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1.1 Motivation. 

large physical system. 

CHAPTER I 

INTRODUCTION 

There are two major phases in the analysis of a 

In the context employed here, the term physical 

system is intended to imply a collection of physical components that are 

interconnected in some meaningful manner. The two phases are often 

referred to as the "modeling" phase and the "solution" phase. The so

called modeling phase is concerned with the problem of establishing a 

suitable set of mathematical relationships which are presumed to 

completely specify the pertinent performance characteristics of the 

physical system. The solution phase is concerned with the study and 

analysis of the performance and response characteristics of the physical 

system through a study of a solution or a partial solution of the 

previously mentioned mathematical relationships. This thesis is ca1cerned 

with the modeling phase of system analysis. 

In the most primitive form there are two items of information 

available to the systems engineer when that individual starts to formulate 

the mathematical model for the system to be studied. These two items of 

information are often referred to as the primary ~thematical model. 

The two items are the terminal characteristics of the constituent 

compa1ents of the system in some suitable mathematical form and the 

interconnection scheme . 

Trent (1), Koenig and Reed (2), and later Koenig and Blackwell (3) 

l 



have demonstrated that the mathematical discipline of linear graph 

theory and the associated generalized Kirchhoff current and voltage 

2 

laws are tools well suited for the mathematical representation of the 

interconnection scheme. This tool is largely independent of the form in 

which the terminal characteristics of the system components are 

represented. 

Now the manner in which one represents the terminal characteristics 

of the constituent component is dependent first of all upon the 

characteristics of the devices themselves. If the devices are linear. 

then one can often represent the terminal characteristics in the form of 

linear differential or difference equations or possibly as strictly 

algebraic equations which relate the terminal variables in some prescribed 

manner. If the devices are nonlinear• then• of course• cme must resort 

to another sort of terminal representation, The manner in which one 

represents the terminal characteristics of the constituent components is 

also dependent upon the type of information that the engineer desires, 

i.e., it is dependent upon the wishes of the analyst also. Koenig and 

Blackwell (3) in their study of linear systems chose to use linear 

differential equations, as expressed in the complex-frequency domain, 

as their primary means of terminal representation. 

Another prerogative of the systems engineer is the desired form of 

the resulting model that must be solved. Much of the time. it is 

necessary that one solve some set of simultaneous equations. These 

equations may be differential, algebraic, or both. In recent years the 

model used most often consisted of a set of simultaneous algebraic 

equations that result from using the Laplace transform theory to transform 

derivative and integral operations in the time domain into algebraic 
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operations in the complex-fre~uency domain. Koenig and Blackwell (3) 

have presented a great deal of material about this type of mathematical 

model. 

Until very recently 1 this seemed, from a practical standpoint 1 to 

be the only feasible way of handling a system of any extent. However 1 

with the coming of age of large . high-speed digital computers. numerical 

methods for solving sets of ordinary differential equations in the time 

domain became possible. When this occurred 1 the systems engineer 

started to look for more general mathematical models that might include 

cases where the characteristics of the constituent components are either 

time varying or possibly depend upon some other parametric variable. 

The engineer was also hopeful that the new model would be relatively 

easy to extend to the nonlinear case. It is this type of thinking that 

brought about the introduction of time-domain modeling and in particular 

the so-called state model. A state model is one which if it contains 

differential equations at all I then they are first order and are 

expressed in normal form. 

It is the purpose of this work to present a means whereby this 

state model for a system containing multiterminal components can be 

formulated. The linear graph theory techniques mentioned above will be 

' used to represent the interconnection scheme• and a special form of 

differential and algebraic equations will be introduced to represent 

the terminal characteristics of the constituent components. 

1. 2 Scope of the Study. The components considered will be limited 

to those whose terminal characteristics can be represented by linear 

ordinary differential equations and/or linear algebraic equations. 



Time-varying coefficients in these equations will be allowed. No 

restriction is placed on the order of the differential equations. and 

no restriction is placed on the number of terminals where a particular 

constituent component can be interconnected to the remainder of the 

system. Energy in all forms is admissible. 

A set of necessary algebraic and topological conditions are stated 

and proved in Chapter III. These necessary conditions are then made 

4 

a part of a set of sufficient conditions to insure that one can formulate 

the state model for a system of multite1;'1ninal components. 

Two rather la.rge examples are given to demonstrate the practical 

application of the theory. 



CHAPTER II 

FUNDAMENTAL DEFINITIONS AND CONCEPTS 

2.1 Introduction. In this chapter some fundamental definitions 

relating to the "modeling" phase of system analysis are presented. In 

particular the definitions of the terms primary and secondary mathematical 

model are given. In the introductory chapter the term "state model" of 

a physical system was used. In this chapter that term is defined and 

discussed. The desired form of the time-domain terminal equations for 

a physical device are given. In the course of presenting these 

fundamental definitions, references to the literature are given in an 

effort to establish the present "state of the art" insofar as time-

domain system modeling is concerned. 

In any modeling scheme some means of representing the interconnection 

pattern of the components is necessary. Ordinarily, the result of this 

representation is a set of linear algebraic equations. - In the sequel 

these algebraic equations are derived from an application of the theory 

and properties of oriented linear graphs as presented by Seshu and Reed 

(4) and Koenig and Blackwell (3). It is assumed that the reader is 

familiar with the works of these authors, particularly those which 

apply to systems of multiterminal components as envisioned by the latter 

pair of authors. As an aid to the reader who is not familiar with these 

works, an effort is made to provide a set of detailed references to the 

previously mentioned books in the form of footnotes. Definitions of 

5 
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the terms used and the properties exploited will be handled in this 

manner, 

2, 2 Some Fundamental Concepts of Modeling Theory. The theory of 

system modeling. as envisioned in this thesis, is concerned with the 

problem of deriving a set of mathematical relations which characterize 

a system. This set of relations is referred to as a mat~ematical model 

of the physical system. Since this thesis deals with mathematical 

models only, the term "mathematical model of the system" is often 

shortened to "model of the system." However, the classification as a 

mathematical model is always implied , It is normally derived from a 

knowledge of the terminal characteristics of ~he components which make 

up the system and the scheme by which these components are interconnected . 

As such, the model for a particular system may occur in several different 

forms. That is, models for systems are not unique , These models may 

be classified in a nuni>er of ways, In this thesis mathematical models 

will be referred to as primary or secondary in accordance with the 

following definitions: 

Definition 2.2.1. Primary System Mathematical Model. A primary 

mathematical model of a physical system is one formed by adjoining a 

set of algebraic equations which describe the interconnection acheme to 

a set of algebraic and differential or difference equations which describe 

the terminal characteristics of the components involved, The act of 

adjoining the two sets of equatiais is intended to imply that all 

equations are to be ca1sidered in primitive form and that at this point 

no attempt has been made to reduce the number of equations which must 

be solved simultaneously, 
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In the case of a continuous-time linear e lectric circuit, one 

primary model cons i sts of the set of first-order differential equations 

associated with the capacitors and inductors, the set of algebraic 

equations associated with the resistors, the set of specified functions 

associated with the drivers, and the set of algebraic equations derived 

from the application of Kirchhoff's current and volt_age laws. Note that 

it is possible to prescribe the component equations associated with the 

capacitors, inductors. and drivers in terms of the Laplace transform 

variables and thus. derive another primary system model. 

Definition 2.2.2. Secondary System Mathematical Model. A secondary 

mathematical model of a physical system is one that is derived from a 

primary model by means of linear mathematical operations. These linear 

operations are normally designed to reduce the number of simultaneous 

equations that must be solved in order to extract a unique solution for 

all system variables. 

The two most classic examples of secondary models are those that 

electrical engineers most often use to solve linear electric circuits. 

These models are often referred to as the "mesh" current equation 

and "node pair" voltage equation models. Each is derived from a primary 

model for the circuit by means of linear operations. Both secondary _ 

models mentioned here can be derived either in the time domain in the 

form of second-order differential equations or in the complex-frequency 

domain, and each results in a smaller nunber of simultaneous equations 

to solve than the primary model exhibits. In recent years another 

time-domain secondary model for electric circuits has received considerable 

attention in the literature (s• 9 6, 7). It is referred to as the state 

• 
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model for the circuit and is chaDacterized by the form of the differential 

equations involved. A more specific definition for the state model will 

be given in the next section. 

In th i s thesis attention will be focused on the formulation of a 

particular secondary model for physical systems constructed of multi

terminal components. The term multiterminal component refers to physical 

devices which satisfy the following definition: 

Definition 2.2.3. Multiterminal Component. A multiterminal 

component is a physical device which has n points (called terminals) 

where it may be connected to other physical devices (n !. 2). The phrase 

"n-terminal component'' is sometimes used when it is desired to place 

in evidence the actual nunber of terminals present. 

Definition 2.2.3 represents a formal statement of the concepts 

discussed by Koenig and Reed (2), Koenig and Blackwell (3), and more 

recently Koenig and Tok ad ( 8) . 

Resistors, inductors, and capacitors are examples of two-terminal 

components. Vacuum tubes, transistors, transformers, motors, generators, 

amplifiers, and other similar devices are examples of electrical 

muiltiterm~~al devices with more than two terminals. Combinations of 

two or more devices such as those mentioned above may also be considered 

as multiterminal components. For example, filter networks that are 

constructed from resistors, inductors, a.pd capacitors are multiterminal 

components. The concept of a multiterminal component is not restricted 

to the study of electrical phenomena. The ideas presented here are 

also applicable to the study of systems constructed from mechanical, 

hydraulic, and pneumatic components. 
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Every multiterminal component has a number of time variables 

associated with it. These variables can be classifi ed several different 

ways. One of these classifications is dependent upon whether or not 

that particular variable is available for measurement. 

Definition 2.2.4. Terminal Variables. The terminal variables of 

a multi terminal component are those oriented 9 time-varying quantities 

which are available for measurement at the terminals of the component. 

If a variable associated with a multiterminal component is not available 

for measurement, then it is referred to as a non-terminal variable. 

Terminal variables are always associated with pairs of terminals. 

In the case of two-terminal electrical components (a capacitor• for 

example)• the terminal variables are the voltage developed across the 

component and the current passing through the component. In the case 

of an n-terminal filter network, the terminal variables are the voltages 

that are developed between the various pairs of terminals and the 

currents which can be measured at each terminal. In the case of a two

terminal hydraulic device, one might consider the terminal pressure and 

flow rate as the terminal variables. 

Te·rminal variables can be subdivided into two classes in accordance 

with the manner in which the variables combine when two or more 

multiterminal components are connected together. 

Definition 2.2.s. Across Variable. A terminal variable is 

classified as an across variable if the sum of such variables about a 

closed loop or circuit is zero. The symbol xi will be used to denote 

the across variable associated with the i - th pair of terminals. 



Thus the voltage developed between two terminals of an electrical 

multiterminal component is an across variable. The displacement or 

relative velocity between two terminals of a mechanical device and the 

difference in pressure between two terminals of a hydraulic device are 

also across variables. 
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Definition 2.2.6. Through Variable. A terminal variable is classi

fied as a through variable if the sum of such variables is zero at a 

junction or interface between two or more components. The symbol yi 

will be used to denote the through variable associated with the i-th 

pair of terminals. 

The current associated with any pair of terminals of an electrical 

multiterminal device qualifies as a through variable. The forces and 

torques of a mechanical device and the flow rates of a hydraulic system 

are through variables. 

Definition 2.2.1. Terminal Graph. A terminal graph for an n-terminal 

component is an oriented linear graph containing n vertices (one associated 

with each terminal of the component) and (n - 1) directed line segments 

connecting then vertices in such a way that no circuits are formed. 

Such a graph is sometimes referred to as a tree graph. 

It is customary to associate one terminal across variable and one 

terminal through variable with each element of the terminal graph. 

These terminal variables are then written in vector notation and referred 

to as the across and through terminal vectors. 

Definition 2.2.a. Across Terminal Vector. If xi denotes the 
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across variable associated with the i --th element of the t~rminal graph 

of the j-th multi terminal component, then the column vector 

~ ( t) = [x 1 ( t) , x2 ( t) , ••• • x( n _ 1 ) ( t)] T (2.2.1) 

is referred to as the across terminal vector for that component. The 

through terminal vector is similarly defined and denoted as 

I._j · ( t) = [y 1 ( t) , y 2 . ( t) , ••• , y ( n _ 1 ) ( t ) ] T • ( 2. 2 1 2) 

A few words about notation are in order at this point. Throughout 

this thesis, underscored lower-case Greek and English letters denote 

vectors q Matrices are denoted by underscored upper-case Greek and 

English letters . Unless it is stated to the contrary, the elements of 
I 

these vectors and matrices are continuous functions of the independent 

variable t o The elements of the vectors and matrices are denoted by 

lower-case letters (not underscored) that are subscripted in the usual 

manner to indicate the position of the element in the array. If it is 

desired to emphasize the value of the elements at a particular time, a 

notation such as ~ (t) and! (t) is used, otherwise symbols such as ~ 

and A are used . Vectors are regarded as special cases of column 

matrices. A superscri pt Tis used to denote the transpose of a vector 

or matrix. The term "k- vector" is used to denote a column vector 

having k elements . 

In general , the termi nal characteristics of an n-terminal component 

are governed by the component itself and not by the manner in which it 

is connected to other multiterminal components. In fact, Koenig and 

Reed (2) and later Koeni g and Blackwell (3) have demonstrated that the 

terminal characteristics of an n- terminal component are completely 
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specified by a terminal graph containing (n - 1) elements and an 

(n - 1)-ordered vector function relating the across and through terminal 

vectors of the component. Hence, the primary terminal model for a 

multiterminal component is defined as follows: 

Definition 2.2.9. Primary Terminal Model. The primary terminal 

model for the j-th n-terminal component consists of an (n - l) element 

terminal graph and an .( n - 1)-ordered vector function 

&j (~ ( t) , ~ ( t) , t) = 0 ( 2 • 2 • 3) 

relating the terminal across and through variables. Equation 2.2.3 is 

often referred to as the terminal relations or terminal equations. These 

equations can take on various forms with the form of the equation being ,. 

dependent upon the class of device considered. In this thesis, it is 

assumed that the only physical devices considered are those for which 

Equation 2.2.3 takes the form of a set of linear ordinary differential 

and/ or algebraic equations in the variables x. ( t) and v. ( t) with t 
' -J "-] 

being the independent variable. Multiterminal components satisfying 

this last restriction are said to be linear. 

There are a few n-terminal ' components whose terminal characteristics 

are such that it is possible to completely specify those characteristics 

by means of terminal graphs which have fewer than (n - 1) elements. 

These cases arise when electromagnetic coupling or when energy in two 

forms (electrica-1 and mechanical 9 for example) is involved. Electric 

motors, generators, and transformers are examples of such devices. It 

is customary to represent such devices by means of a two-part terminal 

graph in which each part is a tree. The coupling effect is accounted 
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for by the inclusion of terms in the terminal equations which cause the 

terminal variables associated with one part of the terminal graph to 

depend upon the terminal variables of the other part. Such an n-terminal 

component will be referred to as a coupled n-terminal component, 

Definition 2.2 . 10 . Coupled n-Terminal Component. A coupled n-

terminal component is one whose terminal graph contains more than one 

part (each part is a tree) and whose terminal equations contain terms 

in which the terminal variables . _associated with one part of the terminal 

graph depend upon the terminal variables associated with another part 

of the graph • 

2.3 State Model for a System of Multiterminal Components, This 

thesis is concerned with the derivation of a particular secondary 

mathematical model for a system of multiterminal components. The 

desired model is defined as follows : 

Definition 2. 3.l. System State Model. The state model for a 

system of linear multiterminal components whose system graph 1 contains 

e elements and n vertices is a set of q first-order linear differential 

equations and 2e linear algebraic equations of the form 

..1.).:P ).+Rf 
dt - -0 - ;;.;;o -

(2.3.l) 

Z=C ).+E f 
-o- -o- (2.3.2) 

where 

1 Herman E. Koenig and William A. Blackwell, Electromechanical 
System Theory (New York, 1961), p. 42. 
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lo The q-vector >. appearing in Equations 2o3ol and 2.3.2 is - . 

referred to as the state vector of the system. The elements 

of >. are continuous functions of the independent variable t -
and are called the state variables of the system and may or 

may not be terminal variables of one of the system components. 
; 

2 0 The 2e-vector Z contains all of the terminal variables of the -
components~hich make up the systemo Z includes both across 

and through class terminal variables~ 

3o The k-vector !, contains the k specified functions of the 

independent variable t which account for the driver elements 

in the system. The elements of f are assumed to be defined 

and continuous over the set T = {t : t 1 < t < t 2 } for some 

fixed t 1 and t 2 o 

4. The matrices 1,, ~· £o, and ~ are assumed to have conformable 

dimensions. It is also assumed that the elements of these 

matrices are defined and continuous functions oft over the 

There appears to be four reasons for working in the time domain as 

compared to working in the traditional complex-frequency domain. 

If only linear cases are considered, then time-domain models such 

as the one given in Definition 2.3.l have the advantage of being 

applicable to time-varying systems as well as constant-parameter systems. 

Mathematical models which make use of the Laplace transform complex-

frequency variable are also applicable to such systems, but they do not 

yield simultaneous linear algebraic equations in the variable s which 

are easily solved. In fact, any advantage offered by the Laplace 

(_ 



transform techniques vanishes when the coefficients which describe the 

system are allowed to vary with time. This is· not the case with time

domain models such as the one given in Definition 2o3alo 
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In the case of nonlineari systems the compllx-fziequency · models are 

not applicable while the transition from the lineaz, case to the nonlinear 

case in the time domain appears to be relatively easy to accomplish. 

