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CHAPTER I
INTRODUCT ION

1-1 The Phenomenon of Buckling

A linearly elastic structure under static loads is
stable if it returns to its original deformation con¥
figuration after a small disturbance; it is unstable if
it tends to move to a different configuration. - The
necessary condition for stability is the uniqueness of
the deformation configuration after small disturbances,
The uniqueness of the deformation configuration of a
stable structure is characterized by the faét that there
is no increase in deformations of the structure without
an increase in loads,

The critical load or the buckling load is the level
6f the given loading pattern at which the structure loses
its stability, A loading patfern applied to a structure
may be conveniently represented by a reference set of
loads or reference load vector, Any level of loading is
then obtained by multiplying all of the loads of the
reference load vector by a load parameter, The’/level of
loading at which the structure buckles is described by a

critical load parameter., It should be noted that for a



given structure the critical load parameter differs with
the loading pattern and magnitude of reference loads under
consideration., In other words, for each loading pattern
there exists a critical load parameter,

In the conventional analysis of linearly elastic
frames under static loads in the range of small deflec-
tions, the equilibrium and compatibility conditions are
satisfied for each infinitesimal element of the structure
by neglecting the effect of axial forces on the stiffness
of the members, Neglecting the effect of the axial
forces on the stiffness of the members leads to linear
load-deformation relationships. This is a good approxi-
mation for frames loaded in such a manner that the axial
forces induced in the members of the frame are proportion-
ally small compared to the bending moments induced by the
loading. In practice, however, there are certain loading
patterns, such as the application of forces to the joints,
which induce large axial forces but small moments. For
these cases the methods of conventional analysis lead to
erroneous results because the change in the stiffness of
the structure due to axial forces is neglected., Due to
the effect of axial forces at a certain level of loading
the frame loses its stiffness, becomes unstable, and fails
by elastic buckling,

A non-linear load-deformation relationship is ob-

tained when the effect of axial forces is taken into



account in the anlysis of a structure., The load-deforma-
tion relationship of a structure affords an excellent means
of observing the overall behavior of a structure under in-
creasing loads and determining the type of buckling which
may occur., At the critical load, the load deformation
curve for a rigid-jointed, elastic frame may show a
bifurcation, an infinite type of discontinuity, or a maxi-
mum, depending on the geometry of frame and the loading
pattern,

A load-deformation curve which exhibits a bifurcation
at the buckling load is the characteristic of elastic
frames which do not have prebuckling moments (Fig. 1-la).
Bifurcation of the load deformation curve is also obtained
for symmetrically loaded symmetrical frames (Fig. 1-2a)
which have prebuckling moments(57).

A portal frame and a knee frame are shown in Fig, 1l-la
and Fig. 1-1b, respectively. The portal frame does not
have any prebuckling moments due to the symmetry of the
structure and the loading. The prebuckling moments of
the knee frame will be zero if the area of its column
is assumed to be infinite. The axial forces in the
columns are equal to the joint loads prior to the buckling
in both frames, Therefore, the determination of the
stiffness of the members does not require an elastic
analysis of the frame,

An elastic analysis is not necessary to determine
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Load-Deformation Relationship of the

Frames Which Do Not Have Prebuckling Moments
the axial forces in the columns of the frame shown in
- Fig. 1<2a; however, due to the prebuckling moments induced
in this frame owing to the positions of the loads, the
‘buckling loading is not the same as that of a similar
frame loaded as shown in Fig. l-la,

The horizontal displacement A for the portal frames
and the joint rotation 6 for the knee frame are taken as
the representative deformation in the load deformation
curves which exhibit a bifurcation at the critical load as
shown in Figures l-lc and 1-2b., The porfal frames have no

resistance to horizontal disturbances while the joint of
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the knee frame has no resistance to rotation at the
buckling load. The buckling phenomenon of frames which
do not have prebuckling moments is analogous to that of
the buckling of initially straight perfect columns,

In general, prebuckling moments cause deformations
of the frame as well as the shears which induce the changes
in axial forces of the members. Deformations due to pre-
buckling moments tend to increase without bound for loads
near the buckling load because of the decreasing stiffness
of the structure. Therefore, for frames which exhibit a
sidesway type of buckling, the load-deflection curve shows
an infinite type of discontinuity at the buckling load.
An eccentrically loaded portal frame is shown in Fig. 1-3a.
Fig. 1-3b shows the load-deflection curve of the frame ob-
tained by taking the effect of the prebuckling moments into

account. The horizontal displacement A of the frame is



taken as the representative deformation in the plot(57).

At the buckling load, the load deformation curve is
asymptotic to a horizontal line as shown in Fig. 1-3b.

The instability of the structure is characterized by un-
bounded deformation, The plot is not extended to the
higher modes of buckling, The phenomenon of buckling in
this case is analogous to that of the buckling of eccentri-
cally loaded columns.

It should be noted that the bifurcation type of load-
deformation curve is a special case of the general load-
deformation curve which has an infinite type of discon-
tinuity at the buckling load. Namely, the deformations
of the frame shown in Fig. 1-3a decrease when k approaches
to unity. Finally for equal forces, the load deformation
curve exhibits a bifurcation as shown in Fig, l;lc.

A knee frame loaded at the joint is shown in Fig. 1-4a.
The load-joint rotation curve obtained by taking the effect
of prebuckling moments into account exhibits a maximum at
the buckling load as shown in Fig. 1—4b(67). An interest-
ing feature of this curve is that there is no solution of
the frame for the joint loads between PCr and Pl'

In general, the stability analysis made by neglecting
the effect of prebuckling moments gives the upper bound of

(30,61). The

the elastic buckling load of the frames
difference between the upper bound and the actual elastic

buckling load was found to be smaller than 3% for the type
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of frames shown in Fig, 1_2(13,42,57)

1-4(67).

and 7% for the frame

shown in Fig.
The phenomena discussed above are called the classical

buckling of elastic frames, Classical buckling can only

be valid if the deflections of the structure are small for

the loads close to the buckling load. In some cases there

might be another geometric configuration of the frame that

it can take by large deformations to be in stable equili-

brium, Then, at the buckling load the frame moves from

an unstable geometric configuration to a stable geometric

(89) " rhis

configuration as a result of large deflections
phenomenon is célled the snap through buckling, and it is
characterized by a jump discontinuity instead of an
asymptote in the load-deformation curve at the buckling
load, The magnitude of the prebuckling moments plays a
big role in changing the classical buckling phenomenon to
the snap through buckling. When a method of stability
analysis which neglects the effect of prebuckling moments
is utilized, the magnitude of deflections should be
checked for the loads close to buckling load to make sure
‘that the classical buckling will occur, From the above
discussion, it can be concluded that the elastic buckling
load of frames having prebuckling moments which exhibit
the type of load deflection relationships as illustrated

in Figures 1-3b and 1-4b can be determined from the load-

deformation curve.



The same characteristics as discussed for planar
frames are observed in the load-deformation curves of the

space frames. They are illustrated in Chapter V.

1-2 Statement of the Problem

Many approximate methods have been introduced for
the stability analysis of planar frames. Due to the
-involved nature of the analysis most of these methods have
the tendency to simplify the problem by some assumptions
(Chapfer-II), but still they are good enough to sclve the
elastic stability problems of planar frames faced in
engineering practice. Other, more exact methods involve
tedious calculations or the use of an electronic
computef(42’57).
In the area of the stability analysis of space frames
very little work has been done until recently. Renton(sl)
introduced a method of stability analysis based on the
vanishing determinant of the stiffness matrix., 1In his
derivation, however, he neglected the effect of warping
stiffness of the cross sections and the effect of pre-
buckling moments, The use of an electronic computer is
required for the application of his method.

Unfortunately, due to the effect of the torsional
stiffness of the members of structure and the possibility
of the torsional buckling of columns, the stability

analysis of space frames is not a simple generalization

of the methods developed for planar frames. In addition,
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because of the complexity of the calculations which must be
performed, the use of an electronic digital computer is
essential for the solution of all but the most trivial
structures,

In this dissertation, a method is presented for the
‘elastic stability analysis of rigid—jointed space frames
which buckle in a manner analogous to that shown in
Figures 1-1, 1-3 and 1-4. The loading considered is
limited to those loads which may be applied to the Jjocints
of the frame, The effect of prebuckling moments and the
warping stiffness of the members is taken into account.
Thus, the effect of torsion on the phenomenon of buckling

is considered in the method.

