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PREFACE

This paper will be concerned with two special types of metrics,
mamely those whichrér@ convex and those which sre strictly convex. .In
addition, a particulaf function is inve§tigated, the ngtufal delta
function. Chapter I is an introductory chapter givipguthe definitions
of the above mentioned metrics.»-In Chapter II the relationship be-
tween-thé convex metric and the strictly convex metric is considered.
Chapter IIT combines a:general resuit on the structure of continua
which are strictly convex metrizable with a complete charac@erization
of such continua in the.flane; The material of Chapter IV is devoted
to the study of similarities and contrasts between the two types of
metrics. In Chapter V the natufal delta function is defined and its
relationships to other concepts; including that of a strictly convex
metric, are considered. Chapter VI contains a summary of the results.
The results in this paper rely heavily upon the matefial in Whyburn
[i§7 and in Moore [igZ, (Numbers.in brackets refer to the bibliography
at +the end of the paper). |

I shouid like 1o express my sincere appreéiation to Olan H. Hamil~
- ton for his wise counsel during the preparation of this thesis; to the
other members of my adyisory'committee, R. B. Deal, Eugene K. McLachlan,
John E. Hoffman, and J. D. Parker; to L. Wayne Johnson for his innumer-
able efforts in my behalf; to the National Science Foundation“for‘the

two fellowships; and, most of all, to my wife and children.
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' CHAPTER T
~ INTRODUCTION

This paper will be devoted to the development ofpcertain properties
of convex'and strictly convex metries, the nature ofbspaces which allow
such metrics, and the relationships between these spaces. In addition,
the natural delta function will be defined and.some of'itsvproperties
investigated.

A topological space is metrizable if there is a distance.function
D(x,y) such thet if‘x,y,_and i are points, then

1) - D(x,¥) >0, the equality holding only if x =y,

)
) D(x,¥) = D(y,x) (symmetry),

(
(2
(3) D(x,y) < D(x,z) + D(z,y)_(triangle condition),
(hj lD(x;y) preserves liﬁit points.

Menger, in /[ 9/, defined the metric D(x,y) to be convex if it has
the additional property that

(5) for each pair of points x,y there is a point u such that
D(x,u) = D(u,y) = D(x,y)/2.

A subset M of a space S‘is said to have a convex metric (even though S
may have no metric) if the subspace M of S has a convex metric.

Menger proved in [-9;7 that a compact eontinuum is locally con-

nected if it has a convex metric; showed that M is convexifiable if it

possesses a metric'D such that for each point p of M ard each positive



number € there is an open subset R of M contalning p such that each point
of R can be joined in M to p by a rectifiable arc of length (under D)
less than ¢; and raised the question as to whether or not a chpact,
loca;ly connected continuum M can be assigned a convex metric. This
question‘was answered in the affirmative by Bing and Moise in [Th;7 and
1710_7, respectively, but not until after twenty years had elapsed and
a number Qf attempts had been made by others. 1In 178;7, Kuratowski and
Whyburn proved that M has a convex metric if each Qf its cyclic éle~
ments does. Beerbconsidered in [71;7 the case where M is one-dimen-
sional. Harrold, in / 7/, found M to be convexifiable if it has the
additional property>of being a plane continuum with only a finite num-
bef of complementary domains.

It was the above mentioned results which ied this auﬁhor to consider
a metric whiéh, in addition to being a convex metric, has the property

that the point u of (5) is unique.

Definition 1.1. The metric D(x,y) is said to be a strictly con-

vex metric if it has the additional property'that
(5') for each pair of points x,y there is a unique point u

such that D(x,u) = D(u,y) = D(x,y)/2.

Definition 1.2. Let S be a topological space with topology T.

Then S 1s said to be c-ﬁetrizable if and only if it is possible to de-
| fine a convex metric which will induce the topology T. Furthermore, S
is said to be sé-metrizable if and only if it is possible to define a

strictly convex metric which will induce the topology T.

In Chapter II the basic relationship between the concepts of convex



metriec and strictly convex metric are discussed. It is shown that the
requirement (5') is equivalent to the requirement that each pair of
points x,y determines a unique arc whose length under D is eqgual to
D(x,y). Using this fact a strictly convex metric is characterized as a
convex metric such that each pair of points determines a unique arc of
length equal to the distance between the points. . In this discussion the
notion of arc length in an arbitrary metric space is required and is ob-
tained in a manner analogous to that used in En, by using a partition

of the arc and defining for the partition P = {xo,x v»-,xn] the number

l,
%(P) =% D(Xi~l’xi); i=1,2,+22,n, where D is the metric. The number
x(P) then plays the role of the length of the inscribed polygon in
En'. The notions of norm, refinement, etc., all follow easily and the
length of the arc A, from x_ to x , is defined by sup {n(P): Pe @A)}
where (P(A) is the collection of all partitioné of A. If this number
exists and is finite, A is recfifiable and the'length of A is denoted by
2(a). |

‘Chapter III is concerned with the study of plane.continua which are
sc-metrizable, It is first shown that no cdmpact continuum which is
sc~metrizable can separate the plane. The primary result of the chapter
is that any compact and locally connegted continuum which can be re-
presented as the countable union of sc-metrizable continua satisfying
certain conditions has a strictly convex metric which preserves the
metrics on each of the countéble collection of continua. It is shown
that any locally connected and point-like plane continuum can be so ex-

pressed and is therefore sc-metrizable. The sc-metrizable continua in

the plane are then characterized. Some of the results can eagily be



seen to be adaptable ﬁo a more general setting.

Chapter IV is devoted to a comparison of some of the properties of
c-metrizable and sc-metrizable continua. The properties of being c-
mgtrizable and sc-metrizable are seen to be topological properties.
Every sc-metrizable continuum is unicoherent. An example is given of a
convex metric on a closed 2-cell which is not a strictly convex metric.
The Cartesian product bf two c-metrizable continua is shown to be
c-metrizable. The notion of D-convex hull is defined in a manner which
is analogous to the concept in a linear space.

In Chapter V the natural delta function is defined; is a non-nega-
tive, non-decreasing and léft-continuous function which is bounded and
therefore, Riemann integrable. The natural delta function is a mapping
of ¢(k) X R' into R, where C(XK) is the collection of continuous functions
on a compact, metric continuum K. The integral of the delta function
is a uniformly continuous function from c(K) into R, where C(K).has the
topology of uniform convergence. A necessary and éufficient condition
that the delta function be continuous is stated. The right-hand deri-
vative of the delta function at zero is shown to be a determining factor
relative to Lipschitz conditions, complex functions and periodic points.
Finally, the naturai delta function is determined to be super-additive

when the set K has a strictly convex metrie,



CHAPTER II

RELATIONSHIP BETWEEN CONVEX METRICS

AND STRICTLY CONVEX METRICS

The purpose of this chapter is to relate the concept of a convex |
metric with that of the strictly convex metric. It will be shown that a
strictly convex metric is a convex metric for which each pair of points
determines a unique arc whose length is given by fhe distance between the

points under that metric.

lemma 2.1. ILet M be a compact continuum with a convex metric D
and having the property that if x and y are any two points of M, there
exists a unique arc [x,y] between x and y such that £[x,y] = D(x,y).

Then if z is any point of [x,y], D(x,z) + D(z,y) = D(x,y).

" Proof. Let z be a point of [x,y] distinct from x and y. By the
triangle inequality, D(x,z) + D(z;y)‘z D(x,y). Since [x,y] is an arc,
(x,y] - z = H U K& where ﬁx is an arc from x to z and R& is an arc
from z to y. Then ﬁg and K} are rectifiable with the metric D and
Z(ﬁ;) + 2(?&) = ¢ [x,y]. By hypothesis, there-exist unigue arcs [x,z]
and [z,y] such that £{x,2] = D(x,z) and4 [z,y] = D(z,y). Thus

D(x,z) + D(z,y) < D(x,y) and the equality is established.

Theorem 2.1. Iet M be a compact continuum satisfying the hypothesis

of ILemma 2.1. Then the metric D of lemma 2.1 is a strictly convex



metric for M.

,23993' Assume D is not-a-strictly convex metric. There exist

points x,y,z and v, all distinct; such that- |
D(x,z) = D(z,y) = D(x,v) = D(v,y) = D(x,y)/2.
Without 1033‘of generality, z can be taken in [xeyj, since there is s
foint z in [x,y] such  that D(x,z) = D(x,y)/2, and from Lemma 2.1,
D(z,5) = D(x,¥) - D(x,2) = D(x,¥) ~ D(x,5)/2 = D(x,¥)/2.

Now v does not lie on [x,y]; for if 1t does, one of the polnts z, v
must precede thé other in the order from x to y. Suppose z precedes V.
Then D(x,v) < D(x,z) + D(z,v) and since z # v and D(x,v) = D(x,z), D(x,v)
< D(x,z) + D(z,%r)° Thére‘exists an arc [x,v] such that £[x,v] is less
than the distance from x to v along [x,y]. If R&Iis the arc from y'to v
along [x,y], then £({x,v] U R&) <{[x,y]. If this were the case,
however, there would exist ah arc lying in [x,v] U R& and having length
less than that of [x,y].

Since v is not in [x,y] and D(x,v) = D(v,y) = D(x,y)/2, there exists
a pair of arcs [x,v] and [v,y] such that £[x,v] = D(x,v) and £ [v,y] =
D(v,¥y). Then [x,v] U [v,y] contains an arc A from x to y and !(A)‘can~
not exceed the combined lengths of [x,v] and [v,y]. This implies,
hoﬁever, that ¢(A) < D(x,y), contradicting the uniqueness of [x,¥y].
Hence, there must eiist g unigue point u‘such that D(x,u) = D(u,y) =
D(x,y)/2 and that point.mpst lie on [x,yl.

The following lemma ié presented with no pretense of originality.
It is, instead, an elementary result of the theory of rectifiable curves

included at this point for the purpese of cofnpleteness°



Lemma 2.2. ILet M be a metric-space with'metric D and let A be an
arc in M, Let'{Pi(A)} be a sequence of partitions of A such that
UP,(A); 1 € I, is dense in A. Then if sup {x(P,)} is finite, A is

rectifiable and £(A) = sup {ﬂ(Pi)}.

12599{. The above result will be established by shbwing:that for |
any partition P = {xo,xl,..,,xm} of A, n(P) is bOunded:by sup {ﬁ(Pi)}a
It should be understood that by the term "sequence of partitions", as
used above, is meant a nested sequence such that for each integer n,
Pn(A) is & réfinement of Pn_l(A). With this understanding and the
hypothesis that UPi(A), 1 €I, is dense in A, it is clesr that for any
positive regal number ¢ there exists an_ihteger N > 0 such that for
n > N, and any point Xy of P there exists a point yi.of Ph(A) such that

D(x ) < ¢/2m.

103
Now let X1 and X, denote any pair of adjacent points of P and
let y,_; and y, be the associated points of Pn(A)° Application of the

triangle property then gives
Dx;_35%;) < Dxy_35¥;4) + Dlyy_35¥5) + Dlyyox,y)
< D(yi-l’yi) + ¢/m,
from which it follows that
7(P) =% D(xy_15%;)5 1= 1,2,000,m

< Z’ D(yi_l’yi) + €; i = l,2,oof,m

INA

ﬂ(Pn) +e n>N
< sup {n(Pi)} + 65 1 =1,2,000,
Since the above statement is true for every ¢ > 0, x=(P) <

sup {ﬁ(Pi)} and the desired result is obtained.



Theorem 2.2, Iet M be a compact continuum-with-a strictly comvex
metric D. If x and y are any two distinct points of M, there exists a

unique arc, [x,y], from x to y such that £[x,y] = D(x,y).

22922' By definition there exists a unique point, call it U(l/2)
in M such that
D(x,u(1/2)) = p(u(1/2),y) = D(x,¥)/2. .
Similarly, there exist unique points U(1/4) and U(3/4) in M such that

D(X,U(l/h)) = D(U(l/h),U(l/E)) D(x,U(l/2))/2 = D(X:Y)/h

and

it

p(u(1/2),u(3/4)) = D(u(3/4),y)
Applying the triangle property, |
_ D(u(1/4),y) < D(u(1/4),u(1/2)) + p(U(1/2),y) = 3D(x,y)/k.
Assume D(u(1/4),y) <-3D(x,y)/%, then
D(x,y) < D(x,U(L/4)) + D(U(L/H),y)
< D(x,y)/% + 3D(x,¥)/4,

which is a contradiction. 'Thus, D(u(1/4),y) = 3D(x,y)/4 and, in a simi-

D(U(1/2),¥)/2 = D(x,y)/%.

lar manner, D(x,U(3/k)) = 3D(x,y)/b.

