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CHAPTER I
INTRODUCTION

l.1 Statement of the Problem, Currently, there exists a trend in

engineering education to augment the methods of analysis and design of
linear systems, For some time the standard methods have depended
heavily upon the Laplace transformation, and a number of techniques
have evolved which are based principally in the s-plane. Some of‘these
techniques are the root locus, the Bode plof, and the Nyquist plot, as
well as others, A relatively new approach, representing quite a
departure from conventional techniques, is presently being investigated.
This new approach is based upon a state model of the system.. in
this state model the system is characterized by a set of first-order'

differential equations

dX_:L

== & (xl. Xyp sees X3 Ppy Pyy aany Ty t) 0 (1,1.1)

15 1,2, 3, cesyn

where the xi's are the state variables,
r;'s are the forcing functions, and

t is the independent time variable.

Specifically, for the class of linear systems, the state equations take

the form



» (1.1.2‘)

where
X (t), n by 1, is the vector state variable,
R (t), mby 1, is the vector forcing function,
Y (t), k by 1, is the vector oﬁtput function, and
A, B, C, and D are constant matrices

with the appropriate dimensions,

This thesis is concerned with a single input, single output linear

system having the state model description
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where
X (t), n by 1, is the vector state variable,
A, n by n, is a real constant matrix,

n by 1, is a real constant colum matrix,

jw

T, 1 by n, is a real constant row matrix,
r (t) is the scalar input forcing function, and

¢ (t) is the scalar output.

Appendix B provides an extension of the methods explained in the
body of the .thesis to systems which have a portion of the input included

albng with the state variables in the output,



G R G i g (1)

Figure 1,1,1. Linear System G

The problem is to determine the characteristics of the system G
by an analysis of the state equations, and to provide methods for
compensating the system if necessary, Use will be made of knowledge
of conventional control system theory in the derivation of methods, but
this knowledge will not necessarily be assumed in the application of

the methods,

1,2 Previous Work in This Area. A good source of information

about the relationship between linear systems, state variables, and
Laplace theory is Zadeh and Desocer (1), The treatment is at the
advanced level and is quite rigorous. The fourth chapter of this book
provides a foundation for much that has been done in this general area.
The state model of interest in this thesis is described by Zadeh
and Desoer (1) on page 254 as a strictly proper time-invariant system
of finite order. The authors make the point that this assumed model
of the system is equivalent to a differential system which is charac-

terized by a single differential equation

L(p) c(t) =M(p) r(t) (1.2.1)

where L and M are linear differential operators with constant
coefficients, Consequently, the problem deals either directly or

indirectly with a system described by just such an equation,



While Zadeh and Desoer (1) provide a rigorous foundation for the
praoblem, the level of their treatment precludes a great deal of usefulness
at the engineering level.

A reference that is closer to this level is Tou (2), Here the
third chapter is closely related to the problem, Many of the tech-
niques involving state variables that have evolved recently are summarized
in this chapter,

A good treatment of the applications of matrix theory is provided

in a series of articles by Frame (3) in the I.E.E.E. Spectrum. These

articles provide a review of matrix theory and treat the solution of
systems of differential equatioms,

The three references cited constitute a compact summary of most of
the work that has been done in the general area of state-variable
analysis of systems, In each of the two bocks, at the end of the
chapter mentioned, there are more detailed reference lists, Similarly,
there is a bibliography after each of the five articles by Frame (3),

The problem stated in Section 1,1 is examined in this thesis in

greater detail than in any of the references.,

1.3 Outline of the Method of Solution., The system defined by

2 + 2n constants which distinguish

Equation 1,1,3 is observed to have n
it from another n-th order system, The n? constants are in the A
matrix, and there are n constants in both the B and T matrices.

It is possible to draw an analog computer diagram for a system
that is described by Equation 1.1.3. The diagram would be quite

complicated because there would be n integrators and n? + 2n amplifiers,

While this would represent a physical system described by Equation 1.1.3,



the diagram would be undesirable because of the n?

+ 2n arbitrawy
constants.,

Therefore, it is desired that something be done to reduce this
number of arbitrary constants, and still retain a system that is
equivalent to the original system in the sense that the same input
to the original and the modified systems vields the same output,

It is shown in Chapter II that a convenient intermediate step
in this reduction process is to find G (s), the Laplace transfer
function of the gystem, which relates the transform of the input and
output, Two methods of. accomplishing this will be provided,

The first method is a fairly standard one and involves the inversion
of the characteristic matrix of A, This procedure is straightforward
but rather lengthy if done by hand.,

For this reason the author has developed a secondary method for
finding the transfer function, The secondary method consists of two

steps. The first step in this procedure is to make a change of

variables

X () =PY 1) (1.3.1)

where
Py n by ny is a nonsingular real constant matrix, and

Y, n by 1, is the new vector state variable,

After this change of variables has been made, the state equations have
the matrix Efl A P in place of the old A matrix, The matrix P in
Equation 1,3.,1 is chosen such that 2;1 A P is the transpose of the

rational canonical form of A,



This canonical form of a matrix is not as well known as the Jordan
canonical form, but has some advantages over the Jordan form in this
particular application that is discussed at length in Chapter II.

One source of information about the rational canonical form is
Browne (4). The fifteelnth chapter contains a brief discussion defining
the rational canonical form of a matrix., The seventeenth chapter
contains a more detailed discussion of the rational canonical form and,
in particular, the procedure whereby the matrix P is determined which
will reduce A to the transpose of the rational canonical form.

Other sources of information about the rational canonical form are
Browne (5) and the fifth part of Frame (3).

Once the matrix P has been chosen, the transformed state equationms
are in a more useful form, The number of arbitrary constants in the
state equations have been reduced from n? + 2n to 5n by this initial
transformation,

The second step in the secondary method is now used, This step
consists of using an algorithm to produce the transfer function. The
algorithm was developed by the author and uses the 3n constants which
are in the transformed state equations,

The algorithm is provided in order to cover the gemeral case
where the order of the system is n. Appendix A contains tables which
permit the transfer function to be cbtained directly by subs;titutim
of the 3n constants for the specific cases where n = 1, 2, 3, 4, 5, or 6,

At this point G (s), the Laplace transfer function of the system,
has been determined either by the general method or the secondary
method. The next major step in the procedure is to write the state

equations in the final form directly by inspection of the Laplace



transfer function, The authorbprd;es a theorem stating that this is
always possible, This final form of the state equations is called the
I canonical form of the state equations and contains only 2n arbitrary
constants,

The balance of the thesis discusses operations with the canonical
state equations and examples illustrating the usefulness in having the
state equations in the I canonical form. The examples illustrate
commen ideas in system theory such as cascade combinations, feedback,

compensation, error, and stability,



CHAPTER 1I

REDUCTION OF THE STATE EQUATIONS TO

CANONICAL FORM

2,1 General Method of Obtaining the Transfer Function. As men-

tioned in Chapter I, a convenient intermediate step in the problem
solution is to find G (s), the Laplace transfer function of the system.
Section 2,1 provides a general method for finding G (s).

Once again the state equtions are assumed to be of the form

-&%X(t) =AX(t) +Br(t), X(0)=x (2.1.1)
- o — - - “o

where the various quantities are defined in Equation 1.1.3,
At this point the Laplace transform will be applied to the

quantities in Equation 2.,1.1, yielding

i

s X(s) =X (o) =AX(s) +BR(s)
(2.1.2)

C (s)

[}

T X (s)

where
s is the Laplace variable,

X (s) is the Laplace transform of X (t),



X (o) is the value of X (t) at t = 0,
R (s) is the Laplace transform of r (t), and

C (s) is the Laplace transform of c (t).

Following common practice, it is assumed that

X@) =X =0 (2.1.3)

or that all initial conditions are zero.

This leaves the equations in the form

(2.1.4)

At this point the upper equation can be solved for X (s) and
substituted into the lower equation, yielding

C (s)

JORS 205

Se=T[sU-al"B (2.1,5)

for the transfer function of the system. As mentioned in Section 1.3,
this procedure is a standard method for finding G (s).

From elementary matrix theory, it is known that the inverse of a
matrix is the product of the reciprocal of the determinant of the
matrix and the adjoint of the matrix., Similarly, the determinant of
s U= A] is an n-th degree polynomial in s and is called the charac-
teristic function of A, within a multiplicative factor of -1, This

polynomial in s will be called A (s)

det [s U = Al = A (s) (2.1.8)
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Next, it is observed that the adjoint of [s U ~ Al is an n by n
matrix whose elements are polynomials of degree at most n - 1, This
is true since the elements of adj. [s U -~ A] are determinants of

dimension n = 1 of submatrices of [s U - éj,

Now Equation 2,1.5 may be expressed as

:I; adjo [S _[l" A] B (201.7)

Recalling that T is a 1 by n matrix, adj. [s U - Al is an n by n matrix

and B is an n by 1 matrix, it is observed that

T adf. [s U - ATB = M (s) (2,18

is a 1 by 1 matrix, or simply a scalar. This scalar is a polynomial in
s of degree at most n - 1, This polynomial will be called M (s),
Finally, the Laplace transfer function of the system has been

derived
G (s) = o35 ©(2,1,9)

It should be mentioned that the denominator polynomial A (s) depends
only upon the A matrix, while the numerator polynomial M (s) depends
upon the A, B, and T matrices,

In conveﬁtional coﬁtrol system terminology this means that the
poles of the system depend only upon the A matrix, whilé the zeros
depend upon the A, B; and T matrices.

