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PREFACE 

T):lis paper will be concerned with two special types of metrics, 

namely those which ar~ convex and those which axe strictly convex. . In 

addition, a particular function is investigated, t--he natural delta 
I . 

function. Chapter I is an introductory chapter giving.the definitions 

of the above mentioned metrics •. In Bhapter II the relationship be-

tween the convex metric and the '.strictly convex metric is considereq.. 

Chapter III combines a general result on the structure of continua 

which are strictly convex metrizable with a complete charact"erization 

of such continua in the plane. The material of Chapter IV is devoted 

to the study of similarities and contrasts between the two types of 

metrics. In Chapter V the natural delta function is defined and its 

relationships to other concepts, including that of a strictly convex 

metric, are considered. Chapter VI contains a summary of the results. 

The results in this paper rely heavily upon the material in Whyburn 

!]..fl and in Moore /Ji}. (Numbers in brackets refer to the bibliography 

at the end of the paper). 

I should like to express my sincere appreciation to Olan H. Hamil-

ton for his w:i,se counsel during the preparation of this thesis; to the 

other members of my advisory committee, R. B. Deal, Eugene K. McLachlan, 

John E. Hoffman, and J. D. Parker; to L. Wayne Johnson for his innumer-

able efforts in my behalf; to the National Science Foundation;·· for the 

two·fellowships; and, most of all, to my wife and. children. 
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· CHAPI'ER I 

. INTRODUCTION 

This paper wi~l be devoted to the development of certain properties 

of convex and strictly convex metrics, the nature of spaces which allow 

such metrics, and the relationships between these spaces. In addition, 

the natural delta function will be defined and some of its properties 

investigated. 

A topological space is metrizable if there is a distance function 

D(x,y) such that if x,y, and z are points, then 

(1) · D(x,y) ~·O, the equality holding only if x = y, 

(2) D(x,y) = D(y,x) (symmetry) , 

( 3) D(x,y) S D(x,z) + D(z,y) (triangle condition), 

(4) D(x,y) preserves limit points. 

Menger, in [:9::J, defined the metric D(x,y) to be convex if it has 

the additional property that 

(5) for each pair of points x,y there is a point u such that 

D(x,u) = D(u,y) = D(x,y)/2. 

A subset M of a spa.ce Sis sa.id to have a convex metric (even though S 

may have no metric) if the subspace M of S has a convex metric. 

Menger proved in /:9:} that a compact continuum is locally con­

nected if it ha.s a. convex metric; showed that Mis convexifiable if it 

possesses a metric D such that for each point p of M arid eac11 positive 
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number e; _there is an open subset R of M containing p such that each point 

of R can be joined in M top by a rectifiable arc of length (under D) 

less thane;; and raised the question· a.s to whether or not a compact, 

locally connected continuum M can be assigned a conve:e metric. This 

question was answered in the affirmative by Bing and Moise in £:4.:J and 

f:10J,_respectively, but not until after twenty years had elapsed and 

a number of attempts had been made by others. In [BJ, Kuratowski and 

Whyburn proved that M has a convex metric if each of its cyclic ele­

ments does. Beer considered in ~l:} the case where Mis one-dimen­

sional. Harrold, in [7], found M to be convexifiable if it has the 

additional property of' being a plane continuum with only a finite num-

ber of complementary domains. 

It was the above mentioned results which led this author to consider 

a metric which, in addition to being a convex metric, has the property 

that the point u of (5) is unique. 

Definition 1.1.. The metric D(x,y) is said to be a. strictly con--
vex metric if it has the additional property that 

(5') for eac_h pair of points x,y there is a unique point u 

such that D(x,u) = D(u,y) = D(x,y)/2. 

Definition 1.2. Let S be a topological space with topology T. 

Then Sis said to be c-metrizable if and only if it is possible to de~ 

fine a convex metric which will induce the topology T. Furthermore, S 

is said to be sc-metrizable if and only if it is possible to define a 

strictly convex metric which will induce the topology T. 

In Chapter II the basic relationship between the concepts of convex 
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metric and strictly convex metric are discussed. It is shown that the 

requirement (5 1 ) is equivalent to the requirement that each pair o:f 

pqints x,y determines a unique arc whose length under Dis equal to 

D(x,y). Using this fact a strictly convex metric is characterized as a 

convex metric such that ea.ch pair of points determines a unique arc of 

length equal to the distance between the points •. In this discussion the 

notion of arc length in an arbitrary met;ric space ~s required and is ob-

tained in a manner analogous to that used in E, by using a partition 
n 

of the arc and defining for the partition P = fx 0 ,x1 ,···,xn} the number 

,r(P) :.: ~ D(x. 1 ,x.); i = 1,2,•··,n, where Dis the metric. 
1- · 1 

The number 

,r(P) then plays the role of the length of the inscribed polygon in 

E. The notions of norm, refinement, etc., all follow easi.ly and the 
n 

length of the arc A, from x to x , is defined by sup (,r(P): P E @(A)l o n 

where 6' (A) is the collection of all partitions of A. If this number 

exists and is finite, A is rectifiable and the length of A is denoted. by 

t (A). 

Chapter III is concerned with the study of plane conti.nua which are 

sc-metrizable. It is first shown that no compact conti.nuum which is 

sc-metrizable can separate the plane. The primary result of the chapter 

is that any compact and locally connected continuum which can be re-

presented as the countable union of sc-metrizable continua satisfying 

certain conditions has a strictly convex metric which preserves the 

metrics on each of the countable collection of continua. It is shown 

that any locally connected and point-like plane continuum can be so ex-

pressed and is therefore sc-metrizable. The sc-metrizable continua in 

the plane are then characterized. Some of the results can easily be 
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seen to be adaptable to a more general setting. 

Chapter IV is devoted to a comparison of some of the properties of 

c-metrizable and sc-metrizable continua. The properties of being c­

metrizable and sc-metrizable are seen to be topological properties. 

Every sc-metrizable continuum is unicoherent. An example is given of a 

convex metric on a closed 2-cell which is not a strictly convex metric. 

The Cartesian product of two c-metrizable continua is shown to be 

c-metrizable. The notion of D-convex hull is defined in a manner which 

is analogous to the concept in a linear space. 

In Chapter V the natural delta function is defined; is a non-nega­

tive, non-decreasing and left-continuous function which is bounded and 

therefore, Riemann integrable.· The natural delta function is a mapping 

of C(K) X R+ into R, where C(K) is the collection of continuous functions 

on a compact, metric continuum K. The integral of the delta function 

is a uniformly continuous function from C(K) into R, where C(K) has the 

topology of uniform convergence. A necessary and sufficient condition 

that the delta function be continuous is stated. The right-hand deri­

vative of the delta function at zero is shown to be a determining factor 

relative to Lipschitz conditions, complex functions and periodic points. 

Finally., the natural delta function is determined to be super-additive 

when the set K has a strictly convex metric. 



CRAP.rER Il 

RELATIONSHIP BETWEEN CONVEX METRICS 

AND STRICTLY CONVEX METRICS 

The purpose of this chapter is to relate the concept of a convex 

metric with that of the strictly convex metric. It will be shown that a 

strictly convex metric is a qonvex metric for which each pair of points 

determines a unique a.re whose length is given by the distance between the 

points under that metric. 

Lemma 2.1. Let M be a compact continuum witb a convex metric D 

and having the property that if x and ya.re any two points of M, there· 

exists a unique arc [x,y] between x and y such that l[x,y] = D(x,y). 

Then if z is any point of [x,y], D(x,z) + D(z,y) = D(x,y). 

· Proof. Let z be a. point of [x,y] distinct from x and y. By the 

triangle inequality., D(x,z) + D(z,y) 2: D(x,y). Since [x,y] is an a.re, 

[x,y] - z = H UK where H is an arc from x to z and K is an a.re x y x ' y 

from z to Y• Then Hx and Ky a.re reqtifiable with the metric D and 

l (H ) + l(K ) = t [x:,y]. ·. By hypothesis, i!thei'e'>exist unique arcs fx',zl x y 

and [z;y] such that H±,,z] ·= D(x,z) a.ndi [z,y] = D(z,y). Thus 

D(x,z) + D(z,y) ~ D(x.,y) a.nd the equality is established. 

Theorem 2.1. Let M be a. compact continuum satisfying the hypothesis 

of Lemma 2.1. Tllen the metric D of Lemma 2.1 is a. strictly convex 
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metric for M. 

Proof. Assume Dis notastrictly convex metric. There exist 

points x,y,z and v, all distinct, such that 

D(x,z) = D(z,y) = D(x,v) = D(v,y) = D(x,y)/2. 

Without loss of generality, z can be taken in [x,y], since there is a 

point z in [x,y] such that D(x,z) = D(x,y)/2, and from Lemma 2.1, 

D(z,y) = D(x,y) - D(x,z) = D(x,y) - D(x,y)/2 = D(x,y)/2. 

6 

Now v does not lie on [x,y], for if it does, one of the points z, v 

must precede the other in the order :from x toy. Suppose z precedes v. 

Then D(x,v).::: D(x,z) + D(z,v) and since z /= v and D(x,v) = D(x,z), D(x,v) 

< D(x,z) + D(z,v). There exists a.narc [x,v] such that t[x,v] is less 

than the distance from x to v along (x,y]. 

along [x,y], then f({x,v] U KY)< t[x,y]. 

I:t' K is the arc :from y to v 
y 

If this were the case, 

however, there would exist an arc lying in [x,v] UK and having length 
y 

less than that of [x,y]. 

Since vis not in [x,y] and D(x,v) = D(v,y) = D(x,y)/2, there exists 

a pair o:f' arcs [x,v] and [v,y] such that t [x,v] = D(x,v) and ,ll. [v,y] =< 

D(v,y). Then [x,v] U [v,y] contains an arc A froni x to y and P. (A) can-

not exceed the combined lengths of [x, v] and [ v, y]. This implies, 

however, that t(A).::: D(x,y), contradicting the uniqueness o:t' [x,y]. 

Hence, there must exist a unique point u such that D(x,u);, D(u,y) = 

D(x,y)/2 and that point must lie on [x,y]. 

The following lemma is presented with no pretense of originality. 

It is, instead, an elementary result of the theory of rectifiable curves 

included at this point for the purpose of completeness. 



Lemma. 2.2. Let M be· a metric· space with metric D and let A be a.n 

a.re in M. Let{P1(A)) be a sequence of partitions o:f' A such that 

UP1 (A); 1 e: I, is dense in A. Then if sup [n(Pi)} is finite, A is 

rectifiable and t{A) = sup (,r(P1)J • 

. Proof. The ab9ve result will be established by showing that for 

any partition P = {x0 ,xl' ••• ,xmJ of A, ,r(P) is bounded by sup (,r(Pi)J. 

It should be understood that by the term "sequence of partitionslf, as 

used above, is meant a nested sequence such that for each integer n, 

P (A) is a refinement of P .·1 (A). With tbis understanding and the n n-
hypothesis that UPi(A), i e I, is dense in A, it is clear that for any 

positive real number e there exists an integer N > 0 such that for 
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n > N, and any point xi of P there exists a point y1 of Pn(A) such that 

D(xi,yi) < £/2.m. 

Now let xi-land xi denote any pair of adjacent points of P and 

let y1_1 and yi be the associated points of Pn(A). Application of the 

triangle property then gives 

D(xi-l'xi) :'.S D(xi-l'Yi-1) + D(yi·l'yi) + D{yi,xi) 

< D(yi-l'yi) + £/m, 

from which it follows that 

,r(P) =i D(xi-l~xi); i = 1,2, ••• ,m 

< ~ D(yi-l'yi) + e; i = 1,2, ••• ,m 

:S ,r(Pn) + e; n > N 

:S sup (,r(Pi)J + e; i = 1,2, ••• , 

Since the above statement is true for every e > o, ,r(P) < 

sup f;c(Pi)} and the desired result is obtained. 



Theorem 2.2. LetM be a compact continuum with a strictly convex 

metric D. If x and y are any two distinct po.ints of M, there exists a 

unique arc, [x,y], from x toy such that f [x,~] = D(x,y). 

Proof. By definition there exists a unique point, call it U(l/2) 

in M such that 

D(x,U(l/2)) = D(U(l/2),y) = D(x,y)/2. 

Similarly, there exist unique points U(l/4) and U(3/4) in M such that 

D(x, U(l/4)) == D(U(l/4), U(l/2)) = D(x, U(l/2) )/2 = D(x,y)/4 

and 

D(U(l/2), u(3/4)) = D(U(3/4) ,y) = D(U(l/2) ,y)/2 = D(x,y)/4. 

Applying the triangle property, 

D(U(l/4),y) ~ D(U(l/4),U(l/2)) + D(U(l/2),y) = 3D(x,y)/4. 

Assume D(U(l/4) ,y) < · 3D(x,y)/4, then 

D(x,y) :S D(x,U(l/4)) + D(U(l/4).,y) 

< D(x,y)/4 + 3D(x,y)/4, 

8 

which is a contradiction. Thus, D(U(l/4),y) = 3D(x,y)/4 and, in a simi­

lar manner, D(x,U(3/4)) = 3D(x,y)/4. 

