CLASSES OF NONCONFTNUOUS

FRANS FORTATIONS
\sim

By

Burt Kenneth Burns
Bachelor our Science Oklahoma State University
Stillwater., Oklahoms 1957
Master of science OkIahoma state University Stillwater, Oklahoma .1958

Submitted to the leculty of the Graduate School of the Okiahoma State University
in partial tulfillment of the requirements dor the degree or DOCTOR Ow EDUCATION

Augusts 1965

CLASSES OF NONCONTINUOUS
TRANSFORMATIONS

Thesis Approved:

ACKNOWLEDCMENT

I wish to express my sincere thanks to the members of my committee for their assistance in planning my program of study and their assistance in the preparation of this thesis; and to Dr. L. Wayne Johnson for my assistantship and fellowship. I also wish to express my appreciation to Professor Peul Long for suggesting this study.

To my family, I express my gratitude for their patience, concern, and for the many sacrifices they made while assisting in the completion of my program of study.

TABLE OF CONTENTS
Chapter Page
I. INTRODDOPTON AND STATEMENT OR THE PROBLEM 1
Introduction 1
Statement of the Problem 3
Procedure 4
Scope and Iimitations 4
Fxpeeted Outcomes 5
IL. BASTE CONCYPMS OF POTNF SET TOPOLOGY 6
Introduction 6
DeMorgen's Laws 6
Basic Eerms of Point Set Popology 7
Sequences 13
Classes of Topological Spaces 14
Transformations 22
IIT ORET AND CLOSED TRANSFORMATYONS 25
Introduction 25
Charactergzations 28
Some Generel Properties of Closed Mappings 33
Trans Pormations That are Both Open and Closed 34
Continuity of Oper Mappingsand Closed Mappings 39
IV. COMPACT PRESERVING MAPPIMN AND CONNECTED MAPPINGS 49
Introduction 49
Properties of Compact Preserving Mappings and Continuity of Compact Preserving Mappings 50
Properties of Connected Mappings 56
Continuity of Connected Mappings 61
ifappings That are Both Compact Preserving and Connected 74
V. CLIQUISF AND NETGHBORLY TRANSWORMATIONS 79
Introduction 79
Properties of Cliquish and Neighborly Functions 81
Characterizations of Derivative Functions 91
Chepter Page
VI. CONNECTVITY AND FERIPHERALIY CONTINUOUS MAPPINGS 98
Introduction 98
Some Fixed Point Properties 100
General Properties 106
Characterizations 112
Mappings That are Both Peripherally Continuous andConnectivity Maps113
Continuity or Peripherally Continuous Mappings and
Connectivity Maps 126 126
VII. SUMMARY AMD EDUCAMTONAL IMPLICATIONS 134
Summary 134
Educational Implications 135
BIBLIOLORAPHY 137
APPENDEX 139

IMTRODUCTION AND STATEMENT OF THE PROBLEM

INTRODUCTION

Pand set topology is one or the newer branches or mathematics, heving emergea us a discipline in the early part or the twentieth centum ry. Although topology has not been incorporated in many college undergraduate programs, recent recommendations by the Comittee on the Undergraduate Program in Mathematics of the Mathematics Association of Arevera and by other groups indicate that. topology may soon become an important part or the undergraduate mathematics program. Also, some or the current experimentel prograns in secondary and elementary school mathematics indicate that some concepts irom topology wjll be introduced in the secondary schools and cyen in the elementary schools.

The Conmittee on the Undergraduate Program in Mathematics was established by the Mathematics Association or America to study the undergraduate progrem in mathematies and to make recommendations for a sound undergraduate program. The commitee was divided into a number ot panels in recognition of the iact that the undergraduate program in mathematics must serve a number or student groups with divergent needs. Specirically, the following panels were established:
(1) The Panel on Teacher Trainingo
(2) The Panel on Mathematios for the Physical Sciences
and Engineeringo
(3) The Fanel on Mathematics Ior the Blological, Managenent and Social Sciences.
(4) The Panel on Fregraduete Training.

Wech or these panels issued a report describing a program or studies the menbexs ielt would constitute a sound progran in mathematics for thet panel's area of interest.

The panel on Teacher Training issued a report in December, 1960 $[19]^{2}$ in which the Iollowing minimux requirements ror aecondary teachers were given.
(A) Three courses in analysis.
(B) Two courses in abstract algebra.
(c) Wo courses in geometry beyond enalytic geometry.
(D) Two courses in probability and statistics.
(E) Two upper level courses, e.g., introduction to real variables, number theory, topology, history of mathemata Ics, or numericel analysis (including use oi high speed computers).

For elenentary teachers the rollowing minimum requirements were listed.
(A) A two-course sequence devoted to the strueture or the real number system.
(D) A course devoted to the basic concepts oin algebra.
(C) A course in intormal geometry.

The inclusion or topology in the list on suggested electives for secondary teachers indicates that the committee ieels certain concepts irom topology will probably emerge in the high school mathematics curriculum.

1. Numbers in brackets rerer to rererences in the bibliography.

The committee also recommended that the course in informal geometry for elementary teachers include the consideration or closed curves and separation properties which are topological concepts.

The Fanel on Fregraduate Training issued a report in December, 1964 [26] with recommendations for the undergraduate program. In this report the panel suggested that every college ofitering a pregraduate program in mathematics should oxier a core or basic courses for upper division students. These courses are roughly described as: real analysit, compex analysis, abstract algebra, geometry, topology, and probability or mathematical physics. The panel Iurther suggested that as rar as resources will permit, an institution oficering pregraduate training should oftrer courses in algebra, analysis, applied mathematics, foundations and logic, geometry, mathematical statistics, number theory and topology.

From these recommendations, one can conclude that topology shows promise of being important in a sound undergraduate program of the future, and quite poseibly will be important in teacher education. STATRMGIVY OF YGE PROBLEN

In the ifeld of mathematics, as in other academic areas, there is always a gap between the material in current textbooks and material in recent research. This gap orten exists because the recent research is usually published in a number of proiessional journals with little or no unitication nor standardization ol terminology and symbolism. In point set topology, for example, many or the current textbooks do not discuss noncontinuous transiormations extensively; however, much research
concernirg certain classes or noncontinuous transiormations has been published in recent years.

The purpose or this paper is to review and organize the recent research concerning certain classes or noncontinuous transiomations in a single paper with standardized notation and symbolism so that this material will be more availeble and readable for the student of topology.

FROCEDURE

A carerul survey and analysis or the literature to locate the published results concerning noncontinuous transiormations will be made. The Mathenatical Reviews, bibliographies or texts, bibliographies or uxpublished theses and the bibliographies or published papers will be used as pximary tools tor locating source papers. This material will then be presented in a systematic manner relating the results or each source to results or a similar nature in other sources. Most or the proots given wịll not be original ; however, the proor's given by the various authors will be modivied to obtain a standardization of notation and symbolism.

SCOFE AND ITMITATIONS

The published material concerning noncontinuous transiormations is quite extensive. Thererore, this paper will be limited to a relatively small number or classes of noncontinuous transiormations, so that a more complete discussion can be given ror these classes. The classes or non continuous transformation fior which a suriticient volume or material has
been puriished to justiry an attempt at correlation will be covered in this paper. Since it is intended that this paper be readsble by a student taking a first course in topology, material rrom algebraic topology and some branches of more advanced mathematios will not be included. Occasional rererences to and use or more advanced concepts will be made, however, tor the purpose or giving a more complete discussion. The use of such materials will be limited to cases in which they will lead to particulariy signiticant results concerning one or more or the classes or transiormations covered by this study.

EXPECTED OUTCOMES

It is expected that as a result or reading this paper an individual will become more aware of the current and past research in point set topology. He should also develop an awareness of the continuous changes through which this development has progressed and should anticipate continued change in topology and related disciplines as new materials are developed through research.

It is also expected that the presentation or the published results concerning certain classes of transiormations in one source will whet the student's curiosity for ruture study and help in the identification or areas ror such study.

BASIC CONCEPTS OF POINT SET TOPOLOGY

INIRODUCTION

Throughout this paper it is assumed that the reader is iamiliar With the bssic notions, notations, derinitions, and operations used in point set theory, and has a working knowledge of many of the basic concepts of point set topology. Even if an individual is iamiliar with many or these basic concepts, however, the diIterences in derinitions and approaches to the theory or topology in various texts may cause him to encounter unnecessary obstacles in reading and intexpreting the theorems and the proor's. It is I'or this reason that some of the basic concepts of point set topology will be introduced in. this chapter. In generel, the concepts given in this chapter will be concepts which will be used I^{2} requently in the remaining chapters. Concepts which will not be used extensively will be presented as needed. Since it is assumed
 another, the proois will not be given for several of the theorems stated in this chapter.

DE MORGAN LAWS

One ol the basic theorems irom point set theory which will be useIol in this paper is DeMorgan's theorem (DeMorgan's laws). This theorem
will now be stated and a proor supplied ior part (a): This proor is given as an example or a proor by set containment.

Theorem 2.1. (DeMorgan's. Theorem). Let β be an index set, $S_{\text {a }}$ set, and $\left\{A_{\alpha}\right\}_{\alpha \in \beta}$ a collection oi subsets oi S indexed by β. Then

$$
\begin{aligned}
& \text { (a) } S-\bigcup_{\alpha \in \beta} A_{\alpha}=\bigcap_{\alpha \in \beta}\left(S-A_{\alpha}\right) \text {, and } \\
& \text { (b) } S-\bigcap_{\alpha \in \beta} A_{\alpha}=\bigcup_{\alpha \in \beta}\left(S-A_{\alpha}\right) \text {. }
\end{aligned}
$$

Prooti or (a). Let $p \in\left(S \sim \underset{\alpha \in \beta}{\cup} A_{\alpha}\right)$. Then $p \notin \underset{\alpha \in \beta}{\bigcup} A_{\alpha}$, hence $p \& A_{\alpha}$ for any α. This means $p \in\left(S-A_{\alpha}\right)$ ior every α, so that $p \in \bigcap_{\alpha \in \beta}\left(S-A_{\alpha}\right)$, and $\left(S-\bigcup_{\alpha \in \beta}^{\prime} A_{\alpha}\right) \subset \bigcap_{\alpha \in \beta}\left(S-A_{\alpha}\right)$.

On the other hand, ir $p \in \bigcap_{\alpha \in \beta}\left(S-A_{\alpha}\right), p \in S$ and $p \notin A_{\alpha}$ for any α. Thus $p \in S$ and $p \notin \underset{\alpha \in \beta}{\cup} A_{\alpha}$. It then rollows that $p \in\left(S=\bigcup_{\alpha \in \beta} A_{\alpha}\right)$ so that $\prod_{\alpha \in \beta}\left(S-A_{\alpha}\right) \subset\left(S-\underset{\alpha \in \beta}{\cup} A_{\alpha}\right)$. Since $\left(S=\underset{\alpha \in \beta}{\bigcup} A_{\alpha}\right) \subset{ }_{\alpha \in \beta}\left(S-A_{\alpha}\right)$, and since $\alpha \beta_{\beta}\left(S-A_{\alpha}\right) \subset\left(S-\bigcup_{\alpha \in \beta} A_{\alpha}\right)$, we have $\left(S-\bigcup_{\alpha \in \beta} A_{\alpha}\right)=\alpha_{\beta \beta}^{n}\left(S-A_{\alpha}\right)$.

The prool of' (b) follows in an analogous manner.

BASIC TEPRMS OF FOINT:SET TOPOLOGY

The detinition of a topological space varies somewhat from text to text. The rollowing derinition or a topological space will be used in this paper.

Derinition 2.1. A set S, together with a collection or subsets called open sets, is called a topological space it and only it the collection or open sets satisiy the rollowing three properties:
(1) S and ϕ are open sets,
(2) the union of any collection of open sets is an open set,
(3) the intersection of any finite collection of open sets is open. The collection or open sets is called the topology or' S .

Example 2.1. Let $S=\{a, b, c\}$ and let the open sets or' S be the rollowing: $\varnothing,\{a\},\{a\} \cup\{b\},\{a\} \cup\{c\}, S$. One can easily veriry that S, with the collection or open sets listed, is a topological space.

Fxample 2.2. Let S be the set or real numbers, and let a and b be any two elements or' S with $a<b$. Derine the open interval (a, b) by $(a, b)=\{x \mid a<x<b\}$ 。 Let a subset U or S be an open set if and only if U is the union or a collection or open intervals in S. Set S with the open sets just derined is a topological space.

The topology or' S derined in Example 2.2 is called the usual topology for S.

Given a set S, several topologies can be derined ior S. The next example gives another topology that can be derined for the set of real numbers.

Example 2.3. Let S be the set or real numbers, and let a subset U or S be an open set $i I^{\prime}$ and only ir the complement or U in S is finite. Set S with the collection or open sets thus deíined is a topological space.

In Exemple 2.1 all or the open subsets or space S were listed. We can Irequently avoid listing all or the open sets by derining a subcollection of the open subset of S which "generates" the entire collection or open sets or S. Such a subcollection or the open sets is
called a basis or' S. Let us now give a rormal derinition oi this concept.

Detinition 2.2. Let S be a. set and let σ and ω be two collections or' subsets of S^{*}. Then the collection σ is said to generate the collection ω ir and only $i I^{\prime \prime}$, Ior $^{\prime}$ every $K \in \omega$, K is the union or a collection oỉ elements or σ. Collection σ is said to rorm a basis for ω.

In Example 2.2 the topology of S was derined by first derining the collection or open intervals in S as a basis for the open sets.

For a given topological space, it may be possible to der'ine more than one basis for that topological space. The Iollowing discussion will illustrate this iact.

Example 2.4. Let S be the Euclidean plane, let x be an element Or S, and let $\epsilon>0$ be a real number. Derine a spherical neighborhood of radius \in about $x,\left(S_{\epsilon}(x)\right)$, to be the set of all $y \in S$ such that $d(x, y)<\epsilon$ where $d(x, y)$ means the distance Irom x to y. The real number ϵ is called the radius or $S_{\varepsilon}(x)$. The collection or all spherical neighborhoods about all points or's can be used as a basis r'or a topology or' S. The collection or spherical neighborhoods about all points or S with rational radii generates the same topology Ior S.

Closely associated with the open sets oi' a topological space is the collection or' subsets cailled closed sets.

Derinition 2.3. A subset K or' a topological S is said to be closed iri and only ir s - K is open.

A subset H or a space S may be open, closed or both open and closed

It is also possible Ior a subset H or a space S to be neither open nor closed.

Example 2.5. Let $S=\{a, b, c\}$ with every subset or' S open. Then every subset or S is also closed.

Example 2.6. Let S be the set or all real numbers with the usual topology and let $a, b \in S$ such that $a<b$. The set $[a, b)=$ $\{x \mid a \leq x<b\}$ is neither open nor closed.

Derinition 2.4. II S is a topological space and ir $x \in S$ then U is said to be neighborhood oí x it and only it' U is an open set containing x.

When working with open and/or closed sets, it is Irequently userul to work with characterizations oi these sets other than the derinitions. The next two theorems give characterizations of these sets which are or'ten used.

Theorem 2.2. A subset G or a space S is open it and only ir, for each point $p \in G$, there exists a neighborhood U_{p} or p contained in G.

Proor: II G is open, then $I^{\prime \prime}$ er each point $p \in G, G$ is a neighborhood or p such that G is contained in G .

On the other hand, if ior each $p \in G$ there exists a neighborhood U_{p} of p contained in G, then $G=\bigcup_{p \in G} U_{p}$. Hence G is open as the union or' open sets.

Derinition 2.5. Let H be a subset or space S. Then p is a limit, point oI H iI' and only if every neighborhood U or p contains at least
one point q of H such that $q \neq p$.

Theorem 2.3. A subset H or a space S is closed in and only in H contains all oí its limit points.

Proor: Let H be a closed set and let x be a limit point or H. Assume $x \notin H$. Then $x \in(S-H)$ which is an open set. By Theorem 2.2 there exists a neighborhood U of x such that U is contained in ($S-H$). This contradicts the lact that x is a limit point or H, hence we must conclude $x \in H$.

Now suppose H is a subset or' S such that H contains all or its limit points. Consider ($\mathrm{S}-\mathrm{H}$). For any $\mathrm{x} \in(\mathrm{S}-\mathrm{H})$, x is not a limit point or H, since $x \notin H$. Thus, there exists some neighborhood U of x such that U is contained in ($\mathrm{S}-\mathrm{H}$). By Theorem 2.2, ($\mathrm{S}-\mathrm{H}$) is open. Hence $H=S-(S-H)$ is closed.

The I'irst portion or the proor or Theorem 2.3 is an example or a prooi' by contradiction. This technique will be used Irequently throughout this paper.

Derinition 2.6. Ir K is a subset or S, the closure oi K is the union or set K with all or its limit point. The closure of K is denoted by $\overline{\mathrm{K}}$ 。

A concept closely associated with the concept or a limit point is the concept oí a boundary point.

Derinition 2.7. A point p is a boundary point or' a subset H or' a space S in and only in' every neighborhood U or p contains at least one
point of H and at least one point not in H.

Given a topological space: S and a subset K of S, we can form a new topological space using K as the set of points for the new. space and the open sets of S intersected with K as the open sets in K. The following definition will give a formal characterization of this space.

Definition 2.8. Let S be. a topological space, let ω be the collection of open sets in S, and let K be a subset of S. Then the set K with collection $\{\omega \cap \mathrm{K}\}$, where $\{\omega \cap \mathrm{K}\}$. denotes the collection of sets of the form $H \cap K ; H \in \omega$, is a topological space. Such a space is said to be a subspace of S.

One can easily verify that the collection $\{\omega \cap K\}$ described in Definition 2.8 satisfies the three conditions for a topology. One can also verify that a basis for S will generate a basis for space K.

Example 2.7. Let S be the space of real numbers with the usual topology and let $T=[0,1]=\{x \mid 0 \leq x \leq I\}$. Let the topology of T. be the topology of S intersected with set T. It is interesting to note that sets of the form $[0, y)=\{x \mid 0 \leq x<y, y \leq 1\}$ are open in T although they are neither open nor closed in S.

