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CHAPTER I

INTRODUCTION

1.1.. Description of the Problem

The P" factorial has been widely used in dndustrial, educational,
and agricultural applications in recent years. Although articles appear
frequently in the literature which investigate different aspects of
factorial designs, one problem of importance which deserves further
investigation is that of determining optimal designs based on special
criteria. Another aspect of factorial designs is that of fractions of
factorials. These are very useful when the number of factors, n, or the
number of levels, P, become large.

This investigation is concerned with developing symmetrical designs
which are fractions of factorials based on the expansion of P" as

k n
( Z p;) . Chapters II and III are deveted to this development. Dif-
i=1
ferent symmetrical designs for a given number, N, of design points are
compared using five optimality criteria and assuming the two-dimensional,
quadratic model
2 2

y(xy, %) = BD + lel + Bzxz + 83x1 + Baxlx2 + Bsxz + e
where e ~ N(O, 02). In Chapter IV, three of the optimality criteria,
minimax variance of éi, minimum generalized variance of 8 and minimax
charactdristic root of (X'X)"l, which is a minimax variance of uncorrel=-

ated linear functions of the éi's, are studied. The average variance of



the estimated response in the square region R and the circular region R
is determined for any distribution of the probability mass to the region
of interest. Chapter V deals with this problem and with the designs which
have the minimum average variance of the estimated response.

These symmetrical designs were developed to be used in experiments
which are of an investigative nature such as optimum seeking experiments
or experiments used to determine the shape of a response surface in the

region of a maximum response.

1.2 Review of the Literature

In the area of response relationships, a rather detailed review of
the literature through 1958 has been presented by Folks (1), and from
1958 through 1963 has been presented by Gillett (3). Therefore a review
of the literature which is pertinent to the development of this thesis
will be presented here.

A number of articles have appeared recently which approach the
optimal design problem from a probability standpoint. Such is the case
in articles by Kiefer (4), (5), and Kiefer and Wolfowitz (6). The op-
timal designs which they obtained are only optimal to within a given
approximation of the true theoretical optimal design. Folks (1)
approaches the problem of determining optimal experimental designs for
various criteria by considering two cases; namely, the case where the
number of design points, N, is even and the case where N is odd. By
this procedure, exact optimal designs were determined in the one~dimen=

sional case for the following criteria:

(1) min max var y (u)
X u

(ii) min ave var y (u)
X u

(iii) min gen var y (u)
X



where var:y (u) is the variance of the estimated response at u. Also,
.exact optimal designs for bias and mean square error considerations:in
the;one-dimensional case and for variance. and bias considerations in
the two-dimensional case were determined when the number of design
points:was:a certain multiple of four.

Gillett (3) determined exact optimal designs for several polynomial
models., From.a restricted claésvof models, a model is:selected as one
-which is optimal in the sense of minimizing some form of the bias.

Also, the average variance of the estimated response is investigated
for every distribution.of the total mass to the region of interest
assuming a linear model.

In recent years. fractional. factorials: have received much attention,
A new'approach to factorial experimentation was suggested by Fry (2),
deﬁeloped by Williams (8), and extended by Thomas (7). Williams
developed fractions obtained by considering the P" factorial in an

algebraic context. as
i
2

where p; + P, = P-and p; and Py are positive -integers. The new frac-

n e
P=(pp + 00" = I (ipy P
i =

tions: ‘are then obtained by expanding (p1 +»p2)n.as:a.binomial. Thomas

(7) extended this concept to the case

0 k
P = (Zp)"
i=1
n n n n, n n
=T T ... Z [n!/(nl!nzl ceo nk!)] Py Py cer P
n1=0 n2=0 nk=0 ‘

o
where i§1>n11= n, igl P, = P and Py> Py --e5 P, are positive integers.

A relationship will be established now in the following chapter

between these concepts:.and symmetrical designs.



CHAPTER II
" SYMMETRY AND OPTIMALITY CRITERIA

.2,1 Models to:be Used

The design ppints.zi are the points.in.an n-dimensional space where
the observations are to be taken. The n-dimensional space consisting of
‘all design points:will be called the factor space. 'An experimental
design will be defined as a procedure-which indicates:where the design
points are to be located and how many observations are to:be taken. at
each design point. It is: always possible to code the levels of the
factor space into the coded factor space:where the points:will be denoted

by X*;:—(xl, X cras xn), -1 < Xy < 1. Each x, represents the coded
i ‘

23
levels of factoer i. Henceforth-we shall assume that the levels: are
equally spaced.in the region of experimentation and when we use the
-words, design points, we shall mean the coded design points, X¥*. ..

In this thesis:we shall consider primarily,twoédimensionai ﬁodels
. Where the fesponse-will be given by the quadratic model

2 -2

y(xps %) =Boxy +Byxy tByxy Bk, F Bxyxy ¥ Bgx, +oe

-where =1 < x; <1, i=1,2, Xy = 1, and ¢ ~ NID (O, 02).
All of the observations assuming a given moedel may be represented
in matrix form as Y = XB + ¢, .where B is:a vecteor consisting of a func-

tion of the‘Bi's:and X is the design matrix for N_coded design points.

For the two~dimensional quadratic model, X is given as



- 2 2
Loxp %1 Ry Kip%pr %pp |
2 2

L x1p =xpp Xyp Xy9¥X9y Xj,

) 2
Loxy ¥on *In *iefan ¥ox

— —

'where each observation yi(xl, XZ)’ i=1, ..., Nhas associated with

it a vector representing\the independent variables denoted by (Xli’ XZi)'
Let u be-a variable point in the two-dimensional factor space and

let U represent the row of the design matrix which corresponds to the

point u. The response at any point u-in the factor space is estimated by

~

S =g =@ X'y

where B is the least squares- and maximum likelihood estimate of B.
The variance of the estimated response, denoted by var y(u), is

given by
~ -1._,2
var y(u) = UX'X) " U'o

In this thesis 02 will be considered equal to unity unless.other-

wise specified.

2,2 Definition of Symmetry

In this thesis we shall be concerned only with fractions of a p"
factorial. These fractions will possess:a special property called
"symmetry'. They will be symmetrical in the sense that all design
points will be taken symmetrically, using the rule defined below for

symmetry, with respect to the center of the region -1 <x, <1, 1= 1,2,...,n.



For the two-dimensional case wk shall denote (xli, XZj) by
[i;»j].wherevi, j=1,2,..., P represent the P levels of the factors
xl and X2° By "eD" we shall mean "belong to the design D" where D

denotes a symmetrical design. Then symmetry will be defined as

follows:

. Rule for Symmetry:

(1) If i = j, then [i, j] eD implies that [P - i + 1, P = j + 1],
[P-1i+41, j] and [i, P = j + 1] also eD.
(2) If i 4 3, then[i, j] eD implies that [P =i + 1, P - j + 1]
(P -i+1, 3], [i, P -3+ 1], [3, i), (P =3+ 1, P -1+ 1]
(j, P~ 41+ 1) and [P~ j + 1, i] also eD.
k

The "rule for symmetry" is derived from the expansion of (.Z Pi)
i=1

2

which will be discussed below.

Using the rule for symmetry, all points in a P2 are partitioned
into one, four or eight point groups. If P is odd, the one~-point
group is the center point; if P is even, there is no one~point groups

Each of these symmetrical groups (fractions) may be obtained by

, n -k n _ o
gkpreSs;ngﬁP .as (;Eipiii,:aﬂmgthodydevelopedﬂby Thomas (7), which we
need ﬁdﬁ; Thus Pnlmay be-written as
n, 0oy n

n
1 2
= - . ' vt 1
P (.§ pi) z ? ...... by [n./(nl,nz, coo nk.)]p1 Py -eo P
! l—'l n=aO 1'12—0 nk=.0

k

where Zn; = n, T R P-and py, ...,.Py are positive

k
integers. If we consider each term in the expansion of the multinomial,
we have a | factorial arrangement of treatments multiplied by the

coefficient n!/(nllnzl oo nil). The multinomial coefficient of each

term gives the number of balanced factorials of each type. The number.:



of reduced symmetrical designs for a specified Pn and N may be obtained

n n n
from the expression £ . .. Z ... £ (1) subject to Zn, = n.
1
n;=0 n,=0 ny=0

Example 1.1: Consider the expansion B2 = (pl +p, t p3)2 = pi + pi
+ p% + 2pypy + 2p1p3 + 2p2p3. This expansion contains 9 reduced
factorials but there are only (%) + (g) = 6 reduced symmetrical designs
where by "reduced" we mean that each design is not made up of two or
more symmetrical groups. The terms in the expansion represent these

6 reduced symmetrical designs. For example, consider the expression
2p1p2 in the above expansion. This represents one reduced symmetrical
design in the expansion of P?. The "2" in 2p1p2 represents the
different orders the P, values may assume which are P1XP, and PyXPq -

If we represent the two factors by A and B, then factor A has P, levels
in the plxp2 factorial and p, levels in the PyXP; factorial and

factor B has P, levels in the P{XP, factorial and Py levels in the

PoXPp factorial.

Theorem 1.1 The rule for symmetry partitions a P2 factorial into

k(k + 1)/2 reduced symmetrical designs which are disjoint.

