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CHAPTER I 

INTRODUCTION AND STAT.EMENT OF THE PROBLEM 

INTRODUCTION 

Point set topology is one of the newer branches ot ma.thematics, 

having emerged. as a discipline in thre early part oI' the twentieth centu-

ry. Although topology has not "been incorporated in many college 

undergraduate programs, recent recommendations by the Committee on the 

Un~ergra.dua.te ::rogram in Ma.thematics oI' the Ma.thematics Association of 

Amer~ica and by other groups indicate that. topology may soon become an 

_ important part ot the undergraduate ma.thematics program. Also, some ot 

the current e:zj:ierimental programs in secondary and elementary school 

ma.themat:i.cs indicate that some concepts from topolog;y will be introduced 

in the secondary schools and even in the elementary schools. 

The Committee on the Undergraduate Program in Mathematics was 

established by the Ma.thane.tic's Association o:t'' America to study the under-

graduate program in mathematics and to make recommendations for a sound 

undergraduate program. The committee was divided. into a number of panels 

in recognition of the tact that the undergraduate program. in mathematics 

must serve a number ot student groups with divergent needs. Specifically, 
I 

the rollowing panels were established: 

(1) The Panel on Teacher Training. 

(2) The Panel on Ma.thematics for the Physical Sciences 
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and Engineer.ing. 

(3) The Panel on Mathematics tor the Biological,Ma.na.gem.ent 

a..T:td Social ·Sciences. 

(4) The Panel on Pregrad.ua.te Training. 

Each o:t these panels is.sued a. report descr:i.bing a program o:t" studies 

the members felt would consti.tute a. sound program in ma.thematics tor 

that panel's area ot interest. 

2 

The panel on Teacher Training issued a. report in.December, 1960 

[19]1 in which the I'ollow:i.ng minimum requirements for secondary teachers 

(A.) Three courses in analysis. 

(B) Two courses in abstract algebra.. 

(C) Two courses in geometry beyond analytic geometry. 

(D) Two courses in probability and statistics. 

(E) Two upper level courses, e •. g., introduction to real 

,ra.ria.bles, number theory, topology, history qt mathemat­

ics, or numerical analysis (including use of high speed 

computers). 

For elementary teachers the following minimum requirements were listed.. 

(A) A two-course sequence devoted to the structure of the 

real number system. 

(B) A course devoted to the basic concepts o~,algebra. 

(C) A course in informal geometry. 

The inclusion of topology in th~ list or suggested electives :for secon-

dary teachers indicates .that the committee reels certain concepts 1-:r,cun 

topology vill probably emerge in the high school ma..thema.ti9s curriculum. 

1. Numbers in 'brackets refer to references in the bibliography. 



The.committee a.lso recommended that the course in :i.nformal geometry tor 

elementary teachers include the consideration ot closed curves and 

1;1epa.ra.tion properties which a.re topologica.l concepts. 

The Panel on Pregra.dua.te Training issued a report in December, 

1964 [261 with recommendations tor th® undergraduate program. In this 

report the panel suggested that every college ottering a pregraduate 

program in mathematics should otter a core oi' basic courses for upper 

d.ivi-~::l.on studentso These courses are roughly described a:s: real 

analysis, complex analysis, abstract algebra, geometry, topology, and 

probability or mathematical physics. The panel further suggested that 

as far as resources will permit, an institution offering pregradua.te 

training should otter courses in algebra, analysis, applied mathematics, 

£oundations and logic, geometry, mathematical statistics, number theory 

and topology. 

From these recommendations, one can conclude that topology shows 

promise of being important in a sound under,graduate program of the 

future, and quite possibly will be important in teacher education. 

STATEME!l'lT OF THE PROBLEIY 

In the field ot ma.thematics, as in other academic areas, there is 

always a. gap between the material in .. current textbooks and material in 

recent research. Thia gap often exists because the recent research is 

usually published in a number ot professional journals with little or 

no unification nor standardization of terminology and symbolism. In 

point set topology, tor example, many ot the current textbooks do not 

discuss noncontinuous transtormationsextensively; however, much research 



concernirig certain classes of noncontinuous transI'ormations has 'been 

published in recent years. 
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The purpose of this paper is to review and organize the recent 

research concerning certain classes 01' noncontinuous tra.nsrorma.tions in 

a. single paper with standardized nota.t.ion and symbo+ism so that this 

material will be more available and readable tor the student ot 

topology. 

PROCEDURE 

A care:t\il survey and analysis 01' the li tera.ture to locate the 

pl~blished results concerning noncontinuous trans!'orma.tions will be made. 

The Ma;th.ematica.l Reviews, bibliographies of texts, bibliographies of 

unpublished theses and the bibliographies or published papers. will be 

used as primary tools tor locating source papers. This material will 

then be presented in a systematic manner relating the results ot each 

source to results of a similar nature in other sources. Most o:t' the 

proofs given wi11 not be originaJ ; however, the proofs given by the 

various authors will be modi:t'ied to obtain a standardization of notation 

and symbolism. 

SCOPE AND LIMITATIONS 

The published material concerning noncontinuous transformations is 

quite extensive. Theret'ore, this paper will be limited. to a relatively 

small number of classes ot nonconti.nuous transformations, so that a. more 

complete discussion can be given for these classes. The classes of non­

continuous transformation for which a sufficient volume ot material has 
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been published to ju.stity a.n attempt at correlation will be covered in 

this pa.per. Since it is intended that this paper be readable by a 

student ta.k.i.ng a. tirst course in topology, material t'rom a.lgebra.ic 
•• ,I 

topology and some branches of more ad.vs.need mathematics will not 'be 

included. Occasional references to and use of more advanced. concepts 

will be made, however, ·tor the purpose of giving a more complete 

discussion. The use of au.ch materials will be limited to cases in which 

they will lead to particularly signitica.nt result's concerning one or 

more .ot' the classes of transformations covered by this study. 

EXPECTED OUTCOMES 
' 

It is expected that as a. result of reading this paper an individual 

will become more aware of the current and past research in point set 

topology. He should also dev-elop an awaren~ss of the continuous changes 

through which thi.s development has progressed and should anticipate 

continued change in topology and related. disciplines as new materials 

a.re developed through research~ 

It is also expected that the presentation ot the published result~ 

concerning certain classes or' transformations in one sour.ce will whet 
: 

the student I s curiosity for tu:ture study and help in the identification 

of areas for such study. 



CHAPTER II 

BASIC CONCEPTS OF POIN'.i' SE:r TOPOLOGY 

INTRODUCTION, 

Throughout this paper it is assumed that the reader is I'amilia.r 

with the basic notions, notations, definitions, and operat~ons used in 

point set ~heory, and has a working knowledge of many of the ba~ic con­

cepts of point ~et topology. Even it an individual is familiar with 

many of these ·basic concepts, however, the differences in definitions: 

and approaches to the theory o:t' topology in various texts may cause him 

to encounter unnecessary obstacles in reading and interpreting the 

theorems and the proofs~ It is tor this reason that some of the basic 

concepts ot point set topology will be introduced in this chapter. In 

general, the concepts. given in this chapter will be concepts which will 

be used frequently in the remaining chapters •. Concepts which will not 

be used extensively will be presented as needed. Since it is assumed 

that the reader is fa~iliar with most of the concepts in one form or 

another, the proofs will not be given for several of the theorems stated 

in this chapter. 

DE MORGAN LAWS 

One of the basic theorems from point.set theory which will be use~ 

t'ul in this paper is DeMorgan's theorem (DeMorgan's laws), This theorem 
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will now be stated and a proof.supplied for pa.rt (a),-. This proof is . . 

given ~s an example o:t' a proo:t' by s.et containme~t. 

Theorem 2.1. (DeMorgan's .. Theorem). Let f3 be a.n index set, Sa. 

set, and (~}CX€f3 a collection o:t' subsets of S indexed by f3· Then 

(a) S - U· A ~ n (S - A), and 
aef3 a O:€f3 a ·· 

(b) s - n A = u (s - A). 
a~f3 a aef3 a 

; Proof ot (a) •. Let p ~ (s - U. Aa). Then p .,- U A , hence p ~ Aa 
. · ae:[:3 . ae:f3 a · 

tor any a. This means p e:. (S - A,.,,) tor every a, so that p e n (S - ~), . ~ a~ ~ 

and (s - u' A,.J c n,)s - A,.J. 
a€f3 "" ae:1-' . v, 

On the' other hand, i:t' p € n (s - AN), p e: Sand p ~ AN for any a. 
CX€!3 "" . ""' 

Thus p. Iii: S and p_ f:.. U ~· It then follows that p E: (S - U A,.J so 
0:!2f3 ...., CX€f3 "" . 

that ri Js = Aa) c (s - Uf3 ~). Since (s - U A,J c nf3 (s - A,...), and 
a~f3 ae ..... ae:f3 "" a( "" 

since~f3(t3 -·,~) c (s - a~f3.Aa), we have (s - a~f3 Aa) =cxQf3(s_ -\)· 
~ . . . 

The proof of (b) follows in an anafogous m~nner. 

~IC T,EBMS OF F!OINT' SET TOPOLOGY 
, r·,,·1 

The de:t'ini tion of' a topological space va.ri·es somewhat from text to 

text. The following definition of a topological space will be 

used in this p~p~r. 

Defipition 2.1. A sets, together with a collection of' subsets 

called open sets, is called a topological space if and only if the 
,; 

collec.ti.on of open sets satisfy the following three propert'ies: 

. (1) Sand¢ are open sets, 
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(2) the union or any collection of open sets is an open set, 

(3) the intersection o:t' any finite collection ot open sets is open • 

. The collection o:t' open sets is called the topology of s . 

. Example 2 .L Let ,s := [ a, b, c) and let the open sets of S be th:e 

following: ¢, [a), (a} U (b}, (a) U (cl, s·. One can easily verify_ that 

~, with the colle,ction o:t' open sets listed, is a topological space. 

Example 2.2. Let S be the set or real numbers, and let a and b be 

any t~o elements o:t' S with a< b. Define the open interval (a,~) by 
I 

(a;b) = fx j a< x < b). Let a subset U o:t' S be an open set if and only 

if U LS the union of a collection of open intervals in S. Set S with 

the open sets just deri~ed is a topological space. 

The topology ot' S defined in, Example 2.2 is called the usual top-

ology for s. 

Given a set .. S, several topologies can be defined tor S. The next 

example gives another topology that can 'be defined for the set of real 

numbers. 

Example 2.3. Let S be the set o:t' real numbers, and let a subset U 

of S be an open set i:t' and only i:t' the complem·ent ot U in S. is finite. 

Set S .with the collection o:t' open sets thus de:t'ined is a topological 

space. 

In E:x.a.m,Ple 2.1 all o'i: ~he open subsets of sp9:ce S: were listed. We 

can frequently avoid listing all of the open sets by defining a sub-

collection pf the open subset of S which ''generates" the entire 

collection ot open sets ot s. Such a subcollection of the.open sets is 
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called a. basis of' S. Let us now give a I'ormal definition o:t' this 

concept. 

Definition 2.2. · Let S be a set and let a and (I) be two collections 

o:t' subsets· of.' S. Then the collect1on a is said to .generate the collec-

tion CD ii' a.nd only ii', :t'or every K e: ru, K is the union of a collectiqn 

oi' elements o:t• cr. Collection cr is E!aid to form a basis I'or ru. 

In Example 2. 2 the topology of S was det'ined by i'irst de:t'ining the 

collection ox' open intervals in S as a. 'basis :t'or the open sets. 

For ,a given topological space, it may 'be possi'ble to define more 

than one basis :t'or that topological space. The x'ollowing discussion 

will illustrate this fa.ct. 

Example 2.4. Let S be the Euclidean plane, let x 'be an element 

o:t' s, and let e > 0 be a real number. Detine a. spherical neighborhood 

of radius e: about x, (s (x)), to be the set of' all y e: S such that 
- - - e: 

. d(x,y) < E where d(x,y) means the distance x'rom x to y. The real number 

€ is called the radius 01' S (x) • The collection or all spherical neigh-, 
€ 

borhoods about all poi.nts o:t' S can be used as a basis tor a topology of 

S. The collection of spherical neighborhoods about all points of s.with 

rational radii generates the same topology tors. 

Closely associated with the open sets ox' a topological space is 

the collection of subsets called closed sets. 

Definiti,on 2.3. A subset Kor' a topological S is said to be closed 

if and only if S - K is open. 

A subset H of a space S may be open, closed or both open and closed. 
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It ip also possible tor a subset Hot a. space S to be neither open nor 

closed. 

Example 2.5. · Let S = (a.;b,c) with every subset of S open. Then 

·every subset ot Sis also closed. 

Example 2.6. Let S be the set ot all rea.1 numbers with the usual 

topology and let a, b 6 S suc'.g. that a < b. The set [a..,b) = 

(x I a S x < b) is neither,open nor closed. 

Dettnitie>n 2.4. I:t' Sis a topological space and it x € S then U 

is said to be a neighborhood of x it and only it U,is an open set con-
. .-- . , 

taining x. 

When wor~ing with open and/or closed sets, it is frequently useful 

to work with characterizations 01• these sets other than the definitions. 

The next two theorems give cha.rac:terizations ot these sets which are 

often used. 

Theorem 2.2. A subset G o:t' a space Sis open if and only. it, tor 

ea.ch point p E G, t4ere exists a neighborhood U of p contained in G, 
p 

Proof: It G is open, then tor ea.ch point p € G, G is a neighbor-

hood of p such that G is contained in G. 

On the other hand, i:t' for each p e G there exists a neighborhood 

· U O:f'· p contained . in_. G, then G = UG U • Helie e G is open as the union p . ps p 

of open sets. 

Definition 2~5· Let .H be a sµbset of space S.. Then p is a limit 

point ~ ! if and only it every neighborhood U oi' p contains at least 
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one point q of H such that q Ip. 

Theorem 2.3. A subset Hof a space Sis closed if and only if H 

contains all of its limit points. 

Proof: Let H be a closed set and let x be a. limit point ot H. 

Assume x ~ H. Then x e: (s - H) which is a.n open set. By Theorem 2.2 

there exists a. neighborhood U of x such that U is contained in (S - H). 

This contra.diets the !~a.ct that x is a. limit point o:t' H, hence we mu.st 

conclude x EH. 

Now suppQSe His a. subset of S such that H contains allot its 

limit points. Consider (S - H). For any x e: (S - H), xis not a. lim:Lt 

point or H, since x ~ H. Thus, there exists some neighborhood U of x 

such that U is contained in(S - H). By Theorem 2.2, (s - H) is open. 

·Hence H = S - (S - H) is closed. 

The :t'irst portion of the proof of Theorem 2.; ,is an example of a 

proof by contra.diction. This technique will be used frequently through­

out this paper. 

Pefinition 2.6. If K is a. subset of$, the closure of K is the 

union of set K witp. all .of its limit point. The closure of K is denoted 

by K. 

A concept closely associate~ with the concept of a limit point is 

the con,cept of a. boundary point. 

Definition 2.7. A point pis a. boundary point of a subset H.of a 

space S if and only it every neighborhood U of p contains at lea.st one 
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point of Hand at least one point not in H. 

Given a topological space ,s and a subset K of s, we· can foi:m a new 

topological space using K as the set of points for the new.space and the 

open ·sets o:f' S intersec,ted· with K as the open sets in K. The following 

definition wi.;1.1 give .a :formal ch~ra.cter:!-z.ation of this space. 

' 

Definition 2.8. Let S be.a topological space, let rube the callee-

tion of open sets ins, and let K be a subset o:f S. · Then the set K'with 

~ollection {ru n K}, where (ru n K} . denotes the· collection o:f sets o:f the 

form H n K; H € m, is a topological spac~. Such a space is said to be 

a subspace£!§.• 

One can easily verify that the collection [run K) des9ribed in 

l)efini tion 2. 8. _satisfies the three conditions for. a topology. One can 

also verify that a basts :for Swill generate a.'basis'for space K. 

Exainple 2.7. Le~ S be the space of real numbers with the usual 

topology and let.T =· [o,i] = [x I Q :S x :S 1). 
be the 'topology of S int·ersected with set· T. 

Let the topology · of' T. 
. jl 

It is ·~nteresting to not~ 

that sets'of the form [O,y} :i (x I Q·6 x < Y, y :s 1) a.r~ open iri T 

· .al thoU;gh they are neither open nor clos.ed in S. 

-
· Giv~n two topological spaces, one can describe a. new topological 

space using the ca.!tesian product. Let.us now give a.·£orma.l definition 
,' ' . . 

for this' space which will be us~d frequently in this pa.per. . . . 

Definition 2.9. Let·S and T be.sets, The set S X. T = 

[ (x,y) I x € s., y € T) is called the cartesian product of set.s $ a~d .T. 
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Der'ini tion 2 .10. Let S and T be topological spaces. The set S X T 

with [ U Xv}, where {ux v} = [(u x V) l u open ins, v open in T}, as 

the topology, is called the topological product or' S and T. 

One can easily verify t~at ruXvJ satisfies the three conditions 

for a topology. 

S:EQUENCES 

When a topology is placed on a set S, certain subsets of Stake on 

significant properties. For example, certain subsets hecome open or 

closed sets. A subset A of Scan also take on significant properties if 

it is indexed by the set of positive integers. Sets indexed by the 

positive integers will be used I'requently in this paper. Therefore, a 

I'ormal definition of this concept will be stated and certain basic 

theorems concerning this concept will be given. 

Definition 2.11. A sequence is a set A indexed by the set , I of all 

positive integers. The nth element or' the sequence is the element a 

which is indexed py the integer n. The nth ele~~t is denoted by a and 
n 

the sequence is symb~lized by (an}, where A= n~I an. 

It is important to note that a sequence is not just a set of point~ 

but is a set of points indexed by the positive integers. The signifi-

cance or' this fact is that the same set indexed in two different ways 

gives rise to two different sequences. 

Definition 2.12. Let S be a topological space and let (an) be a 

sequence of pqints in S. Tb.en f.anJ is said to converge to the point p 

of S if and only if, given any neighborhood u . ot p, there exists a 



positive integer N such thai an.GU for all n >.N. If there exists a 

point p € S such that (an} converges to the point p then (an) is said 

to be a convergent sequence. It (an) converges to a. point p G S then 

we say limit a.n = p. Point pis called. the sequential limit point.of 

( a. } • 
n 

Definition 2.13. The sequence (ni} is a subsequence of~ 

sequence ~positive integers if and only if the following conditions 

hold: 

(1) Each n1 is a po·sitive integer, and 

(2) For each positive integer i, ni < ni+l • 

From condition (2) it follows at once that n1 .,:: i for every i GI. 

Definiti0n 2.14. The sequence {bn) is~ subsequence of (a.n) if 

and only if there exists a subsequence {ni} of positive integers such 

that bi= a for every i. . ni . 

Theorem 2.4. If point pis a sequential limit point of the 

sequence (an), and if (bn) is a subsequence of fan), then pis a 

sequential limit point of fbn}. 

14 

Proof: Let p be a sequential limit point of fan) and let U be any 

neighborhood of p. ~ Then there exists a positive integer N such that 

a e; U tor any n > N. Consider b. where i > N. Since b1 = a , and 
n . 1 . n1 

since n1 ~ i >N, bi€ U. ~us, pis a limit point ot (bn}· 

CLASSES OF TOPOLOGICAL SPAC;ES 

In the remaining chapters of this paper, the topological spaces 



15 

used will oi'ten have properties not common to all topological spaces. 

I~ the following discussion some of the important classes of topolog~cal 

spaces will be define~ 

Definition 2 .15. A topological space S is said. to be a Ha.usdor!':t' 

space if and only if, given any two distinct points p, q of s, there 

exists disjoint open subsets U and V of S such that p € u, q € v. 

The next theorem is an example of a theorem which is true for a 

topological space with a particular property, but is not true tor top-

ological spaces in general. The particular property in this case.is 

that the space be Hausdor:t'f. This theorem also· gives the second 

characteristic oi' a sequence which will be used extensively in th.e 

remainder of this paper. 

Theorem 2.5. Let (an) be a sequence of points of a Hausdorff space 

S. If this sequence converges to a point p €Sand also to a point 

q € s, then p = q. 

Proof: Suppose pf q. Since Sis a Hausdorff space, there exists 

open sets U and V containing p and q, respectively, such that Un V ~ ¢. 
Since (an} converges to both p and q, there exists integers N1 and N2 

such that n > Nl implies a € U and n n > N2 implies a n € v. For n > 

maximum (Nl, N2J we have a. € n· un v. This is a contradiction, hence we 

must conclude p = q. 

The next example shows that this theorem is,not true for topologi-

cal spaces in general. 
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Example 2.8. Let S = [0,1] and let Ube an open set in [O,l] it 

_ and. only it' U = [O,l], U = ¢ or [O,l] - _u is. finite. Let {an} = {J./n) 

for n = 1, 2, 3,···· Sequence fan) converges to every point p ~ S with 

this topology, -tor any open set U that contains p e: swill contain a.11 
' 

except possibly a finite ~umber of points ot (an}. .Thus it all points 

of [a) belong to u, let N = l, and if' all but a. finite number ot points . n__ . 

ot fan} belongs to U, let N be the maximum index ~t the elements of (an) 

not contained. in U •. 

Definition 2.16. A space Sis said. to be regular if and. only it, 

given.any closed subset F of S and·any point p of Snot in F, there 

exists disjoint open setsU and Vin S containing F and p, respectively. 

- Defini~ion 2.17. A space Sis said to be normal it and onl,y if, 

given any two disjoint .closed subsets F1 and F2 ot S there exists dis­

joint open sets U and V containing F1 and. F2,respectively. 

Many important topological spaces such as the real numbers with the 
I . 

usual topology and Euclidean n-epaces are'·'Ha.usdortt, regular and normal. 

The following example illustrates the tact that an arbitrary topological 

space need not posses any of these properties. 

Example 2.9. Let S = [O,l] = (x I x is a real number and o ::S x ::S l), 

and let U be an open set it and only i:t' U = ¢, or the complement of U is 

finite. One can easily verify that set S with this topology is a 

topological space. Space Sis neither Hausdorff, regular, nor normal. 
\ 

Before defining' the next ala.as ot topological spaces it will be 

necessary;:to define mutual.ly separated sets. This concept will be 
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I 

important in the remainder of' this paper as well as being useful in 

defining completely nornuµ spaces, 

Definition 2.18. Two subsets A and. Bot space Tare said to be 

mutually separated .it and only ii' A ~ ¢, B F ¢, ·A n B = ¢ and A n B .= p. 

Definition 2.19 •. A space, S is said to be completely normal if' a.nd 
I ' • P 

only if, given any ~wo mutually separated subset~ A and B of s, there 

exists disjoint open setsU and V containing A and B, respectively. 

For an example ot' a space that is normal but not completely normal 

see [8,191]. 

When working with a space such as the real numbers with the usual 

topology, one often uses the tact that a set consisting of a·single 

point is clos,ed, A space having this property is said to be a T1 space. 

Definition 2.20. A space Sis said to be a T1 space it' and only if 
\ -

every point pin Sis a closed subset of s. 

The spaces described in Examples 2.8 and 2.9 are T1 • The space 
\ 

defined in Example 2.1 is not T1 since {al is not closed. 

Some pre*iminary definitions will now be given in preparation f'or 

the def'int tion of t'ir~t. and. 1;1econd countable spaces. 

Definition 2.21. Two sets X and Y are said to be in a one-to-one s, . 
' 

correspondence it the elements ot X and Y can be pa.ired in such a way 

-- . 
that distinct element.a in X are pa.ired with distinct elements in Y, and 

distinct elements in Y ,are paired with distinct elements in X. -~ . . 



Pefinition 2.22. A set A is said to be countable if A can be 

placed into a. one-to~one correspondence with set I= {l,2,3,4, ••• ) c,r 

with any subs·et of I~ 
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De:i:'ini tion 2 .23.. A collection cr of neighborhoods ot a point p in 

a space Sis said to 'be a basis!..!:, i if and:only if, given any nei~h­

borhood U of p in S, there exists a V e!, cr such that V c U. 

Definition 2.24. A space Sis said to be first countable if and 

only ii', i'or any point pins, there exists a countable basis at p. 

Definition 2.25. A space Sis said to be second countable if and 

only if there exists a countable 'basis for s. 

From the definitions of first and second countable spaces, it 

follows· that a second countable space is :t•irst co~table. The next 

example shows that the converse is not true. 

Example 2.10. Let S be the set of real numbers with the discrete 

topology. That is, each point of Sis an open set. F~r each point x in 

S the_open set (xJ constitutes a countable basis at x. Since set Sis 

not countable, space B is n6t second countable .• 

On~ oi' the most important classes o:t' topological spacesis the class 

of metric spaces. This class ot spaces will 'be defined in Definition· 

2 •. 29. Some preliminary .definitions will be, presrented. first. 

Definitioi{·e.26~ A rule r is called a Transformation of a s·et S 

into a.set T if and, only ii' :f associates with each element x in_S a 

unique element y of T. IJ;'his association is usually symbolized QY 
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t(x) = y. Set Sis called the domain or f and Tis called the range of 

t. 
; 

The w?rds ~apping and tu~ction will:be used as synonyms tor trans-

formation. 

De:t'in.ition 2.27. A set S j_s said to be a.,m~t+ic ~,i:t' a.nd only it 

there' is associated with S a. mapping p from S Xs into R, where .. R. is the 

1space of ,a.11 real numbers, having the :t;'ollowing properties :t'or every 

triplex, y, z of elements in S. 
•l 

(1) p (x,y) ;:: o, and p (x,;v) "" O it and only if x = y, 

. (2) p (x,y) = p (y ,x), and 

(3) p (x,z) :Sp (x,y) + p_(y,z) .• 

This mapping is called the metric tor§_. 

Eia.mple 2.11. For the set Rot all real numbers, the usual metric 

function is p (x,y) = / x - y/. For the Euclidean plane the usual metric 

function is p .(x,y) == J(x1 - x2 )2 +. (y1 :.. y2)2, where x = (x1,y1 ), 

y = (x2,y2). 

Intimately associated with a metric set Sare the subsets ot S 

known as spherical neighborhoods. 

Definition 2.28. Le~ K be a metric set. Then with each point ... 

p e Sand each real number r, we ~asociate a subset Sr(p) called a 

spherical neighborhood of radius £, a.bout ;e_. A point q of K is an 

element of S (p)' it and only i:t' p (p,q) < r • 
. r -

Definition 2.29. A metric space is a metri-0 set with the collec­

tion ru of all spherical neighborhoods in S as a basis t•or 1 ts topology. 
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For a proo:i' that a. metr:i.c set S with the collection m as its basis 

is a topological space, see [8,60]. 

Many relationships exist between and among the various clas,ses o:f 

topological spaces that have been d.et'j.ned above. The :following collec­

tion of' theorems. are examples of such relationships which will be used 

in this pa.per. Proofs will not be given, since these theorems are 

stated and proven in most elementary texts on point set topology. 

1rheorem 2 .6. Every Hausdorfi' space is a T1 space [8, 64]. 

Theorem 2. 7. Every r{~gular" T1 space is Hausd.o:rr'i' [ 8, 111]. 

Theorem 2 .8. Every regular second countable Hausdorr'i' space is 

completely normal [ 8, 111] • 

Theorem 2.9. Every completely normal space .is normal [8,110]. 

Theorem 2.10. Every second countable space is !'irst countable 

, [8,107]. 

Theorem 2.11. Every metric space is Hausdor:f:f [8,61]. 

Other theorems stating relationships that exist between and among 

the spaces in the various classes defined above will be stated and 

references given as needed in the remaining chapters. 

It should be noted that the space R or' real numbers with the usual 

topology fs a metric space, a Ha.usdor:ff spacey a T1 space, a r'irst 

countable space, a second countable space, a normal space, a completely 

normal space and a ;regular space. 'As a consequence many ot the theorems 



21 

pres'ented in.: this pa.per can be stated as theorems for function defined 

on the space of re~ numbers. 

Two other' sign:tr'icant properties that a· topo;togiQal space and./ or a 

subset of a.· topologica._l space· may have a.re compactness and co,nnected.:.· 

ness. ,. 

Def'ini tion -~. 30... A collection of sets f Da~ae: ill is sa.~d to be ~ 

·COveri~ bt ! £3.e_!:_ ! if and only ~.i' A_ c .a~JnaJ. If,. in addition, ea.oh 
, .. I : 

dt the sets Dex 'is ~n OP.en set, .then the ~ollection (Dal is said to be 
f : • 

an '.?:P.e~ :covering ·of !~ ,. Any subcollection oi.' fD } covering A is said to , . . . , a 

be. a subcover:_i?.,S_ of A. 

Definition 2. 31. . Let A be,. a subs et of a space S; ·Then A is said 

to be corm,a.ct :if and only i:t' every op!3n covering or" A contains a f1~ite 

:,subcovering o:t' A. 

CJ.:6$ely ass·ocia.ted with compact subsets of a. space ,s is a.. class of 

subsets called the countably compac;t subsets of S. The de:t'init,ion tor 

a-countably compact subset of a topological space will, now be presented.. . . . 