Another reason for working in the time domain is somewhat 

philosophical in nature. There appears to be some conceptual value in 

working in the time domain. This is true since it is in the time domain 

where one must compare the actual response of the physical system to 

the response or solution of the model. The intermediate step of 

transforming into the complex-frequency domain is sometimes confusing 

and may• in some instances, be the source of errors and misconceptions 

that are not encountered in a strictly time-domain analysis of a system. 

A fourth reason for wishing to work in the time domain has to do 

w·ith the present control system optimization techniques. Considerable 

emphasis has been given to·this problem in the literature (9 1 10, 11). 

and all of the present techniques· are dependent upon the availability 

of a time-domain model of the system dynamics in a form analogous to 

that given in Definition 2. 3 .1. 

If it is assumed that a time-domain model is desirable• then one 

is naturally led to select a form that contains no differential equations 

of higher order than one. This is the result of a number of items. 

For example 9 a considerable amount of information concerning the 

existence and uniqueness of solutions for a set of simultaneous. first= 

order differential equations is available. The necessary and sufficient 

conditions to insure a unique solution are well known for equations of 



that class (12, 13 1 14). Still another reason for using a time-domain 

model that includes first-order differential equations has to do with 

the present emphasis on the use of high-speed digital computers in the 

analysis of large systems. Mathematical models of the form given in 

Definition 2.3.l are well suited for solution on a computer. 

There appears to be two fundamentally different approaches to the 

problem of formulating the state model for a system if one is given 
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some primary model. One of these involves an intermediate secaidary 

model (not a state model) which can then be reduced to a state model. 

The intermediate secondary model will normally contain differential 

equations whose order is greater than one. For example• in the case of 

linear electric circuit theory one might first formulate a ''mesh" 

current model. Such a model is made up of a set of simultaneous second

order differential equations and a set of linear algebraic equations. 

The set of second-order differential equations can then be reduced to 

a set of first-order differential equations by defining a suitable set 

of auxiliary variables. The resulting equations can be placed in the 

form of Equations 2.3.l and 2.3.2. Another example of this approach, 

as applied to linear control systems. ignores output loading and initial 

condition effects. In this case the transfer functions of the various 

components of the control system are manipulated until a system trq11sfer 

function (the intermediate secondary model) in the complex-frequency 

domain is derived. This transfer function is then transformed into a 

suitable time-domain state model by means of some analog computer 

programming techniques. Tou (11) gives several examples illustrating 

this technique. 

The second fundamental approach does not involve an intermediate 
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secondary model. The state model is formulated directly from a knowledge 

of some primary model for the system, It is this approach to the 

problem that will be explored in this thesis. 

A number of authors (S • 6 1 7) have investigated this approach to 

the problem for systems of two-terminal electrical components (resistors, 

conductors, capacitors, and ideal voltage and current sources). How-

ever, only Koenig and Tokad ( 8 ) have studied the problem for systems 

of multiterminal components. These authors considered a rather 

restricted class of multiterminal components and attempted to specify 

only the necessary topological conditions to insure that a state model 

of the form of Definition 2.3.l could be formulated. In this thesis 

the necessary topological and algebraic restrictions for a larger class 

of multiterminal components are stated and proved. Sufficient conditions 

are also considered, and a formulation procedure is developed. 

In order to formulate the state model for a system of multiterminal 

components, it is desirable that the terminal equations for the multi-

termina+ components be in _a special form. Attention will now be devoted 

to defining this special form. Several procedures for deriving this 

special form are demonstrated in a later chapter. 

2.4 State Equations for Multiterminal Components. All of the 

results of this thesis are based upon the following definition: 

Definition 2.4.l. Let the j-th linear multiterminal component of 

a system haven. terminals or points where external connections and 
J 

measurements can be made. It is assumed that the terminal characteristics 

of the component are entirely specified by a set of Pj first-order 

linear differential equations and~ linear algebraic equations in the 
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form given in Equations 2.4.l and 2.4.2. For coupled multiterminal 

component, in the 1en1e of Definitim 2.2.10, m:, ia equal to nj - np for 

an np part terminal graph, otherwise mj is equal to nj - l. 

(2.4.2) 

The symbols in Equations 2. 4.1 and 2 , 4. 2 are defined as follows: 

lo l.j is a Pj-vector referred to as the state vector for the 

component. The elements of !.j may or may not be terminal 

variables. The component is said to have order Pj. 

2. u. is an mJ·-vector of terminal variables . 
-J 

It may contain 

both across and through class terminal variables . In the 

sequel ~j will sometimes be referred to as the generalized 

input vector. 

3. ~ is an mj-vector of terminal variables. It is the complement 

of ~j in the sense that if the across variable associated with 

a particular element of the terminal graph belonas to ~, then 

the t~rough variable associated with that element belongs to 

w. . A similar statement can be made with the terms across and 
-J 

through interchanged. The two vectors are sometimes said to be 

complementary vectors. The vector !.j is sometimes referred to 

as the generalized output vector for the component , 

4. !j is the kj-vector of SJ>!cified functions which account for 

internal sources within the multi terminal component . The 

elements of !.j are all assumed to be continuous functions of t 



over t he set T = {t : t 1 < t < t 2 } for some fixed t 1 and t 2 • 

5. The matrices !,j , S.j • ~ j • £j • .£.j , and Ej are assumed to have 

conformable dimensions. The elements of these matrices are 

also assumed to be continuous functions oft over the set 

T = {t : t 1 < t < t 2 } for some fixed t 1 and t 2 • 
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Equations 2.4.l and 2.4.2 are referred to as the state equations for the 

j-th linear multiterminal component of a system. 

State equations of the form defined above were first proposed by 

Koenig and Tcl<ad ( 8) in their paper concerning the necessary topology 

of a system of linear multiterminal components. However, those authors 

placed further restrictions on the rank of C. and the number of rows 
-'] 

of identically zero elements in D .• In this thesis it is shown that 
-J 

these last restrictions are not necessary and, in fact, severely restrict 

the class of multiterminal components which can be handled. 

There are a number of reasons for choosing the form given in 

Equations 2.4.l and 2.4.2 for the terminal relations when one is trying 

to formulate a state model for a system of multiterminal components. 

For example I the form appears to be compatible for use with the 

fundamental interconnection equations. 

A second reason for choosing such a form has to do with the idea of 

giving the term "state of the system or component" some physical 

significance of its own and not just · some secondary significance that 

is derived from another basic viewpoint. In this author's search of the 

modern literature on the subject, only Zadeh (15) and Zadeh and Desoer 

( 16) have attempted to define the term "state of the system" for 

continuous time systems. All other authors are content to derive I by 
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some suitable means, a set of first-or der differential equations in 

normal forrrf and then refer to the vector of variables that appear in 

differential form as the "state of the system" (7, 11, 17). It is a 

simple matter to show that the vector 'ojl. appearing in Equations 2.4.l 
-J 

and 2 0 4.2 satisfies the definition of state given by Zadeh and Desoer 

when one considers w. as a generalized output vector and u . as a 
-'J -J 

generalized input vector. Furthermore, Equation 2.4.1 is a modification 

of the normal form mentioned above. The modification involves leaving 

u., the generalized input vector, in an unspecified form. 
-J 

It might be noted at this point that Equations 2.4.1 and 2.4.2 

and the associated terminal graph can be considered as generalized 

time-domain Thevenin or Norton equivalent representations if w. and u. 
-'] -J 

were suitably restricted. Suppose w. contains only across-type variables, 
-J 

then u. will contain only through class terminal variables. In this 
-'] 

case the state equations are time-domain analogies of the Thevenin 

equivalent terminal .equations oft~n considered in complex-frequency 

domain analysis. If the classification of variables contained in the 

output and input vectors is reversed, then the Norton equivalent terminal 

relations result. A hybrid version of these equivalent circuits results 

when the variables in each vector are mixed. This idea of Thevenin 

and Norton equivalence is quite useful in the analysis of large-scale 

systems that are constructed of two-terminal components. This usefulness 

lies in the concept of dividing the larger s,stem into several sub-

systems and then finding the generalized equivalent (Thevenin, Norton, 

2 L. s. Pontryagin, Ordin!:}' Differential Equations, tr. L. 
Kacinskas (Reading, Massachusetts, 1962), p. 19. 



or hybrid .as needed) model for each subsystem. The larger system is 

then studied by treating the generalized equivalent: 11'104els as the 

multiterminal components of the system~ 
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A number of techniques that are WJeful in obtaining state equations 

for multiterminal components in the form of Equations 2.4.l and 2.4.2 

\rill be demonstrate'd in a later ohaptero 



CHAPTER III 

SOME ALGEBRAIC AND TOPOLOGICAL CONSIDERATIONS 

3.1 Introduction. This chapter is devoted to the study of some 

of the algebraic properties of the primary mathematical model of a 

system of multi terminal components. Certain t opol_ogical properties of 

the system graph are also considered. As a preliminary step, a 

particular primary mathematical model is derived and established as 

the starting point for further work. The primary model selected as 

the starting point is one that is derived from a knowledge of the 

component terminal equations in the time domain ( in the form of the 

equations of Definition 2.4.l) and the interconnection scheme. A set 

of algebraic conditions that are necessary for a unique solution for 

all variables to exist is stated and proved in. the form of a theorem. 

This set of necessary algebraic conditions is shown to imply that the 

system graph must have certain topological properties. A set of 

rather general sufficient algebrqic conditions are also stated and 

proved in the form of another theorem. 

3. 2. Necessary Al&ebraic and Topolo&ical Conditions. A system 

containing k multiterminal components will now be considered. The 

terminal equations for each component are assumed to have the form of 

Equations 2.4.1 and 2.4.2, Suppose that! represents the direct 

22 
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suml of all the matrices !j for j = 1 1 2 1 • o o I k. Let S, !, £, l• and 

! be similarly defined with Nspect to the matrices .9.j, !j • £j, .E,,j • and 

!j for j = 1 1 2 1 ••• , le, Alao let the vector .t be defined as 

Let ~· ~· and £. be similarly defined with respect to ~j, ~, and !,j 

for j = 1, 2, • • • , k. Now, the terminal equations for all k components 

can be written in matrix notation as 

k 
Note that wand u are each of order e where e = l nu 

- - j•lJ 
of elements in the system graph , Alao note that if p II 

the vector 1 is of order p . 

(3.2.2) 

(3.2.3) 

ia the null'ber 
Jc 

i Pj• then 
j = l 

The vectors u and w may each contain both acr08s and through - -
terminal variables in mixed order . Suppose~ cc:ntains r !. e through 

vari ables , then~ contains the r corresponding across variables . This 

is due to the construction of u and Wo .Let u(l) be a simple row re-- - -
arrangement of ~ such that the r through variables belonging to '!:.( 1) 

occur in the first r positions. Let w< 1 > be the complement of u< 1> in - -
the sense that if the i-th element of l 1) is the through variable 

associated with the j - th element of the system graph, then the i - th 

element of w< 1> is the across variable associated with the j-th element 

1 Edward T. B:owne, Introduction ~ the Theory 2£. Determinants and 
Matrices (Chapel Hill, North Carolina, 1958), p. 183 . 
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of the system graph. A similar statem~nt must hold if the i ... th element 

of u< 1) is the across variable associatet;l with the j-th element of the -

where 

u<1) = -
' ( l) 
.tu 

.x< 1) 
-u 

(3.2.5) 

and r< 1) is an e x e nonsingular transformation that results in the 
-u 

desired row rearrangement. The symbol ,t( 1 ) denotes the vector of r 
u 

through variables belonging to u< 1) • and x< 1) denotes the vector of 
- -u 

e - r across variables belonging to !=.( 1). Similarly• if r< 1) is an 
-w 

ex e nonsingular transformation. then 

w = r< l) w< l) 
- ... w -

(3.2.6) 

where 

x ( l) 
-w 

and where x< 1) denotes the vector of r across variables belonging to -w 

?..( 1 ) • and ,t<;,> denotes the e - r through variables belonging to ":!( 1 ). 

Note that i~) is the complement of ,t( ~), and z..<;,> is the complement of 

'P;.( l). 
-u 

Substitution of Equations 3.2.4 and 3.2.6 into Equations 3.2.2 and 

3.2.3 yields 
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i 1jl = P 1jl + nCl > u< 1 > + R f 
dt - - - ~ -

where 

(3.2.10) 

and 

c<1> = lr<1>j.· -1 c 
- L- w 1 - · 

. I 

= [r<1~-1 D r<1> • -wJ --u 

E< i) = Ir< i>~·) -1 E • 
L-w ~ -

'( 3. 2 .11) 

(3 .2. 13) 

The linear algebraic equations which describe the interconnection 

scheme are derived from the system .graph by applying the concepts of 

Seshu and Reed (4). Two sets of algebraic equations result. These are 

the fundamental cutset2 and circuit 3 equations. The fundamental cutset 

equations consist of v - np linearly independent algebraic equations in 

the through variables of the system. The symbol v denotes the number 

of vertices (points where two or more components are interconnected) 

of the system graph, and the symbol np denotes the number of separate 

parts4 in the system graph. These cutset equations can be written in 

2 Sundaram Seshu and Myril B. Reed, Linear Graphs~ Electrical 
Networks (Reading• Massachusetts, 1961), p. 97. 

3 Ibid.• P• 91. 

4 H. E. Koenig and w. A. Blackwell, Electromechanical System Theo;( 
(New York , 1961), p. 51. 
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matrix not at ion as 

! "I.,,= [A, Ai] 
I y_<1> 

·u 

= 0 0 (3.2.14) 

The fundamental circuit equations consist of e - (v - np) linearly 

independent algebraic equations in the across variables of the system. 

These equations can be written in matrix notation as 

B x = [B B ] 
-·- ...,, -u 

= 0 • (3.2.15) 

By properly partioning Equations 3.2.8 and 3.2.9 and adjoining 

Equations 3.2.14 and 3.2.15 to the result of that partioning operation, 

the primary mathematical model of the system is derived. It can be 

written 

z.< ~) 
d ~ = p ~ + [Q(I) Q(l)] +Rf 

dt - - - -11 -12 ,,_( l) - -
-u 

p { C3. 2 .16) 

v -n· { 0 0 0 ~ 0 f p - - - -
e - (v -np> { 0 0 B ~ 0 

(1) 
0 - ..-u - l. u 

-D{l) -D{l) x< l) 
= •· 

r { cP> u 0 E(1) 
-.:.i l -11 -12 -r ···'; ... -·~ -11 

e - r { -c<I) -D(l) ... n< i > 0 u x(l) E(l) 
-21 -i1 -Z2 -e,.,. r -w -i.1 

(1) 
I.w (3;2.17) 

• 
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The synbol ~ denotes a R. x R, identity matrixo An examination of these 

equations will show that this primary model consists of p first-order 

linear ordinary differential equations in e + p variables and 2e linear 

algebraic equations in 2e + p variables. The two sets of equations 

have et p variables in common and, therefore, must be solved simultaneously. 

The question that is now considered is as follows: Under what 

conditions does the primary mathematical model given by Equations 3o2ol6 

and 3.2.17 possess a unique solution? That question is partially answered, 

insofar as necessary algebraic conditions are concerned, by the following 

theorem: 

Theorem 3.2.1. The primary mathematical model given by Equations 

3.2.16 and 3,2.17 has a unique solution for all variables involved (both 

state and terminal variables) over some subset T1 of T only if the 

coefficient matrix on the left of Equation 3.2017 has rank 2e for every 

t belonging to the set T1 • The set T = {t : t 1 < t < t 2 } is an interval 

over which all of the elements of the coefficient matrices and the 

specified functions are defined and continuous. 

Proof: Suppose that a t.mique solution for every variable exists. 

That is, for every set of initial conditions that can be imposed on 

the independent state variables, there exists a unique representation 

of all variables (both terminal and state variables) in terms of the 

specified function vector f.. and those initial conditions. Furthermore, 

suppose that the rank of the coefficient matrix on the left of 

Equation 3.2.17 is not 2e. Clearly, the rank cannot be greater than 

2e. Therefore, let the rank be 2e - R, where .t is an integer such that 

0 < t !.. 2e. Two cases must be examined. The set of algebraic equations 



28 

may be either consistent or inconsistent , 5 If the algebraic equations 

are inconsistent, then a complete6 solution of those equations does not 

exist. This implies that a unique solution of the entire set of 

algebraic and differential equations does not exist. Thus, either a 

unique solution does not exist or the rank of the coefficient matrix is 

not less than 2e. If the equations are consistent, then the 2e algebraic 

equations can be solved for the 2e - 1 variables associated with the 

2e - t linearly independent colurms of the coefficient matrix in terms 

of the remaining p + t variables and the specified vector function f , 

This result, when considered in conjunction with the assumption that a 

unique solution for all variables exists, implies that the p + 1 un

specified variables appearing in the solution of the algebraic equations 

can be determined in terms of the specified vector function f and the -
previously mentioned initial conditions by simply solving the p linear 

first-order differential equations, This is clearly a contradiction, 

since such a set of ordinary differential equations can be uniquely 

solved for at most p variables, Since both cases lead to results which 

contradict the assumption that the rank is not 2e, it is concluded that 

if a unique solution for all variables exists, then the rank of the 

coefficient matrix ai the le~ of Equation 3.2,17 must be 2e. 

