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CHAPTER I
INTRODUCTION

The primary objective of this thesis is to consider a messure of
accuracy for tolerance limits and investigate the problem of determining
the sample size required to obtain a specified degree of accuracy.

When considering the problem of determining confidence limits on
a parameter of a density function, say f(x;0), work has been done on
several reasonable measures of accuracy. For example, if a two sided
confidence interval is desired, then a minimum width interval might be
considered (for given probability level and given sample size). Or a
minimum expected width interval might be considered if the width is a
random variable, If a one-sided confidence limit is desired then the
uniformly most accurate property specifies a type of optimum choice. A

uniformly most accurate confidence limit is one which minimizes the prob-

ability of covering a false value of the parameter. That is, a uniformly
most accurate lower confidence limit for © 1is a function of the sample,
say ©(X), such that Pr( 8(X)<e ) = a, and if g*(X) is any other

2

limit such that Pr( gn(X)<:@ ) = a, then 8« @ implies that
Pr( 8(X)< 6') < Pr( g%(X)<:@‘), A uniformly most accurate upper confi-
dence limit is defined analogously.

The accuracy of tolersnce limits has not been investigated as thor-

oughly as has the sccuracy of confidence limits. This has bcen partly

due to the lack of a suitable criterion of accuracy in the case of tol-



ance limits. In this thesis tolerance limits which satisfy the condi-
tion Pr( coverage >p ) = a are considered, so measures of accuracy
for this type limit are studied. Precision criterion for p-expectation
tolerance limits have been thoroughly investigated by Fraser and
Guttman (2).

One type of criterion which has been investigated for the type of

tolerance limits we are considering is expected coverage. That is, if

we had two tolerance limits both of which satisfied the condition
Pr( coverage>p ) = a, then the one with smaller expected coverage would
be considered better. However this is not a good criterion to use for
the problem of determining a sample size so that a given precision will
be obltained, since it does not take into consideration the variation of
the limit, R

Goodman and Madansky (3) havé formulated a criterion for comparing
tolerance limits as followss Suppose we have a tolerance interval; call
it I, such that Pr( coverage of I>p ) = a. Then I is called the

most stable tolerance interval if for any other tolerance interval, say

IT, such that Pr( coverage of II>p ) = a, and for every p; and p,

such that p1;>p;>p2 we have

Pr( p,>coverage of I>p ) >Px( p, >coverage of II>p )
and

Pr( p>coverage of I:>p2 ) >Pr( p>coverage of II:>p2 ) .

This is a desireable and practiczl criterion for comparing tolerénce
intervals since it not only requires that the coverage be greater than
p with fixed probability, but it also takes into consideration how con-
centrated the distribution of the coverages is about p. The authors of

this article did not study any general properties of this criterion,



and they did not attempt to formulate it in 2 convenient manner so thet
the problem of sample size determination to achieve given stability re-
gquiréments could be considered,

Bain (1) considers the problem of determining the sample size such
that for given p, e, and az, the tolerance limit satisfies the statement
Pr( pte>coversge>p ) = a. The best tolerance limit to use (different
tolerance limits can be obtained by using different statistics) for this
cage is not considered. In fact, it is difficult to compare two differ-
ent limits in this menner because Pr( coverage>p ) generally changes
for different limits derived to satisfy the above statement. It would
seem more practical and more consistent with the standard tolerance
interval problem to be akle to fix Pr( coveragep ) and then impose
some other conditicn for the coverage to satisfy.

In the practicsl problem of determining a tolerance limit for a
distribution it seems useful to have the statement Pr( coverage>p ) = a
ied, then have a criterion of accuracy which is meaningful in terms
of the problem being considered and which provides answers to the fol-
iwwing questions,

(1) Does the tolersnce limit improve ss the sample size is in-

crreged?

M
s

If the limit does improve with incressed sample size, can a

szmwpie slze be determined to achleve a desired accuracy?

(3) Given two tolersnce limits which are different functions of
the sample values, can we say that one is better than the other?

() Does there exist a "hest'" limit?

In this thesis a criterion is formulsted which gives reasonable
anawers to these guestions. Some general properties of this criterion

are considered. In particular, reguirements on the distribution which



insure that a best tolerance limit exists are given, and a method for
obtaining this best limit is given. The problem of determining the
sample size to obtain a given accuracy requirement is worked out and
illustrated for somé particular distributions, and some comparisons
hetween different tolerance limit forms are made.

A variation of the tolerance limit problem is also considered. A
common situation is to have a tolerance specification given, and the
problem is then to determine what fraction of the population meets this
specification, Rather than just estimate the fraction of the population
which meets this specification, it might be more realistic in a given
problem to set a lower confidence limit on this fraction. This is seen
to be the same problem as considered before except that the limit is
given and p 1is to be determined for a given value of a. A measure
of precision is defined for this problem and the sample size determin-
ation problem is worked out and illustrated for the exponential distri-

bution.



CHAPTER 1T

AN ACCURACY CRITERION FOR TOLERANCE LIMITS

We are considering tolerance limits which satisfy the statement
Pr( coverage>p ) = a, and we would like to have 2 measure of how close
the coverage is likely to be to pe. In terms of the distribution of

the coverage, we will have something such as in Figure 1. These might

Figure 1
be the distributions of coverage for two different tolerance limits,
that is, two different functions of the sample. The coverage in both
cases will have probability a of being greater than p, however ﬂi
will be considered better than II in that the distribution is concen=

trated more in the neighborhood of p.
Accuracy Criterion

We desire a means of measuring the concentration about p :of the
distribution of the coverage associated with a tolerance limit which

will be simple to interpret and reasonably easy with which to work.



The criterion proposed here is a modification of the most stable property
proposed by Goodman and Madansky (3). It corresponds to the same type

of réasoning assoclated with the ldez of a uniformly most accurate con-
fidence limit., We propose to use Pr( coverage>p') where p'>p as

a measure of accuracy for a tolerance limit which satisfies

Pr( coverzge>p ) = a., Now this seems to be easy enough to interpret

in terms of physical problems, and it gives the kind of measure of con-:
centration about p for which we are looking, Its usefulness will.
depend on how well it lends itself to theoretical development and how
well it performs for specific distributions.

We now see how this criterion can be used to answer the questions
nroposed a£ the end of Chapter I.

(1) Does the tolerance limit improve as the sample size is in-
creased? In terms of the proposed criterion this is the same as asking
if Pr( coverage>p' ) 1is a decreasing function of the sample size,

(2) 1If the limit does inprove with increased sample size, can a
sample size be determined to achleve a desired precision? This is the
saue as choosingz a p!>p end an a'(usually small) and determining if
there is a solution to the equation Pr( coverage>p' ) = a'. (For
intergrel values of n this will have to be <a!') |

(3) Given two tolerance limits which are different functions of
the sample, cen we say that one is better than the other? Here we will
say that tolerance 1limit I is better than II if for all p'>p, we

have

Pr( coverage of I>p' )< Pr( coverage of II:>p")
where

Pr( coverage of I>p ) = Pr( coverage of II>p )



(4) Does there exist a best tolerance limit? This will be asking,
"Is there a tolerance limit, say I, with Pr( coverage of I>p ) = a
such that for any other limit, II, with Pr( coverage of II>p ) = a,

we have for 2ll p'>p
Pr( coverage of I>p' )< Pr( coverage of II>p' )?".

If such a limit as I exists then we will call it the uniformly most

accurate tolerance limit such that Pr( coverage>p ) = a.

