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CHAPTER I 

INTRODUCTION 

Protein Synthesis 

The steps involved in protein synthesis are well documented. 

The•• include the uptake of amino acids by the cell (1-4), the activa-

tion of the amino acids and formation of amino acyl ribonucleic acid 

derivatives by enzymes specific for each amino acid (5-14), the transfer 

of the ami~o acyl ribonucleic acids to ribosomes (15-20) as directed by 

mRNA* (21-25), the formation of peptide bonds, and the release of the 

finished protein from the ribosome (26-30). 

Tisaierea, Schleaainger and Gros (31), Kam.eyama and Novelli (32) , 

and Matthaei and Nirenberg (33) reported the inhibition of amino acid 

incorporation into the protein by DNase in cell-free extracts . The inhi-

bition of protein synthesis by DNase was thought to be due to the 

*The following abbreviations are used: mRNA, messenger ribonucleic 
acid; sRNA, soluble or acceptor ribonucleic acid; DNA, deo)cy'ribonucleic 
acid; u, G, A and C, the nucleosides of uracil, guanine, adenine and 
cytosine respectively; AMP, ADP and ATP, adenosine mono-, di- and tri
phosphates respectively; poly U, poly uridylic acid; poly UC 5:1, poly 
uridylic-cytidylic acid 5:1; DNase, deo)cy'ribonuclease; RNase, ribo
nuclease; Pi, inorganic orthophosphate; PP1, inorganic pyrophosphate; 
GTPase, enzyme that cleaves GTP to give GDP and Pi; UL, uniformly 
labeled; pUpU, 5'-0-phosphoryl-uridylyl-(3 1-5 1)-uridine; UpG, uridylyl
(31-51)-guanosine (the letter p to the left of the nucleoside indicates 
a 51-phosphate, the letter p to the right indicates a 3 1-phosphate); 
EDTA, ethylenediamine tetraacetic acid; Tris, tris (hydroxymethyl) 
aminomethane; phe-phe, the dipeptide phenylalanylphenylalanine. 

1 
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destruction of DNA and its resultant inability to function as a template 

for mRNA synthesis. 

Subsequently, Nirenberg and Matthaei (34) observed that synthetic 

polyribonucleotides could stimulate the incorporation of amino acids 

into protein-like material in a cell-free extract of Escherichia coli. 

Poly U was shown to specifically stimulate ~he incorporation of phenyl

alanine into a protein having many of the characteristics of authentic 

poly-L-phenylalanine. This discovery provided a model system by which 

the steps of protein synthesis could be studied in detail, and also 

stimulated work on ·the elucidation of the amino acid code, i.e. the 

means by which the sequence of bases found in nucleic acids may be 

translated into a given amino acid sequence in a functional protein. 

The stimulation of phenylalanine incorporation into trichloroacetic 

acid insoluble material by poly Uhas subsequently been observed in a 

variety of cell-free systems including rat liver and tumor systems (34, 35) 

ascites tumor components (36), a cell-free yeast system (37), and a 

cell-free system obtained from rabbit reticulocytes (38). 

Work done principally in the laboratories of Nirenberg (39-41) 

and Ochoa (42, 43) has led to formulation of base doublets and triplets 

in mRNA which will act as code words for the incorporation of amino 

acids. Because the bases of the code word have been established using 

synthetic polynucleotides with random sequences, only the base composi

tion and not the base sequence is known for the code words. Both investi

gators propose as code words for phenylalanine triplets containing three 

uridylic acid residues (UUU) and two uridylic-one cytidylic acid residues 

(2U1C). 

That more than one code word may code for a single amino acid is 
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known as degeneracy. Incorporation in vi tro of 17 amino acids by poly

nucleotides containing a random and wide variation of t he four bases 

suggested a highly degenerate code (40). In addition, leucine a cceptor 

sRNA has been found to have ambiguous coding properties (44). Counter

current distribution studies of sRNA from~· coli have revealed several 

amino acid acceptor RNA 1s with multiple peaks (45) . 

Recently, Leder and Nirenberg (46, 47) studied the effect of tri

nucleotides on the binding of sRNA to ribosomes. The trinucleotides 

pUpUpU, pApApA, and pCpCpC directed the binding of phenylalanyl-, lysyl-, 

and prolyl-sRNA to ribosomes respectively. These results are in agree

ment with code words proposed from the results of amino acid incorpora

tion studies in vitro using polynucleotides as messenger s (37, 39). 

The trinucleotide GpUpU, but not its sequence isomers, UpGpU or UpUpG 

induced binding of valyl-sRNA to ribosomes, suggesting that an RNA 

code word for valine is GpUpU. 

Using poly U in a cell-free system obtained from~. coli, Nirenberg, 

Matthaei and Jones (48) showed that sRNA was indeed an intermediate in 

the synthesis of poly phenylalanine. Poly U stimulated the incor poration 

of radioactivity from 14c-L-phenylal anine-sRNA into trichloroacetic acid 

insol uble material. The incorporation of label was not diminished by 

the addition of unlabeled amino acict as was true when 14c-L-phenylalanine 

was incorporated into protein. 

The role of sRNA in coding for fllldno acid incorpor ation was further 

elucidated by Chapeville, Lipmann, von Ehrenstein, Weisblum, Ray and 

Benzer (49). Cysteinyl-sRNA was converted to alanyl-sRNA which was 

then incubated in an~. coli cell- free system using poly UG (5:1) as 

the messenger. Normally, poly UG stimulates the incorporation of 
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cysteine into trichloroacetic acid insolubl e material but not alanine 

(41, 43), but in this case radioactive alanine was incorporated into 

protein. It was concluded that sRNA functions as an adaptor in speci

fying the fit of amino acids on a template. 

The reactions that take place on the ribosome leading to peptide 

bond formation and release of the finished protei n have been somewhat 

of an enigma. However, Conway t50) has studied t he requirement f or 

monovalent cations in the;§_. coli amino acid incorporation system. In 

the poly U dependent reaction, ammonium ion stimulation was superior 

to that of potassium ion. However, in other amino acid polymerizations, 

ammonium and potassium ion stimulations were similar in magnitude . A 

lag period in the polymerization of 14c-L-phenylalanine was noticed 

which was eliminated by incubation of ribosomes, phenylalanyl-sRNA, 

poly U and ammonium or potassium ions. The monovalent cations seemed 

to be involved in binding of amino-acyl sRNA to ribosomes. 

Spyrides (51) reported that the binding of 14c-phenylalanyl-sRNA 

to ribosomes was dependent on poly U and ammonium or potassium ions • 

.Ammonium ion was most effective in this reaction. Although ribosomes 

were washed repeatedly, and there was no indication of peptide bond 

formation, the possibility of enzymatic partici pation in the binding 

reaction could not be ruled out. 

A partial separation of the:§.. coli amino acyl sRNA transfer 

factor into two complementary factors was r eported by Allende, Monro 

and Lipnann (52). A ribosome-dependent GTPase activity was found to 

be associated with the 11B11 fraction, and GTPase activity was found to 

closely parallel amino acid incorporation (53) . 

Arlinghaus, Shaeffer and Schweet (54), using the rabbit r eticulocyte 
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system, have resolved the reaction sequence at the ribosome site into 

two distinct enzymatic reactions . The first reaction utilized GTP in 

the binding of 14c-phenylalanyl-sRNA to the poly U-ribosome template. 

When ribosomes with bound phenylalanyl-sRNA were extracted from the first 

reaction and incubated in the second reaction phe-phe was formed. Their 

data indicated that only two phenylalanyl-sRNA molecules could bind to 

one ribosome at a time, but "when both enzymes and GTP are present, 

longer polypeptide chains on fewer ribosomes are formed." The mechanism 

of peptide bond formation was inferred to be an alternating sequence of 

binding reaction and peptide synthetase reaction . 

A study of the interaction of ribosomes with poly U showed that 

the RNA was bound to JOS, but not to 50S ribosomes (55). The observa

tion that JOs ribosomes treated with formaldehyde bound less poly U 

than untreated ribosomes prompted the suggestion that binding may be 

through the phosphate of mRNA and amino groups of ribosomes (46) . 

In the!· coli-poly U system, which evidently does not release 

finished peptides into the medium, Gilbert (56) demonstrated that 

phenylalanyl-sRNA was bound to the 50s ribosome. 

Gilbert (56) showed thatpolyphenylalanine synthesis takes place 

on polyribosomes formed by interaction of poly U and 70s ribosomes . 

Polyribosomal structures have been observed in reticulocyte systems 

(57, 58) and during viral infection of mammalian cell cultures (59) . 

Hardes ty, Miller and Schweet (60) have observed a concomitant breakdown 

of polyribosomes with hemoglobin synthesis in a cell-free reticulocyte 

system. Kiho and Rich (61) have detected ~-galactosidase activity on 

bacterial polyribosomes after induction of!· coli spheroplasts with 

methyl-p-thiogalactopyranoside. 