For each integer n, let Pn(x,y) = (U(m/2n)lm = O,l,.u,2n}. 

Assume that for the positive integer n,. P (x,y) has been defined and has 
n 

the property that for any two elements, U(i/2n) and U(j/2n), 

D(U(i/~l),U(j/2n)) = Ii - j,. D(x,y)/2n. 

Now for each integer i; i = o,1, ••• ,2n-l, there exists a unique point q 

in M such that 



By repeating· the argilment···of· the above para.graph, 

D(x,q) = 'I 2i+l j • D(x,y)/2n+l 

and 

D(q,y) = jl - {2i+~)/2nl • .D(x~?) 

'.l'hus, q = u((2i+l)/2n+l) is a.n element of pn+l(x,y) and pn+l(x,y) also 

has the above property.· 
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It is easily seen from the a.bave discussion that for each positive 

integer n, Pn(x,y) o Pn+l(x,y), so that (Pi(x,y): i = 1,2, ••• ,J is a.n 

expanding collectipn of compact sets. Let U represent the union of this 

collection. Then U is a compact set. Assume U is not connected. There 

exists a pair of disjoint closed,, and therefore compact, sets, A and B, 

such that U =AU B. If k > O represents the distance from A to B, there 

exists an integer N such that 1/2N < k. Suppose the point U(l/2N) is in 

A, then for ea.ch integer n < N, the point U(l/2n) is contained in A since 

D(u(l/2N) ,U(l/2n)) · < l/2N. Also, for ea.ch n ~ N, if U(i/2°) is in A,· 

then U((i+l)/2°) is in A for the- sSame reason. Hence, ~ Pn(x,y); n ~ N, 

is contained in A. 
n · n 

Let p = U(m/2 ) be a point of U, where n < N and O < m < 2 • Then 

p = limit U[(2km-l)/2n+k] and since all but a finite number of points of 
k ... m 

U are in A, U is in A and U = A. Thus, the assumptioµ that U is not 

connected is false and U is a. compact continuum. 

Let z be a point.of' Ua.nd D(x,z) = a•D(x,y). There exists a 

sequence 
n · · n 

of points (U(m /2 )}; n e I, such that p = limit U(m /2 ), from 
. _n n ... oo n 
follows that~= limit (m /2n). On the other hand, let a e (O,l) - · n ... cc n 

which it 

be a real number, there exists a '3equence [mn/2°} of real.numbers such 

that a= limit (m /2n) and a point z = limit U(m /2°) which has the 
n ... = n n ... oo n . 
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property that D(x,z) = CX•D(x,y), by the continuity of D. Similarly, 

D(z,y) = (1-a) •D(x,y). 

Suppose there exists a pair of distinct points, z and w, in U such 

that D(x,z) = D(x,w). Then D(z,w) = c > o, and there exist sequences, 
nj ni 

{U(mj/2 ))and{U(mi/2 )) converging to z and w, respectively. There 
. N 

exists an integer N > 0 such that 1/2 < c/4, an integer ni > N such 

ni N 
that D(z;u(mi/2 )) < 1/2 and an integer n. > N such that 

; J , n. N ni nj 
D(w,U(mj/2 J)) < 1/~. Now, both U(mi/2 ) and U(mj/2 ) are points of 

where k = max fi; j}. Hence, 
n. nj N 

D(U(mi/2 i),u(mj/2 )) < 1/2, 

I which is a contradiction. Thus, z = w. 

It follows now that if z is a point of U - {x U yJ, D(x,z) = a> o, 

and 

U - z = {w: D(x,w) < aJ U {w: D(x,w) >a}, 

separated. U is a compact continuum with at most two non-cut points 

and is, therefore, an arc from x toy. 

Since, as established above, for any positive integer n and any 

n positive integer i < 2, 

the collections P (x,y) may be considered as regular partitions of the 
n 

arc U, and for each integer n, ~(P) = ~ D(x,y)/2n; i = 1,2, ••• ,2n, and 
n 

~(P) = D(x,y). It is obvious then, trom Lemma 2.2, that f (U) = D(x,y). 
n 

It remains only to show that U is unique. Assume the contrary, 

that there exists an arc AF U ftom x toy such that f(U) = D(x,y) = f(A). 

Then there exists a point z of U - A. Let D(x,z) = a•D(x,y), there 

exists a point win A, w f z, such that D(x,w) = D(x,z ) . Now D(z,y) f 

D(w,y), thus D(w,y) > D(z,y). Consider the partition P = [x; w; y} 



of A. Then 

•(P) = n(x,w) + D(x,y) > D(x,y) 

and f (A) ~· ,c(P) > D(x,y)., and the assumption .is clearly false. 

The following theorem, the result of Theorem 2.1 and Theorem 2.2, 

gives a characterization of the stTictly· convex metric in relation to 

the convex metric which will prove quite useful in later discussions. 
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Theorem 2.3. Let M be a compact continuum with a convex metric D. 

A necessary and sufficient condition that D be a strictly convex metric 

for Mis that if x and y are any two points of M, there exists a unique 

arc, [x,y], from x to y such that f [x,y] = D[x,y]. 



CHAPrER III 

STRICTLY CONVEX METRICS ON PLANE CONTINUA 

This chapter is devoted to the study of continua in the plane which 

are sc-metrizable. It will be shown in this chapter that the collection 

of plane continua which are sc-metrizable is precisely the collection of 

all locally connected and point-like continua. This result will be 

obtained by establishing first that no compact continuum which is sc­

metrizable can separate the plane. The converse will then be established 

by showing that every locally connected and point-like continuum in the 

plane can be .. J:'epresented as a particular combination of sc-metrizable 

sets and that, in general, such a structure is sc-metrizable. 

Lemma 3.1. Let J be a simple closed curve in the plane, x and y 

two distinct points of J, and Man arc from¥ toy which contains no 

point of the bounded complementary domain of J. Let A1 and A2 be the 

arcs of J such that A1 U A2 = J and A1 n A2 = {x U y}. If U is the un­

bounded complementary domain of MU J, then some point p of J - Mis 

accessible from U. Also, if p is a point of A1, then no point of A2 - M 

is accessible from u. (Figure 1) 

Proof. Let q be a point of U and assume that no point of J - Mis 

accessible from u. Now, M andJ are locally connected and MU J is 

locally connected. Hence, MU J is a compact, locally connected 
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continuum separating the plane. The boundary of u, F(u),, is a locally 

connected continuum by the Terhorst theorem L-13-p 106J, andF(U). c 

13 

(M U J) • Thus, F(U) is a bounded, locally connected continuum separating 

the plane, a.nd every point of F(U) is accessible from U {'"13-:P 112 J. 
Since, by assumption, no point of J - Mis accessible from U, F(U) must 

be a subset of M. Then F(U) contains a simple closed curve L-13-P 107:J. 

However, this is impossible since Mis an arc. Therefore, the assumption 

is false and there must exist a point p of J - M which is accessible 

from U. 

Figure 1. 

Suppose pis a point of A1 a.nd assume there exists a point b of 

A2 - M which is accessible from u. Let pq be an arc from p to q such 

that p = pq n F(U), there exists an arc qb such that qb n F(U) =band 

pq n ci'6 = q. Then pqb is an arc from p to b such that pqb n F(U) = 

[p U bJ. Since p and bare poi~ts of J, there exists an arc pb from b 
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top which·lies, with the exception of-its end points, entirely in the 

bounded complementary domain of J. Thus, pb n pqb = (p U bJ and J?b U pqb 

= J1 is a simple closed curve. 

Now, J1 is a simple closed curve containing p and band must there­

fore, separate x from y. However, J1 contains no point of the arc M, 

which is a contradiction. It follows that there can exist no point b 

in A2 - M which is accessible from U. 

Lemma 3.2. Let Mbe a compact plane continuum with a strictly 

convex metric D. Let J be a simple closed curve in M, and let x0 be a 

point of J such that for every pointy of J - (x} there exists a unique 
. 0 . 

arc, [x ,y], containing no points of the bounded complementary domain I 
0 . 

of J and having length equal to D(x ,y). For each pointy of J - (x0 J 
0 

let E(y) be the unbounded complementary domain of JU [x ,y]. Let A (y) 
. 0 + 

and A_(y) represent, respectively, the positively and negatively orient-

ed arcs of ·J such that A (y) U A (y) = J and A (y) n A (y) = + . - + -

(x0 U yJ (See Figure 2). Let P = {y: ye J - [x0 ], A_(y) contains a 

point of J - [x0 ,y] which is accessible from E(y)}and let N = 

[y: y € J - (x0 }, A+(y) contains a point of J - [x0 ,y] which is 

accessible from E(y)J. Then P and N are nonempty separated sets. 

Proof. From Lemma 3.1, J - f x0 } = N U P. One of the sets, say P, 

must contain an uncountable number of points. Let y be a point of J 
0 

which is a limit point of P distinct from x0 , there exists a sequence 

{Yi} of points of P which converges to y0 • Let ([x0 ,yi]} be the sequence 

of arcs such that f [x ,yi] = D(x ,y.). By the t.heorem of Janiszewski 
0 0 1 

L-12-p 23J, the limiting set L of f[x0 ,yi]} is a compact continuum and 
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Figure 2. 

there exists a subseq-uence ([x0 ,y j ]l which has L as a sequential lim:tt­

ing set L-12-p 24-:J. For each real number a, o <a< 1, there exists a 

unique point U(a) of M such that D(x ,u(a)) =a• D(x ,Y) and 
0 0 0 

D(U(a),y0 ) = (1 - a) • D(x0 ,y0 ). Also, for each j, there exists a 

unique point Uj(a) of M such that D(x0 ,uj(a)) =a• D(x0 ,yj) and 

D(Uj(a),yj) = (1-a) • D(x0 ,yj). If z is a. limit point of the set 

(Uj(a)J, there exists a. subsequence {Uk(a)J converging to z and 

Also, 

D(x0 ,z) = limi~ D(x0 ,Uk(a)) =a• limit D(x ,yk) 
·· K ... w . k ..... CD O 

=a• D(x ,Y) 
0 0 

D(z,y0 ) = i'l~i~ D(Uk(a),yk) = (1-a) • li!i! D(x0 ,yk) 

= (1-a) • D(x ,Y ), 
0 0 

from which it follows that u(a) = z is contained in L. 
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Thus, (x0 ,;}'0 ] is in L_and f [~0 ,y0 ] = 1l'.:~.1'tt (x0 ,YkL, 

~ow, fo~ each in~eger k, F(E(yk)) is a simple closed curve 

L-1,~p 108:J. Let I(yk) represent the bounded complementary domain of 

F(E(yk)) and let q be a point of A+(y0 ) - {x0 U y0 },, There exists an 

integer N >Osuch that for every integer k > N, q is in I(yk)~ Then q 

is either a. point of F(E (y ) ) or is in I (y ) ., In either case q cannot 
0 0 

be point of A (y) - [x ,Y] which is accessible from E(y ), Hence y + 0 0 0 0 0 

is an element of P, and by repetition of the above argument, N and P 

are mutually separatedo 

Finally, it must be established that P and N are non-empty, Assume 

N is empty tµ1d let [Yi} be a sequence of points of J such that yi+l ,is 

in A_(yi) for each i, and the sequence {yiJ converges to x0 o Let {yk} 

be the subsequence, as above, such that [:[x0 ,yk]J has a sequential limit­

ing set, L.' Let p be a point of I and let b be a point of the unbounded 
' 

complementary domain of_ M. Then for each integer k, ((x0 ,yk] U A_(yk)} 

is a simple closed curve separating p from bo The sequential limiting 
0) 

set for ([x0 ,yk] U A_(yk)} is L UkQ1A_(yk), which also separates p from 

b. AJ.so, [[x0 ,yk]} must converge to the point x0 , since ~i!i! D(x0 ,yk) 

= Os But this implies that L - fx0 } separates p from b, which is a 

contradiction. Therefore, N is non-empty and the theorem follows. 

Theorem 3.1. Let M be a compact plane continuum with a strictly 

convex metric D" Then M does not separate the plane. 

Proof. Since M has a strictly convex metric, and therefore a 

convex metric, Mis locally connected. Assume M separates the plane, 

then there exist points p and b which lie in disjoint complementary 
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domains of M. One of t~e points, say p, must lie in a bounded comple-

mentary domain, K, of M. Applying the Terhorst theorem [-13-p 106], 
, ", , ., • .. " • . ' • "' • . I 

F(K) n Mis a compact, locally connected continuum separating p from b. 

Then there exists a simple closed curve, J, lying in F(K) and separating 

. p from b. 