Given two topological spaces, one can describe a new topological space using the cartesian product. Let us now give aformal definition for this space which will be used frequently in this paper.

Definition 2.9. Let. S and T be sets. The set $S X T=$ $\{(x, y) \mid x \in S, y \in T\}$ is called the cartesian product of sets S and T.

Delinition 2.10. Let S and T be topological spaces. The set $S X T$ with $\{\mathrm{U} X \mathrm{~V}\}$, where $\{\mathrm{U} \backslash \mathrm{V}\}=\{(\mathrm{U} X \mathrm{~V}) \mid \mathrm{U}$ open in S, V open in T$\}$, as the topology, is called the topological product or' S and T.

One can easily verily that $\{U X V\}$ satisilies the three conditions Ior a topology.

SERUENCES

When a topology is placed on a set S, certain subsets or' S take on signiricant properties. For example, certain subsets become open or closed sets. A subset A or' S can also take on signiricant properties ir it is indexed by the set or positive integers. Sets indexed by the positive integers will be used Irequently in this paper. Thererore, a Iormal delinition or this concept will be stated and certain basic theorems concerning this concept will be given.

Derinition 2.11. A sequence is a set A indexed by the set I or all positive integers. The nth element of the sequence is the element a which is indexed by the integer n. The nth element is denoted by a_{n} and the sequence is symbolized by $\left\{a_{n}\right\}$, where $A=\bigcup_{n \in I} a_{n}$.

It is important to note that a sequence is not just a set or points, but is a set or points indexed by the positive integers. The signiricance or this ract is that the same set indexed in two dir'rerent ways gives rise to two dir'rerent sequences.

Derinition 2.12. Let S be a topological space and let $\left\{a_{n}\right\}$ be a sequence or points in S. Then $\left\{a_{n}\right\}$ is said to converge to the point p or S ir and only ir', given any neighborhood U or p, there exists a
positive integer N such that $a_{n} \in U$ for all $n>N$. If there exists a point $p \in S$ such that $\left\{a_{n}\right\}$ converges to the point p then $\left\{a_{n}\right\}$ is said to be a convergent sequence. $\operatorname{II}\left\{a_{n}\right\}$ converges to a point $p \in S$ then we say limit $a_{n}=p$. Point p is called the sequential limit point of $\left\{a_{n}\right\}$ 。

Derinition 2.13. The sequence $\left\{n_{i}\right\}$ is a subsequence or the sequence oI positive integers in and only ir the ${ }^{\prime \prime}$ "llowing conditions hold:
(1) Each n_{i} is a positive integer, and
(2) For each positive integer $i, n_{i}<n_{i+1}$.

From condition (2) it Iollows at once that $n_{i} \geq i$ ior every i $\in I_{\text {. }}$

Derinition 2.14. The sequence $\left\{b_{n}\right\}$ is a subsequence or $\left\{a_{n}\right\}$ ir and only ir there exists a subsequence $\left\{n_{1}\right\}$ or positive integers such that $b_{i}=a_{n_{i}}$ for every i.

Theorem 2.4. Ir' point p is a sequential limit point of the sequence $\left\{a_{n}\right\}$, and $1 I^{\prime}\left\{b_{n}\right\}$ is a subsequence or $\left\{a_{n}\right\}$, then p is a sequential limit point $o I^{\prime}\left\{b_{n}\right\}$.

Proor: Let p be a sequential limit point or $\left\{a_{n}\right\}$ and let U be any neighborhood or p. . Then there exists a positive integer N such that $a_{n} \in U$ for any $n>N$. Consider b_{i} where $i>N$. Since $b_{i}=a_{n_{i}}$, and since $n_{i} \geq i>N, b_{i} \in U$. Thus, p is a limit point or $\left\{b_{n}\right\}$ 。

CLASSES OF TOPOLOGICAL SPACES

In the remaining chapters of this paper, the topological spaces
used will orten have properties not common to all topological spaces. In the Iollowing discussion some of the important classes oí topological spaces will be defined.

Derinition 2.15. A topological space S is said to be a Hausdort'I' space ir and only ir, given any two distinct points p, q or s, there exists disjoint open subsets U and V oi' S such that $p \in U, q \in V$.

The next theorem is an example of a theorem which is true ior a topological space with a particular property, but is not true Ior topological spaces in general. The particular property in this case is that the space be Hausdorir'. This theorem also gives the second characteristic or a sequence which will be used extensively in the remainder or this paper.

Theorem 2.5. Let $\left\{a_{n}\right\}$ be a sequence oi points oI a Hausdorin space S. Ir this sequence converges to a point $p \in S$ and also to a point $q \in S$, then $p=q$.

Proor:: Suppose p $\neq \mathrm{q}$. Since S is a Hausdorit space, there exists open sets U and V containing p and q, respectively, such that $U \cap V=\phi$. Since $\left\{a_{n}\right\}$ converges to both p and q, there exists integers N_{1} and N_{2} such that $n>N_{1}$ implies $a_{n} \in U$ and $n>N_{2}$ implies $a_{n} \in V$. For $n>$ maximum $\left\{N_{1}, N_{2}\right\}$ we have $a_{n} \in U \cap V$. This is a contradiction, hence we must conclude $p=q$.

The next example shows that this theorem is not true for topological spaces in general.

Example 2.8. Let $S=[0,1]$ and let U be an open set in $[0,1]$ ir and only ir $U=[0,1], U=\phi$ or $[0,1]-U$ is rinite. Let $\left\{a_{n}\right\}=\{1 / n\}$ for $n=1,2,3, \cdots$. Sequence $\left\{a_{n}\right\}$ converges to every point $p \in S$ with this topology, for any open set U that contains $p \in S$ will contain all except possibly a finite number or' points or $\left\{a_{n}\right\}$. Thus in all points oI $\left\{a_{n}\right\}$ belong to U, let $N=1$, and if all but a finite number or points or $\left\{a_{n}\right\}$ belongs to U, let N be the maximum index oit the elements or $\left\{a_{n}\right\}$ not contained in U .

Definition 2.16. A space S is said to be regular $i r^{\prime}$ and only ir', given any closed subset F or S and any point p or's not in F, there exists disjoint open sets U and V in S containing F and p, respectively.

Derinition 2.17. A space S is said to be normal ir and only ir', given any two disjoint closed subsets F_{1} and F_{2} or S there exists disjoint open sets U and V containing F_{I} and F_{2}, respectively.

Many important topological spaces such as the real numbers with the usual topology and Euclidean n-spaces are Hausdori'r, regular and normal. The rollowing example illustrates the lact that an arbitrary topological space need not posses any or these properties.

Example 2.9. Let $S=[0,1]=\{x \mid x$ is a real number and $0 \leq x \leq 1\}$, and let U be an open set if and only if $U=\phi$, or the complement or U is finite. One can easily verify that set S with this topology is a topological space. Space S is neither Hausdorit', regular, nor normal.

Berore derining the next class or topological spaces it will be necessary to derine mutually separated sets. This concept will be
important in the remainder or this paper as well as being userul in derining completely normal spaces.

Derinition 2.18. Two subsets A and B or' space T are said to be mutually separaited it and only in $\mathrm{A} \neq \phi, \mathrm{B} \neq \phi, \overline{\mathrm{A}} \cap \mathrm{B}=\phi$ and $\mathrm{A} \cap \overline{\mathrm{B}}=\phi$.

Derinition 2.19. A space S is said to be completely normal if and only ir', given any two mutually separated subsets A and B or' S, there exists disjoint open sets U and V containing A and B, respectively.

For an example or' a space that is normal but not completely normal see [8,191].

When working with a space such as the real numbers with the usual topology, one orten uses the lact that a set consisting of a single point is closed. A space having this property is said to be a T_{1} space.

Definition 2.20. A space S is said to be a T_{1} space in and only it every point p in S is a closed subset or S.

The spaces described in Examples 2.8 and 2.9 are T_{1}. The space derined in Example 2.1 is not T_{1} since $\{a\}$ is not closed.

Some prełiminary derinitions will now be given in preparation Ior the derinition or İirst and second countable spaces.

Derinition 2.21. Two sets X and Y are said to be in a one-to-one correspondence if the elements of X and Y can be paired in such a way that distinct elements in X are paired with distinct elements in Y, and distinct elements in Y are paired with distinct elements in X.

Derinition 2.22. A set A is said to be countable ir A can be placed into a one-to-one correspondence with set $I=\{1,2,3,4, \ldots\}$ or with any subset or I.

Derinition 2.23. A collection o of neighborhoods of a point p in a space s is said to be a basis at p it and only if, given any neighborhood U oi p in S, there exists $a \in \sigma$ such that $V \subset U$.

Derinition 2.24. A space S is said to be inirst countable ir and only in', for any point p in S, there exists a countable basis at p.

Derinition 2.25. A space S is said to be second countable ir and only ir' there exists a countable basis for S.

From the derinitions or lirst and second countable spaces, it rollows that a second countable space is rirst countable. The next example shows that the converse is not true.

Example 2.10. Let S be the set of real numbers with the discrete topology. That is, each point or' S is an open set. For each point x in S the open set $\{x\}$ constitutes a countable basis at x. Since set S is not countable, space S is not second countable.

One or the most important classes of topological spacesis the class of metric spaces. This class of spaces will be detined in Derinition 2.29. Some preliminary der゙initions will be presented f゙irst.

Derinition 2.26. A rule $\mathrm{I}^{\prime \prime}$ is called a Transtrormation or' a set S into a set T ir and only ir' I^{\prime} associates with each element x in S a unique element y or T. This association is usually symbolized by
$I^{\prime}(x)=y$ ．Set S is called the domain oI I^{\prime} and T is called the range oI I；

The words mapping and iunction wili be used as synonyms tor trans－ Iormation。

Derinition 2．27．A set S is said to be a metric set ir and only in there is associated with S a mapping ρ irom S（ S into R ，where R is the space or all real numbers，having the riollowing properties Ior every triple x, y, z ol elements in S 。
（1）$\rho(x, y) \geq 0$ ，and $\rho(x, y)=0$ in and only if $x=y$ ，
（i）$\rho(x, y)=\rho(y, x)$ ，and
（3）$\rho(x, z) \leq \rho(x, y)+\rho(y, z) .0$
This mapping is called the metric ior S ．

Example 2．1l．For the set R of all real numbers，the usual metric Iunction is $\rho(x, y)=|x-y|$ ．For the Euclidean plane the usual metric function is $\rho(x, y)=\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}\right) y_{2}\right)^{2}}$ ，where $x=\left(x_{1}, y_{1}\right)$ ， $y=\left(x_{2}, y_{2}\right)$

Intimately associated with a metric set S are the subsets oi S known as spherical neighborhoods．

Deininition 2．28．Let K be a metric set．Then with each point $p \in S$ and each real number r ，we associate a subset $S_{r}(p)$ called a spherical neighborhood oi radius rabout p ．A point q oI K is an element or $S_{r}(p)$ it and only irip $(\rho, q)<r$ 。

Deiinition 2．29．A metric space is a metric set with the collec－ tion ω ol all spherical neighborhoods in S as a basis ior its topology．

For a prooi that a metric set S with the collection 0 as its basis is a topological space, see $[8,60]$.

Many relationships exist between and among the various classes oi topological spaces that have been derined above. The following collec. tion oi theorems are examples or such relationships which will be used in this paper. Proois will not be given, since these theorems are stated and proven in most elementary texts on point set topology.

Theorem 2.6. Every Hausdort'I space is a T_{1} space $[8,64]$.

Theorem 2.7. Every regular T_{1} space is Heusdorti' [8,111]。

Theorem 2.8. Every regular second countable Hausdorit space is completely normal [8,111].

Theorem 2.9. Every completely normal space is normal [8,110].

Theorem 2.10. Every second countable space is tirst countable [8,107].

Theorem 2.11. Every metric space is Hausdorit [8,61].

Other theorems stating relationships that exist between and among the spaces in the various classes derined above will be stated and reterences given as needed in the remaining chapters.

It should be noted that the space R or real numbers with the usual topology i's a metric space, a Hausdorir space, a T_{1} space, a İirst countable space, a second countable space, a normal space, a completely normal space and a regular space. As a consequence many or the theorems
presented in this paper can be stated as theorems for Iunction detined on the space or real numbers.

Two other significant properties that a topological space and/or a subset or a topological space may have are compactness and connectedness.

Derinition 2.30. A collection or sets $\left\{D_{\alpha}\right\}_{\alpha \in \omega}$ is said to be a
 oI the sets D_{α} is an open set, then the collection $\left\{D_{\alpha}\right\}$ is said to be an open covering oi A. Any subcollection or $\left\{D_{\alpha}\right\}$ covering A is said to be a subcovering of A.

Detinition 2.31. Let A be a subset or a space S. Then A is said to be compact iri and only il every open covering of A contains a inite subcovering of A.

Closely associated with compact subsets or a space S is a class or subsets called the countably compact subsets of S. The der'inition ior a countably compact subset ot a topological space will now be presented. The relationships between compact and countably compact subsets will be given in Chapter 4.

Derinition 2.32. A subset A ofi a space S is said to be countably compact if and only it every infinite subset or A has at least one limit point in A.

Derinition 2.33. Let A be a topological space or a subset or a topological space. Then A is said to be connected it and only it A can not be expressed as the union of two mutually separated sets.

TRANSFORMATIONS

The definition of a transformation f from a set S into a set T was given in Definition 2.26. When working with a particular problem one usually requires that a mapping from S into $\$$ satisfies additional conditions. One might, for instance, require that the mapping f be one-toone, onto, or continuous. Let us now define these concepts and other concepts associated with functions which will be used frequently in this paper.

Definition 2.34. Let S and T be sets and let from S into T be a mapping. Then for any subset A of s, we define $f(A)=\bigcup_{x \in A} f(x)$. The subset $f(A)$ of T is called the image of A under f.

Definition 2.35. Let S and T be sets, let from S into i be a mapping, and let B be a subset of T. We define $f^{-1}(B)=x \in S^{\prime}, X_{f}(x) \in B^{*}$ The subset $f^{-1}(B)$ of S is called the source or inverse of B.

Example 2.12. Let $S=T$ be the set of real numbers and let $A=$ $\{1,2\}, B=\{1,4\}$, where A is a subset of S and B is a subset of T. Define f from S into T by $f(x)=x^{2}$. Then $f(A)=B$ and $f^{-1}(B)=$ $\{+1,-1,+2,-2\}$. Note that $f^{-1} f(A) \neq A$.

Definition 2.36. Let S and T be sets. A mapping from S into T is one-to-one if and only if, for every $y \in f(S), f^{-1}(y)$ is a single point.

Definition 2.37. Let S and T be sets. A mapping from S into T is an onto mapping if and only if $f(S)=T$.

A mapping from a space S into a space T can be modiried in several ways. We may change I ' by changing the rule or; association, or we may change the set S on which I is der'ned. A situation that will rirequent- $^{\prime}$ Iy arise in this paper is that we will want to consider I° derined on a subset A or S. This moditication of I is known as the restriction or I to A.

Derinition 2.38. Let S and T be sets, let I^{\prime} trom S into T be a mapping, and let A be a subset of S. A mapping g from A into T is said to be the restriction of to A ir and only $i x^{\prime} \cdot r(x)=g(x)$ ior every $x \in A$. The restriction or I to A is Irequently denoted by $I^{\prime} \mid A$.

Example 2.13. Let S, T and I be detined as in Pxample 2.12, and let $A=\{x \mid x \in S$ and $x \geq 0\}$. $I \mid A$ is a one-tome mapping, but I deİined on S is not. One Irequently uses a restriction or' a mapping to pbtain some such desirable property.

The properties of runctions deined thus lar have been properties Oİ $\mathrm{I}^{\prime} u n c t i o n s$ Irom a point set into a point set. II in addition S and T are topological spaces, certain other properties for function can be defined. One or the most fundamental or the properties for runctions is continuity.

Derinition 2.39. A mapping I'rom a space S into a space T is said to be continuous at a point p in S it and only ir, Ior every open set U in T containing $I(p)$, there exists an open set V in S containing p such that $I(V) \subset U$.

Derinition 2.40. A mapping I Irom a space S into a space T is said
to be continuous in and only if is continuous at every point p in S.

Other properties or tunctions from one topological space into another will be derined in the lollowing chapters as needed.

OFEN AND CLOSED TRANSFORMATIONS

INPRODUCTION

Given two topological spaces is and T, one is or'ten concerned with whether or not S and I have similar structures with similarity of struc. tures derined in terms or mappings. In Chapter II, continuous, one-tow one, and onto runctions were derined. Each or these conditions is a strong condition to place on a function; however, even it a function which is continuous, one-tomone, and onto can be detiined irom.S onto T, spaces. S and T may have very dissimilar properties as is shown by the i゙ollowing example.

Example 3.1. Let S be the unit interval $0 \leq x \leq 1$ with the discrete topology. That is, let every point or S be an open set. Let T be the unit interval $0 \leq x \leq 1$ with the usual topology and derine a mapping I° Irom S onto I by:

$$
\mathrm{I}^{\prime}(\mathrm{x})=\mathrm{x} \text { for every } \mathrm{x} \in \mathrm{~S}
$$

This Iunction is easily seen to be contipuous, one-tome and onto. However, it is quite obvious that spaces S and T are dissimilar, since the respectively lopologies are or a difiterent nature. In iact, many of the open sets in T are not open in S.

II one requires, in addition to the three conditions previously
mentioned, that a Iunction map open sets or' S onto open sets or T, one will find that S and T have many properties in common. In particular, it will be implied in Theorem 3.14 that the open sets or's and T will be placed into a one-to-one correspondence. Formal detinitions for these concepts will now be presented.

Definition 3.1. Let I^{1} be a mapping from a space S into a space T. The mapping I is said to be open in and only if the image of every open set in S is open in T.

Derinition 3.2. A mapping from a space S onto a space T is said to be a homeomorphism in and only if I is one-to-one; onto, open, and continuous. The spaces S and T are said to be homeomorphic.