Proof: Each term in the expansion of p2 = (p1 + P, I - Pk)2
represents a reduced symmetrical design. The number of terms in the
expansion is (T) + (;) = k(k + 1)/2. Thomas (7) proves that each

reduced factorial obtained from the above expansion is disjoint; that
is, that there are no common points belonging to two or more reduced

factorials. ' Since each reduced symmetrical design is either a reduced.

factorial or a combination of two reduced factorials, each is disjoint.



—-""‘—-‘——’-—,F 8
Denote the P levels of each factor by 1, 2, ..., P. Then the
pl, Pps «-es Py leviels selected from the original P levels, must be

disjoint; that is, p; can have no level in common with pj for

i#j,1i, =1, 2, ..., k; and the selection must follow the procedure
outlined below to obtain symmetrical designs. If we let ¢* represent

i
the P x 1 vector of levels for the ith factor, and let @il, ®g95 03 Py

represent the P X 1, P, X PLIsGs P X 1 vectors of levels chosen for
Pys P25 «ves Ppo respectively, then ¢? = (@il, ¢i2, oo ¢ik) gives a
partitioning of the levels for the ith factor. We will assume Qir-= Py
for i # jand r =1, 2, ..., k. Hence, it is not necessary to use a
subscript on ¢ to denote to which factor we are referring. It should also
be noted that ®1 does not necessarily represent the first P, levels of
each factor, but any p; levels of each factor and similarly for Pos eees Qe
In all subsequent discussions P = 25 £ w Ly ..., k»l,. and P = 1
if P is odd or P 2 if P is even. Therefore to obtain symmetrical
designs, the ¢; should be partitioned as follows: ¢ = (1,P), Py =
(2,P-1), ¢y = (3,P=2), «vey o = (k,P=k+l) = (P/2, (P+2)/2) if P is even

and @ = (k) = (P=1)/2) if P is odd. Thus P2 could be expressed as

(P=1)/2 5 P/2
( £ 24 +1)° for odd P and ( T Zi) for even P.
i=1 i=1

Example 2.2: Consider a P™ factorial where P = 5, n = 2, P =2, pp = 2,

2
2

2(21x%) + 2 (29x1) +2 (25x1). The 2's have been subscripted to

2 2 . Y -2 2
and Py = 1. Then (p1 + Py + p3) (21 -+ 22 + 1) 21 + 2.4+ 17 +
relate them to the respective P, - If we partition mé = (1,5), mi = (2,4),
and ¢é = (3), the six reduced symmetrical designs and their corresponding
design points in terms of the original 52 treatment combinations are

given in Table I.



TABLE I

REDUCED SYMMETRICAL DESIGNS OBTAINED FROM EXPANSION OF (21 * .2y o 1)2

2

21x21 22x22 1x1 2(21x22) 2(21x1) 2(2,x1)
(1,1) | (2,2) | (3,3) | (1,2) (2,1)| (1,3) (2,3)
(1,5) | (2,4) (1,4) (4,1)| (5,3) (4,3)
(5,1) | (4,2) (5,2) (2,5)| (3,1) (3,2)
(5,5) | (4,4) (5,4) (4,5)| (3,5) (3,4)

2.3 Optimality Criteria for Designs

If the i,j-th element of (X'K).l' is denoted by Cij’ then the
covariance (éi, éj) is Cij cz. One of the criteria used to judge which
of the possible symmetrical designs, F, with a given number of points
N of a given P™ is optimal is that design which has the

min max {var Bi}f.
feF Bi
A design which satisfies this is said to be minimax and to choose the

minimax design, we first find the max var éi for each possible sym-

By

metrical design feF and then minimize this value over these designs F.
The minimax design is the one which has the smallest maximum expected
variance of the éi and could be considered a conservative choice.. It
considers only the variances of the éi,and disregards the covariances of
81, éj).

A second optimality criterion of designs is called the minimum
generalized variance. The minimum generalized variance design is
obtained by finding

min

@t |,
feF




10

where F denotes all possible designs for a specified number of points,
N, and a specified number of levels, P, This criterion gives an
"overall" measure of optimality in.the sense that it is minimizing a
function containing both the variances:and covarilances:of the coeffi-
cients.

A third optimality criterion is called minimax characteristic
root. The minimax characteristic root design is determined by finding

min max-[r' ‘ (X'X)El —'rI‘l = 0]
feF r

where r denotes:a characteristic root of ‘(X'X)"1 and' F denotes. the same
-as :above. This design is obtained by finding the minimum of maximum
variancés of uncorrelated linear functions of the éi's over all designs
feF.

A fourth criterion used to compare the goodness: of designs.is‘the
minimum average variance y(u). This design has the minimum expected
variance of y(u) over the whole region of experimentation. The
formula for the'averagé'varianceﬂ§(u) was. determined for the square

‘region, ~1. <x; <1, 1=1, 2, and for the circular region,
2

Oif_xl &vxg < 'l These formulae will be developed in-Chapter III.



CHAPTER III

2

P® -~ WITH QUADRATIC MODEL

In this chapter we shall investigate the method of obtaining
- symmetrical designs from PZ factorials: where the design points will
be chosen according . to the rule for symmetry defined in Chapter II. and

will be used to estimate the coefficients, Bi’ of the quadratic model
= c o+ + + Bax? + +Bx> +
y(xps Xp) = BoXp + Byxy + Box,y + Byxy + By x Xy +Box, e

where -1 <x; <1, i=1, 2, x..=1 and ¢ ~ NID (O,_Gz). Designs which

L= 0
have an equal number of points, N, will be compared using the criteria
of Chapter I to determine their 'goodness" in estimating the quadratic
model.

These designs can best be used in experiments which are of an
investigative nature such as optimum seeking experiments orkéxpériments
used to determine the shape of a response surface in the region of a
maximum response.

We shall now consider what designs are available and how they are:
obtained,

Referring to the rule for symmetry and to the expansion . of
fz = (Pl + Pyt pk)2 given in Chapter I, it should be noted that
all reduced éymmetrical designs contain either four or eight-points

‘with the exception of the one (center) point which occurs when P is

~odd. As P increases, the number of four and eiéht-point reduced

11
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symmetrical designs which are available increases; however the number

-of them depends on.whether P is even .or odd.

3.1 Case When P is Even

“ Theorem 3.1 The number of four-peint factorials is:P/2 and the number
of eight-point factorials is P(P - 2)/8.

p/2

Proof: There are a total of‘P2'= (= Zijz points available. From this
i=1
. o . . L2 2 ) .
expansien . it is obvious thatv21, 22, ...,»_ZP_,/2 are the four=point

" reduced symmetrical designs. Thus there.are»(P{Z) = P/2 of these. The

remaining terms:indicate the eight-point reduced symmetrical designs and

the number of these:is (?éz) = P(P - 2)/8. Thus 4(P/2) + 8(P(P =2)/8) = P

- Example 3.1: Consider a P2 factorial where P = 6. The 62 =36 points
can be partitioned into 6/2 =3 reduced symmetrical four-point designs
cand 6(6 .- 2)/8 =-3 reduced symmetrical eight-point designs. Table II

4

22 432 815 8y, B

12 72° 73°

Therefore the symmetrical designs of a 62 factorial are found by taking

depicts. these designs which have been denoted byf41, 4

rall combinations:of the designs above. . For example the four-peint
symmetrical designs:are the 4y, 4y, 44; the eight-point symmetrical
designs' are 8y, 85, 83, 415+'e2, 41 +,43'and 42 +-43;'and the twelve-

+ 4 ,.8

point symmetrical designs:are»s1 + 41’!81 + 4, ‘81 + 43,f82 408y + 4,

~2?

+ b,

2



TABLE II

REPRESENTATION OF THE REDUCED SYMMETRICAL DESIGNS OBTAINABLE FROM

A 62 FACTORIAL.%

‘LEVELS 'OF FACTOR B

‘1 2 3 4 5 6
L F L f1 81 8y 8 81 4
E A 2 ,
vV C B, 4, 85 83 4, 8
3 .
E T ° By 83 43 43 83 8
L0 4 B8 4 4 8 8
S R 2..3.. 3..3. 3 .2
58 4 8 8 4 8
0 A 41 82 83 3 82 41
F p 8y 8y 8y 8 &y

“#Different symbols indicate the reduced designs.

Using the different combinations of the reduced designs, the
different N available for a 62 factorial are 4, 8, 12, 16, 20, 24, 28,
32 and 36 point symmetrical designs. |

For each N there are several possible plans - available, the number
of plans depending upon N and P2. There are (Ez) possible-ways to
choose N points; but; when the condition of symmetry is applied, the
number of ways to choose N points when P is even reduces to

P/2\ [P(P-2)/8
£E(QN, P2) = % ( )( ) (1)
(kl,kz)eK kl .k2

where K = {(kf,kzﬂ‘ki;k are non-negative integral solutions to the

2

equation.4k1 + 8k, = Noand k, < P/2 and k, < P(P < 2)/8].

