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CHAPl'Ell I 

INTRODUCTION 

1-1 The Ph,enomenon of Buckling 

A linearly elastic structure under static loads is 

stable if it returns to its original deformation con­

figuration after a small disturbance; it is unstable if 

it tends to move to a different configuration. The 

necessary condition for stability is the uniqu~ness of 

the deformation configuration after small disturbances. 

The uniqueness of the deformation configuration of a 

stable structure is characterized by the fact that there 

is no increase in deformations of the structure without 

an increase in loads. 

The critical load or the buckling load is the level 

of the given loading pattern at which the. structure loses 

its stability. A loading pattern applied to a structure. 

may be conveniently represented by a referenc~ set of 

loads or reference load vector. Any level of loading is 

then obtained by multiplying all of the loads of the 

reference load vector by a load parameter. The11evel of 

loading at which .the structure buckles is described by a 

critical load parameter. It should be noted that for a 
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given structure the critical load parameter differs with 

the loading pattern and magnitude of reference loads under 

consideration. In other words, for each loading pattern 

there exists a critical load parameter. 

In the conventional analysis of linearly elastic 

frames under static loads in the range of small de flec­

tions, the equilibrium and compatibility conditions are 

satisfied for each infinitesimal element of the structure 

by neglecting the effect of axial forces on the stiffness 

of the members. Neglecting the effect of the axial 

forces on the stiffness of the members leads to linear 

load-deformation relationships. This is a good approxi­

mation for frames loaded in such a manner that the axial 

forces induced in the members of the frame are proportion­

ally small compared to the bending moments induced by the 

loading. In practice, however, there are certain loading 

patterns, such as the application of forces to the joints, 

which induce large axial forces but small moments. For 

these cases the methods of conventional analysis lead to 

erroneous results because the change in the stiffness of 

the structure due to axial forces is neglected. Due to 

·the effect of axial forces at a certain level of loading 

the frame loses its stiffness, becomes unstable, and fails 

by elastic buckling. 

A non-linear load-deformation relationship is ob­

tained when the effect of axial forces is taken into 

2 
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account in the anlysis of a structure. The load-deforma-

tion relationship of a structure affords an excellent means 

of observing the overall behavior of a structure under in-

creasing loads and determining the type of buckling whic h 

may occur. At the critical load, the load deformation 

curve for a rigid-jointed, elastic frame may show a 

bifurcation, an infinite type of discontinuity, or a maxi-

mum, depending on the geometry of frame and the loading 

pattern. 

A load-deformation curve which exhibits a bifurcation 

at the buckling load is the characteristic of elastic 

frames which do not have prebuckling moments (Fig. 1-la). 

Bifurcation of the load deformation curve is also obtained 

for symmetrically loaded symmetrical frames (Fig. l-2a) 

which have prebuckling moments( 57 )_ 

A portal frame and a knee frame are shown in Fig. 1-la 

and Fig. 1-lb, respectively. The portal frame does not 

have any prebuckling moments due to the symmetry of the 

structure and the loading. The prebuckling moments of 

the knee frame will be zero if the area of its column 

is assumed to be infinite. The axial forces in the 

columns are equal to the joint loads prior to the buckling 

in both frames. Therefore, the determination of the 

stiffness of the members does not require an elastic 

analysis of the frame. 

An elastic analysis is not necessary to determine 



(a) 

Symmetrical Portal Frame 
Under Symmetrical Joint Loads 
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Area = oo -----------1- A(B) 
(b) (c) 

Knee Frame Load Deflection Curve 

· Fig. l-~ 

Load-Deformation Relationship of the 
Frames Which Do Not Have Prebuckling Moments 

the axial forces in the columns of the frame shown in 

" Fig •. l-2a; however, . due to the prebuckl ing moments induced 

in this frame owing to the positions of the loads, the 

buckling loading is nOt the same as that of a similar 

frame loaded as shown inFig. 1-la. 

The horizontal displacement A for the portal frames 

and the joint rot at ion e for the knee frame are taken as 

the representative deformation in the load deformation 

curves which exhibit a bifurcation at the critical load as 

shown in Figures 1-lc and l-2b. The portal frames have no 

resistance ·to horizontal disturbances while the joint of 



5 

A P p p r p 
er Point o f 

bifurcation 

(a) 

Symmetrically Loaded Symmetrical 
Portal Frame Which Has Prebuckling 
Moments 

Fig, 1-2 

(b) 

Load-Hor izont al 
Displacement Cur ve 

Symmetrically Loaded Symmetric al Fr ame 

the knee frame has no resistance to rotation at the 

buckling load. The buckling phenomenon of frames which 

do not have prebuckling moments is analogous to that of 

the buckling of initially straight perfect columns. 

In general, prebuckling moments cause deformations 

of the frame as well as the shears which induce the c h anges 

in axial forces of the members. Deformations du e t! o p r e -

buckling moments tend to increase without bou nd for l oads 

near the buckling load because of the decreasing stif f n e s s 

of the structure. Therefore, for frames which exhibit a 

sidesway type of buckling, the load-deflection curve shows 

an infinite type of discontinuity at the buckling load . 

An eccentrically loaded portal frame is shown in Fig. l -3a. 

Fig. l-3b shows the load-deflection curve of the f r ame ob-

tained by taking the effect of the prebuckling moment s into 

account. The horizontal displacement A of the frame is 
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taken as the representative deformation in the plot<57 )_ 

At the buckling load, the load deformation curve is 

asymptotic to a horizontal line as shown in Fig. l-3b. 

The instability of the structure is characterized by un-

bounded deformation. The plot is not extended to the 

higher modes of buckling. The phenomenon of buckling in 

this case is analogous to that of ~he buckling of eccentri-

cally loaded columns. 

It should be noted that the bifurcation type of load-

deformation curve is a special case of the general load-

deformation curve which has an infinite type of discon-

tinuity at the buckling load. Namely, the deformations 

of the frame shown in Fig. l-3a decrease when k approaches 

to unity. Finally for equal forces, the load deformation 

curve exhibits a bifurcation as shown in Fig. 1-lc. 

A knee frame loaded at the joint is shown in Fig. l-4a. 

The load-joint rotation curve obtained by taking the effect 

of prebuckling moments into account exhibits a maximum at 

the buckling load as shown in Fig. l-4b(G7 )_ An interest-

ing feature of this curve is that there is no solution of 

the frame for the joint loads between Per and P1 . 

In general, the stability analysis made by neglecting 

the effect of prebuckling moments gives the upper bound of 

( 30 61) 
the elastic buckling load of the frames ' . The 

difference between the upper bound and the actual elastic 

buckling load was found to be smaller than 3% for the type 
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(a) 

Eccentrically Loaded 
Portal Frame 

p 
er 

(b) 

·Load Deflection C~rve 

Fig. 1-3 

Load-Deformation Relationships of the 
Eccentrically Loaded Frames 

(a) 

A Knee Frame Loaded 
at the Joint 

Fig. 1-4 

(b) 

Load Deformation Curve 

Load-Deformation Relationship of a Knee Frame 
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of frames shown in Fig. l-2<13 , 42 , 57 ) and 7% for the frame 

shown in Fig. 1-4(G7 ). 
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The phenomena discussed above are called the classical 

buckling of elastic frames. Classical buckling can only 

be valid if the deflections of the structure are small for 

the loads close to the buckling load. In some cases there 

might be another geometric configuration of the frame that 

it can take by large deformations to be in stable equili-

brium. Then, at the buckling load the frame moves from 

an unstable geometric configuration to a stable geometric 

configuration as a result of large deflections<59 )_ This 

phenomenon is called the snap·through buckling, and it is 

characterized by a jump discontinuity instead of an 

asymptote in the loa<:Miefe;rmation curve at the buckling 

load. The magnitude of the prebuckling moments plays a 

big role in changing the classical buckling phenomenon to 

the snap ,through buckling. When a method of stability 

analysis which neglects the effect of prebuckling moments 

is utilized, the magnitude of deflections should be 

checked for the loads close to buckling load to make sure 

that the classical buckling will occur. From the above 

discussion, it can be concluded that the elastic buckling 

load of frames having prebuckling moments which exhibit 

the type of load deflection relationships as illustrated 

in Figures l-3b and l-4b can be determined from the load-

deformation curve. 



The same characteristics as discussed for planar 

frames are observed in the load-deformation curves of the 

space fra~es. They are illustrated in Chapter V. 

1-2 Sta_tement of the Problem 

Many approximate methods have been introduced for 

the stability analysis of planar frames. Due to the 

involved nature of the analysis most of these methods have 

the tendency to simplify the problem by some assumptions 

(Chapter - II), but still th,ey are good enough to solve the 

elastic stability problems of planar frames faced in 

engineering practice. ·Other, more exact methods involve 

tedious calculations or the use of an electronic 

computer <42 , 57 >. 
In the area of the stability analysis of space frames 

very little work has been done until recently. Renton(Sl) 

introduced a method of stability analysis based on the 

vanishing determinant of the stiffness matrix. In h!s 

derivation, however, he neglected the effect of warping 

stiffness of the cross sections and the effect of pre-

buckling moments. The use of an electronic computer is 

requil'.'ed for ·the application of his method. 

