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CHAPTER I

INTRODUCTION

1,1 Goal, Most of the work in synthesis has been in the area of
two-~ports containing linear, lumped, finite, passive and bilateral
elements. The purpose of this work is to exfend the scope of know=
ledge such that the terms passive and bilateral may be removed, That
is, it is desirable to synthesize system functions that result from two-
ports including active devices., To achieve this goal it is necessary to
define and classify the active devices, Although the pole-zero structure
of the passive twe-port y and z parameters is well known from passive
synthesis, the pole~zero structure of (i) the passive g and h parameters
and (ii) the parameters of two-ports comntaining active devices must be
determined, Further, the system functions, that is, the driving point
and the transfer functions, that result from cembining active and pass-
ive‘two-ports must be determined., The goal of this work is te achieve
the above parameter investigation and then develop a synthesis procedure
for the system functions., Further, it is desired to reduce the problem
to a problem in passive synthesis where extensive work has been done.

1.2 Past and Present Synthesis Philosophy., Initially, network

synthesis was concerned with the problem of synthesizing a driving point

or transfer function of a passive two-port. For the past several years



the work has been extended in two directions, An effort has been made

to extend the theory to include n~ports which contain only resistors,
inductors, capacitors and transformers, that is RLCM networks (1),(2).
The other effort has been directed toward the synthesis of two-ports con=-
taining active devices as well as RLCM networks (3). The active devices
allowed, however, were negative impedance converters and gyrators, The
problem here is that these devices are complex and difficult to achieve
in actual practice and therefeore, have not gained wide acceptance. Their
use and value in synthesisg is that negative resistors, capacitors and in-
ductors can be achieved. This simplifies many synthesis techniques., How-
ever, the difficult problem of synthesis with such active devices as
transistors, tubes and field effect transistors, per se, still exists.
Therefore, this work is in the synthesis area where/the term active two=-
port refers to . a two-pbrt containing a transistor, tube or field effect
transistor., The parameters of the active two-port are, primarily, the
parameters of the active devices.

If the negative impedance two-ports are not to be allowed, then
other characteristics must be employed. In this work the unsymmetrical
and non-reciprocal characteristics of the allowed active devices are
exploited in order to synthesize a system function, Further, the active=
ness of the device is used, Moréover, it seems that most active devices
of the future will alse exhibit the unsymmetrical and non-reciprocal °
nature of the devices empleyed today. Hence, the synthesis procedure
developed in this work may also be applied to these future devices.

The difficulty of synthesis with active devices without modification
is that the algebra becomes difficult, That is, the pole-zero structure

of the parameters and the system functions becomes both difficult to



determine and to follow as interconnections of the two-ports are made.

The application of the root=locus techniques, which have solved numerous
problems in the servo field, minimized this problem exceedingly well, In
Chapters III and IV root~locus theory is used to prove theorems. that would
otherwise be algebraically difficult to prove, Further, this technique
provides valuable insight into the variation of the pole-zero structure

as magnitude factors and parameters are varied. The application of root=-
locus techniques quickly determines the feasibility of certain networks

to perform as specified.

The synthesis of general RLC system functions relies upon a
balanced bridge to obtain the desired characteristics, One such method
as the Bott-Duffin algebraic algorithm gives exact cbmponent values that
must be achieved exactly or the bridge balance does not ex?st and the
specifications are not met. It seems desirable to make a trade off be-
tween exact mathematical algorithms and networks that will tolerate com=-
ponent variatien. This has been done in this work. That is, the synthes-
is procedure does not specify the compenent value as exactly as an algo=-
rithm does, but the finished netwerks does not depend upon a balanced
bridge. In fact, it seems desirable to develop procedures that exhibit
tolerance of the same order of magnitude as that of the components.

In particular, an objective of this work is to achieve the synthesis
of RLC functions using only RC networks and active devices, This was
accomplished by using root-locus theory. Finally, if an RLC system
function and an active device is the input to the procedure, the output
is a specified passive RC two-port, The problem is considered fo be
solved at this point because it has been reduced to a passive synthesis

problem,
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Chapters II and III are concerned with the clagsification of active
two=-ports,. the relationships of the various parameter sets and the pole=
zero structure of the composite twe-port parameters., Existing passive
two-port theory was drawn upon extensively whenever possible. However,
certain essential unknown relationships between the various passive para-
meters were derived and proven in order to make later theorems as general
as possible. The actual synthesis procedures are developed:in Chapters
IV and V. These synthesis proceduresg do not rely upon the use of transe

formers.



CHAPTER II

TWO-PORTS

2.1 Introduction. This chapter, in general, discusses the broad
definitions of passive, active and potentially unstable two-ports and the
necessary interconnections leading to the required synthesis in latter
chapters, In particular, the active two-port used in this work is de~=
fined in terms of the active device. The two~ports considered are
linear and lumped; hence, the two-port parameters are rational functions.

2.2 Classification of Two-ports, Iwo-ports are broken down into

two groups, active and passive. A representation of a two-port is shown

in Figure 2,2,1. along with the voltage and current sign convention.

Figure 2,2.1, Two-port Voltage and Current Convention.



The two-ports, normally of interest in communication cilrcuits, are de-
graded in that & common terminal exist between the two-ports. This con=
straint is important because these circuits in most environments will be
subjected to spurious electromagnetic radiation which will be ef the
same order of magnitude as the signal and operated en by the tweo-port in
the same manner as the signal, unless one termipal of all ports is main-
tained at ground potential, This is a real problem that must be consider-
ed in both active and passive circuits.

Using the voltage and current conventions indicated im Figure 2.2.1

a8 non~active or passive two-port is defined by

Re (ilv * o4 izvz*) > 0, (2.2.1)

1

Or in matrix notation

i
L1 n
Re([vl*vzﬁj [}2] Yy > 0O, (2.2.2)

That is, the two-pert is not capable of power gain at any frequency or
for any termination. In this work the two-ports of interest which may be
either active or passive have parameters that are frequency independent,
uniess explicitly stated otherwise, and hence, Equation 2.2.2 bhecomes

!
[vlvz] i, =z G

Using y-parameters the relatienship between the voltages and currents for

the two=port 1s

iy R
i, .-[yij] 4 (2.2.4)

where



t’n YIi
E?iﬂ = 1 a2l -

In general [?ii} will not be from a reciprocal two-port, that is, y;, ?
¥o1+ However, ﬁ?i] may be written as the sum of a symmetric and skew-

symmetric matrix (4), such as

Y11 yi2 t Yo 0 Yi2 = Ya3

Z 3 2 . (2.2:5)
Y1 T Y12 y Y21 - Y12
= 22 - 0

Bubstituting Equation 2,2.5 into Equation 2.2.4 and putting the results

into Equatien 2.2,3 gives,

» — 1
, Y11 V1o + Vo1 Vi
v 2 +
e 22
S 2 — —
™ - “ I
0 Y12 Y21 v
5 1
W | g >
Y31 7 Y12 0 v,
L 2 _ -

Equation 2.2.6 will be true for all values of vy and v, if and only
if the first wmatrix of Equation 2.2.6 is positive definite since the last
matrix contributes nothing to the quadratic form in vy and Voo The neces=
sary and sufficient conditions for the matrix teo be positive definite are

given by Equation 2.2.7.a, Equation 2,2,7.b, and Equation 2.2.7.c.

YIl > O' . (2.2.7.3)
Y92 > 0. (2.2.7.b)

4



Definition 2.2.1. A two-port is said to be passive if its y-parame~-
ters satisfy Equation 2.2.7,

Definitiomn 2,2.2., A two=port is said to be active if its y-parame-
ters violate any of the conditions of Equation 2.2.7.

The two-ports containing only RLCM elements always satisfy Equatien
2.,2,1, and hence, Equation 2.2.7. Further, they always are uncondition-
ally passive. Tﬁis type of two-port is used to introduce the frequency
dependent nature of the overall two-port when intercomnected with an
active two-port that is frequency independent.,

Definition 2.2.3. The degree of activeness, A, is defined to be

(y12 + y21)2

* (202.8)

T Ay v
Therefore a two~port is active if A is greater than one, whereas it is
lossless if A is equal to unity and it is passive if A is less than one,
That is, if A is less than one no power gain is possible. The size of A
is an indication of how active the two~port is, Normally the parameter
matrix of the active twe-port will be the parameters of the active device
without any external medification. However, an example will be given

to show how a passive two-pert may contain an active device., Example . .
2.2,1. Typical y~parameters for a transistor connected in the common

emitter configuration are

yi, =1lx 1077 = kyq, (2.2.9.a)
y;z = ‘"2 x 10-6 = "klz, (23209.b)
a 0~2
o1 = 1x 1074 = Kyys (2.2.9.c)
a _ .£=-5 _
y22 =1x 10 “’k22 . (2.2.9.4)

Its degree of activeness is given by Equation 2.2.8.



A A~ 2500,
If a feedback conductance, Gf is connected from the base to the cellector

the overall y~parameters become

a
Y11 * 65

i

Y11
Y2 = ¥iz - Gg »
Y21 =v21 - G >
Yoz =¥, +Cg

The expression for A is then

i [}-2 x 1076 - G) (1x10 2 . Gf}} 2

. (2.2.10)
e 1073 6) (1lx 1070 4+ Gfi]

If Gg >> ya; » then Equation 2.2.10 becomes

¢t 2
An f - _E
4@% 4

2 .
For &z < 4 the two-port is passive although it contains an active element,
This is new a cenditionally passive twe-port.

The classification of active two-ports is comsidered next. A two~

port is gaid to be unconditionally stable or absclutely stable if

2 Re ( y131(jw)) Re(yyp(Jud) - Re(yy, (Gwiyyg (jud) >

(2.2.11)
[v12 Gu) v,y God]

and if Equation 2.2.11 fails, the two-port is potentially unstable (3).
This condition guarantees that the Re(YIN) of the terminated two-port will
ba greater than zerc for all terminatiems at the specified frequency. If

the twoepert parsmeters are independent of frequency then the condition
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for unconditioned stability is

Y11 You = Y12 Yp1 > O- (2.2.12)

The active two-ports of interest here are those containing active
devices such that Equation 2.2.7.c is violated but the activeness is
such that Equation 2,2.1ll is satisfied. However, after combining the
unconditional passive two-port,[_y?j:l, with the active but absolutely
stable two~port,[y:j]‘ the resulting two-port,[ yié} , may be conditiomn=-
ally passive, as Example 2,2.1 illustrates, it may be active and abso-
lutely stable or it may be potentially unstable. An example of the latter
case is now given using the parameters of the active device in Example
2.2.1.

Using the device parameters of Equation 2.2,9 and analyzing the
composite two-port obtained by connecting a capacitor from input to
cutput the Equation 2.2.1l for stability becemes

> 1. (2.2.13)
1 (klz + jwe) (k21 - jmc) 1 .
Taking the real part of Equation 2.2.13 gives
2
2kll k7? + klZ k21 + 2c

> 1. (2.2.14)
2 2 1% >
[ Gepp kog + 02D)? 4 (aeliyy = K37 | |

For instability the conditions on yc are obtained by solving Equation

2.2.,14 giving

. ) 3
- 1T (2ky3 koo)  + &kyg kop ko ka .
@we > |

i 4k11 k22

Substituting numerical values for the k~parameters gives

wc > [2 ]1/2 x 107% (2.2,15)
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for a potentially unstable two=-port, Or in otherwords, Re(YIN)Of_the re-

sulting two-port will be negative for certain terminations, It is well
to note that a potentially unstable two-port does not necessarily lead
to an unstable system. If the resistance of the generator that is driv-
ing the resulting two~-port is larger than l/Re(YIN) then the overall
system is stable(6). Further, note that it was necessary to.test the
resulting two-port with Equation 2.2,11 since the resulting parameters
were frequency dependent.

This leads to the definition of the imitial active two-port of
interest in this work and furthermore those that are encountered most
often in practice,

Definition 2.2.4. A type I active two-port is a two-port that (i)
satigsfies Equation 2.2.7-a, Equatién 2.2.7=b and Equatien 2.2,12 but
violates Equation 2.2.7-c. (ii) It is frequency independent, (iii) It
is non-symmetrical and non-reciprocal.

This rules eut such devices as tunnel diedes, wnijunction tran~
sistors or any combination of devices such that Y11 and ¥y are nega-
tive, This definitien includes such devices as the vacuum-tube, tran-
sistor and field-effect transistor. Except when explicitly stated othex-
wise an active two-peort will be type I.

2.3 Topological Considerations. The interconnections that will

allow the parameters of the passive and active two-ports te simply add
will be discussed next. Also, the restrictions on the absolutely passive
two-ports, impesed by the requirement of a commen terminal between the
two=-ports, and the resulting topology will be considered.