1-3 Assumptions

The following assumptions are made in the method
presented:

(a) The material is homogeneous, isotropic, and
elastic.

- (b) Deformations are small and do not change the
geometry of the frame.

(c) Deformations due to shears are small and can
be neglected.

(d) The frame is made of the members of thin-walled
open cross-sections.

(e) Navier's hypothesis remains valid for each of

the flat plates of which the member is composed.



(1)

(g)

11

The warping of the cross-sections of the members
at the joints of the structure is zero.
The directions of the joint loads remain un-

changed by the deformations of the structure.

.1-4 Procedure of Investigation

In the development of the method of stability analysis

presented herein, the following steps of investigation are

followed:
(a)

(b)

(c)

(d)

(e)

(£)

(g)

‘The methods of stability analysis of frames are

reviewed.

The stiffness matrix for a beam-column is de-
rived from the governing differential equations,
Transformation matrices are established to trans-
form the stiffness matrices from the member
oriented axis to the structure oriented axis,
The stiffness matrix for the frame is obtained
from the equilibrium of joints.

A determinantal criterion of stability is used
for bifurcation type of buckling of space
frames,

The second order elastic analysis of the frame
is made by an iteration process for each level
of loading.

The convergence of this process is postulated
as the criterion of stability for space frames

loaded at the joints and exhibiting an infinite



(h)

(i)

type of discontinuity or a maximum in the load;
deformation curve. For these cases, the deter-
minantal criterion offers only an approximate
value of buckling load.

The deformations of the joints, the determinant
of the stiffness matrix, and the axial forces
in the members are obtained from part "f* in
order to verify that the defcormations are in
the range of small deflection thecry.

Necessary computer programs are developed, and

the method is illustrated by several examples.

12



CHAPTER II
SUMMARY OF METHODS OF STABILITY
ANALYSIS OF ELASTIC FRAMES

The historical development of the stability amalysis
of elastic frames is briefly reviéewed, ahd the currently
available methods for the elastic stability analysis of
rigid-jointed frames are presented in this chapter. A
list of selected references is given in the bibliography;
however, an extensive survey of available literature may
be found in references (21) and (48).

A brief history of the development of methodé for
the stability analysis of elastic frames is given in
Article 2.1 while the methods themselves are briefly
described in Articles 2.2 and 2.3, These methods are
classified in two groups in these Articles. The first
group consists of those methods which neglect the effect
of prebuckling moments. The second group consists of
those methods which take the effect of prebuckling

moments into account.

2~1 Historical Notes

At the beginning of this century, the stability prob-
lem of frames which do not have prebuckling moments began

to attract the attention‘of many investigators. 1In 1919,

13
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1,2)

Bleich presented a systematic analysis of the stability

of rigid-jointed planar frames by using '"the four moment
equations.'" The stability analysis of a plane truss as sz
unit was made by Mises(3). Mises and Ratzersdorfer(4>
gave a detailed presentation of the stability analysis of
frames and extended the investigation by taking the effect
of axial shortening in the members into account. The
energy method was applied by Kasarnowsky and Zetterholm(s)
to the stability analysis of long columns elastically sup-
ported at equidistant intermediate points. In 1928,

(6)

Bleich published a paper dealing with a generalization

of the theory of stability of assemblies of bars valid for
rigid-jointed space frames whose members buckle spatially.
The calculation of the stiffness-coefficient and carry-

over factors of bars subjected to axial loads was made by

(7)

James and established the foundations of a stability

analysis by the moment distribution. Prager(g) developed
a method for the stability analysis of frames utilizing

the analytical stability condition of a column with elastic

(10,11)

end supports. Lundquist established the '"series"

and "stiffness" criteria for stability of frames based on

the principle of moment distribution. 1In 1938, Chwa11a<13)

introduced an approach for the determination of the buck-
ling load of a portal frame by taking the effect of pre-
(15)

buckling moments into account. Puwein presented an

approximate method to solve the same problem. In 1941,
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the slope deflection method of stability analysis was
developed for multi-story frames by Chwalla and Jokisch(17).
At the same time, Hoff(le) gave the rigorous proof of the
convergence of the moment distribution and of the unique-
ness of the results in the case of stable equilibrium by
means of energy considerations, Southwell's relaxation

method was applied to the stability analysis of planar
(18) (19)

’

frames by Boley (20)3

(24)

in 1947, Winter, et 2al Perri

and Masur proposed modifications of the moment distri-
bution method for the stability analysis of planar frames
with sidesway. In 1952, Bleich‘22) puplished a book on
buckling strength of strucfures which contains two chapters
on the stability analysis of planar frames, In a series

of papers Merchant and his associates(25’28’3l’34)‘pre-
sented approximate methods of stability analysis of tall
building frames. They defined a single bay and single
story portal frame equivalent to the multi-bay and multi-
story frame to find the approximate buckling load. 1In

(27)

1956, Livesley introduced a method of stability analy-

sis of rigid-jointed planar frames which was suitable for
use on . a digitél computer and checked the results of the

examples solved by Merchant and his associates, Masur

(33)

and Cukurs applied the determinantal criterion and

series criterion of stability to the out of plane buckling
of trusses., Historical notes about the research conducted

on the stability analysis of frames in Russia was given by

, (36) (37)

Rabinovic . -Horne gave a good discussion on the



effect of elastic stability to the load carrying capacity
of the frames. A solution of the lateral instability of

building frames by the energy method was presented in 1960

(39) |, (40)

by Johnson introduced a method of stability

analysis of elastic-plastic frames. 1In 1961, Masur, et
31(42), modified the slope deflection and the moment dis-
tribution method to include the effect of prebuckling
moments in the stability analysis of frames. A review on
the stability of elastic-plastic structures was made by
Horne(44) in 1961. Stability analysis of planar frames
by the moment distribution has been thoroughly treated by

Lightfoot(46) and recently by Gere(ss). Horne(so) and

455)

then L, discussed the effect of finite deformations

in the elastic stability of frames. In 1962, Renton (%1’
presented a method of stability analysis for space frames
by an electronic computer, Post buckling deformations of
elastic planar frames was investigated by Britvec and
chilver ®%) and by saafan(®®). 1n 1963, carter®? intro-

duced a matrix method of stability analysis of planar

frames having prebuckling moments,

2-2 Stability Analysis by Neglecting the Effect of

Prebuckling Moments

There are a number of methods available for the
stability analysis of frameslby neglecting the effect of
prebuckling moments, All of these methods are devéloped
by modifying the conventional methods of frame analysis

to include the effect of axial forces in the members,
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The moments due to loads in the prebuckled state are
assumed to be zero. Consequently, the loads which are
not applied at the joints of the frame are replaced by
the statically equivalent joint loads. The axial forces
in the members are computed directly from the equations
of statics. The critical load parameter is determined
from the loading ievel for which the deformation configura;
tion of the frame becomes unstable., According to the
analytical theory used in the analysis, the methods of
stability analysis of frames neglecting the effect of
prebuckling moments may be considered in four groups:
equilibrium methods, convergence methods, matrix methods,

and energy methods.