We see then that these questions can quite readily be formulated in
terms of the proposed criterion. We now need to consider an example to
which we can apply this criterion in order to study these questions and

clarify the ideas.
Example: The Uniform Density

Let Xq,+..,X, be a random sample from a population with uniform

n

density function

f(x3;0) = 1/6 for 0O<x<®

=0 otherwise,

and let L(Xl""’xn) = L denote a real valued function defined on the

sample space., We then consider the problem of determining L such that

Pr[ng(l/G)dX>pjl = a,

that is, determine a lower tolerance limit on 100p% of the distribution

with probability a. Now

Pr[[j(l/@)dx>p] =Pr( 1-1/6>p )



= Pr{ 1<e(l - p) ),
and Z = max(Xi) is the minimal sufficient statistic for ©. Also
i

Y = Z/6 has density function

-1
gly) = nyn for O<y<l1

= 0 otherwise.

1/n
Cumulative points on this density will be given by Pr!:Y<(a) / } = 3.

Therefore we have

W)
]

Pr[ 7/6< (a)l/n]

el 2(1 - o)/(2) Y 81 - o)

and if we compare this with the statement above wea see that a choice for

L is

1/n
L=12(1-p)/(a)" .
This choice of L then gives a lower a probability tolerance limit

on 100p% of the density, and this statement holds for any sample size.,

Now consider the statement Pr{ coverage>p! for '>n. We have
ge>p P >p

P‘r[ fg( 1/0)dx >p ']

L

it

Pr[ Z(1 = p)/(a)l/n< 6(1 - pﬂ)]

i

Pr[ Z/6< %:_-w}%i (a)l/n]

i

{(1 -p")/(1 - p)]na.

But p'>p implies (1 - p!')/(1l - p)<l, therefore Pr( coveragesp' )



is a strictly decreasing function of n., Hence considering question (1)
we see that the tolerance limit does improve, in terms of the proposed
criterion, as the sample size increases. In fact, each additional sample
element decreases Pr( coverage >p! ) by a factor of (1 - p")/(1 - p).

If we wish to determine the sample size such that Pr( coverage>p )
= a and Pr( coverage >p! )< a', then we will have to choose n such

that

[(1 - p')/(L - p)] nasa“

n 210g<as/a>/1og[(1 - p1/(1 - p>]°

For example if we want to have Pr( coverage> .90 ) = ,95 and

Pr( coverage>,92 )< .10, then we must choose n such that

n >log(.10/.95)/1log(.08/.10) = 10,08

or

This gives

1/11

L = 72(.10)/(.95) = {,1005)%

for the itolerance limit, and the above probability statements are satis-
fied for this limit,

So as to have for illustration a different tolerance limit to compare
with the one just derived, we consider the problem of obtaining a tol-
erance limit based on the minimum sample value. For notation let Z, =

1

n ,
mex(Xi) and Ly = Z1(1 - p)/(a)1/ and let Z, = min(Xi), Now if we
i i

let W =7,/6, then the density of W is given by
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n=1
n(l - w) for O<w<l,

g(w)

=0 otherwise.

Cumulative points on this density are given by Pr[:wl<1 - (a)l/nJ = 3.

So if we choose
1/a
I, = 2,(1 - p)/[l - (a) /HJ,

then we will have

Prl: ng(l/@)dx>p] Pr( L,/@<l = p )

2

Pr[ 7,/0<1 ~ (a)

l/ﬁ]

8o

Also

B

Pr[ f@(l/g)dx >p”J

) Pr( 1-2(1 - p)/@[l - (a)l/fj >p“)

i

=

Pr( Zo/o< _11:@:%[1 - (a)l/n] )

i

EER

B

T
1

o]
+

T T

Now p'>p, so (p' = p)/(l = p)>0, and therefore

B e s e

= n
= (1 - p)/(L - p)] a
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Therefore this shows that in terms of the proposed criterion L1 is a
better tolerance limit than L,. Ancther consideration concerning the
relative efficiency of the two limits which could be carried out here is
the comparison of the sample sizes required to obtain a given accuracy
requirement.

/n

1
We now consider the problem of whether L = Z(1 = p)/(a)™” ', where

A max(Xi)s is the best form which can be used for a lower tolerance
i

limit for the uniform density. "Best" as we are considering it means the
uniformly most accurate tolerance limit. In terms of the density we are

considering this means

Pr[ fj(l/e)dx>p]

= g
and for any other limit 1 such that
. 0
Pr[ f_v(l/’@)dx>p] = a,
LK

we have

Pr[f@(l/@)dx>p“]$ Pr[fi(l/@)dx>p“:]

L L

) ) . . R 1/n .
for all p'>p. In this case we can ghow that L = Z(1 - p)/(a)™ is
the best 1limit in the following menner. Consider testing the hypothesis

H 8 = 65 with alternative H12@2>@0 at the 1 <« a probability level.



The uniformly most powerful test of this hypothesis is to reject H, if

Z>c, where 7 = maX(Xj} and ¢ 1is chosen such that when & = ©
i '

Pr( Z>c ) = 1 = a. The density of Z is given by

g(z) = n(1/6)(= @)nul for O<z<8

= Q otherwise,

Then ¢ must be chosen such that

]
8

o
i

9% n-1
- [T8/0,)(z/0) ez
C

1- (C/@o)n

#

or

= @O(a)l/n°

]
i

Y

Prl: z>@o(a)l/n] = Pr[ (1 = p)/(a) n>90(1 - p)]

2}

Pr[ L>0,(1 - p):]

ji]

9
1 - Pr[[ (1./®O)dx>p] )

L

S’
i}
(12

and if L~ is any other tolerance limit such that Pr( coverage>p
®O~ oA
Pr[ f (1/@)dx>p} =z ] = Pr[ L">@O(1 - p):] o
L"N

Let b = 6,(1 - p), and the power of the test can be written in the form

Prg( L>b J. Then from the uniformly most powerful property of the test
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we have

Pr( L>b ) = Pr( L">b ) for © =0,

Pr( L>b ) >Pr( L'>b ) for ©>6,.

i

low if we have pi>p then b

Pr[ fL@(l/@)dx> 5 u]

6(1 -~ p') implies that ©>6_, so

Pr‘: L<o(l - p”)]

1 - Pr( L>b )
<1-Pr( L >b)

Pr( L<b )

t

[

e
Prl: L(1/8)dx>p "] o
LL\

Since this inequality holds for any 1 other than L, we have that L

is the uniformly most accurate lower tolerance limit.
Conclusion

This example has served to illustrate the usefulness and feasibility
of the criterion proposed in this chapter, and it has shown that, in some
cases at least, there do exist uniformly most accurate tolerance limits.
We now need to consider the general properties of this criterion and
formulate a method for obtaining a uniformly most accurate tolerance

1imit when one exists.



CHAPTER IIT
GENERAL PROPERTIES OF THE ACCURACY CRITERION

This chapter deals with the problem of determining when a uniformly
most accurate tolerance limit exists, and also considers a method for
obtaining this limit when it does exist. We will need to determine suf-
ficient conditions on the density function to insure that a uniformly
most accurate limit exists, and then determine what function of the sample
gives this uniformly most accurate limit., The approach taken here is to
obtain a8 relation between tolerance intervals on the density and confi-
dence intervals on the parameter, and attempt to use the optimum proper=-
ties of confidence intervals to cbtain optimum tolerance intervals. The
primary interest will be in one-sided tolerance limitsj; however, a few
general remarks regarding confidence sets and tolerance regions will be

made first.
Relation Between Tolerance Regions and Confidence Sets

Let £(x30) be a density function and denote

Po(4) = fAf(x;Q)dx .