Consider Figure 2.3.1. Using the y-parameters the relatiomships

between the currents and voltages of the asctive and passive two-ports
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are respectively,

"ia T ™ ya ya N —V_

b 1
L2 11 12 o, (2.3.1)
i3 ya ya v .

"2 | | a1 22 | | "2

- . N

1 Yy y v

: ; - 11 ;2 L . (2.3.2)
. p

%2 | | Y21 Y2 | | T2

If in making the connections shown in Figure 2.3.1 the connections did
not alter the original active and passive two=-ports such that{%?;}and

[?gﬂ change, then these matrices will continue to represent the indi-

vidual two-ports after the inter~comnection occurs,

From Figure 2.3.1

. _ 48 P :
a P : :

12 = i2 + iz ’ (2.3.3.b)
In terms of the y-parameters the relationship between i19 iz and Vi, Y,
is

i Y9 ¥ v

1 o | TR TR2 o, (2.3.4)

) You Y22 V2

Substituting Equation 2.3.1 and Equation 2.3.2 into Equation 2.3.3 and

then inserting Equation 2.,3.3 into Equatien 2.3.4 gives

i a ¢ a P (y? p

1 iy + 1 yip + i) G + )| |y ,

. = a P = a P a P o (2.3.5)
1 1y + 33 (rgy + 9233 0y, + 9230 | Y,

Or in other words, under the conditions described above the resulting

y-parameters are the sum ¢f the active and passive parameters.
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Figure 2,3.1. Two=-ports Connected in Shunt=-shunt.

el
©

.
' —_ :
S
| S— | ‘
N<

Figure 2.3.2. Validity Test for Y12 and yy9 for a Shunt-shunt
. Interconnection} v, must be Zero, '
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The test to determine if the intercomnections affect the original
parameters is as fellows, GConnect the input peorts together as desired
and, depending upen which set of parameters are appropriate, either
short circuit or open cirxcuit the out~-put ports. After applying a
voltage vy determine if the voltage, vc, between the points of the two-
ports to be connected is zero., If it is, cennecting the two-ports will
not affect the origimal parasmeter. Figure 2,3.2, lllustrates the test
for Yo and Y12

If the above tests are applied with positive results and if suitable
topological arrangements are made then the z, h, and g parsmeters also
add. That is, if the z-parameters are used, then a series=-series con=
nection is necessary, if the heparsmeters are used then a serles-shunt
connection is necesgsary, while if the geparameters are used a shunte
gserles commection is necasssry,

Figure 2,3.3.shows the allowable topology for the y and z configue
rations., The requirement ¢f a common terminmal and the requirement that
the parameters are invariant under the twoe-port intercemnections are
such that me useful g or h composite two-port results., Note that only a
limited z-parameter passive two~port avrangement is possible, but that
the most general common terminal is valid feor the y-parameters. Hewever,
if transformers are allowed, as demenstrated for the h-parameters in
Figure 2,3.4 , any configuration of a passive three terminal twee-port is
allowed for all parameter sets. Further, if the common terminal con-
straint is removed, then the addition of parameters is valid for the z-
parameters and the most general three terminal network may be used. See
Figure 2.3.5,

A general representation of intexconnected passive and active two-



-
[y'ti-_

. (a). A shunt-shunt connection for y-parameters.

&

(b). Series-series comnection for z-parameters.

15

Figure 2.3,3. Valid Connections Between an Active and Passive

Two-port for Parameters to Add.

Z)

Zg

l

Ze

L

[n

i

]

Figure 2.,3.4. Valid Interconnection Between Two-ports Using a

Transformer such that the heparsmeters Add and a Common
Ground Exist Between Input and COut-put.



16

ports is shown in Figure 2.3.6.a. The resulting twe-port is shown in
Figure 2,3.6.b. An expression for the generalized two-port pavameter is

As

_,\P a ;
1j = }\ij + }\ij . (Zu306)

The interconnections in boxes one and twe are shunt or series depending
upon whigh set of parameters is used.

Because in most passive synthesis studies trasnsformers are allowed
and because one geal of this work is te extend the knowledge of two-
port parameters such that active two-ports are included, the necessary
realizibility conditions to be derived im Chapter III are determined in
terms ef the genmerslized two-port parameters, Hence, for the g and h
parameters these conditions are valid and the intercomnections of
Figure 2.3.6 are valid enly if transformers are used, However, one
goal of this work is to achieve the actual synthesis of system functions
without using transformers. Therefore the actual synthesis of driving
peint and transfer funcitiens will be done in terms of y-parameters in
order to circumvent the meed for transformers. 4nd yet, the most gener=

al three terminal passive network configuratien may be used,

2.4 Relativnships Between the Two-port Parsmeters,  The relatiop~
ship between the four sets of parameters y, z, h and g are discussed
next and similavities in their pole-zero plots are shewn. The pole-
zere plots of the y and z parametexs are well known from passive tweo-
port synthesis; therefore, the pele-zero plots of the g and h parsmeters
may be determined by relating the g and h pavameters to the y snd =z

parameters. Table I shews the interrelationships.



Zp | Zc

‘Figurve 2.3.5, Valid Topology for the zeparameters to Add if the
© Common Terminal Requirement is Removed.

oA

*5

Figure 2.3.6. Generalized Interconnected Two=-port.,
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TABLE 1

PARAMETER RELATIONSHIPS

By = Uy gy = Yen
hyp = -¥12/¥13 815 = 2127711
hyy) = Y1793 81 = 2217711
hyy = Lzp 897 = 1/¥5

As an example of the information that may be gleamed from Table I, con-
sider Y11 and hll' It is known that the poles and zeros of yqy are inter-
laced on the negative real axis and that the one nearest the origin, if
not at the origin, is a zero(7). The number of poles, one of which may
be at infinity, exactly equals the number of zeros. Because hll is the
reciprocal of Y11 it follows that the number of zeres, one of which may
be at infinity, exactly equals the number of poles, one of which may be
at zero, The poles and zeros are interlaced on the negative real axis.

Note, the description of h,. exactly fits the pole-zerc pattern for a

11
general zye In fact, for the passive two-port with a shorted out-put,
the impedance secen looking into the input is exactly hll‘ The specific
two-port z;; is determined, however, with the cut-put epen-circuited
and is net equal to the specific hll’ but the pole-zero pattern of a
general 24 and hyy is identical.

Further conclusions can be drawn from Table I. For example hlZ
and 891 as defined in Table I are the open circuit veltage gain frem

the output port to the input port and the forward open circuit voltage

gain of the two-port respectively. The characteristics of these twe
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gain functions are well known from passive two-port theory. In par-
ticular, it is known, that the numerator cannot exceed the degree of the
denominator(7); hence, the degree of the numerator of hlz and g,; cannot
exceed the degree of the denominator. By relating hy; and g9 to the
short circuit current gain functions it can be stated that the degree

of the numerator of hy; and g, cannot exceed the degree of the denomi-
nator. This is in contrast to the off-diagonal terms of the y and z
parameters whose numerator degree may exceed the denomimator degree by

one.



CHAPTER III

GENERALIZED PARAMETERS

3.1 Introduction, In this chapter theorems are proven concerning

the generalized two-port parameter, kij’ which resulted from the to-

pology specified in Chapter II. The relationship between the general

3
and a passive two~port is developed, The relationship between the pole-

passive A? pole~zero and the hij resulting from combining an active
zero plot of the parameter of the particular passive two-port used and
the pole-zero plot of the resulting Xij is also determined. For the g,
h and z parameters, the theorems hold if transformers are allowed and a
common terminal is required whereas the theorems are true for the y-
parameters without transformers. Further the theorems are also true for
the z-parameters without transformers if a common terminal is omitted.
The restriction on the passive two-port is that it contain only RC or
RL elements.

3.2 Necessary Condition of Xll and Aoyge Given that

Y a '
Aij - ?\ij + Aij b (3°2°l)
p a
then }\,ll ] All + }\.ll 9 (30202)
where u
?\il = —a——"—-—'—'—- = "—-——-——'—"' s (3o2o3)
(s + py) d(s)qy
a
and )\,ll - k‘l:ﬁ, > @, (33204)

20
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is defined to be the magnitude factor and is a positive constant.
When it is necessary to denote the magnitude factor for a particular set
of parameters, say the y, the a subscript will be changed to y. a; is a

= 3P i 1 P ' he num -
zero of kll and p; is a pole of hi n(s)ij is the numerator poly

3
nomial of ng and d(s)ij is the denominator polynomial of h?j' The 1
sign indicates multiplicatiom. From passive two-port theory the following
is knowﬁ concerning RC or RL driving point function(7).

1. The ai°s and the pi's are interlaced on the negative real

axis of the s~planpe,

2. n_ = n =0i 13

a P
where
n, = degree of n(s)yy
np = degree of d(s>ll .
3. Ifn, - n, = 0, all the critical frequencies are finite and
non-zero; whereas if n, - n, =% 1 there may be poles or zeros
of Agl at zero or infinity on the s-plane.

4, The number of zeros and the number of peles are exactly equal,
5. kgl is positive real and a rational function.
Next a theoxem on Aqj is stated and then proven.

Theorem 3.2,1, Given )\y; as defined by Equatien 3.22, then:

1. The peles of xll will be the same as the poles of kil .

2. The zeros of jj3 will be shifted from the zeros of hil toward
the peles of hgl as kll goes from zere to infinity.

3. The pole~zero plot of M1 will satisfy the requirements on the
pole-zere plot of a general hil with the exception of con-
dition twe, abové. Further, the degree of the demominator,

D(s)ll » ©f \j1 can equal or be cne less then the degree of



22

the numerator, N(s)l1 of Aps but the degree of D(S)ll cannot
exceed the degree of N(S)ll'

&. hll is positive real,

Preoof:

Equation 3.2.2 may be written as
Hy m{s + a3) + kyy n(s + py) Nyq(s)

AL = = . (3.2.5)
m{s + p;) Dy (s)

Ingpection of Equation 3.2.5 shows the poles of A11 to be the same as

the poles of hgl. The numerator Nll(s) is given by

Nll(s) = Hé.’-:l (s + «?511) + k‘ll (e + pi) 9 {3.2.6)
(ky /H) Grs + py))
= I’Ia TT(G o} Lai) 1 4 . (3.267)
(s + a;)

The bracket term of Bguation 3.2.6 may be treated by rootelocus teche
niques to determine the woots of Nyj(s), which are the zeros of \jj.
Aagume ltyy may be varied from zero to infinity. From root=locus theery
it 1s known that the voots of Nll(s) will be located at the a
= 0; as kll is increased the roots of Nil(s) move toward the pi‘s (8.
Because the number of ai's exactly equal the number of p;'s if the possi=
ble ai;er p; at infieity is counted, and because all the critical
frequencies are located on the negative real axis of the seplane and are
interlaced, the rocts of Nll(s) vemain on the negative real axis for
all positive values of kjj.

To prove part three, nete that the degree of Nll(s} is the degree
of‘nll(s) or dy; (s} which ever is larger, but that the degree of Dip(s)
is always the degree of dy;(sy. A3y is positive real because adding a

positive constani te a positive real functien gives a positive real
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func;ioﬁ.

Corellary 3.2,1. Given two polynomials in s, Q(s) and P(s), where
the roots of Q(s) and P(s) are interlaced on the negétive real axis,
then the roots.of M(s) are interlaced on the negative real axis of the
complex s-plane, where M(s) = aQ(s) + bP(s) and a > 9, b > 0,

Equation 3.2.6 may also be fact@red as

(Ha/kll)(ﬂ(s + a;)

Nll(s) = klln(s + pi)' 1+ . (3.2.8)
: (s + p;)

Then the roots of the numerator of the bracket term move frem the pi’s
to the ai”s as k]l gees from infinity to zero respectively. Regardless
of the factoring, the roots of the numerator of the bracket term will

be the same for a given ky; and H, and they will be located between the

pi's and the a;'s. Denote these voots as the e, 's. Then Equation 3.2.8

1

may be written as

Nll(s) =K, nis +ot) . (3.2.9)
ig 0, = Dy, then

K, = Hy + kyg, (3.2.10)
if ng, = n, + 1, then

Ky =H; , (3.2.11)
and if n, = np = 1, then

K, = Kkyge : (3.2.12)

Ayo will be considered pext. From Equation 3.2.1 an expression
for AZZ is
P a )
Agg = hgp F Aoy s (3.2,13)

where

P nls + bs) (3.2.14)
}\22 :(Hb> Tr(S + Pi) s # o
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and
a

bi is the root of the numerator of ng. Because of the similarity between
P and AP meet

11 22
the same conditions, the following theorem may be stated concerning Ay

A1 and Aoy and because the general pole-zero plots of )

Theorem 3.2.2. Given Ago with the specified topology, then:

1. The poles of Agp will be the same as the polésiéf hzz.

2.‘ The zeros of A22 will be shifted from the zeros of Ay toward
the poles of xga, with the amount of shift depending upon the
size Of -

3. The pole-zero plot Qf Ay, will satisfy the requirements on
the pole-zero plot of a general kgz with the exception that
the degree of D22(S) can equal or be one less than the degree

of sz(s) but net greater.

