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NOMENCLATURE 

A • •••eoo•••••o•o cross sectional area; 

00•000000000 concentrated loads; 

c • II 4 0 0 o 0 0 0 0 . . . 0 stiffness coefficient; 

CK ••••••••••••• carry over stiffness matrix; 

E •• o •••••••••••• Young's modulus of elasticity; 

f ••••••••••••••• cantilever flexibility terms; 

[F] • 0 • flexibility matrix; 

.FN, FM OOOOOGOOOOOOO fixed end lo.ad terms; 

G • . . . e O e O O O e shear modulus of elasticity; 

[H] 0 0 8 0 0 e O • e 0 0 e O e O O force matrix; 

I 

J • • • • 

K • • • 

0 0 0 0 e • 0 0 0 e O 

••••••••••o 

0 0 • 0 0 0 0 d O e O O 

moment of inertia; 

torsional constant; 

stiffness coefficients, or terms of 
inverse of flexibility matrix; 

L • . . 0 0 0 0 0 0 0 0 It O O II length of member; 

• • • • • • • • • • • moments .at any point q of segment iq 
in member system; 

• • • • • • • • moments .at end i of member ij, in o 
system; 

••••••••••• force at end i of member ij in Z 
direction; 

p • • • • • • • • • • • 0 • 0 0 0 C extern.al joint force; 

Qoso•o••••• . . . external joint.moment; 
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[r] oooeoooooo••o••• 

oooeooooo-o•••••• 

transmission matrix; 

sh~ar .at any arbitrary point q ~n 
z direction; 

U ••••••••••••••••• strain energy; 

V ••••••••••••••••• external potential energy; 

w • • • • • • • • • • • • • • • • • uniform. load; 

w . 00811oooooaeooooo 

xij CI08G909000000000 

y ij O O O O O O O 9 0 0 0 O O O Q O 

oeooooooooooooeo 

work; 

x distance from end i of member to 
.· end j measured in basic system; 

y dis~ance from end i of member to 
end j measured in basic system; 

displacement in z direction of any 
point i; 

a • •••••••••••••••• angle of rotation from.basic system 
to member system; 

Y·· OOOCIOOOOOOOOO 

6ijz, 6Jiz • • • • • • • • • • • • 

shape factor; 

end deflection of member ij in z 
direction; 

6 ••••••••••••••••• end displacements of cantilever 
member due to loads; 

9ijx' 9Jix •••••••••••• end rotation of member·iJ in·x·di.
rection; 

eiJy' e jiy • • • • • • • • • • • • end rotation of member .ij in y di
rection; 

ooooooooooeoooeoe combined stiffness coefficient; 

;\ • 00000000••••0·"·· e,lemental flexibility; 

[ \Ji] 0000••••········ displacement matrix; 

II • 0 0 0 0 0 0 0 0 0 0 O O O total potential energy; 

. . . . . . . . . . . . . rotational matrices; 

Superscript T indicates transpose, superscript m indicates the 

member system, and omission of the superscript refers the·term to the 

·basic o system. 
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CHAPTER I 

INTRODUCTION 

1.1 General 

The analysis of sp_ace · structures is divided into two major classes: 

flexibility methods and stiffness methods. The flexibility methods deal 

with elastic constants known as linear and angular flexibilities; the 

stiffness methods deal with elastic constants called line_ar and angular 

stiffnesses. These elastic constants can be calculated from the princi-

ples of elasto-geometry or by means of energy. 

The analysis of linearly elastic Order II structures by minimum 

potential energy is developed in this thesis. These structures are 
/ 

defined as in-plane with lo.ads applied nornial to .the plane. The 

Principle of Minimum Potential Energy is ·used in the.analysis and 

briefly states that for·stable equilibrium compatible with.constraints, 

the potential energy of a deformable body will be a minimum. The mini-

mization process is .achieved by differentiating the total static po-

tential energy with respect to each end displacement. This produces a 

set of linear equations with displacements as redundants; thus the 

method of minimum potential energy leads to a stiffness method. 

1 
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1.2 Statement of the Problem 

Planar frame structures loaded normal to the plane with general 

type supports and shape of members are investigated by Minimum Potential 

Energy. The cross section may be variable but syrmnetric with the verti

cal axis. 

1.3 Assumptions 

Material properties are defined by the following assumptions: 

1. Material is homogeneous, isotropic, and continuous. 

2. Material obeys Hooke's Law. 

3. All deformations .are small and elastic. 

The stereo-geometry of each member is idealized by the following 

.assumptions: 

1. Depth to length ratio is small. 

2. Cross section is symmetric with respect to vertical axis. 

3. Curvature is large .and all conventional beam formulas apply. 

4. Force and moment vectors are assumed to act at the centroid 

of the cross section. 

Additionally, deformations of each member are calculated from the 

assumption that all deformations are small and elastic and that defor

mation of the structure does.not alter the point of application of 

loads. 

All forces, moments, and displacement vectors are positive when 

acting in direction of the respective system axes. The specific appli

cation of this rule with respect to elements of cross section are 

explained where they first appear. All symbols are defined where they 

first appear and are arranged alphabetically in the t,able of symbols. 
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lo4 Historica.1 Comments 

The association of minimum potential energy with geometric de

flection curves and e.quilibrium dates primarily to the seventeen

hundreds at the time of Leonard Euler (1) and the Bernoulli family (1). 

This era provided the basis for significant advances in energy methods 

and theorems which subsequently emerged, such as Castigliano's Theorems 

(1) and Engesser 1 s (1) notion of complementary energyo 

The energy principles are discussed by Hoff (2), Charlton (3), 

Argyris and Kelsey (4), Westergaard (5), Williams (6), Langhaar (7), 

Southwell (8) and others and are well founded and demonstrate methods 

for analysis of several types of problems. Further, these principles 

have been rigorously applied to the theory of elasticity and buckling 

investigations by Timoshenko and Goodier (9 ), Love (10), Timoshen~o and 

Gere (11), Westergaard (12), and others. Specific applications to civil 

engineering type structures are given by Li (13), Timoshenko and Young 

(14), Norris and Wilbur (15), Langhaar (16), Pippa.rd (17), and others. 