The word homeomorphism is derived irom Greek and means oi' a similar Iorm or structure. The following I'acts suggest that the term homeomorphism is appropriate. It spaces S and T are homeomorphic and in S is a metric space, a Hausdori' space, a normal space, a completely normal space, a first countable space, a second countable space, or a T_{1} space, then T is oi the same type. The open subsets of S and T will be in a one-to-one correspondence as will the closed subsets, the connected subsets and the compact subsets. This is by no means a complete listing or the properties S and T will have in common, however, a complete discus* sion or the properties of homeomorphisms is not the purpose or this paper. Proois or the above statements and rurther properties or homeomorphisms can be iound in [8].

Closely associated with the class of open mappings is the class or mappings which map the closed subsets or the domain space onto closed
subsets or the range space.

Derifnition 3.3. A mapping I^{\prime} from a space S into a space T is said to be closed $i I^{\circ}$ and only $i I^{\prime}$ the image or every closed subset or S is x° closed subset' or T.

It will be shown in Theoren 3.10 that a homeomorphism could also be derined as a one-to-one, onto, closed, continuous mapping rrom a space S onto a space 1 .

Open and closed riunctions have been introduced here as runctions possessing one of the properties or a homeomorphism. The purpose or this chapter is to give a systematic presentation of other interesting properties these Iunctions are known to possess. The rollowing discusion will show that a function may be open, closed or continuous without possessing either or the other two properties.

The Iunction I derined in Example 3.1 is continuous, however, it is neither open nor closed. To verity that is not open, consider a point p in S. The set $\{\mathrm{D}\}$ Is open in S , but $\left\{\mathrm{I}^{\prime}(\mathrm{p})\right\}=\{\mathrm{p}\}$ is not open in T, hence $\mathrm{I}^{\text {i }}$ is not open. Any subset or S is closed, including sets of the Form $a<x<b$, where $0 \leq a<b \leq 1$. The images of such subsets are not closed in T, hence I is not a closed mapping. The tollowing examples show that it is possible to der"ine functions which are open but not closed or continuous, and lunctions which are closed but not open'or continuous.

Example 3.2. Let S and T be the closed intervals $[0,2]$ and $[0,1]$, respectively, each with the usuai topology. Define a Iunction Irrom S into Tr by:

$$
\begin{aligned}
& I^{\prime}(x)=x, 1 I^{\prime} 0 \leq x<1, \text { and } \\
& I^{2}(x)=x-1, i x^{\prime} 1 \leq x \leq 2
\end{aligned}
$$

The Iunction is open, but is nelther closed nor continuous.

Example 3.3. Let $S=T$ be the open interval ($O_{8} 1$) with the usual topology. Det゙ine I^{\prime} Irom S into T as Iollows.

$$
\begin{aligned}
& I(X)=I / 4, \text { in } x \text { is irrational, } \\
& I(x)=3 / 4, \text { it } x \text { is rational }
\end{aligned}
$$

This iunction maps all subsets ot s onto one oi the closed subsets $\{1 / 4\}$, $\{3 / 4\}$ or $\{2 / 4,3 / 4\}$ or T, and is thus closed. The Iunction is ieither open nor continuous.

One can also construct examples of tunctions possessing any two of these three properties but not the third.

CHARACTERIZATIONS

The iollowing discussion gives characterizations oi open iunctions and closed iunctions. Necessary definitions and preliminary theorems will be stated as needed in the development oi these characterizations.

Theorem 3.1. A tiunction 1 trom a space. S into a space T is closed in and only in $I^{\prime}(\bar{R}) \supset \overline{I^{\prime}(R)}$ where F is any subset oi'S.

Froor. Assume t° is closed and let R be any subset or S. Since \bar{R} is closed, and since I^{\prime} is a closed mapping, $x^{\prime}(\bar{R})$ is a closed subset or T. Thus $I^{\prime}(\bar{R})=\overline{I^{\prime}(\bar{R})}$ 。 Now $R \subset \overline{\mathrm{R}}$, so that $\mathrm{I}^{2}(R) \subset \mathrm{I}^{(}(\bar{R})$. It now Iollows that $\overline{I^{\prime}(R)} \subset \overline{I^{\prime}(\mathrm{R})}=\mathrm{I}(\bar{R})$.

Now assume $\left.\bar{I}(R) \subset I^{(R}\right)$ ror any subset R or S, and let H be any
closed subset of S. Since H is closed, $B=\bar{H}$ so that $I^{\prime}(\mathbb{H})=I^{\prime}(\bar{H})$. By hypothesis $\overline{I^{\prime}(H)} \subset I^{\prime}(\bar{H})=I^{\prime}(H)$, which implies $I^{\prime}(H)$ is closed. Thus I^{\prime} is a closed mapping.

Derinition 3.4. The interior oi a set A (Int A) is the union or all open sets contained in A.

The following theorem follows immediately from the derinition of Int A.

Theorem 3.2. Let A be any subset of a space S, then,
(i) $\operatorname{Int} A \subset A$,
(ii) ix $A \subset$ Int A, then A is open, and
(iii) the set A is open ir and only iif Int $A=A$ 。

Theorem 3.3. A tunction $t^{\text {r }}$ trom a space S into a space T is open if and only in $r(\operatorname{Int} A) \subset \operatorname{Int} I^{\prime}(A)$ ror any subset A or S.

Proor'. Assume I° is open and let A be any subset or S. Since Int A is open by Theorem 3.2, and stnce is open, $I^{\prime}($ Int A) is open. Furthermore, $\vec{I}(\operatorname{Int} A) \subset I(A)$, since Int $A \subset A$ 。Thus $I(\operatorname{Int} A)$ is an open subset of $I^{\prime}(A)$, so that $I(\operatorname{Int} A) \subset \operatorname{Int} I(A)$ by detinition.

Now assume $\mathbb{I}(\operatorname{Int} A) \subset \operatorname{Int} \mathcal{I}^{\prime}(A)$ tor any subset A or S, and let G be any open subset or S. By Theorem $3.2, G=$ Int G, so that $I^{\prime}(G)=$ $\mathfrak{I}($ Int $G)$. From the hypothesis, $\boldsymbol{I}(\operatorname{Int} G) \subset \operatorname{Int} I^{\prime}(G)$, which implies $I(G)$ \subset Int $I^{\prime}(G)$. It now rollows from Theorem 3.2. (ii) that $I(G)$ is open, so that $I^{\prime \prime}$ is an open runction.

A second characterization or open transiormaticnc can be expressed
fin terms of the limit inferior or a sequence ox subsets or a space S ．

Detinition 3．5．IT $\left\{X_{n}\right\}$ is a sequence or subsets or a space s ， then the limit inferion（lini inf $)\left\{X_{n}\right\}$ is the set or all x such that， for each neighborhood U oI x ，U contains points Irom all but a rinite number of the sets in $\left\{X_{n}\right\}$ 。

The $10110 w i n g$ theoren will be used in the proot of the next characterization theorem．

Theoren 3．4．IT S is a inst countable metric space and if x is a limit point or a subset A or S ，then there exists a sequence $\left\{X_{n}\right\}$ or distinct points of A that converges to $x .[8,102]$ ．

Theoren 3．5．Let S and T be topological spaces and let $I(S)=T$ be an open transtormation．Then for every convergent sequence $\left\{y_{n}\right\}$ in T ， the relationship $\mathrm{i}^{\infty}(\mathrm{y}) \subset \lim \inf \left\{\mathrm{I}^{-1}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}$ holds，where $\mathrm{y}=\lim y_{\mathrm{n}}$ 。 II in addition，T is a infst countable metric space，the converse is true．

Proor．Let．I be an open transiormation $I^{\prime}(S)=T$ and let $\left\{y_{n}\right\}$ be a convergent sequence or points in T with $y=\operatorname{Iim} y_{n}$ ．Suppose $x \in I^{\infty 1}(y)$ and that U is an open set containing X ．Since i is an open transforma＊ tion and $x \in r^{-1}(y)$ ，it rollows that $\mathcal{I}(U)$ is an open set in T containing y．Now $y=\lim y_{n}$ implies there exists some positive integer N such
 there exists an x_{n} in V such that $f^{0}\left(x_{n}\right)=y_{n}$ for all $n \geq N$ ．Therefore， ror all $n \geq N, U \cap \vec{I}^{-1}\left(y_{n}\right) \neq \emptyset$ so that x is an element or In inf $\left\{i^{\infty 1}\left(y_{n}\right)\right\}$ and hence $x^{-1}(y) \subset \lim \sin x^{\prime}\left\{f^{m 1}\left(y_{n}\right)\right\}$ 。

Now let T be a inirst countable metric space with the property that for every convergent sequence $\left\{y_{n}\right\}$ in T with $y=\lim y_{n}, I^{\infty}(y) \subset \lim$ inf $\mathrm{I}^{-1}\left(\mathrm{y}_{\mathrm{n}}\right)$. Assume i^{n} is not an open mapping. Then there must exist some open set U in S such that $X(U)$ is not open in T. Now $Y(U)$ not open in T implies there exists some y in $f(U)$ such that y is a limit point of T - $\mathfrak{t}(\mathbb{U})$. Since \mathfrak{I} is a lizst countable metric space, there must exist, by Theorem 3.4 a sequence or distinct points $\left\{y_{n}\right\}$ in $T=I^{x}(U)$ such that $y=$ lim y_{n}. Point y is an element or $I^{\prime}(U)$, so that there must exist some $x \ln U$ such that $I(x)=y$. Now y_{n} is not an element or $I(U)$ for any n, so that $I^{\circ 1}\left(y_{n}\right) \cap U=\phi$ I'or every n 。 By hypothesis, however, x is an element of In inf $\left\{\mathcal{I}^{-1}\left(y_{n}\right)\right\}$ which implies U must contain points Irom all but a flinite number or the sets $\left\{\mathrm{r}^{-1}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}$. This is a contra diction, hence i^{2} must be an open mapping.

Theorems 3.3 and 3.5 give characterizations of open transtormations Which are stated in terms or the interior or a set and the limit inferw ior ot a sequence or subsets or the domain space. A third characterizam tion theorem for open tranerormations and a second characterization theorem Ior closed transtormations can be stated in terms or inverse sets.

Derinition 3.6. Given space S and T and a mapping I from S into T, a subset Q or S said to be an inverse set it and only ir $I^{-1}\left(I^{0}\left(Q_{0}\right)\right)=Q$.

Derinition 3.7. Ir A is a subset or a space S, then a subset H or A is said to be closed with respect to A if" and only in H contains ail or' its limit points which belong to A.

Theorem 3.6. [17] A transtormation I from a'space s into a space T is closed in and only in i is closed on every inverse set' Q or' S.

Proof". Let I be a closed transtormation from S into T, and let Q be an inverse set in S. Let H be a subset of Q that is closed with respect to, Q. Then $H=\bar{H} \cap Q$, Ey hypothesis, $\vec{H}(\bar{H})$ is closed in T. Now $I(H)=I(H \cap Q)=I(H) \cap I(Q)$ 27,246]. Since $I(\vec{H})$ is closed,

 $I^{\prime}(H) \subset\left(\bar{I}(H) \cap X^{\prime}(Q)\right)$. For let y be an element of $I^{0}(H)$. Set $\mathbb{I}^{-1}(y) \subset Q_{\text {, }}$ since Q is an inverse set, hence y is in $(I X) \cap I(Q)) \subset(X) \cap I(Q))$ 。 Thus $\mathfrak{I}^{n}(\mathbb{H})=\boldsymbol{I}(\bar{H}) \cap \mathfrak{I}(Q)$ which implies $I^{\prime}(H)$ is closed with respect to $I(Q)$. Thererore, I is closed with respect to Q.

On the other hand, in I° is closed with respect to every inverse set in S, then, in particular, I^{1} is closed with respect to $~ S=f^{1}(1(S))$, Thus I is a closed mapping.

Derinition 3.8. It A is a subset or a space S, and E is a subset of A, then H is said to be open with respect to A if and only it $H=U \cap A$ ror some open set u in S.

Theorem 3.7. [17] A transiomation 1 from a space S into a space
 S.

Proor". Let Q be an inverse set in S and let \vec{I} be an open trans. rormation on S. For a set H which is open with respect to $Q, H=U \cap Q$ Ior some open set U in S. Thus $\left.I^{\circ}(H)=I(U \cap Q)=(U) \cap I(Q)\right)[27,146]$ 。

Since T^{*} is an open mapping, $T^{\prime}(J)$ is oper in T and hence $T^{\prime}(H)$ is open with respect to $I(Q)$.

Conversely, it a mapping I^{*} rom S into T is open with respect to every inverse set in S, then I is open on $S=I^{\infty}(T)$).

SOME GENERAL PROFRRTTES OF CLOSED MAPFINGS

Let us turn now to a consideration of some general properties of closed mappings. The inirst two theorems in this section make use of a class or subsets called conditionally compact subsets.

Depinition 3.9. A subset A or a topological space S is said to "be conditionally compact it" and only in" every infinite subset or' A has a_{0} limit point which belongs to S.

Theorem 3.8. [17] If the transtormation $I^{\prime \prime}$ from a space S onto a space T is closed, and ir F is any conditionally compact subset or'T, then there exists a conditionally compact subset H or S such that $I^{\prime}(H)$ $=F$ 。

Frooti. Let H be any subset or $I^{-1}(F)$ such that I is one-to-one from H onto F Assume H is not conditionally compact. Then there exists an infinite subset A of f such that A has no limit point in S. Now set A and $a l l$ subsets oi A are vacuously closed since A has no limit points. Set $I(A)$ has infinitely many points in F, and since F is condim tionally compact, $\mathrm{I}^{*}(\mathrm{~A})$ must have a limit point t in F. Furthermore, $\mathrm{I}^{\mathbf{n}}(\mathrm{A})$ is a closed subset of T as the image or a closed subset under a closed mapping, so that t must be an element $O I^{\circ} I^{0}(A)$. Let $s=I^{-1}(t) \cap A$ and consider set $A-\{s\}$. Set $A-\{s\}$ is closed in S, hence
$f(A-\{s\})=I(A) \propto\{t\}$ must be closed in T. But the set $I(A) \sim\{t\}$ has the limit point t. This is a contradiction, hence H must be conditionally compact.

Theorem 3.9. [17] IT iunction $I(S)=\mathbb{T}$ is a closed mapping from a space S onto a countably compact space T, and it $I^{\prime l}(y)$ is conditionally compact ror each y in T, then S is countably compect.

Proori. Assume S is not countably compact. Then there exists an infinite sequence $\left\{a_{n}\right\}$ or points in S such that no point or S is a limit point or $\left\{a_{n}\right\}$. Now $\left\{a_{n}\right\}$ must contain point from only a rinite number $\mathrm{i}^{-1}(\mathrm{y})$, y in T . Otherwise, $\left\{a_{n}\right\}$ would contain an intinite number or points from at least one $\mathrm{I}^{-1}(\mathrm{y})$, and hence, by hypothesis, $\left\{a_{n}\right\}$ would have a limit point in S. Whererore, the image set $\left\{\mathrm{I}^{(}\left(\mathrm{a}_{\mathrm{n}}\right)\right\}$ must be an inrinite subset of T.

Since T is countably compact, $\left\{I^{\prime}\left(a_{n}\right)\right\}$ must have a limit point t in T which belongs to $\left\{I\left(a_{n}\right)\right\}$. Now consider the set $\left\{\left[a_{n}\right\} \infty\left(r^{-1}(t) \cap\left\{a_{n}\right\}\right\}\right.$
 be a closed subset of T. But this set does not contain the limit point t, which gives a contradiction Thus s must be countably compact.

TRANSFORMATIONS THAT ARE BOTH OPEN AND CLOSED

In examples $3.1,3.2$, and 3.3 it was shown that a function might be open without being closed or continuous, a iunction might be closed without being open or continuous, and that a runction could be contin. uous without being open or closed. These facts naturally lead one to inquire what conditions must be placed on a function having one of
these properties to insure that function will have one or both of the other properties. The following discussion is concerned with conditions that imply a function is both open and closed.

Theorem 3.10. If $F(S)=T$ is one-to-one then I is open $i I^{\prime}$ and only if i is closed.

Prooi'. Suppose $\mathrm{I}(\mathrm{S})=\mathrm{T}$ is one-to-one and open, and let H be any closed subset oíS. Set $(S-H)$ is an open set in S, and since i is an open mapping, $I(S-H)$ is open in T. Since I is one-to-one and onto, $I(H)$ must equal $T-I^{\prime}(S-H)$, which is closed as the complement or an open subset or T. Thus the image or a closed subset of S is closed in T, and I is a closed mapping.

The proor that a one-tomone closed mapping is open rollows in an analogous manner.

Theorem 3.10 implies that a homeomorphism could be derined as a one-to-one, onto, continuous closed mapping from one space into another.

For a sequence $\left\{X_{n}\right\}$ of subsets of a space S, the derinition of the limit inferior or $\left\{X_{n}\right\}$ was given in Derinition 3.5. A related subset associated with the sequence $\left\{X_{n}\right\}$ is the limit superior $\left\{X_{n}\right\}$. This concept will be derined and some preliminary results will be demonstrated in preparation for the next theorem concerning open and closed mappings.