The relationships between c:;ompact and countably compact subsets, will be 

given . in Cha.pt er 4 • 

, Definition 2.32. A,_subset A o:t' a space s_.is said to be c;:ounta.bly 

compact if and only if every infinite subset of A has at least one limit 

point in A. 

Let A be a topological sp~ce or a subset or" a 
' 

to~9:).~gical space. Then A is ·.s!il,:id to be.~ it' and only i:t' A can 

not be expressed as the union of two mutually separated sets. 
t I I ' 1 .. f 
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TRANSFORMATIONS 

. The. definition of a transformation f from !3- set S irito a set T was 

given in pefinition 2.26. When working with a particular problem one 

usually requires that a mapping from S into T satisfies additional con-. . . . 

ditions. One might, for instance, require that the mapping f be one-to-

one, onto, or continuous. Let us now define these concepts and other 

concepts associated with functions which wiJ.l be used frequently in this 

paper .. 

Definition 2. ;4. Let S and T be sets and let f from S into T be a 

mappingo Then for any subset A of s, we define f(A) = x~Af(x). The 

subset f(A) of Tis called the ima~e of~ under f. 

Definition 2.35. Let S and T be sets, let f from S into ~ be a 

mapping, and let B be a.subset of T .. We define f-1 (B) == x~S,xf(x)eB• 

'rhe subset f-1 (B) of Sis called the source or inverse of B. 

Ex.ample 2.12. Let S = T be the set of real numbers and let A = 

(1,2), B = {1,4}, where A is a subset o:f' S and B is a subset of T. 
! i: 

Define f from S into T by f(x) = x2• Then f(A) =Band f-l(B) = 

(+l, .. 1, +2, -2.J. Note that f-lf(A) f A. 

Definition 2 .. 36. Let Sand T be sets. A mapping f from S into T 

is one-to-one if and only if, for wery ye: f(S), f-1 (y) is a single 

point. 

Definition 2.37. Let Sand T be sets. A mapping f from S into T 

is an~ mapping if and only if f(S) = T. 
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A. mapping from a space S,into a space T can be modi!'i~d.:in several 

ways. We may change f by changing the rule 01: association, or we ma.y 

ch1:1,nge the set S on which t is defined. A situation that will fr,equent-

ly a.rise in this paper is that we will want to co~sider t-detined o~ a 

subset A ot s. This modification oft is known as the restriction oft 

to A • 

. Definition 2.38. : Let 81 and_ T be sets, let f from, S into T be a. 
J 

mapping, and let A be a subs.et of S. A ma.pping g trom A into Tis said 
f 

' 
to be the restricti:on of! to~ if and-only it.:ff(x) = g(x) for every 

x e A. The restriction off to A is frequently denoted by t I A. 

! . 

:E}xample 2.13. Lets, T and t be defined as in Example 2.12, and 

let A =·· (x Ix e: S and x _? o}. t I A is a ·one-to-one mapping, but f de­

fined 6n Sis not. One frequently u~es a restriction o!' a mapping to 

ftb1:tain some such desirable property. 

The properties of functions defined thus far have been properties 

ot functions from a point set into a point set. If in.addition Sand T 

are topi;,logical spaces, cer.tain other propE;rties tor tunctiora can be 

defined. One of the most fundamental of the properties for i'unctior.sis 

continuity. 

Definition 2.39. A mapping t :t'.rom a space S into a space Tis 

s-atd to be continuo:us -~ _! point E. in S ii' and only i1', :f'or every open 

set U in T containing t(p), there exists~ open set Vin S containing 

p such that t(V) c U. 

Det'inition 2.40. A mapping f from 9r space S into 'a flpac:e T is said 
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to be ,continuous ir' and only if I' is continuous at every point pin S. 

Other properties oi' !'unctions :t'rom one topological space into 

another will be de:t'inE;Jd in the following chapters as needed. 



CHAPI'ER III 

OPEN .AND.CLOSED TRANSFORMATIONS 

INTRODUCTION 

Gi YE7:n, two topological spaces S and T, one is often concerned with 

whether or not S and T have similar structures with i,3imilari ty of' st,ruc­

tures de!'ined in terms or' mappings. In Chapter II, continuous:; one-to­

one, and onto functions were defined. Each of these conditions is a 

strong condition to place on a function; however, even if a function 

which is continuous, one-to-oney and onto can be def'ined I'rom .S onto T, 

spaces Sand T may have very dissimilar properties as :i.s shown by the 

following exa:rnple. 

Example 3.1. Let S be the unit interval O < x < 1 with the dis­

crete topology. That is, let -every point or· S be an open set. Let T 

be the unit interval O < x < 1 with the usual topology and define a 

mapping t from S onto T by: 

f(x) = x for every x E S. 

This !'unction is easily seen to be contim::i.ous, one-to-one. and onto. 

However, it is q~ite obvious that spaces Sand Tare dissimilar, since 

the respectively t;opologi.es are ox' a difr'erent nature. In fact, many 

of the open sets in T are not open in S" 

If' one requires, in addition to the three conditions previously 
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mentioned, that a function map open s~ts ot S onto open sets of T, one 

will find that Sand T have many properties in common. In particular, 

it will be implied in, ,The6rem ;.14 that the open 'sets ot S a.nd T will . 
. 

b.e placed into a one-to-on.e correspondence. Formal definitions for 

these concepts will now be presented. 

Definition 3.1. Lett be a mapping from a space S into a space T. 

The mapl,)ing t ,is said to ·be open i:t'' and only if the image of every open 

set in Sis open in T. 

Def~ni tion ; o 2. A mapping t from a space S onto a space T is ·said 
. . 

to be a homeomorphism·it and only it tis one-to-one; onto, open, and. 

con~inu.ous. The· spaces S and T a.re said to be homeomorphic. 

The word homeomorphism is derived from Greek and means of a s.imilar 

form or structure. The following facts suggest that tpe term homeomor-

phism is appropriate. If spaces Sand Tare homeomorphic and if Sis a 

metric space, a .Hausdorff space, a normal space, a completely normal 

space, a first countable space, a second countable space, or a T1 space, 

then T is of the same type: The open subsets :of S and T will be in a 

one-to-one correspondence as will the closed subsets, the connected sub-

sets and the compact subsets. This is by no means a complete listing of 

the properties Sand Twill have in common, however, a complete discus-

sion of the properties of homeomorphisms is not the purpose or this 

paper. Proofs of the above statements and further propert~es of homeo­

morphisms c,an be found in [8]. 

Closely associated with the class of open mapping;iis the class ot 

mappings which map the closed subsets ot the domain space onto closed 
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subsets of the range space. 

Definition 3.3. A mapping 1' r'rom a space S into a space T is said 

to be closed it and only if the image of every closed subset of Sis a 

closed subset' ot T. 

It will be shown in Theorem 3.10 that a homeomorphism could also be 

defined as a one-to-one, onto, closed, continuous mapping from a space S 

onto a space T. 

Open and closed tunct.ions have been introduced here as functions 

possessing one of the properties ot a homeomorphism. The purpose of 

this chapter is to give a systematic presentation of other interesting 

p~operties these functions are known to possess. The following discu­

sion will show that a !'unction may be o]:ien, closed or continuous with­

out possessing either of the other two properties. 

The function t defined in Example 3.1 is continuous, however, it 

is neither open nor closed. To verify that tis not open, consider a 

point pin S. The set [PJ is open ins, but (t(p)} = [pJ is not open 

in T, hence f is not open. Arry subset of Sis closed, including se~s 

of the form a< x < b, where O <a< b < 1. The images of such subsets 

are not closed in T,, hence :f is not a closed mapping. The following 

examples show th~t it is possible to d.e!'ine functions which are open 

but not closed or continuous, and :functions which a.re closed but.not 

open'or continuous. 

Example 3.2. Let Sand T be the closed intervals [0,2] and .(O,l], 

respectively, each with the usual topology. Define a f~nction f from 

S into T by: 



f(x) ~ x, if O ~ x < 1, and 

f(x) = x - 1, if 1 < x < 2. 

'.:Phe !'unction :t' is open.1 but is neither closed nor continuous. 
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Example 3.3. Let S ""' T be the open in:terval ('Oyl) with the usual 

topology. Denne f from s into T as follows. 

f'(x) = 1/4, if x is irrational, 

. :t'(x) "" 3/4, if x is rational. . 
•rhis function maps all subsets of S onto .one o:t' the. closed subsets [1/4 }, 

lp3/4: or r,.~·'·t'il., .:)/"} "'!··,, IT' ,I • +h 1 d. J , _ . , . ...- .., .,_.,, anu is " us c os e • The. r'unction I' is 1ei ther 

open nor continuous. 

One c~n also construct examples or' r'unctions possessing any two o:t' ,. ' 

these three propert:l.es but not the third. 

CHARACTERIZATIONS 

The following discussion gives characterizations of open !"unctions 

and closed ±'unctions. Necessary der.'ini tions and preliminary theorems 

will be stated as needed in the development of' these characterizations. 

Theorem 3.1. A !'unction r' !'rom a space S into a space T is closed 

i:f' and only ii' f(R) ::::i r'(R; where R is any subset o!' S. 

Proo:t'. Assume I' is closed and. let R be any subset o!' S. Since R 

is closedy and since f is a closed mappingj f(R) is a closed subset o!' 

T. Thus :f'(R) = f(R). Now R c R» so that f(R) c f(R). It now follows 

that r(R) c t{R) = f(R). 

Now assume !'(R) c 1'(R) !'or any subset R ot S, and let R ·be any 
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closed subset o±' S. Since H is closedi H :=: H so that :r.'(H) = I'(R). By 

hypothesis t{HY c :f'(H) = i'(H), which implies :i:'(H) is closed. Thus 1' is 

a closed mapping. 

Definition 3.4. The interior oi:.' ~ se! fl (Int A) is the union of' 

all open sets contained. in A. 

The I'ollowing theorem follows immediately from the de:f'ini tion o:t' 

Int A. 

Theorem 3.:2. Let A be any subset o:£' a space s, then, 

Int Ac A, 

(ii) ii' A c Int A, then A is openJ and 

(iii) the set A is open iI' and only i::i:' Int A "" A. 

Theorem 3.3. A !'unction ±' i'rom a space S into a space T is open 

if and only i.i" 1'(Int A) c Int !'(A) :t'or any subset A of S. 

Proof'. Assume r' is open and let A be any subset of' S. Since Int A 

is open by Theorem 3.2, and s:l.nce t' is open, ±'(Int A) is open. Further= 

morej I'(Int A) c f(A) Y s:l.nce Int A c: A. Thus ±'(Int A) is an open subset 

oi' i'(A)J so that !'(Int A) c: Int i'(A) by definition. 

Now assume :t'(Int A) c Int i'(A) :for any subset A or' S, and let G be 

any open E!U:bset of' S. By Theorem 3.2, G "" Int G7 so that :t'(G) -

f(Int G). F'rom the hy-_pothesis., i'(Int G) c Int :t"(G);, which implies :t'(G) 

c: Int i'(G). It now follows from Theorem 3.2 (ii) that i'(G) is open'J s·o 

that :i:' is an open function. 

A second characterization of open transi'ormaticrn:, can be expressed 



in t,erms ot the limit inr'erior of a sequence of subsets ot a spa.ce s . 

. Definition ,3.5. If (Xn,} is a sequence of subsets ot a. spa.ce s, 

then the limit inferi.or (lim inf) {Xn} is the set of all x such that, 

tor each neighborhood U or' x, U contains points tr·om all but a :finite 

number ot the sets in fxn}o 

The following theorem will be used in the proof of the next 

characterization theorem. 
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Theorem 3.4. If Sis a first countable metric space and if xis a 

limit point of a subset A ot s, then there exists a sequence (xnJ of' 

distinct points of A that converges to x. [8,102]. 

Theorem 3.5. Let S and T be topological spaces and let f(S) = T be 

an open transformation. Then for· every convergent sequence [yn} in T, 

the relationship f-1 (y) c lim inf [t-1 (yn)} holds, where y = lim Yn· 

It in addition, T is a first count.able metri,c space, the converse is 

true. 

Proof. Let_t be an open transformation t(S) = T a.nd let [y J be a 
n 

convergent sequence of points in T with y =limy. , n, Suppose x e t-1 (y) 

a,nd that U is an open set con.taining x. Since f' is an open transforma­

tion and x e: t-1 (y), it follows that f(U) is an open set in T containing 

y. Now y =limy implies there exists some positive integer N such 
n 

that y ~ :t'(U) r•or all n > N. Point y in i'(U) tor a.11 n ~ N implies 
n . -- . n 

there exists a~ x in U such that t(x) ~ y for all n > N., Thereforeo n , n· n -· ' 
-1' . . ~ 

for all n > N, Un t ,(y); ¢ so that xis an element o~ lim inf . .::- . n , 

f[1 (yn)) and· hence [ 1 (y) c lim i;f .ft-1 (yn) J. 



31 

Now let T be a. first .countable metric space with the property that 
. -1 

i'or every converge11rt sequence f yn} in T with y "" lim y , I' · (y) c lim 
n 

~ 

inf· 1,=J.ry ) • 
\ n Assume f' is not an open mapping. ·:Phen there must exist 

some open set u :i.n s such that ±'(U" ! is not open in T. Now t(U) not open 

in 1J.1 implies there exists some y in ±'(U) such that y is a li.mi t point of 

T = i"(U). Since ~r is a first countabl1e metric space.i there must existJ 

by Theorem 3.4, a sequence o±' distinct points fynJ in T = r'(U) such 

that y = lim y • Point y is an element oi' r'(U), so that there must 
n 

exist some x in U such that :r:'(x) ~- y, Now y is not an element or.' ±'(U) 
n 

-~1( . ,./, ±'or any n;i so that :i' yn) n U :::,; y) I'or every n. By hypothesis, however, 

x is a,n element oi' l:im inf u=1 (yri)} which implies u must contain points 

:f'rom all but a finite number o:t.' the sets (±'-1 (yn)J. 'I1his is a contra= 

dictionj hence±' must be an open mapping. 

Theorems 3._3 and 3.5 g:i.ve characterizations o:r:' open transformations 

which are stated in terms of the interior ot' a set and the limit infer-

ior or.' a sequence oI' subsets. oi" the domain space. A third. characteriza.-

t;ion theorem !'or open trans!'ormatiom and. a second characterization 

.theorem tor closed transi'ormatior,i.s can be stated in· terms ot' inverse 

sets. 

De:t'inition. 3.6. Given spe,ce S and '1' and a mapping t' :r'rom S · into T» 

a subset Q oi' S said to be an inver_~,! ~~! ii' and only if :t'=1 (1'(Q)) = Q. 

Def'ini.tion 3. 7. If A is a subset o:t' a space S,, then a subset H of 

A is said to be closed ~1?:. respect to A ii' and only it H contains all 

of' its limit points wh:!.ch belong to A. 



Theorem :;.6. [17] A, trans:t'o1;mation t from a' spa.,ce S into a space 

. T is closed if and on,ly if t is closed on. ev:ery inyerse set· 'Q of S., 

, Pr~of. Let t be a closed trans:t'ormation frorri. S into T, and .let q 

be a.n inverse set in S. Let H b~ a subset ot Q that is 'closed with 

respect to, Q. Then H. == if n Q,~ By hypothesis, i',(ii°) is closed in T. 
I , . , 

Now f(H) = t(ff n Q) = t(B)n t'(Q) [27,146]. Since t(H) is closed, 
r - , . 

:i:'(H), = :t'(H), so that, r'(H) = 'f{H) n · i'(Q). By The,6rem 3.1; trH'T c f(H) = 

f(H), so tha't · ti'{H) n !,'·(~)) c (t(H) n t (Q)) "" t(H). On the other hand, 
l'I '• ' ! I ; 

. ' ' -1 
t(R) c {!·{·H) n t(Q)). For let y be an element ox· t(H). Set t (y) c,Q, 

since Q is an inverse set, hence y is in (t(R) n f(Q)) c (i'(H) n t(Q)). 

Thus t(H) = t'(HT n :t'(Q) which implies 1'(H) is closed with respect to 

f(Q). Theret'orej f is closed with respect to Q. 

On the other hand, it t'is closed with respect to every inverse 
. -1 

set in s, then, in particular, f is closed with respect to S = t (t(S) ). 

Thus tis a closed mapping. 

Definition 3.8. It A is a subset of a spaces, an~ His a subset 

of A, · then H is sald to be .2J2€:£ ~· respect !.£ ! if and only i:t 

H =Un A :t'or some open set U ins. 

Theorem 3.7. [17] A trans:t'ormati.on t from a. space S into a space 

Tis open tf and only it f is.open with pespec~ to every inverse set in 

s. 

Proof. Let Q be an inverse set in Sand ~et f be an open trans-

formatiqn on S. For a s,et H which is open with r'espect to Q, H = U n Q 

for some open set U in S. Thus i'(H) = t'(U n Q) = (f(U) n t'(Q)) [ 27,146] .. 



Since tis an open mapping, f(U) is open in T and hence :t'(H) is open 

with respect to t(Q). 

Conversely, it a mapping f from S into T is. open with respect to 

every imrerse set in s, then t is open on S = [ 1 (f(S)). 

SOME GENERAL PROPERTIES OF CLOSED MAPPINGS 

. Let us .turn now to a consideration ot some general properties of 
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closed mappings. The fi.rst two theorems in this section make use Of a 

class ot subsets called conditionally compact subsets • 

. Definition 3.9. A subset A ot a topological. space S is said· to 

'be conditionally compact if and only i:t' every infinite .·subset o:t' A 

has a limit point which belongs to. s. 

Theorem 3.8. [17] 1;:t' the transformation t from a space s onto ~ 

space T is closed, and i:t' F is any conditionally compact subs.et of. T., 

then .there exists a conditionally compact subset H ot S such that f'(H) 

= F. 

Proof. Let H be any subset of t=1 (F) such that f is one-to-one 

tram H onto F. Assume H is· not 'conditionally compact,. Then there 
. I 

exists an im'ini te sups et A oi' H such that A J;ias no limit point in S. 

·Now set A and all s-ubsets of A a.re vacuously closed sin.c~ A has· no limit 

points. Set t(A) ha.s infinitely many points in F, and since Fis condi­

tionally compact, t(A)' m\lst ,have a limit point t in F. Furthermor.e, :f(~ 

is a. closed subset of T as th~ image of a. closed subset under a closed 

mapping, so that t must be an element of t(A). Lets= t-1 (t) n A and 

· consider set A - (sJ. Set A - Cs) is closed in 8 0 henc~ 



±'(A - (s}) ""'r'(A) = [t} rn:ust be closed in T. But the set i'(A) - f~J 
has the limit point t¢ ~'his is a contradiction, hence H must be con-

di·tionally compact. 

Theorem 3.9. (17] If function f(S) =Tis a closed mapping from a 

space S onto a countably compact space T, and i:t' !'-1 (y) is condi ti.onally 

compact for each yin T, then Sis countably compact. 

Proof. Assume S is not countably compact. Then there exists an 

:i.ntini te sequence ( a J of' points in S such that no poi.nt of S is a limit . n 

poi.nt or.' [ an} • Now [ a ) must pontain point from only a !'ini te nq.mber n . 

-1( ) t ·y), yin T •. otherwise, fan would contain an infinite number of' 

points f'rom at least one :t·-1 (y) j and hencey by hypothesis, fan} would 

have a limit point in S. Therefore, the image set f:t'(an)) must be an 

intinite subset of T. 

Since T is countably compactJ [:t'(an) J must have a l.i.mit point t in 

T which belongs to {t(an)). Mow consider the set {(a.n} - (:e-1 (t)n [anl} 

which is vacuously closed :Ln s. The set :t'(f a J - (i"-l(t) n [a } ) ) must 
· n n· 

be a closed subset of' 1:~ But this set does not contai.n the limit point 

t, which gives a contrad:i.ction,. Thus S must be countably compact. 

TRANSFO~TIONS THAT ARE BOTH OPEN AND CLOSED 

In examples 3.1.,, 3.2, and 3.3 it was shown that a :t'unction might 

be open without being closed or continuous, a function might be closed 

without being open or continuous, and that a ±unction could be contin= 

uous without being open or closed. These facts naturally lead one to 

inquire what cond.i tions must be placed on a ±'unction having one ot 



these.properties to insure that function will have one or both of' the 

other properties,. The f'o:llowing discussion is concerned with conditions 

that imply a function is both open and closed. 

Theorem 3.10. If F(S) =Tis one-to-one then f is open if' and 

only if f is closed. 

Proof'. Suppose f'(S) =Tis one-to-one and open, and let H be any 

closed ~ubset of s. Set(S - a) is .an open set ins, and since f,is an 

open mapping, i"(S - H) is open in T. Since tis one-to-one and onto, 

t(H) must equal T - f(S - H), which is closed as the complement of' an 
... 

open subset of T.. Thus the image of a c:Lo.sed subset of S is closed in 

T, and f is a closed mapping. 

The proof that a one-to-one closed mapping is open follows in an 

analogous manner. 

Theorem 3.10 implies that a homeomorphism could be defined as a 

one-to-one, onto, continuous closed mapping from one space into another .. 

For a sequence (Xn) of subsets of a spaces, the definition of the 

limit inferior of (x J was given in Definition :,.5. A related. subset n . 

associated with the sequence {Xn) is the limit superior (XnJ. This 

concept will be defined and some preliminary results will be demonstra-

ted in preparation for the next theorem cona.erning open and closed 

mappings. 

Definition 3.10. It [Xn) is a sequence of subsetso:f' a space s, 

the limit s.u::p~rior (lim sup) of {X0 ) is the set of .all x such that for 

each 'neighborhood. U ot x., U contains points from infinitely many of the. 
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Example ;.4. For the sequence (X) where each X is the set 
n n 

((-l)n + 1/nJ, both± 1 a.re elements of the lim sup fxnJ, but neither 

is an element 01' lim inf [Xn}. Thus lim sup (Xn} does not necessarily 

equal lim inf {xn)• 

Lemma ;.1. For any sequence [Xnl of subsets of a. topological 

space S. lim inf fX} c lim sup {X j. · ' · n n· 

. Proof. The proof' follows immediately from the definitions. 
,· 

Theorem ;.11. For any sequence [Xn) of subsets of a. topological 

space..9 both lim inf [Xn} and lim sup (Xn} a.re closed. 

Proof. Suppose xis a limit point of lim inf (Xnl· Then, any 

neighborhood V of x contains a. pointy of lim inf (Xn)• Since U is an 

open set containing y, and sin.ce y is an eleinent of lim in:t' [X ) , U 

must contain points· from all but a :t'ini te number of the sets in (X J. n 

This implies x is an element o:f lim inf {x 1, so that lim :i.n:t' (x ) is 
n· n 

closed. 

The proof for lim sup fxn} follows in a similar manner. 

Definition 3oll. Let [X} be a sequence of subsets of a topologi­n 

cal space. It' lim inf [XnJ = lim sup fXnJ then sequence [Xn} is said 

to converge,!£ limit [Xn} = lim inf [Xn}:: lim sup fxn)· 

Theorem 3.12. (17] Let Sand T be first countable metric spaces. 

The closed transformation f(S) =Tis open if and only if tor each 

sequence (ynJ in T converging to a point~ in T, 
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Proo±'. Let f be a closed and open mapping from S onto T, and let 

[yn1 be a sequence of points in 1r converging to a point y in T. Since 

tis openJ Theorem 3.5 implies f-1(y) c lim in!' [t=1 (y11)J, and. Lemma 3.1 

implies that :t'=1 (y) c lim inf [:e=1 (y )) c lim sup [:t·-1 (y )J. Let us now 
n n 

( -1, ) ~::r-( ) show that lim sup t ,Yn} ct· y. Suppose there exists a point x in 

lim sup (t=1 (y )} = f-1 (y). Let Ube a neighborhood of x. Set Ucon-
n 

tains points trom infinitely many oi' .. the sets :t'-1 (y ) , and hence :t'(U) 
n 

contains in:f'initely many points of' fyn}. The set I'(U) is closed by 

hypothesis, and hence must contain the limit pointy of [y11). There­

fore, (U n :t'-1 (y)) f ¢. · It U n [ 1 (y) = ¢, then one could choose a 

neighborhood V of x such that V c U [ 8 , 70 ] , and such that V n [ 1 (y) 

= ¢. , Sine e U was chosen arbitrarily, however, the argument given tor 

- .-1 1. ¢ U must also hold. i'or V so that V n, t (y) F • This gives a contra.die-

tion, hence Un r-1 (y) I¢, and xis a limit poi~t of r=1 (y). Thus we 

have, 

r'-1 (y) Clim int' f1t1 (yn,)l c l;lm sup u·-1 (yn)} c f-1 (y). 

But lim in±' [f-1 (yn)J and lim sup fr·-1 (yn)J are always closed sets, so 

that 

lim inf ([1 (yn)J :::, lim sup u·-1 (yn)} = lim fi'-1 (yn)) = [r(y). 

Assume now that lim [[1 (yn)) = t=l(y) and that tis a closed 

mapping. It remains to be shown that :t' is open. By hypothesis 

[ 1 (y) c lim sup [!·-1 (yn)J I'or any sequence (ynJ in T that conver,ges 

to a pointy in T. Let Ube any open set in Sand assume f(U) is not 

open in T. Then there exists a point y in :t'(U) such that y is a limit 

, point ot T = f(U). Since T is a first c.ountable metric space there 
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exists a sequence (y) of distinct points in T - t(U) that converges to 
n 

y~ Since t-1 (y) c lim sup (t-1 (y )J and since y is an element ot f(U), 
. n 

it follows that U must contain an element x ot f-1 (y), a.nd that U, l:!,G a 

neighborhood ot x., must contain points tirom infinitely many ot the sets 

t~1(;~;:-~ .. Th.is· implies t(U) contains in:t'ini tely many of the points of 

fy ·J. This is a contradiction, hence f(U) must be open in T a.nd t mu.:st 
n 

be an open mapping. 

The next theorem gives a property possessed by functions which are 

both open and closed. 

Definition 3.12. A space S is said to be locally connected !! !. 

point~ it and only if, given any neighborhood U of p, there exists a. 

neighborhood V ot p such that V c: U and Vis connected. 

Definition 3.13. A space S is sa.:l.d to be locally connected if and 

only if Sis locally connected at each ot its points. 

Definition 3.14.. A subse:t Q of a. topological space S is said to 

be a component ~·~ if and only it Q. satisfies. the following conditions: 

(1) Q is non-empty, 

(2) Q is connected, and 

(;) it 1oc is any connected subset of S satisfying C n Q. I f.>, then 

cc Q. 

T,heorem ;.13. (17] Let S b.~ locally connected and let t(S) = T be 

an open and. closed mapping from S onto T. Then if Tis connected, and 

if Q is any component of s, t(Q) = T. 
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Prqof. It will first be shown that Q is both open and closed in S. 

Since Q , is a. component of S, Q is a. connected subset · of S, and Q is not 

contained in any other connected subset of S. Let p be an element of Q, 

and let Ube a neighborhood of p. Since Sis locally connected there 

exists a. connected neighborhood V ot p such that V C:: U. Now V and Q p p . p 

are both connected and.VP n Q :/= ¢. Thus VP U Q is a. conn.ected set. But 

Q is a component ot s, so that V U Q·C Q, and hence V C:Q. 
p p . 

It now . 
follows that Q. = ~. V so that Q is an open set. 

p ......... p 

Now let p be a limit point of Q. Since the union of a connected 

set with one .or all of the limit points of-that set is a connected set, 

Q U (PJ .is a. connected set. If p is not an element of Q then Q U P is 

a connected set such that Q c (Q UP) and (Q UP)¢ Q. This contra.diQts 

the hypothesis that Q is a component of S. Therefore, p is a.n element 

of Q, and Q is a. closed. set. 

Since Q is both open and closed, and since tis both open and 

closed., i'(Q) is both open and closed in T. Assume now that t'(Q) IT. 
Then t(Q) and (T - t(Q)) are each open and closed in T and are disjoint. 

This implies that t(Q) and (T ~ t(Q)) a.re mutually sepa.ta.ted. But 

i'(Q) U (T - t(Q)) = T, which contradicts the hypothesis that Tis 

connected. Thus t,(Q) "" T a.a claimed. 

CONTINUITY OF OPEN MAPPINGS AND CLOSED MAPPINGS 

The ta.ct that a mapping can be open or closed without being contin­

uous raises the following question. Under what condition will a.n open 

mapping be continuous, and under what conditions will a closed mapping 

be continuous? In the following discussion, this question will be 

considered.. 
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Before proving the first theorem tor closed continuous mappings it 

will be necessary to prove the tollowfng theorems concerning continuous 

functions. 

