves. A similar
calculation ripple may propagate downstream (ahead of the shock) but this
is not apparent since the field itself is changing.

. To eliminate this erroneous initial shock condition, a method was
devised which has essentially eliminated the ripple phenomenon. For the -
finite difference calculations, the initial shock wave is assumed to be
defined over two mesh widths. The pressure is taken to be the arithmetic
mean of the pressures in front of and behind the wave. The other: physical

parameters, that is, density and velocity, at the shock center-are made
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compatible with the average pressure value. This may best be illustrated

by considering the following T-S diagram.

“””,/’/i>////1%

/ P p = %(px+ py)
T 2 o = %(pa+ pb)
u ='%(ua+ ub)

In this diagram, the barred symbols represent values at the center of
the shock. The symbols x and y représent conditionéain front 'of and.
behind a normal shock corresponding to P, and py , reé;éétively.

To determine the value of u and p which correépond to the known
value of 5. at the center of the shock, it is suggested that the problem
be solved in two segments. The first segment considers a normal shock
relationship with known pressure ratio, py/gt, and conditions uy and -
py . The second segment considers a normal shock relationship with
known pressure ratio,;/pX and conditions u, and Py Selving both of
these segments in the-transform plane, -then .re-transforming back to the
physical plane, the value of u and p at points a and b are
determined. . These values are then averaged to yield a good approximation
of the values of u. and p to satisfy the conservation equations

locally. The shock wave representation for this technique may be i1lus-

trated by the following diagram.

T

\\Mg///L/,p yields E;'E
\\\b
::§>__,._4a

X
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The calculations performed for the first segment of the problem

are as follows,

Physical Plane (Moving Shock) Transform Plane (Stationary Shock)

u u'=0
—S). ]
—_— — e
M = 1.25 uy'=us—uy ub’=us—uX
, = 8.6930 p, = 4.8465 p,'=p,=8.6930 p, '=4.8465
py 3.6177 0% ? py py 3.6177 Py b0

' T - normal - 1 Ty 1 -
1. Py /ey, 1.7937-——«[shock }—f-Mb 1.2962,py /oy '=uy /uy 1.5092

=p ' =p " ' 'y = 2.3971
Py = Py oy /(ub /uy )

3. ¢ = —;_T = 1.6824

b

! 1 \J _
Cheow' = QL") = 2.1808

Il

] 1 1 1 —
5. u u /(py /pb ) = 1.4450

6., u =u '+ u = 3.7406
S y y
= _ -
7. ub = uS uy 1.5598

Thus, uy and P, are determined. Similarly, the u, and P, calculations

for the second segment are as follows.
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Physical Plane (Moving Shock) Transform Plane (Stationary Shock)
u u'=0
s s
—
— —
p_ = 4.8465 p. = 1.000 u'=u -u u' =u
a X a s a X s
= 7 = ' = = ' = =
o, =1 Oy 1.000 P, P, 4,8465 P, P, 1.000
u, ? u 0 o, N ? Oy Oy 1.000
' v - normal LI 1 T—,, ! 1
. op"/p' = 4.8465—{Sh ok f— 2.0730, o "/p_"=u '/u '= 2.7731
- v ' 1 Y
2. o, Py Py (u'/u ") 2.7731
'\
YP
3. ¢! : = 1.1832
X p
4, u'=u =c'"M"'") = 2.4528
X X X
v - ' 1 "y —
S. u, u /(pa /OX ) 0.8845
6. u =u -u'=wu -u'=1.5683
a s a X a

Therefore, from the first and second segments, the average values of E

and u , corresponding to.E are
P =X +p) =2.5851 , U=<(u+u) = 1.5640
23" Pp ’ 2%

Thus, a sample calculation for the initial conditions at the shock.
center, as used for the computer solution, has been shown. Note that
these calculations were determined for Point A of Figure 9. For the
other shock points in Figure 9, the conditions across the shock locally

were used to determine the'; ,‘E, and u - at these shock points, namely,
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points A, 3, 6, 10, 15, and B. For example, Point 14 is the "y" point

and an undisturbed field condition is the "x" point for "s'" Point 15.
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APPENDIX H

COMPUTER SOLUTION FOR BLAST-BASE INTERACTION - PHASE II

COMMON RHO(105,27)4P(105427)5U(105,27),V1105,27),R(105,27),
15(105427),E(105,27) yHLM,H2M; SINX,COSX, SIN2X,COS2X,NU} GAMMA , OMEGA,
2 SIGMAO,HL 4 H2,K K1 4K2,T,CNT,T1

COMMCN XXQ(105,27)

INTEGER H1M, H2M, CNT

REAL NU,MAX3Ky K1 K2

REWIND 4

FORMAT (10X, 7F10.4)

FORMAT (10X, 215,3F10.4,15)

READ 1002,HI1M,H2M,H1  H2 ¢ X, CNT

10,0

X = X#(3.141592653/180.0)

SINX = SIN(X)

STH2X = SINX®SINX

COSX = COSEX)

COS2X = COSX#COSX

NU = 1.0
GAMMA = 1.4
OMEGA = 1.345

SIGMAO = 0.5

READ 1001, { (RHC(M,L) M=1,HIM) ,L=1,H2M)
READ 1001, ((P(M,L) M=1,HIM),L=1,H2M)
READ 10014 ((U(MyL) M=1,HIM) L=1,H2H)
READ 1001, ( (VML) M=14HIM) ,L=1,H2M)
MAX = 0.0

DO 100L = 1,H2M

DO 100M = 1,HIM

IF (RHO(MyL)~.9E61400,100,400

CONT INUE

TEST=SGRT (UM, L) #U(M, LI +VIM, L) #VIM, L)) +SQRT(GAMMA=P (M, L} /RHO(M,L))
IF(TEST-MAX) 100,100,401

MAX=TEST

CONTINUE

K = SIGMAO/MAX

KL = SINX=K

K2 = COSX#K

T = KeH1xH2/(SQRT(HLEHI+H2*H2) )

DO 10 L=1,H2M

DO 10 M=1,HLM
[F(RHO(M,L)=.9E6)402, 9,402

CONTINUE
R{M,L) = RHO(M L) #U(M,L)
GO 1O 10
R{M,L) = 0.9E¢6
CONTINUE
DO 20 L = 1,H2M
DO 20 M = L,HIM
IF(RHO(M,L)~.9E6)403,19,403
COMT INUE

S(M,L) = RHO(M,L)=V(M,L)

150
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GO YO 2¢
L9 S(MyL) = 0.9E+6
20 CONTIMUE
: 00 30 L = 14HZM
L0 30 M = 1,HINM
. AF{RHO(M L) -, 9E6)404,429,404
404 CONTINUE
W= SQRT(UIM,LY®U(M,L) + VIM,L)=Y (M, L))
E{M,L) = (RHO(M,L)#W2uW20,5) + (P(ML)/(GAYMA-1.0))
GO 7O 30 :
29 E(My,L) = 0.9E+6
30 CONTINUE
510 CONTINUE
[F{SENSE SWITCH 1)880,881
880 REWIND 5
CALL DOT(5)
REWIND 5
END FILE 4
REWIND . 4
PAUSE 1
831 CONTINUE
CALL BLAST2
G0 70 519
END
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2

40

40

40

40

SUBROUTIME BLAST?
COMMON RHG(105,27) 4P (105927)4U0105,27)4V{10%,27),R(105,27),

- 152

1S(105427) 4y E(L05927) yHLIM H2M, SINXHyCOSX,SINZX,COS2XyNU,GANMAZIMEGA,

2 SIGMADZHL H23K4K1 K23 TyCNT, T
COMMCN RHOLI105,2T)
INTEGER HIM, H2M, CNT
REAL NU,MAX K,KL,K2
DO 300 Jd=1,2160
0 RHO1(J4)=0.
GOl FORMAT (10(1XsEl2.6))
DC 120 L=1,HZM
D0 120 M=1,H1M
[F(RHO(M,L)-.9E6)405,210,405

