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NOMENCLATURE

m m
Maixs Mqiy

Misx2 Misy

vii

cross sectional area;
concentrated loads;

stiffness coefficient;

carry over stiffness matrix;
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cantilever flexibility terms;
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fixed end load terms;

shear modulus.of elasticity;
force matrix;

moment of inertia;

torsional constant;

stiffness coefficients, or terms of
inverse of flexibility matrix;

length of member;

moments at any point q of segment iq
in member system;

moments at end i of member ij in o
system;

force at end i of member ij in Z
direction;

external joint force;

external joint. moment;
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W o 2 o s o o o s e« s s o o o o o o uniform load;

W 5 &6 o @ ¢ © & © © e o e 8 o o & » Work;

{§° c c " v e e e 00000 X distance from end i of member to
.end j measured in basic system;

Yij e e o o o o 5 o o o o o s o o o Yy distance from end i of member to
end j measured in basic system;

Zi o o o o o0 o0 s s oo s o o o displacement in z direction of any

point 1ij

@ o © a » o o« o o6 o s« o« « o o« o o o angle of rotation from basic system
to member system;

Y o o o o o s s o o s o s s s o o o shape factor;

e« s 56 060 o o » o end deflection of member ij in z
direction;

O o ¢ ¢ o o o o s 5 s o s s o o o o end displacements of cantilever
member due to loads;

o 6 o o o a s o = o o o end rotation of member-ij in x di-
rections;

s+ 6 o 0o o o o o o o o o end rotation of member ij in y di-
rection;

L
e
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e o o o 5 5 o a e o o o s a o o o combined stiffness coefficient;
A e 6 e c o 5 0 6 s 6 e s 0 0 s o elemental flexibility;
[¥] o ¢ o o o o ¢ o o o o o 0 o o o displacement matrix;
I &« ¢ o ¢ o « o o s« o « « o « o o o total potential energy;
Woms Wno © ¢ = © = o » o o o o o o rotational matrices;
Superscript T indicates transpose, superscript m indicates the
member system, and omission of the superscript refers the term to the

-basic o system.



CHAPTER I

INTRODUCTION

1.1 General

The analysis of space structures is divided into two major classes:
flexibility methods_and stiffness methods. The flexibility methods deal
with elastic constants known as linear .and angular flexibilities; the
stiffness methods deal with elastic constants called linear and angular
stiffnesses. These elastic constants can be galculated from the princi-
ples of elasto-geometry or by means of energy.

The analysis:of linearly elastic Order II structures by minimum
potential energy is developed in this thesis, These structures are
defined as in-plane with loéds applied normal to the plane. The
Principle of Minimum Potential Energy is used in the analysis and
briefly states that for stable equilibrium compatible with.constraints,
the potential energy of a deformable body will be a minimum. The mini-
mization process is achieved by differentiating the total static po-
tential energy with respect to each end displacement. This produces a
set of linear equations with displacements as redundants; thus the

method of minimum potential energy leads to a stiffness method.



1.2 Starement of the Problem

Planar frame structures loaded normal to the plane with general
type supports and shape of members are investigated by Minimum Potential
Energy. The cross section may be variable but symmetric with the verti-

cal axis.

1.3 Assumptions

Material properties are defined by the following assumptions:

1. Material is homogeneous, isotropic, and continuous.

2. Material obeys Hooke's Laws.

3. All deformations are small and elastic.

The sterec-geometry of each member is idealized by the following
.assumptions:

1. Depth to length ratio is small,

2. Cross section is symmetric with respect to vertical axis.

3. Curvature is large and all conventional beam formulas apply.

4, Force and moment vectors are assumed to act at the centroid

of the cross section.

Additionally, deformations of each member are calculated from the
assumption that all deformations are small and elastic and that defor-
mation of the structure does not alter the point of application of
loads.

All forces, moments, and displacement vectors are positive when
acting in direction of the respective system axes. The specific appli-
cation of this rule with respect to elements of cross section are
explained where they firsf appear. All symbols are defined where they

first appear and are arranged alphabetically in the table of symbols.

[ ]
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1.4 Historical Comments

-The association of minimum potential energy with geometric de-
flection curves and equilibrium dates primarily to the seventeen-
hundreds at the time of Leonard Euler (1) and the Bernoulli family (1).
This era provided the basis for significant advances in energy methods
and theorems which subsequently emerged, such as Castigliano's Theorems
(1) and Engesser's (1) notion of complementary energy.

The energy principles are discussed by Hoff (2), Charlton (3),
Argyris and Kelsey (4), Westergaard (5), Williams (6), Langhaar (7),
Southwell (8) and others and are well founded and demonstrate methods
for analysis of several types of problems. Further, these principles
have been rigorously applied to the theory of elasticity and buckling
investigations by Timoshenko and Goodier (9), Love (10), Timoshenko and
Gere (11), Westergaard (12), and others. Specific applications to. civil
engineering type structures are given by Li (13), Timoshenko and Young
(14), Norris and Wilbur (15), Langhaar (16), Pippard (17), and others.