For each integei n, iet P (x,¥) = {(U(a/2%)|m = 0,1,...,2"}.
Aésume that for‘thé positive integer n, Pn(x,y) has been defined and has
the property that for any two elements, U(i/2") and u(3/2"),

D(u(1/2%),0(3/2") = |1 - 3|. Dlx,¥)/2"

Now for each integer i; i = 0,1;...,2n51, there exists a unique point g
in M such that

p(u(i/2"),q)

D(q,U((i+1)/2")) =.D(U(i/2n),;XU((i+1_)/2’?‘-'))/2

?(X:Y)/én+l'

It



' By‘repeatingmthe“argUmentMQf"the-above paragraph,

#

D(x,q) = |21+1] - D(x,y)/2""

and

i

D(a,y)

1 - (2141)/2" |
" f (s n+l .
(Thus, q = U((2141)/2777) is an element of Pn+l(x,y) and Pn+l(x,y) also

* D(x,¥)
has the‘above property.

It is easily seen from the above discussion that for egch positive
integer n, Pﬁ(x,y)c: Pn+l(x,y), sa thgt {Pi(x,y): i=1,2,...,} is an
expanding collection of compact sets. Let U represent the union of this
collection. Then U is a compact set. Assume U is not COnnécted. There
exists a pair of disjoint closed, and therefore compact, sets, A and B,
such that U = AU B. If k > O represents the distance from A to B, there
exists an integer N such that 1/2N < k. Suppose the point U(l/EN) is in
A, then for each integer n < N, the point U(l/2n) is contained in A since
p(u(1/2Y),u(1/2") < 1/2“? Also, for each n >N, if U(1/2%) is in 4,
then U((i+1)/2") is in A for the same reason. Hence, g‘?;(;:?); n >N,
is contained in A, | _

Let p = U(m/2n) be a point of U, where n < N and 0 <m < 2%, Then
p = %;Tig»u[(ekm-l)/2n+k] and since all but a finite number of points of
Uare in A, U is in A and U = A, Thus, the assumption that U is not
connected is false and U is a compact continuum.

let z be a point of U and D(x,z) = &*D(x,y). There exists a
sequence of points {U(mn/én)}; n ¢ I, such that p = %ifig U(mh/2n), from
which it follows thgt X = %;Tig (mn/en),‘ On the other hand, let @ ¢ (0,1)
be a real number, there exists a sequence [mn/2n} of real numbers such

. n n .
that ¢ = %;Tlg (mn/2 ) and a point z = %;Tig U(mn/2 ) which has the
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property that D(x,z) = a+D(x,y), by the continuity of D. Similarly,
D(z,y) = (1-a@) +D(x,y).

Suppose there exists a pair of distinct points, z and w, in U such
that D(x,z) = D(x,w). Then D(z,w) = ¢ >0, and there exist sequences,
{U(m /2 J)]and{U(m /Qni)] converging to z and w, respectively. There
exists an integer N > 0 such that 1/2 < c¢/4, an integer n, >N such
that D(z, U(m /2 )) < 1/2 and an integer nj > N such that
D(w,U(m /2 3)) < 1/2 . Now, both U(m /2 1y ana U(mJ/E 3} are points of
e (x,y), where k = max {i; j}. Hence,

X e g N
D(U(mi/E ),U(mj/z WX Afe”;
which is a coﬁtradiction. Thus, z = w.

It follows now that if z is a point of U - {x U y}, D(x,z) = a > 0,
and
U -2z = {w: D(x,w) <&} U {w: D(x,w) >a},
separated. U is a compact continuum with at most two non-cut points
and is, therefore, an arc from x to y.

Since, as established above, for any positive integer n and any
positive integer i < En,

p(u((i-1)/2"),u(1/2")) = D(x,¥)/2",
the collections Pn(x,y) may be considered as regular partitions of the
arc U, and for each integer n, x(P ) =% D(x,y)/2"; 1 = 1,2,...,2", and
n(Pn) = D(x,y). It is obvious then, from Lemma 2.2, that £ (U) = D(x,y).

It remains only to show that U is unique. Assume the contrary,
that there exists an arc A # U from x to y such that £(U) = D(x,y) = £(A).
Then there exists a point z of U - A. let D(x,z) = a*D(x,y), there
exists a point w in A, w # z, such that D(x,w) = D(x,z). Now D(z,y) £

D(w,y), thus D(w,y) > D(z,y). Consider the partition P = {x; w; y}
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of A. Then -
7(P) = D(x,w) + D(x,y) > D(x,y)
and £ (A) > x(P) > D(x,y), and the assumption is clearly false.
Thé"fdliowing“theorem, the result of Theorem 2.1 and Theorem 2.2,
gives a characterization of the strictly convex metric in relation to

the convex metric which will prove quite useful in later discussions.

Theorem 2.3, ILet M be a compact continuum with a convex metric D.
A necessary and sufficient condition that D be a strictly convex metric
for M is that if x and y are any two points of M, there exists a unique

arc, [x,y], from x to y such that ¢ [x,y] = Dlx,y].



CHAPTER IIT
STRICTLX CONVEX METRICS ON PLANE CONTINUA

This chapter is devoted to the study of continua in the plane which
are sc-metrizable. It will be shown in this chapter that the collection
of plane continua which are sc-metrizable is ?recisely the collection of
all locally connected and point-like continua. Thié result will be
obtained by eétablishing first that no compact continuum which is sc-
metrizable can separate the plane. The‘converse will then be establishéd
by showing that every locally connected and point-like continuum in the
plane can ben;ébresentéd as a particular combination of sc-metrizable

sets and that, in general, such a structure is sc-metrizable.

Lemma 571. Let J be a simple closed curve in the plane, x and y
two distinct points of J, and M an arc from x to y whicﬂ contains no
point of the bounded complementary domainlof Jo. Lét’Al and A2 be the
arcs of J such that A, U A2 = J and Al HIA2:= {xU y}.. If U is the un-

bounded complementary domein of M U J, then some point p of J ~ M is

accessible from U. Also, if p is a point of A

17 then no point of AE - M

is accessible from U. (Figure 1)

Proof. let q be a point of U and assume that no point of J - M is
accessible from U. Now, M and J are locally connected and M U J is

locally connected, Hence, MU J 1s a compact, locally connected

12
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continuum geparating thefplane.‘ The boundary of U, F(U)z is_a locally
connected continuum by the Torhorst theorem Zfi}-p 106;7, gnd»F(U) c

(MU J). Thus, F(U) is a bounded, locally connected continuum separating
the plane, and every point of F(U) is accessible from U [lefp 3_12_:7°
Since, by assumption, no point of J ~ M is accessible from U, F(U) must
be a subset of M. Then F(U) contains a simple élosed curve [TIB;p‘lO7:7.
However, this is impossible since M is an arc, Therefore, the assumpfion
is false and there must exist a point p of J - M which i1s accessible

from Y.

Figure 1.

Suppose p is a point of Al and assume there exiSts a point b of
A2 - M which is accessible from U. Let P4 be an arc from P to g such
that p = pg N F(U), there exists an arc b such that qd N F(U) = b and
b4 N g6 = . Then pgb is an arc from p to b such that pab N F(U) =

{p UDb}. Since p and b are points of J, there exists an arc pb from b



1h

to p-which lies, with the exception of-itS“end-points,_entirely in the
bounded complementary domain of J. Thus, Pb N pab = {p U b} and pb U pab

='Jl is a simple closed curve .

Now, Jl

fore, separate x from y. However, Jl contains no point of the‘arc M,

is a simple closed curve containing p and b and must thgre-

which is a contradiction. It follows that there can exist no point b

in A2 - M which is accessible from U.

Lemma 3.2, Let M be a compact plane continuum with a strictly
convex metric D. Let J be a simple closed curve in M, and let Xq be a
point of J such that for every point y of J - {xo] there exists a unique
arc, [xo,y], containing no points of the bounded complementary domain I
of J and having length equal to D(xo,y). For each point y of J - {xo}
let E(y) be the unbounded complementary domain of J U [xo,y]. Let A+(y)
and A_(y) represent, respectively, the positively énd negatively orient-
ed ‘arcs of 'J such that A+(y) UA(y) =J and A;(y) nalfly)=
{x, Uy} (see Figure 2). Iet P ={y: yeJ = {x}, A_(y) contains a
point of J ~ [xo,y] which is accessible from E(y)}and let N =
fy: y e J - {xo}, A+(y) contains a point of J ~ [xo,y] which is

accessible from E(y)}. Then P and N are nonempty separated‘sets.

Proof. Froﬁ Lémma 3.1, J - {xo} = NU P, One of the sets, say P,
mUst.COntain an uncountable number of points. Let yo be a point of J
which is a limit point of P distinct‘from X there éxists a sequence
{y;} of points of P which converges to y_ . Let {{x_>y;1} be the sequence
of arcs such that ﬁ[xo,yi] = D(xo,yi). By the theorem of Janiszewski

[le-p 23:7, the limiting set L of {[xo,yi]} is a compact continuum and
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Figure 2.

there exists a sﬁbseguence {[xo,yj]} which has L as a sequential limjit-
ing set [flE-p 2&:7. Eor each real number @, 0 < & < 1, there exists a
unique point U(x) of M such that D(xo,U(a)) =Q - D(xo,yo) and
D(U(a),yo) = (1 -a) - D(xo,yo). Also, for each j, there exists a
unique point Uj(a) of M such that D(Xo’Uj(a)) =0 D(xo,yj) and
D(Uj(a),yj) = (1~ct) * D(xo,yj). If z is a limit point of the set

{Uj(a)}, there exists a subsequence {Uk(a)} converging to z and

D(xo,z) = %%Tlg D(xo,Uk(a)) =0 - %%flg D(xo,yk)
=0 D(Xo;yo)
Also,
D(z,¥,) = famig DU (@),5,) = (1-0) - pimit D(x,¥,)

]

(1-c) - D(Xo’yo) ’

from which it follows that U(a) = z is contained in L.
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Thus, [xo,yO] is in L and Q[go,yo] = %}E?E>£[Xo?yk]“
- Now, for each integer k, F(E(yk)) is a simple closed curve

[f13;§ 108;7, Let I(yk) represent the bounded complementary domain of
F(E(y#)) and let q be a point of A+(yo) - {x U yo}m There exists an
integer N > O such that for every integer k > N, q is in f?;;?i Then q
is either a point of F(E(yo)) or is in I(yo); In either case g cannot
be point of A+(yo) - [xo,yo] which is accessible from E(yo)° Hence y
is an element of P, and by repetition of the above argument, N and P
are mutually separated.

Finally, it wmust be established that P and N are non-empty. Assume
N is empty and let {yi} be a sequence of points of J such that yi+l.is
in Aw(yi) for each i, and the sequence {yi} converges to x_. Let [yk}
be the subsequence, as above, such that {[xo,yk]} has a sequential limit-
ing set, Lo; Iet p be a point of I and let b be a point of the unbounded
complementary domain of M. Then for each integer X, {[xo,yk] U A_(yk)}
is a simple closed curve separating p from b. The sequential limiting
set for {[xo,yk] U Au(yk)} is L nglA_(yk), which also separates p from
b. Also, {[xo,yk]} must converge to the point x _, since %;fig D(xo,yk)
= 0., But this implies that L -~ {xo} separates p from b, which is a

contradiction. Therefore, N is non-empty and the theorem follows.

Theorem 3.1. Let M be a compact plane continuum with a strictly

convex metric D. Then M does not separate the plane.

Proof, Since M has & strictly convex metric, and therefore a
convex metric, M is locally connected. Assume M separates the plane,

then there exist points p and b which lie in disjoint complementary
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dpmains o‘me° 'Ong of tpe po;nts{ say P, must lie inra boundeg ¢ompl§~
mentary domain, K, of M. Applying the Torhorst theorem‘1713fpv106;7, ’
F(K) N M is a compact, locally connected continuum separating p from b.
Then there exists & simple closed curve, J, lying in F(K) and separating
p from b.