This thesis employs the most fundamental energy theorem, that of 

Minimum Potential Energy which produces well-conditioned linear equations 

as stated by Charlton (18) and Brown (19)o Use of nodal displacements 

as redundants automatically satisfies the compatibility condition and 

the minimization process assures equilibrium at the nodes (20). The 

proof of this theorem is given by Sokolnikoff (21). 

The strainenergy function is developed in terms of end dis

placements for straight members by Bateman (22), and Langhaar (16) 

utilizes potential energy to formulate stiffness eqt.Jations for analysis 

of planar structures with straight members. His fonnulation requires the 



deflection curve for calculation of the potential energy function. In 

the general case the deflection curve is usually unavailable for this 

computation. The potential energy expression can, however, be computed 

as a function of end displacements as presented in the body of this 

thesis. General matrix operations are demonstrated by McMinn (23). 

4 

In the Minimum Potential Energy method of analysis fixed end values 

are required and must be calculated for each specific curve. For circu

lar shapes the values are readily available from Michalos (24) or 

Spyropoulos (25). Values for other shaped members must be calculated as 

necessary. 

Eiseman, Namyet, and Woo (26) have demonstrated that the stiffness 

method with a very large number of redundants can be solved by an 

electronic computer and can give satisfactory results. The work of this 

thesis is not primarily concerned with the number of redundants but 

rather the application of minimum potential energy to analysis of 

general shaped planar structures. 



CHAPTER II 

ANALYSIS OF A SEGMENT 

2. 1 General 

The segment is considered to have any general curved shape, to 

have known elastic properties, and to displace in a restricted manner. 

End restraint conditions are arbitrary 9 either hinged or rigidly con-

nected. Static loads are normal to the plane of the segment. 

2.2 Coordinate Systems 

Two coordinate systems·related by the geometry of the segment are 

utilized. One is an arbitrarily positioned fixed system or basic system, 

and the other is a member system. Transformation from one system to the 

other is accomplished by rotational matrices designated [w0 m] and 

cos QI -sin QI 0 cos QI sin QI 0 
-------·-

[womJ - sin QI I cos QI 0 [.~OJ = -sin Q' CQS QI 0 
----·--·-· -- -- --------·--· ---

0 0 1 0 0 1 

2 .3 Statics 

For a general member ij, with forces and moments at i known, the 

cross sectional elements at any arbitrary section q can be calculated 

by statics. If, in addition to end forces and moments, loads are 

5 



acting on segment iq, their effect is superimposed in a similar manner, 

See Fig. 2.1. 

z Njiz 
Mjiy 

Mjix 

M 
ijx 

y 

M 
ijy 

x 

Fig. 2.1 Equilibrium Forces and Moments on Member ij. 

2.4 Deformations 

Since the principle of statics and geometry are interchangtable, 

the analogous conjugate member is used to obtain relationships between 

causes and displacements. Elemental elastic weights are conside~ed as 

loads on the conjugate structure with cross-sectional elements as slope 

and displacements. 

6 

Let elemental elastic weights be premultiplied and post-multiplied 

by rotational matrices so that from the conjugate structure the displace

ments between end i to j due to unit forces and moments on end i can be 

designated as a flexibility matrix. From elasto-static equilibrium the 

displacements at the near end can be written as a function of the 

forces and moments of the near end plus the displacements of the far end 

or, 
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Aijz I 

fuzz fiizx fuzy Nijz 
----·- ···-- ----·~--

ei. = fuxz · fuxx fiixy Mijx JX 
------------ ------- ---

eiJy fiiyz fiiyx fiiyy Mijy 

-
1 -Yij .xij Ajiz 

II 

fuzz 0 0 Nijz 
-· ····-·· --.---·-·-----

+ 0 i 0 9jix + 0 0 0 Mijx (2,1) 
-- --- -v··•--··•· ---
,0 .0 1 ejiy 0 0 0 Mijy 

In synibolic form, 

[ '1'1 J = [ F'. ] [ H·. ] + 
1 . 1 [-r·. J [ 'lrj J + . 1J 

The coefficients fare flexibility coefficients for a cantilevered 

.. basic· structure and -are defined as follows: 

I 
fiizz = Displacements of near end due to unit cause.at near end 

neglecting ~he effect of shear. Displacement is at end i 

in direction z due to unit cause .at i in direction z. For 

: this specific value the unit cause must. be a force as no 

moments .act in the z direction. 

fiizz = Displacement at near end due to unit.cause at near end due 

to .shear effect alone. It is equal to J a!s • 
L . 

All reIIlaining flexibility terms .are· displacements due to unit 

I causes .and can be defined similar to fiizz as above. From the·recipro-

cal theorem the flexibility matrix is s.ymmetric and all terms can be 

c.alculated .by applying unit causes to the basic cantilever structure. 

2 .5 End Forces and Moments 

Eq. (2 .. 1) expresses the end forces and moments at i as functions of 

dhplacements at. both ends. This equation can·be solved for the end 
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forces .and moments by inverting the flexibility matrix. Defining .the 

inverted matrix as the stiffness ~atrix, 

-1 
Kzz Kzx l Kzy 
--------· 
Kxz Kxx Kxy 
--··- ---· ·-·--. -·-

Kyz . Kyx I Kyy 

(2.2)· 

and premultiplying Eq. (2.1) by this matrix gives the end forces and 

moments at i as functions of end displacements: 

Nijz Kzz . Kzx Kzy 6ijz 
- . ···-···--·· 

Mijx = l<xz Kxx l<xy eijx 

Mijy Kyz , l<,,x Kyy eiJy 

-Kzz (Yilzz - Kzx) (-XfjKzz - Kzy) 6jiz 
---------- --

+ -Kxz (YijKxz - Kxx> (-XijKxz - 1Sc ) 9jix .Y 
---·-- ------- -·····-----.--.. ·-- -----~------·--·--

-Kyz (Y .. ,Kyz - 1),x) (-Xijl<,,z - Kyy) eJiy 1J 

I/ 
-Kzzfiizz 0 0 Nijz 

- - ·-··. -··-·· ... -· ···-·-·· ---· ·------ ··--· 

+ II 
-~zfiizz 0 0 Mijx (2.3) 

_ .. __ --· ----·----·-···--
f'' -1),z iizz 0 0 Mijy 

or ·symbolically, 

All terms are related to the basic reference system. 