This thesis employs the most fundamental energy theorem, that of
Minimum Potential Energy which produces well-conditioned linear equations
as stated by Charlton (18) and Brown (19). Use of nodal displacements
as redundants automatically satisfies the compatibility condition and
the minimization process assures equilibrium at the nodes (20). The
proof of this theorem is given by Sokolnikoff (21),

The strain energy function is developed in terms of end dis- .
placements for straight members by Bateman (22), and Langhaar (16)
utilizes potential energy to formulate stiffness equations for analysis

of planar structures with straight members. His formulation requires the



deflasction curve for calculation of the potential energy function. In
the general case the deflection curve is usually unavailable for this
computation. The potential energy expression can, however, be computed
as a function of end displacements as presented in the body of this
thesis. General matrix operations are demonstrated by McMinn (23).

In the Minimum Potential Energy method of analysis fixed end values
are required and must be calculated for each specific curve. For circu-
lar shapes the values are readily available from Michalos (24) or
Spyropoulos {25). Values for other shaped members must be calculated as
necessary.

Eiseman, Namyet, and Woo (26) have demonstrated that the stiffness
method with a very large number of redundants can be solved by an
electronic computer and can give satisfactory results, The work of this
thesis is not primarily concerned with the number of redundants but
rather the application of minimum potential energy to analysis of

general shaped planar structures.



CHAPTER I

ANALYSIS OF A SEGMENT

2.1 General

The segment is considered to have any general curved shape, to
have known elastic properties, and to displace in a restricted manner.,
End restraint conditions are arbitrary, either hinged or rigidly con-~

nected. Static loads are normal to the plane of the segment.

2.2 GCoordinate Systems

Two coordinate systems related by the geometry of the segment are
utilized. One is an arbitrarily positioned fixed system or basic system,
and the other is a member system. Transformation from one system to the

other is accomplished by rotational matrices designated [wom] and

Lo, T
cos 0| -sin o |O cos | sin o | O
(W] = | sin ai cos Ut 0 [w o] = | «sin o| cos | 0
B N R N N
|
0 x o |1 0 0 1

2.3 Statics

For a general member ij, with forces and moments at i known, the
cross sectional elements at any arbitrary section q can be calculated

by statics. TIf, in addition to end forces and moments, loads are



acting on segment iq, their effect is superimposed in a similar manner,

See Fig. 2.1.

Fig. 2.1 Equilibrium Forces and Moments on Member ij.

2.4 Deformations

Since the principle of statics and geometry are interchangeable,
the analogous conjugate member is used to obtain relationships between
causes and displacements. Elemental elastic weights are considered as
loads on the conjugate structure with cross-sectional elements as slope
and displacements.

Let elemental elastic weights be premultiplied and post-multiplied
by rotational matrices so that from the conjugate structure the displace-
ments between end i to j due to unit forces and moments on end i can be
designated as a flexibility matrix. From elasto-static equilibrium the
displacements at the near end can be written as a function of the
forces and moments of the near end plus the displacements of the far end

or,



] - |
Az fiizz | fidax | fiizy Nijz
eijx = | fiixz | fiixx fiixy Mijx
—6:;; fiiyz fiiyx Eiiyy Mijy
1 “Yi5 -xiéﬂ —.Ajiz— [£1125] 0|0 -Niqu
+lo ] 1 ubA ‘T;i;m + 0o {0]0 Mij;' (2.1)
ol o] 1 611y ] o (o]0 'Mijy

In symbolic form,
(9% 3 = 0Fp 30w ] + Crgy 109 0 + [P 100 ]
The coefficients f are flexibility coefficients for a cantilevered

basic structure and are defined as follows:

7

f = Displacements of near end due to unit cause at near end

ciizz
neglecting the effect of shear. Displacement is at end i
in direction z due to unit cause at. i .in direction z. For
" this specific value the unit cause must be a force as no
moments act in the z direction.
f;izz = Displacement at near end due to unit.cause at near end due

to. shear effect.alone. It is equal to f %%E—.
[
All remaining flexibility terms are displacements due to unit

+ . N / R
causes and .can be defined similar to f; as above. From the recipro-

iizz
cal theorem the flexibility matrix is symmetric and all terms can be

calculated by applying unit causes to the basic cantilever structure.

2.5 End Forces and Moments

Eq. (2.1) expresses the end forces and moments at i as functions of

displacements at both ends. This equation can be solved for the end



forces and moments by inverting the flexibility

matrix. Defining the

inverted matrix as the stiffness matrix,

et
Eiizz | fiiex| fiizy
fiixz £iixx fiixy
Eiiye | fiiyx | fidyy

~1

Kpz | Kox sz
sz' Kxx ny (202)’
Ryz | Kyx | Kyy

and premultiplying Eq. (2.1) by this matrix, gives the end forces and

moments at i as functions of end displacements:

Nijz Koz | Kax | Kzy b 52
Mi 5% = Kyz | Kxx | Kxy 0 jx
15y _Kyz  Kyx | Kyy ijy
Koz | YijKaz - Kox) | (XijKag - Kay) Bjiz
+ “Kxz (Yinxz - Kyx) ('Xinxz - ny) 9jix
Kyz | Cigfya - Kpd | (Kigfys - Ky | Oy
4
Kypfhing | 010 N iz
PRI S T
T “Kypfiizz | 010 Mljx (2.3)
T .
“Kyyf1i55| 0 | O M; 5y

or symbolically,
5P

[k, 109 1 + [ ck; 109 1 + [kf 10 H ]

All terms are related to the basic reference system.



CHAPTER II1I

DERIVATION OF POTENTIAL ENERGY EXPRESSIONS

3.1 General

Once the end forces and moments are knqwn in terms of stiffnesses
and displacements, the potential energy can be formulated as a function
of these same quantities. A brief restatement of the Principle of
Potential Energy is introduced and‘the substitution of Eq. (2.3) into
this energy function is shown.