- Now let x and y be any two distinct points of J, and let D be the
bounded complementary domain of E2 - J, Suppose there exists an arc A
in M from xéto y such that A N D is non-empty. If z is a point of AN D,
then there @ust exist a last point g in AN J such that g precedes z in
the order from x to y, and a first point v of A N J such that z precedes
v in the order from x to y. The sub-arc qzv of A lies in D, with the

exception of its end points, q and v. The curve J is the union of two

arcs, B and C, such that BN C = {q U v}. If J, =BU gzv and
J. =CU QEV, then J, and J, are simple closed curves having exactly

2 1 2

the arc gzv in common. The set E2 - (Jl U JE) has exactly two mutually

exclusive bounded complementary domains, Ul and UE’ which are bounded by

J, and J,, respectively [ 12-p 1807/ . Since (Jl UJd,) el Kc (E2 - M)

is connected and must lie either in Ui or in Uéa If K is in Ul’ some
point of C must fail to lie in F(X), and if K is in U,, some point of B

2

must fail to lie in F(K). In either case, a contradiction is obtained
t0 the fact that J is a subset of F(K). Hence, every arc in M connecting
two points of J must lie entirely in M - D,

Choosge X, to be a fixed basge point in J and for every point y of
J - {XO} let [xoyy] denote the unique arc in M such that ﬂ[xo,y] =
D(xagy)o By the preeeéing paragrapﬂ, fxagy] must lie in M - D. 1In

addition; each point y determines, with Xy B pair of arcs, A+(y) and
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An(y), such that A+(y) U A_(y)‘z J and A+(y) intersects A_(y) in

{xé U_y}e Let A+(y) indicate the arc from x_ toy obtained by proceed-
ing along J in a counter-clockwise manner, and let Am(y) be the
remaining arc. By lemma 3.1, points of one and only one of the sets,
A+(y) - [XO;yO] and A”(y) - [xoﬁyo]ﬁ are accessible from the unbounded
complementary domain of J U [xo,y], Iet P represent the set of points
y of J - {x_} for which the set Aly) - [xo,y] contains such a point,
and let N designate the set of points y of J =~ {xo} for which

A+(y) - [xo,y] contains such a point. Then J - {xo} =NUP. By
Lemma 3.2, however, P and N are mutually separated and J 1s separated
by X3 contradicting the assumption that J is a simple closed curve.
Hence, the assumption that M separates the plane is false.

The remainder of the chapter will be devoted to the converse of
the previous theorem. It will be established that every compact,
locally connected plane continuum which does not separate the plane is
sc-metrizable. This will be accomplished by showing that every such
continuum has a particular composition and that, in general, any set so

composed i3 sc-metrizable.

Lemma 3.3%. Let Ml,MéjoDQQMﬁ be a finite collection of non-

degenerate compact continua with strictly convex metrics dl,de,o,o,dn,

respectively, and having the property that for each integer k > 1,
k-1
M, N (igl Mi> consists of a single point,
n
strictly convex metric Dn on iQWMi which preserves the metric di on

bkw1° Then there exists a

Mi for each integer i.

Proof: The above result cen easily be established by induction.
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. Thus, it is only necessary, in this instance, to prove the statement
for N = 2. Let'Mi and M2 be two compact continua with strictly convex

metrics dl and d2, respectively, and let b = M1 n M2° Let M S_Ml U M2

and define the function D2 of M X M into R Dby:

]

Dy(x,¥) = & (x,¥)5 x,y in My

]

(12(3{)57)3 X,y in M2

[

dl(x,b) + dg(b,y); x in My, y in ¥,

[

Then D2 is a metric on M by the following:

(1) Dg(x,x> = dl(x,x) = 0 if x is in M,

i

= dg(x,x) = 0 if x is in M,

(i1) Obviocusly, De(x,y) >0, If DE(X,y) = 0 and x and y both lie

in My, then De(x,y) = dl(x,y) = O implies x = y. If x and y are both
elements of M2,

and y in M,, then Dg(xgy) = dl(x,b) + dg(b,y) = O implies x = b = y.

then Dg(x,y) = dg(x,y) = O implies x = y. If x is in M,

(i1i) ILet x,y and z be any three points of M. If all three lie

in Ml’ or in Mg, the triangle property for D2 is obtained from the

original metric, dl or d2’ whichever the case. Assume then that cne of

the points, say z, is an element of M, while x and y are in Ml’ Then

D,(x,y) = & (x,7), Dylx,2) = & (x,0) + a (b,2), and Dy(z,y) =

2
dl(ysb) + de(bjy)o Hence,
Dg(xfy) = d, (x,y)
< 4, (x,8) + d (b,y)
< Dg(x,z} + Dg(z,y)
Also, D.{x,2) = dl(xﬁb) + dg(b,z)
< dl(x,y) + al(y;b) + dg(b,z)
= D, (x,5) + Dy{y,2)

{(iv) let x be a point of M and {xi} a sequence of distinct points
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of M which converges to x. If x is a point -of Ml.'bfbg’ there exists an
integer N > C such that 1 > N implies Xy is a point of Mi }, since
M - {b} 1s open-in'M. Thus,

limit D (x,,x) = limit dl( /X)) = 0

L @ 1 i, ®
Similarly, if x is a point of M2 - {b}, then

lmit D, (x ,,x) = .'limlt dg( x) =0
a€On

1, e -
If x = b, there exists a subsequence {x,} of {xi} which lies in only one

of the sets. In either case, limlt DE(Xi’b) = O, Thus D, preserves
w

—>

limit points.

It remains to be shown that the metric D2 is a strictly convex

metric. This can be accomplished by showing that there exists a unique
arc [x,y] between the arbitrary points x and y such that { [x,y] =

Dg(x,y)° If both points lie in the same subset, I\JI:L or M_, this fact

is obvious from the original metrics. If x is a point of Ml and y 1is

a point of M., any arc from x to y in M must contain the point b.

2
Then the arc [x,y] determined by Tx,b]l + [b,y]2 where ! [x,b] = dl(x}b)
and ¢ [b,y] = de(b,y) has the property that!? [x,y] = Dg(x,y) and takes

its unigueness from the uniqueness of [x,b] and [b;Y]u

%

Theorem 3.2. let {Mi} be a countable collection of nondegenerate
compact continua satisfying the following conditions:

(1) M=y M, , where M is compact and locally connected and
M - M has no nondegenerate component,

(11) Por each integer n > 1, Mﬁ N zgl Mi consists of exactly

. N n-1 —
one point, b ., which separates M- {bn_l} from (U, M, - {bnul} in M,

(iii) Each Mi has a strictly convex metric di such that Mi has
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diameter Wi under”di,
(iv) The series Z W, converges.
Then M has a strictly convex metric D which preserves di on Mi for each

i.

Proof: By Lemms 3.3, there exists for each positive integer n,

n
a strictly convex metric Dn on 191 Mi which preserves di on Mi for

n
i = 1,2,.,e,n. Then for k¥ > n, Dk preserves Dn on 19 Mi. Define a

function D : M x M= R as follows:

4

D(x,y) = limit Dn(x,y); X,y € M

- @

i

}imit D(x;,y,)3 %,y € M5 %57, € My %5 o %, ¥3 o -

(1) Dp(x,y) is well defined on M.
By Lemma 3.3, there exists, for each pair of points, x and y, of M
an integer N such that Dk(x,y) - Dn(x,y) for k >N, Then D(x,y) =

Limit D, (x,¥) = Dylx,y).

(2) In M, D{x,y) >0, D(x,y) = D(y,x) and D(x,y) = O if and only if
X = ¥
These properties all follow from the associated properties on DN

by the discussion in (1).

(3) ILet x,y and =z be any three points of M. Then D(x,y) <
D(x,z} + Dlz,y).
Ls @bove, there exists an integer N such that {x U y U 2z} c igl Mi°
Thus;
Dix,y) = DN(x,y) < DN<X’Z) + DN(z,y) = D(x,z) + D(z,y).

<]
In the following discussion let B = ;Usby where {bi] is the collection of
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points mentioned in (ii) of the hypothesis.

(4) If x is a point of M ; M, then x € B'.

Let [xj} be a sequence of points of M which converges to x and has
the property that no two points of the sequence lie in the same element
of the collection {M;}. For each j, let Mj be the continuum of {Mi}
which contains Xj and let bjml be the point of Mj satisfying (ii).
Assume {bj=1} dces not converge to x. Then there exists a subseqguence
{bk»l} which converges to a point y # x. The sequence {Mk} has a
limiting set L which is a compact continuum/12-p.2%/. Also, L is
nondegenerate, since {x U y} < L. By (i), L contains a point p of
M - B. Since M is locally connected, M - B is locally connected.
Howgver, M - B cannot be locally connected at p, since every region of

p contains points of infinitely many of the {Mi}o Thus the assumption

that x £ B' is false.

(5) If x is a point of M and x is a limit point of M - M, , then x is
a limit point of B'.
This result can be established by applying the same argument as

that used in the preceeding statement.

(6) If x is = point of M and {xi} and {ai} are any two sequences in
M converging to x, then %;Elg D(Xi’ai> = O,
If x is a point of M - M,‘there exists a collection of compact

continua [Rk} which closes down on x and has the property that Rk

intersects no element of the collection {Mi] which has a lower éubscript

than k. PFor each Rk’ let 8y and X, be, respectively, the first elements

o]

Then D(akgxk) < 2 W

fo) h o 2 ° o
T the seguences {ai} and {Xi} which lie in R <55 W

ko
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and %;Tig D(ak,xk) = 0, since iEl W, converges. Thus %%Tig p(xi,ai) = 0.
If x is a point of M, let Mk be the set of lowest subscript which
contains x.  If x is not a limit point of M - Mk’ then all but a finite
number of points of the sequences, {xi} and {ai}, must lie in M . Then
Kk \
° ol = imi N =Oo
since D_ is a metric on U M, %?fig D(xi,ai) %%flg Dk(xl,ai)‘
If x is a limit point of M - M, then each of the sequences, {xi} and
{ai}, must contain points of infinitely many of the elements of the
collection {Mi}o Now, by repetition of the argument of the preceeding

paragraph, with the exception that the R, intersects no point of the

J
collection {Mi} of lower subscript than j, other than Mk’ it can be

established that limit D(x,,a.) = C.
1, ® 1° 1

(7) D(x,y) is well defined on M.

Let x and y be any two points of M, and let {xi}, {ai} and {yi}
be sequences in M such that {xij and {ai} converge to x, while {yi}
converges to y. For each integer i, D(xi,yi) < D(xi,ai) + D(ai,yi)
by the triangle property for M. Then

e < 1imi -
%1mi2 D(xi,yi) “‘i%flz D(Xi’ai) + %;212 D(ai,yi),

a 'b . 2 . L3 . o ¥ & i ° o N
nd by (6) %%flg D(xi,ai) ’O Hence %%T t D(xi,yi) S‘%%Tlg D(ai,yi)

B i 1 - - , - )
y reversing the roles of a, and x,, %%Tlg D(ai,yi) < %%le D(xi,yi)

Therefore %;Tig D(xi,yi) = %%fig D(ai’yi) and the value D(x,y) is shown

tC be independent of the choice of sequence.

(8) 1In M, D(x,y) >0 and D(x,y) = D(y,x)

This is an obvious result of the preceding discussion.

(9) For any three points x, y and z of M, D(x,y) < D(x,z) + D(z,y).
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let x, y and z be any three points of M and {xi}, {yi} and {zi}

be sequences of polnts of M converging, respectively, to x, y and z.
For each integer i, the triangle property for M gives D(xi,yi) <
D(xi,zi) + D<Zi’yi)° Then,

%?fig D(Xi’yi) < %3212 D(xi,zi) + %%Tlg D(Zi’yi)

or D{x,y) < D(x,2 + D(z,y).

(10) 1f {xi} is a sequence in M converging to a point x of ﬁ, then
%imig D(xi,x) = 0. Also, for x in ﬁ; D(x,x) = 0.

Iet x and y be points of M and {xi} and {yi} sequences in M
converging to x and y, respectively. If x = y, then {xi}.and {yi}
are both sequences converging to x. By (6), D(x,y) = %imig D(Xi’yi) = O,

Thus, if {Xi} is a sequence in M converging to x, limit D(xi,x) =
! R

—-

D{x,x) = O,

(11) 1f {xi) is a sequence in M converging to a point y and x is a
point of M such that %imig D(xi,x) = 0, then D(x,y) = C.