Theorem 3.14. A !'unction f from a space S onto a space Tis con­

tinuous if and only if' :i'or every open subset G in .T, [ 1 (G) is an open 

subs et 01· S • 

Proof'. Lett be a continuous function and let G 'be an open subset 

of T. For any yin G, and for any x in :t'=1 (y), there exists a. neigh­

borhood. V o:t' x such that t'(V ) c G by the continuity o:t' I'. For each x 
x x 

in t-1 (G) ., let Vx be a neighborhood of x such that :t'(Vx) c G. The 

union o:t' all such V is an open set and furthermore, U ,-l(G)V = t-1 (G). 
X XS! X 

Now suppose t·-1 (G) is an open set in. S whenever G is open in T. 

Let y be an element of T and let Ube any neighborhood of y. For any 

x in [ 1 (y), [ 1 (u) is an open set about x such that t(t·-1 (u)) c u. 

Thus tis continuous. 

Corollary. If f is a one-to-one continuous mapping from a space 

S onto a space T, then the mapping :t'-l from Tonto Sis open. 

Theorem 3.15. A function t' ±'rom a spaces onto a space Tis con­

tinuous ii' and only ii' f-1 (H) is closed in S whenever H is closed in T. 

Proo:t'. Suppose f' is continuous and H is a. closed subset of' T. 

Then G = (T - H) is an open subset ot' T, ar:J.d by Theorem ;.12, r·-1 (G) is 

open. Therefore r.·-1cH) = (S - f-\G)) is closed in s. 

If on the other hand ~-l(H) is closed in S whenever His closed in 
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T, then -for any open set G in TJ [ 1 (G) = (s ~ f-1 (T - S)) is open in 

s. Thu~ tis continuous by Theorem ;.14. 

Theorem ;.16. [17] A tunction t trom a space S onto a space Tis 

closed and continuous if and only if t(R) = t(R'), for any subset R of S. 

Proof: Assume f is closed and continuous on s, and let R be any 

subset of S. By Theorem 3.1, f(R) c f(R), so it remains to be shown 

that t(R) c 1tR)". Let y 'be an element of t(R). Since y is an element 

of t(R), :r=1 (y) contains an element x of R. Given any neighborhood U 

of y 3 there ex:i.sts a. neighborhood. V os x such that f(V) c: U because 

ot the continuity ot t. Now since xis an element of R, xis an 

element of R or xis a limit point of R. In either case, V must con-

ta.in a point of R, so that U must contain a point ot f(R). Therefore, 

y· ·is a point ot :t'(R) or a limit point ot t(R). In any case y is any 

element ot' f(Rr so that f'(R) c t{Rj"'. Since f[RT c t(R) and i'(R) c: 
' 

f[R'y, t(R) = tW. 

If t(R) = f(R) tor any subset of R or S, then t: is clos.ed. This 

follows. since tor any closed subset Hots, f(H) = f(H) = t(HJ which is 

closed.in T~ Let us now show that tis continuous by showing that 

t~1(K) is closed in S whenever K is closed in T, and applying Theorem 

Let K be a closed subset or T and let x be a limit point of t-1(K). 

Since xis a limit point of r=1(K), t(x) is an element ot f(r-l(K)) by 

hypothesis. But· f(t-l(K)) = K since K is closed which i_mplies _f(x) is 

an element of K. Thus xis an element of t=1 (K) and t-1 (K) is closed. 

Now by Theorem 3.15., tis continuous. This completes the proof. 
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The following theorem concerning continuous functions will be use-

ful in the remainder of this chapter. 

Theorem ;.17 •. Let Sand T be first countable metric spaces and 

let f(S) ~ T be a tra.nsfo~mation of S onto T. The mapping tis contin­

uous if and only if for lf!V'ery sequence of points (x) in S converging 
n 

to a. point x ins, sequence (t(x )) converges to i"(x) in T. 
n 

Proof: Let the transformation f(S) = T be continuous at the point 

x in S, and let f.xn) be a sequence of points converging to x. Conside~ 

f(x) in T and let Ube an open set containing f(x). By the continuity 

off there exists an open set Vin s, containing x, such that f(V) c U. 

Since x = lim x, there exists a positive integer N such that for all 
n 

n > N, x is in v. This implies tor all n > N, f(x) is in U. There-
- n - n 

tore, f(x) = lim :t'(x ). 
n 

Now let x be.a point of S such that for every sequence [x J 
n· 

converging to x, (t(x )) converges to t(x); and assume f is not contin-
n . 

uous at x. Then there must exist some neighborhood U of :t'(x) s~ch that 

for any neighborhood V of xj t(V) ¢ U. Let v1 be a spherical neighbor­

hood of radius 1 a.bout x and:pick x1 in v1 such that·r(~) is not an 

element of U. Let r 2 = p (x.,xl.). Since S is first countable, it is 

possible to choose a ne:i,.ghborhood v2 o:t' x such that v2 is contained in 

the spherical neighborhood of radius r 2 about x. Pick x2 in v2 such 

that 'f(x2) is not a.n element ot U. Ii' points xl,x2,, ••• »Xn have been 

chosen, let r 1 = p (x,x ) and let V 1 be an open set about x such that n+ n .n+ 

V 1 i.s contained in the spherical neighborhood oi' radius r 1 a.bout x. n+ · · n+ 

Choose x 1 in V 1 such that t(x 1 ) is not an element of u. . n+ n+, n+ · · 



Continuing in this manner, one can inductively choose a sequence [xn} 

oi' points in S such that x = lim xn' but such that. (:t'(xn) J does not 

converge to x. This contradicts the hypo,thesis, hence f must be con-

tinuous at x. 

The next two theorems as :well as .. the last two theorems in this 

chapter are consequences o~ Theorem ,.17. 

4; 

Theorem ;.18. [17] Let Sand T. be separable m~tric spaces and let 

f from S onto T be a closed transformation. It tor each y ~ T, t-1(y) 

is countable compact, and if for each convergent sequence f.xn) ins,. 

{f(x )} has a limit point in Tor is finite, then tis continuous. 
n 

Proof: Let fxn) be a convergent sequence in S with limit point x 

and assume {t(xn)} is intinit~. Assume ft(xn)} has a limit point z in 

T such that·z f f(x). Sine~ the only limit point of a sequence in a 

metric space is the sequential limit point, this is equivalent to assum­

ing f is not continuous ~Y Theorem 3.17. Since x n t-1(z) =¢,and 

since a metric space is completely normal [8,110)., we can tind disjoint 

-1( ) open sets U and V containing x and t · z respec~ively. Furthermore, 

since Sis a metric space, there exists a neighborhood U of x such . x 

that Ux c U. Now Ux n V = p since U n V. ~ ~· But ~.(u) is closed since 

tis a cl~sed mapping, and .turthermore't(U) must contain all but a fin­
. x· . 

ite n1umper ot :th.e pqints of (.t(xn)}. Thus t(Ux) must contain z, which 

leads to a contradiction. Hence it must be true that z = t(x), so that 

f is continuous at x. Now by Theorem 3.17 f is continuous on S. 

It the sequence [t(xn)J is finite, then {f(xn)) =.b1,b2,,.,,\, 

where k is finite. Now there must exist some~' 1 < i < k such that 
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countably compact., hence must contain a limit point in S. But r-l(b.) 
J. 

as a subsequence of [xn} can have only the point x as a limit point, so 

that x :~ :f-1(bj) and i'(x) = bi. Therefore, f(x) is a sequential limit 

point of i'(x ), and t' is continuous at x. Now by Theorem 3.17j t must 
n 

be continuous at every point ot s. 

It we require that spaces S and T in Theorem 3.18 be countably 

compact, then the requirement th.at for each convergent sequence {xn} 

in s., (f(xn) J have a. limit point in T or be finite can be dropped. 

Furtnermore, this theorem can be generalized to the following it and 

only if theorem. 

Theorem 3.19.. Let S and T be first countable metric spaces and 

let f be a transformation from S onto T. Then S is countably compact 

and tis continuous on Sit and only ~t tis closed, Tis countably 

compact., and for each yin T, f-1 (y) is countably compact. 

Proof. Let t' be closed, T be countably compact, and, tor each y in 

T., .l~t t-1 (y) be countably compact. By Theorem 3.9, S is countably 

compact. Since Tis countably compact tor any sequence fxn) in S, the 

set {t(x )J in T must have a limit point or be finite. Hence by 
n 

Theorem 3~18, mapping tis continuous. 

Now assume Sis countably compact and that tis continuous. Let H. 

be a closed subset of Sand consider t(H). It y is a limit point of 

f(H) there exists a convergent sequence fy) of distinct points of H 
n 

such that limy = y, since Tis a first countable metric space. Pick 
n 

a sequence K from the indexed collection of sets (:t-1 (yn)J such that 



Kc H and f is one-to-one from K onto f y ) • Since S .i!> countably com-. . . n 

pa.ctJ K has a limit point x in S such that x in an element of K. 

Furthermore, .x is a. sequential limit point of K since S is a. first 

countable metric space. By the continuity off, i'(K) = [y J has n 

,. 

limit point t(x) = y.. Thus y is an element ot t(H), f(H) is closed, 

and f is a closed mapping on s. 

To show that Tis countably compact.when Sis countably compact, 

let A be an infinite subset of T. Let (y} be an infinite sequence of n . . 

points in A. Now by the argument used. tor sequ,ence (ynJ in the pre= 

ceeding para.gra.phJ one can show that [ynJ must have a s~uentia.l limit 

point y which belongs to (y J. Thus A has a. limit point y which belongs n· 

to A, and Tis countably compa.cto 

For y ~ T, t-~{y) is either finite or in~inite •.. It t-1 (y) is in­

finite, let B be an infinite subset of t-1 (y). Since S is countably 

compact, there exists some x in B such that.xis a limit point of B. 

Thus t~1 (y) is countably compact. This completes the proot. 

The next theorem concerning continuity ot closed mappings will be 

usetul in Chapter. IV. 

Theorem :,.20. [6] If' S is a. regular space, T is a compact space, 

and i:t' t is a clos.ed. mapping i'rom S onto T such that t-1 (y) is closed 

for each y € T, then tis c.ontinuous • 

. Proof. Suppose f is not continuous at a point x in S. Then there 

exists a. neighborhood V of t(x) suc.h iihat tor a.ny neighborhood U o:f x, 

i'(U) n (T - V) -I,:¢• Since Tis compact a.nd since (T - V) and f(U) a.re 

compact, it follows that (T - V) n f(U) is clos.ed and compact. For any 
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n . 
:f.'ini te collection u1J u2,.,,., Un oi' neighborhoods of x, (iQl Ui) n (T - V) 

n 
t ¢. Otherwise, U = 1Q1 u1 is an open set containing x such that 

t(U) c V, and f is cbntinuous •. This implies that the intersection ot all 

set~ ot the form t(U) n. (T - U), where U is an open set containing x, is 

non-empty [14,136]. Let y be an element of the intersection of all sets 

otthe form :t"(U) n (T - V), where U is an open set·conta.ining x. Since 

y -f.,t(x), x ~ t'"'1 (y) and since f-1 (y) is closed and Sis regular, there 
. - . .. 1 

exists disjoint open sets u1 and. u2 containing ·[ (y) and x, respective-

ly. Since t~1(y) c u1 and since u1 n u2 =¢it follows that 

y ~ t (u2) n . (T .. - V). This is a contradiction, hence t must be 

continuous. 

Let us turn now to a consideration of theorems concerning conti-

nuity of transformation which are both open and closed. 

Theorem 3.21. Let Sand T be first countable metric spaces with T 

countably compact and let t be a transformation from S onto~ which is 

both open and closed. The transformation tis continuous it and only 

if t=1 (y) is closed for each yin T. 

Proof. Let f be an op en and closed. mapping and. 1 et [ x n J be a 

sequence in S with sequential limit point Xo If we can show that t(x) 

is a sequential limit point ot (r(x )J 7 then f will be continuous by 
n 

Theorem 3.17. Now ff(xn)} is either an infinite subset of Tor [f(xn~} 
' \ .. 

can be expressed as a set {y1,y2, ••• ,ykJ of point in T with k finiteo 

I:t" (t(xn)J is infinite, then (t(xn)J must have a limit pointy in T, 

and since y is a first countable metric space, y is a sequential 



limit point of (f(x ) } • Since :t·-1 (y) = r-1(y) for each y e T.~ and . n . 

47 

since (~(~n)) con;erges toy, lim inf ff-1 (t(xn))} c t-1 (y) by Theorem 

3.5. Furthermore, xis an element of lim inf (t-1(t(x ))), so that n . 

:t"(x) = y and t: is continuous by Theorem 3.17 • 

. If ff(xn)J = {Y1,y2pn,Yk) with k finite, then there exists at 

least one 1, l ~ i ~ k, such that t-1 (y1) is infinite. Thus t-1 (yi) is 

a subsequence of (xnJ and xis a sequential limit point of {t-1 (y1)}. 

But (t-1 (yi)] is closed by hypothesis so that x e: t'.'"1 (y1) and .J;'(x) = Yi• 

Now supp~se there exists some j, 1 ~ j ~ k, j ~ 1, such that f-1 (yj) is 

infinite. Then f(x) = yj so.t~t yi = yj and i = j .. This is a. contra.-

0diction, so that (f-1 (:,i:j)J is finite if i i j. This implie.s that a.li 

but a. finite number of points of fxn} map onto y 1 = i'(x) so that i'(x) 

is a. sequential limit point of (f(xn)J and f is continuous by Theorem 

3.17 • 

Now assume i' is continuo~s and let y be an element of T. If x 

is a limit point of t-1(y), then there exists a sequence (x} of points 
n 

in t-1(y) which converges to·x. By the continuity oft, (t(xn)} must 

converge to f(x). But (f(x ) J = {y} ~.o that i'(x) = y. Therefore, x . n . 

is an element of t-1(y) and r=1 (y) is closed as claimed. 

Corollary. It tis a one=to=one function from a first countable 

metric space S onto a first countable metric space T which .is both open 

and closed, then tis continuous. 

Theorem 3.22. Let Sand T be first cou,ntable metric spaces and 

let t from 8 onto :T be a.n open mapping. It T is countably compact and 

if t-1 (y) is a single point tor all but a finite number of limit points 
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in ~1, then f is a homeomorphi$m. 

Proof. Let us first show. f is on:e-to-one. Suppose there exists. a 

limit pointy in T such that f-1 (y) contains two or more points. Now y 

a limit point of' T implies there exists a sequence of dis tin.ct points 

{ynJ converging toy. Since f is open, [ 1 (y)c lim inf {f-1 (yn)} by 

Theorem 3,5 .. Let x1 and x2 be elements of r:-1 (y) and let U and V be 

disjoint open sets in S containing x1 and x2 , respectively. It now 
. -1 . . . . 

follows that both U and V must contain points from f (yn) for all but a 

finite number of n. This contradicts the hypothesis, hence f-1 (y) mus.t 

be a single point and f is one-to-one. The one-to-one, open mappi'ng f 

is onto by hypothesis and is conti1:1uous by the corollary to Theorem 

3,21. Thus f is a homeomorphism. 



CHAPTER IV 

COMPACT PRESERVING MAPPINGS AND CONNECTED MAPPINGS 

INTRODUCTION 

The following theorems give two characteristics of a continuous 

±'unction t from a space S into a space T. 

Theorem 4 .1. Let S and. T be spaces and. let i' be a continuous map-

ping from S into ~,. It C is a connected subset oi' S then :t'(C) is a 

connected. subset ot T [8, 78]. 

Theorem 4.2. Let Sand T be spaces and let f be a continuous map-

ping :t'rom S into T. If C is a compact subset of S then' t(C) is a 

compact subset of T. 

Proof. Let C be a compact subset of Sand consider f(C). Let K 

·be any open covering of' :t'(C). Since !' 1$ continuousj for any open set 

=le . U in K, r· U) is open in s. Let ff= (r-1 (u) I U .s K}. Now H is an 

open covering oi' c, and since c is compact., a finite collection r-1 cul)' 

:t'=1 (u2), ••• , r=1 (uk) o':t' open set in H will cover C. Thus the :t'ini te 

collection u1.,u2, ••• , Uk o:t' open sets in K will cover f(C), and f(C) is 

compact. 

These two fundamental prpperties of continuous functions naturally 

lead to two lines or research. The requirements i'or a subset o:t• a space 
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to be either connected or compact are rather strong. Thus dne might 

expect that a. fu~ction that 'preserve~ e~~her_ c~nnected subsets or com­

pa~t subset.a would have interestin~ properties/ One is a.lso l~d to 

inquire what condi t:i.ons, other than preserv.ing connected s~ts_ ?1:' .. cc:>r_n­

pact sets, a function must possess to be continuous. The purpose of 

this chapter is to investigate these lines of inquiry. Formal defini-

tioris will now be presented tor connected and compact preserving 

mappings. 

Definition 4.1. A function t from a. space S into a space Tis 

said to be connected it and only it tor every c.onnected subset C of S, 

f(C) is a connected subset of T. 

Definition 4.2. A tunctiqn t from a space S into a space Tis 

said to be compact preserving if and only if for every c·ompact subset 

C of s, f(G) is a compact subset of T. 

PROPERTIES OF COMPACT PRESERVING W,U>PINGS 

AND CONTINUITY OF COMPACT PRESERVING MAPPINGS 

Compact sets and countably compact sets were defined in Chapter II. 

The following theorem relating these concepts will be useful in the 

development of the properties of com~act preserving ma.ppingso 

Theorem 4.3. Every compact subset Hof a space Sis countably 

compacto It in addition, Sis a metric space, the g.onyerse is also 

true [8 ,.1o8] • 

In the following, properties of compact preserving mappings, and 



the relationship of compact preserving mappings to other mappings wi~l 

be discussed in one section. This organization has been chosen since 

· the theorems giving properties o:f' compact preserving mappings lead 

naturally into theorems of the other type. 
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Theorem 4o4. [15] Let Sand T be metric spaces and let f 'be a com-

pa.ct preserving mapping :from S into T, such that f is discontinueus at 

a point p in s. Then there exists a point q in T and a sequence {Pi)_ 

of points in S converging to point p such that, f(p) /= q and f(pi) = q 

for each io 

Proof. Since f is discontinuous at p and since Sis a metric 

spac_e, we can find a sequence of points {xi) in S with lim xi = p and 
' 

an open set Vin T with :f'(p) £ V and V n (f(xi)) = ¢. If an infinite 

number of points from {xi) map onto a single point q in T we are finish­

ed since the subsequence :f'-1 (q} n (xi} o:f' sequence (xi) can be taken as 

the sequence (p1). Thus assume that each point q in the ima.ge o:f' {xi) 

is the image o:f' only a. finite number of point,$ of f xi).. Hence a sub-
- ' 

sequence Y = (Yi) of the sequence (xi~ must map one-to-on~ on-to the 

set Q = {q1 ,q2,q3, ••• ) of image points of {xi) mider f. The set YU fpJ 

is a countably compact subset of a metric spa.ce, hence is compact. 

Therefore, the image set f(Y U fpJ) = Q U f(p) is com.pa.ct an.d countably 

compact, since f is a compact preserving. Since f(Y) n V = p, p can• 

not be a limit point of (f(y) U (pJ), and hence'set f(Y) must be 

countably compact. This implies that for some j, f(yj) is a limit 

point f(Y). Now set {(Y - (yjJ)) U (p} is compact and, as above, 

f(Y - (yj)) is compact. However the set f(Y - (yjJ) = (t(Y) - [f(yj))J 
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is not closedo This gives a contradiction since a compact subset of a 

metric space is always closed. Thus we must assume that an infinite 

number o:t' the points of (x1 j maps onto a single poin~ q in T and 
. ...1 

can be chosen as the subsequence t (q) n [xi} ot sequence [xiJ. 

fp , , iJ 

The preceeding theorem states an interesting property of.a compact 

preserving mapping. The disclosure of this characteristic, however, 

is not ·the only significance of this theorem, since the next theorem 

relating compact' preserving rnappinef$ to continuous mappinS9 is a conse-

quence of this theorem. 

Theorem 4.5. [15] Let Sand T be metric spaces and let t from S 

onto T be a compact preserving mapping. If t-1 (q) is closed for every 

q in T, then f. is continuous. 

,. 

Proof. Assume t is not continuous and let p be an element of S 

such ·that t is not continuous at p. By Theorem 4 _.4, we find. a point 

q in T and a sequence (pi) of points in S such that lim P{ = P, 

f(p) ; ,.q, and f(p.) = q tor all 1. Now the set f-1 (q) is closed by 
i . ' 

hypothesis, hence must contain po This is a contradiction, so that t 

must be continuous. 

Corollary o .Every· one-to ... one compact. preserving . mapping ·from a 

metric space S onto a· metric space T is continuous~.·· 

. ,· ' ' ( 

Prooi'o The proof :t'ollow.s .imrnea.i&tely,.from Theorem.4o5.s~nce every 
;, ' . , .,,. . 

poin~ of, a metrfc .'$p{l.ce i.s a closed. sti.b.set .of -:that spa.ceo 

Using the results of Theorem 4.4, one cat1 easily construct examples 
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.t. 

following is one such example • 

. Ex~le 4 .• l. Let S be the real numbers with the usual topology 
·.... l ' .~ • -

and let f ·be.de:f'ined by: 

f(x) = O if xis ra.tio~al, and 

t(x) == 1 it x·is irrational. 

Function tis discontinuous·everywhere, but is com.pact pres~rv;ng s~n~e 

eyery subset of S is mapped onto one ot the compact sets [O,l), {o), or '. 

f.J-). 

If spaces S-and Tare npt metric spaces, the conclusion of Theorem 

4 • 5 may no long_er follow. However,, it is· sometimes possible to place 
. . 

alter~ate conditions on the.spaces tha.t_:will ins:u;re continuity. '1'):ie 

n~t two theorems give examples of such alternate conditions tor 

·certain _spaces. 

Det~~ition 4.3. A space-Sis local:ly compact it and only if, ;or 

every point pin S,a.nd tor everf.neigh.borhood U of P, there exists a 
. .. 

neighborhood V <?f p such that,VC::U and'V is compact. 
,, CY. r.· 

Theorem 4.6. [7] Let S be&. locally compact Hausdorff space.and 

let T be a Hausdorff space. Then,it·t··is compact preserving, and it 

t-1 (y) is clos~ tor each Y. €.'1', tis continuou~. 

Proof. Consider any point x in. s_. Since S is locally compact, 

there exists a neighborhood U ot x such.~bat·U is compact. Since 

contin:ui ty is a. local property, one need only c~ns.ider t restricted. to,. 

·. ·jj with _i regarded as a subspace of S. Let us ·now show that the 



conditions of Theorem 3.20 are satisfied and the conclusion will follow • 
.. •' ' 

To see that, i is regular, let F be a. closed subset of i and let x 
•e I j 

be an element of U .. Fo For each y in U choose neighborhood V Eµid U . .. y . y 

~f y and x, respectively, such that VY n UY= tp. This is possible since 

U is Hausdorff. The collection {v7), y t F, i~ an open covering of F. 

Now Fis a closed subset of a. compact space and is., there.fore., compact. 

Hence there exists a. finite suboollection V ., V , •• ~., V of {V J, 
k yl Y2 . yk . y 

y ~ F, that covers F. The sets iul V and 
n = ~ 

· inl U a.re the. desired open sets containing·F and x, respectively., so 
= Y1 '. 

that ti is regular. 

f:?pace F(u) is compact since U is compact and f is compact 

preserving. 

To verify that f is closed on ii, let F be any closed subset of u. 

Since U i~ compact, any closed subset of U is CO!lij)act. Therefore, :f'(F) 

is a compact subset of f(U). Because f(F) is a compact subset of the 

Hausdorff space :f(U), f(F) is closed (8.,66]. 

Since all of the conditions of Theorem 3.20 are satisfied., f is 

c.ontinuous at x. Point x was chosen arbitrarily, however, so f is 

continuous on s. 

Definition 4.4. A space S will ·be said~ have.property !t!!. 

point!_ if and only if., for every infinite subset A of Shaving pas an 

accumulation point, there exists a compact subset of AU (P) having p 

asa.n accumulf;!,tion point. 

Theorem 4.7. [7] Let Sand 'f be Hausdor:ff spaces and let :f' from S 

* onto 'f be a. compaat preserving mapping. Then if S has property K at x 
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and i:f r·=1 (y) is closed :i'or each y € T', i' is continuous at Xo 

Proo±': Ii' x is an isolated point the proof is trivial, so it may 

be assumed xis not isolated. Suppose f is not continuous at x:. Then 

there exists some neighborhood V of' i'(x) such that tor each open set U 

containing x there exists an x in Un [ 1 (T - V). For each neighbor­
u 

hood U of x choose a point x and let A be the set oi' all such x • Set 
. u u 

A is infl.nite since x is an accumulation point o:t' JL Hence, there 

exists some compact subset K of AU {x} such that xis an accumulation 

' point of K. By Theorem 4.6, :t' restricted to K is continuous. This is 

a contradiction since i'(K) c (T = V) and i'(x) is in V. Thus function 

tis continuous at x. 

The next theorems state a relationship between compact subsets 

and closed subsets of compact Hausdorff spaces which implies a corres-

ponding relationship between closed mapping;; and compact preserving 

mappings. 

Theorem 4 .8. Let S be s, compact Hausdorff space. A subset. H of 

S is ciosed it' and only ii' H is compact. 

Proof: Assume H is a closed subset of a compact Hausdori'i' space 

S:; ·and let (UaJ be an open covering oi' H. The collection tUo;} U (S - H) 

is an open covering of s. Since Sis compact a finite number of the 

sets in collection (Ua1 U (s - H) wi.11 cover S. Thererorej a I~ini te 

number ot' sets :t'rom collection [ua} will cover H and H is compact. 

Now assume H is a compact subset ot the compact Hausdorr'i' space S. 

Let us show that His closed by showing that no point o:f (s - H) is a. 



lim.i t point oi' H. Let q be any point o:t' (S = H) • For ea.ch y in H, 

choose disjoint neighborhoods UY and VY /onta.ining y and q, respective­

ly. 11:his is possible since S i.s a Hausdorff space. The collection 

{u J, y E H.9 is an open covering of the compact set H, hence a finite 
y •·.. k 

subcollection U ,u , •.• ,u will cover H. 
Y1 Y2 yk 

The open set 1Q1 Vyk is 

an open set containing x which1 does not intersect H. Thus q is not a. 

limit point of H, and His closed. 

The signi.:i:'ic~ce oi' Theorem.- 4 • .8 is that a mapping f :t'rom a. compact 

Hausdorr'f space S into a compact Hausdori':t'. space T will be closed i±' 

and only if f is compact preserving. Thus most of the theorems of 

Chapter III concerning closed mapping give rise to theorems concerning 

compact preserv:lng mappings. 

PROPERTIES Of CONNECTED MAPPINGS 

In the tallowing theorems some properties of ,connected mapping will 

be deve;toped. As with compapt preserving ma.ppi.ngs, th~se theorems will 

lead into theorem relating connected m~ppings·to continuous mappings., 

Theo,rem 4.9. [21] Let :i:' be a connected mapping o:f the Hausdor:t'f, 

space S ;! .. nto the Hausdorff space T. It, C · is any connected subset ot S 

then f(C) c: ·r'(Cj~-

.Proof: Let C be a connected subset of Sand let q 'be an element of 
I 

:t'~C). We wi~:h to sh<;>w that q is an e:)..ement of f(c'T.· Since q E: :t'(C), 

there exists some.Pin C such ,that t'(p) = c. If pis inc, then :t'(p) 

= q · is in r'(C) and hence in r'(C). Ir' p is not in c, then p is a limit 

point of C. Now set CU (P} is a connected set since the union of a 

..., 
\ 
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connected set with a limit point oi' that set is connected and 

I'(C U (P)) = f(C) U (q} i.s: con1:ected. Now assume q is not an element 

of f(C). Since Tis Hausdorff, no point of C is a limit point of fqJ~ 

But this implies i'(C) U (q} is not connected which is a contradiction. 

There:t'ore.9 q € f(C) and :t'(C) c r(c).'. 

The next theorem is a consequence of' Theorem 4. 9. 

Theorem 4.10 [21] L:t s1 , 82 and 83 be Hausdo:r:tf spaces and let 

f be a connected mapping of s1x s2 into 83•.. Ir' f is a connected map­

ping, then t has the following properties: (i) f(x,B) is connected for 

any x.in s1 and f'or any connected subset Bin s2, (ii) f(A,y) is con­

necte.d tor any connected subset A of s1 arid for any y in 82 ~ 

:. ~bo:t' ot ( i). Assume there exists a point x in 81 and a connected 

subse{ B ,oi' 82 such that (x,B) = ( (:x,y) I y e: B) is not connec,ted. Then 

the~e exists disjoint nonempty subsets H1 .and H2 in s1X s2 such that 

(x,B) C:: Hl. U H2, Hl n H2 = ¢ and Hl n H2 = ¢. Let Tl = {y I y € :S...and 

(x,y) Ei H1 ) and let T2 (y J y@: Band (x,y) Ei; H2J. For any y € B, 

y €, T1 , or y e, :T2, s:i.nce (x,B) c.: (H1 U H2). Furthermore, T1 and T2 a.re 

nonempty, for otherwise, H1 or H2 is empty. It is also t.rue that 

~.\ n T2 = p and Tl n T2 = ¢; otherwise; I\ n H2 ~ ¢.or Hl n H2 ~ ¢. 
This, however, implies Bis not connected_. which is a contradiction. 