Unfortunately, due to the effect of the torsional 

stiffness of the members of structure and the possibility 

of the torsional buckling of columns,. the stability 

analysis of space frames is not a simple generalization 

of the methods developed for planar frames. In addition, 

9 
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because of the complexity of the calculations which must be 

performed, the use of an electronic digital computer is 

essential for the solution of all but the most trivial 

structures. 

In this dissertation, a method is presented for the 

elastic stability analysis of rigid-jointed space frames 

which buckle in a manner analogous to that shown in 

Figures 1-1, 1-3 and 1-4. The loading considered is 

limited to those loads which may be applied to the joints 

of the frame. The effect of prebuckling moments and the 

warping stiffness of the members is taken into account. 

Thus, the effect of torsion on the phenomenon of buckling 

is considered in the m.ethod. 

1-3 Assumptions 

The following assumptions are made in the method 

presented: 

(a) ·The material is homogeneous, isotropic, and 

elastic. 

(b) Deformations are small and do not change the 

geometry of the frame. 

(c) Deformations due to shears are small and can 

be neglected. 

(d) The frame is made of the members of thin-walled 

open cross-sections. 

(e) Navier's hypothesis remains valid for each of 

the f·lat plates of which the member is composed. 
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(f) The warping of the cross-sections of the members 

at the joints of the structure is zero. 

(g) The directions of the joint loads remain un­

changed by the deformations of the structure. 

1-4 Procedure of Investigation 

In the development of the method of stability analysis 

presented herein, the following steps of investigation are 

followed: 

(a) 'The methods of stability analysis of :(rames are 

reviewed. 

(b) The stiffness matrix for a beam-column is de­

rived from the governing differential equations. 

(c) Transformation matrices are established to trans­

form the stiffness matrices from the member 

oriented axis to the structure oriented axis • 

.(d) The stiffness matrix for the frame is obtained 

from the equilibrium of joints. 

(e) A determinantal criterion of stability is used 

for bifurcation type of buckling of space 

frames. 

(f) The second order elastic analysis of the frame 

is made by an iteration process for each level 

of loading. 

(g) The convergence of this process is postulated 

as the criterion of stability for space frames 

loaded at the joints and exhibiting an infinite 



type of discontinuity or a maximum in the load­

deformation curve. For these cases, the deter­

minantal criterion offers only an approximate 

value of buckling load. 

(h) The deformations of the joints, the determinant 

of the stiffness matrix, and the axial forces 

in-the members are obtained from part "f" in 

order to verify that the deformations are in 

the range of small deflection theory. 

(i) Necessary computer programs are developed, and 

the method is illust~ated by several examples. 

12 



CHAPI'ER . I I 

SUMMARY OF METijODS OF STABILITY 
ANALYSIS OF EL AST IC FRAMES· 

The historical development of the stability analysis 

of elast_ic frames 3:-s· briefly reviewed,· ahd the currentl,y 

available methods for the elastic stability analysis of 

rigid-jointed frames are presented in this chapter. A 

list of selected references is given in the bibliography; 

however, an extensive survey of available literature may 

be found in references (21) and (48). 

A brief history of the development of methods for 

the stability analysis of elastic frames is given in 

Article 2.1 while the methods themselves are briefly 

described in Articles 2.2 arid 2.3. These methods are 

classified in two groups in these Articles. The first 

group consists of those methods which neglect the effect 

of prebuckling moments. The second group consists of 

those methods which take the effect of prebuckling 

moments into account. 

2.-.l Historical Notes 

At th,e beginning of this century, the stability prob-

lem of. frames which do not have prebuckling moments began 

to attract the attention of many investigators. In 1919, 

13 
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Bleich(l, 2 ) presented a systematic analysis of the stability 

of rigid-jointed planar frames by using "the four moment 

equations." The stability analysis of a plane truss as a 

unit was made by Mises<3 >. Mises and Ratzersdorfer(4 ) 

gave a detailed presentation of the stability analysis of 

frames and extended the investigation by taking the effect 

of axial shortening in the members into account. The 

energy method was applied by Kasarnowsky and zetterholm(S) 

to the stability analysis of long columns elastically sup-

ported at equidistant intermediate points. In 1928, 

Bleich(G) published a paper dealing with a generalization 

of the theory of stability of assemblies of bars valid for 

rigid-jointed space frames whose members buckle spatially. 

The calculation of the stiffness-coefficient and carry-

over factors of bars subjected to axial loads was made by 

James(7 ) and established the foundations of a stability 

analysis by the moment distribution. Prager(9 ) developed 

a method for the stability analysis of frames utilizing 

the analytical stability condition of a column with elastic 

end supports. Lundquist(lO,ll) established the "series" 

and "stiffness" criteria for stability of frames based on 

the principle of moment distribution. In 1938, Chwalla(l 3 ) 

introduced an approach for the determination of the buck-

ling load of a portal frame by taking the effect of pre­

buckling moments into account. Puwein(lS) presented an 

approximate meth,od to solve the same problem. In 1941, 
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the slope deflection method of stability analysis was 

developed for multi-story frames by Chwalla and Jokisch(l 7 )_ 

At the same time, Hoff(l 6 ) gave the rigorous proof of the 

convergence of the moment distribution and of the unique-

ness of the results in the case of stable equilibrium by 

means of energy considerations. Southwell's relaxation 

method was applied to the stability analysis of planar 

frames by Boley(lS) in 1947. Winter, et a1<19>, Perri<20 >, 

and Masur<24 ) proposed modifications of the.moment distri-

bution method for the stability analysis of planar frames 

with sidesway. In 1952, Bleich<22> published a book on 

.buckling strength of structures which contains two chapters 

on the stability analysis of planar frames. In a series 

of papers ~erchant and his associates<25 , 28 , 31 , 34>.pre­

sented approxim~te methods of stability analysis of tall 

building frames. They defined a single bay and single 

story portal frame equivalent to the multi-bay and multi-

story frame to find the approximate buckling load. In 

1956, Livesle~<27 ) introduced a method of stability analy-

sis of rigid-jointed planar frames which was suitable for 

use on a digital computer and checked the results of the 

examples solyed by Merchant and his associates, · Masur 

and Cukurs<33) applied the determinantal criterion and 

series criterion of stability to the out of plane buckling 

of trusses. Historical notes about the research conducted 

on the stability analysis of frames in Russia was given by 

(36) · (37) Rabinovich . Horrie gave a good discussion on the 



effect of elastic stability to the load carrying capaci t y 

of the frames. A solution of the lateral instabil i t y of 

building frames by the energy method was presented in 1960 

by Johnson< 39 )_ Lu( 40) introduced a method of stability 

analy s i s of elastic-plastic frames. In 1961 , Masur , e t 

al <42), modified the slope deflection and the mome nt dis-

tribution method to include the ef f e c t of prebuckling 

moments in the stability analysis o f f r ames. A revi ew on 

the stability of elastic-plastic structur e s was made by 

Horne< 44) in 1961. Stability anal ysis of pl anar frames 

by the moment distribution has been thoroughly treated by 

Lightfoot(46 ) and recently by Gere( 5S)_ Horne( 50) and 

then LJ 55 ) discussed the effect of finite deformations 

in the elastic stability of frames. In 1962, Renton ( 5l ) 

presented a method of stability analysis for space fr ames 

by an electronic computer. Post buckling deformations of 

elastic planar frames was investigated by Britvec and 

Chilver<54 ) and by Saafan< 56 >. In 1963, Carter ( 57) i nt r o -

duced a matrix method of stability analysis of plana r 

frames having prebuckling moments. 

2-2 Stability Analysis by Neglecting the Effect o f 

Prebuckling Moments 

There are a number of methods available for the 

stability analysis of frames by neglecting the effec t of 

prebuckling moments. All of these methods are developed 

by modifying the conventional methods of frame analysis 

to include the effect of axial forces in the members. 

16 



The moments due to loads in the prebuckled state are 

assumed to be zero. Consequently, the loads which are 

not applied at the joints of the frame are replaced by 

the statically equivalent joint loads. The axial forces 

in the members are computed directly from the equations 

of statics. The critical load parameter is determined 
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from the loading level for which the deformation configura­

tion of the frame becomes unstable. According to the 

analytical theory used in the analysis, the methods of 

stability analysis of frames neglecting the effect of 

prebuckling moments may be considered in four groups: 

equilibrium methods, convergence methods, matrix methods, 

and energy methods. 

2-2.1 Equilibrium Methods 

The equilibrium methods are based on the bifurcation 

of the load-deformation relationship. All the deforma­

tions in the prebuckled state are zero due to the assump­

tions made. The equations of equilibrium for the buckled 

state of the frame are linear and homogenous. The un­

known quantities in the equations are the actions and/or 

deformations induced by buckling. The coefficients of 

the unknown quantities are the transcendental functions 

of member properties, dimensions, and the axial forces. 