The results of Theorem 3,2.l can be used. to derive some necessary 

topological properties that the system graph must possess, Suppose 

that the entries in the vector of variables appearing in Equation 3, 2, 17 

5 Fran ~ E, Hohn t Elementary Matrix Algebra (New York, 1958), p. 111 , 

6 Ibid , , p, 112. 
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are rearranged in a manner such that the equation becomes 

0 A 0 1 0 f - -
0 0 B l. = 0 (3o2ol8) - -
c(l> z(1) w<1> x :e;C 1) - - -

where 

-c<1> 
-i1 

cC1) = t (3. 2. 19) - -c< 1> 
~l 

-0(1) 0 -i1 
zC1> ... ( 3. 2 .20) 

-o<i> • - u 
""'2 l -e ..... r 

-0<1) u 
"i.2 ~ 

wCl> = • (3.2.21) - -0(1) 0 
-i2 -

and!,, !,, ~· and z. are defined by Equations 3.2.14 and 3.2.15. 

Theorem 3o2o2• The primary mathematical model of a system of 

multiterminal components has a unique solution for all variables 

involved (both state and teJ:lininal variables) only if there exists at 

least one set of e linearly independent columns in thee x (2e T p) 

matrix 

such that the linearly independent colunme1 taken from !( 1) correspond 



to a subset of the chord set of some tree Ta of the syst em graph and 

those t aken f rom w< 1 ) correspond t o a subset of t he branches of some 
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t ree Td of the system graph. The t rees Ta and Td are not necessarily 

i dentical. I t is understood that the properties stated in this theorem 

must hold f or all t belonging to the set T = {t : t 1 < t < t 2 } where t 1 

and t 2 are the end points where !!dl, the terms appearing in the coefficient 

matrices of the component equations and the specified function vectors 

are defined and continuous. 

Proof: The proof is given for a system whose graph contains one 

part . The extension to cases where more than one separate part is 

involved is simply a matter of notation. Theorem 3.2.1 states that it 

i s necessary (for a unique solution for all var~ables to exist) that 

there exist at least one 2e x 2e nonsingular submatrix in the coefficient 

matrix on the left-hand side of Equation 3.2.lB. Let~ denote the k-th 

such subrnatrix. Consider the Laplace expansion for the determinant of 

!!Jc about the first e rows. This expansion takes the form 

det ~ = 

rn 

l (±1) (det ~j) (det !!Jcj) 
j = l 

(3.2.23) 

where ~j is the j-th square minor matrix7 that can be formed in the 

first e rows of !!Jc. There are 

2e! 
m = e! e! (3.2.24) 

7 Edward T. Browne, Introduction to the Theory of Determinants and 
Matrices (Chapel Hill, North Carolina,1958)1 p. 21.-



such minol'I matrices. l;!kj is the e x e complementary minor matrix8 of 

~j in !J<. The sign of each term in the sum is dependent upon the 

particular colunns that are selected for inclusion in ~j and is not 

important to this a.rgument. By hypothesis• ·~ is nonsingular. This 

implies that for at least one value of j in I:quation 3.2.23 

det ~j ·• det ~j rl o o 

Equation 3o2o25 leads to the conclusion that for at least one value of 

j 

det Scj # O 

and 

det ~j # O 
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The implications of Equation 3.2.26 will now be studied. Clearly, 

if Scj contains any columns that do not bel~g to either [AT O JT or 

[O !_T]T • then 2kj is singular and need not be considered, Therefore 9 

every ~j that satisfies Equation 3o 2 o 26 has the form 

0 -
(3o2~28) 

!cj ,Ce .. c] 

where ~j,(c) is a (v - 1) x c submatrix of!, and ~j,[e _ c] is an 

[e .. (v - 1)] x [e - c] submatr.a.,x of B. Consider the assertion that c . .. . . 

8 Ibido 
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is exactly equal to v - l where vis the number of vertices in the 

system graph. Also consider the companion assert ion that the columns 

of .bcj ,(c) correspond to the branches of some tree Ta of the system 

graph and that the columns of B. • [ ] correspond to the elements 
-kJ • e - c 

of the chord set of some tree Td of the system graph. Suppose c is 

less than v - 1, then e - c is greater thane - (v - l). This result 

implies that ~j contains more thane - (v - l) distinct columns taken 

fro~ [.2_!,T]T. But since! is a fundamental circuit matrix, it has 

rank9 e - (v - l); and it follows that §cj is singular and need not be 

considered if c > v - l. Similarly, suppose c < (v - l), then ~j 

contains more than v - l columns taken from [~,.1 .2_JT. But A is a 

fundamental cutset matrix and, therefore, has rank 10 v - l. It follows 

that §cj is singular if c < v - l. Hence, if Scj is nonsingular as 

required by Equation 3.2,26, then c is exactly equal to v ~ l. It is 

now concluded that for every ~j which satisfies Equation 3.2.26 

det ~j = det ~j,(v _ l) • det ~j,[e _ (v _ l)] # 0 

( 3. 2. 29) 

This results in the conclusion that 

det ~j,(v _ l) # 0 ( 3 • 2 • 30) 

and 

9 s. Seshu and M. B. Reed, Linear Graphs and Electrical Networks 
(Reading, Massachusetts, 1961), p. 68, 

lO Ibid.• P• 74, 



det ~j,[e q (v _ l)]; 0, 

A square submatrix of a fundamental cutset matrix is nonsingular if 9 

and only if• the columns of the submatrix correspond to the elements 

of some tree Ta of the system graph o 11 Similarly• a square submatrix 

of a fundamental circuit matrix is nonsingular if• and only if• the 
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columns of the submatrix correspond to th, elements of the chord Ht of 

some tree Td of the system graph.- 12 Hence. it is concluded that ~j 

is nonsingular (as required by Equation 3o2o26 for some j) only if the 

columns of ~j taken from [A,T o ]T correspond to the elements of some 

tree Tat and the columns of !!Jcj t-,ken fpom [,2_ '!}]T correspond to a 

chord set of some tree Td belonging to the system graph. 

The matrix. !:!Jcj will now be examined in the l_ight of the above 
.:.~· 

results. First• it is noted that ~j is a square e x e submatrix of 

.!.•· It is also noted that by definition !!«j · is the com~,lementary minor 

matrix of ~j in !!'ic• Thus,' if Eciuation' 3.o 2o 26 and Equation 30 2-•27 are 

both satisfied• then !!kj must. contain e linearly independent columns• 

and any of the col,.umns of !:!J<j which are taken from !( 1) must correspond 

to a subset of the chord set of the tree Ta• ,an.d any columns of !!Jcj 
taken from wC l) must correspond to a subset of the branches of some 

. ... ~ 

tree Td• This completes the proof of Theorem 3:,,,2,2. 

Koenig and Tokad ( 8 ) have stated and proved a theorem similar to 

the one appearing above. However, th~- considered only those 

11 Ibiq,, P• 690 

12 Ibid.. 



multiterminal components which poss~ss th~ property that the number of 

l'OWS of zeros in .E,j is greater than ot' .eiqual to the rank of £j. The 

theorem as stated and prcrved here includes a larger and more general 

class of multiterminal components~ 

34. 

A more useful form of Theorem 3., 2. 2 would result if one could state 

the necessary conditions in terms of the component equations of the 

system. Such a statement is possible as shown below. Let p1 , p2 9 nb 1 • 

and nci be four integers which satisfy the following equations; 

nc < e - (v - 1) 
1 -

(3.2.31) 

(3.2.32) 

(3.2.33) 

(3.2,,35) 

The symbols p 9 v • and e have the same significance as in the proofs of 

Theorems 3.2.l and 3.2.2. Then Theorem 3.2.2 can be restated as 

follows: 

Theorem 3.2~3. (Alternate form of Theorem 3.4.2). The primary 

mathematical model of a system of multiterminal components has a 

unique solution for all variables involved only if there exists. two 

trees Ta and Td (not necessarily distinct trees) belonging to the 

system graph such that the algebraic component equations can be written 

as follows for all t belonging to T = { t : t 1 < t < t 2 }. 
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ti. 

1i H H H H H x E f 
"""11 -i2 """13 """l4 -is -2,bd -iii -

x = H H H H H x + !i -1,bd -i.1 -l2 """'23 """'24 -i.s ---Cd 

E y H H H H H Zz.,ca _1,ca ~l ~2 ~3 ~4 ~5 -.a 

Iba 
(3.2.36) 

The various elements of Equation 3.2.36 are defined as follows: 

l. The vector ~ i$ a,. p 1 :..vector contcµ.ning a subset of the state 

variables of the system. i.i is the p2 ordered complement of 

~int• 

2. .!i ,bd is an nb 1-vector of the across variables associated with 

the branches of the tree Td. ~ ,bd is a (v - l - nb 1 )-vector 

containing the remaini,ng across variables associated with the 

3. I.i ,ca is an nc 1-vector of the through variables associated 

with a subset of the chord set of the tree Ta• z.2 ,ce. is the 

(,e - v + l - nc 1 )-vector cpnt:airiing the remaining thro1;1gh 

varial>les associated with the chord,"set of Ta• 

q, ~d is the [e - (v .. 1) ]-vector of ,across variables associated 

with the chord set of the tree 'l"d• 

5. I.ha is the (v - 1)-vector of through variables associated 'with 

the branches of the tree Ta• 

6. The elements of the coefficient matrices in Equation 3.2.36 are 

defined and continuous functions of the independent variable t 

over the set T = {t : t 1 < t < t 2 } where t 1 and t 2 are the end 



points of an interval over which all of the ~l~ments in the 

component coefficient matrices and specified functions are 

defined and continuous functions over the set T = {t : t 1 < t 

< tz}• 
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3.3 Sufficient Algebraic Conditions. For the sake of completeness, 

the following theorem concerning sufficient a.lgebraic conditions is stated 

and proved: 

Theorem 3.3.l. The primary mathematical model of a system containing 

k multiterminal components has a unique solution for all variables 

involved if the a.lgebraic equations belonging to the primary model can 

be solved for the system terminal vectors~ and .l. in terms of the 

specified function vector!. and the system state vector 1• That is, if 

Equation. 3.2.17 can be written 

x..'!) N M f 
-11 -u 

x(l) N M -u -i1 + -Zl (3.3.1) = t 

x(l) N M -w ~l ~l 

:..' 1) N M 
w -,. 1 '"'!'If 1 

then the primary mathematical model has a unique solution for all 

variables. It is noted that the elements of the coefficient matrices 

in Equation 3.3.1 are defined and continuous functions of the independent 

variable t over the set T = {t ; t 1 < t < t 2 } where t 1 and t 2 have the 

same significance as in the statement of Theorem 3.2.l. The elements 

off are also defined and continuous over the set T. -



Proof: Let the first t wo row blocks of Equation 3.3.l be 

substituted into Equation 3.2.16. This results in a set of p first-

order differential equations of the form 

_!$: p 1j, + [Q(l) N + Q(l) N ] 1j, + [Q(l) M + Q(l) M ] f +Rf. 
dt - -- -11 -11 -i2 -i1 - -i1 -i1 -i2 -i1 - --
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(3.3.2) 

It is noted that Equations 3,3.l and 3.3.2 form the system state model 

as prescribed by Definition 2.3.l, There is a well-known theorem13 in 

the theory of ordinary differential equations which states that a set 

of equations of the form of Equation 3.3.2 possesses a unique solution 

for the vector 1jl for every set of initial conditions 1j, ( t ) and for 
- - 0 

every vector of specified functions f which satisfy the hypothesis of -
this theorem. On substituting this unique solution for i into Equation 

3.3.l • one obtains a unique solution for every terminal variable of the 

system. This completes the proof of Theorem 3.3.l. 

Insofar as a formulation scheme is concerned• Theorem 3,3.l 

contributes very little, in a practical sense~ in that it requires that 

one be able to invert a 2e x 2e matrix. In any but the simplest cases 

the calcul~tion of such a matrix inverse is no easy task. Also, it is 

a simple matter to present a counter exampl~ showing that the hypotheses 

of this theorem are not necessary. For example, consider any electrical 

network containing at least one circuit of capacitors. Such a network 

possesses a unique solution for certain initial conditions. yet its 

13 w. Kaplan, Ordinary Differential Equations (Reading, Massachusetts, 
1958) • p. 494, 
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component and interconnection equations will not satisfy the hypotheses 

of Theorem 3.3.1. 



CHAPTER IV 

STATE MODEL FORMULATION PROCEDURES 

4.1 Introduction. The necessary and sufficient algebraic and 

topological conditions developed and discussed in the preceding chapter 

do not provide a practical means for formulating the state model for 

a system of multiterminal components. It is the purpose of this 

chapter to present a formulation procedure that can• in a practical 

sense, be applied to la_rge physical systems. A number of special cases 

will be considered. Before proceeding to the development of this 

procedure, it will be necessary to consider several special forms for 

the component terminal equations. 

4.2 Some Special Forms for the Component State Equations. The 

first special form of the terminal equations to be considered is that 

associated with the class of physical devices for which one of the 

terminal variables (across or through) is a specified function of the 

independent variable t. The specified terminal variable is assumed to 

be independent of its complementary terminal variable. Such a device 

is referred to as an across or through ideal driver, depending upon 

which terminal variable is the specified function oft. Only 2-terminal 

ideal drivers or ideal drivers which can be represented as an inter

connection of 2-terminal ideal drivers will be considered in this 

thesis. The state equations (see Equations 2.4.1 and 2.4.2) for the 

39 
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j-th such ideal driver reduce to the form 

w. = f. 
J J 

where the variable w. is a single terminal variable (either through or 
J 

across), and fj is a single specified function of the i ndependent 

variable t. It is noted that the state vector associated with an ideal 

driver is an identically zero vectorf and 9 therefore, the first-order 

differential equations which are associated with the. general form of 

the state equations for a multiterminal component vanish. In the sequel, 

a system containing kd 2-terminal ideal drivers will be considered. 

The direct sum of the kd terminal relations will be written 

where !o is a kd-vector of terminal variables, and !.c is a kd-vector 

of specified functions. Equation 4.2.2 will be referred to as the 

"ideal-driver terminal equations" in the developments that follow in 

this chapter. The symbol °x will be used to denote the number of 

across variables appearing in !o • and the syrool ny will be used in a 

similar manner to denote the number of through variables belonging to 

!o• 

The second special form for the component equations can be derived 

from Equations 2.4.1 and 2.4.2. For easy reference, these equations 

are 

and 

~ 1j,. = _P :i tJi. + .9,; u. + R. f. 
dt "'"'] :J "'"'] J -J -J J 

w. = C. $. + D. u. + E. f. 
-J -J J -J -J -J -J 

(2.4.1) 

(2.4.2) 
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The form to be derived is applicable to all classes of multiterminal 

components except the ideal drivers. This special form is derived by 

taking advantage of the fact that some of the state variables of an n-

terminal component may also be generalized output variables (or linear 

combinations of the generalized output variables). In that case, some 

of the algebraic equations belonging to the combined set of algebraic 

and differential equations may be eliminated. This elimination 

procedure is described below. In the process of developing this 

elimination procedure, it will be necessary to perform several sets of 

elementary operations on the matrices and vectors appearing in Equation 

2. 4. 2. Each time that a set of operations is performed, the resulting 

matrix or vector will be denoted by the same algebraic symbol as the 

matrix or vector on which the operations were performed, except that a 

superscript will be added to denote how many sets of elementary 

operations have been performed at that point in the derivation. For 

example, the symbol p(i) represents the result of i sets of elementary 
-1 

operations on the matrix f 1 • 

Consider the matrix~ that appears in Equation 2.4.2 • .£.j will, 

in general, contain dj (dj .!. 0) rows whose elements are identically 

zero. One can• by means of elementary row interchanges, rearrange the 

terminal algebraic equations so as to place those zero rows in the first 

dj positions of .£.j. This operation constitutes the first elementary 

transformation to be performed on the matrices and vectors of Equation 

2.4.2. Since it is desirable that the generalized input vector, 1:_<~>. 
J 

be the complement of the generalized output vector, w(k) • at every 
-j 

point during the derivation, it is assumed that every operation ,· also 

includes a rearrangement of elements of u<k- l) and the columns of 
-j 



o<k-l) s o as to insure that 
-j 

u(k) and w(k) are compl ementary vectors 
- i ... i 

f or every possible i and k. The t er m complementary, when used in this 

context ., i mp l i es that i f the m-th entry i n u(k) is the across variable 
- i 
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associ ated with the t-th element i n the component t erminal graph, then 

them-th entry of w<~) is the through variable associated with the 1-th 
- l. 

element of the terminal graph and conversely. At any rate, the j-th 

multi terminal component's algebraic terminal equations can be written, 

after this first set of row and colunm interchanges, as shown in 

Equation 4.2.3, 

w< 1) c<1> ljl 0 0 u(1) E(1) 
- 1 -11 -· - 1 1 l = J + + 

(f]. 
- J 

w(l) c<1> 0<1) 0<1) u<1) E(1) 
- 2 j -ii j -ii -i2 j - 2 j ~l j 

(4.2.3) 

Note that in the above equation w(l) is a d.-vector of terminal 
- l J 

variables (both through and acro~s variables are included) and that 

~( ~) is an ( ~ - dj )-vector of terminal variabl.es. As before, mj is 

the number of elements belonging to the terminal graph of the j-th 

multiterminal component. 