For each integer i, D(x,y) < D(x,xi) + D(xijy)° By (10)
%;fig D(xi,y)‘: C, and, by hypothésis, %;Eig D(x,xi) = 0. Thus,

D(x,y) = O.

(12) 1f {xi} is a sequence in M converging to the point x, then

%;fig D(xi,x) = O

For each integer i, there exists a sequence {zi } in M such that

d
D(xﬁ,zi ) < l/ijg Since {xi} converges to x, there exists a subsequence
T ‘
{Zkﬂ} which converges to x and has the property that kiﬁi < kaj when

i < j. Designate this sequence by {zk} and the associated point of



25

in} by x - Then {zk} is a sequence in M converging to x. For each
integer k, D(xk,x) < D(xk,zk) + D(zk,x)o By construction,

%imit D(x, ,2. ) = O and limit D(z ,x) = C by (10). Thus 11m1t D(x ,x) = G.
- ® k7 k ko, » k k

(13) In M, if D(x,y) = O, then x = y.

Suppose there exists in Ma pair of distinct points x and y for
which D(x,y) = C. There exist distinct sequences {xi] and {yi} in M
converging to x and y, respectively. For each integer 1 there exists

an integer N = N(i) such that {xi U yi} c U 59 and an arc A from

x, toy, in igl M, such that D(xi,z) + D(z,yi = D(Xi’yi) for every
point z in Aio Since M is compact, the collection {Ai} is seen to
satisfy Ziém2£7 and must have a sequential limiting set L which
contains both x and y, and is a compact continuum.

let z be any point of L, there exists a sequence {zi} such that
z, is a point of Ai and {zi} converges to z. For each integer i,
D(xi,zi) + D(ziyyi) = D(Xi,yi)a Thus, D(x,z) + D(z,y) = D(x,y) = O
and D(x,z) = 0.

If z and w are any two points of L, then D(z,w) < (D(z,x) + D(x,w)
= 0. By hypothesis, however; L cannot lie entirely in M - M and there
must exist points z and w in Z N M. If z and w are disfinc£ points in M,

then D{z,w) > C, Hence, a contradiction has been reached and the assump-

ticn that x and y are distinct is false.

(1) £ {xi} is & sequence in M, and x is & point of M for which

limit D(x,,x) = O, then {x,} converges to x.
i @ 1 i-

o

Iet {x } be a sequence in M such that limit D(x 1’X) = O,
i, e

Agsume {xi] does not converge to x. Without loss of generality, {xi}
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can be taken as a sequence converging to y #x. By (12), %imig D(xi,Y)
= 0. For each integer i, D(x,y) < D(x,xi) + D(xi,y)¢ Then D(x,y) <
limit D(x,x,) + limit D{x,,y) = O. Therefore, D(x,y) = O and, by (13),
i, e« 1 iwoo‘l

Xzyo

The above discussion establishes the fact that D is a metric on M,
It remains to be shown that D is strictly convex on M. TIn the following
discussion, it will be shown that each pair of points of M determines a
unigue arc¢ in M whose length under D is equal to the distance, under D,

between the points.

(15) Iet A be an arc in M containing a point x of M - M. Then x is
an end point of A.

Assume the contrary, that A - x = H U K disjoint, where H = H U x
and K = K U x are arcs each having x as an end point. Then H and K
must contain points of infinitely many of the sets {M,}. Let j be the
least integer for which H N Mj contains a point a and let k be the
least integer for which XN ﬁk contains a point b. There exists an
arc N < A having a and b as end points and containing x. Let n be an
integer for which n > max{j,k} and (Mn n N) - B is non-emptyo Iet ¢

be a point of (Mﬁ N N) = B. The point bn must lie in N and separate

-1

¢ from fa U b} in N. However, this is impossible since bn»l must
either lie in the subarc determined by a and ¢ or the subarc determined

by ¢ and b. Thus, x does not separate A,

(16) If x and y are points of M and A is an arc in M from x to Y,
there exists an integer N for which A c U Miji:l,e,,,q,Na

There exists an integer N for which {x U y} < Cy = U M 51=1,2,...N,
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Suppose A 1s mot contained in CN° Let J be the least integer, j > N,

and p a point of A such that p € Mj° The point bj-l mist llie in

AN CN and separate p from {x U y} in A. The point p, however, deter-

mines in A two arcs, Al and Ag, from x to p and p to y, respectively

such that Al U A2 = A, Then the point bjcl

A2 and must fail to separate both x and y from p. Hence A

can lie in only one of the

arcs Al,

must lie in CN°

(17) If x and y are two points of M, there exists a unique arc

[x,y] in M such that #[x,y] = D(x,y).

There must exist an integer N for which CN = U Mi;izl,e,nea,N,
contains {x U y1. By (16), all arcs in M from x to y must lie in Cye

By (1), D preserves Dy on Cy and by Lemma 3.3, D is a strictly convex

metric on CNe Thus the arc [x;y] in C

D(x,y) is unique in M.

y such that fx,y] = DN(x,y) =

(18) If A is an arc in M, then for each integer n such that A N C,
is non-empty, A N Cn is connected.

Iet x and y be any two points of A N Cn° Then there exists an arc
in A from x to y. By (16), every arc in M from x to y must lie in C o

Therefore, A N Cn is connected.

(19) ILet x be a point of M = M and p a point of M. Ilet {Aa} be the
collection of all arcs in M from p to x. Then there exists a sequence
{bkj in B N (& Aa) which converges to X.

Let A, and A, designate any two arcs of the collection {Aa} and
let N be the first integer for which p ¢ CNa For each integer n > N,
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let 3(n)->n and k(n) > n denote, respectively, the least integers for

whi'ch"Al n Mj

Assume -there exists an integer n >N such that j(n) < k(n). Then

and AE_O Mk are non-empty. -

there is a point q in A, N Mj’ qa # bj=l° By (18), A, N C_ is connected
and contains p. Thus, there is an arc from g to x in Al - bj_lo The
point bjsl cannot lie in A2, since Al n Mj = f. But this implies bj-l

does not separate ¢ from p in ﬁ, contradicting the nature of bj-l°
Thus, for each integer n, j(n) = k(n) and the point b, 1 must lie in
Al N A2° ‘

let {bk} denote the sequence so determined. Then [bk} is easily

seen to converge to x by (18). Also, since {bk} is common to each

pair of arcs from p to x, {bk} is contained in ) A, .

(20) Iet x be a point of M = M and y a point of M. There exists in

M a unique arc [x,y] from y to x such that f[x,y] = D(x,y).

let {bk} be the sequence of {19). For each k, let [bk,y] be the
unique arec in M for which ﬁ[bk,y] = D(bk,y)o If A is an arc in M
from y to x, and bj’bz’ J <{ are any two points of the sequence

{bk}, then there exists an arc S in A from b, to x. From (16) and (18),

S does not contain the point b,. Assume bj does not lie on [y’bk]‘

J
Then S U [y,bk] contains an arc from y to x which does not contain bj’
contradicting (19). Thus, bj lies on [y,bk] and [bij] c [y,bk],

For each integer k, let A = [y,bk]o The collection {Akj is a

nested collection of sets, Aj ¢ A for each j. Let {xi} be any

SN
sequence in % Ak which converges to a point p not in % Aka Then there

exists a subsequence {xj} such that for each integer n, xj does not lie
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in A for j >n; and there exists a subsequence {bj} of {b, } such that
for each integer j, X3 is in Ebj_l,bj]. It follows that D(x j,b j) <

' 0 < limi ) < limit D(b = 0., Thus
D(bj_lybj) and 0 < jﬁglg D(;j,ba) < j‘Elw ( ) ’

3-17°3

{xj}, and‘conéequently {xi}, must converge to X.
It is easily seen that neither x nor y separates gﬁk, and every

other point p of %Ak does separate gAkf Therefpr?, gAk = [y,x] is an

arc in M from y to x and f[y,x] = Limig l[y,bk] = limit D(y,bk) =

D(y,x) .
Assuming [y,x] is not unique, there exists an arc A in M, from

x to y, such that #(A) = D(y,x) and A # [y,x]. No point of M - M other

than x can lie on A or [y,x] and the seduehée {bk} must lie in Dboth.

Thus, A and [y,x] must differ between y and b, for some: integer k. Let

k
J be such an integer and let S designafe the subarc of A from y to bj'

However, Q[Y,bj] < 4(S) by the uniqueness of [y,B;] and 2[y,x] < £(a).
| R '

(21) If x and y are two points of M - M, there exists a unique arc
Yy B ) q

[x,y] from x to y in M.such that £[x,y] = D(x,¥).

If p is any point of M, there exists a sequence {bk] in B such
that {bk} converges to yvand lies in every arc of M from p to y. By

(20), for each integer k;}%here exists a unique arc in M from x to bk’

[x,b,]o The collection {[x,b 1} has a sequential limiting set L which
is a cowpact continuum doﬁtaining x and yo o

If z is any point of L, there exists a sequence {zk] such that z,

is a point of [x,b ] éndt{zk? converges to z. For each integer k, .

k

D(x,zk) + D(zk,b

 k) - D(x,bk) and
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i

D(x,z) + D(z,y) %i&ig D(x,zk)t+ %iEiE‘D(Zk’bk)

it

limit D(x,b,) = D(x,Yy) -
K - @

For each_q, C <& <1, and each integer k, let z(k,a) be the unique point
of [X?bk] for which D(x,z(k,a)) = OAD(x,‘bk)° There exists a point z ()

in L such that D(x,z{g)) = aD(x,y). By repeating part of the argument
of Theorem 2.2 it can be shd&n thét L contains an arc, [z,y}, from x

D(x,y) for every point z of [x,yl.

"

to y such that D(x,2z) + D(z,y)

Obviously, ¢[x,y] = D(x,y).
Iet A be any other arc in M from x to ¥, neither A nor [x,y]

contains any other point of M - M., The arcs A and [x,y] must inter-

gsect in infinitely many points, since by (15), no arc can lie in

AU [x,y] and have x as a cut point. Let p and q be any two points in

AN [x,y], and let N be the least integer that {p U q} is contained in

C By (16), both subarcs of A and [x,y] determined by p and q must

NQ
lie in CNa The subarc of [x,y]} determined by p and q is actually [p,ql.
Thus, if A is assumed to have length equal to D(x,y), A must coincide
with [x,y] between p and g. Then A must coincide with [x,y] on every

subarc of [x,y] and must, in fact, coincide with [x,y]. Hence [x,y]

is unique.

Corcllary 3.2.1. Iet M be a dendrite and k > 0 a real number.
Then there exists a strictly convex metric D on M such that the diameter

of M, under D, does not exceed k.

Proof: Let fei? be the collection of all end points of M. Then

{eij is countable. For each integer i > 1, let [ei,el] be the unique
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arc in M containing"gi and ei. Tet Al = [ee,el] and let bl be the
first p-oint--of"'-Al on'[e5,el] in the order from €5 to ey let
A, = [eB,bl]o In general, for each integer n, let b be the first

o . $ ' . A =
point- of ig Ai on [en+ ,el] in the order from e to e Let -

2 n+2 Ll 1

[e ;b 1. For each arc A let h._ be the homeomorphism of A onto the
n+2’ 'n v n n n ‘

interval [O;k/Qn] such that hl(el) = hn(b'

n
nml) = O and hn(en+l) = kf2",

It is easily seen that the above construction satisfies the hypo-
thesis of Theorem 3.2, since [Ai] is a countable collection of non-
degenerate compact continua (arcs in this case) and:

(1) A = ig A,, where M = A is compact and locally connected and
A - A has no nondegenerate component. |

(11) For each integer n, AN ggi A; =b__,, which separates
A - {v ) from Egi A - {o_.1in M.

(i1ii) Each Ai has a strictly convex metric di’ such that di(x,y)

i
f= - 3 = Q 2
l hi(x) hi(y)] and A, has diameter w, k/2" under d;

o . -3} R
- L = 2 Yok
(iv) i5 = 45 k/2” =k
Thus, M has a strictly convex metric which preserves di on Ai for

each integer i.