At this point in the development it should be mentioned that the

determination of G (s) for the system allows the designer to use all
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the knowledge of conventional control theory that has G (s) as a basis,
This includes a large amount of information such as root locus, Nyquist

plots; Bode plots, etc,

2,2 Secondary Method of Obtaining the Transfer Function, The

method of obtaining G (s) described in Section 2.1 is quite general in
‘that it applies to any system described by equations similar to Equation
2,1,1, While the method is general, it is quite laborious if done by
hand, since it involves taking the inverse of an n by n matrix which is
a function of s, It would be desirable if an alternative method were
available which would not have this drawback,

For this reason a secondary method is provided. Much of the
repetitious type of work need be performed only once and the results
tabulated. The tables may then be used to assist in determining the
transfer function, An algorithm is provided for the general case.

The first step in this procedure is to make a matrix change of

variables
X (t) = P Y (t) (2.2,1)

where
P, n by n, is a nonsingular real constant matrix, and

Y (t)s n by 1, is the new vector state variable.

Equation 2,2,1 is substituted into

Lxm=ax@+3r (), X(o) =%

(2.2.2)
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yielding

d
P—-a—
- dt
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ot
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(2,2.,3)

c(t) =TPY(t), X(o)=PY¥ (o)

Now, since P is nonsingular, Equation 2.2.3 is multiplied on the left

by the inverse of P

APY (t) + PP B r (t)
(2,2.4)

c(t)=TPY (), Y(o)=P"X(o

At this point P should be selected such that the matrix 271 AP
has a particular form., The form that is chosen is P, the transpose of
the rational canonical form of A,

Hence in Equation 2.2,4, the additional definitions are made that

p=! AP=T, an n by n real constant matrix

Y

which is the transpose of the (2,2,5)

rational canonical form of A,

P"" B = E; an n by 1 real constant column
' (2.2,6)
matrix, and
TP =D, albyn real constant row matrix. (2.2,7)

These defining equations may be substituted into Equation 2,2.4, yielding

d

T Y)=FY¥ )+ Er(t)



¢ (t) =DY () , ¥ (o) = B~ X (o) (2.2.8)

This is the form of the state equations after completion of the initial
change of variables. The state equations are now expressed in terms of
the new state vector Y (t), where each element of Y (t) is a linear
combination of the elements of the original state vector X (t), according
to

Y (t) = P71 X (1) (2,2,9)

The matrix P is chosen to reduce A to the transpose of the raticnal
canonical form according to Equation 2.2.5. This canonical form was
selected rather than the more familiar Jordan canonical form for a
number of reasons:

(1) If the matrix A has complex eigenvalues, then the Jordan canonical
form will have complex elements. This is a distinct disadvantage
which does not arise in the case of F, The elements of I are
+1's, O's, and the negative of the coefficients in the charac~
teristic function of A, All these elements are real numbers.

(2) In some cases where A has repeated eigenvalues, the Jordan
canonical form is not a diagonal matrix. This results in the
loss of much of the advantage inherent in the Jordan form,
Consequently, a procedure is developed which does not demand
a diagonal matrix and, therefore, will not be adversely affected
when applied to a matrix which is not similar to a diagonal
matrix.

(3) It is easier to find the matrix P which reduces A to the
transpose of the rational canonical than it is to find the

matrix Eﬁthat reduces A to the Jordan canonical form,
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The rational canonical form R of a matrix is a diagonal block

matrix of the form

O L [ L) O
—1 — —
o R . .+ . 0
R= (2.2.10)

jo

jo
s
o
o

iﬁ

o

where each of the square submatrices R; is of the form

0 1l 0 o o e 0 0
0 0 1 o e ° 0 4]
5. = ' (2,2,11)
* 0 0 0 e e e 1 0
O O 0 °® ¢ ° 0 l
"‘am _am"l "am_z a o o "az -al
L. -

where there are +1's on the first superdiagonal, and the ai’s are the
coefficients of the characteristic polynomial f; () of Ry

— 4 m- 1
fi ()= 2"+ a A tooo ta A+ ap (2.2,12)

1

This topic is discussed more fully on page 170 in Browne (u4).
In the case of distinct eigenvalues of A, the matrix R in Equation
2.2.10 only has one such block matrix of the form in Equation 2.2.11,

In this case



15

0 1 0 o o . 0 0 i
0 0 1 . . o 0 0
R = (2.2,13)
0 0 0 . o o 1 0
0 0 0 . o o 0 1
L’an '=anml "'an=2 ) ° ° -az "al—
and the characteristic function f (X) of R is
- 30 n -1
£ =3 +a A teeo tag Mt a (2,2.,14)
Thus I may be found by simply transposing R
o 0 . . . 0 0 -a ]
1 0 o o o 0 0 -a
n-=1
O l o ° ° O O "anm2
F = (2,2,15)

where there are +1's on the first subdiagonal and the negative of the
coefficients in the characteristic function in the last column, The
characteristic function is the same for F-as for R,

In case that A has repeated eigenvalues, it is possible that T
would then be a diagonal block matrix such as Equation 2,2,10 where
each of the Ei"s would be in the form of Equation 2,2.15,

The procedure whereby P is selected such that A is reduced to F

is discussed on page 210 of Browne (i),
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For the following discussion A is assumed similar to an F matvix having
only cne block such as that in Equation 2,2,15. The case of an F
matrix having more than one block will be discussed in the next section,

At this point it is assumed that the change of variables has been
made, leaving state equations in the form of Equation 2.2,.8, which will

be rewritten in a more illustrative form, specifically

Y, oo . . . 00 ~a, Y, e,
Y, 10 ., « - 00 3.1 v, e,
V3 o1 . . s 0 O -8, _, V3 e,
_d_~_ & = Py o ® Py s ° s 5 ¢ + ° r (t)
dt
yn_— 1 0 0 ° ° ° l 0 "az yn_ 1 en_ 1
y o0 , . < 0 1 -a v
- n_J . 1_ - n . L. en_J
(2.2,16)
c(t)=0d d d . . . a_ 41 [y
Y,
¥y
Yn_l
Yn
S -

It is observed that there are 3n arbitrary constants that distinguish
this system from another system of order n. There are n of the aiws, n
of the e;'s, and finally n of the di's for the total of 3n. This
demenstrates that the original n? + 2n arbitrary constants of the

original system described by Equation 2,1.1 have been reduced to 3n by
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this change of variables,

The procedure discussed in Section 2,1 is now applied to the
transformed state equations given in Equation 2.2.16 to yield an
algorithm which gives the transfer function.,

Taking the Laplace transform of Equation 2.,2.16 and solving for

G (s) in the prescribed manner
E (2,2,17)

it is seen that the transfer function can be obtained by inverting the
characteristic matrix of Eﬁ |

From the elementary matrix theory, it is known that the inverse
of a matrix can be found by dividing the adjoint of the matrix by the
determinant of the matrix. This property is used in the calculation
of [s U - ET%.

-1 _ 1 e o
[S Eﬂ = £] - deto [S H - }:-:] adjo [S E - E] (202018)

Because [ is the transpose of the rational canonical form of A, the

determinant may be written by inspection as

det, [s U=F]=s"+a 7y eas + = A (s) (2,2,19)
- L 1 o)

This leaves the calculation of the adjoint matrix which is performed
with the aid of an algorithm developed by the author, This algorithm

is stated in the form of a theorem,

Theorem 2,2,1, If I is an n by n matrix of the form given in
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Equation 2,2,15 and if bjk is the element in the j~th row and k-th

colum of adj., [s U -~ F1, then bjk is given by

n = n-i=j+k-1
I o . for j > k
i=0
by = ) (2.2,20)
n-l-j+k=1
- . for § <k
i=n=j+1

where a_ is defined to be unity.

Proof of Theorem 2,2,1, The proof of this theorem consists of
showing that if the matrix defined by bjk is multiplied on the left by
[s U ~ F], then the product will be det. [s U - F1 U,

The first row of [s U ~ F] has the form[s 0 0 ... 0 al
The product of this with the first column of [bjk] yields sb11 t a, bn1

which reduces to

and is the 1, 1 entry in the product matrix, The product of the first
row with the gq-th column of [bﬁk]” where 1 < q < n, yields sblq + &, bnq
which reduces to zero,

The p-th row of [s U = F1, where 1 < p < n, has the form

{0 0 .00 =1 s O oo O ] where the -1 is in the p-1lst

qnept1l

colum , and the s is in the p~th column. This row is multiplied by the

=

p=qth column of [bj,k]9 where 1 < q < p = 1, to yield the entries below

the diagonal in the product matrix. This product yields
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~b sb

+ + b
p-1, p=q D, P-q © onep+l “n, p-q

which reduces to zero for all below diagonal terms.
The p-th row of [s U = F] is now multiplied by the p-th column of
[bjk]’ where 1 < p < n, to obtain all the diagonal entries in the

product matrix except the 1, 1 and the n, n entries. This product

yields

«b + sb + b
D=15 P @ °°Ps P " Zn-pt1 “n, p

which reduces to

a. st =4 (s)
0 1

1 e~13

i

for all these diagoﬁal entries.
The p-th row of [s U = F] is now multiplied by the p + qth colum
of [bﬁk]° where 1 £q £n ~ p,.to yield the entries above the diagonal

in the product matrix, This product yields

sb

<b: + +a_ b
p-1, Ptq Dy D*q | Cn-p+l "n, piq

which reduces to zero for all above diagonal terms.