Suppose that the dJ· x p. matrix c< 1) has rank r. where 
J -11 J 

rJ· < min ( d . , p . ) • 
- J J 

If this is the case, then one can, without any loss in generality, re-

arrange the rows of the first row block of Equation 4. 2. 3 so as to 

place rj linearly independent rows in the first rj positions of that 

matrix. Let [r( 1)]. denote the mJ. x mJ. nonsingular linear transformation 
- ljl J 



matrix which accomplishes this row intercha_nge for the j-th multi

terminal component. Then• there e:>d.sts a Pj x Pj nonsingular 

transformation [A(l)]. such that if 
-"' J 

c< i> 
c<1> 

:; ·-i.1 ... . • J 
cP> 
-i1 j 

then 

0 

43 

tr<1>J. c<1> [A(l)) = c< 2 ) [~) = (4.2.6) 
-"' j -j - "' J -j. c<2> 

-i1 -i2 · .. j 

Let 

Now, suppose that Equation 4o2a3 is premultiplied by [r< 1>J. and 
-lj, ) 

Equation 4.2.7 is substituted into the result. These operations plus 

any operations which are necessary to insure that the input and output 

vectors remain complementary constitute the se~ond set of linear 

operations to be performed on the a~gebraic terminal equations of the 

j-th multiterminal component 0 The resulting equation is 

(2) 
£i,. 0 1<1> 0 0 u(2) E(2) w 

- 1 = J 1 + - l + ~11 

w(2) c<2> cC2) 1(1) 0(2) 0<2) (2) .. E(2) u 
-2 j -Zl -i2 j 2 j -i1 -i2 j -2 j -Zl 

[f]. 
-J 

j 

(4.2.8) 



The first row block of Equation 4.2. 8 can now be solved for i.C 1). The 
1 
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resulting equation yields an expression for rj state variables in terms 

of rJ· terminal variables and the specified function vector [f] .• 
-J 

= [w( 2 )]~ - [E(i)j_ [f]. • 
-1 t, -11) -J 

It is assumed that all the elements of th,e matrices and vectors in 

Equation 4. 2.9 possess continuous first derivatives with respect to 't 

over the set T = {t : tl < t < t 2 } where t 1 and t 2 are the fixed end 

points of an inter.val over which all of the elements of the vecto:t"S 

and matrices appearing in Equations 2,4.l and 2.4.2 are defined and 

continuous. 

Now let Equation 4.2.7 be substituted into a partitioned form of 

Equation 2.4.l• The-result of this substitution can be written in 

partioned form as shown in Equation- 4.2.10., 

1/J(l) p(l) p(l) 1< 1) 

d -1 = -11 -i2 1 

cit 
1,<1) p(l) p(l) t< 1) 

2 j -Zl -Z2 j - .. 2 j 

+ Q(1) q(~) u<2) R( 1) Cf]. 
-i.1 -12, ·. - 1 + -11 -J ( 4., 2 .10) 

Q(l) Q(l) u(2) R(l) 
-i1 -i2 j - 1 j -i2 j 

On substituting Equation 4.2.9 into Equation 4.2.10, one 9btains. 
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~(2) p ( l) pC 1) (2) w ... ,. 
d -1 -11 -12 - l -dt = tj,(1) 1(1) pCl) p(l) 

2 j -Zl -i2 j -2 . 
J 

Q(l) Q(l) (2) 
T C.s.J. u /.h 

+ -11 -J.2, - 1 + -11 . J 

Q(l) Q(l) (Z, 
u ' T 

-Zl -Z2 j -2 j -+l j (4.2.11) 

wbere [T ]J. 9 [T ] . , an.d g_. account for the effects of the [-E ( 2 ) ] • [ f]. 
-i 1 · ·-i 1 J -J . -i 1 J - J 

term in Equation 4.2.9. At any rate, T and T are matrices of 
. -i1 ' 41 

defined and continuous functions oft over the set T and (1,]. is a 
. J 

vector of defined and continuous functions over the set T. The elements 

_ of the other coefficient matrices in Equation 4.2.11 are similarly 

defined. 

One can now write the component terminal equations for the j-th 

multiterminal component by considering the lower row block of Equation 

lj;,. 2. 8 in conjunction with Equation 4. 2 .11. Since it is this form of, 

the<terminal equations t:qat will be employed"in the sequel, the 00 super-

script notation will be dropped, and·he:rieafter it is assumed that'.ai:l.•'"'· 

component terminal equations (except those associated with ideal,· 

drivers) are in the reduced form derived above... These equations take 

the form of 

)Si1 
l~l 

Q 1 [u J . f T l [ ll]. ~2 ~ A ~I &J 

~2. • -Z • -12 • J J ·J . 

(4.2.12) 
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and 

+ CE ]. [fJ. 
21 J - J 

In the next section• a system containing kd ideal, drivers and k 

components whose terminal equations are of the form of Equations 4o2.l2 

and 4o2ol3 will be studied. Each of the k components whose terminal·,, 

equations take the form of tbei5e latter equations is assumed to have 

nj terminc,.ls and 1llj elements in its terminal. grapho Thus for the j-th 

such component, c; ]j contains (mj ... rj) entrie·So For sucb a system, 

the complete set of system component equations can be ~ritten 

d 
cit 

and 

·!!o = .£:> t 

[~ 1 . [~' ~j[!i]. . 1~, ~·J r ~J . r~'l ' . -iJ -Zl -22 ti l~l Sz2 l-z l~l 

w = [C 
-i """21 

+ [D D ] 
"""21 """22 

+ E 
"""21 

c 4. 2. is> 

f • ( 4. 2.16) -

The matrices and vectors in Equations 40 2.15 and 4o2.l6 are the direct 

sums, over j = 1 1 2 • ••• , k • of the similarly denoted matrices in 



Equations. 4.2.12 and 4.2.13. The entire set of equations, i.e., 

Equations 4.2.14, 4.2.lS, and 4.2.16 will o~en be referred to as the 

"direct sum of the component state equations in reduced form" in the 

remainder of this thesis. Note that this set of equations contains 

k 

p = l p· 
j = l J 

linear first-order differential equations and 

k 
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ka = l (mJ. - rj) 
j = l 

(4.2.18) 

linear algebraic equations. It is also noted that the system graph 

contains 

elements. 

k 

e = kd + l ~ 
j = l 

( 4. 2 .19) 

4.3 A Formulation Procedure. This section will be devoted to 

the presentation of a formulation procedure that can be used to derive 

the state model of a system of multiterminal components. The formulation 

procedure represents an adaptation to the problem at hand of Wirth' s 

work ( 18) with nonlinear devices. It will be necessary to place 

several additional restrictions on the form of the system component 

equations. These restrictions will be introduced in the form of formal 

assumptions as needed in the development. The results of this derivation 

will be summarized in the form of a list of itemized steps near the end 

of this section. 



Throughout this section a system containing k0 multiterminal 

components will be considered. The system graph• G1 will be assumed 

to have e elements and v vertices. The component equations for the 

system will be assumed to take the_ general form of Equations 4.2.14 1 

4.2,15 1 and 4.2.16 1 subject to the exceptions_ given below. 

Before .listing the restrictions on the component equations, the 

technique to be used to select the formulation tree will be presented. 

Consider the following subgraphs of the system graph G. 

1. Let S1 denote the subgraph containing all the elements of G 

which correspond to across variables belonging to !o• 

2. Let s2 denote the subgraph containing all the elements of G 

which correspond to across variables belonging to w • . . -1 

3. Let s3 denote the s~graph containing all the elements of G 

which correspond to entries in w. 
-'l 

Let S denote the subgraph containing all the elements of G 4 . ·_ 

corresponding to through variables that belong to !'!,.1 • 

s. Let SS denote the subgraph containing all the elements of G 

corresponding to the through variables that belong to !o• 

The sets S • S • •••• S merely classify the elements of the system 
1 2 S 

48 

graph in accordance with the form of the associated terminal equations. 

In the case of simple electrical networks, one accomplishes an analogous 

classification when one considers the elements of the system graph that 

are associated with the capacitors I ideal voltage drivers, resi~.tors, 

inductors 1 and ideal current drivers as disjoint subgraphs of the 

system graph. Now consider the sub~raphs G1 , G2 • ••• , Gs of the system 

graph G that are defined by Equations 4.3.l through 4.3.s. The symbol 

U denotes set-theoretic union. 
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G = S 1 l 

(4.3.2) 

(4.3.4) 

(4.3.5) 

Define Ti to be a tree of Gi s~ch that Ti is contained in Ti+ 1• It 

follows that TG = T5 is a tree of G. TG is the desired formulation 

tree. Clearly, one can always select the formulation tree in this 

manner if the following assumption prevails: 

Assumption 4.3.l. It is assumed that there are no complete circuits 

of Gin s1 and no complete cutsets of Gin s5 • 

Assumption 4.3.2. The algebraic component equations are assumed to 

be independent of 1!.i• That is 

~l - 0 (4.3.6) 

in Equation 4. 2, 16. 

Assumption 4.3.3. It is assumed that if the i-th element of G 

corresponds to a linear algebraic equation of the set identified as 

Equation 4.2.16 (as modified to incorporate Assumption 4.3.2) and if 

that element belongs to the tree TG, then Equation 4.2.16 is explicitly 

solvable for the across variable associated with the i-th element of TG• 

Similarly, if the i-th element belongs to the complement of TG in G, 

then Equation 4,2,16 must be solvable for the through variable 



so 

associated with the i-th element of G. 

I t f ollows from Theorem 3 •. 2.2 and Theorem 3.2.3 that Assumptions 

4,3,l and 4.3,3 are, in a practical sense, necessary conditions. 

Clearly, if one wrote the direct sum over j = 1, 2, ••• , k of all 

equations of the form of Equation ~o2.9 and considered the result in 

conjunction with Equation 4.2.14 and Equation 4.2.16 as modified to 

satisfy Assumptions 4,3.2 and 4,3 0 3, then ope would have a set of 

equations whose form is the same as Equation 3.2.36 as required by 

Theorem 3,2,3. 

Assumption 4, 3, 4, It is assumed that there is no ideal branch-to-

chord or chord-to-branch coupling in the ~ 2 matrix appearing on the 

right of Equation 4.2.16 as modified to satisfy Assumptions 4,3,2 and 

4.3.3. 

Assumption 4,3.s. It is also assumed that ideal branch-to-chord 

or chord-to-branch coupling does not exist among the elements whose 

terminal characteristics are described by the first-order differential 

equations (Equation 4,2.15). Branch-to-chord and chord-to-branch 

coupling of an algebraic element to a differential element may appear 

in the differential equations only. 

In light of Assumptions 4.3o2 through 4.3.5~ the system component 

equations can now be written as follows: 

[~lbl = r~ (t )I 
~c Z-s (t) ' 

(4,3,7) 
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~b 
p p p p p 

~b -11 -i2 -13 "'""14 ··-15 

~c 
p p p p p ~c ""'21 -i.2 -i.3 -i.i+ -i.s 

d L+b = p p p p p 
I4b - -31 -:i2 ~3 ~4 -35 dt 

L+c 
p p p p p t+c """'!+ 1 -i.+2 """'43 """44 -1+5 

~ p p p p p 1i -s1 ""'52 -S3 """54 -SS 

S.11 0 .9, 3 
Q 0 0 

l2b - -14 .ieb 
X..Zc 

0 Q .9..i 3 
Q 0 0 

'2c - -i2 -i1t - -
l.3b 

+ 0 0 Q ~ ... Q 0 + l: ~b t - ~3 ~5 .... 
~c 

0 0 
~3 ~ ... 0 Q 

'1+c - - - -t+G 
xb 

.9.s 1 Ss2 Ss3 .9.s 4 -2ss 
Q 

-4 

""S 6 
~c 

~ 

(4.3.8) 

and 

~b 

x 

[::] ~1 

c c c ~:1 -ic [;! ; J l:~J {!3t = -i2 -i3 -J.4 
L+b + 

c c c 
-i1 -i2 -Z3 -ii+ -is 

L+c 
-i.2 -3c -3c 

~ 
( 4"• 3.9) 

It should be noted1 that the coeffici~nt matrices in Equations 4. 3. 8 and · 

4. 3. 9 are, in general, rearrangements of ·the coefficient matrices in 

Equations 4.2.15 and 4.2.16. Also it should be noted that a finer 

.partioning of the coefficient matrices is displayed in Equations 4.3.B 
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and 4 , 3, 9, The numerical subscripts appearing in the vectors of 

variables in Equations 4.3.7 through 4,3,9 correspond to the subscripts 

assigned to the subgraphs s1, s2 , s3, S4 , and s5 • The "b" and "c" 

subscripts denote branch and chord elements respectively. 

The symbol, n2b, will be used to denote the number of graph 

elements belonging to S2 which are also branches of the tree TG. 

Similarly, the symbol, n2c, will be used to denote the number of graph 

elements belonging to S2 which are chords of the tree TG• The symbols, 

n4b, n4c, n3b• and n3c• are similarly defined, The symbol, n2 , will 

be used to denote the number of entries in~ • 
. -i 

Assumption 4,3,6, It is assumed that the matrices S, , 0 , _g , 
ll '"""22 35 

and g1 6 appearing in Equation 4, 3. 8 and the matricea D and D 
• ~l -i2 

appearing in Equation 4,3,9 are positive definite for all t belonging 

to the set T = {t : t 1 < t < t 2} for some fixed t 1 and t 2• The reader 

is referred to Definition A,l for a definition of the term positive 

definite as used here, 

Assumption 4, 3, 7. The elements of the vectors ~ Ct) and Zis (t) 

that appear in Equation 4.3.7 are assumed to have continuous and 

defined first derivatives with respect tot over the set T, 

The fundamental circuit equation associated with the tree TG can 

be written in partitioned form 
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x -lb 

~b 

B B 0 0 u . 0 0 0 .!.gb -11 -i2 - - ~ - -2c 
B B B 0 0 ~ 0 0 

~b ""21 -i2 -.z 3 - = 0 3C -B B B B 0 0 ~ 0 x 
~l ~2 ~3 -S4 - - ....ec 

4C 
B a B B 0 0 0 Yii .?i3c """41 -,.2 """4 3 """4 4 - - ... ... y_ 

x -L+c 

~c 

(4.3.10) 

- Similarly, the fundamental outset equations can be written in 

partitioned form 

Z.1b 

I2b, 

llnx 
0 0 0 A A A A 

I.sb - - -i1 -i2 -13 -ii+ 

0 u 0 0 A A A A L+b ....n2b - -i 1 ""22 -'23 ""24 = 0 
0 0 u 0 d -A: A A -- - -n3b - .- ~2 -S3 -34 Iec 

0 0 0 u 0 0 A A lac - - -n4b -- - -,.3 -tt4 

l'4c 

Zsc 

.. 
The zeros appearing in the first four columns of Equation. 4. 3 .10 

and in the last four columns of,Equation 4.3.11 are due to the manner 

in ~hich the formulation tre~ TG was selected. For example, consider: 

the first row block of Equations 4. 3 .10. The fundamental circuit 

equations appearing in this row block are defined by elements of the 
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subgraph, S2 • Since the tree TG was seleqted so as to maximize the 

number of elements belonging to the set ... theoretic intersection of TG 

and s2 • any fundamental circuits defined by an element of s2 can contain 

only elements which belong to the subgraph• G2 • Similarly• fundameJltal 

circuits defined by elements belonging to S3 can contain only elements 

belonging to G3, One may construct a similar argument concerning the 

coefficient matrix in Equation 4, 3,_l,l. However. the desired result 

can also be obtained by noting that if Equation 4.3.10 and 4.3.ll are 

written as follows 

and 

thenl 

[U A l 
-v-1 -i l~J 

B 
-i 

T = - A • 
-i 

= 0 (4,3.12) 

= 0 

(4.3.14) 

This result implies that the submatrices of Equations 4,3.10 and 4.3.11 

satisfy 

B •• = - A •• 
.-J.J -:) J. 

(4.3.15) 

1 H. E. Koenig and w. A. Blackwell, Electromechanical System Theory 
(New York• 1961), p. 59. ' . 
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and in light of the argument given that B , B , and B are identically 
' ' ' -i,3 -ir+ -ir+ 

zero• then A , A • and A are also identically zero. 
-.31 """l+l """1+2 

The second row block of Equation 4o3ol0 and the third row block 

of Equation 4.3.ll can be used to form 

[
~2 

0 - O J lx J [B O J [ x J - ::2b -.Z.l - -lb 

~' Z..c + .2. ~. Zsc . 
~3c] [~ l 
- -3c J 

C4.3.l6) 

Substitute Equation 4.3.9 into Equation 4.3.16 to obtain 

rB + B C 
-.Z.2 -.Z.3 .-11 

A C 
-32 - 21 

B C 
-.Z.3 -12 

A C 
-J2 -.Z.2 

B C 
-.Z.3 -i 3 

A C 
-32 -.Z. 3 

B C 
-.Z. 3 -11+ 

A + A C 
-3 3 · -3 2 -.Z. '+ 

~c 

(4.3.17) 

Let n3c be less than n3b and let Equation 4.3.17 be pre~ltiplied by 

the nonsingular matrix 

~ = [~3c - ~3 .E.lll O 

-,_ O £n3b 
(4.3.18) 



The coefficient matrix of the vector [yT xT JT in the resulting 
~b -3c 

equation is (a~er one application of Equation 4~3.15) 

~2 -i2 0 A D l 
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The Upper row block of Equation 4.3.17 • after multiplic;;ation by t • is 
- -i 

independent of t3b and can be solved directly for ~c if the ipverse of 

U + AT D A D existso The following identity holdso 
...n3C -32 -i 1 ~2 -.Z2 

= ( D..;l + AT D A ) D 
-i2 -a2 -i 1. ~2 -.Z2 

(4.3.20) 

Assumption 40306 implies n-1 exists, and Theorems A0 4 and A.5 show 
-.Z2 

that (D- 1 + AT D A )- 1 existso Since the product of two nonsingular 
-Z2 -S2 -i 1 -S2 

matrices is nonsingular• it is concluded that the desired inverse exists. 