2

13
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Example 3.2: Suppose we want the number of possible l6~point symmetrical

plans available for.a 62 factorial. Using (1) above, we find

(16, 3.3 3y 3 3,3
£(16, 62) = T GG ) =)@+ (PG =12,
(ki,:kz)eK RSU.Y) 2 1 0/ V2

where K = {(kf,RZXlkI;k are non-negative integral solutions to

2

bky + 8k2 = 16~.and_k1 <3 and k, .< 3}: Thus. there- are 12 different

2

16-point symmetrical plans for-a 62 factorial. They are

8 +4y + by 8,44 +hy By kb +h4y 8] +8

81 + 41 + 43 82 + 41 + 43 83 + 41 + 43 81 + 8

3 82 + 42 + 43 83 + 42 +;43 82 + 83

3

8, + 42 + 4

1

3.2 Case When P is 0dd

All reduced symmetrical designs are disjoint and are composed of

either one, four or eight:-points depending upon the size of P.

Theorem 3.2 The number of one~point reduced designs is:one; the
number of feur-point reduced designs in P = 1; and number’bf eight-point
reduced designs is (P = 1)(P - 3)/8.
(P-1)/2 .
Proof: There are P2=( 3% ° 2i + 1)° points available. From.the
: i=1

expansion of P2 it is obvious.that.l-2 is the one=point design-and

5 .9 2 | . » .
21, 25, ceay 2 (P_l)/z,.Z(lel), 2(22x1),,..., Z(Z(P-l)/ZX1) are the

(P-1)/2 ’
2{ .= P - 1 four-point designs. The remaining terms indicate

1
e f(e-1)/2
‘ ) = (P-1)(P-3)/8. of

the eight-boint designs: and there are: 9
2

these. Thus 1 + 4 (P-1) +.8 ((P-l) (P-3)/8); = P“,
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- Example 3.3: Consider a P2 factorial where P = 5., The 52 = 25 points
may be partitioned into 5 - i’= 4 disjoint four-point designs and

(5 : 1)(5 - 3)/8 =-1 disjoint eight-point design. Table II1 depicts
these reduced designs which have been denoted by 1, 41, 42, 43, 44, 8.
The different symmetrical designs  available are found by taking -all
combinations of the reduced designs. Therefore the different N which
- may be obtained are 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24 -and 25
point symmetrical designs. For example, the four-point symmetrical

designs are 41, 42,-4 ;and 44;vthe nine-point symmetrical designs: are

3

41+42+1, by +43+ 1, 41 + 4 +1,4_2+43+-1,4 + 44 + 1,

4 2

43 + 44 +1 and 8 + 1.
TABLE III

REPRESENTATION OF THE REDUCED SYMMETRICAL DESIGNS OBTAINABLE FROM

A 52 FACTORIAL.*

LEVELS OF FACTOR B

1 2 3 4 5
L F 1 L8 - i, .
E A 417_v8. ‘43. 8. Al
vc 2 B 4 & 4,8
E T

3 I —

L oo~ [t3% b %%
S R 4 - —

F % % 58
oA 5 [ 8 & 8 4
F e Svvevpm— - o ..v» A

*Different symbols represent the disjoint groups.
The number of possible symmetrical plans for a particular N when
P is odd is

> P-1\ /(P-1)(P-3)/8 |
f(N,P%) = 3z ( ) < -) (2)

(k-1 ’kz)eK ki ,k’2
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where K = {(kI,kéﬂkl,kz are non-negative integral solutions to the
equation 4k1 +-8k2 = N when N is even and to the equation 4k1 + 8k2 =

N .- 1 when N is odd and k; <P - 1 and k, < (P - 1)(P - 3)/8}.

2

Example 3.4: Suppose we want the number of 13-point symmetrical plans
.available for a 52 factorial. Using (2) above, we find
. 4 1 4,1 4,1
£(13,5%) = % ()G = () + (D) = 8.
(kp,kp)ek 1 72
where K ={€k1,k2ﬂk1,k2 are non-negative integral solutions to 4k1 + 8k2 =
12 and k1 < 4 and k, < 1}. Thus there are 8 different 13-point symmetrical

plans for a 52 factorial. They are

8+4 +1 8+by+l b o+bhy+hy+ 1 b thy+b +1

8 4 42 +1 8+ 44 +1 41 + 42 + 44 + 1 42 + 43 + 44 + 1.

We now have a method for determining the number of different N-point
designs which may be used and the number of plans available for each N.
We shall now proceed to determine which of these plans is optimal for

specified N and P2.



CHAPTER 1V

OPTIMAL DESIGNS FOR P

WITH QUADRATIC.MODEL

In this chapter we shall demonstrate the designs which are optimal
for some specified N:.and Pz,,the procedure by which these optimal designs
were chosen, the plans for these.optimal‘designs,~and the optimal designs
for specified N:as we let P vary to infinity.

We assumed earlier that all design points would be coded into the
region -1 < x; < 1. Using this assumption we can .determine a priori

the values for the X matrix when a symmetrical plan. is chosen.,

Example 4.1: Consider ‘a p2 factorial when P 5. - Thus the i=th factor

has five levels: and they are-X.; =-1.0, X;, =0.5, X454 = 0, Xj4 = 0.5,

~and X;5 = 1.0.

4.1 Procedures Used to Determine the Optimal Designs

Now let us consider the procedure by which these optimal designs
were chosen. Using the quadratic model .we can determine the values for

(X'X) and (X'X)“l in terms of the coded. design points, X¥* = (Xli’ ij).

Thus
- o
2 2 2
Bk, O 0 Tx, 0 Txy,
0 w2, o0 0 0 0
11
- 2
« 0 0 0 0 0
X'R); = By
2 4 “o2 2 .
lei 0 0 lei 0 leiXZi |
0 o 0 0 wx2x2 0
11721
2 2 .2 4
szl 0 0 leixzi X i
— 1
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w2 o Ce2 w2 el e b a2 2
Let a = Zin =N, b= lei Zx2i, c -lei = ZXZi’ d = leiXZi'
fhén
¢y O 0 ¢, 0 ¢
0 ¢ 0o 0 o0 o
22
0 0 ¢ 0 0 o
@'t = 33
C,y O 0 ¢, O c{+6
0 0 0 0 Cg5 O
Cey O 0 Cp 0 Cgf

where Cyp.= (c +d)/[N(c +4d) - 2b2],

C,y = C33 = 1/b,

C44 = 066 = (NC

b2)/(c - d)[N(c + d) - 2b2],

C55 = 1/d,
Cug = Cgy = (b% = N)/(c - &)[N(e + d) -2b2]..

The procedure for determining the minimax design may now be expressed

as
min max [var QAE= min‘max [Cii’ i=1, ..., 6]f
feF B I feF C,,
ii
where F denotes the set of all symmetrical designs for N points.

The minimum generalized variance design is defined as

1 | = max | (X'%)
feF

min l (X'X)

|
feF £

f
. where F is defined above. This can be expressed as

max {b%d(c = AIN(e +d) = 221}, = min {1/(b%a(c - OINCe +a) - 262D},
feF feF
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The minimax characteristic root design is defined as

min max {r l'(X'X);l - rIl = 0}

feF r

-1
where r denotes a characteristic root of (X'X)f and F is defined
above. Solving the equation
2 2

- 1%(Cg - DIy - D, - D7 +26],C

v -1
1 - = (
X'X) rl (C 14746

22
9 2
= 2004 (Cpy - 1) = Cug(Cyy - )]
2 .
= (Cgp = 1) (Cgg = TI(Cyy = Cpg - 1)

2
[(c11 - r)(c44 +Cug = T) -2C;, 1 =0.

we find there are six characteristic roots of (X'X);1 which may be

denoted by
Y1 T Ty T Gy
3 % Cs50
r, = C44 C46’
ro ={c +C,, +C, +LC, -C, - C46)2 +_8Ci4]1/2}/2’
r, = {Cy +C,y +Cup - [y = Cyy - C46)2 +-sc%4]1/2}/2,

4.2 Optimal Designs for Specified N and P2

All possible symmetrical designs with N = 8, 9, 12, 13 and
P=23, ..., 50 were determined with the aid of a high speed computer
and the designs which were optimal with respect to estimating the
quadratic, two-dimensional model y(xl, x2)‘were chosen according to the
procedures defined above. A total of 552 optimal designs was obtained for
which some are exhibited here. The optimal designs for which N = 8, 9, 13,
P=5,7, 9and N =12, P=4, ..., 9, were chosen to be exhibited in
Tables IV, V and VI. These are all the possible values of N available

for N < 16. -
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Now.we want to determine, for a fixed N, the design which is
optimal when there are no restrictions on the ngmber of levels,. P, for
each factor. -As P increases to .infinity, the‘valueS’of the points: for

-each-optimal desigﬁ:approach-a:limiting value. To clarify how these
optimal limiting designs are determined, let us consider the minimax
design for 9 points. . The minimax design was obtained by comparing;all
possible 9-point symmetrical.désigns for each P = 3,‘5,....;'49. A
trend as P increased which gave an indication of the limiting positions
which the points were approaching was established. . Some points remained
fixed as P increased. . Therefore using the form indicated by the trend
and the points which were changing, M, as a variable, we were able to

- solve for the value of the points which would produce the optimal design
.as P approached infinity.