Next, the n-th row of [s U = F], which hés the form [0 0 ... O
=1 s + a;1, is multiplied by the g-th colum of [bjk], where 1 < q < n,
to obtain all the entries in the last row except the n, n entry. This

product gives =b,_ + (s + al) b, which reduces to zero for all

1, 4 sqv

these entries,
Finally, the n-th row of [s U = F] is multiplied by the n-th columm
of [bjk] to obtain the n, n entry in the product matrix. This product

yields =b + (s + al) b,

which reduces
n-1, n n ' to

2
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This completes the proof that all the diagonal entries in the
product matrix are A (s) = det, [s U = F], and that all the off-

diagonal entries are zero, Hence

[s U~ E][bsy ] =det. [s U-ETU (2,2,21)

and [bﬁk] does in fact define the adjoint matrix of [s U - F1,
Theorem 2,2,1 provides an algorithm for the calculation of

adj, [s U = F] when F is of the form given in Equation 2,2,15., The

adjoint matrix is observed to contain polynomials in s as elements,

Furthermore, the highest degree of any of these polynomials is n - 1.

This allows adj. [s U = F] to be expressed as

n=2

s + 060 t Mn s + En (2,2,22)

adj. [s U=F] =M sh=t 4 !

M
1 -2

where the Mi"s are constant matrices, Recalling that a, is defined to
be unity, Equation 2,2.20 can be used to obtain an expression for the
general Ep in Equation 2.2,22 for an n by n adjoint matrix. Thus, in

Equation 2.,2.22 Mp is the partitioned matrix

Moo= [Ep S 1 (2.2,23)

where
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Tﬁm

=3

o]

0

8

0

pt2

=3
pt1

=&

which is an n by p = 1 matrix,

and

0
0
0
P-1
)
3
1
-
0
0
0
-a
n
-a
pt1
-a
D
0

21

(2.2,24)

(2,2,25)
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Combining Equations 2,2,17 and 2,2,22, it can be seen that

G (s) =r-%-'a§=5=

p

2

M Es"P (2.2.26)
1=

13

where Hp is defined in Equations 2.2,23, 2,2.24, and 2.2,25,

Making the definitions that

= E elol’
mP Rﬁp E (2.2 ?7)
and
n n-
M(s)= § m s"P (2.2.28)
p = l P . X
then the transfer function is
_ M (s)
G (S) = m (2,2.29)

Theorem 2,2,1 can be uéed in two ways in determining the transfer
function, The first way 1s the straightforward evaluation of the
adjoint matrix, The adﬁoint‘matrix is then multiplied on the left by
D and on the right by E. This gives the numerator polynomial of G (s).
The denominator polynomial is given in Equation 2.2.19.

The second way of determining the transfer function involves finding
the coefficients in the numerator polynomial individually. This is
accomplished by the multiplication of cénstant matrices according to
Equation 2,2.27, For this reason the second method would be better
from the standpoint of computer solution,

These matrix products have been calculated in general terms and are
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listed in Appendix A for systems up through sixth order, This allows
the transfer function to be obtained directly from the transformed
state equations by substitution of the 3n numbers into the expressions

in Appendix A,

2,3 Extension of the Secondary Method, In Section 2,2 the case

was discussed where the I matrix contained only one block matrix of the
form given in Equation 2.2.15, Not all matrices are similar to this
type of matrix, however, The I matrix for some A matrices is of the
form given in Equation 2,2,10, where each of the gi's are of the form
discussed, This requires a modification in the procedure. A procedure
for finding the transfer function where T includes two such blocks is
now given, The procedure can readily be extended to cover the general
case,

Assume that the initial transformation of variables has been made,

and that the state equations result in the form

=Y () =FY (t) +Er (1)

(2.3.1)

Also, assume that the transformation of variables resulted in an F
matrix consisting of two block matrices, each of the form given in

Equation 2,2.15, Specifically

fe

F= (2.3.2)
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where

Ed is a k by k matrix of the prescribed form,

Pz is an m by m matrix of the same form, and

=

k + m = n, the order of the system.

In this case, partition Y (t), E, and D such that Equation 2,3.1 may

be written in partitioned form as

F 0
_(1_ 1 = ] - -] + ] r (t)
|y |2 L] |% E,

(2!303)

Y
—?

This may be accomplished by letting, Y, s E/» and D, be the first k

elements in Y, E, and D, respectively, Then Y

Y, » E,y and 22 will be fhe

last m elements in Y, E, and D, respectively,
Now observe that Equation 2.3.3 may be separated into two

independent state equations

d

Ty (=F Y () +E r (1)

(2.3.4)

c, (£ =D ¥ ()

and

w5 () =F ¥, (t) +E, r(t)
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c2 (t) = (t) (2,3,5)

D Y
where

c (t) = ¢ (t) + ¢, (t) A (2,3.8)

Since F, is in the form of Equation 2,2,15, the procedure

previously developed may be applied to Equation 2,3.4 to find

6 (s) = i) (2.3.7)
i s = ﬁhrgym s

where C  (s) is the Laplace tramnsform of ¢, (t).

Similarly, it is possible to find

C2 (S)
G2 (s) = -W (2,3,.8)

where CZ(S) is the Laplace transform of ¢, (t).
Because of Equation 2,3.6, and the fact that the Laplace

transformation is a linear operator
c(s)=¢C (s} +C, (s) (2,3.9)

After division of each side of Equation 2,3.9 by R (s), it is apparent

that

6 (s) = £dSh= 6y () 4 6, (o) (2.3,10)

Thus it has been shown that whenever Ezconsists of two block
matrices of the form given in Equation 2.,2.15, a suitable partition of

the matrices involved will lead to the solution of the problem by
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solving two smaller problems, Specifically, two transfer functioms,
G, (s) and G, (s), are derived. The algebraic sum of these two transfer
functions yields the desired transfer function.,

Because F, in general, has the property that the block matrices
are'squafe and are on the diagonal, and the off-diagonal block matrices
are all zero, it is apparent that a similar partitioning will always be
possible, Hence, if there are k of the block matrices on the diagonal
in F, then a proper partition of the matrices in the transformed state
equation yields k independent systems of state equations. In each system
of.equations the F; matrix is of the form necessary for solution using
the methods described in Section 2.2, Thus, a total of k of the Gi (s)
aré determined independently., Then the transfer funcfion for the

original system is

G (s) = (s) (2:.3,11)

i o~1x
(]
|

This observation extends the range of application of the secondary
method to systems of any finite order.

A property of the rational canonical’form should be mentioned at
this point. If the block matrices in F are orderéd properly and if
the i=-th diagonal block is called E; and if £, (X)) is the characteristic
function §f EF;, then fi (2 dividés fi+1 (A). This property is discussed
at length on page 172 in Browne (4),

Because the characteristic fgnction oftzi is the same as the
denominator polynomial in G; (s), this means that when the sum is taken
of all the G; (s), the lowest common dénominétor is simply the

denominator of the G; (s) which has the highest degree denominator,
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This implies that whenever F has more than one block matrix of
the form given in Eqﬁation 2,2.15, then the degree of the denominator
of G (s) will be less than n, Specifically, the degree of the
denominator polynomial of G (s) will not exceed the degree of the
highest order denominator of all the Gi (s)

Thus, a state equation of order n can very well lead to a transfer
function of order less than n. The next section will develop a
canonical form for the state equations, assuming a known transfer
function, This will make possible the reduction of a state equation
of order n to a canonical state equation with order less than n in .some

cases,

2.4 Canonical Form of the State Equations, Sections 2,1 and

£

2,2 have presented two methods whereby G (s), the Laplace transfer
function of the system G, can be determined from the original state
equation given by Equation 1,1,3, Section 2,4 gives a procedure whereby
a canonical form for the state equations is derived from the transfer
function,

It should be mentioned that the state équations that describe a
system are not unique, This can easily be seen by examining Equation
2,2,2 and Equation 2,2.4, If P is not the identity matrix, then the
equations are not the same, even though the equations describe the
same system,

For this reason a canonical form for the state equation is assumed
by the author. Then the author shows that this state equation
corresponds to the given Laplace transfer function which is a unique

representation of the system, Zadeh and Descer (1) discuss the



uniqueness of the transfer function on page 113,

n=2

s

The Laplace transfer function is assumed to be

28

=M (s) _
G (s) = A(s)

Z,

e (t) = [0

Sn + al Sn=1 + az Sn=2 + 500 + &
. N=1

Theorem 2.4,1,

0

0

0

0

r (t)

o O

¥ o000 + M
N=]
o 0 0 0
o 0 0 0
o 0 0 0
o 1l 0 0
o 0 1l 0
o 0 0 1
0 17 z,
%,
z3
z
n=2
Zn-1
z

The following state equation

N
(2040 l)
s + a
n
-a z
n ‘1
-a,_, z,
“Gn-2 23
-] (]
-a3 zn-z
~3, Zn-1
-al 'J Zn
(2.4,2)
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has the Laplace transfer function given by Equation 2.4,1,

Proof of Theorem 2,4.1, Assuming Z (o) = 0, take the Laplace

transform of Equation 2.4,2, yielding

s2(s) =F2Z(s)+ MR (s)

oy

(2.4,3)

C(s) =00 0 o o« o 0 113Z (s)

Using the same procedure as in Section 2.1, the transfer function is

found to be

Fov=00 0 . . . 0 11lsy-EI"'y (2.4,4)
Because I is the transpose of a rational canonical form, det, [s U - F]
can be written by inspection as

det. [sU=-F]= st + a, L s +a = A (s) (2.4,5)

Consequently,

C(s) 1
F sy “F ey o - o o

0 1l adj. [sU-FEIM. (2,4.6)

Now [0 0 o o o 0 11 adj. [s U = F] is simply the last row in
adﬁo [s Eﬂ = 2]0
At this point Theorem 2.2,1 is used to find the last row in

adj. [s U~ F], The k-th element in the n=-th row is

b, = a_s =85 (2.4,7)

so that
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[0 0 . » o« 0 1ladj. [sU=-Fl=10[1s . , . s"? sP°1]

(204.8)
This is now substituted into Equation 2.4,.6
C(s) _ 1 1 s s2 , ., o 2 g0=l7 [Tp 7
R (s) = A (s) "
m
n=1
"2 (2.4,9)
m,
My
™
— =
yielding the final expression
n-} n-2
_C(s)-mls +m28 +coo+mn-ls+mn
G (s) = = =5 = - = (2.4,10)
s s"+a; st 4 ... +a s + a '

=1 n

which completes the proof of Theorem 2.4.1,

Tﬁe significance of Theorem 2.4,1 is that it permits a canonical
form for the state equation called the F canonical form to be written
directly from inspection of the transfer function. M (s), the numerator
of G (s), determines the entries in the M matrix, while A (s), the.
depominafor of G (s), determines the entries in the F matrix, The
output is simply the n-th state variable.