For the buckling·load, these linear homogenous equations 

have a non-trivial solution. Therefore, the determinant 

of .the coefficient matrix of the equations should vanish 



at the buckling load. This is called the determinantal 

criterion of buckling. The procedure ·used in establishing 

the system of linear homogenous equations distinguishes 

the various methods of this group. But the determination 

of the buckling load from the determinantal criterion is 

the same in all the methods of this group. ln the case 

of some simple frames the determinantal criterion may 

lead to a less complicated transcendental equation from 

. which an algebraic expression for the buck1 ing load can 

be obtained. Usually, for complex frames, a trial and 

error approach is used to obtain the buckling load 

numerically due to the complexity of the transcendental 

equation obtained from the vanishing determinant. It 

should be noted that the non-trivial solution of the 

equations gives the relative values of the unknowns. 

Therefore, the magnitudes of the deformations for buckling 

load remain indeterminate, and only the mode of of 

buckling may be obtained. Detailed information on the 

methods of this group may be found in references 1, 4, 6, 

8, 9, 17, 22, 25, 43, and 57. 

2-2. 2 Convergence Methods 
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The methods of this group are developed by modifying 

the moment distribution and the relaxation methods of coµ­

vent ional frame analysis to tak,e the effect of axial forces 

into account. In the prebuckled state, a frame offers 

positive resistance to any externally applied action or 

deformation. At the buckling load, the frame 
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has no resistance·to any external disturbance. Therefore, 

for the buckling modes which do not have joint .translation, 

the moment distribution and relaxation processes do not 

converge if the frame is analyzed under a disturbing joint 

moment M0 (l6). In addition .to this criterion of buckling, 

t "ff d . . ... (IO,ll) 1 ·1 b'l s 1 ness an series criteria · · are a so avai a e, 

For the translational modes of buckling, an arbitrary 

translation of the frame is imposed in the presence of 

the loading system. If the frame is in the prebuckled 

st~-~-e~ _a positive force is necessary to hold the frame in 

the displaced position. For the buckled and post buckled 

states, a zero force and a negative force are required 

respectively. Another way is to apply a unit force in the 

direction of the translation of the frame and compute the 

translation of the frame due to this force in .the presence 

of the loading system. If the translation is in the 

direction of the force, the frame is in the prebuckled 

state. For the critical level of loading the translation 

is infinite. In the post buckled state translation 

is in the opposite direction of the applied force< 28 , 31 >. 
A very good discussion of the moment distribution 

method of stability analysis may be found in references 

46, 58. 

The relaxation method(lS,S6 ) is fundamentally the 

same as the moment .distribution method. 
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2-2.3 .Matrix Methods 

Matrix methods became very powerful in the stability 

analysis of frames with the development of large elec­

tronic computers. The displacement method of conventional 

frame analysis is modified to take the effect of axial 

forces into account. Joint equilibrium equations of the 

displacement method are written in matrix form for a 

number of load parameters. The frame is analyzed by 

solving these equations for each load parameter. Deter­

minant of the coefficient matrix of the equations may 

also be computed. At the buckling load this determinant 

is.equal to zero and the frame has no resistance to a 

distur.bance which excites the mode of buckling .. In the 

methods of this group, the buckling load parameter is 

found from either the load-deflection curve< 27 > or from 

the load-determinant curve<51 , 57 ). 

An excellent presentation of the matrix methods of 

stability analysis applied to planar frames is given in 

reference 57. 

Matrix methods, in general, are not suitable for 

hand computations. They are probably the most efficient 

methods for the systems approach to stability analysis 

by. the computer. 

2-2.4 Energy Methods 

The energy methods are based on the fact that a 

frame returns to the unique deformation configuration 
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after any small disturbance if it is in a prebuckled state. 

- In terms of energy, the work done by the external loads 

through a change of deformation configuration due to a 

disturbance, is smaller than the change in strain energy. 

The differe;nce between the two quantities is the energy 

which returns the frame to· the deformation configul;'ation 

before the disturbance. If the frame is in the buckled 

state, the work done by ·the external loads through a 

change in deformation .configuration due to a disturbance 

is equal to the change in strain energy so that the- :frame 

has no t-endency to return to the deformation configuration 

which it held before the disturbance. This criterion 

1 eads to a -set of linear homogeneous equations analogous 

to the equations obtained. in .the equilibrium methods. 

-Then .the buckling load is determined .from _the condition 

of the vanishing determinant of coefficients of these 

equations. - More information about the methods of this 

group may be found in references 3, 5, 8, 39 and 43. 

2-3 ·Stability Analysis of Frames Having Prebuckling 

-Moments 

In the methods of this group the effects of the 

moments induced by the loads which are not applied to the 

joints and by the change in lengths of ·the members due to 

axial forces are taken into account. In this case, it is 

not possible ·to determine the axial fotces by using the 

equations of statics directly because of the unknown pre­

buckling moments. Axial forces are the functions of the 
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deformations of the frame, and it is necessary to know the 

axial forces to determine these deformations. Besides, 

none of the criteria of stability established by the 

methods which neglect the effect of prebuckling moments 

are applicable to this case due to the fact that the 

equations of equilibrium or energy are linear but not 

homogeneous. 

-In the prebuckled state of the frame an increment 

. in the loads induces an increment in the deform1:tt ions. 

At the buckling load, deformations can increase without 

an increment in loads. Tbis fact is used as a criterion 

of stability in the methods of this group . 

. In 1938, Chawalla (l3 ) investigated the buckling of 

a symmetrical portal frame under two symmetrically located 

concentrated loads by taking the effect of prebuckling 

moments into account. He obtained a transcendental 

equation using the differential equations of. the members 

of the frame and solved for the buckling load parameter 

from .this equation. Principally, his method is the 

extension of the equilibrium method to include the effect 

of prebuckling moments. 

Puwein(l5 ) proposed an approximate method to deter­

mine·the buckling load of the uniformly loaded portal 

frame and extended his approach to the gable frames and 

to the frames with partial base fixity. His approach is 

primarily the extension of the energy method of stability 

analysis. The approximation in his solution is the 



assumption of a buckled deformation configuration for the 

frame. 
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Masur, et al <42 ), introduced two methods for calculat­

ing the elastic buckling load of a symmetrical frame under 

symmetrical loads and prebuckling moments. One method is 

based on an equilibrium analysis of the buckled frame 

using the slope-deflect ion equations, and tne other is 

based on a moment distribution procedure. Both of these 

methods are the extensions of the methods which do not 

take the effect of prebuckling moments into account. The 

relation between the incremental actions and deformations 

is established. The buckling load is obtained from the 

fact that the incremental deformations occur without the 

incremental actions at the buckling load, The results 

obtained from both of these methods shpwed a good agree­

ment with those of Chwalla. 

Recently Carter( 57 ) developed a matrix method of 

elastic stability analysis for the planar frames having 

prebucklingmoments. He succeeded in establishing a 

matrix relation between the incremental deformations and 

the incremental loads of the frame based on the deforma­

tion method. At the buckling load this matrix relation 

reduces to a set of linear homogeneous equations .due to 

the fact that the incremental deformations can exist even 

if the incremental loads vanish at the buckling load. 

This leads to a new determinantal criterion of stability. 

Because of the involved character of the problem.the use 



of a computer is necessary in the application of this 

method. For this purpose, · a computer program is also 

developed by the same investigator. 

2-4 Summary 
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From the review ·of the available methods of stability 

analysis of elastic frames and their historical develop­

ment, it is observed that the methods developed before the 

use of the computers in this field have·the tendency to 

simplify the problem by certain assumptions due to ·the 

involved character.of the·numerical computations. The 

most common assumption made is that of neglecting the 

effect of prebuckling moments. In fact, due to this 

assumption most of the available literature deals with 

the bifurcation type of buckling. The applications of 

these methods are also restricted to certain type frames 

such as portals, single bay, multi-story, and gable frames 

because of the inconvenience in the hand computations. 

In the last .decade the use of computers in this 

field made the development of the general matrix methods 

of stability analysis possible, but still there has been 

very little work done in the area of the elastic buckling 

of space frames, the subject of this dissertation. 



CHA.Pl'ER I.II 

BrlFFNESS MATRIX FOR A SPACE BEAM-COLUMN 

The geometry, the positive end defo;rmat ions, and 

* end actions of a space beam-column are defined. The 

differential equations of a space· beam-column are derived 

by using Chilver 's (G 4) concept of corrected discont inui-

ties. Th.e differential equations .are integrated for the 

beam-columns of the cross-section whose shear center 

coincides with the centroid. The constants of integration . . 
are eliminated by assuming a set of end deformations, 

their corresponding e11d act ions, and zero warping of the 
'· 

cross-section at the ends. Thus,.the end actions are 

obtained in terms of the end deformations in matrix form. 

·The coefficient matrix of the column vector of the end 

deformations is called the stiffness matrix of the space 

beam-column. · The elements of the stiffness matrix are 

transcendental functions of the axial .force and the-length 

an,d the section properties of the beam-column. 

*For the purpose of this dissertation a space beam-column 
is defined as a thin walled structural member which is 
subjected to end moments and end shears as well as·axial 
force. 
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3i~-l Geometry of A Space Bar 

A beam-column ij of constant, thin-walled open 

.cross-sect ion is considered. The centroidal axis of the 

bar is chosen as the X axis, while the Y and Z axes are 

the principal axes of the beam cross-section. The 

positive end actions and end deformations are represented 

by vectors acting in the positive direction of the 

coordinate axes (Fig. 3-1, 2), Force vectors and displace­

ment vectors are ~epresented by a line with a single 

arrow designating the sense; moment vectors and the vectors 

indicating ·the rotations are represented by a line with a 

double arrow assigning the sense (Fig. 3-,l, 2). There are 

no loads applied to the beam-column· betw~en~ tbe·.ends. 