Let Xlg,°,,X be a random sample from a population with density £(x3€),

n
and let C(Xl,...,Xn) = C(X) denote an =& probability confidence set

for ©, that is, Pr[ 6 in C(X)J = a, Let S(Xq,...,X,) = 5(X) denote a

1
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tolerance region and supnose that Pg(S(X)) has a distribution which is
independent of the parameter ©. That is, Pr[ Pg(S(X)):>p] is inde=
pendent of ©. Now the coverage, P@(S(X)), associated with S(X) varies
with ©. That is, for given S(X), Pg(S(X)) can be considered as a
function of @, but since we have a set, C(X), which we expect © to be
in, we also expect to have PG(S(X)) = P@O(S(X)) for some ©,in C(X).
Therefore we will expect the true coverage to be greater than

inf Pp(S(X)). So if we can choose the form of S(X) so that
@ in C(X)

inf PG(S(X)) takes on a preassigned value, say p, then we will
@ in C(X)

expect the coverage to be greater than p. To state this more precisely,
we have that if C(X) is such that Pr( © in C(X) ) = a, then

Pr[Pg(S(X)) > igfc(xgag(s(x))] > pr( 6 in C(X) ) = a.

Furthermore, if S(X) can be determined such that inf PQ(S(X)) = Dy
6 in C(X)

then we will have

PrWTP@(S(X)):>p} = Pr[:Pg(S(X)) >§ %nfC(X§@<S(X))]
in

>Pr( @ in C(X) ) = a,

This then gives us a relation between the probability statement of a
tolerance region for the density and the probability statement of a con-
fidence set on the parameter, Also we note that in the special case

where PQ(S(X))sgp for © not in C(X), then we will have

Pr[ Pg(s(x))>p] = Pr( 0 in G(X) ) = =
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Here we are able to express the tolerance interval probability statement
equal to a confidence interval probability statement, and we see a
possible correspondence between the proposed criterion of accuracy for
tolerance regions and the probability of the confidence set covering the
wrong value of the parameter, say ©'. Our idea of considering
Pr[ PQ(S(X)):>p'] s for p'>p, as a measure of the desireability of
tolerance regions which have a fixed value for Pr[ PQ(S(X)):>pJ
corresponds to the idea that confidence sets will be more informative
the less likely they are to cover false values of the paraméter with a
controlled probability of covering the true value.

Since we will be primarily concerned with one-sided tolerance limits,

we will now formulate these ideas for this case, give an example, and

arrive at some general results.
One-Sided Tolerance Limits

Let L be a real valued function defined on the sample space, and
suppose the cumulative distribution function, F(x3;8), is a continuous
and decreasing function of its real parameter © (corresponding results

hold for an increasing function). Then we have
1ole)
f f(x30)dx = 1 -~ F(L;0),
L

and 1 - F(L;6) is an increasing function of ©. Let 6 be a lower a
probability confidence limit for ©, that is Pr( <@ ) = a, and consider

min!} - F(L;@ﬂ . Since 1 = F(L;0) is an increasing function of @, the
e<

minimum with respect to ©, where © 1is restricted to ©<®6, will occur

at the smallest value @ can teke on in this interval, namely © = &o
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Therefore we have

min [1 - F(L;O)] = 1 ~ P(L;9).
0<o

Now suppose it is possible to solve for L in the equation
1 - F(L38) = p.

Then for L determined in this memner we will have, since 1 = F(L;8)
is an increasing function of @, that 1 - F(L;8)>p for 6<e and
1 - F(L;e)<p for ©>6. Therefore 1 - F(L3;6)>p if and only if

8<e, so

Pr[ j:.}(x;@)dx>p] = Pr( 6<0 ) = a.
Note that if 1 - F(L;8) were a decreasing function of the parameter
then we would have the same situation except that we would want an upper
a probability confidence limit on ©,.

This not only offers a possible systematic technique for arriving
at tolerance limits for some densities by using a confidence limit on the
parameter, but it enables us to express the tolerance limit probability
statement in terms of the confidence interval probability statement., We
now consider an example to illustrate how this technique can be applied
to derive a tolerance limit, and then see how the properties of the con-
fidence limit used to obtain this tolerance limit can be used to study
the properties of the tolerance limit,

Example: Suppose we are interested in determining a lower tolerance

- . . . 2
limit on a normal density with unknown mean, m, and known variance, v e
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Then

2

00 o -k
f (2 11v§) Pexp-% X2 dx = 1 « F(L;m)
L L Vo

is an increasing function of m, so we will need a lower confidence limit

on m. Let 2, denote the point such that if Z has the standard

a

L
normal density then Pr( Z<z, ) = a. Then X = zavo(n) ? is a lower

a probability confidence limit for m and

- "
min [1 - F(L;m)] =1 - F[L;X - 24v,(n) BJ,
X - 2,v5(n) A< m

Now if we solve for L such that
- L »
1= F[?;X - Zavo(n) %] = p,
then we will have

12

o 1 - =
L ) Vo

or

- 1
L=X- zavo(n) 2 - ZpVoo

This choice for L gives a tolerance limit such that
i
Pr( coverage>p ) = Pr [f - 2,7,(n) A< m] = a,

Continuing with this example we can illustrate how the accuracy criterion
for tolerance limits corresponds to the probability of the confidence
interval on the parameter covering the wrong parameter value.

For the tolerance limit derived in this example consider

Pr( coverage>p' ), where p'!'=>p. We have
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S ¢) -t 2
‘ ~ 2y 2 11X - m B
Pr[ jl‘, (277vE) exp—zl: - ] dx>p'] = Pr(L<n - T 1V, )

1
Prl:}'(' - 2,v,(n) © - zpvo<m - zp,vo]

i

. 1 .
Pr[X - zavo(n)""<m - (Zpg - ZP)VO:l

- s
Pr[ X = z,v,(n) 2<m']

where m' =m - (zp, - zp)vo <m, This then states that the probability
that the coverage is greater than p' is equal to the probability that
the confidence interval covers a particular false value of the parameter.
Now X = zavo(n)_% is the uniformly most accurate lower a prob-
ability confidence limit on m. That is; if m is such that Pr(. m<m ) = a
and m' is any value such that m'«<m, then Pr [7 - zavo(n)m%< m‘]g
Pr( m<m‘), Therefore if we can show that for any given tolerance limit
for this distribution such that Pr( coverage>p ) we can find a cor-
responding confidence limit on the parameter such that Pr( coverage>p )
= Pr( g*<m ), then we may be able to use the uniformly most accurate
property of the confidence limit to show that the tolerance limit we
have derived is the uniformly most accurate tolerance limit. That is,
suppose ¥ is a given lower tolerance limit for the density N{m,v,)
such that

- 00 5. -3 2
Pr[ [_.,(2'”‘70) Eexpu%[x ; m] dx>p] = a.
¥ T

Vo

Then
3% *
a =Pr( L" = m<=25v, ) = Pr( L" + ZoVo< I )s

i

and therefore L + ZpV, 1s a lower a probability confidence limit on
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m., This shows that for a given tolerance limit on this distribution, a
corresponding confidence limit on the parameter can be determined such
that the tolerance limit probability statement can be expressed in terms

of this confidence limit probability statement. Also we have

2

)
Pr[ fy(21'fv ) Pexp-1 [X m] dx>p3]
L/f 'V'O

Pr( L = m<ez

pgvo )