Derinition 3.10. $I r^{0}\left\{X_{n}\right\}$ is a sequence or subsetsor a space s, the limit superior (lim sup) or $\left\{X_{n}\right\}$ is the set of all x such that ror each neighborhood U oif x, U contains points irom ininitely many or the
sets in $\left\{x_{n}\right\}$ ．

Example 3.4 ．For the sequence $\left\{X_{n}\right\}$ where each X_{n} is the set $\left\{(-1)^{n}+1 / n\right\}$ ，both ± 1 are elements of the lim sup $\left\{X_{n}\right\}$ ，but neither is an element of $\lim \operatorname{in} x^{\circ}\left\{X_{n}\right\}$ 。 Thus $\lim \sup \left\{X_{n}\right\}$ does not necessarily equal $\operatorname{Iim} \operatorname{int}\left\{X_{n}\right\}$ 。

Lemma 3．1．For any sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ or subsets of a topological space $S, \lim \operatorname{in} \boldsymbol{f}\left\{X_{n}\right\} \subset \lim \sup \left\{X_{n}\right\}$ 。

Prooi．The prooi rollows immediately from the derinitions．

Theorem 3．11．For any sequence $\left\{X_{n}\right\}$ or subsets or a topological space，both $\lim \operatorname{ini}\left\{X_{n}\right\}$ and $\lim \sup \left\{X_{n}\right\}$ are closed．

Froofo Suppose x is a limit point of \lim inf $\left\{X_{n}\right\}$ 。 Then，any neighborhood U of x contains a point y or \lim inf $\left\{X_{n}\right\}$ ．Since U is an open set containing y ，and since y is an element of lim int $\{X\}$ ，U must contain points from all but a finite number of the sets in $\left\{X_{n}\right\}$ 。 This implies x is an element of Lim ini $\left\{X_{n}\right\}$ ，so that $\lim \ln \mathcal{X}^{*}\left\{X_{n}\right\}$ is closed．

The proor for lim sup $\left\{X_{n}\right\}$ follows in a similar manner．

Derinition 3．11．Let $\left\{X_{n}\right\}$ be a sequence or subsets of a topologi＝ cal space．Ir $\lim \operatorname{inI}\left\{X_{n}\right\}=\lim$ sup $\left\{X_{n}\right\}$ then sequence $\left\{X_{n}\right\}$ is said to converge to limit $\left\{X_{n}\right\}=\lim$ ini $\left\{X_{n}\right\}=\lim \sup \left\{X_{n}\right\}$ 。

Theorem 3．12．［17］Let S and T be inst countable metric spaces． The closed transiormation $I(S)=T$ is open in and only it for each sequence $\left\{y_{n}\right\}$ in T converging to a point y in T ，

$$
\lim \left\{x^{-1}\left(y_{n}\right)\right\}=\overline{x^{-1}}(y)
$$

Prooi: Let I^{\prime} be a closed and open mapping from S onto T, and let $\left\{y_{n}\right\}$ be a sequence or points in T converging to a point y in T. Since
 implies that $\mathfrak{r}^{-1}(y) \subset \lim \inf \left\{\mathrm{i}^{\infty-1}\left(y_{n}\right)\right\} \subset \lim \sup \left\{\mathrm{r}^{-1}\left(y_{n}\right)\right\}$. Let us now show that $\lim \sup \left\{\mathrm{r}^{-1}\left(y_{n}\right)\right\} \subset \mathrm{i}^{-1}(\mathrm{y})$ 。 Suppose there exists a point x in $\lim \sup \left\{\mathrm{r}^{-1}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}=\mathrm{I}^{\infty 1}(y)$. Let U be a neighborhood orix x. Set U con tains points $\operatorname{irm}_{\text {rom }}$ ininitely many ori, the sets $\mathrm{i}^{\infty 1}\left(\mathrm{y}_{\mathrm{n}}\right)$, and hence $\mathrm{I}^{\circ}(\mathrm{U})$ contains inirinitely wany points of $\left\{y_{n}\right\}$ 。 The set $f^{\prime}(\bar{U})$ is closed by hypothesis, and hence must contain the limit point y or $\left\{y_{n}\right\}$. There iore, $\left(\bar{U} \cap \mathrm{I}^{-1}(\mathrm{y})\right) \neq \phi, \quad$ II $\cup \cap \mathrm{I}^{-1}(\mathrm{y})=\phi$, then one could choose a neighborhood V of x such that $\bar{V} \subset U[8,70]$, and such that $\bar{V} \cap \vec{i}^{-1}(y)$ = \varnothing. Since U was chosen arbitrarily, however, the argument given for U must also hold for V so that $\bar{V} \cap \mathrm{I}^{-1}(\mathrm{y}) \not \not \equiv$. This gives a contradic. tion, hence $U \cap \mathrm{I}^{-1}(\mathrm{y}) \neq \phi$, and x is a limit point $\mathrm{OI}^{0} \mathrm{I}^{-1}(\mathrm{y})$. Thus we have,

$$
\mathrm{I}^{-1}(\mathrm{y}) \subset \lim \operatorname{in} \mathrm{t}^{\prime}\left\{\mathrm{f}^{-1}\left(y_{n}\right)\right\} \subset \lim \sup \left\{\mathrm{r}^{-1}\left(y_{n}\right)\right\} \subset \overline{\mathrm{f}^{-1}}(\mathrm{y})
$$

But $\lim \inf \left\{\mathrm{I}^{\infty}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}$ and $\lim \sup \left\{\mathrm{I}^{\infty}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}$ are always closed sets, so that

$$
\lim \inf \left\{\mathrm{r}^{-1}\left(y_{n}\right)\right\}=\lim \sup \left\{\mathrm{i}^{-1}\left(y_{n}\right)\right\}=\lim \left\{\mathrm{r}^{\infty-1}\left(y_{n}\right)\right\}=\overline{\mathrm{r}^{-1}}(y)
$$

Assume now that $\lim \left\{\mathrm{l}^{-1}\left(y_{n}\right)\right\}=\overline{p^{\infty, 1}(y)}$ and that i is a closed mapping. It remains to be shown that I is open. By hypothesis $\mathrm{i}^{-1}(\mathrm{y}) \subset \lim \sup \left\{\mathrm{I}^{-1}\left(\mathrm{y}_{\mathrm{n}}\right)\right\}$ for any sequence $\left\{y_{\mathrm{n}}\right\}$ in T that converges to a point y in T. Let U be any open set in S and assume $I^{(U)}$ is not open in T. Then there exists a point y in $I(U)$ such that y is a limit point $O I^{\prime} T \infty(U)$. Since T is a rirst countable metric space there
exists a sequence $\left\{y_{n}\right\}$ or distinct points in $T \mathrm{~m}(\mathrm{I})$ that converges to y. Since $x^{-1}(y) \subset \lim \sup \left\{t^{-1}\left(y_{n}\right)\right\}$ and since y is an elenent or $I^{\prime}(U)$, It follows that U must contain an element x or $X^{\infty}(y)$, and that U, as a neighborhood or x , must contain points from infinitely many or the sets $I^{\infty}\left(y_{n}\right)$. This implies $I^{\prime}(U)$ contains intinitely many on the points of $\left\{y_{n}\right\}$. This is a contradiction, hence $I(V)$ must be open in T and I must be an open mapping.

The next theorem gives a property possessed by runctions which are both open and closed.

Derinition 3.12. A space S is said to be locally connected at a point p if and only ily, given any neighborhood U or p, there exists a neighborhood V ox p such that $V \subset U$ and V is connected.

Detinition 3.13. A space S is said to be locally connected in and only if S is locally connected at each or its points.

Detinition 3.14. A subset Q or a topological space S is said to

(1) Q is non-empty,
(2) Q is connected, and
(3) in C is any connected subset or S satistying $C \cap Q \neq \phi$, then $C \subset Q$.

Theorem 3.13. [17] Let s be locally connected and let $I^{\prime}(S)=T$ be an open and closed mapping from S onto T. Then it T is connected, and if Q is any component of $S, I^{\prime}(Q)=T$ 。

Froor". It will first be shown that Q is both open and closed in S. Since Q is a component of S, Q is a connected subset or S, and Q is not contained in any other connected subset or S. Let p be an element or Q, and let U be a nelghborhood or p. Since S is locally connected there exists a connected neighborhood V_{p} oI p such that $V_{p} \subset U$. Now V_{p} and Q are both connected and $V_{p} \cap Q \neq \phi$. Thus $V_{p} \cup Q$ is a connected set. But Q is a component oI $S_{\text {s }}$ so that $V_{p} \cup Q \subset Q$, and hence $V_{p} \in Q$. It now. rollows that $Q_{i}=\bigcup_{p \in Q} V_{p}$ so that Q is an open set.

Now let p be a limit point oi Q. Since the union of a connected set with one or all oi the limit points or that set is a connected set, $Q U\{P\}$ is a connected set. If p is not an element of Q then $Q \cup P$ is a connected set such that $Q \subset(Q \cup P)$ and $(Q \cup P) \not \subset Q$. This contradiots the hypothesis that Q is a component or S. Thereiore, p is an element or' Q, and Q is a closed set.

Since Q is both open and closed, and since is both open and closed, $\mathrm{I}^{\prime}(Q)$ is both open and closed in T. Assume now that $\mathrm{I}(Q) \neq T$. Then $I^{3}(Q)$ and ($I I^{\prime}(Q)$) are esch open and closed in T and are disjoint. This implies that $I^{\prime}(Q)$ and $\left.(T) I^{\circ}(Q)\right)$ are mutually separated. But $I^{\prime}(Q) \cup(T-I(Q))=T$, which contradicts the hypothesis that T is connected. Thus $I^{\prime}(Q)=T$ as claimed.

CONTINUITY OF OPEN MAPPINGS AND CLOSED MAPPINGS

The lact that a mapping can be open or closed without being contin* uous raises the Iollowing question. Under what condition will an open mapping be continuous, and under what conditions will a closed mapping be continuous? In the iollowing discussion, this question will be considered.

Berore proving the inirst theorem for closed continuous mappings it will be necessary to prove the rollowing theorems concerning continuous iunctions.

Theorem 3.14. A Iunction I Irom a space S onto a space T is conw tinuous if and only ir ior every open subset G in $T, \mathrm{I}^{-1}(G)$ is an open subset or S .

Prooi. Let I° be a continuous $I^{\circ} u n c t i o n$ and let G be an open subset $O X T$. For any y in G, and $I^{\circ} x^{*}$ any x in $I^{\infty}(y)$, there exists a neighborhood V_{X} of x such that $I^{\prime}\left(V_{X}\right) \subset G$ by the continuity of I^{\prime}. For each x in $I^{\infty-1}(G)$, Let V_{X} be a neighborhood or X such that $I^{\prime}\left(V_{X}\right) \subset G$. The union $O I^{\infty}$ all such V_{X} is an open set and Iurthermore, $U_{X \in I^{-1}}(G) V_{X}=I^{\infty-1}(G)$ 。

Now suppose $\mathrm{i}^{-1}(G)$ is an open set in S whenever G is open in T. Let y be an element oi T and let U be any neighborhood oi' y. For any x in $I^{-1}(y), I^{-1}(U)$ is an open set about x such that $I^{\prime \prime}\left(I^{\infty-1}(U)\right) \subset U$. Thus in continuous.

Corollary. It is a onemtomone continuous mapping irom a space S onto a space T, then the mapping \mathbb{X}^{-1} irom T onto S is open.

Theorem 3.15. A Iunction I^{\prime} Irom a space S onto a space T is con= tinuous il and only if $\mathrm{I}^{-1}(H)$ is closed in S whenever H is closed in T.

Proot. Suppose I is continuous and H is a closed subset or T. Then $G=(T-H)$ is an open subset o1 T, and by Theorem $3.12, i^{\infty 1}(G)$ is open. Theretore $\mathrm{I}^{-1}(H)=\left(S-\mathrm{I}^{-1}(G)\right)$ is closed in S.

If on the other hand $\mathrm{P}^{-1}(H)$ is closed in S whenever H is closed in

T, then tor any open set G in $T, z^{-1}(G)=\left(S-i^{-1}(\mathbb{T}-S)\right.$) is open in S. Thus is continuous by theorem 3.14.

Theorem 3.16. [17] A Iunction $\mathrm{I}^{\mathrm{I}} \mathrm{Irom}$ a space S onto a space T is closed and continuous ir and only ix $I^{\prime}(\bar{R})=\overline{I^{(}(R)}$, for any subset R or S.

Froof: Assume $f^{\text {is }}$ closed and continuous on S, and let R be any subset of S. By Theorem $3.1, \overline{\mathrm{I}}(\mathrm{R}) \subset \vec{I}(\overline{\mathrm{R}})$, so it remains to be shown that $\vec{r}(\bar{R}) \subset \overline{\mathrm{I}}(\mathrm{R})$. Let y be an element of $\mathrm{I}^{(\bar{R})}$. Since y is an element of $\vec{I}(\bar{R}), \mathfrak{i}^{\infty+1}(y)$ contains an element x of \vec{R} 。Given any neighborhood u of y, there exists a neighborhood V os x such that $I(V) \subset U$ because or the continuity or $I^{\prime \prime}$. Now since x is an element or \bar{R}, x is an element of R or x is a limit point of R . In either case, V must con ${ }^{\circ}$ tain point oi R, so that U must contain a point of $I(R)$. Thereiore, y is a point of $\mathrm{I}^{\prime}(\mathrm{R})$ or a limit point or $\mathrm{I}(\mathrm{R})$ 。 In any case y is any element of $\overline{T^{\prime}(\bar{R})}$ so that $I(\bar{R}) \subset \overline{I^{\prime}(R)}$. Since $\overline{X^{\prime}(R)} \subset I^{\prime}(\bar{R})$ and $I^{\prime}(\bar{R}) \subset$ $\overline{f^{\prime}(R)}, \quad x^{0}(\bar{R})=\overline{I^{\prime}(R)}$.

If $f^{\prime}(\bar{R})=\overrightarrow{I^{\prime}(R)}$ for any subset of R of S, then I^{B} is closed. This rollows since for any closed subset H or $S, \vec{X}(H)=\vec{H}(\vec{H})=\vec{I}(\mathbb{I})$ which is closed in w. Let us now show that i is continuous by showing that $r^{\infty 1}(K)$ is closed in S whenever K is closed in T, and applying Theorem 3.15 .

Let K be a closed subset or \mathbb{I} and let x be a limit point or $\mathrm{I}^{-1}(K)$.
 hypothesis. But $\left.\overline{I^{(m l}(K)}\right)=K$ since K is closed which implies $\vec{r}(x)$ is an element or K. Thus x is an element of $X^{-1}(K)$ and $r^{-1}(K)$ is closed. Now by Theorem 3.15, I^{\prime} is continuous. This completes the prooi".

The rollowing theorem concerning continuous runctionswill be userul in the remainder or this chapter.

Theorem 3.17. Let S and T be inirst countable metric spaces and let $\mathfrak{I}(S)=\mathbb{T}$ be a transiormation or S onto T. The mapping I is contin uous ir and only ir lior every sequence or points $\left\{x_{n}\right\}$ in S converging to a point x in S, sequence $\left\{\mathrm{r}_{\left(\mathrm{X}_{\mathrm{n}}\right)}\right)$ converges to $\mathrm{I}(\mathrm{x})$ in T.

Proot: Let the transiomation $r(S)=T$ be continuous at the point x in S, and let $\left\{x_{n}\right\}$ be a sequence of points converging to x. Consider $f(x)$ In and let U be an open set containing $I(x)$. By the continuity of I there exists an open set V in S, containing x, such that $r(V) \subset U$. Since $x=\lim X_{n}$, there exists a positive integer \mathbb{N} such that for all $n \geq N_{1} x_{n}$ is in V_{0} This implies tor all $n \geq \mathbb{N},{ }_{I}\left(x_{n}\right)$ is in U_{0} There* fore, $\vec{I}(x)=\lim \left(x_{n}\right)$.

Now let x be a point of S such that for every sequence $\left\{x_{n}\right.$ \} converging to $x,\left\{\mathrm{I}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ converges to $\mathrm{f}(\mathrm{x})$; and assume I is not contin. vous at X. Then there must exist some neighborhood U or $I^{\prime}(x)$ such that for any neighborhood V of $x, I(V) \notin U$. Let V_{1} be a spherical neighbor hood of radius 1 about x and pick x_{1} in V_{1} such that $I\left(x_{1}\right)$ is not an element of U. Let $r_{2}=\rho\left(x_{1}, x_{1}\right)$ 。 Since S is İirst countable, it is possible to choose a neighbornood. V_{2} or x such that V_{2} is contained in the spherical neighborhood or radius r_{2} about x. Pick x_{2} in V_{2} such that $I^{\prime}\left(x_{2}\right)$ is not an element or U. II points $x_{1}, x_{2}, \ldots, x_{n}$ have been chosen, let $r_{n+1}=\rho\left(x, x_{n}\right)$ and let γ_{n+1} be an open set about x such that ∇_{n+1} is contained in the spherical neighborhood or radius x_{n+1} about x. Choose x_{n+1} in V_{n+1} such that $I^{\prime}\left(x_{n+1}\right)$ is not an element of U.

Continuing in this manner, one cen inductively choose sequence $\left\{x_{n}\right\}$ or points in S such that $x=\lim x_{n}$, but such that. $\left.\left\{\mathbb{I}^{(} x_{n}\right)\right\}$ does not converge to x . This contradicts the hypothesis, hence I° must be continuous at x 。

The next two theorems as well as the last two theorems in this chapter are consequences of Theorem 3.17.

Theorem 3.18. [17] Let S and T be separable metric spaces and let ir irom S onto I be a closed transtomation. If ior each y $\in T, I^{-1}(y)$ is countable compact, and it' Ior each convergent sequence $\left\{x_{n}\right\}$ in S, $\left\{\vec{I}^{\left(x_{n}\right)}\right\}$ has a limit point in T or is finite, then \vec{i} is continuous.

Prooi: Let $\left\{x_{n}\right\}$ be a convergent sequence in S with Limit point x and assume $\left\{I^{\circ}\left(x_{n}\right)\right\}$ is inininte. Assume $\left\{\mathrm{I}^{\left(x_{n}\right)}\right\}$ hes a limit point z in T such that $z \neq I(x)$. Since the only limit point or a sequence in a metric space is the sequential limit point, this is equivalent to assume ing I is not continuous by Theorem 3.17. since $x \cap i^{-1}(z)=\phi$, and since a metric space is completely normal [8,110], we can IInd disjoint open sets U and V containing x and $I^{-1}(z)$ respectively. Furthermore, since S is a metric space, there exists a neighborhood U_{x} or x such

 ite number oi the points of $\left\{\mathrm{I}^{\circ}\left(\mathrm{x}_{n}\right)\right\}$. Thus $\mathrm{I}\left(\bar{U}_{x}\right)$ must contain z, which leads to a contradiction. Hence it must be true that $z=I^{\prime}(x)$, so that i is continuous at x. Now by Theorem $3.17 \mathrm{f}^{\prime \prime}$ is continuous on S .