. The symmetrical design satisfying each optimality criterion for
each N was determined for each P =3, ..., 50, involving the analysis

- of over five hundred thousand different_plans; The trends of these

‘optimal designs were established which resulted in the following theorems.

4.3 Minimax Designs as P e=p o

.Theorem 4.1 If N= 8, P is odd and if the limiting points are (1, 1),
1, '1):‘('1:v1)s ("'1_" "1)3 M, 0), (0, M), (-M, 0),. (O, "M): then. the

minimax design occurs at M = 0.87560077 -as P approaches infinity.

Proof: The: diagonal elements. of (X'X)"1 = (Cij) are the values compared

to determine the minimax design. These values, :as a function of M, are



TABLE v

MINIMAX DESIGNS FOR SPECIFIED N AND P2

Ne8
3,‘-5 Pzl Ps9 P
X
. %
% '3
K
(1,1 (-1,0) (-1,-1) (-1,0) -1,-1) (~3/4,0) -1,-1) 4,0
(=1,1) 0,-1) (-1,1) (0,21} (-1,1) (0,-3/4) 1,-1) 0,4}
1,-1) (0,1) 1,-1) (9,1) 1,-1) (374,0) 1,1 (=4,0)
w1 1,0 [0%)) (1,0 Ly (0,3/4) [¢8)] (0,-4)
M = 0,375600765
N=9
P=5 P=? Pz9 P oo
*—
0,0) (~1,0) =1,-1: *(0,0 - (~1,-13 (0,03 (-1,0) (=1,-1) ©,0 (M,0)
0,e1) oy e GLe -11) ’ 0,-1) an (o
(1,0) Q,-13 1,0) (1,-1) (1,0) 1,1) (+4,0)
1,1 ©,1) a,n (0,15 4,1 0,1} -1,1) (0,~M)
N = 0,97062299
Ne 12
P=4 P=6 P = P
X
A3 LV
¥ %
X
{-1,-1/3) (1,1/3)  (~1,-1) (-1,-3/5) {1,3/5)  («1/5,-1/8) (=1,3/7)  {=3/7,1}: {-1/7,-1/7) (=1,-1) (M0}  (-M,0)
(=1,1/3}  (-1/3,=1) (-1,1) (=1,3/8)  (3/5,1)  (-1/5,1/5) (-3/7,1} {1,-3/7) (~1/7,1/7) (1,-1) M,03  (-M,0)
€1/3,-1)  (-1/3,1} (1,-1) (3/5,-1  (=3/5,1} {1/5,~1/5} (3/7,-1)  (3/7,1}  (1/7,-1/T) (-1,1) (OM)  (0,-M)
(/3,1 ,-1/3) (@11 (-3/5,-1) (1,-3/5) (1/5,1/5) -L,3n (LN (VLUD (1,3) {0,M)  (0,-M}
. M = 0,89309748
N= 2
Ps Ps7 9 P o
*—% * *————%
(Bo=1) (1,0} (-1/2,0) dyel)  (e1,0)  (+1/3,0 (=1,-1)  (-1,8)  (-1/4,0) 1,-0 ;) (0,0
L1 (0D (0,2 T e I (L1 0,00 (0,-174) (1,51 @) (0,0
=1 (1,0 (0,1/2) -5 e (1Y (-1} 0,13 (0,1/4) L1} 013  (0,0r
Ly 9,1} (1/2,0) a,13 0,1} (1/3,0) (1,13 (1,0} (174,03 1,1 (1,00 (0,0)
Ne=i3
P =7 P9 Peoo »
% X T@e
(L (1,8) (3172, (1oL} (-1,0)  (-1/5,0) (1,1} (-1,0)  (-3/4,0) (Le) (L) (MO
=1,1)  (0,-1) (0,-1/2} (11 (0,51 (0,-1/3) (1,1} (81}  (0,-3/4) (-1,1)  (0,21)  (0,M)
o) 0,1 (0,1/2) (el (01 (0,173 (1L,-1) (1,0 (3/4,0) (-1 (L0 (4,0
(L1 ,0) 1/2,0) (1,1) (1,0) (1/3,0) 1,2 (0,1) (0,3/4) (1,1) (0,13 (0,M}
0,0} .(0,0) {0,0)

(0,0)
M = 0.89255196



TABLE V
MINIMUM GENERALIZED VARIANCE DESIGNS FOR SPECIFIED N AND P2

N=8
Ps5 Pa? P=9 Pae
(=1,-1) {-1,0) (-1,-1) ~1,0, {-1,-1 {-1,0; =1,-1 -1,0;
tnD ©,21) {-1,1) ot oy’ oty ay o]
(1,1} €0,1) (1,-1) (0,1} (1,1} e {1,+1) (1,0}
(1.1} 1,0} 1,n 1,0} 1,10 0,1} 1) (0,1)
N®9
Psa5 Pe? P9 Proo
(-1,=1) (0,0} (1,0} {-1,=1)  {0,0) =1,9, ~1,+1 ) «1,0; oy » &
E;l;g g.g) glig ’ (0,51; E-xh)) R ] Hh;) @0 Eufz‘f}
e - 1,0 {1,-1) Q1,0 1,-1 1,0]
an oD an o1 amn o1 an o
NFi2
p=4 P = = Proo
(=1,=1)  (=3,91/3)  {-1,1/3) (-1,-13 (-1.-1/5)x (-1,1/5) (-1,-1)  (-1,-1/7} (1,-1/7) (1,013 (0,1) (0,41}
(s1,3)  (=1/3,1)  (1/3,-1) (4,1) (/5,213 (1/5,-1 LY (=177,-) (1/7,1) LN W (1,0
3'3) 3.&{%) g%!i-n -1 (1,-U5) (/5,1 @, (L7 Q,un Qe 01 (0,4
s » ,' 513 {L1) {-1/5,1)  (1,1/5) 1,1, /7,-1y /7,13 1,1) 1,0  (-1,0)
N=f2 .
Pe=5 P=7 P=9 P
(1,1} (1,080 (1/2,0) (~1,-1)  (-1,-1/8)  (1/5,-1) 1,-1)  (l,e o1,e
Gun’ oy lgoi;iz‘)u E;l:g E-};:.I;) gxi;g) 5-12‘1)) f-ih%;) 8:«1-{2) %-}:l;’ Eg:g 2:1:3)
2= s -1/2, e - ) 1,51) (14,1} (/4,1 1,1 . L
W @ (0,-12) W@y g8 A TR Y (.1/2,}) T Kt
N=i3
PeS P*7 P=9 P T‘” Ve
(=h,e1)  (<1,-1/2)  (1/2,) (+1,51)  (~1,-1/3) " (3/3,=1) -1, o1,-
NN @) QD G’ (D (1,18 U A Y 8 b
&Y SecR gy Gy GaR G &3 Gmd g G wh 5
= Gt ' @n g:;;/ 2 V2 2] a,n g{;}.-n (-1/4,1) an (;15‘),) an
X A




TABLE Vi
MINIMAX CHARACTERISTIC ROOT DESIGNS FOR SPECIFIED N AND P2

N8
P25 Pe? ps9 P=eo
X
3. Y.
* %
X
(=1,-1) («1,0) (-1,-1) (1,0) (-1,-1) -1,0) 1,3 4,0
E;xig gn)n E;x:i; @ §-xlx) Eo.-x) ey ]
- - 1,-1) 1,0 1,-1 0,
0 1 am @ an o ewt o
M = 0.B1649658
N"9
PsS pPr? Ps9 ) Puoo
X
LV .
[a) tal
K
(1s1) (0,0 (=3,0) CL-D) @0 (-1,0) -L=1) (@0 (-1,0) (-1,-1) (0,00  (-4,0)
1,1 (8,1) (-1,1) {0,-1) -1 {0,°1) 1,1 3,4
{1, (1,0) Q. (1,0) (1,1 (1,0} (1,-1) 0)
wn @1 an 0 an D [t8Y) oM
M = 0,88673502
N=i2
P 4 peg P=8 o Pe
* *
X
X b
» - % Y
(=1,-1/3)  (,=1/3)  (-1/3,513) (-1,-5/5) (-1,3/5) (<1/5,=1/5) 1,37 (L3 (17,217 Mol (M1 (0,0)
(=1/3,-1)  (1/3,1} (-1/3,1/3) (~3/5,=1) (3/5,-1} (-1/5,1/5}) (-1,3/7)  (L,3/7)  (-1i7,1/7) (L) (1,-4) (0,0
L3 (LUS)  (1/3,-1/3) (-3/5,1)  (1,3/5) (1/5,%1/5) (3/7,-1)  (-3/7,1) (47,217 [8Y) (-M,1) 0,0}
W3, Qs arsum (1,375 15,1 (/5,15 C3/h-n G amyn M G (00
’ M = 0,59616753
N=i2
Ps5 Pa7 Pl ) paoe
= -
‘ ‘ % %
h 4
¥
(~1,-1} (1,0}  (-1/2,0) (1,1} (1,0}  (-1/5,0) (-1,-1}  (-1,0)  (-1/4,0) (-1,r1)  (~1,0)  (-M,0)
G101 @) -2 <Ly O (0,-1/3) (LY (001 (0,-1)e) (L1 (O (0,
(e Qe (2,0 a4, -l (0,1 (L, 0 . (1s,0) [ S W M )
wn.. oy @2 [F M W T V0 e I I I CR V] [ SR %) S (X"
M w 0,39332006
N=I3
P25 P=7 .. P=9 = Proo _
X
¥ -«
% %
b
1) (1,0 . (-1/2,0) GlLeD (L0 (<1/3,0) (L1} (4,0 (12,0 1) (1,0} (M0
Y Gm o WA oy’ @ @, CLY @) (0,072 LY 0°D (0,00
4 o (2,0 [E I W M (VIR ) 0,23 (o) (172,0) 0,3 On
wn (0,1}  (0,1/2) a,n 1 (0,13 [€9)] ©0,1)  (0,1/2) .1 0 M0
0,0) (8,9 10,0} {0,0)
M = 0,53943891
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Cyp = (4 +uH/4(2 - ¥DH?,

Chy = Cop = (4 = 42 + M4y a2 - M2)2,
Cgs = 1/4.