The Principle of Minimum Potential Energy states that of all
possible displacements a body can assume which satisfy kinematic boun-
dary conditions, those conditions corresponding to forces and stresses
satisfying equilibrium make the total potential energy a stationary
value (27). Potential energy Il can be defined as the total static
energy possessed by the system, and represented as the sum of U and V,
where U is the strain energy stored in the structure and V is the
potential energy of external loads. Normally V is taken as equal to
minus the work done by the external loads in moving from the initial
to the deformed position of the structure. Again, the potential energy

is

For equilibrium, the potential energy assumes a stationary value

so that
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§(II) 6(U+Vv) = 0

i

6(U) - 8(V) = 8(W) (3.1)

it

where W is the external work done by the loads.

3.2 Strain Energy

The strain energy U can be expressed as a function of end displace-
ments, and differentiated with respect to each of these displacements.
There will be as many equations derived by this differentiation as there
are displacements, forming a set of simultaneous linear equations.

Strain energy of the member ij due to bending, torsion, and shear

is given by

m,2 :
U= I Mox) qs + J (M ds + I Y(S ds (3.2a)

L 2GJ L 2EI GA
in which
m

(qu) = torsional moment at arbitrary point q

(MQ$) = flexural moment at arbitrary point q

(qu) = shear force in z direction at arbitrary point ¢

Superscript m identifies the member system and Y is the shape
factor of the cross section.
Since the moments and forces are related to the m system and are

initially given with respect to the ¢ system, a transformation must be

performed:
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M .m cos @ | sin o] O M.
qix gix
M = -sin @/ cos @] O M,
qiy qly
N 0 0 1 N,
qiz ; qiz
or,
m
Cu3 ] = [apy 10m, ]
With the substitution of these terms, the matrix form of Eq. (3.2a)
becomes:
X iy g _—km:‘o 0— "
U= %[ Mgy My Sg o Mox
o 2®lo M .
qy qy (3.2b)
m m
0 0] qz _?qz
or symbolically,
vo= 3 a2 108"
v q q
and in the o system
; T m
U ZJ[Hq][wom][Kq][meJEHq]
or,
vo= %[ Lu, 17 0a J0m]
v q q q
where
Aqﬁ = angular deformation of differential element ds in x di-
* . dS
tion ==
rection or, o5
Kq? = angular deformation of differential element ds in y di-

rection or, ds

ET
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m
Y = linear deformation of differential element ds in z di-

qz
rection or, Xgi'.

Each deformation is due to a unit cause in the corresponding
direction of the member system.

The evaluation of the integral in Eq. (3.2b) leads to the general
strain energy function of which derivatives with respect to each
displacement are recorded in the Appendix and summarized in simple
form in Table 3.l1. The first matrix of Table 3.1 yields the influence
of bending and torsion, and the second matrix represents the contri-

bution of shear effect on the displacements where

o
CF = mfiiZZ

14
(1+ Kzzfiizz)

The later expression for shear effect is valid for joint loads only.
If shear effect of in-span loads is to be included, the shear variation
must be substituted into Eq. (3.2a) before differentiation,

The stiffness coefficient matrices can be written directly by
performing the required simple calculation with terms obtained from

Eq. (2.2),

3.3 External Potential FEnergy

Obviously for this method to be of any significant value the
external potential energy must be expressed as a function of the end
displacements. This energy for in-span loads may be considered as
consisting of two parts: first, the "fixed end" portion or that portion
of work which is done to deflect the member to the equilibrium position

while both ends are restrained and second, the work done as a function
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TABLE 3.1
3 K,y
aAijz
oy sz
aeijx
ou K
36 =
13y
Y -K,, -
aAjiz
dy ’(Yinzz
aejix -Kzx)
3y (-XUKzz
36 i
ity Kzy)
2
Kzz I(zszz‘
2
- KagKoy Kzx
KZZsz szsz
2
Kzz “KyxKzz
Kzz(Yinzz KZX(Yi&KZz‘
-Kzx =Kzx)
Kzz('xinzz sz(“xinzz
K,y) Ry

FORCE, STIFFNESS-DISPLACEMENT EQUATIONS

Kzx sz Kz
L Ky K,
Yy Yy Koy
-Kzx ‘sz Kéz
O T G E A T
~Kxx -ny¥ -Kxz)
(X Koy ('xinzy -(-X.szz
Ky Ky oy
szKzz ’Kzg
KayKzx Ky, Ky
Kz§ K, Kgy
“szKzz Kz:
sz(Yinzz Ky (Vg Ky,
-Kzx) -Kpy)

KZy(“Xinzz

_sz

'Kzz("xinzz

“Kgy)

[]
~
~

zy

- Kyy)

'
=
~

zy

zy
- ny)

(Vg §Kyp = Kox) (-X{yKz,
(Yinzx - K (’xinzx
yg¥ay - Ky (X4 Koy
’<Y1szz - Kgy) '(’Xinzz
Yig¥Ke, = o) Yig(-Xy 4K,

- (Y13Kzx = Kix) - (-XijKzx
Yii('xinzz - Kay)  Xyy(Xy Kz,

- 'xinzx = ny) - ('xinzy
Kzz(Yinzz - K Kzz('xinzz
sz(Yinzz - Kzy) sz('xinzz
Koy (g Koy = Kpy) K (X Ky -

Ky (Vg Kpp = Kgp) Ky (X Ky
2
(Yiszz zx) (Yinzz - Koy

(Yinzz - Kayd
- K;.)