2-2.1 Equilibrium Methods

The equilibrium methods are based on the bifurcation
of the load-deformation relationship. All the deforma;
tions in the prebuckled state are zero due to the assump-
tions made. The equations of equilibrium for the buckled
state of the frame are linear and homogenous. The un-
known quantities in the equations are the actions and/or
deformations induced by buckling. The coefficients of
the unknown quantities are the transcendental functions
of member properties, dimensions, and the axial forces.
For the buckling load, these linear homogenous equations
have a non-trivial solution. Therefore, the determinant

of the coefficient matrix of the equations should vanish
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at the buckling load. This is called the determinantal
criterioh of buckling. The procedure used in establishing
the system of linear homogenous equations distinguishes
the various methods of this group. But the determination
of the buckling load from the determinantal criterion is
the same in all the methods of this group. In the case

of some simple frames the determinantal criterion may

lead to a less complicated transcendental equation from
~which an algebraic expression for the buckling load can

be obtained. Usually, for complex frames, a trial and
error approach is used to obtain the buckling load
numerically due to the complexity of the transcendental
equation obtained from the vanishing determinant. It
should be noted that the non-trivial solution of the
equations gives the relative values of the unknowns.
Therefore, the magnitudes of the deformations for buckling
load remain indeterminate, and only the mode of of
buckling may be obtained. Detailed information on the
methods of this group may be found in references 1, 4, 6,

8, 9, 17, 22, 25, 43, and 57,

2-2.2 Convergence Methods

The methods of this group are developed by modifying
the moment distribution énd the relaxation methods of con-
ventional frame analysis to take the effect of axial forces
into account. - In the prebuckled state,:a frame offers
positive resistance to any externally applied action or

deformation, At the buckling load, the frame
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has no‘resistance'to any external disturbance., Therefore,
for the buckling modes which do not have joint .translation,
the moment distribution and relaxation processes do not -

converge if the frame is analyzed under a disturbing joint

moment M0(16). In addition to this criterion of buckling,

(10,11)  ..,e also available,

stiffness and series criteria
For the translational modes of buckling, an arbitrary
translation of the frame is imposed in the presence of
the loading systenmn, vathe frame is in the prebuckled
state, a positive force is necessary to hold the frame in
the displaced position, -For the buckled and post buckled
states, a zero force and a negative force are required
"respectively. Another way is to apply a unit force in the
direction of the translation of the frame and compute the
translétion of the frame due to this force in the presence
of the loading system. If the translation is in the
direction of the force, the frame is in the prebuckled
state. For the critical level of loading the translation
is infinite. 1In the post buckled state translation.
is in the opposite direction of the applied force(zs’Sl),
A very good discussion of the moment distribution
method of stability analysis may be found in references
46, 58.

4(18,56)

The relaxation metho is fundamentally the

same as the moment distribution method.
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2=2,3 Matrix Methods

Matrix methods became very powerful in the stability
analysis of frames with the development of large elec-
tronic computers. The displacement method of conventional
frame analysis is modified to take the effect of axial
forces into account. Joint equilibrium equations of the
displacement method are written in matrix form for a
number of load parameters., The frame is analyzed by
solving these -equations for each load parameter. Deter-
minant of the coefficient matrix of the equations may
also be computed. At the buckling load this determinant
is equal to zero and the frame has no resistanée to a
disturbance which excites the mode of buckling. .In the
methods of this group, the buckling load parameter is

(27)

found from either the load-deflection curve or from

the load-determinant curve(5l’57).

An excellent presentation of the matrix methods of
stability analysis applied to planar frames is given in
reference 37,

Matrix methods, in general, are not suitable for
hand computations, They are probably the most efficient

methods for the systems approach to stability analysis

by -the computer,

. 2=2.4 Energy Methods

The energy methods are based on the fact that a

frame returns to the unique deformation configuration
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after any small disturbance if it is in a prebuckled state,
.In terms of energy, the work done by the external loads
through a change of deformation configuration due to a
disturbance, is smaller than the change in strain energy.
The difference between the two quantities is the energy
which returns the frame to the deformation configuration
before the disturbance. If the frame is in the buckled
state, the work done by the external loads through a
change in deformation configuration due to a disturbance
is equal to the change in strain energy so that the frame
has no tendency to return to the deformation configuration
which it held before the disturbance. -This criterion
leads to a set of linear homogeneous equations analogous
to the equations obtained in the equilibrium methods.
‘Then the buckling load is determined from the condition

of the vanishing determinant of coefficients of these
equations, - More information about the methods of this

group may be found in references 3, 5, 8, 39 and 43.

2-3 Stability Analysis of Frames Having Prebuckling

Moments

In the methods of this group the effecté of the
-moments induced.by.the loads which are not applied to the
joints and by the change in lengths of the members due to
axial forces are taken into account. .In this case, it is
not possible to determine the axial forces by using the
equétions of statics directly because of the unknown pre-

buckling moments, Axial forces are the functions of the
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deformations of the frame, and it is necessary to know the
axial forces to determine these deformations. Besides,
none of the criteria of stability established by the
methods which neglect the effect of prebuckling moments
are applicable to this case due to the fact that the
equations of equilibrium or energy are linear but not
homogeneoﬁs.

-In the prebuckled state of the frame an increment
in the loads induces an increment in the deformations.
At the buckling load, deformations can increase without
an increment in loads. This fact is used as a criterion
of stability in the methods of this group.

In 1938, Chawallal3)

investigated the buckling of

a symmetrical portal frame under two symmetrically located
concentrated loads by taking the effect of prebuckling
moments into account. He obtained a transcendental
equation using the differential equations of the members
of the frame and solved for the buckling load parameter
from this equation. Principally, his method is the
extension of the equilibrium method to include the effect
of prebuckling moments,

Puwein(ls)

proposed an approximate method to deter-
mine the buckling load of the uniformly-loéded portal
frame and extended his approach to the gable frames and
to the frames with partial base fixity. His approach is

primarily the extension of the energy method of stability

analysis. ‘The approximation in his solution is the
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assumption of a buckled deformation configuration for the
frame,

‘Masur, et a1(42), introduced two methods for calculat-
ing the elastic buckling load of a symmetrical frame under
symmetrical loads and prebuckling moments. One method is
based on an equilibrium analysis of the buckled frame
using the slope-deflection equatibns, and the other is
based on a moment distribution procedure, Both of these
methods are the extensions of the methods which do not
take the effect of prebuckling moments intd account, The
relation between the incremental actions and deformations
is established. The buckling load is obtained from the
fact that the incremental defdrmations‘occur without the
incremental actions at the buckling load, The results
obtained ffom both of these methods showed a good agree-
ment with those of Chwalla.

(57) developed a matrix method of

-Recently Carter
elastic stability analysis for the planar frames having
prebuckling'moments. He succeeded in establishing a
matrix relation between the incremental deformations and
the incremental loads of the frame based on the deforma-
tion method. At the buckling load this matrix relation
reduces to a set of linear homogeneous equations .due to
the fact that the incremental deformations can exist even
if the incremental loads vanish at the buckling‘load.b

This leads to a new determinantal criterion of stability.

‘Because of the involved character of the problem the use
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of a computer is necessary in the application of this
.method, For this purpose, a computer program is also

developed by the same investigatbr.

2-4 Summary

From the review~6f the available methods of stability
analysis of elastic frames and their historical develop-
ment, it is observed that the methods developed befofe the
use of the computers in this field have the tendency to
simplify the problem by certain assumptions due to the
involved character of the numerical computations. The
most common assumption made is that of neglecting the
effect of prebuckling moments. In fact, due to this
assumption most of the available literature deals with
the bifurcétion type of buckling. The applications of
these methods are also restricted to certain type frames
such as portals, single bay, multi-story, and gable frames
because of the inconvenience in the hand computations.

In the last decade the use of computers in this
field made the development of the general matrix methods
of stability analysis possible, but still there has been
very little work done in the area of the elastic buckling

of space frames, the subject of this dissertation.



-CHAPTER III
STIFFNESS MATRIX FOR A SPACE BEAM-COLUMN

Thé»geometry, the positive end deformations, and
end actions of a space beam—column* are defined. The
differential equations of a space beam~-column are derived

(64)

by using Chilver's concept of corrected discontinui-
ties, The differential equations are integrated for the
beam-columns of the cross-section whose shear center
coincides with the cenfroid. The constants of integration
are eliminated by assuming a set of end deformations,
their corresponding end actions, and zero warping of the
cross—sectioniat the eﬂas. Thus, the end actions are
obtained in terms of fhe‘end deformations in matrix form.
‘'The coefficient matrix of the column vector of the end
deformations is called the stiffness matrik of the space
beam~column. The elements of the stiffness matrix are

transcendental functions of the axial force and the-length

arnid the section properties of the beam-column.

*For the purpose of this dissertation a space beam-column
is defined as a thin walled structural member which is
subjected to end moments and end shears as well as axial
force.