CHAPTER III 

DERIVATION OF POTENTIAL ENERGY EXPRESSIONS 

3ol General 

Once the end forces and moments are known in terms of stiffnesses 

and displacements, the potential energy can be formulated as a function 

of these same quantities. A brief restatement of the Principle of 

Potential Energy is introduced and the substitution of Eq. (2 .3) into 

this energy function is shown. 

The Principle of Minimum Potential Energy states that of all 

possible displacements a body can assume which satisfy kinematic boun

dary conditions, those conditions corresponding to forces and stresses 

satisfying equilibrium make the total potential energy a stationary 

value (27). Potential energy Il can be defined as the total static 

energy possessed by the system, and represented as the sum of U .and V, 

where U is the strain energy stored in the structure and Vis the 

potential energy of external loads. Normally Vis taken as equal to 

minus the work done by the external loads in moving from the initial 

to the deformed position of the structure. Again, the potential energy 

is 

n = u + v 

For equilibriu..rn, the potential energy assumes a stationary value 

so that 

9 
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o (II) o(u + v) = 0 

o(u) = - o(v) = o(w) (3 .1) 

where Wis the external work done by the loads. 

3.2 Strain Energy 

The strain energy U can be expressed as a function of end displace-

ment.s, and differentiated with respect to each of these displacements. 

There will be as many equations derived by this differentiation as there 

are displacements, forming a set of simultaneous linear equations. 

Strain energy of the member ij due to bending, torsion, and shear 

is given by 
m 2 m 2 m 2 

U= J !Mqx) ds + J (M9.Y) ds + J y(Sqz) ds (3 .2a) 
L 2GJ L 2EI L 2GA 

in which 

torsional moment at arbitrary point q 

= flexural moment at arbitrary point q 

= shear force in z direction at arbitrary point .q 

Superscript m identifies the member system and y is the shape 

factor of the cross section. 

Since the moments and forces are related to them system and are 

initially given with respect to the o system, a transformation must be 

performed: 
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m I 

M qix cos Ol sin 
°' I 

0 M qix 
------ ---- ---·-

m -sin Ol Ol I 0 M Mqiy = cos 
I qiy 
I -· . - ·- -· ------ i 

m I 

N 0 0 I 1 N 
qiz I qiz ; 

or, 

[ Hq~ J = [ wmo J [ Hqi J 

Wi.th the substitution of these terms, the matrix form of Eq. (3.2a) 

becomes: 

~ J [ m I m I m] A· m i m 
u = Mqx : Mqy · Sqz qx I 0 0 Mqx 

L 

0 Am 0 Mm (3. 2b) qy qy 

0 0 Am m 
! qz sqz 

or symbolically, 

~ J [ Rm l [ Am J [ m J u = Hq 
L q q 

and in the o system 

u = ~ J [ Hq J1 [ UJ J [ Am J [ w ] [ Hq] 
I:. om q mo 

or, 

u ·- ~ l [ Hq ]T [ 11.q ] [ Hq] 

where 

A m angular deformation of differential element ds in x di·-qx 

rection or, ds 
GJ 

Am = angular deformation of differential element ds in y di~ qy 

rection or, ds 
EI 
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Am = linear deformation of differential element ds in z diqz 

. YgK rect1on or, .• 

Each deformation is due to .a unit cause in the corresponding 

direction of the member system. 

The evaluation of the integral in Eq. (3.2b) leads to the gene~al 

strain energy function of which derivatives with respect to each 

displacement are recorded in the Appendix and summarized in simple 

form in Table 3. L The first matrix of Table 3 .1 yields the influence 

of bending and torsion, and the second matrix represents the contri-

bution of shear effect on the displacements where 

II 

CF = -fiizz 

The later expression for shear effect is valid for joint loads only. 

If shear effect of in-span loads is to be included, the shear variation 

must be substituted into Eq. (3.2a) before differentiation. 

The stiffness coefficient matrices can be written directly by 

performing the required simple calculation with terms obtained from 

Eq. (2.2). 

3.3 External Potential Energy 

Obviously for this method to be of any significant value the 

external potential energy must be expressed as a function of the end 

displacements. This energy for in-span loads may be considered as 

consisting of two parts: first, the "fixed end" portion or that portion 

of work.which is done to.deflect the member to the equilibrium position 

while both ends are restrained and second, the work done.as a function 
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TABLE 3.1 FORCE, STIFFNESS-DISPLACEMENT EQUATIONS 

oU Kzz Kzx Kzy 
061Jz 

-Kzz (Y1jKzz • Kzx> ( ·X1jKzz • Kzy) 61Jz 

au K K K ·Kzx (Yi{zx • ~x> (-X1lzx - ~y) 91Jx 
aeijx 

zx xx xy 

au Kzy Kxy Kyy -Kzy (Yi{zy - Kyx) (-Xi {zy - Kyy) eiJy 
ae1Jy 

oU -Kzz · -Kzx· -Kzy K~z -(Y1fzz - Kzx) -(·X1lzz • Kzy) t,jiz 

at.jiz 

au . (Yi{zz (Y1lzx (Y1lz~ ·<Y1lzz yij(YijKzz - Kzx> yij(-XijKzz - K,y) 9Jix 
aejix -Kzx). -Kxx> -Kyx -Kxz) - (Y1jKzx • Kxx> (-X1jKzx - Kxy) 

au (-X1fzz (·X1lzx (·X1fzy -(·X1fzz Y1iC-X1jKzz. Kzy) ·X1j(-X1{zz - Kzy) eJty 
i:l!l jiy ·Kzy) -I<,.y) -Kyy) -Kzy) ·- -X1jKzx - Kxy) - (-X1jKzy. Kyy) 

Kz~ Kzx!Czz KzyKzz -Kz~ Kzz(YijKzz - Kzx> Kzz(-XijKzz - Kzy) 61Jz 

KzzKzx Kz~ KzyKzx -KzzKzx Kzx(YijKzz - Kzx> Kzx(-Xi{zz - Kzy> 91Jx 

KzzKzy KzxKzy 
2 

Kzy -K2 zKzy Kzy(YijKzz - Kzx> Kzy(-XijKZZ - Kzy> eiJy 

+ CF 

-Kz~ -KzxKzz -KzyKzz Kz~ ·Kzz<Y1jKzz. Kzx> -K •• <-x,jKZZ - Kzy> {\jiz 

2 9Jix 
\/Yt/zz 

K (Y I< · \/Y1{zz -Kz/Y1{zz (Yilzz - Kzx> (Y1lzz - Kzx) zx iJ .. 
-Kzx> - zx> -Kzx) ·Kzx) •(-X1jKzz - Kzy> 

2 
Kzz( ·X1jKzz Kzx< •X1jKzz Kzy(·X1jKzz -Kzz(-XijKzz CY1jKzz - Kzx> (-X1jKzz - Kzy) .e Jiy 

-Kzy) -Kzy) -Kzy) -Kzy) '(-XijKzz - Kzy> 
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of the end displacements. The "fixed end" portion is constant and is 

not a function of end displacements. External potential energy for 

joint loads is the product of the joint cause and its displacement. 