ThereforeJ (x,B) is connected and f connected implies f(x,B) is 

connected. 

The proof of (ii) follows in an analogous manner. 

The following example shows that conditions (i)· and (ii) oi' 

Theorem 4.10 are not sufficient for a function to be connected. 
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Example 4.2. [21] Let :f' be defined on the Euclidean plane as 

follows: 

f(x,y) c 2x:y 2 if x F O or y p O 
x + y 

:r(o,o) == o. 

Function f is continuous in each variable separately, a.nd is therefore 

connected in each variable. This means that f satisfies conditions (i) 

and (ii) of Theorem 4.lOo However, along the line'x = y, which is a 

connected subset of the plane, f(x,x) = 1/2 if x f, o while f(O,O) = o. 

Hence, mapping f is not connected. 
i 

A partial converse does exist for Theorem 4ol0. 

Theorem 4.llo [21] Let s1, s2 and s3 be Hausdorff spaces and let f 

be a transformation from 81 )( 82 into s3o If f has properties (i) and 

(ii) of Theorem 4.10, then f(A,B) is connected whenever A is connected 

in s1 and Bis connected in s2o 

Proof. Let f satisfy conditions (i) and (ii) and let A an4 B be 

connected subsets of s1 and s2 respectively. Assume f(A,B) = (f(x,y)j 

x EA, y EB) is not connected. Then f(A,B) can be expressed as the 

union of two nonempty disjoint sets Hand K such that H n K = p and 

if n K = p. Now for a fixed point x1 ot A, f(x1,B) ~ (f(x1 ,y)j ya B) 

is connected by condition (i), hence must be entirely contained in 

either Hor K, say Ho Similarly for a fixed point y1 in B, f(A,yi) 

must be contained in either Hor K'by condition (ii)o However, 

f(x1,y1) is a.n element of H, so f(A,y1) must 'be a subset of H. · Since 

the same argument is true for every y € B, f(A,B) is contained in H. 
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This implies K = ¢ which is a contradiction. Theretore, t(A,B) must 'be 

connected a.a claimed. 

A set will now be defined which will lead to a theorem giving a 

property of connected mappings as well as a theorem giving necessary 

and sufficient conditions for a connected mapping to be continuous. 

Definition 4.5. Lett be a mapping trom a space S into a space T. 

For every point pin S let the~ of limit points of!.!! ;e., denoted 

by L(t,p) 3 be the set of all points q in T·ror which there exists a 

sequence of (pn) of points in S such that limit pn = p and limit f(pn) 

The following property of sset L(t,p) will be used in the proof ot 

the next two theorems. 

Lemma 4.1. [21] Suppose f is a mapping from a first countable 

Hausdor:t"f space S into a first countable space T. For every point p 

ins, L(t,p) is closed. 

Proof: Let p be any point in Sand let q be a limit point of 

Since Sis first countable, there exists a sequence (u} of 
n 

open sets containing p such tha.t i'or any open set U containing p there 

exists a. positive integer N1 such that n > N1 implies Un c U. We may 

a~:sume that {u J is monotone decreasing.. Similarly, a monotone sequence 
n 

[Vn} pf open sets can be chosen in T with the property that q ~ Vn tor 

each n, and such t~t for ea.ch open set it containing q there exists a 

positive I.integer N2 such that n > N2 implies V n c V. 

Now ~?nsider Vj for some fixed positive integer j. Since q is a 
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limit point ot L(i'J>p) there exists some point q' of L(f,p)·in 

. Vj n (L(t,p) - {q)). Because q' , L(f,p), there exists a. sequence of 

points (p J in S such tha.t limit p = p and limit f(p ) -= q •. Now 
n , n n 

since limit t(pn) = q', and since Yj is an open set containing q', there 

exists a positive integer N3 such tha.t n >N3 implies t(pn) e vj. 
Furthermore, since 1:tmit pn "" p there exists a posi.tive integer N4 such 

that n > N4 implies pn is in ,U j. Let N = ma.x(N3,N4} and choose a point 

p where n > N. Then p is in Uj and ±'(p) is in Vj. Relabel. the n n n . 

point pn as xj. By the a.bgire construction we can pick s. point x j in U j 

tor ea.ch j such that t.(.xj) will be an element of vj. The sequence (xj), 

so selected, -wfll have the property tha.t limit xj '"'p and. limit .t(xj) 

= q., Thus q is.an .element of L(i",.p) a.nd. L(i\,p) i.s closed. 
l 

Theorem 4.12. [21] It tis a connected mapping tram a locally 

connect,d first countably Hausdorff space~ into the compact first 

countable Hausdorff space TJ> ~hen L(t,p) is a connected subset of T tor 

every p in;, S • 

Proo:f'o Let us first n,ote that T as a. compact Hausd.or:t"!' space is 

normal-~ Now assume L(t ,P) is not connected for some p in S. Then 

L(f,p) can be _expressed as the union of two sets A a.nd B where 

A I¢, B ~¢,An B = p and An B = ¢. By Lemma. 4.1, L(t,p) is closed. 

This implies that both A and,B a.re clos~d.. Since space T!is normal, 
~ ·~ 

open s'ets U and. V can be tound. such that A c U, B c V and. U fl V = p 1 so 

that' L(t,p) "" (AU B) c (U U V). We shall now obtain a contra.diction 

by showing that'L(I",p) is a subset ot either U or v. 

It will first be shown that there exists at least one open set M 
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containing p such that t(M) c (U U V). Assume that no op·en set contain­

ing :p is mapped :into(U U V). Space. S is first countable, hence there 

exists a monotone decreasing sequence {M1J ot open sets each containing 

p and such that tor any open set M containing p there exists an integer 

N such that Mic M for all i > N .. For each i, pick an element pi in.Mi 

such·iha.t t(p1) ~ T - ~U U V)o Since T ':" (U U v·) is a. closed subset of 

a. com.pa.ct metric space, it is compact, hence~counta.bly compact .. Thus 

sequence {t(pn)) must have a limit point q in T - (U UV), and some 

subsequence of (t(p )J will have q as a sequential limit point. This is n . 

a contra.diction since limit pn = p which implies q E: L(i'.9p). Thus.we 
'. 

must conclude-that some open set M containing p maps into (U UV)~ 

Now consider an .open set M about p such that t(M) c:: (U U V). Since 

S is locaJ.ly-,connected, there exists a connected open set C containing p 

such that t(C) c (U UV). Transformation tis connected, so that f(C) 

must be connected.. Theretore,f(C) c U or t(C) c ,V. This implies. L(f ,;P) 

· mu~,;t be contained in e:i;ther U or V which contra.diets the assµm.ptions 
:. 1' i ', 

L(:t',p) 0 .~ f p .and L(:t',p) n V f. ¢. · Renee L(t,p) must be conne~ted. 
,,,.,: 
,,i 

One can note the L(t,p) i.s never_empty, since f(p) is a.lwa.;v:~ an 
.,. . .~ r ... 'J 

element ot L(:t',p). This follows from -the fact f(p) is the limit of the 

sequence (t(pi)}., where pi;,.. p for ea.ch i. 

CONTINUITY OF CONNECTED MAPrINGS 

Theorem .. 4.12 leads to the following theorem which states a neces-

sary and sufficient condition for a connected function to be continuouso 

Theorem 4.13. [21] If t· is a connected mapping from the locally 
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connected i'irst countable Hausdor!':t' space S into the compact t'irst count-

able Hausdorf!' space Ti the:[\ it:' is continuous at a point p in S if' and 

only if set L(f,p) is finite or denumerable. 

Prooi'. Since a continuous mapping is col;'].nected,a.nd has L(r',p) = 

:t'(p)., we need only prove that the.cond;t.tion L(f,p) ;s finite or 

denumerable is sui'iic:i.ent. By Theorem 4.12, L(I',p) is connected and 

as a closed subset or a compact space +s compact. Let us now show that 

L(:t,p) is either a single point or is non-denumerable. Assume set L(t',p) 
. ' 

is denumerable but does not consist of a single point. If L(f,p) is 

assumed .·to be tini te we get an immediate contradiction since each point 

ot a. :t"ini.te subset of a Hausdorff spac.e ,is an isolated point which 

implies L(t,p) :i.s not connected. I:t' L(:t',p) is assumed to be an infinite 

denumerable set, a contradiction can be obtained as t'ollows. Let L(t,p) 

be ordered by the positive integers and let M1 and u2 be disjoint open 

set containing x1 and x2, respectively. Now consider M1 • Since M1 n u2 

= ¢, x2 is not an element of M.1 • Thus M1 qan not contain all of L(f,p). 

Now if. L(f,p) ·~ M1 is finite we can obtain a contradiction by construct-

. ·'ing an open set about x2 that would c.~onta.in no other point of L(f,p). 

This would lead to a contradiction since no point ot a connect~d set can 

be an isolated point. 

Now consider the poi,n,t x2 in L(±',p) = M1 and let x1 be the element 
3 

of least index in L(t,p) = ~· Consider .the closed set B2 = x2 U 

(Boundry·M2). Since this set is a compact subset of a. Hausdorff space 

it is possible to construct disjoint open sets M and u1 containing B 
' 2 3 

and xi3 respectively. Now. x13 is not~ limit point of F\ U i 2 = ~l U M2 



a.nd as a.bove, (L{t,p) - M1 U M2) must be infinite¢ Continuing in this 

manner until thi.e elements of L(t,p) are exhausted one can construct an 
l!CI 

op~n covering i~l Mi ot L(f,p) and a sequence fx1J of points ot L(f,p) 
, n 

such that x1 is not an element of i~l ~1 • 'Thus no finite subcollec-
a:1 n+l 

tion of i~l M1 can cover L(f' ,P). :But L(f ,P) as a closed.· subset· of a. 

compact spa.ce. i~ compa,cto This is a. contra.diction, hence L(t,p) must 

be a single point or non-denum~rable. By hyppthesis, L(f,p) is finite, 

so L(f';P) must ·be a single,point Eµid '!? must be continuous. 

, Tlle following theorems give alternate su::t'fici.ent conditions tor a 

connected function to be continuous. Since a ~ontinuous function is 

always connected, these conditions will not need to be stated as neces-

sary and sutticient conditions. The firErt two of these theorems make 

use Oi' the concept of atwo•rst a removable discontinuity. 

Definition 4, •. 6.a., A mapping t from a. Hausdorff space S into a. 

Ha.usdortf space Tis said to have~ worst! removable discontinuity 1!! 
i 

! point :E, in Sit and only it for every sequence [pnJ of points in S 

converging top with each pn; p, lim f(pn) = q tor some q in T. 

Vnder detinition 4.6.a., a. function f which is continuous at a 

point p,i:n S has at worst a removable discontinuity at p. The following 

example gives a. function which is not continuous, has at worst a remov-

able discontinuity at :each pointJ and is connected. 

Example 4.3. Let S be the set ot points on the real number line 

ot the :f:"ori;n 1/n, n = l, 2, 3, .... , a.long with the point o, and. let S 

have the usual topoloi;i;y. De:f'in,e t qy: 



f(;p) = l_if p ~ 0 

f(O).,. Oo 
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The" ;f,.inction :f is co:r.rt-1:nuous a;t every-point in S except o.. At the point . . --·· .... ·~· ' . .., .... -· 

o, f has at worst a removab-;l,~ ·discontinuity since for any s·equenc:e fp ) ---· ........... ...... .. ...... . ·- . .. . . .. .. .. .. ; .. n 

- of points converging to O, lim f (p ) = lo Furthermore:ii f' is ~onnected ·"·-· ..... ··- ... ... .... . .. . .. . . n. . .. .. . . . . . 

on S since the only connected subsets of S consist of single pointso 

Then~ theorem gives _conditions that will imply a connected 

function with at worst a removable discontinuity is continuouso 

Theorem 4ol4o [21] Let f be a connected mapping of the locally 
. " 

connected first countable Hausdorff space S into the Hausdorff ~pace To 

Then f is continuous at a point pin S i:f and only if f has at W"Orst a 

removable discontinuity at Po 

Proofo Suppose f is connected and has at worst a removable dis= 

continuity at po ~sume there exists a sequence (pn) which converges to 

p a.nd is such that the unique point q = lim f(p ) is not equal to f{p). n 

This is equivalent to assuming f is not continuous~ Since Tis Hausdorff, 

disjoint oj;)en sets U and V can be chosen such that q ~ U and f(p) e Vo 

Now there must exist at least one op!Ml set M containing p such tha.t for 

any point x in (pn) n M, f(x) is an -element,of Uo If this is not, true, 

one can µse the fact that Sis first countable to construct a sequence 

ot: point~ (pnJ ,converging to p and such tha1f lim f(pn) f,,. qo Since S is 

locally connected, there exists a connected open set C containing p su:.ch 

that C c Mo Set .f(C) must be a connected subset of T sinbe f is connect..; 

ed. But f(p) is contained in V and f(C - {p)) must be contained in u. 

This is a contradiction, since this implies f(C) is not connected. Thus 



(t(p))must equal q and tis continuous at p. 

Since a. continuous mapping i.1:1 connected and has at, mo.st a. removable 

discontinuity a.ta point PP the conditions given are both necessary and. 

sut:t'ioie:rrt o 

The co:rrid.ltions placed on space Sin Tp.eorem 4.,14 were rather strong 

c,onditionso I:t' the,d.etinition o:t' at worst a. removable discontinuity at 

a point p is gcenera.lizied appropriately» the restri9tion that S be· i'irst 

countable ~an be removed. The,des~~ed generalization is stated in the 

next definition. 

Definition 4.6.-b. A function t :t'rom a space S into a space Tis 

,said to have ~ wors~ !. ret:lllovable disccmtinui tz at .! point E. of S i:t' 

there exists a point q in T such that for every neighborhood U of q, 

there exists a neighborhood V ot p such that f(U - fpJ) c: V. 

From the definition ot a convergent sequence, one can easily show 

that Definition 4.6.b always implies Definition 4.6.a.. In the proof of 

Theorem 4.14 it was shown that Definition 4.6.a implies definition 4.6.b 

whenever Sis a tirst countable Hausdorff space. Therefore, Definitions 

4.6.a and 4.6.b are equivalent tor first countable Ha.usdortt spaces. 

Theorem 4.14 can now be restated as follows it Definition 4.6.b is used. 

Theorem 4. 15. ,[ 7] It t is a connected mapping :t'rom a. locally con= 

nected Hausdorff space S into a Hausdorff space T, then f is continuous 

at a point pin Sit and only it t has at worst a removable discontinpity 

at P• 

Proof. The proof is essentially the same as the proof ot Theorem 
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4.14. 

In the next examp~e~ a function is presented which is connected 

everywhere, but is discontinuous a.tone point. All of the hypotheses 

of Theorem lv.15 are satisfied except the hypothesis that f ha.s a.t worst 

a removable continuity at ea.ch poin·t. 

Example 4.4. [21] Let S be the Euclidean plane and let T be the 

space of rea.l numbers.. Defi;ne t trom S into T 'byt 

( ) -· 2xy j( h f xjy -· ~ 2 sin 2 2 l/2 it x and y are not bot o, 
x :t y (x + y ) 

t(ojo) ~ o. 

This :function is continuous a.t !fNery point exc~t possibly (o,o.) and 

therefore maps a.ny connected subset not conta:tning (OJO) onto a connect­

ed subset ot T. f is not continuous at (o,o) as one can verity by 

consideting the line x ~ y. On this line t reduces to the tollowing 

function: 

g(O) "" O. 

Now consider points ot the term ~[2/n, rf2/n). This sequence of' points 

converges to (o,o) but 'the sequence t(.f2/n, J"2/n) does not converge to 

t(o,o) since.t(J°2/n, .J2/n) = ± 1, depending on whether n is even or odd. 
' ' 

Thus f is not continuous a;t ( 0 » o) • 

Let us now verity that f maps connected subsets of S containing 

(0,-0) onto conneqted subsets o:t° T. Suppose C. is a connected subset or 

S contai'.?ing (o,o) and such that t'(C) is not connected •. Then :t'(C) can 

· ., be expressed a.s the union ot two sets A a.nd B such 'that A fi ¢, B ; ¢, 

'." A n B "" ¢ ·and A n B.:- ... ¢. Now t(oj>o) is an element o:t" either A or B, 



say B. 

N'ow t~~(A) U t=1(B) \"' c and t=1 (A) n t=1 (B) = f;. Let us show that 
I 

tor qy. :,i· i.n t=1 (AL, x is not a. lim.i,t point of' t=1(B). ', Suppose x is a.n 

' =1 element oft (A). Then t,(x) is an element ot A a.nd since An B = ¢, 
th.ere exists a. neighborhood U o:t• i'(x) such that U n B "" ¢. By the con= 

tinui ty of t at x there exists an open set V a.bout x such that t(v)', c: U. 

Now V n t-1 (B) must be empty sine~ f(V) ·c: U 8iD,d Un _B = ¢. Thus xis 

not a limit point ot f'-l (B) • Similarly tor x in B, it ;x: f.. ( O, O) ·~ x ,is 

not a limit point of t=1 (A) •. Now (o,o') must be a limit point or t-1(A). 

I~ noti t=1(A) and t=1 (B) a.re mutually separated and·c is not Gonnected. 

Now t=1 (A) ~a;nnot consist of a single point; tor if r=1 (A) is a single 
' . . ~ 

poipt (o,o) is not a limit point ot t (A) and C is not connected. Thus 

let x1 be a.n elrament, of' r=1 (A) let d "" p ( (o,o):, ;x:1). Pick 'a, positive 

integer n such that l/n2 < d and consider the spherical neighbo~hood N 

ot radius,l/n2 about (o,O)o Now the 'boundary ot N.must contain a point 

x2 9t t=1 (A). It not, C can be expressed as (r=1(B) U Int N) U (t-1 (A) 

... :f'=1 (A) n i)). But thes_e sets a.re mutually separated so that C is not 

,connected. Now tor point x2,, :t'(x2) = o = t(o,o) which implies t(x2) is 

in Bo This is a. contra.dicti.on,, hence t(C) must be conn®cted,, and tis 

a connected mapping. 

A.connected function t maps connected subsets ot the domain space 

onto connected subsets ot' the range space. It in addition tis one:..to­

... 1 
one a.nd t maps connected subsets ot the image space onto connected 

subsets of the range space several theorems concerning continuity of 

connected mappings can be proven. 
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Definition 4.7. A mapping f from a space S onto a space T· is said 

to ~e biconnected.· if and only it f is one-to-one;, f(C) is connected in 

T whenever C is connected in S and.t-1 (H) is connected in S whenever H 

is connected in T. 

De[inition 4.8. A space Sis said to be semi:locally~connected 

i:f a.no. only it,,for any point p_in Sand tor any open set U containing 

p, there exists an open set V containing p such that V c U and S - V 

consists of a finite number ot closed connected ~ets. 

Example 4.5. The set Rot real numbers with the usual topology is 

semi=locally=connected •. This follows since for any open set U contain-

ing p there exists an open interval. (a,'b) with p E: (a,-~) c U. The 

complement ot (a,b) is two closed rays each of which is connected. 

Theorem 4.16. [21) If f is a biconnected mapping ot the Hausd.orft 

space 8 ontothe semi-locally-connected Hausdorff' space T, then t is con,,; 

tinuous. 

Proof. The proof will follow if it can be shown that the inverse 

image ot (;lf'ery open set in-Tis open in S. Let Ube an open set in T, 

and consider t-1(u). Let p be an element of' r=1(u). Since Tis semi-

locally-connected, there exists an open set V such that :t'(p) J:i: V c U a.nd 

such that (T - V) consists ot a finite number ot closed conneeted sets. 

Thµs (T - V) can be expressed as H1 U 

and connected.for each i = 1, 2, ••• , 

H2 U • • • U Hn where Hi is closed 
,. l 

n. Let Ci= t- (H1 ) tor each 

i = l,_~, ••• n. Each c1 is connected since f is a. biconnected mapping. 

Let us now show that_ p f <\ for any i. Suppose p were en element or Ci 



for some i. Then Ci U {pJ is .connected., since the union of any connected 

subset with some or all it its limit points is connected. Mapping f' is 

'biconnected, hence f(C1 U (p}) = Hi U·f(p) is connected. It Hi U [t(p)) 

is cQnnectedi however, then t(p) must be a point of Hi or a limit point 

or Hi. Either assumption contradicts the fact that H1 c T ~ V where Vis 

an open set containing t'(p). Thus 1 the assumption p € Ci tor some i 

leads to contradiction, and we must conclude p ~ Ci for any i. Since 
n 

p ~ Ci :t'o:r' any i, then for each i, let M1 = S ""··Ci and. let M = 1Q1 M1 • 
,., 
Set Mis open as the intersection of a finite number of open set. Now 

M n. c1 = ¢ :t'or ea.ch .i so that :t'(M) n :f(C1) = t(M) n Hi= p, for each 1, 

and t(M) c V c U. By the above construction we can find an open set M 
p 

tor every p € t-1 (u) such that f(M) c U. One can easily verify that 
p 

t-1 (u) "" U.,..-l(U) M which is open as the union o:t' open sets. Since 
P1£.1;. .p 

:t'-l (U) is open in S whenever U is open in t, f is continuous. 

Ii" space Sis also required to 'be semi-locally-connected the follow-

ing stronger theorem holds. 

Theorem 4.17.[a]Let t be a. biconnected mapping of the semi-locally-

connected. Hausdorff' -space S onto the semi-locally-connected Hausdort!' 

space T. Then f is a homeomorphism. 

Proof. Mapping tis one-to-one and onto by definition of biconnect­

ed. By Theorem 4.16 i" is continuous. Also, by Theorem 4.16 t-l is 

continuous so that t is open. Hence !.' is a homeomorphism. 
,· 

One can. replace the requirement that Sand T be semi~locally-

connected with the requirement S. and T be loc~lly connected., prcvided 
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space Tis compact. 

Theorem 4 .18. [ 21 l Let f be a biconnected mapping o;f the locally 

connected compact Hausdorff space S onto the locally connected compact 

Hausdorff space T. Then :f is a. homeomorphism. 

Proof. As in Theorem 4.16 it will be shown that f is continuous by 
1 . 

showing that f- (U) is open for every U open in T. Let Ube an· open sub-

set of T and let p be an element of t=1 (u). Since T is locally connected, 

there exists a connected open set C in T such that f (p) e C c U. Cons id-

er (T = C) which is a closed subset of T. Since T· is Hausdorff, for 

each q € (T .. 0) there exists an open-set U such that q EU and 
q q 

p ;. Uq. Also, because T is locally connected, one can find a connected 

subset V such that q ~ V c: U for each q e (T - c). Now U(T C)V is 
q q q q~ - q 

an open covering of (T - . C) and 'by the compactness of (T - C), which is 

a closed subset of T, one can find a finite number of sets v1,v2, ••• ,vn 

from collection (V 'l. which covers (T - C). Let us note that qlqi!(T=C) 

f(p) ,- "1 for any i = 1, 2, .•• , n, since f(p) fuq for any q, and for 

each 1, v1 = Vq c: Uq' for some q. Now let Ci= f~1 (v1) for each 1. 

. ~1( ) One can now complete the proof that f U is open by the same.construc-

tive argument as in Theorem 4.16. 
·. . -1 

By the same argument, f is continuous, hence f' is open. Thusj :f' 

is one=to-one)' onto, open and continuous, and is, therefore, a homeo-

morphism. 

Several of the theorems from the first of this chapter concerning 

compact preserving mappings required that the domain space be locally 

com~act and that r=1 (y) be closed for each pointy in the range space. 
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Results o:f' a similar nature can be .. obtained for connected mapp:i,µgs if one 

requires that the domain space be locally connected and that r·1 (y) be 

closed for ea.ch pointy in the range space. 

Theorem 4.19. !15) Let M be a metric space and let p be. an element 

of M •. The following conditions are equivalent: (1) M is locally con .. 

nected at p; (ii) every connected map f from M onto a metric space f'(M) 

-1 I withthe property, f {z z e f(M) and p(z,q) = eJ is closed for ea.ch 

e > O and for every q e f(M) is continuous at p, (iii) every real 
. ~ 

valued connected map with the property that f (q) is closed for 

q « :f'(M) is continuous at p~ 

. -1() Proof. For a real valued map the requirement that f . q is closed 

implies f-1(z I z e f(M) and p(z,q) =,)is closed for every e > o and 

for every q E: f(M)~ This follows from the fact that for a given£ and a 

given q, N .= (z I z e f(M) and p(z,q) = c) is either empty, contain one 

of the points q - e, q + e, or contain both of the points q - €, q + «. 

"' -l . rl, I:f' N is ,.,, f (N) ..:. p which is closed. .If N contains only one point 
l ' l 

f- (N) is closed by hypothesis. If N contains two points, f. (N) 

= f-1 (q - «) u :r·1 (q + c) which is the union of two closed sets, hence 

closed. Thus condition (ii) implies condition (iii). It remains to be 

shown that (i) implies {ii) a.nd (iii) implies (1). 

Suppos~ condition (i) is true, and let t be a connected mapping 

from M onto t(M) such that f-1{z J z e f(M) and p {z,q) =, tt} is closed 

for every € > O and for every q e f(M). Let V be an open set containing 

point f (p) and let 11 > o ·be such that the ,spherical neighborhood ot 

radius 'Tl about :f'(p) is contained in v. 
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Let Bil :::i (z J z l!;; i'(M) a,nd p(z. 3 :t'(p)) "" TJ} •. Set :r-1 (,) is closed and 

P·. J. .. ...,, •. -).. (B. 'i • S' M ~ l 11 ' + d t ' h ' t t d ,- ... Tl . 1:nce . .1.s . oca y connec ... e a p J -i:. ere exis s a connec e 
I 

' ( =1 ( ) ') ( ) set Uc: S - f B. such that pis.interior to U. Now i' U is 

connected)) contains i'(p) and d9es not intersect B. Hence f(U) is con­

tained in the spheriqal neigp.borhood oi' radius 11 about i'(p) which is 

containiad in v. Hence i' is continuous at Po 'rhus, c,ondition (i) implies 

co~dition (ii). 

To see that•condition (iii) implies (i), assume (:Hi) is true and 

that M is not locally connected at p. Since M is not loca,lly conpected 

at p, there is a 5 7 0 < o < 1, such that pis not an element ot any open 

conn.ected. open set in the spherical neighborhood N0 (p) o:t' radiu'S o about 

po Let Q be the component oi' N5 which contains p. Note the p cannot be 

an interior point of' Q,. Define i' by~ 

:f(x) ""0 ii' x € M - N5 (p)' 

t(x) = p(x_.p) it x I:: Q, and 

t(x) = 0 - (o - p(~,p) [p(x,Q,]. 

Now :t' / Q is continuous, hence i' / Q :!.s connected. Also, f is continuous 

on (s -.Nq(p))U (N6p = Q,) ;::!, (s ~ Q), hepce f / (s - Q) is connected.. 

Now for any connected subset C of s, C ~ Q or C n Q =¢since Q is a 

component. Thus f(C) is connected and!' is a. connected mapping. 

Furthe1:more, point inYerses, are closed,, To verii'y this note that [ 1 (o) 

:::i M' - Nq (p) which is closed. r·-1 (o) = (x} which is closed.. For O < IS..< 

o, f-1 (e) =Au B where A= [x Ix~ Q and o(x,p) =€)and B = fx /x ~ 

(N0 (p) - Q) and 5 - (5 - p(xjp)) • [p(xJQ,] = ~}. Let us not~ that Q as 

a component of' N0 (p) must be closed witlt respect to N0 (p). ,Furthe;more,)l 

(x / p(x,p) = 16l} is closed. rrherei'orejl set A = Q n [x / (x,p)1 = ~J is 
' 
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. ' ·~· 
closed wi~h.respect to N8(p). But A is contained in Int{N6(p)), hence 

A is closed. Now consider B. Let us show that no point of Q can be a. 
·, .. . "" 

limit point of' B. Suppose some yin Q is a limit point of B. Then pick 

z in B such that p(z,y) < 8 ° e. Then (6 - p(z,p)) • [p(z,Q)] < 6 - « 

since (8 .. p(z,p)) < l and hence 8 - (!:> ... p (z,p)) • [p (z,Q)] > e which 

contradicts the choice o:f' 8 Et B. Thus no :point of Q is a. limit point 

of_ B so that Bis closed with respect to (N8 (p) - Q). Now (N8 (p) - Q) is 

open as the complement of (MU Q) so that Bis a closed set. Now this 

implies :r-1 (t:) =AU Bis closed so tha.t point inverses are closed. 