[

pr( TF + zp,vo<m )

4

= Pr[ L Vo< = (ng - zp)vO:]

Pr( L¥ + ZpVo<m! )

where, as before, m' =m = (Zpg - zp)vo<m. Therefore if

W=

L=X~z.v,(n)"% = Vo and L* is any other limit such that

2

[f-(ZTTvo “exp=% [X :;om] dx>p] = a,

then by the uniformly most accurate property of the lower confidence limit

1
% ] § \ =5
L - zavy(n)™®; we have, for p'>p and m' =m - (zpﬂ - zp)vm

2 , I
dX>p“J = Prl:nf - z5v,(n) 6<m“]

) o
Pr[f (277v5) Pexp-% [
L - Yo

<Pr( 1+ BV <! )

=

This means that L =X = zaﬁro(n)m2 = 25Vg is the uniformly most accurate

lower tolerance limit for the normal density with kneown variance Vé.,
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We also note that for this problem

Prl ¥ \"13 1 - X -m fiat = ( )% +
r| ¥ = zavo(n, <mv = Py vo(n)"%<|_ v ]n Zy

m! - m), \E L
Pr<Z<|:=-=-§l-;-=w=](n)3 : Za),

%

0

p]

: 1

m' - m £ . . . . ;

ow mi<m 50 [m.?r ](n)~ + 25 1s s decreasing function of n.
o

Therefore

Pr( coverage>p' )

1
m! - m El ~
Pr< Z<[E-V6 ](n) + Za)

is a decreasing function of the sample size, so the problem of determining
s sample size to obtain a desired accurscy can be considered. In fact

for given p,p',a, and a' we have

00 5 -t 2
Pr[f (ZTTVO) “exp-% (221 dX>'p"J
L Yo

o
i1

it

I— L
Pr( < I%Eeu-«-m}](n)z + Za)

Vo

i

A
. — )3
PI[Z<=‘(upu z.p)(n) + Za]

which irmplies that

1
V2 e
Zy = (Zru - ZD)(H} = Zgy
or
Z Zinl 2
n = (..:..aw mam) .
% = 7
pt P

General Properties: Following the pattern of this example, we tnow

show that for suitable density functions if a tolerance limit is derived
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by the method described by using the uniformly most accurate confidence
limit on the parameter, then the tolerance limit obtained will be the
uniformly most accurste tolerance limit, In order to do this we will
need to first give some definitions and theorems necessary for the proof,
The discussion will be limited to single parsmeter families of

densities. We first define a property which gives a sufficient require-
ment on the density to insure that a uniformly most accurate confidence
limit exists. The resl parameter family of densities p(x;8) (x may be

a vector) is said to have monotone likelihood ratio if there exists a

real valued function T(x) such that for any 6©<®©' the distributions
Pg and Pg, are distinct, and the ratio p(x;6')/p(x;8) is a2 nonde=
creasing function of T(x). The important requirement here is that
p(x36')/p(x3;6) be monotone in some real valued function T(x). Nonde-
creasing is specified to avoid considering cases.

For reference we will quote two theorems given by Lehmann in (L)
which pertain to the problem we are considering and which will be used

in a following proof.

Theorem 1. ILet © be a real parameter, and let the random varisble
X have probability density p(x;@) with monotone likelihood ratio
in T(x).

(i) For testing H:8<6, against K:8>0,, there exists a uniformi;

most powerful test; which is given by

1 when T(x) >C
(1) #(x) =<q when T(x) = C

0 when T(x)< C

where € and q are determined by
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(2) E90¢(X) = 3.

(ii) The power function

B (9) = E(x)

of this test is strictly increasing for a2ll points @ for which ﬁ(@){lo
(1ii) For all ©', the test determined by (1) and (2) is UMP

for testing H':6<@' against K!':0>0' at level a!’ =ﬂ(@’).

This theorem is important at this point because the concepts of
uniformly most powerful test, uniformly most accurate confidence limit,
and uniformly most accurate +tolerance limit as we have defined it are
all closely related.

We now state the theorem which gives sufficient conditions for the

existence of a uniformly most accurate confidence limit.

Theorem 2. Let the family of densities p(x;8) have monotone like-
lihood ratio in T(x) and suppose that the cumulative distribution
function F(t3;8) of T = T(X) is a continuous function of t for each
fixed @ in the parameter space.

(1) There exists a uniformly most accurate confidence bound €
for © at each confidence level 1 - a,

(ii) If =x denotes the observed values of X and t = T(x), and
if the equation T(t;9) = 1 - a2 has a solution © = 8 1in the parameter

space, then this solution is unique and 6 = G.

We now state and prove the theorem which we have been leading up

to concerning the existence of a best tolerance limit.

Theorem 3. Let f(x3;8) be a real parameter family of densities
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on the real line with monotone likelihood ratio in the real variable x.
Let F(x;0) be the cumulative distribution function of X, and assume
it is continuous in x for each 6. If there exists a uniformly most
accurate lower confidence limit, 8, for © based on a sample of size

n, then there exists a uniformly most accurate lower tolerance limit L

for £(x38) given by the equation
F(L;8) = 1 - p.

(Monotone likelihood ratio in x will refer to nondecreasing,
however a nonincreasing 1iké1ihood ratio will produce the same results
with the lower confidence limit © replaced by the uniformly most
accurate upper confidence limit € on 6.)

Proof: By theorem 1 .there exists a uniformly most powerful test
of the hypothesis H:8<6, against K:Q>GO and the critical region is
of the form x>C, Theorem 1 also says that the power function is an
increasing function of 8, therefore we have Prg( >0 )<< Pr@!( X>0C )
for 8<a', or 1 - F(x3;0)<1 - F(x3;68!') for ©<e'. Therefore
1 - F(x38) is an increasing function of © for each =x. Hence if
E(Xl,...,xn) is the uniformly most accurate lower confidence limit on

G, then we have for any x,

inf[l - F(x;@)] 1 - F(x38).

0<0
Let L be such that 1 - F(L;E) = p, L will be a real valued function
of (Xj‘,...gxr). Then we have 1 - F(L;8)>p for 6<6 and 1 - F(L;6}

p for &6, Therefcre

A

1

® '
Pr[f f(x;@)dx>p] = Pr [1 - F(L;@)>p]
L
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= Pr( <6 ) = a,

so L 1is a lower tolerance limit on the fraction p of the density
f(x3;9) with probability a.
We now need to show that for any other tolerance limit L* such

that

; Pr[ j;?f‘(x;g)dx>p] =3

and for every p!>p we have

Pr[me(x;g)dx>p']g Pr [Ljf(x;@)dx>p'] .

We will do this by finding a confidence limit _9_\" on © corresponding
to L* and then use the uniformly most accurate property of 8 +to
establish the inequality.

e
W

let L be a function of (xl,...,xn) such that

o
Pr[fyf(x;@)dx>p] = a,
Llf

L
.e-

¢ 3 ;
Then let & be such that 1 - F(L 36") = p. Now © will be a func~
tion of L* and consequently a function of (xl,...,xn), and since

1 - F(x30) is an increasing function of @, we have 1 - F(L*30) >p

for 6%<@ and 1 - F(LI*;0)<p for ©°>6. Therefore

I}

i
Pr{1l - F(L*;9)>p]

-

Pr( §°<o )

- :
= Pr f&f(x;g)dx>p] = a,

~
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So _O;_' is a lower a 'probability confidence limit on &.