(=X, K

ijtzz

(-X1%z,

y

- Kay)

2
(‘xinzz = sz)

13

8442

13x
81y
jiz

jix

Biiy

ijx
¢}

ijy

Jiz

ejix
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of the end displacements. The "fixed end! portion is constant and is

not .a function of end displacements. External potential energy for

joint loads is the product of the joint cause and its displacement.

The external potential energy function is developed in the follow-

ing derivaticn., First, the structure is given an infinitesimal virtual

displacement toward its initial undeformed position. After these.small

displacements the end forces and moments can be written as follows:

aNijz

ijz ijz ijz gé;};
AN
38

ijz

jix

M. +
Mooo + dM, .. = M,, = .. 2JX

ijx

M., + dM, s
ijy ijy ily 7 38,

1y

aejiy

de.

deé.

d®

deé

dé

dé

ijx

ijy

jiy

ijx

jiy

aNijz
aeijy

ON

CL
jiy

ijz

aMiox

3A, .
ijz

aMijx

dé

deé

ijy

jiy

dA,

da

dA

dA

jiz

ijz

jiz

ONj iz )
Y dBjiz

jiz

- Kzszijz

M
30, X
jix

- Kzzdeijx

a8y

Jix

yy Cijy
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ON. . ONiiz ON s
N + dN.. = N.. =- _—Jd%% g6, . - 322 gg , . _ 312 4A .
i Sjiz iz ijx i ijz
jiz J 3 aeijx J aeijy Jy BAijz
ON. . AN+
jiz jiz
T i T Pty - (Kee) e
jix ity
_ M. M s s )
M.. + dM.,. = M., -~ 33X 4d0,, - _J1X 40, , . _ JIX gA .
> * - i
jix jix Jix aeijx 1)x aeijy Jy aAijz 1jz
-anix anix
- 49,5y = —2— dAy;,
- DYy (05K, - Kpy) - (Yi3Kpx - Kex) 1 d055,

M. . M M.
. S £ St E G £ .
Myjy + dMjiy = Mjgy - 513 481 4x - el=¥ dByjy - gplot dby g,
ijx ijy -Trijz
- Myiy ge, - Miiy an,,
39, X, I
Jix “jiz

- xij('Xinzz - sz).‘ (- xinzy - Kyy) ] dejiy

Since the member is linearly elastic and categorized as a conserva-
tive system the Principle of Conservation of Energy applieés. Thus, the
above expressions are integrated over the real displacements producing

the external potential energy as a function of end displacements:



[“Nijz + szeijx + szeijy'+ (Yiijzz - sz)ejix
0 A 1A Kzz A, 2
+ (°X1JKzz - sz) jiy + (DKzz) jiz-ijz T3 fige

+ LMy gy + Ky iy + Kpuedy iy + (V5 Kpp = Kyy)Osiy

ijx xy“ijy zx1jz
Kxx 2
(-X, K - K, )6, + (-K HA . 16, + 0,
ij zx Xy’ jiy zx’ jiz® ijx ' "2 ijx
M, . - 0 A ( - .
[ Mot ny ix Koylise T (Yinzy ny)eJlx
L&y 520
(X, K «K )6, + (~K_)A,. ]e,, 9,
ij zy vy~ iy 2y’ jiz 1JY T2 iy
[°Njiz + (szx)eijx + (“KZy)eijy - (Yinzz - sz)ejix
Kzz 2
(°Xinzz B sz)ejiy + (K, )AlJZ]Ale T == i

%&., + (Y., K -K J)6,, + (Y, K _-K )8, .
jix 1j 2x XX~ 13X ij 2y yx© ijy

(Yinzz - sz)A1 + [Y iJ zz sz) - (mxinzx

(Yinzz - sz)Aji%} ejix

[Y, (v, K <K )« (Y,K_ -K )]

S it iy z2 ZX ij zx XX 2
0.,
2 jix
=M.+ (=X, K - K )6, ., + (X K - K_)e,.
jiy ij zx Xy~ ijx ij zy vy’ ijy
- - A =X, . -
( Xinzz sz) ijz + [Yij( X1JKzz ) (- lesz

7
(°X13Kzz - sz)Aji%feti

[-X, ,(-X, K = K ) - (-X. K -=K.)I
ii ij zz ij zy vy g 2

2 jiy

[constant] + & B,Z, = 0
L i1

16

B ny)]ele

ny)]ejlx
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where the value [constant] is independent of end displacements and will
vanish in the process of differentiation, and § Bizi is the potential
energy of applied loads.

Since potential energy of locads and corresponding reactions are
equivalent and opposite in sense, the equivalent expression above is
thus prefixed with a minus sign before differentiating. The equiva-
lent values of the end forces and moments from Eq. (2.3), including the
-effect of loads, are substituted into this equation, reduced in form,
and the partial differentiation of % Bizi with respect to each end dis-
placement produces the respective fixed end load terms.

With a continuous loading rather than a number of concentrated
loads the external potential energy expression changes to an integral

form 7Jﬁszsds

where
W, = distributed load w at any point s along the member
ZS = wertical deflection of distributed load of any point
ds = differential length of member

and by the same procedure as above the fixed end force and moment
values are determined.