An analog computer diagram will now be given which is described
by Equation 2.4,2 and consequently has the transfer function given in

Equation 2.4,10, This diagram is Figure 2.4.1,



Figure 2.4,1. Analog Computer Diagram of Equation 2,4.2

c(t)

1€
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The analog computer diagram in Figure 2.4,1 is in a convenient
form for programming an analog computer. The a; and m; gains required
can be obtained with two amplifiers and 2 (n ~ 1) potentiometers due
to the common inputs,

Given a transfer fungtion, the analog computer diagram in Figure
2.4,1 can then be formulated directly., This allows a great deal of
interchangeability between transfer functions, canonical state equations,
and analog computer diagrams. This property proves useful in the next

two chapters.



CHAPTER III

OPERATIONS WITH THE F CANONICAL

STATE EQUATIONS

3,1 Cascade Combination of Systems, A very common connection

between two linear systems is the cascade combination of the two systems.
This means that the output of one of the systems serves as the input

for the other, as in Figure 3.1l.1,

r, (1) c,; (1) r, (t) cy (1)

Figure 3,1.1l. Cascade Combination of G; and G,

Assume that the I canonical state equation for G; is known and is

d _ .
L, W=EF 2 ()+M r (t)

(3,1.1)
e, () =00 0 . o o 0 112 ()

Further, assume that the canonical state equation for G, is

33



34

d -
T ®=LE

o , (t) + ﬂg r, (t)

(3.1.2)

Q) =00 0 . o . 0 11Z, (t)

The problem is to obtain the state equation for this cascade combination
of systems, where the input is r, (t) and the output is c, (t),
The first step is to write an equation by adjoining Equations 3.1.1

and 3,1,2, yielding the partitioned equation

Z F 0 yA M or (t)
d -1 = -1 -1 + -1 1
dt 12 0 F Z M or (t)
=2 - = -2 =2 2
(3,1.3)
c, (£) =00 0 . o . 0 11 |2
-1
2z,
Now, observe that
r, (t) = ¢ (t) =10 0 . » . 0O 1] Z, (t) (3,1.4)
and consequently
Myr, (£) =M [0 0 . . . 0 11Z (t) (3,1.5)

Now, Equation 3,1.5 can be substituted into Equation 3.1.3, yielding

the state equation
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¢, (t)=[0 0 . . . o 11 [z]

=1

%

(3.1.6)

This is a state equation with the desired input, r, (t), and the
desired output, c, (t), but it is not in [ canonical form, Therefore,
if the F canonical form is desired, the procedure described in the
first two chapters may be applied to Equation 3.1.6 to yield the F
canonical state equation, Obviously, more than two systems in cascade

may be handled by combining two at a time by the procedure given,

3,2  Parallel Combination of Systems, - Another common connection

between two linear systems is the parallel combination of the two
systems, - This means that the two systems share a common input, and the

two outputs are summed to yield the over=-all output. This is shown in

Figure 3.2.1,

I‘] (t) Ccil (t)
Gy

r (t) c (t)

cy (t)

r, ()

Figure 3.2.1l., Parallel Combination of G, and G,
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The canonical state equations for G1 and G2 are once again assumed
to be Equation 3,1.1 and Equation 3.1.2, respectively, The problem now
is to obtain the state equation for this combination of systems where

the input is r (t) and the output is c (t),

As before, the first step is to write an equation in partitioned

form by adjoining the individual state equations

Z F 0 Z M,or, (B)
a 1 - 1 1 +
dt z 0 F A M. r. (t)
= ot ey o -2 T2

c(t)=[0 0 . o - O 1J§1+[0 0 « o » 0 112

Now, observe that

r, (t) = r, () =r (t) (3.2,2)
and consequently
z Eoo| |z 1
sg-n 1 = 1 _°1 + 1 r (t)
dt Z 0 F Z M
-2 - =2 =2 =2
(3.2,3)

where the +1's are in positions such that ¢ (t) is the sum of the last
state variable in Eﬂ and the last state variable in 520

Equation 3,2.3 is now in the form that r (t) is the input and
¢ (t) is the output as desired. At this point the procedure given in

the first two chapters can be applied to Equation 3.2.3 to obtain the
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F canonical form for the state equation if desired. More than two
systems can be comined in parallel by combining two at a time in this

fashion,

3,3 Introduction of Feedback into a System, When the input to a

system is the sum of a forcing function r (t) and some function of

¢ (t), the output of the system, then the over-all system is said to
incorporate feedback. The case where this function of ¢ (t) is simply
=c (t) is now considered., Such a system is given in Figure 3.3,1. A

simple amplifier whose output is K times the input is also included.

g(t) RS (t)

Figure 3.3.1, TFeedback System
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The I canonical state equation for G is assumed to be

(3.3,1)

g(t)y=[0 0 , o ,» O 112

It is now desired that the state equation be found where the input is
r (t) and the output is c (t),

Observing that
e (t) =r (t) - c(t) = r (t) - K g (t) (3.3.2)
and thus
e(t)=r(t) -=XK[0 0 , . , 0 1132 (3,3.3)

Equation 3,3.1 may be rewritten

d
wir=EZz+Mr(t)-M[0 0 . . . 0 KJZ (3.3,4)
c (t) = K g (t)
and thus
d
"af?aza:[:z“}i[o 0 o o o 0 K]]E""Hr’(t)

(3,3.5)

c(t)=[0 0 . . . 0 KIZ

Equation 3.3.5 is seen to have r (t) as the input and c¢ (t) has

the output as specified., This equation is in a convenient form for
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determining the stability of the over-all system, Letting

A=F-M[0 0 , . , 0 KJ (3.3.6)

—-—

the characteristic function for the system is seen to be
£ (A) = det, [A - 2 U] (3.3.7)

In general, some of the coefficients of M oin £ (1) are functions of K.
It is known that the stability of a system depends upoen the real part
of the eigenvalues, This point is discussed on page 375 in Zadeh and
Desoer (1). Consequently, the value of K might be selected to make
all the eigenvalues have negative real parts. This might be possible
in some cases and impossible in cthers,

In cases where no real K would make thé system stable, or where K
would have to be unreasonably large or small, it is necessary to modify the
system by more involved methods, This introduces the general topic of

compensation which is discussed in Section 3.5.

3,4 Steady-State Error, Ordinarily, the purpose of a control

system is to make some variable behave like some input variable as
closely as possible. In Figure 3.u4.,1 the output ¢ (t) of the system G
is desired to follow the input r (t) as closely as possible. A

measure of the accuracy of the control system is the error signal
e (t) = r (t) - c (t) (3.4,1)

Of interest in conventicnal control techniques is the limiting
value of e (t) for a system G when the input r (t) is a unit step

functioen, a unit ramp function, etec.
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c (t)

Figure 3,4,1, Feedback Control System

Truxal (7) gives a good discussion of steady-state error on page
8l, For a systém like that in Figure 3.4,1, Truxal explains how the
steady-state error can be calculated from a knowledge of G (s) with the
aid of the final-value theorem,

It is assumed that the transfer function G (s), or equivalently

the F canonical form of the state equations, is known, and is

n=1 n-=
s + m, S 2 + sco M s +m

2 n-} n (3,4,2)
n n=1

s + a, s * ocoo ¥ 3. S f.an

my

G (s) =

where there are no common factors in the numerator and denominator.

In conventional control terminology the type of a system is defined to
be the order of the pole at the origin in G (s). Thus, if a; = 0 and
a_, # 0, then G is type 1 because s to the first power could be
factored in the denominator, Similarly, if a4 = ., T 0 and a 0,

then G is type 2 because s to the second power could be factored in the

denominator., Thus, it is seen that the type of G is the number of
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consecutive zeros in the sequence {a,, By 8, U
Given the I canonical form of the state equations which is

formed from the transfer function after any common factors in the

numerator and denominator are canceled, and defining the type of G as

in the preceding pa?agr_-aph, the treatment of Truxal (7) can be extended

to yield the steady-state error in terms of the a; and my coefficients.,

The results of this extension are summarized in the form of

Figure 3,4.2.

Input, r (t) Type 0 - Type 1 Type 2
Unit Step, u__ {(t) D 0 0
' -1 a +m
n n
Unit Ramp, t o M“Lan_, 0
M
Unit Parabolic, L2 ® w n-2
2 m

Figure 3.4,2. Steady-State Error

From the I cancnical state equations, the type of system can be
determined by inspection of the number of consecutive zeros in the last
.colum of the I matrix, beginning with the upper element. Then, for
one of the possible inputs shown, the steady-state error for the system

can be cbtained from Figure 3.4.2.