25
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3-1 Geometry of A Space Bar

A beam~column ij of constant, thin-walled open
cross-section is considered, The centroidal axis of the
bar is chosen as the X axis,While the Y and Z axes are
the principal axes of the beam cross-section. The
positive end actions and end deformations are represented
by vectors acting in the positive direction of the
coordinate axes (Fig. 3-1,2), Force vectors and displace-
ment vectors are represented by a line with a single
arrow designating the sense; moment vectors and the vectors
indicating the rotations are represented by a line with a
double arrow assigning the sense (Fig. 3-1,2). There are

no loads applied to the beam—-column between the.ends,

_]X

+Z
i +Y
§.
t iy
eix 1//gZx ezx ////
D —— = SEI = +X
©)

Giy/ }iz@ I *

'z

Fig. 3-1

Positive End Deformations
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+Y

N..
fijz T Jiz N
N.. M.. //// iy
Mijx //{ ijy Jjix X
N

Fig. 3-2

Positive End Actions

The cross-section of the beam is thin-walled, open,
and arbitrary, The principal axes Y and Z and the loca-
tion of the shear center S, with respect to the centroid

c, are shown in Fig. 3-3.

+ZA

S~

S
z ¥ —® ‘
Si C : - +Y

(xi» Q 'f

Fig., 3-3

Cross-Section of the Beam-Column
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3-2 Differential Equations of A Space Beam=Coluinn

The differehtial equations of a space beam~-column
are obtained by using the equilibrium and compatibility
conditions for the beam-column element of length &x
It is assumed that there is no change in the geometric
shape of a plane cross~section due to torsion, but
warping of the cross-section is considered in the de-
rivations. This is the conventional assumption made for
the torsion of the beams of thin-walled cross-section(zz’Gg)“

The modulus of elasticity and the modulus of rigidity
of the beam is denoted by E and G respectively. Due to
the end actions, a cross-section of the beam column will
displace in the Y and Z directions and rotate about an
‘axis parallel to X, The axis of rotation is taken at
the shear center for convenience, The lateral displace-
ments of the shear center and of an arbitrary point of
the cross-section in the direction of Y and Z axes are

denoted by'vs, W and v., wp respectively (Fig. 3-4),

s’ o)
+2Z

JL SI

+Y
6 /4‘%
Y,
/e
01‘/// ” S(yg,zg)
v
// W

+X

C ' —
Fig, 3-4

‘Lateral Displacements of the Shear
Center and the Centroid of a Cross-Section
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For a small rotation 6 the lateral displacements, v and w,

of the centroid are

<.
I

vg +0 zg

v o= w -0V, : (3-1)

The lateral displacements of an arbitrary point of the
cross-section, having the coordinates y and z, are

'vp =v, + 6 (z, - z)

w, = Wy - ] (ys - y) . (3-2)

Two sets of actions will be considered at the ends
of a beam-column element of length 6x. The first set
consists of the end shears transmitted from the beam-
column to the element if it weré connected by hinges at
the ends. The second set of actions are thelnecessary
end moments and end shears applied at the shear cénter
to establish the angular compatibility of the element
with the beam~column at the assumed hinges. Due to the
equilibrium cqndition of the element, both cases require
the application of some transverse loads to the element.
Since there is no load applied to the beam column between
the ends, the summation of the required loads of the
“two cases should be zero. This condition gives the
differential equations.

A wall strip of a beam column element of length ©ox

width ds, and the thickness t is shown in Fig. 3-5.
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The location of the strip is defined by s which is
measured from a convenient origin around the center line

of the cross-section.

S 6nzl

+Z
|

ths_

Fig. 3-5
A Wall Element of A Beam Column
Under First Set of Actions
The moment equilibrium of the element about the Y

and Z axes, neglecting the second order terms, is

n_J =0t ds w; ' (3-3a)
n_yl =0t ds vI; (3-3b)

where the primes indicate the derivatives with respect
to x. The change in shears is obtained by taking the

variation of the Equations 3-3a and 3-3b.

. = LW _
6nzl ot ds W 65X (3-4a)

= " -
6ny1 =0t ds Vo &% (3~4b)
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The necessary external lateral loads for the equilibrium
of the beam-column element in this case can be determined

by integrating the Equations 3-.43 and 3-4p over the entire

cross-section. Thus

5 = # -

L J;lct Wy 6x ds (3-5a)

6N, =J1 ot v/ 8x ds | (3-5b)
yl =~y P

Where &Nzl and &Nyl are the loads to be applied in the
z and y directions to the element for the equilibrium.

The integration will be performed around the center-line

of the cross-section. This path is indicated by m, Taking

the derivatives of Equations 3-2, substituting into

Equations 3-0a, 3~-5b and then performing the integration

gives

6Ny1 = P 6x(vg o+ G”ZS) (3-63)
&Nzl = P 6XGN; - 9”YS) (3-6b)

where P is the axial force in the beam-column, P is
assumed to be positive for tension. The transmission of
6Ny1 and &Nzl to the shear center results in a torsional
moment 6Mt1 which is computed by integrating the torque

about the shear center due to 6Nz1 and 6Ny1 as follows.
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6Mt1'=J;n0t‘5x w; (y-y) ds +‘Ln0t 6x Vg (z -z) ds

’.Substituting the values for wg and vg from the Equation

3~-2 and integrating

2
!
6Mt1 = =P (z Vé - ysw; + Ty g ") 6x (3=7)

where r_ is the polar radius of the gyration of the cross-
section about the shear center. The polar radius of gyra-

tion r  can be computed from the Equation 3-8.

A.r =1 + IZ + A (ys2 + Z 2) (3-8)

s y 'S
Iy and'Iz are the moments of inertia of the cross-section
about 'Y and Z axes respectiveiy, and A is the cross-
sectional aréa.
If the beam column element of length §x were connected
bythingeé at the ends, the generalized loads necessary for
the equilibrium would be &N

5N and 6Mt1 along the

yl’ zl’
shear center axis, The angular continuity at the hinges
may be provided by the application of the second set of

actions at the hinges as shown in Fig. 3-6.

+Z +Y
sz Nyg + 0N,
//// 2:‘//6/ v2 ’ 6N
&M y2 ////
C = .

?7 LY~e
. i L 1 M, 4+ OM

z Fig. 3-6

Beam-Column Element Under the Second Set of Actions
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The bending and the torsional moments at the left
end of the element can be expressed in terms of the
derivatives of the deformations at the shear center as

follows:

n '
My = EIy W (3-9a)
— /4 -
M, = EI v (3-9b)
4 . 174
Mt2 = CH" - C16 (3-9¢)

Where C is the pure torsional stiffness and C, is the

1
warping stiffness of the cross-section defined in

reference 63. The shears due to these moments are

duM
Z "
Noo = a5 = EI, Vg (3-10a)
d M y "W
N,p = gz~ = Bly Wg | . (3-10b)

The necessary generalized loads for the equilibrium in
this case are obtained by taking the variation of the
Equations 3-9c, 3-10a, and 3-10b as given in Equations

3-11a, 3~11b and 3-llc.

BNy = Er_ v, 'V sx (3-11a)
GNZZ = EIy WéIV &x (3-11b)
sM_, = (CO" - CIQIV),ax (3-11c)
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The compatibility and the equilibrium conditions for
the beam column element can be satisfied by applying the
two sets of end actions simultaneously. The generalized
loads obtained from the superposition of the two cases
should vanish due to the fact that there is no load ap=-
plied to the element, This is expressed mathematically

by the Equation 3-12,

6Ny1 + 6Ny2 = 0
6Nzl + 6sz =0 (3-12)
&M -o0M =0

tl t2

The differential equations of a space beam-column are then
obtained by substituting the values of the necessary gen-

eralized forces from Equations 3-6, 3-7, 3-11 into Equation

3-12 as
EI, vSIV - P (v +é”zs) =0 (3-13a)
BT, W'V - P (wl -8"y) =0 (3-13b)
com —c; 87 4 P (2, v -y, W o+ r 20) =0 (3-13c)

S s
These differential equations are the same as those obtained

by Bleich(zz).
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3-3 Internal Actions of‘a Beam-Column

Internal actions can be expressed in terms of the
derivatives of the deformation functions., The two sets
of actions used in the derivation of the differential
equations are superimposed for this purpose. From
Equations 3-3a and 3-3b, the shears of the first set of

actions acting on the beam-column element are

N =] ot w as
zl m wp

N . -=f ot v, d
yl =, “Vp %

where Nzl and‘Nyl are the shears in the 'Z and Y directions

/ /

A"
p and P

.Equations 3-2 and performing the integration around the

respectiveiy.aSubstituting the values of W from

cross-section

! o } -
Nzl -P (ws -0 ys) (3-14a)