In a case in which fixed end forces and moments are unknown they
can be determined by the following method. This method utilizes the
cantilever beam basic structure from which deflectiong of the free end
due to loads are calculated and the member restored to the fixed end

condition. Thus,
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(3.3)

jiy

deflection of free end i of cantilever member ij in z

direction due to loads

direction due to loads

rotation of free end i of cantilever member ij

direction due to loads

shear force at cantilevered end j of member ij i

direction due to loads

moment at cantilevered end j of member ij

due to loads

moment at cantilevered end j of member ij

due to loads.

‘rotation of free end i of cantilever member ij i

External potential energy for loads applied at the

iny

direction

in x

in y direction

joints can be

-% Qiei for
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externally applied moments. Thus the potential energy is

The differentiation gives:

v b,
3b1 1 j
dV
oV _ Q; 1y
aeijx j
dv ..
0. - iy
ijy :
= (=) (3.4)
OV 1
3A.. Jiz
jiz
Vv Q.. .
36 .. Jrx
T jix
v Q..
36.. iy
jiy

3.4 Modification for Hinged Support Conditions

Potential energy expressions for a hinged end condition are
functions ef the shear force of the hinged end and the applied loads.
These expressions are formulated as functions of end displacements in a
manner described in sections 3.2 and 3.3.

Utilizing conjugate beam equilibrium for a hinged end member

yields.
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9jix
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N £ 40y 1 -1 Yy | Xy
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flizz T fiizz fiizz | f1izz | fiizz | fiizz

ijz

A,
jiz

0..
jix
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Then, expressing cross sectional momerits as functions of end dis-
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(3.5)

placements, rotating values into m system, substituting into Eq. (3.2b),

and differentiating the strain energy with respect to.each of the four

end displacements produces
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=1 Y -X A
BZU L ij ij 1jz
ijz
-1 1 =Y, , X A
aiu ij ij jiz
jiz
e | 1 ’
agU fiizz Yij DYij Yij ininj ejix
jix
T 2
folf] - .. X, X, 4]
S@"“ 1] 1] 1] 1] 1] Jjiy
jiy N
1 -1 ij 'Xij ijz
-1 1 inJ Xij Ale
/ v
+ _CF - (3.6)
‘ Y -Y Y 2 Y. X 4]
iizz ij ij ij ThigTij jix
XX, =Y. X, x,2 9.,
ij| “ij 15717 ij jiy

Again, the first matrix is the influence of bending and torsion, and
the second matrix represents the contribution of shear effect on the
displacements where

v
CF/ “fiizz
(fiizz + fiizz)

As in section 3.2 the second matrix is valid for joint loads only.
External potential energy is also expressed as a function of end
displacements for a hinged end member. For in-span loads the structure
is given an infinitesimal virtual displacement toward its initial po-
sition, equilibrating forces and moments are evaluated, and the force-

displacement function integrated over the real displacement yields
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2 2
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Filizz 2
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+ [constant] + £ B,Z, = O
7 Ui%

The value [constant]’is independent of end displacements and
vanishes under differentiation. To complete the process, the external
potential energy function % ZiBi‘is changed in sign and differentiéted
with respect to each end displacement, producing the respective'fixed
end load terms.

The fixed end load terms are then obtained from the following

expression:

22
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FN. . -1 5. . 0
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The differentiation of external potential energy due to loads

applied at the ends of the member yields

dV Pz
3h, .
ijz
dV P..
jiz
jiz ’
= (=) | — (3.8)
dV Q..
36, . Jx
jix
dV .
Uiy
36,
R -

3.5 Final Matrix Equations

Once the strain energy and external potential energy of a‘member
are differentiated with respect to each end displacement so as to
- satisfy Eq. (3.1), the results are superimposed member by member for the
complete structure. The following matrix equations show the results of

differentiation for a member and synthesis for the complete structure.
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The equations for a member with loads applied at the joints are

given in Table 3.2 and for a hinged end member

iizz

iizz

1 -1y X,
, ij ij
-1 1 ¢ ~Y, . X,
; ij ij
Y - | Y 2 Y. .Xs
ij | "Yij I 1 |"Yi5%ij
X, .| X, |-Y, X, x 2
ij ij ij ij ij
1 -1 Y.. =X, .
1] 1]
-1 1| -y X,
1] 1]
Yy l-v.. | Y. |-v..x..
ij 1] 1] 1] 1)
XK. X, |-y, x. . x,2
1] 1] 1].1)] 1]
P
ijz
P
jiz
Q..
jix
Q..
L Y]

ijz

jiz
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TABLE 3.2 GENERAL MEMBER EQUILIBRIUM EQUATIONS
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For in-span load conditions the lcad vector must include the fixed

end effects from Eq. (3.3) or (3.7) and the shear expression must be

modified.

These equations are then superimposed member by member for the

complete structure to produce a matrix of the form

Xj_myz Ximyx X imyy

where

X

iizz

2(Py, - FN; )

4
>(iizz j(iizx :{Eizy ‘
;(iixz >(iixx 7(iixy *

'7(mizy I Z(py, - FN; ;)
°;(mixy ®ix Z(Qix - FMix)
';{;mwy emy Z(me - FMmy)

the sum of member stiffnesses at joint i in

the z direction. All other stiffness terms

are similarly defined.

the sum of all member end forces and fixed end
values at end i. All other terms are similarly

defined.

This final equation is then solved for the unknown displacements,

and subsequently the individual member forces and moments are readily

found.