TheFefore• Equation 4o3ol7 can be solved for 

~b 

[~] ~K 

K K K ;j ~c 

~ 72] [:~lj = -31 -32 -S3 -34 
X..b + :31 

K K K l< I.sc -i+l ""'1+2 "'"l+ 3 "'"l+ 4 ""'l+ 5 
~c 

"'"l+ l "°'i+2 . ' 

1i 

+ [!'! ;2H :~J (4.3-.21) 

"'"l+ 1 "'"l+2 -SC 

where the elements of the coefficient matrices are, in general, defined 
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and continuous functions of the independent variable t over some set 

T = {t : t 1 < t < t 2 } for the fixed t 1 and t 2 of As$urnption 4.3.6. The 

elements of the vectors £3b and £.3c are also defined and continuous 

functions of the variable t over the same open set T. Note that if 

n3b is less than n3 • then one could S\li tably redefine ~ in such a 
c -1 

way that one could derive Equation 4.3.21 by finding the inverse of an 

n3b x n 3b matrix rather than an n3c x n30 matrix as given in this 

development. 

Substitute Equation 4.3.21 into 4.3.9 to form 

l ~~] r;l = 
~3c -21 

+ 
[ ~I 

"""21 

G 
-12 

G 
""'22 

H J -i.2 

H 
""'2 2 

G G 
-13 -=J.4 

G. G 
"""23 '""'24 

lZ:] · 

!'~] 
"""25 

~
!!.1 l 
J" 
""'2 1 

~b 

x 
""'2c 

~b 

~~ 

1i 

0 

(4.3.22) 

The coefficient matrices of this equation have the same restrictions 

as those in Equation 4.3.21. 

The third row block of Equation 4. 3.10 and the second row block 

of Equation 4.3.ll can be used in conjunction with Equation 4,,3.21 to 

form 
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~ 
0 0 0 -A 0 

~2b 
0 -A 

r::1 - -23 - -i4 

Lie 0 0 0 0 0 x 0 0 - -ic - -
l3b 

K K K K K L+b L L 
= ~l -.32 -J3 -.34 -35 + -'31 -.32 

~3c K K K K K L+c L L 
-i+ 1 '""'1+2 ""'!.+3 -i.+4 """4 5 ""'4 1 """42 

~b 
0 0 0 0 0 ~ 0 0 - - .... 

~c -B 0 0 0 0 -B 0 
~2 - -.n 

-A 0 ~:l 0 -A r~b1 0 0 

[~~ ~1 -22 -
u 0 0 0 0 0 
...n2c - - l.3c -
0 0 0 0 M M - -Jl -32 + + + 
0 0 0 Q M M - - ""'4 l ""1+2 
0 u 0 0 0 0 - ....04b - -
0 -B -B 0 0 0 (4.3.23) - -'34 -:33 -

Substitute Equation 4.3.22 into Equation 4. 3. 23 to obtain an equation 

of the form 

lQb 
K K K K K 

3zb 
L L 

r ::J -11 -12 -13 -14 · -15 -11 -12 

I.2c 0 0 0 0 0 l!ec 0 0 

l.ab 
K K K K K 

L+b L L 
= -Jl -a2 -.33 "'"'3 4 -as + -31 -S2 

.?5ac K K K K K L+c L L 
-t+l ""'42 -i+3 -1+4 -1+5 ""'41 -1+2 

3+b 
0 0 0 0 0 tjJ 0 0 - -i 

~c K K K K K L L -,; 1 ""'62 ""'63 '""'64 """65 ""'61 ""'62 

M M l ~:l -A 0 r~c1 -i.1 -12 -i1 

0 0 u 0 
~b - .;,n2,C 

M M 0 0 
+ ~l -.32 + (4.3.24) 

M M 0 0 
'""I+ 1 ""1+2 

0 0 0 u - - -n4b 

M M 0 -B ""t 1 ""'62 - -.34 
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Now• substitute Equation 4o3o24 into Equation 4.3.8 and collect 

terms so as to form 

~b 
p• P' P' P' pt 

!izb -11 -12 -13 -14 -is 

~c pt pt P' pu pt x 
"""21 """22 "'"'2 3 ""'24 """.25 ""'2c 

d z..b = P' P' P' P' P' 
~b dt -31 -32 -33 -3.4 -JS 

Z..c P' P' P' pt pt 
~c ~l "'"'l+2 -i.+3 """44 """1+5 

!i P' P' pv P' pt ii ""'5, 1 '""52 '""53 """54 ""'S 5 

L' Lt 

[!Th] M' M' [:J ""':"ll -12 -11 -J.2 

L' L' 
Zsc 

M' M' 
""'2 1 -i.2 "'"2 1 -i2 . -Sc 

+ L' L' + M' M' 
-31 -32 *-31 -32 

L' L' M' .. M' 
-t+l """42 """41 """4Z 

L' L' M' M' 
"""51 """52 -Sl -S2 

=Q A 0 [~} i.ib -i 1 ""'21 

~2 
0 

-'ic -
+ 0 

~5 
+ '4b (4o3o25) -

0 -Q B A+c - """46 ~4 

0 Q - Q B -'i -S 5 ""'5 6 -J 4 

The primes appeari~g in Equation 4.3.25 indicate that the terms 

resulting from the(use of Equation 4.3.24 have been collected. As it 

now stands• Equation 4.3~25 represents a system of p linear first-order 

differential equations in p + n2 c + n 4b variables. Such a system does 

not possess a unique solution. The only way to insure that the system 

has a unique solution is to eliminate n20 + n 4b of the variables from 
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the equation by means of the remaining interc;:onnection equati~s. This 

eli.mination process is given next. 

The first row block of Equation 4.3.10 and the last row block of 

Equation 4o 3. 11 can be used to form · 

:!zb u 0 0 ~b 0 0 l::l -nzb - - - -
.!ec ·B 0 0 Zc+c -B 0 

-iz - - -i.1 -
L+b = 0 -A 0 ti + 0 -A - omit+ 3 - - ""1+4 

L.c 0 u 0 0 0 - ""'14C - -
~ 0 0 u 0 0 .. - ""°2 (4.3.26) 

Substitute Equation 4.3.26 into Equation 4.3.25. The submatrices 

!!_~. have been introduced to denote that the P~. and L! matrices have 
-J -:1.J -.i.j 

been modified to incorpor~te the effects of Equation 4.3.26. 

!ki 0 0 x N N N .!.Zb N N 

la1 2b -2b -11 -iz -13 -14 -14 

-B 0 0 l.i.c N N N X-t+c N N X..sc -1-2 - - -.21 -.22 -.23 -.24 -is 
d 0 ·A 0 ljl = N N N ljl + N N - - -43 - -i -31 -32 -33 -i ~4 -35 dt 

0 u 0 N N N N N 
-n4C - -i+1 -...2 """43 """44 """45 

0 0 u N N N N N - -!l -Sl -S2 -S3 -S4 -SS 2 

M' M' r;~J -Q A 0 [~CJ 0 0 ~b -11 -12 -11 -Zl -
M' M' Q 0 !i+b B 0 &z.c -Zl -iz -3c -iz - -i1 

+ M' M'. + 0 Q + 0 A 4~lbj· '4b -Sl -:32 ~5 - ""1+4 dt I 
M' M', 0 -~ B 0 0 Sb .it+c -1+1 ""1+2 - 6 ~4 -
M' M' 0 .2ss - Q B 0 0 "2 ""'51 -S2 -S6 -:34 

(4.3.27) 



61 

Now, premultiply Equation 4o 3o 27 by the nonsingular matrix 

Pci 0 0 0 0 
2b - - - -

0 0 0 Bit 0 - - - 4C 
·41 = ' 0 0 0 0 u (4o 3o :;?8) !;,3 - - - - -n2 

B u 0 0 .0 
-12 .;;.n 2C 
0 0 Enl+b A 0 - -43 -

The results of this multiplication are 

d -dt. 

+ 

+ 

+ 

u 0 0 
!2b 

N 
!1s [t1 -n2b - - -14 

0 u 0 
X..40 !1+4 !t.s - .;,n4C -

0 0 
Yn2 !s4 !s~ Jk' = -

0 0 0 B N- + N B N + N - -12 -14 -Z4 -12 -15 -is 
0 0 0 N + A N N + A N - - - -94 -43 -i+4 -JS -43 -45 

N N N 
~b -11 -12 -13 

N N N L+c -i...1 -i+2 -i.2 
N N N !2 -Sl -S2 -S3 

+ irz 
B N + N B N + N B N + N 
-12 -11 "-ll -12 -i2 -Z3 -12 ·-13 -Z3 !.12 ieb + i-zc 
N + A N N + A N N + A N 
~l -i+3 -i+l ~2 -i+3 -i.2 ~3 -i+ 3 -i+3 i.i+b + ~ 3 &.c 

M' M' 

~ -11 -i2 

M' M' 
-i+ l ~2 

-Q A 
-11 -Zl 

0 

0 -
-Q B 
~6 -'34 

rLic] l .!t+b 
M' 
-Sl 

B M' + M' 
-12-u ~1 

M' +A M' -
~l ~3 -i.1 

0 0 -
0 0 -
0 0 -
B 0 
-i 1 -
0 A 

-C.4 

M' 
-S2 

B' M' + M' 
-12 -12 -i2 

M' +A M' 
~2 ~3 -i.2 

[::] d -d.t 

+ Q - Q B 
:i5 "*56 ~4 

0 -
-B Q A + Q O 
J.2 '"'l l -2 1 ~2 

O Q -A Q B 
'-35 ~3 "'1+6 *-34 



It is seen that n2c + n4b qf the p equations have been reduced to 

simple linear algebraic equations. These linear algebraic equations 
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are in the last two row blocks of Equation 11,.3.29. Consider the mat"rix 

coefficient of the vector ty_T xT ] T in these algebraic equationso 
2c """+b · · . 

Let that matrix be denoted t o !,, can be written {with the application 
-i+ -, 

of Equation 11,. 3.15) as fo].1.ows: 

. . [AT .9_ A + Q, 
g, : ~ 1 . 11 ~ 1 ~2 

--i. ' 0 -
( 11,o 3o 30) 

Theorems A.11, and N~S and Assumption 11,.3.s imply that t -l exists. 
~ 

Hence 9 the linear algebraic equations belonging to Equations 11,.3.29 can 

be solved for the following relationship: 

[:21 
51 

K · K J ~2 ~3 

K K 
""'52 ""'53 .,. 

•2 

+ f ;'• ;'sl [~lbJ 
lLs4 -ssJ ~c + l~,13 ~,14J ~[~lbJ 

K K dt v_ 
-St 13 -St l 4 '-OC 

. ~-" . 

!ab 

[K 
l< K l< l< K 

K j !ac 
j 

+ ~6 -z, ~8 ~9 ~ tlO ~·11 -: ,12 !2b (11,.3.31) 
l< 1< l< K K K 
""'56 ""'57 ""'58 ""'59 -s,10 -s,11 -s•12 

it.b 

ii+c 

~c 

i.z 

Substituting these results into the linear first-order differential 



equations belonging to Equation 4.3.29 and substituting Equation 4.3.7 

into the result yields a set of p0 differential equations in p0 

variables. These equations are 

~b N' N' N' N' N' N' N' N' N' 
-ii+ -is -15 -11 -1a -19 -1,10 -i ,11 -i ,12 

N' N' 
-i ,13 -i ,14 

d L+c N' N' N' N' N' N' N' N' N' - --24 '""'2 5 '""'2 6 -Z 7 '""'2 8 '""'2 9 '""'2. t l O -;_, 11 -z,12 dt ::;: 

N' N' 
-2,13 -z,11+ 

~ N' N' N' N' N' N' N' N' N' 
-ai+ -as -aG -.37 -.38 -.39 -.3 ,10 -:3 '11 -:3,12 

N' N' -: 
-a,13 -:3~14 

N" N' N' ~b -ii -i2 -i.3 
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+ N' N' N' L+c (4.3.32). 
--21 -Z2 --23 

N' N' N' ~ -.31 -a2 -.33 

The primes in Equation 4.3.32 indicate that all the coefficients of like 

terms have been collected. An inspection of Equation 4.3.32 shows that 

Substitution of Equation 4.3.26 and 4.3.31 into Equation 4.3.24 

and then.substituting Equation 4.3.7 into the result yields an equation 
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of the form 

x 
-1 

I.s 

K' K' K' K' K' K' K' K' K' K' K' E..3b 
1.eb -14 -1s -16 -11 -ia -19 -1,10 -1,11 -1,12 -i .13 -, 914 

!ac K' K' K' K' K' K' K' K' K' K' K' ~c ""'24 ""'25 ""'26 ""'2 7 ""'2 8 ""'2 9 ""'2, 10 ""'2 ,11 -i,12""'2,13 ""'2 ,14 
~ 

Isb K' K' K' K' K' K' K' K' K~ K' K' 
-J4 ~5 -JG -:37 -J8 -:39 ~.10 -s 11 -s,12 -s,13 ~.14 

lL+b = ' . 
x K' K' K' K' K' K' K' K' K' K' K' 
-Sc """44 """45 -i+6 -1+1 -...a """49 -... 10 -...,11 "'."If, 12 -...,13 """4 t 14 

ii.c 
,:'· 

K' K' K' K' K' K' K' K' ,, 
K' K' K' ~b -S4 -SS -S6 -S7 -SB -S9 -s,10 '""'S • 11 -s,12 '""'.'5, 13 """5, 14 

~c 
3-.c K' K' K' K' K' K' K' K' K' K' K' 

"""6 4 """'6 5 """6 6 """6 7 """6 8 """69 ""'6, 10 """6 ,11 """6,12 """6,13 """6, 14 
~ 
• x 
-i 
• 
I.s 

K' K' K' !.2b -11 -12 -13 

K' K' K' L.c ""'21 ""'22 ""'2 3 

K' K' K' ii + -.n -32 -33 (4.3.34) 
K' K' K' 
-i+l """42 -i+3 

K' K' K' 
-Sl -S2 -S3 

K' K' K' 
"""6 1 """62 """6 3 

As before, the prime notation indicates that, after the required 

substitution has been performed, all coefficients of like terms are 

grouped together. 

Substitute Equation 4.3.7 into the first four row blocks of 

Equation 4.3.26 to form 
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~b 
u 0 0 x 0 0 
-12b -2b -

-B 0 0 -B 0 [ ~J. ~c Ltc -i.2 -11 - (4.3.35) = + 
L+b 0 .. A 0 ~ 0 -A - ""'43 -1+4 

Zi+c 0 Exi 0 0 0 
'+c - -

Substitute Equation 4.3.26 into Equation 4.3.22 and then substitute 

Equation 4.3.7 into the result to form 

+ 

K' 
= [~~ 1, l -i 1,2 -11,3 K' J ~bi 

~CJ K' K' K' 
-i2 ,1 -i2 ,2 -i2 ,3 

[K' 
K' K' 

K' J -11,1+ -11,s -11,G -11,7 

K' K' K' K' 
-i.2 ,'+ -i.2115 -i2 16 -12 ,1 

x 
-1 

~ (4.3.36) 

~b 

.fac 

Substitute Equations 4. 3. 34 9 4. 3. 35, 4. 3. 36, and 4. 3. 7 into the 

matrix equations that can be formed by taking the direct sum of the 

last row block of Equation 4.3.10 and the first row block of Equation 

4.3.11 and solving it for [xT vT JT 
-5C "-lb 

equation 

This operation results in the 
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[ ~:J l K' K' K' J ~ : -13.1 -13,2 -13 ,, 
~c K' K' K' 

-14,1 -J.4 .2 -14 ,3 ip 
-:2 

r· K' 
K' K' K' K' K' K' K' K' ~\,J + -,3,4 -i_3 95 -13 6 -i3,7 -i.3,8 -13 ,9 -i 3, 10 -i 3 , 11 ""l3, 12 ...,3,13 , I 

K' K' K' K' K' K' K' K' K' K' K' 
-i1+ ,4 -14 ,s -,4 ,6 -i4,7 -J.4,8 -i4 ,9 14,10 -14 I 11 -i4,12 -14,13 -i4,14 

• x 
-i 

(4o3o37) 

If~ and fare defined in the following manner -
T T T T 

!. = [~b ~c !.z] · ' 
f [ T T fT fT T T T T T oT •T]T 

= ~l I; .:.ab .:..3c ~b i.+b ~c ~c ~ ~l !.s ' ( 4. 3. 39) 

then the coefficient matrices appearing in Equation 4.3.32 can be 

identified as P and R that appear in Equation 2.3.l of Definition 
-0 -0 

2,3.l. If, in addition, one considers Equations 4.3.7, 4.3.34, 4.3.35, 

4.3.36, and 4.3.37 and defines the vector Z to be the direct sum of the 
} i 
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vectors appearing on the le~ of these equations. then one can easily 

identify the matrices £o and fo appearing in Equation 2.3.2 of 

Definition 2.3.l. Therefore 1 Equations 4.3.32, 4.3.34, 4.3.35, 4.3.36, 

and 4.3.37 form the state model for the system of k 0 multitermi.nal 

components. It is noted that all of the entries in the coefficient 

matrices and in the vector fare defined and continuous functions of -
the independent variable t over the set T = {t : t 1 < t < t 2 } for some 

fixed t 1 and t 2 • 

let t 0 be a fixed value of t belonging to T. Then, there is a 

well-known theorem2 in the theory of ordinary differential equations 

which states that there exists a unique solution for the equation 

-d ' = P ' + R f ( " 3 "0 ) A A ··~ ~. 0 ~ 

dt - ;;;..o - - -

for every possible value of the vector~ (t0 ). Then, one can substitute 

this solution for). (t) into Equations 4.3.34, 4.3.35, 4.3.36, and -
4.3.37 and obtain a unique solution for every terminal variable of the 

system. Thus, a complete solution is assured. 