Now let x and y 'be any two distinct points of J, and let D be the 

bounded complementary domain of E2 - J. Suppose there exists an arc A 

! 
in M from x jto y such that An Dis non-empty., If z is a. point of An D, 

then there ~ust exist a last point q in An J such that q precedes z in 

the order from x toy, and a first point v of An J such that z precedes 

v in the order from x toy. The sub-arc rf.zv of A lies in D, with the 

exception of its end points, q and v. The curve J is the union of two 

arcs, Band c, such that B n C = (q U vJ. If J1 =BU rf.zv and 

J2 =CU qzv, then J1 and J2 are simple closed curves having exactly 

the arc qzv in common~ The set E2 - (J1 U J 2 ) has exactly two mutually 

exclusive bounded complementary domains, u1 and u2 , which are bounded by 

J 1 and J2, respectively L-12=p 180:J. Since (J1 U J2) c::: M, Kc: (E2 - M) 

is connected and must lie either in u11 or in u2• If K is in u1, some 

point of C must fail to lie in F(K), and if.K is in u2, some point of B 

must fail to lie in F(K). In either case, a contradiction is obtained 

to the fact that J is a subset of F(K). Hence, every arc in M connecting 

two points of J must lie entirely in M - D. 

Choose x to be a fixed base point in J and for every pointy of 
0 

. J - {x0 } let [x0 .,y] derlote the unique arc in M such that £ [x0 ,y] = 
', ' 

By the preceding paragraph, [x0 ,y] must lie in M - D. In 

addition, each pointy determines, with x, a pair of arcs, A (y) and 
0 + 
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A_(y), such that A+(y) U A_(y) = J and A)y) intersects A_(y) in 

Let A (y) indicate the arc from x toy obtained by proceed-
+ 0 

ing along Jin a counter=clockwise manner, and let A_(y) be the 

remaining arc. By Lemma 3.1, points of one and only one of the sets, 

A+(y) = [x0 iy0 ] and AJy) - [x0 ,y0 ], are accessible from the unbounded 

complementary domain of J' U [x0 ,y]. Let P represent the set of po:;i.nts 

y of J = (x.0 } for which the set A_(y) - [x0 ,y] contains such a point, 

and let N designate the set of points y of J - fx 0 } for which 

Then J - (x} =NU P. 
0 

By 

Lemma 3.2, however, P and N are mutually separated and J is separated 

by x0 , contradicting the assumption that J is a simple closed curve. 

Hencey the assumption that M separates the plane is false. 

The remainder of the chapter will be devoted to the converse of 

the previous theorem. It will be established that every compact, 

locally connected plane continuum which does not separate the plane is 

sc=metrizableo This will be accomplished by showing that every such 

continuum has a particular composition and that, in general, any set so 

composed is sc=metrizable. 

Lemma 3.3. Let M1 ,M2 , ••• ,Mn be a finite collection of non= 

degenerate compact continua. with strictly convex metrics d1 ,d2, ••• ,dn' 

respectively, and having the property that for each integer k > 1, 
k-1 

~ n (i~l M1) consists of a single point, bk-l" Then there exists a 
n 

strictly convex metric Dn on i~lMi which preserves the metric di on 

M, for each integer i. 
:L 

Proofi The above result ca,n easily be established by induction. 



Thus, it is only necessary, in this instance, to prove the statement 

for N = 2. Let~ and M2 be two compact continua with strictly convex 

metrics d1 and d2 ) respectively, and let b = M1 n M2 . Let M = M1 U M2 

and define the function D2 of M X Minto R by: 

D2 (x,y) = d1 (xjy); xjy in Ml 

= d2 (x,y); x,y in M2 

"" d1(x,b) + d2 (b ,y); x in M1, 

Then D2 is a metric on M by the following: 

(i) n2 (x 1 x) = a1 (x,x) ""0 if xis in M1 

~ d2 (x,x) ~ 0 if xis in M2 

y in M0 
(. .. 
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(H) Obviously, D2 (x 1 y) > o. If D2 (x,y) = 0 and x and y both lie 

i.n Ml' then D2 (x,y) = d1 (x,y) = 0 implies x = y. If x and y are both 

elements of M2 J then D2 (x,y) = d2 (x,y) = 0 implies x = y. If xis in M1 

and y in M2 , then D~/x,y) = d1 (x,b) + d2 (b,y) = 0 implies x = b = y. 

(iii) Let x,y and z be any three points of M. If all three lie 

in M1 , or in M2, the triangle property for D2 is obtained from the 

original metric, d1 or d21 whichever the case. Assume then that one of 

the points, say z, :is an element of ME while x and y are in M1, Then 

D2 (x,y) = d1 (xJy)J D2 (x,z) ""'d1 (x,b) + a2(b,z), and D2 (z,y) = 

d1 (y1b) + d2 (b,y). Hence, 

Also; 

(iv) 

D2 (x.iy) "" dl (xiy) 

< d (x b) 
- 1 ' 

::;: D2 (x,z) 

D2 (x 3 z) = d1 (xyb) 

< d ,y) 
- 1 

+ d2(b,y) 

+ D2 (z,y) 

+ d)b,z) 

+ d1 (y,b) + a2 (b,z) 

- D2 (x.iy) + D2 (yJz) 

Let x be a point of Mand [xo} a sequence of distinct points 
J. 
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of' M which converges to x. If xis a point-of-~ - {bJ, there exists an 

integer N > O such that i > N implies xi is a point of l\ - {b}, since 

M1 - {b} is open-in M. Thus, 

limit D2 (x1,x) = +imit d1 (x1,x) = O 
:i .... oo i .... oo 

Similarly, if xis a. point of M2 - {b}, then 

limit n2 (xi,x) = liimit d2 (xi,x) = 0 
i .... co _,QO 

If x ~ b, there exists a subsequence {xjJ of (xi} which lies in only one 

of the sets. In either case, fi~i! D2(xi,b) = O. Thus D2 preserves 

limit points. 

It remains to be shown that the metric D2 is a strictly convex 

metric. This can be accomplished by showing that there exists a unique 

arc [x,y] between the arbitrary points x and y such that f [x,y] = 

D2(x,y). If both points lie in the same subset, M1 or M2, this fact 

is obvious from the original metrics. If xis a point of M1 and y is 

a point of M2, any arc from x toy in M must contain the point b. 

Then the arc [x,y] determined by [x,b]1 + [b,y]2 where t [x,b] = d1 (x,b) 

and t [byy] ,,. d2 (b,y) has the property that t (x,y] = D2 (x,y) and takes 

its uniqueness from the uniqueness. of [x,b] and [b,y]. 

Theorem 3.2. Let {Mi} be a countable collection of nondegenerate 

compact continua satisfyi.ng the following conditions: 

(i) M =UM., where Mis compact and locally connected and 
J. 

M - M has no nondegenerate component, 
n-l 

(ii) For each integer n > li Mn n i~l Mi consists of exactly 
n-1 

one point, bn=l' which separates Mn - f.bn_1J from i~l Mi - fbn_1} in M, 
(iii) Each Mi has a strictly convex metric di such that Mi has 
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diameter· W. under·d 
1 . · i' 

(iv) The series~ Wi converges. 

Then M has a strictly convex metric D which preserves di on Mi for each 

i. 

Proof: By Lemma 3.3, there exists for each positive integer n, 
n 

a strictly convex metric Dn on i~l M1 which preserves di on Mi for 
n 

i = 1,2, ••• ,n. Then fork> n, Dk preserves Dn on i~l Mi. Define a 

function D: M x M .... Ras follows~ 

D(x,y) = limit D (x,y); x,y e M 
n ..... co n 

= limit D(x.,y.); x,y € M; xi,Yi € M, x1 ..... x, y1 ...... Y• 
i_,<X> 1 1 

(1) D(x,y) is well defined on M. 

By Lemma 3.3, there exists, for each pair of points, x and y, of M 

an integer N such that Dk(x,y) 

limit D (x,y) = DN(x,y). 
n ..... co n 

= p (x,y) fork> N. 
n 

Then D(x,y) = 

(2) In M, D(x,y) ~ o, D(x,y) = D(y,x) and D(x,y) = O if and only if 

x = Y• 

These properties all follow from the associated properties on DN 

by the discussion in (1). 

(3) Let x,jY and z be any three points of M. Then D(x,y) < 

D(x,z) + D(z,y). 
N 

As above, there exists an integer N such that (x Uy U zJ c .u1 M .• 
1= 1 

Thus, 

D(x,y) = DN(x,y) ~ DN(x,z) + DN(z,y) = D(x,z) + D(z,y). 
ex, 

In the following discussion let B = i~lbi where {b1J is the collection of 
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points mentioned in (ii) of the hypothesis. 

(4) If xis a point of M - M, then x € B'. 

Let f.xjJ be a sequence of points of M which converges to x and has 

the property that no two poi"nts·of the sequence lie in the same element 

of the collection fMi}• For each j, let Mj be the continuum of (Mi} 

which contains x. and let b. 1 be the point of Mj satisfying (ii). 
J J-

Assume (bj-l} does not converge to x~ Then there exists a subsequence 

(bk_1J which converges to a pointy f x. The sequence(~} has a 

limiting set L which is a compact continuum[l.2-p, 2i]. Also, Lis 

nondegenerate, since [x U yJ c: L. By (i), L contains a point p of 

M - B. Since Mis locally connected, M - Bis locally connected. 

However, M - B cannot be locally connected at p, since every region of 

p c.ontains points of :infinitely ·many of·the (M.J. Thus the assumption 
l. 

that-x ~ B' is false. 

(5) If xis a point of~ and xis a limit point of M - ~, then xis 

a limit point of B'. 

This result can be established by applying the same argument as 

that used in the preceeding statement. 

(6) If xis a point of Mand [x1) and (aiJ are any two sequences in 

M converging to x, then limit D(x1,a1) = o. 
l. -. (X) 

If xis a point of M = M, there exists a collection of compact 

continua (Rk} which closes down on x and has the property that Rk 

intersects no element of the collection (Mi} which has a lower subscript 

thank. For each I\_, let~ and xk be, respectively, the first elements 
00 

of the sequences (aiJ and (xi} which lie in Rk. Then D(~,xk) S, i~k Wi 
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and Ji~.ii D(a. ,xk) = o, since I: W. converges. 
R ~ ~ K i=l l 

Thus iimit D(x.,a.) = o. 
l .... (X) l l 

If xis a point of M, let I\ be the set of lowest subscript which 

contains x.· If xis not a limit point of M - t\_, then all but a finite 

number of points of the sequences, [x11 and {ai}, must lie int\_• Then 
k 

since Dk is a metric on i~l Mi, ti~i~ D(x1,ai) = Ii~i! Dk(xi,ai) = O. 

If xis a limit point of M = M, then each of the sequences, {x.J and 
l 

{a.1 }, must contain points of infinitely many of the elements of the 

collection (Mi}. Now, by repetition of the argument of the preceeding 

paragraph, with the exception that the Rj intersects no point of the 

collection fMi) of lower subscript than j, other than I\, it can be 

established that limit D(x.ja.) = o. 
i...,co l 1 

(7) D(x,y) is well defined on M. 

Let x and y be any two points of M, and let [xi}, (ai} and [Yi} 

be sequences in 

converges toy. 

M such that fx1J and [a1} converge to x, 

For each integer i, D(x.,y.) < D(xi,a.) 
1 1 - l. 

by the triangle property for M. Then 

while fy.} .. l 

+ D(a. ,y.) 
l l 

+imit D(x.,y.) < limit D(x.,a1 ) + +imit D(a.,y.), 
1....,00 l J. -1 .... 00 l l_,C::0 l l 

and by (6) limit D(x. 7 a1) = o. Hence +imit D(x. ,y.) < :j.imit D(ai,y.). 
· i _. co l. 1 -+ c::o 1 1 -, J. -+ co l 

By reversing the roles of a. and x., limit D(a.,y.) < +imit D(x. 1 y.). 
J. 1 i .... lXl l l -i-co l 1 

Therefore limit D(x. ,Y.) 
1....,00 1. 1 

= iimit D(a.,y.) and the value D(x,y) is shown 
1_.00 1, 1 

to be independent of the choice of sequence. 

(8) In i, D(x,y) > 0 and D(x,y) = D(y,x) 

This is an obvious result of the preceding discussion. 

(9) For any three points x 7 y and z of M, D(x,y):: D(x,z) + D(z,y). 



be sequences of points of M converging, respectively, to x, y and z. 

For each in.teger i, the triangle property for M gives D(xi,yi) :S 

D(xi,zi) + D(zi,yi). Then, 

limit D(x.,yi) < limit D(xi,z.) + +imit D(z.,yi) 
i,...co 1. -1 .... co 1 1 .... co 1 

or D(x,y) ~ D(x,z + D(z,y). 

(10) If fx1J is a sequence in M converging to a point x of Mj then 

limit D(xi,x) = o. Also, for x in M, D(x,x) = O. 
i .... co 

Let x and y be points of Mand (xi} and [yiJ sequences in M 

converging to x and y, respectively. If x = y, then (xiJ_and (yiJ 

are both sequences converging to x. By (6)j D(x,y) = limit D(x1 ,y.) = O. 
i ... co 1 

Thus, if [xiJ is a sequence in M converging to x, limit D(xi,x) = 
i .... co 

D(x,x) = o. 