It is obvious that C,, and C,, are greater than or equal to Cyy and 055

11
in [0, 1]. By examining the equations for Cy, and C,, we see that the

minimax value occurs at the intersection of Ciq1 and C Therefore by

44°

setting C11 =C,,, we obtain an equation of the form M8 + M4 +4M2 - 4 =0

44
which has a solution in [0,1] which is M = (0.7666767)1/2 = 0.87560077.

If P = 1001, then M would be 63 divisions from the edge of the region.

Theorem 4.2 If N =9, P is odd and if the limiting points are (1, 1),
('1: l), (1: "1): ('13 '1)3 (Os 0); (Ms '0)’ (03 M)s ('Hs 0): (0: 'H)’

then the minimax design occurs at M = 0.97062299 as P —> =,

Proof: The same properties for C11 and 044 exist here as in Theorems 4.1.
Therefore by setting C11 = Cnk and solving for the point of intersection,
we obtain an equation of the form 2M8 + M* + 8M2 - 10 = O which has a

solution in [0,1] which is M = (0.942109)1/2 = 0.97962299.

Theorem 4.3 If N = 12, P is odd and if the limiting points are (1, 1),
(1: '1): ("ls 1): ('ls 'l)s (1: 0): ('1: 0): (0: l): (0: '1)3 (Ms 0):
(0, M), (=M, 0), (0, =M), then the minimax design occurs at M = 0.0

as P == o,

Proof: The properties of C;; and C,, are the same as in Theorem 4.1
except for the forms of the equations. Upon obtaining dcll/dM and d044/dn,

we find that Cl and C,, are monotonic increasing functions of M from

1
which we conclude that M = 0.0 is the value which is necessary to

produce the minimax design for 12 points.
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Theorem 4.4 If N = 12, P is even and if the limiting points are (1, 1),
(]-: -l)s ("ls 1)3 ("1: 'l): (M, 0)3 (Os M)s (Hs O)a (0: M)s ('Hs O)s
(0, -M), (-M, 0), (0, =M), then the minimax design occurs at M = 0.89309748

as P —=> o,

Proof: The same properties for Cll and 044 exist here as in Theorem 4.1.
Therefore by setting 011 = 044 and solving for .the point of interpection,
we obtain an equation of the form M8 + 2M2 - 2 = 0 which has a solution

in [0,1] at M = 0.89309748.

Theorem 4.5 If N = 13, P is odd and if the limiting points are (1, 1),
(]—a '1); ("l: 1):.('..1: "1): (130): ‘.(0’ l)s ('13 '0): (0: 'l): (0: 0),
(0, M), (M, 0), (0, =M), (-M, 0), then the minimax design occurs at

M = 0.89255196 as P—> =,

Proof: The same properties for C;; and C,, exist here as in Theorem (T
By solving for the intersection we obtain an equation of the form

2M8 + M4 + 12M2 4 11 = 0 which has a solution in [0,1] at M = 0.89255196.

4.4 Minimum Generalized Variance Designs as P —> =.

Theorem 4.6 If N =8, P is odd and if the limiting points are (1, 1),
(l.l -1), ("']-: 1)’ ('1: -1): (M: 0)’ (03 M): ("'M.l 0): (0’ 'H): then the

minimum generalized variance design occurs at M = 1 as P=> o,

Proof: 1If the points (1, 1), (1, =1), (-1, 1), (-1, -1), (M, 0), (0, M),
(-M, 0), (0, -M) are chosen, then |(X'X)"" | = [64M*(2 + M2)2(2 - M%)2]"L,
Upon taking the derivative of the determinant with respect to M, we find

that the [(}{'}{)"1 | is a monotonic decreasing function of M and therefore

has a minimum in [0,1] at M = 1.
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Theorem 4.7 If N =9, P is odd and the limiting points are (1, 1),

(19 -1)3 (_1s 1)3 ('1: '1): (Mn 0)’ (0: M), ("Ms 0): (Oa "'H); (0; 0)3

then the minimum generalized variance design occurs at M =1 as P —> o,

Proof: The proof is the same as the proof of Theorem 4.6 with the

exception that |(X'X)"1 | = [eaM*(2 + M*)2(20 - 16M2 + 5M*)]"L,

Theorem 4.8 If N = 12, P is even and if the limiting points are (1, 1),
(1’ -1): ('1s 1)) ("1s '1): ("1: M-): (M: "1); (ls H); (M, l), ("'ls "'M),
(-M, -1), (1, =-M), (-M, 1), then the minimum generalized variance

design occurs at M = 0 as P> o,

~ 3 ~
Proof: The |@'®)™L | =[16°2 + )21 + ¥ (1 - D)™ 46 &
monotonic increasing function of M in [0,1] and therefore attains a

minimum at M = 0,

Theorem 4.9 If N = 12, P is odd and if the limiting points are (1, 1),
(1: '1)3 (‘1: l)a ('l’ '1): (13 O)s (03 1): ('1; 0): (0, "1), (M: M.),
M, -M), (-M, M), (-M, -M), then the minimum generalized variance

design occurs at M = 1 as P = o,

[(512(3 + 2M2)2(l + Mﬁ)(a - M2 4+ 4M4)]‘1 is a

Proof: The [(x'x)'1 |
decreasing function of M in_[O,l] and therefore attains a minimum at

M = 1. The above points produce the minimum generalized variance

design for P = 31, 33, ..., ®. Due to the finiteness of the values of

M, for P=5, 7, ..., 29, the points which produce the optimum are

(1, 1, @, =1, (-1, 1, (-1, -1), (1, M, O, 1), (1, =M), (M; 1),
(-1, M), (M, ~-1), (-1, =M), (~M, ~1), where M is a value close to zero for

each P. For these points |(X'K)-1 | = [163(2 + H2)2(1 + 2M2)(l - M2)4]-1-
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Theorem 4.10 If N = 13, P is odd and if the limiting points are (1, 1),

(13 '1)s (“13 1): ('ls '1): (1: 0): (0: 1): ('13 0)3 (03 '1)3 (03 0):
M, M), (M, -M), (-M, M), (-M, =M), then the minimum generalized variance

design occurs at M =1 as P = =,

Proof: The |(X'X)71 | = [32(3 + 2M2)%(1 + M¥) (58 - 96M? + 72M%)1"] is a
decreasing function of M in [0,1] and therefore the minimum occurs at

M=1as P = o,

4.5 Minimax Characteristic Root Designs as P — ®

Theorem 4.11 If N =8, P is odd and if the limiting points are (1, 1),

(1, -1), (-1, 1), (-1, -1), (M, 0), (O, M), (-M, 0), (O, =M), then the

minimax characteristic root design occurs at M = 0.81649658 as P = =,

Proof: There are six characteristic roots of (X'X)-l which, in this

case, have equations of the form

r. =1/ + 2%),

T.'l 2

r, = 1/4,

r, = /24",

ry = 1/[8 + M* + (32 + 32 + eM* + H8)1/2],
r, = 1/(8 +M* - (32 + 3247 + 8u* + u8)1/27,

Since we desire the minimax of the r;, it is necessary to consider only
r,, a monotonic decreasing function of M, and ro a monotonic increasing
function of M, because they are greater than the other ri in [0,1].