A pictorial representation of the path of protein synthesis is 

seen in Figure 1. 

Amino Acid Analogues 

Since the report that sulfonamide drugs exerted their effect by 

competing with p-aminobenzoic acid for an essential enzymatic site, 

numerous compounds analogous in structure to the natural amino acids 

have been synthesized and tested as metabolic antagonists (62). 

The use of p-fluorophenylalanine as a phenylalanine antagonist 
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has been extensively investigated and reviewed (63). The analogue, when 

added to a synthetic medium of exponentially growing cells, reduced the 

rate of growth of~. coli and yeast cells. However, the inhibition was 

immediately reversed by addition of phenylalanine. 

Studies on the assimilation of amino acids in bacteria showed that 

radioactive p-fluorophenylalanine flowed rapidly into the intracellular 

amino acid pool and thence into cell protein (63). When similar con

centrations of amino acid and analogue were present , phenylalanine was 

preferentially taken up and incorporated into cell protein. However, 

when p-fluorophenylalanine concentration in the medium was four times 

that of phenylalanine, some analogue did pass into the pool. Similar 

results were obtained with other bacterial cultures. 

Certain analogues on gaining entry into a bacterial cell inhibit 

the synthesis of the natural amino acid (63). The analogues, p-fluoro

phenylalanine and 2-thiophenealanine, appeared to inhibit the biosynthetic 

pathway of phenylalanine synthesis. This inhibition would increase the 

relative concentration of the analogue in the cell, and greatly facilitate 

incorporation of the analogue into cell protein. 
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As measured by ATP-PPi exchange in an extract from~. coli,· p

fluorophenylalanine was activated at only one-tenth the rate of phenyl

alanineJ however, p-fluorophenylalanine could replace the majority of 

the phenylalanines in l· coli proteins when protein synthesis was one

half that occurring in the absence of the analogue (63). As measured 

by hydroxamate formation, phenylalanine and 2-thiophenealanine were 

activated equally, yet 2-thiophenealanine could not sustain protein 

and RNA synthesis in the absence of phenylalanine~ 

Using a purified enzyme from!· coli, Conway, Lansford and Shive 

(64) found that p-fluorophenylalanine was converted to the hydro~te 

95% as effectively as phenylalanine, and 2-thiophenealanine conversion 

was 58% as effective as the natural amino acid. 

Westhea.d and Boyer (65) observed a 16-25% replacement of phenyl

alanine by p-fluorophenylalanine in the purified rabbit enzymes aldo

lase and glyeeraldehyde 3-phosphate dehydrogenase. Properties of the 

p-fluorophenylalanine-eontaining enzymes were the same as the normal 

enzymes. Richmond (66) detected a random replacement of phenylalanine 

by p-fluorophenylalanine in the alkaline phosphatase(s) of!~ coli. 

Arnstein andRichmond (67) studied the utilization of phenylalanine 

and p-fluorophenylalanine in protein synthesis in a c~ll-free rabbit 

reticulocyte system. In the presence and absence of poly U as added 

messenger, incorporation of phenylalanine and the analogue were 

qualitatively the same. Phenylalanine markedly inhibited the activa

tion of the analogme, but after attachment to sRNA no discrimination 

against the analogue was evident. 

Richmond (67) could find no evidence of degeneracy in the code 

for phenylalanine in the reticulocyte system, It was concluded that 
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if degeneracy exists, the various phenylalanine acceptor RNA 1s must have 

similar specificities for phenylalanine and p-fluorophenylalanine. How

ever, Nirenberg, Jones, Leder, Clark, Sly and Pestka (41) found evidence 

for the two code words (UUU, 2UlC) for phenylalanine in the~· coli 

system by comparing the stimulation of phenylalanine incorporation by 

UC copolymers o.f varying U content. 

Assuming a code word consisting of three letters or bases, the 

maximum number of code words obtained from the four bases is 43 or 64. 

If the code word is a doublet the maximum number o.f code words is 42 

or 16. Although there is evidence to indicate that some code words 

may be doublets (41), several lines of evidence suggest that three 

bases are involved in code word recognition (41, 68, 69). .The possi~· 

bility exists that all 64 possible base combinations may code for amino 

acid incorporation which would mean extensive degeneracy. It is also 

possible that some base combinations may have other meanings such as 

start or stop reading. A third possibility is that all possible base 

combinations may be code words in synthetic mRNA, but in the intact 

cell base sequence in mRNA and DNA is restricted~ 

The possibility o.f extensive degeneracy has been implied as cited 

previously'o Although evidence for phenylalanine code word degeneracy 

has been presented, existing techniques have not demonstrated degeneracy 

at the phenylalanine acceptor RNA level as has been shown for other 

amino acids such as leucine. 

The use of amino acid analogues ma7 reveal a difference in 

specificity in the reactions the amino acid and analogue undergo during 

protein synthesis. Since p-fluorophenylalanine will qompete with or be 
' . ·- , . ~ ., ; 

incorporated in place of phenylalanine into cellular protein, this 
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analogue has been.used to test for phenylalanine acceptor RNA degeneracy. 

A comparison of the activation and formation of amino acyl RNA of 

phenylalanine and p-fluorophenylalanine has been made. Incorporation 

o·f the amino acid and analogue from the free amino acid and from the 

amino acyl RNA into protein as stimulated by poly U and UC copolymers 

of varying U content has been studied. Preference of one of the phenyl

alanine acceptor RNA 1s for p~fluorophenylalanine and subsequent incor

poration into protein by one of the code words would indicate degeneracy 

at the sRNA level. 



CHAPTER II 

EXPERIMENTAL PROCEDURE 

Materials 

The sodium salts of ADP, UDP, GTP and the lithium salt of CDP were 

obtained from Schwarz Bio Research, Inc. The sodium salt of ATP was 

obtained from P-L Biochemicals, Inc •. · The silver-barium salt of phos~ 

phoenolpyruvate, pyruvate kinase (2.7.1.40), p-fluorophenylalanine, 

and p-fluorophenylalanine-l 1- 14c,.sp. Aet. 3.5 mC per mmole, were ob-

tained from California Corporation for Biochemical Research. L-Phenyl

alanine-u1-14c was obtained from New England Nuclear Corp. Sp. Act. 367 

and 33.9 mC per mm.ole, and DL-phenylalanine-3-14c Sp. Act. 1.1 mC per 

mmole from Volk Radiochemical Co. DNase (3.1.4.5), Muramidase (3.2.1.17) 

and dried Microcooocous l.ysodeikticus cells were obtained from Worthing-

ton Biochemical Corp. RNase (2.7.7.16) was obtained from Mann Research 

Laboratories, bovine serum albumin Fraction V from Nutritional Biochemi-

cals, Inc. and silicic acid from Mallinkrodt Chemical Works. Generous 

gifts of phenylalanine antagonists are acknowledged as follows: o-

aminophenyla.lanine from T. J. McCord and A. Davis; 2-thiophenealanine, 

from C.R. Crane; and cis-crotylalanine, 4-aminophenylala.nine, 1-

cyclopentenealanine, 2-amino-4-ethyl-4-hexanoic acid, p-tolylalanine, 

2-pyridylalanine and ethallylglycine from C. G. Skinner. Alumina A305 

was a gift from the Aluminum Corporation of America. :fil. coli B sRNA 

11 



was obtained from General Biochemicals and stripped of its amino acids 

by incubating in 0.5 N Tris HCl pH 8.1 at 35° for 45 minutes followed 

by dialysis at 4° against two changes of 10 volumes each of glass 

distilled water for 12 hours. 

Methods 

Purification of 3H-p-Fluorophenylalanine 

Acid-catalyzed tritium exchange on p-fluorophenylalanine was 

carried out by Volk Radiochemical Co. The labeled p-fluorophenyl

alanine was purified by ion exchange chromatography (70) and paper 

chromatography. The solution of radioactive p-fluorophenylalanine was 

placed on a 1.2 by 2.5 cm column of Dowex 50-X8 (100-200 mesh) which 

had been washed with 2 N HCl. The column was then washed with 10 ml 

each of 2 N and 3 N HCl. The radioactive analogue was eluted with 

4 N HCl. The fractions containing p-fluorophenylalanine, as determined 

by measuring absorbance at 264 mµ. (A264), were lyophilized to dryness. 

The residue was dissolved in water and placed on a 1.2 by 3 cm column 

of Amberlite CG-400-X4 acetate. The analogue was eluted with 0.5 N 

acetic acid and fractions containing the ninhydrin peak were lyophilized 

to dryness. The residue was dissolved in water and chromatographed on 

Whatman JMM paper utilizing descendiz}g technique and butanol-butanone

water (2:2:1) as the developing solvent. This solvent system effected 

a separation of phenylalanine and p-fluorophenylalanine. The sheet of 

paper was cut into strips and the radioactive peak located with a 

Nuclear-Chicago Model lOOB paper strip scanner. The radioactive analogue 

was eluted with water and the solution was again passed through the 

Dowex 50 and Amberlite CG-400 columns. The final residue was dissolved 
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in water and adjusted to a concentration of 0.5 )lJilOle per ml using~ 

at 264 mµ of 808 M-1 cm-1• The use of strong HCl as eluant, though 

rapid and convenient, did result in some loss of specific radioactivity. 