Lemma 3.4, Let M be a compact, locally connected plane continuum
not sepérating the plane. Then M = A* U B*'U C, where A is a countable
collection of disjoint dendrites, B is a countable number of nondegener-
ate closed 2-cells, and C. is a set having no nondegenerate component,
such that (1) no two elements of A + B intersect in more than one po:i.:nt/9

(2) any point common to two elements of A + B is a cut point of M,



30
(3) c=u- (a*u Bl

» Proof: The proof of the above statement follows from several re-

sults in Whyburn / 137/. |

The continuum M is & semi-locally connected continuum ATiB-po é§7,
each true cyclic element (simple link) of M is a closed 2-cell
' [fiB;p. 172;7, and the true cyclic elements form & null sequence at
most [Tipr. 71 /. Hence, M contains a countable number of closed
2;§ells, B = {Bj}' Also, any two simple links in M can intersect in
at most one point and any point common to two simple links is a cut
point of M / 13-p. 65 /.

Every simple link, Bj’ of M contains at most a countable number of
cut points of M [fiB-p. 65;7. For each integer J, let Bo be the set of

J

which are not cut points of M. For each point x of

J
M- U Bg, let H,_be the component of M - Y Bg, containing x. ILet C

points of B

be the collection of degenerate components. For each nondegenerate Hx
and each integer j, H& N Bj consists of at most one point, since Hx is

contained in the closure of a component R of M - B, and R N Bj is at

J
most one point / 13-p. 66 /. Also, the common point, if it exists, is a
cut point / 13-p. 66 /. .

Iet y be a point of M - U Bjo

ate Hk and there exists a connected open region containing y whose closure

Then y is a point of some nondegener-~
intersects no point of M ~ Hx° Thus, each Hx is locally connected. ZEach
Hx is a compact, locally connected continuum every cyclic element of
which reduces to a single point and is by definition, a dendrite. Then
the collection A = {Hx] of nondegenerate components must be a countable

collection of disjoint dendrites.



33

Proposition 3.1. Iet M be a closed topological n-cell and k >0 a

real number, Then there exists a strictly convex metric D on M such

that the diameter of M under D does not exceed k.

Proof: Iet C be the closed ball in En with center at the origin
and radius k/2, there exists a homeomorphism h of M onto C, For each
pair of points of M let D(x,y) = p[h(x),h(y)], where p is the standard

Fuclidean metric. The metric D is the desired metric.

Theorem 3.3. Let M be a compact, locally connected plane con-

tinuum not separating the plane. Then M has a strictly convex metric.

Proof: By lemma 3.4, M = A" U B" U C where A = {A;} is a count-
able collection of disjoint dendrites, B = [Bj] is a countable collec-
tion of closed 2~cells, C = M ~ (A* U B*) contains no nondegenerate
component, for each i, j, Ai n Bj is at most one point, and for ir# 3

Bi N B, is at most one point.

J

Case I: M - C is connected.

let {Wi} be any sequence of positive real numbers such that & Wi
i

converges and let H = A + B be the combined collection of dendrites
and closed 2-cells. It will be shown that H can be so ordered that the

collection {Hi} will have the property that for each integer n,

n-1
Hn N igl Hi consists of exactly one point of M and that point is a cut

point of M. Proposition 3.1 and Corollary 3.2.1 will then make it
possible, for each integer i, to give the element Hi a strictly convex

metric di such that Hi has diameter Wi under di“

Choose any element of H and call it Hlo let H2 be any element of

H - {H,} which intersects Hl' Such an element exists since M is

1}
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connected. By Lemma 3.k, H1 M H2 consists of exactly one point, call it

b The element H, will then be chosen from the previously unchosen

1° 5
It is obvious that the collection

elements of H which intersect Hl U H2.
H can be ordered in this way, but it remains to be shown that for each
n-1

integer n, Hn n igl Hi is a single point.
Assume that each of the first n - 1 elements has been shown to
have the desired relationship wiﬁh the union of those which preceed it.
Suppose Hn n ?gi Hi contains more than one point. Let x and y be any
pair of points in En n :Qi Hi’ they determine in :Qi Hi an arc K and in
H an arc L such that KN L = {x U y}. Thus KU L is a simple closed
curve in M. This is impossible, however, since the only true cyclic
elements of M are closed 2-cells and K U L must lie in some element of B,
meaﬁing KU L‘must lie in a single element of H. Thus, Hn n :Qi Hi is a
singie point, bn-l’ for each integer n. By Lemma 3.4, each point of the
collection {bn_l} is a cut point of M. Repeating the argument used in
this paragraph will show that, for each n, b

“TH - in M
from .U, H, - { n»l} in M.

.1 Separates H - [bn_l}

-]

*
igl Hi and M - H contains no

It may now be observed that M = H* =
nondegenerate component. Thus, M has been so described that it satisfies
the hypothesis of Theorem %.2 and must have a strictly'convex metric.
Case II: M - C is not connected.

let K = {Kﬁ} be the collection of components of M - C. Then
M= K# U C, K is countable and for each n, R; is a compact and locally
connected continuum satisfying the conditions of Case I. For each n, let

R% have a strictly convex metric dn such that K; has diameter Wn under dn’

where Z Wn converges. The space M' = K U C is an upper semi-continuous
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deqpmposition of M satisfy;ng-[fljdéo 129:7, where the associated trans-
formation £ : M ;;§ M' is monotonic and continuous. Hence, M' is a
dendrite and has, by Corollary 3.2.1, a strictly convex metric d.

Iet x and y be any pair of points of M and let A[x,y] be the

collection of all arcs in M from x to y. If A' and A'' are any two

elements of A[x,y], then f(A') = £(A''). Thus A' N C =A'"" N C and
A' can différ from A'' only in elements of K. Also if K, is any element
of K not containing x and if Sx is the component of M - i; containing x,
then §¥ N f; contains exactly one point, by [TiE-pq 23:7 and the local
connectednéss of M.

Now, if x and y are any pair of points of M, let A be any arc in M
from x to y. For each integer n, let a, and bn designate, respectively,

the first and last points of E; on A in the order from x to y and let

o

D(x,y) = a(£(x),£(y)) + % d (a ,b )

where dn(an,bn) = 0 if f; NA=p. Then D(x,y) is a metric and the arc

[x,y]=ANnCuU (g[an,bn]n) where [a.n,bn]n is the arc in K such that

z(an,bn) = dn(an,bn), is the unique arc in M such that £[x,y] = D(x,y).

Theorem 3.4. Let M be a compact and locally connected plane
continuum. Then M is sc-metrizable if and only if M does not separate

the plane.

Proof: 'The necessity is established in Theorem 3.l. Sufficiency

1

is exhibited in Theorem 3.3.



CHAPTER IV

OTHER PROPERTIES OF

CONVEX AND STRICTLY CONVEX METRICS

In this chapter additional properties of the convex and strictly
convex metrics will be examined and some similarities and differences

noted.

Proposition 4,1. Both c-metriﬁability and sc-metrizability are

topological properties.

Proof: The result is dbvious, for if G and H are any spaces such
that G has a metric p and h is a homecmorphism from G onto H, the
function D(x,y) = p(hﬂl(x),h-l(y)), where x and y are points of H, is a
metyic on H° Then h is an isometry from (G,p) to (H,D).

Bing showed [ 2_/ that if K is a closed subset of the metrizablev

space S and D is a metric on K, then there is a metric D on S that

1

preservés Dl on K. He later L BK/ used this result to show that 1f Ml

and M are two intersecting compact COntlnua with convex metrics Dl
3 on Ml U M that

pregerves Dl on Mln That the latter result is not- valld when the word

and DQ’ respectively, there is a convex metric D
convex is replaced by strictly convex may be seen in the following
eXample°

Example l:  Let Ml andM2 be -the compact plane continuar(Figure»5)

36
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obtained by taking the simple closed curves, Jl and Je, gnd thgir
respective bounded complementary doméins. In other words, Mi is the

closed 2=-cell having J, as its boundary and Mé is the closed 2-cell

1
having J2 as its boundary.

Figure 3.

Each of the two cells has a strictly convex metric induced by its
homeomorphic relationship with the unit disk. However, Ml U M2
separates the plane and, as previously shown, can have no strictly convex
metric.

It can be shown by using Lemma 3.4 that if ﬁ;wzhﬁi consists of a
finite number of components each intersecting M., in a single point,

1

then there is a strictly convex metrié D3 on M1 U M2 which preserves Dl
on M1° It remains an open question, however, as to whether this can be
done in general since before the construction given by Bing in [f}i7 can

be a strictly convex metric there must exist for each pair of points,
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_ - | -
x in M, and y in M, - M, a unique point z in F(Ml) n M, such tha

= + D (z .
D5(x)y) DB(X)Z) 5( »¥)
‘Tt will be shown, in the following theorem, that in general, a

necessary condition for sc-metrizability is unicoherence.

Theorem 4.1. ILet M be a compact continuum with a strictly convex

metric, D. Then M is unicoherent.

Proof. Assume the contrary, that M is not unicoherent. Then M

can be considered as the union of two continua, M1 and ME’ whose

intersection is not connected. Thus, M1 n M2 = HU K, where H and K
are disjoint closed sets. Let p be a point of (Ml U M2) - (Ml N M2)°

Suppose p is a point of M,. Then for every point x of M,, there exists

1 2’
a unique arc [x,p] from x to p such that p[x,p] = D(x,p). Designate by
f(x) the first point of M, on [x,p] in the order from x to p, and let

HX and K% repregent; respectively, the points of M2 for which f(x) lies
in H and those for which f(x) is in K. It should now be obvious that f

is a mapping of M2 onto H U K, since for each x in M_, f(x) is uniquely

29
~determined and f(x) = x for x in M, N M,. Hence, if it is shown that
£ is continuous, the desirea result will be obtained in the formﬂof a
contradiction. |

Let {xi] be a sééueﬁce of points ofiMebsuch that the associated
éequence {f(xi)] convgrgeé-to a point gq. Thé sequence {xi} can be
taken, without losé of genefality, to be convergent to a point X For
each integer i, the arcs.[xi,f(xi)] and [f(xi),P] satisfy the following

relationships:

(1) alxg;p) = olx,,£(x)] + 2 02(x,),p]
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(2) P(XO:P) ::]L.imi}u D(xi:P)

[}

_%;fig D(xi,f(xi)) + %§§12 D(f(xi),p)

D(x,a) + D(a,p)

Statement (1) is obtained by construction and (2) is the result
of the continuity of D. It follows then that q = f(xé) and f is
continuous.

Bing, in addition to the above mentioned result on two intersecting
continua with convex metrics, has also established / 4 /, along with
Moise [fiq:7 that every locally connected and.compact continuum is
c-metrizable. These two results will now be combined to show the
existence of a convex metric on a closed 2-cell which is not a strictly

convex metric.

Example 2: LlLet Ml be the unit circle and M2 the closed unit disk.
If x and y are ‘any two points of Ml’ let Dl(x,y) be the length of the

shortest arc in Ml determined by the points. Then D. is a convex metric

1
for Ml’ which is obviously not.a strictly convex metric. Now, M2 has a
convex metric, De-which can even be a strictly convex metric. Then

le = M1 n Mé and M2 = M1 U M2. By epplication of Bing's theorem, there

exists a convex metric D5 on Ml U M2 which preserves Dl on.Ml. The

metric D, is obviously not a strictly convex metric, since for a pair

3
of diametrically opposite points, x and y, of M1 there exist two arcs,

in M, whose length is Dl(x,y)a

If Ml and M_ are nmetric spaces with metrics D, and D2 respectively,

2 1
it is known that Mi X M2 has a metric D given by

() Dlbey,¥)) s (xp07) ] = [0 2(xy5xp) + D,2(rp,9) T2,
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where (xl,yl) and (X2’y2) are elements of Mi X M.

It has not been determined whether D will be a strictly convex

metric when D, and D. are, but it will now be shown that D is a convex

1 2
metric when Dl and D2 are convex metrics.
Theorem 4.2, ILet Ml and M2 be compact continua with convex metrics

D1 and De, respectively. Then M1 X-‘M2 is c-metrizable and has the

metric D of (A) as & convex metric.

Proof: ILet (xl,yi) and (xg,ye) be any pair of elements of Mlig.Mg.