We are looking for the minimum of the maximums which occurs at the inter-
section of r, with ro and the value of M at this intersection is

M = 0.81649658 as P — w,
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Theorem 4.12 If N= 9, P is odd and if the limiting points are (1, 1),

(13 -1)’ ('1’ 1): ('1, 'l)s (Os 0): (M, 0); (0, M)s ('M: 0): (0’ -M);
then the minimax characteristic root design occurs at M = 0.88673502 as

P = o,

Proof: The proof is ‘similar to that for Theorem 4.11 with the exception

that rs and £y = [17 + 2" + (129 + l12am? + 28M* + 4m8)1/2]"L,

Theorem 4.13 If N = 12, P is even and if the limiting points are (1, M),
(M: 1): (1’ 'M): (-M, l): (M, -1): ('13 H)s (-l: 'M)’ ('Ms '1)3 (0: 0):
(o, 0), (0, 0), (0, 0), then the minimax characteristic root design

occurs at M = 0.59616753 as P — =,

Proof: The proof is similar to that for Theorem 4.11 with the exception

2 4 - 6

that ry = 1/8M2 and rs, rg = {204 + 2" + M' + (12 + 8M2 + 8M" + 4N

+u8y1/293-1,

Theorem 4.14 If N = 12, P is odd and if the limiting points are (1, 1),

(l: 'l): ('13 1): (“1: '1): (1: 0): (0: 1)3 ('l’ 0)3 (D’ 'l): (M: 0):
(0, M), (-M, 0), (0, =M), then the minimax characteristic root design

occurs at M = 0.39332005 as P = =,

Proof: The proof is similar to that for Theorem 4.1l with the exception

that g, re = [11 + M + (73 + 48M% + 6M* + udyt/2)-1,

Theorem 4.15 If N = 13, P is odd and if .the limiting points are (1, 1),

(1; 'l)s ("13:1L ('l} 'l)a (0: 0): (1: 0): (Os l)s ('l’ D)s (Oa 'l):
(M, 0), (0, M), (-M, 0), (0, =M), then the minimax characteristic root

design occurs at M = 0.53943890 as P —> o=,
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Proof: The proof is similar to that for Theorem 4.11,

In each of the preceeding theorems we have solved for a value of
M. To relate the value of M to the partitions of the region -1 < x; <1
and to letting P —> @, we can use the relationship (P + 1 - 2i)/(P - 1)
= M where i is the number of partitions from the boundary of the region.
The values for M are discrete for any value of P<®, As P—> o, M
becomes continuous and enables us to determine the limiting values for
each of the optimal designs.,

It should be noted that for 12-point designs we obtain different
limiting designs depending on whether P is odd or even as P —> =, This
happens because there are different designs available for even and odd
P. When comparing the 12-point limiting design for odd P with the
12-point limiting design for even P, we find that the 12=-point limiting
design for odd P satisfies the three optimality criteria we have heen
discussing.

Let us abbreviate minimax, minimum generalized variance and minimax
characteristic root as MM, MGV and MCR, respectively, for the following
discussion.

Some interesting results were observed for these optimality criteria.
The four corner points occurred in every optimal design with exception
of six l2-point designs where P was even. The remaining points varied
according to the value of N and the optimality criteria used. For the
limiting designs the following results were observed.

For N =8 and N = 9, the MM and MCR designs were very similar,
having four corner points and four points:having the shape of a diamond

with a radius .approximately equal to one.
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-For N.= 12 and an. odd P, the MM design had four corner points, four
points which had the shape of a diamond with a radius equal to one and
four center points. The MGV design had two points at each of the four
corners and four points which had the shape of a diamond with a radius
equal to one., The MCR design had four corner points, four.points wmhich
had the shape of a diamond with a radius.equal to one. and four points
in a diamond shape with a radius approximately equal to 0.4,

For N = 13, the results were very similar to the‘results for N = 12
except that the center point was added.

All the MGV designs had the same points; however, some were
replicated more than ethers. depending upon N. The points were all on
the edge of the region of experimentation with .the exception of the
center point when N was odd.

It should be noted that the rotatable central compasite design
(9-point design with P = 5) did not .satisfy any of the optimality

criteria.



CHAPTER V
- AVERAGE VARIANCE_OF THE ESTIMATED RESPONSE

In this chapter we will be concerned'with-défermining;the average
variance of the estimated response-?(ul, u2),.using symmetrical designs,
.in the two-dimensional case, for any distribution of the total probability
mass to the rqgion of interest; namely, the sfuare region

u, < 1; i =1, 2];,

‘R = [(ug, uy) ' -1 <u,

and the circular region

2
2

In either case, assume the quadratic model

- : » 2 '
"Rb = [(ul, u2)| ur + u _S.l].

2 2
y = EO +_le1 +v82x2 +,L33x1 +‘B4X1x2 +.65x2 + €.

Folks (1) determined the avéfage variance of ?(ul, uz) under the
assumptions of a. linear model and that every point in the region of
interest was assigned equal pfobability mass with no restrictions as to
where the points were to be placed. Gillett (3):determined the a&erage
variance of~§(ul, uz) under the assumption of a linear model and of any
distribution of the total probability mass to n different subregions of
interest with no restriction as to where the points Qere to.be.piaced°

Let us now determine the formulae for the average wvariance of

§(ul, u2) in the regions R and Re.

31
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5.1 Average Variance of §(ul, u2) in R and Rc

Theorem 5.1 If the total probability mass M = 1 is assigned to. the n

subregions

R = ca. <u < a: is= -
. [(ul, u2) a, < uy < a;; ] 1, 2] R, _

i 1

(i =1, 2, ..., n; RO =9, a5 = 0), of the region R, then the average

variance of §(ul, u2) over R is given by

~ A

n .
ave var §(u1, u2) = var 8_ + iélMi {(1/3)Cvar él + var B

0 2

~ ~ 2 2 N BN
+ 4 : :
cov (BO’ 53)](81 + ai-l) + [(1/5)(var 53 + var BS)
' oA s 2 Lo 22 4
4+ (1/9) (var B4 + 2 cov (33, 55))][81 + aja; + ai-lj}’
. V—l e | n
where‘Mi denotes the probability mass assigned to Ri and iEIMi = 1.

Proof: Let

2 2
Ai = (Zai) - (Zai_l)
be the area of Ri i=1,2, ..., n a, = 0), then fi(ul’ uz) = Ki’ where
-Ki = Mli/Ai if (ul, u2) €Ri

=0 otherwise
defines the value of the density function fi at each (uls u2) in R. Thus
.a, a
~ _ g i i A
ave var y(ul, u2) = i=l[J I var y(ul, u2)fi(u1’ uz)du1 du2

-a,-a,
1 1

a a
j-lp i~1 ~r
- j 1 j L var y(ul, u2)fi(ul’ uz)du1 du2]
-a,

_ai-l i-1
n a, a, N ~ N ~ ~
~ 121 2 2 4 2 2
= iélKi{fa {a [var BO + uj var Bl + u, var BZ + u, var 33 + uju, Var.»B4
i i
+ u4 var é + 2u2 coQ (é é )y + 2u2 cov (é é )
2 5 1 0> 73 2 0° 75
2 2 A A i-1p%1-1 - -
+ 2ulg2 cov (BS’ BS)]dul dqz - I j (var BO + uy var Bl
-a, .-a
i-1 "i-1
2 a4 22 & 4 - s
+ u, var 82 +ug var-B3 + ujuj var 54 + u, var 55 + 2u1 cov (Bo, 53)
+ 2u2 cov (é é ) + 2u2u2 cov (é é Yldu. du }'
2 0’ "5 172 3> 75 1 2°°
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For the sake of simplicity let

"A = var B

t

B:= cov (éo’ 83)- cov (éo"éS)

C = var‘Bl = var éz

D = var B4 = var‘B5

E = cov (B3, Bs)

. F = var 84-
Thus
¥( y = S x.{[2a + (2/3)(2B + C)( 3y, + a 3)
ave var ylups 4y = j=1 L 838y T 8% i2
5 5 _ 33 _ |27
+ (2/5) D (aiu2 +~aiu2) + (4/9)(2E + F) aiu2~] o
u = 3.
"2 i
[2A + (2/3)(2B + C) ;> + 3-) +(2/5) D ('5 +- >
-[2Aa;u, ( ( (aiu2 ulpz « aiuz aiuz)
_ u, =a,
+ (4/9) (2E + F) aiug] 2 il
B2 T R
n Mi 2 . 4 6
= T —— - {4Aal + (8/3)(2B + C)a; + [(8/5). D + (4/9)(2E + F)]a;
i=1 4(a% - a,_ % e i

~[4ha? | + (8/3)(28 + ©) af +[(8/5) D + (4/9) (28 + F)]al_ 1)

n
z

Mi{A + (2/3)(2B + C)(as + &y _1) +(2/5) D + (1/9)(2E + F)) (s}
i=1

+-agag

4
i%ia1 +'ai-1)}

~ n » ~ A
ave var-§(u;, u,) = var By + .Z M;{(1/3) (4 cov (B,, B3)
i=1

+ var*é1 + varvéz)(ai +-a§_1) +~[(1/5)(varfé3 +.var 65)

+ (1/9)(2 cov (B3, B) + var@Xa} + éfag-l + Iail)}-

This completes the proof.
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Theorem 5.2 If the total probability mass M = 1 is assigned to the n

subregions

2

= 2 : 2
Ri.— [(ul, uz) | ai_1_5~u1 +u

2

i=1, 2, ..., n; a = 0), of the region Res then the average variance

< a?l,

of §(u1, uz) over R, is given by

).

ave var'§r(u1 u,) = var Bo+ (1/2)(2 cov (B,, B3) + var By

n ~ A ~
T My (af + af ) + (1/24)(6 var By + 2 cov (B3, Bs)
i=1 -

~ n
+ var B,) I M;(a
i=1

22 4
+a’ +
aa, ; ta )

4

i

n
where M; denotes the probability mass assigned to Ry and I M, = 1.
i=1

Proof: ‘Let
2 2
Ai —.ﬂ(ai - ai'_1
be the area of Ri’ then fi(ui’ u2) = Ki’

where

~
]

Mﬁ/Ai if (ul,.uz)eRi
=0 otherwise

is the denéity function of (ul, u2) in Ré' Thus

. Nl
1
V)

’ . n ' ai al u2 . ‘
ave var ‘y(u;, uy) = ;21"4LI0'I0 £,Cups uz) var y(up, u,)duy du,
1=
ai/\/a]?.-l - u% R .
-.fo;fo fi(ul, uy) var-y(u;, u,)duy dgé]
JZo 2 _. , |
n aNa; - u2;[ o 9 Ay Ay .
= iEl 4Ki{fozfo var BO +u; var Bl + u, var BZ +u, var BB

2 a 4 o : A -
1 g var By + u, var B, +«2u% cov (BO, 53) + 2u§ cov (Bys Bs)
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2 2
aNa~ =-u

. A ~ . i - ~ 2 -~
+ Zu%ug cov (83,.55)]du1 duy = fo'f i-1 2 [var-Bo + ug var.Bl

2 A 4 - -2
+ uj var Bz + u; var B3 + uy

A .2 2 "
5 u% var: 64 + ug var-B5 +~2ul cov (BO’ 83)

2.2

+ 2ﬁ2 cov (BO, BS) + 2u 2

5 cov (§3, és)]dul duz].