The final specific radioactivity was 67.5 mC per mmole. 

Purification of Polynucleotide Phosphorylase 

Polynucleotide phosphorylase (2.7.7.8) was purified from dried 

M· lysodeikticus based in part on the procedure of Singer and O'Brien 

(71, 72). Teng of dried~· lysodeikticus were dispersed in 500 ml of 

0.5% NaCl to which was added 25 mg of muramidase. The suspension was 

incubated at 37° for 15 minutes. To the viscous solution was added 1 M 

MgC12 to 0.01 M, and DNase to 0.5 µg per ml. The solution was incubated 

an additional 10 minutes at room temperature, and 20 minutes in an ice 

bath. The suspension was centrifuged at 14,000 x g for 20 minutes at 

4° and the supernatant solution decanted (Fraction I). A small sample 

was dialyzed against cold glass distilled water for assay of enzyme 

activity. 

All further operations were performed at 4°. To Fraction I was 

added with stirring 29 ml of 0.5% protamine sulfate, pH 5.0 (1.68 ml 

0.5% protamine sulfate per 100 mg protein as determined by A280 :A260 

ratio). The solution was stirred for 20 minutes and centrifuged at 

14,000 x g for 20 minutes. The supernatant solution was decanted and 

16.4 g solid (NH4)2so4 was added with stirring per 100 ml of supernatant 

solution (30% saturation). After 15 minutes the suspension was centri-

fuged at 10,000 x g for 15 minutes and the supernatant solution decanted. 

To the supernatant solution was added with stirring 21.4 g (NH4)2so4 per 

100 ml (65% saturation). After 15 minutes the precipitate was collected 



by centrifugation. The supernatant solution was discarded anct the 

precipitate dissolved in 40 ml 0 . 1 M Tris HCl pH 8.1 and dialyzed 

against 10 volumes of the same buffer (Fraction II). 

Fraction II was placed on a column of Sephadex G-75 (4 . 5 cm x 

40 cm) which was equilibrated with 0.01 M Tris pH 8.1, 0.001 M EJJI'A, 

14 

and 0.001 M ~-mercaptoethanol and eluted with the same buffer. Fractions 

of 5 ml were collected at a rate of one ml per minute. Fractions con

taining enzyme activity were pooled (92 ml, Fraction III) and placed on 

a DEAE-cellulose column (3.6 cm x 10 cm) which was equilibrated with 

0 .01 M Tris, pH 8.1, 0.001 M EJJI'A and 0.001 M ~-mercaptoethanol (mixer 

solution). A non-linear gradient elution was employed using 250 ml 

mixer solution in a 500 ml bottle (mixer flask) and 250 ml mixer solu

tion made 0.5 Min NaCl in a 500 ml separatory funnel (reservoir). 

Fractions of 5 ml were collected at a rate of 2.5 ml per minute . 

Fractions containing enzymatic activity were pooled. The dilute pro

tein solution was concentrated by first diluting the solution with 2 

volumes of mixer solution and adsorbing the enzyme on a small DEAE

cellulose column (2.0 cm x 2.5 cm) prepared as descri bed above. The 

enzyme was eluted with mixer solution that was 0.5 Min NaCl. The 

purified enzyme was dialyzed against the mixer solution to r emove NaCl 

and stored at -20° (Fraction IV). 

Assay for the enzyme was carried out in a reaction mixture con

taining 0.15 M Tris pH 9.0, 0.4 mM EJJI'A, 0.04 M ADP, 0.01 M MgC12, and 

enzyme in a volume of 0.5 ml. Samples of 0.1 ml were pipetted into an 

equal volume of cold 7% perchloric acid. After 5 minutes at 0 ° the 

volume was made to 1.0 ml with 3.5% perchloric acid, centrifuged and 

0.5 ml of the supernatant solution removed for determination of Pi by 
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the method of Fiske and Subbarow (73). Units are expressed as µmole 

Pi released per mg protein per hour at 35°. In Table I is a resume of 

the purification procedure. 

TABLE I 

PURIFICATION OF POLYNUCIBOT-IDE PHOSPHORYLASE 

Fraction A280:A260 µg Nucleic Acid Specific Total 
per mg Protein Activity KUnits 

I o.65 314 15.1 32.6 

II 1.14 33.6 19.1 9.6 

III 1.22 1.5.6 22.0 10.9 

IV 1.45 5/3 60.0 12.6 

Preparation of Synthetic Polyribonucleotides 

Polymerization of the nucleoside diphosphates was carried out in 

5-10 ml volumes with the same concentrations of buffer, Mg-t+ and EDTA 

as in the assay system. Sufficient enzyme was added to complete the 

reaction in about 2 hours as determined by the release of Pi. When the 

reaction was complete, the polymers were deproteinized by shaking with 

0.25 volume of chloroform and 0.1 volume of isoamyl alcohol (74). After 

deproteinization, the polynucleotides were precipitated in the cold by 

addition of 0.1 volume 20% potassium acetate and 2 volumes cold ethanol. 

The precipitate was collected by centrifugation, dissolved in glass 

distilled water and dialyzed at 4° against 100 volumes of glass distilled 

water for 24 hours with 3 changes of water. The polynu-cleotides were 

again precipitated with potassium acetate-ethanol and the precipitate 
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successi vely washed by centrifugation with col d 75%, 85%, 95% and absol ut e 

ethanol, and finally with ether. The washed precipitate was air dried to 

remove most of the ether, then dr ied in va cuo over KOH pellets and paraffin . 

The polynucleotides were stored at room t emperature in a dessicator 

containing KOH pellets and paraffin. 

Preparation of Cell-Free Extract 

E. coli, Crookes strain (obtained f rom E. Noller, Microbiology - --
Department, Oklahoma State University), was grown in a dextrose-salts 

medium containing in g per liter: 3 (NH4)2so4 ; 7J5 K2HPo4 ; 3 KH2Po4 , 

1 NaCl; 0.1 MgS04; and dextrose as indicated. A 45-50 ml inoculum of 

0.5% dextrose-salts was grown for 8-12 hours, and used to inoculate 3 

liters of salts medium containing 1.25 mg per ml of dextrose. Following 

overnight incubation at 37° with aeration, the 3 liters of culture was 

poured into 7 liters of salts medium containing 50 g dextrose, and 

incubated at 37° with vigorous aeration. The increase of cell mass was 

determined by A630 measurements in a Bausch and Lomb Spectronic 20 

spectrophotometer at 15 minute intervals. When the growth rate reached 

an increase of 0.2 A630 units per hour, and the A63o was o.60 to o.65, 

the cells were poured over an excess of cracked ice, harvested in a 

Sharples centrifuge cooled wit h a circulating bat h kept at 5° , and 

washed by suspension and centrifugation. 

The cell-free extract was prepar ed i n a manner similar to that of 

Nirenberg and Matthaei (34). The cells were ground with twice their 

wet weight of alumina for 5 minutes at 5° . All subsequent steps were 

performed at this temperature. The enzymes were extracted with a volume 

of buffer containing 0.01 M Tris HCl pH 7.8; 0.02 M KCl; 0.01 M magnesium 
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acetate and 0 .004 M p-rnercaptoethanol (standard buffer ) equal to twice 

the weight of cells. The extract was centrifuged at 10,000 x g to 

remove alumina and debris. DNase was added to the supernatant fluid to 

make 0.5 µg per ml. The supernatant solution was then centrifuged 

twice more at 30,000 x g for 15 minutes each. The final supernatant 

fluid (JOS) was incubated for 40 minutes at 35° in a medium containing 

the following in pmoles per ml: 60 Tris, pH 7.8; 55 KCl; 15 magnesium 

acetate; 6 mercaptoethanol; 0.075 each of 20 amino acids (glycine, 

alanine, serine, aspartic acid, asparagine, glutamic acid, glutamine, 

isoleucine, leucine, cysteine, cystine, histidine, tyrosine, tryptophan, 

proline, threonine, methionine, phenylalanine, arginine and lysine); 

2 ATP; 1 phosphoenolpyruvate, potassium salt; and 15 µg pyruvate 

kinase. The incubated extract was dialyzed against 60 volumes standard 

buffer for 6-10 hours and then frozen and stored in liquid nitrogen 

(Incubated 30S). 

Sometimes the JOS extract was dialyzed against standard buffer and 

centrifuged at 105,000 x g for 2 hours to precipitate the ribosomes. 

The supernatant solution was aspirated to within 1-2 cm of the precipi

tate, frozen and stored in liquid nitrogen (105S). 