There exlist points X, in Ml and Y, in Mg, such .that Dl<xl’xo) =

Dl(xo}xg) = Dl(xl’XQ)/2 a’nd De(yl)yo) = D2<yo)y2) = D2<yl)y2)/2' Then}
1/2

i

DLy sy )y (xg, )] = [D,°G %) + D7 (v y,) ]

il

[Dlg(xl,xg) + Dee(yl,yg)]l/g/2
= D[ (Xl,vyl) > <x2‘°y2) ]/2°
Similarily, D[ (x ,¥.), (%,,¥,)1 = DI(x ,¥)),s (x,,¥,)1/2, and

(xo,yo) is point satisfying (5) in the definition of convex metric.

The remaining portion of this chapter is devoted to defining the
notions of D~convex subset and D-convex hull and showing that the latter
is analogous to the linear concept for strictly convex metrics but not

for convex metrics.

Definition 4.1. ILet S be a topological space with a convex metric

D. A subset M of S is D-convex if D is a convex metric for M.

Proposition 4.2. If S is a topological space with a strictly

convex metric D and M is D-convex subset of S, then D is a strictly
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convex metric for M.

Proof: ILet x and y be any two points of M, there exists a point 2z
in M such that D(x,z) = D(z,y) = D(x,y)/2. The point z is unique in S

and therefore in M.

Proposition 4.3. Iet S be a topological space with a strictly
convex metric D and let {Mz} be an arbitrary collection of D-convex
subsets of S having a non-void intersection. Then 8 Mz is a D~convex

subset of S.

Proof: If 8 Ma is a single point, ﬁhe result is obvious. Other-
wise, if x and y are any two points of 8 M&’ the unique point z such
that D(x,2) = D(z,y) = D(x,y)/2 must also lie in 8 M.

That the result of Proposition 4.3 does not hold for convex me~

trics is seen in the following exampiea,

Example 3: Let 5 be the unit circle.. Let S have the convex

metric Dl of Example 2 and let x and y be the diametrically opposite

points. If Ml and M2 are the two arcs of S determined by x and y, Dl

is a strictly convex metric for each of the arcs; but Ml n M2 is

{x Uy}

Definition 4.2. Iet S be a topological space with a strictly con-
vex metric D and let X be a subset of 8. The D=-convex hull of X is
' defined to be the intersection of all D-convex subsets of S which con-

tain X.

Proposition 4.4, If S is a topological space with a strictly con-

vex metric D and X is a subset of S, then the D-convex hull of X is a
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D-convex subset of S.

Proof: The argument is essentially the same as that of Proposition

h.3,

Proposition 4.5, If S is a topological space with strictly convex

metric D, the D-convex hull of any pair of distinct points of S, x and

vy, is [x,¥y].

Proof: Let z and w be any pair of points of [x,y]. Assume z pre;
cedes w in the order from x to y. By Lemma 2.1, D(z,w) = D(x,y)-— D(x,z) -
D(z,y) and the arc [z,w] must coincide with the subarc of [x,y] de-
termined by z and w. Hence, [x,y] is a D-convex subset of S.

Ier is any chonvex subset of S containing x and y, then M
contains [x,y]. Thus, if {%z} is the collection of all D-convex sub-
sets of § containing x and y, [x,y] « Qz M. Now, since Q; M, [x,y],

[x,y] = 8 Mz.



CHAPTER V
NATURAL DELTA FUNCTIONS

Iet 5 and T be metric spaces, T complete, with metrics pi and 02
regpectively, and let K be a nondegenerate compéét subset of S. If C(K)
denotes the collection of all continuous functions of K into T, fhen ¢(K)
with the topology U of unifqrm convergence is a complete metric space
with the metric d(g,h) = sup {pa(g(x),h(x))}; x € K, where g and h repre-
sent elements of C(K). If S = T, let I(K) denote the collection of all
continuous functioﬁs of K into K. Then I(K) is & closed subset of C(K)
and is also a complete metric space with the topology U. In the follow-
ing discussion, C(K) will be treated as a collection of mappings of S
into § for the simplicity of notation, with the understanding that the
reéults obtained are applicable when S and T are distinct.

The following concept, obtained directly from the notion of uniform

continuity, is the subject of investigation in this chapter.

Definition 5.1. ILet K be a non-degenerate compact subset of 8, and
let b represent the diameter of K. For each element g of C(K) ang each

real number t, let the real valued function 5(g,t) be defined as follows:

5(g,t) = sup {® | x,y € K, o(x,y) <& <b implies

o(g(x),e(y)) < t}, for t >0

5(g,0) = limit-5(g,t
(g,0) ¥ 04 v(g,' )

k3



bl

The above defined function relates with each element of C(K) a
function of R into R which will be shown to be monotonic, nonunégative
and integrable. ' The Riemann integral of this function will be used to
define a uniformly continuous function of C(K) into R which takes on
certain values for specific types of functions. The number Si(g,O)
when defined will also be strongly influenced by certain structual
properties of g. The structure of K will be seen to exert a certain in-~
fluence on &(g,t) also, for it will be shown that 8(g,t) is super-

additive vhen 0 is a strictly convex metric on XK.

Theorem 5.1. For each element g of C(K), &(g,t) is a non-negative,

non-decreasing function of t, defined in [C,«] and bounded above by b.

Proof: Obviously, 5(g,t) is non-negative and bounded above by b,
from Definition 5.1 and the fact that g is uniformly continuous, since
K is compact and g is continuous. Thus, it need only be shown that
B(g,t) is well defined and non-decreasing. Since g is uniformly con-
tinous, the set {® ‘x,y e X, 0 < p(x,y) <8 implies p(g(x),g(y)) < t}
is non-empty for t > O and is bounded above by b. Thus, 8(g,t) is
positive and takes its unique existence from that of the supremum, for
each t > C.

Now let tf and t'' be any pair of real numbers such that O < ¢!
< t'' and let r be any real number between C and 8(g,t'). For each
pair of points, x and y, in X, such that p(x,v) <r <5(g,t'),
pleg(x),g(y)) <t' <+t'', Thend(g,t'') is an upper bound for the set
{r ( r <5(g,t')} and 5(g,t') < 8(g,t'").

The function &(g,t) is now seen to be uniquely determined at O,
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since limit 8(g,t) is defined.
X <0+ - v

Proposition 5.1. For each t >0, if o(x,y) < &(g,t), then

ole(x),8(y)) < t.

Proof: Let x and y be any tﬁo points of K such that pg;{y) <
5(g,t) and let r be & real number such that p(x,y) < r < 8(g,t).
Assume p(g(;),g(y)) >t, then r is an upper bound for the set
[6[ X,y € K?’p(k,y) <? ﬁmplies p(g(x),g(y))‘<:t] and, since &(g,t) is
the leasf upper bound of the éét; ng,t) < r, contradicting the choice

of r.

Theorem 5.2. Let K be a compact continuum with diameter b and let
g be an element of C(K). Then 8(g,0) = b if and only if g is constant.

5(g,0) = O otherwise.

Proof: Assume first that g.is. constant. Then for every t >0,

8(g,t) = b and, as a consequence, 5(g,0) = %im%E 5(g,t) = b. On ﬁﬂév

other hand, assume 5(5,9) is positive and let r = 8(g,0)/2. Then
0 <r <3(g,0)/2 and fof.aqy pair of points, x and y, in K such that
dpﬂki,ddﬂJWD<tfw@wwt>@aiﬁ%p@@%dw)=b
and 8(x) = ().

bNow, since K is.a compact continuum in a metric space, K is totally
bounded and there exists a'finite‘éet of points [xi’x2’°°°’xn] in K‘such
that B 5(x,,r) covers K. Then the range of g is the finite set,
[g(xl);é(xe);-~-g(xn)]. However, since K is connected and g is contin-
uous, this is impossible unlesé.g(xl) = g(xe) = s0e = g(xn). Hence, g

is constant.
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Proposition 5.2. ILet K be a compact set and let g be an element of

C(K). Then 5(g,0) = O if and only if g(K) is infinite.

Proof: _Since K is compact and g is continuous, g(K) is compact.
If g(K) is infinite,; there exists a convergent sequence {xi} in K
qonverging to a point x and having the property that {g(xi)} is a se-
quence of distinct points converging to g(x). Then,

8(g,0) = limit 5(g,t) = ’l‘im‘}”& plalx,),e(x)) = o

Assume g(K) is finite. There exists a real number k > O such that
if y' and y'' are any two points of g(XK) and S(y',k) and S(y'',k) are
spherical neighborhoods of radius k about y' and y''! respectively,
s(y',k) n s(y'',k) = f. By the uniform continuity of g there exists a
number & >‘O such that if x and x' are any two points of K and
p(x,x') < 8, then p(g(x),g(x'))< k. However, this implies that

g(x) = g(x') and p(g(x),g(x')) = 0. Thus, 0 <3 < 5(g,0).

Theorem 5.3, Let K be a compact continuum and let g be an element

of C(K). Then 65(g,t) is left-continuous.

Proofs Let;b denote the diameter of K. For every positive number
t!, %%3%? 5{g,t) exists, since d{(g,t) is non-decreasing and bounded
above by b, Also, %;3%;qa(g,t) < 5(g,t'). Assume the inequality holds
and let r be a real number such that %iﬂ%?@&(g,t) <r <d(g,t'). ILet
ftn} be a non=-decreasing sequence of resl numbers converging to t'. For
each n, there exists a pair of points, X and Y, in K such that
p(xn,yn) < r and p(g(xn)gg(yh)) >t . By the compactness of K, there

exists a subsequence {ni} of integers and points x and y in K such that



b7

{Xn.j converges to x and {yni] converges to y. Now, from continuity,
o (x,y) <7 <5(g,t') ana
p(g(x),ely)) = limit p(g(xni),g(yni))tz limit t = !
contradicting Proposition ;019 |
‘ It should be pointed out at this time that if x and y are any two
points of K and p(g(x),eg(y))= t, then p(x,y) >5(g,t). Theorems 5.k
and 5.5 and Proposition 5.3, which follow, yleld more specific inform-

ation about 8(g,t) and the values taken on for certain values of t.

Theorem 5.4, Iet K be a compact continuum and let g be an element
of ¢(K). If t, € (0,b), where b is the diameter of K, and if &(g,t) < b,

there exists a pair of points, x_ and ¥o» of K for which p(xo,yo) =

e}

5(g,t,) and ole(x ),aly,)) = t .

Proof:: bLet b' denote the diameter of g(K). It is easily seen
that t_ S.b‘, for otherwise, po(g(x),g(y)) < t for every pair of
points in g(K) and S(g,to) = b, contrary to hypothesis,

For every to < b' there exists at least one pair of points, x and

t,, Dy the connectedness of g(K). Also,

#

¥, in K for which p(g(x),e(y))
by the continuity of g, o(x,y) = S(g,to) implies p(g(x),g(y)) < b
For each real number r between B(g,to) and b, there exists a pair of
‘points, x and y, in K for which o({x,¥) = r and p(g(x),g(y)) >t_. For
each integer n;, let r, = B(g}to) + l/n, and let X and yn be points in
K such that ;ﬁxn,yn) =r_ and p(g(xn),g(yn)) >t . There must exist
points, X, and Yo? in K and subsegquences {xn‘j and {yn.} converging to
i i

X and Yy respectively, from which it follows that:

p(x9¥,) = Limit v = 8(g,t )
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and, ple(x,),8(r,)) = linit p(g(xni),g(yni)) >t
l .

Theorem -5:5. Let K be a compact continuum of diameter b and let g
be an element of C(K). If b' is the diameter of g(K), then b' =
inf {t ] 5(g,t) = b).

Proof: Let t_ = inf {t|5(g,t) = b}. Assume there exists a mum-
ber t' such that b' < t' < to. Then &(g,t’) <b and, by iheorem 5.k,
there must exist a pair of points x and y, in K for.which‘p(x,y) =
5(g,t') and p(g(x),g(y)) = t'. However, this is impossible, since b;
is the diameter of g(K).

Similarly, assﬁme there exlists a number t' such that t, <t' <p'.
By Theorem 5,1, 8(g,t') = b. Then for any pair of points of K,F>(x,y)
< 8(g,t') and, by the cdntinuty of g, p(e(x),eg(y)) <t'. Thus, b' <t',

contradicting the choice of t.