3,5 Compensation Schemes. The general purpcse of compensation is

to modify a given system in some manner such that the compensated system
has more desirable properties than the original system., One property

that is often considered is the stability of a system., This property is
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now discussed.,

A general form for compensation is assumed, The compensating
system is placed in cascade with the given system, and feedback is
connected around this cascade combination, This arrangement is shown
in Figure 3,5,1,

In Figure 3,5.1 the system to be compensated is G, and the
compensating system is H, It is assumed that the canonical state

equation for G is known and is given by

g

FL=EL*Me (D)

(305.1)

c(t)=00 0 . . , 0 112

Assume that G is unstable, or equivalently, assume that at least one
eigenvalue of F has a positive real part, This may be determined by
factoring f (1), the characteristic function of F, or possibly by
applying the Routh-Hurwitz criteria to this polynomial, The Routh-
Hurwitz test is discussed on pages 197=501 in Gardner and Barnes (6).
It is desired that H be selected so that the system in Figure 3,5.1 is
stable,

The general procedure is to assume the canonical form of the state
equation for H where some or all of the parameters in this equation are
to be determined later. Then the state equation for the HG combination
is derived by the method given in Section 3,1, At this point the state
equation for the entire system is cbtained using methods given in
Section 3,3, Then the parameters of H are chosen to make the over-all

system stable, if this is possible. If not, another form for H may be
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assumed., The stability cam be determined by applying the Routh-Hurwitz
test to the characteristic fqnction for the over-all system, If possible,
the parameters of H are selected so that the characteristic function has
only stable roots., An example demonstrating these concepts is given

in the next chapter.

g (t) c (t)

Figure 3.5.1l, Compensation Scheme

After the parameters in H have been determined, then the final form
for the canonical state equation for H is known., This allows an analog
computer diagram to be drawn which represents a system that can be used
for H. Simﬁiarly, the transfer function for H can be written by inspec=~
tion, and methods of'network syntheéis can be applied to the realization
of this transfer functign@ |
While the real part of the roots of the characteristic equation

determine the stability of a system, the relationship between the regi
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and imaginary parts of the roots also influences the behavior of a
system. An example is discussed in Section 4,8 where the magnitudes of

the real and imaginary parts are made to be equal,



CHAPTER IV

ILLUSTRATIVE EXAMPLES

4,1 Derivation of the Transfer Function by the Secondary Method,

In this section the procedure discussed in Section 2.2 is used in
finding the transfer function for a system G. Part of the secondary
method involves the application of Theorem 2.2,1.

Assume that the state equation for the system G is known and is

;<T ] 1 3 éW —%—W i éj

d %, = 2 =9 =15 %, + T r (t)
dt
Xy -1 2 2 Xy 1
— b e — —

(4,1,1)

Using the methods given on pages 210-215 in Browne (4), the matrix P

which reduces A to zﬂis found to be

11 -2
P= o 2z -1 (4.1.2)
0o -1 1

and consequently

45
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1 1 3
prlo= o 1 1 (4,1.3)
0 1 2

0 0 0
2’1 AP=F= 1 0 -8 (4,1,4)
0 1 -6

1
plB=E-= -3 (4,1,5)

-2

and

TP=D=1[1 -4 1] (4,1.6)

X1 1 1 =2 A
X2 = 0 2 “"l y2 (.L|’o lo 7)
X3 0 =1 1 Vi3

vy 0 G 0 ‘A 1

L
[
<

[}
fes

<
[

+

1
w
o]
~~
t
SNer?

d Vs
dat
Vs 0o 1 -6 Vs -2
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c(t) =[1 -4 1] v1
(4.1.8)

which is the appropriate form for the application of Theorem 2,2.1,

Using this theorem, it is seen that

s? + 6s + 8 0 0
adj. [s U=~TF]s= s + 6 s2 +6s ~8s (4,1.9)
1 s s2
and consequently
Dadje [s U-F1E=11s% +7s - 15 = M (s) (4,1,10)
and
A (s) = s? + 652 + 8s (4,1,11)

which yields the transfer function

11 s2 + 7s - 15
53 + 6 s2 + 8s

G (s) = (4,1.12)

4,2 An Example of the Extension of the Secondary Method. In this

section the procedure discussed in Section 2.3 is used in finding the
transfer function for a system G which requires the extension of the
secondary method,

Assume that the state equations for G are known and are



X

X2
4 =
dt X3

-4y
-2 2
=2 2
=6 6
e (t) = [1

=2

-1

-1

-3

Making the change of variables X = P

where

it is seen that

Y
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1
2
+ r (t)
2
1
(4:2.1)
%y
X
X3
Xy
Ty,
bp)
(4,2,2)
V3
an
(4,2.3)
(4,2,4)
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wl .
Elp=Ep= |-
1l (4,2,5)
-2
2
and
£5£!=‘E = [=1 =] =1 =17 (4,2.6)

Consequently, the matrix transformation given by Equation 4,2,2, upon

substitution into Equation 4,2.1, yields the transformed state equation

v, o o o ol [y -1
v, o o o of |y 1
a4 = 21+ r (t)
at ¥ 6 1 0 of |y, -2
y 0 o0 1 1 y 2
R - ol RS - -
(4.2,7)
e (t) = [-1 =1 =1 =1] 'yl“
)
Y3
Yy

The F matrix in Equation 4,2.7 is observed to contain two of the
block matrices that were discussed in Sections 2.2 and 2.,3. Consequently,

Equation 4,2,7 is separated into two state equations

d _ . R
E?”[ylj = [01 Ly I+ [-11r (1)
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c, (t) = [-11 Ly,] (4,2,.8)
and
Yy, 0 0 o0 Y, 1
4 v,/ = |1 0 o0 y3| + [|=2| r (¢)
dt
Y, 0 1 1 Y, 2
(4,2,9)
c, (t) = [~-1 -1 ~-1] Y,
M
Yy
with
c (t) = c, (t) + c, (t) (4,2,10)

With the application of Theorem 2,2,1, Equation 4,2,8 yields

adjo [S E - ‘E“"l] = [l] (uo2oll)
D adj, [sU=F JE =1=M (s8) (4,2,12)
-1 - = = i
A (s) = s (4.2,13)
and consequently
Ccy (s) 1
G1 (s) = W = =s-= (4,2,14)

With the application of Theorem 2,2.1, Equation 4,2.9 yields
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s2 - s 0 0
adjo s U-Fl= |s-1 s®-s o (4,2,15)
1 s s?
D adj, [sU~-F JE = ~s? = M, (s) (4,2,16)
ﬂ
A, (s) = s3 - s2 (442,17)
and consequently
Cc, (s) 2 1

G = 2 K - =S = -

2 (3) = g (s) 3 .g2 s-1 (4.2.18)

Because of Equation 4.2,10 and the fact that the Laplace transformation

is a linear operator
C(s)=¢, (s) +C, (s) (4,2,19)

Dividing both sides of Equation 4,2,19 by R (s), it is seen that

G (S) = G1 (S) + Gz (S) (L"o2e2o)
and consequently
1 1 =1
) R <= -4 S 402521
G (s) s s-1 s(s~1) ( )

for the transfer function of the system defined by Equation 4.2.1.
In summary, the secondary method involves less work than the general
method, The secondary method requires the inversion of a constant

matrix, while the general method requires the inversion of a matrix
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whose elements are functions of s. With the extension of the secondary
method described in this section, the secondary method applies to all

systems covered by the general method.

4,3 Derivation of the E Canonical State Equations from the Transfer

Function., Canonical state equations for the systems discﬁssed in
Sections 4.1 and 4,2 are shown in this section, As mentioned in Section
2.4, this is simply a.matter of inspection,

The transfer function of the system G in Section 4.1 was shown to
be

_C(s)_11s® + 7s - 15 (4.3.1)
s (s? +6s + 8)

(]
—~
7]
~
¢
t

Consequently, by Theorem 2,4.1, the I cancnical state equation having

this transfer function is

| rél 0 0 0 z, ~15
4 z, = 1 0 =8 z, + 7 r (t)
dt '
z, 0 1 =0 Z4 11
(4,3,2)
¢ (t) = [0 0 1] z, =z,
Zy
Z;

Similarly, the transfer function of the system G in Section 4,2
was shown to be
C (s) -1

G (s) = R(s) sis =1 (4.3.3)
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Consequently, by Theorem 2,4.1, the [ canonical state equation having

this transfer function is

z; 0 0 z, =1
4 = + r (t)
dt zZ, 1 1 z, 0
(443.4)
c(t) = [0 11 [z,7 =z,
%

The system of Equation 4,3.4 exhibits the unusual property that the
original state equation for the system, Equation 4,2.1, is a fourth=
order equation, while the F canonical state equation is a second-order
equation, However, the system as described by the fourth-order
equation is equivalent to the system as described by the second-order
equation in the sense that a common input to the two systems produces
a common output, This phenomena provides some justification for the
step in the procedure when the transfer function is determined. If a -
reductibn in order is possible, then it can be seen as a common factor
in the numerator and denominator polynomials of G (s) and can be
eliminated by division,

It can now be seen that the transfer function and the canonical
state equation are interchangeable concepts i1n the sense that one can
be cbtained from the other by inspection, This allows for a great deal

of flexibility in working with state equations,

4,4 State Equations of Two Systems in Cascade., In this section

it is assumed that two systems, G, and G,, are connected in cascade,

Furthermore, it is assumed that the canonical state equations are known
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for both systems, The problem is to determine the state equation for

the over-all system,

r (t) e (t) c (t)
R e e e o
Gy Gz
Figure 4,4,1, Cascade Systems
Assume that for system G,
Xy 0 ~1 Xy 1
d = + r (t)
dt %, 1 =2 Xy 2
(4.4,1)
e (t) = x,
and that for system GZ
®3 0 -4 X3 1
d = + e (t)
dt Ky, 1 =l Xy 1
(4.4,2)
c (t) = %,