5 CONT [NUE
PST = 0.0
FX = 0.0
FY = 0.0
PHIX = 0.0
PHIY = 0.9

IF(L-1)406,114,406

6 CONT INUE
YL = L~1
PST = —TaNU*V({M,L)*RHO(M,L}/(YL#H2)
GO TO 115

tl1e vIiM,L) = 0.0

115 ALPHA = UMEGAsK#(SQRT(U(M,L)#U(M,L)+VIM,L)eV(M,L))
1 +SQRT(GAMMA#P (M, L) /RHO(M,L)))
BETA = ALPHA#COS2X
ALPHA = ALPHAR®SIN2X
[F{L-1)407,300,407

7 CONTINUE
[FIRHO(M,L-1)-e9E&)408,110,408

a CONTINUE
I[FiL-H2M) 500,132,500

500 CONTINUE

41

41

[F(RHGIM, L+ 1 )-.9F6)410,117,410
0 CIMTTNUE
FY = ~0.52K2#(S{M,L+1)=S(M,L=1))
300 BETAL-= OMEGA#K={SURTIU(M, L+1)#UlM, L+1)+VIM,L+1)=V(M,L+1))
1 +SURTIGAVHA=P (M, L+1 )Y /RHO(M, L+1)) ) #C0OE2X
[F{L=-1)411,301,411
1 CONT INUE
BETAZ = DMEGA®K# (SWURTIU(M,L=-1)=U(M,L=1)+VIM,L-1)eV(i,L~1))
! +SORTIGAMMA=P(M,L-1)/RHO(M,L-1)))=C0O52X
PHTY = 0,25« ((BETAL+BETA) # (RHO(M,L+1)-RHO(M,L))
l ~(BETA+BITA2) % (REO{M, L)-RHO(M,L-1))}
GO 7O 200
301 PHLY = O,5# ((BETAL+BETA) « (RHO(M,L+1)-RHC(,L)))
PST = =TenUsVIM,L+1)#RHO(M,L)}/H2
116 FY = ~K2aS{M,L+1)
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414
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118

119
110

130

209

210
129

. SUBROUTINE BLAST2

GO TO 200

FY = K2#S{M;L=-1)

TF(¥=1)1412,203,412

CONTINUE

JF(RHO(M-1,L)-4+9E6)4613,118,413

COMT INUE

IF{M-HLM)414,130,414

CONT INUE

[F(RHO(M+1,L)=~u9E6)415,119,415

CONTINUE

FX = =0 58K1e(R{MeL,L)=2(M=-1,L))

ALPHAL = OMESA#K# (SORT(U(M+L, L) #UIMEL, L)+V M+l L) eV (Mel,0L))
1 +SARTCGAMMARP (M+ 1, L) /HO{M+1,L) ) ) oS IN2X
ALPHAZ = OMFSASK= (SURT(UM=1, L) eU(M=1,L)+VIM=1,L) eV (H=1,0L))
1 +SORTIGAMAARP (M=1, L) /RHO(M~1,L)) ) #S[N2X
PHIX = 0.25%( (ALPHAL+ALPHAY ® (RHN{M+1,L)=RHN(M, L))
1 —(ALPHA+ALPHA?) # (RHO(M, L) =RHO(M=1,0L)))
GO TO 110 :

FX = ~K1l#R(M¥1,L)

G TO 110

FX = Kl#R(M-1,L)

RIOL (M L) = RHOIM L) +PST+FX+FY+PHIX+PHLY
GO TO 120

KHOL (MyL) = RHO(M—1,L)

GO TO 120

RHGYI (M, L) = RUO(M,L-1)

GO TO 120

RHOL(M,L) = KHO(M,L)

GO TO 120

REHOL(M,L) = Q.9E+6

COMTIMUE

WRITE(S) RHOL

CALL BLAST3

RETURN

EMD

!
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SUBROUTINE BLAST3

COMMON RHO(L105427)4P(1053427),U(L05,27),V(105,27),R(105,27),

154

LS{L105,27)4E(L105,27) s HIM,H2M, STNX,COSX s SIN2X,C0S2X 4 NU»GAMMA,OMEGA,

2 SIGMAOsHLsH2 4 KyK1 K2, T»CNT,T1

COMMON R1({105,27)

INTEGER HLM, H2M, CNT-

REAL NU,MAX KyKLl,K2

DO 800 J=1,2160

R1{J)=0.

FORMAT (10(1X,E12.6))

DO 120 L=1,H2HM

DO 120 M=1,H1IM
IF(RHO(M, L)~ IE6)416,210,416
CONTINUE

PS{ = 0.0

FX = 0.0

FY = 0.0

PHIX = 0,0

PHIY = 0.0

[F(L-1)417,114,417

CONTINUE

YL = L-1

PSI = —TaNUsVIML)#R({MsL)/(YL®H2)

GO TO 115
VIMyL) = 0.0

ALPHA = DMEGA*K*(SQRT(U(M.L)*U(M.L)+V(M,L)*V(M,L))
1 +SQRTIGAMMA=P [M,yL) /RHO(M, L))

BETA = ALPHAxCQOS2X

ALPHA = ALPHA®SIN2X
[F{L-1)418,300,418

CONTINUE
[F{RHO(M,L-1)-.5E6)5C1,116,501
CONTINUE

IF(L-H2M)502,132,502

COMTINUE
IF(RHO(M,L+1)-.9E6)503,117,50%
CONTINUE

FY = —~0.5#K2=8(S{M,L+1)=#U{M,L+1)-S(M,L-1)=U(M,L-1))
BETAL = OMEGA#K=([SQRT(U(M,L+1)#U(M,L+L)+V{M,L+1)%VIM,L+1))
+SQRT(GAMMAXP (M,L+1) /RHO(M,L+1)))=COS2X

IF{L-1)422,301,422
CONTINUE

BETA2 = OMEGA#K#*(SQRT(U(M,L-~1)2U(M,L-1)+VIM,L=1)eVIM,L=-1))
+SOURT(GAMMA=P(M,yL-1)/RHO{M,L=1)))#C0OS2X
PHIY = 0.265#((_5TAL+BETA)=(R(M,L+1)-R({M,L))
~(BETA+BET ") «(R(M,L)-R{MyL-1)))

G TO 200

PHIY = C.5#((:8TAL+: "TA)a (M L+L)=2(M,L}))

PST = —-TaNUsv(i,L+l)#2{M,L)/H2

FY = -K2=S(M,Ltl)®U(~,L+1)
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SUBROUTINE BLAST3

G0 TO 200 .

FY = K2#S(M,L~1)#U(M,L-1)
IF{M-1)504,209,504

CONTINUE

IF{RHC(M~1, L)—.9Eb)424 118,424

CONTINUE

CONTINUE

TFIRHO(M+1,L)-.9E6)426,119,426

CONTINUE

FX = -0. b*Kl*((P(M+l LY+R(M+L b FuthtM+L, L))
1 —(P(M-1,L)+R({M=1,L )bt M=Lpb 3} }

ALPHAL = OMEbA*K*(bORT(U(M+l,L)iU(N+l.L)+V(M+l LL*V&Mtlnth
1 +SORT{GAMMA#P (M+) L)Y /ARHO(M+L,L)) )} #SEN2X
ALPHAZ = OMEGA#K# {SQRT(UM=1,L)#U(M=Lk LI+ VEM—L L eV iM~Lpl 2}
1 +SQRTIGAMMA*P (M—1,L)/RHO(M=1,L)))I=SIN2X
PHIX = 0.25#({ALPHAL+ALPHA)Y*# (R(M+L,L)-R{MyLE)
1 —(ALPHA+ALPHA2 )} ® (RIMyLI=R{M-1,L)))

GO TO 110

Rl1{M,L) = 0,0

GO TO 120

FX = Kle{P(M-1, L)+d(M LyL)Y®U{M=-1,1L))
RLI(MsL) = RAMyL)I+PSI+FX+FY+PHIX+PHIY

GO .TO 120 ‘

RL(MyL) = R{M-1,L)

GO 1O 12¢C

RL(M,LY = R(M,L-1)

GO TO 120

RL{M,L) = R(M,L)