+Z 

Fig. 3-1 

Positive End Deformations 
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Positive End Actions 

The cross-section of the beam is thin-walled, open, 

and arbitrary. The principal axes Y and Zand the loca-

tion of the shear center S, with respect to the centroid 

c, are shown in· Fig. 3-3. 
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Fig. 3-3 

Cross-Section of the Beam-Column 
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3-2 Differential· Equations of· A space· Beam.:.Colu.mn 

The differential equations of a space beam-column 

are obtained by using the equilibrium and compatibility 

conditions for the beam-column element of length ox 

It is assumed that there is no change in the geometric 

shape of a plane cross-section due to torsion, but 

warping of the cross-section is considered in the de-

rivations. This is the conventional assumption made for 
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the torsion of the beams of thin-walled cross-sect ion <22 , 63 ). 

The modulus of elasticity and the modulus of rigidity 

of the beam is denoted by E and G respectively. Due to 

the end actions, a cross-section of the beam column will 

displace in the Y and Z directions and rotate about an 

axis parallel to X. The axis of rotation is taken at 

the shear center for convenience. The lateral displace-

ments of the sbear center and of an arbitrary point of 

the cross-sect ion in the direct ion of Y and Z axes are 

denoted by Y, W, and v-, w respectively (Fig. 3-4). s s . p p 

+Z 

c 

Fig. 3-4 

Lateral Displacements of the Shear 
Center and the Centroid of a Cross-Sect ion 
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For a small_ rotation 8 the lateral displacements, v and -w, 

of the centroid are 

w =-w -ey s s (3-1) 

The lateral displace~ents of an arbitrary point of the 

cross-section, having the coordinates y and z, are 

VIL = W - 8 (y - y) p s . s (3-2) 

Two sets of actions will be considered at the ends 

of a beam-column element of length 6x. The first set 

co~sists of the end shears transmitted from the beam-

column to the element if it were connected by hinges at 

the ends. The second set of actions are the necessary 

end moments and end shears applied at the shear center 

to establish the angular comp at ibil it y of the element 

with the beam-column at the .assumed hinges. Due to the 

equilibrium condition of the el.ement, both cases require 

the application of some transverse loads to the element. 

Since there is no load applied to the beam column between 

the ends, the summation of the required loads of the 

-two cases should be zero. This condition gives the 

differential equations. 

A wall strip of a beam column element of length 6x 

width ds, and the thickness tis shown in Fig. 3-5. 
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The location of the strip is defined by s whieh is 

measured from a convenient origin around the center line 

of the cross-section. 

+z 

atds 

+Y 

n 1. + 6n 1 z z 

l/yl + 

• atds 
I 
I 
I 6 . 

Wp + WP 
W I J p on;vl 

v / 6nzl · / 0 · 
R:_ _____ _//Vp + VP 

1. 6x .I 
Fig. 3-5 

A Wall Element of A aeam Column 
Under First Set of Actions 

6n yl 

The moment equilibrium of the element about the Y 

and Z axes, negl~oting the second order terms, is 

n = CJ t ds 
., 

zl w p (3-3a) 

n 
·y1 = O" t ds VI 

p (3-3b) 

where the primes indicate the derivatives with respect 

to x. The change in shears is obtained by taking the 

variation of t~e Equations 3-3a and 3-3b. 

on = cr t d~ wP.,, ox zl 
(3-4a) 

(3-4b) 
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The necessary external lateral loaqs for the equilibrium 

of the beam-column element in this case can be determined 

by integrating the Equations 3-4a and 3--4b over the entire 

cross-sect ion. Thus 

oN =I crt " ox ds w· z:1- m p (3-5a) 

6N. =I crt v fl ox ds 
yl m p (3-5b) 

Where aNzl and 6Nyl are the loads to be applied in the 

z and y directions to the element for the equilibrium. 

The integration will be performed around the center line 

of the cross-section. This path is indicated by m. Taking 

the derivatives of Equations 3-2, substituting into 

Equations 3-5a, 3-5b and then performing the integration 

gives 

oNyl -P ox (v " + e " z ) s s (3-6a) 

6Nzl = -P ox(w; - ()"ys) (3-6b) 

where P is the axial force in the beam-column.. P is 

assumed to be positive for tension. The transmission of 

c5N yl and c5N zl to the shear cent er results in a tors ion al 

moment c5Mtl which is computed by integrating the torque 

about the Hhear cent er due to c5N zl and c5N yl as follows. 



o ~ 1 :;:: I O"t ·ox wp" <Y-Y s> ds + J O"t ox v" cz -z> ds 
m m P 8 

.Substituting the values .for w; ancl v; from the Equation 

3-2 and integrating 

6 M. 1 = -P (z v" - y w" + r ~ (} ") ox 
-,: SS Ss s. (3-7) 
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where r 8 is the polar radius bf the gyration of the cross~ 

section about the shear center. The polar radius of gyra-

tion r 8 can be computed from the Equation 3.,-8. 

Ar 2 = I + I + A (. 2 2) ~ s y z Ys + zs (3-8) 

Iy and Iz are; the moments of inertia of the cross-section 

about Y and z axes respectively, and A is the cross-

sectional area. 

If the beam column element of length 6 x were connected 

by hinges at the ends, the generalized loads necessary for 

the equilibrium would be 6Nyl' 6Nzl' and o~ 1 along the 

shear c.enter axis, The angular continuity at the h,inges 

may be provided by the application of the second set of 

act ions at the hinges as shown in Fig. 3-6. 

c 

+Zr N. . +Y N + 6N (iy2 1
6Nz2 z2J z: 

• • s~d 6MtJ,Y2 _ / y2 

+ 6Ny2 

M z 

/ --- s' Mt2 + OMt2 

----+X 

My+ 

Fig. 

c 

+ 6M z 

Beam-Column Element Under the Second Set of Actions 



The bending and the.torsional moments at the left 

end of the ele111ent can be expressed in terms of the 

derivat\ves of the deformations at the shear center as 

follows: 
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My = Ely w" s (3-9a) 

M = EI v ti 

z z s (3-9b) 

Mt2 :::;: ce' · c e1" - 1 . (3 ... 9c) 

Where C is the pure torsional stiffness and c1 is the 

warping stiffness of the cross-section defined in 

reference 63. The shears due to these moments are 

(3-lOa) 

(3-lOb) 

The necessary general~zed loads for the equilibrium' in 

this case are obtained by taking the variation of the 

Equations 3-9c, 3-lOa, and 3-lOb as given in Equations 

3-lla, 3-11.b and 3-llc. 

6Ny2 = EI ·v IV 6x z s {3-lla) 

6N Ely 
IV 6x · z2 ws 

(3-llb) 

6·Mt2 (C 0 11 IV = -c1e )6x (3-llc) 



The compatibility and the equilibrium conditions for 

the beam column element can be satisfied by applying the 

two sets of end actions simultaneously. The generalized 

loads obtained from the superposition of the two cases 

should vanish due to the fact that there is no load ap­

plied to the element. This is expressed mathematically 

by the Equation 3-12, 
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, (3-12) 

The differential equations of a space beam-column are then 

obtained by substituting the values of the necessary gen-

eralized forces from Equations 3-6, 3-7, 3-11 into Equation 

3-12 af;i 

EI vs 
IV 

- p (v" e" ) 0 z s + ZS (3-13a) 

Ely 
IV ,- p cw; -e"y) 0 ws = ' s (3-13b) 

ceu ... c1 elV p (zs 
,// 

+ vs - Ys "" r 2 e'') 0 ws + = s (3-13c) 

These differential equations are the same as those obtained 

by· Bleich <22>. 
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3~3 Internal Actions of a Beam-Column 

Internal actions can be expressed in terms of the 

derivatives of the deformation functions. The two sets 

of actions used in the derivation of the differential 

equations are superimposed for this purpose. From 

Equations 3-3a and 3-3b, the shears of the first set of 

act ions acting on the beam;..column element are 

N ~I at I 
ds zl w 

m p 

N =I crt .I ds yl v 
m p 

where Nzl and Nyl are the shears in the Z and Y direct ions 
I I 

respectively. , Sub st i tut ing the values of W and V from . p p 

Equations 3-2 and performing the integration around the 

cross-section 

-P (w' -e'y ) s s (3-14a) 

(3-14b) 

The torque mtl due to the transmission of the shears to 

the shear center is· obtained by t~king the moments of 

Nzl and Nyl about the shear center and integrating around 

the cross-section. 

(3-15) 

·The second set of actions were expressed by Equations 3-9 

and 3-10. The superposition of these two sets of actions 

gives the internal actions of the beam-column in terms of 
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the deformation functions as follows: 

N -EI .Ill p (WI - e'y > (3-16a) ws + z y s s 

N :-EI 
.Ill + p Cv~ +e'zs) (3-16b) = vs y z 

M. c e' c e"' p (zs 
.. I . I r 2 e') (3-16c) = - 1 + vs - Ysws + x s 

M -EI 
II 

· (3-16d) = w y y s 

M. EI . ·· II (3-16e) = vs z z 

where 

The corresponding vectors to the positive actions 

obtained by Equations 3-16 are in the positive direction 

of the coordinate axes of the far end and are in .the 

negative direction at the near end of the element. The 

signs of the actions of point i should be reversed to 

adopt the sign convention shown in Fig. 3-2. 