The external potential energy function is developed in the follow-

ing derivation. First, the structure is given an infinitesimal virtual 

displa:cernent toward its initial undeformed position. After these small 

displacements the end forces .and moments c.an be written as follows: 

oMijx A 
---- dl.l .. 
ob,.• 1JZ 

1JZ 

oMijx 
----- d9jix oe.i J x 
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dNjiz oNjiz ON,, 
d,\jz N .. + dNjiz = Njiz - d9ijx - d9ijy - .:J l.Z 

Jl.Z aeijx aeiJy o6ijz 

oNjiz 
d8jix 

oNjiz 
d8jiy (-Kzz) d6jiz - -

oejix aejiy 

M .. + dMjix = M ... - oMjix 
d8ijx - oMjix 

d0ijy - oMjix 
dL\jz J 1.X J 1.:ic oeijx aeiJy otiijz 

. oMjix 
d9 .. 

oMjix 
dAjiz 

aejiy Jl.Y otijiz 

Since the member is linearly elastic and categorized as a conserva-

tive system the Principle of Conservation of Energy applies. Thus, the 

above expressions are integrated over the real displacements producing 

the external potential energy as a function of end displacements: 
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[-N. . + K 8. j + Kzy8. . .+ (Y .. K - K ) 8 .. 1JZ zx 1 X 1JY 1JY zz zx J1X 

K 
+ (-X .. K - K )8 .. + (-K )b. .. ]6 .. +..¥LL~ 

1J zz zy J1Y zz J1Z 1JZ ~ l.JZ 

J Kxx 2 + ( -x . . K - K . ) 8 .. + ( -K ) t:. .. 8 . . + --;,- 8 . . 
1.J zx xy J1Y zx Jl.Z l.JX ~ 1JX 

+ [-M. . + K 8. . + K b.. . + (Y .. K - K )8 .. 
1Jy xy 1Jx zy 1JZ l.J zy yx Jl.X 

J Kyy 2 + ( -X .• K - K ) 8 . . + ( -K . ) 6 .. 8 . • + - 8 .. 
1J zy yy Jl.Y . zy J1Z 1JY 2 1JY 

+ [-N. . + ( -K ) 8. . + ( -K . ) 8i . - (Y .. K - K ) 8 .. 
J1Z zx l.JX zy JY iJ zz zx Jl.X 

K 
- (-X .. K - K )8 .. + (-K )61..J'z]b.J.1"z + z2z b..~ 1J zz zy J1Y zz J1Z 

+ [M.. + (Y .. K - K ) 8. . _+ (Yi .K - K ) e .. 
~ J1X 1J zx xx 1JX. J zy yx 1JY 

+ (YijKzz - Kzx) 6ijz + [Yi/-XijKzz - Kzy) - (-XijKzx - ~y)]ejiy 

- (YijKzz - K,,,)8Jiz} 8jix 

[y (Y K K ) - (Y. ,K - K ) ] + - i j . i j zz - zx 1] zx . xx 2 
2 9jix 

+ f..M .. + (-X .. K - K. )9 .. + (-X.jK - K )9 .. l J1Y 1J zx xy 1JX 1 zy yy 1JY 

- (-XijKzz - K,y)8ji~Sjiy 

[-X .. (-X. ,K - K ) - ( -X K · - K , ) ] + __ 1 .... J ____ 1_.J...__z_z __ z .... y _____ . i_.j.__z..._y _ __.._.Y..._Y_ 9 2 
2 jiy 

+ [constant]+ E B.Zi = 0 
i 1 
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where the value [constant] is independent of end displacements and will 

vanish in the process of differentiation, and t B.Z. is the potential 
1 1 1 

energy of applied loads. 

Since potential energy of loads and corresponding reactions are 

equivalent and opposite in sense, the equivalent expression .above is 

thus prefixed with a minus sign before differentiating. The equiva-

lent values of the end forces and moments from Eq. (2.3), including the 

·effect of loads, are substituted into this equation, reduced in form, 

and the partial differentiation of I: B.Z. with respect to each end dis-
1 1 1 

placement produces the respective fixed end load terms. 

With a continuous loading rather than a number of concentrated 

loads the external potential energy expression changes to an integral 

form -JwsZ ds 
t: s 

where 

w s distributed load w at any points along the member 

Z vertical deflection of distributed load of any point s 

ds = differential length of member 

and by the same procedure as above the fixed end force ,and moment 

values are determined. 

In a case in which fixed end forces and moments are unknown they 

can be determined by the following method. This method utilizes the 

cantilever beam basic structure from which deflections of the free end 

due to loads are calculated and the member restored to the fixed end 

condition. Thus, 



FNijz 

FM .• 
1JY -K zy 

FN .. = +K 
Jl.Z ZZ 

FM •• 
J1Y 

where 

-(YijKzz 
-Kzx) 

-(-X •. K 1J zz 
-Kzy) 

-K xy 

+K 
.ZX 

-(YijKzx 
-K:ix) 

-K xy 

-K yy 

+K zy 

-<-xrl•x)-<-xil•Y 
-Kxy) I -Kyy) 

6ijz 

6 .. 1JX 

6.j ]. y 

+ 

0 

0 

----

0 

CNjiz 

CMjix 

CMj. 1y 

6ijz = deflection of free end i of cantilever member i. J. in z 

direction due to loads 

61jx = rotation of free end i of cantilever member ij. in x 

·direction due to loads 

6ijy = rotation of free end ·1 of cantilever member iJ in y 

direction due to loads 

CNjiz = shear force. at cantilevered end j of member iJ in z 

direction due to loads 
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(3 ~3) 

CMjix = moment at cantilevered end J of member ij in x direction 

due to loads 

CMjiy = moment at cantilevered end j of member ij in y direction 

due to loads. 