GO 10 120

R1(MsL) = 0.9F+6

CONT INUE

WRITE(5) R1

CALL BLAST<

RETURN

END
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SUBROUTINE BLAST4
COMMON RHOL105,27)4P1105+27),Ul105,27),V(105927),R1105,27),
1S(105,2T7)2ELL105,27) yHIMyH2M,SINX,COSXySIN2X, COSZX,NU,GAMMA OMEGA,
2 SIGMAOIHL s H24 Ky K1 K2, T4CNT,T1
COMMON SL(105,27)
INTEGER H1M, H2M, CNT
REAL NUyMAX KyK1,K2
DO 800 J=1,2160
800 S1t4)=0.
2001 FORMAT (10(1X,E12.61))
DO 120 L=1,H2N
L0 120 M=1,HIM
IF(RHO(M,L)-e9E6)427,210,427
427 COMNTINUE
PSI = 0.0
FX =
FY =
PHIX
PHIY
IF{L-11428,114,428
423 CONTINUE
YL = L-1
PST = —T#NU=V{M,L)2S{M,L)/(YL=H2)
GO 10 115
114 V{M,L) = 0.0
115 ALPHA = OMEGA#k» (SURTIUIM,LIxU(M,L)+V{M,L) =V {M,L))
1 +SORT(CAMMA#P(M,L) /RHO(M,L)))
BETA = ALPHA#CUS2X
ALPHA = ALPHA#SINZX
IF(L=-1)429,300,429
429 CONTIMNUE -
[F(RHO(M,L-1)=-.9E6)430,116,430
430 CONTIMNUE
IF(L-H2M)431,132,431
431 COMTINUE
TF(RHOIM,L+1)—-,9C6)432,117,432
432 CONTINUE
FY = —=0.5#K2#({P(M,L+1)+S{M,L+1)#V(M,L+1))
I = (P{M,L=1)+S(1,L-1)=#V(M,y,L=-1)))
300 UETAL = OMEGA#Ks (SORT(U(M,L+1)#U(M,L+1)+VIM,L+1)eV(M,L+]1))
1 +SORTIGAMMA®P (M, L+ 1) /RHO(M,L+1)))#COS2X
IF(L-1)433,301,433
433 CONTINUE
BETAZ = OMEGA®K«{SGRT(U(M,L-1)*U(M,L-1)+V{M,L-1)V(MyL-1))
1 +SCRTIGAMMARP (M, L-1)/RHO(M,L~-1)))*C0SEX
PHIY = 0.2%«((BETAL+BFTA) = (S(M,L+1)=-S(,L))
1 ~(BETA+oETA2) = {(S(M,L)=-5(M,L—-1)))
GO TQ 290
301 PHIY = 0.5#((BLTAL+BETA)I#(S(MyL+1)=5(r,L)))
PST = —TanNUsV(M,L+1) =S (M, L) /H2

n oo
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SUBROUTINE BLAST4

FY = =K2#(P(M,L+1)+S[M,L+1)=V(M,L+1))

"S1ti,L) = 0.0

GO TO 120

FY = KZ2#(P(MyL=1)+S(MyL=1)2V(M,L-1))

[F(M=-1)434,209,434

CONT INUE

[F(RHO(M=1,L)=-,9E6)435,118,435

CONY INUE

[F{V-HIM)436,130,436

CONTINUE

IF(RHO(M+1,L)~e9E6)437,119,437

CONT INUE

FX = =0.5#KY#(R{M+1,L)#V{Me]l,L)-R{M=1,L)#V{M~1,L))

ALPHAY = OMEGA*K#(SQRT(U(M+1,L)=U{M+1,L)+VI{M+],L)eV(M+1,L))
+SORT(GAMMA#P(M+]1,L) /RHO(M+1,L)) ) =SINZX

ALPHA2 = OMEGA#K# (SQRT(U(M=1,L)#U(M=1,L)+VIM=-1,L)#V(M=1,L0L))
+SOQRTIGAMMA®P(M—1,4L)/RHO(M=1,L} ) ) SINZ2X

PHIX = 0425« ({ALPHAL+ALPHA)#(S({l.+]1,L)-S{M,L))
—(ALPHA+ALPHAZ2) 2 [S{M,L)-S{M-1,L)))

GO TD 110

FX = =Kl#{R{M+1,L)2V{M+1,L))

GO TO 110

FX = K1l#(R{M=1,L)=2V{M-1,L))

S1(MaL) = SIMyLI+PSI+FX+FY+PHIX+PHIY

GO TD 120

S1{MyL) = S(M=1,L)

GO 10 120

S1(M,L) = S{M,L-1)

GO TO 120

SYIM,L) = S{M,L) .

GO TO 120

S1{MsL) = 0.9E+6

CONTINUE

WRITE(S) 51

CALL BLAST 5

RETURN

END
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SUBRCUTINE BLASTS : :
COMMON RHO(105,27)4P({105,2T7),U(105,27),V{105427),R(105,27),
1S(105427)sECL05427) g HIM H2My STRNX,COSXy SIN2X,COS2X o NUGAMMA,,OMEGA,
2 SIGMAOWHL yH2 3K K14 K2, T,CNT,TL
© COMMON E1{105,27)
INTEGER H1M, H2M, -CNT
REAL MUZMAX, KoKl K2
_ D0 800 J=1,2160
800 E1{J)=0C.
2001 FORMAT (10(1X,Fl2.6))
DO 120 L=1,H2M
DO 120 M=1,HLM
[FIRHD(M,L)=-.956)438,210,438
438 CONTINUE ‘ »

pPSI = 0.0
FX = 0.0
FY = 0.0
PHIX = 0.0
PHIY = 0.0

TF(L-1)439,114,439
439 . CONTINUE

YL = L~1
PST = —T#NUsV(M,L)=(E(M,L)+P(M, L))/ (YL =H2)
GO 10 115 .

114 viM,L) = 0.0
115 ALPHA = OMEGA#K#{SORTIU(M, L) #U{M,L)+V{M,L)=V(MN,L]))
1 +SQRT(GAMMA=P (M, L) /RHO(M,L)))
BETA = ALPHA=CGSZ2X
ALPHA = ALPHA&SINZ2X
IF(L-1)440,300,440
440 CONMTINUE
[TF(RHO(M,L-1)-.9E6)441,116,441
441 COMTINUE
[F(L‘HZM)442,132,442
442 CONTINUE
IF(RHO(M, L+1)-.9F6)443,117,443
443 CONTINUE
FY = =0.5#K2#({(E(MyL+L)+P (ML #1))eV(M,L+1))
1 —({E (M L=1)+P(MyL-1) ) eV (MyL=-1)))
C300 BETAL = OMEGA#K#(SQRTIU(M,L+1)#U(M,L+1)+V(M,L+1)=V(M,L+1))
1 +SURT(GAMMA#P (M,L+1) /RHO(M,L+1)))#C0OS2X
IF(L—-1)444,301,444
444 CONTINUE
BETA2 = OMEGA#K# (SQRT(U(M,L-1)#U{(M,L-1)+V(M,L-1)sV(M,L-1))
1 +SQRT(GAMMA#P (MyL—~1) /RHO(M,L-1)) ) #C0OS2X
PHIY = 0,25 ({(BETAL+BETA)=(E(M,L+1)-E(M,L))
1 —(BETA+BETA2)#(E(M,L)-C(HM,L-1)))
GO TQ 200
301 PHIY = Q.5*#((BETAL+BETA) = (E(M,L+L)-E(H,L)))
PSI = =TaNU#V (M, L+1)=(E(H,L)+P(M,L))/H?
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SUBROUTINE BLASTS s

FY = —K2# ((E(M,L+1)4+P(M,L+1))#V{M,L+1))

G0 TO 200 _

FY = K2#((E(M,L=1)+P(M,L~1)) %V (M,L~1))
IF(M=1)445,209,445

CONTINUE

TF(RHO(M=14L)~.9E6)446,118,446

CONTINUE L :

IF(M=H1M) 447,130,447

CONT INUE

TF(RHO(M+1,L)~.9E6)448,119,448

CONTINUE

FX = —=0.52K1%(((E{M+1,L)+P(M+1,L))=U(M%1,L))
1 =((E{M=1,L)+P(M=1,L))=U(M=1,L)))