Proposition 5.3. Iet K be a compact continuum and let g be an

element of C(K). If t is a positive number less than the diameter of

g(K), then 8(g,t) = inf {ox,y)| x,¥ ¢ K and p(g(x),e(¥)) = t}.

Proof: Let C = inf {p(x,y) |x,y € K and p(g(x),g(y)) = t}. Then
C < &(g,t), from Theorem 5;ha Assume C < 5(g,t). There exists a pair
of points, x and y, in K such that p(x,y) = (c + 5(g,t))/2 < 8(g,t) and
plel(x),ely)) > ¢, contradicting 5(g,t). Hence, C = &5(g,t).

It was shown in Theorem 5.3 that 8(g,t) is left-continuocus. The
following example will illustrate a case in which the function g is
continuous, monotone and differentiable almost everywhere, but 5(g,t)

-is not continuous. Theorem 5.6, which follows the example, gives a
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necessaryvand sufficient condition that B(g,t) be continuous.

Example 4. Iet S be the real line and K = [0,1]. ILet the function

g(x) be an element of I(K) defined as follows:

x ; 0<x<1/h

/% 3 1/h <x<3/b

g(x)

i

L]

x - 1/2; 3/h <x<1
The function g is obviously continuous and non-decreasing. g'

exists except at x = 1/4% and x = 3/4. (See Figure L-A).

? 1/% 7273w 16 g i 717

Figure 4~A. Figure L4-E.

For t < 1/4, d(g,t) = t, since from Proposition 5.3, 8(g,t) is
inf {p(x,y)[ x,y € K and p(g(x),g(y)) = t} and from Theorem 5.4, there
exists a pair of points in K for which p(x,y) = 8(g,t) andp (g(x),g(y))

= t. The number O and the number t will suffice for t < 1/4. Thus
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5(g,t) = t for t <1/h, If x and y are points of K for which
plg(x),ely)) > l/h, then x must lie in [0,1/4] and y in [3/L4,1]. Thus,
for t € [1/h?;/2], 8(gst) = d(g,t - 1/4) + 3/b and 5(g,t) = t + 1/2 for
t ¢ [1/4,1/2]. The graph of &(g,t) is illustrated in Figure 4-B. Ob-
viously since g(K) = [0,1/2], &(g,t) = 1 for t > 1/2.

It might be pointed out thét the function g has a "flat" spot,
namely [1/4,3/4]. The following theorem shows that the existence of

such "flat spots" can prevent the function 8(g,t) being continuous.

Theorem 5.6. Iet K be a compact continuum and let g be an element
of C(K) such that g(K) has diameter b., If t' is any number for which
0 < 8(g,t') < b, a necessary and sufficient condition that &(g,t) be
continuous at t' is that for every € > O there exist points x and y in

K and 2 t > t' such that p(x,y) < 8(g,t"') + ¢ and p(g(x),e(y)) = t.

Proof: The necessity is established first, assuming S(g,t) is
continuous at t = t', Let {tnj be a decreasing sequencé in the interval
(t*,b'), where b' is the diameter of g(K), such that {tnj converges to
t'. By Theorem 5.5, S(g,tn) < b for each n, and by Theorem 5.4, there
exists a.pair of poiﬁts x, end ¥ in K such that p(xn,yn)‘= S(g,tn) and
p(g(xn),g(yn)) =t . Then for every ¢ >0 there exists an integer N >0
such that a(g,tn) < &(g,t') + e whenever n exceeds N,

Assume, on the other hand, that for each € > C there exists a
t >1t' and a pair of points,bx and y, in K such that p(x,y) <8(g,t') + ¢
and p(g(x),g(y)) = t. 1In view of Theorem 5.3, it is necessary only ‘to
show that 5(g,t) is right-continuous at t'. If this is not the case,

there exists a real number k¥ > O such that k = %im%p 5(g,t) - d(g,t").
=T'+
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let € =‘k/2, there must exist polints x and y in K and a t > tf such
that o{x,y) <d(g,t") + k/2 and p(g(x),g(y)) = t. However, this implies
that p(x,y) < 8(g,t) and p(g(x),g(y)) = t, which is the desired contra-
diction.

The right-hand derivative of &(g,t) at 0, 51(g,0) will now be
examined and will be shown to have certain properties similar to those
of the derivative. It will also be shown that when 5!(g,0) meets

desired conditions the function g will have certain properties.

Theorem 5.7, Let K be a compact continuum and let g be an element
of C(K) such that 81(g,0) exists. Then 5!(g,0) > O if and only if g

satisfies a uniform Lipschitz condition of order 1 on K.

Proof: Assuming Si(g,o) > 0, let k be any positive number less
than 81{g,0). There exists a positive number t, such that 5(g,t)/t >k

and 8(g,t) >kt for 0 <t < t Ilet x and y be any pair of distinct

K
points of K such that p(x,y) < B(g,tk), and let t = p(g(x),eg(y)). Then
t <t and olx,y) >8(g,t) >kt = k o p(g(x),s(y)). Thus, for x and

y in K such that 0 < p(x,y) < 5(g,tk), plex),e(y)) < plx,y)/k.

If g satisfies a uniform Lipschitz condition, there exists a pair
of positive numbers 8 and M such that for x and y in K, p(g(x),g(y)) <
M . po(x,y) whenever O < px,y)} < 8. If it is assumed that 8!(g,0) = O,
then.for each positive number, and in particular for 1/M, there must
exists a real number t >0 sﬁ@h that &(g,t) < t/M for C < t < t .o let
t' be a real number such that C < t' < min {tm;S}Q There exists a pair

of points, x and y, in K such that p(x,y) = 8(g,t') > 0 and

ple(x),e(y)) = t'e Now, t' <t implies p(x,y) = 8(g,t') <t'/M =
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p(g(x),g(y))/M or, in other words, p(g,(x),e(y)) >M - p(x,y). However,
this contradicts the Lipschitz condition and the assumption that Si(g,o) =

O is false.

Theorem 5.8. Let K be the complex plane and let g be & function
which is holomorphic in the finite plane but is not constant. Then

g(z) = kz + ¢, k # O if and only if 8!(g,0) exists and is non-zero.

Proof: Assume first that g(z) = kz + c, k # C.  Then for z' and

z'! in K, [g(z') - g(z'") (; [(kZ' +c) - (kz'' + c) l = 1k| ,

{ z' - z'' | . Thus, ‘ g(z') = g(z")l <t if and only if

2" - 2" | <t/ |k |, and 8(g,t) = %/ | x

. By Proposition 5.2, &(g,0)
= O since g(K) is not constant and must be connected. Hence,

51(g,0) = Jintt 5(g,t)/t = Limit 1/ | x| = 1/ |k £ o.

In the other direction, assume 51(g,0) exists and is non-zero. As

above, 51(g,0) = limit &(g,t)/t and limit t/8(g,t) = 1/8i(g,0) < =.
t -0+ T =0+

Let z_ be & point of K such that g'(zo) # C. BSuch a point exists since
g is holomorphic and not constant. There exists a sequence {zn} of
points of K such that (i) for each integer n, lzn = 2 1 < l/n and
(13) 8(z.) £ e(z).

For each n, let t = lg(zn) - g(zo)‘ . .Then | z -2, l,z E(g,tn)
and |g(zn) < g(zo)l / |zn -z l < tn/ﬁ(g,tn)o Also, t_ approgches o
if and only if n approaches infinity. Now, from the existence of g‘(zo)

and 5!(g,0), the following result is obtained.

|8'(2) | = pamge (] &(2) - a(zy) | / |2 -2, [}
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i

m { [a(s,) - a(z)| / Jn, - 2|

S fings (8/0(et,))

fi

g (9/0(e))

i

_1/5-1-(%,90)

Since g is holomorphic in the finite plane, g' 1s holomorphic in
\the finite plane and is bounded by l/Bi(g,O), as established in the

preceeding paragraph. Application of Liouville's Theorem shows that

]

g'(z) is constant. Then g'(z) # O, since g is not constant and g(z)

kz + ¢, k £ O.

Proposition 5.4. Let [a,b] be a closed interval and let g be an

element of C[a,b] such that

(1) g' is strictly monotone in (a,b)
(2) g_l exists in [a,b]
Then 5(g,t) = |7 (g(a) + t) - a|1f |g'(ar)| > [g'(b-)]

and 8(g,t) = [b - g (g(d)-t)] 1if [g'(b-)] > |g'(a+)]

Prcof: By (1) and (2) of the hypothesis g' is either positive
throughout (a,b) or negative throughout (a,b) and by (1), g' is
strictly monotone in (a,b). Also, g is either increasing in (a,b) or
decreasing in (a,b). ”Thus, four cases are established by considering
the alternatives on g'.

Assume g' is positive and decreasing in (a,b). Then g is increasing
in (a,b) and gwl is increasing since nggl(x) = l/ng(x)° Now, let

x and y be numbers in (a,b) and t a real number. It follows that



g(x) + t < gly) + t and gfl(g(X) +t) < g (&ly) +t).

5k

let x aﬁd*y’be'pointS'of'[a,b]"and t a real number such that x <y

and g(y) - g(x) = t. Since g is increasing, g(y) - g(x) = t and

g(y) = g(x) + t. Ten y = & (g(x) + t) and

Qo

ly - x| =y -x= glg(x) +t) - x = g7 (glx) + t) - x

By Proposition 5.3,

8(g,t) = inf {|y ~ x| %,y € [a,0], |&(x) - &(y)| = t)

#

inf {‘gml(g(x) +t) - x[txe tX;b]]

If

-1
g7 (gla) + t) - a]
Also, since g' is decreasing in (a,b),

g (a+)| = g'(a+) > g'(x) > g'(b-) = |g'(b-)| for x in (a,b).

Example 5. Iet g(x) = X and consider any interval [a,bl, a > 0.

By the above proposition, g'(x) = 2x is positive and increasing in (a,b)

and gml(x) =x in (0,®). Then lg'(b~)] = 2b, zg'(a+)| 2a and
&' (6-)] > |&' (a4) Vo - t.

In particular, for the interval [0,11, 8(g,t) =1 =~N1 = t.

1

. Thus, B(g,t) = b - &7 (g(d) - 1)

Example 6. If g(x) = J&, g'(x) = 1/2 Vx is defined, positive and

decreasing in [a,b], a > 0. Then yg”(a+)\ > lg'(bw)l and g-l(x) s

By Proposition 5.4, &(g,t) = ‘GJQ + t)2 - al. Again, for the interval

[0,1], 8(g,t) = t°.

Let (X,p) be a metric space and let g be an element of I(X). The
mapping g is said to be e-contractive if there exists an € > C such th

ole(x),a(y)) < p(x,y) whenever ¢ <p(x,y) < €. Since this definition

at

is



cleayly a uniform Lipschitz‘conditionvof order 1, the mapping_g ig_‘.
unifq;mly cqntinuou§n Thus, §(g,t)‘exists andiis boundgd on any"compact
subset of X. If, in addition, it is required that BL(g?O) exigt? the
followihg relationships exist between the notions of e¢~contractive func-

tion and natural delta function,

Theorem 5.9. Let K be a compact subset of the metric space (X,p)
and let g be a non-constant element of T(K). If g is e-contractive and

gl(g,o) exists, then ai(g,o) > 1.

Proof: By Proposition 5.2, 8(g,0) = C and since Bi(g,o) exists,
BL(g,O) = %Egit 5(g,t)/t. There exists a real number € > O such that
if x and y are points in K and 0 < p(x,y) < €, then p(g(x),g(y)) <
o{x,y). Now, 85(g,0) = 8(g,0+) implies the existence of a real number
t, > C such that 85(g,t) < e for 0 <t < t . For each such t, there is
a pair of points, x and y, in K such that p(x,y) = 8(g,t) and
p(g(x),g(y)) = t., Then t < 8{(g,t) for every t < t, and 5(g,t)/t > 1.

Therefore, SL(g,O) > 1.

Theorem 5.1C. ILet K be a compact continuum in the metric space

(X,p) and let g be an element of I{K). If SL(g,O)/exists'and

81(g,0) > 1, then g is e-contractive.

Proof: If SL(g;O) # O, g is not constant and 8(g,0) = C. Thus,
BL(g,O) = %imit 5(g,t)/t and since Bi(g,o) > 1, there must exist a
NS

real number k >1 and t, > O such that 5(g,t)/t >k whenever G < t < ty -

In other words, d(g,t) > kt whenever 0 < t < tk' Iet x and y be points

of K such that 0 < p(x,y) < B(g,tk) and let t' = o(g(x),g(y)). Then
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t' <t and plx,y) >8(g,t") >kt' which yields p(x,y) > olg(x),a(y)).