(11) If fxiJ is a sequence in M converging to a pointy and xis a 

point of M such that +imit D(xi,x) = O, then D(x,y) = o. 
J. .... co 

For each integer i, D(x,y) < D(x,x,) + D(x.,y). By (10) 
- 1 1 

limit D(xi,y) = o, and, by hypothesis, limit D(x,xi) = o. Thus, 
i .... co. . i .... co 

D(x,y) = o. 

(12) If {xi} is a sequence in M converging to the point x, then 

limit D(x.,x) = o. r .... a:, i 

For each integer i, there exists a sequence (zi.J in M such that 
J 

Since fxiJ converges to x, there exists a subsequence 

i < j. Designate this sequence by fzkJ and the associated point of 
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For each 

in~eger k, D(~,x) ~ D(~,zk) + D(zk,x). By construction, 

limit D(x. ,zk) = O and limit D(zk,x) = 0 by (10). Thus limit D(xk,x) = o. 
k..,.co ,K k_,.co k..,.co 

(13) In M, if D(x,y) = o, then x = Y• 

Suppose there exists in Ma pair of distinct points x and y for 

which D(x,y) = o. There exist distinct sequences fxiJ and fyiJ in M 

converging to x and y, respectively. For each integer i there exists 
N 

an integer N = N(i) such that (xi U yiJ c i~l Mi, and an arc Ai from 
N 

xi to yi in i~l Mi such that D(xi,z) + D(z,yi) = D(xi,yi) for every 

point z in Ai. Since Mis compact, the collection (AiJ is seen to 

satisfy /].~-2f] and must have a sequential limiting set L which 

contains both x and y, and is a compact continuum. 

Let z be any point of L, there exists a sequence (zi} such that 

zi is a point of' Ai and [zi} conver.ges to z. For each integer i, 

D(xi,zi) + D(z1,y1 ) = D(x1,yi). Thus, D(x,z) + D(z,y) = D(x,y) = O 

and D(x,z) = o. 

If' z and w a.re any two points of L, th!:!n D(z,w):;: (D(z,x) + D(x,w) 

= o. By hypothesis, however, L cannot lie entirely in M - Mand there 

must exist points z and win L n M. If z and w a.re distinct points in M, 

then D(z,w) > o. Hence, a contradiction has been reached and the assump-

tion that x and y are distinct is false. 

{14) If (xi) is a sequence in M, and xis a point of M for which 

limit D(xi,x) 
i - co 

= o, then (xi) converges to x. 

Let (xi) be a sequence in M such that +imit D(x. ,x) = o. 
l. .... (X) J. 

Assume {xi) does not converge to x. Without loss of generality, (xiJ 



can be taken as a. sequence convere;ing to y 1-x. By (12), limit D(x. ,y) i..,.a:i 1 

= o. For each integer i, D(x,y) S D(x,xi) + D(xi,y). Then D(x,y) S 

J..imit D(x,xi) + limit D(xi,y) = o. Therefore, D(x,y) = 0 and, by (1.3), 
1 _. CO. i ...;, CC . 

The above discussion establishes the fact that Dis a metric on M. 

It remains to be shown that Dis strictly convex on M. In the :following 

discussion, it will be shown that each pair of points of M determines a 

unique arc in M whose length under Dis equal to the distance, under D, 

between the points. 

(15) Let A be an arc in M containing a point x of M - M. Then xis 

an end point of A. 

Assume the contrary, that A - x =HU K disjoint, where H =HU x 

and K =KU x are arcs each having x as an end point. Then Hand K 
must contain points of infinitely many of the sets {M1 J. Let j be the 

least integer for which·H n Mj contains a point a and let k be the 

least integer for which Kn.~ contains a point b. There exists an 

arc N c A having a and bas end points and containing x. Let n be an 

integer for which n > max{j,k} and (M n N) - Bis non-empty. Let c n . . 

be a point of (M n N) = B. The point b 1 must lie in N and separate 
n . n-

c from fa U b} in N. However, this is impossible since bn-l must 

either lie in the subarc determined by a and c or the subarc determined 

by c and b. Thus, x does not separate A. 

(16) If x and y are points of Mand A is an arc in M from x toy, 
I 

there exists an integer N for which Ac U M.;i=l,2, ••• ,N. 
1 

There exists an integer N for which {x U yJ c CN = U M1;i=l,2, ••• N. 
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Suppose A i·s not contained in CN. Let j be the least integer, j > N, 

and p a :point of A such that p e Mj. The point b j-l must lie in 

An CN and separate p from {x Uy} in A. The point p, however, deter­

mines in A two arcs, A1 and A2, from x top and p toy, respectively 

suc.h that A1 U A2 = A. Then the point b j-l can lie in only one of the 

arcs ~,A2 and must fail to separate both x and y from p. Hence A 

must lie in CN. 

(17) If x and y are two points of M, there exists a unique arc 

[x,y] in M such that t[x,y] = D(x,y). 

There must exist an integer N for whieh CN = U Mi;i=l,2,•••,N, 

contains (x U y1. By (16), all arcs in M from x toy must.lie in CN. 

By (1), D preserves DN on CN and by Lemma 3.3, DN is a strictly convex 

metric on CN. Thus the arc [x,y] in CN such that t[x,y] = DN(x,y) = 

D(x,y) is unique in M. 

(18) If A is an arc in M, then for each integer n such that An en 

is non-empty, An C is connected. 
n 

Let x and y be any two points of An Co Then there exists an arc 
n 

in A from x toy. 

Therefore, An c 
n 

By (16), every arc in M from x toy must lie in C. 
n 

is connected. 

(19) Let x be a point of M =Mand pa point of M. Let fAa:J be the 

collection of all arcs in M from p to x. Then there exists a sequence 

{bk) in B n (Q Aa) which converges to x. 

Let ~ and A2 designate any two arcs of the collection [A0) and 

let N be the first integer for which p e CN. For each integer n >N, 
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· let··J(n)··>n·and--~(n)-· >-n·cienote-;-·respectively, the least inte·gers for 

which A n M and A n M. are non-empty. l j 2 . -~ 

Assume ·there_ exii:rt;-s·· an ·integer n > N suet,_ tha~. j (n) < k(n). Then 

there is a point q in~ n Mj, q-/= bj-l" By (18}, ~ n en is connected 

and contains p. Thtps, there is a.n arc· from q to x in ~ - bj-l • The 

point bj.:,l cannot lie in A2, since~ n Mj = ¢. But this implies bj-l 

does not separate q from pin M, contradicting the nature of bj_1• 

Thus, for each int~ger n, j(n) = k(n) and the point bk-l must lie in 

Al n A2• 

Let fbkJ denote the sequence so determined. Then (bk) is easily 

seen to converge to x by (18). Also, since [bk) is common to each 

pair of arcs from p to x, (bk) is contained in Q A0 • 

(20) Let x be a point of M - Mandy a point of M. There exists in 

Ma unique arc [x,y] from y to x such that t[x,y] = D(x,y). 

Let fbk} be the sequence of (19). For ea.ch k, let [bk,y] be the 

unique arc in M for which t[bk,y] = D(bk1 y)., If A is an arc in M 

from y to x, and b j' bt, j < t a.re any two points of the sequence 

f.bkJ, then there exists an arc S in A :from bt to x. From (16) and (18), 

S does not contain the point b j. Assume b j does not lie on [y, bk]. 

Then SU (y,bk] contains an arc from y to x which does not contain bj, 

contradicting (19). Thus, bj li~s on [y,bk] and [y,bj] c: (y,bk]. 

For each integer k, let~= [y,bk]. The collection (~J is a 

nested collection of sets, Aj c:: Aj+l for each j. Let (x1} be any 

sequence in~~ which converges to a point p not in~~· Then there 

exists a subsequence fxj} such that for each integer n, xj does not lie 
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in An for j > n; and there existtr a subsequence (b} of fbkJ such that 

for each ±nt~ger j, xj is in fbj-l'bj]. It follows that D(xj,bj) < 

D(b .. 1 ;bj) and O < ljtmit D(x ... 'b . .) < limit D(bj 1 ,b .. ) = Oo Thus, 
. J- - .... 0:, . J J - j .... 0:, - J 

{x j), and consequently f.:x' 1}, must converge to x. 

It is easily seen that neither x nor y separates~\:, and every 

other point p of ~~ doers separate ~\:· Theref?re, ~\: = [y,x] is an 

arc in M from y to x a.nd qy,x] = iiE!i~ ~[y,bk] = rl~i~ D(y,bk) = 

D(y ,x). 

Assuming [y.,x] is not unique, there exists an arc A in M, from 

x toy, such that f(A) = D(y,x) and A f (y,x]. No point of M - Mother 

than x can lie on A or [y,x] and the sequence (bk} must lie in both. 

Thus, A and [y,x] must differ between y and bk for some,integer k. Let 

j be such an integer and let S designate th.e subarc of A from y to b .• 
' J 

However, t1[y,bj] < f(S) by the 1.;lni.queness of [y.,bj] and 1/[y,x] < f(A). 

-(21) If x and y are two points of M - M, there exists a unique arc 

[x,y] from x toy .in M suqh that f[x,yJ = D('x,y) •. 

If pis apy point of M, there exists a sequence {bk) in B such 

that (bk} converges toy and lies in every arc of M from p toy. By 

(20), for each integer k, ithere exists ;a unique arc in M from x. to bk' 

[x,bk] • The collection [Jx, bk ]J has a sequential limiting set L which 

is a compact continuum containing x and y. 

If z is any point of L, there exists a sequence (zk) such that zk 

is a point of [x,bk] and.(z 1 converges to z. For each integer k, . 
. k 

D(x,zk) + D(zk,bk) ""'D(x,bk) and 



.. ~). 

= limit D(x;bk) = D(x,y) • 
k ~ co 

For ea.ch a · o < a < l and each integer k,· let z (k,cx) be the unique point . . ' - - , 
of [x,bk] for 1'hich D(x,z(k,cx)) = aD(x, bk). There exists a point z(cx) 

in L such that D(x,z{cx)) = CXD(x,y). By repeating- part of the argument 
• I . . 

of Theorem 2.2 it can be shown that L contains an arc, (~,y), from x 

to y such that D(x, z) + D(z,y) . .;. D(x,y) for every point z of [x,y]. 

Obviously, t[x,y] = D(x,y). 

Let A be any other arc in M from x toy, neither A nor [x,y] 

contains any other point of M - M. The arcs A and [x,y] must inter­

sect in infinitely tru;1.ny points, since by (15), no arc can lie in 

AU [x,y] and have x as a cut point. Let p and q be any two points in 

An [x,y], and let N be the least integer that (p U q) is contained in 

CN. By (16), both subarcs of A and [x,y] determined by p and q must 

lie in CN. The subarc of [x,y] determined by p and q is actually [p,q]. 

Thus, if A is assumed to have length equal to D(x,y), A must coincide 

with [x,y] between p and q. Then A must coincide with [x,y] on every 

subarc of [x,y] and must, in fact, coincide with [x,y]. Hence [x,y] 

is unique. 

Corollary 3.2.1. Let M be a dendrite and k > 0 a real ntlmber. 

Then there exists a strictly convex metric Don M such that the diameter 

of M, Ullder D, does not exceed k. 

Proof: Let (e1J be the collection of all end points of M. Then 

(e1} is countable. For each integer i. > 1, let [ei,el] be the unique 



arc in M containing-~i and e1. Let A1 = [e2,e1 ] and let b1 be the 

first point of A1 on [e3'el] in the order from e3 to e1 . · Let 

A2 = [e3'bl]. 

point of i~i Ai 

In general., for each integer n, let b be the first 
n 

on (en+2,e1 ] in the order from en+2 to e1 .. Let An+l = 
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[e 2, b ] • For each arc A let h be the homeomorphism of A onto the n+ n n n ··· · n 
n · n 

interval [01k/2] such that h1 (e1 ) = h (b 1 ) = 0 and h (e 1 ) = k/2. n n- n n+ 

It is easily seen that the above construction satisfies the hypo-

thesis of Theorem 3.2, since (Ail is a countable collection of non­

degenerate compact continua (arcs in this case) and: 

(i) A= icrlAi, where M = A is compact and locally connected and 

A - A has no nondegenerate component. 

(ii) For each integer n, Ann ~i A1 = bn-l' which separates 

n.~l 
An - {bn-l} from i~l A1 - (bn=l} in M. 

(iii) Each Ai has a strictly convex metric di' such that d1 (x,y) 

= ht(x) - hi(y) \ and A1 has diameter wi = k/2i under d1• 

co eQ • 

(iv) i~l wi = i~l k/21 = k. 

Thus, M has a strictly convex metric which preserves di on Ai for 

each integer i. 

Lemma 3.4 .. Let M be a compact, locally connected plane continuum 

* * not separating the plane. Then M = A U B UC, where A is a countable 

collection of disjoint dendrites, Bis a countable number of nondegener-

ate closed 2-cells, and C,is a set having no nondegenerate component, 

such that (1) no two elements of A+ B intersect in more than one point, 

(2) any point common to two elements of A + 1B is a cut point of M, 



(3) * * C=M-[A UB]. 