ALPHAL = OMEGA#K=(SQRTIU(M+13L) ®#U(M+1,L)+VIMEL L) 2VIM+1,L))
1 +SQRT(GAMMA#P(M+1,L)/RHD{M+1,L))) «#SIN2X
ALPHA2 = OMEGA#K* (SQRT(U(M=1,L)#U(M=1,L)+V{M=1,L)*V(M=1,L)])
1 +SQRT(GAMMA®P{M=1,L)/RHO{M=1,L)))«SIN2X
PHIX = 0.25% ((ALPHAL+ALPHA)#{E(M+1,L)=F(M,L))
1  —(ALPHA+ALPHA2) #(E(M,L)—=E(M=-1,L)))

GO TO 110 :

FX = =KL1#((E(M+1,L)+P(M+1,L))%U(M+1,L))

G0 TO 110

FX = K1#{(E(M=1,L)+P{M=1,L))2U(M=1,L))

EL(M,L) = E(M,L)+PST+FX+FY+PHIX+PHIY
GO TO 120 E

EL(MsL) = E(M=1,L)

GO TO 120 -

EL(MsL) = E(My;L-1)

G0 TO 120

EL(M,L) = E(M,L)

GO TO 120

EL(M,L) = 0.9E+6

CONT INUE

WRITE(S5) El
"CALL BLASTG

RETURN

END
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2002
2003
2004
2095
2006
2007
2008
2009
2010

900

449

450

10

20
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SUSKOUTINE BLAST6

COMMON RHO(105,27)3P(105,27),U(105,27)4,V(105,27),R(105,27),
1501054273 0EL105,27) o HIM H2My SINX,COSXy SIN2X,COS2X4NU,GAMMA ,OMEGA,
2 SIGMAO,H1,H2yK,K1yK2,T,CNT,T1
INTEGER H1M, H2M, CNT, CNT1l, CNT2
REAL NU, MAXs Ky Kl, K2

FORMAT (12H RHO = 0 AT [2,1H,12)
FORMAT (10(1X4F12.5))

FORMAT (//9H DENSITY/)

FORMAY (//10H PRESSURE/)

FORMAT (//21H HORIZONTAL VELOCITY/)
FORMAT (//19H VERTICAL VELNCITY/)
FORMAT (//22H HORIZONTAL MASS FLUX/)
FORMAT (//20H VERTICAL MASS FLUX/)
FORMAT (//8H ENERGY/)
FORMAT(LIHL60X, L LHTIME PLANE I3,2X,4HPACE,12/57X,THTIME = E14.8)
REWIND 5

READ(5) RHO

READ(5) R

RFAD(5) S

READ(S) E

DO 900 M=1,H1M

MMM=H2M-1

RHO(MsH2ZMY=RHO (M, MMM)
RIMyH2M) =R (M, MMM)

SIMyH2M)=S{MyMMM)

E(MyH2M)=E(MyMMM)

DO 10 L=1,H2M

DO 10 M=1,HLIM

IF(RHO(M,L)-.9EH) 449,100,449
CONTINUE

IFIRHO(MyL))450,2004450

i

"

CONT INUE

U(M,L) = RIM,L)/RHO(M,L)

VIMyL) = S(M,L)/RHUO(M,L)

P(MyL) = (GAMMA-1.0)=(E(M,L)-RHO(M,L)
1L (UM, L) =U(M,L)+V (M, L) =#VIM,L))=0,5)
CONTINUE

MAX=0.0

DO 20 L=1,H2M

DO 20 M=14HIM
[F(RHO(M,L)—-.9EH)451,20,451
CONTINUE

TEST=SQRT (UM LY # UM L)+VIM, L) #VIM, L) )+SQRTIGAMMA#P (M, L) /RHO(M,L))
IF(TEST-MAX)20,204452
MAX=TEST

CONTINUE

K=SIGMAD/MAX

K1=SINX%K

K2=C0SX#K



602

600

601
603
520

50

52

SUBROUTINE BLASTS

Tl=T1+T
T=KeH1aH2/SQRT(H1#H1+H2#H2)
CNT=CNT-1

REWIND 5

CNT2 = CNT1=-CNT

IPL=1PL+1

IP1=1

I1Pp2=10

121=0

HIMSV=HIM

WRITE(4) IPLsT1l.,RHO

WRITE (4) P

WRITE (4) U

WRITE (4) V

WRITE (4) R

WRITE (4) S

WRITE (4) E

I (MODLIPL=-1,1))507,602,507
IF(MODIIPL-1,3))507,602,507
[F{MODLIIPL=145))507,602,5017
IF{SENSE SWITCH 1)602,507
DO 601 KK=1,HIM

DO 600 JJI=1,H2H
[F{U(KK,JJ))601,600,601
CONT INUE

HLIMSV=HIM

H1M=KK

GG TO 603

CONT INUE

CONTINUF

CONTINUE

121=1Z21+1

PRINT 2010,IPL,121,T1

PRINT 2003

DO %0 L=L1l,H2M

L1=H2M~L+1

PRINT 2002, (RHO(M,L1) 4M=IP1,IP2)

PRINT 2004

DO L1 L=1l,H2M

Li=HZ2M-L+1

PRINT 2002,(PIMyLL),M=1P1,IP2)
PRINT 2005

DO 52 L=1+H2Z2M

Ll=H2M~-L+1

PRINT 2002, (UlM,LL)M=IPL,IP2)
PRINT 2006

DO 53 L=1,H2M

Ll=H2M-L+1

PRINT 2002, {VIM,LL1),M=1IP1,IP2)
PRINT 2007
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54

55

SUBROUTINE BLASTé

DI 54 L=1,H2M

Ll=HZ2M-L+1

PRINT 20025 (R{MyL1),M=]P1,1IP2)
PRINT 2008

DO 59 L=1,H2M

L1=H2M-L+]

PRINT 20024(S{MyLY) M=}P1,][P2)
PRINT 2009 :

DO S5 L=1,H2M

56

521

522

506
100

200

507

Ll=H2Z2M-L+1

PRINT 2002,(E(M,L1)yM=IP1,1P2)
IF{IP2-H1IM)521,5224522
[Pl=1P2+1

[P2=1P2+10
IF{IP2-HIM)520,520,523%
IP2=H1M

GO TO 520

CONTINUE
IF{CNT)506,506,507
sSTOP

UlM,L)=0.9E+6
VIM,L)=0.9F+6
P{M,L)=0.9E+6

GO TO 10

PRINT 2001.M,L

UM, L)=0.0

VIM,L)=0.0

P(M,L)}=0.0

GO 10 10

CONT IMNUE

HIM=HIMSV

RETURN

END
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APPENDIX I
STAGNATION POINT CALCULATIONS

The purpose of this appendix is to illustrate the calculation pro-
cedure used to obtain the stagnation values of pressure and density at.
m_n

the cone apex for the exploratory solution. The subscript "o'" denotes

stagnation values, and primes here indicate the transform plane.

Physical Plane (MovingtShock) Transform Plane (Stationary Shock)
M= 2.657 | M '=0
s s
—
—— — -
M = 1.254 M =0  u'=u-u u'=u
y X y s y b4 s
p. = 8.0673 p. = p__= 1.000 M ' = 0.4991 M ' = 2,657
y X oxX y X
= = = "= = = =
py 3.5123 Pe = Pox 1.000 py py 8.0673 P, = Py 1.000
'= 3 '= =
py - 3.5123 px Py 1.000
T #T T '=7T !
oy oX oy ox

- - normal ' " ' ' ' '
1M "= M 2.657——{Shock }—-»-py /p,'= 8.0673, u_ /uy Py /o '= 3.5123,

M ' =0.4991, T "/T ' = 2.2974
y y ' x

=
=
[}
(¢]
o

u
2. M=—=S_ ¥ X X_yor_yr/ X _Mr'aq,25
y ¢ c c c c y X T y
y y y X y y
isentropic]| P Py
3. M= 1.254 ; —» =L =0.384 , = 0.5048
v i relations | P
oy Poy
p p
4. poy=__/-‘L_= 21.0085, o_ =Wz—= 6.9578
py oy y oy
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The following configuration now exists:

shock
My= 1.254 Mx= 0
p0y= 21.01 P~ 1.000
p0y= 6.958 o= 1.000

e
L/
Ly

Z

stagnation point {(pitot value)

P : p . p .
5. M = 1.254—{00mmaly oy(pitot) _ ¢ gg5, —2yipitot) _ “oy(pitot) _; gggs
y shock P P
oy oy oy

P .
- (Toy(pitot) _
6. Poy(pitot) poyl——llfi;:———} 20.7249

P .
- oy(pitot) = 6.8639
poy(pitot) poy { poy } -863

Thus, the values indicated in steps 5 and 6 are the stagnation values
of pressure and density used for the computer solution. These values are
the stagnation values that exist at the cone apex for a steady-state

solution.