The ribosome precipitate was washed with standard buffer, suspended 

in 0.01 M Tris, pH 7.2 and 10-4 M magnesium acetate and dialyzed over

night against the same buffer. RNase was added to the dialysate to a 

concentration of 10 µg per ml and incubated for 15 minutes at 20°. The 

ribosomes were precipitated by centrifugation at 105,000 x g for 2 hours 

and suspended in 0.02 M Tris, pH 7,2, 0.05 M KCl and 0.02 M magnesi um 

acetate. The ribosomes were washed twice by centrifugation and suspended 

i n the same buffer. The final ribosome suspension was centrifuged at 
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6000 x g for 15 minutes, and the supernatant solution decanted, frozen 

in liquid nitrogen and stored at -20°. 

Amino Acid Incorporation 

The assay medium generally used was a modification of that employed 

by Conway (50). The assay mixture for the incorporation of the amino 

acid contained in a volume of 0. 25 ml the following in pmoles: 25 Tris 

HCl pH 7.8; 1 ~-mercaptoethanol; 12.5 NH4c1 or KCl; 10 magnesium 

acetate; 0.5 ATP; 1 phosphoenolpyruvate; 0.1 GTP; 10 µg pyruvate 

kinase; 0.2 µC L-phenylalanine-u1-14c (5.4 to 5.9 x 10-4 pmoles); or 

0.02 µmole DL-p-fluorophenylalanine-3H. Polynueleotide and incubated 

JOS extract additions are indicated in the legends. Incubation was for 

20 minutes at 35°. 

For the incorporation of the amino acid from amino acyl sRNA, the 

sole source of energy was 0.2 µmole of GTP, The reaction mixture con

tained approximately 3900 counts per minute 14c-phenylalanyl-sRNA or 

1800 counts per minute 3H-p-fluorophenylalanyl-sRNA. Additions of 

polynucleotide and incubated 30S extract are indicated in the legends. 

Incubation was for 10 minutes at 35°. Details of other reaction mix-

tures are given in the legends. 

A 0.1 ml sample of the assay mixture was pipetted onto a 2.3 cm 

diameter Whatman 3MM paper disk in a stream of warm air to facilitate 

absorptia1 of the fluid by the disk and processed according to the 

0 1Neal and Griffin (35) modification of the method of Mans and Novelli 

(76). The paper disks, numbered and mounted on straight pins, were 

immersed in cold 10% trichloroacetic acid (5-7 ml per disk) and swirled 

for at least 10 minutes at 0°. The disks were then washed in 5% 
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trichloroacetic acid and extracted with hot 5% t richloroacetic acid at 

90° for 7 minutes. The disks were then washed twice with ethanol and a 

final ether wash facilitated drying under a stream of warm air. Radio-

activity on the disks was measured with a Model 3003 Packard Tri-Carb 

liquid scintillation spectrometer in 6 ml of a 100% toluene scintilla

tion fluid containing 4 g per liter of diphenyloxazole and 0.2 g per 

liter of l,4-di-(2-(5-phenylo.xazoyl) benzene. Counting efficiency was 

55-60% for 14c and 4-6% for 3H. 

Amino Acyl sRNA Formation 

Radioactive phenylalanine or p-fluorophenylalanine was charged to 

sRNA by a modification of the method of Conway (50). The reaction mix-

ture contained the following components per ml of reaction mixture: 

0.4 pmole ATP; 100 pmole Tris HCl pH 7.2; 10 pmole MgC12 ; 4 pmole /3-

mercaptoethanol; 0.75 re 1-phenylalanine; or 0.02 pmole p-fluorophenyl

alanine-3H; 5 mg sRNA (stripped of its amino acids) ; and 0.4-1 .0 mg 

dialyzed 105S extract. Incubation was for 10 minutes at 35°. The 

reaction was terminated by shaking with an equal volume of distilled 

90% phenol for 6 minutes. The mixture was centrifuged, the aqueous 

layer removed and the phenol layer washed with a small volume of water. 

The aqueous phases were combined and the charged sRNA was precipitated 

by addition of 0.1 volume of 20% potassium acetate and 2 volumes of 

cold ethanol. The precipitate was collected by centrifugation, washed 

with cold 75% ethanol, dissolved in a small volume of glass distilled 

water and dialyzed at 4° overnight against 2 changes of 100 volumes 

each of glass distilled water. 
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Fractionation of Amino \cyl sRNA on~ Methylated Albumin Column 

Because of the low specific activity of the p-fluorophenylalanyl

sRNA (approximately 500 counts per minute per mg RNA), silicic acid (76) 

was used as an inert support which gave columns of greater capacity than 

ieselguhr (77) 

Methylated albumin was prepared by the method of Mandell and Hershey 

(78). Twenty g of albumin were suspended in 2 liters of absolute methyl 

alcohol, to which was added 32.8 ml of 12 N HCl. The mixture was allowed 

to stand for 5 days with occasional shaking. The precipitate was col

lected by centrifugation and washed twice with methyl alcohol and then 

with ether. Most of the ether was removed by evaporation in air, and 

the methylated albumin was dried over KOH pellets and paraffin in~· 

The material was then ground to a powder. 

Silicic acid was suspended in water, decanted several times to 

remove fine particles, washed with 1 N HCl and water and then dried. 

Solutions containing various concentrations of NaCl buffered at pH 5,4 

with 0.02 M sodium acetate were prepared, and will be referred to by 

NaCl concentration only. 

Teng of silicic acid were suspended in 0.2 M NaCl and stirred 

briefly with a water solution containing 0.5 g methylated albumin. The 

slurry was poured into a 1.8 x 18 cm column. The fluid was allowed to 

drain to the top of the column and the packed column was washed with 

50 ml of 0.2 M NaCl. The radioactive amino acyl sRNA was placed on 

the column and a linear gradient of increasing NaCl concentration was 

employed. other details are given in the legends. The A260 of each 

fraction was determined and 0.5 ml of each fraction was put in 10 ml 

Bray's liquid scintillation solution (79) for radioactivity measurement . 



Counting efficiency was 45-50% for 14c and 12-17% for 3H. 

In a preparative procedure, 200 mg of~- coli B sRNA and about 

20,000 counts per minute of 14C-phenylalanyl-sRNA were placed on a 

21 

3.7 x JO cm column containing 60 g silicic and 2.5 g methylated albumin 

which was prepared as described above. The column was developed with a 

linear gradient consisting of 400 ml 0.2 M NaCl in the mixer, and 400 ml 

1.2 M NaCl in the reservoir. Fractions of 5 ml were collected at a rate 

of 4-5 ml per minute. Fractions containing radioactivity were pooled, 

diluted with 2 volumes water, and the RNA adsorbed from the solution by 

stirring with ECTEOLA cellulose which had been washed with 1 M HCl and 

water. The RNA was eluted from the cellulose with 1 M NaCl and the 

eluate dialyzed at 4° for 36 hours against 3 changes of 60 volumes each 

of glass distilled water to remove the NaCl. The solution was lyophilized 

to dryness and the resulting RNA, about 40 mg, was used for charging p

fluorophenylalanine. 



CHAPTER III 

RESULTS 

Analysis of Polynucleotides 

The synthetic polyribonucleotides for amino acid incorporation in 

the~· coli cell-free system were characterized by base analysis and 

sucrose density gradient centrifugation. The results of the base 

analysis are seen in Table II. The input ratios of UDP:CDP in the 

polymerization reaction mixtures were 5:1, 3:1, 1:1 and 1:3. However, 

higher ratios of UMP to CMP were found in the latter two polymers. 

The relative chain length of the polymers as determined by sucrose 

density gradient centrifugation was found to parallel the amino acid 

incorporating ability of the polymers under the conditions generally 

employed for cell-free protein synthesis. Figure 2 shows a comparison 

of two samples of poly U fractionated by sucrose density gradient 

centrifugation. The open circles show a relatively high concentration 

of A260 material in regions of greater sucrose density (fractions 10 

to 20) and this sample of poly U was quite active, stimulating pqenyl

alanine incorporation up to 40 fold. The poly U represented by the 

closed circles contained very little material in the more dense region 

of the gradient, and a very high proportion of the poly U did not sedi

ment appreciably. This polymer did not stimulate phenylalanine incor

poration with the assay conditions generally employed. 
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TABIE II 

BASE ANALYSIS OF POLYNUCLEOTIDES 

Percent Mononucleotide* 
u c 

Polynucleotide 
UC Ratio 

81.7 

76.8 

67.2 

35.2 

18 • .3 

23.2 

.32.8 

64.8 

UC 5:1 

UC 3:1 

UC 2:1 

UC 1:2 

*Approximately 500 µg of polynucleotide were hydrolyzed in 0.5 ml 

of 0.3 N KOH at 37° for 18 hours (80). The solution was then neutralized 

with 6 N HC104, and the resulting precipitate of KC104 removed by cen

trifugation. The supernatant solution was made 0.05 Nin HCl and ap-

plied to the top of 1.1 cm x 4.5 cm Dowex 50-X8 (100-200 mesh) column 

that had been prepared by washing with 3 N HCl, water until ne~tral, 

then with 20 ml 0.05 N HCl. The UMP was quantitatively eluted with 

6 ml of 0.05 N HCl. Following this GMP was eluted with 7.5 ml of 

water and AMP and CMP were eluted together with the next 25 ml of water 

wash. All eluants were made 0.05 Nin HCl. Absorbancies of the solu-

tions were determined and the concentrations of the mononucleotides 

calculated as indicated (80). 