Function f is d~scontinuous at p, since pis a limit point N8 (p) .. Q, 

and in ~y neighborhood ot p there must exist a point x for which 

I f(x) .., f'(p) j is ~bitrarily closed 7o 8.. Thus under the assumption M 

is not locally connected we have been able to construct a real. valued 

function f on M which is connected, ha.s closed point inverses, and is 

discontinuous. This contra.diets the hypothesis, hence M must be locally 

connected and (iii) implies (i)o This completes the proofo 

In Theorem 4.19 (iii) the requ;lrement that f-1(q) be closed for 

every q in the range space can.be replaced with the requirement that f 

be monotone. These results-will be ~:i:_ven in Theorem 4.21 after the .. 

following backgroup information is given. 

Definition 4.9. I:f' S and T are two Haus~or:f'f spaces and if f' is 

a mapping of S into T.,. then f is- monotone if and only i:f' for etVery p in 
, _f ' L · 

T, f-1 (p) · 1s a. connected sub~et of p. 

Theorem 4.20. [21] If._f-is a monotone connected mapping of' a. 

·_ . -1c > Hausdorff' space S onto a Hausdorff space '1' then for every q in T, f q 



is a closed subset of K. 

Proof. Suppose t=1 (q) is not closed tor some q ~ T. Let p,be a 

limit point of t-1 (q) which does not belong to t-1 (q). Because t is 

monotone7 :t·-1 (q) is a connected subset of S and :t'(t-1 (q)) = q. Now 
-l ,,, 

consider the set I' (q) U p which is also a. connected. set since the 
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union ot a connected set with some or allot its limit points is 

connected.. Now t(t-1 (q) U (p}) is a connected subset of T, since tis 

connected,._ But :f(t-1 (q) U fp}) ,.. q U t(p). Since a connected subset of 

.a Hausdorff space cannot consist of two distinct points, :t'(p) must equal 

q. This contradicts the statement p %· .t~1 (q), whi.ch implies t-1 (q) is 

closed. 

Since a metric space is Hausdorff, we can now restate a. part of 

Theorem 4.19 as follows. 

Theorem 4.21. Let M be a metric space and let t be a monotone 

connected mapping from M onto a metric space f(M). Mapping tis 

continuous at a point pin M if an~ only if Mis locally connected at 

point p. 

Corollary. A monotone real valued connected mapping defined on a 

connected subset of the real numbers is continuous. 

MAPPINGS THAT.ARE BOTH COMPACT PRESERVING AND CONNECTED 

, Conditions have now been given tor a compact preserving function to 

be continuous and tor connected functions to be continuous. Conditions 

will now be given which will imply a function which is both compact 
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preserving and connected will be continuous. 

Theorem 4.22. [15] Let Sand T be metric spaces a.nd let f be a. 

connected, compact preserving mapping t';rom S onto T. If Sis local.ly 

connected, the~ f is continuous. If Sis not locally connected there 

exists a compact preserving connect.ed mapping from S into the· real 

numbers which is not· continuous. 

Proo::t'o To prove the first assertion, suppose Sis locally connect-

ed but that tis not continuous at a point pins. By Theorem 4o4 

there exists a sequence ot points [pi} in S converging top and a point 

q .in T, q fa p, such that t(pi)° = q for each i. By the local connected­

ness of Sat p and because (pi} converges top, one can pick a subse­

quence fx1J of {p1} and a sequence (Ci} of connected open sets about p 

such that {p,xi} c Ci for each i, and Ci is contained in the spherical 

neighborhood of radius 1/i about p. Thus set {t(p, t(xi)J = (f(p),q) 

must be contained in f(Ci) which is connected. Now point q cannot be an 

iso,lated point in Ci, :t:"or any i, since connected sets cannot contain 

isolated ·points. Thus., for each i, there exists a point z1 in t(c1) 

such that O < p(,zi,q) < 1/L For each i, let y i be an element of 

Ci n f~1 (~i). Set [P,Y1,y2,y3, •••. } is a. countably compact subset of s, 

and is, therefore compact. -But set {:t'(p), z1,z2,z3 ••• J is not compact 
> 

since it does not contain the limit point q. This contra.diets the hypo-

thesis that tis compact preserving. Therefore, we must conclude tis 

continuous. 

Now suppose Mis not ~ocally connected a.t some point pins. Then 

there exists a real number 6, O < 6 < 1, such that no connected open 



subset of the. spherical neighborhood N28 (p) about p contains p. Let Q 

be ~he c·o~onent of N28 (p} that contain p and note the P. cannot 'be an 

interior point of Q. Define :f from S, into the real numbers by: 

f(x) = O for x ES - N28 (p), 

f(x) = 28 - p (x,.p) for x € (N28 (p) - N5 (p)), 

f(x) = p(x,p) for x e N8 (p) n Q, and 

f(x) . = 5 for x ~ N8 P - Q. 

Let A= Q U (S - N8(p)). One can easily verify f restricted to A is 

continuous and f restricted to S "' (N8 (p) n Q) is continuous. Let us 

now show that f is compact preserving and connected. Consider an arbi~ 

trary compact subset C of s. Now f(C n A) is compact since A is closed, 

4ence compact, and f restricted to A is continuous. Furthermore, 

f(C - A) = (8), so :r(c) must be compaet and t i.s compact preserving. 

Now consider an arbitrary connected s~t Kins. Since f restricted to 

A is continuous and f restricted to S - N8 (p) n Q is ·continuous, the 

set f(K) must be connected if K is contained in either of the sets. In 

the rema.intng case, K intersects both (N8 (p) n Q) and N8 (p) - Q, and 
•' 

being connected cannot be contained in N28 (p). This follows since 

K c N28 (p) would imply K would be a subset, of the component Q of N28 (p) 

since Kn Q /= p. Hence {p (y,:p) I ye: KJ ::> [8,28] and f(K), :f'rom the 

definition ot f, must equal [0,8]. Thus in any case f is a connected 

mapping. The function f is discontinuous at p since :f(p) = o, but 

every neighborhood of, p must contain a point z of (N8 - Q) for which 

f(z) = 8. This completes the proof of the second assertion of the 

theorem. 

The metric spaces Sand Tin the :f'irst assertion of Theorem 4.23 

can be replaced with Hausdorff spaces if Sis required to have the 



* property K defined in Definition 4.4. 
, .. _, 

Theorem -4-.2:,. [7] '* I:t' S is a Hausdorf1' space with property K , a.t 
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each point p and if tis a connected. and compact preserving mapping from 

~ S onto a Hausdorff space T, then t is continuous. 

Procii'. By Theorem 4.7 it will only be necessary. to show point in-

verses are closed. Let y be an element of T a,r,).d assume there exists a 

limit point x ot :t'-,l(y) such that x is not a.n element oi" !".;.1 (y).. Let 

[Ca} be the collection of connected neighborhoods of x and let {t; J be 

the collection of neighborhoods of y. Since Tis Hausdorff, and since 

t(x) fay it is possible to se~ect disjoint open set U and V contai~ing 

y aµd x, respectively. For each Ca in [C0 } and for each ~7 in {lj} 

let y,,., ... be a.n element of t(C,,.,) n (.(u n U), and let x,.,, be an element .... ,, ..... . r ..... ,., 
of (:t·-1 (yo:;r) n Co.)~ ~e set A oi' all such xa,y is infinite and. has x as 

* an accumulation point. By the property K, AU [x} has an infinite com-

pa.ct, subset K with x as an accumulation point. Since K is compact, 

hence closed, x must be an element ot K. Let g denote :function t res-

tricted to K. Then M = (g(K) - g(x)) = g(K) n (T - V) since g(K) cu 

and Un V = p. Now g(K) n '(T - V) is an infinite compact set, hence 

must,have a limit point z in T. If g=1 (z) is an isolated.point in K, 

then K - [t-1 (z)J and M - [zJ are compact, which is a contradiction. 

Thus tor each accumulation point z ot M, r=1 (z) must be an accumulation 

point o:f K. 

Let L be the set of all limit points .oi' K with the exception o:f x. 
"' 

For each pin L, select disjoint open sets WP and VP containing p a~d x, 

respectively. Each (K - W --) is closed hence compact and each B = p 

g(K - WP) n M is a closed non-empty subset o-t: M. Let :t' =· {BP J, p ~ L}. 



Supppse now that there exists a i'inite subcollection B ,B , ••• 7 B 
pl P2 pn .n 

such that n B = ¢. 
i=l pri 

(K - W ) in (K = {x}) 
! ·. pi ' 

Now by DeMorgan 1),s law j 

Then the corresponding closed subsets 
n 

must have the property that ,U1 (K - W. ) = ¢. 
l.!:! p, 

n . 1 

,U1 W must cover (K - {x.J). However, i'or ea.ch 
1= pi 1 

W , there exists an open set V contair,i.. ing x such that V n W = rA. p . p p p 'f' 
i n i n i i n 

The set , n1 V is an open set containing x such that ( ,n1 v. ) n (1u1w. ) 
1·~ p 1= p = p 

- 1 n i i 
"" ¢. This leads to a contre,diction since 1o1 V must contain points oi' 

-· p, 
1 n 

(K - {x}). Thus ±'or any :t'inite subcollection B ,B ,, ••• B 01' F, 1Q1 .. pi P2 pn -

B f ¢. This implies Bn1:1F BP· f ¢, [ 14 ,136]. Now for each point q 
pi p 

in Bn~F BP, g=l(q) is anisolated point oi' K since g=l(q) is not an 
p 

element of W for a.By p. 
p 

Let D denote the collection of all such isolated points in K. Since 

D is open in K7 for ea.ch p in L, the siqt, K = (w. U D) is closed hence com­
p 

· pact and. non-empty. Then fg(K = (WP W D)) I p e:. L} n M is a. null inter-

section of non.=empty closed subset o±' the compact space Mand there must 

exist some f'inite cubcollection oi' theliie sets which has an empty inter-

section, and which cover M, [14J136]. This implies, by DeMorgan's laws, 

that a finite subcollection W ,W y•••, with Pi~ L for each i, must 
pl P2 

cover K - (DU (x}). Since xis an accumulation point of K, set D must 

be infinite and hence DU (x} must have an infinite subset H such that 

xis the only accumulation point of H. Then g(H) n Mis an infinite 

compact subset of.' Sand must have an accumulation point z which belongs 

to H. This is a contradiction since g=1 (z) is an isolated point o:f K. 

Since that assumption x t (t-1 (y)) le~ds to a contradiction, x must 
l 

be an element of :t·-1 (y), r·-1 (y) must be closed.9 and by Theorem 4.7, r· is 

continuous. 



CHAPTER V 

CLIQUISH .AND _NEIGHBORLY TRANSFORMATIONS 

· INTRODUCTION 

The re9.uirement that a f'unction be continuous is very restrictive. 

Therefore» one is oi'ten tempted to dEn'ine classes 01' !'unctions that sat­

isfy weaker conditi.ons than ·conti.nuity and to investigate these clas·s~s 

of' ±'unctions to see if problems that are solvable using continuity would 

also be solvable using a less restrictive condition. Since a consider­

able body oi' material has been developed concerning continuous functions, 

one will naturally inquire·what properties the new class oi' functions 

will have in common with continuous !'unctions, and what properties of 

continuous .functions are not true f'or the new class of functions. 

Another line of inquiry is to ask if' the new class of functions will be 

useful in deali.ng with topological problems which are not solvable using 

continuity • 

. In this chapter, two classes of functions satisfying weak,er condi­

tions than continuity will be defined and their properties in:vestigated. 

)3pecial emphasis will be :placed on discovering whether or not certain 

properties 9:t' continuous :t'unctions are true i'or these new classes of 

:t'unctions. At the end of the chapter,, s evreral theorems will be present­

ed which show that the new classes or' functions can be used to 

characterize derivative !"unctions 01' continuous real valued !'unctions. 
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This is particularly significant since it is well known that the deri.va-

tive of' a continuous function is not, in general, cont:l.nuous. Formal 

dei':i:n'.:ttions will now be presented for these new classes or i'unctions .• 

De:t'in:l.tj.on 5.1. A function t I'rom a space S into a space T is 

said to be E:~ighborll. at ~ point ~, o:t' .§_ it and only i:t' tor every neigh· 

borhood V o±' i'(x) and :for every neighborhood U of x there exists an x, 

open set U such that U c U and f(U) c V. Function !' is said to be 
x ' ' 

neighborly on S if' i' is nei.ghborly at every point of' S. 

One should note that x i.s required to 'be an element o:r' U 7 but is x 

not necessarily an element of U. 

For Ta metric space, with m13tric P, one ca;n restate De:t'inition 5.1 

as follows: 

Definition 5.1.b. A function, f from a space S into a metric space 

T, with metric P, is neighborll at! point~ ot ~ if and only if for 

every e > 0 and for every neighborhood U of x there exists an open set 
x 

Uc U such that P(t'(x), i'(y)) < ~ for every y tE U. x 

Der'in:j.tion 5.2. A function f trom a spape S -into a metric space 

T, with me}ric P, is said to be cli~ at ~ point ~ of .§_ if and only 

if for every €:. > o, aµd tor every neighborhood U of X, there exists an x ' 

open set Uc U such that p(i'(y) Ji'(z)) < € for every pair y, z of element x ' 

in U. A ±'unction f' i~ said to be cliquish on S if f is cliquish at every 

point in S. 

One can easily verify that every continuous ±'unction is neighborly 

and that continuous functions' and neighborly functions are cliquish, 
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provided the range space is a metric space. 

Example 5.1. The function t from the real numbers R into R defined 

by: 

{
in~, if x = o,. 

i'(x) == 

'ii' x = o, 

is not conti.nuous at x = 0 but is neighborly and cliquish at that pointo 

To verify that f is not continuous at x = o, one can note that the 

{·-~.2 .} ®l converges to O but the senuence {.. 2 }. 00 does not sequence n1C n= ':l. f(n:ll) n=l 

converge to f(O) = o. This follows from the fact that- r'(_g_) ::: ±. l, or 

o, depending on the choice of n. 

Function i' is neighborly, however. To show this, let U be a neigh­o 
1 'borhood oi' O and choose a positive integer N such that x - 2N:n: is 

contained U0 • Now f is continuous at point x s.ince t is a composition 

o:i' continuous .:t'unctions at all points except O. Furthermore, r'(x) = 

f'( 2·1 ) = sin (2Nn:) = o. Now gi.ven € > o, let V be a neighborhood of x 
Il1C 

such that p (f(x) ,f(y)) < e; for all y € V and let U = V n U • For any 
' 0 

ye U, p (f(O),:t'(y)) =p (i'(xL:t(y)) < € since t(O) = f(x) and since ye v. 

This implies f is neighborly at x = o. Since a neighborly function whose 

range is a metric space is cliquish, 1' is also cliquisho 

Example 5.2. The !'unction from R into R defined by: 

. 1 0 ,, 0 
f(x) = {sin x' 1I X = , 

2, i!' x == 0, 

is cliquish, but is neither neighborly nor·continuous. 

PROPERTIES OF CLIQUISH AND NEIGHBORLY FUNCTIONS 

Since every continuous function is neighborly and since every 



neighborly function whose range space is a. metric space i~?~;q~i~~t 

neighborliness is a weaker condition.~~an.continuity a~d.clis:1i~~~ss 
,. 
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is a W!2aker condition than neighborli:µess. This suggests tha.t ne~g~~~r.ly 

functions might possess certain properties of continuous :functions tha.t 

the sti.;tl weaker cliquish functions might not possess. The following dis­

cussion will verify that such properties exis.t. 

Defini"tion 5 .. 3. A subset A of a topological space S is .said to be 

·everywhere dense ,!E. . .e. if A = S. 

Definition 5.4. A function tis said to be pointwise continuous 

on a space S if the set 01• point where t is noncontinuous is everywhere 

dense in S but is not closed relative to S. A function tis said to be 

pointwise noncont.inuous on S if the set of points where S is continuous 

is everywhere dense in S but is not closed ins. 

Definition 5.5. A function tis said to be pointwise neighborly on 
I 

I. 

a space S if the set' of points of S where t is non-neighborly is every-

where dens.e in S but is not closed in S. A function t is said to be 

pointwise.non-neighborly on a.space S if the set of points of S where t 

is·neighborly is everywhere dense in S but is not closed. in S. 

The following example gives a :t'unction that is pointwis e continuous, 

p9intwise noncontinuous, pointwise neighbo~ly, and pointwise non­

neighborly on the open interval (0,1) with the us'l).al topology. 

Example 5.3. [25] Lett be defined on (0,1) as follows: 

O if xis irrational, and 

t(x) ={!it x =E.·where p and q are relatively prime. . q q . 
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.Let us now show that f is pointwif;le continuous and poin.t.!i~:.n~~­

continuous by showing that tis continuous at every irrational point, and 

discontinuous at each rational .point. 

Let x be an irrational point and let€> o be.given. There exists 

only a finite number o:t q for which lf q > e:. Let A = ,{P/ q I p and q a.re 

relatively prime, 1/q.> e: and Jx -P/qi,< e:J •. Npw set A containa, a~ 

most a finite number of points. For each p/q e: A, let, op/q = Ix - p/ciJ 
and. let 8 = 1/2 min (op/q lp/q e: A}. Now"tor any ye: N0·(x), y is 

i_rrational or y = p/q where 1/q < e:. In either case, I t(x) - t(;y:) J < e: 

so that tis continuous .at x. 

It' x is. rational, f(x) = 1/q tor some integer q. Now' r'or € < 'J./q 

it is. impossible to, tind a a such that. 1 t{x) .. :t'(y) I < 6 ·tor any 

y €.N5 (x). This is true, since every neighborhood ot x must contain an 

irrational point y and I :t'(x) - :t'(y) J = J 1/q - 0 I = 1/q > e. Thus t is 

discontinuous at every rational po'int. 

\ . 
Since f is continuous at every irrational point, and d.isc.ontinuous 

at every rational point, tis pointwise continuous and pointwise non-

continuous .on R. 

The function defined in Example 5.3 is also neighborly and non­

neighborly o~ (0,1). To verify this one can note that i' is neighborly 

at each irrational point since tis continuous at each 'irrational point. 

To verity that t is non-peighborly at each ra~iona1 point_, let x be 

a ratio~a.l point. Si_nce x, is a rational po.int, i'(x) = l/9. tor some 

pos~tive int_eger q. Choose .(it ,< 1/q. Now to.r each neighborhood U of' x 

and fbf each open set N contain in U, there exi~ts an irrational poi~t 

yin N. Now lr(x) - t(y)J = Jl/q - 01.= 1/q, > (, so th~t tis ,:not 



neighborly at x. 

The :t'ollowing theorem shows ,that it is impossible to !'ind a r'unc­

tion that is both.pointwise cliquish and pointwise non-cliquish on any 

space S. 
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Th~orem 5.1. [24] Lett 'be a function defined on a spaces. ~f·t 

is cliquish at each point o:t' a set which is everywhere dense in S, then 

!'·is cl:Lquish on, S • 

. . Proof. Let i' be a function . defined on S which is cliquish on a set . 

which :Ls everywhere dense in, S. Then· there exists a. set C, everywhere 

dense ins, such that !'or ever;v point c E: C the !'unction f is cliquish 

at c. J;,et x be an arbi tra:py point of S anp. 11;:!t Nx be an arbitrary 
'. 

neighborhood ·ot x. In N there must exist at least one point c o:t' C, x 

si:nce xis either a point of Cora limit point oi' C. Let a positive 

number ~ be given., and let N 'be a neighborhood of c such that N i.s 
c c 

contained in N • Since f is cliqui.sh at c, there exists a neighborhood. 
I x 

N cont.~ined in Nc, and hence in Nx, such that t'or every pair x1 ,x2 of 

elements o:t' N, p[i'(x1 ) .~I'(x2)] < It!. Sinc.e N is contained in Nx and since 

N was an arbitrary neighborhood o:r:' x 1 :t' is cliquish at x. But x was an x . . 

a,rbi trary point ot. S, so that :t' is cliqui.sh at every point oi' S. 

As a consequence o:t' the above theorem; every poiritwise noncontinuous 

:fun9t:!.on, whose range is a metric space, is cliquish, and every pointwise 

non-neighboriy functioh whose range is a metric space is cliquish at all 

points. 

De±'inition 5.6. A subset A ot a space S :iifl- said to be nowhere. 



dense in S if and only if :for every open subset U of S there exists an 

open subset vc. U such that V n A= p. 

The function defined in Example 5.3 was .both pointwise continuous 

and pointwise neighborly. The points where f was continuous and neigh­

borly was the set of irrational points in (0,1). The set of irrational 

points in (0,1) is not nowhere dense. Thus it is possible to have 

pointwise continuous :f'unctions whose points of continuity are not nowhere 

dense, and to have poiritwise neighborly functions. with an analogous 

property. In contra.st, the points where a pointwise cliquish function 

is cliquish must be nowhere dense .. 

Theo:rem 5·.2. [24) The set of points a.t which a. pointwise cliquish 

function is cliquish is nowhere dense. 

Proof. Suppose the set of point Cat whi~h a pointwise cliquish 

:function f is cliquish is not nowhere dense in the domain of definition 

·· o:f' f ~ \ Then there would exist at 1·east one neighborhood N such that C 

would be everywhere dense in N. By Theorem 5.1, f would b.e cliquish at 

every point of' N. This contradicts the hypothes.is that the set of points 

where :f' is non-cliquish is everywhere dense. 

Definition 5.7. A subset A of a metric space Sis said to be of 

the first .e. category i:f' A can be expressed a.s the union of a de.numerable 

number of nowhere dense sets .. 

We shall now show, for a function f which is the limit of a. sequence, 

of neighborly :function, that the points of discontinuity o:f' f form a set 

of the first p category. Since a sequence o:f' continuous functions is 
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also· a sequence ot neighborly fuhctions, we will also obtain ~h~. ~:.8.ult 

that tor a function f which is the limit of a sequence o:t contipJous 
. .. --· .Ji. ··-

:f'unc.tions, the· points of discontinuity ot t forms a. set 01~ the first p 
' .. 

cat~gory. In contrast, in Theorem·;.4' we shall show the set of point, 

· ot discontinuity of a co:11vergent sequence of cliquish :t•unctions need not 

be of the tirst p category. 

with , . Theorem 5. :;. [.l] . It .g · is a function ~rom a metric space S, 

metr~c p, into a m~t;lc space T, with metric P; and ii' (tnJ is a 

f\eQ.Uebce ot neighqorly !'unction sµch that li~ p'(t1/x),g(x)) '= ~~ f,or'· 

every 'x in, Sf tp.en the points of discontinui ty:·or g torin a set 'Oi' ·;,the 1 

~trst p category. 

Proof. Let a{x) = lim sup p'(g(x),g(y)) tor x ins. Since the set 
y-ox 

o:i' points 9f discontinuity o:t' g is the set of points for which <J)~:x}, > o, 

the desired conclusion follows from the I'ollowing statement: 

Stateme:i:it. r:t• n. is a. positive integer, if o < .E£ < 00 a.nd, i:i:' A = 
·n 

(x I J.)(x) .2: « and p'(:fm(x).,g(x)).::: ,;,/16 :t'or each integer m :2: nJ, then A~ 

is nowhere dense. 

Proot. Suppose (1) A is everywhere,dense in some open sphere~. 
. . . n 

Let x1 be ~n element of'. An n ~ ~nd use the ·n~tghb,orliness o±~ :t'n to find 

an op·en sphere a1 ca such that (2) p'(fn(x1 ), I'n(z)) ~ f!./16 when~ver 

z e o:1 • Let x 'be a.n elem~rit of a1 and chaos~ a.n. integer m such that 

m 2: n and (;) p'(tm(x), g(x)) :S E/16 •. · Now use the neig:P,borliness ot;tm 

to ·secure a.n ope~·sphere a 2 s~ch trui.t a 2 ~ a 1 and- (4) P'(rm<xY,t~Cz)) :s 
' 

e/16 ~henever z Et o:2 • Let x2 be an element of An n a 2 .'. From stat~ments 



3, 4, 2 and from the fact tha.t,x1 and x2 are elements ot A:, it follows 

that 

p1 (s(x) ?g(x1 ) ), :5 p' (g(x) ,tn (x)) + p' (fn (x~ _;.tn (x2 )) 
' ' . . : . . . ' . 

+ /.(fn (x2 ) ,g(x~)) + p1 (g(x~) ,+'m(x2 ) ). + 

p'(i:'m(x2),tm(xl)) + p'(t~~xl),~(xl)) $ 

e/16 + €/16 + 1;./16 + e/16 + e/16 + €/16 = 3.r;./8. 

Thus p'c.(g(x),g(x1)) S 3€/8 whenever x e C:\· A~cordi:qgly, p'(g(x),g(y)) 

. , ~ 3(!J./4 w,henever x. ~ a:1, y ~ al. Tq.us ~ (x).·s '31S/4 whenever x € al, 

'An a1 ·is; e~ty.l' and in contra.diction-.to (1), ~n is nowhere dense ·iri a,. = . . 
Henqe set A"" u1 A, which-is the set ot poi:p,ts of discontinuity ot g, , n=. n · · 

' ' 

is of :the l"i:rst p category as claimed. 

Corollary. The poi~ts ot discontinuity of a neighborly,tunction t 

constitute a set 'ot the :first p category. 

Pr,oo:t'. Let sequence (f , .. be det;I,ned by t = f for each n and apply , n1 · · n 

Theorem 5.3. 

. \ . . . . .. 
. Theorem. 5,.4. [~4] The limit .f(x) o:t' a. sequence bf cliquish :t'unction.s 

' . 
· carf be non-cliquish at e:very point o:t' 1 ts domain of d.et'ini tion. 

' . 

Proof. Let~ be defined on the interval (0,1) ot the rear numbers 

with the usual topology. Define f by: 

:f(x) = O it xis i:r:ra.tional, and. 

f(x) = 1 if xis rati9nal. 

Function tis' non-cliquish at. e,very point$ and is the limit,o:t' the 

seq~ence (:t:'n} detined by: 
Ii 

f (x) = E~ g (x), n q= ... q . 
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whe:re gq (x) ,,, 1 i:i' x ""' p/qs p < q, and p and q relatively prime integers, 

while g ,(:x). = O otherwii;ie. Each f' (x) is cliquish at every point in , q. n 

(0,1). 

In Theorem 5.3 it was shown that the points or' discontinuity oi' a 

f'unc't1on which is the limit oi' a sequence o:t' neighborly !'unction is or' 

the :r'irst p category. 'l'heorem 5 .·4 implies this is nqt true for a function 

which is the limit o:r' a sequence o:r' cliquish i'uhqtions. However, the 

· points oi' discontinuity o:t' a cliquish ±'unction must "be of' the I'irst p 

categ0ry. This property of n1p:i.ghborly r.'unction was shown in the corol-

Theorem 5.5. [24]_ 'rhe points o±' discontinuity ot a .cliquish i'unc= 

tion,. must be of the :t'irst p categofy. 

Proo±'~ Le·~ i.' be a ciiqu:i.sh 1\mction defined on a space S. For 

each x <I(; B letrn(x) = lirn Sup p(:t·(~), t(y)) •. T:hei"set o:i:' points o:t' . y .... x . . . . 

disco:t;itlnuity or' ±' is the set ·o:t' points o:t' S f'or whichru (x) > o. 

Let Al = {x Ix IS s, m(x) > 1} 

A2 ·- fx jx ~ sf m(x) > :t/2) 

A - {x [x fil: s, ru(x) > 1/n} n, 

Since each point of discon·tini,tity O':i:' r.' is ,an element o:f'A .t'or some n,, 
·• n ... 

co .. 
u1. A · is the set or' points ot discont;inui ty r'or ,t. Let us show each n= . n 

A is nowhere dense. 
n 

Suppose for some n,the set A is not nowhere dense. Then there 
n 

·exists some open set o: in S such that A is everywhere dense in a. Let 
n 

x €Ann a. By the cliquishness o:t' f:, there e;x:ists some ne~ghborhood 

a1 ca such that (I'{y)~r"(z)) < 1(2n t'lor every pair y, z or elements in a1 • 



But this implies that no point of An is contained in cx1 , whicp contra­

dicts the assumption that A is not nowhere denseo Thus A is nowhere n n = . 
dense for each~ and u1 A which is the set of points of discontinuity 

-· · n= n . 

of f is of the first p category., 

Corollary. Every cliquish function is at most pointwise discontin-

·uous,, 

Proof. Assume the contrary of the corollary as stated. Then the 

.:points of discontinuity of f would ·be everywhere dense in the space S 

of definition and closed with respect to s .. This implies that the 

points of discontinuity off would equals. This contra.diets Theorem 

The following example shows that a :function which is the limit of a 
' 

sequence of neighborly :functions need not be neighborly at all points. 

Example 5 .. 4.. Let S be the closed interval (01 1] wj;.th the usual 

topology. Define sequence (f -) of functions on S by: n 

Let f = lim fno Now f(x} = l if x = O or if x = 1/i, where i = 1,2,;, 

•••, and f(x) = O .otherwise. Function f is not neighborly at point 

x = o .. 