APPENDIX J

COMPUTER PROGRAM FOR FOREBODY EXPLORATORY PROBLEM

‘MONS%$ JOB 252740031 (BLAST WAVE DIFFRACTION)

MONS S ASGN MGO»AZ

MONS$$ ASGN MJUB A3

MON$ $ ASGN MWl A4

MONS$ S ASGN MWZ2sA5

MON$$ MODE GOLTEST

MON$® EXEQ FORTRANss95339BLSTWVI

INTEGER H1M, H2M,s CNT
REAL NUsMAXsKsK1sK2
DIMENSION RHO(9513)sP(9513)sU(9513)5V(9,13)
1 sR(9513)55(Gs13)4+E(9,13)
1001 FORMAT . (10Xs 7F1l044) )
1002 FORMAT {10X»s 21533F1l0e4515) '
. READ (1»1002) H1Ms H2Ms Hl, H2s Xs CNT
REWIND 4 .
T1=b.0
X = X¥(3.141592653/18060)
SINX = SIN(X)
SIN2X = SINX®*SINX
COSX = COS(X)
C0582X = COSX*®COSX

NU = 140
GAMMA = la4
OMFGA = 14345

SIGMAO = 0.5
READ (1+1001) RHO
READ (1,1001) P
READ (1,1001) u
READ (1,1001) V

MAX = 0.0
DO 100L = 1sHZ2M
DO 100M = 14HIM

TF{RHO(MsL)eEQeDs9E+6) GO TO 100
TEST=SORTIU(MsL) *U (MsL)+VIMsLI ¥V (MsL) ) +SQRT (GAMMA®P (MyL) /RHO (MyL))
. IF(TEST«GT«MAX) MAX = TEST
100 CONTINUE
K = SIGMAQO/MAX
K1l STINX®K
K2 COSX#K
T = K#H1#H2/(SQRT(H1*H1+H2%#H2) )
WRITE(4) HIMsH2MsSINXsCOSXsSINZ2XsCOS2X sNU s GAMMA yOMEGA s SIGMAQ sH1 sHZ
1 sKsK13K2s THsCNTsCNT»T1 i
WRITE(4) RHO
WRITE(4) P
WRITE(4) U
WRITE(4) V
DO 10 L=1sH2M
DO 10 M=1,H1IM .
IF(RHO(MsL)sEQsQ9E+6) GO TO 9
R(MsL) = RHO(M,LI*U(M,L)
GO TO 10 :
9 RI(MsL) = 0e.9E+6
10 CONTINUE
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19
20

29
30

WRITE(4)
DO 20 L
DO 20 M

R
1yH2M
1,HIM

TF{RHO(MsLY+EQe0W9E+6) GO TO 19

SIMsL) =
GO TO 20

RHOM LYV M,L)

S{MsL) = 0.9E+6

CONTINUE
WRITE(4)
Do 30 L
DO 30 M

IF{RHO(MsL)sEGQaOeFE+6)
W o= SQRTIUIML)*U(MSL)

E{MsL) =
GO TO 30

S
1yH2M
1sHIM

(RHO(Ms L) *WiHW*J45)

F{MsL) = 0.9E+6

CONTINUE
WRITE(4)

£

CALL NEXTPH

END

+

GO TO 29
+ VIMsLY*®V ML) )

(P{MsL )}/ (GAMMA=1401})

166



MON$ I EXEQ FORTRANs599939BLSTWVZ

INTEGER H1IMs H2Ms CNT

REAL NUsMAX sKsK 1L sK2

DIMENSION RHO(Gs13)sP{9913)sU(9s13)sV(9,513)
1 sR{I9s13)9S{9913)sE(9+13)3sRHOL1{9513)

2001 FORMAT (10(1XsEl246))

REWIND 4
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READ(4) HIMsH2MsSINXsCOSX s SIN2X9sCOS2X s NU»GAMMA sOMEGA S STIGMAOSHL 9 H2

1 s K oK1 sK2 4 TsCNTsCNT,LT1L
READ(4) RHO

READ(4)
READ(4)
READ(4)
READ(4)
READ(4)
READ(4)
DO 120 L=1,H2M

DO 120 M=1,H1M
[IF{RHO(MsL}sEQaOs9E+6)Y GO TO 210

mwnao<C T

PSI = 0.0

FX = 0.0

FY = 0.0

PHIX = 0.0

PHIY = 040

IF(L.EQsel} GO TO 209

YL = L~1

PSI = =T#NU*V(MyL)®*¥RHO(MsL )/ (YL*HZ)

115 ALPHA = OMEGA*K#*(SQRT (UML) ¥UIMsL)I+VIMsL)H*VIMsL))

1 +SQRT(GAMMA*P (ML} /RHO(MsL ) )}
BETA = ALPHA*C0S2X

ALPHA = ALPHAXSINZX

IF(RHO(MsL~1) eEQs0s9E+6) GO TO 116
IF(L+EQeH2M) GO TO 117

FY = =0e5%K2¥({S{MsL+1)—-S{Myl-1))

300 BETALl = CMEGA*K¥(SQRT(U(M,L+1)*U(MsL+1)+VIMsL+1)%V(MyL+1))

116

117
230

1 +SQRT (GAMMA®P (MsL+1) /RHO(MsL+111))3%C0S2X

BETA2 = OMEGA®K# (SORT(U(MsL=1)#U(MsL-1)14+V IMsL-1)*V(MsL-1))}
1 +SQRT{GAMMA*P (s L=1) /RHO (1sL=1)1)#C0S2X

PHIY = 0e25%((BETAL+BETAI®*(RHO(MsL+1)~RHO(MsL))
1 —(BETA+BETAZ2) ®*{RHO(MsL)~RHO(MsL—=1) 1))}

GO TO 200

U(MsL)I=U(M,L)*¥COSKX+V(M,yL)*SINX

VIMsL)I==R(MsL) ¥SINX/RHO(MsLI+VIMsL)I*COSX

PST==T#NU*V (MsL)*RHO (M, L)}/ (YL*H2)

FY==K#{(S(MsL+1)#COS2X+S(M=14L)*¥STNZ2X)

GO TO 200

FyY = K2¥S(MslL=~1)

IF(MsEQa1l) GO TO 209

IF(RHO(M=13sL)eEQs0s9E+6) GO TO 118

IF(MsEQeHIM) GO TO 130

IF(RHO(M+1sL) «EQe0.9E+6) GO TO 119

FX = =Q0e5%K1#(R(M+1,L)=R(M=14L))