4, Aoo is a positive real function,

Denote the reeots of sz(s) by f4, then an expression for Ago is

Kb n(s + Bl)

n{s + py)

Aoy = (3.2,16)
where Kb is deﬁined by equations similar to Equatiems 3.2.1Q, 3,2.11 and
3.2.12, p; is the root of hyy or the shifted root.

. Although the abeve two theorems were devel@ped for the case of no
private poles in the passive two-port, the theorems5 as stated, heold if
private poles are allewed., Fuxrther, an interpretation of the above tweo
theorems is that given a pole-zexo plot, it could not be determined if

P
it originated from a gemeral passive RL or RC k11 or from a composite
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lii unless a pole at infinity existed. That is, part three of the above
two theorems rules out a pele at infinity for the rational function h]l
of the composite two-port.

3.3 Pole-zero Structure of the Off~diagonal Term klZ'; The non-

diagonal term Xy, of the composite twe-port is givem by

Nyp(s)
a 12
}"12 = }\.1]3_2 + }\12 -"'—"-1; ) H (3.3.1)
12¢8)
where
‘ . + an(s + zy) + an,,(s)
}\ = = 9 (3.3.2)
12 m(s + py) dyo(s)
a
Alz = & klz s (3e393)
and
a > 0,
(3.3.4)
k12 > 0.

The positive sign holds for the z and h parameters and the negative
sign holds for the y and h parsmeters vespectively. This is true for
both the active and passive parameters. See Appendix A, From passive

two-port theory the following 1s known about RC and RL functions(l).

1. The pi°s are en the negative resl axis.

2. The degree, n_, of n;,(s) may be 0, 1, 2 « « + o np;+ 1,
for z and y parameters ov 0, 1, 2 . . « «» n, for h and g,
where n, is the degree of dlz(s).

3. The zi’s are on the negative real axis for series ladder net-
works, but for lattice structures the zi“s may be complex con-

jugates,
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4. The pi's are always on the negative real axis.

le(s) may be expressed as
+ le(s) = am(s + z3) + kyom(s + Pid. (3.3.5)
In erder to determine the roots of le(s) by root-locus techniques

Equation 3.3.5 may be written as

(a/kyp) (nls + z4))
_"tle(S) = klzﬂ'(s + Pi) i 1 + _n_(s + Pi) L (30306)

it is'importgnt to note that for le a positive sign wilL always occur

in the bracket term for the voltage and current convention shown in
Figure'i.z.l. The zexos of le(s) will start om the pi’s and move toward
thé z;'s as kyy is varied from infinity to zero, respectively.,

To illustrate the wide vange of values the r@@ts of le(s) may have
and to demonstrate the root-locus method as applied to synthesis, several
examples are presented.

Example 3.3,1. n, = 2 and the zins are éomplex. Figure 3.3.1
shows the root~-locus plot for this case; that is, the movement of the
rooﬁs of the numerator of the bracket term in Equation 3.3.6 is shown
as klZ is assumed to varxy from infinity to zero. The t;iangles indicate
the direction of movement as well as a possible value9 say vy, & reot of
le(s) can take on. Note from Figure 3,3.1 that if plbhappens tq be at
the origin the plot would remain the same. Further, Py could be at in=
finity and ;he plot would be the same, altheugh Yo wouid havg further to
move from P, to zy as ky, gees from infinity to zere. If, however, the
Xiz is a non«minimum phase function i.e., the zeres are im the right ha;f

plane, then the roots of N]Z(s) will move inte the right half plane as

ki9 becomes small., Later, it will be shown that this can lead to
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Figure 3.3.1, Root-locus Plot for the Roots of legs)o
Aiw
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Figﬁre 3.3.2., Root=locus Plot Qf qu(s) when hP is an all
Pole Function, , & 12 -
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potential instability of the compoesite two-port.

Example 3,3.2. hp , the reverse tramsfer functiom, is an all

P
12

then, has np zeros at ine

pole function. That is, the numerator pelynomial of ) is a constant

and the order of the denominater is By KET
finity., Equation 3.3.6 may be written as

+ le(s) = ko (s + pi) [.1 + S%Eli'PiéJ . (3.3.7)
For the case of n; = 4 the rootwlocus plot appears as in Flgure 3.3.2,
Figure 3.3.2 demonstrates the important fact that the zeros of App may
be complex although the original passive two-port is a seriles ladder
structure. Even though all the zeros of k?z are at infinity, the roots
of le(s) move toward them. For n, z 3, the roots can be in the right
half plane and hence, the possibility of instability may exist in the
over=all two-port.

For the all pole case, Equation 3,3,7 may be written as

+ le(s) = klz L‘n(s +pyd + a/klg] . (3.3.8)

From Equation 3.3.8 it can be seen that the degree of N,  is, theo-

12
retically, n,. However, for a particular frequency range, the roots oﬁ
le(s) are very large for small values of ky,, and are considered to be
at infinity. The degree of le(s) is then zero. In fact, for the active

devices under consideration kl is extremely small and the problem ap-

2
pears to be the realization of passive components such that a will be
sufficiently small so that the zeros may be placed in a usable region of
the s~plane whenever it is desirable to generate zereo of Alz in this

manney,

In general, Ny,(s) is expressed as
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1
i le(s) = I{l Tl'(s + 'Yi> 9 (30309)

1

where vy, is a root of le(s) after shifting. The movement of v 38 8
i

function of kl could have been demonstrated bﬁ factoring Equation 3.3.5

2
as Nll(s> was factored. This would show the movement of y; from z; to
Py however for later mathematical convenience the last methed is pre-
ferred. The definition of Kl of Eguatien 3.3.9 is dependent upon the

degrees of n;,(s) and dlz(s) in a manner similar to K, of Equation 3.2.9,

The above may be summerized in the form of two theorems.

Theorem 3.3.1. Given )\j, as defined above in Equation 3.3.1, then:
1. The pele=zere plot of Alz will be the same as the pole=
zexo plot of a general two-port RL or RC transfer function.
2. In particular, the peles of );, will be the same as the

peles of xgzg but the zeros will be shifted from the

P
Zeros of }\,12 .
3. Complex conjugates zeros of Ay, may result when hgz is a8

series ladder structure,

4, & non-ninimum phase Alz may result from a minimum phase
p

}\-1’2.

The next theorem views the problem from an active device standpoint,

Theorem 3.3.2. Given a twe-port defimed as in Theerem 3.3.1, then
the zeres of hlz will appreach the zeres of yiz as the active feedback

a a ,
term h?z gees to zeroc, but as A increases, the zeres of A,  will ap-

12 12

et

proach the poles of A? .
iz
The importance of Thecovem 3.3.2 is as follows., kzz is not a true

variable as it is in the classical roet-locus problem., Instead, for a
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given active device it is a constant; therefore, for a given passive two-
port and & given active device, Theorem 3.3.2 furnishes insight into

where the zeros of the composite A are located.

12
1
3.4 Pole-zero Structurxe of the Off Diagonal Term }ryj. Equatieon
3.2.1 implies that
Nyp(s)
P a 21
where
p am(s + zi) + anZL(s)
)‘_ = + = «3-4.2.
2L = (s + py) dy (s) 7 ¢ )
a -
AZl = + kZl 5 (3.4.3)
and
a > 0, (3.4.4,a)
kzl > 0. (304'.4.&’)

The positive sign holds feor the y and h active two-port parameters, and
for the passive two=-port z and g parameters. The negstive sign occurs

for the z and g, and for the y and h paxameters for the active and passive
two=port, respectively.

From passive RC and RL twe-pert thecry it is knmown that

812 = "821 » (3.4.5.2)
Yip = Y21 » (3.4.5.B)
212 = %21 » (3.4.5.c)
=T a5,
By, = ~hyy o (3.445.d)

P

Therefore the conditions on hi? as stated previously held for th”

except for the negative sign indicated in Equatisn 3.4.5 for the g and

b parameters.
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Nzl(s) may be written as

iNZl(S) = am(s + z;) ~ kop mni{s + py) » (3.4.6)
_ (5/k21) (ns + z;))
iNzl(S) = kzlﬂ(s + pi) 1 - TT(S + pi) a (304.7)

The positive sign on NZl(s) of Equation 3.4.7 holds for the y and h
parameters, whereas the negative sign is required for the z and g pe-
rameters. It is important to note that, regardless of the parameter set
used, there will always be a sign difference between the one and the
rational function. The roots of N21(S) are determined by the values of
k21 such that the bracket term is zero. This occurs whenever the ration-
al function has a modulus of one and an argument of 0 + 360°. This is in
contrast to the classical rooi-locus plot where the roots occur on the sg=
plane whenever the avgument is 180° + 360°. Therefore care must be used
in plotting the locus of the roots of NZl(s) as kyy 1s varied because the
plots differ in the two cases. The roots of Njyj(s) will continue to
start on the pi's and move toward the zi“s as kgy is varied from infinity
to zero, respectively. The paths, however, will be different., For the
following rveasons, the root-loeci on the real axis may be drawn in by
inspection. The complex zeros eof KPZl are complex conjugates and make

1o net contribution to the argument. The poles are all real. Hence,

the real line te the right of all critical frequencies will be a part of
the root-loci. The real axis to the left of an even number ¢f critical
frequencies will also give the ration for an argument of 0°.

Several examples will be given to show the possible reot location.

Example 3.4.1. n, = 2 and the z;'s ave complex. Figure 3.4.1 shows
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(b). np =1, n, = 2, and p, is at OQ-

Figure 3.4.1. Root-locus Plot of NZJ(S) for Complex Zeros in Azl,
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the root-locus plot for this case when np = 2, Figure 3.4.1.b is for
the n_ = 1,

2

To demonstrate further the root-locus technique when a negative
sign is involved and teo illustrate the possible pole-zero structure of

A

21> another example is given.

Example 3.4.2, KZl is an all pole function, Figure 3.4.2.a
demonstrates this case for n, = 2 and Figure 3.4.2.5 demonstrates the
case for the all pole structure with n, = 4, The dotted line in Figure
3.4.2 shows the path of the roots for the case of the positive sign oc-
curring in the bracket term, In centrast teo the classical root-locus

plot the roots for large values of s must satisfy the equation

alk :
;—gﬁﬁi; =0° + 360° . (3.4.8)

That is, for s large the term 1/s™ must produce an angle of + 360°.
Therefore if m is defined as in Equation 3.4.8, there will be m roots
of N,;(s) going to infinity guided by the asymptotes,

0°  4360°  4720° 4+ 1080°
m m ¢ m ? m

o e e e e (3.4.9)

In general, if m is the amount that the degree of the denominator
exceeds the numerator, the above asymptetic behavior holds.
In general then NZl(s) may be expressed as
+ NZl(s) =Ky (s + yi} . (3.4.190)
Once again K, is a pesitive constant defined in the manner of Equations
3.2.10, 3.2.11 and 3.2.12.
From the above examples the following conclusions can be made and

stated in the form of twse theorems.
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(b). np = 4,

Figure 3.4.2. Root-locus Plot of N21(8> when nZl(s)
is an all Pole Function.
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Theorem 3.4.1. Given )\j; as defined above, then:
1. The pole-zero structure is, in general, the same as a
pole=zero structure of a RC or RL transfer functien,
providing no zeros of A;j occur on the positive real axis,

2. In particular, the poles eof kZl are the same as the poles

p
of k21'
3. The zeros of Ayp are shifted from the poles of Kgl toward
the zeros of \P depending inversely upon the size of

21
k21.

4, Complex zeros of h21 can occur for passive series ladder
structures.

5. A.,, may be non-minimum for both ladder and lattice

21
structures of the passive two-port.

Theorem 3.4.2. For a composite circuit consisting of a passive two-
port and an active two-poert as defined above k21 may have zeros on the
positive real axis.

Although Theorem 3.4.2 is almost a restatement of part one on Theo-
rem 3.4.,1, its importance is that fact that it graphically demonstrates
one difference between active and passive RLCM twoe~ports. For RLCM net-
works, a basic theorem states that ne zeros may exist om the positi@e real
axis for Agl of grounded networks, while Theorem 3.4.2 states defimnitely
that such zeros can occur in active twe-port synthesis.