3-4 The Stiffness Matrix 

The stiffness matrix for a space beam-column having 

the thin-walled open cross-section of two-fold symmetry 

is obtained from the differential equations of a general 

space beam~column,. · For open cross-sections of two-fold 

symmetry the shear center coincides with the centroid. 

Consequently, the deformations of the shear center become 

identical to the deformations of the centroid. Thus, the 

differential equations 3-13 reduce to 
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IV 2 .. II 
(3-l 7a) v -k v = 0 y 

IV 
- k 

2 II 
0 (3-l 7b) w w = z 

e IV -k 
2 (J II 0 (3-l 7c) = 

x 

c + r 2 p 
where ky 

2 p 
k 2 p 

k 2 s 
= n-' = ET.:" ' = c1 z x z y 

The internal act ions i,n this case are 

(C r 2 ) e' ell' (3-18a) M = + p - c1 x s 

-EI 
II 

(3-18b) M = w y y 

II 

(3-18c) M = EI v 
z z 

N P ·v' Ill 

= - EI w (3-18d) y z 

N p v' EI Ill 

(3-18e) = - w z y , 

The solution of the differential equations 3-17 give the 

following expressions for the deformations as the functions 

of .x.. 
k xx -k x 

(J A e B. e x + c x + D = + x x x x ·(3-19a) 

k Yx -k x 
+ Cyx + Dy v = Ay e + By e y (3-19b) 

k zx -k x 
w A e e z + c x + D = + Bz z z z (3-.19c) 

·. Ax, Ay' AZ, Bx:; By' Bz' ex' Cy' CZ and DX, Dy' Dz are the 

constants of integration, which will be determined from the 

end conditions of the beam-column. 
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The end deformations are expressed in terms of the 

integration constants in matrix form by taking the 

appropriate derivatives of the deformation functions and 

by making the necessary adjustments in signs. 

or 

() I 

ix 

() . 
l.X. 

() I 

jx 

where 

k x 

1 

-k x 1 

1 I o 
_J__ 

kx~l -kxl!rl I 1 
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-------------------------L-----+---
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B x 

c 
x 

D x 

and L is the length of the beam column ij. 

or 

(). .1.y 

e. 
JY 

0. 
JZ 

= 

-k z kz I -1 0 

----~---- -----1 -i-·-;----1-
+- - ,-
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(3-20) 

(3-21) 



where 

e. 
1Z 

k L 
t3 = e z ' 

k ' y 

and $3 = e 
-k L z 

----· ~?~~ 
6iy 1 

-kt +l --· = --
e. kyt2 0 
JZ y 2 

---

ojy '2 ~2 I 
L 1 

or 
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Ay 

B y ,, 

--

Cy 

D y 

C3 --22) 

whe.re 
-k L 

and ,i, 2 = e Y ~ 

The end actions are then expressed in terms of the 

integratiQn constants in ~atrix form by substituting the --appropriate derivatives of the deformation functions into 

the Equations 3-18 and making the necessary adjustments 

in signs to adopt the sign convention shown in Figures 

3-1 and 3-2. 
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or 

and 

or 

and 

or 
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[rx] = [Gx] [cox] (3-23) 

Mijy k 2 k 2 0 0 ~~1 z z 
--·-··-

N .. 0 0 -k 2 0 B 
1JZ 

2~-z-
z 

= Ely ---- ----
M 2 

-kz cJ?3 -kz i3 0 0 c jiy z 

N .. 0 0 k 2 0 D 
J1Z z z 

[ F z J ~ [ G z J [ C oz J (3-24) 

Mijz 
-.k 2 

y -ky2 I o 0 

---·· 

Nijy 0 
-----t--~-·-1--=~-Y-2--0 

---- EI 
k 2, 

Mjiz 
z 

y 2 
---- -•-•V•----

Njiy 0 

[FY J ~ [ Gy J [coyJ 

ky2t21-; 0 

--·--------- --··------··- ---

0 

• 

k 2 
y D y 

(3-25) 

The end actions are obta~ned in terms of the end 

deformations in matrix torm by solving the column matrix 

of constants from the matrix equations 3-20, 3~21, 3-22 and 
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substituting into the matrix equations 3-23, 3-24,_ and 

3-25. 

-1 

[Fx] = [ax] [Ex] [nx J 
-1 

[ Fz] = [ az] [Ez] [oz] (3-26) 

-1 

[FY] = [ aYJ [EYJ [nYJ 

At each end the cross sect ion of the beam-column is assumed 

to have zero warping. For this reason 

e : = e .' = 0 (3-~7) 
l.X JX 

The end actions are obtained in one matrix equation 

(Equation 3-28) by rearranging the Equation 3-26 and in-

eluding the axial force stiffnesses and considering the 

Equation 3-27. 



Mijx 

M. ·y 
l.J 

:Mijz 

Nijx 

Nijy 

Nijz 
I 

----._ 
Mjix 

Mjiy 

Mjiz 

N. ·x Jl. 
':=:::::::::::: 

Njiy 

Njiz 

I I I kl, 7 - I ' I I --~--- k2 8 

k4,1 I _I -~~r- -- Lk2,6 - _, +k3,91_ - =-
k2 2 k -+- --- J_k4 10 ---

1 . , I 3 s . , 
k 3 · ' -- , 3

_, -- --- --- ---- l k 

I k 4 _ 4 ~ ________ .. _ _ I 5, 9 I · '---- ~--- I 

----· ks,s I I kG,s l-f --

Symmetric 

I k6,6 ~ -- t-
1· - +i. 7 I . I n.7 ' 1 

k6, 12 

I ks, s ! I I J ks, 12 

k9,9 

lk10,10 

k9,ll 

_ kl 1 ,, 1=--1--1---1 
k12,12 

(3-28) 

or in symbolic form 

[N0J = [Ko] [1>0 ] 
(3-29) 

e. 
l.X 

e. 
1.y 

e-·-· 
iz 

.6 
ix 

6~y 

~ 
l.Z 

e­
jx 

8 
jy 

-r­
jz 

1,­
jx 

6 
jy 

6 
jz 

.i::,.. 

'-"' 
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where [K0J is defined as the stiffness matrix of the beam­

column. The algebraic expressions for the elements of the 

stiffness matrix are given by the following equations. 

c1 
= -kl 7 = :-3" 

' L 

EI ' y 
k2, 2 = ks, s = ,:;---

(3-30) 

(3-31) 

2 EI (k L) . . ( 2 ~ a, 3 ) 
k - y z - (3-32) 

- 8, 12 - ~ • k ZL 13 3 .. 2 a, 3 + 4 

k6 6 
' 

EI (kzL) 3 f3 3 
-k 6 12 = k 12 12 = ~ k tj3 . - 2 4 

' · ' L z 3 a,3 + 

k L{3 - 2k 2 L2 
y 2 y 

·kt~ 2 4 y ,..,2 - a,2 + 

EA 
L 

EI 
= z 

iT 

(3-33) 

(3-34) 

(3-35) 

(3-37) 

(3-38) 

(3-39) 
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Where 

Q!. = ~i + ~i i = 1,2,3 
l. 

(3-40) 

f3. ~i "'i 
i = 1,2,3 = -l. • 

The dimensionless coefficients of the elements of stiff-

ness matrix are the exponential functions of the axial 

force. For zero axial force these coefficients take an 

indeterminate form of~, and the limit by L'H8pital's 

rule gives the well-known coefficients of the conventional 

stiffness matrix. In case of compression the coefficients 

become imaginary. It is convenient to expand these co-

efficients into MacLaurin's series for the computer cal-

culations. Appendix A consists of the series expansion 

and the graphs of their values. 



CHAPI'ER IV 

Sl'IFFNESS MA'J'RIX FOR A. SPACE FRAME 

In this chapter the joint loads of a space frame 

are expressed in terms of the joint deformations in 

matrix form. The coefficient matrix of the column vector 

of joint deformations in this matrix equation is called 

tbe stiffness matrix of the space frame. 

An orthogonal system of coordinate axes which is 

called the structure oriented axes is chosen. The matrix 

relation .between the end actions and the end deformations 

of a space member which is obtained in the previous 

chapter is transformed from the member oriented axes to 

the structure oriented axes with the aid of the trans­

formation matrices. The transform~d matrix equations 

of the members are then assembled to form the joint 

equilibrium .equations of the space frame. 

4-1 Transformation of. Axes 

A space member ij where i and j are assumed to be 

the near and far ends respectively is shown in Fig. 4-1. 

The member oriented axes are X, Y, Z while xt, Y', z' are 

the axes parallel to the structure oriented axes at i 

(Fig. 4-1). The end points i and j of the member are 

45 



given by the (xi, yi' zi) and (xj, yj, zj) coordinates 

respectively with respect to the structure oriented axes. 