ALPHAL1 = OMEGAXK*(SQRT(UIM+LsLI¥U(M+1sL)+V(IM+1sL)¥VIM+1HL))
1 +SQRT (GAMMAXP (M+1 L) /RHO(M+L1 L) ) }*SINZX

ALPHAZ = OMEGA*K#{SQRT(U(M~1sL)*¥U(M=1sL)+VI{M=1L)¥V(M=1s0L))
1 +SQRT(GAMMAXP (M=1 L) /RHO{(M=1,0L)))#*STIN2Z2X

PHIX = Q0e25%( (ALPHAL+ALPHA)#(RHO(M+1L)—RHO(MsL))
1 ~{ALPHA+A" PHAZ ) ®* (RHO(MsL)=-RHT (M=1sL 1)) )
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GO TO 110
118 FX = =K1*R(M+1,L)
GO 70 110
119 FX==0e5*KI®COSX#(R{M+1sL+1)-R{M=15L.-1))
ALPHA=OMEGA*K*¥ {SQRT{UIMs L) =UIM LI +V ML) ®V ML) )
1 +SQART(GAMMAXP (ML ) /RHOIMsL ) 1)
ALPHA=ALPHAXSIN2X
ALPHAL1=OMEGA*K# (SQRT(U(M+L1sL+1)I*¥UM+LoyL+1Y+VIMtLIsL+1) %V (M+LsL+1))
1 +SORT{GAMMA*P {M+1,L+1)/RHO(M+1sL+1) ) I1®SINZX
ALPHAZ2=0MEGA*K* (SQRT{U(M=1,L=11*U(M=1,L~1)1+V{M-1sL=1)¥V(M~1sL—-1))
-1 +S5QRT (GAMMA#P (M=1,L~-1)/RHO{M-1,L-1)))#SINZX
PHIX=0e25%COS2X* { {ALPHALI+ALPHA)Y* (RHO(M+1,L+1)~RHO{M,})
1 = (ALPHA2+ALPHA ) (RHO(MsL I} =RHO(M=1,L~-11}1)
110 RHOL(MsL) = RHO(MsL)+PST+FX+FY+PHIX+PHIY

GO TO 120

130 RHO1(MsL) = RHO(M-1,L)}
GO TO 120

209 RHOl1(M,sL) = RHO(Msl )
GO TO 120

210 RHOL(MsL)} = Q0.9E+0
120 CONTINUC

REWIND 5

WRITE(S5) RHOI1

CALL NEXTPH

END
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MONS$ S EXEQ FORTRAN s 93993 sBLSTWV3

INTEGER H1Ms H2My CNT

REAL NUsMAX sKsK1K2

DIMENSION RHO(G9913)sP(9913)sU(Gs13)Y9V(9513)

1 sR(9913)s5(9913)9F (9412} 4R1(9,513)

2001 FORMAT (10(1XsE1246))

REWIND 4

READ(4) HIMsHZMsSINX sCOSXsSIN2XsCO52X s NU s GAMMA sOMEGASSIGMAO sH1 4 H2
1 s KoKl sKZsToaCNTsCNT LTI

READ(4) RHO

READ (4)
READ(4)
READ (4)
READ(4)
READ(4)
READ(4)
DO 120 L=1,H2M

DO 120 M=1,4HIM

IF(RHO(MsL) eEQeQeSE+6) GO TO 210
PSIT = 0.C

FX = 0

FY = 0.

mopoOo<C T

PHIX

OOOO

PHIY .
IF(LeEGe]
yL = L-1
PST = —THENURVIM,L)*¥R{M, L) /{YLH*H2)
115 ALPHA = OMEGA#K#* (SQRT (UML) ®¥U{MsLI+V{M,LI*V(MsL))
1 +SQRT(GAMMAHXP (ML) /RHO(MsL ) )
BETA = ALPHA*COS2X
ALPHA = ALPHA®SINZX
IF(RHO(MsL—-1)aEG0«9E+6) GO TO 116
IF(LaEQeHZM) GO TO 117
FY = =0e5%K2¥{S(MsL+1)%UIMsL+1)~S{MsL-1)*U(MsL-11})
300 BETAL = OMEGA®K* (SCRTIUMsL+1)¥U(MeL+1)+VIMaL+1Y*VMsL+1))
1 +SORT{GAMMAXP (ML +1) /RHO(MsL+1)))#C0E2X
BETA2 = OMEGA*K# (SQRT(U(MsL-11*¥U{MsL—1)}+VIMsL-1)¥VI{MsL-11})
1 +SQRT ( GAMMA®P (Mo L~ 1)/&49(W,L 1)y )y*C0S2X

- O O

GO TO 209

PHIY = Qe25%{((BETAL+BETAI®(R{MsL+1)I~-R(M,sL})
1 —~(BETA+BETA2)*{R({MsL)~- R( tel=1)1)
GO TO 200

116 UlMaL)=U(MyLI*COSXHVINM,L)*STINX
VIMyL)==R{MsL)*SINX/RHGIM,L ) +V (M, L) #COSX
PST==TH#NU*V (ML) ¥R(M,L )/ (YL3#H2)
FY==K#*(S{MsL+1)*U{MsL+11¥COS2X+S{M=1 oL ) #ULM~1 L} FSINZX)
GO TO 2060
117 FY = K2#S{M,L-1)*U{MsL~1)
200 1F{M.EQsl) GO TO 209
[F(RHO(M=1,L)«eEQe0.9E+6) GO TC 118
IF{MsFQ.HIM) GO TC 130
TF(RHO{M+]1 4L ) eEQeQ9E+6) GO TO 119
FX = =0e5#K1#((PIM+14L)+R(M+L L) ®UIM+14L))
1 ~(P(M=1sL)+R{M~1 s ) #U(K~=1sL)})
ALPHAL = OMEGA®K*{SORT(U(M+I,L)* '(M+1,L)+V(ﬂ+l’L)%V(M+1’L))
1 +SORT ( GAMMA=X P(M+1;L)/FHU(M+1,L)) *STNZX
ALPHAZ = OMEGANKH* {SCRT{U(M=1sL)®U(M~1sL)+VIM=15L)*V(M=1,5L1})}
1 +SQRT(GAMMA*P(M—1,L)/RHJ(M—19L)))“INZX
PHIX = 0.25%( (ALPHAL+ALPHA)®(R{MA+15L)-R(MsL 1))
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1 ~{ALPHA+ALPHAZ ) * (R{MsL)-RIM=15L)))
GO TC 11¢C
118 R1{M,L) = 0.0
GO TO 120
119 FX==045%K1#COSX*((P(M+1sL+1)+RIM+LsL+1)%#U(M+1,L+1))
1 = (P(M=1,y-1)+R(M=1,L~-1)%Y{M=1sL-11))
ALPHA=0OMEGA®K# (SORTIUMsLIXUMsL)+V (ML) *¥V(MyL))
1 +SORT{(GAMMAXP (ML) /RHC(MyL) 1))
ALPHA=ALPHA*SINZ2X
ALPHA1=0OMEGA*K* (SQRT(U(M+L1sL+1)%U(M+1sL+1)+V(M+1lsL+1) ¥V {M+LlsL+11})
1 +SQRT (GAMMA®P (M+1,L+1)/RHO(M+1,L+1)))#SINZX
ALPHA2=0OMEGA*K#* (SQRT (U (M=1sL-1)%¥U(M~-1sL~1)+V(M=-1sL~1)%V{MM=14L~1))
1 +SQRT{GAMMA®P (M~1,L—-1)/RHG{M~-1,L~-1)))%5IN2X
PHIX=0s25%C0OS2X% ((ALPHAL+ALPHA)I® (RIM+1sL+1)-R(M,yL))
1 = (ALPHAZ2HALPHA)*(R(MyL) =R {iM=1sL~1)))
110 R1I(MsL) = R{MsL)+PST+FX+FY+PHIX+PHIY
FF(ABSIRI{MsL) ) eLT20.0000ULl) RI{MsLI=04C
GO T0O 120
130 R1(Mst) = R(M~=1,L)
GO TO 120
209 RI(M,L) = R{MsL)}
GO TO 120
210 R1{MsL) = 0.9E+6
120 CONTINUE
WRITE(5) R1
CALL NEXTPH
END
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MONS & EXEG FORTRAN s 9999 9BLESTWVL

INTEGER HI1Ms H2Ms CNT

REAL NUsMAX 4% 1K1 ,K2

DIMENSTON RHO(SG213)sP(Ga13)sU(F»12),V(9,13)

1 sR(9513)95(%512),E(9413),51(%4+13)

2001 FORMAT (10(1XsF1l2646))

REWIND &

READ(4) HIMsH2ZMsSINXsCOEXsSIN2XsCOS2X sy NUs GAMMASOMEGA s STGMAQSHL o H2
1 s K g K1 a2, TosCNTsCNT»TH