II the sequence $\left\{I^{\prime}\left(x_{n}\right)\right\}$ is Iinite, then $\left\{f^{\prime}\left(x_{n}\right)\right\}=b_{1}, b_{2}, \ldots, b_{k}$, where k is rinite. Now there must exist some $i, I \leq i \leq k$ such that
$\mathrm{I}^{-1}\left(b_{i}\right)$ is an ini"inite subsequence of $\left\{\mathrm{X}_{n}\right\}$ 。 By hypothesis, $i^{\infty}\left(b_{i}\right)$ is countably compact, hence must contain a limit point in S. But $I^{\infty}\left(b_{i}\right)$ as a subsequence or $\left\{x_{n}\right\}$ can have only the point x as a limit point, so that $x \in i^{\infty}\left(b_{i}\right)$ and $I^{(}(x)=b_{i}$. Thererore, $f^{\prime}(x)$ is a sequential limit point or $f^{0}\left(x_{n}\right)$, and I is continuous at x. Now by Theorem 3.17 , must be continuous at every point oi S.

In we require that spaces S and T in Theorem 3.18 be countably compact, then the requirement that for each convergent sequence $\left\{x_{n}\right\}$ in $S_{,}\left\{I^{\prime}\left(x_{n}\right)\right\}$ have a limit point in T or be ininite can be dropped. Furthermore, this theorem can be generalized to the iollowing it and only it theorem.

Theorem 3.19. Let S and T be rirst countable metric spaces and Let I be a transiormation I rom S onto Then S is countably compact and i is continuous on $S 1 x^{\circ}$ and only ixt is closed, T is countably compact, and $\mathbf{f o r}$ each y in $x_{y} f^{-1}(y)$ is countably compact.

Prooí. Let I be closed, T be countably compact, and, ior each y in T, Let $\mathrm{i}^{\infty 1}(\mathrm{y})$ be countably compact. By Theorem 3.9, S is countably compact. Since T is countably compact I Ior any sequence $\left\{x_{n}\right\}$ in S, the set $\left\{\underset{I}{ }\left(x_{n}\right)\right\}$ in T must have a limit point or be ininite Hence by Theorem 3.28, mapping i is continuous.

Now assume S is countably compact and that i is continuous. Let \mathbb{H}. be a closed subset of S and consider $I^{\circ}(H)$ 。 Ir y is a limit point or $I^{\prime}(H)$ there exists a convergent sequence $\left\{y_{n}\right\}$ oi distinct points of H such that $\lim y_{n}=y_{\text {g }}$ since T is a Iirst countable metric space Pick a sequence K Irom the indexed collection oi sets $\left\{x^{m}\left(y_{n}\right)\right\}$ such that
$K \subset \mathbb{C}$ and $\mathrm{I}^{\text {is }}$ onemtomone from K onto $\left\{y_{n}\right\}$ 。 Since S is countably com－ pact，K has a limit point x in S such that x in an element or K ． Furthermore，x is a sequential limit point oí K since S is a first countable metric space．By the continuity orin $\mathrm{I}^{\prime} \mathrm{I}^{(K)}=\left\{\mathrm{y}_{\mathrm{n}}\right\}$ has limit point $\mathrm{I}^{\prime}(\mathrm{x})=\mathrm{y}$ 。 Thus y is an element of $\mathrm{I}^{\circ}(\mathrm{H}), \mathrm{I}^{(H)}$ is closed， and i is a closed mapping on S ．

To show that T is countably compact when S is countably compact， Let A be an infinite subset of T ．Let $\left\{y_{n}\right\}$ be an infinite sequence or pointis in A．Now by the argument used for sequence $\left\{y_{n}\right\}$ in the prem ceeding paragraph，one can show that $\left\{y_{n}\right\}$ must have a sequential limit point y which belongs to $\left\{y_{n}\right\}$ ．Thus A has a limit point y which belongs to A ，and T is countably compact．

For $y \in T, \mathbb{t}^{-1}(y)$ is either finite or infinite。．If $\mathrm{i}^{\infty}(\mathrm{y})$ is in－ finite，let B be an intinite subset ox $\mathrm{I}^{-1}(\mathrm{y})$ ．Since S is countably compact，there exists some x in B such that x is a limit point oi B ． Thus $I^{*-1}(y)$ is countably compact．This completes the prooi。

The next theorem concerning continuity or closed mappings will be userul in Chapter IV．

Theorem 3．20．［6］IIT S is a regular space，T is a compact space， and if I^{\prime} is a closed mapping from S onto T such that $I^{-1}(y)$ is closed for each $y \in T$ ，then I is continuous．

Proor．Suppose I is not continuous at a point x in S ．Then there exists a neighborhood V or $I(x)$ such that for any neighborhood U of x ， $\vec{I}(U) \cap(T-V) \neq \phi_{0}$ Since T is compact and since $(T-V)$ and $I(\bar{U})$ are compact，it i^{*} ollows that $(T-V) \cap I(\vec{U})$ is closed and compact．For any
rinite coliection $U_{1}, U_{2}, \ldots, U_{n}$ of neighborhoods or $x,\left({ }_{i=1}^{n} \widetilde{U}_{i}\right) \cap(T-V)$ $F \phi$ otherwise, $U={ }_{i=1}^{n} U_{i}$ is an open set containing x such that $f(U) \subset V$, and I is continuous. This implies that the intersection or all aets of the form $f^{\prime}(\bar{U}) \cap(T \times U)$, where U is an open set containing x, is non-empty [14,136]. Let y be an element of the intersection or all sets OT the form $\mathcal{I}(\vec{U}) \cap(T-V)$, where U is an open set containing x. Since $y \neq I^{\prime}(x), x \& x^{-1}(y)$ and since $r^{m 1}(y)$ is closed and S is regular, there exiats disjoint open sets U_{1} and U_{2} containing $x^{-1}(y)$ and x, respective ly. Since $\mathbb{T}^{-1}(y) \subset U_{1}$ and since $U_{1} \cap U_{2}=\phi$ it Iollows that $y \notin \mathbb{I}\left(\mathrm{~T}_{2}\right) \cap(T-V)$. This is a contradiction, hence I must be continuous.

Let us turn now to a consideration of theorems concerning contio nuity or transtiormation which are both open and closed.

Theorem 3.21. Let S and q be ilirst countable metric spaces with T countably compact and let i be a transiormation Irom S onto T which is both open and closed. The transiormation i is continuous if and only $i T^{\prime} \mathrm{i}^{\infty 1}(y)$ is closed tor each y in T 。

Proor". Let i^{\prime} be an open and closed mapping and let $\left\{x_{n}\right\}$ be a sequence in S with sequential limit point x. If we can show that $I(x)$ is a sequential limit point or $\left\{\mathrm{I}^{(}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$, then I will be continuous by Theorem 3.17. Now $\left\{\tilde{I}^{(}\left(x_{n}\right)\right\}$ is either an infinite subset or T or $\left.\left\{\tilde{I}^{(} x_{n}\right)\right\}$ can be expressed as a set $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots 0, \mathrm{y}_{\mathrm{k}}\right\}$ of point in with k inite。
 and since y is a rirst countable metric space, y is a sequential

Limit point $o x^{\prime}\left\{r^{\prime}\left(x_{n}\right)\right\}$. Since $r^{-1}(y)=\overline{r^{-1}}(y)$ for each $y \in T$, and
 3.5. Furthermore, x is an element or $\lim \operatorname{lnf}\left\{I^{-1}\left(x^{0}\left(x_{n}\right)\right)\right\}$, so that $\vec{I}(x)=y$ and I is continuous by Theorem 3.17 .
$\left.\operatorname{II}\left\{\mathcal{I}^{(} \mathrm{X}_{\mathrm{n}}\right)\right\}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, y_{k}\right\}$ with k İinite, then there exists at least one $\dot{q}, 1 \leq i \leq k$, such that $i^{-1}\left(y_{i}\right)$ is infinite. Thus $i^{-1}\left(y_{i}\right)$ is a subsequence of $\left\{x_{n}\right\}$ and x is a sequential limit point or $\left\{\mathrm{f}^{-1}\left(y_{i}\right)\right\}$. But $\left\{\mathrm{I}^{-1}\left(y_{i}\right)\right\}$ is closed by hypothesis so that $x \in \mathrm{I}^{-1}\left(y_{i}\right)$ and $I^{\prime}(x)=y_{i}$. Now suppose there exists some $j, 1 \leq j \leq k, j \neq 1$, such that $x^{-1}\left(y_{j}\right)$ is infinite Then $f(x)=y_{j}$ so that $y_{i}=y_{j}$ and $i=j$. This is a contraw diction, so that $\left\{\mathrm{i}^{-1}\left(\mathrm{y}_{\cdot j}\right)\right\}$ is linite $i \overrightarrow{1} i \neq J_{0}$. This implies that all but a finite number of points of $\left\{x_{n}\right\}$ map onto $y_{i}=I^{\prime}(x)$ so that $f^{\prime \prime}(x)$ is a sequential limit point or $\left\{\left(X_{n}\right)\right\}$ and f^{n} is continuous by Theorem 3.17.

Now assume I^{2} is continuous and let y be an element or" T 。 II x is a limit point or $1^{-1}(y)$, then there exists a sequence $\left\{x_{n}\right\}$ or points
 converge to $\mathrm{I}^{\circ}(\mathrm{x})$. But $\left\{\mathrm{r}^{(}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}=\{\mathrm{y}\}$ so that $\mathrm{I}^{n}(\mathrm{x})=\mathrm{y}$. Thereiore, x is an element of $i^{\infty-1}(y)$ and $x^{-1}(y)$ is closed as claimed.

Corollary. In $\boldsymbol{\text { li }}$ is a one-to-one lunction from a lirst countable metric space S onto a fiorst countable metric space T which is both open and closed, then I is continuous.

Theorem 3.22. Let S and T be irirst countable metric spaces and Let i° from S onto T be an open mapping. $I x^{\circ} T$ is countably compact and if $I^{-1}(y)$ is a single point ror $^{-1} 11$ but a finite number of limit points
in \mathbb{I}, then f is a homeomorphism.

Proof. Let us first show. f is ore-to-one. Suppose there exists a limit point y in T such that $f^{-1}(y)$ contains two or more points. Now y a limit point of T implies there exists a sequence of distinct points $\left\{y_{n}\right\}$ converging to y. Since f is open, $f^{-1}(y) \subset \lim \inf \left\{f^{-1}\left(y_{n}\right)\right\}$ by Theorem 3.5. Let x_{1} and x_{2} be elements of $f^{-1}(y)$ and let U and V be disjoint open sets. in S containing x_{1} and x_{2}, respectively. It now follows that both U and V must contain points from $f^{-1}\left(y_{n}\right)$ for all but a finite number of n. This contradicts the hypothesis, hence $f^{-1}(y)$ must be a single point and f is one-towone. The one-towone, open mapping f is onto by hypothesis and is continuous by the corollary to Theorem 3.21. Thus f is a homeomorphism.

CHAFTER IV

COMPACT PRESERVING MAPPINGS AND COMNECITED MAPFINGS

INTRODUCTION

The iollowing theorems give two characteristics of a continuous Iunction I^{0} rom a space S into a space T.

Theorem 4.1. Let S and T be spaces and let I be continuous map-
 comnected subset or $\mp[8,78]$.

Theorem 4.2. Let S and T be spaces and let i be a continuous map. ping Irom S into T. $I I^{X} C$ is a compact subset or S then $I^{\prime}(C)$ is a compact subset of T.

Prooi"。 Let C be a compact subset ot S and consider $I(C)$. Let K be any open covering or $\mathfrak{I}^{(C)}$. Since i is continuous, for any open set U in $K, I^{+1}(U)$ is open in S. Let $H=\left\{i^{\infty 1}(U) \mid U \in K\right\}$. Now H is an open covering of C, and since C is compact, a inite collection $I^{-1}\left(U_{1}\right)$, $\mathrm{i}^{\infty-1}\left(\mathrm{U}_{2}\right), \ldots, \mathrm{i}^{\infty 1}\left(\mathrm{U}_{k}\right)$ oñ open set in H will cover C. Thus the ininite collection $U_{I}, U_{2} \cdots, U_{K}$ or open sets in K will cover $I^{\prime}(G)$, and $I(C)$ is compact.

These two $I^{\text {tu }}$ undamental properties oí continuous Iunctions naturally lead to two lines ol rescarch. The requirements ior a subset oi a space
to be either connected or compact are rather strong. Thus one might expect that a runction that preserves either connected subsets or compact subsets would have interesting properties. One is also led to inquire what conditions, other than preserving connected sets or compact sets, a function must possess to be continuous. The purpose or this chapter is to investigate these lines of inquiry. Formal derinitions will now be presented for connected and compact preserving mappings.
 said to be connected if and only in for every connected subset C or' S, $\underline{I}(C)$ is a connected subset or T.

Derinition 4.2. A function 1 from a space S into a space T is said to be compact preserving if and only if for every compact subset C or $S, ~ I(C)$ is a compact subset of \mathbb{T}.

PROPERTIES OF COMPACT PRESERVING MAPPINGS

AND CONITNUTTY OF COMPACT PRESERVING MAPPINGS

Compact sets and countably compact sets were derined in Chapter II. The following theorem relating these concepts will be userul in the development oi the properties oi compact preserving mappings.

Theorem 4.3. Every compact subset H or' a space S is countably compact. Ir in addition, S is a metric space, the çonverse is also true [8,108].

In the Iollowing, properties of compact preserving mappings, and
the relationship of compact preserving mappings to other mappings will be discussed in one section. This organization has been chosen since the theorems giving properties of compact preserving mappings lead naturally into theorems of the other type.

Theorem 4.4. [15] Let S and T be metric spaces and let f be a compact preserving mapping from S into T, such that f is discontinuous at a point p in S. Then there exists a point q in T and a sequence $\left\{p_{i}\right\}$ of points in S converging to point p such that, $f(p) \neq q$ and $f\left(p_{q}\right)=q$ for each 1.

Proof. Since f is discontinuous at p and since S is a metric space, we can find a sequence of points $\left\{x_{i}\right\}$ in S with $\lim x_{i}=p$ and an open set V in T with $f(p) \in V$ and $V \cap\left\{f\left(x_{1}\right)\right\}=\varnothing$. If an infinite number of points from $\left\{x_{i}\right\}$ map onto a single point q in T we are finish ed since the subsequence $f^{-1}(q) \cap\left\{x_{i}\right\}$ of sequence $\left\{x_{1}\right\}$ can be taken as the sequence $\left\{p_{i}\right\}$. Thus assume that each point q in the image of $\left\{x_{i}\right\}$ is the image of only a finite number of points of $\left\{x_{i}\right\}$. Hence a subw sequence $Y=\left\{y_{i}\right\}$ of the sequence $\left\{x_{i}\right\}$ must map one to one onto the set $Q=\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$ of image points of $\left\{x_{i}\right\}$ under f. The set $Y U\{p\}$ is a countably compact subset of a metric space, hence is compact. Therefore, the image set $f(Y \cup\{p\})=Q \cup f(p)$ is compact and countably compact, since f is a compact preserving. Since $f(Y) \cap V=\phi, p$ cannot be a limit point of ($f(y) \cup\{p\}$), and hence set $f(Y)$ must be countably compact. This implies that for some $j, f\left(y_{f}\right)$ is a limit point $f(Y)$. Now set $\left\{\left(Y-\left\{y_{j}\right\}\right\}\right) \cup\{p\}$ is compact and, as above, $f\left(Y-\left\{y_{j}\right\}\right)$ is compact. However the set $f\left(Y-\left\{y_{j}\right\}\right)=\left\{f(Y)-\left\{f\left(y_{j}\right)\right\}\right\}$
is not closed. This gives a contradietion since a compact subset of a metric space is always closed. Thus we must assume that an infinite number of the points of $\left\{x_{1}\right\}$ maps onto a single point q in T and $\left\{p_{i}\right\}$ can be chosen as the subsequence $I^{-1}(g) \cap\left\{x_{i}\right\}$ or sequence $\left\{x_{i}\right\}$.

The preceeding theorem states an interesting property or a compact preserving mapping. The disclosure of this characteristic, however, is not the only signilicance oi this theorem, since the next theorem relating compact preserving mappings to continuous mappings is a consequence of this theorem.

Theorem 4.5. [15] Let S and T be metric spaces and let I'rom S onto T be a compact preserving mapping. $I \vec{x} i^{\infty 1}(q)$ is closed for every q in T, then is continuous.

Proor'. Assume i is not continuous and let p be an element or S such that I° is not continuous at p. By Theorem 4.4, we find a point q in T and a sequence $\left[p_{i}\right\}$ of points in S such that $\lim p_{i}=p$, $\mathcal{I}^{\prime}(p) f\left(q_{\text {, }}\right.$ and $\mathcal{I}^{\prime}\left(p_{i}\right)=q$ for aII i. Now the set $f^{-1}(q)$ is closed by hypothesis, hence must contain p. This is a contradiction, so that I must be continuous.

Corollary, Every onewo-one compact preserving mapping from a metric space S onto a metric space T is continuous.

Proor". The prooi Iollows immedately irom theoren 4.5 since every point or a metric space is a closed subset or that space.

Using the results of Theorem 4.4 , one can easily construct examples
of runctions that are not continuous but are compact preserving. The Iollowing is one such example.

Example 4.1. Let S be the real numbers with the usual topology and let i be derined by:

$$
\begin{aligned}
& I(x)=0 \text { in } x \text { is rational, and } \\
& I^{\prime}(x)=1 \text { if } x \text { is irrational }
\end{aligned}
$$

Function I is discontinuous everywhere, but is compact preserving since eyery subset oi S is mapped onto one or the compact sets $\{0,1\},\{0\}$, or $\{1\}$ 。

If spaces S and T are not metric spaces, the conclusion or Theorem 4.5 may no longer rollow. However, it is sometimes possible to place alternate conditions on the spaces that will insure continuity. The next two theorems give examples oi such alternate conditions ror certain spaces.

Definition 4.3. A space S is locally compact ir and only ir, for every point p in S.and for every neighborhood U of p, there exists a neighborhood V or p such that $V \in U$ and \bar{V} is compact.

Theorem 4.6. [7] Let S be a locally compact Hausdorif space and let T be a Hausdorit space. Then ir is compact preserving, and ir $\mathrm{I}^{-1}(\mathrm{y})$ is closed for each y $\in T, \mathrm{I}$ is continuous.