CHAPTER IV

NUMERICAL EXAMPLES

4,1 General

Analysis of six selected frames by the method developed in the
preceeding chapters is presented. Each example was completely analyzed
by the IBM 1410 Digital Computer. After the loads and geometric proper-
ties of the members and structure were designated, the following pro-
cedure of analysis was used:

l. The six flexibility terms for each member were determined.

2. Each 3 x 3 flexibility matrix was inverted to obtain the

stiffness matrix Eq. (2.2).

3. Stiffness expressions for each member were evaluated by
substitution into Table 3.1 or Eq. (3.6), the shear effects
were omitted. Stiffnesses of each joint were combined and
substituted into Eq. (3.10).

4. Load vectors were determined by evaluation of Eq. (3.3),
(3.4), (3.7), or (3.8); terms at each joint were combined and
substituted into Eq. (3.10).

5. Eq. (3.10) was solved for unknown displacements.

6. Member shears and moments were calculated utilizing member

stiffnesses, end displacements, and fixed end values.

27
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The basic logic of the computer program was as listed above.
Imput data provided geometric properties of members and structure con-
figuration as well as loads. Output was limited to final member shears

and moments; all other processes were internal to the computer.

4,2 Examples 1 and 2

A planar frame consisting of two circular members with concentrated
loads at the center acting normal to the plane and supported by three
straight members rigidly restrained at their bases is analyzed in
Example 1. Example 2 solves the same structure and loading condition
except that the center member is hinged at the support rather than
fixed. All members have a constant cross section and EI/GJ is equal
to unity. The structure is illustrated in Fig. 4.1 with final results

tabulated in Table 4.1 and 4.2.

Fig. 4.1 Geometry and Loads Example 1



TABLE 4.1 FINAL SHEARS AND MOMENTS EXAMPLE 1
Member Shear X-Moment Y-Moment
12 -5.1 -80.4 17«1
2> .1 5el 29.3 -17.1
2 3 =3l -29.3 1751
3 2 -4,9 -12.2 -14.8
3 redy 9.8 24,3 0.0
4 3 -9.8 -122.0 0.0
3 .5 -4.9 -12.2 14.8
B 63 -5.1 -29.3 -17.1
5 8 5l 29.3 47 (05
6 5 =5.1 -80.4 -17.1

Final results of Example 2 are tabulated in Table 4.2.

TABLE 4.2 FINAL SHEARS AND MOMENTS EXAMPLE 2

Member Shear X -Moment Y-Moment
1 -9.4 -141.4 46.8
2l 9.4 47.2 -46.8
2+3 -9.4 ~47.2 46.8
i 52 -0.6 5.8 41.6
3 4 =52 -11.6 0.0
4 3 -1.2 0.0 0.0
3.8 -0.6 5.8 -41.6
5 3 -9.4 -47.2 -46.8
5 6 9.4 47.2 46.8
6 5 -9.4 -141.4 -46.8

29

4.3 Examples 3 and 4

The same planar frame of Example 1, loaded with a uniform load of
0.5 kips per foot on the circular members, is analyzed in Example 3.
The supports are rigidly restrained and EI/GJ is unity. Example 4
solves the same structure and loading as Example 3 except the center
Fig. 4.2 illustrates the structure

support is hinged rather than fixed.

with results tabulated in Tables 4.3 and 4.4.



Fig. 4.2 Geometry and Loads Example 3

TABLE 4,3 FINAL SHEARS AND MOMENTS EXAMPLE 3

Member Shear X -Moment Y-Moment
1 2 -5.8 ~-81.2 13.6
2 1 5.8 22.9 -13.6
2 3 -5.8 -22.9 13.6
3 2 -5.3 C =744 -8.0
3 4 10.6 14.8 0.0
4 .3 -10.6 -120,2 0.0
3 5 ~5.3 =74 8.0
5 3 -5.8 -22.9 -13.6
5 6 5.8 22.9 13.6
6 5 -5.8 -81.2 -13.6

Final results of Example 4 are

tabulated in Table 4.4.
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TABLE 4.4 FINAL SHEARS AND MOMENTS EXAMPLE 4

Member Shear X-Moment Y-Moment
1 2 -10.1 -141.3 42,9
2 1 10.1 40.6 -42.,9
2 3 -10.1 ~-40.6 . 42.9
3 2 -1.0 10.3 47.6
3 4 2.0 -20.6 0.0
4 3 -2.0 0.0 0.0
3 5 -1.0 10.3 -47.6
5 3 ~10,1 -40.6 -42.9
5 6 10.1 40.6 42.9
6 5 -10.1 -141.3 42,9

4.4 Examples 5 and 6

Example 5 is analysis of a planar structure consisting of four
circular curved members, one straight member, and three concentrated
loads applied at the structure joints. All joints are rigidly connected
and fixity is assumed at the support positions. All members have
constant cross section and EI/GJ is assumed equal to unity. Example 6
analyzes the same structure and loading as Example 5 except that the
support at joint number <:> is hinged rather than fixed. Fig. 4.3
illustrates the structure and loads with final results given in the

Tables 4.5 and 4.6.
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400

e

Fig. 4.3 Geometry and Loads Example 5

TABLE 4.5 FINAL SHEARS AND MOMENTS EXAMPLE 5

- Member Shear X -Moment Y-Moment
1 2 © 9.7 511.6 -228.8
2 1 -9.7 -75.9 ~76.3
2 3 -0.3 75.9 76.3
3 2 0.3 -86.8 -55.6
3 5 -10.6 173.5 0.0
5 3 10.6 710.0 0.0
3 4 0.3 - -86.8 55.6
4 3 -0.3 75.9 -76.3
4 .6 -9.7 -75.9 76.3
6 4 9.7 511.6 228.8




Final results of Example 6 are tabulated in Table 4.6.