Fi.gure 2 

Sucrose Density Gradient Fractionation of !:'..£1:z. !I Preparations 

Relative size of the polymers was de'c.eirmined by sucrose 

density gradient centrifugation using a modification of the method 

employed by Matthaei, Jones, Martin and Nirenberg (39). A linear 

gradient of sucrose concentration from 20% at the bottom to 5% 

at the top of the tube was employed. The sucrose solutions con

tained 5 x 10-3 M sodium cacodylate, pH 6.ti, and 0.1 M NaCl. 

Approximately 0.5 mg of the polynucleotide was dissolved in 

0.2 ml of the 5% sucrose solution and layered on top of the 

gradient to give a total volume of 4.4 ml per tube. The tubes 

were centrifuged in a Spinco SW-39 rotor for 10 hours at 3'° 

using a Spinco Model 1 centrifuge at 35,000 rpm. Two drop 

fractions were collected from the bottom of the tube with a 

#22 hypodermic needle. One ml of water wafi added to each 

fraction and A26o of the fractions were Oi, preparation I; 

~' preparation II. 
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Poly UC 5 :1 was composed almost entirely of rapidly sedimenting 

material (Figure 3), and this polymer was quite active in stimulating 

phenylalanine incorporation. Poly UC 3:1, 2:1 and 1:2 gave similar 

A26o profiles as exemplified by poly UC 3:1 in Figure 4, These poly

mers consisted largely of material that did not sediment appreciably 

in the density gradient. 

Characteristics of Amino Acid Incorporation System 

The synthetic polyribonucleotides were used as mRNA in a cell

free system obtained from!· coli. Some of the indications that amino 

acid incorporation in a cell-free system into trichloroacetic insoluble 

material is equivalent to protein synthesis are dependence on: exo

genous mRNA; ATP and an ATP regenerating system; GTP; ribosomes; 

enzymes in the ribosome-free supernatant solution; and amino acids 

(33, 34), The incorporation is also inhibited by RNase and inhibitors 

of protein synthesis. 

In the system employed in this study ribosomes were not separated 

from the supernatant fluid. DNase was used to destroy DNA and thus 

prevent any natural mRNA synthesis. An incubation with 20 amino acids, 

buffer, metal ions and energy as required was used to destroy endogenous 

mRNA. The characteristics used to show protein synthesis in vitro 

were: dependence on exogenous mRNA; requirement for ATP, GTP and an 

ATP regenerating system and inhibition by puromycin. These charac

teristics are seen in Table III. 

Optimum phenylalanine incorporation into trichloracetic acid

insoluble material occurred at 50 µg poly U per ml of reaction mixture 

and this concentration of polynucleotide was used in most of the 



Figure J 

Sucrose Density Gradient Fractionation of !'oly UC 5:1 

Experimental details are given in the legend of Figure 2o 
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Figure 4 

Sucrose Density Gradient Fractionation of Poly UC J:l 

Experimental details are given in the legend of Figll."'e 2. 
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TABLE III 

CHARACTERISTICS OF THE CELI.,...FREE AMINO ACID INCORPORATING SYSTEM 

Additions 

Complete1~ 

-Poly U 

-ATP, GTP and ATP 
regenerating system 

+Puromycin, 0.02 µmole 

Complete{:· 

-Poly U 

-ATP, GTP and ATP 
regenerating system 

+Puromycin, 0.02 µmole 

·-----------
µpmole Phenylalanine= 11~c Incorporated 

KCl NH4c1 

107 152 

3.4 2.8 

1.3 1.8 

25.9 17.l 

µµmole p-Fluorophenylalanine-3H Incorporated 

960 

.3.6 

3.2 

3.4 

1*The complete system contained the components described previously 

plus· 12.5 µg poly U, O. 75 mg incubated 308 extract, puromy,;;;in a.nd 12 • .5 

µmoles monovalent cation as i.ndicated. 
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experiments. However no inhibition of phenyl alanine incorporation was 

apparent at concentrations of poly U up to 100 µg per ml reaction mix

ture. The incorporation of phenylalanine was stimulated JO fold by 

poly U with KCl as the monovalent cation, and 50 f old with NH4c1. With 

NH4c1 a 28% to 41% incorporation of the label was routinely observed 

and NH4c1 was subsequently used as the monovalent cation. Stimulation 

of phenylalanine incorporation was dependent on ATP, GTP and an ATP 

regenerating system. Puromycin, known to be an inhibitor of prot ein 

synthesis (81), decreased the poly U stimulation of phenylalanine 

incorporation by 76% to 89%. 

The incorporation of p-fluorophenylalanine in the cell-free 

system was stimulated 25 fold by poly U and this incorporation was 

dependent on ATP, GTP and an ATP regenerating system. Puromycin 

inhibited analogue incorporation by more than 99%. 

The reaction mixtures contained 5.45 x 10-4 µmoles of phenyl

alanine, or 2 x 10-2 µmoles of DL-p-fluorophenylalanine which gave 

optimum p-fluorophenylalanine incorporation. This expl ains the greater 

incorporation of p-fluorophenylalanine. 

The incorporation of phenylalanine and p-fluorophenylalanine from 

sRNA is dependent on poly U (Table IV). The parti al dependence of 

incorporation on GTP may be explained by traces of nucleotides r emaining 

i n the crude system. The poly U- sti mulated incor poration was inhibited 

by puromycin. The action of puromyci n is to react wit h t he carbo.xyl 

end of peptidyl-sRNA ending the sequent ial extension of the peptide 

chain (81). Since amino acyl sRNAwas present at high concentrations, 

it is likely that puromycin concentration is not great enough to give 

opt imum inhibition. 
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TABLE IV. 

INCORPORATION OF AMINO ACID FROM sRNA 

Additions Counts Per Minute Incorporated 
Phenylalanine p-Fluorophenylalanine 

Complete* 

-Poly U 

-GTP 

+Puromycin, 0.015 µmole 

1770 

122 

648 

300 

388 

68 

177 

169 

*The reaction mixture contained the components described previously, 

0.75 mg incubated JOS extract, 50 µg poly U per ml reaction mixture, 

puromycin as indicated. 

Effect of Analogues on Phenylalanine-14c Incorporation 

Many phenylalanine analogues have been synthesized and tested as 

phenylalanine antagonists. Conway, Lansford and Shive (64, 82) tested 

a large number of phenylalanine analogues on the growth of ~· coli . 

They reported that p-fluorophenylalanine, 2-thiophenealanine and 2-

pyridylalanine were inhibitory to growth of the wild strain of the 

organism and these analogues were also converted to the hydroxamate 

by the purified enzyme. These analogues, along with 4-aminophenyl-

alanine inhibited growth of a phenylalanineless mutant at inhibitor 

to substrate ratios of 10 or less. Of these analogues, p- fluoro-

phenylalanine inhibited phenylalanine conversi on to its hydroxamate 

at an inhibitor to substrate ratio of 10. The other analogues re-

quired ratios of 100-200 for such inhibition. The other analogues 
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(cis-crotylalanine, 1-cyclopentenealanine, 2-a.mino-4-ethyl-4-hexanoic 

acid, p-tolylalanine and ethallylglycine) did not inhibit growth of 

the wild strain of]. coli. Of these latter analogs only 1-cyclo

pentenealalanine was converted to the hydro.xamate by the purified 

enzyme. The potent inhibition of growth of]. coli by o-aminophenyl

alanine, was reversed competitively by phenylalanine (83). 

Of the analogues cited above only p-fluorophenylalanine inhibited 

the poly U stimulation of phenylalanine incorporation in the cell-free 

system and 1-cyclopentenealanine was without effect (Table V). All the 

other analogues caused an increase in the poly U stimulation of phenyl

alanine incorporation ranging from 50% for 2-amino-4-ethyl-4-he.xanoic 

acid to 108% for p-tolylalanine at the lower concentration used. 

Increasing the concentration of 2-thiophenealanine, pyridylalanine and 

ethallyglycine resulted in a further increase in phenylalanine incor

poration. One possible interpretation of these results is that the 

analogues inhibited reactions competing for phenylalanine. 

Kinetics of .l\mino Acid Activation and Incorporation 

A significant difference in the kinetics and extent of phenyl

alanine and p-fluorophenylalanine activation and incorporation may give, 

an indication as to preference for the natural ·a.mino acid and phenyl

alanine code word degeneracy. Therefore a comparison of the kinetics 

of activation, formation of amino acyl sRNA and incorporation from 

the amino acid and from amino acyl sRNA into protein has been made. 