:Nyl = -P (yé +9'zs) ' . (3-14b)

The torque m due to the transmission of the shears to

t1

the shear center is obtained by taking the moments bf

zl
the cross-section.

and Nyl about the shear center and integrating around

a ’

Car 26h (3-15)

M s

4 ¢
t¢1 = P (zg vg = ¥g W

"The second set of actions were expressed by Equations 3-9
and 3-10, 'The superposition of these two sets of actions

gives the internal actions of the beam-column in terms of
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the deformation functions as follows:

Nz‘='-EIy wg‘+ P-(wé -Q&S) (3-16a)

N, = -EI, ve + P (v! +6'z ) (3-16b)

M_=Co -C 0"+ P (2, v) - ywl + r 20" (3-16¢)

Mo = -EI w'; | (3-164 )

M, = EI, vS (3-16¢e)
where M =M - M

X t2 tl

The corresponding vectors to the positive actions
obtained by Equations 3-16 are in the positive direction
of the coordinate axes of the far end and are in the
negative direction at the near end of the element. The
signs of the actions of pointii should be reversed to

adopt the sign convention shown in Fig, 3-2,

3-4 The Stiffness Matrix

The stiffness matrix for a space beam-column having
the thin-walled open cross-section of two-fold symmetry
is obtained from the differential equations of a general
space beam-column, ' For open cross-sections of two-fold
symmetry the shear center coincides with the centroid.
Consequently, the deformatiohs of the shear center become
identical to the deformations of the centroid, Thus, the

differential equations 3-13 reduce to
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vV mk 2y -0 (3-172)

y
Wiy - kz2 w' =0 (3-17b)
oIV _ kx2 6" =0 (3«17¢)
where k 2 _ P k 2 _ P k 2 _ cr rsz F
| y “EI)° Tz TEIC x T TC ¢

‘The internal actions in this case are

Mx = (C + P rsz) 6’ - Clem (3~18a)
¥ ) ‘

M = -ETI w 3-18b

y y ( )

Mé =-EIZ v (3-18c)

N, =PV -EI W (3-18d)

N, =P v - EIy w’ , (3-18e)

The solution of the differential equations 3-17 give the

following expressions for the deformations as the functions

of x.
kxx -kxx
g = Ax e + Bx e + Cxx + Dx (3-19a)
k_x %k x
veaA eV + B e yoo+ ny + Dy (3-19Db)
y y
: kzx -ka
W = AZ e + B, e “° 4 sz +_DZ (3-19c¢)
Ay Ay A, B, By, B, Cpo Cpy C,and Do, Do, D are the

constants of integration, which will be determined from the

end conditions of the beam-column,
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The end deformations are expressed in terms of the

integration constants in matrix form by taking the

appropriate derivatives of the deformation functions and

by making the necessary adjustments in signs,

6’ K R A
ix x x | X
0. 1 1 | o B
ix _L X
— | = | — B ) —_
ajx %1 | *xlh ‘_1 Cx
ij §l ll!l ‘ L Dx
or
RINEIIES
x x ox
kL &L
v X x
where @1 = e , wl = e
and L is the length of the beam column ij.
iy x, k, -1 1 A,
6iz 1 1 0 E 'BZ
. by | kv <L c,
5 | ?
jz ’3 Vs ot D,

) =] = [*2] [Co-]

(3-20)

(3-21)
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k L -k L

where &, = e =, and {5 = .

ﬁelzﬁ i ky Ky 1 0 1 Ay |

:;; 1 1 0 1 B,

—%: B k¥, -k‘y\yz 1 0 Cy

_;5;; %9 by | L 1 D,
or

[Dy] = [Ey] [Coyj @ ~22)
Where 5, ekyL and {, = e-kyL,

The end actions are then expressed in terms of the

integration constants in matrix form by substituting the

b )
P

appropriate derivatives of the deformation functions into
the Equations 3-18 and making the necessary adjustments

in signs to adopt the sign convention shown in Figures

3-~1 and 3-~2.

i h [ o 0 K 2 o | [ a |

Mijx 1 X ’ X

=C i

M ' 0 0 | x 2 1 0 B

jix | b:4 ! X
- —_ — et e

CX

D

X
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or )
- [u] o
and
_ _ _ \ , o
15y k, k) 0 0 A,
- 2
{52 0 0 x_ 0 B
| =y I
M 2 2
jiy k, 83 | K43 O 0 C,
N .. 0 0 k2 | o D
jiz z z
L — __ I -
or
[F J - [:G ] (C J (3-24)
Z Z (o4
and
| i B} 2 2 I j
. -« & 0 0
Mijz y y Ay
N.. 0 0 %2 | o B
ijy y y
— —| - EI -
Z 2 2
My, k, %3, k21, 0 0 c,
- e .
0 | D
Njiy 0 ky o y
oY
F | = C 3-25
ORI

The end actions are obtained in terms of the end

deformations in matrix form by solving the column matrix

of constants from the matrix equations 3-20, 3-21, 3-22 and
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substituting into the matrix equations 3-23, 3-24, and

3-25.
-1
'Fr | = |6 | [E_ D ]
X X X X
~1
o s
F = |6,| |E, D,
L 2 | 2] L 2] L Z] : (3-26)
-1
— . S
F = E D
Ty | _Gx_ | Ty Y]

At each end the cross section of the beam—éolumn is assumed

to have zero warping. For this reason

6. =6 = 0 . (3-27)

The end actions are obtained in one matrix equation
-~ (Equation 3~28) by rearranging the Equation 3-26 and in-
cluding the axial force stiffnesses and considering the

Equation 3-27,



Miix | [¥1,1 K7 % x
M 5y ka,2 ko6 k2,8 2,12 %y
Mz ks 3 K3 5 3,9 ks 11 0z
Niix Kq4,4 o 4,10 | ix
Nijy k5,5 5,9 k5 11 %y
Niip kg, 6 ke,8 Kg,12 %
Myip | ke, 7 o %x
Misy kg, 8 8,12 %y
Miiz 9,9 Kg,11 1%2
“N;; Symmetric 10,10 T EJ.;
Njiy k11,11 %y
Nyip 12,12 %5z
|31z | | 12 | L J=z]
(3-28)
or in symbolic form

5] - [5])

(3-29)

(4%
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where [Kh] is defined as the stiffness matrix of the beam-
column. The algebraic expressions for the elements of the

stiffness matrix are given by the following equations.

3

k =k = -k = “ . B kL) . (3-30)

1,1 7,7 1,7 ;3' ; ka31 - zal + 4

EI  L)? @y -k LB,
ky,2 =~ Kg 8 = Ly " K LB, = %a ) (3-31)
’ ’ z'P3 3+
N2
Bl (kL)Y (2 ~ay) :
'k2,6 - 'k2,12 = k6,7 = Xg 12 2 ' ELB; - 2o, ¥ 4 (3-32)
EI k LB, - 2k2 L2

- -y  z"3 z (3-33)

2,8 T. | K LB, - Zag + %

EI & 1) B |

Kk = -k - k S z 3 (3-34)

6,6 6,12 12,12 © 3 ._kZLﬁB = Dag + 4

EI k.1)2 o, - kLB

k =k =Tz ., Nyl % y- P2 (3-35)

3,3 9,9 T. KL =2, + 2

yP2 2
2
ky 11 = K3 5 = -k =k = —r (3-36)

5,9 9,11 p; KL, - 2@, +

EI kLB, - 2k 2 12
k3 g = T~ « BT 2 T (3-37)

3
EIZ (kyL) 32

k = & =k = . , 3-38
5,5 5,11 11,11 ~ 73~ * ELB, - Za, + 4 ( )

, EA .
ky 4= %y 10 =K (3-39)

10,10 T T
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Where
0!1 = §1 + 11,[1 i = 1,2,3
(3-40)
- - i~
B=5, -4y 1,2,3 :

The dimensionleés coefficients of the elements of stiff-
ness matrix are the exponential functions of the axial
force, For zero axial force these coefficients take an
indeterminate form of g , and the limit by L'Hopital's
rule gives the well -known coefficients of the conventional
stiffness matrix. In case of compression the coefficients
become imaginary. It is convenient to expand these co-
efficients into MacLaurin's series for the computer cal-
culations. Appendix A consists of the series éxpansion

and the graphs of their values,



CHAPTER IV
STIFFNESS MATRIX FOR A SPACE FRAME

‘In this chapter the joint loads of a space frame
are expressed in terms of the joint deformations in
matrix form. The coefficient matrix of the column vector
of joint deformations in this matrix equation is called
the stiffness matrix of the space frame,

An orthogonal system bfvcoordinate axes which is
called the structure oriented axes is chosen., The matrix
relation between the end actions and the end deformations
of a space member which is obtained in the previous
chapter is transformed from the member oriented axes to
the structure oriented axes with the aid of the trans-~
formation matrices, The transformed matrix equations
of the members are then assembled to form the joint

equilibrium equations of the space frame.