3.5 Zeros and Poles of hij for First Cauer RC Form. 1In this section

the relationships of the p~z structures between the various parameters
are developed for the first Cauer form(7). Extensive use is made of

the roet~locus techniques to prove theorems that would otherwise be
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algebraically difficult to handle. One of the theorems which is proven
is that for selected networks, all the parameters of a given set will
have a common denominater. This is an important fact in later work.
‘The first Cauer form is the selected:netwdrk because it leads to an all
pole function for the off diagonal terms and it has been worked with
extensively in passive synthesis. The reason for am all pole function
is simplicity.

It is known from passive synthesis that if the specified y-para-
meters do not have a commen denominater, the private poles may be re-
moved from Y11 and y,, and represented as shunt networks with respect to
a central network which will have y~-parameters with common denominators
(7). A similar statement applies to the z-parameters, except series net=-
ﬁorks are used to realize the private poles. Ne such general statements
exist for the g and h parameters, Even if no private poles exist foxr
the z and y parameters, the parameters of the g and h sets may not have a
common denominator.

For example,

by = 1/y11 »
by = 1/zgp
and

~hyy = hyy = =¥pplyyy = 2p0lz,, .

If a cancellation occurs in y;, and Yi1» then hll and h12 will net have

the same denominator. Further there is no guarantee that such a cancel-
lation will not occur. Also, hjj; and h,; are short circuit parameters,

whereas hy, and h22 are open circuit parameters; therefore, it is not

to be expected that the h-parameters will have a common denominator.
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A similar argument applies for the g-parameters.

Next it is shown, by root-locus techniques, that for a particul;r
network, Figure 3,5.1, of the first Cauef RC form all the parameters of
a set have the same denominator. The.following is concerned with a
passive RC network and the superscript, p, will be dropped.

Necessary conditions on 211 for the first Cauer RC form, for the
first and the last element are as follows.

1, If zll(s) has a zere at s = oo the first element is a capaci-

tor,

2. 1f zll(s) is a constant at s =oo the first element is a re-

sistor.,

3. If zll(s) has a pele at s = 0 the last element is a capacitox,

4, If zll(s) is a constant at s = 0 the last element is a re=

sistor.

Similar statements can be stated concerning z Then from inspection

22°

of Figure 3.5.1 and the above necessary and sufficient condition it can

be seen that the general form of z__ is
ii

stn+o.ooonoo+zo

Zs . (3.5.1)

ii

= n-1

o
S(S +o--na¢+z)

Also from passive two-port theory the cenditiens en Yi1 for the first
and last element for the first Cauer form are:
1. If yll(s) has a zere at s =  the last element is a capacitor,
2. If yll(s) is a constant at s = Q the last element is a re=-
sistor.
3. If yll(s) has a pole at s = e the first element is a capaci~

tor.
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4, If yll(s) is a constant at s = the first element is a re-
sistor.
Similar statements apply to Yy From inspection of Figure 3.5.2 and

the conditions for y, the general expression for y;; is

ii°
Hysn + ¢ o e+ o & o e -} yo
Yii = n *« & & & ¢ e o @ : * (3.5.2>
s +y
(8]

Analysis of the network of Figure 3.5.1 shows that

a

Yy T Vo1 F o———— *
12 (s + pi)

The relationship between 213 and the y=-parameters is

22
Hyzz n(s + a;")
z :::zg-z—:: (s + p)
11 22 11 7
Dy Hyzz Hyllﬂ(s + agoIm(s + ay ) - a
2
(s + pi)
22 2
Hy22 m(s +a; ) mw (s + pi) Ksn + 0+

= 3.503)
22 1, . .2 = 2a, .. .5 ¢
HyzzHyllﬂ(s + ai s + ] ) a sch 4 +
Dy is the determinant of the y matrix, Now the numerator of Equation
3.5.3 has to be of degree of n and of the form given by Equation 3.5.1
hence cancellations must occur between the numerator and denominator.

The deneminator may be factored as

2

. a
11 Hy11 Hy2o i

22

«(3.5.4)
(s + a?z)n(s + a%“)”

A root-locus plot of the bracket term of Equation 3.5.4 is shown in

Figure 3,5.3. The reasons for the plot of Figure 3.5.3 is that with no
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Figure 3.5.1, First Cauer RC Form From Which z31 May Be Determined,

Figure 3.5.2, First Cauer Form With Output Shorted te Determine Y11
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Figure 3.5.3. Root-locus Plot of Nj,(s) when
xp is an All Pole Function.

private poles the pj 's are the same for yll and Yoo+ Further they are

ii 11 22

interlaced on the negative real axis with the a, 's. Whether, a; > a;
22 11 . . . ' ‘

or aj > a|” , their values must lie between adjacent p; s and further
i .

the root-locus plot is not affected which ever is the larger. Note the
pi's do not affect the root-locus plet, but are placed on the diagram

to locate the a;'s and show possible cancellations. All the zeros in
the numerator. of the non~-unity tefm in the bracket term of Equation
3.5.4 are at infinity; therefore, the poles of that term, the ai's go to

infinity according to Equation 3.4.9 as a2fn is assumed to be

yllHyZZ
varied. Actually aleyllHyzz is a constant, but it must be such that n
zeros of the denominator of Equation 3,5.3 ultimately cancel with the pi's
of the numerator and result in a ratioral function as required by

Equation 3.5.1, From an inspection of Figure 3.5.3 it is seen that this

is the only cancellation possible. Alsc one root of Equation 3.5.4 must

move to the origin., Therefore Equation 3.5.3 becomes
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22
i)

n~1
H..sm (s + g,)
yll i-1 i

n
(s + a

zll = . (3.5.5)
Although the plot indicates the possibility of gi being complex, this

cannot occur since g; is the root of a driving point RC impedance,
ii

Purther they must be interlaced with the a,

's as this is a necessary
p-z structure(7).

The above may be stated im the form of a theorem,

Theorem 3.5.1. Given a passive two-port containing a first Cauer
form with resistors as end elements, then
22
(s + a; )

211 T y (3.5.6)
Hyll st(s + g;)

22
where the a; 's are the zeros of Yoo and the gi"s are located between

22

the a; 's.,

Theorem 3.5.2. Given a passive two-port as described above then

11
(s + a; )

222 = ) 5 (3‘507)
Hyoo sm(s + g;)

11
where the a, 's are the zeros of Y11 and the gi's are interlaced with
1

11, . .
a, 's along the negative real axis.

Theorem 3.5.3. Given the defined two-port, then

2
a .. (s + py)
. _ ~y12__ TT(S+P) . 1
12 - - 211 22y _ 2 ’
Dy Hyllﬂyzzﬁ(s + ai n(s + ay ) a
ar{s + p)

11 22 2 ?
Hyllﬂyzén(s + ay ) (s + ay ) - a
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a

21, = .
HyllHyZZ sm(s + gi)

The gi's are the same as those defined in Theorem 3.5.1.

By uéing Theorem 3,5.1, Theorem 3.5.2 and Theorem 3.5.5 all the
parameters may be expressed in terms of the y-parameters or in terms
derived from the y-parameter. Let the y-parameter for the first Cauer
form be as follows.

11
Hyll m(s + aj )

Yiq = , (3.5.8)

1 TI(S + Pi)
22

Y2 % > (3.5.9)

TT(S + Pi)
s .
Y12 = Y12 < ; (3.5.10)
(s + p;)

vhere the y-parameters are for the two-port of Figure 3.5.1. Then from

Theorem 3.5.1, Theorem 3.5.2, and Theovem 3.5.3,

(s + a%z)
le = ) v (305.11)

Hyllsn(s + 84)

(s + a%l)
2 A = ) (305.12)
22 H sti{s + g.)
y22 8i
a
2y, = 23] = . (3.5.13)
H§22Hy115“(s + 85)

From the parameter relationships indicated in Chapter II, Table I, the
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following results hold for the h-parameters.

, m(s + py) )
11 11 11
Hopp mls + a57)
29 m(s + g4)
h22 = 1/222 = Hy (3.5.15)
(s + ail)
-y a
12
h = _h = = ¢ (3.5616)
21
12 y 4+ 1 Hylln(s + ail)

Then for the g-parameters

HYll (s + g4)

g4 = Lllzgy = : (3.5.17)
11 1 (s + 3%2)
i
/ TI'(S + pi) ( 1 )
g = 1 y = 3-5. 8
22 22 ] 22
Hyzzn(s + a3 )
a
Zo1  HyppPypp (s + 8;)
812 = 81 = * 22 (3.5.19)
1 (s + aj )
Hyll (s + g4)
allyyy
(s + aiz)

The above may be summarized in the form of a Theorem,

Theorem 3,5.4., Given a two-port compesed of the first Cauer net-
work as described, then the following holds.
1. All the parameters ef a particular set have the same poles.

2. All off-diagenal terms are all pole functioms.
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3. The poles of the h-parameters are the zeros of Y11°

4. The poles of the g-parameters are the zeros of Y99+

3.6 P~Z Structure of The Composite Two-port. Ir this section it

is shown how the p-z structure of the parameters for the composite two~
port can be controlled by the passive two-port parameters. This is an

important feature since a large number of techniques exist for passive

two-port synthesis, whereas active two-port synthesis techniques which

do not allow gyrators and negative impedance converters are at a mini-

mum,

In order to achieve a desgired p-z structure for the composite two=-
port, the passive two-port must meet certain conditions. These con-
ditions are developed next.

The diagonal terms are considered first. From Theorems 3.1.l and
3.1.2 it is known that Kii will have the same poles as Aii , but the
zeros will differ depending upomn hii. If H>> ky; the zeros of Ais
will remain close to the zeros of Agi , Whereas if kii >> H the zeros
of Ay; will approach the pi's. The objective of the following develop-
ment is to enhance the above mentioned tendency., For example, if the
active device is a tramsistor, where yil >> YZZ , and if a symmetric
passive two-port is used the zeros of Y11 would tend to be at the poles
of yil while the zeros of y,, would tend to be at the zeros of ygz.

A passive two-pert with Hb > H, could also be used. Therefore, by
synthesizing a passive pole-zero plot by any of the well known means,
the p=z structure of the composite two-port, which contains an active
two=-port, may be constructed as desired.

If the numerator and denominator of Ail are of the same degree, and
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if the particular parameter set has a common denominator, then the numer-

ator of kii’ Nii(s)’ may be expressed as

N, (s) = H(s +c;) *» =+ s+ {s+c )l +
i * " (3.6.1)
k(s +py)(s +pg) ¢ = v r (s +py) .

¢y is a root of nii(s) and p; is a root of dii(s)‘ If kyy is larger

than k,,, say, then Equation 3.6.l can be factored such as

3]
N, (8) = kyg [-H/k..(s Fed(s+eg) t (s )+
il ii 1 n (3.6.2)
(s +pd(s+py) """ (s+ P3§] »
or
H H £ () +£ ()
N, (8) = ky [:(1 §— e 4 (— i el el
kii kii
H (cge, * * o) + (pyp. --p>]
Cee ik ? 2 n (3.6.3)
k..
ii
If
1> Hf/kj; , (3.6.4)
and
P; and c; are of the same order ef magnitude, then
N, ﬁskii[.(s + pl)(s + pz) e v o o (5 + pn}i] . (3.6.5)
If kjj is the smaller then Equation 3.6.1 may be written as
k.. HE () + £ () n=1
N..(s}zﬁ[(l+_ﬂ>sn+ el pelE T
ii . L
H 33

e o e @ (Clc .'C}> k." PP .,P
2 By __%l 12 nl (3.6.6)
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For
1 >>‘kjj/H (3.6.7)

and if ¢y and p; are of the same order of magnitude then
ij(s) H(s + c;)(s +cg) = * + + (54 ¢cp) . (3.6.8)

Since H is a magnitude factor of the passive network it may be arbi-

trarily determined without changing the peles and zereos of the passive
two-port and hence the tendency of the zeros of Nj; to be at the poles
of A;; and the zeros of N;: to be at the zeros of A,

i3 i3’

a
which active parameter Afl or Ay is the larger, will be enhanced. For

depending upen

the y and h parameters Ny will be Nll’ whereas for the g and z parameters
Nii will be sz for a transistor.