Exter~al potential energy for loads applied at the joints can be 

expressed as -f Pi~i for concentrated external loads or -t Q1ei for 



externally applied moments. Thus the potential energy is 

. v 

. The differentiation gives: 

oV 
ol\ijz 

ov 
o9ijx 

oV 
oeiJy 

av 
ol\ .. 

Jl.Z 

oV 
oejix 

oV 
oejiy 

-EP.L\i - EQ.9, 
1 1 i 1. 1. 

= (-) 
P.i J z 

Q .. 
Jl.X 

3o4 Modification for Hinged Support Conditions 

Potential energy expressions for a hinged end condition are 

functions of the shear force of the hinged end and the applied loads. 
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These expressions are formulated as functions of end displacements in a 

manner described in sections 3.2 and 3.3. 

Utilizing conjugate beam equilibrium for a hinged end member 

yields.· 



6ijz f~izz 

9ijx = fiilcz 

---···-

ei.jy f .. 1.1.yz 

+ 

from which, 

[ N .. 
l.JZ 

J = ~i: .. 

( N ) + -f iizz 

fiizz + fiizz 

[ Nijz] 1 

+ 0 

0 

f" 
[ Nij~ ' iizz 

---
0 

0 

-1 I yij -X·. J . l.J 

£' £' ffiz~ iizz I iizz 

[fi: .. -1 yij 
/• . 

fiizz fiizz 

-Yij x . ij 

1 0 

0 1 

6 .. 
l.JZ 

6 .. 
J l.Z 

ejix 

e .. 
J 1.y 

. -xij J 
f~izz 

6 .. 
J l.Z 

9jix 

e j' 1.y 

6ijz 

6jiz 

9jix 

ejiy 

Then, expressing cross sectional moments as functions of end dis·-
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(3 .. 5) 

placements, rotating values into m system, substituting into Eq. (3.2b), 

and differentiating the strain energy with respect to each of the four 

end displacements produces 
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-
au 1 -1 Y .. -X tiijz 

oi\ijz 
l.J ij 

-------------

au -1 1 -Yij xij tijiz 
ati .. 

Jl.Z 
-~----·-------. ·--

= 1 
y 2 oU f' Y .. -Y .. -Y·/·. e .. iizz ]. J ]. J ij ]. ]. J Jl.X ae .. 

Jl.X 
----------

au -Yi/ij 
2 e .. -X .. x .. x .. 

aejiy 
l.J l.J l.J J iy 

1 -1 Y .. -X. 
]. J . ]. j tiijz 

-1 1 -Y .. 
. l.J xi 

+ 
CF 1 

2 f' 
(3.6) 

iizz yij -Yij 

---

-X .. x .. 
l.J l.J -

yij 

-Y .. X .• 
l.J l.J 

-Y. ,X 
l.J. 

x. 
]. 

ij 

2 
j 

Again, the first matrix is·the influence of bending and torsion, and 

the second matrix represents the contribution of shear effect on the 

displacements where 

I 
CF = 

As in section 3.2 the second matrix is valid for joint loads only. 

External potential energy is also expressed as a function of end 

displacements for a hinged end member. For in~span loads the structure 

is given an infinitesimal virtQal displacement toward its initial po-

sition, equilibrating forces .and moments are evaluated,.and the force. 

displacement function integrated over the real displacement yields 



[-Nijz + Yij (-Xi.) . (-1) 
e .. + J 

ejiy+ f1jiz J f1ijz 
fiizz J1X f' fiizz iizz 

1 
2 

f1ijz 
+ 

fiizz 2 

(-Yij). Xij (-1) 
+ [-Njiz + f~. 8jix + f' 9jiy + f' f1ijz] f1jiz 

11zz iizz iizz 

1 2 
8jiz 

+ -f...,..1-- 2 
. iizz 

(-Y. ,X .. ) 
1J 1J 

+ [-Mjix + f~. 

2 2 
xij e jiy 

+ --
f~ii z z 2 

11ZZ 

j 
The value [constant] is independent of end displacements .and 

vanishes under differentiation. To complete the process, the external 
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potential energy function+ Z.Bi is changed in sign .and differentiated 
1 1 

with respect to each end displacement, producing the respective fixed 

end load terms. 

The fixed end load terms are then obtained from the following 

.expression: 
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FN. j -1 
[ 5ijz] 

0 
l. z 

f~. 
l.l.ZZ 

FN .. 1 CN .. 
Jl.Z 

fiizz 
Jl.Z 

---
= + (3. 7) 

FM .. -Yij 
CMjix J l.X 

f~. 
1.1.ZZ _______ ,. 

FM 
x .. 

. CM l.J 
jiy e jiy 

iizz 

The differentiation of external potential energy due to loads 

applied at the ends of the member yields 

ov pijz 
o6ijz 

--· 

oV p .. 
06 .. 

Jl.Z 

J1Z 

= (-) (3.8) 
oV Qjix 

o9jix 

--

oV QJiy 
oe.i 

J y 

3.5 Final Matrix Equations 

Once the strain energy and external potential energy of a member 

are differentiated with respect to each end displacement so .as to 

. satisfy Eq. (3.1), the results are· superimposed member by member for the 

complete structure. The following matrix equations show the results of 

differentiation for a member and synthesis for the complete structure. 
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'I'he equations for .. a member with loads applied at the joints are 

given in Table 3.2 and for a hinged end member 

1 

+ f' iizz 

1 -1 

-1 1 -Y .. 
l.J 

-X 
ij 

x .. 
l.J 

---·-----··-------------·- ··-·--. ------· -
' 

. l.J l.J 
-Y .. x., 

l.J l.J -Y. ·+· y.~ 
_ ___, . ------···-·-··-···-·-- ···------------· 

-X 
ij 

1 

Xij -Yi/ij 

-1 Y .• 
l.J 

2 x .. 
l.J 

-X .. 
l.J 

-1 1 -Y X 
ij ij 

y.. -Y .. 
l.J l.J 

-X.. X.. -Y ... X .. 
l.J l.J l..J . l.J 

p 
ijz 

p .. 
Jl.Z 

Q .. 
Jl.X 

Q .. 
J 1.y 

2 x .. 
l.J 

/J. 
ijz 

e .. 
J 1.y 

IJ. .. 
l.JZ 

!). 
jiz 

e .. 
J J.X 

e .. 
Jl.Y 

(3.9) 
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For in-span load conditions the lo.ad vector must. include the fixed 

end effects from Eq. (3.3) or (3.7) and the shear expression must be 

modified. 