Prool. Consider any point x in.S. Since S is locally compact, there exists a neighborhood U oi x such that \bar{U} is compact. Since continuity is a local property, one need only consider I restricted to \bar{U} with \bar{U} regarded as a subspace of S. Let us now show that the
conditions of Theorem 3.20 are satisfied and the conclusion will follow.
To see that \bar{U} is regular, let F be a closed subset of \bar{U} and let x be an element of $\bar{U}=F$. For each y in \bar{U} choose neighborhood V_{y} and U_{y} of y and x, respectively, such that $V_{y} \cap U_{y}=\phi$. This is possible since \bar{U} is Hausdorff. The collection $\left\{V_{y}\right\}, y \in F$, is an open covering of F. Now F is a closed subset of a compact space and is, therefore, compact. Hence there exists a finite subcollection $V_{y_{1}}, V_{y_{2}}, \ldots \rho, V_{y_{k}}$ of $\left\{V_{y}\right\}$, $y \in F$, that covers F. The sets ${ }_{i=1}^{k} V_{y_{i}}$ and
${ }_{i=1}^{n} U_{y_{i}}$ are the desired open sets containing F and x, respectively, so that $\overline{\mathrm{U}}$ is reguiar.

Space $F(\vec{U})$ is compact since \bar{U} is compact and f is compact preserving.

To werify that f is closed on \bar{U}, let F be any closed subset of \bar{U}. Since \bar{U} is compact, any closed subset of \bar{U} is compact. Therefore, $f(F)$ is a compact subset of $f(T)$. Because $f(F)$ is a compact subset of the Hausdorff space $f(\bar{U}), f(F)$ is closed [8,66]。

Since all of the conditions of Theorem 3.20 are satisfied, f is continuous at x. Point x was chosen arbitrarily, however, so f is continuous on S .

Definition 4.4. A space S will be said to have property K^{*} at point p if and only if, for every infinite subset A of S having p as an accumulation point, there exists a compact subset of $A \cup\{p\}$ having p as an accumulation point.

Theorem 4.7. [7] Let S and T be Hausdorfe spaces and let from S onto T be a compact preserving mapping. Then if S has property K^{*} at x
and $1 x^{\infty} \mathcal{L}^{(1}(y)$ is closed ror each $y \in T$, is contimuous at X.

Prooi: It x is an isolated point the proof is trivial, so it may be assumed x is not isolated. Suppose I is not continuous at x. Then there exists some neighborhood V oi $I^{\prime}(x)$ such that ror each open set U containing x there exists an x_{u} in $U \cap I^{\infty}(T-V)$. For each neighborm hood U of x choose a point x_{u} and let A be the set of all such x_{u}. Set A is infinite since x is an accumulation point or A. Hence, there exists some compact subset K or $A \cup\{x\}$ such that x is an accumulation point or K. By Theorem 4.6, i restricted to K is continuous. This is a contradiction since $I^{\prime}(K) \subset(T-V)$ and $T^{\prime}(X)$ is in V Thus I^{\prime} unction I is continuous at x.

The next theorems state a relationship between compact subsets and closed subsets or compact Hausdorim spaces which implies a corresponding relationship between closed mappings and compact preserving mappings.

Theorem 4.8. Let S be a compact Hausdorif space A subset H oi S is ciosed in and only ix H is compact.

Proot: Assume His a closed subset or a compact Hausdorit space S, and let $\left\{U_{\alpha}\right\}$ be an open covering of H. The collection $\left\{U_{\alpha}\right\} \cup(S-H)$ is an open covering or S. Since S is compact a inite number of the sets in collection $\left\{U_{\alpha}\right\} \cup(S \times H)$ will cover S. Thererore, a rinite number oi sets irom coliection $\left\{U_{\alpha}\right\}$ will cover H and H is compact.

Now assume H is a compact subset or the compact Hausdorin space S. Let us show that H is closed by showing that no point oi ($\mathrm{S}=\mathrm{H}$) is a

Limit point of H. Let q be any point oi (S H). For each y in H, choose disjoint neighborhoods U_{y} and V_{y} containing y and $q_{\text {, }}$ respective ly. This is possible since S is a Hausdorit space. The collection $\left\{U_{y}\right\}, y \in H$, is an open covering or the compact set H, hence a ininite subcollection $U_{y_{1}}, U_{Y_{2}}, \ldots, U_{Y_{k}}$ will cover H. The open set $\tilde{i}_{1} \mathrm{~K}_{1} V_{y_{k}}$ is an open set containing x which does not intersect H. Thus q is not a limit point or H, and H is closed.

The slgniticance of Theorem 4.8 is that a mapping I^{\prime} rom a compact Hausdorit space \mathcal{G} into a compact Hausdoriil space \mathbb{T} will be closed it and only in i is compact preserving. Thus most oi the theorems oi Chapter III concerning closed mapping give rise to theorems concerning compact preserving mappings.

PROPERTIES OF CONNECTED MAPPINGS

In the iollowing theorems some properties oi' connected mapping will be developed. As with compact preserving mappings, these theorems will lead into theorem relating connected mappings to continuous mappings.

Theorem 4.9. [21] Let I° be a connected mapping of the Hausdori' $I^{\prime \prime}$ space S^{\prime} into the Hausdorit" space T. II. C is any connected subset or S then $\vec{I}(\bar{C}) \subset \bar{I}(\bar{C})$.

Prooí: Let C be a connected subset or S and let q be an element oi $I^{0}(\bar{C})$. We wish to show that q is an element or $\bar{I}(\bar{C})$. Since $q \in I(\bar{C})$, there exists some p in \bar{C} such that $I(p)=c$ 。 Ir p is in C, then $I^{\prime}(p)$ $=q$ is in $I^{\prime}(C)$ and hence in $\vec{I}(C)$ II p is not in C, then p is a limit point oi Co Now set $C U\{P\}$ is a connected set since the union oi a
connected set with a limit point or that set is connected and $r^{\prime}(C \cup\{P\})=r(C) \cup\{q\}$ is connected. Now assume q is not an element or $\overline{\mathrm{I}}(\mathrm{C})$. Since T is Hausdorit, no point or C is a limit point or $\{q$ \}. But this implies $\mathrm{I}^{(C)} \cup\{q\}$ is not connected which is a contradiction. Thererore, $q \in \overline{\mathrm{I}}(\mathrm{C})$ and $\mathrm{I}(\overline{\mathrm{C}}) \subset \overline{\mathrm{I}}(\overline{\mathrm{C}})$.

The next theorem is a consequence or Theorem 4.9 .

Theorem 4.10 [21] Let S_{1}, S_{2} and S_{3} be Hausdoriti spaces and let I be connected mapping of $S_{1} \backslash S_{2}$ into $S_{3^{\circ}}$. Ir i is a connected mapping, then I^{\prime} has the lollowing properties: (i) $I(x, B)$ is connected for any x in S_{1} and for any connected subset B in S_{2}, (ii) $I(A, y)$ is connected ror any connected subset A or S_{1} and ror any y in S_{2}.

Prooi of (i). Assume there exists a point x in S_{1} and a connected subset B or S_{2} such that $(x, B)=\{(x, y) \mid y \in B\}$ is not connected. Then there exists disjoint nonempty subsets H_{1} and H_{2} in $S_{1} X S_{2}$ such that $(x, B) \in H_{1} \cup H_{2}, \bar{H}_{1} \cap H_{2}=\phi$ and $H_{1} \cap \bar{H}_{2}=\phi$. Let $T_{1}=\{y \mid y \in B$ and $\left.(x, y) \in H_{1}\right\}$ and $\operatorname{let} T_{2}\left\{y \mid y \in B\right.$ and $\left.(x, y) \in H_{2}\right\}$ 。 For any $y \in B$, $y \in T_{1}$, or $y \in T_{2}$, since $(x, B) \subset\left(H_{1} \cup H_{2}\right)$ 。Furthermore, T_{1} and T_{2} are nonempty, for otherwise, H_{2} or H_{2} is empty. It is also true that $\bar{T}_{1} \cap T_{2}=\phi$ and $T_{1} \cap \bar{T}_{2}=\phi ;$ otherwise, $\bar{H}_{1} \cap H_{2} \neq \phi$ or $H_{1} \cap \bar{H}_{2} \neq \phi$. This, however, implies B is not connected, which is a contradiction. Thererore, (x, B) is connected and \vec{i} connected implies $r(x, B)$ is connected.

The prooi or (ii) Iollows in an analogous manner.

The following example shows that conditions (i) and (ii) oi Theorem 4.10 are not suifilicient for a runction to be connected.

Example 4.2. [21] Let f be defined on the Euclidean plane as follows:

$$
\begin{aligned}
& f(x, y)=\frac{x y}{x^{2}+y^{2}} \text { if } x \neq 0 \text { or } y \neq 0 \\
& f(0,0)=0 .
\end{aligned}
$$

Function f is continuous in each variable separately, and is therefore connected in each variable. This means that f satisfies conditions (i) and (ii) of Theorem 4.10. However, along the line $x=y$, which is a connected subset of the plane, $f(x, x)=1 / 2$ if $x \neq 0$ while $f(0,0)=0$. Hence, mapping is not connected.

A partial converse does exist for Theorem 4.10.

Theorem 4.11. [21] Let S_{1}, S_{2} and S_{3} be Hausdorff spaces and let f be a transformation from $S_{1} \times \mathrm{S}_{2}$ into $S_{3^{\prime}}$ If f has properties (i) and (ii) of Theorem 4.10 , then $f(A, B)$ is connected whenever A is connected in S_{1} and B is connected in S_{2}

Proof. Let f satisfy conditions (i) and (ii) and let A. and B be connected subsets of S_{1} and S_{2} respectively. Assume $f\left(A_{9} B\right)=\{f(x, y) \mid$ $x \in A, y \in B\}$ is not connected. Then $f(A, B)$ can be expressed as the union of two nonempty disjoint sets E and K such that $K \cap \bar{K}=\varnothing$ and \#̈ $\cap K=\emptyset$. Now for a fixed point x_{1} of $A, f\left(x_{1}, B\right)=\left\{f\left(x_{1}, y\right) \mid\right.$ y $\left.\in B\right\}$ is connected by condition (i), hence must be entirely contained in either H or K, say H. Similarly for a fixed point y_{1} in $B_{2} f\left(A_{1} y_{1}\right)$ must be contained in either H or K by condition (ii). However, $f\left(x_{1}, y_{1}\right)$ is an element of H_{s} so $f\left(A, y_{1}\right)$ must be a subset of H. Since the same argument is true for every $y \in B, f(A, B)$ is contained in H.

This implies $K=\phi$ which is contradiction. Thererore, $f(A, B)$ must be connected as claimed.

A set will now be detined which will lead to a theorem giving a property or connected mappings as well as a theorem giving necessary and sutiticient conditions ior a connected mapping to be continuous.

Deininition 4.5a Let i be a mapping trom a space S into a space T. For every point p in S let the set oin limit points oi I^{2} at, denoted by $I\left(r^{\circ}, p\right)$, be the set of all points q in T for which there exists a sequence ox $\left\{p_{n}\right\}$ ox points in S such that Iimit $p_{n}=p$ and Iimit $I^{\prime}\left(p_{n}\right)$ $=q$.

The Iollowing property or set $L\left(I^{\prime}, p\right)$ will be used in the proon of the next two theorems.

Lemma 4. [21] Suppose is a mapping irom a ifrst countable Housdorix space S into a tirat countable space T For every point p in $S, L(r, p)$ is closed.

Proot: Let p be ary point in S and let q be a Imit point or $L\left(\mathrm{I}^{\circ}, \mathrm{p}\right)$. Since S is inirst countable, there exists a sequence $\left\{U_{n}\right\}$ of open sets containing p such that tor any open set U containing p there exists a positive integer \mathbb{N}_{1} such that $n>N_{I}$ implies $U_{n} \subset U_{0}$ We may assume that $\left\{U_{n}\right\}$ is monotone decreasing. Similarly, a monotone sequence $\left\{V_{n}\right\}$ of open sets can be chosen in x with the property that q \& V_{n} for each n, and such that $i o r$ each open set V containing q there exists a positive integer N_{2} such that $n>N_{2}$ implies $V_{n} \subset V$.

Now consider $V_{j} I^{\circ}$ some inxed positive integer jo since q is a

Limit point or $L\left(x^{\prime}, p\right)$ there exists some point $q^{:}$or $L\left(x^{n}, p\right)$ in
 points $\left\{p_{n}\right\}$ in S such that $\operatorname{limit} p_{n}=p$ and limit $I^{\prime}\left(p_{n}\right)=q^{\prime \prime}$. Now since imit $f^{\prime}\left(p_{n}\right)=q^{\prime}$, and since V_{j} is an open set containing q^{\prime}, there existe a positive integer \mathbb{N}_{3} auch that $n>N_{3}$ implies $f\left(p_{n}\right) \in \nabla_{j}$ o Furthermore, since Limit $p_{n}=p$ there exists a positive integer N_{4} such that $n>N_{4}$ implies P_{n} is in U_{g} o Let $N=\max \left\{N_{3}, N_{4}\right\}$ and choose a point p_{n} where $n>\mathbb{N}$. Then p_{n} is in U_{j} and $I^{\prime}\left(p_{n}\right)$ is in V_{j}. Relabel the point p_{n} as x_{j}. By the above construction we can pick a point x_{j} in U_{j} Tor each \mathfrak{J} such that $I_{i}\left(x_{g}\right)$ will be an element or V_{g}. The sequence $\left\{x_{g}\right\}$, so selected, will have the property that limit $x_{j}=p$ and limit $I\left(x_{j}\right)$ $=q$. Thus q is en element or $L\left(I^{\circ}, p\right)$ and $I\left(I_{0}, p\right)$ is closed.

Theorem 4.12. [21] If İ is a connected mapping from a locally connected fiirst countably Hausdorix space S into the compact first countable Hausdorif space T_{2} then $L\left(i_{g} p\right)$ is a connected subset of T for every p in S.

Proofi。 Let us inst note that T as a compact Hausdorix space is normai: Now assume $I\left(I_{0}, p\right)$ is not connected for some p in S. Then $L\left(I^{\prime}, p\right)$ can be expressed as the union of two sets A and B where $A \neq \phi, B \neq \phi, \bar{A} \cap B=\not \subset$ and $A \cap \bar{B}=\emptyset$. By Lemma 4.1, $L(\vec{r}, p)$ is closed. This implies that both A and B are closed. Since space T is normal, open sets V and V cen be round such that $A \subset U, B \subset V$ and $\because \cap V=\phi$, so that' $L\left(r^{\prime}, p\right)=(A \cup B) \subset(U \cup V)$. We shall now obtain a contradiction by showing that $L\left(r^{r}, p\right)$ is a subset or either U or V 。

It will first be shown that there exists at least one open set M
containing p such that $f^{\prime}(M) \subset(U \cup V)$. Assume thet no open set contain ing p is mapped into ($U \cup V$). Space. S is first countable, hence there exists a monotone decreasing sequence $\left\{M_{1}\right\}$ or open sets each containing p and such that for any open set M containing p there exists an integer N such that $M_{1} \subset M$ Ior all $i>N$. For each i, pick an element p_{i} in M_{1} such that $I\left(P_{i}\right) \in T-(U \cup V)$ 。 Since $T-(U U V)$ is a closed subset or a compact metric space, it is compact, hence countably compact. Thus sequence $\left\{\mathcal{I}\left(p_{n}\right)\right\}$ must have a limit point q in $T=(U \cup V)$, and some subsequence or $\left\{r^{\prime}\left(p_{n}\right)\right\}$ will have q as a sequential limit point. This is a contradiction since limit $p_{n}=p$ which implies $q \in L(i, p)$ 。Thus we must conclude that some open set containing p maps into (U V V).

Now consider an open set M about p such that $\mathbb{f}(\mathbb{M}) \subset(U \cup V)$. Since S is locally connected, there axists a connected open set C containing p such that $I^{\prime}(\mathbb{C}) \in(U \cup V)$. Transiormation I^{n} is connected, so that $\mathcal{I}(\mathbb{C})$ must be connected. Therefore, $\mathfrak{I}(C) \subset U$ or $\mathfrak{I}(C) \subset V$. This implies, $I(\mathbb{I}, p)$ must be contained in either U or V which contradicts the assumptions

One can note the $L\left(r^{2}, p\right)$ is neyer empty, since $f(p)$ is always an element or $L\left(r^{0}, p\right)$. Whis follows rrom the ract $f^{\prime}(p)$ is the limit of the sequence $\left\{\mathrm{I}^{(}\left(\mathrm{P}_{\mathrm{i}}\right)\right\}$, where $\mathrm{p}_{\mathrm{i}}=\mathrm{p}$ Ior each i.

CONTINUITY OF CONNECTED MAPPINGS

Theorem 4.12 leads to the rollowing theorem which states a necessary and suiricient condition for a connected function to be continuous.

Theorem 4.13. [21] II I is a comnected maping irom the locally
connected rirst countable Hausdorir space S into the compact rirst countm able Heusdorit space T s then is continuous at a point p in S it and only $1 \mathcal{I}^{2}$ set $L(1, p)$ is inite or denumerable.

Proor". Since a continuous mapping is connected and has $L(I, p)=$ $I(p)$, we need only prove that the condition $I(I, p)$ is finite or denumerable is surticient. By Theorem 4. $12, L\left(I^{\prime \prime} p\right)$ is connected and as a closed subset of a compact space is compact. Let us now show that $L\left(x^{3}, p\right)$ is either a single point or is non-denumerable. Assume set $L(t, p)$ is denumerable but does not consist or a single point. $I \mathrm{I}^{\circ} \mathrm{L}\left(\mathrm{I}^{3}, \mathrm{p}\right)$ is assumed to be rinite we get an immediate contradiction since each point oi a rinite subset ori a Hasdoriri space is an isolated point which implies $L\left(X_{i}, p\right)$ is not connected. II $L(\vec{y}, p)$ is assumed to be an infinite denumerable set, a contradiction can be obtained as rollows. Let $L\left(\mathrm{I}^{\prime}, \mathrm{p}\right)$ be ordered by the positive integers and let M_{1} and U_{2} be disjoint open set containing x_{1} and x_{2}, respectively. Now consider \bar{M}_{1}. since $M_{1} \cap U_{2}$ $=\phi, x_{2}$ is not an elenent oif \mathbb{W}_{2}. Thus \vec{M}_{1} can not contain all or $L\left(\mathrm{I}^{\prime}, p\right)$. Now if $L\left(x^{\prime}, p\right)$ - \bar{M}_{1} is rinite we can obtain a contradiction by constructIng an open set about x_{2} that would contain no other point or $L\left(j^{\prime}, p\right)$. This would lead to a contradiction since no point of a connected set can be an isolated point.