TABLE 4.6 FINAL SHEARS AND MOMENTS EXAMPLE 6

Member Shear X ~-Moment Y -Moment
1 2 4.8 0.0 0.0
2 1 -4,8 217.0 -151.9
2 3 -~5.2 -217.0 151.9
3 2 5.2 16.4 233.3
3 5 -16.6 225.7 -138.4
5 3 16.6 1161.1 138.4
3 4 1.4 242.2 -94.,9
4 3 -1l.4 187.3 -10.4
4 6 -8.6 -187.3 10.4
6 4 8.6 572.1 259.2
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary and Conclusions

The analysis by the Principle of Minimum Potential Energy of planar
structures loaded normal to the plane is presented in this work.

By utilization of the conjugate beam analogy the total potential
energy consisting of both strain and external energy is written as a
function of end displacements for a general shaped planar member. The
total potential energy function for an entire structure is the sum of
the energy of each member. This function is of a quadratic form in the
displacements, thus derivatives with respect to each end displacement
leads to stiffness type equations. Coefficients of like terms are com~.
bined resulting in a final stiffness equation with displacements as
redundant quantities. This equation is solved for the displacements
and, subsequently, the member shears and moments.

The procedure of analysis requires calculation of the flexibility
terms for each member, inversion of the flexibility matrix, superpo-
sition of member stiffnesses at each joint, calculation of fixed end
values and joint loads, formulation of a final stiffness matrix equation
by summing appropriate member stiffnesses, determination of all joint
displacements by any direct method, and then evaluation of member forces

and moments utilizing member stiffnesses and solved displacements.
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The expressions developed in this work are limited to linear
structural materials; however, applications of the Principle of Minimum
Potential Energy is not limited to linear systems. Application of the
principle automatically satisfies compatibility while the minimization
process‘satisfies equilibrium. Solution of the final stiffness equation
provides all displacements necessary to. calculate member shears and
moments. No additional conditions or shear equations are necessary for
complete analysis of a structure. The method is direct and has a
physical significance. In comparison to other methods of analysis, it
does have in many instances a larger number of redundants; however,
because of the systematic approach, and the completeness in analysis
the disadvantages are outweighed.

The method is unique in that it utilizes the potential energy
function which is the sum of the strain energy of each member plus the
work of external loads. The minimization process reduces the expression
to the final matrix equations shown in Eq. (3.10).

It can be seen that this method has a great advantage in application
to planar frames with in-plane load conditions. " The potential energy
 function is minimized with respect to. the permissible displacements
and the problem is solved. Other methods of analysis generally require
a shear equation as an added condition necessary to solve the problem.

In. conclusion, the Principle of Minimum Potential Energy leads to a
stiffness method of analysis applicable to any shaped planar type
- structure with loads normal to the plane. Analysis by this method is
systematic, is adaptable to computer’solutiong‘énd includes any variable

support conditioens.
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502‘ Extension of the Method

The method should be extended to planar structures with in-plane
loading. The effect of shear and normal forces should be included and
the ease and simplicity compared with other methods.

The method should be applied to three dimensional structures with
any general typé loading. The shear and normal force effects should be
included and the method compared with other techniques of analysis.

The expressions for flexibilities and fixed end effects should be
evaluated for various shaped structural members with general loadings.
An investigation of the error should be determined when these values

are computed by a numerical procedure.
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APPENDIX

Once the strain energy function is expressed in terms of dis-
placements it is differentiated with respect to these displacements
and integrated over the length of the member. Differentiation is
accomplished before integration; flexibility values are substituted
- for their equivalent integral expressions and final results expressed
in terms of stiffnesses. The first term only is developed to illustrate
the procedure; additional terms are obtained by a repetitive process.

As in section 3.2 the strain energy can be written as
- 3 T AR T
vo= L P le IO 0w 108 ] (A.1)

where the cross sectional values [ Hq ] are evaluated by statics and
their equivalent expression substituted from Eq. (2.3) to produce the

strain energy as a function of end displacements alone. For simplicity

a = (Kyy = Y3 Ks5)

b o= (Kyy - Yquzx)

c = (ny - Yquzy)

d = (K, +'Yquzz)