Next the off diagonal terms are considered. For these texms, in
all cases Mg >> Ay for the active device. The requirement to place

P 1 a
the zeros of klZ close to the zeros of XZl is

15> ky,/a. | (3.6.9)
Also p; and z; should be of the same order of magnitude. Then the

roots of le(s) are removed some distance from the poles as indicated

by the root-locus plots. Note for the case kyjy = 0, the zeros of le(s}

P
12°

For the other off~diagonal term the condition is

are exactly the zeros of A

1 > a/kZl . (3.6.10)

If p; and z; are of the same order of magnitude, then the zeros of Nzl(s}

are clese to the poles of p,, P, * Ot Py Since a may be determined by

the parameters of the passive network, the natural placement ef the zeres
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of Nij can>be enhanced by the conditions indicated in Equation 3.6.9 and
Equation 3.6.10. The above conditions indicated in Equation 3.6.4,
Equation 3,6,7, Equation 3.6.9 and Equation 3.6.1Q also hold whenever
the numerator or denominator differ by one, but the constant factore&
out is not a function of the active two-port parameters whenever the
denominator exceeds the numerator,

Hence by utilizing the natural anti-symmetrical amd non=reciprocal
character of the active device and by requiring the passive two=-port to
enhance the natural shifting tendencies of the numerator zeros of the
composite parameters, it is possible te construct am actual pole=-zero

plot closely resembling a specified p~z plot for the compesite para=-

meters.



CHAPTER IV

SYNTHESIS OF DRIVING POINT IMMITTANCES

4,1 Introduction., In this chapter the actual techniques to

synthesize a specified driving point admittance are developed using the
y-parameters and the transistor as the active element. The techniqué is
based on the non-reciprocal, non-symmetrical and active nature of the
transistor, although the technique could also have been developed for
the majority of other active devices since they also exhibit these
characteristics., The y-parameters were chosen because the theorems

of Chapters II and III hold for these parameters without the use of
transformers and with a common ground. Further, the most general passive
two-port consisting of a three terminal network may be used. The tech-
nique is developed specifically for the synthesis of RLC functions using
only RC networks and active two~-ports defined as in Chapter II. 1In
particular, the problem of generating complex zeros in the driving point
immittance is considered. The necessary conditions for realizibility of
Ain? the generalized driving point immittance, are developed first and
then interpreted in terms of the composite two-port y-parameters and the
admittance, Yin of the two-port. That is, the type of driving point
admittance possible with a given two-port is first determined, then
means of synthesizing it are developed.  To synthesize a given driving
point immittance, it is assumed that the two~ports are terminated in an

element that is independent of frequency and whose units agree with
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those of XZ . It is also assumed that all parameters of a set have the
same denominator. While this is not true in general, it was proven in

Chapter II11 that it is true for certain networks,

4.2 P-Z Structure for ’n\in° The first theorem to be proven con-

cerns the location of the poles of /A\in

Theorem 4.2.1. The driving point admittance, /\ 6 , of a two-
in
port, obtained by connecting a two-~port containing only RC or RL ele-

ments to an active two-port such that the respective parameters add,

cannot have complex poles,

For the composite two-port defined,

Aqo
12221
.= A l - — , (4.2.1)
Nin =M1 A1h22
Hom(s + a;) . .
= R < -
(s + Pi) 11
tan(s + z1) +aﬂ(s +25)
' + k + k
m(s + py) “21

s + Py

12
Hom(s + a;) an(s + b;)
m(s + p;) (s + p;) kaa * M

Note that Ar is contained in Ap9, but the source immittance is not in-

o(4.2.2)

+

cluded in A11+ The denominator, Q(s), of Equation 4.2.2, becomes

Q(s) = mils + py) [(Han<s +a3) + kygm(s + py))

(4.2.3)
(Hym(s + by) + m(s + py)(kyy + ApJ) :]

By Theorem 3.l1l.1 and Theorem 3.2.2 the ai’s and pi's are interlaced on
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the negative real axis, as are the bi's and pi’s. Then by Corollary
3.2.1 it is known that the roots of the polynomials in the two bracket
terms of Equation 4.2.3 have roots on the negative real axis of the s-
plane, The pi's are real and positive by hypothesis; therefore the roots
of Q(s) must be on the negative real axis.,

The next theorem concerns the possibility of complex zeros in the

numerator of /\in'

Theorem 4.2.2. The driving point admittance of a composite two-
port, defined as in Theorem 4,2,1, can have at least one set of complex
zeros if

2 1

1. Yl and Y1 > o and p1» where the subscript denotes roots

counted from the origin.

2. The passive network is selected such that K,, Kp, K, and K2

1
are defined by equations similar to Equation 3.2.10 and
Equation 3.2.12.

The driving point admittance is given by

A12r21
/\in - )\.ll l - }\ll)\zz (402-4)
1 2
Kom(s + o) . KiKm(s + vi) m(s + vy{)
= m—— + : =
n(s + py) K Kpri(s + o3) nls + B2
P(s)
- . (4.2.5)
Q(s) 4 _

oi is the shifted root due to kj; and B; is the shifted root due to ko,

and AL’ Further, note from Appendix A that the signs of Aiz and‘xiz for
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the various parameters are such that a positive sign will always result
between the positive one and the rational function in the bracket term.
This is important because the standard root-locus technique may be ap-
plied to determine the roots of the numerator of the bracket term, By
the hypothesis the root-locus plot around the origin is as shown in
Figure 4,2.1. From Figure 4.,2.l.a it can be seen that complex roots will

result for the proper selection of K, where

(klz + a) (kzl + a) K.LKZ
K = . = T (40206)
(kll + Ha) (k22 + Hy + Ag) KaKb , _
or
K= 2 = (4.2.7)
(k1) Cegp + Ap) KoKy

Part two of the hypothesis was necessary in order that K be & function of
kij kji/_lgii_kjjo Therefore, if an active two~port with the proper degree
of activeness, A, is selected, then K may be made any value desired and
complex conjugate zeros will result,

The activeness is used to arrange the ultimate zero location of

AN

active two-port was utilized to construct the necessary p-z structure

ip after the non~reciprocal and non-symmetrical character of the

for, ).., the composite parameters. Or in other words, the p-z structure

ij’
of Ay from which the p~z plot of the rational function in the bracket
term is obtained, is analogous to the open loop pole-zero structure of a

servo-system. The ultimate zeros of /\IN correspond to the closed=

loop poles.

Theorem 4.2.3, If A;, does not have complex zeros, then the neces-

p
12

sary and sufficient conditions for the driving point immitance, /\INs
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1
(b) Y1 is finite .

Figure 4.2,1, Root-locus Plot of the Bracket Term of N\

"
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of a two-port defined as in Theorem 4.2,2 to have complex pcles is as
follows:

1. The p-z structure of the rational function in the bracket
term must have two zeros together on the negative real axis,
the first zero being an odd critical frequency with respect to
the origin.

2, K may be selected to be any desired value.

From root-locus theory it is known that the locus of the roots on
the real axis lies only to the right of a critical frequency; hence the
root-locus lies between the two-zeros(8). Since it terminates on the
zeros and because it started on poles; ﬁhich do not lie between the
zeros, the loci must have moved onto the real axis from the complex
plane. If K is properly selected the ultimate zeros will be on the
root-locus in the complex plane off the negative real axis.

4,3 Degree of P(s) and Q(s). The possible degree, n,, of P(s)

and the possible degree of Qs of Q(s) are discussed next. Assuming no
cancellation occurs in the rational function of the bracket term,

Equation 4.2.5 may be expanded as

P(s) (Kam(s + o)) (Kym(s + 8;))

Q(s) Kym(s + p1) m(s + pi)

1
(Kymy (s + y1)) (Bymi(s + )

: - : : (4.3.1)
Rpri(s + pi) (s + g;) . _,

By Theorems 3.2.1, 3.2.2, 3.3.1, and 3.4.1 the following is known,

1. The degree, n

o Oof m(s + @j) is n_  or n, + 1, where n, is the-

P P

degree of n(s + pi), the denominator of the original two=-port
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parameter.
2, The degree,'nB, of m(s + ﬁi) is n, or n + 1.
3. The degree, ny, of n(s + Yi) or (s + Y%) is 0, 1, 2, = *

ny, + 1.

Because n‘Y cannot exceed n, or nB, the degree of P(s) is given by

np=mn,+n, (4.3.2)

if no cancellation occurs between numerator and denominator of Equation

4.3.1. PFrom one and two above the maximum value of nB and n 1is np + 1.
o

The maximum value n, can obtain is then,

n, = ng +tn, = 2 n, + 2 . (4.3.3)

Similarly from one and two above the minimum value is

n_=2n (4.3.4)

o, is given by

ng + 1p . (4.3.5)

From one and two above the maximum value of nQ is

nQ =2mnp + 1 . (4.3.6)

Whereas its minimum value is

(4.3.7)

The minimum value of np and the maximum value of ng cannot occur at the

same time because the former is dependent upon n, = oy, while the latter

requires n, = n, + 1. For similar reasons the maximum of np»and the

o P

minimum of nq cannot occur concurrently. Inspection of Equation 4.2.9,

Equation 4.3.7 and consideration of the above conditions on o n_ and

B
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n reveals the following theorem, This theorem assumes no cancellations
occur in the bracket term; however, it will be shown that the theorem

holds regardless of cancellations.
Theorem 4,3.1., Given /\IN with the specified topology, then

n, - ng = 0 or 1. (4.3.8)

This is an important necessary realizibility condition for the
synthesis of the RLC driving point function using only RC networks and
active two-ports. Because a general RLC network may have a /\IN such
that the degree of the numerator may be one less than the degree of the
denominator it is immediately evident that all RLC driving point
immittances cannot be synthesized. Further, Theorem 4.3.1 is not changed
if cancellation occurs after expansion between terms in P(s) and Q(s)
because the degree of each will be reduced by the same amount.

The above theorem was developed assuming that no cancellations oc-
curred between the numerator and the denominator of the rational function
of the bracket term. Cancellations of this type will be broken down
into (i) Alpha cancellations and (ii) Beta cancellations. In order to
show the effect of &lpha cancellatioﬁ, assume (s + G;) is common to

(s + @;) and n(s + yi). Then /\IN may be written as

(s + G;)(Kyn' (s + oj)Kpmls + g1 )4Kym' (s + Y%)Kzﬁ(s + y%))

/\IN = ' -
(s + Gj) Kan'(s + ay) Kpn(s + ;)

Kn(s + o)

. . (4.3.9)
(s + p;) . .
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where the prime indicates the common factors have been extracted. Then,

' 1
m(s + G3)(Kym' (s + og)Kpm(s + B3) + Kym'(s + y))Kom' (s + v)

Ny =
. Kyri(s + p) m(s + B;)

. . . 1 2
KaKbﬂ(s + ai)n(s + Bi) + Kleﬂ(S + Yi)ﬂ(s + Yi)

» - o (4.3.10)
Kori(s + py) m (s + By) : :
Comparison of Equation 4.3.1 and Equation 4.3.10 shows that the degrees
of P(s) and Q(s) are unaffected by Alpha cancellations and hence,
Theofeﬁ_4.3.l'is not affected.

Beta cancellations occur whenever m(s + Bi) and (s + Yi> have
common terms, say m(s + G;). Because ng and n determine the degree
of P(s), np 1s decreased aé nB is decreased by cancellation. But the
denoﬁiﬁator degree 1is giveﬁ by ng and n, and is also decreased by the
same amount, Hence, Theorem 4,3.1 holds for Beta cancellations, al-
though the degree of P(s) and Q(s) is decreased by cancellation of the
Bi terms,

Cancellation of p; terms and the ¢ terms, both of which are out-
side the bracket, are considered next. If some terms, say m{s + Gi>’
are common between m(s + g) and m(s + p), then Equation 4.2.5 may bé

written as

1, 2
Hm'(s + odm(s + Gi)m(s + g1) + Kn(s + v Im(s + Yj)
. Ham(s + o)mis + G;Im(s + By)

Hy n'(s + o) m(s + Gy)
‘ s (4.3.11)

n'(s + pi) m(s + Gy)

: 1
Hom(s + odm(s + B) + Kn(s + i{Im(s + y?)
= . (4.3.12)

B n(s + pi) m(s + g;)
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Inspection of Equation 4.3.11 and Equation 4,3.12 indicates the degree
of P(s) and Q(s) will not be altered. Further common terms for the pi's
and the numerator of the bracket term of Equation 4.3.11, and y; terms
must be common to the o's and g's. If a p; term is common, then a é
cancellation would result and the degree of P(s) and Q(s) would be re~-
duced equally as before. Therefore,

n
P

IIQ

i

(na + nﬁ) - (number of g cancellations) , (4.3.13)

(np + nB) - (number of g cancellations) . (4,3,14)

il

In achieving a desired /\ procedures that involve cancellations

N’
should be avoided since this sassumes that device and component values
are known specifically. They are not. In discreet solid state devices
typical parameter variastion may be of the order 100%, or even greater
while better than 1% tolerance is not uncommon for passive components.,
However for solid circuits the tolerance of passive devices is 20% to

50% and hence, dependence upon cancellation should be avoided.