4-1 Transformation of Axes

A space member ij where i and j are assumed to be
the near and far ends respectively is shown in Fig. 4-1,
The member oriented axes are X, Y, Z while X/, Y/, 2’ are
the axes parallel to the structure oriented axes at i

(Fig., 4-1). The end points i and j of the member are

45
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given by the (xi, P

Zi) and (xj, yj, Zj) coordinates

respectively with respect to the structure oriented axes.

Fig. 4-1

Member and Structure Oriented‘Axes

The angle between the Y axis and the X’'Y’ plane is repre-
sented by a vector o parallel to X axis. The sign of «

is determined by the right hand rule. From the Fig. 4-1

2
2 2
L =V/;m + Y o+ 2y (4-1)
2 2 0
L0 =/x “ + ¥y, (4-2)
and
Xy = X5 = %4
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where L and Lo are the actual and the projected length
of the member ij respectively.

A column vector given with respect to the member
oriented axes is transformed td the structure oriented
axes by premultiplying it with the transformation matrix
[¢]

The transformation matrix [t} is obtained by the
multiplication of the three matrices each of which corres;
ponds to a transformation by rotating the member oriented
system about one of the axes. The matrices [ti], [tzl,
and [t31 correspond to the rotational transformation of

the member oriented system about X, Y, Z axes respectively.

1 0 0

(]

[tl} 0 COS @ | -sina (4-3a)

0 sin g |-cosa

L -7 1
o/L 0 m/L
[t2] - -
0 1 0 (4-3b)
Zm 0 Lo
B T
, 1—xm “Ym 0
[ﬁ ] = Lo i:o
3
Ym x 0 (4-3¢)
Lo Lo
) 0 1]




48

Then the transformation matrix

] = ] [e][e]

The column vector of end actions and end deformations
can be transformed from the member oriented axes to the
structure oriented axes by the transformation matrix [T]
Since the coluﬁn vector of end actions and the end deforma-

tions consists of four vectors, the transformation matrix

o

[t]
[t] (4-5)
[7] 5

where [t]'is given by the Equation 4-4 and the blank areas
are the null submatrices, The matrices given by the
Equations 4-3 and 4-4 are orthogonal due to the character
of the transformations, The matrix [T] is also orthogonal
because it is formed by the orthogonal submatrices at the

diagonal (Eq. 4-5). Then

-1

[T]T - [7] , (4-6)

Denoting the column vector of end actions and end deforma-
tions with respect to the structure oriented axes by [NJ

and [D] respectively

[NJ B [T][No:l | (4-7)
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o] - (7] ] -

"By premultiplying both the sides of the matrix equation
(3-29) by [T] and substituting the matrix equations 4-7

o] - RET ),

Equation 4-9 gives the end actions in terms of the end
deformations with respect to structure oriented axes;

Equations 4-9 can be written as

URRGON

where [K] is called the transformed member stiffness matrix

and

[K:l = [T][Ko}['rf ’ | (4-11)

The transformed member stiffness matrix is symmetrical.
This can be proved by transposing both the sides of
Equation 4-11.

It should be noted that the transformation matrix
[T] , in the form presented here, becomes indefinite for
the member parallel to Z’ axis, due to the vanishing value
of Lo' Nevertheless, the coding system used in the com;
puter programming to form the stiffness matrix does not
require any transformation for the members parallel té the

structure oriented axes.
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4-2 Joint Equilibrium Equations

The end actions transformed to the structure oriented
axes are transmitted from the ends of the members to the
joints (Fig. 4-2). Then, the equilibrium of the joint is
established by equating the summation of the column vector
of end actions of the members meeting at the joint to the
column vector of the joint loads provided that the joint
loads acting in the positive direction of the structure

oriented axes are assumed to be positive.

Fig. 4-2

Free Body of a Typical Joint

A free body of a joint of a space structure is shown in

Fig. 4-2. The double arrows designate the moment vectors
while the forces are represented by the single arrows.

It should be noted that the positive end actions acting at
the joint are in the opposite direction of the structure.
oriented axis'due'to'the'sign.Conventioﬁ~fof‘thefend actions

acting on the members,
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The matriX'Equation 4-10 can be written for a member

ij in the following form:

_ I | —
ij Kii | ¥i5(| D1
| i (4-12)
N.. k.. | x..|| D,
L J1 | J1 Jig Lo g

el

Nij and Nji are six by one submatrices of the end actions

at the ends i and j respectively. Di and Dj are six hy

one submatrices of the joint deformations of joints i and
J i
j. The six by six submatrices Kii , K K K.. are

15 30 53
obtained from the transformed stiffness matrix by partition-
ing, Due to the symmetry of the stiffness matrix and also

due to Maxwell's reciprocal theorem

[?ij1 = [Fji]T ‘ (4-13)

‘The joint equilibrium equations of joint i can be

expressed in symbolic form by using Equation 4-12 as

n ’ J . n
W, o= ZE: K;i 1| Dy + E i Kij Dj (4-14)
Jj=1 j=1

where W, is the column vector of joint loads at joint i,
and j is the number of the far end joint of each member
meeting at joint i, and n is the number of members coming
to joint i. The joint equilibrium equations for the whole
frame can be obtained by forming Equation 4-14 for every

joint of the structure and by assembling those in one

<
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matrix equation

SRSl

where WS and Ds are the column vector of joint loads and
joint deformations of the frame respectively and Ks is the
stiffness matrix of the structure. The order of the stiff;
ness matrix of é structure is equal to the total number of
the degree of freedom of the joints. The matrix Ko is

symmetrical due to Maxwell's reciprocal theorem(45’53),



CHAPTER V
STABILITY ANALYSIS OF SPACE FRAMES

Two criteria of stability are introduced to find the
elastic buckling load parametér for a space frame loaded
at the joints., The determinantal criterion of buckling
is used to obtain the elastic buckling load parameter
for frames without prebuckling moments. In the case of
frames having prebuckling moments, the convergence of the
iteration process to obtain the axial forces in the members
by téking into account the prebuckling moments is postu:
lated as a criterion of buckling, The determinantal
criterion of buckling is also used to find an approximate
buckling load parameter for structures having prebuckling
moments, This is very important in the case of the
stability analysis of symmetrically loaded, symmetrical

space frames having prebuckling moments for which the

convergence criterion fails.

5-1 Determinantal Criterion of Buckling

The critical load parameter for frames which do not
have prebuckling moments may be determined from the
vanishing determinant of the stiffness matrix. The

vanishing determinant of the stiffness matrix as a condition
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of instability is called the determinantal criterion of
buckling, This well known and well established criterion

has been discussed by several investigators(22’27’44’51’57),

among them is Horne(44)

who pointed out that the critical
load parameter for frames having prebuckling moments ob-
tained from the determinantal criterion is approximate.

In this dissertation the determinantal criterion of
buckling is used for the stability analysis of space frames
which do not have prebuckling moments. For the frames

having prebuckling moments the convergence criterion which

is discussed in Article 5-2 is postulated,.

5-2 Convergence Criterion

The typical load-deformation curves for frames having
prebuckling moments are discussed in the introduction.
Exact elastic analysis of the structure is necessary to
obtain these curves. For a given load parameter, the
axial forces in the members of the frame are unknown due
to indeterminate prebuckling moments. Since the elements
of the stiffness matrix of the structure are the functions
of axial forces, Equation 4-15 may be used in an iteration
process to compute the axial forces in the members. At
first all the axial forces in the members are assumed to
be zero. The joint deformations are solved from Equation
4-15, and the axial forces in the members are computed from
the deformations of joints. Assuming then the computed
axial forces, the elements of stiffness matrix are recal-

culated and the analysis is repeated. This process is
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continued until the assumed axial forces approach the com-
puted axial forces to a desired accuracy. For the final
axial forces the determinant of the stiffness matrix as
well as the joint deformations are calculated.