READ(4) RHO

READ(4) P
READ(4) U
READ(4) V

READ(4)Y R
READ(4)
READ(4)
DO 120 L=1,H2M
DO 1290 M=1,H1M
IF(RHO(MsL) «FR.D.9E+6) GO TO 210
PST = 0.0
FX = Q40
FY = 0QaU
PHITX 060
PHIY 00
IF({L.EQs1) GO TO 209
yL = L~1
PST = =THNUXV{MaL)I*S{MaL)/{YLHH2)
115 ALPHA = OMEGA®K*(SQRT (UML) *U (ML I+VIM,L)*VIMyL))
1 +SORT(GAMMARP (ML) /RHO (ML) )
BFTA = ALPHA®COS52X
ALPHA = ALPHAXSINZX
TF{RHO(MsL=1)eFQa09E+6) GO TO 116
TF{LLEQ«HZM) GC TO 117
FY = =0e5%K2¥ ((P{MsL+1)+S5(MaL+1)%*VIMsL+1))
1 ~(P{MsL=1)+S(MsL-1)V{MsL~1)))
300 BETAL = OMEGAXK#* (SQRT(UML+1)®¥UMsL+LI)Y+VIMsL+1 )%V IMsL+11))
1 +SQRT {GAMMAP (MsL+1) /RHO (M, L+11)))*C0S52X
BETA2 = OMEGA*K#(SQRTIUIMsL=1)%U(MsL=1)+V (MoL=1)*VI{MsL~-1})
1 +SQRT(GAMMARP {MaL~1) /RHO(M,L~1) 1) *COCS52X
PHIY = Ce20%((BETALI+BETAY (S (Mol +1)=5S(M,L))
1 —{BETA+BETAZ)#(S{MsL)=5(MsL~1)))
GO TO 260
116 UlMsLY=U(MsL)*COSK+V ML I *SINX
VIMsL)==RUMHLIFSTNX/RHO{MS L) +V ML) #COSX
GO TO 200
117 S1iMsL)=0.0
GO TO 120
200 [F(MsEQel) GO TC 209
IF{RHO(M=14L) «FQe09L+H)Y GO TO 118
IF{MJEQeHLIM) GO TO 130
[F{RHO(M+1 L) e EQe0e9+6) GO TO 119
FX = =0e5%KI¥{R(M+TsL)#*VIM+L o L) —R{M=1,L )%V (M=T91))
ALPHAL = OMEGA®K (SCRT (UIMFL SL)YFU(M+L Sl ) +V BT L)XV (MET 51 ) )
1 +SORT (GAMM (M+1 aL) /RHO (M4 T oLy YIS TANZX
ALPHAZ = OMEGA#RKF(SORTUIM~T s L) ¥ULM=1 ol 1AV (M=T o L IRV (M=T1 4L 1))
1 +EORT IGAMMAXP (Fi~1 L) /RHO(M~1,L) )} #S5TNZX
PHIX = Ue28% ({ALPHALFALPHAY#(S{M+1oL)=5(M50L))
1 ~{ALPHAFTALPHAZ I (O (ML) =3 (M=-15L1) 1))

W

im




130
209

210
120

GC 70 110

FX = =K1*¥(R(M+1yL)%¥VI(M+1,sL))
GO TO 110

S1(MsL)=040

GO TO 120

i S1IMsL) = S(MsL)+PSI+FX+FY+PHIX+PHIY

IF(ABS{S1(MsL))eLTa0e000001) S51(MyL}=0.0
GO T0O 120

S1{MsL) = S(M=1,L)
GO TO 120

S1(MsbL) = S(MsL)
GO TO 120

S1(MsL) = 0.9E+6
CONTINUE

WRITE(5) S1

CALL NEXTPH
END
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MONS$$ EXEQ FORTRANs s 95495 sBLSTWVS

1

INTEGER H1Ms HZM, CNT
REAL NUsMAXsK9K1sK2
DIMENSION RHO{(9513)sP(9513),5U(9513)1,V(9,13)

sR{9913)45(9513)3E(94513),E1(S513)

2001 FORMAT (10(1XsE1l246))

1

REWIND 4 .
READ(4) HLIMsH2MsSINXsCOSXsSIN2XsCOS2X s NUsGAMMA s OMEGA s SIGMAQD »H1 s H2

s KaKlsK2sTsCNTsCNTHT1

READ(4) RHO
READ(4) P
RFAD (4)
READ(4)
READ(4)
READ(4)
READ (4)
DO 120 L=1sH2M

DO 120 M=1,HIM

IF(RHO(MsL) «EQe09E+6) GO TO 210

mw A< C

PSI = 0.0

FX = 040

FY = 0.0

pHIX = 0.0

PHIY = 060

IF{L. Q.l) GO TO 209

YL = L-1

PSI = —T*NU V(MsL)’(E(M;L)+F(M’L))/(YL*HZ)

115 ALPHA = OMEGA#*K*{SQRT(U(MsL)*U(MsL)+V (ML )I*V(MyL))

1

1

+SQRT(GAMMA#*P (MyL ) /RHO (ML) ))

BETA = ALPHA®C0OS2X

ALPHA = ALPHA*SINZX

IF(RHO(MsL=1)eEQs0«9E+6) GO TO 116
IF(LsEQeHZM)} GO TO 117

FY = =0e5%K2¥( ((E(MyL+1)+P(MsL+1) )%V (MyL+1))

=((E(ML-1)+P (MsL—-1) )%V (MsL~1)))

300 BETAl = OMEGA#*K* (SORT (U(MsL+1)¥U(MsL+1)+V(MsL+1)*¥V(MsL+1))

116

117
200

1

1

+SORT (GAMMAXP (MsL+1) /RHO(MsL+1)) ) *¥COS52X

BETA2 = OMEGA#K#(SQRT(U(MsaL=1)%*U(MsL-1)+V(MsL-1)*V(MsL=~1))

+SQRT (GAMMA*P (MsL~1)/RHO (MysL~1)))*C0OS2X

PHIY = 0425%((BETA1+BETA)#(E(MsL+1)1-E(MyL))

1 ~(BETA+BETAZ) ¥ (E(MsL)~E(MsL-1)))
GO TO 200
U(MsLI=U(MsL)*COSX+V (ML) *¥SINX

VIMsL)==R(MsL)*¥SINX/RHO(MsL)+V (ML )3*COSX
PSI==TH#NU*V(MsL)®(E(MsLI+P(MsL) )/ (YL¥*H2)

FY==K#((((E(MsL+1)+P (MsL+1) )%V (MsL+1))*C0S2X)
1 +(((E(M=1,L)+P(M-1sL) ) *¥V(M=1,L))*SIN2X))

GO TO 200
FY = K2¥((E(MsL-1)+P (MsL=1))¥V(MsL=-1))

IF(MaEQel) GO TO 209
IF(RHO(M=1,L) «FQe0s9E+6) GO TO 118
IF(M.EQeHIM) GO TO 130.
IF(RHO(M+1,L)«EQe0e9E+6) GO TO 119

FX = =0e5%K1#( ((E(M+13L)+P(M+1sL))*U(M+1,sL))

1

~((E(M=1sLI)+P(M=1sL))¥U(M=1L)))

ALPHALl = OMEGA¥*K# (SQRT (U(M+1sL)*U(M+1sL)+V (M+1sL)*V (M+1sL))

1

+SORT(GAMMA#P (M+1sL)/RHO(M+1,L)))*#SINZX

ALPHA2 = OMEGA®¥K¥*(SQRT(U(M=1sL)*¥U(M=1sL)+V(M=15L)*V(M~1sL))
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1 +SQRT(GAMMA*P (M=1,L) /RHC(M=1sL )} ) *¥SIN2X
PHIX = 0e25%((ALPHAL+ALPHA) ¥ (FE{M+1sL)=E(MsL)) .
1 =(ALPHA+ALPHAZ)#*(E(MyL)~E(M=1sL)))
GO TO 110 '