Now consider p'>pe. By the UMP preperty of the test in theorem 1
we have that Prgo( X>C(OO) ) = a, Prgl( X>C(90) ) >a and
Prgl( X>C(Ql) ) = a for 9,<6, implies C(Qo)<C(Ql). So C(8) is
an increasing function of &, Also, for any value of p'?! there exists
a C such that Prgo(‘X>C(Oo) ) = p', and since the power is an in-
creasing function of @, Prgl( X>C(QO) ) = p for some & <@O. Note
that Prgl( X>c(8,) ) =p dimplies 1 - F(c(go);gl) = p, which implies
that Ql is a function of 6. Let g(8,) be this function, that is
8 = g(@o). Now F(C(Qo);gl) =1-p and C(©) an increasing function
of © dimplies that g(®) is an increasing function of ©. Now con-
sider Prg( X>C(6,) ) and Prg‘( X>c(e,) ) where 0' = g(6). Let
X, = C(8,). Then 0>g, implies g(9)>g(90), so that 1 - F(XO;@) =
Pr@( X>x, )>p' and 1 - F(x,30') = Prg,( X>x, )>p. Also 8<e,
implies that 1 = F(x,30)<p' and 1 - F(x,36')<p. Therefore
1- F(XO;G) >p! if and only if 1 - F(x,38')>p. Now Pr@o( X>C(90) )

= p' holds for any 6,, and consequently x,, therefore we have that

1l - F(x38)>p' if and only if 1 - F(x30')>p, so

Pr[ fmf(xgg)dx>pﬂ

L

-

Pr[l - F(L;8)>p!
J

Pr[l - F(Lgo! )>p“

..

i

Pr( e<eo! )

and

it

®© ’ 3%
Pr[f,cf(X§@)dX>p'] Pr [1 - F(L ;9)>p3}
L” _

|43

Pr[ 1- F(L*;@‘)>p]
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= Pr( g'< o).
Then by the uniformly most accurate property of 6 we have

pr( 8<0' )< Pr( 9% 8t )
S0

o ®
Pr[[ f(x;@)dx>p’] < Pr[f_vf(x;@)dx>p’] .
L - L”

Therefore L 1is the uniformly most accurate lower tolerance limit such

that Pr( coverage>p ) = a.
Two Sided Limits

We have been limiting the discussion to the case of one sided tol-
erance limits., The technigque used to derive the one sided limit may
also be used tp derive two sided limits, although there will generally
not be a uniformly most accurate two sided tolerance interval just as
there is generally not a uniformly most accurate two sided confidence
interval, Also the equations involved may becomé considerably more
complicated. However two tolerance intervals can still be compared
using the proposed criterion of accuracy, and the problem of determining
sample size to obtaln a desired accuracy can be considered. An example
will be given %o illustrate these points. |

Consider the problem of determining a tolerance interval for a
normal density with unknown mean m and known variance Ve Then

Y

Lo 2\"2 1fx - m 2 T N
. (211vg) expag-[ T ] dx = b(LZ;m) ~ F(Lyzm),
1

o s-‘]é" ‘;('nl+a . R
» X+ 3 %v,(n) ), where a” = Zwsy— ; is5 a0 a

200

Now { X - Za%vo(n)"
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probability confidence interval for m. Denote this interval by (m,m),
and we have min[%(ngm) - F(Ll;nO] with respect to m where m is
restricﬁed to (m,m) occurs at one of the end points of the interval.
If the method of expressing the tolerance interval probability statement
in térms of the confidence interval probability statement is to be used,
we must have L, and L, such that F(Lysm) = F(Llﬁn)>;> for m in
(m,m) and F(ngm) - F(ngm)sgp for m not in (m,m). Therefore Ly

and -L2 will have to be chosen such that the equations

|
ke]

F(Lysm) - F(Lysm) =
and

F(Lysm) - F(Lysm) = p

are satisfied., The first equation gives

i

(Ll - E)/vo =2

p+d
and

(L2 - E)/vo = 29 _4°

Then using the symmetry of the normal density, the second equation gives

1]

(L, - D/,

~%1-3
and

(L2 - m)/vO Zp+d’

so we will have the solution if we can determine d. We have
Ll =M=

zp+dvo and Ll =T = 29 Vs

therefore

)

X = Z 37 \n - Z ‘s =X + 2 ,v.in -2 A2
a o( ) ptdio a% 0( / 1-d o
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or

Now this equation has a unique solution in d since 214 = zp+d in-

creases from 0 to ® as d decreases from (1 - p)/2 to 0. For

example if we want Iy and L2 such that

o]

L 2
Pr[f 2(2rrv§)"%exp-%~[x - m] dx>.90} = .95

3

then we have p = .90, a® = 975, so d must satisfy the equation

1
21ed = % g00g 2(1.96)(n) . If we choose an n = 16, then we find
that d = ,0l, so Ly =X - 1.83v, and L, =X+ 1.83v .

More Than One Unknown Parameter

Tolerance limits are generally very difficult to determine when
more than one unknown parameter is involved. In order to use the pre-
vious procedure we would first need to determine an appropriate confi-
dence region in the parameter space, then we would have to determine the
parameter values which minimize 1 - F(x36) with respect to © where
tﬁe vector © 1is restricted to the confidence region. Now if L 1is
such ﬁhat min[} - F(L;O)] = p where @ 1is restricted to the confidence
region, then 1 - F(L;8)>p for © in tbe confidence region, but in
general 1 - F(L38) is not less than or equal to p for all 6 out-
side the confidence region. Therefore we would have Pr( 1 - F(L;0)>p )

>Pr( © is in the confidence region),



CHAPTER IV
APPLICATIONS

In this chapter some applications of the preceding material will
be given. ‘These applications will be chosen for there possible usefulness
and as examples to follow when studying tolerance limits for a distri-
bution. The problem of determining the sample size necessary to obtain

a desired accuracy will be considered in each case.
The Exponential

The exponential distribution ﬁill be the main distribution consid=-
ered in this chapter., Two different sampling plans will be considered
because of their usefulness in life testing problems. The uniformly
most accurate limit ﬁill be derived and the problem of determining the
sample size to obtain a desired accuracy will be solved. Also a tol-
erance limit based on a single order statistic will be considered and
the sample size problem solved. These limits will be compared.

Let
- f(x38) = 9“'1exp-x/9 for x>0, 6>0,
=0 otherwise,

The first method of sampling considered, stated in terms of the life
testing problem, is to place n items on test, waiting until r of the

n have failed without replacing those that fail as they fail, and re-

30
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cord the times to failure of the r items. Let X, be the i-th
. )

smallest semple value, and let

If r =n then this is just the sample mean. It is known that 2:r©/@

has the chi-square distribution with 2r degrees of freedom., We use

2
the notation Pr[X<X§(2r)] = a, Therefore
2
Pr[ 2r@/@<><a(2r)]

r [ 2::@/}(2( 2r)<9:]' R

S0 2r@/>(§(2r) is a lower a probability confidence limit on 8. In

)]
i

fact, deriving the uniformly most powerful test of . the hypothesis
H:2< 6, against K:Q>OO shows that this is the uniformly most accurate

lower confidence limit for 6. Now
/‘w_l
j O Texp-x/6 dx = exp-L/e
L

is an incressing function of ©, therefore

min exp-L/6 = exp-L/@
956

where © = 21@/}@( 2r), Then exp-L/8 = p implies

1 = -2rBlog(p)/ 5(2r).