As was shown in Example 5.4 and Theorem 5.4, the limit of a sequence 
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of neighborly functions need not be neighborly at all points and the 

limit of a sequence of cliquish functions need not be cl::l.quish at all 

points. It is also true that a convergent sequence of continuous 

:functions need not be continuous at all points. It is true, however,, 

that the limit of a uniformly convergent sequence of continuous func= 

tions from s space S into a metric space Mis continuous. Analogous 

results hold for uniformly convergent sequences of neighborly functions 

and uniformly convergent sequences of cliquish functions. 

TheOI'em 5.6. A function :f :from a space S into a metric space M 

which is the uni.form li~,it . of' a convergent sequence of ne:tghborly 

functions is neighborly. 

Proof. Suppose f is the limit of a uniformly convergent sequence 

[fn} of neighborly functions from a space S into a space T. Let E > 0 

be given. Pick an N such that p(f (x),f(x)) < ~/3 for all x ~Sand 
n 

for all n > N. Chaos e x in the domain of f' and let a be a neighborhood 

of :x. By the 'neighborliness of f 0 (x)J there exists an open set a1 con"" 

tained in a such that for ally in o:1 J (f (x),,,:f (y)) < ~/3. Now consider n n 

(f(x) ,f(y)) :for any y ~ C\. 

(f (y),f(y)) < ~13 + €/3 + ~1, n 

(x),f(y)) < (f(x) 1 f (x)) + (t (x),f (y)) + 
= .. n n · n 

~ ~. Thus f is neighborly at xj and since 
\ 

x was chosen arbitrarily, f is neignborly on s. 

Theorem 5o7• A function which is the limit of a uniformly conver= 

gent sequence of cliquish :functions is cliquish. 

Proof. Suppose f is the limit of a uniformly convergent sequence 

(f' J of' cliquish functions from a Space S into a, metric space M. Let n 
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e: > o be given. -By the uni:t'q:rm cunvergence ot' f fn), an integer N can 

be chosen such that p (I'(x) ,f (x) <. ,/3 i'or all n > N and 1·or a.1,1 x in 
n . 

s. Now let x be an arbitrary element of SJ let a be a neighborhood or' 

x, and let n > N be given. By the cliquishness ot 1i'n there exists e.n 

open set h1 c: a: such that p(tn(x1 L, tr/x2 ) < €./3 tor a1rpairs ot 

elements x1 and x2 in a:1 • Now for x1 ,x2 in a:1 , P(f(x1 )1r·(~2)) ~ 

p(I'(x1 ) 3 r'n(x1 )) + rJ(!'n(x1 ), :t'n(x2 )) + p(fn(x2),f.(x2 )) < f!i,/3 + tt;,/3+e/3 =El· 

' 
There:t'ore, f is cliquish at x. Since x was ~hos en arbitrarily i' is 

cliquish at every point o!' S as clai.med~ 

CHARACTERIZATIONS OF DERIVATIVE FUNCTIONS 

For a continuous real valued function defined on a subset oi' the 

real numbers, i.t :i.s well known that the derivative function ma.y not be 

continuous. The :i'ollowing example gives a !'unction i'or which the 

derivative exists at every po:1.nt, but the derivative is discontinuous at 

the point x = o. 

Example 5.5. Let a ±'unction 'f be defined by~ 

.,,( .) = {x2 s. in 1./x .i:f x ~ 0 
! x O it x = 0 

Now f'(o) · (x2 sin 1/x = 0) 11 / ) = lim · 0 - = lim,x sin 1 x.= 
x ... o . x '= . x .... o .. 0, and !'' (x) = cos 

1/x + 2x sin 1/x ir' x f o. For x f. O» :r:' 1 (x) is continuous, but i'' (x) 

is not continuous at x ,:, 0 as one can se-e by considering points oi' the 

r'orm l/2n'1f. 

· This example can 1,).e generalized f(t)r the i.nterval (o,:i) to give a 

!~uncti.on whose derivative exists at all points in (O,l)., but for whi,9h 
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f 1 (x) is continuous a.t all irrational poin't-s--,--and. discontinuous a.t all 

rational point_s. 

Example 5.6. [22] Let the domain oi" t be the interval (O,l). 

Order the rational in (O,l) 

let g (x) = o. 
n n 

as srequiencce f x } • n 

xn)2 sin (1/x=xn) i'or.x fa xn' 

CCI 2 
Let t(x) "' n~l gin (x) • 

and i'or each n, 

· { I )/ 2 · ( ) Now gn ,x · n J is a u11,itormly aohvergent sequence since =l :S gn x < 1. 
' . co 2 

Thus t 0 (t) = E1 g 0 (x)/n • 
. n""' n 

N~ t 1 (x) = n!l = qos 1/ (x=xn) / (x = xn) 2 .sin 1/ (x=xn) it JC f xn. f?~ 

any nj ~pd is continuous ~t all points where x j xn for a.ny n·~ However, 
n=l . _2 co _..2 .. 

f'.(x) "1 k~ 'gv (~)/r + iii :t'v (x)/K- + 0 it x = xn tor some n •. At the 

point where x "' xnj ~a(~) is discontinuous since the· sequence Of points,,, 

(1/?n,r. + ~nJ comrer~es to xn,, but t{ (1/~n'f(. + xn)} does not converge to 
"', 

From Example,5.5 and 5.6 one can easily see that the derivative 

:function of a. continuous real valued :function· defined on a·. subset of the 

real numbers neied. not be continuous even· though· it ma.y be d.e:f'ined at 

all points. Such derivatives oi" continuous real valued !'unctions detin= 

ed on certain subsets ot the real number can, how4:\7er, 'be characterized 

as being either neighborly or cliquish. The next the'c:1rem states condi= 

tions under :which the derivative function ot a continuous real val~j4 
. :[. 

:function will be'.f,neighborly. This theorem. was proven by Smith. [22] • 

A,, similar theorem' can be•tound in [18]. 
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Theorem 5.8. [22] Let :f 'be a continuous real valued function defined 

on the r,ea.l numbers, an open interval, or a closed interval of the real 
. . . .. . ..... . 

numbers. If the function t has a derivative at each point of its domain 

S o:f definition, then f' is neighborly. 

The proof of this theorem will depend on a theorem due to Baire [12]. 

It will be necessary ~ogive some preliminary definitions before stating 
. . . 

the theorem by Ba.ire and giving the proof of Theorem 5.8. 

Definition 5.8. A subset A of the real number is said to be dense-

!E:_=itself -if every point x in A is a limit point of A. 

Definition 5.9. A subset A of the real number.a is said to be 

perfect if it is closed and dense=in=itsel:f., 

One should note that a closed interval of the real numbers is a 

perfect set and that an open interval when thought of as a subspace 

of the real numbers is perfect o 

Definition 5.10. A function f defined on a subset S of the real 

numbe;rs is said to have the Da.rboux property on S if for every pair of 

points x1,x2 in S with x1 < x2 such that f(x1 )-/= f(x2) a.nd for every ll 

with min (f(x1),f(x2)) < TJ < max (f(x1),f(x2)J, there exists a.n x, x1 < 

x < x2 , such that f(x) =i Tl. 

This property is of interest since continuous real valued functions 

defined on the real numbers, closed intervals of the real. numbers, or 

open intervals ot the real numbers are known to possess this property. 

~e derivatives of such functions .also possess this property. 



Theorem of Bair®o Let E be a subset of the real numbers which is 

either :perfect or open 3 and let f be a function d.ef.ined on E., Function 

:f is the limit of a sequence o:f ftmct;ions» each of which is continuous on 

E» if and only if f is at most poi.ntwise discontinuous w:tth respect to 

every perfect set contained in E. 

Definition 5.,llo A function tis said to be of Baire9 s class less 

than two if tis continuous or is the limit of a sequence of continuous 

functions. 

A lemma and a ·theorem will now be proven» from which the proof of 

Theorem 5.8 will follow. 

Lemma 5.1. [22] If the real valued f'unction f is defined on an 

open interval I of the real numbers and if x is a point of I where f' 

is not neighborly» there exists a positive number~ and a neighborhood 

N of x such that tor each pointy of continuity off in N n I» 

/ r<x) = r(y)/ 2:: ~. 

Proof" Let x be an relemcent of I at which :f is not neighborly. 

Suppose for !fffery ®: > 0 and tor ~viery N, there exi:sts a. continuity x 

pointy off in Nx n I such that I t(x) = f(y) / < ~. Choose a positive 

number €tl such that !t(x) = f(y)J + ®:1 <, @:. Since y is a continuity 

point off» there exists a n~ighborhood NY c Nx n.I such that for 

z in Ny» I f(z) "' f(y) / < !iill. Thus for z in Ny» /f{x) = :f(z) / :S: 

Jt(x) = f(y)I + it(y) = f(z)/ < !t(x) = f(y)I + ~l < ~o This 3 however.I' 

contradicts the hypothesis f is not neighborly at xo 

Theorem 5o9• [22] If the rreal valued function f,, defined on an 



open interval Ii is a Bainvs class less than tw-0 iµ1d has the Darboux 

property, then f. is neighborly on I. 

Proof. Suppose f is not neighborly at ·the point I; in I,. From 

Ba.ire's Theorem, it :follows that the set ot points ot. cont1n1:1i'ty oi' t 
forms a set which is everywhere dense in I. Since t(x,) is not neigh= 

,borly at I;, Lemma 5.1 implies there exists a. positive number € a.nd a 

neighborhood.N1 (i;). such that tor every continuity point x ot tin 
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N1 (!;) n I, jt(x) .,, t(1;)J 3 c~. Choose a neighborhood N(s), ot. s ~~cll_th!i.t 

N(!;) c N1 (~) and ~uch that thie end points ot N(~) are c~;tinuity point 

ot t. _Denote by R the set oi' continuity points ot t in N(!;). · Let 

_A= {:i([ x ~ N(I;), and jt(x) ... f(!;)I< i!;iJ. Consider the set Bot points 

ot A at which the saltus S:i/x) relative to A satisfies S/?C) > ~/2 .. 
Set B is not null since s is an element o;t' B. Let B denote the closure 

of B. Now every point of Bis an interior point of N(~) since the end 

points of N(~) are points of continuity oft and S~(x) = 0 at these 
' ! . . . '• .. 

points. Let us now show that Bis pertect by showing that every point 
,. -

of' Bis a limit point ot B. 

Ii' x in B is such that I t(x). ~ t(~) j 2: ~, then x /:. A and x /;. B, .so 

that x m~st be a ;U.ini t point 6:t" B ~,r;d. a limit point ot B. It x in B . :Ls 

such. that .1 f(x). - :t'(!;) I < .~, then x is in B sin,~e· :x. ~' P: a.n4 the set of · 
. . . 

points wher~ S/x) > .. ('J,/2 is' c'losed relative to B~ Now if x is in B tor 

an arbitrary neighborh-ood:-"Nx ot x which is co~tatned in N(~) 1 there 
. : 

exi~ts two points Xp and x.2 in.NX such j:;hat ! f(x1 ) - :t'(x2)j _?: t/2. 
The follcwing possibilities can hold. 

(1) !t(x1 ). - t(tg)! < ~/2 

(2) i t'(x~1) "' t(g) ! < 1$./2 



(3-) f(g;) .: e < :t'(:ic{) :S f(~) l{f./2? and 

t'(~) + ~/2 S t_(x2 ) < f(!;) + a. 

~~nee R is everywhere dense in N(~) and since f satisfies the Darboux. 

property~ in C~se (1) x1 is an element of B, in case, (2) :it2 is __ e.n 

elemen't or B, and in cas~ (3) there .exists an x 3 ~n Nx with ~·~x3)_ =_ £,(~) 

and ther~fore x3 is in B. · If it should happen that any one of the 

points x1,x2 or'x3 equals x tlien by the Darboux property there exists 

an :x4 in Nx; with x4 f x and such that t(x4 ) = t(g) _.-< (!./2.tL In this ca~e-

:ic4 is in B. In any case, the arbitrary neighborhood N of x must con­
x 

tain a point ot Band Bis pertect. 

The saltus Sf(x) _2:: i/2 :t'or each point of Band, therefore, ea.ch 

point of B .ts a discontinuity point oft relative in B. By Ba.ire's 

theorem, t could not be the limit of a sequence ot continuous functions. 

This contradicts the hypothesis that tis ot Ba.ire's class less than two 

and, therefore., t must be neighborly on I. 

Proof or Theorem 5.8. If :t' has a derivative f'(x) at each point 

x in s., then t' is ot Ba.ire's class less tha.n two, since 

t(x) = lim t(x) ·~ t(x + 1/n) 
~co · · 1/n . 

Therefore, by Th.eOrem 5.9 t* is neighborly on S. 

Theorem 5.8 gives a cha.rac·terizaticm of the derivative functions 

of continuous· real valued :t"unction defined on the real numbers, open 

intervaJ.s·ot the real numbers and closed intervals ot the real numbers., 

provided the derivative ·exists at all points in the domain. The follow­

ing theorem shows that a characterization-of the d~rivative 1"'unction can 

also be.given. it the 4erivative function.is defined on all but a nowhere 
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Theorem 5.10. [221 Let space S be the real numbers, an open inter-
.. ,, .. . , ··~ .... 

val, or a closed interval. If the real valued. function r defined on S 
., w •• ·- ••• •,.,., • ,, ... • - - •• ,... • ' .......... . 

has a; derivative everywhere on S·· iitith the possible exception of a. :r_iowher.e 

dense set Dins, then the derivative function· f' is cli~uish on s. 

Proof. Let g be an arbitrary point ot s and let ~ > o 1?~ __ giv~~· 

For any neighborhood N(f;) or' g, ther~ exists· an open_ set N_cc,!.lta.;nec;i -1.n 

N(i:;)"~uch that N n D = ¢. By Theorem 5.8, t' is neighbor~y on N. Thus 
l 

tor any xl in. N there ex:i,sts an open set Nl c N such that I ;f(~l) - t(y) I 
< €/ 2 tor _1 any y in N1 • Now let y ,x be any two e:l,ements in . N1 • . 

' ' 

j t(x) - f(y) I ~ I ~(x) - t(x1 ) I +_. lr(x1 ) - t(y) ! < €/2 + E/2 = €. Since 

N1 is a subset of N(.g), t i.s cliquish a.t s. 
' I . 

I.et us now give an examp,le of a continuous function whose de:dya. ... 
' /• i'• 1 ,.: 

ti ve is cliquish but not ·neighborly' .. 

Example 5.7. [22] Let S be the closed. interval. [011] 'and. let t 

be defined by: 
. 2 

.;p( ) (2n+;I.) - ·(2n +2n+l) x ... 1 < < 1 h 
J, x = , . . . n(n,+;l) . . ' 1.L n+l x, __ rt' w ere 

n =· 0, 1, 2, 3, •• ~ , and · 

t(o) = o. 

Now 't' (o) = o, but at all other points where the derivat~ve ~ists, 

:t"f (x) < -2. ~nction f' is, ther~I'oreJJ not neighborly at point o. · How­

ever, by ~heoretri 5.1-0,. I'' is cli,quish at all points in s. 



CHAPTER VI 

CONNECTIVITY AND PERIPHERALLY CONTINUOUS MAPPINGS 

INTRODUCTION 

Much or' the recent res ear.ch in topology has been concerned with de--

termining it a mapping :t' :t'rom a space S into i tsel:t' leaves a point of' S 

fixed. That is, in determini.ng i:t' there exists some point x in S such 

that ~·(x) "" x. For example, it i.s well known that a continuous mapping 

i'rom a closed n=cell I into I will leave a point ot I i'i,xed. A closed 

n=cell I is any homeomorphic image oi' the subse.t of Eucl:i.dean n=space 

consisting or' :Points of the form (x.1 ,x2, ••• ;x ) , where O < x. < l tor 
n . - .1 -

each i, i = .lJ 2,, ••• i n.. Many functions which sa.tist'y condi ti.ens ,other 

than continuity can also .be shown to leave points of an n-cell fixed. 

John Nash in studying fixed. point problems de:t'ined a mapping which he 

called a connectivity map and inquired whether or not this kind or' map-

ping le:t"t a point o:t' the n-·cell fixed [9]. Professor O. H. Hamilton 

(91 o:t' Oklahoma State University and Professor J. Stalling [23] of 

Princeton investigated the problem r'urther and gave a:q. affirmative 

answer. In Hamil ton's investigation he de±'ined and made use or· another 

noncontinuous :!:'unction which he called the peripherally continuous 

mapping. 

Although co;nnectivity.mappings and peripherally continuous mappings 

were defined in connection with :t'ixed point theorems J a considerable 
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amount 6t.' research concerning other properties or: these functions has 

taken placeo In this chapter, such results concerni'ng these functions 
. . . . . 

will .be giveno Definitions will now be stated 0i'or connectivity and 

peri:t"'pherally continuous transformations. 

De:t'ini tion 6 ol A mapping i' :t'rom a space S into a space T is said 

to be a connectivity mapping i:i:' and only ii' the induced mapping g of S 

into S X T, defined by g(p) = p X i'(p), trans:t'orms connected subsets 

of S onto connected. subsets cit' S X T. 

Using the dei'initions one can easily show that a connectivity map 

is a connected map. 

Der'in:i..tion 6 .2. A mapping t' from a space S into a space T is said 

to be peripherally continuous ii' and only i.i' !'or each point p or' S and 

i'or each pair oi' open sets U and V containing p and t'(p), respectively, 

there exists an open set D c U containing p such that t' transf'orms the 

boundry F o:t' D into V. 

The following examples.show that connectivity maps a.nd peripherally 

continuous mappings need not·be continuous • 

. Example 6.1 Let S be the unit interval O < x < 1 with the usual 

topology and det'ine t' on S 'by: 

t(x) = 1 if xis rational 

t(x) = 0 if xis irrational. 

Function·::t' is peripherally continuous at all points but is discontinuous 

at all points. 
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.Example 6.2. Let S be the set or' rational numbers in (O,l] with 

the usu~l topology, let A = { x [ x ~ S, x "' p/q, whel'.'e p and 9- ~re ?'e1.a­

ti vely prime and. q is prime), and let :B '."' (x f ~ e S, X ;" p/q, where p 

and q are relatively prime and q i.s not prime). De:t'ine f' on S,by: 

:t'(:x:) = 1 ii' x € A, and 

f(x) = 0 it' x € B. 

Mapping j;' is a connectivity map since the only· connected subsets in S 

are single points. Mapping f' is not continuous on S since both A and 

Bare everywhere dense in S. 

SOME FIXED POINT PROPERTIES 

$ince the original work with connectivity maps and peripherally 

continuous maps was byO. H. Hamiltqn in conn~ction with fixed ,point 

:theoremis:, and since many of the other theorems concerning these mappings 

:t"ollowed i"rom his work, it seems appropria.te to discuss his results 

:t'irst. After the presentation or' Hami'lton's work, a systematic presen~ 

tation or' the other theorems concerning these mappings will be given. 

Theorem 6 .1. [ 9] · If i' is a connectivity map from a Hausdor:t'r' fi~ac e 

S onto a, Hausdorff space T, p i.s a point of S, U and V are. open set con­

taining p 'and :t'(p), respectively, then every nondegenerate connected 

subset of S containing p contains a point q of U distinct from p such 

that t(q).is an element o:t' V. 

Proo:t•. Suppose C is a nondegenerate connected subset oi' S contain-
'· 

ing p but such that, G contains no other po:int q of' U such that f(g,) ~ v. 

Then g(C) is the union of the two mutually separated sets 
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g(p) = (p X r'(p)} and g(C - {p})j since U XV contains.PX r'(p) ?1:1t 

no point ot g(C -·(p})o This contradicts the hypothesisy hence C must 

contain a point q oi' U such that q f p and :t'(q) € V. 

Theorem 6.2. [9] II' t.' is a connectivity map :t'rom a Rausdori'i' space 

S into a Hausdori'I' space T and if C is a closed subset of T, then each 

compo~ent of [ 1 ( C) is a clos red subs et 01' S. 

Proo:r'. Suppose C is a closed subset or' T and that some component 

E oi' :t'-1 (c) :i.s not closed. Then there exists a limit point p or' E such 

that p is not an element o::i:' E. Thus i'(p) is not an element o::i:' C. Since 

C is closed, r'(:p) is not a limit point of c, and there exists an open 

set U in T such that ±'(p) is in U and U n C = ¢. There::i:'ore, f-1 (u) n E 

= ¢. This leads to a contradiction, since the connected set EU fp} 

.must contain a, po:i.nt q distinct I'rom p such that ±'( q) is an element or' 

u; by Theorem 6.L Hence E is closed. 

Corollary. Ii' t is a connectivity map !'rom a Hausdor!':t' space S 

into a Hausdor1'1' space "I', p is a point in. s, U is an open subset o!' T 

containing t(p), and ,it' C is the subset o:t' S consisting or' all points q 

ot S such that i'(q) is an element or' U» then each component E o:t' C is 

closed. 

The.next theorem was ~tated by Hamilton [9J, and a. proof ot a gen­

eralization of this theorem was given by Stalling [23]. The proof o!' 

Stalling's theorem will not be given since it involves terms and tech-

niques of algebraic topol,ogy which would not be appr_opriate in this 

paper. The statement o:t' Hamilton I s theorem will 'be given.,, however, 
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since his remaining theorems rely on this result. 

,· 
Theorem 6.;. [9] If i' is a connectivity map or' a. .cl~~~~,n-?el; I, 

n 2: 2, onto_ a sul)se_t B of I, then f is periphera1.1Y contimwu~ .on.!. 

;Furthermore, if p is any point ot I and U and V are open su~sets. ~:t· I 

containing p and t(p), respectively, there is a conn~cted set D of.I 

with connected 'boundary F such that p i D, DU F c: u., and :t'(F) c: V .. 

It should "be noted that the second statement in Theorem 6.3 follows 

because tis peri~herally continuous, and not from Stalling's general­

. ized theorem.. A partial converse o:t' this theorem will be presented 

later. 

Theorem 6.4. [9] ·. Let f be a. peripherally continuous transformation 

ot a closed n-cell I, n > 2 into itself •. · L.et it be assumed. that Lis 

the closed n-cube consisting o:t' the points (x1 ,x2, ••• ,xn) given by the 

inequalities O :S xi .:S 1 tor each i. ,Le~ the tac.es x1 = b and xi = 1 be 

des·ignated by A1 and Bi respectively. For each point x = (x1,x2,. •• ,xn) 

in I, let :t'(x) be designated by x' = (xi,x2, ..• x~). For each 1, 1 .:S i 

5 n, let M,i' .L1, and Ni designate the subsets of -I ±'or which x1 5 xi, x1 
.. = x1 , a.nd x1 .:2: x1 , respectively. ~~n the components M1, Li, and N1 a.re 

.clo.sed and it q = (q1,q2, ••• ,qn) is a po'int' in the common boundary be­

tween a component E of Mi or Ni and a. connected subs.et. oi' I - E, then q 

,i~ an element·ot Li. 

Proof •. Let q = (q1,q2 , ••• ,qn) be a limit point of a component E 

of Mi and suppose that q does not.belong to Mi. Then by the d.el'inition 

of Mi, qi-= qi+ d. tor some d ~ o. Then, since tis-peripherally 
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continuous, by Theorem 6.3., there exists a .connected open set D oi' dia-

meter< d/3 containing q such that 

(1) · E .- (D n E) j p, and 

(2) if xis a point of F, the boundary of D, then 

p[t(x),r(q)J < ~/3. 

The connect.ed set E, since it contains ppints outside of D and within 

D, must contain a. point x of F. This means, p[i'(x),f(q)].< d/3, and 

. p(±,q) < d/3· Hence, j_x1 ~ qi j < d/3 and I x1 - qij < d/3. With 

q1 = q1 + d, these inequalities give·x1 >xi+ d/3 ana. this contradicts 

the tact that xis in Mi. Hence the assumption that q does not ·belong 

to. Mi is false and Eis closed. 

A similar argument can be used to show that each component di' Li 

or N1 is closed. 

Now let q = _(q1 ,q2, ••• ,qn) 'be a. point in the common boundary be­

tween a component E of M. and some connected subset R of I - E, and 
. . . 1 

' suppose q does not.belong to Li. Since q is an element of ~i,qi = q1 
+ d -I'or some d > o. .Let 5 be a :positive real number such that 5 < d/3 

and such t~t the spherical neighborhood with center q and diameter 5 

does not contain all of E. Then since tis peripherally continuous, 

it follows from Theorem 6.3-that there'is a connected domain D with 

respect to.I of diameter< 5 con~aining q with connected boundary F 

such that 

(1) D corita.in a point z of'RJI 

(2) R - (D n R) = ¢, 
(3) it x = _(x1,x2, ••• ,xn) is in F then p(f(x), f(q)) < d/3. 

Then !xi - q11 < d/3, lxi = qi j < d/3, and since q1 = q1 + d, it follows 
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Hence x er M,, and there:fore F c E. 
1 

But the connected 

set R contains a point o:f F and hence a point of E. This contradicts 

R c I - E. Hence the assumption q does not belong to Li is false, By 

a · similar argument, it can be shown that each point common to the bound-

aries of a component E of N1 and a connected subset of I= Eis in Li. 

The main theorems from Hamil ton's pa.per will now be stated and 

proofs given. 

~heorem 6.5. If f is a peripherally continuous transformation of 

a clos.ed n=c ell I, n ,?: 2, into its elf, then t leaves a point of I fixed. 

Proof. LErt sets Ni, .Mi, Li and faces Ai and Bi be defined as in 

~heorem 6.4. Since set Ai must be a subset of Ni for each i and since 

A1 is a connected subset for each i, let E1 be the component 

which contains Ai for each i. By Theorem 6.4, E. is closed. 
1 

of N 
i 

Let (a;J 

be the collection of all components of I= E1 which contain points of 

Bi. Let Hi be [q:X a!] U B1 • Now Hi is connected since Bi is connected 

i ' and since each G0 is connected and contains a point of Bi. Let Ki be 
, 

the subset of E1 consisting of all points in the common boundary between 

Hi and Ei. Then by ~eorem 6.4, K1 is a closed subset of L1 and hence 

Fi= K1 U (Bin L1) is a closed sub.set of Li. Now, 

(1) No component C of I= F1 contains point of both A1 and B1 

For suppose C contains a point of Ai and a point b of B1 • Then a Ei Ei 

and b ~ Hi. Hence C contains a point of K1, the common boundary betwe~n 
! 

Hi and E1 • This contradicts K1 c Fi and C c I = Fi. 

Now for each point x = (x1,x2, ••• ,x11 ) in I let d1(x) = p(x,F1), and 

define a mapping Won I as follows •. Let w(x) = W(x1,x2, ••• ,x) be 
\ n 
I 
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If x belongs to a component of I= F1 

whi~_h intersects l\, ~enoe contains no point of A1, let xi "" 

Then since x. /= o, x1 -f. x"!. 
J. l. 

If xis an element 

of a component o:f' I - Fi which do~s not int;ersect B1 let xi = x1 + 

l/2[d1 (x) Q (1 ... xi)] o Sinoe (1 .., xi) /= 0 1 xi f. xi. If x is an element 

of Fi let x~ = Xio 

Now since di {x)/2 < 1, we ha:v~ 

{2) 0::5:x1513 a.nd 

(3) x1 = x1 it and only if x ~ Fi c: Li. 

The function Wis by its definition a continuous function of I into it-

self and hence, by the well known Brouwer fixed point theorem for n-cells 

must leave some point z of I fixed. That is, for ea.ch i, _i ""' 1,2,. o. ,n, 
n n 

x1 = xi. The point z must be an eliement of 1Q1 F 1 c irh Li. But z in 
n 

1g1 Li implies x1 = x1 :for each 11 so that :f'(z) = z, and f leaves a 

point of I fixed, a.s required. 

Theorem 6.6. If f is a connectivity map of a closed n-cell I into 

itself, f leaves a. point of I fixed. 

Proof. If n = 1 and if f is a connectivity map of interval I, 

into itself, then g(I) is connected by the definition of a connectivity 

ma.p. Furthermore, g(I) contains the points O X :f'(O) and 1 X f'(l) in 

the subset o X I and 1 X I respectively. Hence the connected set ·g(I) 

must eonta.in a. point of the closed conneeted set x x x in_ I x Io This 

implies-f(x) = x for xome x in I· 

I:f n ~ 2 then Theorem 6.6 follows directly from Theorems 6.:, and 
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GENERAL PROPERTIES 

As previously mentioned, a considerable aniount of research concern-

ing the properties of connectivity and peripherally continuous mappings 

has ta.ken place since the publication of Hamilton's paper concerning 

fixed point theorems~ A systematic d.1.scussion of these findings will 

now be given. General properties of connectivity and peripherally 

continuous trans:forma:tions wil.l be given first. The· first of these 

general. theorems gives a. property of peripherally continuous mappings 

which is analogous to the property of connectivity mappings given in 

Theorem 6 .. 2. 

Theorem 6 .. 7. [16] If a.function f :from a Hausdorff space S into a. 