Hydro.xamate Formation 

Figure 5 compares the activation of phenylalanine and p-fluoro-



TABLE V 

EFFECT OF ANALOGUES ON THE POLY U STIMULATION OF 
PHENYLALANINE-140 INCORPORATION. 

Additions in mpmoles 
µ.pm.oles 

Phenylala.nine-14c 
Incorporated 

None* 42.4 

L-Phenylalanine-12c 5 19.6 

DL-p-Fluorophenylalanine 10 29.6 

20 25.5 

2-Thiophenealanine 10 67.2 

20 76.6 

2~Aminophenylalanine 10 66.8 

20 62.4 

cis-Crotylalanine 10 77.6 

20 54.0 

4-Aminophenylalanine 10 86.0 

20 67.2 

1-Cyclopentenealanine 10 41.6 

20 52.8 

2-Amino-4-Ethyl-4-
Hexa.noic Acid 10 64.0 

20 47.2 

p-Tolylala.nine 10 88.4 

20 79.2 

2-Pyridylalanine 10 72.8 

20 76.8 
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Percent 
of Control 

100.0 

46.3 

69.8 

60.1 

158.5 

181.0 

157.5 

147.1 

183.2 

127.3 

203.0 

158.6 

98.2 

124.7 

151.0 

111.3 

208.5 

187.2 

172.0 

181.5 



Additions in mµmoles 

Etha1lylglycine 

TABLE V ( CONTI.NUED) 

10 

20 

µpmoles . 
Phenylalanj_ne-14c 

Incorporated 

68.8 

74.8 

33 

Percent 
of Control 

162.6 

176.? 

~*The reaction mixture contained in 0.4 ml the. following in µmoles: 

40 Tris pH 7.8; 35 KCl; 5 magnesium acetate; 1.6 mercaptoethanol; 0.5 

ATP; 1 phosphoenolpyruvate; 1 x 10-3 GTP; 10 µg pyruvate kinase; 0.2 

µC L-phenylalanine-14c (545 ppmoles); or 0.02 µmole DL-p-fluorophenyl

alanine-3H; 10 µg poly U; and 2.15 mg 303 extract. Incubation was for 

1 hour at 35°. Samples of 0.1 ml were absorbed on paper disks and the 

disks processed as described previously. 



Figure 5 

Kinetics of Hydroxa.mate Formation 

The reaction mixture contained in 1.0 ml the follow:\.ng in 

pm.oles: 100 Tris pH 7.2; 10 ATP; 10 M'gCl...1; 1500 neutralized 
,:, 

hydro:x:ylamine·hydroehloride; 2 L-pheny-lala.:nine; or 4 DL-p-

fluorophenylala.nine; and 1. 5 mg 1055 extrac:t. Incubation was 

for the indicated time at 35°. The reaetic1n was stopped by 

the addition of 3 ml of a. solution containing 10% yec13 , 10% 

trichloroacetic acid and 0.67 N HCl (84). The protein pre-

cipitate was removed by centrifugation and filtration and A500 

determined in a Bausch and Lomb Spectronie 20 spectrophotometer 

against a standard of suceinic hydro.xa.mic $Cid. Upper figure, 

phenylalanine; lower figure, P-fluorophenylalanine. 
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phenylalanine as measured by hydroxa.mate formation. There was little 

difference in either the rate or amount of activation between phenyl

alanine and the analogue. This concurs with t he report of Conway, 

Lansford and Shive (64) that a puri fied enzyme preparation from~. 

coli activated p-fluorophenylalanine 95% as efficiently as phenyl

alanine. 

Amino Acyl sRNA Formation 

A comparison of the formation of phenylalanyl- and p-fluorophenyl

alanyl-sRNA is seen in Figure 6. Under conditions in which sRNA was 

limiting and similar concentrations of phenylalanine and fluorophenyl

alanine were present in the reaction mixtures, the sRNA accepted a 

greater amount of phenylalanine than p-fluorophenylalanine. This 

indicates that p-fluorophenylalanine is being charged preferentially 

to one of the phenylalanine acceptor RNA's. The preparation of phenyl

alanyl-sRNA was routinely accomplished; however, the charging of sRNA 

with p-fluorophenylalanine was only sporadically. successful. The 

reason for the difficulty of preparation of p-fluorophenylalanyl- sRNA 

is not known. 

Incorporation of Amino Acid 

The kinetics of the i ncorporation of phenylalanine and p-fluoro

phenylalanine into protein is observed in Figure?. The concentration 

of p-fluorophenylalanine in the reaction mixture was four times that 

of phenylalanine, which explains the greater incorporation of p-fluoro

phenylalanine. Since the relative saturation of the amino acid and 

analogue in the system has not been established, no conclusions can be 

made as to rate or extent of incorporation. 



Figure 6 

Kinetics of Amino AcylsRNA Formation 

The assay mixture contained in 0.8 ml the following in µmoles: 

80 Tris HCl, pH 7.4; 40 MgC12; 2 mercaptoethanol; 4 ATP; 0§4 µC 

phenylalanine-3-14c, Sp. Act. 2.44, or 0.4 pC p-fluorophenylala:nine-

11-14c, Sp. Act. 3.5; 0.45 mg 1058 extract; and 1.92 mg~· coli B 

sRNA. 
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Figure 7 

Kinetics of Amino Acid Incorporation 

The reaction mixture contained in 1.0 ml the following in 

pmoles: 100 Tris HCl pH 7.8; 4 mercaptoetlh.anol; 50 NH4Cl; 10 

magnesium acetate; 2 ATP; 4 phosphoenolpyruvate; 1 GTP; 50 pg poly 

U; 40 µg pyruvate kinase; 0.8 µc phenylalanine-UL-14c (0.0224 

µpmole); or 0.08 pmole p-fluorophenylalanine-3H; and J.O mg incu

bated JOS extract. Incubation was at 35°, and 0.1 ml samples were 

absorbed onto paper disks and processed for radioactivity deter

mination as described. O, phenylalanine-14c; ., p-fluoro

phenylalanine-3H. 
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Incorporation from Amino Acyl sRNA 

The kinetics of t he incorporation of the amino acids from sRNA 

into protein is shown in Figure 8. Since the amount of 3H-p-fluor o

phenyl- sRNA in the reaction mixture was much greater than 14C-phenyl

alanyl- sRNA (173 ppmoles to 32 ppmoles respectively) , no comparison 

as to rate or extent of incorporation is possible. However ther e is 

a noticeable lag in the incorporation of p-fluorophenylalanine from 

sRNA. This indicates that a reaction prior to peptide bond formation 

is affected by the analogue. 

Chromatographic Analysis of Amino Acyl sRNA 

Several studies have shown degeneracy at the sRNA level by 

resolving a given amino acid acceptor RNA into several fractions 

(41+, 45). No evidence for phenylalanine sRNA degeneracy has been 

obtained from these studies. If one phenylalanine acceptor RNA is 

preferentially charged by p-fluorophenylalanine, then co-chromatography 

of l4C-phenylalanyl- and JH-p-fluorophenylalanyl- sRNA may give suf

ficient resolution to indicate degeneracy. 

The results of chromatography of 14c-phenylalanyl-sRNA on a 

silicic acid modification of a methylated albumin-kieselguhr column 

are seen in Figure 9. Chromatography of phenylalan~ne-J-14c on a 

comparable column gave an elution profile similar to the f irst sharp 

peak noted near Fraction 10. This presumably arises because of the 

instability of the amino acyl sRNA. This first peak was not ed in 

some but not all preparations of amino acyl sRNA. The relative 

positions of the A260 peak (Fraction 25), and the radioactive peak 

(Fraction 32), were comparable to that r eported by S.ueoka and Yamane 



Figure 8 

Kinetics.of Amino Acid.Incorporation from..sRNA into Protein 

The reaction mixtures contained in 0.75 ml the following 

in pmoles: 75 Tris HCl pH 7.8; 7.5 magnesium acetate; 37.5 

NH4c1; 3 mercaptoethanol; o.6 GTP; 50 p.g poly U; 1730 counts 

per minute 3H-fluorophenylalanyl-sRNA (2 • .66 mg); or 11420 

counts per minute 14c-phenylalanyl-sRNA (1.15 mg); and 2.25 

mg incubated JOS extract. Incubation was at 35°, and 0.1 ml 

samples were absorbed onto paper disks at the indicated time 

and processed as described for radioactivity determination. 