In summary, it is seen that there are eight major steps involved 

in the formulation of the state model for a system of multiterminal 

components whose terminal equations satisfy Assumptions 4. 3. l through 

4.3.7. The major steps in this procedure are as follows: 

1. Select a formulation tree in accordance with the procedure 

discussed in the paragraph that immediately follows Equation 

4.3.5. Write the fundamental outset and circuit equations 

2 w. Kaplan, Ordinary Differential Equations (Reading, Massachusetts, 
19 5 8) , p • 49 4. 
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defined by that formulation tree. 

2. Use the n3c fundamental cutset and the n 3b fundamental circuit 

equations that are defined by algebraic elements ( that is• 

3. 

elements whose component equations are of the form of Equation 

4.3.9) in conjunction with the algebraic component equations 

[ T T ]T (Equation 4.3.9) to solve for the vector l_3b ~c • The 

inverse of ans x s matrix is required here. The symbols 

denotes the smaller of the two numbers n3b and n 3c• 

T T T Use the results of step 2 to solve for the vector [~b l.Jc] • 

No matrix inverse is required here. 

4. Use the fundamental circuit equations that are defined by the 

graph elements belonging to s4 that are also chords of TG 

(there are n4c such equations) and the fundamental cutset 

equations that are defined by the graph elements belonging to 

S2 that are also branches of TG (there are n2b such equations) 

in conjunction with the results of step 2 to form an explicit 

equation for the vector 

Substitute these results into the differential component 

equations (Equation 4.3.B). No matrix inverse is required 

here. 

s. Use the fundamental circuit equations that are defined by the 

graph elements which belong to s2 and are chords of TG (there 

are n2 c such equations) and the fundamental cutset equations 

that are defined by graph elements which belong to S4 and are 



branches of TG (there are n4b such equations) to reduce the 

n2 c + n 4b linearly dependent first-order differential 

equations, that are the result of step 4, to linear algebraic 

equations. No matrix inverse is required here. 

6. Solve the (n2 c + n4b) linear algebraic equations that are 

derived in step 5 for the vector [~c• ~b]T. The inverse of 

an (n2c + n4b)-ordered square matrix is required here. This 

inverse can be obtained by inverting two smaller inverses 
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separately. These smalle~ inverses are of order n2 c x n2c and 

n4b x n4b, respectively. 

7. Use the (n2b + n4c + n2 ) first-order differential equations 

that remain after step 5 is completed to form the differential 

equation portion of the state model of the system (see 

Definition 2 .3.1). 

8. Collect the results of steps 2, 3, 4, and 6 and use these 

equations in conjunction with the fundamental cutset and 

circuit equations that are defined by elements belonging to 

s1 and s5 and the component equations which describe the 

terminal characteristics of the ideal drivers to form the 

2e algebraic equations which belong to the system state model. 

Two different matrix inverses are required in the formulation 

procedure. However, these inverses are assured for those systems in 

which the components satisfy Assumptions 4.3.1 through 4.3.7. This 

concludes the development of the state model formulation procedure; how-

ever, there are a number of special cases that merit some discussion. 

One such case involves the elements which belong to S2 and S4 • 

Suppose that every element which belongs to S2 can be placed in TG and 



that every element that belongs to S4 can be placed in the complement 

of TG in G. Then, if Assumptions 4.3.1 through 4.3.7 remain valid, 

all of the first-order differential equations mentioned in step 4 in 
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the above formulation procedure will be independent. This implies that 

the (n2 c + n4b) x (n2c + n4b) matrix inverse mentioned in step 6 is not 

required. Since this inverse is not required, the re,striction in 

Assumption 4.3.6 requiring that ~ 1 , ~ 2 , ~ 5 , and ~ 6 in Equation 

4.3.8 be positive definite can be removed. All other steps in the 

formulation procedure are required. This special case is analogous, in 

the case of .simple electric circuits, to requiring that all capacitors 

be placed in the formulation tree and all inductors be placed in the 

chord set of the formulation tree. 

A second special case arises when each of the fundamental circuits 

and cutsets associated with TG contains no more than one algebraic 

element (that is, an element whose termirfal equation has the form of 

Equation 4.3.9). In that case 

B - A - 0 (4.3.41) 
--.23 -32 

T T T ~ Then, the vector [~b lac] does not appear in Equation 4.3.16. In 

that case the matrix inverse mentioned in step 2 of the formulation 

procedure reduces to the inverse of an identity matrix. As in the 

first special case, the restriction in Assumption 4.3.6 requiring that 

D and D in Equation 4.3.9 be positive definite can now be removed. 
-11 '-22 

This special case is analogous, in the case of electric networks, to 

requiring that for SQ:me formulation tree every fundamental cutset and 

every fundamental circuit contain at most one resistor. 

If one combines both of the special cases mentioned above, then 



no inverses are required in the formulation procedure. In that case 

all of the restrictions given in Assumption 4.3.6 can be removed. 
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CHAPTER V 

EXAMPLES AND APPLICATIONS 

5.1 Introduction. In this chapter, a number of applications of 

the formulation procedure given in Chapter IV are demonstrated by means 

of examples. Two major examples are considered. 

The first one deals with the formulation of the state model for 

a relatively large system containing two-terminal components. In that 

.case it is demonstrated that by considering the system to be an inter-

connection of several subsystems (each of which is a multiterminal 

component), one can formulate the system state model in a straight-

forward manner. As a preliminary step in this formulation procedure, 

a technique whereby the state equations for a mu~titerminal component 

constructed of two-terminal devices is demonstrated. This technique, 

as applied to the formulation of state equations, is treated in the 

work of Koenig and Tok ad ( 8 ) • The procedure is similar to the 

technique given by Koenig and Blackwell (3) for the derivation of 

terminal equations for multiterminal components in the complex-

frequency domain. 

The second major example deals with the formulation of the state 

equations for an interconnection of electromechanical and mechanical-

hydraulic coupled n-terminal components (see Definition 2.2.10) that 

are typical of components often found in automatic control systems. 

In this case it is necessary that one be able to derive the state 
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equations for each of the constituent non-reducible coupled n-terminal 

components . A number of techniques that are useful in deriving these 

state equations are presented and discussed. 

5.2 An Example of State Model Formulation. Consider the electri-

cal network shown in Figure 5. 2. L Suppose that one is interested in 

formulating a state model for the network that has the .characteristic 

that the currents and voltages associated with the elements labeled 

R10 and c11 are ~iven as explicit functions of the state of the network 

and the known driver E6 • One way of solving this problem is to use 

the formulation techniques of Bryant (6) or Brown (4). However, one · 

can also derive a suitable state model by considering the network to 

be an interconnection of four subsystems each of which is a multi-

terminal component • . The subsystems to be considered in this example 

are indicated by the dotted lines in Figure s.2.1. 

,------1 
I g Ct f R4 I a 

I I 1 Wv 1 • 
I C2 I I Es h 
I R3 I 

,------, ,--1 
I c I c I Rio I 
1--

r----, 
I c I 

I 
I SUBSYSTEM I b 

L-------'-----4~1--__. __ --+-b~I~ 
SUBSYSTEM · 1 1suesvsTEMI 

L---~----1 L 4 . 1 _J ____ J L __ 

Figure s. 2.1. The Network to be Studied 

e 



I 
Prior to actual formulation of the required state model, one must 

first derive a set of state equations in the fo~ given in Definition 

2.4.l for each of the subsystems of the network. 

For those subsystems which contain only one element, the state 

equations can be determined by inspection of the terminal equations of 

the device. For example, the terminal equation for a single capacitor 

can be written 

dv l • 
dt=c 10 

If one denotes the state of the capacitor by~. then 

and one can form 

~ = v 

.21:o~ 
dt 

l . 
+ - l. ' c 
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and Equations s. 2. 2 and .5. 2. 3 form the state equations for the capacitor. 

However, due to the simplicity of Equation s.2.2, Equation s.2.1 

represents the state equation of a capacitor in reduced form (see Section 

4.2 for a discussion of the idea of the reduced form of the state 

equations). It is the reduced form that will be used in the sequel. 

Similarly, the reduced form of the state equations for an inductor take 

the form 

di 1 
- : -v O 

dt L 
(S.2.4) 

Since the terminal equations for a resistor do not involve a time-

derivative term, the state equations for a resistor reduce to one of 



75 

the fol lowin g algebraic equat ions : 

i = Gv cs.2.s) 

v = Ri (S .2. 6 ) 

Note that, for each of the simple two-terminal components discussed 

above, the terminal graph consists of a single-line segment and two 

vertices. 

Now consider Subsystem 3 of Figure s.2.1. It is seen that this 

subsystem is connected to the remainder of the network at on.ly 2 points, 

i . e. • at points II a II and ''b 11 • Suqh a subsystem can be treated as a 

two-terminal device. The corresponding state equations can be derived 

by assuming that an appropriate id.eal-driver element is applied to t he 

terminals 11a 11 and 11b 11 and solving for the resulting complementary 

variable. This technique will now be demonstrated for Subsystem 3. 

The technique is an adaptation of the one presented by Koenig and 

Blackwell (3) in their work in the qomplex-frequency domain. Figure 

s.2 . 2 shows the system graph and the desired terminal graph. The 

element labeled A in Figure s.2.2 represents the ideal driver that will 

be used to determine. the terminal characteristics of Subsystem 3. For 
'I 

the purposes of this derivation, A will be assumed to be an fdeal-

voltage driver. This choice is arbitrary so long as Assumptions 4.3.1 

through 4.3.7 are satisfied. 

In light of Equations s . 2.1 through 5.2.6 and the accompanying 

discussion, the direct sum of the reduced form state equations of the 

constituent components of Subsystem 3 can be written 
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l :: ] = [ :: ] 

i1 

l i2 
0 0 - 0 0 0 0 vl vl 

d = + C1 v3 • (S.2.8) 
dt 

and 

6 

v2 0 0 v2 

i3 

i'+ = 

is 

~ 
~. l 4 

(a) -System Graph with the 
· Arbitrary Driver 

0 

G3 

0 

0 

a 

A 

l - 0 0 0 v'+ C2 

Vs 

0 0 v3 

G . '+ 0 v '+ (S.2.9) 

0 Gs Vs 

- •,.,.-J,;--~/ 

a A 

b 

(b) Desired Terminal Graph 
with the Arbitrary Driver 

Fig,ure 5. 2. 2. Linear Graphs for Subsystem 3 

The set s1 contains elements 6 and A, while the set s2 contains 

elements land 2. The set s3 contains elements 3 1 4 1 ands. The sets 

S'+ .and SS are empty in this case. The formulation tree to be used is 



shown by the heavier line s~gments in Figure s.2.2. The corresponding 

fundamental outset and circuit equations can be written in the form 

i6 

l 0 0 0 l l 0 
iA 

0 l 0 0 0 -1 0 
il 
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i2 = 0 ( 5.2010) 
0 0 l 0 -1 -1 0 

i3 
0 0 0 l -1 0 0 

i4 

~5 

and 

v6 

-1 0 l l 
VA 

l 0 0 
Vl 

-1 l l O· 0 l 0 

v2 = 0 
' 

cs.2.11> 
0 -l 0 0 0 0 l 

V3 

v,.. 

V5 

respectively. 
''1, 

Now, if one substitutes the circuit equations into the algebraic 

component equations (Equation s.2.9) 1 then an explicit expression, for , 

[i3 1 i 4 • i 5 ]T in terms of [v1 • v2 ]T and [v6 , vAl results. If this 

explicit expression is substituted into the il.ast two cutset equations 
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and the result of that operation is substituted into the differential 

component equations (Equation 5.2.8)• one obtains the equation 

r vl 
-(G3 + G4) G3 . G3 + G4 G4 

C1 - c7 vl C1 v6 - c7 VA 
d l v2 

= + + 
dt - :a. - 5i G3 

v2 - 0 
Cz C2 C2 

(5.2.12) 

Also 9 if one substitutes the explicit expression for [i 3, i4' 
. l . 1 5 into 

the second cutset equation• then one obtains 

(5.2.13) 

The interconnection equations for the desired terminal graph are 

(5.2.14) 

and 

(5.2.15) 

The state equations for Subsystem 3 are obtained by substituting 

Equations 5.2.14 and 5.2.15 into Equations 5.2.12 and 5.2.13. Also 

note that the variables v1 and v2 are not terminal variables of the 

subsystem. Therefore, in order to avoid confusion late?;', let 

( s. 2 .16) 

and 
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(5.2.17) 

The state equations for Subsystem 3 are 

1jl 1 
-(G3 + G4) G3 

1jl l 
GI+ H J... (G3+G4) E6 -~ ~ c1 c1 l C1 

d = G3 G3 + 3 + G3 -dt 1jl2 - c; - - 0 c; C2 
1jl2 3 3 3 3 3 

(5.2.18) 

[i ] = [-G 
a 3 1+ 

+ [G,. + G5 ] [v] + [G,.J E6 
:-t 3 a 3 .. 3 

Subsystem 3 is an example of a device in which none of the state 

variables are also terminal variables, hence the above equations are 

also the reduced state equations. Subsystem 3 is also an example of a 

device that has an inte:r:'Ilal energy source. The terminal representation 

derived here can be considered as a time-domain Norton equivalent 

representation for the original subsystem. The terminal characteristics 

of the device are completely specified by Equations 5.2.18 and 5.2.19 

and the terminal graph consisting of the single-oriented line segment 

a and the two vertices "a" and "b". 

Subsy;stem 4 is an example of a device where one of the state 

variables is also a terminal variable. If the procedure illustrated 

above for Subsystem 3 is applied to Subsystem 4 for the desired terminal 

graph shown in Figure s.2. 3 • then the following .state equations 

result: 
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0 0 vs l 0 11 VS --
= + cs ( s. 2. 20) 

d 
R7 R7 l cit i9 0 - Ls i9 - - VO 

4 4 4 L9 Lg 4 4 

cs.2.21) 

c 

b 

Flgure S.2.3. Desired Terminal Graph for Subsystem 4 

The state variab~e i 9 is seen to be expressible as a single-terminal 

variable as follows 

cs.2.22> 

Also, in order to avoid future ¢onfusion 9 let 

~ ·~ .. (S.2.23) 

Then the state equations for Subsystem 4 • in reduced form, becom, .. 

io 
R7 

0 io 
1 RU 

- Lg Lg L9 VO 
d = + (S.2 0 24) 

dt l 
1jl3 0 0 1jl3 0 ... Cs i<5 

4 4 4 4 4 
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and 

(5.2.25) 

Attention will now be focused on the problem of formulating a 

state model for the network shown in Figure s.2.1. The system graph 

for that network takes the form of Figure 5. 2. 4 • when one treats the 

network as an interconnection of the multiterminal components whose 

state equations are derived above. 

e 

a 

b 

Figure s.2.4. The System·G~aph 

An examination of Equation ·s.2.1as applied to c~ 1 and Equation 

s.2.s as applied to Rio along with Equations s.2.1a. 5.2 • .19, 5o2G249 

. and s.2.2s reveals that 

1. the set s1 as defined in Chapter IV is empty, 

2. the set S2 contains element 11 1 

3. the set S3 contains elements a • cS • and 10, 

4. the set s .. 4 contains element a , and 
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So the set S5 is empty. 

A formulation tree TG can be selected in accordance with the procedure 

described in Chapter IV. One such tree· contains elements o, 10, and 11. 

It is this tree that will be used to formulate the state model for the 

system. The fundamental outset and circuit equations associated with 

that tree are 

ill 

1 0 0 0 1 i15 

0 1 0 l 0 i10 ::: 0 (5.2.26) 

0 0 l 0 l ia 

i 
a 

and 

Vll 

~: :l 
Vo 

-1 0 l 
VlO = 0 

' 
(5.2.27) 

0 -l 0 

Va 

VO 

respectively. 

The direct sum of all of the component state equations as arranged 

in the form of Equations 4.3.8 and 4.3.9 can be written as follows: 
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vll 0 0 0 0 0 vll 

io 0 
R7 

0 0 0 io --Lg 

d "'1 0 0 
'G3 + G4) 03 

0 lj,l = --at C1 C1 

"'2 
0 0 

G3 G3 
0 $2 -- - Cz C2 

"'3 0 0 0 o. 0 "'3 

' l 
0 0 0 0 ill 0 E6 -C11 

0 R11 
0 0 l 

ic5 0 • Lg Lg 

G4 
ilO 

G3 + G4 
cs.2.20> + 0 0 0 - 0 + 

c1 c1 

0 Q 0 0 0 Va 
G3 -C2 

0 l 0 0 0 VO' 0 --Cs 

vll 

vc5 0 R7 0 0 -1 io 

VlO = 0 0 0 0 0 lj,l 

ia 0 0 -G 4 
0 0 "'i .. 

tj,3 

R7 0 0 ic5 0 E6 

+ 0 RlO 0 i10 + 0 ( s. 2.29) 

0 0 G4 + Gs Va G .4 

An examination of the above equations will show that the conditions of 
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Assumptions 4.3.2 through 4.3.7 prevail, hence the formulating procedure 

developed in Chapter IV is applicable. It is also noted that 

= 2 ( 5 .2 0 30) 

and 

(S.2.31) 

hence the inverse of a single equation is required. 