+z' 

z m 

_..)------ / - / 

Fig. 4-1 

Member and Structure Oriented Axes 

+X' 

The angle between the Y axis and the X'Y' plane is repre-

sented by a vector a parallel to X axis. The sign of a 

is determined by the right hand rule. From the Fig. 4-1 

2 

46 

=)x 
2 2 

L + Ym + zm . m (4-1) 

Lo Jx 2 2 
+ Ym . m (4-2) 

and 

xm = x. - xi J 

Ym yj - Yi 

zm z. - zi J 
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where L an<i L0 are the actual and the projected length 

of the member ij respectively. 

A column vector given with respect to the member 

oriented axes is t~ansformed to the structure oriented 

axes by premultiplying it witl:!. the transformation matrix 

[ t J . 
The transformation matrix [t] is obtained by the 

multiplication of the three matrices each of which corres-

ponds to a transformation by rotating the member oriented 

system about one of the axes. The matrices [t1J, [t 2J, 
and [t 3J correspond to the rotational transformation of 

the member oriented system about X, Y, Z axes respectively. 

-
1 0 0 

[ti] 
--- --- ---~ 

= 0 ... sfna (4-3a) cos a 

0 sin a -cos a 

..... 
L I 0 -zm/L o L 

[t2] = 
0 1 () (4-3b) 

zm 0 Lo 
-,,; --r;--

-
.... -

xm -Y m 
0 

[t3] 
r;- ·-y;-

= 0 0 

Ym x · (4-3c) m 0 
~ ~ 

.... o 0 1 -
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Then tbe transformation matrix 

== (4-4) 
• 

The column vector of end actions and end deformations 

can be transformed from the member oriented axes to the 

structure oriented axes by the transformation matrix [ T J . 
Since the column vector of end actions and the end deforma-

tions consists of four vectors, the transformation matrix 

,...... -
[t J 

[t] 
---

[t] (4-5) 
·-

[t] 
- -

where [t] is given by the Equation 4-4 and the blank areas 

are the null submatrices. The matrices given by the 

Equations 4-3 and 4-4 are orthogonal due to the character 

of the transformations, The matrix [T J is also orthogonal 

because it is formed by the orthogonal submatrices at the 

diagonal (Eq. 4-5)~ Then 

(4-6) 
• 

Denoting the column vector of end actions and end deforma­

tions with respect to the structure oriented axes by [NJ 
and [o] respectively 

(4-7) 
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and 

(4-8) 

·By premultiplying both the sides of the matrix equation 

(3-29).by [T] and substituting the matrix equations 4-7 

and 4-8 

[NJ = [TJ[Ko][TJT [n] (4-9) 
I 

Equation 4-9 gives the end actions in terms of the end 

deformations with respect to structure oriented axes~ 

Equations 4-9 can be written as 

( 4-10) 

where [K] is called the transformed member stiffness matrix 

and 

( 4-11) 

The transformed member stiffness matrix is symmetrical. 

This can be proved by transposing both the sides of 

Equation 4-11. 

It should be noted that the transformation matrix 

[TJ , in the form presented here, becomes indefinite for 

the member parallel to z' axis, due to the vanishing value 

of L. 
0 

Nevertheless, the coding system used in the com-

puter programming to form the sti~fness matrix does not 

require any transformation for the members parallel to the 

structure oriented axes. 



4-2 Joint Equilibrium Equations 

The end actions transformed to the structure oriented 

axes are transmitted from the ends of the members to the 

joints (Fig. 4-2). Then, the equilibrium of t.he joint is 

established by equating the summation of the column vector 

of end actions of the members meeting at the joint to the 

column vector of the joint loads provided that the joint 

loads acting in the positive direction of the structure 

oriented axes are assumed to be positive. 

I 

z 

l/ __ t/ 
I +~i ! / _ _J_ -t/ 

. / ---
/ ~ t 

x 

Fig. 4-2 

Free Body of a Typical·Joint 

A free body of a joint of a space structure is shown in 

Fig. 4-2. The double arrows designate the moment vectors 

while the forces are represented by the single arrows, 

It should be noted that the positive end actions acting at 
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the joint are in the opposite direct ion of the structure._. 

oriented axis· due to· the ·s-ign corivention for- the· -'end actions 

acting on the members. 
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Th.e matrix Equation 4-10 can be written for a member 

ij in the following form: 

J 
Nij Kii I Kij Di 

::;:: --+-. 
I 

;t ( 4-12) 
N .. Kji Kjj D. J1 J 

0 

N .. and N .. are six by one submatrices of the end actions 1J J1 
at the ends i and j respectively. Di and Dj are six by 

one submatrices of the joint deformations of joints i and 
J i 

j. The six by six submatrices K .. , K .. , K .. , KJ·J· are 11 1J J 1 
obtained from the transformed stiffness matrix by partition-

ing. Due to the symmetry of the stiffness matrix and also 

due to Maxwell's reciprocal theorem 

(4-13) 

,The joint equilibrium equations of joint i can be 

expressed in symbolic form by using Equation 4-12 as 

(4-14) 

where Wi is the column vector of joint loads at joint i, 

and j is the number of the far end joint of each member 

meeting at joint i, and il is the number of members coming 

to joint i. The joint equilibrium equations for the whole 

frame can be obtained by forming Equation 4.-14 for every 

joint of the structure·and by assembling those in one 
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matrix equation 

(4-15) 

where Ws and Ds are the column vector of joint loads and 

joint deformations of the frame respectively and Ks is the 

stiffness matrix of the structure. The order of the stiff-

ness matrix of a structure is equal to the total number of 

the degree of freedom of the joints. The matrix Ks is 

symmetrical due to Maxwell's reciprocal theorem<45 , 53 ). 



CHAPTER V 

STABILITY ANALYSIS OF SPACE FRAMES 

Two criteria of stability are introduced to find the 

elastic buckling load parameter for a space frame loaded 

at the joints. The determinantal criterion of buckling 

is used to obtain the elastic buckling load parameter 

for frames without prebuckling moments. In the case of 

f;rames having prebuckling moments, the convergence of the 

iteration process to obtain the axial forces in the members 

by taking into account the prebuckling moments is postu­

lated as a criterion of buckling. The determinantal 

criterion of buckling is also used to find an approximate 

buckling load parameter for structures having prebuckling 

moments. This is very important in the case of the 

stability analysis of symmetrically loaded, symmetrical 

space frames having prebuckling moments for which the 

convergence criteripn fails. 

5-1 Determinantal Criterion of Buckling 

The critical load parameter for frames which do not 

have prebuckling moments may be determined from the 

vanishing determinant of the stiffness matrix. The 

vanishing determinant of the stiffness matrix as a condition 

53 
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of instability is called the determinantal criterion of 

buckling. This well known and well established criterion 

has been discussed by several investigators(22 , 27 , 44 , 51 , 57 >, 

among them is Horne( 44 ) who pointed out that the critical 

load parameter for frames having prebuckling moments ob­

tained from the determinantal criterion is approximate. 

In this dissertation the determinantal criterion of 

buckling is used for the stability analysis of space frames 

which do not have prebuckling moments. For the frames 

having prebuckling moments the convergence criterion which 

is discussed in Article 5-2 is postulated. 

5-2 Convergence Criterion 

The typical load-deformation curves for frames having 

prebuckling moments are discussed in the introduction. 

Exact elastic analysis of the structure is necessary to 

obtain these curves. For a given load parameter, the 

axial forces in the members of the frame are unknown due 

to indeterminate prebuckling moments. Since the elements 

of the stiffness matrix of the structure are the functions 

of axial forces, Equation 4-15 may be used in an iteration 

process to compute the axial forces in the members. At 

first all the axial forces in the members are assumed to 

be zero. The joint deformations are solved from Equation 

4-15, and the axial forces in the members are computed from 

the deformations of joints. Assuming then the computed 

axial forces, the elements of stiffness matrix are recal-

culated and the analysis is repeated. This process is 
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continued until the assumed axial forces approach the com­

puted axial forces to a desired accuracy. For the final 

axial forces the determinant of the stiffness matrix as 

well as the joint deformations are calculated. 

For the types of load deformation curves introduced 

in Fig. 1-lc and Fig. l-3b the iteration to find the axial 

forces in the members converges rapidly for the loads 

smaller than the buckling load. At the buckling load 

this process does not converge due to the fact that there 

is not a unique set of axial forces to satisfy the equili-

brium and the compatibility conditions of the structure. 

Therefore convergence of iteration process is postulated 

as a criterion of buckling of frames having prebuckling 

moments. 

This convergence criterion fails for symmetrically 

loaded, symmetrical frames having prebuckling moments. 

However, the determinantal criterion of buckling may be 

used to obtain an approximate solution for the buckling 

load of this type of frames. 

5-3 Procedure of Analysis 

In the application of determinantal and for conver-

gence criteria of buckling for the stability analysis of 

space frames, the use of a high speed electronic computer 

is necessary. Two computer programs have been developed 

for this purpose in FORI'RAN(GS) language. The first pro-

gram is to compute the critical load parameter of an 

orthogonal space frame loaded at the joints by using the 



determinantal criterion of buckling. The second program 

performs the iteration to find the axial forces in the 

members for a given load parameter. The flow charts and 

the input/output of the programs are given in Appendix B. 