Now consider the point x_{2} in $L\left(X_{s} P\right)-\bar{M}_{1}$ and let $x_{1_{3}}$ be the element or least index. in $L\left(r_{i}, p\right)$ - \bar{M}_{2}. Consider the closed set $B_{2}=x_{2} U$ (Boundry M_{2}). Since this set is a compact subset or a Hausdori' space it is possible to construct disjoint open sets M_{2} and $U_{1_{3}}$ containing B and $\mathrm{x}_{\mathrm{i}_{3}}$ respectively. Now $\mathrm{x}_{\mathrm{i}_{3}}$ is not a limit point of $\bar{M}_{1} \cup \bar{M}_{2}=\overline{M_{1} \cup M_{2}}$
and as above, $\left(\mathrm{L}(\mathrm{T}, \mathrm{p})-\overline{\mathrm{M}_{2} \mathrm{UM}_{2}}\right.$) must be intimite. Continuing in this manner until the elements of $L\left(r^{\prime \prime} p\right)$ are exhausted one can construct an open covering ${ }_{i} U_{i} M_{i}$ OI $L\left(I_{0}, p\right)$ and a sequence $\left\{x_{i}\right\}$ or points or $L(\tilde{I}, p)$ such that $x_{\rho_{n+1}}$ is not an element or $\sum_{1=1}^{n} M_{1}$. Whus no rinite subcollec-
 compact space is compact. This is a contradiction, hence $L(\vec{r}, p)$ must be a single point or non-denumerable. By hypothesis, $I\left(f^{2}, p\right)$ is tinite, so $L(\mathbb{T}, \mathrm{P})$ must be a single point and I must be continuous.

The following theorems give alternate surimcient conditions for a connected runction to be continuous. Since a continuous function is always connected, these conditions will not need to be stated as necessary and surincient conditions. The inst two of these theorems make use of the concept oi at worst a removable discontinuity.

Derinition $406 . a$ A mapping ir from a Hausdoriti space S into a Hausdorir space T is said to hare at worst a removable discontinuity at a point p in S in and only if ror every sequence $\left\{p_{n}\right\}$ or points in S converging to p with each $\left.p_{n} \notin p, \lim \mathcal{I}^{\left(p_{n}\right.}\right)=q$ for some q in T.

Under derinition $4.6 . a$ a, a runction t which is continuous at a point p in S has at worst a remoweble discontinuity at p. The following example gives a function which is not continuous, has at worst a remove able discontinuity at each point, and is connected.

Example 4.3. Let S be the set or points on the real number line Oi the rorm $1 / n, n=1,2,3, \ldots$, along with the point 0 , and let S have the usual topology. Derine I by:

$$
\begin{aligned}
& f(p)=1 f^{4} p \neq 0 \\
& f(0)=0 .
\end{aligned}
$$

The finction f is continuous at every point in S except 0 . At the point $O_{2} f$ has at worst a removable discontinuity since for any sequence $\left\{p_{n}\right\}$ of points converging to $0,12 m\left(p_{n}\right)=1$. Turthermore, is connected on S since the only connected subsets of 5 consist of single points.

Tae next theorem gives conditions that will imply conected function with at worst a removable discontinuity is continuous.

Theorem 4.14. [21] Let f be a connected mapping of the locally connected first countable Hausdoxff space S into the Hausdorif space T. Then f is continucus at a point p in S if and only if s has at worst a removable discontinuaty at p.

Proof. Suppose f is connected and has at worst a removable dis. continuity at p. Assume there exists a sequence $\left\{p_{n}\right\}$ which converges to p and is such that the unique point $q=\lim f\left(p_{n}\right)$ is not equal to $f(p)$. This is equivalent to assuming f is not continuous. Since T is Hausdorff, disjoint open sets U and V can be chosen such that $Q \in \mathbb{U}$ and $\mathbb{E}(\mathbb{D}) \in \mathcal{V}$ Now there must exist at least one open set M containing p such that for any point x in $\left\{p_{n}\right\} \cap M, f(x)$ is an element of U. If this is not true, one can use the fact that S is first countable to construct a sequence of pointe $\left\{p_{n}\right\}$ converging to p and such that $\lim f\left(p_{n}\right) \notin q$. since s is Locally connected, there exists a connected open set C containing p such that $C \subset M$. Set $f(C)$ must be connected subset of T since f is connecte ed. But $f(p)$ is contained in V and $f(C-\{p\})$ must be contained in U. This is a contradiction, since this implies f(c) is not connected. Thus
$(x)(p)$ must equal q and a is continuous at p.
Since continuous mapping is connected and has at most a removable discontinuity at point p, the condicions given are both necessaxy and suricicient.

The corditions placed on space S in Theorem 4.14 were rather strong conditions. Ix the derinition or at worst e removable discontinuity at a point p is generalized appropriately, the restriction that S be inst countable can be rencyed. The desired generalization is stated in the next derinition.

Derinition 4.6.b. A sunction incom space S into a space T is said to have at worst a removable discontinuity at a point p or s ir there exists a point of in such that for eqery neighborhood U of q, there exists a neighborhood V or p such that $f(U)\{p\}) \subset V$.

From the derinition or a convergent sequence, one can easily show that Deinition 4.6 .6 always implies Derinition 4.6.9. In the proor of Theorem 4.14 it was shown thet Deriaition 4.6 .a implies derinition 4.6 .6 whenever S is a dirst countable Havadoriti space. Thereiore, Derinitions 4.6.a and 4.6.b are equivalent ior livst countable Hausdorit spaces. Theorem 4.14 can now be restated as rollows $1 x^{r}$ Derinition 4.6 .6 is used.

Theorem 4.15. [7] If I^{\prime} is a connected mapping irom a locally con nected Hausdoriri space S into a Hausdoriz space T, then f is continuous at a point p in S ir and only in x^{p} has at worst a removable discontinuity at p 。

Froor'. The proot is essentially the seme as the proor or Theorem
4.14.

In the next exampe, a iunction is presented which is connected everywhere, but is discontinuous at one point. All or the hypotheses Oi Theorem 4 . 15 are satimited except the hypothesis that ins at worst a remoware continuity at each pointo

Brample 4.4 [2I] Let S be the Euclidean plane and let T be the space or real numbers. Derine in rom S into T by:

$$
\begin{aligned}
& x^{+}(x, y)=\frac{2 x y}{x^{2}+y^{2}} \sin \frac{x}{\left(x^{2}+y^{2}\right)^{2} / 2} \text { ix } x \text { and } y \text { are not both } 0, \\
& x^{0}(0,0)=0 .
\end{aligned}
$$

This Iunction is continuous at every polnt except possibly (0,0) and thereiore maps any cannected subset not containing (0,0) onto a connecto ed subset or 2. I Is not continuous at (0,0) as one cen verity by considering the line x a y on this line I reduces to the rollowing Iunction:

$$
\begin{aligned}
& g(x)=\sin \frac{\pi}{\sqrt{2}|x|} i x^{\circ} x \neq 0 \\
& g(0)=0 .
\end{aligned}
$$

Now consider points or the rorm $(\sqrt{2} / n, \sqrt{2} / n)$. This sequence oi points converges to $(0,0)$ but the equence $I^{r}(\sqrt{2} / n, \sqrt{2} / n)$ does not converge to $I^{3}(0,0)$ since $t^{\prime}(\sqrt{2} / n g \sqrt{2} / n)= \pm 1$, depending on whether is even or odd. Thus in not continuous at $(0,0)$.

Let us now ferixy that I maps comnected subsets or S containing $(0,0)$ onto connected subsets or To Suppose C is a connected subset or S containing $(0, O)$ and such that $I(C)$ is not connected. When $I(C)$ can be expressed as the union or two sete A and 8 such that $A \notin \phi, B \neq \phi$, $\because A \cap \bar{B}=\phi \operatorname{and} \bar{A} \cap B=\phi$. Now $1(0, O) \perp B$ an el ement or either A or B_{9}
say B．
Yow $x^{-1}(A) \cup x^{-1}(B)=C$ and $x^{-1}(A) \cap x^{-1}(B)=\emptyset$ ．Let us show that for any x in $n^{-1}(A)$ ，x is not a limit point oir $x^{-1}(B)$ 。＂Suppose x is an element or $\mathfrak{i}^{-1}(A)$ ．Then $\mathbb{z}^{(x)}$ is an element or A and since $A \cap \bar{B}=\phi$ ， there exists a neighborhood U oin $I^{\prime}(x)$ such that $\| \cap B=\phi$ ．By the con
 Now $\cap \cap x^{m}(B)$ must be empty since $I^{\prime}(V) \subset U$ and $U \cap B=\emptyset$ ．Thus x is not a limit point or $x^{-1}(B)$ ．Similarly for x in B ，ir $x f(0,0)$ ，x is not a limit polnt of $\mathrm{i}^{-1 /}(\mathrm{A})$ ．Now $(0,0)$ mast be a limit point or i^{-1}（A）。 Ix not， $\mathbb{i}^{-1}(A)$ and $\mathrm{I}^{m-1}(B)$ are mutwelly separated and C is not connected． Now i^{-1}（A）cunot consist or a single point：ior in i^{-1}（A）is a single point $(0, O)$ is not a limit point $O I^{\infty 1}(A)$ and C is not connected．Thus Let x_{1} be an element $a r^{-1}(A)$ Let $\left.d=p(0,0), x_{1}\right)$ ．Pick a positive integer n such that $I / n^{2}<d$ and consider the spherical neighborhood N or raduus $1 / n^{2}$ about（ 0,0 ）．Now the boundery or $N \mathrm{~N}$ mst contain a point x_{2} or $x^{-1}(A)$ 。In not，C can be expressed as $\left(I^{-1}(B) \cup I n t N\right) \cup\left(I^{\alpha-1}(A)\right.$ $\left.-1^{-1}(A) \cap \widetilde{N}\right)$ ）But these sutg are mutually separated so that C is not connected．Now for point $x_{e^{s}} f^{\prime}\left(x_{2}\right)=0=1(0,0)$ which implies $f^{\circ}\left(x_{2}\right)$ is in B ．This is contradiction，hence $i(c)$ must be connected，and 1 is a connected mapping．

A connected runction I mape connected subsets orn the domain space onto connected subsets or the range space．IT in addition I is one－to． one and x^{-1} maps connected subsets or the Lmege space onto connected subsets of the range space several theorems concerning continuity oi connected mappinge can be proven．

Deinition 4.7. A mapping ifrom apace S onto a space Tis said to be biconnected it and only if is one-towone, $t(C)$ is connected in T whenever C is connected in S and $I^{(H)}(H$ is connected in S whenever H is connected in T.

Detinition 4.8. A space S is said to be semi-locally connected iif and only it, t^{*} or any point p in S and for any open set U containing p, there exists an open set V containing p such that $V \subset U$ and S - V consists or a finite number or closed connected sets.

Example 4.5. The set R or real numbers with the usual topology is semi-locallymconnected. .This rollows since tor any open set u containing p there exists an open interval (a, b) with p (a, b) \subset U. The complement or (a, b) is two closed rays each or which is connected.

Theoren 4.16. [21] II I is a biconnected mapping or the Hausdorit' space 5 ontothe semiolocally-connected Hausdori" space T, then I is cono tinuous.

Froot. The proox will sollow ix it can be shown that the inverse image oi every open set in T is open in S. Let U be an open set in T, and consider $I^{-1}(U)$. Let p be an element or $I^{-1}(T)$. Since T is semio locally-connected, there axists an open set V such that $\mathbb{I}(p) \in V \subset U$ and such that $(T-V)$ consists $O x^{\circ}$ a I° injte number of closed connected sets. Thus $(T-V)$ can be expressed as $H_{2} U H_{2} U \ldots U H_{n}$ where H_{1} is closed and connected i or each $i=1,2, \ldots 0, a_{0}$ Let $G_{i}=i^{\infty}\left(\mathcal{H}_{i}\right)$ Ior each $i=1,2, \ldots n$. Each C_{i} is connected since i is a biconnected mapping. Let us now show that $p \notin \overline{\mathrm{C}}_{i}$ for any i. Suppose p were en element or $\overline{\mathrm{C}}_{\mathrm{i}}$

For some 1. Then $C_{i} \cup\{p\}$ is connected, since the union or any connected subset with some or all in its limit points is connected. Mapping I° is biconnected, hence $\mathbb{I}^{(}\left(C_{i} U\{p\}\right)=H_{i} U \cdot I(p)$ is connected. $I_{I} H_{i} U\{I(p)\}$ is connected, however, then $t(p)$ must be a point or H_{i} or a limit point or H_{i}. EIther assumption contradicts the ract that $H_{i} \subset T$ a V where V is an open set containing $r(p)$. Thus, the assumption p e \bar{C}_{i} for some i leads to contradiction, and we must conclude $p \& \vec{C}_{i}$ Ior any i. Since $p \notin \bar{C}_{i}$ Ior any i, then ior each i, let $M_{i}=S \operatorname{coc}_{i}$ and let $M=\prod_{i=1}^{n} M_{i}$. Set Mis open as the intersection or a innite number ot open set. Now
 and $t(M) \subset V \subset U$. By the above construction we can I Iind an open set M_{p} for every $p \in I^{-1}(V)$ such that $I_{p}\left(M_{p}\right) \subset U$. One can easily verify that
 $T^{-1}(U)$ is open in S whenever U is open in I^{0}, is continuous.

In space S is also required to be semi-locally-connected the following stronger theorem holds.

Theorem 4.17 dallet x be a biconnected mapping of the semi-locallyconnected Hausdorif space S onto the semi-locally-connected. Hausdorti space T. Then I is a homeomorphisu.

Froor. Mapping I is one-to-one and onto by derinition or biconnecta ed. By Theorem 4.16 i is continuous. Also, by Theorem $4.16 \mathrm{i}^{-1}$ is continuous so that I^{\prime} is open. Hence i is a homeomorphism.

One can replace the requirement that S and T be semiolocally connected with the requirement S and T be locally connected, provided
space I is compact.

Theorem 4.18. [21] Let f be a biconnected mapping of the locally connected compact Hausdorff space S onto the locally connected compact Hausdorff space I. Then f is a homeomorphism.

Proof. As in Theorem 4.16 it will be shown that f is continuous by showing that $f^{-1}(U)$ is open for every U open in T. Let U be an open sub. set of T and let p be an element of $f^{-1}(U)$. Since T is locally connected, there exists a connected open set C in T such that $f(p) \in C \subset U$. Consider (T - C) which is a closed subset of T. Since T is Hausdorff, for each $q \in(T-0)$ there exists an open set U_{q} such that $q \in U_{q}$ and $p \notin \bar{U}_{q^{\circ}}$ Also, because T is locally connected, one can find a connected subset V_{q} such that $q \in V_{q} \subset U_{q}$ for each $q \in(T-C)$. Now ${ }_{q} \underset{(T-C)}{ }\left(T V_{q}\right.$ is an open covering of $(T \sim C)$ and by the compactness of $(T-C)$, which is a closed subset of T, one can find a finite number of sets $V_{1}, V_{2}, \ldots, V_{n}$ from collection $\left\{\mathrm{V}_{\mathrm{q}}\right\}_{\mathrm{q} \in(}(\mathrm{T}-\mathrm{C})$ which covers $(T-C)$. Let us note that $f(p) \& \bar{V}_{i}$ for any $i=1,2, \ldots, n$, since $f(p) \& \bar{U}_{q}$ for any q, and for each i, $\bar{V}_{1}=\bar{V}_{q} \subset \bar{U}_{q}$, for some q. Now let $C_{i}=f^{-1}\left(V_{1}\right)$ for each 1 . One can now complete the proof that $f^{-1}(U)$ is open by the same constructive argument as in Theorem 4.16.

By the same argument, f^{-1} is continuous, hence f is open. Thus, f is one-tomone, onto, open and continuous, and is, therefore, a homeomorphism.

Several of the theorems from the first of this chapter concerning compact preserving mappings required that the domain space be locally compact and that $f^{-1}(y)$ be closed for each point y in the range space.

Results of a similar nature can be obtained for connected mappings if one requires that the domain space be locally connected and that $f^{\infty 1}(y)$ be closed for each point y in the range space.

Theorem 4.19. [15] Let M be a metric space and let p be an element of M. The following conditions are equivalent: (i) M is locally connected at p; (ii) every connected map from M onto a metric space $f^{\prime}(M)$ with the property, $f^{-1}\left\{z \mid z \in f^{(}(M)\right.$ and $\left.\rho(z, q)=\in\right\}$ is closed for each $\epsilon>0$ and for every $q \in f(M)$ is continuous at p, (iii) every real valued connected map with the property that $f^{-1}(q)$ is closed for $q \in f(M)$ is continuous at p 。

Proof. For a real valued map the requirement that $f^{-1}(q)$ is closed implies $f^{-1}\{z \mid z \in f(M)$ and $\rho(z, q)=\epsilon\}$ is closed for every $\epsilon>0$ and for every $q \in f(M)$. This follows from the fact that for a given ϵ and a given $q, N=\{z \mid z \in f(M)$ and $\rho(z, q)=\epsilon\}$ is either empty, contain one of the points $q=\epsilon, q+\varepsilon$, or contain both of the points $q \infty \in, q+\epsilon$ 。 If N is $\phi, f^{-1}(\mathbb{N})=\varnothing$ which is closed. If \mathbb{N} contains only one point $f^{-1}(N)$ is closed by hypothesis. If N contains two points, $f^{-1}(N)$ $=f^{-1}(q-\epsilon) \cup f^{-1}(q+\epsilon)$ which is the union of two closed sets, hence closed. Thus condition (ii) implies condition (iii). It remains to be shown that (i) implies (ii) and (iii) implies (i).