In the method explained in Section 3,1 it is observed that
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X, 0 -1 0 o0 %, 1
X, 1 <2 0 0 X, 2
4 = + r (t)
dt X3 0 1 0 ~4 Xy 0
_qu -O l l “‘”‘J —XHJ R OJ
) (uouoa)
c (t) = x,
Making the change of variables X = P Y
X 1 0 -1 2 v,
X, 0 R 3 y
- » 2 (Uolh, 1)
X3 0 0 l -6 V3
Xy, 0 0 1 -5 Yy
= e =3 d - __1

and consequently

PT! = (4.4,5)

it is observed that

PlAR=E= (4.4.6)

(4.4.7)

t
s
O O N
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and
Tp=D=[0 0 1 -5] (4,4,8)

This transformation yields

v, ] [0 0 o0 -u7 Ty, ] 1
v, 1 0 0 =12 v, 2
4d = + r (t)
dt Vs 0 1 o0 =13 Vs 0
Y, _0 0 1 -QJ qu _O_
(4,4,9)
c(t) =00 0o 1 =51 [y,]
Yo
Y3
Y%J
Thus
a, 6 e, 1 d1 0
a, 13 e, 2 d2 0
= s o= s and =
a, 12 e, 0 d, 1 (4.4,10)
a i e 0 d -5
- L)_J S L I*J S L L*_ L

and substitution of these numbers into the proper expressions in

Appendix A yields
M(s) =252 +3s +1=(2s + 1) (s +# 1) (4,4,11)

and

A(s) =s" +6s3 + 1382 +12s+u=(s+1)2 (s+ 2)? (4,4,12)
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Thus
Q(s) = Mfs) o 25+ 1 (4,4,13)
A(s) (s +1) (s +2)2
or
G (s) = 25+ 1 (4.4,14)

s3 + 552 + 8s + 4

The I canonical state equation is then written by inspection as

z1 0 0 -4 z, 1
4 z, = 1 0o -8 z, + 2 r (t)
dt

zZ4 0 1 -5 Zg 0

(4.4,15)

c(t) =[0 0 1] |I=z

Thus, it is seen that for the two systems in cascade the resultant
system is third order, Since G, and G, were each second-order systems,
this demenstrates that the order of a cascade combination may be less
than the sum of the orders of the individual systems, Due to the way
the state equations were adjoined in Section 3,1, it can be seen that

the order of the combination will not exceed this sum,

4,5 State Equations of Two Systems in Parallel., In this section

the systems G1 and G2 of Section 4.4 are connected in parallel. The
state equations describing G1 and G2 are Equations 4.4.1 and 4,4,2,

respectively, The problem is to determine the state equations for the
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over-all system,

c (t)

r (t) c (t)

e (t)

Figure 4,5.1, Parallel Systems

In the method explained in Section 3.2 it is observed that

%, | o -1 0o o] [x 1
% 1l -2 0 0 X, 2
4 = + 7 r (t)
dt X, 0 0 0 -4 X3 1
X 0 0 1 =4 Xy 1
L L 4 L™ |~
(4,5,1)
c()=[ 1 o 11 [x]
)
%3
Xy

Equation 4.5.1 is a state equation describing the parallel combination
of systems shown in Figure 4,5,1. It is observed that the A matrix in
Equation 4,5.1 is already the transpose of a rational canonical form,
where there are two 2 by 2 block matrices in F, each of the form given

in Equation 2,2,15, This means that it is not necessary to make a
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transformation of variables. Instead, Equation 4,5.,1 is split into

two state equations in the method explained in Section 2,3. These two
state equations are the same as Equation 4,4,1 and Equation 4.4,2,-

This means that the transfer function for G, should be determined from
Equation 4.4,1 and the transfer function for G, determined from Equation
4,4,2, The over-all transfer function G (s) is simply the algebfaic

sum of the individual transfer functions, Thus, from Equation 4.4,1

6, (s) = —22 1t (4,5,2)
s? +2s + 1
by inspection, and from Equation 4.4,2
6, (s) = —=2L2 (4.5,3)
sZ + Us + U
by inspection., Consequently
3s3 + 1252 + 155 + 5
G (s) =G, (s) +G, (s) = (4.5.4)

s +6s53 + 1352 +12s + 4

and the F canonical state equation may be written by inspection as

-zl- 0 0 o -y | _zl— [ 5]
2, 1 0 0 -12 z, 15
4 = + r (t)
dt 23 0 1 0 =13 Z3 12
2y, 0o 0 1 -6 | |z, Kl
o (4,5.5)
c(ty=[ o o 11 [z,| =z,
2
23
Zy
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Thus Equation 4,5.5 has been shown to be the F canonical state equation

for the parallel combination of systems shown in Figure 4,5.1.

4,6 Feedback System, This section considers a feedback system

where the basic system G is unstable, It is desired that the system
be made stable by the addition of feedback and an amplifier. The

system takes the form given in Figure 4,6,1

r (1) ' e (1) g () e ()
“’}{"’ G IEEE— K >

Figure 4,6,1, Feedback System

The F canonical state equation for G is assumed to be

4 ) = |1 0 31 (% + 13] e (v)
dt
%Xy 0 1 =2 |x3 1

(4,6,1)

and K is a simple amplifier, where
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¢ (t) =K g (t) (4:6,2)

Using Equatien 3,3,5, it is seen that

F-M[0 0 KI= {1 0 33K (4.6,3)

0 1 =2 «K

and consequently the state equation for the feedback system is

xl 0 0 =2K Xl 2
4 X, = 1 0 3 - 3K X + 3 r (t)
—— 2
dt

%, 0 1 -2 -K| |xg 1

(4,6.4)
c (t) = Kx,

For this system to be stable there can be no eigenvalues with
positive real parts, For Equation 4,6,4% the characteristic function,

£ (A), is
£ (A) = =A% = A% (K +2) = A (3K - 3) = 2K (4.6,5)
The characteristic equation is seen to be
A+ A2 (K+2)+ 2 (3K=23)+2K=0 (4,6.6)

At this point the Routh array is formed

1 3K - 3
K+ 2 2K
3K2 + K = 6 0 (4,6,7)
K + 2

2K 0
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Considering only K > 0, it is observed that for 1,257 > K > 0, there
are two eigenvalues with positive real parts. However, for K > 1,257
all eigenvalues have negative real parts, This means that the feedback
system in Figure 4,6.1 is stable for K > 1,257 and unstable for

1.257 > K > 0, After a value of K 1s selected, this value can be
substituted into Equation 4.6,4, yielding the state equation for the

feedback system,

4,7  Compensation of a Feedback System, Two common compensation

networks are the lead network and the lag network. The transfer function

for these networks is
(4.7,1)

where a > b > 0 for a lead network, and b > a > 0 for a lag network.

Observe that

H (s) =SB, (4,7.2)

This system can be represented by an analog computer diagram given in

Figure 4.7.1,

r (t) c (t)

Figure 4,7,1, Analog Computer Diagram for H (s)
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Consequently, a state equation can be cbtained from Figure 4.7,1

é%-xl = - ax; + r (t)

(4,7.3)
e () = (b = a) x, +r (t)
which is a first-order equation, This state equation is of a different

form, however, The output c¢ (t) depends upon the state variable x

l»and

the input r (t). This is the type of compensating system that will be
considered in this section. Appendix B includes a discussion of this
type of system,

Assume that a system G is given and that G is unstable. The problem
is_to compensate G with feedback and a lead or lag system, Assume that

the over-all system is given jin Figure 4.7.2,

r (t) e (t) g (t) c (1)
H ™ G -
Figure u4,7.2, TFeedback Compensation
Assume the state equation for H is
d y =
«a?xl = axl + e (t)
(L‘.°7°L|;)

g (t) = (b - a) x, +e (t)
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where a and b are determined later,

Assume that the state equation for G is

Xy o 0 0 X, 18
4 Xy = 1 0 uy X4 + 9 g (t)
dt
Xy, 0 1 =3 X, o
(4,7,5)
c(t) =[0o o 1] X, = x,
3
2y

At this point, Equations 4,7.4 and 4.7.5 are adjoined in a manner

explained in Section 3.3, yielding

EN C -a o o 1] [x] 1

_i = + r (t)
dt X, 9(b - a) 1 0 =5 X, 9
X 0 0 1 -3 X 0
%] L I | °]

(4,7.6)

c (t) = x,

as the state equation for the over-all system,
The eigenvalues are known to determine the stability of the system,
Consequently, it is necessary to find the characteristic function for

the system, which is

E(A) =A%+ (a+3) A3+ (3a+5) A% + (b - 4a+ 18) A + 18b

(4,7.7)
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The problem now is to choose a and b such that £ (1) = 0 has no root
with a positive real part. Also, it is desired that a and b are each
positive, One way to do this is to choose a value for a and then use
the Routh array to see if it is possible to choése a value for b which
will result in a stable-system° For this reason choose a = 4, The

characteristic equation now becomes
AP+ 723 + 1722 +(9b +2) A+ 18 =0 (4,7,8)

The Routh array then becomes

1 17 18b

7 9b + 2 0

13 - b 1ab 0
) (4,7,9)

=3b4 + 17b + 26
3-b 0 0
lub 0 "0
The third and fifth rows imply

13>b >0 (4,7.10)

The function =9b2 + 17b + 26 is positive only for 2,89 > b > -1, which

indicates that a possible range for b is
2,89 >b >0 (4,7,11)

Consequently, for a = 4, b can have any value in that range and the
feedback system given in Figure 4.7.2 will be stable, Observe that

a > b; which indicates that H must be a lead compensation system,

4,8 Design of a Control System. A control system is to be designed
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which accepts the angular position 6; of a shaft as the input centrol
function. The output of the system is the angular position 60 of a
shaft which is connected through a gearbox with the shaft of a DC motor,
The difference between these two angles is the input to a DC amplifier
which drives an amplidyne supplying current to the motor, This inter-
connection is shown in Figure 4,8.1.