The following is the general procedure of the stability 

analysis of space frames by using the determinantal and 

convergence criteria: 

(a) A starting value and an increment is chosen 

for the load parameter. The stiffness matrix 
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of the frame is formed by neglecting the affect 

of prebuckl ing moments to the axial forces in 

the members (axial forces are determined by 

statics and axial deformations of the members 

are neglected) and the determinant of the stiff­

ness matrix is computed for each load parameter. 

(b) For the load parameters smaller than the critical 

load parameter, the determinant of the stiffness 

matrix is positive. When a negative value for 

the determinant is obtained, the value of load 

parameter for which the determinant vanishes is 

determined by successive reductions in the 

interval at which the determinant changes the 

sign. This load parameter is the critical load 

parameter if the frame does not have any pre­

buckling moments and the computation is finished. 

(c) The load parameter obtained in part (b) is an 

approximate critical load parameter for the 
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frames having prebuckling moments. In this case, 

the critical load parameter can be obtained by 

performing an iteration process to obtain the 

axial forces in the members by taking the pre-

buckling moments into account. The convergence 

of the iteration should be checked for the load 

parameters close to one obtained from the deter-

minantal criterion of buckling. The greatest 

load parameter for which the iteration converge s 

is the critical load parameter. 

5-4 Examples 

Example 1 

A space frame subject to a joint load analogous to 

planar knee frame is shown in Fig. 5-la. The x', Y' , z' 

axes are the structure oriented axes. All the members 

of the frame having the same cross-section as is shown 

in Fig. 5-lb. X; Y, ' Z are the member oriented axes. 

The properties of the cross-section are as follow: 

Modulus of Elasticity E = 29000 ksi 

Modulus of Rigidity G 

Moment of Inertia about Y 

Moment of Inertia about Z 

Area of the cross-section 

Pure Torsional Stiffness 

0.40 E 

I z 

161. 466 in 4 

34.183 in4 

A= 10.80 in2 

C = 6235 k-in2 

Warping Stiffness c1 = 20946120 k-in4 

Polar Radius of Gyration r = 4. 256 in· " s 

For the beams, Z axis of the cross-section is parallel 

to the z' axis while for the column, Z axis of the column 
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cross-sect ion is parallel to the X' axis. The reference 

load is taken as P = 100 kips.· 

120" z 
____ ___..,.....+XI t 

I 

lOII-
8 

y 

250" 

I .. 
120" ~I 

(a) 

Space Frame Analogous to 
Planar Knee Frame 

Fig. 5-1 

(b) 

Cross-Section of the 
Members 

Space Frame of Example 1 

The approximate er it ical load parameter is obtained 

as 5.958 from the d~terminantal criterion of buckling. 

When the convergence criterion is used,the greatest value 

of l for which the iteration process for the axial forces 

in the members converged is found to be 5.66. The maxi-

mum difference between the corresponding axial forces in 

the last two cycles of iteration is taken as 0.100 kips. 

The buckling occurs by the vanishing of the ;rotation-

al stiffness of the joint of frame about the X' axis. 



-4.0 

The relation between the load parameter and e, rotation x 

of the joint about. the X' axis is shown in Fig. 5-2. 

8.0 

l. = 6.445 
6.0 "-c = 5.66 

4.0 

2.0 

-2.0 0 2.0 4.0 6.0 8.0 10.0 
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e ii x 10-3 x Radians 

Fig. 5-2 

Load-Rotation Relationship of the Example 1 

The behavior of the frame in buckling is similar to the 

behavior of the planar knee trame discussed in Chapter I. 

It is interesting to note that there is no second order 

solution of the frame for the load parameters between 5.66 

and 6.445 and the determinant of the stiffness matrix does 

not vanish when the effect of prebuckling moments is con-

side red. The critical load parameter obtained by. the con-

vergence criterion is 5.3% smaller than the one obtained 

by the determinantal criterion, All the deformations of 

the joint are in the range of the small deflect ion theory. 

-
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Example 2 

A space portal frame under vertical joint loads 

analogous to planar portal frame is shown in Fig. 5-3a, 

The x', Y', z' axes are the structure oriented axes. All 

the members of the frame have the same cross-section which 

is shown in Fig. 5-'3b. X, Y, z are the member oriented 

axes. The cross-section of the members of this example 

is slightly different from that of the first example, with 

the except ion of E and G .. 

The properties of the cross-sect ion: 

Moment of Inertia about Y Iy = 173.498 in4 

Moment of Inertia about Z Iz 34.182 in4 

Area of the cross section A= 10.08 in2 

Pure Torsional Stiffness C = 6235 k-in2 

Warping Stiffness c1 = 22806470 k-in4 

Polar Radius of Gyration rs= 4.539 in " 

For the beams, Z axis of the cross-section is parallel to 

the z' axis while Z axes of the columns are parallel to 

Y' axis. 

The critical load parameter for the frame by neglect-

ing the effect of prebuckling moments is obtain.ed as 2. 581 

from the determinantal criterion. When the convergence 

criterion is used the critical load parameter is found to 

be 2.571. The load parameter versus horizontal displace­

ment of joint D in the x' direction ~:,[) relation is 

illustrated in Fig. 5-4. 



250" 
y' 

/ 

I x' 
150" 

(a) 

Space Portal Frame Under 
Reference·Loading 

Fig. 5-3 

r 
10I-
~ 

(b) 

Cross-Section 
the Members 

Space Frame of Example 2 

2.511--:i:--:::=;:====::::;:::::::::::;::::::::==::=====;;:;;;:;===~= 

2. 

1. 

of 

0~0---+-~2-+-~-+-~4-+-~+-~6+-~+-~81----1---l~O---ADx'(in) 

Fig. 5-4 

Load Deflection Relationship 
for the Frame of Example 2 
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CHAPI'ER VI 

SUMMARY AND CONCLUSIONS 

6-1 Summary 

A method of stability analysis for rigid-joint ed, 

elastic space frames loaded at the joint s i s p resented. 

A brief review of the methods of s tab i lity analysis of 

elastic frames,together with the historical development 

of the subject,is given. The stiffness matrix for a 

space beam-column of symmetrical, thin-walled open cross­

section is derived from the differential equations of 

bending and torsion. Warping stiffness of the cross­

section is taken into account in the derivation, Membe r 

stiffness matrices are transformed to a structure oriented 

coordinate system and then assembled to obtain the joint 

equilibrium equations of the frame in terms of joint 

deformations in matrix form, thus obtaining the stiffness 

matrix of the fra~e. The vanishing determinant of the 

stiffness matrix of the frame is used as the criterion 

of buckling for frames without prebuckling moments. In 

the case of frames having prebuckling moments, the conver­

gence of the iteration process to obtain the axial forces 

in the members is postulated as the criterion of buckling . 
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Two computer programs are developed for the application of 

the determinantal and the convergence criterion of buckling. 

These programs are explained in the appendix, and several 

examples of their use are included. 

6-2 Conclusions 

A method of elastic stability analysis for the space 

frames loaded at the joints is developed by taking the 

warping stiffness of the members into account, Two 

criteria of buckling have been utilized. The determinantal 

criterion of buckling is used for the stability analysis 

of the frames without prebuckling moments. For the frames 

having prebuckling moments, convergence criterion is postu­

lated. The use of a digital computer is essential for the 

stability analysis of space frames due to th.e involved 

character of the num.er ibal'. comput at.ions. 

If the prebuckling moments of the frame are small, 

determinantal criterion may be used to obtain the buckling 

load approximately. It is found that the use of deter­

minantal criterion of buckling requires less computer time 

and core storage compared to convergence criterion. Th,e 

prebuckling moments caused less than 10% reduction in the 

buckling load in the example problems solved. The pheno­

menon of buckling of the space frames is the same as the 

phenomenon of buckling of the analogous planar frames. 
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APPENDIX A 

THE Sl'ABILITY COEFFICIENl'S 

The algebraic expressions for the elements of member 

stiffness matrix are given by the Equations 3-10 through 

3-40 in· Chapter III. The dimensionless parts of these 

expressions are called the stability coefficients. It is 

possible to evaluate all of the stability coefficients 

from the following basic infinite series which are the 

reduced MacLaurin's expansions of the algebraic expressions. 

00 

Ul (y) I 2n n-1 = (2n+1 )! 
y· 

n=l 
00 

U2(y) I 1 n-1 = (2n+1 J! y 
n=l 

00 (2n+l) n-1 U3(y) = I (2n+l)! 
y 

n=l 
00 

2n(2n+l) n-1 U4(y) = I (2n+1 )t 
y· 

n=l 
00 n n-1 B (y) = I (n+lJ (2n+1 J! y 

n=l 

where y is the variable to be defined according to the 

stability coefficient to be evaluated~ Defining 

T (y) U4(y) 
B{YJ 
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(A-1) 
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AB(y) = 
Ul (y) (A-2) B(y) 

CAB(y) U2(y) (A-3) 13{y) 

DAB(y) U3(y) (A-4) B(y) 

The following are typical elements of the member stiffness 

matrix in terms of the expressions given by the Equations 

A-1 through A-4. 