When the first equation of Equation 5.2.27 and the second and third 

equations of Equation s.2.26 are substituted into Equation 5.,2.29, a 

matrix equation of the form 

r;-

vll 

l 0 R7 V15 0 R7 0 0 -1 icr 0 

0 l 0 vlO = 0 -R 
10 

0 0 0 "'1 + 0 

-(G 
'+ + Gs) 0 l ia 0 0 -G'+ 0 0 "'2 G'+ 

"'3 

(S.2.32) 

results. 

Let !,1 be defined as shown in Equation 5.2.33. The reader is 

referred to Equation 4 .. 3.18 and the paragraph preceding Equation 4.3.22 

for the significance of the symbol !,1 • 

l 0 0 

!1 = 0 l 0 (S.2.33) 

G4 + G 
5 

0 l 

E6 
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Now, when Equation 5. 2. 32 is premultiplied by ~ • the resulting equation 

can be solved for 

Vll 

vc5 0 R7 R7 G4 
0 l io 

l + K0 l.+ K0 l + Ko 

R 
VlO ·= 0 0 0 0 1j, 1 

l + I.<0 

ia 0 
Ko G4 0 

Ko 
lj,2 l + K0 l + Ko R7~l + l<o) 

1P3 

R7 G4 
l + K0 

E6 

+ 0 (S.2.31+) 

G4 
l + K0 

by inverting a single equation. The symbol K0 is defined to be 

in Equation 5.2.34 and in the equations that follow. Equation 5.2.34 

can now be substituted into the first circuit equation and the second 

and third cutset equations to form 

-K G4 Ko vll G4 
ic5 0 0 0 E6 l + Ko l + l<o R c1 + Ko) i()' l + Ko 

i10 = 0 -1 o. 0 0 lj,l + 0 ( s. 2.36) 

0 R7 R7 G4 0 1 lj,2 -R7 G4 
Va .l + Ko l + Ko 1 + Ko . lj, l + Ko 

3 
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The first Qutset equation and the last circuit equation can be 

used in conjunction with Equation 5.2.36 to form an explicit expression 

for [i 1 p i15, i 10 , va, v0 J1 in terms of the state variables and the 

known function E6 • One can then substitute this explicit expression 

into Equation s.2.2a. The result of this operation is 

vll 0 Es 

io 1 R11 G4 
l + I< Lg 

0 

d 1Jl1 = .l., (G42 R7 
+ G3 + G4) 

cit cl 1. + .Ko 

1Jl2 
G3 
c; 

1Jl3 
1 (G4l 

1 + ".K ~ 

0 1 0 0 0 --Cu 

1 1 (11Ko ) 1 (-- R11 G4) K R - L l + K -R10-R7 0 o ( .. 11) 
Lg 9 o 1 + Ko . L9 ~ .-R7L9 

+ 0 1 >G4 -!;- ( l +1~ . R7G!-G 3--G~) 
G3 1 (~) --l + Ko C1 R7 C1 1 + Ko C1 

0 0 
G3 G3 

0 -- --C2 C2 

b Ko l 1 (- ?aJ 0 l ( l) . - l+Ko. -cs. l + 1<0 c l + K0 .8 

Equations s. 2o 34 and s.2. 36 together with the explicit exp:ression 

T for [i 11 , Va] mentioned above can be used to form 

v 
11 

io 

ii,l 

1Jl2 

lJ,3 
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Vo 0 
R7 R7 G4 

0 l 
vll 

l + Ko T'+l<o l + Ko 

vlO 0 
R10 

0 0 0 io l + K 0 

ia 
Ko G Ko 

0 0 iµ 1 
l + K0 l + K R}l t K0 ) 

0 

io 0 Ko G4 0 Ko 
1µ2 l + K0 l + K R7tl+.K0 j 

0 

110 
0 -1 0 0 0 iµ 3 

= R7 R7 G4 v 0 0 1 
.a l + Ko 1 + Ko l + Ko 

ill 0 -1 0 0 0 

VO l -Rio 0 0 0 

vll 1 0 0 0 0 

i 
CJ 

0 l 0 0 0 

-G7 G4 
E6 l t K 

0 

0 

G4 
1 + K 

0 

+ G4 
(5.2.38) 

l + Ko 

0 

R7 G4 
l + K0 

0 

0 

0 

0 
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Equations 5.2.37 and 5.2.38 form a state model for the system 

given in Figure s.2.1. One can e.asily identify the various matrices 

and vectors given in Equations 2 .• 3,l and 2.3.2 of Definition 2,3,l. 

s.3 The State Equations of an Electromechanical-Hydraulic Device. 

Consider the electromechanical-hydraulic device 1 shown in Figure 5.3.l. 

Suppose .that this device is a component in a larger system for which 

a state model is desired. If it is assumed that the design of the 

device under consideration is fixed in the sense that one cannot alter 

its characteristics, then there is no point in considering all of the 

constituent parts (i.e., the push-pull amplifier, the solenoid, the 

power piston• etc.) individually when one formulates the state model 

for the larger system~ For this reason, one might wish to consider 

the complete electromechanical device as a single coupled 4-terminal 

device (see Definition 2.2.10). If this is the ca~e, then one must be 

able to derive the state equations for the 4-terminal representation 

of the device from a knowledge of the terminal characteristics of each 

of the constituent components and their interconnection relations. It 

is the purpose of this example to demonstrate how these state equations 

can be derived for the device shown in Figure 5.3.l. The basic 

approach will be to first find a set of state equations for each of 

the individual constituent components and then use a modified version 

of the formulating procedure developed in Chapter IV to derive the 

desired state equations for the larger device. Blackwell (19) has 

1 J. L. Bower and P. M. Schultheiss, Introduction!£.~ Design 2!. 
Servomechanisms (New York, 1958) • p. 94. 



·d 0-.--0 

+ 
Vj 

e 

PUSH-PU~Lg I 111 I 
AMPLIFIER ] ;, 

PUMP 

x 

0 

VARIABLE 
STROKE 

HYDRAULIC 
PUMP 

DRIVE 
MOTOR 

Figure 5 • .3.1. A Hydraulic Transmission 

e 

!.If 

HYDRAULIC 
MOTOR 

//Tr/ 
h 

00 

'° 



90 

presented a similar analysis for this device in the comple,c...frequency 

domaino 

Consider the push-pull amplifier and solenoid as a single multi-

terminal component. It is assumed that the input current to the 

amplifier is negligibleo Furtherm~re, it is assumed that the force 

that the solenoid armature exerts on the lever is · proportional to the 

input voltage of the amplifier and the displacement and velocity of the 

solenoid armature. The mass of the armature is asi;;urned to be either 

negligible or to have been lumped ~ith the mass of the pilot valve 

of the hydraulic power amplifiero f.igure So 3o 2 presents the schematic 

and the terminal graph for the amplifier-solenoid combination. 

SPRING 

d d g 

+ PUSH-PULL 
Vj AMPLIFIER 2 
;e 

fx e b 

• b 

( a) Schematic (b) Te;-minal Graph 

Figure s.3.2. Component No. 1 - Amplifier-Solenoid Combination 

The terminal equations for this coupled 4,.,terminal device can be 

written 
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(5.3.l) 

(5.3.2) 

where K12 • K2 , and B2 are known constants. The reduced form of the 

state equations for this component can be derived by solving Equation 

5.3.2 for 

d -x2 
dt 

(5.3.3) 

Equations 5.3.l and 5.3,3 are the desired state equations. 

A few words about notation are in order at this point. Throughout 

• this example, the syrrbols xi• Pj• and ek will be used to denote the 

translational displacement of the i-th element, the hydraulic pressure 

associated with the j-th element, and the rotational angular velocity 

of the k-th element, respectively. All are across variables. The 

• symbols f i, gj, and Tk denote the corresponding force, volume flow 

rate, and torque. The latter variables are all through variables. The 

syrrbol ~i will be used to denote the i-th state variable. It may also 

be a terminal variable in which case this fact will be apparent from 

an inspection of the algebraic component equations. 

Now consider the lever in Figure 5.3.l. It is assumed that the 

lever is ideal, i.e. 9 the lever is rigid and has negligible mass. If 

that is the case, then all displacements, forces, and small rotations 

are transformed ideally with the ratio of transformation being dependent 

upon the relative distances of the end points "a" and "c" from the 

fulcrum point ''b". Let m denote the ratio of the distance from "c" 

to ''b" to the distance from "a" to ''b". Figure 5,3.3 presents the 
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schematic and terminal graphs for the ideal lever. The terminal 

equations for the component are given in matrix form by Equation 5.3.4. 

(5.3.4) 

Since no time derivations are involved, these equations are also the 

desired state equations. 

Cl c 

I UNIT,_.._+-t--m_u_N,_rs_=:j_+-
)( t 1 F ~) 

b 

(a) Schematic (b) Terminal Grap~ 

Figure 5.3.3. Component No. 3 - Lever 

The hydraulic power amplifier presents a slightly different 

problem. For the purposes of this analysis this component is assumed 

to include the pump and oil reservoir, the pilot valve, and the power 

piston. The pilot valve piston is assumed to possess both viscous 

damping and mass. In fact the mass of the driving solenoid, if 

appreciable, is assumed to be a part of the total mass of the pilot 

valve piston mass. The force developed by the power piston is assumed 

t .o be proportional to the displacement of the pilot valve piston and 

the displ acement and velocity of the power piston itself . As with the 



solenoid 9 the output mass effects of the power piston will be lumped 

together with the input mass effects of the variable stroke hydraulic 

pump unito A schematic and terminal graph for the hydraulic power 

amplifier are shown in Figure 5o3o4o 

Q 

OIL RESERVOIR 

( a) Schematic 

• 

• c 

77?77 
g 

(1 c 

fx 

g 

(b) Terminal Graph 

Figure 5.3.4. Component No. 3 • Hydraulic Power Amplifier 

The terminal equations for the component can be written 
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(5.3.5) 

and 

Now, let 

(5.3.7) 
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,I, - d ,I, :: d X 
"'3 ""'dt "'2 dt S • (5.3.B) 

and 

(5. 3.9) 

d Equation s. 3. 5 can be solved for dt ,p 3 •. and Eq1,1ation s. 3.6 can be 

solved for ~ ,p4 as follows 
dt 

(5, 3 .. 10) 

and 

(5.3.ll) 

Equations 5.3.8, s.3.10, t;Uld s.3.11 are the first-order differential 

equation portion of the state equations for the hydraulic power 

amplifier, while Equations s.3.7 and 5.3.9 form the algebraic equation 

portion. However, due to the simplicity of these algebraic equations 9 

one can write the matrix state equations in the reduced form as follows: 

XS 0 0 l XS 0 0 

[::J d 
x6 = 0 KG KGS 

~ + 0 1 (5.3.12) - - - - 0 

dt BG BG BG 

,p 3 
Ks 

0 
Bs 

iJJ3 
l 0 --..-... .. 'fr.'." Ms Ms .· s 

The schematic and terminal graph for the variable-stroke hydraulic 

pump are shown in Figu!'e s.3.s. Using a technique similar to that 

illust!'ated above for the hyd!'aulic power amplifier, one can easily 
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show that if the terminal equations for the pump a~ 

(5.3ol3) 

and 

(5,3.l'+) 

then the reduced state equations for this device take the foZ'ffl 

* [:] · [. ~ -~ l [:: l + 

0 

(5.3.15) 

(5,3,16) 

Note that the leakage and line expansion effects will be accounted for 

at the input side of the hydraulic motoro 

""' g 

k · OUTPUT 
. -· .J LINES 

· DRIVE 
MOTOR 

(a) Schematic 

c ' k 

7 9 

' 
(b) Terminal Graph 

Figure 5o3o5o Component Noo 4 - Variable-Stroke Hydraulic Pump 
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The schematic and terminal graph for the hydraulic motor arie 

presented in Figure s.3.6. The terminal equations for this device 

are assumed to take the form of Equations 5o3al7 and 5.3.18. 

e k f 

• f OUTPUT 
SHAFT 

10 8 
k 

' .INPUT I h LINES 77»7 
h 

(a) Schematic (b) Terminal Graph 

Figure 503060 Component No. 5 - Hydraulic Motor 

0 

K10 P10 + A10 
d 

+ KlO 8 
• 

glO = -P10 ea 
dt. t 

(S.,3.17) 

• 
Ta - KB 10 P10 + Ba • d e8 

= ea + Ja dt 
9 

(5.3.18) 

It can be shown that the reduced state equations for this device 

can be written 

Kio KlO 2a l • 
Pio - A10 X10 P10 A10 

0 glO 

d = Ka 10 Ba + (S.3.19) - • • l dt ea .. I -- ea 0 - Ta Ja Ja Ja 

A slight digression is in order at this point. Iri all of the cases 

encountered thus far 1 it has been possible to derive the state equations 
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for the multiterminal components e.ither by considering the device to 

be an interconnection of simpler ( 2-terminal components) or by inspection 

of the device's terminal equations. Not all components fall into one 

of these categories. It may be that the device's terminal equations 

involve time derivatives on both sides of the terminal equations, i.e.• 

it may be that one cannot solve the terminal relations for n - l of the 

terminal variables explicitly. If this is the case, then one must 

resort to some other technique to derive the state equations for such 

a device. Zadeh and Desoer (16) have studied this problem extensively 

and present several procedures which seem to cover the 2-terminal case 

vecy well. These authors also present some material which might be 

adapted to fit cases where more than 2 terminals are involved. 

Attention will now be focused on the problems of determining th~ 

state equations for the electromechanical-hydraulic device. The system 

graph including the assumed driving elements A and B is shown in 

Figure 5. 3. 7. The desired terminal graph along with the assumed 

driver elements is also shown in Figure s. 3. 7. 

d g k f d f 

c 10 B A i o B 

e b h e h 

(a) System Graph (b) Desired Terminal Graph 

Figure 5. 3 . 7. L.inear Granh r or an Llectrornech anical- Hydraulic De vice 



In accordance with the tree-selecting procedure. given in Chapter 

IV 9 the formulation tree is selected so as to include elements A• 4, 

5 1 7, 10, and a. This means element A must l,e considered as an 

across driver• while element B must be considered as a through driver. 

The interconnection equations defined by this tree are 

VA 

XS 

X7 

0 -1 l 0 0 -1 l 0 0 0 0 0 P10 

0 0 0 -l 0 0 0 l 0 0 0 
~ 

0 ea 

0 0 -1 0 0 l 0 0 l 0 0 0 X4 

= 0 
0 0 -1 0 0 0 0 0 0 l 0 0 x3 

-1 0 0 0 0 0 0 0 0 0 l 0 Pg 

0 0 0 0 -l 0 0 0, 0 0 0 l x2 

x6 

vl 

• 
&B 

98 

(S.3.20) 

and 
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iA 

fs 

f7 

1 0 0 0 0 0 0 0 0 0 1 0 
0 

glO 

0 l 0 0 0 0 l 0 0 0 0 0 Ts 

0 0 1 0 0 0 ... 1 0 1 1 0 0 f4 

= 0 • 
0 0 0 1 0 0 0 l 0 0 0 0 f3 

0 0 0 0 l 0 0 • 0 0 0 0 l g9 

0 0 0 0 0 l l 0 -l 0 0 0 f2 

f6 

il 

TB 

(S.3.21) 

The direct sum of all component state equations in the form of 

Equations 4.3.7, 4.3.8, and 4.3.9 can be written as follows: 

(S.3.22) 

0 
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x s 0 0 0 0 0 0 l 0 XS 

X7 0 0 0 0 0 0 0 l . X7 

0 0 1<10 J.<10 a 0 0 0 0 P10 P10 - r::-: - x ' 10 10 

• Ka 10 Ba • 
es 0 0 I I -- 0 0 0 0 ea 

d JS JS 
dt = 

K2 
X2 0 0 0 0 

... _ 
0 0 0 x 

B2 2 

0 0 0 0 0 - K6 K65 0 x6 r; -BG 

tj,3 
Ks 

0 0 0 0 0 
Bs 

0 tj,3 -- - tr; Ms 

tj,6 0 
K7 

0 0 0 0 0 
B7 

tj,6 -- - -M7 M.7 

0 0 0 0 0 0 0 0 fs 

0 0 0 0 0 0 0 0 f7 

l :o 0 

0 0 - 0 0 0 0 glO A10 

0 0 0 1 0 0 0 0 TS 
+ Ta (5.3.23) 

0 0 0 0 l 0 K'12 0 f2 - -B2 B:2 

0 0 0 0 0 l 0 0 f6 -B6 

l 0 0 0 0 0 0 0 vl Ms 
0 l 0 0 0 0 0 K79 

Pg - --M7 M.7 

"' 