The DC amplifier is governed by the equation
- y ‘
ve = Kv - 107 ig (4.8,1)

The amplidyne is governed by the state equation

=[x, = [-12] [x ] + [1/150] v,

ig =% (4,8,2)

o o L} - 4
Va =z 5°10 %y 50 la

The DC motor is governed by the state equation

x, o i X, 0 )
4 - + i
at X, 0 =2/3 X, 2 . 103
6 = x, (4,8,3)
v, = 30 i, + 3/5 ®y
The gearbox is governed by the equation
6, = 1/36 © (4,8.4)

Initially, the control system is in the state that K = 17,5 and



igpo | VE r

Amplidyne

DC
Motor

Gearbox

Figur'e 4e,8.1,

DC Motor Control System

L9
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H, the compensating system, is a simple unity gain network, v, = e,

The problem is to determine the eigenvalues for the open-loop
system, the closed-loop system, and the value for K that would allow
the real and imaginary parts of a complex pair of eigenvalues to be
equal.,

Adjoining Equations 4,8.1, 4.,8,2, and 4,8,3, and eliminating vy

from Equations 4,8,2 and 4.8,3, it is seen that

X, - 236/3 0 o} Xy K/150
4 X, = 0 0 1 X, + 0 Vi
dt
X, 125 « 10% 0 -u7/3| | x4 0
.(""980‘5)
8 = 1/36 x
o 2

which is the open-~loop state equation., The eigenvalues are seen to be
A=0 ,~-47/3 , and =-236/3 (4,8,6)

for the open-loop system.

If the open-loop system that has v, as the input and 6, as the

1
output is called G, then the state equation for G is given by Equation
4,805,

Using the procedure given in Section 2.2, the matrix change of

variables X= }_’g Y

. ] u 1.7

X, 1 ~78,67 6190 v,
%9 = |0 0 1,25 < 10%| |y, (4,8.7)
Xy 0 1.25 ¢ 105 -118 ° 10° RE

L L A i

where



[1 987« 107% 83 107%
=1 E - - R s6%
Poo= 0 75,5 * 10 L8 ° 107§ {(u,8,8)
lo .8 107° 0 j
is made in Equation 4,8.5, leaving
y, | o 0 0 v, K/150
4 Yo = 1 0 =1240 Voi * 0 vy
dt
iy3 0 1 -94,3 ¥ 0 J

(4,8,9)
B, = 34,700 y,

as the transformed state equation, The tables in Appendix A are now

used to find the transfer function

6o (s) 231 K

T = G (s)= (4.8,10)

s (s2 + 94,3 s + 12u40)

for the open~loop system G,

Theorem 2.4,1 and Equation 4,8,10 yield the I canonical state

equation
z, ) 0 'j f221 231 K
41z, = 1 0 leHGE 523 + 0 vy
dt g §
z, 0 1 wguaoj_ LZ“ 0
(4,8,11)
6 = =z
o 4

for the open-loop system G,

For the uncompensated system, v, = e, Figure 3,4,2 shows that the

1

steady-state error for a unit step input is zero, since a;, =0 in
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Equation 4,8,11 indicates a type one system, Figure 3.4,2 yields the
steady~state error
1240

a
2, P
eSS = Tﬂ: =931 K = 0,307 radians (u, 8012)

for a unit ramp input of 1 radian per second when K = 17.5 as specified,
Using the method explained in Section 3,3, the closed-loop state

equation is obtained £rom Equation 4,8.11, and is

z, 0 0 -231 K z, 231 K
d |z3] = |1 0o -1280 zg | + 0 0,
i l
dt
z,, 0 1l 94,3 Z), 0
, (4,8,13)
6 =
o 2t
The characteristic equation is observed to be
A3+ 94,3 22 + 1240 X + 231 K=0 (4,8,14)
and for the value of K = 17,5 the eigenvalues are
A= =5,2,-9,8, and =79,3 (4,8,15)

for the closed-loop system,

Next, it is desired that the value of K be found which will make
Equation 4,4,14 have complex roots where the real and imaginary parts
are equal. If this is the case, and calling A = a * ia the desired
roots, then A% - 2a A + 2a? must divide the expression in Equation
L,8,14, Carrying this ouf by long division, and equating the remainder

to zero, it is seen that



71
2a? + 188.6a + 1240 = O (4.8.16)

and
231 K -‘ua3 - 188,6 a% = 0 (4,8,17)

are the equations necessary for there to be complex eigenvalues with
equal real and imaginary parts., Considering only positive values for

K, the solutionvof Equations 4,8,16 and 4.8,17 yields the values
a= =7,1 (4,8,18)
and
K= 34,7 (4.8,19)
For thisAvalue of K, the eigenvalues of the closed-lqop system are
A= -80,1,and -7,1* 17,1 (4,8,20)

and the steady~-state error for a unit ramp input is

_ 1240 _ . |
egg = TR S 0,155 radians (4.8,21)

using the same expression as in Equation 4.8,12, Thus, simply increasing
K from 17.5 to 34,7 decreases the steady-state error for a unit ramp
input from 0,307 to 0,155 radians,

At this ppint it is desired that the system be compensated by
~changing H to a lead or a lag system as described in Section 4.7. The

state equation for this system is

<= [z1] = [-al [2,] + (1 e
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vy=Db-allzl+1]e a (4,8,22)

where the input to H is e and the output of H is v. as shown in

1
Figure 4,8,1, The compensation is to be selected so that complex roots
will equal real and imaginary are.retained, but the magnitude of the
imaginary part, corresponding to the oséillation frequency, is to be
decreased,

The closed-ioop state equation for the compensated system is formed

by combining Equations 4,8,11 and 4,.,8.,22 in the method described in

Section 3,3, yielding

EN [ -a o 0o -1 2, 1
z; 231 K(b -a) 0 0 =-231K 2y 231 K
-y = ¥ %
at |z 0 1 0 =-1240 Z3 0 *
0 -9u,
| 2y | - 0 1 -9% 3 1 LZs. L 0 N
(4.8,23)
9, = 24

The characteristic equation for this system is
A% + (94,3 + a) A3 + (1240 + 9u4.3a) A2 + (12u0a + 231 K) A +
231 Kb =0 (4,8,24)

At this point a and b are selected, and long divisien is used to see if
K can be chosen to result in the desired pair of complex roots of
Equation 4,8,24 having equal real and imaginary parts. Consequently,
it is assumed that a = 5 and b = 18, and these values are substituted

into Equation 4.8.24, yielding
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A% + 99,3 A3 + 1712 A2 + (6200 + 231 K) A + 4170 K= 0  (4,8,25)

A root A = ¢ t ic of Equation 4,8,25 is assumed, This means that
A2 - 2¢ A + 2¢? must divide the function, Carrying out the long divisien,

it is seen that

198,6 ¢ + 3424 ¢ + 231 K + szdo =0 (4,8,26)
and

be* + 397,2 3 + 3u24 ¢? - 4170 K = 0 (14,8,27)

for the remainder to be zero. Considering only K > 0 and |c| < 7.1,

the solution of these two equations is

= «2,37 (4,8,28)

0
i

and
K = 3,48 | (4.8,29)
For K = 3;48 the compensated system has eigenvalues
A= =15,9 , «78,7 , and =~2,37 ¥ i 2,37

as desired, Thus, by adding the lag compensation network H, the

oscillation frequency is decreased from 7,1 to 2,37,



CHAPTER V

SUMMARY AND CONCLUSIONS

5,1 Summary, This thesis has considered the prcblem of

analyzing a linear system which 1s governed by a time-domain matrix
differential equation, This type of equation is called a state-
variable equation, The analysis of the system consists of operations
performed on the state equation. The operations bring out certain
properties concerning the system, These properties include the
stability of the system, the type of the system, and others.

The first step in the analysis is to find the Laplace transfer
function of the system., This step proves useful for two reasons,
First, a canonical form for the state equations can be written directly
from inspection of the transfer function, Second, the determination of
the transfer function allows a great deal of information from conven-
tional control theory to be used directly., This includes such
tecnniques as root locus, Bode plots, and Nyquist criteria, This is
useful for engineers who are familiar with such methods,

The second step in the analysis is to write the ;anonical form of
the state equation by inspection of the transfer function. This form
of the state equation is convenient for the various manipulations
corresponding to the Interconnection of systems.

Where systems are interconnected; the next step is to adjoin the

canonical state equations yielding the state equation for the entire

T4
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system, This final state equation is then examined, Various parameters
within individual systems may then be selected to cause the overuall‘
system to have the desired characteristics, The state equation for the
interconnected system éhows the effect the various subsystems have upon
the performance of thé entire system,

The reduction of the given state equation to canonical form is
motivated by the simplicity of the cancnical form. This simplicity
makes possible the recognition of effects in the over-all system caused
by component systems., For a sihgle n-th order system there are n? + 2n
constants in the initial state equation describing theisystem° The
reduction of the state equation to the'Ebcanonical form has a corre~

2 4+ 2n to 2n,

sponding reduction in the number of constants from n
The last part of this thesis shows how the state equations are
treated in cases involving common interconnections of systems and.

furnishes several examples. illustrating the methods discussed.

5.2 Conclusions., A method has been presented which simplifies
the analysis of a linear system governed by a state equation. The
method makes possible a reduction of the given state equation to a
cancnical form which is preferable from the viewpoint of an engineer,

A simple relationship has been shown to exist between the Laplace
transfer function of a system and the F canonical form of the state
equation, It is felt that this relationship'will have an application
in control theory, network synthesis, and analog computation.