4.5 Synthesis of Yyy. This section develops the actual synthesis

technique to obtain & given driving point admittance. The conditions
imposed on the passive parameters in Section 3.6 to obtain the desired
composite parameter p-z structure for a particular active device are
restated explicitly in terms of the y~parameters and under the assumption
that the active device is a transistor. The steps to achieve the
specified p~z plot of Yoy are outlined and several examples are worked

in order to (i) show how synthesis may be achieved by the root=locus
method and (ii) to demonstrate how the root-locus technique may be used
to quickly determine if a given passive structure can be used to synthe-

size a given YIN’
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The driving point admittance is given by

yiir | 1 - ;
yll(y22 + GL>

It
=)
=

it

y y
12 21 4.4.1)

1 2

Hn(s + o) Kim(s + ) (s + +3)

_oame e, e Ve BT | (b 4.2)
(s + py) KaKpm(s + o;)dn(s + B4) ‘
Hor(s + @) Kl (s + s:)

_ a 1 . 3 1v
m(s + py) (s + ;) (s + B;)
P(s) n(s + sy)

- - _ 5 « - . (4.4.3)
Q(s) (s + q;)

The roots of Q(s), the qi's, are achieved by selecting the passive net-
work such that

n(s + pjin(s + B3) =mls + q3) . (4.4.4)

From Equation 4,3.14 the degree of Q(s) is given by

ng = (np + nB) -~ (number of beta cancellations) . (4.4.5)

However, if beta cancellations are not allowed,

ng =1, + ng . (4.4,6)

The roots of P(s), the si"s, which are the zeros of the numerator
of the bracket term, are achieved by selecting the Yi's such that as the
roots of P(s) move from the ai's and Bi's to the y;'s, as KlKZ/KaKb is
varied, théif paths cross the desired 4 points on the s-plane. The
constant to achieve this is then determined.

In order for B, to be the desired value, Equation 3.6.7 implies

that for the transistor
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a
VpplH, = koplHy < 1. (4.4.7)

This condition places the zeros, the Bj's, of the composite Y22 close

to the zeros of yg This still leaves the Qi’s and yi's to be de~

20
termined. The ¢'s may be placed at the desired point by invoking

Equation 3.6.4,

a
Ha/yll = Ha/kll << 1, (4.,4.8)

for the y-parameters and for a transistor as the active device. This
places the ¢;'s close to the poles of y?l.
Further the degree of n, is given by

np = n, + np . (4.4.9)

The Yi'S are placed in the desired location by making the yi“s
close to the zeros of ygz and placing the zeros of yj, in the desired

location. The vy, 's will be as desired if
i
klZ/a << 1, (4.4.10)

according to Equation 3.6.9.

2
The yi's will be close to the poles of in if,

a/k21 << 1. (4.4.11)

Since the pi's must be selected to (i) place the yi“s and the ai’s and
(ii) to satisfy Equation 4.4.4, inconsistencies may arise. The addition
of private poles in the more complex case will give a greater degree of -
freedom.

Instructions for root-locus synthesis techniques are as follows;
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1. Plot the pmz.structure of YIN on the s~-plane.

2, Determine Np, Ny Ngs Ngy Ty and n‘Y from the above equations
for number of beta cancellations.

3. Write down the general form of the passive paraﬁeters;

4, Place the pj's and the £;'s such that Equation &4.4.4 is
satisfied and such that the §;'s meet the necessary con-
ditions derived in Chapter III.

5. Indicate the y?qs and the g;'s close to the p;'s.

6. Place the zeros of ygz at the points the yi's are needed
to achieve the desired root-locus track.

7. Sketch the root-locus.

8. Determine the needed wvalue of KlKZ/KaKb using a spirule.

One important advantage of this method is that very quickly the
required passive two-port may be determined and then the synthesis can
proceed in the passive domain where synthesis techniques are extremely
well formulated. As in all root-locus techniques for high degree poly-
nomials the actual determination of numerical values is loborious, al-
though today, many computer techniques using root-locus plots are
available whenever numerical values are needed(9). As in all root-locus
techniques the amount of cut and try effort or the amount of engineering
judgement necessary 1s decreased as experience in the technique in-
creases, This is certainly in contrast tc existing passive synthesis
techniques that are strictly algorithms. However, these later techniques
often require networks that are balanced bridges or rely on pole zero
cancellations. These last conditions in turn require component values

to be extremely accurate. Another advantage is that for a given Yy
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p-z structures, it may be quickly determined that a particular passive
network will not work. Further, it may be said that a specified driving
point admittance with complex zeros can be achieved by passive RC synthe-
sis techniques which, in general, do not rely on a balanced bridge net-
work or p-z cancellation,

Next several examples of the root-locus technique will be given to
demonstrate how this method places the actual synthesis in the passive
domain. The method is also used to determine if the driving point
admittance can be achieved by a particular passive network topology.

In particular, the synthesis of biquadratic driving point admittances
is considered., From Theorem 4.2.1 it is known that only a YIN'with real
poles may be synthesized with the specified topology.

Example 4,4.1, The problem is to synthesize & driving point ad-
mittance given by

(s + El)(s + 87) P(s)

v = - . (4.4.12)
I (s +a)(s + q) Q(s)

Following the above instruction, the p-z structure of YIN is drawn in
Figure 4.4,1. Further, for a biquadratic with no beta cancellations

n is given by

P
— - 1
n, =mn, +ng = 2, (4.4.13)
and
- = bLob,
ng =n, +ng = 2, (4.0, 14)
Therefore
n,=n_=n_=10_=1, (4.4.15)

n =n =1n = 1. (4.4‘,16)
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n, is one because n, must be one and n, cannot be lower than na. Then

the form of the passive two-port parameters must be

11 1 i 21 G5+ pp) ’
a vy Bl + B (4.4.17)
and y = — . AR
22 (s + p)

In accordance with statement four of Section 4.4,

pl -— q2° Bl = ql. (4.4.18)

Note that p; and B; must be in the order indicated by Equation &4.4.18
because B; must be placed as desired by locating a zero of ygz at that
point and from passive synthesis it is known that the first critical
frequency of ygz is a zero(7).

The bracket term of Equation 4.4.2 will furnish the root-locus plot

and in terms of this example it becomes

1 2
KK (s +vy1)(s + v1)
14 22 . (4.4.19)

KoKy (s + al)(s + Bl), P

The p-z plot of the rational function of Equation 4.4.19 is shown in
Figure 4.4.2, The placement of Yi is discussed next. yi will be
located by the placement of zq which, in contrast to a; or b;, may be to
the right or left of Py~ It should be placed such that the needed root-
locus plot is obtained. Then, its placement is as Figure 4.4.2 indicates.
Note in Figure 4.4.2 that only Bp, py, sy, and El show up in the p-z

plot of Y;y. Further, p; was only shown in Figure 4.4.2 in order to
place Yi’ and ¢y, as p; is not actually involved in the root-locus plot.

The necessary constant KlKZ/KaKb should then be determined.
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Next a sequence, Figure 4.4,3, of root~locus plots is shown in
order to illustrate how the p-z plot of Figure 4.,4.2 was obtained. Py
is indicated in all the parameter plots since it is common to all the
passive parameters., In part a, o starts on Py and moves toward ajs;
similarly By starts on pj and moves toward bl' However because the
active device, a transistor in this case, is extremely non-symmetric
with kl1 >> Koo for a given H, and Hy, ¢ will be close to p; and B;
will be close to bl' Even if a symmetric passive network is used, the
orders of magnitude between ki, and k22 will prevail, & similar argument
applies to Figure 4.4,3 part ¢ and d with respect to the ultimate lo-
cation of Yi and Yi’ However, in plotting the root-locus of Yo1 it
must be remembered a negative sign is involved and a plot such as in-
dicated in part d applies, rather than part c. Further, both o and
yi are close to the Py however Y% will be closer if

k21/a >> kll/Ha .

From passive synthesis it is known that(7)
a

H > a,

and for the transistor

Therefore, if the various parts of Figure 4.,4,3 are added Figure 4,4;2
will result,

Although further refinements are necessary, such as determining the
exact location of oy, B, yi‘and yi and what A is needed for the active
device, the crux of the problem has been solved and now, the problem is
to synthesize a passive two-port with parameters given by Equation 4.4.17

or
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biw
Os,
-0
-t ¥ ¥
92 q
Os,
Figure 4.4.1. Pole=-zero Structure of Equa&ion 4.4.12.
Aj\m

<o

Figure 4.4.2. Pole-Zero Plot of the Rational Function of Equation 4.4.19
and the Resulting Root-~locus Plot.
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(d). The zero of y,; is obtained for a given kjj.

Figure 4.4.3. The Root-locus Plot of the Zeros of yj ..
The dark line indicates the root~locus, while the
triangles indicates the directions of the roots and
the anticipated stopping point.
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H, (s + aj) | -a(s + zl)
[y?;]= s+ P § + P .
1]
-a(s + z7) H (s + bp)
s + pl s + pl

The next example demonstrates how the root-locus method may be
used to reject certain passive network topology. The same YIN is
specified, Initially, it appears desirable to allow yll and Yzl to
be complex conjugates equal to the desired s1 and El‘ This could be
achieved by using a bridged-tee passive network and making'yg2 have com~
plex zeros. Here the bridged-tee is used to achieve complex zeros, and
not to obtain a rejection band pass network. Inspection of the bracket
term of Equation 4.2.5 shows that if beta cancellations are allowed to
cancel the Yi terms, then the roots of P(s) will move from the ai‘s
and the gi's toward the predetermined complex points Y% and Qll, It
will be shown in the next example, however that these cancellations
cannot occur.

Example ' 4,4,2, Test the bridged-tee of Figure 4.4.4 to determine if
a biquadratic driving point admittance can be achieved by using it as
the passive two-port. For Figure 4.4,4 the y-parameters are, in general,

Ha(s +a;)(s + ay):

yll = 3 (4»4'2())
(s + p1)(s + py)
and because of symmetry
p Ho(s + a1)(s + ap)
Y22 = ) (4.4.21)
s + pl
p -a(s + Zl)(S + El)
Y190 = . . (4.4.22)

(8 + pyd(s + py) -
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1Ry

Figure 4,4.4. A Bridged-tee that can have Complex Zeros in yiQ.

From Equation 4.3.13 and Equation 4.3.14 and inspection of the equations

of the passive parameters gives

np = Ny + g - number of § cancellations = 2 , (4.4.23)
ng = ng + 0, - number of g cancellations = 2 . (4.4.24)
Since n, + nB = ng + np = &4, then two beta cancellatioms must occur.

Inspection of the root-locus plots, Figure 4.4.,5, of the zero movement

of yij shows that only one Yi can cancel with a beta; hence will be

YIN
a cubic. That is, part ¢ shows that only one y% will overlap with a
E; on the real axis to obtain a beta cancellation. In fact, a neces-
sary condition for a beta cancellation is that the y; be on the real
axis since the f;'s must be on the real axis. If beta cancellations are

not allowed Figure 4.4.6 shows the movement of the zeros of Yy for the

bridged~tee,
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(b). Root-locus plot for zeros of y,,.
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(¢). Root-locus plot for zeros of ¥,;.

Figure 4.4.,5. Root-locus Plots of the Zeros of ¥

i3°
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Figure 4.4.6., Root-locus Plot of the Zeros of YIN for a
Bridged~tee with no beta Cancellations.

Figure 4.4.6 is for analysis or if a fourth degree numerator with one
set of complex zeros is desired the figure indicates how they may be

placed., From inspection of Figure 4.4.6, ¥Y_ _ is given by

IN

H(s + 8)(s + sl)(s + s5)(s + 853

IN ¥ (‘ .
N (s + Pl)(S <+ }?2)(8 + Bl)(s + By

Y (4.4.25)

The placement of the g;'s and the B;'s is justified by the fact that
they must be interlaced with the pi's on the negative real axis., Due to
the non-reciprocal nature of the active two-port, it is kmown that the
2

v;'s and the y;'s will be adjacent to the z;'s and p;'s respectively.

From Example 4.4.1 and Example 4.4.2 the conclusion can be drawn
that to achieve a biquadratic driving point admittance it ig necessary
to start with real poles and zeros in the passive parameters, if no beta
cancellations are allowed, Further, n, =0y =0, = 1.

By proceeding dccording to the instructions for synthesis, various
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topological networks may be found to be acceptable for the synthesis of

a specified Yine As in all synthesis techniques, there is no one answer,
instead it will be found that a number of passive networks will suffice.
In particular, it seems desirable to place the zeros of Y12 in the de-
sired 5 locations, as in the case of bridged-tee, and then drive the
zeros of the bracket term into them. In this way the pole-zero sensi-
tivity will be minimized to variations in A.