For the types of load deformation curves introduced
in Fig. 1-lc and Fig. 1-3b the iteration to find the axial
forces in the members converges rapidly for the loads
smaller than the buckling load., At the buckling load
this process does not converge due to the fact that there
is not a unique set of axial forces to satisfy the equili-
brium and the compatibility conditions of the structure,
Therefore convergence of iteration process is postulated
as a criterion of buckling of frames having prebuckling
moment s,

This convergence criterion fails for symmetrically
loaded, symmetrical frames having prebuckling moments.
However, the determinantal criterion of buckling may be
used to obtain an approximate solution for the buckling

load of this type of frames.

5-3 Procedure of Analysis

In the application of determinantal and for conver-
gence criteria of buckling for the stability analysis of
space frames, the use of a high speed electronic computer
is necessary. Two computer programs have been developed

for this purpose in FORTRAN(GS)

language. The first pro-
gram is to compute the critical load parameter of an

orthogonal space frame loaded at the joints by using the
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determinantal criterion of buckling. The second program

performs the iteration to find the axial forces in the

members for a given load parameter. The flow charts and

the input/output of the programs are given in Appendix B.

The following is the general procedure of the stability

analysis of space frames by using the determinantal and

convergence criteria:

(a)

(b)

(c)

A starting value and an increment is chosen

for the load parameter. The stiffness matrix

of the frame is formed by neglecting the affect
of prebuckling moments to the axial forces in
the members (axial forces are determined by
statics and axial deformations of the members
are neglected) and the determinant of the stiff-
ness matrix is computed for each load parameter,
For the load parameters smaller than the critical
load parameter, the determinant of the stiffness
matrix is positive. When a negative value for
the determinant is obtained, the value of load
parameter for which the determinant vanishes is
determined by successive reductions in the
interval at which the determinant changes the
sign. This load parameter is the critical load
parameter if the frame does not have any pre-
buckling moments and the computation is finished.
The load parameter obtained in part (b) is an

approximate critical load parameter for the
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frames having prebuckling moments. 1In this case,
the critical load parameter can be obtained by
performing an iteration process to obtain the
axial forces in the members by taking the pre-
buckling moments into account. The convergence
of the iteration should be checked for the load
parameters close to one obtained from the deter-
minantal criterion of buckling. The greatest
load parameter for which the iteration converges

is the critical load parameter.

5-4 Examples

Example 1
A space frame subject to a joint load analogous to

planar knee frame is shown in Fig. 5-la. The X', Y/, Z’
axes are the structure oriented axes. All the members
of the frame having the same cross-section as is shown
in Fig. 5-1b. X, Y, Z are the member oriented axes.

The properties of the cross-section are as follow:
Modulus of Elasticity E = 29000 ksi

Modulus of Rigidity G = 0.40 E

Moment of Inertia about Y I = 161.466 in?
Moment of Inertia about Z IZ = 34,183 in4
Area of the cross-section A =10.80 in2

2

Pure Torsional Stiffness C = 6235 k=in

Warping Stiffness Cl = 20946120 k—in4

Polar Radius of Gyration P 4,256 in .

For the beams, Z axis of the cross-section is parallel

to the Z’ axis while for the column, Z axis of the column
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cross-section is parallel to the X’ axis, The reference

load is taken as P = 100 kips. -

120" AP

10
250"
8"
T R Cross-Section of the
(a) Members

Space Frame Analogous to
Planar Knee Frame

Fig. 5-1

Space Frame of Example 1

The approximate critical load parameter is obtained
as 5.958 from the determinantal criterion of buckling.
When the convergence criterion is usedythe greatest value
of % for which the iteration process for the axial forces
in fhe members converged is found to be 5.66. The maxi-
mum difference between the corresponding axial forces in
the last two cycles of iteration is taken as 0.100 kips.

The buckling occurs by the vanishing of the rotation-

al stiffness of the joint of frame about the X’ axis.
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The relation between the load parameter and ex' rotation

of the joint about the X’ axis is shown in Fig, 5-2.

L
g.o 1
S et X = 6.445
6.0] . = 5.66
C
4.0
b
2.0
-4.0 2.0 0 2.0 4.0 6.0 8.0 10.0
eg,x 10—3 Radians
Fig. 5-2

Load~Rotation Relationship of the Example 1

The behavior of the frame in buckling is similar to the
behavior of the planar knee frame discussed in Chapter I,
It is interesting to note that there is no second order
solution of the frame for the load parameters between 5.66
and 6.445 and the determinant of the stiffness matrix does
not vanish when the effect of prebuckling moments is con-
sidered. The critical load parameter obtained by the con-
vergence criterion is 5.3% smaller than the one obtained
by the determinantal criterion. All the deformations of

the joint are in the range of the small deflection theory.



Example 2

A space portal frame under vertical joint loads
analogous to planar portal frame is shown in Fig. 5-3a,
The X', Y, Z' axes are the structure oriented axes. All
the members of the frame have the same cross-section which
is shown in Fig, 5-3b. X, Y, Z are the member oriented
axes. The cross-section of the members of this example
is slightly different from‘that of the first example, with
the exception éf E and G,

The properties of the cfoss—section:

173.498 in?

4

‘Moment of Inertia about Y Iy

Moment of Inertia about Z IZ

I

34.182 in
2

]

Area of the cross section A =10.08 in

Pure Torsional Stiffness C = 6235 k-in2

Warping Stiffness Clv= 22806470 k--in4
Polar Radius of Gyration ry = 4.539 in
For the beams, Z~axis of the cross-section is parallel to
the Z’ axis while Z axes of the columns are parallel to
Y’ axis.

The critical load parameter for the frame by neglect-
ing the effect of prebuckling moments is obtained as 2.581
from the determinantal criterion. When the convergence
criterion is used the critical load parameter is found to
be 2.571. The load parameter versus horizontal displace-
ment of joint D in the X’ direction &, relation is

illustrated in Fig. 5-4.
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ZI
l 25k 50k JLZ
50k B ¢
100k ‘
\ L . . |
250" 10" | —- Y
YI
/// i r 3
77 ’ l8"
/ (o)
T ~——— 77077 —— X' Cross-~Section of
the Members
150!1 120|| _
(a)

Space Portal Frame Under
Reference Loading

Fig, 5-3

Space Frame of Example 2

2.571 1 ' i

d ' , } | ' : : + ' —— B
0 2 4 6 8 10 Dx’ (in)

Fig. 5-4

Load Deflection Relationship
for the Frame of Example 2



CHAPTER VI

SUMMARY AND CONCLUSIONS

6-1 Summary

A method of stability analysis for rigid-jointed,
elastic space frames loaded at the joints is presented.
A brief review of the methods of stability analysis of
elastic frames,together with the historical development
of the subject, is given, The stiffness matrix for a
space beam-column of symmetrical, thin-walled open cross-
section is derived from the differential equations of
bending and torsion. Warping stiffness of the cross-
section is taken into account in the derivation, Member
sfiffness matrices are transformed to a structure oriented
c&dfdinate system and then assembled to obtain the joint
equilibrium equations of the frame in terms of joint
deformations in matrix form, thus obtaining the stiffness
matrix of the frame. The vanishing determinant of the
stiffness matrix of the frame is used as the criterion
of buckling for frames without prebuckling moments. In
the case of frames having prebuckling moments, the conver-
gence of the iteration process to obtain the axial forces

in the members is postulated as the criterion of buckling.
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Two computer programs are developed for the application of
the determinantal and the convergence criterion of buckling.
These programs are explained in the appendix, and several

examples of their use are included.

6-2 Conclusions

A method of elastic stability analysis for the space
frames loaded at the joints is developed by taking the
warping stiffness of the members into account, Two
criteria of buckling have been utilized. The determinantal
criterion of buckling is used for the stability analysis
of the frames without prebuckling moments, ~For the frames
having prebuckling moments, convergence criterion is postu-
lated. The use of a digital computer is essential for the
stability analysis of space frames due to the involved
character of the nunmerical. computafions.