Therefore, for this choice of L we have



r[ ‘/:og"lexp_x/g dx>p] = Pr[ 21@/)@( 2r)< @] = a,

and according to the theory in the previous chapter this cheoice of L
gives the uniformly most accurate lower tolerance limit for this type
of sampling.

How to get a measure of the accuracy of this limit, let p' be

greater than p. Then we have

Pr( L<-0ln(p!) )

®1
Pr[ f 0" Texp-x/6 dx>p‘]
Lv

Py [ ~2r81n(p)/ X2(2r) <-61n(p*) ]

Pr[ 2r®/@<X§( 2r)%§%—}—l} .

1

. . [AY . « . . < 1 o
Put since 2r8/9® has a chi-square distribution with 2r degrees orf

freedom, this probability statement is equivalent to

ex o) < Yte BB |

Yow 1n(p!')/In(p)<1 so this probability is a decreasing function of r.

Therefore if we want to specify the samplé size such that we will obtain

a tolerance limit with Pr( coverage>p ) = and Pr{ coverage>p'! )<a', -

where p'>p and a' 1is small, then we must choose r such that

Pr X (2r)<X2( 2r)1‘r-]lé£y->{l

- oTr

Yeenied < X2 (2n).
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The cbhi-square tables can be used to determine r éuch that this in-
equality is satisfied, .For example, if we wish to have a lower tolerance
limit on the exponential distribution such that‘ Pr( coverage>.90 ) = .90
and also have the sample size large enough so that the accuracy will be

such that Pr( coverage>.93 )< .10, then we will have 1n(p')/1in(p)

.6888, so r must be determined such that the inequality

(.6888) Xf%( 2r)g_X?1o( 2r)

is satisfied. If we look in the «90 column and the .10 column of
the chi-square table and increase the degrees of freedom until the in=-
equality is first satisfied, we find the degrees of freedom to be 96.
~ Therefore we must have 2r>96 or r>L8., If we choose r = L8 then

our tolerance limit will be

1 = “2W8)0n(-90) - (,0886)6.

With this limit based on a samplé of size L8 we will have

Pr( coverage >.90 ) .= +90, and we will also know that |

Pr( «93>coverage>.90 )>.80,

We note that the accuracy is not a function of n except that we

must have r<n., Therefore since the aécuracy increases as r in=-
creasges, the best accdracy is obtzined by taking r = n. However, in
life testing probléf;s another thing to consider is the time involved.
This is where n ‘I‘;a'sﬂan effect. if n 1s held constant and r in-
creaSed, then ’ohe éccuracy of the limit improves but time to obtain the

“r failures increzses., If r remains fixed and n is increased, then
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the accuracy of the limit remains the same but the time required to ob-
tain the r failures decreases.,

The second method of sampling considered, again stated in terms of
the life testing problem, is to place n items on test replacing those
that fail as they fail with new items until a total of r have failed.
For this type of sampling the uniformly most accurate lower a prob-
ability confidence limit on o is 2nxr,ﬁ/;xg(2r) « This quantity has
the chi-square distribution with 2r degrees of freedom, so the toler-
ance limit will be the same as the one just derived except ? will be

replaced by nr'lxr’n. That is,

L= -2nxr’n1n(p)/xg(2r)

is the uniformly most accurate lower a probability tolerance limit
on 100p% of the exponential density for this type of sampling. The
accuracy is again independent of n but of course the time required to
obtain the r failures is a function of n, Note that if we put n
items on test for each method of sampling, then the second sampling
method uses more items (ﬁ‘+ r - 1) to achieve the same accuracy, but
requires less time,

In some of the life testing type problems it is convenient and
economical to use a single order statistic when sampling without re-
placement to determine a tolerance limit. We will now determine a tol-
erance limit for the exponential based on a singlé order statistic and
study its accuracy properties. This limit will be compared with those
previously obtained,

Let X be the r-th smallest order statistic in a random sample

L)
of size n from the exponential density. Let w=1 - exp—xr,n/ .
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Then the density of w is independent of 6 and is given by

8(w) = =T (L= W o<w<l

This is the beta density with parameters r and n - r + 1, We denote
by Iy(b,d) the cumulative beta distribution with parameters b and d
evaluated at y. Let y, denote the point such that Iya(b,d) = a,

If we use the same technique as in the previous chapter to obtain a tol-
erance limit on the exponential, we will need a lower confidence limit

on & based on Xy
A . . b4

n since 1 - F(x3;8) for the exponential is an in-

creasing function of 6. We have that

a=Pr( w<y, ) =Pr( 1 - exp-xr,n/9<<ya )

X
Pri - ree <6 |,
(Il -y,

Xpr,n
: ] 1 -~ + = s £ - 5] 2
where y, is such that Iya(r,n r + 1) = a, Therefore THT =5,

is a lower a probability confidence limit on © based on the r-th

smallest order statistic. Then

gﬁgg[l - F(L;G)] = 1 - F(L;8)

X
where © = = TE(T£i£§;7 , so if we solve for L such that

l- F(LB_Q_) = Py

then we have

[
o)

exp[-1/ Lryn
In(l - y35
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ar

xr,nln(P) .

L =
In{T = ya,)

This choice of L gives a tolerance limit based on the r-th smallest
order statistic such that Pr( coverage>p ) = a.
Now to consider the accufacy of this tolerance limit let pi>p.

Then we have

Pr[ fLwO-lexp-x/O dx>p'] = Pr( ~L/6>1n(p') )

Xy nln(p) :
Pr[- aﬁ%—y{p— > In(p )]

- e oy /o> [ = 7)) )

1n(p')

Pr[w<l - (1 - ya)Tﬁr%r} .

Then if we wish to determine the sample size such that Pr( coverage>p! )

< a', we must have

<al!

| , In(p!)
Prfw<1 - (1 =~ yy) P ]
P ES
or '

1n(p!')
1-(1-y3)"P0 <y,

or
(1 -3,)< %%%—) In(1 - v,).

Whether or not this inequality can be satisfied depends on both

r and n. There are three possibilities for obtaining this inequality.



(1) Let n be fixed (and sufficientlyvlarge) and determine r
such that the inequality is satisfied.

(2) Let r Dbe fixed and determine n such that the inequality
is satisfied.

(3) Let there be a functional relation between r and n such
that when one is known the other is also known, then determine n such
that the inequality is satisfied.

Tables nf the Incomplete Beta-Function, by Karl Pearson can be used

to perform the computations.

Table I on the following page is given so that a rough comparison
of the accuracy of the tolerance limit based on © and the accuracy
based on x, , can be made. It can also be used to get an approximate

’
idea of what sample size should be taken to achieve a desired degree

of accuracy.



Table I

38

The lower tolerance limits for the exponential density are deter-

mined such that they satisfy the statement, Pr( coverage>.90 ) = .90.

Entries in the table are the computed values of Pr( coverage>.93 ).

The tolerance limits used are

L, = -2r@1n(p)/>(§(2r) and L, = xr,nln(p)/ln(l - yé) |

where

p = «90 and a = ,90, and 6, x

ryn

s and yg

are as defined previously,

- S s
10 .52 W52 W51 W51 .51
20 o3 37 W36 .33
36 .22 26 .23
Lo .13 .19
50 .09

No-intexpolatibn technigques were used in computing those values

based on Lo, so the values are only approximate, When r = n the in-

complete beta tables are not adequate for computing even an approximate

value,
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The Weibull

As another application we consider another density which is used
in life testing problems, This density is called the Weibull density

and its function form is
-C c=1 c
f(x3b,c) = cb™"x  “exp~-(x/b)” for x,b,c>0.