Although the synthesis instructions were given in terms of the y-
parameters, a procedure using the z-parameters could also have been
developed if a terminal common to the two two-ports was not required.
However, if z-parameters had been used with a transistor for the active
eclement, then the root-locus plot for )\;; and App would be changed to
this extent. Since hil < AZZ for the z-parameters, it is desirable to
place the zeros of Aip On the zeros of Ail

The procedure was stated in order to synthesize RLC

and the zeros of A22 on the
poles of 2590
functions using only a transistor and RC elements; however, the procedure
holds using only RL elementé, but the allowable passive pole~zero
structure would be different.

Although the active element considered was a transistor, any active
device exhibiting non-reciprocal and non-symmetrical characteristics
may be employed and the synthesis instructions will hold. The placement
of the poles and zeros will be dependent upon the relative magnitudes

of the active parameters and which set is used.

4.5 Stability Considerations of the Composite Two-port. An ex-

pression for the driving point immittance is
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A oA Hr(s + s:) P(s)
Ny =Hu| 1- 12 21 - i ) (4.5.1)
7\11()\22 -+ }‘L) Tr(s -+ qi) Q(S) .

From Theorem 4,2.1 it is known that the roots of Q(s) are on the negative
real axis; but, the roots of P(s) may be complex and in the right half
plane. Since /\IN is either an admittance or an impedance, then its
reciprocal is either an impedance or an admittance respectively.
Further, since a two-port is considered to be potentially unstable if
éither its driving point admittance or impedance has poles in the right
half plane, The two-port will be potentially unstable if /\IN has zeros
in the right half plane, In particular, if A21 or klz has zeros in the
right half plane, the zeros of /\IN will tend toward them for large
values of A which will result, ultimately, in potential instability.
kZl is particularly susceptible to having zeros in the right half plane
because of the minus sign occuring in the root~locus plot. That is, a
zero of k21 will always move from the first pole on the negative real
axis toward the right half plane,

A zero of Ap1 Or Ajp in the right half plane is neither necessary
nor sufficient for the composite two-port to be potentially unstable,
For, even if \j9 or Apj has & zero in the right half plane, if A is
small enough the zero of /\IN will be closer to the ai's or the Bi's
which must be in the left half plane. If Ao and hlz have no zeros in
the right half plane, and if the numerator of the rational function of
the bracket term is less than the denominator by m, say, then the zeros
of /\IN will leave m of the ai‘s and Bi’s and asymptotically approach
infinity at angles defined by 180 + 2mm. Zeros of /\IN can occur, then,

without zeros of Ajp and Ayl being in the right half plane. However, if
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the numerator and denominator of the bracket term are of the same order
and all the zeros of Mo and Xp; are in the left half plane, then this

is a sufficient condition for absolute stability.



CHAPTER V
SYNTHESIS OF TRANSFER FUNCTIONS

5.1 Introduction. In this chapter the actual synthesis technique

is developed for transfer functions in terms of the y-parameters. The
active device considered is the tranmsistor, Initially, the possible
transfer function for the composite two-port is determined in terms of
the generalized parameters, These are then interpreted in terms of the
y-parameters and a synthesis procedure is determined. In particular,
the géneration of complex poles using only RC or RL networks and active
devices is considered. In completing the synthesis procedur; deveioped,
which includes active devices, a passive RC two-port is specified that
will, when synthesized, give the composite transfer function. Hence,
the actual synthesis algorithm is performed in the passive domain.

5.2 Two-port Transfer Functions. For a composite two-port defined

as in Chapter III, the transfer function, in terms of the generalized

parameters, is given by

V2 G)\ ')\21 1
= _r - 1 A . . _-X-”WT——— (5.2 .1)
it " Aoty 1122
A11r22
Gy =051 + 31

=2 . — . (5.2.2)
o [ -af+aRpag +ag) S

: — — % 1l Aiqr
a P 11722
L(Agl + A+ All)(x§2“+ Ag + Kzz)
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"KZTT(S + Yiz)

m(s + Py) .
KK, m(s + Yil)n(s + yiz) K_Kpri(s + oj)m(s + Bi) 1'

1+ KaKyp (s + aidn(s + By) n(s + pyin(s + py) J

(5.2.3)

The Yi's are the shifted roots of Mij due to kij and the o;'s and p;'s
are the shifted roots due to kll and Ago and ky, and Ay respectively.
Note that only kll differs from the previous definitionms. Apyp now has
the source immittance included such that the units of A agree with those

of kll' Ags @ constant, is - GS,RL, G =Ry, or unity if the parameter

s’
set used is the g,y,z or h respectively. v2/vl is then defined to be
the voltage gain from source to load. The K's are defined as in Chapter
I1I, Equation 3,2,10, Equation 3.2.11 and Equation 3.2,12 and hence,
depend upon the degrees of the numerator and denominator of the pasgsive

parameters.

Equation 5,2.3 may be written as

2
G 'K 1 I3
A 2 (s + vi ) m(s + py) (5.2.4)

Ao B [Fakbn(s + aidn(s + Bi) + KjKym(s + yi)n(s + yi?]

Hn(s + yzi) (s + py) U(s)
T (s +rg) B V(s)

Theorem 5.2.1. Gy, the voltage transfer function for a composite
two-port consisting of an active two-port and a two-port containing
only RL or RC elements can have complex poles and zeros.

Proof:

By Theorem 4,2,2 the dewnominztor of Equation 5.2.4 can have com~

plex roots and by Theorem 3,4.1 the numerator may have complex roots,
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Because QY S.nB or ns the degree of the denominator is given by
Ny = ng + 10, R (5.2.5)

if no cancellations occur. 1In which case, the degree of the numerator
is

nyg = nYZ + n (5.2.6)

p .

so that ny - ng =

Theoretically, nY2 may range from zero up to 0y

0, 1, 2? oo n, + 2,
However, for the active two-port defined in Chapter II, the tendency is
for
(5.2.7)
unlegs kogy is reduced until the active two-port is no longer active.
Since this is undesirable it will be assumed that Equation 5.2.7 holds,
That is, the synthesis procedure should be such that the root shifting
should enhance the natural tendencies.

The effect of specifing KL and Ag on the zero shifting of Aj; is
as follows, The zeros, of the composite two~port parameters, ij’ which
exhibited proximity with the zeros of K?j’ will move toward the poles

P

of A since Ay and \g are positive constants. In fact, for cascaded

stages and where kii <L X?j

hood of the zeros of );j;, which are close to the poles of kgi. For

, the zeros of kjj will be in the neighbor-

examples, if the transistor is the active device, the zeros of hys and
Y92 will move into the neighborhood of the pi's whereas, it is the gzeros
of z1; and g;; that are moved from the &;'s to the p;'s. BSince \Ag and

AL affect the pole~zero structure of the voltage transfer function only

a

by adding to Kll

a
and Aoo respectively, the active two-port may be con-
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sidered to be a two-port with a Ail and a A;Z which are the result of
the sum of the original two-port Ai; and Ag and XL’ I1f Ag = A22 and AL
= All’ which occurs for cascaded stages, then the net effect is to
create an active two-port that is symmetrical, Therefore, one charac-
teristic of an active two-port is no longer available to shape the
pole-zero structure as before. Instead, the g;'s and the g;'s will both
be close to the pi's as will be the Y§'S° This only leaves the zeros of
the Yi's to be placed by selecting the location of the zeros of the
passive two-port parameters,

5.3 General Synthesis Techniques, The instructions for synthesizing

voltage transfer functions are as follows:
1. Plot the pole-zero structure of GA on the s-plane,

2, Determine n, ngs ny, ng, 0y, n, and n, from Equation 5.2.5,

z
Equation 5.2.6 and Equation 5.2.7 and from passive con-
siderations.

3. Write down the general form of the passive parameters.

4. Place the p;'s such that the wi’s, B;'s and y;'s are in the
desired location and such that the pi's meet the real pole
specifications.

5.  Place the zeros of yiz at the points the Yi's are needed to
achieve the desired root~locus track.

6. Sketch the root-locus of the individual parameters, hij’ as
indicated in Chapter III, to verify the resulting pole-zero
plot of instructions four and five.

7. Sketch the root-locus of G .

A

8. Determine the necessary gain constant.
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With respect to instruction number two, A passive requirement is

that n, must not exceed n, for the h? and gP parameters; however,

P
for the zP and yp parameters, n_ may be one larger than npo Further,
for the yil, ggl and h?l parameters the zeros of Yiio 811 and h22 will
be to the right of the given p;, while the zeros of z,., 829 and hll
will be to the left of the given pj;. This occurs because the locus of
the zero movement lies between the poles and zeros on the real axis and
the first critical frequency for the first group above is a zero, while
it is a pole for the latter group.

It is immediately apparent from inspection of instruction number
four that certain specified voltage transfer functions may lead to in-
compatible constraints, While certainly the inability to synthesize all
voltage transfer functionsg is undesirable, the ability to determine
those that cannot be realized is also important. Also, since the pi’s

always appear in G regardless of whether they are desired, their

X2
effect on the circuit may be minimized by placing them some distance
further from the origin than the dominant specified critical frequencies.
Furthermore, by permutting the parameters defining)\o, G may become a
current transfer function, a transimpedance or a transadmittance function.
Because of their similarity, G , will be considered to be a voltage

transfer function i.e., a transvoltage function.

5.4 Synthesis of Filters, The preceding synthesis procedure will

be used to synthesize and determine what filters may be synthesized

using RC elements and active elements. The band pass filter is of par-
ticular importance to the synthesis problem. Band pass filters such as
the Tchebysheff, the Butterworth and the Bessel are of particular interest

because of their wide spread use and because their frequency response
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gpproagheg the ideal. Depending upon the given specifications, one
type is preferred over the other. For example, the Bessel filter has
good transient respomnse, no overshoot, but a very poor steady state cut-
off response. On the other hand the first two types have sharp cutoff
characteristics, but a transient overshoot. However, all three types
have two things in common. (i). The low-pass filters are all pole
transfer fun;tions. (11). The poles are, in general, complex. These
’voltage transfer functions are normally obtained by using inductors and
capacitors to achieve the complex poles. At low servo frequencies the
inductors become prohibitively large and in solid state netwoiks the
inductors are not available so other means must be used to obtain the
complex poles. With active two-ports defined as in Chapter II, the
only possible way to achieve complex roots using only resistors and
capacitors is to use feed~back loops or in essence, use the topo-~
logical two-port configurations specified in Chapter II.

In order to achieve complex roots without the use of transformers
and to maintain a‘common terminal between the input port and the output
port it is necessary to develop the procedure for the tramsvoltage
function in terms of the y-parameters. In terms of the y-parameters

Equation 5.2.3 becomes

2
G =Ky (s + v:7)
T = 2 e S (5.4.1)
s KiKom(s + Y]{)n(s + vy || KKpmls + apdnls + g;)
1+ v ..
R Kpn(s + o3dm(s + §5) n(s + p;)
~K,m(s + Yiz) (s + p;) u(s) i

I o



where the ri's are the roots of K_Ky m(s + @i>”(s + Bi) + K;K,

(s + yil)ﬂ(s + yiz), For Equation 5.4.2 to be an all pole function

np =0 = nY, However if np = 0, then from Chapter III and passive
synthesis, it is known that n, and nﬁ are equal to one at most. There=-
fore the highest order filter possible is & second order filter. The
order of an all pole filter is the degree of the denominator polynomial.
Once again it is assumed that no cancellations are to be allowed between
U(s) and V(s8)., If na = 1l = ng, then n, = 1 = ny. This means that the
paséive twé~port parameters must have a pole at infinity since np = 0,
Because no private poles are allowed, the passive two-port must have the
form

H (s + aj) =-a(s + zj)
[yiil = q (5.4.3)
J ~a{s + z;) Hp(s + by)

However, by Theorem 4.2.2 if the numerator degree of the passive two-
port exceeds the denomingtor degree the ultimate placement of the roots
of the bracket term of Equation 5.4.1 will not be a function of A of
the active two-port. Hcnce, there is no guarantee that complex roots
will exist.

Therefore, in order to achieve a filter with the all poles charac-
teristics, say, of the low=-pass Butterworth filter, n, must be allowed
to be larger than one. The effect of these poles must be minimized by
making the poles five to ten times larger than the cutoff frequency. &n
example of the synthesis procedure for a Butterworth filter will now be
worked out.