Let A, B, C, D, E, F denote the same quantities as in Theorem.5.1 and

make the following transformation to polar coordinates. Let

u, =r cos ©

u, = r sin €, then

: aui/ar -3uq /36

cos B - r sin B
J =

du,/Ar du,/36

gin 8 r cos B

Then we have

ave var §r(ulP u2) = Z K: {j I 3 (A + (2B + C)r + Dr (cos46 + sin. 9)

i=1 l-l

+ (2E + F) r4 c0526 sih26] r dr d6}

n ; /
9 2 2 2 4 4
izl[Mi/w(ai - ag Im{ate; - a )+ (1/2)(2B + O (ay - a;_y)

+ (1/26) (ag = a8 _ ) (6D + 2E + F))

n
= A+ (1/2)(2B +C) T M (a + a ) + (1/24)(6D + 2E + F)-
i=1
I
2 2 4
lglM (a, +- aja; g + ai—l)

ave varv§(yl, u,) = var éo + (1/2)[2 cov (éo’A§3)

~ I . .9 " ~ ~
+ var Bl] iglMi(a% + a%_l) + (1/24) (6 var 63 + 2 cov (83, BS)

I .
~ 4 2 2 4

+ : XL M. (a; + a;a + .

var 84)’151 l(al aiai-l ai-l)

This completes the proof.
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5.2 Designs Which Have Minimum Ave Var ?(ul, up) in R and R,

The symmetrical designs which have the minimum ave var ?(ul, u2)

= 0 and M; = 1 were determined for N = 8,

in R and R, with a; = 1, a,

9, 12, 13y BPrai§onds s moniOvand  Nie A2 Pl 600 e, 50,5040, There
are too many for the space available here; therefore the optimal designs
for which N= 8, 9, 12, 13, P=5, 7, 9, ® and N=12, P = 4, 6, 8, »,
were chosen to be exhibited in Tables VII and VIII.

To obtain the optimal designs for a fixed N as P —> ®, we need the

following theorems.

5.3 Minimum Average Variance Designs in R as P—> =

Theorem 5.3 If N = 8, P is odd and if the limiting points are (1, 1),
(1’ '1): ('13 1)3 ('1: 'l)s (H, 0): (0: M): ("H: O): (0’ -M): then the
design which has the minimum average variance of ?(ul, u2) in R occurs

at M = 0.80401 as P— o,

Proof: If we use the above points, the

ave var §(u;, uy) = (4 + M¥)/4(2 - M%) + (2/3)[ - (2 + M2)/2(2 - M?)2

+ 1/(4 + 2M2)] + (2/5) (4 + &M% + My et 2 - D2 + (/9o

+ a2 - ay/* 2 - 22 + 1/4].
The value of M which minimizes this equation in [0,1] is M = 0.80401, found
by taking the derivative of the above €quation and solving for the roots of

the derivative in [0,1].

Theorem 5.4 If N =9, P is odd and if the limiting points are (1, 1),
(13 '1)3 (‘13 1)3 ('1: "l)s (0: 0)3 (Ms 0): (09 M): ('H: 0): (9: ‘M):
then the design which has the minimum ave var §(u1, uy) in R occurs at

M = 0.910001.



TABLE Vil
-
MINIMUM AVE VAR Y(u,up) DESIGNS IN R FOR SPECIFIED N AND p2
N=8
PsS P=7 P=9 + Paee
3
%
I i
(=1,-1) * (-1,0)
-1, -1, (-1,-1) -/3,0) i g e
e G ca g o
1,41) {1,0) 1,1 (2/3,0) e S0 R '
Ly 0.1 a.n ©.2/3) wn (0,374) an {000
LEX
N=9
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L0 08 L0 L) 00 (1,0 iy @ o I
(=1,1) 0,-1) (-1, (0,-1) 1,-1) .0 ,-1) m:,}
(1,=1) (1,0 (1= (1,0 1,1) (0,1) .0 (0.0
1,1) 9,1} (1,1) (0,1) M = 0,910001
N®12
. P 4‘ P=6 P=8 Pues
1 b 4
3
1 X
X
By Cus i
AR D Gl (3/5,0) (-3/5,-1) (~1/5,-1/5) D CULST T, HEN
gl sy Qesln Clein Cusi/ (o’ Gam Cam T e e
”’i;,g Y =) (15,-1/5) (Lel)  (USM (/7,51 (1,-1) 060 sv
n- 3) =1y (IJ!JW (1,3/5)  (-1,%/5) (1/5,1/%) .0 /U7 (87,7 i ™0} (0.4
M = 0.8053
N=I2
- -
P Pg? P9 P
I I
-I-—I——T—-lt 3 L
* K- e
L, (1,8 (12,0 (L) (LY (V50 (-1,-1) (1,00 (1/4,0) CL 0 (o,
G g e T T G e e 88 oy o
y " ¥ s p - 1,51 R "
n o (-l mn @ 0. an e e &y Ge on
N*I3
PsS PaT P9 Pre
*
I—.——-ﬁ——*—l{ ¥—X—K
- * ¥
1= (1,0 (13,0 Ll (1,0 (-1/3,0) (1= (1,00 (-1/4,0) Y | g .
(LD 00D @D CLY O (0,103 LD @) (0,-1/4) Gy &8 88
i b B0 e i g ¥ i g
i @ # o A . o A an En o0
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TABLE vl
MINIMUM AVE VAR ihll.uz) DESIGNS IN Rc FOR SPECIFIED N AND Pz
N*B
Pys pP=7 pe9 P e
4 X
. ] ¥
r— - % —x x
’ '_—.-—
T 3

=1/2,=1/1) y=1, =1,=1) =2/3, ol = =3/4, =1,=1 =M, 0)
Cian (o cin (o2l iy o9 oy 0,)
01/2,-1/2) (0,1) (1,-1) (2/3,0) (1,-1) (3/4,0) 1,21) 0,0
(1/2,1/2) (1,0 (1,1 (9,2/3) (1 0,3/4) w1 (9,5

M = 0,8000001
N=9
p$3 PeT P=9 Prw
L 1
—X Bl
i x
X X ;

(el (0,0 (1,00 (-L=1) (0,0 (-1,0) SLel) (0,0 (-3/4,0) -1,-1) (0,00  (-4,0)

(=1, (0,1} (=1,1) (-0-1) =1,1) -3/4) (=1, (0,4
1,-1) (1,0) {1,-1) (1,0) 1,-1) (374,00 (,o1) 04,00
1,1) e, 1,5 (e,1) 1,1) (0,3/4) (.1 (o,M)

M = 0,9000001
e P=8 P
- - - =oe
LT . VA ] ¥ X % %
X K
[ I—I
l—_—_—_‘.——.—-—“
X
- *- 13 +
(=1/3,-1/3) t-m 1) (-35,-1) (-1/5,-1/5) =MT,1) (=3/7,-1) (-1/7,-1/T) 1) (M,-1) (0,00
G e Gis Gy (g Gloin Gt G (g G
arsum s Cuam s an Cum e, am Gl (00
M = 0,53001
N"I2
PT? P=9 Pge
1 *
*
%* *

(—l =1)  (=1,0) -1/2, (-L-1) (1,00  (-1/3,00 -1,-1 -1, ~1/4,0; ol =l -1,0 0,0
= by el B &2 o o iy A8 43
e = s 1,41 5 4 - . g
gy &9 tmﬂ an ey e by o S oy Oy o

N=I3
5 Ps7 P29 Pre
1

(1D (-1,0) 12,0 w‘n (=1/3,0) *

o (=1 » =173, (=1,=1) =1,0) =L/4, (=1,=1) (=1,0) (o,
-1,1) 1) -1/2) Qe T s o @ 6 oo
1,-1} i ) a0 1/3,00 (1) (1,0) (374,00 -1 (1,0 (0,0
1,1) ,1/2) ©,1 @19 Y] 01 (0,1/4) (1,1 0,1 (0,0

0,0 0,0 0,0) (0,0)
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Proof: The proof is similar to that for Theorem 5.3.