O, phenylalanine-14c; e, p-fluorophenylalanine-JR. 
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Figure 9 

Approximately 20,000 counts per minute (2.2 mg ll~c~pheny1-

alanyl-sRNA) were chrom.atographed on a methylated albumin-silicic 

acid column. The column was developed with a linear gradient of 

100 ml 0.6 M NaCl in the mixer flask (250 ml bottle) and 100 ml 

1.2 M NaCl in the reservoir flask (250 ml bottle). e .,, A260 , 

()--(), counts per minute. 
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(77). Simil ar r esul ts were obtained with t he chromatogr aphy of p~ 

fluorophenylalanyl- sRNA on the methylat ed a l bumin column. 
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I n the absence of phenylalanine, poly U has been shown to s t imu= 

late the i ncorporation of leucine int o protei n (39 ) i n some cel l-free 

syst ems. This mistake in amino a cid coding may be a result of in vitr o 

condi tions. As a check on this possibility with phenylalanine at the 

sRNA level, 3H-phenylalanyl-sRNA, charged in t he pr esence of 19 other 

amino acids, and 14C-phenylalanyl- sRNA, charged with phenylalanine 

alone, were mixed and chromatographed on the methylat ed albumin 

column. As seen in Figure 10, there is no differ ence i n the 14c and 

3H peaks, indicating that in the absence o.f other amino a cids phenyl

alanine is not charged to any other sRNA. 

The possibility exists that one of the phenylal anine acceptor RNA 

molecules may be preferentially charged with p-fluorophenylal anine. 

Detection of such a difference would indicate degener acy at the sRNA 

level. To test this possibilit y, sRNA was charged with phenylalanine

l4c alone, and wit h p-fluor ophenylalani ne-3H al one. The labeled amino 

acyl sRNA's were mixed and chromat ographed on the methylated albumin 

column. No difference i n the shape or rel ative position of the 14c 

and 3H peaks is apparent (Figure 11) . This experiment gave no indica-

tion of phenylalanine degener acy at the sRNA l evel. 

Binding of Amino Acyl sRNA to Ribosomes 

Several investigators (46, 51, 56 ) have shown that poly U will 

mediate the binding of 14c- phenylal anyl- sRNA t o ribosomes, and t his 

binding can be detected by sedimentat i on of label ed sRNA in a sucrose 

density gradient centrifugation. Binding of p-fluorophenylalanyl- sRNA to 



Figure 10 

Fractionation of 3H-Phenylalan.yl- and 14c-Phenylalan.yl-sRNA 

Approximately 45,000 counts per minute 2,3-3H-phenylalanyl

sRNA (6.22 mg), charged with 19 other amino acids, and approximately 

20,000 counts per minute 14c-phenylalanyl-sRNA (2.2 mg), charged 

with phenylalanine alone, were chromatographed on a methylated 

albumin-silieic acid column. The column. was developed by a linear 

gradient consisting of 100 ml o.6 M NaCl in the mixer flask (250 

ml bottle) and 100 ml 1.2 M NaCl in the reservoir flask (250 ml 

bottle). Fractions o:f 3 ml were collected at a rate of l to 1.5 

• 140-03 ml per minute., 8, C; , H. 
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Figure 11 

Fractionation of 14c-Phenyla.lan.yl~sRNA !,!:td. 3H-p-Fluoropn,enyl:= 

alanyl~sRNA 

Approximately 3,300 counts per- minute ( • .36 mg) 14c-phenyl

ala.nyl-sRNA, a.nd approximately 4,000 counts per minute (7~25 mg) 

of 3H-fluorophenylalanyl-sRNA were mixed and fractionated on a 

methylated album.in-silicie acid column. The column was developed 

by a.linear gradient consisting of 35 ml 0.6 M Na.Cl in the mixer 

flask, and 35 ml 1.2 M Na.Cl in the reservoir. One ml fractions 

were collected at a rate of' one ml per minute. 0--0, 14c; 

-·-·-, 3H. 
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to ribosomes in the pr·esence of poly U would be a further eionf'ir.mation 

of p-fluorophe:nyla1antne competition with phenylalanine in proteir1 

synthesis. 

The results of such an experiment are seen in. :F'igure 12. Wh@n 

poly U was present in the reaction mixture radioa:ctivity frrnn 14c~ 

phenyla1anyl= or 3H-p-fluorophenylalanyl-sRNA sedim~nted to the most 

dense region of the gradient. When poly A was substituted for poly 

U, or when no polynucleotide was added, the radioactivity was confined 

to the less dense regions of the gradient. 

In all experiments 9 A260 peaks were observed at fractions 14 or 

15 and 24 or 25. An additional small A26o peak was observed in fractions 

1-5 of the tube containing poly U and 14c-phenylalanyl"'-sRNA. In the P= 

fluorophenylalanine-sRNA series:J no A260 peak was evident in fractions 

containing the sedimented radioactivity, but a small A26o peak was 

evident in fractions 1 and 2 of the tube containing no polynucleotide. 

The sedimentation of radioactivity from amino a.(:yl sRNA suggests 

the poly U-mediated formation of poly.ribosomes and sm.bsequent binding 

of amino acyl sRNA which would sediment rapidly in the sucro~e gradient. 

Effect of Polyn:u~leotide Concentration 

on Amino A@id Incorporation 

About 70% of the code words in poly UC 5~1 conaist.11:1 of the code 

words UUU plus UUC. The incorporation of phenylalanine by UC 5gl 

relative to that of poly U averaged 65 to 70%. This is in accord 

with data already reported (41). However 9 the incorporation of phenyl-, 

alanine by poly UC 3~1, 2~1 and 1~2 was much lower than the theoretical 

code word frequency would indicate. Evidence for addit,i.onal c.ode word 



Figure 12 

Binding of .Ami.no. Acyl . sRNA . to ... Ribosomes __ 

The reaction mixture (46) contained in a volume of 0.3 ml the 

following: 0.02 M Tris HCl, pH 7.2; 0.02 M magnesium acetate; 

0.05 M KCl; U..18 A260 units of RNase-trea.teid ribosomes; 20 ug 

polynucleotide; and 5010 counts per minute sRNA or 1600 counts 

per minute 3H-p-fiuorophenylalaeyl-sR.NA. Tubes were kept cold and 

amino acyl sRNA was added last. Incubation was for 20 minutes at 

24°. At the end of the incubation period the tubes were cooled in 

an ice bath and 0.3 ml of cold 10% sucrose containing the buffer-

salts mixture described above were added to the reaction mixture. 

The mixture was applied to the top of a 5 to 20% linear sucrose 

gradient containing the buffer-salts mixture to give a total volume 

of 4 ml. The tubes were centrifuged in a. Spinco SW-39 rotor for 

l hour at 3° in a Spinco Model L centrifugeo Two drop fractions 

were collected from the bottom of the tube, and 0.06 ml of each 

fraction was added to 10 ml Bray's (77) sci11tilla.tion solution and 

counted in a Packard Tri-Carb liquid scintillation spectrometer 

with a. 45 to 50% counting efficiency. To the remainder of each 

fraction was added l ml of water, and the Az60 deter.mined. Upper 

figlilre: 3H-p-flu.orophe:nylalanine-sR.NA; ~-e, poly U; i, -- , 

poly A; 0-0, no polynucleotide; ()-{)and()-(), coincidental 

points. Lower figu.re: 14C-phenylala.eyl-sR.NA;0-0 , poly U; 

W ~, poly A; e e , no polynucleotide; t)-(), coincidental 

points. 
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assignments f or UC code words was obtained by i ncreasing the poly

nucleotide concentration used i n the amino acid incorporation assays 

(43). The effect of higher polynucleoti de concentrat ions on phenyl

alanine and p- fluorophenylalani ne incorporation i s seen i n Tables VI 

and VII. 
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Experiment I gives results ordinar ily obtained with 50 µg pol y

nucleotide. When the concentrations of poly UC 5 :1, 3:1 and 2:1 wer e 

doubled (from 80 to 160 µg per ml), phenylalanine and p-fluorophenyl

alanine incorporation increased by nearly the same factor. Although 

earlier experiments indicated poly U saturated the system at 50 pg per 

ml, there was no indication that the system is saturated with respect 

to poly UC 5:1, 3:1 and 2:1. With poly UC 5:1 at 160 µg per ml, 35% 

more phenylalanine was incorporated than with poly U at 50 µg per ml. 

Increasing polynucleotide concentration from 20 to 50 rg per ml 

gave comparable results with the stimulation of phenylalanine from 

sRNA into protein (Table VIII). The stimulation of phenylalanine 

incorporation relative to that of poly U was increased 9-fold by 

UC 3:1, and 3- fold by UC 2 :1. 

Code Word Frequency and Amino Acid Incorporation 

If there is no preference of phenylalanine acceptor RNA 1s for p

fluorophenylalanin~, then i ncorporat ion of the natural ami no aci d and 

analog'l:le by UC copolymers of varying U concentration should be the same. 

A comparison of theoretical code word frequency and observed amino acid 

incorporation from amino acyl sRNA i s seen in Figure 13. The percent 

incorporation of phenylalanine by poly UC 5:1 and 3:1 is much great er 

than p-fluorophenylalanine incorporation. With these two polymers , 



Polynucleotide 

Poly U 

Poly UC 5:1 

Poly UC 3 :1 

Poly UC 2:1 

Poly UC 1:2 

TABIE VI 

EFFECT OF POLYNUGIEOTIDE CONCENTRATION ON 
PHENYLALANINE-14c INCORPORATION-!~ 

p.Jlllloles 

47 

µg per ml Incorporated 
I II I II 

50 225.8 

50 142.5 
80 161.2 

160 309.6 

50 19.2 
160 43.9 
320 80.5 

50 6.7 
160 12.7 
320 21.8 

50 1.8 
160 2. 7 
320 388 

*The reaction mixtures contained the components previously described 

and 0.75 mg incubated 308 extract and polynucleotide as indicated. 