If the prebuckling moments of the frame are small,
determinantal criterion may be used to obtain the buckling
load approximately. It is found that the use of deter-
minantal criterion of buckling requires less computer time
and core storage compared to convergence criterion. The
prebuckling moments caused less than 10% reduction in fhe
buckling load in the example problems solved. The pheno-
menon of buckling of the space frames is the same as the

phenomenon of buckling of the analogous planar frames,
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APPENDIX A
THE STABILITY COEFFICIENTS

The algebraic expressions for the elements of member
stiffness matrix are given by the Equations 3-10 through
3-40 in:Chapter III. The dimensionless parts of these
expressions are called the stability coefficients., It is
possible to evaluate all of the stability coefficients
from the following basic infinite series which are the

reduced MacLaurin's expansions of the algebraic expressions.
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where y is the variable to be defined according to the

stability coefficient to be evaluated. Defining
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EI,
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It is intéresting to note that the expression for

the stability coefficient of torsion obtained by taking
the warping stiffness of the cross~section into account
is the same as the expression for the stability coefficient
of the shear force. This confirms the anélogy between the
sheaf force and the torsional moment in structural analysis.

" The expressions A-1 through A-4 are evaluated by a
high speed computer; once using their exponential equiva-
lents and then by series for the values of y bétween ~50
and +50. It‘is found that taking only sixteen terms of
series is.sufficient to dbtain_at least six digit accuracy
in all cases. Since the interval considered for y is much
greater than the values of y in préctical problems, the

elements of stiffness matrix of members are calculated by



series in computer analysis.' Figure A-l illustrates

the variation of T, AB, CAB and DAB with values of vy.
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Fig. A-1 Variation of the Typical Stability Coefficients
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APPENDIX B

COMPUTER ' ANALYSIS

The coding used for the deformations of joints to
generate the stiffness matrix, the macro flow diagrams
and the input-output of the computer programs based on
determinantal and convergence criteria for the stability

analysis of orthogonal space frames are given,

vGeneration of the Stiffness Matrix
The components of fhe deformation vectors of the
joints in the direction of structure oriented axis are
numbered in any arbitrary order starting with the
number "1," All zero deformations are given the same
dummy code number that is one greater than the largest
number used for possible deformation vector'components
of the structure. For the orthogonal frames if the axial
deformafions of the members are neglected, the displace-
ment components of the end joints of the members in the
direction of the members are given the same code numbers
due to the fact that there will be no relative displace-
ment between the end joints in the direction of the member.
After numbering the deformations of the joints of an

orthogonal space frame as explained, code numbers of the
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near end and far end deformations of each member can be
determined from the deformation code numbers of the end
joints, The subscripts used in the computer programs
indicating the code numberé of the end deformations of a
space bar ij, are shown in Figures B-la and B-lb, where

i and j are the near end and far‘end joints respectively.
Fig. B-la illustrates the subscripts for the code numbers
of the end deformations of the case where the axial
deformations of the bar is neglected., Fig. B-1lb shows

the subscripts of a general space bar.

+Y

IS 75 J6 35

A A N v
Ao P

I3 J2 J3 12 13 J3

(a) (b)

Fig. B-1

Subscripts For the Code Numbers of End Deformations
of a Space Bar
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The sign convention of the end deformations is the same
as the one used in derivations in Chapter III.

If the rows and columns of the beam-column stiffness
matrix given by Equation 3-28 are labeled by the sub:
scripts I1, 12, ..., 16, J1, J2, ..., J6, it is possible
to set up a general stiffness matrix that is applicable
'to all members of the frame., The stiffness matrix of
the structure is then formed by accumulating the
corresponding elements of all member stiffness matrices
in one matrix. Due to the dummy deformation code number
used for zero deformations, the stiffness matrix of the
structure generated by this method contains an extra row
and column. The joint loads are subscripted with the code
number of the joint deformation in their direction, and
they are stored in the extra column of the stiffness
matrix to form the joint equilibrium equations. Thus,
the waste of computer memory is reduced to a row of the
stiffness matrix.

Computer Program Using the Determinantal Criterion of
Buckling

A macro flow diagram, Fig. B-2, illustrates the
basic logic used in the computer program for the
stability analysis of orthogonal space frames by utiliz-
ing the determinantal criterion of buckling which is
discussed in Chapter V., Since the axial deformations of
members are assumed to be zero, the general member stiff-

ness matrix in this case is obtained by deletion of the
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4th and 10th rows and columns of the stiffness matrix given
by Equations 3-28. The coding scheme for the end deforma-~
tions of the members is shown in Fig. B-la, Required in-
put data are ihdicated below. The output is the values of
load parameters and the corresponding determinant of the
stiffness matrix, The last load parameter is the critical
load parameter., Since it was not the purpose of this
dissertation to develop an efficient program, the pro-
gramming effort terminated when results were obtained. For
this reason, the details of the program are omitted. The
program was written for a computer having a total storage
capacity of only 40,000 decimal digits, therefore the
structure was restricted in size to 8 joints, 32 degrees

of freedom.

Input Data

Control Cards

(AL, DAL, EPS

AL - Starting value of the load parameter

DAL - Equal increments of load parameter

EPS -~ The allowed error in critical load parameter
E

E - Modulus of elasticity



ND, NM, NK

ND - Number of joint deformations
NM - Number;of members
NK - Number of terms to be taken in the computation

of stiffness by series,

Member Deformation Coding

M, I1, 12,..., I5, J1, J2,..., J5

M -~ Code number of the member
I's and J's indicate the code numbers of the end
deformations of the member determined according to

Fig., B-la.

Member Properties

ES, ZIY, ZzIZ, Cl, C, RS, P

ES - Length of the me@ber

Z1Y, Z1Z - Moment of inertias of the cross-section
about Y and Z axis respectiveiy

Cl ~ Warping stiffness

C - Pure torsional stiffness

RS - Square of the polar radius of gyration of the

cross-section

P - Axial force in the member
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FiG. B.2 MACRO FLOW DIAGRAM OF COMPUTER PROGRAK
USING THE DETERMINANTAL CRITERION OF BUCKLING
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Computer Program Using the Convergence Criterion of Buckling

A macro flow diagram given in Fig. B-3 illustrates the
basic logic used in the computer program for the second
order analysis of an orthogonal space frame to apply the
convergence criterion of buckling. The program was written
for a computer having a total storage capacity of only
40,000 decimal digits; therefdre, the structure to be
analyzed was restricted in size to 4 joints, 24 degrees of

freedom. The details of the program are omitted,

Input Data

Control Cards

E, EPS

E -~ Modulus of elasticity
EPS ~ The maximum difference between the corresponding

axial forces in last two cycles of iteration

'ND, NM, NK, ICL

ND - Number of joint deformations
NM - Number of members
NK - Number of terms to be taken in the computation

of stiffnesses by series
ICL - Number of iteration cycles before deciding for

non-convergence of the process
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Joint Reference Loads

I, F(I)

I = Code number of the joint load

F(I) - Value of the joint load

‘Member Deformation Coding

(M, 11, 12,..., 16, J1, J2,..., J6

M - Code number of the member
I's and J's indicate the code numbers of the end
deformations of the member determined according to

Fig. B-lb.

Member Properties

ES, Z1Y, ZIZ, Cl, C, RS, AR

ES - Length of the member
ZIY,'ZIZ - Moment of inertias of the cross-section
about Y and Z axes respectively
Cl - Warping stiffness
C - Pure torsional stiffness
RS - Square of the polar radius of gyration.of the
cross-section

AR ~ Area of the cross-section
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Axial Force Information

(ﬁ, AR, ES, 14, J4

M - Code number of the member
AR - Area of the cross-section
ES - Length of the members

14

Displacement code number of the near end joint,
in the direction of the member
J4 - Displacement code number cf the far end joint,

in the direction of the member

Output Data
Output data consists of the axial forces in the members
in each cycle and deformations of the joints, load factor

and the determinant of the stiffness matrix if the iteration

converges,
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FIG, B.3 MACRO FLOW DIAGRAM OF THE COMPUTER PROGRAM
USING THE CONVERGENCE CRITERION OF BUCKLING
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