Proof: The proof of the above statement follows from several re-

sults in Whyburn 'L-13J. 

The continuum Mis a semi-locally connected continuum L-13-P• 2§:/, 

each true cyclic element (simple link) of Mis a closed 2-cell 

[-13-p. 172J, and the true cyclic elements form a null sequence at 

most [-13-p. 71J. Hence, M contains a. countable number of closed 

2-cells, B = {Bj}• Also, any two simple links in M can intersect in 

at most one point and any point common to two simple links is a cut 

Every simple link, Bj, of M contains at most a countable number of 

cut points of M L-13-P· 65::J. For each integer j, let B~ be the set of 

points of B. which are not cut points of M. For each point x of 
. J 

0 . 0 M - U B., let H be the component of M - U B., containing x. Let C 
.. j. J x j J 

be the collection of degenerate components. For each nondegenerate H 
x 

and each integer j, H n B. consists of at most one point, since H is x J x 

contained in the closure of a component R of M - Bj and Rn Bj is at 

most one point [-13-P· 66:J. Also, the common point, if it exists, is a 

cut point [-13-P• 66J. 

Let y be a point of M - U Bj. Then y is a point of some nondegener­

ate H and there exists a connected open region containing y whose closure x ' 

intersects no point of M - H. Thus, each H is locally connected. Each x x 

H is a compact, locally connected continuum every cyclic element of 
x 

which reduces to a single point and is by definition, a dendrite. Then 

the collection A= {HJ of nondegenerate components must be a countable 
x 

collection of disjoint dendrites. 



Proposition 3.1. Let M be a closed topologi-cal n-cell and k > 0 a 

real number. Then there exists a strictly convex metric Don M such 

that the diameter of Munder D does not exceed k. 

Proof: Let C be the closed ball in E with center at the origin 
n 

and radius k/2, ·there exists a homeomorphism h of M onto C. For ea.ch 

pair of points of M let D(x,y) = p[h(x),h(y)], where pis the standard 

Euclidean metric. The metric Dis the desired metric. 

Theorem 3.3. Let M be a compact, locally connected plane con-

tinuum not separating the plane. Then M has a strictly convex metric. 

* * Proof: By Lemma 3.4, M = A U B UC where A= [Ai} is a count-

able collection of disjoint dendrites, B = f.Bj) is a countable collec­

* * tion of closed 2-cells, C = M - (A U B) contains no nondegenerate 

component, for each i, j, A. n B. is at most one point, and for if j, 
1 J 

Bin Bj _is at most one point. 

Case I: M - C is connected. 

Let {Wi} be any sequence of positive real numbers such that f Wi 

converges and let H =A+ B be the combined collection of dendrites 

and closed 2-cells. It will be shown that H can be so ordered that the 

collection [H.J will have the property that for each integer n, 
;i. 

n-1 
H n iUl H. consists of exactly one point of Mand that point is a cut 

n = 1 

point of M. Proposition 3.1 and Corollary 3.2.1 will then make it 

possible, for each integer i, to give the element H. a strictly convex 
1 

metric di such ttat Hi has diameter w1 undE1r di. 

Choose any element of Hand call it H1 • Let H2 be any element of 

H - (H1J which intersects H1 • Such an element exists since Mis 
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connected. By Lemma 3.4, H1 n H2 consists of exactly one point, call it 

b1 • The elementH3 will then be chosen from the previously unchosen 

elements of H which intersect H1 U H2• It is obvious that the collection 

H can be ordered in this way, but it remains to be shown that for each 
n-1 

integer n, Hn n i~l Hi is a single point. 

Assume that each of the first n - 1 elements has been shown to 

have the desired relationship with the union of those which preceed it. 
n-1 

Suppose H n .u1 H1 contains more than one point. Let x and y be any 
n i= 

n-1 n-1 
pair of points in H. n iul Hi, they determine in .u1 H. an arc Kand in n = 1= 1 

Hn an arc L such that K n L = fx U yJ. Thus K U L is a simple closed 

curve in M. This is impossible, however, since the only true cyclic 

elements of Mare closed 2-cells and KU L must lie in some element of B, 
n-1 

mea~ing KU L must lie in a single element of H. Thus, Hn n i~l Hi is a 

single point, b 1 , for each integer n. By Lemma 3.4, each point of the n-

collection fbn-l) is a cut point of M. Repeating the argument used in 

this paragraph will show that, 
n-1 

for each n, b 1 separates H n- n - [b J n-1 

from i~l Hi - fbn-lJ in M. 

* co * It may now be observed that M = H = .u1 H. and M - H contains no 
1= 1 

nondegenerate component. Thus, M has been so described that it satisfies . -

the hypothesis of Theorem 3.2 and must have a strictly convex metric. 

Case II: M - C is not connected. 

Let K = [Kn) be the collection of components of M - c. Then 

* M = K Uc, K is countable and for each n, K is a compact and locally 
n 

connected continuum satisfying the conditions of Case I. For each .n, let 

K have a strictly convex metric d such that K has diameter W under d, 
n n n n n 

where~ W converges. The space M' =KUC is an upper semi-continuous 
n 
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decomposition of M satisfying ["13 ... p. 129J, where the associated trans-

formation f: M _..,. M' is monotonic and continuous. Hence, M' is a 

dendrite and has, by Corollary 3.2.1, a strictly convex metric d. 

Let x and y be any pair of points of Mand let A[x,y] be the 

collection of a.11 arcs in M from x toy. If A1 and A'' are any two 

elements of A[x,y], then f(A') = f(A''). Thus A' n C = A'' n C and 

A' can differ from A'' only in elements of K. Also if ~is any element 

of Knot containing x and if Sx is the component of M - Kn containing x, 

then S n K contains exactly one point, by {-12-p. 23°' and the local x n '_J 

connectedness of M. 

Now, if x and y are any pair of points of M, let A be any arc in M 

from x toy. For each integer n, let a and b designate, respectively, 
n n 

the first and last points of K on A in the order from x toy and let 
n 

co 

D(x,y) = d(f(x),f(y)) + ~l d (a ,b) n= n n n 

where d (a ,b) = O if K n A= p. Then D(x,y) is a metric and the arc n n n n 

(x,y] =An C U (U[a ,b ] ) where [a ,b ] is the arc in K such that 
n n n n n n n n 

t(a ,b) = d (a ,b ), is the unique arc in M such that t(x,y] = D(x,y). n n n n n 

Theorem 3.4. Let M be a compact and locally connected plane 

continuum. Then Mis sc-metrizable if and only if M does not separate 

the plane. 

Proof: The necessity is established in Theorem 3.1. Sufficiency 

is exhibited in Theorem 3.3. 



CRAFTER IV 

OTHER PROPERTIES OF 

CONVEX AND STRICTLY CONVEX METRICS 

In this chapter additional properties of the convex and strictly 

convex metrics will be examined and some similarities and differences 

noted. 

Proposition 4.J.. Both c-metrizability and sc-metrizability are 

topological properties. 

Proof: The result is obvious, for if G and Hare any spaces such 

that G has a metric p and his a homeomorphism from G onto H, the 

function D(x,y) = p(h -l(x),h-1 (y)), where x and y are points of H, is a 

metric on H. Then his an isometry from (G,p) to (H,D). 

Bing showed L-2J that if K is a closed subset of the metrizable 

space Sand D1 is a. metric on K, l~en there is a metric D2 on, S that 

preserves D1 on K. He later z-3J used this result to show that if M1 

and M2 are two intersecting compact continua with convex metrics D1 

and D2, respectively, there is a convex metric n3 on M1 U M2 that 

preserves n1 on I\• That the latter result is not valid when the word 

convex is replaced by strictly convex may be seen in the following 

example. 

Example 1: Let M1 andM2 be the compact plane continua (Figure 3) 
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obtained by taking the simple closed curves, J1 and J 2, and their 

respective bounded complementary dorn~ins. In other words, M1 is the 

closed 2-cell having J1 as its boundary and M2 is the closed 2-cell 

having J 2 as its boundary. 

Figure 3. 

Each of the two cells has a strictly convex metric induced by its 

homeomorphic relationship with the unit disk. However, M1 U M2 
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separates the plane and, as previously shown, can have no strictly convex 

metric. 

It can be shown by using Lemma 3.4 that if M2 - ~ consists of a 

finite number of components each intersecting M1 in a single point, 
; 
; 

then there is a strictly convex metric n3 on~ U M2 which preserves D1 

on~· It remains an open question, however, as to whether this can be 

done in general since before the construction given by Bing in L-3:} can 

be a strictly convex metric there must exist for each pair of points, 



x in Ml and yin M2 - ~, a unique point z in F(~) n M2 such that 

D3(x,y) = D3(x,z) + D3(z,y). 

It will be shown, in the following theorem, that in general, a 

necessary condition for sc-metrizability is unicoherence. 

Theorem 4.1. Let M be a compact continuum with a strictly convex 

metric, D. Then Mis unicoherent. 

Proof. Assume the contrary, that Mis not unicoherent. Then M 

can be cons~dered as the union of two continua,~ and M2, whose 

intersection is not connected. Thus,~ n M2 =HU K, where Hand K 

are disjoint closed sets~ Let p be a point of (M1 U M2) - (M1 n M2). 

Suppose pis a point of M1 • Then for every point x of M2, there exists 

a unique arc [x,p] from x top such that t[x,p] = D(x,p). Designate by 

f(x) the first point of~ on [x,p] in the order from x top, and let 

H and K repref;!ient, respectively, the points of Ml") for which f(x) lies 
x x ,;. 

in Hand those for which f(x) is in K. It should now be obvious that f 

is a mapping of M2 onto HU K, since for each x in M2, f(x) is uniquely 

determined and f(x) = x for x in M1 n M2• Hence, if it is shown that 

f is continuous, the desired result will be obtained in the form of a 

contradiction. 

Let {xi) be a sequence of points of M2 such that the associated 

sequence {f(xi)J converges to a point q. The sequence {xi} can be 

taken, without loss of g. enerali ty, to be convergent to a point x • For 
. 0 

each integer i, the arcs . [xi, f (xi) ] and [ f (xi) ,P) satisfy the following 

relationships~ 



(2) p(x0 ,p) = limit D(x.,p) 
1 ... (1) 1 

= ii:1; D(xi,f(xi)) + ii:i; D(f(xi),p) 

= D(x,q) + D(q~p) 

Statement (1) is obtained by construction and (2) is the result 

of the continuity of D. It follows then that q = f(x0 ) and f is 

continuous. 

Bing, in addition to the above mentioned result on two intersecting 

continua with convex metrics, has also established L!+:J, along with 

Moise L-10J that .eve.ry locally connected and compact continuum is 

c-metrizable. The:se two results will now be combined to show the 

existence of a conv.ex.metric on a closed 2-cell which is not a strictly 

convex metric. 

Example 2: Let~ be the unit circle and M2 the closed unit disk. 

If x and y are any two points of M1, let D1 (x,y) be the length of the 

shortest arc in~ determined by the points. Then D1 is a convex metric 

for f\, which is obviously not.a strictly convex metric. Now, M2 has a 

convex.,metric, D2 which can even be ·a strictly convex metric. Then 

··?\· = M1 n M2 and M2 = ~ U M2 • By application of Bing's theorem, there 

exists a convex metric D3 on M1 U M2 which preserves D1 on~· The 

metrtc D3 is obviously not a strictly convex metric, since for a pair 

of diametrically opposite points, x and y, of~ there exist two arcs, 

in?\, whose length is D1(x,y) .. 

If ?\ and M2 are metric spaces with metrics D1 and D2 respectively, 

it is known that~ X M2 has a metric D given by 

( (x ( . ) _ . 2 . 2 · 1/ 2 
A) D[ l'yl)' x2,Y2 ] - [Dl (xl,x2) + D2 (yl'!.2)] ' 



where (x1,y1 ) and (x2,y2) are elements of M1 X M2 • 

It has not been determined whether D will be a strictly convex 

metric when n1 and n2 are, but it will now be shown that Dis a convex 

metric when n1 and D2 are convex metrics. 

4o 

Theorem 4.2. Let M1 and M2 be compact continua with convex metrics 

D1 and D2, respectively. Then M1 X·: M2 is c-metrizable and has the 

metric D of (A) as a convex metric. 

Proof: Let (x1,y1) and (x2,y2) be any pair of elements of M1 X M2• 

There exist points x0 in M1 and y0 in M2, such.that n1 (x1,x0 ) = 

D1 (x0 ,x2) = D1 (x1,x2)/2 and D2(y1 ,y0 ) =D2 (y0 ,y2) = D2(y1 ,y2)/2. Then, 

( 2 ( . 2 ( . 1/ 2 · 
D[ (xl,yl)' xo,y o)] = [Dl xl'xo) + D2 Y1,Y o)] .. 

= [Dl2(xl,x2) + D22(yl,y2)]1/2/2 

= D[(x1,y1), (x2,y2)]/2. 