Polynucleotide 

Poly U 

Poly UC 5:1 

Poly UC 3 :1 

Poly UC 2:1 

Poly UC 1:2 

T.A.B~ VII 

EFFECT OF POLYNUCLEOTIDE CONCENTRATION ON 
p-FLUOROPHENYL..4.LANINE-IP ··INCORPORATION* 

pp.moles 

48 

µg per ml Incorporated 
I II I II 

50 960 

50 .382 
80 636 

160 lj08 

50 56 
160 129 
320 221 

50 38 
160 .39.5 
320 64.3 

50 37 
160 22.0 
.320 58.8 

i~he reaction mixtures contained the components previously de= 

scribed, 0.75 mg incubated JOS extract and poly.nucleotide as indicated. 
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TABLE VIII 

EFFECT OF POLYNUCLEOTIDE CONCENTRATION ON PHENYLALANINE-14c 

Polynucleotide 

Poly U 

UC 5:1 

UC 3:1 

UC 2:1 

UC 1:2 

' INCORPORATION FROM sRNA 

Polynucleotide Concentration in µg per ml 
20* 50** 

100 

67 

5.3 

5.1 

4.5 

Percent Incorporation 

100 

76.8 

48.3 

18.9 

8.6 

Reaction mixtures contained the components described previously 

including 12.5 µmoles NH4c1, polynucleotide as indicated above, and 

0.375 mgil- or O. 75 mg** incubated 30S extract. Incubation was for 10 

minutes at 35°. 



Figure 1.3 

Comparison .. of Theoretical Code Word Freguencx __ and Observed ~oration 

The reaction mixtures contained the components previously de

scribed :for incorporation of amino acids from sRNA, 50 µg polynucleo

tide per ml and O. 75 mg JOS extract. -~, theoretical :frequency of 

UUU plus UUC or UU; -- --, theoretical frequency of UUU; 0, 

phenylalanine incorporation;8,P-fluorophe11ylalanine incorporation. 
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there is an implication of the two code words UUU plus 2lllG coding for 

phenylalanine incorporation, and the one code word UUU coding for p

fluorophenylalanine. 



CHAPTER IV 

DISCUSSION 

The tritium exchange labeling of p-fluorophenylalanine gave 

material of fairly high specific radioactivity (Sp. Act. 67.5). How

ever, the low counting efficiency of 3H on paper disks (4-6%) as com

pared to 14c (50-60%) partially offset the advantage of higher specific 

activity than could be obtained with 14c labeled analogue. For 

detection in terms of counts per minute of incorporated p-fluorophenyl 

alanine-3H, much larger amounts of p-fluorophenylalanine than phenyl

alanine were necessary in the reaction mixtures. The inequality of 

substrate concentration made it difficult to draw valid comparisons 

in some of the kinetic studies of amino acid incorporation into prot ein. 

The equivalence of rates of activation, as determined by hydrox

amate formation, and formation of amino acyl sRNA indicat ed no pref erence 

for phenylalanine utiliz~tion over that of p- fluor ophenylalani ne. The 

kinetic studies of amino acid incorporation were inconclusive bot h as 

to rate and extent of incorporation because of the difference in con

centration of the amino aci d and analogue. Approximatel y 7% of the 

phenylalanine, and 3% of the p-fluorophenylalanine in the reaction 

mixtures was incorporated from the free amino acid. The p-fluoro

phenylalanine concentration was four times t hat of phenylalanine; 

nevertheless the incorporation of phenylalanine was 70% that of p

fluorophenylalanine. There is therefore a question regarding the 

52 
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r elative saturation of the two amino acids. And since poly U is the 

functional messenger, the incorporation of the amino acid and analogue 

would be expected to be the same. 

However, one indication of degeneracy arises from the extent the 

amino acids were charged to sRNA. When the ratio of phenylalanine to 

p-fluorophenylalanine concentration in the reaction mixtures ranged 

from 3:1 to 1:4, a greater amount of phenylalanine was accepted by 

the sRNA. This indicates that p-fluorophenylalanine was charged 

preferentially to only one of the. phenylalanine acceptor RNA 1s. 

The kinetic studies of amino acid incorporation from sRNA were 

also inconclusive because of the difference in concentration of the 

amino acyl RNA 1s used. However, the lag in p-fluorophenylalanine 

incorporation was more pronounced than phenylalanine incorporation. 

Conway (50) showed that the rate limiting reaction prior to peptide 

bond formation was the binding of amino acyl sRNA to the ribosomes. 

It is suggested, therefore, that p-fluorophenylalanine changes the 

binding characteristics of the sRNA. 

Fractionation of the amino acyl sRNA's on a methylated albumin 

column gave no evidence of degeneracy. However, this does not suggest 

that degeneracy does not exist. In the light of the other studies 

cited, the probability is that the column was incapable of resolving 

the amino acyl sRNA 1s. 

A comparison of code word frequency and observed amino acid 

incorporation gave evidence of degeneracy. The greater relative 

incorporation of phenylalanine than p-fluorophenylalanine by poly 

UC 5:1 and 3:1 indicated that phenylalanine incorporation was coded 

by UUU plus 2UlC, and p-fluorophenylalanine by UUU. However, the 
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incorporation of both amino acids with poly UC 3:1, 2:1 and 1 ~2 was 

lower than would be i ndicated by code word f requency in these polymers. 

The incorporation of the free amino a cids by the same polynucleo

tides was al so performed. With poly UC 5:1 a greater rel ative incor

poration of phenylalanine than p-fluorophenylalanine was again noted. 

However, the incorporation with poly UC 3:1, 2:1 and 1:2 was too low 

to be definitive. 

The reason for the low incorporation with poly UC J :l, 2:1 and 

1:2 is probably due to the short chain length of these polynucleotides 

as compared with poly U and UC 5:1. Increasing the concentration of 

poly UC 3:1, 2:1 and 1:2 i ncreased the incorporation of phenylal anine 

and p-fluorophenylalanine. But with varying concentrations of the 

polynucleotides in the reaction mixtures, no comparison of code word 

frequency and amino acid incorporation with a series of various poly

nucleotides can be made. 

The importance of chain length of the polymers may be seen from 

the fact that higher concentrations of poly UC 5:1 than ordinarily used 

gave greater phenylalanine and p- fluorophenylalanine incorporation than 

poly U. Poly UC 5:1 was composed almost entirely of long chain length 

material, but only about one-third of the poly U was composed of similar 

chain length material . 

The most satisfactory data would be obtained from the use of a 

series of polynucl·eotides that have a similar proportion of long chain 

length material. 

In summary, evidence for degeneracy at the phenylalanine acceptor 

RNA level stems from two observations. These are: (1) a greater amount 

of phenylalanine than p-fluorophenylalanine can be charged t o sRNA; and 
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(2) a comparison of code word frequency and observed amino acid incor

poration suggests that phenylalanine incorporation is coded by the two 

code words UUU plue 2U1C and that p-fluorophenylala.nine is coded by UUU. 

Experiments which may give further evidence of degeneracy are as 

follows: (1) charging of sRNA with p-fluorophenylala.nine followed by 

charging of the same sRNA with phenylalanine and 19 other amino acids; 

(2) use of this charged sRNA in a cell-free amino acid incorporation 

system using tobacco mosaic virus or bacteriophage RNA as messenger. 

If sRNA can be loaded with the analogue, and further charged with the 

natural amino acid, then the existence of more than one phenylalanine 

acceptor RNA would be implied. Incorporation of the natural amino acid 

and analogue into distinct sites of the protein synthesized in vitro 

would be additional evidence for degeneracy. 



CHAPTER V 

SUMMARY 

A cell-free system from~· coli was used to study the effect of 

phenylalanine analogues at various steps of synthetic polynucleotide

mediated protein synthesis. Of the analogues tested and at the levels 

used, only p-fluorophenylalanine inhibited poly U-mediated phenyl

alanine incorporation. The kinetics of phenylalanine and p-fluoro

phenylalanine activation, formation of amino acyl sRNA, and incor

poration into protein showed no preferential utilization of phenyl

a~anine over p-fluorophenylalanine. Degeneracy was implied since sRNA 

accepted a greater amount of phenylalanine than p-fluorophenylal ani ne. 

The chromatographic behavior of phenylalanyl- and p-fluorophenyl-sRNA 

was the same, giving no evidence of degeneracy. A comparison of 

theoretical code word frequency and observed incorporati on of phenyl

alanine and p-fluorophenylalanine indicated that phenylalanine code 

words are UUU and 2Ul C and the p-fluorophenylalanine code word is UUU. 
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