Hausdorff space T is peripheral.ly continuous and if C is a closed subset 

of TJ then each component of f .. 1 (c) is closed in So 

Proof. 
- 1 

Suppose some component Eoff .. (C) is not closed. 

th~e exists some limit point p of E such that pis not an element of 

E. Now f(p) is not an element of C9 and since C is closed9 there must 

exist an open set V about f(p) in T such that V n C ~ ~· 

Since Eis non=degenerate9 there exists an open subset lJ of S con= 

taining p such th.at (S .. U) n E -f. '/) .. Ufhere also exists an open subset 

D of S such that D c: u, p '€ D and f(F(D)) c: v, since f is peripherally 

continuous. Now D c U and pa limit point of E implies there exists 

points of E in D and (S = D). Therefore, F(D) contains at least one 

point of E, and it follows that f(F(D)) is not a subset of V which is a 

contradiction. Thus the assumption that Eis not closed is false, and 

the, conclus:1.en of the theorem follows. 
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Corollary l. If for ea.ch.closed set C in T f~1 (c) consists of a 

-1( ) . . finite number of somponents, f C is closed for each closed set C in 

Proof. The conclusion follows from Theorem 6.7 since the union of 

a finite collection of closed sets is closed. 

Corollary 2. If for each closed set C in T r"'1 (c) consists of a 

finite number of components, f is continuous. 

Proof.. By Corollary 1, :r=1cc) is closed if C is closed. Tb.is 

implies r=1 (u) is open if U is open. Therefore, f is continuous. 

The next two theorems a.re concerned with point set properties 

which are-preserved ·by peripherally continuous mappings. 

Theorem 6.8. [16] If f is a peripherally conti~uous transforma.~ 

tion of a B'.a.usdorf':t' space S into a. Hausdorff space T, i:f'N is a. connected 

subset of s, and. if x E i then f(x) is an element of f(N). 

•·. 

Proof. Suppose there exists a connected subset N of Sand a. limit 

poi~t x of N such that f(x) is not an element of :f'(N)~ Then since f(N) 

is closed, there exists some open set V about f(x) such that 

v n r'"{N) = ¢. 

Since N is non-degenerate, there ex'ists an open subset U of S con-

taining x such that (S - U) n N fo ¢. There also exists an open subset 

· D of S s~~h that D c: U, x ~ D3 and f(F(D)) c:··u, since f is peripherally 

continuou,. Bu~ (S - D) n N ~¢and N n D;. ,P. Therefore, F(D) con= 

tains .at least one point of N since N is cQ_nnected, and it follows that 

:f'(F(D)) is not a subset of Vo This is a contradiction>' hence the 
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conclusion of the theorem follows. 

Theorem 6.9. [16] Let S and T be Hausdorff spaces, let f 'be a. on.e-
.... ~. 

to-one_~eri:i;,hera.lly continuous tra.ns:rorma.tion from S into_T, and l~t 

M c: S be a non=degenera.te connect.ed .subset such that S = M ha.s a. finite 

number of components o I:f' x is a 'boundary point of M, then :f'(x) is a. 

boundary point of f(M). 

Proof. Let x ~ea 'boundary point of M. If xis not a.n element of 

M, then f(x) is a. limit point of f(M) by Theorem 6.8, but f(x) is not 

an element. of f(M) due .to the one=to .. one property o:f f. · Thus f(x) is 

a. boundary point of f (M) • 

Now suppose xis a boundary point of M which belongs to M but that 

:f'(x) is not a. boundary point of f(M). Then :f'(x) is an interior point of 

:f'(M). _Since there exists only a. finite riµmber of components of S ... M, 

x must be a limit point of some non=degenera.te component E c (S .. M). 
; 

But f(E) c (T = f(M)) due to the one=to=one property off, and there= 
. . t • . ·. 

fore f(x) I F(E) which contra.diets Theorem 6 .. 8. Thus f(x) must be a 

boundary point of :f'(M) .. 

Another interesting point set prop~rty o:f' peripherally continuous 

mappings is given in the.next theorem. 

Theorem 6010 .. [16] If f from S onto Tis a peripherally continuous 

transformation of a non-degenerate, connected, regular, Ha;~sdorff space 

.S on~o a. Hau.sq.o;,ff space T, and if y is an ;interior point of a. subset M 

o:f T, then f!Nery point of f'=l(y) is a. limit point of r=1 (M). 

Proo:f'o 
. I 

I Let y be an interior point, of M and let V be a.n open subset 
. . . 
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of. i.r containing y an,d lying entirely in Mo Suppos~ there exists a point 

x of f =l (y) that is not a. limit point of :f=l (M) • Th,e:n ·there exists an 

open subset U of S containing x such that U contains no point of r=1 (M) 

due to s being regular. Consequently~ a:ny open set De U containing x 

' . =1 
has the property that F(D) contains no point of f '(M) and, furthermorei 

F(D) is non=cempty since Sis connect~d. Hence F(D) is not a subset o;f 

V which contradicts the hypothesis that f is peripherally continuous. 

The conclusion of the theorem thus follows. 

In Theorem 6.2 a point set property o:f.connectivi~y mappings was 

given in connection with Hamiltonus fixed point theorems. Similar 

results for peripherally continuous mappings were given in Theorems 

6.7, 6.8J 6.9 and 6.10. Let us turn now to a further consideration of 

point set properties of connectivity maps. 

Theorem 6.11. [5] Let f be a connectivity map from the T1 space S 

into the T1 space T. If Vis an open subset of T and K is a non= 

degene~~te component of t=1{v), then any point pin the closure of K 

· such that p is not in K has the property that f(p) is in F(Y). 

Proof. Let p'be a limit point of K which is not in Ko Since 

KU (p} is connected and connect:iYity maps map connected sets onto con= 

nected sets, f (K U (p)) = f (K) U (f (p)} iS connected. Now f(K) contained 

in V? f(p) not in VJ and f(K) U (f(p)} connected implies f(p) is a limit 

point of f(K) by Theorem 608. H~nce f(p) is a limit point of V which is 

not in v. Therefore, f(p) is in F(V). 

Theorem 6.12. [6] Let f be a connectivity mapping of the locally 
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.=1, ) open subset of T, then :f (V. i.s densie=in=itself. 
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Proof. Suppose r=1 (v) is not dense=in=itself. Then there is a 

point p in :r=1 cv) and an open set u ccmtain:ing p such that u = (p) 

contains no point of t=1 (v). Since Sis loc~lly connected there 

exists a connected open subset C of U containing p. Therefore, C X V 

is an open set in S X T containing only the point p X f(p) of g,{c). 
. . ' ' 

This implies g(C) is not connected contradicting the hypothesis that f 

is a. connectivity map. Therefore,9 ~ery point o:f :r=1 (v) is a. limit 

point of :r=1 (v) and. hence r=\v-) is d.ense-in=itsw..f. 

With any class of functions; it is always of interest to determine 

whether or not a con~ergent sequence of such function will always con= 

verge to a function of the same class. Example 6.3 below proves that 

the limit function of a sequence of connectivity maps or peripherally 

continuous maps need not be of the same type. However, if the sequence 

of functions is required to be uniformly convergent the limit function 

will be of the same class for certain spaces. 

Example 6.;. Let S be the unit unterval O < x < 1 with ·the usual 

topology and define a sequence of function [:fn} on S by, fn(x) = xn, 

tor each x ~ s. Now each f i~ a connectivity map and is peripherally 
n 

continuous. Furt:llermore, sequence (fn) cci:asq·erges to the function :f 

defined by~ 

f(x) = O if x fo 1, and 

f(l) :,,, lo 

Function tis neither a connectivity map nor a peripherally continuous 
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mapping. 

Theorem 6.13. [5] Let {f J be a sequexice of peripherally contin-
n . 

uous ma,ppingp of' a space S into a metri.c space To If sequence [fn) 

converges uniformly to a function f on s, then f is peripherally 

continuous. 

Proof.· Let p be a point of Sand let U and V be open sets contain= 

ing p and :t(p) respectivelyo Since T is a metric space, there exists an 

~ > O such that the spherical neighborhood R of radius ~ about :f(p) is 

contained in V. Let Rn lie the spherical neighborhood of radius lfJ./4 

about f(p). Since the convergence is uniform there exists a positive 

integer N such that for every n > N, p{f' (x) j:f(x)) < ~/4 for 1F;Very x in 
n 

S. Let n "be a fixed positive integer such that n > No Then fn (p) 
0 0 

0 

is contained in R' and since fn is peripherally continuous at PJ there 
0 

exists arl open set D c: U and containing p such that f'(F(D)) c: Rg. If 

y is an element of F(D), then p(f(yLf(p)) < p(f(y)»f (y)) + 
- n 

0 

p(f (y),f(p)). Now p f (y)) < ~/4 by the uniform convergence 
no no 

and p(fn (y),f(p)) < ~/4 since fn (y) is in Rg. Hence (f(y),f(p)) < 
0 0 

~/2 and f(y) is in Ro Therefores f(F(D)) c: R c: V, and Dis the required 

neighborhood which implies f is peripherally continuous. 

An analogous theorem holds for connectivity maps; howeverJ the 

proof for this theorem requires the use of Theorem 6022 which states 

conditions under which a peripherally continuous mapping is a connec= 

thrity map. Tb.is result will be discussed further after the proof of 

Theorem 6.22. 
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.CHARACTERIZATIONS 

Some characterization theorems for peripherally continuous mapping 

will now be given. 

Definition 6.4. A sequence (D11 of open .sets is said to close down 
=-==-

• . 00 . . 
~ !_ 42oinl ~ if and only if {x} ""i0l D1 and for every open set U contain= 

ing x there exists a. positive integer N such that Di cu.for all i > N. 

Theorem 6.14. [16] Let f from,S·into T be a transformation where 

spaces Sand Tare regular and first countable. Then a necessary and 

sufficient condition that f be peripherally continuous is that for each 

x ~ S .there exists a monotone decreasing sequence of open set (Di), 

i = 1,2,3, ••• ., closing down of x such that the sequence (f(F(D.))), 
1 

Proof. The fact that the condition is necessary follows from the 

definition of a peripherally continuous mapping. 

Now let :(Di}, i "" 1,2, 3,. "° jl be a monotone sequence of open sets 

in S converging to x such that the sequence f(F(D1)), i = 1,2,3, ••• 

converges to f(x). If Rand V are any two open. sets containing x and 

f(x), respectively,!) there exists an open set Dj ~ {Di}, i ."" 1,2,3 ••• ., 

such that Dj c R. This follows since [D1} closes down on X» and since 

Sis regular. ~ince the s.equence {:f'(F(Di))J converges to :f'(x) there 

exists an open s~t ~ ~ [D1 )jl i = 1,2,3, ••• , where k ~ j such that 

f(F(J\)) cu. Therefore, by definition, f is peripherally continuous. 

Corollary. Let f from S into T be a peripherally continuous trans-

formation of a.regular space S into a regular space T such that if xis 
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an element of S there exists a. sequence fD.}, i = 1,2,3, •.• , of open 
\ .. J. .. ' . . ' 

sets closing down on x such that for each i, F(D1) ~ ¢. Then for every 

point x in S theie exists a.t least one sequence of' distinct points con-' ' . . 

verging to x such that their images under f converges to f(x). 

Theorell;l, 6.15., [p] If f is a. mapping from a space S into a space T., 

then f is peripherally continuous if and only if g is peripherally 

continuous. 

Proof. Suppose f is peripherally continuous. Let p be a 

point of S and let U and ,V bie open sets containing p ·and p X f (p), 

respectively, where Vis· of the form H >(K with H open in Sand K open 

in T. Then H n U is an open set containing p and K is an open set con­

taining :r"(p) • .Since f is peripherally continuous, there exists an open 

se~ De Un H containing p such that f(F(D)) c K. Thus g(F(D)) c V 

and g is peripherally continuous·.· 

Conver.sely, suppose g is peripherally continuous. , Let p be a 

point of s. a.nd let .u a.nd V be open set conta.in~ng p a.nd, f'(p) respective­

ly. Then . t1 X V i.s an open set containing p X f (p), and hence there· 

exists an open set D c U containing p such that f(F(D)) c U >(v. 
Therefore, f(F(D)) c V and f is peripherally continuous. 

MAPPINGS THAT ARE BOTH PERIPHERALLY CO:NTINUOUS AND CONNECTIVITY MAPS 
. ' ,, 

Hamilton in his original work with connectivity mapping ma.de use of 

the fact that a connectivity mapping from a closed n=cell, n _2: 2, onto 

a subset of that n=cell was peripherally continuous •. Some additional 

theorems relating connectivity mappings to peripherally continuous 
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mappings will be given nexto The first of these theorems is an exten-

sion of Hamilton's theorem. 

Theor~m 6016. [16] Let I be the closed unit interval, 0 < x < 1. 

If mapping f :from I into I is a connectivity map, then f is peripherally 

continuous. 

Proof. Assume that f is not peripherally continuous.at some point 

pin I. Then there exists some subinterval V containing f(p) such that 

for some open connected subinterval U = (a,b) containing p, no sub.inter-

val D c U containing p ha.s the property f(F(D)) c V. There exists, by 

Theorem 6.1, a point q in u, q} p, such that f(q) is an element of v. 

Suppose q is an element of (p,b). It foilows from our assumption that 

no point of (a,p) can be mapped into V under f. Hence the graph of 

(a, p) , g (a, p) c: I X _I - U X V. 

The set P X I separates I XI into two mutually separated sets 

such that the.graph g(a,p) is contained in one and g(p,b) is contained 

in the other. Since g(p) is not a limit point of g(a.,p), g(a,b) = 

g(a,p) U (g(p) U g(p,b)},where g(a,p) and g{p) U g(p,b) are mutually 

separated sets, which is a .contradiction of the fa.ct that f is a con= 

nectivity map. Thus f is a peripherally continuous, mapping. 

The following example shows that the converse of Theorem 6.16 is 

not true. 

Example 6.4. Let I be the unit interval3 0 :S x ::':: 1, and define f 

on I by: 

f(x) = 1t/4 if x is rational, and 

f(x) = 3/4 if x is irrational. 
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Mapping f is peripherally continuous, but is not a connectivity map. 

Closely related to Theorems 6.1 and 6.16 is the following theorem 

concerning peripherally continuous mappings defined on n-cells. The 

following definition will be used in the proof of this theorem. 

De;Einttion 6.5. Let S be a topological space and let A be a subset 

of A. Any component of the subspace (s-A) is said to be a component 

complementary domain~!,· 

Theorem 6.17. [16] There exists no peripherally continuous trans­

formation f that maps an n-cell I, n 2: 2,into itself such that f(I) is, 

the union of two closed disjoint subsets of I. 

Proof. Suppose there does exist a peripherally continuous trans­

formation from an n-cell I, n ,2: 2, into itself' such that f(I) = H.U K, 

where II and K are closed disjoint subsets of r. Then the components 

-1c ) ~1c) 6 -1< ) -1< of both f H and f K are closed by Theorem • 7, and f II n f "K) 

= ¢. ~ ~ " 
Since f · (H) U f' (K) = I., and I is not the unio.n of a. countable 

number of disjoint closed sets, one of the set f-1 (H) or f-1 (K) must!,;:;: 
. - ~i~" 

have uncountably many components. C.pnsider this to be f-1(H); similar 

results hold if this is f~1 (K). 

Let x be a point of I a.nd let Uc I be any open set containing x. 

* If DC U is an open set containing x and D is defined as the qomponent 

of. D containing 't. unioned with its- component complementary domains whi.ch 

n * are bounded in E , then F( D ) is connected [ 27 7 106]. 

· We shall now consider the two possible re~ulting cases under our 

assumption that f is peripherally continuous and show a contra.diction of 
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the hypothesis. First, if r""1 (H) has at most a finite number of non-
. n,. 

degenerate co~ponents, M1,M2, ••• Mn' then i~l Mi is closed since each Mi 

is closed by Theorem 6. 7. Let x be a dege~erate component of :f-1 (H), 
. n 

and let Uc I ·be an open set containing x such that Un [ 1~1, M1] = ¢, 
and let Van open set containing f(x) such that V n K = ¢. If D c:: U 

. . . -1 \. . *· 
is any open set containing x, then F(D) n f (K) f p for if not, F(D) 

. ' 1 
c: F(D) would be a subse~ of a non-degenerate component N off- (H). 

But NC::. U is impossible by the definition of U. Hence there exists.no 

set D c q containing x such that f(F(D)) c V and consequently f is not 

peripherally continuous at x, contrary to hypothesis. 

Alternately, suppose :r=1 (H) has infinitely ma.ny non-degenerate 

components. 
. 1 

Then there exists a non-degenerate component E of :r= (H) 

such that E union its complementary domains which a.re bounded in En, 

* * denoted by E , does not equal I. Let x be a point on the boundary of E 

. * ' :which is a limit point. of I - E a.nd 'let U and. V be open sets containing . .; . . .. * . 
x and f'(x), respectively.~ such that (I - . P) n E f, ¢ .and V n K = p. Now 

* ' . 
if D c::, U is any open set containing x.,, F(D) c: F(D) must contain a point 

l * * ' * * 9:f' f- (K). ·;F'or if .not, D U F(D ) would belong to E' sin.ce F(D ) is 
··._' · .. ,' * * I . ' . , . ' 

connected and E n F(D )_, = ¢; but this contra.diets, the fa.ct that x is 

a boundary poi'nt of E*. Thus there exists no open set D c U such that 

:f(F(D)) c: V, which again contra.diets the. :fact that f is peripheraJ.ly 

continuous. 

·.,, 

The following theorem will be.usefui in proving the next theorem 

,relating peripherally continuous mappings to counectivity maps. 

Theorem,.6.18. [5] If' f is a.· mapping from th.e ?i space Q in'tto-the 
·1 

T1 space T and if. K is a.. connected subset of g(S), then g= (K) is 
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connected .. 

Proof .. 
...1 . 

Suppose g (K) ""MU N·where Mand Na.re mutually separated. 

Then IC "" g(M) U g-(N) · and g(M) n g(N) = ¢ since M n N = ¢0 'l'herefore, _ 

one of the sets g(M)-a.nd g{N) must contain-a limit point 01' the other, 

say, g(M) co11tains a limit point p X f{p) of g{N) .. Then there is a 

sequence {~x f(~)j of points in g(N) converging to p x f(p).. Now 

~ is in N., point pis in Mand~ converges top. This implies that p 

is a limit point of N belonging to M contradicting the assumption Mand 

N mutually separated.. Therefore, 'g "'1 (K) is connected .. 

Theorem 6.19.. [5] Let f be a peripherally continuous mapping from 

a T1 space into a T1 space To If for every connected set K in s, g(K) 

has a finite number of components, then f is a connectivity map. 

Proof. Since f is peripherally continuous, g is peripherally 

continuous by Theorem 6.15 .. 

Now let Kbe a connected subset of Sand suppose g(K) is not con­

nected. By hypothesis, g(K) has a finite number of components c1 ,c2, 

( n n -1( -1( -l( m 
.... ,Cno Thus g K) = i~l Ci, K == -i~l-g Ci), and g Ci) n g Cj) = p 

for i-/: .1, since c1 n Cj a.re mutually separated .. _ Since K is connected, 

not all of the g~1(ci) are mutu,aJ.ly separated. Let p be a._;point of C~ 
- ,- - - n -l 

for.some i, such that pis a limit point of i'.h g (Cj), j 'f io Then 

p must be a limit point of g-1(cj) for some j r io Now p x f(p) is in 

<Ci and_ there is an :open set V containing p X f(p) such that 

V n ~k = '/J if k 'f i, since sets CK are mutually separated. Then g 

peri~herally continuous implies, .for any open set U containing p, 

there exists an open set De U and containing p such that g(F(D)) c v. 
. . 
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l . 
By Theorem 6.18, g~ (cj). is connected since CJ is connected. Since pis 

-1 .) -1( ) a limit point of g {Cj ,g cj. is non-degenerate and the ~e~-~:t D 
·1 . 

can be chosen1 st1,c_h that g- (Cj) has pointsinterior to·D and_ex~~:~or to 

D. Therefore, g-1 (cj) must have points in common with f(D), since 
1 . . 

g- (Cj) is connect~d. ·Thus g(F(D)) is not a subaE!t of V. This is a 

contradiction of the hypothesis that·. :f' is peripherally continuo:1-s, 
.· . . 

henc_e g(K) ntUst be connected •. ~here:f'ore f is a connectivity ma.p. 

Theorem 6.20. [5] Let f be a peripherally continuous mapping of 

the T1 space S into the T1 space T. If',.:for every IfOn-degenerate con­

nect"ed set K in:S, g(K) has no degenerate components, then f_is a 

connectivity ma.p. 

Suppose f is not a connectivity map. Then there is a non-degener-

ate connected ·set Kin S such that g(K) =MUN where Mand N are 

mutually separated. By hypothesis the components of Mand N are no~­

degenerate .. - Hence g-1(M) and g-1 (:[if) ha.Ve non-degenerate components. 

For suppose the point p is a component of g-1 (M). - __ Then· g(p) = p X :f'(p) 
. --· . . ~ 
lies in some non-degenerate component C of Mand g (C) is connected. 

,•. 

Therefore g-1 (c) = p and this contradi'ets. the fa.ct that g is always a 

one-to-one mapping. 

NOW Mn N = ¢ implies g-1 (M) n g-1 (N). = ¢, and K = g-1 (M) u ij-l(N) 

-1< ) - -ic ) · -being connected implies g M and g N are not mutually separated. 

Let p be a.point o:f' g-1 (M) which is a i1rnit point oi' g-1 (N). Then 

p X i'(p) is in M and there is an open set V containing p X i'(p) such 

that V rt N = ¢ since M and N are mutually separated. Let U be an open; 
~ . ' . . l 

set containing p. Then Ung- ~N) I¢ since pis a limit.point of 
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g-1 (N). Hence U intersects some non~degenerated component of f-1(N). 

Since g is peripherally continuous, there is an open set W containing p 

and contained in U such that f(F(W)) c v. Now U and W can be chosen 

such that C ¢. W but C n W; ¢ since C is non-degenerate. Since C is 

connected, and since C must have point interior to Wand exterior to W, 

F(W) n C F ¢. This is a. contr~diction since f(F(W)) c V, g(C) c N and 

V n N = ¢. Thus f is a connectivity map. 

In Theorems 6.3 and 6 .. 16 it was shown that· a connectivity map from . 

an n-cell, n ;:: l, into itself is peripherally continuous •. The question 

of whether or not a peripherally continuous mapping from an n-cell into 

itself is a. connectivity map has not yet been answered. Example 6.4 

showed that for n = 1, the conclusion need not follow. In Theorem 6.21 

a partial solution to this question for n .2: 1 will be given. The 

following lemma will be used in the proof of Theorem 6.21. 

Lemma. 6.1. [16] Let S and T be Hausdorff spaces; and let f be a 

mapping from s· into T. If M is a subset of S such that g(M) is the 

union of two mutually separated sets Hand Kand if pis a point of 

g-1 (H) or g-1 (K) which is a limit point of the other, then pis a point 

of discontinuity off. 

Proof. Let p be a. point of g-1 (H) which is a limit point of g-1(K). 

Since H a.nd Ka.re mutually separated sets, there exists open sets U a.nd 

V containing p a.nd f(p), respectively, such that U )< V contains no 

points of K. Thus no point of g-1 (K) n U maps into V under fo There 

exists a. sequence of points f;i;>1l belonging to g-1 (K) which converges to 

P• Hence infinitely many of the points p::J. lie in U and the images of 



these points lie in (T - V) .. Therefore, the sequence (~(pi)J cannot 

converge to f (p) and p is a. point of discontinuity of __ f. 
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A similar argument holds if pis an element of f-1 (K) which is. a 

limit point of r-1 (H). 

Theorem 6.21. [16] If f is a peripherally continuous mapping from 

a regular Hausdorff space S. into a regular Ha.usdor:ff space T whicl:l~ _has 

at most a finite nunibe_r of, points -of discontinuity, then f is a· connec-

tivity map of S into T. 

Proof. Suppose that f is not a connectivity map. 
\ 

Then there ~ists 

a connected set.Min S such that g(M) is the union of two mu~ua.lly sep­

arated set Hand K. By Lemma. 6.1, every point of g-1 (H) n ·g-l(K) and 

g-1 (K) n·g-1 (H) is a point of discontinuity off. Since the :r;>oints of 

disc·on:tinuity of f is a finite set., let x1,x9, • .. ,xk and y1,y2, ••.,yr' 

denote the points of g ~l(H) n. eit1(K) and g-i(K) n g'."1 (H), respectively. 

Since H andK a.re mutually separated, there exists open set u1 and 

Wi containing xi and yi~· respe.ctively, and open sets .. Li and Ni contain­

ing f(xi) and f(yi), respeotively, such that (u1 n Li), i = 1,2,3, ••• ,K, 
'· 

contains· ho p9int of Kand (win Ni), i = 1,2,3, ••• ;r, contains no point 

of H. By the peripheral continuity of :f' and the fact that Sis a. 

regular Hausdorff space, there exists open sets Di c Ui and _E1 c w1 con-
., 

taining xi and y1, respectively, having the following properties: 
. -: .. 

(l) :f(F(Di)) c Ni, i = 1,2,3, ••• ,r a.~d. (2) the closure o:f no two of 

the sets Di and Ei ha.ve a point :in common. 
k'° ··r 

Let_ D = 11,;!1 Di and let E "". i~l E1 • Then r.1: may ·be expresseq: as the 

union of two sets 
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and 

M2 = (E n M) u [ (s ~· D - l:!;) n i:t1 {K) L 
which can be shown to 'be mutually separated. sets. Since g~1 (H) n g-1 (K) 

=¢and D n E = fJ, M1 n M2 = ¢. Now the only :points of g=1 (H) that are 

limi.t points o:f g =·l(K) lie in the open set D an.d thus [$, = D - E) n 

g=1 (H)] contains no limit po:J.nts of [(S = D = E) n g-1 (K)]; since 

F(E) c: g-1 (K)y and [(S - D - E) n g-1 (H)] contains no limit point of 

En M. By construction D n M contains no limit point of En Mand since 

F(D) c g =l(HL D n M contains no limit point of [ (S - D ~ E) n g -l(K) L 

Ther,-efore, ivr1 contains no limit point of M2 and in a similar manner M2 

contains no limit point of M1 • Thus M = M1 U M2 is f'.Xpressed as the 

union of two mutually separated sets, which contra.diets the fact that 

M ls a connected set. Hence f must be a connectivity map a 

As previously mentioned, Sta,lling [23] proved a theorem stating 

conditions und.er which a connectivity map will be p1c1ripherally contin~ 

uous. Stalling's theorem lilcnd. its proof were not presented, since it 

involved. concepts from Algeliraic Topology which are not appropriate for 

this paper. Hagan [ 5] proved a pa.rtial converse :for this theorem 

using a topological space called a Moore space [20]. It should be 

noted that a Moore space is regular and T1 • Some preliminary de:fini tions 

and a lemma will be given in preparation for the presentation of Hagan's 

converse to Stalling's theorem. 

Definition 6030 A space S is said to ·be locally peripherally ,£££-

nected at the point 12. if' fo:r every open set U containing p there is an 
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open set V containing p ana;-c0ntai-ned in: U such th,at F(V) is connected. .. ,. 

A space is locally peripherally connected if it is locally peripherally 

connected at f.Nery point. 

Definition 6.60 A space Sis said to satisfy property!!. if for 

every closed connected subset M of S and tor every component C of S - M, 
. ' 

the boundary of c is closed and ~onnected [ 23] .• 

Lemma 6.2. {5] Let W be an open connected subset of the locally 

peripherally connected, Mo~re space S such that f(W) is connected. Let 

w1 and w2 be open connected sets such that w1 n w2 r ¢, F(W1 ) and F(W2 ) 

are connected, and ii' U w2 cw. If w3 = (w1 U w2) U (~ ca;), where {CaJ 

is the callection of all component of W ... (w1 U w2) such that F(Ca) c 

F(w1) U F(W2), and i:f' C is the component of ,W - (w1 U w~/ containing the 

connected set F(W), then 

(1) F(w3) c F(W1) U F(W2), 

(2) W = C U w3, 

'(3) w3 is open and connected, and 

(4) if the space S has property II, F(w3) is connected. 

Proof of (1). Suppose there is an x in F(w3) - (F(w1) U F(W2)). 

Then since S is regular, T1 and peripherally connected there exi.sts an 

open set .<;J such that F(G) is connected., x ~e. G, and G n (wl U W2) == ¢. 

· Since ~(Ca) ~ F(w1 ) U F(w2) for each ,a, x p. CCX for any a. Therefore, 

· x is a limit po~z:it of U _ Ca such that x ft c0 for any a. This implies G 

must intersect infinitely many Cao If Cac: G for some a, then F(Ca) c: G 

since_Ca is closedo · This is a contradiction since F(Ca) is contained in 

F(w1) U F(W2). Therefore, if can G; ¢, then ca has point interior to 
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connected. Now F(G ~ n F(~~) = ¢ since G n (W:L U w2) = ¢. ·Hence 

l23 

F(G) =. (F(G) = ca) u (F(~) n ca), where·?1~(a) - co: arid .F(G) n ca,.9'.r~ 

nonempty and mutually separated.. This· contradicts 'F(G) being connected. 