Similarily,. D[ (x0,y 0), (x2,y2)] = D[ (x1,y1), (x2,y2) ]/2, and 

(x0 ,y0 ) is point satisfying (5) in the definition of convex metric. 

The remaining portion of this chapter is devoted to defining the 

notions of D-convex subset and D-convex hull and showing that the latter 

is analogous to the linear concept for strictly convex metrics but not 

for convex metrics. 

Definition 4.1. Let S be a topological space with a convex metric 

D. A subset M of Sis D-convex if Dis a convex metric for M. 

Proposition 4o2. If Sis a topological space with a strictly 

convex metric D and Mis D-convex subset of S, then Dis a strictly 
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convex metric for M. 

Proof: Let x and y be any two points of M, there exists a point z 

in M such that D(x,z) = D(z,y) = D(x,y)/2. The point z is unique in S 

and therefore in M, 

Proposition 4.3. Let S be a topological space with a strictly 

convex metric D and let fM0 ) be an arbitrary collection of,D .. convex 

subsets of Shaving a non-void intersection. Then Q M0 is a D-convex 

subset of S. 

Proof: If n ~ is a single point, the result is obvious. Other-
a . . 

wise, if x and y are 

that D(x,~) = D(z,y) 

any two points of Q ~·' the unique point z such 

= D(x,y)/2 must also lie inn M-· a ..... 

That the result of Proposition 4.3 does not hold for convex me­

trics .is seen in the following exampie. 

Example .2;: Let S be the ui;iit ~ircle •. ·Let Shave the convex 

metric D1 of Example 2 and let x and y be the diametrically opposite 

points. If M1 and M2 are the two arcs of S determined by x and y, n1 

is a strictly convex m~tric for each of the arcs, but~ n M2 is 

(x Uy}. 

Definition 4.2. Let S be a topo~ogical space with a strictly con-

vex metric D and let X be a subset of S. The D-convex hull of Xis 

defined to be the intersection of all D-convex subsets of S which con-

ta.in X, 

Proposition 4.4. ~f Sis a topological space with a strictly con­

vex metric D and Xis a subset of s, then the D-convex huli of Xis a 



D-convex subset of s. 

Proof: The argmp.ent is e.ssentially the same as that of Proposition 

Proposition4.5. If Sis a topological space w:i.th strictly convex 

metric D, the D-convex hull of any pair of distinct points of s, x and 

y, is [x,y]. 

Proof: Let z and w be any pair of points of [x,y]. Assume z pre-

cedes w in the order from x to y. .By Lemma 2.1, D(z,w) == D(x,y) - :b(~,z) -

D(z,y) and the arc [z,w] must coincide with the subarc of [x,y] de-

termined by z and w. Hence, [x, y] is a D-convex subset of S. 

If Mis any D-convex subset of S containing x and y, then M 

contains [x,y]. Thus, if(~} is the collection of all D-convex sub-

sets of S containing x and y, [x,y] c Q ~· 
[x,y] = Q Mo;• 

Now, since n M c: [x,y], 
a a 



CHAPTER V 

NATURAL DELTA FUNCTIONS 

Let Sand T be metric spaces, T complete, with metrics pl and P2 

respectively, l:l.lld let K be a nondegenerate compact subset of S. If C(K) 

denotes the collection of a.J.l continuous functions of K into T, then C(K) 

with the topology U of unif~rm convergence is a complete metric space 

with the metric ,9-(g,h) = sup {p2(g(x),h(x))J; x e K, where g and h repre­

sent elements of C(K) o If S = T, let I(K) denote the collection of all 

continuous functions of K into K. Then I(K) is a closed subset of C(K) 

and is also a complete m~tric space wit~ the topology u. In the foilow-

ing discussion, C(K) will be treated as a collecti.on of mappings of S 

into S for the simplicity of notation, with the understanding that the 

results obtained are applicable when Sand Tare distinct. 

The following concept, obtained directly from the notion of uniform 

continuity, is the subject of investigation in this chapter. 

Pefinition 5.1. Let K be a non~degenerate compact subset of s, and 

let b represent the diameter of K. For each element g .of C(K) an~ each 

real number t, let the real valued function o(g,t) be defined as follows: 

o(g,t) = sup (o I x,y e K, p(x,y) < o ~ b implies 

p(g(x).,g(y)) < tJ, for t > o 

o(g,o) == limit·o(g,t) 
t _.o+ 
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The above def'ined function relates with each element of C{K) a 

function of R into R which will be shown to be monotonic, non-negative. 

and integrable. The Riemann integral of this function will be used to 

define a uniformly continuous function of C(K) into R which takes on 

certain values for specific types of functions. The number 5'(g,o) . + 

when ~efined will also be strongly influenced by certain structual 

properties of g. The structure of K will be seen to exert a certain in· 

fluence on B.(g,t) also, for it will be shown that o(g,t) is super-

additive when Pis a strictly convex metric on K. 

Theorem 5.1. For each element g of C(K), o(g,t) is a non-negative, 

non-decreasing function oft, defined in [o,=] and bounded above by b. 

Proof: Obviously, o{g,t) is non-negative and bounded above by b, 

from Definition 5.1 and the fa.ct that g is uniformly continuous, since 

K is compact and g is continuous. Thus, it need only be shown that 

o(g,t) is well defined and non-decreasing. Since g is uniformly con­

tinous, the set {o I x,y e: K, O < p(x,y) < 5 implies p (g(x) ,g(y)) < t) 

is non-empty for t > O and is bounded above by b. Thus, B(g,t) is 

positive and takes its unique existence from that of the supremum, for 

each t > o. 

Now let t' and t'' be any pair of real numbers such that o < tr 

< t 1 ' and let r be any. real number between O and o (g, t'). For each 

pair of points, x and y, in K, such that p(x,y) < r < o(g,t'), 

p{g(x) ,g(y)) < t' < t 1 1 • Then 5 (g, t' ') is an upper bound for the set 

fr [ r < o(g,t 1 )J and o(g,t') :S 8(g,t' 1 ). 

The function o(g,t) is now seen to be uniquely determined at o, 



since limit o(g~t) is defined. 
x ... o+. 

' 
Proposition 5.1. For ea.ch t > o, if p(x,y) < o(g,t), then 

,·e • •. ••. - - I 

p(g(x),g(y)) < t. 

Proof: Let x a.nd y be any two points of K such that p(x,y) < 
' ···• ,,·· '. ··• ·e ···' I 

8(g,t) and let r be a real number such the.t p(x,y) < r < o(g,_t). 

Assume p(g(x) ,g(y)) > t, thel.l r is an upper bound for the set 
~ . , .. A 

{6 I x,y e K, p(x,y) < 6 :implies ~(g(x). ,g(y)) < t) a.pd, since 8 (g, t) is 

the lea.st upper bound of the set, o(g,t):::: r, contradicting the choice 
I 

of r. 

Theorem 5.2. Let Kbe a compact continuum with diameter band let 

g be an el~ment of C(K). Then 5(g,O) = b if and o:nly if g is constant. 

o(g,o) = o otherwise. 

Proof': Assume f;f.rst that g,is, constant. Then for every t > 01 

o(g,t) =band, a.s a consequ,ence, 5(g,O) = ti!a~ o(g,t) = b. On tJ:\e 

other hand, assume o(g,:O) is posi"t;iv~ _and ,:l~t r = 5(g,o)/2. Then 
~· . i ~ 

O < r <5(g,o)/2 and for ~Y pair of points, x and y, in K such that 

f{:,c,y) < r, p(g(x),g(y)) < t for every t >~o. Thus, p(g(x),g(y)) =J) 

and g(x} = g(y). 

Now, since K is a compact continuum in a metric space, K is totally 

bound~d and there .eiists a finite ;et of points (x1;x2, 000 ,xn) in K su~h 

that i~1s(xi 1 r) covers K. Then the range of g is the finite set, 

{g(x1);g(x2); .. •g(xn)}. However, since K is connected and g is contin­

uous, this is impossible unless g(x1) = g(x2) = ••• = g(xn). Hence, g 

is constant. 
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Proposition 5.2. Let K be a compact set and let g be a.n element of 

C(K). Then o(g,O) = O if and only if g(K) is infinite. 

Proof: Since K is compact and g is continuous, g(K) is compact. 

If g(K) is infinite, there exists a convergent sequence (x11 in K 

converging to a point x and having the property that (g(xi)) is a se­

quence of distinct points converging to g(x). Then, 

B(g,o) = limit o(g,t) = limit p(g(xi),g(x)) = o. 
t -.,0+ X , -1>X 

1. 

Assume g(K) is finite. There exists a real number k > 0 such that 

if y' and y 1 ' are any two points of g(K) and S(y' ,k) and S(y 1 1 ,k) are 

spherical neighborhoods of radius k about y' and y' 1 respectively, 

S(y' ,k) n S(y 11 ,k) = ¢. By the uniform continuity of g there exists a 

number o >Osuch that if x and x' are any two poirits of Kand 

p(x,x 1 ) < o, then p(g(x)yg(x'))< k. However, this implies that 

g(x) = g(x') and p(g(x),g(x 1 )) = o. Thus, o < o ::_o(g,o). 

Theorem 5.3. Let K be a compact continuum and let g be an element 

of C(K). Then o(g,t) is left-continuous. 

Proof: Let-b denote the diameter of K~ For every positive number 

t 1 7 limit o(g,t) exists, since o(g,t) is non-decreasing and bounded 
t ... t' -

above by b. Also, limiy o(gyt) < o(g,t 1 ). Assume the inequality holds 
t ~t = -

and let r be a real number such that limit o(g,t) < r < o(g,t'). Let 
t ~t 1 ~ 

{tn} be a non=decreasing sequence of real numbers converging tot'. For 

each n, there exists a pair of points, x and y, in K such that 
n n 

lo(x ,Y ) < r and p(g(x ) ,g(y ) ) > t • By the compactness of K, there 
n n n n - n 

exists a subsequence fn.l of integers and points x and yin K such that ... l. ... 



(xn) converges to x and (yn l converges toy. Now, from continuity, 
i i 

p ( x, y) :S r < o ( g, t' ) and 

P(g(x),g(y)) = limit p(g(x ),g(y )) > limit t = t' 
n ... oo n. ni - n ... oo n i , 1 

contradicting· Proposition 5.1. 

It should be pointed out at this time that if x and y are any two 

points of Kand p(g(x),g(y))= t, then p(x,y) ~ o(g,t). Theorems 5.4 

and 5.5 and Proposition 5.3, which follow, yield more specific inform­

ation about o(g,t) and the values ta.ken on for certain values oft. 

Theorem 5.40 Let K be a compact continuum and let g be an element 

of C(K). If t € (o,b), where bis the diameter of K, and if 8(g,t) < b, 
0 

there exists a pair of points, x and y, of K for which p(x ,Y) = 
0 0 0 O 

o(g,t0 ) and p(g(x0 ),g(y0 )) = t 0 • 

Proof: Let b' denote the diameter of g(K). It is easily seen 

that t 0 :Sb', for otherwise, p(g(x),g(y)) < t 0 for e~ry pair of 

points in g(K) and o(g,t0 ) = b, contrary to hypothesis .. 

For every t < b' there exists at least one pair of points, x and 
0 

y, in K for which p(g(x),g(y)) = t 0 ., by the connectedness of g(K). Also., 

by the continuity of g, p(x,y) = o(g,t0 ) implies p(g(x),g(y)) ~ t 0 • 

For each real number r between o(g,t) and b, there exists a pair of 
0 

points, x and y, in K for which p(x,y) =rand p(g(x),g(y)) ~ t 0 • For 

each integer n, let r = o(g>t) + 1/n, and let x and y be points in 
n o n n 

K such that p(x ,Y ) = r and p (g(x ) ,g(y ) ) > t • There must exist 
nn n n n -o 

points, x and y, in Kand subsequences f.x ] and [y 1 converging to 
o o ·· ni ni · 

x0 and y0 , respectively, from which it follows that: 

p(x ,Y) = limit r ~ o(g,t) o o n ... oo n o 
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and, p(g(x ),g(y )) = limit p(g(x ),g(y )) > t. o o n -+oo n. n. - o 
i 1 1 

Theorem 5~5. Let K be a cqmpact continuum of diameter b and let g 

be an element of C(K). If b' is the diameter of g(K), then b' = 

inf {t I o(g,t) = b). 

Proof: Let t 0 = inf (t I o(g,t) == b). Assume there exists a num­

ber t' such that b' < t' < t • Then o,(g,t') < b and, by Th,eorem 5.4, 
0 

there must exist a pair of points x and y, in K for.which P(x,y) = 

o(g,t 1 ) and p(g(x),g(y)) = t'. However, this is impossible, since b' 

is the diameter of g(K). 

Similarly, assume there exists a number t' such that t < t' < b'. 
0 

By Theorem 5.1, o(g,t') = b. Then for any pair of points of K, p (x,y) 

< o(g,t') and, by the continuty of g, p(g(x),g(y)):::: t'. 

contradicting the choice oft. 