Theorem 5.5 If N = 12, P is even and if the limiting points are (1, 1),
(1: "1): ('13 l)’ ('1: "1): (M’ 0)9 (H: 0): (0, M)’ (0: M).! ("'H: 0)3
(-M, 0), (0, -M), (0, -M), then the design which has the minimum

ave var §(u1, u2) in R occurs at M = ,8033 as P — .
Proof: The proof is similar to that for Theorem 5.3.

Theorem 5.6 If N = 12, P is odd and if the limiting points are (1, 1),
(ls ‘1)) (“1: l): ('l: '1)3 (13 0): (0: 1), ('13 0): (0: '1) (Ms O):
(0, M), (M, 0), (0, M), then the design which has the minimum

ave var §(u1, uz) in R occurs at M = 0 as P — «,
Proof: The proof is similar to the proof of Theorem 5.3.

Theorem 5,7 If N = 13, P is odd and if the limiting points are (1, 1),
(13 —1): ('1: 1); (‘11 '1)s (ls 0): (0: 1): ('13 0), (0: “1)! (Os 0)3
M, 0), (0, M), (-M, 0), (0, =M), then the design which has the minimum

ave var y(uj, u,) in R occurs at M = 0 as P—> .
Proof: The proof is similar to the proof of Theorem 5.3.

5.4 Minimum Average Variance Designs in R, as P—>

Theorem 5.8 If N = 8, P is odd and if the limiting points are (1, 1),
(1, -1), (=1, 1), (-1, -1), (M, 0), (O, M), (-M, 0), (O, -M), then the
design which has the minimum ave var §(u1, u2) is R, occurs at

M = .8000001 as P — =,
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Proof: If we use the above points, the

ave var §(u;, u,) = (4 + M /42 - w2 + W[ - @ +MD)/2(2 - u2)2

+1/2¢2 + M2)] + (1/26)[3¢ + M2 + My a2 - M2)?

+ (% + 4M2 - 4yt 2 - M2)2 4+ 1/4].

The value of M which minimizes this equation in [Q,1] is M = 0.8000001,
found by taking the derivative of the above equation- and solving for the

roots of the derivative in [0,1].

Theorem 5.9 If N =9, P is odd and if the limiting points are (1, 1),
(l, “1): ('1: 1), ('1, '1), (0, 0), (M, 0): (0, M): ('M, 0): (0, 'M):
then the design which has the minimum ave var ?(ul, u2) in RC occurs at

M = 0.900000L as P —=> =,
Proof: The proof is similar to the proof of Theorem 5.8.

Theorem 5.10 If N =12, P is even and if the limiting points are (1, M),

(M, 1), (1, "'M), (-M, 1), ("1, M): (M3 -1), ('1, "M)’ ("M’ "1)’ (0, O),
(o, 0), (0, 0), (0, 0), then the design which has the minimum :

éVe.yar.§(ui,”q2)viancroccurs at M = 0,53001 as P —=> «,
.Proof: The proof is similar to that for Theorem 5.8.

Theorem 5.11 If N = 12, P is odd and if the limiting points are (1, 1),

(11 '1), (’1, 1), (-1, "1,), (1, 0): (0, 1), ('1, 0), (0: '1), (M, 0):
(0, M), (-M, 0), (0, -M), then the'design which has the minimum : -

ave var §(uy, u,) in R  occurs at M =0 as P —> ,

Proof: The proof is similar to that for Theorem 5.8.
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Theorem 5.12 If N = I3, P is odd .and if the limiting points are (1, 1),
1, -1, 1, 1, (-1, -1, (1, 0), (0, 1), (-1, 0), (0, =1), (0, 0),
M, 0), (0, ™), (-M,. 0), (0, =M), then the design which has the minimum

ave varfﬁ(gi, uz) in~RC occurs at M = 0 as:P — o,
. Proof: The~prooflis similar to that for Theorem 5.8

The value of M for which we have been solving in the preceding
Theorems is related to the partitions of the region =l»5.xi-§ 1.. In
-fact, M =(P + 1 - 2i)/(P - 1) where i is the number of partitions
from the boundary‘of the region.

The design which ihas: the min ave var«?(ﬁl, 92) in R’are very
~similar to those for'Rc-and most closely resemble the minimax char-
‘acteristic root-designs.

To illustrate which of these optimality criteria should be used in

- an experiment, consider the following examples.

Example 5.1: Sﬁppose an. experimenter has two factors, each . with only
five-levels at:which measurements can:be made, and he can only afford
nine observations. - The experimenter should choose an optimality criterion
depending upon his preference, then use the points:indicated for the

optimal design with N'=-9 and P =5,

Example 5.2:  Suppose: an experimenter has two factors which can:be
measured at very small intervals. After choosing the optimality
criterion desired, he could use the limiting design - to specify the values

for the N points:which he could afford.



CHAPTER VI
SUMMARY AND EXTENSIONS

In this thesis symmetrical experimental designs based on the
expansion of Pﬁ as (iglpi)n were defined and studied. For a given
number ‘of design points, N, and a specified Pz, there exists a class
C of symmetrical designs., The designs in C:were compared to determine
-which was optimal using specified optimality criteria and assuming the

model
y(xys x,) = Bg + Byxy + Byxy + Box) + B xyxy + Bsx, + e

In Chapter II the procedure for determining symmetrical. designs
-and the optimality criteria by which these designs were compared was
defined and discussed. Thomas (7)vdeveloped the method of expressing
P" as (izlpi)n, but his investigation was oriented toward fractional
replication and analysis of variance methods. The designs obtained in
this study- are besf used in determining the shape of a response surface
in a specified region.

Gillett (3) compared experimental designs using some of the
criteria used here. However his discussion involved primarily designs:
with only three design points:and assuming a linear model. Chapters

A

IV ‘and V were devoted to the problem of determining the min max var 8

D B

design, min generalized var B design, min max characteristic root of
D D r
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(X'X)-l.design,‘and min ave var'§(ul, uz) design in R. and Ry, and these

designs-for specified N: and Pz are exhibited in Tables: IV, V, VI, VII.
.and VIII,

The method of obtaining symmetrical designs from P" factorials
‘where the design points will be chesen according: to the rule for symmetry
"which is-a generalization of the "rule" defined for the P2 case in
Chapter II will be discussed briefly now. The "pointé" of a design
will be used to estimate the coefficients, Bj, of the quadratic model

n n(n+3)/2

y(x1, Koy ees Xd) =By%g t i§1 Bixi + j§n+1 ijj(xk, xt) + e

where -1 < x5, i=1, 2, ..., n, Xq-

= XX, for all k, t =1, 2, ..., nand k < t.

=1, ¢ ~ N0, o?) and £, Gy %)

First, it is necessary. to extend the rule for symmetry to-any P™.
From Chapter I we find that a p" factorial may be expressed as (igipi)n
We require that'pi.= 2, i.=1, 2, ..., k.- 1, and P, = 1:1f P is odd
or'pk’=’2 if P is even. The-cpi should be partitioned as follows:
91 = (L,B), ¢y = (2,P-1), ..., ? = (P/2, (P+2)/2) if P is even or
= ((P-1)/2) if P is odd. We can now write (iélpi)n-as ({éi-l)/z

2 .
k p/2
for odd P and (igl Zi)n for even P. To determine all the possible

n
2, + 1)

reduced symmetrical designs for a specified PT, we need only to expand

n n n n;n e
(Zp) = % % ... 5 [nt(aingt oo n DIp By el B

i=1 ny 0 n,=0 . nk=0

Each -term of this expansion represents a reduced symmetrical design.



-Exémgle 6.1l:  Consider -a P" factorial where P = 5-and n-= 3, Thus

53 may be expressed. as
3 e 183 _.03 . 3, .3 2 2
.57 = (21 +:2, + "= Zi + 22 +-17 .+ 3 (21x22)v+ 3.(21x1 )
403 (2ox12) + 3 (2%x2.) + 3 (2%1) + 3 (2%%1) + 6 (2.x2.x1)
2 17%27 1 2 "1772 ‘

Thus - there are 10 reduced symmetrical designs for a 53, If we denote
the 5 levels :with the numerals 1, 2, 3, 4, 5, then.mi may ‘be partitioned

Las @ =’(1,5),.¢2 = (2,4),‘and'@3i='(3). Then the points:of the reduced
design obtained from,the~term13(2ixl):are‘(1,1,3), (1,5;3), (5,1,3,),
(5,5,3), (1,3,1), (1,3,5), (5,3,1), (5,3,5), (3,1,1), (3,1,5), (3,5,1),
(3,5,5).

-All possible symmetrical designs can now be obtained by taking
all combinations of reduced symmetrical designs.

There are: several possible extensions of thiéEStudy. ‘Optimal
designs.for’Pn'with-n;> 2 were not examined here because - as n.-increases
the number of symmetrical designs:available.for a particular N becomes

.very large and computing facilities:were not available: to make this
.study. Designs which have-a minimum: average variancey§(u1, g2),in R
. and R, could be studied-with'two or more subregions:and different
distributions of the total: probability mass. . Alse the symmetrical
designs obtained here could be studied froem an: analysis of variance

-viewpoint.
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