This density was first proposed by Weibull in (6). The difficulﬁy in
using this density as a model is usually the problem of determining a
good value for c¢., Methods of estimating ¢ are discussed and refer-
. enced by Qureishi in (5). It is suggested that this model is often
superior to the exponential even if a '"rough® value has to be used for
¢,  Therefore we will look at the accuracy of a tolerance limit for
this densitj assuming that c¢ is known and b 1is unknown, The cumu-

lative distribution is

P(x3b) = ergb-cxc-lexp-(t/b)cdt = 1 - exp-(x/b)°,
0 ,
so
1 - F(x3b) = exp=(x/b)°

is an increasing function of b. Also we have that for

“Com _c
y=b E"_ X: s
j=1 %

the density of y 1is given by

o(3) = =i ¥ Lexp-y
T @) .

This is a gamma density and is independent of the parameter and can be
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used to obtain a confidence limit on b. We note that 2y is distri-
buted as a chi-square with 2n degrees of freedom, and since chi-square
tables are more accessible than gamma tables we will use the distri-

bution of 2y to obtain a tolerance limit., We have

Q
1]

Pr( 2y< Yz(20) )

1]

< V2o
Pr!_ 2b~ 5"”1 /{.a(zn)j

i
el
Lo}
T
e
i
B 1.
’QW g
/
-
N7
[ ]

nﬂ

1/¢c
Therefore b = [2w C/TK2(2 )1 is a lower a probability confi-

- i-l
dence limit on b. Now since 1 - F(x3;b) is an increasing function of
b, we have

ngi - F(x; b)j

= 1 - Flxsb),
b bl ] =

so if we solve for L such that 1 - F(L;b) = p, we have

exp-(L/_]o_)c = p

implies
L = b(-1n 0/
implies
L= {-21n<p>:::; x$ /B l/c

- This choice of L gives a lower tolerance limit on the Weibull where
c is assumed known such that Pr( coverage>p ) = a.
~1/c

B 372 . . A o
b = {2\ xS / (2n) is g uniformly most accurate lower confidence
- w]
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limit on b for known cy, so L 1is the uniformly most accurate lower
tolerance limite.

Now consider Pr( coverage>p' ) for p!>pe. We have

Pr[ /meb'cxc'lexp-(x/b)cdx>p'] = Pr[ exp'-(L/b)c>p':}

= pr[ (1/v)%< -ln(p')]

n , 1
- ee[ 2 /6° ) A(2n) <-1n(p") |

[

pef 26705 %% BB Y25y
r| 2L W< ek Na(2w

o

P in(Zn)< R BE

This is exactly the same quantity as we obtained in the case of the
exponential, We conclude then that the accuracy of this limit and that
for the exponential based on X is the same. The computation can be

carried out as described in the exponential case.



CHAPTER V
ACCURACY OF A CONFIDENCE LIMIT ON A POINT OF THE CUMUIATIVE

Instead of the usual tolerance limit problem, that is determining
a point such that a specified portion of the density is greater than
this point, it is often of interest to determine what fraction of a
density is greater that a given point. For example we may want to know
what fraction of the tubes procuced by a particular process will last
more than 50 hours. Now instead of just estimating this fraction, it
may be more desirable to be able to say with high confidence that at
least a certain fraction will last more than 50 hours. This amounts to
determining a lower confidence limit on the fraction of the density
gréater than 50,

Let f(x36) be the density under consideration and let p(X) be
a statistic. The problem is then to determine p(X) such that for

given x, and a we have

Pr[_[o??(x;O)dx}P(X)] = a,

)

‘For example, consider the uniform density on the interval (0,0).

‘Then for given X, and a we want to determine p(X) such that

Pr[L:O"ldx>,P(X)] = a.

L2
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Therefore we have

[\
it

Pr[ 1- x09"1>p(X)]

Pr[xo/(l - p(X))<9] .

Now in Chapter II we determined that Z/(a)l/n, where Z = max(Xi), is
i
a lower a probability confidence limit on ©, So if we choose

1/n
xo/(l - p(X)) = 2/(a) / , then the probability statement will be satis-
fied, This means that p(X) = 1 - xo(a)l/n/Z. Similarly we can show

that p*(X) = 1 = x,(1 - (a)l/ ™)/Y, where Y = min(X;), satisfies the
i

above probability statement.

Now we would like to do for this problem something similar to what
was done for the standard tolerance limit problem, that is

(1) formulate a systematic method for obtaining p(X),

(2) formulate a criterion of accuracy which will be meaningful
in terms of the physical problem,

(3) determine the sample size necessary to obtain a desired
accuracy, and

| (4) determine best p(X) functions in terms of this criterion.

p(X) can be obtained by using a confidence limit on the parameter
in the same manner as the tolerance limit waé obtained previously. Sup=
pose 1 - F(x36) is an increasing function of © and let ©(X) be a

lower confidence limit on © such that Pr( 9_<0 ) = a. Then

min[l - F(xo;O)] =1 - F(x,38).
8<0

Thereforé let p(X) = 1'-'F(xo;_9_) and since 1 - F(xo;9)>1 - F(x030)

if and only if 6<0, we have
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Pr[/ﬁ‘(x;@)dx>p(x)] = Pr( 6<0 ) = a,

%o

0f course if .1 - F(x;Q) is a decreasing function of © then we need
an upper confidence limit for ©, and the same procedure follows,

Now consider thé distribution of p(X). The range of p(X) is
between O and 1 and it has probability a of being less than
1 -.F(XO;Q) for the true value of - ©., Therefore the density might

look like that in Figure (2).

a

[-FG39) [ F(xo) 6)
Figure (2)

We want p(i) to be less than 1 - F(x,36) with probability a,
but for accuracy we want it to be close to 1 - F(xo;G). As a measure
of this accuracy we might choose an Xy such that X1>X%, and determine

-what fraction of the density of p(X) .is between. 1 - F(xl;G) and

1 - F(xo;O). For a p(X) such that
Prl_l - F(XO;O):>p(X)] = a,
and for X)>X,, We can look at

Pr[ 1- F(x1;9)>p(X)] _

as the measure of accuracy. The smaller this quantity is the cloger
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p(X) 1is likéiy to be to 1 - F(xO;O). If we want to specify a value
for this expression, then the sample size can be determined to achieve
this.

Continuing with our example we have for X>X%,

1

o . .
Pr[[ Q-ldx>p(X)] Pr| 1 - x.67+>1 - xo(a)l/nZ'lJ
x
1

_ 1
= Pr le < x,(a)

l/nz_l]

Pr [ ZO-1< xo(a)l/nlej

n
(xo/xl) a.

This is a decreasing function of n and for given a', an n can be
n 3
determined such that (xo/xl) a<a', We might also note that for p (X)

we have

6 -

. - . 3¢
Pr[f 6 lax>p (x)] Pril-x
' X1‘ ‘ -

§4>1_%u_(avﬁfﬂ

= Pr L YQ-1< (xo/xl)(l - (a)l/n)}

[2 - G - )

which is greater than (xo/xl)na, Therefore we would consider (%)
better than p*(X). | |

In terms Sf the accuracy measure we have formulated, the bhest
function p(X) +to use is the one which has the property of being the
uniformly most accurste lower confidence limit on 1 - F(xO;Q). It seems
»réasonable that if we use a uniformly most accurate confidence limit on
 0 to derive p(X) by the method given, then we will get the best

function for p(X)s This is indeed the case in th.e.special cases being
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considered here,

Theorem L, lLet 1 - F(x,36) be continuous in x and continuous
and monotonic in © (assume increasing for explicitness), and assume -
there exists a uniformly most accurate lower confidence limit € for

8, such that Pr( 8<6 ) = a, If p(X) is chosen such that

p(X),

)
min[l - F(x,30)
e<o

o

then

Pr( @< ) = a,

- -
Pr i— 1 - F(xo;O) >p(X)
and p(X) is the uniformly most accurate lower a probability confidence
limit for 1 - F(x,;8).
Proof: Suppose we choose x;>x,. Then 1 - F(x139)<il - F(x%,30),
but since 1 - F(x38) is monotone increasing in ©, there exists a !