These equations are then superimposed member by member for the 

complete structure to produce a matrix of the form 

)(uzz Xuzx Xuzy ·~mizy 6. 
l.Z I:(Piz - FNiz) 

)(iixz )(iixx )(iixy • • ·)(mixy e. 
l.X 

I::(Q. - FM. ) 
l.X l.X 

(3.10) 

where 

x iizz = the sqm of member stiffnesses at joint i in 

the z direction. All other stiffn~ss terms 

are similarly defined. 

I::(P. - FN. ) 
1.Z 1Z 

= the sum of all member end forces and fixed end 

values at end i. All other terms are similarly 

defined. 

This final equation is then solved for the unknown displacements, 

.and subsequently the individual member forces and moments are readily 

found. 



CHAPTER IV 

NUMERICAL EXAMPLES 

4.1 General 

Analysis of six selected frames by the method developed in the 

preceeding chapters is presented. Each example was completely analyzed 

by the IBM. 1410 Digital Computer. After the loads and geometric proper

ties of the members' and structure were designated, the following pro

cedure of analysis was used: 

1. The six flexibility terms for each member were determined. 

2. Each 3 x 3 flexibility matrix was inverted to obtain the 

stiffness matrix Eq. (2.2). 

3. Stiffness expressions for each member were evaluated by 

substitution into Table 3.1 or Eq. (3.6), the shear effects 

were omitted. Stiffnesses of each joint were combined and 

substituted into Eq. (3.10). 

4. Load vectors were determined by evalu.ation of Eq. (3 .3), 

(3.4), (3.7), or (3.8); terms at each joint were col!lbined and 

substituted into Eq. (3.10). 

5. Eq. (3.10) was solved for unknown displacements. 

6. Member shears and moments were calculated utilizing member 

stiffnesses, end displacements, and fixed end values. 
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The basic logic of the computer program was as listed above. 

Imput data provided geometric properties of members and structure con

figuration as well as loads. Output was limited to final member shears 

and moments; all other processes were internal to the computer. 

4.2 Examples 1 and 2 

A planar frame consisting of two circular members with concentrated 

loads at the center acting normal to the plane and supported by three 

straight members rigidly restrained at their bases is analyzed in 

Example 1. Example 2 solves the same structure and loading condition 

except that the center member is hinged at the support rather than 

fixed. All members have a constant cross section and EI/GJ is equal 

to unity. The structure is illustrated in Fig. 4.1 with final results 

tabulated in Table 4.1 and 4.2. 

z 
y 

/ 
k 

10 

Fig. 4.1 Geometry and Loads Example 1 
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TABLE 4.1 FINAL SHEARS AND MOMENTS EXAMPLE 1 

Member Shear X-Moment Y-Moment 

1 2 -5.1 -80.4 17.1 
2 1 5.1 29.3 -17.1 
2 3 -5.1 -29.3 17.1 
3 2 -4.9 -12.2 -14.8 
3 4 9.8 24.3 o.o 
4 3 -9.8 -122.0 o.o 
3 5 -4.9 -12.2 14.8 
5 3 -5.1 -29.3 -17.1 
5 6 5.1 29.3 17.1 
6 5 -5.1 -80.4 -17.1 

Final results of Example 2 are tabulated in Table 4.2. 

TABLE 4.2 FINAL SHEARS AND MOMENTS EXAMPL~ 2 

Member Shear X-Moment Y-Moment 

1 2 -9.4 -141.4 46.8 
2 1 9.4 47.2 -46.8 
2 3 -9.4 -47.2 46.8 
3 2 -0.6 5.8 41.6 
3 4 1.2 -11.6 o.o 
4 3 -1.2 o.o o.o 
3 5 -0.6 5.8 -41.6 
5 3 -9.4 -47.2 -46.8 
5 6 9.4 47.2 46.8 
6 5 -9.4 -141.4 -46 . 8 

4.3 Examples 3 and 4 

The same planar frame ·of Example 1, loaded with a uniform load of 

0.5 kips per foot on the circular members, is analyzed in Example 3. 

The supports are rigidly restrained and EI/GJ is unity. Example 4 

solves the same structure and loading as Example 3 except the center 

support is hinged rather than fixed. Fig. 4.2 illustrates the structure 

with results tabulated in Tables 4.3 and 4.4. 



z 

k/• 
w = 0.5 

Fig. 4.2 Geometry and Loads Example 3 

'!'.ABLE. 4.3 FINAL SHE.ARS AND MOMENTS EXAMPLE. 3 

~x 

Member Shear X-Moment Y-Moment 

1 2 -5.8 -81.2 13.6 
2 1 5.8 22.9 -13.6 

.2 3 -5.8 -22.9 13.6 
3 2 -5.3 -7.4 -8.0 
3 4 10.6 14.8 . o •. o 
4 .· 3 -10.6 -120.2 o.o 

.3 5 -5.3 -7.4 8.0 
5 3 -5.8 -22.9 -13.6 
5 6 5.8 22.9 13.6 
6 5 -5.8 -81.2 -13.6 

Final results of Example 4 .are tabulated in Table 4.4. 
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TABLE. 4.4 FINAL SHEARS AND MOMENTS EXAMPLE 4 

Member Shear X-Moment Y-Moment 

l 2 -10.l -141.3 42.9 
.2 1 10.1 40.6 -42.9 

2 3 -10.1 -40.6 . 42.9 
3 2 -1.0 10.3 47.6 
3 4 2.0 -20.6 o.o 
4 3 -2.0 o.o o.o 
3 5 -1.0 10.3 -47.6 
5 3 .. 10.1 -40.6 -42.9 
5 6 · 10.1 40.6 42.9 
6 5 -10.l -141.3 42.9 