e - l:(YJ',ijz - Kxx) - Yiq(Yinzz - KZX):|

£ = [(°Xinxz - ny) - Yiq(°Xinzz - sz)]
g = (Kyz + Xquzz)
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h = (K +X K )
yX iq zx
i = (K _+X,K )
yy 1q 2y
j = (=K - X K )
vz iq zz
k = [(Yinyz - ny) + xiq(yinZZ - sz)]
m = [("Xinyz - Kyy) + Xiq(“’Xinzz - sz)]
so that after substitution into Eq. (A.1) differentiation with respect
to Aijz yields
_ou
dA,
ijz
. 2 ds ' . 2 s
= ) + - + - v + Y — A’ 3
[éka cos o+ g sin @) o3 é( a sin o + g cos &) EI] ijz
: . : . ds
+ [J(a cos ¥+ g sin @) (b cos @ + h sin @) a7
L
r . . ds
+-é(—a sin @ + g cos @) (-b sin @ + h cos @) ET] eijx
+ [f(a cos ¢+ g sin @) (c cos @ + i sin @) g%
L .
. . . ds
+ J(«a sin o + g cos @) (~¢c sin o + i cos «) Ef] ejiy
+ [I(a cos @+ g sin @) (d cos @ + j sin @) g%
L
. . . ds
+ J(“a sin o + g cos @) (-d sin o + j cos @) EI] Ajiz
+ [I(a cos ¢+ g sin o) (e cos @ + k sin @) g%
L
. . ds
+ J(-a sin @ + g cos @) (-e sin @ + k cos &) - jix
. R ds
+ Hi(a cos ¢+ g sin @) (f cos @ + m sin @) o7
. . ds
+1J(=a sin @ + g cos @) (-f sin o + m cos @) EI] ejiy

Differentiation with respect to the other displacements are simi-

larly expressed. The above equation does not include shear nor the

altered moment due to shear; these effects are differentiated in a
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similar manner and added as given in the final result. Expansion of the

coefficient term C11 of Aijz yields

. 2 ds , 2 ds
éka cos ¢ + g sin @) ¥ +lI(-a sin ¢ + g cos o) 51

2

2 2
qu - 2Y. K, K ) cos «

zZ iq“xz"zz

i

2
t_JT.(KXZ vy

2 2 2 2
+ (Kyz + Xquzz + inquszz) sin o
+ 2 cos @ sin o (K_K - Y. K_K + X: K. K -X-Y-Kz)]g—s-
X2 yz iqtyzTzz iq ™z 2z *iqriqrzz GJ
2 2, 2 .2
+ l:F[(sz Y 0K,s - 20y K, oK) sifi o
K 2 + X 2y 2 2X. K ) 2
+ (_yz quzz + iq yszz cos o
- 2 cos @ sin o (K, K. - Y:.K K _ + X: K, K _ - XiqY: K 2)] ds
XzZyz 1qtyzrzz 14Xz zz 1qtiqzz El

Extraction of the constant terms and substitution of the following

flexibility terms

/ _ 2 2 . 2 .2 ds
fiizz = EJ(Yiq cos o - ZXquiq sin o cos o + xiq sin o) a7
2 .2 ; . 2 2 ds
+ l_j(Yiq sin o + zxiqiiq sin o« cos o + Xiq cos @) FI
2 ds
fiizx = EI(—Yiq cos & + Xj; sin @ cos @) GJ
2 ds
+ ék”Yiq sin o - xiq sin ¢ cos @) Ef]
_ . ,2 ds
fiizy = HJ(-Yiq sin @ cos o + xiq sin o) rehi
: 2 .y ds
+ l:r(Yiq sin @ cos o + Xiq:cos @) oy
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2 ds .2 ds
£ EJ cos @ g3 +!J sin o §7)
= ; ds ad ds
fiixy [4151n @ cos @ 7% f(J sin o cos «@ ET]
f.. = [I 51n o 88 + j cog o ds]
11yy GJ
for the equivalent integral expressions reduce the A, . coefficient to

ijz
2, 2 2
€11 = Kzzfiizz +t Kegfiinx + Kyzfiiyy

+ 2sz vz 11xy + 2Kszzzfllxz + 2Kyz ZZ iiyz

Each coefficient term is thus expressed as a function of stiffness and

flexibility terms, which can be further expressed in matrix form as

5>Cll Ci2 C13 [-KZZ Kzx Kzy f{izz2 fiizx fiizy. Kzz Kzx Ky
€21 Ca2 Ca3f = Kzx Kxx Kxy CEidzx figxx Fiixy Kzx Kxx Kyy
{
C31 C32 CBBj LKZY Ky Kyy ‘fiizy fiixy fiiyy Koy Kxy Kyy
erz Kox sz
= szvax ny
LKZY ny Kyy

The remainder of the coefficient terms are expressed in a similar
manner and reduced in form.te that of Table 3.1l.
For the case of a hinged support the same procedure applies.

For simplicity,

iizz Tiizz
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' , X, .
7 iq 1]
iizz

’ -X,
iq
£7
iizz
X, X, .
/ 1q 13
£
iizz

so that substitution into the strain energy expression and differenti-

ation with respect to Aijz yields

ou
aAijz

+

+

+

Rf(a'cos o+ g’sin
EJ(alcos o+ g’sin
+ ['(-&’ sin

J
EJ(a’cos o + g’sin

1,

+ -a" sin

Lj(
Rg(a/cos o + gﬂsin

+ J( -a sin

2 ds /. ’ 2 ds '
o)” 88 + -a sin o + cos o)” 85| A,
" &3 l:r( | : 51 s

o) (dlcos o + j,sin o) 48

o + g/cos
@) (e’cos
o+ g’cos
o) (flcos

o+ gfcos

GJ

/ .
@) (-d"sin o + j’cos o) %%] Ajiz

o + k’sin o) ds
GJ

ds
=] 0.,
) EI] Jix

’
@) (-e”sin o + k' cos «
o+ m’sin o) 48

GJ

’ . / ds
@) (-f'sin o + m“cos o) ET] ejiy

Determination of the stiffness coefficients in a manner similar to

a fixed end member and including the shear effect for joint loads gives
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ijz

U

jiz

+

cr’

4
Fiizz

ij
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1]
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