(some function of @) such that ©'<@ and 1 - F(xl;Q) =] - F(xo;@“).

Therefore we have

Pr ”1 - F(x1;9)2>p(X)]

Pr{jl - F(xO;G“):>p(X)}

il

Pr( 8<0' ).

But since © is the uniformly most accurate confidence limit for 6,
Pr( 6<0' ) is a minimum, This means Pr{ 1l- F(xl;Q):>p(X)} is a

i nimum, so p(X) 1is the uniformly most accurste lower a probability

confidence limit on 1 - F(xo;G).
Exponential

We will now use the preceding results in this chapter to solve the
problem of setting a confidence limit on a point of the cumulative of

the exponential which will satisfy specified accuracy criterion.
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Let

£(x;0) = 0" exp=x/6  for x>0, 630

1]

= Q otherwise,

If Xl,...,Xn is a random sample from this density, then 2nx/6 has a
chi-square distribution with 2n degrees of freedom, and 2n§/){§(2n)

is a lower a probability confidence limit for ©. Also

©-1
f 8 "exp-x/6 dx = 1 - F(x,;6)
Xo

is an increasing function of ©, therefore using the method described

previously, we have

min 1 - F(x,36)

1l - F(xo;g)
o<

o] _Xi@_z}

2nx

i}

Therefore, if we choose p(X) = exp [— xoxg( 2n)/2n5€}, p(X) will be the
uniformly most asccurate lower a probability confidence limit for

1l - F(XO;Q) since ZnE/XE( 2n) is the unifomly most accurate lower
a probébility ccnfide.-nce limit for ©. So we have the best p(X)

such that |

Pr[fx:g“iexp-x/@ dx>p(x)] = a,

Now for given X1 such that X >x, we have

By [./J-cmgulexp_x/g dx#p(X)} = Pr ( ng'lexp—x/g dx >exp [=XOX§(2n)/2ni_%)
1 1
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Pr ( e:%a-xl/g >exp [—xoxs( 2n)/2n3c'D

]

Pr{ 2n§/9<f(xo/xl);(§(2n)} .

But 2nx/6 is distributed as s chi-square variate with 2n degrees of

freedom. Therefore if we want to determine n such that

Pr(1- F(xi;9)>p(X)] < a1,

we will have to have

Pr{ 2n§/0<(xo/xl)>('§( 2n):i < at

or

(xo/xl))Kz(Zn)E;jxj,(Zn);

Meaningful values of X, and Xq depend on the nature of the
problem., For example, suppose a company produces a certain type of tube
and a customer is interested in buying a large supply of these tubes.
However the customer wents a guaranty as to what fraction of the tubes
will last L4O hours or more. The company will need to know what frace
tion, say p, of the tubes produced will last 4O hours or more. p will
likely be unknown, so an estimate must be used. The company will want
this estimate to be less than p, that is they will want to be able to
say with a high degree of confidence that at least a certain fraction of
these tubes will last 4O hours or more., Therefore a p(X) is needed
such that Pr( p>p(X) ) is large, say .90. However, the company will
not want to underrateb its product by giving an estimate which may be
considerably less than p, since it might loose the order as a result.
The accuracy of p(X) can be controlled then, by choosing another value,

say 60, where Py is the fraction of the tubes produced by this process
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which last longer than 60 héurs, and.consider the probability that
p(X) - fraction of the tubes actually last loﬁger than 60 hours. That
is, if p(X) is less than pl, the company is underrating its product
by saying that at least p(X) fraction of the tubes will last longer
than U0 hours when in reality at least p(X) fraction of the tubes
will last longer than 60 hours. To control this kind of an error we
can determine p(X) such that Pr( p>p(X)) = .90, then determine what
sample size should be taken so that we will have Pr( p1:>p(X) )<.10
(or some smaller value if more accuracy ié desired). If we assume the

the exponential distribution then we will have

p(X) = exp [-noX?go(zm/zm‘c]

and n must be determined such that the inequality

(10/60) Y ¥y 2n) <Y 2

is satisfied. Using the chi=square tables we see that the first degree
of freedom row for which this is satisfied. is 8l. Therefore we need

2n>81, so we would choose a sample of size L1,



CHAPTER VI
SUMMARY

In this thesis a study is made of the accuracy of tolerance limits
for densities which satisfy the statement Pr( coverage>p ) = a. A
discussion is given on measures of accuracy which have been considered
and the merits of these measures are discussed. It is pointed out that
none of these measures is satisfactory for considering both the compar-
ison of two different functional forms for s tolerance limit and the
determination of a sample size to obtain a desired degree of accﬁracy.

For a tolerance limit for a density which satisfies the statement
Pr( coverage>p ) = a, it is proposed that Pr( coverage>p' ), where
p'>p, be used as a measure of the accuracy of the limit. The feasibility
of this criterion for use in studying the above stated problems is
discussed, and a limit is defined as uniformly most accurate if
Pr( coverage>p' ) is a minimum for all p'>p. The uniform density is
uéed as an example and the problem of determining a sample size necessary
to.obtain a desired‘degree of accuracy is solved. That is, a tolerance
1imitvis detérmined such that Pr( coverage>p ) = a, then the sample
size is determined so that for giveﬁ p! and a' ‘the statement
Pr( coverage™>p!' )< a' will also be satisfied.

Let f(x;G) be a density function and suppose the cumulative density
functipn F(x;0) of X is a‘decreasing function of © for each x.

Then if © is 2 lower a probability confidence limit on €, we have

'50
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92?8[} - F(x;Q)] = 1 - F(x;8).,

Now if L is determined such that 1 - F(L;8) = p, then we have that

1 - F(L;8)>p if and only if 6<0. Therefore

Pr[ foz‘(x;o)dx>p ]

L Pr[l - F(L;Q)>p]

PI‘( _g_<g ) = 3o

This gives a useful relation between the probability statement of a tol-
erance limit on the density and the probability statement of a confidence
limit on the parameter. Conditions on f(x3;0) are given so that if 8
is the uniformly most accurate confidence limit on © and 1L is deter-
mined by the above relation, then L will be the uniformly most accurate
toléranCe limit on the fraction p of the density £(x30).

| Some applications of the above techniques are given, For the
_exponential distribution, the uniformly most accurate lower tolerance
limit is derived for each of two different sampling schemes. The
problem of determining the accuracy of these limits is solved. Also a
tolerance limit based on a single order statistic is derived and this
limit is compared with the uniformly most accurate linit,

The problem of‘determining a lower confidence limit on the fraction

- of a density greater than a given value is briefly considered; It is
shown that this confidence limit can be determined by using a confidence
limit on the parameter similar to the technique given for the standard
tolerance limit problem. A measure of precision is defined for this
confidence 1limit and the problem of determining the sample size necessary
to achieve’a désired‘degree of accurécy is solved for the exponential

distribution.
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