4o4 Examples 5 and 6 

Example 5 is analysis of a planar structure consisting of four 

circula.r curved members, one straight member, .and three concentrated 

loads applied .at the structure joints. All joints are rigidly connected 

and fixity is assumed at the support positions. All members have 

constant er.ass section and EI/GJ is assumed equal to unity. Example 6 

analyzes the same structure .and loading as Example 5 except that the 

support at joint number (D is. hinged rather than fixed. · Fig. 4.3 

illustrates the structure and loads with t"inal results given in the 

T.ables 4.5 and 4.6. 
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z 

y 
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:::._-------- -~ f4\ ------ v 

80'-~ 

Fig. 4o3 Geometry_and Loads Example 5 

TABLE 4.5 FiNAL SHEARS AND MOMENTS EX~LE 5 

· Member Shear X-Moment Y-Moment 

1 2 9.7 511.6 -228.8 
2 1 -9.7 -75.9 -76.3 
2 3 -0.3 75.9 76.3 
3 2 0.3 -86.8 -55.6 
3 5 -10.6 173. 5 o.o 
5 3 10.6 710.0 o.o 
3 4 0.3 -86.8 55.6 
4 3 -0.3 75.9 - 76.3 
4 6 -9.7 -75.9 76.3 
6 4 9.7 511.6 228.8 
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Final results of Example 6 are tabulated in Table 4.6. 

TABLE 4.6 FINAL SHEARS AND MO:MENTS EXAMPLE 6 

Member Shear r-- X-Moment Y-Moment 

1 2 4.8 o.o o.o 
2 l -4,8 217.0 -151. 9 
2 3 ~5.2 -217.0 151.9 
3 2 5.2 16.4 233.3 
3 5 -16.6 225.7 -138.4 
5 3 16.6 1161. l 138.4 
3 4 1.4 242.2 -94.9 
4 3 -1.4 187.3 -10.4 
4 6 -8.6 -187.3 10.4 
6 4 8.6 5 72 .1 259.2 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 S,mnnary and Conclusions 

The analysis by the Principle of Minimum Potential Energy of planar 

structures loaded normal to the plane i s presented in this work . 

By utilization of the conjugate beam analogy the total potential 

energy consisting of both strain and external energy is written as a 

function of end displacements for a general shaped planar member . The 

total potenti al energy function for an entire structure is the stnn of 

the energy of each member . This funct i on is of a quadratic form in the 

displacements , thus derivatives with respect to each end displacement 

leads to stiffness type equations . Coefficients of like terms are coml- .' 

bined result i ng i n a f i nal st i ffness equat i on with displacements as 

redundant quantit i es . This equati on is solved for the displacements 

and, subsequently, the member shears and moments. 

The procedure of analysis requires calculation of the flexibility 

terms for ~ach member , inversion of the flexibility matrix, superpo

sition of member stiffnesses at each joint, calculation of fixed end 

values and joint loads, formulation of a final stiffness matrix equation 

by s,mnning .appropri ate member stiffnesses, determination of all joint 

displacements by any direct method, and then evaluat i on of member forces 

and moments ut i l i zing member stiffnesses and solved di splacements . 
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The expressions developed in this work are limited to linear 

structural materials; howeverj applications of the Principle of Minimum 

Potential Energy is not limited to linear systems. Application of the 

principle autoTI\atically satisfies compatibility while the minimization 

process satisfies equilibriumo Solution of the final stiffness equation 

provides all displacements necessary to calculate member shears and 

moments. No additional conditions or shear equations are necessary for 

complete analysis of a structure. The method is direct and has a 

physical significance. In comparison to other methods of analysis, it 

does have in many instances a larger number of redundants; however, 

because of the systematic approach, and the completeness in analysis 

the disadvantages are outweighed. 

The method is unique in that it utilizes the potential energy 

function which is the sum of the strain energy of each member plus the 

work of external loadso The minimization process reduces the expression 

to the final matrix equations shown in Eq. (3.10). 

It can be seen that this method has a great advantage in .application 

to planar frames with in-plane load conditions. The potential energy 

function i:;, minimized with respect to the permissible displacements 

and the problem is solved. Other methods of analysis generally require 

a shear eqQation as an added condition necessary to solve the problem. 

In conclusion~ the Principle of.Minimum Potential Energy leads to a 

stiffness method of analysis applicable· to any shaped planar type 

structure with loads normal to the plane. Analysis by this method is 

systematic~ is adaptable to computer solution 9 .and includes any variable 

support conditions. 



5.2 Extension of the Method 

The method should be extended to planar structures with in-plane 

loading. The effect of shear and normal forces should be included and 

the ease .and simplicity compared with other methods. 
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The· method should be. applied to three dimensional structures with 

any general type loading. The shear and normal force effects should be 

included and the method compared with other techniques of analysis. 

The expressions for flexibilities and fixed end effects should be 

evaluated for various shaped structural members with general loadings. 

An investigation of the error should be determined when these values 

are computed by.a numerical procedure. 
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APPENDXX 

Once the strain energy function is expressed in terms of dis-

placements it is differentiated with respect to these displacements 

and integrated over the length of the member. Differentiation is 

accomplished before integration; flexibility values are substituted 

for their equivalent integral. expressions and final results expressed 

in terms of stiffnesses. The first term only is developed to illustrate 

the procedure; addit:tonal. terms are obtained by a repetitive process. 

As in section 3o2 the strain energy can be written as 

u [ H ]T [ w ] [ Am J [ w 
q om mo 

] [ H ] 
q 

(A. l) 

where the cross sectional v.alues [ Hq ] are evaluated by statics and 

their equivalent expression substituted from Eq. (2.3) to produce the 

strain energy as a function of end displacements alone. For simplicity 

a (Kzz yiqKzz) 

b ·- (~x YiqKzx) 

c. (K xy yiqKzy) 

d (=Kxz + yiqKzz) 

e -· [(Y .. K - Kxx) - Y. (Y .. K - Kzx)] 1J xz . iq 1J zz 

f [(-X .. K '" K ) - Y. (-X K - Kzy) J lJ xz xy iq ij zz 

g C~z + XiqKzz) 
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h -- (K +x K ) 
yx iq zx 

i = (K + X. K ) 
yy iq zy 

j ·-· (-K x K ) 
yz iq zz 

k = [ (Y .. K - K. ) + X . (Y .. K - K )] 
l.J yz yx 1.q l.J zz zx 

m [(-X .• K 
l.J yz 

- K ) + X. ( -X .. K yy 1.q l.J zz - K )] zy 

so that after substitution into Eq. (A.l) differentiation with respect 

to L':.ijz yields 

ou 
c) L':, • • 

l.JZ 

[J(a cos a+ g 2 d J O!} dsJ L':,ijz :=;, sin a) __! + (-a sin a+ g cos 
t GJ L EI 