Thus b' < t' , - ' 

Proposition 5.3.. Let K be a compact continuum and let g be an 

element of C(K). If tis a positive number less than the diameter of 

g(K), then o(g,t) = inf r rf-x,y) I x,y € Kand p(g(x),g(y)) = t}. 

Proof: Let C = inf ( p(x,y) I x,y € K and p(g(x) ,g(y)) = tJ. Then 

C:::: o(g,t), from Theorem 5.4. Assume C < o(g,t). There exists a pair 

of points, x and y, in K such that p(x,y) = (c + o(g,t) )/2 < o(g,t) and 

p(g(x),g(y)) _2: t, contradicting o(g,t). Hence, C = o(g,t). 

It was shown in Theorem 5.3 that o(g,t) is left-continuous. The 

following example will illustrate a case in which the function g is 

continuous, monotone and differentiable almost everywhere, but o(g,t) 

is not continuous. Theorem 5.6, which. follows the example, gives a 



necessary and sufficient condition that o(g,t) be continuous. 

Example 4. Let S be the real line and K = [ O, 1] • Let the function 

g(x) be an element of I(K) defined as follows: 

g(x) = x OS x S 1/4 

= 1/4 1/4 S x S 3/4 

= x - 1/2; 3/4 S x S 1 

The function g is obviously continuous and non-decreasing. g 1 

exists except at x = 1/4 and x = 3/4. (See Figure 4-A). 

:r 2 

Figure 4-A. Figure 4-B. 

Fort S 1/4, o(g,t) = t, since from Proposition 5.3, o(g,t) is 

inf (p(x,y) [ x,y € Kand p(g(x),g(y)) = tJ and from Theorem 5.4, there 

exists a pair of points in Kfor which p(x,y) = o(g,t) andp (g(x),g(y)) 

= t. The number O and the number twill suffice fort S 1/4. Thus 
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o ( g, t) = t for· t -::s 1/4. If ·x and· yare points of· K for which 

p(g(x),g{y)-) > l/4, then x must lie in [0,1/4] and yin [3/4,1]. Thus, 

for t E£ _ [l/4,1/2], 8(g,t) = o(g,t - 1/4) + 3/4 and 8(g,t) = t + 1/2 for 

t e: [l/4,1/2]. The graph-of 8(g,-t) is illustrated in Figure 4-B. Ob­

viously since g(K) = [0,1/2], 8-(g,t) == l fort > 1/2. 

It might be pointed out that the function g has a "flat" spot, 

namely [ 1/ 4, 3/ 4] • The following theorem shows that the existence of 

such ''flat spots" can prevent the function 8 (g, t) being continuous. 

Theorem 5.6. Let K be a compact continuum and let g be an element 

of C(K) such that g(K) has diameter b. If t' is any number for which 

O < 8(g,t') < b, a necessary and sufficient condition that 8(g,t) be 

continuous at t' is that for every e > O there exist points x and yin 

Kand at> t' such that p(x,y) < o(g,t') + e and p(g(x),g(y)) = t. 

Proof: The necessity is established first, assuming 8(g,t) is 

continuous at t = t'. Let {tn) be a decreasing sequenc~ in the interval 

( t' , b 1 ) , where b' is the diameter of g ( K) , such that [ t j converges to 
·n 

t'. By Theorem 5.5, o(g,t) < b for each n, and by Theorem 5.4, there -- n 

exists a pair of points x and y in K such that p(x ,Y) = o(g,t) and 
n n n n . n 

p(g(x ),g(y )) == t. Then for every e > O there exists an integer N > O 
n n n 

such that o(g,tn) < 8(g,t 1 ) +~whenever n exceeds N. 

Assume, on the other hand, that for each€> O there exists a 

t > t' and a pair of points, x and y, in K such that p(x,y) < o(g,t') + e 

and p(g(x),g(y)) = t. In view of Theorem 5 .. 3, it is necessary only 'to 

show that o(g,t) is right-continuous at tv. If this is not the case, 

there exists a. real number k >Osuch that k = limit o(g,t) - 8(g,t'). 
t --tt 1 + 
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Let e: == k/2, there must exist points x and yin Kand at> t' such 

that p(x,y) < o(g,t') + k/2 and p(g(x),g(y)) = t. However, this implies 

that p(x,y) < o(g,t) and p(g(x),g(y)) = t, which is the desired contra-

diction. 

The right=hand derivative of o(g,t) at o, 54-(g,O) will now be 

examined and will be shown to have certain properties similar to those 

of the derivative. It will also be shown that when oi(g,o) meets 

desired conditions the function g will have certain properties. 

Theorem 5.7. Let K be a compact continuum and let g be an element 

of C(K) such that ot(g,o) exists. Then oi(g,O) > O if and only if g 

satisfies a uniform Lipschitz condition of order 1 on Ko 

Proof: Assuming ot(g,O) > o, let k be any positive number less 

than Bt(g,O). There exists a positive number tk such that o(g,t)/~ > k 

and o(g,t) > kt for O < t < tk. Let x and y be any pair of distinct 

points of K such that p(x,y) < 8(g,tk), and let t = p(g(x),g(y)). Then 

t < tk and p(xJy) 2 o(g,t) >kt= k • p(g(x),g(y)). Thus, for x and 

yin K such that O < p(x,y) < o(g,tk), p(g(x),g(y)) < p(x,y)/k. 

If g satisfies a uniform Lipschitz condition, there exists a pair 

of positive numbers o and M such that for x and yin K, p(g(x),g(y)) < 

M • p(x,y) whenever O < p(x,y) < o. If it is assumed that o~(g,O) = o, 

then for each positive number, and in particular for 1/M, there must 

exists a real number t > 0 su.ch that 5 ( g, t) < t/M for O < t < t • Let 
m . m 

t' be a real number such that O < t 1 < min (t ;oJ. There exists a pair 
m 

of points, x and y, in K such that p(xJy) = o(g,t 1 ) > o and 

p(g(x),g(y}) = t'. Now, t 1 < t implies p(x,y) = o(g,t') < t'/M = 
m 
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p(g(x) ,g(y) )/M or, in other words, p (g,.(x) ,g(y)) > M • p (x,y). However, 

this contradicts the Lipschitz condition and the assumption that ot(g,o) = 

O is false. 

Theorem 5.8. Let K be the complex plane and let g be a function 

which is holomorphic in the finite plane but is not constant. Then 

g(z) ""' kz + c, k f O if and only if 5.i(g,o) exists and is non-zero. 

Proof~ Assume first that g(z) = kz + c, k f o. Then for z' and 

z 11 in K, [g(z 7 ) - g(z") I= l (kz' + c) (kz" + c) J = jk J 

I z' - z'' I· Thus, I g(z') - g(z'') J < t if and only if 

jzr - z' 1 I < t/ I k \, and o(g,t) = t/ I k J • By Proposition 5.2, o(g,o) 

= 0 since g(K) is not constant and must be connected. Hence, 

54-(g,o) = limit o(g,t)/t = limit 1/ j kj = 1/ I k [ f o. 
t _.o+ t ~o+ 

In the other direction, assume ot(g,O) exists and is non-zero. As 

above, o+(g,o) ~ limit o(g,t)/t and limit t/o(g,t) = 1/ot(g,o) < =· 
t ~o+ t -<O+ 

Let z be a point of K such that g1 (z) 1 O. Such a point exists since o o r 

g is holomorphic and not constant. There exists a sequence fzn} of 

points of K such that (i) for each integer n, j zn = z0 j < 1/n and 

(ii) g(zn) f g(z 0 ). 

For each n, let tn = I g(zn) - g(z 0 ) I • Then J zn - z0 I .;: o(g,tn) 

Also, t approaches O 
n 

if and only if n approaches infinity. Now, from the existence of g'(z) 
0 

and ot(gJ0) 7 the following result is obtained. 

I g, ( z O ) 1 "" iiE:! t r I g c z) - g c z O ) I I J z 
0 

- z I 1 0 



= limit { ] g( z ) - g ( z ) [ / ) z - z ] J z .... z n o n o 
n o 

< limit ft /o(g,t )' 
- t -o+ l. n n J 

n 

= 1/0-l-{g,o) 

Since g is holomorphic in the finite plane, g' is holomorphic in 

the finite plane and is bounded by 1/ot(g,O), as established in the 

preceeding paragraph. Application of Liouville's Theorem shows that 

53 

g'(z) is constanto Then g'(z) t, o, since g is not constant and g(z) = 

kz + c, k /:- o. 

Proposition 5.4. Let [a,b] be a closed interval and let g be an 

element of C[a,b] such that 

(1) g 1 is strictly monotone in (a,b) 

-1 
(2) g exists in [a,b] 

Then o(g,t) = lg=1 (g(a) + t) - a! if jg'(a+)j > lg'(b-)j 

and o(g,t) = jb - g-1 (g(b)-t)! if [g'(b=) j > )g'(a+) J 

Proof~ By (1) and (2) of the hypothesis g 1 is either positive 

throughout (a,b) or negative throughout (a,b) and by (1), g' is 

strictly monotone in (a,b). Also, g is either increasing in (a,b) or 

decreasing in (a,b). Thus, four cases are established by considering 

the alternatives on g'. 

Assume g' is positive and decreasing in (a,b). Then g is increasing 

=l 1 in (a,b) and g is increasing since D g= (x) = 1/D g(x). Now, let x x 

x and y be numbers in (a,b) and ta real number. It follows that 



g(x) + t< g(y) + t and g-~(g(x) + t) < g-1 (g(y) +_t). 

Let x and-y be points of [a,bl and t a real number such that x < y 

and g(y) - g(x) = t. Since g is increasing, g(y) - g(x) = t and 

g(y) = g(x) + t. Then y = i"1 (g(x) + t) and 

Jy - xJ = y - x = g-1 (g(x) + t) - x = jg-1 (g(x) + t) - xj. 

By Proposition 5.3, 

5(g,t) = inf (Jy-xJ: x,y € [a,b], I g(x) - g(y) I = tJ 

= inf {Jg-1 (g(x) + t) - xJ: x e: [x,b]} 

= Jg-1 (g(a) + t) - a J 

Also, since g' is decreasing in (a,b), 

Jg'(a+) J = g'(a+) > g'(x) ~ g'(b-) = Jg'(b-)J for x in (a,b). 

Example 5. Let g(x) = x2 and consider any interval [a,b], a~ o • 

. By the above proposition, g'(x) = 2x is positive and increasing in (a,b) 

and g-1 (x) = .fx in (o,QO). Then Jg' (b-)J = 2b, Jg' (a+) J = 2a, and 

Jg' (b-)[ > Jg' (a+)J. Thus, o(g,t) = Jb - g-1 (g(b) = t) J = .fo2 - t. 

In particulary for the interval [O~l], o(g.,t) = l - .J1 - t. 

Example 6. If g(x) = .fx, g 1 (x) = 1/2 .fx is defined, positive and 

decreasing in [aJ b L a ~ o. Then [ g 1 (a+) I > Jg' (b""'.) I and g-1 (x) = x2 • 

By Proposition 5.4, o(g,t) ~ J (J"a + t) 2 - aJ. Again, for the interval 

2 [0 71], o(g,t) = t. 

Let (X,p) be a metric space and let g be an element of I(X). The 

mapping g is said to be ~-contractive if there exists an EE> 0 such that 

p (g(x) yg(y)) < p(x,y) whenever O < P (x,y) < €. Since this definition is 



clearly a uniform Li.pschi tz condition of order 1, the mapping g is 
. . . 

uniformly continuous. Thus, 5(g,t) exists and is bounded on anycompact 

subset of X. If, in addition, it is required that 5 '(g,O) exist, the . + . . . . 

following relationships exist between the notions of €-contractive func"· 

tion and natural delta function. 

Theorem 5.9. Let K be a compact subset of the metric space (X,p) 

and let g be a pon-constant element of I(K). If g is €-contractive and 

5+1 (g,o) exists, then 5 1 (g,o) > 1. + -

Proof: By Proposition 5.2, o(g,o) = O and since o'(g,O) exists, 
+ 

o'(g,O) = limit o(g,t)/t. There exists a real number€> o such that 
+ t .... o+ 

if x and y are points in K and O < p(x,y) < €7 then p(g(x) ,g(y)) < 

p(x,y). Now, o(g,o) ~ o(g,O+) implies the existence of a real number 

t 0 > 0 such that o(g,t) <€for O < t < t 0 • For each such t, there is 

a pair of points, x and y, in K such that p(x,y) ~ o(g,t) and 

p(g(x),g(y)) = t. Then t < o(g,t) for every t < t and o(g,t)/t > 1. 
0 

Therefore, o:(g,o) > l. 

Theorem 5.10. Let K be a compact continuum in the metric space 

(X,p) and let g be an element of I(K). 

~+(g,O) > 1, then g is €~contractive. 

If o'(g,o) exists and + c 

Proof: If o~(g,O) f o, g is not constant and 5(g,O) = 0, Thus, 

0 1 (g?O) = limit 5(g,t)/t and since o' (g,o) > 1, there must exist a 
+ t .... o+ + 

real number k > 1 and tk > 0 such that 5(g,t)/t > k whenever O < t < tk. 