Hence F(w3) .c F(W1) U F(W2). 
. . . . 

Proof of (2) • If K :ts a component of VI - (W 1 U w:2 ) such thitt 

Kn C = ¢, then F(K) c (F(w1), U F(~2)). For suppose there is a point x 

i.n F(K)._ = ~F(W1) U F(W2)). Since K is closed, x € K. Now K - (F(W1) U 

F(W2)) is equal to U Ko: where f Ko:) 'is the collection of components of the .. 

set .K - (F(w1 ) U: .F(W2~). Then each ~ is also ~ component of W - (C U 

W 3) since K n Co:. = fJ, and K n C = ¢. Set K n Co: = rp is implied by th.e 

fact that Co: a component.and if Kn co:.~~' Ca must contain K so that 

F(K) c .F(Ca) c_ (F(Wi) U F(W2)) !f:J:l.ich gives a contradiction. Thlis 

., .(K - (F(W1) U F(W~f))) n (C U r:3) = p. Since W = (C U w3) is open Ko: 

is open for each a, an~}(K~) c .cc u w'.°3) 0 But Kan c = ¢ implies 

F(K(l) CW3o N~W; = ((i3 -:P,:w,))ana.w;- F(W3) is an open'set disjoint 
. . . . 

from ~· There:fore, F(.~) c F(w3). Now K =. (K - F(W;i)) U (Kn F(w3)). 

Thus, since,\'x .is in .~.F(K) ~. ~.(w3)), x is in Ka for some a. But x.):. 
interim:: Ka since interior Ko: is contained in interior of K. Therefore 

xis in F(~). This is a contradiction since F(1b;) c F(w3) c (F(W1 ) U 

F(W2 ~.). Hence F(K) ,c (F(w1 ) U F(w2 )) ~ ]}{ow suppose there is a, P.Oint x 
• :-1 . . . . ~ . j' 

in (W - (C U W:;-)). Then x is in some component K of W - (w1 U w~). By 
_.)_ , ' ; 

the abov.e argument F(K) 5= (1','(w1 ) U F(w2 )) and hence K = Co: for some a. 

But. CCX c w3., This contradiction implies that W =(c'U W;). 
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Pro?t o.r (3) •. Since C n _w3 = p a~d since C is closed W - C = W - C 

= W 3 is open._ Also, W 3 is connected since ~l U w2 is connecte'd and ea.ch 

c~ is connected,and can wl U w2·f ¢. 

Proof of' (4). Since w3 is open, F(w3) n w3 = ¢ 
1
an'd hence F(W3) c: c. 

I 

Therefore w3 n C "" F(w3). Since w3 is clos~d a.nq._ S has property II, 

every component of S = w3 has a connected boundary. The closed connect­

e_d set C contains· :r,i(W 3), and w 3 is connected, herice by Theorem ;4 of 

[201103], w3 n C .= F(w3) is connected. 

Thl!i!orem 6,.22. [5] · If f is a peripher~ly continuous mapping,.of 

the locally connected, Moore space S having· property IL into the space 

T and if S X T i_s completely normal, then f is a c~nnectivity map. 

,, 
Suppose f is not a connectivity map and let A be a connected sub-

set ofS such that g(A) =_MUN, where Mand N are mutually separated. 

· -1( -1( Let _g M) = ~- an~ g N) = K. Then A = H U K, where H. n K is empty. 

Since A is 'connect-~d H and .K are not separated and hence one must· con-
~ . 

ta.in a ).imi t p_o:;,n_t of_ the other. Let p be a, point of H which is a 

limit· point of K. · Since S x T is comple~ely ~ormal, there eiists dis­

Joint open s.et'U and V in S x T containi:q.g M_ and N, respectively. 

Let R be ar1 open set contain:l.ng p such that A is not entirely 
1. • :·. , ~, , •• , . 1 

conta:ined in .,I~. . Then f' peripherally continuous and S locally connected 
" . . 

implies there exisns an open conn_ected set W containing p · and contained 

in R such that W and F(W). are both connected and g(F(W)) c: U (23]. 
. . 

S.:Lnce p is a.. limit point of' K there. is a. p6int 0q of K in W • 
. .. r - . 

Let Q be the collection o:f' all open conhected -sets D such that q 
-· . ., . 

is: in D, D c W, D and F(DL a.re conn~cted, and g(F(D)) c V. The 
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collection Q is non-empty since f is peripherally continu'ous at point q. 
·- ~ ! ., • . 

- Let Q + denote- the union o.f the collection of sets in Q. + Then Q is an 
·- - ., : . ' . ·.·_ ' 

. ( + + 
open subset of w. Consider the boundary F Q, ) of Q • 

then A~ (A - Q+) U (An Q+) and (A - Q+) and (An Q+) are mutually 
I !, ' ' ," •' ··,, • 

separated. ~or A - Q + fo. ¢ s:lnce A: does not lie entirely in _Q~ and 
' . . . ; 

A n.Q+ A,l)_, since q is in An Q+·. Furthermore, An Q+ is open in_ A' and 

hence c~nnot contain any limit point of'A - Q: and any limit point o~ 

A n Q+, which is in A - Q+is in F(Q+) \il;l.;i.ch is disjoint from A. Thus,. 

since A. - Q + and A n Q + are disjoi~t ··they are mutually separa~ed and 

this contradicts A bei:ng cq-:r;.i.nected. Therefor.e., F(Q+) n A f. p • 
. ) 

Since F(Q-+:) n ./1 f. p, eiteer F(Q+) contains· a point of Hor a point 

of K. Suppose there is a point h of Hi~ F(Q+) n H. Then there is an 

open set E containing h but not q such.that F(E) is co:r:inect~d and g(F(E)) 

c U. Since h is- a limit point of Q+, E must intersect some set :b belong-. . 
ing :to the collection Q. Now:·E i D since h l~es in E - D and D rf=. E 

since q is in D - E. Thus E and D both have point interior· and exterior 
. ' 

to one another and F(D) · and F(E) being connected implies F(D) n F.(E) 
I , , 

A p. But this. ~ontradicts the fE!,Ct that_ g(F(D)) c: V, g(F(E)) c U and 

+ + u n v = ¢. Hence.F(Q.) n H =¢and therefore F(Q) n K F ¢. · 
Let lt be a :point of F(Q~) n K. Now k is not a point of, F(W),_ si;nce 

g(F(W)) c U and g(k) e: V. Thus k is in W ~nd there is an open connected 

set w1 con~aining k and contained in W such that F(W1 ) is connected, 

w1 cW and g(F(W1 )) c: V. Since k is a limit point of Q+ there is a set 

w2 in the·q.olfecti'on Q such that w1 n w2 F rp. 

Now from the set Wj referred to in Le~ 6~2.. By this lemma.., the 

set w3 is ~en, connected, F(w3) is connected, w3 c Wj and q is in· w3• 
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Further~ore.? g(F(w3)) c Y sin?e F(W3) ':== F(W1 ) U F(W2). Theref?re w3 

possesses all ?f the requirem~nts to belong to Q. But. w3 is no\ in_Q 

since k is in w3 nF(Q+). Therefore, the assumpti~n t?at ~(A~ is .. ~ot 

connected leads to a contradicti.on. Hence f' is a connectivity map. 

It was shown in Theorem 6.13 that a uniformly c~nvergent sequence 

· of peripherally continuous functions :froin a spaoe S into· a metric space 

T will converge to a function, which is pe;ripherally continuous. If the · 

spaces S a.nd T are req~ired to- sa;tisfy the hypothesis of s'talling' s 

theorem and Hagan's theorem, the.n the · same result must hold for connec-, 

tivity maps since connectivity maps and peripherally continuous mappings 
·' . . . . . . . . 

al:'.e equivalent under these conditions. 

Since a.n n-c~ll, n :,:: 2, satisfies the hypothesis for both Stalling' s 
" I 

theorem and ?agan's theorem,a mapping f from .an n-cell into itself, 
c· 

n ,2: 2.i> is_peripherally continuous if and only .if f is a connectivity 

r,nap •. 

CONTINUITY OF PERIPHERALLY CONTINUOUS :MAPPINGS AND CO~T;tVITY MAPS 

.It wi:is shown in Example~ 6.1 and 6.2 that peripherally continuous 

mappings a.t?,d connectivity maps are not ~ecessarily continuous. The 
~ ~ ·, . ', 

problem of when connectivity maps and peripherally continuous maps will 

be continum:is w~ll now be investigated. .. 

Theo;:.~ 6.23. ·[16] If f is a one-t.o-one real valued connectivity 

map de:f'i:n~d ori a }ocally conn.ectecf metr:i,c space S, then. f is continµous 

on s. 

Proof. S~pc~ connectiv~ty maps carry conneqted subsets o:f',13 onto 
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connected subaets of the image space, f is continuous by Theorem 4.19. 
. . 'i . 

Theorem 6.24. [5] If f is a connectivity ~ap:r;>ing of the T1 space 

S into the T1 space T an:o. t1' g(S) is semi-locally p.onnected, then f is 

.continuous. 

Proof. Suppose f _is·not continuous at a point pins. Then g is 

not continu9us _at p and hence there exists a sequence [Pn} of points 
. I 

, of S convergi~g to. p such that [Pn X f(p)} does .. not ~ohverge to 

p X·f(p) •.. Sin?e ,g(S) is semi-locally connect-~d and 1;Jiric'e (Pn x f(pn)) 

doe.s not converge to :f'(p)' there is an open. set u . containing p x t(p) 

such tllat pn X f(p;r) i~ not in U for infini~ely many n and g(S) - U 

ha~ only a fi~ite number of components. - Thus infinitely i:nany·of the 

. poip.ts of {P~ X· f(pn)) _ lie in a single component K of g(S) = u. Now 

KU {p X f(p)J .is not c.onnected
0
b~t g71 (;K U (p X f(p)J => if1(K) U [Pl 

. . l ' 
is conne~ted since g-. (K) is conriec~ed })Y Theorem 6.18 and p is a lim.it 

point of f-1(K).. Point p is a limit point .of f-1 (K) since in;finitely 

many of the points p lie in K and p =·'0 limit p • Since the set . - n - n 

g.;1(K) U (P} is connected and since f is \a .e'onnectivity map, tne set 

g(g-1 (K) U (~}) ~ K 9 {PX f(p)} must 'be connec~ed. This is a contra= 

diction, so that f must.be continuous .. 

T.l;le following theorem shows that a similar res~lt holds for peri-

pherally continuous .:f'unctionso 
' . \ 

Theorem ?."25. [16] Let f be a periph~rally 1 contini,1ous trans,torma.­

tion from aHausd~rff.spac~ S into a Hausdorff space To Ii' xis a point 

of S S\UCh that for any open .set. R _containing 'f(x) there exis_ts an open 
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set Ve:. R containing f(x) having the property that S ~ r=1(v) has only a 

finite number of components, then f is continuous at x. 

Proo:r .. Suppose f is not continuous at x .. Then there exists some 

sequence {xnJ in S converging to x such that [f(xn)} does not converge 

to'f(x). Thus, by the hypothesis, an open set V can be found such that 

f(x) 1 V, an infinite number of the points of f(x) bel.ohg to T - V, 
n 

. - ', -1 
and suqh that S - f (V) ha.a. only a finite number o-f comp6nents. Thus 

an infinite number of the points of sequence fx l must lie in some com-. n 
ponent E of S - f(V) and x must be a limit point of the connected set 

E, but f(x) is not a limit point of f(E) since f(x) is an element of v. 
This contradicts Theorem 6.8, so that f 'must be continuous. 

'fheo:rem 6.26. [16] If a mapping f from a. Hausdorff space S :into a. 

_Hausdorff space Tis peripherally continuous and is such that for each 

closed subset N of T and :for ea.ch x 41:: (S - :r"'1 (N)) there exists an open 

set U containing x such that U intersects at most a. finite number of 

co1JJ;Ponents of' f-1(N), then f is continuous. 

Proof. Suppose f is not continuous. Then there must exist some 

closed set Nin T such that f-1 (N) is not closed. Let x be a limit 

point ·of :r'"'1 (N) which does not 'belong to f-1 (N). By the hypothesis, 

there exists an open set U containing x such that U intersects at most 

a. finite number of components of :f'-:t(N). Tb.is implies some component 

of f-1 (N) is not closed which contradicts Theorem 6.7. Thus f must be 

continuous. 

The following theorem gives a necessary and sufficient 'condition 

for a. monotone peripherally continuous mapping to be open. This result 
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will be used to obtain conditions whi,ch imply a peripherally continuous 

maJ;)ping is continuous. 

Theorem 6.27.--'[5]. Let f be a monotone peripberal:l.y continuous 

mapping o~. the ·compact-metric space S onto the regular T1 space T. 

Then f is open if. and only ifievery s_equ,ence [Yn) of points of T with 

s-eq~ential limit poi~t Y, lim f:f'-l(y· )l = (f-l(y) l • · . . .. ., . .. n ... 

_Pro.9f... Suppos:9 t is ~an, o;p-e;t1 monotone> peripherally continuous 

miippirtg_ .and let (yn) be a sequence o:f' points of T with sequential limit 

pointy. Let G = r=1 {y) .and G = f~1 (y) for each n. Since f is. mono-
. · . n n · ,· 

tone,G and G are connected. n . 
; . 

Theorem 6?7• Now S is a compact space1 'so that G and G are compact • . ,· , . ' . . . n 

Suppose there exists a point x ':i.n· G and a neighpor:hood U of x _such 

that Un G = p for all but a finite number of n. Then since f is open .n 

·f(U) is ~n open set containing f(x) = y such that f(U) contains only a 

finite number of points· o:f {Yn). · This contradicts the :fact that y =1· 

limit ! n since ;'.l'.·i~ a regula:.' T1 spaceo Therefore; .,G~c li!ll inf [GnJ 

c lim sup [G Jo Let us now show that lim sup G cr G. n . n 

Suppose there exi~ts a point_p in lim sup {Gn} such that pis not 

in Go Since {PJ a,nd, G are closed subsets ill. a ~metric spac,e and since G 

is compact, ~t is possible to find disjoint open sets U and V such 1~hat 

p ~ u, G c v, and U n V = Po Let N be any open set- a.bout f(p). "since 

:f is per.ipherally continuous r there exists an open set D c U containing 

p such that f(F(D)) c No Now p ~ 11~ sup (Gn) and~ c: li~ inf [Gn} 

implies an infinite number of G must intersect both D and Vo· Further-. n , 

more, D t: U and U n V = ,P so· that an inf'ini te number of set G . must 
n 
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nave points in.teriqr to . D and exterior to D. Since G is connected for 
n 

e~ch n.)) this implies F(D) contains points :from infinitely many G. Thus . . . . . - n 

N contains in:t'ini tely many o:f the points., of' (y ) .. This is a contradic-. . n 

tion, since the only limit point o:f a sequence in .. a regular T1 space is 

the seq1;1ential limit point. Thus lim sup (Gn) c: G. 

We-now have 

G c lim inf fGn) c lim sup [Gn) c G so that F = lim (Gn] or 

f-i(:r) = lim f.:t·-1.(yn)) which complet~~. the proof of the first assertion. 

Conversely§ suppose U is an open set in S such that :f(U)· is not 

open. Then there exists a. point y in f(U) and a. sequence o:f points [y ) . . n 

in T.;, f(U) such that lim yn = y. By hy,poth~s;i.s, f-1 (y) = lim 

{:r-1 (y }}.' Now Uri (r-1 (y )) =¢for every n since y ~ f(U) •. But 
... n · .. . n · .. - n · 

U n f·-1 (y) -; ¢ since .y is in f'(U).)) and by hyp'othesis ~. must intersect 
. . . . . .. · -1 . 

all but, a f'init_e ·numl)ez: of set ff (y nH · This co,ntradiction implies 

f(U) i's open, so_ ·tht'3,t f is an open mapping. 

Theorem. 6.28~ [5] .Let :f' be a peripherally continuous mapping of ... - . 
i . . 

the compact metric .~ onto the countable comps.ct_.,_ regular T1 sp_ace' T. 

If f is an open monotone ,napping, then·f is continuous. 

Proof. Let (x ·J be a seg,uence of points in S with sequential . n . . . . . . 

limit point x. Let y = f(x) for ea.ch n. Since Tis countably compact/ 
.' . n n 

some. subsequence {y · J of (y J must ha.ye a sequential.· limit pointi in T .. 
. n1 - n 
6 -1c . ) -1< By Theorem .27, lim {f yn· } ~ f y). Since fx } ·must converge to 

i Di . . 
. =1 . 

x. Therefore x 1;;; i!'.!, :f, .(y) an<1: Y_ = f(x). S,ince ~ery $equen~e (xn} 

converging 7o x has a subsequence converging to· f(x); :f' is· continuou'3, a.t 

x. 
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The :following example shows that the inverse image of a connected 

set under a connectivi.t,y map or a :peripherally containuou.s mapping rteed 

not be connected. In.Theorem 4.29 conditions which will imply :that the 

inverse image of a connected set under a :peripherally continuous mapping 

will be connected wUl 'be given. The results of Theorem 4.29 will then 

be used to prove a theorem giving c:onditio,µs under which a peripherally 

continuous mapping w:111 be conti.nuous. 

Exam;ple 6.5~ [5] Let S be the union of thE!· intervals [ =l,O) U 

(Oyl) and let T be the ir{t,e:rv~l (-lsl). De:fine f:from S into T by~ 

f(x) "" x - .1 i.:f x E: (OJl.) » and 

f(x) • x + 1 if x & (-1,0). 

The,< m~pping f :i.s a connectivity map and is peripherally cont:i.nuous. The 

.p=l. l i:Q.verse ma~ .i: is neither, a connectiv:tty ma;p nor peripherally continuous 

as one can veri.fy by considering the :point O in T. 

Theorem 6.29. [5] · Let f be an open, monotone, peripherally contin-

uous mapping of · the compact metric space S onto th_e regular T1 space T. 

If K is a connected subset o.f T3 then :r=1 (K) is'a ,connecteq. subset o:f s. 

Proof. Suppose f-1 (K) "" M U :N wlver.e M and N are mutually separated? 

.Then K =i f(M) U :f{M). Now supp~se there is' a pointy in f'(M) n f(M). 

Then there e:dsts points m and n; :1:n M and Ny re~pectively, such that 

f (m) = f(m) "" y. 
-·1 , · . . · -1 · 

:ijence f (y) n M -A·¢ and,;f" (y) n N I ¢. This is a 
L,,, '., 

contradicti.on, s~nc; f-1 (y} i.s connected.~:, .. Therefore, :f(M) n f(:fil') = :1J'~ 

Si.nee K is c(;m:nected,9 one o:f. ,the>sets :f(M) or t(N) must contain a limit 

po:1.~.t of' the other, say f(N) c~htains a lim/t, point. p of ,~(M}o Then 

there exist~ a sequence of poii;:i.ts ,fpnj in .f(M) such that lim pn = P• 



By Theore,m6~27, lim f:r .. 1(y )) ""r=1(y). This is a contradiction since ... ., ·- . .n .. 

f'~l(y ) c M f'or every n, r=1 (y) c N, and M and N a.re mutually separated • 
. ,· n. .. . \ · ... 

. . ~ . 

Therefore, the assumpti.on f. · (K) is not conni9cted leads to a contra.die-
. l 

tion so that f .. (K) is connected. 

Theorem 6.30. [5] Let :f be an openJ. monotone_, periphe!'ally contin­

uous- mapping _.of the co~pa.ct metric space S onto the seld-locally 
. . . 

connected, regular . T1 space T. The:µ f :i~ continuous. · 

Proo:f. Suppose·f is not continuous. Then tllere is ~.pointx in S 

and a, sequence {xn) of points of' S cm:averging to· x such that lim i'(xn) 
. . 

k f (x). Since T is semi .. locally corinected th.ere is an open set U con= 
., 

ta.ining :f(x) such that, T - Uhas a finite number of comppne~t,, 1S_ 3 •oo, 

K 3 and such that in:fini'tely many of the points of (f'(x )] are in T = U. 
n . . · . , n · .' 

Hence intin~tely many points· of (f(fn) J. ar~ in ~ome, K1 • By Theorem 6.29., 
1 : . ' l · , , 

f- ;'(:rc1_) is c~:>nnected;i, and, x is Ei. limit point Of' f= (r<;1) since infinitely 

many xn are in f"'.1 (K1 ) and (xn} converges to x • 

. s'et t-1·(K1) U C.xl is nop=degenera.te, so that one c?i.n choose 1:1,n 

open set V a.bout; x such tha,t t=1 (K1) has poin~s interi~r to .V .and 
' . ' 

~;ter:i,or to V. Since f is peripherally continuous 3 there exists an open 

'set D s:= U such that f(f(P)) c U. Now ·f=1 (K1) must have pointsint~r:~or
1

, 

to D, a~d exterior to D. Therefore, E(D) must, contain a point of the 
i. ) 

connected set f'-1 (K1 ). This is_ a contradi~tion, since :f'(F(D)) c 'U a.nd 

K. n U = P•. ihus f' must be continuous. 1 . . . ,, . . 

' Corollary. If the hypothesis that T be semi~loca.lly connected in 
' . I . ' 1, > ' 

Theorem 6.30 is r'epla.c~d wit4 th~ requi~ement that T be locally connect= 
..._ 'c 1 • ' 

ed and l9'cally compact, ;:t.' is continuous. 
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Proof .. Every locally connec:tiedy locally compact space is semi-

locally connected· [27 1 20] ~ Therefore, f is continuous 'by Theorem 6. 30. 



. CHAPTER VII 

SUMMARY AND· EDUCATIONAL JW?LICATION 

In this paper the recent_research concerning certain classes of 

noncontinuous transiormations in :point set topology is organized and 

summarized with standardiza;t;i9n of termi:o.ology and symbqlisms·. This, 
~ . '. . . 

pr~sentation makes.the recent research'cpncerning these transformation~ 

both more rea~ble and more readily available to the student of topologyo 
l . . 

Several example~ are supplied to help tp.e reader grasp the significance 

of the various co~~epts and theorems. 

SUMMAfCf_ 

r 

In Cha.ptt$:z: I, the, statement of the. prcibl~, the scope of the 

paper·, methods and procedur:e.s 9 and expected outcomes are given. In 

Chapter. II a brief introduction to point set topology is given. This 

is included in the interest of sta:ridatdizi:ng notati?n and terminology, 
,. 

since texts on point set topoJ.ogy di:f';f'er slightly in both. In Chapter . ~ . 

III .a discussion of open and closed mappings is. given. This discussion 

., is by no meaps coniple·te since open and closed functions are defined in 

connection with homeomorphisms in elementary ~exts on topology and many 

r~sults concerning these functions are included in these texts. Such 
. ' 

' results are not included in this study since the intent of this study 

is to present the results of recent research which are not readily 



135 
~-

available to students of ·topology. Chapter IV gives a rather complete 

discussion of compact preserving and connected mappings. These 'mappings 

are significan't s:!..nce conti-nuous functions$ which a.re the most fu::b.qamen-

'' ·,. 
tal functions in topology, are bot.h compact preserving and con..11ected,, 

In Chapter Va review o:f the recent rese1:+rch concerning neighborly and 

cliquish functions i~ :gi:v-en. Theorems 5.8 and 5.10 from this' cha.pt·e:r 

are particmla:rly significant -since they give characterizations of deri= 
.,: 

vati ve · :functions of real.. valued. C;(:mtinuous :functions defined on the 

real null).bers •. · In Chapter VI the recent research concerning connec:tivi ty 

mappings and peripherally continuous mappings is reviewed. It is noted 

in Chapter VI that these functions were originally defined and studied 
) 

in connection with fixed point properties. Fixed point properties have 
. . . 

been studied extensively by topologists in recent years O 
' . '. . ., 

'Throughout Chapters II!JJ IV!I _VJl and VI relationships between and 

among the various classes of noncontinuous transformations have been 

emphasized. ~so,-the relationships between the classes of noncontin= 

uous transformations and continuous trans:fo:rm.a.tions have been consider,,d 

in detail. 

EDUCATIONAL IMJ?LICATIONS 

Since the body of material and ideas are constantly expanding in 

mathemat::i,cs, it is increasingly important that st:1,ch be made available 

in. ~ystiematic, readable sources. _ These sources should enable ,th.e , : 
.,; : 

student.. of mathematie:s to become aware of the research _that has b.een 

done and the areas that need to b'e investigated :f'urther. The reader of 

this paper_ will come abreast o:f' the ,:frontiers of knowledge in the study 
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of some important aspects of noncontinuous transformation. From this 

vantage point the reader can "'then l)roceed in further. stmdy of' functions 

and .topology by study of the professional journals or by independent 

research into properties of the furict:tons considered in this study .• 

:For the :futu:r(e mathematician or mathematics teacher J ana particu= 

larly for the college teacher of mathematics, it is important to realize 

that curricular changes in the various disciplines will occ.ur as new 

'b'lowledge .is ~iscovered. Ah a.cqua,intan,ceship with the ideas presented 

i.n this t.hesis shou).d help one to 'anticipate bhanges that may occur as 

p.oint set topology becomes more involved in the mathematics curricuium • 
. , 

Re:ferences to the bibliography are given for most of the theorems 

in this thesis. By consulting this bibliography, one may gain an 

awareness of the men who ha;ife contributed to topology ir1 recent years. 

!.t is likely that these men,, many of t;hem contemporaries .of the reader J 

will play a signi.f.icant role in shap;i:ng point set topology and the 

mathema,t:i.cs curr:i.cu.lum o:f the future. Awareness of these potential 

l~aders should help interested individuals keep abreast of the develop-

ing mathematics cmrricul.um and. should contribute to their implementation 

of curricular changes. 

Perhaps the most signif'icant result of the development of this 

paper has 'been tl:l;e extent to which the investigator has developed his 

own .interest and knowledge of. point set topology o. The skills devel:oped 

and, :the rJsearch experiences encountered will add to thee backg:r01md 

·, 
needed :for effective teaching at the college level. 
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APP:ENDIX 

Baire's classes less than two, 
sets, 94 

Bais.isy 9 
at a pointy 18 
for a topological spacey 9 

Biconnected mapping, 68 
:Boundry point; 11 

Cartesian product» 12 
C+iqui.sh functiony 

· at a point» 8b 
on a space» 80 

Closed ma:pping:1 27 
Closed seti 9 

with respect to a set, 31 
Closure of a set» .11 
Compact p:r,eserving mapping~ 50 
Compact set, 21 
Completely normal space» 17 

. Conditional;Ly compact; set; 33 
Connected mappingy 21 
Connected set, 21 
·connectivi·ty mapping» 99 
Continuous. fune:t;i.o.riJ 

at a point,1 .23 
onfl. space, 24 

Convergent sequence, 14 
Count~ble. set, 18 
Countably compact set, 21 
Covering, 21 
· openj 21 

Da.rboux ':property;, 93 
Dense=in~itself sety 93 
Doma:in of a functionJ 19 

Every-where dense set, 82 

:First cpl,lntable space 7 18 
First p categoryJ sets, 85 · 
Function.~ see •rra.nsformati'on 

Hausdorff space 3 15 
Homeomorphic spaces.i 26 
Homeomorphi.smJ 26 

INDEX 

Image set, 22 
Interior of a. set., 29 
Inverse itnage of a set.3 22 
Inverse setJ 31 

Lirriit inferior of a sequence 
of sets, 30 

Lim:Lt of a sequence of sets, 36 
Limit. point, 10 
Limit point of a, function, 59 
Limit superi.or of a sequence of 

sets~ 35 
Locally compact space, 53 

· Locally connected 
at a point, 38 

· space) 38 
Locally peripherally connected 

space, 121 

MappingJ seeTransformation 
Metric set, 19 
Metric space, -19 
Monotone mapp.ing, 73 . 
Mutually separated sets 3 l 7 

Neighborhoody 10 
Neighborly function, 

at a point:i 80 
.on a spaceJ 80 

Normal space, 16 . 
. Nowhere dense sety 84 

One=to=one correspondence,? 17. 
One=to~one mapping,, 22 
Onto ma:pping:i 26 
Open mapping,, 26 
Open setJ 7 

with respect to a set, 32 

Perf'ect sety 93 
Peripherally continuous ma:pping, 99 
Pointwis ,e con-t:inuous 7 82 
Pointwis~ neigh):,orly,. 82 
Pointwi.se noncc.mtinuou's, 82 
Pointwise non~neighborly3 ·82 
Propcerty., K*,, 54 1 
Property II, 122 
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Range.of a function, 19 
Regular space,· 6- . .. 

· Removable{ discontinuity, · 63-65 
Rest:ricti-on of a_ mapping,· 23 

· Second countable space, 18 
Semi:..locaJ.ly:..conneci;.ed space, 68 
Sequence, 13 1 

Sequential limit point, 14 

Spherical neighborhood, 19 
Subsequence, 14 
Subspace, 12 . 

.T1 :;pace, 1'7 
Topological product, 13 
Topological space, 7 

. Transformation., 18 
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