0 

= m 

0 

0 

0 

0 

0 x 
3 

Suppose that the first two equations of Equation 5. 3. 24 are 

substituted into the first circuit equation (Equation 5.,3~20) and the 

last cutset equations (Equation 5. 3.21). The :resulting equation can 

be solved fo't' 

XS 

f4 
l 0 f2 0 0 0 0 x -mo 7 
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= ... 
P10 (5.3.25) 

0 0 f6 
l - l 0 0 X3 - - • mo mo ea 

where m0 = m + l. One can then write · 

0 0 f2 m m 0 0 
XS 

x4 -- -mo mo x7 
= ... • ( s. 3. 26) 

f3 m 0 f6 0 0 0 0 P10 -mo 
ea 

Now• suppose that the last equation of the algebraic component 

equations (Equatlon 5.3.24) and Equation 5.3.26 are substituted into 
.. 

the ;second and fifth circuit equations and into the second through the 

fifth cutset equations. This operation will yield an explicit expres-

• sion for the generalized input vector [f5 , f 7 , g10 , Ta, f 2 , f 6 , v 1 , 

p9 ]T that .appears on the right of Equation 5.3.23. If thi(; explicit 

expression is then substituted into Equation 5.3.23, the following 

set of fi't'st-order differential equations r.esults. 
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XS 0 0 f2 0 0 VA 

X7 0 0 f6 0 0 TB 

P10 0 0 0 0 

~8 0 0 0 1 - J's 
d Kl2 - 1 0 0 dt ><2 = - + -Bz Bz 

0 1 0 0 -Bi5 

lj,3 
1 m 0 0 0 ---Ms mo 

lj,6 
l m l) 1 0 0 -(-- --M m0 M7 

0 0 0 0 0 0 1 0 X5 

0 0 0 0 0 0 0 1 X7 

0 
K97 K10 K10 8 0 0 0 0 P10 - -- ' A10 A10 A10 

0 0 Ka 10 Ba 
0 0 0 0 es I --J9 Js 

+ 1< 
q 0 0 0 2 0 0 0 --132 

0 0 0 0 0 K5 K6S 
0 X6 - -26 B5 

Ks 
0 0 0 0 0 

Bs 
0 1P3 -- --Ms Ms 

0 - K7 _ K79 
0 0 0 0 

B7 
lp6 - - --M7 M7 M7 

(!5.3.27) 
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The situation here is identical to that discussed in conjunction with 

Equation 4.3,25. There are 8 first--order differential equat.i,ons in 10 

variables •. The excessive variables can be eliminated by noting that 

the third and fourth circuit equations (middle row block of Equation · 

5.3.20) provide a means whereby the vector of variables appearing on 

the left of Equation 5. 3. 27 can be written as an explicit function of 

[xs • x7, Pio• ea• 1jl 3 ,1jl6 ]T and the variable xi+• Equation 5.3.26 can be 

used to eliminate the dependence on xi+• Let the resulting expression 

be substituted into Equation 5.3.27 and let the result be premultiplied 

by the matrix 

l 0 0 0 0 0 0 0 

0 l 0 0 0 0 0 0 

0 0 l 0 0 0 0 0 

Or 0 0 l 0 0 0 0 

.ta (5.3.28) 
0 0 0 0 0 0 l 0 

0 0 0 0 0 0 0 l 

- m -Cl ... ..!!.) 0 0 l 0 0 0 -mo mo 
0 ... 1 O· 0 0 l 0 0 

The resulting set··of equations contains 6 first-order differential 

equations in 8 variables two of which al"e f 2 and f 6 • The operations 

described above also result in two linear algebraic equations which 

can be solved for an explicit expression for f2 and f6 in terms of 

• T T the vectors [x5 , x.,, p10 , ea, 1jl3 , 1jl6 ] and [vA, Tsl. Substitution 

of this explicit expression foJ:'. f 2 and f6 into the six differential 

equations yields the desired set of first-order differential equations 

in normal form. The sixth circuit equation and the first cut set 
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equation give the associated algebraic terminal equations for the 

assumed driver elements A and B. 

The six differential equations and the two algebraic equations 

• • 0 ' 

mentioned in the previous paragraph contain terms in v A, i A• OB, and 

TB, These variables must be replaced by their equivalent expressions 

ln terms of the terminal variables associated with the elements of the 

desired terminal graph. 'rhese equtvalent expt1essions can be obtained 

:from the interconnection equations for the linear graph labeled desir•ed 

terminal graph in Figure 5.3.7. At any rate, after elimination of vA, 

iA, eB• and TB in favor of vi, ii, 60 , and T0 , the six di'fferential 

and· two algebraic equations become 

XS 0 0 0 0 1 0 XS 

X7 0 0 0 0 0 1 X7 

P10 0 B32 a33 8 34 0 0 P10 
d = - • • dt ea 0 0 a43 a44 0 0 e 8 

W3 a51 a52 0 0 ass 8 56 W3 

lp6 aG l a62 as3 0 855 cl&Ei "'6 

0 0 

r::J 0 0 

0 0 
+ (5.3.29) 

0 a48 

a57 0 

0 0 

and 
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x 5 

X7 

[::] [: 0 0 Q 0 

:J 
P10 

= .cs.3.ao> 
0 0 l 0 ea 

"'3 
1/16 

where the elements of the coefficient matrices in Equation 5.3.29 are 

defined as follows; 

K97 
8 32 = ........... 

A10 

a33 = K10 --A10 

Kio ,a 
a = .. ----34 A10 

2 . 
a51 = ~ ( K - !,_ K ) · 

M5 5 m 2 
0 

l m2 
ass = .. Mc (B + -z B 5 5 mo 

a56 = B2 (l - .a. ) 
mo 

a65 

a66 = 

- m --mo 

K m - c- .. l) 
M7 mo 

a 
63 

l = T CK6s 
7 

l . 
- - [B.7 M1 . 

m 
+-B2 mo 

+ BG + B2 

) 

c.!.. l)] ... m 
0 

(.!... - 1)2] 
mo 
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Equations 5.3.29 and s .• 3,30 are the state equations for the electro-

mechanical-hydraulic device shown in Figure s. 3.1 when that device is 

considered as a coupled 4-terminal component with external connections 

at points d, e, f 9 and h only. Those equations and the terminal 

graph consisting of elements i and o in pcU"t b of F_igure 5. 3, 7 completely 

specify the terminal characteristics of the device. 

An examination of Equations s.3.22, S.3.23, and 5.3.24 will show 

that Assumptions 4.3.2• 4.3.4, and 4.3.6 are not satisfied by the 

component state equations for this system. However, formulation of 

the state model is possible as demonstrated here. This merely 

illustrates that the assumptions presented in Chapter IV are only 

sufficient conditions and are not necessary. 

This representation can now be used in a number of ways. The most 

obvious application is that one is now in a position to treat the 

entitte device as simply a component in a larger system. An examination 

of Equations 5,3,29 and S.3.30 will show that these equations meet the 

requirements of the formulation procedure given in Chapter IV and, 

therefore, that procedure might be applied to a system in which the 

device is a simple component. 

Another observation is worthy of mention.· at this. point. Several 

authors (11, 16, 20) have extensively studied various analog pr9gramming 

techniques for ~nerating state equations of linear devices from a 
. : 

knowledge of the transfer function of the device •. Since these· techniques 
. ' 

start with the transfer function, one in inherently forc;ed, to assume 

that there are no output loading.effects. The set of state equations 
, . . ,I 

derived above for this rather complex electromechanical-hydraulic 

device do not suffer from this limitation. Another interesting 
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characteristic of this procedure for deriving the state equations for 

a multiterminal component is that it appears that, with some slight 

modifications, it can be used to hapdle some nonlinear cases; whereas 

any technique which makes use of a transfer function is not applicable 

to any nonlinear cases. 



CHAPTER VI 

SUMMARY 

6 o l, Principal Results and, Conclusions. Probably the most 

important result of this work is the establishment of the formulation 

procedure. given in Chapter IV. Clearly. the state model for any system 

of linear continuous~time multiterminal components whose terminal state 

equations and whose interconnEtction topology satisfy the list of formal 

assumptions given in that tjiapter can be formulated in a straight-

. forward manner. 

The formulation procedure is applicable to two fundamental 

problems. These problems are (1) the formulation of the system state 

model as demonstrated by the first example in Chapter V and (2) the 

derivation of the component state equations for multiterrninal components 

that can be conpidered as an interconnection of simpler multiterminal 

components. This latter application is demonstrated in both of the 

major examples given in Chapter v. 

The procedure is applicable to any system whose component state 

equations and topology satisfy the assumptions of Chapter IV regardless 

of the form· of the energy involved. That is• th~ p.rocedure is 

applicable to electrical, rnechan~cal 1 hydraulic 1 or any other form of 

system. It is applicable to systems in various forms. The secon.d 

example in Chapter V is a graphic example of that fact.~ 

In the opinion of the author, the state model or state equations 

108 
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for a multiterminal component or system that are derived using this 

formulation procedure enjoy one fundamental advantage when compared to 

the state model or state equaticms that are derived by other methods 

now in general use. Th.is fundamental advantage is that the knowledge 

of an intermediate secondary mathematical model is not required if one 

applies the formulation procedure given in this thesis. All other 

methods now in use require that one have available some other secondary 

mathematical model such as the "mesh current" equation1;1 or possibly 

the transfer function, In the latter case• any state model which is 

derived from the transfer function suffers from the basic deficiency 

that all loading at the output terminals is .ignored. State models and 

state equations derived in the manner demonstrated in this thesis do 

not make the assumption that one of the output vaz,iables is zero, as 

is common practice in the derivation of transfer functions. 

Another result of this thesis that is of some importance has to 

do with the theorem concerning the topological conditions that are 

necessary if a unique solution of the primary mathematical model is to 

exist, This theorem is an extension of the work of Wirth (18) with 

systems containing components whose terminal equations are strictly 

algebraic. The theorem as presented in this thesis admits to the 

possibility that some of the components may hc1,ve terminal equations 

involving derivatives of the terminal variables. Thus• the theorem 

as presented here contains the work of Wirth as a special case. 

Koenig and Tokad ( 8 ) presented a similar theorem recently. How

ever, those authors placed some rather severe restrictions upon the 

form of the component terminal equations. In fact their work excluded 

all multiterminal components for which none of the state variables 
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are also terminal variables. Subsystem Number 3 of the first example 

in Chapter Vis an example of a component which would fall into the 

excluded category of the last_ mentioned authors. By considering a 

more general form for the state equations, as in this thesis, one can 

include such components into a theorem on necessary conditions~ 

Practically speaking, this theorem can be used to say that after 

one has eliminated, in favoI' of state variables, as many terminal 

variables in the primary mathematical model as possible, then the 

remaining algebraic component equations must be solvable for a subset 

of across variables corresponding to a subset of the branches of some 

formulation tree and a subset of through variables which correspond 

to a subset of the chords of some formulation tree. The two formulation 

trees mentioned here may or may not be distinct, although from the 

standpoint of practical formulation procedure it i~ desirable that they 
\ 

be identical. 

6.2 Recom~ndations for Future Studz. The fact that the formal 

assumptions given in Chapter IV as sufficient conditions to insure 

that one can formulate the state model of a system of multitermin~l 

components are not also necessary is demonstrated in the second 
~ • I • 

example of Chapter Vo. In_ particular the conditions of Assumption. 

4.3.2, 4.3.4, and 4.3.6 do not hold for all of the components considered 

in that example, yet it was possible to formulate the state model for 

the system using the major steps given the formulation procedure of 

Chapter IV. The problem here is that th• assumptions mentioned above 

were included as a part of the general formulating scheme so as to 

insure that the two required matrix inverses would exist. It. is felt 
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that the restrictions given here are oveply severe and that one might 

be able to relax these conditions• at least partially. This certainly 

appears to be possible in cases where one can rf.!Strict the class of 

components to be studied. 

Along the same lines• one might be able to clarify to a certain 
. . ' 

extent the ~lationship between the necessary a_lgebraie· and topological 

conditions given in Chapter III and the other sufficient formulating 

conditions given in Chapter IV. In particular. one might be able to 

show that some subset of the sufficient conditions_ given in Chapter IV 

are also necessary. 

Another problem that merits some consideration is that of 

classification of the various component state equations o It may be 

that one could classify the fo:rorns of the state equations ( in reduced 

form or not) into a few classes and as a result be able to establish 

a formulating procedure accordingly. For example• one m_ight be able 

to classify the fo:rm of the state equations according to whether o:ro 

not the differential equations are explicit in an across variable• a 

through variable• or a state variable that is not a terminal variable. 

One might also consider classification according to the form of the 

algebraic equations that are an integral part of the state ;equations. 

At any rate, a table showing the various; forms that the state equations 

might take for a representative sample of the classes of multiterminal 

components that a system engineer enco~ters would be useful. 

Zadeh and Desoer (16) in their rece~t book attempted to solve the 

problem of finding the state model foii an interconnection of components 

through the use of a "signal .. state-graph" and some conventions with 

respect to the classification of certain terminal variables. It 
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appears . that the methods discussed in this · thesis are applicable to the 

problem as described by those authors; and, in fact, the procedures 

presented here appear to be superior to those presented in the 

referenced worko However, this latter ~tatement has not been fully 

researched by. the author and su:rely warrants some attentiono 

Last, but not least, someone should consider the possibility of 

using a digital compute·r to perform the complete formulation ~d 

solution of the state model for a system of multiterminal components. 

Much work has been done for systems of two-terminal ideal linear 

elements such as resistors, capacitors, and inductors; but, insofar 

as the at1thor knows, very litt,le has been done with systems containing 

more complicated devices. 
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APPENDIX 

SOME DEFINITIONS AND THEOREMS 

In the process of formulating the state model for a system of 

multiterminal components in Chapter IV, it was necessary to calculate 

the inverses of two matrices. A number of conditions were assumed to 

prevail in OX"der to insure that the r~quired inverse existedo The 

following definitions and theol"ems taken from mat:riix algebra are 

designed to show that these prescribed conditions are indeed sufficient 

to insure that the required matrix inverses exist. 

Definition Aolo Positive Definite Matrix. ~ n x n real matrix A -
is said to be positive definite if it is symmetric and if for every non"" 

zero vector x. the quadratic form xT A x satisfies .... ...... ...... 
XT A x > 0 • - -- (A.l) 

Definition A.2. Semi-Definite Matrix. Ann x n real matrix A is 

said to be positive semi-definite if it is symmetric and if for every 

non-zero vector~, the quadratic form ~T ,!!, satisfies 

( A.2) 

Theorem Aolo If A is a real positive definite (semi=definite) -
n x n matrix and Bis an n x n nonsingular matrix, then the matrix 
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BA BT is positive definite (semi•definite), ........ 
Proot, See Hohn 1 and allow equality to include the semi-definite 

case. 

Theorem A. 2, A necessary and sufficient condition. that a real 

n x n matr~x _!be positive definit~ (semi-definite) is that every 

principal minor determinant. of the matrix A be greater them (greater -
than or equal to) zero. 

Proof. This is merely a restatement of a theorem given by Browne. 2 

Theorem A.,3. Let A be an n x n positive definite matrix and let 
... ·~! 

! be an n x n nonsingular matrix. Then the i;quare matrix 

2.. J . 
0 -· 

(A.3) 

is positive semi-definite. 

Proof. The matrix BA BT is positive definite by Theorem A,l; ---
and I there:f;ore, every principal minor determ.i;nant of !_1 is greater; · .• 

than or equal to zero. The c;:onclusion that !.,1 is positive semi-definite 

follows directly from Theorem A. 2. 

Theorem A.4. Let ! be a real positive definite n x n matrix and 

1 r. E. Hohn, tiementacy Matrix Algebra (New York, 1958), P• 257. 

. • Z E. T. Brow~~ 1 . .!!:!!. Theorz 2!, Determinants and Matrices ( Chapel 
Hill, North Carolina, 1958), pp. 120-121. · · ~ 
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let B be a real b x n matrix with rank r < b < no Then B A BT is .. ... ... - ..... 
positive semi-definite, 

Proof, This proof is taken from Koenig• Tokad, and Kesavan (24) o 

There exist a b x b nonsingular matrix L and an n x n nonsingular - . 

matrix K such that -

L B K = .......... 

where ! 11 is r x r and nonsingular. Then 

(A.S) 

Also 

B = L-1 . . r!.11 - - 0 -
(A.6) 

and 

(A,7) 

Thus one can form 

BA BT --- (A 0 8) 

The three matrices appearing in the center of the right-hand side of 
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Equation Ao 8 can be written 

( A,9) 

which by Theorem A.l is positive definite, C can be written in the 

partioned form 

c = (A.10) 

where £11 is r x rand _!k2 is (n - r) x (n - r). Theorem A,2 implies 

that _£11 is positive definite. Substitution of Equation A.9 into 

Equation A. 8 and Equation A.10 into the result yields 

(A,11) 

where 

D = ( A.12) 

is positive semi-definite by Theorem A.3. Thus Theorem A.l implies 

that BA BT is positive semi-definite. ---
Theorem A.s. Let ~ 11 be an n x n positive definite matrix and 

let !::i._ 2 be an n x n positive semi-definite matrix. Then the sum !ii + 

A?. 2 is nonsingular. 

Proof. The quadratic form 
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fol" every non-~ero vector x since xT A 1 x is strictly. greatel" than 
- ..,.. -1 

zero and ~T ~ 2 .!. is never less than zero by hypothesis, Hence !i 1 + 

~ 2 is positive definite and by Theorem Ao2 nonsingular. 
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