In other words, 5 ( g, t) > kt whenever O < t < tk. Let x and y be points 

of K such that O < p(x,y) < o(g,tk) iand let t' = p (g(x) ,g(y)). Then 



t' < tk and p(x,y) _:::o(g,t') >kt' which yields p(x,y) > p(g(x),g(y)). 

Hence, g is €-contractive. 

Edelstein L-5J established the following ,results concerning 12-· 

contractive mappings: 

L If K is a compact metric space and g ,is an e-contractive 

mapping on K, then there exists a periodic point a. 

II. If, in addition, K is ~-chainable, then a is a unique fixed 

point and a= limit gn(x) for each x in K. 
n .... CD 

These results may now be stated in terms of the natural delta 

function. 

Corollary 5.9.1. If K is a compact subset of a metric space (X,P) 

and g is an element of I(K) such that o+(g,o) exists and o+(g,O) > 1, 

then there exists a periodic point a. 

Corollary 5.10.L If K is a c~mpact metric continuum and g is an 

element of I(K) such that o~(g,o) exists and is greater than 1, then 

g has a unique fixed point a and a= limit gn(x) for each x in K. n .... oo , 

Proof: Obviously, since K is a compact continuum, K is e~chainable 

and, by Theorem 5.10, is e-contractive. Hence, the hypothesis of 

Edelstein's theorem (II) is satisfied and the desired result follow~. 

In Theorems 5.1 and 5.3 it was shown that if K is a compact 

continuum and g is an element of C(K), then o(g,t) is a positive, non-

decreasing and left-continuous function defined on Kand bounded by b, 

the diameter of g(K). If it is observed that o(g,t) is Riemann-integrable 
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on [O,b], the integral may be u~ed to.def~ne a uniformly continuous func­

tion from (I(K),U) to the interval [o,b2]. This will be accomplished in 
' . . .. 

Theorem 5.11, with the values taken on by this function ~or certain 

special elements of I(K) observed in Theorems 5.12 and 5.13 and their 

corollaries. 

Theorem 5.11. Let K be a compact continuum in a metric space (X,P) 

with b the diameter of K. For each element g of I(K), let 

F(g) = s: 5(g,t)dt. Then Fis a uniformly continuous function from 

(I(K),U) to the interval [o,b2 ]. 

Proof: Let e' > O be given and take e = € 1/b. Then for g and h 

in I(K) such that d(g,h) < e:./2, and any two points, x and y, in K, 

p(h(x),h(y)) S p(h(x),g(x)) .+ p(g(x),g(y)) +p (g(y),h(y)). 

Thus, 

p(h(x),h(y)) < p(g(x),g(y)) + e. 

Similarly, 

p(g(x),g(y)) < p(h(x),h(y)) + s. 

Now, if p(x,y) < 5(g,t), then p(g(x),g(y)) < t and p(h(x),h(y)) < t + E;. 

Therefore, 5(g,t) S o(h,t + s) and·5(h,t) S o(g,t + e:). 

Since 8(g,t) and 5(h.,t) are non-negative and non':"decreasing in 

[O,b], b b . J0 o(g,t)dt s J0 o(h,t + e)dt 

= f+€ o(h,t)dt 
€ 

= Jb 5(h,t)dt + Jb+e 8(h,t)dt - Je 8(h,t)dt 
O b O 

< J0b, o(h,t)dt + e•b. 



Similarly, 

rb o(h,t) < Jb o(g,t) + €•b. 
"0 0 

Thus, F(g) <. F(h) + e' and F(h) < F(g) + (e' or, in other words, 

-€ 1 < F(g) - F(h) < € 1 • Hence, IF(g) - F(h) [<a' whenever d(g,h) < (!. 1 /2b 

and Fis uniformly continuous. 

Theorem 5 .12. Let K be a compact continuum of diameter b and let g 

be an element of I(K) which is a homeomorphism. Then g is an isometry 

if and only if o(g,t) = t for every tin the interval [O,b]. · 

Proof: If g is not an isometry, then by a theorem of Montgomery 
l 

L-11--:), g m~st increase the distance ~etween some two points of K. That 

is, there must exist points x and y in K such that p (x,y) < p (g(x) ,g(y)). 

Lett' = p:g(x),g(y)). Then 

B(g,t') ~ p(x,y) < p(g(x),g(y)) = t'. 
I ,,-, 

Conversely, suppose there exists a t 1 in (O,b) for which o(g,t') 

ft'. Now, o(g,t') < b since, by Theorem 5.5J the diameter of g(K) is 

given by inf (t I o(g,t) = b} and g is a homeomorphism. From Theorem 5.4, 

there exists a pai.r of points, x and y, in K such that p (x., y) = 5 ( g, t' ) 

and p (g(x) ,g(y)) "" t', from which it follows that P (x.,y) f P (g(x) ,g(y)) 

and g is not an isometry. 

Corollary 5.12.1. If' .K is acqmpact continuum of diameter band 

g is an isometry of K into K, then F(g) = b2/2. 

J' b 2 Proof: By Theorem 5.12., o(g,t) = t and F(g) = tdt = b /2. 
0 

Theorem 5.13° Let K be a compact continuum of diameter b and let 

g be an element of I(K) which is a contraction mapping. Then for every 



tin (O,b),B(g,t) > t. 

Proof: Since g is a contraction mapping, there exists a re.al 

number r, 0 < r < 1, such that p(g(x),g(y)) :S r•p(x,y) for ev_ery pai.r. 

of points in K. Let a be any number in (o,b) and let m = min [b;a/rJ. 

Then a< m since a< a/r for r < 1. Let a' be a real number such that 

a< a'< m and let x and y be any pair of points in K such that 

p(x,y) < a'. Now, 

p(g(x),g(y)) :S r•p(x,y) < ra' < rm :S r•a/r = a 

Therefore, a' :S B(g,a) and 8(g,a) > a. 

Corollary 5.13.1. Let K be a compact continuum of diameter band 

let g be a contraction mapping of K into K~ 
2 

Then F(g) > b /2. 

Proof: The function o(g,t) is integrable and o(g,t) - t > O for 

every number tin the interval (O,b) by Theorem 5.13. Then, 

J b [o(g,t) - t]dt = r o(g,t)dt - Jb tdt > 0 
0 0 0 

and F(g) ;:: r b tdt. Thus, F(g) > b2/2. 
' 0 

59 

The remaining two theorems ·of this chapter are devoted to studying 

the effect on o(g,t) and F(g) when the domain K has a strictly convex 

metric. 

Theorem 5.14. Let K be a compact continuum in a complete metric 

spacei with metric D such that Di~ a strictly convex metric for K. If 

g is ,an element of C(K), then B(g,t) is super-additive in (O,b'] where 

b' denotes the diameter of g(K). 

Proof: Let t', t•' and t be real numbers in the interval [O,b'] 



such that t = t' + t''. Assume o(g,t) < o(g,t') + o(g,t''). There 

exists a pair of points, x and y, in K such that D(x,y) = ~(g,t) and 

D(g(x),g(y)) = t. Let€= [o(g,t') + o(g,t'') - o(g,t)]/2. The~e 

exists a point z in K such that D(x,z) + D(z,y) = D(x,y) and D(x,z) = 

o(gJt') = €· Now, 

D(z,y) = o(g,t) - D(x,z) 

= o(gJt) - o(g,t') + € 

= o(g,t) - o(g,t') + [o(g,t') + o(g,t' ') - o(g,t)]/2 

= 0 (g, t I I ) - s!:: 

Then D(g(x),g(z)) < t', D(g(z),g(y)) < t 1 ' and, 

D(g(x),g(y)) S D(g(x),g(z)) + D(g(z),g(y)) 

< t 1 + ti I = t 
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This, however, contradicts the choice of points, x and y, and the origi-

nal assumption that o(g,t) < o(g,t') + o(g,t'') is false. Thus o(g,t) 

is super-additive in [O,b 1 ]. 

Theorem 5.15. Let K be a compact continuum with a strictly convex 

metric D such that the diameter of K, under D, is b. Let g be a non-

constant element of C(K) such that the diameter of g(K). is b 1 • Then 

F(g) < b2 - (bb')/2. 

Proof: Since Dis a strictly convex metric and g is not constant, 

o(g,t) is super-additive in [o,bv] by Theorem 5.14ando(g,t) ~ bt/b' for 

every tin (o,b). Then, 

rb' o(g.,t)dt ~ Jb' (bt/b' )dt = bb 1/2 • 
• JO O 

By Theorem 5.5, 5(g,t) = b for every number tin the interval [b' ,b]. 
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Hence) b . b 

Jb, 
o(g,t)dt = J bdt = b2 - bb I• 

b' 

Now, 
b 

F(g) = f o(g,t)dt 
,. 0 

Jb, I b o(g,t)dt = o(g,t)dt + 
O b' 

< (bb' )/2 + b2 -(bb 1 ) 

and F(g) < b2 -bb'/2. 



CHAPI'ER VI 

SUMMARY 

This paper is concerned with two concepts, namely those of 

strictly convex metrics and of natural delta functions. 

Comparing the strictly convex metric with the convex metric, it is 

found that a strictly convex metric is a convex metric for which each 

pair of points determines a unique arc whose length is given by the 

distance between the points under that metric, 

One of the principal results of this paper is contained in Chapter 

III. If a compact continuum can be expressed as the union of a discrete 

set and a countable collection of compact sc=metrizable continua {M.J 
J.. 

such that for each integer n the continuum M intersects the union of 
n 

those continua of the collection of index less than n in a single point, 

which separates the space, then Mis sc-metrizable. As a corollary to 

this, every dendrite is sc .. metrizable. 

In the plane, the sc-metrizable sets are characterized as the 

collection of all locally connected and point-like continua. In general, 

every sc-metrizable continuum is unicoherent. 

In Chapter IV both c-metrtzabili ty and sc-metrizabi.li ty are found 

to be topological properties. Examples are given to show that not 

every convex metric on a sc-metr:i..zable continuum is a stri,ctly convex 

metric and that Bing's method in ['3J of extending a convex metric is 
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not applicable to strictly convex metrics. The Cartesian product of two 

c-metrizable continua is found to be c-metrizable and the question is 

raised as to whether the same is true of sc-metrizable continua. 

It is observed that the concept of a strictly convex metric is 

more closely analogous to the original linear concept of convexity than 

is the concept of a convex metric, since with sc-metrizability the 

concept of convex hull is definable and consistent with linear results 

but is not with c-metrizability. 

Focusing attention on the collection of all continuous functions 

between two compact, metric continua, the natural delta function is 

defined and is shown to be, for each such continuous function, a non­

negative, non-decreasing and Riemann-integrable function of one variable, 

defined in (O,co) and bounded above. The value of the natural delta 

function at the origin is zero if and only if the range of its deter­

mining function is infinite. The natural delta function is found to be 

left-continuous and a necessary and sufficient condition that it be con­

t:i.nuous is given. 

Payingparticular attention to the right-hand derivative of the 

natural delta function at the origin, a number of results are establi­

shed. The requirement that this right-hand derivative exist and be 

non=zero is shown to be equivalent to a uniform Lipshitz condition of 

order 1, where the Lipshitz condition is defined in a general way. 

When applied. to functions holomorphic in the complex plane, the same re­

quirement yields a translation. 

If g is a uniformly continuous function on a compact set such that 

the right-hand derivative of o(gJt) at the origin exists and exceeds one, 



g is an «!-contractive function. App:l.ying this result to Edelstein's 

theorems on e-contre.ctive functions, the following results are ob-

tained. If K is a compact subset of a metric space and g is a 

cont-inuous function of K into itself for which the right-hand deriva-

tive of o(g,t) at zero exists and exceeds one, then g has a. periodic 

point a. If, in addition, K is a continuum, then a is a unique fixed 

point and a= :ltmit gn(x) for each x i:p K. 
n ... co 

If K is a compact metric continuum of diameter ban~ I(K) is the 

collection-"Of all conti:puous mappings of K into itself, the function F 

from I(K) to [O,b2 ] is found t~be a uniformly continuous function 

where I(K) is given the topology of uniform convergenceand F(g) = 

~ o(g,t)dt for eac~ element g of I(K). nie value of F(g) is then 

determined for certain special types of functions. 

If the metric on the continuum K of the preceeding paragraph is a 
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strictly convex metric, then o(g,t) is a super-additive function on the 

interval [O,b 1 ], where b' denotes the diameter of g(K). 

Some questions for further study might include the following. What 

are the conditions under which a strictly convex metric on a subset M 

of a space Scan be extended to S? Under what conditions will a non-

compact continuum have a strictly convex metric? If a space S has a 

strictly convex metric D, a.re the spherical neighborhoods D-convex sub-

sets of S? Finally, under what conditions can a continuous function f 

on a subcontinu~m M1 of the metric continuum M2 be so extended to M2 

that the natural delta function of the extension and the natural delta 

function off coincide on the interval from zero to the diameter of 

M1? In other words, when does the Tietze extension theorem yield a 



smooth extension? 
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