EI 
k2,2 = ~ AB(y3) 

EI 
k 2 , 8 = -r;1- CAB(y3 ) 

EI 
k6 6 

y 
T (y3) = ·:-:r 

' L 

EI 
k3 3 

z AB(y 2 ) = ~ ' 
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EI 
k3, 9 = T CAB(y2) 

EI 
k5,5 = L3 T(y2) 

where 2 
k 2 L2 rs p + c 

L2 
Y1 = = 

c1 
. x 

k 2 L2 
P!,2 

Y2 = = n-y z 

It is interesting to note that the expression for 

the stability coefficient of torsion obtained by taking 

the warping stiffness of the cross-section into account 

is the same as the expression for the stability coefficient 

of the shear force. This confirms the analogy between the 

shear force and the torsional moment in structural analysis. 

The expressions A-1 through A-4 are evaluated by a 

high speed computer; once using their exponential equiva-

lents and then by series for the values of y between -50 

and +50. It is found that taking only sixteen terms of 

series is,sufficient to obtain at least six digit accuracy 

in all cases. Since the. interval considered for y is much 

greater than the values of y in practical problems, the 

elements of stiffness matrix of members are calculated by 



series in computer analysis. Figure A-1 illustrates 

the variation of T, AB, CAB and DAB with values of y. 
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APPENDIX B 

COMPUTER ANALYSIS 

The coding used for the deformations of joints to 

generate the stiffness matrix, the macro flow diagrams 

and the input-output of the computer programs based on 

determinantal and convergence criteria for the stability 

analysis of orthogonal space frames are given. 

Generation of the Stiffness Matrix 

The components of the deformation vectors of the 

joints in the direction of structure oriented axis are 

numbered in any arbitrary order starting with the 

number "l." All zero deformations are given the same 

dummy code number that is one greater than the largest 

number used for possible deformation vector components 

of the structure. . For the orthogonal frames if the axial 

deformations of the members are neglected, the displace­

ment components of the end joints of the members in the 

direction of the members are given the same code numbers 

d,ue to the fact that there will be no relative displace­

ment between the end joints in the direction of the member. 

After numbering the deformations of the joints of an 

orthogonal space frame as explained, code numbers of the 
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near end and far end deformations of each member can be 

determined from the de format ion code numbers of the end 

joints. The subscripts used in the computer programs 

indicating the code numbers of the end de format ions of a 

space bar ij, are shown in Figures B-la and B-lb, where 

i and j are the near end and far end joints respectively. 

Fig. B-la illustra~es the subscripts for the code.numbers 

of the end deformations of the case where tbe axial 

deformations of tne bar is neglected. Fig. B-lb shows 

the subscripts of a general space bar. 

(a) (b) 

Fig. B-1 

Subscripts For the Code Numbers of End Deformations 
of a Space Bar 
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The sign convention of the end deformations is th~ same 

as the one used in derivations in Chapter III. 

If the rows and columns of the beam-column stiffness 

matrix given by Equation 3-28 are labeled by the sub-

scripts 11, 12, ..• , 16, Jl, J2, ... , JG, it is possible 

to set up a general stiffness matrix that is applicable 

to all members of the frame. The stiffness matrix of 

the structure is then formed by accumulating the 

corresponding elements of all member stiffness matrices 

in one matrix. Due to the dummy deformation code number 

used for zero deformations, the stiffness matrix of the 

structure generated by this method contains an extra row 

and column. The joint loads are subscripted with the code 

number of the joint deformation in their direction, and 

they are stored in the extra column of the stiffness 

matrix to form the joint equilibrium equations. Thus, 

the waste of computer memory is reduced to a row of the 

stiffness matrix. 

Computer Program Using the Determinantal Criterion of 
'8uck!1n.g 

A macro flow diagram, Fig. B-2, illustrat~s the 

basic logic used in the -~omputer program for the 

stability analysis of orthogonal space frames by utiliz-

ing the determinantal criterion of buckling which is 

discussed in Chapter V. Since the axial deformations of 

members are assumed to be zero, the general member stiff-

ness matrix in this case is obtained by deletion of the 
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4th and 10th rows and columns of the stiff.ness matrix given 

by Equations 3-28. The coding scheme for the end deforma-

tions of the members is shown in Fig. B-la. Required in-

put data are indicated below. The output is the values of 

load parameters and the corresponding determinant of the 

stiffness matrix. The last load parameter is the critical 

load parameter. Since it was not the purpose of this 

dissertation to develop an efficient program, the pro-

gramming effort terminated when results were obtained. For 

this reason, the details of the program are omitted. The 

program was written for a computer having a total storage 

capacity of only 40,000 decimal digits, therefore the 

structure was restricted in size to 8 joints, 32 degrees 

of freedom. 

Input Data 

Control Cards 

(AL, DAL, EPS 

AL - Starting value of the load parameter 

DAL - Equal increments of load parameter 

EPS - The allowed error in critical load parameter 

(E 
E - Modulus of elasticity 



ND, NM, ,NK 

ND - Number of joint deformations 

' NM - Number of members 

NK - Number of terms to be taken in the computation 

of stiffness by series. 

Member Deformation Coding 

M, Il, 12, ... , 15, Jl, J2, ..• , J5 

M - Code number of the member 

I's and J's indicate the code numbers of the end 

deformations of the member determined according to 

Fig. B-la. 

Member Properties 

~S, ZIY, ZIZ, Cl, C, RS, P 

ES - Length of the member 

ZIY, ZIZ - Moment of inertias of the cross-section 
.. 

about Y and Z axis respectiveiy 

Cl - Warping stiffness 

C Pure torsional stiffness 

RS - Square of the polar radius of gyration of the 

cross-sect ion 

P Axial force in the member 
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Store the ••t•r•inant 
and load Parameter 

Increment of load par a­
meter unchanged 

DY• l 

Read member deforma­
tion codina (a) and 

properties (b) 

Store (a) and (b) 

zero the 
stiffness 
matrix 

Read (a).and (b) 

Generate 
structure• e 

stitfness matrix 

Compute the determi­
nant ot the sttffnesij matrix 

Yes 

Store abs. value of determinant 
and load parameter 

Yes 

Print load paramete1· 
and deter1ninant 

Interpolate for load 
parameter increment 

'-~--.... ~--~~~.....iCompute the new load 
Pl'lrameter 

Yes No 

FIG. B. 2 MACRO FLOW DIAGRAM OF COMPUTER PROGRAM 

USING THE DETERMINANTAL CRITERION OF.BUCKLING 
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Computer Program Using the Convergence Criterion of Buckling 

A macro flow diagram given in Fig. B-3 illustrates the 

basic logic used in the computer program-for the second 

order analysis of an orthogonal space frame to apply the 

convergence criterion of buckling. The program was written 

for a computer having a total storage capacity of only 

40,000 decimal digits; therefore, the structure to be 

analyzed was restricted in size to 4 joints, 24 degrees of 

freedom. The details of the program are omitted. 

Input Data 

Control Cards 

F 
E - Modulus of elasticity 

EPS ~ The maximum difference between the corresponding 

axial forces in last two cycles of iteration 

(ND, NM, NK, ICL 

ND - Number of joint de format ions 

NM - Number of members 

NK Number of terms to be taken in the computation 

of stiffnesses by series 

ICL - Number of iteration cycles before deciding for 

non-convergence of the process 
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Joint Reference Loads 

F 
I Code number of the joint load 

F(I) - Value of the joint load 

Member Deformation Coding 

M, Il, 12, ..• , 16, Jl, J2, ... , J6 

M Code number of the member 

I's and J's indicate the code numbers of the end 

deformations of the member determined according to 

Fig. B-lb. 

Member Properties 

ES, ZIY, ZIZ, Cl, C, RS, AR 

ES - Length of the member 

ZIY, ZIZ - Moment of inertias of the cross-sect ion 

about Y and z axes respectively 

Cl - Warping stiffness 

C Pure torsional stiffness 

RS - Square of the polar radius of gyration of the 

cross-section 

AR - Area of the cross-section 



Axial.Force Information 

~M, AR, ES, 14, J4 

M Code number of the member 

AR - Area of the cross-section 

ES - Length of the members 

I4 - Displacement code number of the near end joint, 

in the direction of the member 

J4 ... Displacement code number of the far end joint 1 

in the direction of the member 

Output Data 
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Output data consists of the axial forces in the members 

in each cycle and deformations of the joints, load factor 

and the determinant of the stiffness matrix if the iteration 

converges. 



Print the joint 
defor•ationa 

Co•pute the deter•inate 
of stiffness •atr!x 

Print the load factor 
and the deterainate 

Read Control 
Carda 1, ll 

had the joint 
reference load• 

aead ... ber defor•ation 
codin1 (a) and propertiea (b 

Yos 

Store (a) and (b) 

Read member axial 
force infor•ation (c) 

zero the joint 
equilibr iu• equations 

Generate the joint 
equilibrium equations 

Solve for the .faint 
deformations 

Compute the axial 
torr.es ln membera 

Assume the new 
axial forces 

Ye a 

FIG, 8,3 MACRO FLOW DIAGRAM OF THB COMl'lrl'IR PROORAII 
USING THB CONVERGENCE CRITIRION OF BUCKLING 
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