118 FX = =KI*¥((E(M+14L)+P(M+1yL))%UIM+14L))
GO TO 110

119 FX==0s5#K1#COSX*( ({E(M+1sL+1)+P (M+1oL+1))*¥U(M+LyL+1))
1 ~((E(M=1sL=1)+P(M=1,L~-1))}%U(M=1ysL~-1)))
ALPHA=OMEGA#K* (SQRT(U(Ms L) *¥U(MsL)+VIMaL ) ¥V (MsL))
1 +SQRT (GAMMA#P (MyL)/RHO(MsL))) ’
ALPHA=ALPHA*SINZ2X
ALPHA1=0OMEGA*K# (SQRT(U(M+1aL+1)*¥U(M+1sL+1)+V(M+1sL+1) %V (M+14L+1))
1 +SQRT(GAMMAXP (M+14,L+1)/RHO(M+1,L+1)})*SINZX
ALPHAZ2=0MEGA*K# {SQRT(U(M~14L—1)%*U{(M=1sL-1)+V(M-1yL~=1)%V(M-1,sL-1))
1  +SORT(GAMMA*P (M=1,L-1)/RHO{M-1sL=1})))*SINZX
PHIX=0e25%#COS2X*¥ ({ALPHAL+ALPHA)#(E{(M+1,L+1)=E(MsL))
1 =(ALPHAZ2+ALPHA)*(E(MyLI-E(M=-14L-1)})

110 E1(MyL) = E(MsL)+PSI+FX+FY+PHIX+PHIY
GO TO 120

130 E1l(MsL) = E(M-1sL)
GO TO 120

209 ELl{M,L) = E(MsL)
GO TO 120

210 EL(MsL) = 0e9E+6

120 CONTINUE

WRITE(5) E1

CALL NEXTPH

END
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MONS S EXEQ FORTRAN sy 9395 sBLSTWVS
INTEGER H1Ms H2Ms CNTs CNT1ls CNT2
REAL NUs MAXs Ky Kls K2
DIMENSION RHO(9913)sP(9s13)sUl9913)14V(9,13)

1 sR(9913)95(9513)sE(9913)sW(94513)

2001 FORMAT (12H RHO = 0 AT 12slHsI2)

2002 FORMAT (10(1XsEl246))

2003 FORMAT (//9H DENSITY/)

2004 FORMAT (//10H PRESSURE/)

2005 FORMAT (//21H HORIZONTAL VELOCITY/)
2006 FORMAT (//19H VERTICAL VELOCITY/)
2007 FORMAT (//22H HORIZONTAL MASS FLUX/)
2008 FORMAT (//720H VERTICAL MASS FLUX/)
2009 FORMAT (//78H FENERGY/)

2011 FORMAT (//18H VELOCITY MODULUS/)
2010 FORMAT {(1H160Xs11HTIME PLANE 12/57Xs7HTIME = El4.8)

REWIND 4
READ(4) HIMsHZMsSTINX sCOSXsSIN2X sCOS2X sNUsGAMMA sOMEGA s SIGMAQ»H1 sH2

1 s KaK1sK2 3 ToCNTHCNT1,T1
REWIND 5
READ(5) RHO
READ(5) R
READ(5) S
READ(5) E
DO 10 L=1yH2M
DO 10 M=1,H1IM
IF(RHO(MsL) «EQaOa9E+6) GO TO 100
IF{RHO(MsL)«EQ.0.0}) GO TO 200
IF(RHO(MsL=1)eFQe09E+6) GO TO 30
GO TO 15

30 RHO{MsL}=RHO{M,L)
E(MsL)=E(M,L)
UML) =R(MsL)/RHO(MsL)
VIMsL}=S{MsL)}/RHO(M,L)
P(MsL) = (GAMMA~1.0)%(E(M,L)~RHO(MsL)

1 # (UM LY FU(MeL)+VIMaL)I*VIMoL) ) H0.5)
R(MsL)=R(M,L}*COSX
IF(ABS(R(MyL) ) «aLTe0.000001) R(MsL}=0e0
S(MsL)I=R{MsL)*SINX/COSX
IF(ABS(S(MyL))«LT«0.000001) S(MsL)I=040
U{MsL)=R{M,yL)/RHO(MsL)

V(MsL)=S5{M,L) /RHO(M,L)
WIMsL)=SQRT (UML) *¥U(MsL)+V(MaL}*Y(Mal))
GO TO 10

15 U(MsL)=R(MsL) /RHO(MsL)
VIMsL)=S(MsL)/RHO(MHL)
P(MsL)=(GAMMA=1+0) % (E(MsL)—-RHO(MyL)

1 ¥ (UML) HUML)+V ML) ¥V I(MyaL))*¥0e5)

W(MsL)=SQRT(U(MsL)I#¥U(M,L)I+VIM,L)*V{MsL))
10 CONTINUE
40 MAX=0.0
DO 20 L=1yH2M
DO 20 M=1,H1IM
IF(RHO{MsL)+EQaDs9E+6) GO TO 20
TEST=SQRT(U(MsL)*¥U(MsL)+VIMsL)#V{MsL))+SQRT (GAMMAXP (MsL ) /RHO(M,L))
IF(TESTGT«MAX) MAX = TzZST
20 CONTINUE
K=SIGMAC/MAX
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K1=SINX#®K
K2=COSX#K
Tl=T1+T
T=K*¥H1#H2/SQRT(H1#¥H1+H2%H2)
REWIND 4
CNT=CNT-1 _
© WRITE(4) HIMsH2MsSINXsCOSXsSINZ2X»yCOS2X 9sNU s GAMMA yOMEGA »STIGMAQsH1 9H2
1 sKeK1oK2sTsCNTsCNT1sT1 : :
WRITE(4) RHC
WRITE(4) P
WRITE{(4)
WRITE(4)
WRITE(4)
WRITE(4)
WRITE(4)
WRITE (4)
REWIND 5 .
CNT2 = CNT1-CNT
WRITE (3,2010) CNT2,T1
WRITE(3,2003)
DO 50 L=1yH2ZM
Ll=H2M-L+1
50 WRITE(392002)" {RHO(MyL1)» M=1,sHIM)
WRITE(3+2004)
DO 51 L=1yH2M
Ll=HZ2M~L+1 ’
51 WRITE(352002) (P(MsL1)y M=1,HIM)
WRITEZ(3,2005)
DO 52 L=1,H2M
Ll=H2M~L+1
52 WRITE(3,2002) (U(MsL1l)y M=1,yHIM}
WRITE(3+2006)
DO 53 L=1yH2M
Ll=H2M-L+1
53 WRITE(3,2002) (V(MsL1l}s M=1sHIM)
WRITE(3,2007)
DO 54 L=1,H2M
Ll=H2M=L+1
54 WRITE(3+2002) (R{(MsL1)s M=14sHIM)
WRITE(3,2008)
DO 55 L=1sH2M
Ll=H2M-L+1 :
55 WRITE(3,2002) (S(MsL1)s M=1sHIM)
WRITE(3,2009)
DO 56 L=1,H2M
Ll=H2M~L+1
56 WRITE(3+2002) (E{MsL1)s M=1sHIM)
WRITE(2,2011)
DO 57 L=1sH2M
Ll=H2M~-L+1
57 WRITE(3,2002) (W{MsL1l)sM=1sHIM)
IF(CNTLEQeO) CALL EXIT
CALL PHASE (2)
100 U(MsL)=0.9E+6
VIMsL)=0e9E+6
P{MyL)=0s9E+6
W{MsL)=0s9E+6
GC TO 10 .
200 WRITE(3+2001)M,L
U(MsL)=0.0
ViMeL})}=0s0
P(MsL)=Ca0

EMmn A< C



177

WiMsL)=0.0

GO TO 10

END

MONS$ 3 EXEQ LINKLOAD
PHASEOPBLSTWV
CALL BLSTWwvV1
PHASE
BASE1BLSTWV1
CALL BLSTwWvVZ
PHASE
BASE1IBLSTWVZ
CALL BLSTWV3
PHASE
BASEIBLSTWV3
CALL BLSTWV4
PHASE
BASE1BLSTWV4
CALL BLSTWV5S
PHASE
BASEIBLSTWVS
CALL BLSTwVé
MONS $ EXEQ OPBLSTWV,MJB
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