Hence, g is g-contractive.

Edelstein 175:7 established the following:results concerning ¢~

contractive mappings:

I. If K is a compact metric space and g is an e-contractive
mapping on X, then there exists a periodic point .
II. If, in addition, K is e-chainable, then & is a unique fixed
point and @ = limit g (x) for each x in K.
H e v
These results may now be stated in terms of the natural delta

funetion.

Corollary 5.9.1. If K is a compact subset of a metric space (X,p)

and g is an element of I(K) such that 5}(g,C) exists and 8i(g,0) >1,

then there exists a periodic point .

Corollary 5.1C.1l. If K is a compact metric continuum and g is aﬁ

element of I(K) such that 6;(g,0) exists and is greater than 1, then

g has a unique fixed point & and & = limi} g (x) for each x in K.

Proof: Obviously, since K is a compact continuum, K is e€-chainable
and, by Theorem 5.10, 1s ¢~contractive. Hence, the hypothesis of

Edelstein’s theorem (II) is satisfied and the desired result follows.

In Theorems 5.1 and 5.3% it was shown that if K is a compact
continuum and g is an element of C(K), then 5(g,t) is a positive, non-
decreasing and left-continuous function defined on K and bounded by b,

the diameter of g(K). If it is observed that &(g,t) is Riemann-integrable
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on [O,b], the integral may be used to‘def;ne a uniformly cqntipuoug‘fupc-
tion from (I(K),U) to the interval [0,b°]. This will be accomplished in
Theorem 5.11, with the values taken on by this function‘for certgin
special elements of I(K) observed in Theorems 5.12 and 5.13 and their

corollaries.

Theorem 5,11, Let K be a compact continuum in a metric space (X,P)

with b the diameter of K. For each element g of I(K), let
b
Flg) = IO 8(g,t)dt. Then F is a uniformly continuous function from

(1(K),U) to the interval [o,bE].

Proof: ILet €' > 0 be given and take € = e'/b. Then for g and h
in I(K) such that d(g,h) < ¢/2, and any two points, x and y, in K,

pla(x),n(y)) < p(h(x),a(x)) + o (g(x),;8(y)) +po (g(y),h{y)).

Thus,

o(h(x),h(y)) < o(glx),8(y)) + .
Similarly,
ple(x),8(y)) < o(a(x),h(y)) + e
Now, if p(x,y) < 5(g,t), then olg(x),g(y)) < t and p(h(x),n(y)) <t + e.
Therefore, 8(g,t) < &(h,t + ¢) and 8(h,t) < &(g,t + €).
Since 8(g,t) and 8(h,t) are non-negative and non-decreasing in

[o,v], b b

{o 5(g,6)a < [ 8(n,t + e)at

t

= [P 5(n,t)at

o

= [P 8(n,t)at + Jb+€ 8(h,t)dt - f@ 8(h,t)at
o b o O

<‘fgl 8(h,t)dt + €<b.
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Similarly,

jb 85(h,t) < ft’a(g,t) + €-b.
0 Y0

Thus, F(g) < F(h) + €' and F(h) <F(g) + €' or, in other words,
-g' < F(g) - F(h) < ¢'. Hence, IF(g) - F(h)[ < ¢' whenever d(g,h) < ¢'/2b

and F is uniformly continuous.

Theorem 5.12. Let K be a compact continuum of diameter b and let g

be an element of I(K) which is a homeomorphism. Then g is an isometry

if and only if d(g,t) = t for every t in the interval [C,Db].-

Eggggz If g is not an isometry, then by a theorem of Montgomery
1711:7, ; mgst increase the distance between some two points of K. That
is, there must exist points x and y in K such that p (x,y) <e(g(x),s(y)).
Let t' = p'g(x),e8{y)). Then

5(e,8') < plx,y) < ola(x),e(y)) = t'

Conversely, suppose theré_éxgéfs a t' in (O,b) for which 6(g,t')

# t';v Now, 8{g,t') < b since, 5y Theorem 5.5, the diameter of g(K) is
given by inf {t{_a(g,t) = b} and g is a homéomorphismu From Theorem 5.k,
there exists a pair of points, x and y, in K such that p(x,y) = 6(g,t“)

and o (g(x),e{y)) = t', from which it follows that p(x,y) #0 (g(x),g(y))

and g is not an isometry.

Corollary 5.12.1. If K is a compact continuum of diameter b and

g is an isometry of K into K, then F(g) = b2/20

b
0

Proof: By Theorem 5.12, 8(g,t) = t and F(g) = J tdt = b2/2o

Theorem 5.13. Let K be a compact continuum of diameter b and let

g be an element of I(K) which is a contraction mapping. Then for every



t in (0,b),5(g,t) > t.

E£9é£3 Since g is a contractibn mapping, therg exists a réal
number r, O < r < 1, such that o(g(x),e(y)) < r-o(x,y) for every pair
of points in K. ILet a be any number in (C,b) and let m = min {b;a/r},
Then a < m since a < a/r for r < 1l. Iet a' be a real number such that
a <a' <umand let x and y be any pair of points in K such that
p(i,y) < a', DNow,

0 (g(x),8(y)) <rplx,y) <ra' <rm <r-afr =8

Therefore, a' < 8(g,a) and 8(g,a) > a.

Corollary 5.13.1. ILet K be a compact continuum of diameter b and

let g be a contraction mapping of K into K. Then F{g) >'b2/2a

Proof: The function &(g,t) is integrable and 8(g,t) - t > O for
every number t in the interval (O,b) by Theorem 5.13%. Then,

jbia(g,t) - tldt = fb 5(g,t)dt - jb tdt > 0
0 0 o
v [P orat i 27,
and F(g) > | © tdt. Thus, Flg) >1v/2.
Yo
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The remainihg two theorems of this chapter are devoted to studying

the effect on BCg,t) and F(g) When the domain K has a strictly convex

metric.

Theorem S.14.  Iet K be a compact continuum in a complete metric

space with metric D such that D is a strictly convex metric for K. If

g is an element of C(K), then &(g,t) is super-additive in {C,b'] where

b' denotes the diameter of g(K).

Proof: Iet t', t'' and t be real numbers in the interval [0,b']
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such that t = t' + t''. Assume 5(g,t) <“5(g,t') + S(g,t"), ‘There
exists a pair of points, x and y, in K such that D(x,y) = 5(g,t) and

(8(g,t') + 8(g,t"") - 8(g,t)]/2. There

H

D(g(x),e(y)) = t. Let e
exists a point z in K such that D(x,z) + D(z,y) = D(x,y) and D(x,z) =

5(g,t') - €, Now,

1

8(g,t) - D(x,z)
5(g,t) = 5(g:t?> + €

B(gft) = S(g,t') + [B(gytt) + S(g:t") ; S(g,t)]/Q

D(ZJY)

i

]

B(E;t") - €

Then D(g(x),g(z)) < f’: D(g(z):g(Y)) < t'' and,

D(g(x),e(y)) < D(e(x),s(z)) + D(g(z),e(y))

<t' 4+ t't' =t
This, however, contradicts the choice of points, x and y, and the origi-
nal assumption that &(g,t) < &(g,t") + 8(g,t'") is false. Thus 5(g,t)

is super-additive in [C,b'].

Theorem 5.15. Let K be a compact continuum with a strictly convex

metric D such that the diameter of K, under D, is b. Let g be a non-~
constant element of C(K) such that the diameter of g(K) is b'. Then

F(g) <1 - (vb7)/2.

Proof: Since D is a strictly convex metric and g is not constant,
5(g,t) is super-additive in [0,b’] by Theorem 5.4 and 8(g,t) < bt/b' for
every t in (0,b). Then,

? 1
fb 5{g,t)at < Jb (bt/b*)dt = bb'/2.
e 0

By Theorem 5.5, d8(g,t) = b for every number t in the interval [b',b].
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Hence, b b
I 5(g,t)dt = I bdt = b> - bb',
bl bl
Now,
b
F(g) = | 8(g,t)at
Y0
4
= Ib 5(g,t)dt + Ib 5(g,t)dt
O 1
< (bb')/2 + b2 -(bb*)
and F(g) 5b2 -bb'/2.



CHAPTER VI
SUMMARY

This paper is concerned with two concepts, nahely those of
strictly convex‘metrics and of natural delta functions.

Comparing the strictly convex metric with the convex metric, it is
found thap a strictly convex_metric is a convex metric for which each
pair of points determines a unigque arc whose length is given by the
distance between the points under that metric.

One of the principal results of this paper is contained in Chapter
IIT1. If a compact continuum can be expressed as the union of a discrete
sét and a countdble collection of compact sc-metrizable continua [Mi]
such that for each integer n the continuum Mn intersects the union of
those contlnua of the collection of index less than n in a single point,
which separates the space, then M is sce-métrizable. As a corollary to
this, every dendrite 1s sc-metrizable.

In the plane, the sc-~metrizable sets are characterized as the
collection of all locally connected and point-like continua. In general,
every sc-metrizable continuum is unicoherent.

In Chapter IV both c-metrizability and sc-metrizability are found
to be topological properties. Examples are given to show that not
‘every convex metric on a séwmetrizable continuum is a strictly convex

metric and that Bing's method in [73:7 of extending a convex metric is

l
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not applicable fo strictly convex metrics., The Cartesian product of two
c;metrizable continua is found to be c-metrizable and the question is
raised as to whether the same is true of sc-metrizable continua.

It is observed that the concept of a strictly convex metric is
more closely analogous to the original linear concept of convexity than
is the concept of a convex metric, since with sc-metrizability the
concept of convex hull is definable and consistent with linear results
but is not with c-metrizability.

- Focusing attention on the collection of all continuous functions
between two compact, metric continua, the natural delta function is
defined and is shown to be, for each such continuous function, a non-
negative, non~-decreasing and Riemann-integrable function of one variable,
defined in (0,») and bounded above. The value of the natural delta
function at the origin is zero if and only if the range of its deter-
mining function is infinite. The natural delta function is found to be
left-continuous and a necessary and sufficient condition that it be con-
tinuous is given.

Paying particular attention to the right-hand derivative of the
naturél delta function at the origin, a number of results are establi-
shed. The requirement that this right-hand derivative exist and be
non=zero is shown to be equivalent to a ﬁniform Lipshitz condition of
order 1, where the Lipshitz condition is defined in a general way.

When applied to functions holomorphic in the complex plane, the same re-
gquirement yields a translation.

IT g is a uniformly continuous function on a compact set such that

the right-hand derivative of a(gjt) at the origin exists and exceeds one,
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g is‘an g-contractive function. Applying this result to Edelstein's
theorems on e-contractive functions, the following results are ob-
tained. If K is & compact‘subset of & metric space and g is a
continuous function of K into itself for which the right-hand deriva-
tive of &(g,t) at zero exists and exceeds one, then g has a periodic
point . If, in addition, K is a continuum, then & is a unique fixed
point and @ = Timit gn(x) for each x in K.
- o

If X is a compact metric continuum of diameter b and I(K) is the
collection—of all continuous mappihgs of K intc itself, the function F
from I(X) to [O,bg] is found to be a unifbrmly continuous function
where I(K) is given the topology of uniform convergence énd Flg) =
fz 3(g,t)dt for each element g of I(K). The value of F(g) is then
determined for certain special types of functibnsn

If the metric on the continuum K of the preceeding paragraph is a
strictly convex metrié;‘then 5(g,t) is a super-additive function on the
interval [0,b'], where b' denotes the diameter of g(KX).

Some questions for further study might include the following. What
are the conditions under which a strictly convex metric on a subset M
éf‘a space S can be extended to 5? Under what conditions will a non-
compact coﬁtinuum have a strictly convex metric? If a space S has a
strictly coOnvex metric D, are the spherical neighborhoods D-convex sub-
sets of S? Finally, under what conditions can a continuous function f
on a subcontinuuﬁ Ml of the metric continuum M2 be so extended to M2
that the natural delta function of the extension and the natural delta

function of f coincide on the interval from zero to the diameter of

Mi? In other words, when does the Tietze extension theorem yield a



smooth extension?
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