Example 5.4.1. Synthesize a low-pass second order Butterworth

filter with a normalized cutoff frequency of one radian per second.
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The degrees of the various polynomials are determined as in-
struction number two indicates, In order to achieve minimum pole-
zero sensitivity with respect to the active and passive network the
yi's will be forced to terminate on the zi's of the passive network,
This requires that n = 2 and in order to have a minimum number of un~

Y

wanted poles n, = 2, From passive synthesis it is known that n

p o and nB

cannot be less than two. The general form of the passive two-port will

then be
-—Ha(s + al)(s + ag) a(s + sl)(s + 31)_
[yln?.;ﬂ _ (s + p1)(s + p3) (s + p1)(s + py) ] (5 .4.4)
a(s + s1)(s + 59) Hy(s + a1)(s + ay)
(s + py)(s + py) (s + p1)(s + py)

Note that a symmetric two-port is specified since the only requirement

on the ai‘s, bi's and pi’s is that they will be removed from the dominant
critical frequency. The pi's will arbitrarily be set four times larger
than the filter cutoff frequency, say, at 4.1 and 4.2. From a root-
locus plot it is known that the ai's and Bi's will lie somewhere be-
tween the a;'s and p;'s. The a;'s, interlaced with the p;'s, will be
placed at 4.1 and 4.3, Now a should be selected such that k21 > a so
that the Yiz's= which appear in the numerator of G , , will also be

four times larger than the cut-off frequency. Further, a should also be
selected such that a > kj,. This will insure that the Yi‘s will rest

on the desired zeros of -yiz in accordance with Equation 3.6.9.

Rewritting Equation 5.4.1 for this example gives
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2 2
¢ “Kp(s +v17)(s + vz )

L 2
6o [ KiKG + Vi1 (s + va1) (s +y2) (s + y2°)
+ -
KKy (s + @ 102 (s + op)?

1 : : (5.4.5)
‘ RKp(s + v1)%(s + yp)

(s +p1) (s +py)

Because it is necessary that ry and fl terminate on their ultimate
destination it is desirable to have K as large as possible. This is in
contrast to other procedures where the roots passed through the desired

location and a particular value of K was determined.

(a + ky5) (kg - @)
K = 12 , (5.4.6)

Inspection of Equation S5.4.6 shows that koo has been replaced with kyj
because the non-symmetrical nature of the active two-port was destroyed
as is often the case for cascaded transistor stages. Because the ai's
and 51'3 do not affect the root-locus plot, it is not necessary to
select H, such that o; and §; terminate on the pole. Therefore, H, may
be selected such that the largest K will result. From passive synthesis
it is known that a cannot exceed H,,so H, should be chosen such that a
may have the proper magnitude(9). The two-port y-parameters for a good
planar transistor whose output parameter includes the effect of the next
stages is

1x 1574 -1 x 1070

a
y.i] - ) ) : (5.4.7)
[ 1] 5x 1572 1x 1074 | " h
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By selecting Ha to equal kj; and by magnitude scaling the expression
for the passive two-port that will achieve a Butterworth filter low pass

response becomes

- - - X 7]
1 x10 4(s +4.1)(s +4.,3) -8x10 5(32 + 2% + 1)
Pl _ (s +4.2)(s '+ 4.4) (s + 4.2)(s + 4.4)
Yis| = s, . . L
-8 x 15°(s% + 2%s 4+ 1) 1 x 107%(s + 4.1)(s + 4.3)
(s + 4.2)(s + &.4) (s + 4.2)(s + &4.4)
- (5.4.8)

The zeros of ygz are selected to be the zeros of the Butterworth
polynomial and the poles of yEz are the same as the poles of yil. From
the initial discussion in this section and from Example 5.4.1 it is ap-
parent that the synthesis of all pole functions or filters, without al-
lowing pole-zero cancellations to occur, is difficult. Computer ruﬁs of
the frequency response for the transvoltage function of the above two-
ports verified this, That is, the response was not ideal. This is
particularly true of high order filters; One reason for this is that
the pi's show up as zeros in the transvoltage function. It is then nec-
essary to make them larger than the cutoff frequency by a number of
octaves, This creates difficulties which may be observed from inspection
of Equation 5.4.9.

KK, (s + v l) (s + 2)
172 1 Y1

1+ - . (5.4.9)
KKy m(s + o3) mls + Bi)

The root-locus plot of Equation 5.4.9 determines the poles of V(s). It
is necessary in a nth order filter for n roots to have close pfoximity
1
o) ' 1
to the n y; 's. For this to occur K1K2/KaKb must be larger than the

product of the ai's; however, the ¢j's are located between the poles and
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zeros of ygl and the larger the pi's are, the larger the ai's will
ba. For the extreme case the roots of V(s) will be closer to the ai's
than the yil's. Therefore in order to achiéve an all pole transvoltage
function, pole-zero cancellation must be allowed if the poles are
driven into their ultimate destination.

Example 5.4.2. Synthesize a high~pass second order Butterworth
filter with a normalized cutoff frequency of one radian per second. The
transvoltage function of a second order Butterworth filter with a

normalized cutoff frequency of one radian per second is given by,

Although this function cannot be realized exactly because the poles of
the passive parameters appear in the numerator, the poles, pp and po,
may be placed very near the origin, say at .06 and .l. Providing the
ai's are interspaced with the pi's, they may be arbitrarily placed along
the negative real axis, say at .05 and .08. As in Example 5.4.1, the
passive two-port is symmetric, The numerator of yiz is the second order
Butterworth polynomial. By an argument similar to the one given for
Example 5.4.1, the passive two-port must have the general form given by

Equation 5.4.4. Therefore,

i (s + .05)(s + .09) ~a(s + [2s + 1)
[%Ei] _ $s + .06)(s + .1)° (s + .06)(s + :1) . (5.4.10)
~a(s + [2Zs + 1) (s + .05)(s + .09)
(s + .06)(s + .1 (s + .06)(s + .19

The figures are drawn according to the synthesis instructions as follows,

The idealized pole~zero plot of a second order high pass filter is shown



ljw

Figure 5.4.1. The Idealized Pole~Zero Plot of a Second Order

-Butterworth Filter. 2
G = S
S s + [7 s + 1
|
(N

Figure 5.4.2. The Root-locus Plot of the Bracket Term of Equation

5.4.11 for a Second Order Low-pass Butterworth Filter,

jw
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The Root=locus Plot and the Pole=-zero

Structure of the Individual Parameters.
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in Figure 5.4.1. Assuming an active two-port such as given by Equation

5.4.7, the transvoltage function becomes,

2 2
G Kols + v, 0(s + v, )
-y _ 1 °
G = 1 1 2 2
s . KiKy(s + yp d(s + vy )(s + y2 )(s + Y1 )
+

2 2
KaKb (s + al) (s + az>

1

5 5 . (5.4.11)
KK (s + )" (s + o)

(s + (s + p,)

Figure 5,4.2 shows the root-locus plot of Equation 5.4.11. The in-
dividual parameter plots are shown in Figure 5.4.3.

Once again it is desirable to make KlKQ/KaKb as large as possible.
Further, le, Y22’ Py and p, may be made as close to the origin as

§

1
desired, This allows the poles of G_ to ultimately end on the y; S as

y
desired. Figure 5.4.4 shows the magnitude ffequency response of the com=~
posite two-port obtéined by programing Equation 5.4.11 on a computer.

See Appendix C. Inspection of this figure shows the voll off is about
10db/ octive instead of. the idealized 12db/ octive for an ideal filter.
This is due to the zeros not being exactly at zero. The response is deown
3db at one radian, Therefore it appears feasible to achieve a high=pass
filter response using only RC elements and active devices, Further, the

problem has been reduced to that of synthesizing a passive twoport

given by Equation 5.4.10.
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CHAPTER VI

SUMMARY

6.1 Results and Conclusions . The general results of this thesis

are as follows, Active two-ports were classified and the pole-zero
structure of the generalized composite two~port parameters were de-
termined., The necessary conditions ﬁhich the ‘overall ‘composit
two-port. system functions must meet were derived. A synthesis tech-
nique based on the theory of the root-locus was developed to synthesize
these system functions. The end result of the synthesis method is that
a passive two-port is specified. Or in other words the problem of
active synthesis is reduced to passive synthesis where extensive methods
and techniques exist.

In particular, a restricted class of RLC system functions are
synthesized using only RC or RL elements and active two-ports. The
active two-ports contain only unmodified active devices that do not
exhibit negative impedance. The non-reciprocal and unsymmetrical
nature of the active devices are exploited. The procedure ultimately
specifies an RC or RL passive two-port. Further, the final network is
not dependent upon a balanced bridge. The method of synthesis de-
veloped also indicates when certain passive network topolegy

will not suffice.

The actual synthesis procedure is accomplished using the y-parame-

ters. This circumvents the need for transformers and further, a
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grounded network may be used. This is an important fact in communication
networks,

Specifically, the problem of biquadratic driving peint admittances
was considered and an example was worked out. Also, an approximate
second order Butterworth high pass transfer function was synthesized.

The actual frequency response of the composite two-port transfer
function was determined on an IBM 1620 computer. The frequency re-
ponse was very close to that of an ideal second order filter.

6.2 Recommendations for Further Study., In the strictly passive

area there is a need to develop synthesis procedures using h and g
parameters. In particular, the networks that have common denominators
for the h‘and g parameter sets, respectively, need to be determined.
Also, as more work is being done with two-ports, instead of just two
parameters of the four, the sufficient condition for the synthesis of
a passive RC or RL two-port needs to be determined.

One area for future study would be the actual computer pro-
graming of the root-locus synthesis technique, Because the root=-locus
technique has been programmed numerous times to solve servo problems
with good results, the same would be true here,

The study could be broadened to include the ABCD parameters for
cascaded stages, since these parameters would also add. However, RLC
functions could not be synthesized with RC two-ports and active two-
ports.  The method would furnish & systematic approach to filter design
of cascaded stages. Particularly, whenever the stages are not isolated
as in transistor circuits,

Further, it appears that the extension of the root-locus method of
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synthesis would be appropriate for the case where the active two=-port
parameters are frequency dependent. For the high frequency case the
composite two-port Kij’ will have a denominator polynomial whose roats
are known., The numerator will be the sum of two polynomials and may be
factored such that the movement of the roots may be determined by root=-
locus techniques, Also, their ultimate destination will be a function
of the magnitude factors and hence, the ultimate pole-zero structure
can be arranged as desired. This will allow the input impedance to be
compensated for high frequency drop off and unilaterization to be a=-
chieved., Further, for the high frequency case it seems desirable to

allow transformers.
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APPENDIX A
SIGN CONVENTION

A.l Sign Convention on the Passive Parameters.

-yp _ an(s + Zi) _ -yp
12 (s + py) 12
P +an(s + z;) _ P
12 ‘ -
TT(S -+ Pi) 21
p aT\'(S + Zi) p
h12 = m——— oz "th
(s + py)
am(s + z;) p
P = —
12 21
TI'(S + pi)
a
Vi 7 =)
a _ Z
212 = K12
a
hlz = klz
a g
B T g2y
a y
Vo1 = K1
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a 1.Z
Za1 T T¥91
a h
by = Ky
a l\Z
g1 T "%

The requirements on the constants are as follows:

a> 0, Ha >0, H >0 and kij > 0.
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APPENDIX B

SYMBOLS

B.1l Statements Concerning Symbols.

a denotes zeros of xilo

o; denotes zeros of A11» that is, they have been shifted.

P
bi denotes zeros of XZZ'
Bi denotes zeros of X22°

P p
z; denotes zeros of y12 and Yoq*

Py denotes poles of AP .
y. denotes zeros of ISVX
in denotes zeros of A1
s. denotes zeros of Y__ .
r., denotes poles of GAO

qy denotes poles of A

n(s)ij = numerator of Azj .
d(s)ij = denominator of x?j.
N(s)ij = numerator of Kij"
D(s)ij = denominator of Kij‘
P(s) = numerator of ATN'
Q(sj = denominator of/\IN°
U(sj = numerator of GA°
Visj = denominator of GK°
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11°

af AP .
k22

degree of numerator of )\
degree of numerator

degree of denominator of )P .
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numerator
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APPENDIX C.

COMPUTER PROGRAM

C.1 Fortran Program for Computation of the Magnitude of Equation

5.4.1i as a Function of .

10

12

14

c

D.

i}

Pt

.05,
.00036% (1. + (w/.06)%%2)%(1. + (g/.1)%*2) .,
,00036% (1. + (w/.06)2)* (1, + (w/.1)**2).
40.%SQRT((L. + (L.4%p + 1.)%k2)%(1, + (l.4%p-1.)%%2)),

L006%SQRT((L. + (/.06)¥3%2)% (1. + (p/.1)*%2)).

GFCN = 8,686%LOG(A/ (B + C*D)).

Punch 12, GFCN.

FORMAT (F8.4).

w

4

W + 105.

IF(p ~1.1)10,10,14,

END,
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