+ [J'(a cos Q' + g sin Q') (b cos Q' + h sin a) ds 

l 
GJ 

+ J(-a sin. QI+ g cos QI) (-b sin QI+ h cos QI) ds] 8ijx [ EI 

+ [J(a cos O! + g sin QI) (c QI+ i . ) ds cos sin QI -
[. GJ 

+ J(-a sin QI+ g cos a) (-c sin Q' + i cos a) ds] ejiy 
[ EI 

+ [J(a cos Q' + g sin a) (d Q' + j sin ) ds cos QI GJ 
[ 

+ J(-a sin a) (-d sin ds] QI+ g cos Q' + j co s a) E I L':. j i z 
[ 

+ [J(a cos QI+ g sin O') (e Q' + k sin ) ds cos Q' -

l GJ 

+ J(-a sin Q' + g cos a) (-e sin Q' t k cos a) ds] ejix t. EI 

+ [J(a cos QI+ g sin a) (f cos a + m sin a) ds 
t GJ 

+ J(-a sin . c Q' + g cos a) (-f sin a+ m cos a) ds] 
EI ejiy 

Differentiation with respect to the other displacements are Simi-

larly expressed. The above equation does not include shear nor the 

altered moment due to shear; these effects are differentiated in a 
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similar manner and added as given in the final result. Expansion of the 

coefficient term c11 of 6ijz yields 

J<a cos Q! + g sin al i; + J<-a sin a + g cos a} i; 

+ J[(K 2 + y. 2K 2 - 2Yi'qKxzKzz) t xz iq zz 

2 
cos Q' 

.2 sin O! 

Extraction of the constant terms and substitution of the following 

flexibility terms 

I f .. iizz 

f iizx 

fiizy 

= 

+ 

+ 

sin 
2 

OI cos O' + x. CJ'<Yi! co~ O! - 2Xiqyiq iq 

J<Yi~ 
. 2 

a + z:xiq y iq 
2 

sin sin OI cos CY+ Xiq 

[J(-Y. 
2 ds 

cos Q! + Xiq sin O! cos CY) GJ L. iq 

JC-Yiq 
2 ds 

sin CY - Xiq sin· O!. cos O!) E I] 

[J(-Yiq sin a cos a+ 
t 

X .2 ) ds 
iq sm O! GJ 

J( 2 , ds] + e: Yiq sin a cos a+ Xiq. cos 0!1 EI 

.2 ) ds 
sin O! GJ 

2 ds] 
cos CY) EI. 
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[J 2 ds J .2 ds f.. cos cv GJ + sin cv EI] 
11.XX [ I: 

f.. = CJ sin Q' cos a ds + I -sin Q' COS Q' dS] 
1.1.xy GJ. ~ El 

[J 2 2 
f iiyy sin cv d~ + J cos cv ds J 

I:'. GJ [. El 

for the equivalent integral expressions reduce the b.ijz coefficient to 

+ 

Each coefficient term is thus expressed as a function of stiffness and 

flexibility terms, which can be further expressed in matrix form as 

cu C12 cl~l Kzz Kzx Kzy fiizz fiizx fuzy. Kzz Kzx Kzy 

c21 C22 c23 Kzx Kxx Kxy fuzx fiixx fiixy Kzx Kxx Kxy 
I 

C31 C32 C33J Kzy KxyKyy fiizy fiixy fiiyy Kzy Kxy K yy 

K K K zz zx zy 

= K K K zx xx xy 

K Kxy Kyy zy 

The remainder of the coefficient terms are expressed in a similar 

manner .and reduced in form to that of Table 3 .1. 

For the case of a hinged support the same procedure applies. 

For simplicity, 
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-Y. Y.j Yilij 
" 

iq i f' e = - . , 7 
fiizz fiizz 

x . , -X 
g" = iq 

J = iq 
p-- fl 

iizz iizz 

x y -XiqXij 
k iq ij , 

= m = e f' 
iizz iizz 

.so that substitution into the strain energy expression and differenti~ 

ation with respect to ~ijz yields 

au = [J(a1 cos Ci + g1 sin a)2 ds + J(-a1 sin Ci + lcos Ql)2 dsJ ~ 
0~ijz t GJ ~ .. EI ijz 

[J(a1 cos at + g' sin QI) 
I .I . QI) ds + ( d cos -G' + J sin 

t: GJ 

+ J<-a! sin 
/ a) 

/ , 
QI) dsr~ . Ci + g cos (-d sin Ci + j cos 

t: EI jiz 

+ [J(a' cos C'L + g1 sin a) (e' cos Q' + k1 sin a) ds 
l: GJ 

+ J(-a" sin I a) I I d . 
QI + g cos (-e sin. Q' + k cos QI)--!.] ej. 

~ EI ix 

[J(a'cos a+ g1 sin a) 
I 

a+ m1 sin a) ds + (f cos 
c GJ 

+ J ( -a' sin QI + 
, I I 

a):~] ejiy g cos a) (-f sin Q' + m cos 
t: 

Determination of the stiffness coefficients in a manner similar to 

a fixed end member and including the sh~ar effect for joint loads gives 
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1 -1 

oU -1 1 -Yij x .. 6 .. 

o6jiz 
l.J Jl.Z 

1 

~izz 

oU yij -Yij 
2 

-Yilij 8 jix yij 
;,e .. 

Jl.X 

oU -X .. x .. -Y X 2 
a .. ~ X,. 

aejiy 
l.J l.J ij ij l. J J 1.y 

1 -1 

-1 1 -Y x 6 .. 
ij ij J l.Z 

+ CF1 

f'i.izz 2 Y: • • -Yij yij -Yi/ij 9 jix l. J 

-X .. xij -Y .. X. j 
2 

x .. B jiy l.J l.J l. l. J 
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