A general observation is that there seem to be more similarities
between the methods in control system theory and the methods in state-

variable theory than there are differences.
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5,3 Recommendations for Further Study, The implications for

network synthesis of the simple relationship between the Laplace
transfer functién and the P canonical state equation should be
investigated.

The procedure of reducing general state equations to canonical
form should be programmed for solution on a digital computer,

The area of compensation of systems described by canonical state

equations should be investigated at length.
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APPENDIX A

TABLES FOR OBTAINING TRANSFER FUNCTIONS

FROM TRANSFORMED STATE EQUATIONS

A,1 Explanation of Tables, Appendix A supplies a list of tables

which assist in determining the transfer function from the transformed
state equatiens for systems of order six and below.

The transformed state equation has the form

d
FL=EL+Er (1)

(A.1.1)
c(t) =DY
where
_0 0 O o ° ° o 'an 1
1 0 0 [ ° ° 0 -3
Nn=]
0 l O o o o 0 -
F= -2 (A.1,2)
0 0 0 o 0 o 0 -a,
O 0 O o o ] l "al
L .
Fel
2
E= |~ (A.1,3)
e
n
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and
B= [dl d2 460 dn] (Aolou)

The numbers in F, E, and D can be substituted into the appropriate

" -

expression in Appendix A for the evaluation of
(A.1.5)

For each type system, the coefficients of two polynomials, M (s) and

A (s), are listed, where

nly n2 oy, + s +m
S) m S ‘ + mzs ead mn_l

G (s) = 2 ES) = L 2

, (A.1.6)
n ni=} + + : + ‘
<3 + al s oo 0 an_l S an .

Thus, m; is the coefficient of sP~1 in i (s), and a; is the coefficient

of sP1 in A (s),

A,2 First-Order Systems,

A (s) =8 + a

M (s) = m (8,2.1)
m o= ey d1
A.,3 Second=Order Systems,
_ .2
A (s) =8 + a s + a,
M(s) =m s +m,
(A.3.1)

mlgeldl“"’ezdz

m, = e; d2 +a; e d1 - a, e, d1



A,4 Third-Order Systems,

A(s) =s3 +a

s2 + a

81

1 2 S ¥ 3
M (s) = m s +m s +m,
m m, m3
t e, dl t e, d2 t e, d3
te, d, t e, d3v ta e 4,
te, 4 ta e 4 ta,e a | (A
+a; e, 4 -~ a3 ez d,
- a; ey d; - a;e, d;
-3, 834,
A,5 Fourth-Order Systems,
A (s) = s + a sd + a, s? + a; s +a,
M(s)=m s3+m sZ2+m s +m
1 2 3 L
my mz m3 my
+ ey dl + e; d, + e; d; +e; d,
+ ey dp + ey dj .+1e2.d4 + a; e dj
+ e3 dg + ey dy + a) ey dp + a; e; dp
+ ey dy + ay ey dy + aj; e, dj + az e; 4,
+ a; e, dy + a, e; d; - a, e, dj
+ a; ez dj + ay ey dp - a, ez dy
= a, e, dy = ay ey dy - a, e, d,
= az ey dp = a3z e, dj
= ap e, dj - a, ez dj
- a3z ez d;

(A5.1)



A,6 TFifth-Order Systems,
A(s) =85+ a s + a, s3 + a; s +a s+ ag
M (s) = m st + m, sd + my s2 +m, s + mg
my m, my m,
t e, d + ey d2 te d t e, d
+te, d, + e, dg t e, d, te,d
t e, d3 t ey d, + e, d ta, e,
+e,d t e, d5 +t.a e d2 ta; e, dq
t e d a, e; d, + av1 e, d3 ta, e, d2
a, e, d, +»a1 e, dl+ ta, e, d3
a, e; d, +ta, e d1 t a; e d1
m a, e, d, ta, e, d2 t aje, d2
t e, d ag ey d, t a, e, d3 - ag e dg
+a, e d, a, eg d, - az e; d, - a, eg 4,
t a, e, d3 as e; djg - a, eg dj - ag e, dy
t aj e, d2 a, eg d, = a3 eg d, -a, e, d3
+a, e d, - ag e, d, - ag ey d;-
= ag eg dq - a, e, d2 - a, e, d2
= ag e, dy - a3 &, dy
= ag ey d2
- a5 e, 4
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(A.6.1)



A,7 Sixth-Order Systems,

83

A(s) =%+ a s°+a,s*+ay3s3+a,s2+a5s+ 3

u

3

M(s) =m s +m s* +mys3+ms? +mgs +m
m my mj3 my, mg
+ e, d; e, d, + e; dj + e dy + e; dg
+ e, dy e, dj + er dy +Ae2 dg + ey dg
+ e3 dj e3 dy, + e3 dg + e§ dg + a; e; 4y
+ ey dy ey ds + ey dg t.a) e; d3 taj) ey ds
+ eg dg eg dg + a; él d, + aj e, dy + a, e; dj
+ eg dg + a; e; 4 + a) ep dj + 51 e3 dg + ap e dy
+a; e; dy + a) ez dy + ap él d, + aze; d
mg + a; ez ds + a; ey dg + ap ep ds + a3z ep dz
+ e; dg + a; ey 4y + a, e} 4 + ap ez dy +a, e;] 4
+ a; e; ds + a; eg dg + ap ey do + a3 e; 4, + ay ep do
+ a, e} dy - ag eg d; + a, ez dj + a3 e, d, - ag eg dy
+ az e ds - ag eg do + a; ey dq + a3z e3 d3 - ag eg ds
+a, ey d - a, eg dj - ag eg do - ag eg dj - ag eg dj
+ ag e} d - az eg dy - ag eg dj - ag eg dy - ag eg dy
= 8g €g dg = a, eg dg - a, eg d, - ay eg dg - ag ey dp
- ag €5 dy - a3z e ds - 3 e5 dy - as ey d3
- ag e, dj - ag eg d; - ag eg dj - ag ez d;
- ag e3 dp - ag eg dp = a, eg dy - ag ez dy
= ag ep dy - ay eg dj - ag ey d;
- a3z eg dy - ag ey do
- ay ey, djz

(A.7.1)
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APPENDIX B

B,1 Desecription of System, In Section 1,1 the class of systems

under consideration was limited to those having the state model

description

LX) =AX (@) +Br (1)
(3.1.1)

e () =X (1),  X(0) =X

- —0

where the terms are defined in Equation 1,1.3. Appendix B provides
an extension of the method to include systems having the state model

description

a%}_(t)‘=_l}_!2(‘(t)+§’.r(t)

(B.1,2)

c(t)=T2<_(t)+kr(t) , _>g(o)=350

B,2 Procedure. In Equation B,1.2 make the definitions that

c, (t)

i

T X (1) (8.2.1)

k r (t) (B.2,2)

ts

c, (t)

where k is a constant, Then it follows that
c (t) = e (t) + ¢, (t) (B.2,3)

2

At this point the system
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d
F X () =AX+Br(t)

(B.2,4)
c, (t) =T X (¢)
can be analyzed by the general method or by the secondary methed to
ocbtain
¢, (s)
¢, (s) = sy~ (B.2,5)
where C; (s) is the Laplace transform of ¢, (t). Taking the Laplace

transform of both sides of Equation B.2.2 and Equation B.2.3, it is

seen that

a CZ (S) _

32 (s) - m-» k (Bo206)
and

C (s) = C  (s) +C, (s) | (B,2.7)

Dividing Equation B.,2,7 by R (s) and substituting Equations B.2.5 and

B.2.6 into this equation, it is seen that

G (s) = %.%.-: G, (s) + % (B.2.8)

which is the transfer function for the system described by Equafion
B.1,2,

In general G1 (s) + k will be a ratio of polynomials in s where
the degree of numerator is the same as the degree of the denominator,
Next, it is desired that the method be extended to include a

canonical form for the state equations when the numerator of G (s)

is of degree n, the same degree as the denominator. In this case
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perform a partial division of the numerator by the denominator

M (s)

G(S)zk"'m

(Bs2,9)
where k is the coefficient of s™ in the numerator divided by the
coefficient of s™ in the denominator, A (s) is the denominator
polynomial of G (s), and M (s) is the resultant polynomial of degree

n - 1 or less,

At this point a canonical state equation of

_ M (s)
G1 (s) = m (B.2.10)

can be formed in the usual way

L2 () =E2 (1) +Nr ()

(B.2,11)
c, (t) =z, (v)

Then it can be seen that the cancnical form of the state equation is

2 () =FZ (0 +Hr (1)
(B,2.12)
c (1) = z, (t) + k r (t)



VITA

Jerry Dale Holmes
Candidate for the Degree of

Doctor of Philosophy

Thesis: A STATE-VARIABLE APPROACH TO CONTROL SYSTEM DESIGN
Major Field: Engineering
Biographical:

Personal Data: Born near Lockney, Texas, March 11, 1937, the
son of Oliver W, and Buena L. Holmes,

Education: Attended grade school in Irick and Lockney, Texas;
graduated from Lockney High School in 1955; received the
degree of Bachelor of Science in Electrical Engineering from
Texas Technological College in June, 19593 received the degree
of Master of Science in Electrical Engineering from
Massachusetts Institute of Technology in September, 1960
completed requirements for the Doctor of Philosophy degree
in August, 1965,

Professional Experience: Was employed by Texas Instruments during
_ summer of 1959 as an Assistant Engineer; served as Lieutenant
in United States Air Force from October, 1960, to September,
1963, with experience in command and control of military
satellites, :

Professional Organizations: Member of the Institute of Electrical
and Electronics Engineers, Tau Beta Pi, Eta Kappa Nu, and
Associate Member of Sigma Xi,