Suppose condition (i) is true, and let f be a connected mapping from M onto $f(M)$ such that $f^{-1}\{z \mid z \in f(M)$ and $\rho(z, q)=\epsilon\}$ is closed for every $\in>0$ and for every $q \in f(M)$. Let V be an open set containing point $f(p)$ and let $\eta>0$ be such that the spherical neighborhood of radius η about $f(p)$ is contained in ∇.

Let $B_{\eta}=\left\{z \mid z \in I^{\prime}(M)\right.$ and $\left.\rho\left(z_{g} r^{2}(p)\right)=\eta\right\}$. $\operatorname{set} i^{-1}\left(B_{\eta}\right)$ is closed and $p \neq i^{-1}\left(B_{\eta}\right)$. Since M is locally connected at p, there exists a connected set $\mathrm{UC} \subset\left(\mathrm{S}-\mathrm{i}^{\infty}(\mathrm{B})\right)$ such that p is interior to U . Now $\mathrm{I}(\mathrm{U})$ is connected, contains $\vec{l}(p)$ and does not intersect B. Hence $\vec{l}(U)$ is contained in the spherical neighborhood or radius η about $i(p)$ which is contained in V. Hence I is continuous at p. Thus, condition (i) implies condition (ii).

To see that condition (iii) implies (i), assume (iii) is true and that M is not locally connected at p. Since M is not locally connected at p, there is a $\delta, 0<\delta<1$, such that p is not an element or any open connected, open set in the spherical neighborhood $N_{\delta}(p)$ or radius δ about p. Let Q be the component of N_{δ} which contains p. Note the p cannot be an interior point of Q. Derine I by:

$$
\begin{aligned}
& I(x)=\delta i I^{\prime} x \in M=\mathbb{N}_{\delta}(p) \\
& I(x)=\rho(x, p) \text { iI } x \in Q \text { and } \\
& I(x)=\delta-(\delta-\rho(x, p)[\rho(x, Q]
\end{aligned}
$$

Now $\mathbf{I} \mid Q$ is continuous, hence $\vec{x} \mid Q$ is connected. Also, I is continuous on $\left(S-N_{q}(p)\right) \cup\left(N_{S} p-Q\right)=(S-Q)$, hence $I^{\prime} \mid(S-Q)$ is connected. Now Ior any connected subset C or $S, C \in Q$ or $C \cap Q=\varnothing$ since Q is a component. Thus $I(C)$ is connected and I is a connected mapping. Furthermore, point inverses are closed. To verify this note that $\mathrm{i}^{-1}(\delta)$ $=M^{\prime} \infty N_{q}(p)$ which is closed. $\mathrm{i}^{\infty 1}(0)=\{x\}$ which is closed. For $0<\epsilon<$ $\delta, \mathrm{I}^{-1}(\epsilon)=A \cup B$ where $A=\{x \mid x \in Q$ and $o(x, p)=\epsilon\}$ and $B=\{x \mid x \in$ $\left(N_{\delta}(p)-Q\right)$ and $\delta-(\delta-p(x, p)) \cdot[\rho(x, Q]=\epsilon\}$ 。 Let us note that Q as a component or $N_{\delta}(p)$ must be closed with respect to $N_{\delta}(p)$. Furthermore, $\{x \mid \rho(x, p)=\epsilon\}$ is closed. Thererore, set $A=Q \cap\left\{x \mid(x, p)^{\prime}=\varepsilon\right\}$ is
closed with respect to $\mathbb{N}_{\delta}(p)$. But, A is contained in $\operatorname{Int}\left(\mathbb{N}_{\delta}(p)\right)$, hence A is closed. Now consider B. Let us show that no point of Q can be a limit point of B. Suppose some y in Q is a limit point of B. Then pick z in B such that $\rho(z, y)<\delta-\epsilon_{0}$ Then $(\delta-\rho(z, p)) \cdot[\rho(z, Q)]<\delta-\epsilon$ since $(\delta-\rho(z, p))<1$ and hence $\delta-(\delta-\rho(z, p)) \cdot[\rho(z, Q)]>\epsilon$ which contradicts the choice of δ \& . Thus no point of Q is a limit point of B so that B is closed with respect to $\left(N_{\delta}(p)-Q\right)$. Now $\left(N_{\delta}(p) \propto Q\right)$ is open as the complement of ($M \cup Q$) so that B is a closed set. Now this implies $f^{-1}(\epsilon)=A \cup B$ is closed so that point inverses are closed.

Function f is discontinuous at p, since p is a limit point $N_{\delta}(p)-Q$, and in any neighborhood of p there must exist a point x for which $|f(x)-f(p)|$ is arbitrarily closed to δ. Thus under the assumption M is not locally connected we have been able to construct a real valued function f on M which is connected, has closed point inverses, and is discontinuous. This contradicts the hypothesis, hence M must be locally connected and (iii) implies (i). This completes the proof.

In Theorem 4.19 (iii) the requirement that f^{-1} (q) be closed for every q in the range space can be replaced with the requirement that f be monotone. These results will be given in Theorem 4.21 after the following backgroup information is given.

Definition 4.9. If S and T are two Hausdorif spaces and if f is a mapping of S into T, then f is monotone if and only if for every p in X, $f^{-1}(p)$ is a connected subset of p.

Theorem 4.20. [21] If fis a monotone connected mapping of a Hausdorff space S onto a Hausdorff space T then for every q in $T, f^{-1}(q)$
is a closed subset or K .

Proor. Suppose $\mathrm{i}^{\boldsymbol{q}}(\mathrm{q})$ is not closed tor some $q \in$. Let p be a Limit point or $\mathrm{I}^{-1}(\mathrm{q})$ which does not belong to $\mathrm{I}^{-1}(\mathrm{q})$. Because I is
 consider the set $r^{-1}(q) \cup p$ which is also connected set since the union of a connected set with some or all of its limit points is connected. Now $\left.\mathbb{R}^{\left(T^{-1}\right.}(q) \cup\{p\}\right)$ is a connected subset or T, since I^{\prime} is connected. But $x^{x}\left(n^{-1}(q) \cup\{p\}\right)=q \cup I^{\prime}(p)$. Since a connected subset or a. Housdorir space cannot consist of two distinct points, $\mathfrak{I}(p)$ must equal q. This contradicts the statement $p \notin I^{-1}(q)$, which implies $\mathfrak{i}^{-1}(q)$ is closed.

Since a metric space is Hausdorit, we can now restate a part or Theorem 4.19 as rollows.

Theorem 4.21. Let M be a metric space and let In be a monotone connected mapping trom \mathbb{M} onto a metric space $\mathrm{I}^{(M)}$ 。 Mapping \mathbb{I} is continuous at a point p in M and only ir M is locally connected at point p.

Corollary. A monotone real valued connected mapping derined on a connected subset oi the real numberw 1 d continuous.

MAPPINGS THAT ARE BOTH COMPACT FRESGRVING AND CONMECTED

Conditions have now been given for a compact preserving Iunction to be continuous and for connected runctions to be continuous. Conditions will now be given which will imply a function which is both compact
preserving and connected will be continuous.

Theorem 4.22. [15] Let S and T be metric spaces and let I be a connected, compact preserving mapping rrom S onto T. $\operatorname{Ir} S$ is locally connected, then i is continuous. II S is not locally connected there exists a compact preserving connected mapping irom S into the real numbers which is not continuous.

Proot. To prove the İirst assertion, suppose S is locally connect. ed but that is not continuous at a point p in S. By Theorem 4.4 there exists a sequence or points $\left\{p_{i}\right\}$ in S converging to p and a point q in $T, q \neq p$, such that $I^{\prime}\left(p_{i}\right)=q$ for each 1 . By the local connectedness $0 I^{3} S$ at p and because $\left\{p_{i}\right\}$ converges to p, one can pick a subsew quence $\left\{x_{i}\right\}$ or' $\left\{p_{i}\right\}$ and a sequence $\left\{C_{i}\right\}$ or connected open sets about p such that $\left\{p, x_{i}\right\} \subset C_{i}$ for each i, and C_{i} is contained in the spherical neighborhood or radius I / \mathcal{L} about p. Thus set $\left\{\underline{I}\left(p, I\left(x_{i}\right)\right\}=\left\{\mathbf{I}^{\prime}(p), q\right\}\right.$ must be contained in $\mathrm{I}_{(}\left(\mathrm{C}_{\mathrm{I}}\right)$ which is connected. Now point q cannot be an isolated point in C_{i}, for any i., since connected sets cannot contain isolated points. Thus, for each i, there exists a point z_{i} in $I^{\prime}\left(C_{i}\right)$ such that $0<p\left(z_{i}, q\right)<1 / 1$. For each i, Let y_{i} be an element oi $C_{i} \cap \vec{i}^{-1}\left(z_{i}\right)$ 。Set $\left\{p, y_{1}, y_{2}, y_{3}, \ldots\right\}$ fis a countably compact subset or S, and is, thererore compact. But set $\left\{\underline{y}(\mathrm{p}), z_{i}, z_{2}, z_{3} \ldots\right\}$ is not compact since it does not contain the limit point q. This contradicts the hypow thesis that I is compact preserving. Thererore, we must conclude in continuous.

Now suppose M is not locally connected at some point p in S. Then there exists a real number $\delta, 0<\delta<1$, such that no connected open
subset of the spherical neighborhood $N_{28}(p)$ sbout p contains p. Let Q be the component of $N_{2 \delta}(p)$ that contain p and note the p cannot be an intexior point of Q. Define from \mathcal{S} into the real numbers by:

$$
\begin{aligned}
& f(x)=0 \text { for } x \in S-N_{2 \delta}(p) \\
& f(x)=2 \delta-\rho(x, p) \text { for } x \in\left(N_{2 \delta}(p)=N_{\delta}(p)\right) \\
& f(x)=\beta(x, p) \text { for } x \in N_{\delta}(p) \cap Q, \text { and } \\
& f(x)=\delta \text { for } x \in N_{\delta} p=Q
\end{aligned}
$$

Let $A=Q U\left(S \sim N_{5}(p)\right)$. One can easily verify f restricted to A is continuous and f restricted to $S=\left(N_{\delta}(P) \cap Q\right)$ is continuous. Let us now show that f is compact preserving and connected. Consider an arbitrary compact subset C of S. Now $f(C \cap A)$ is compact since A is closed, hence compact, and f restricted to A is continuous. Furthermore, $f(C-A)=\{\delta\}$, so $f(C)$ must be compact and f is compact preserving. Now consider an arbitrary connected set K in S. Since f restricted to A is continuous and f restricted to $S=N_{\delta}(p) \cap Q$ is continuous, the set $f^{(}(K)$ must be connected if K is contained in either of the sets. In the remining case, K intersects both $\left(N_{\delta}(p) \cap Q\right)$ and $N_{\delta}(p)-Q$, and being connected cannot be contained in $N_{2 \delta}(p)$. This follows since $K \subset N_{2 \delta}(p)$ would imply K would be a subset of the component Q of $\mathbb{N}_{2 \delta}(p)$ since $K \cap Q \notin \phi$. Hence $\{\rho(y, p) \mid y \in K\} \supset[\delta, 2 \delta]$ and $f(K)$, from the definition of f, must equal $[0, \delta]$. Thus in any case f is a connected mapping, The function f is discontinuous at p since $f(p)=0$, but every neighborhood of p must contain a point z of ($N_{8} \approx Q$) for which $f(z)=\delta$. This completes the proof of the second assertion of the theorem.

The metric spaces S and T in the first assertion of Theorem 4.23 can be replaced with Hausdorff spaces if S is required to have the
property K^{*} derined in Derinition 4.4.

Theorem 4．23．［7］Ii S is a HausdoriI＇space with property K^{*} ，at each point p and $i r^{\prime} I^{\prime}$ is a connected and compact preserving mapping I＇rom $^{\prime}$ S onto a Hausdorit space T ，then i is continuous．

Proor．By Theorem 4.7 it will only be necessary to show point in verses are closed．Let y be an element of T and assume there exists a limit point x or $\mathrm{I}^{-\frac{1}{2}}(\mathrm{y})$ such that x is not an element or $\mathrm{r}^{-1}(\mathrm{y})$ 。 Let $\left\{\mathrm{C}_{\alpha}\right\}$ be the collection of connected neighborhoods ori x and let $\left\{{ }_{\gamma}\right\}$ be the collection of neighborhoods or y．Since T is Hausdorix＇，and since $I^{(x)} \neq y$ it is possible to select disjoint open set U and V containing y and x ，respectively．For each C_{α} in $\left\{C_{\alpha}\right\}$ and tor each r_{γ} in $\left\{v_{\gamma}\right\}$ let $y_{\alpha_{s} y}$ be an element of $I^{\prime}\left(C_{\alpha}\right) \cap\left(\left(U_{y} \cap U\right)\right.$ ，and let $X_{\alpha, y}$ be an element or $\left(T^{-1}\left(y_{\alpha, \gamma}\right) \cap C_{Q}\right)$ ．The set A of all such $x_{\alpha, y}$ is infinite and has x as an accumulation point．By the property $\mathrm{K}^{*}, \mathrm{~A} U\{\mathrm{x}\}$ has an inifinite como pact subset K with x as an accumulation point．Since \mathbb{K} is compact， hence closed，x must be an element or K ．Let g denote lunction I^{\prime} res． tricted to K ．Then $M=(g(K)-g(x))=g(K) \cap(T-V)$ since $g(K) \subset U$ and $U \cap V=\emptyset$ ．Now $g(K) \cap(T, V)$ is an infinite compact set，hence must have a limit point z in $T, I t^{r} g^{-1 /}(z)$ is an isolated point in K ， then $K=\left\{\mathrm{I}^{-1}(z)\right\}$ and $M=\{z\}$ are compact，which is a contradiction． Thus for each accumulation point z of $M_{0} \mathfrak{r}^{-1}(z)$ must be an accumulation point or K 。

Let I be the set or all limit points or K with the exception of x ． For each p in L ，select disjoint open sets W_{p} and V_{p} containing p and x ， respectively．Fach（ $K=W_{p}$ ）is closed hence compact and each $B=$ $g\left(K-W_{p}\right) \cap M$ is a closed nonmempty subset or M 。 Let $X^{\prime}=\left\{B_{p} \mid p \in L\right\}$ 。

Suppose now that there exists a ininite subcollection $B_{p_{1}}, B_{p_{2}}, \ldots, B_{p_{n}}$ such that $\sum_{i=1}^{n} B_{p_{n}}=\not p_{\text {. Then }}$ the corresponding closed subsets
 Now by Devorgan"s law, ${\underset{i}{U}}_{n}^{n} W_{p_{i}}$ must cover $\left(K-\left\{x_{i}\right\}\right)$. However, ior each $W_{p_{i}}$, there exists an open set $V_{p_{i}}$ containing x such that $V_{p_{i}} \cap W_{p_{i}}=\phi$ 。 The set $\overbrace{i=1}^{n} V_{p_{i}}$ is an open set containing x such that $\left(\bigcap_{i=1}^{n} V_{i}^{V}\right) \cap\left({ }_{i=1}^{n} W_{i}\right)$ $=\varnothing$. This leads to a contradiction since ${ }_{i} \cap_{1}^{n} \nabla_{p_{i}}$ must contain points or $(K-\{x\})$. Thus ior any Iinite subcollection $B_{p_{i}}, B_{p_{2}}, \ldots B_{p_{n}}$ or' $F,{ }_{i=1}^{n}$ $B_{p_{i}} \not \not \phi_{0}$ This implies $B_{p} \in F B_{p} \neq \phi,[14,136]$. Now for each point q in $B_{p} \cap_{E F} B_{p} g^{-1}(q)$ is an isolated point or K since $g^{-1}(q)$ is not an element of W_{p} for any p.

Let D denote the collection oi all such isolated points in K. Since D is open in K, for each p in L, the set $K-\left(W_{p} U D\right)$ is closed hence com pact and non-empty. Then $\left\{g\left(K-\left(W_{p} U D\right)\right) \mid p \in I\right\} \cap M$ is a null intersection or nonempty closed subset of the compact space M and there must exist some finite cubcollection of these sets which has an empty intersection, and which cover M. [14, 136]. This implies, by DeMorgan's laws, that a finite subcollection $W_{\mathrm{p}_{1}}, W_{\mathrm{P}_{2}}, \ldots$, with $\mathrm{P}_{\mathrm{i}} \in \mathrm{I}$ Ior each i , must cover $K-(D \cup\{x\})$. Since x is an accumulation point of K, set D must be infinite and hence $D \cup\{x\}$ must have an infinite subset H such that x is the only accumulation point or H 。 Then $g(H) \cap M$ is an infinite compact subset or S and must have an accumulation point z which belongs to H. This is a contradiction since $\mathrm{g}^{-1}(z)$ is an isolated point or K. Since that assumption $x \notin\left(x^{\infty 1}(y)\right)$ leads to a contradiction, x must be an element orin $\mathfrak{i}^{-1}(y), i^{-1}(y)$ must be closed, and by Theorem 4.7, $I^{\text {is }}$ continuous.

CHAPTER V

CLTQUISH AND NEIGHBORLX TRANSFORMATIONS

INTRODUCTTON

The requirement that a iunction be continuous is very restrictive. Thereiore, one is orten tempted to detine classes or iunctions that satisiy weaker conditions than continuity and to investigate these clas'ses or runctions to see if problems that are solvable using continuity would also be solvable using a less restrictive condition Since a consider able body or material has been developed concerning continuous fiunctions, one will naturally inquire what properties the new class of iunctions Will have in common with continuous iunctions, and what properties oi continuous iunctions are not true for the new class or functions. Another line of inquiry is to ask ir the new class oi functions will be usetul in dealing with topological problems which are not solvable using continuity.

In this chapter, two classes or riunctions satistying weaker conditions than continuity will be detined and their properties investigated. Special emphasis will be placed on discovering whether or not certain properties of continuous Iunctions are true tor these new classes of functions. At the end of the chapters several theorems will be presented which show that the new classes or Iunctions can be used to characterize derivative İunctions oi continuous real valued İunctions.

This is particularly significant since it is well known that the derivative or a continuous iunction is not, in general, continuous. Formal derinitions will now be presented for these new classes or functions.

Derinition 5.1. A fiunction I I'rom a space S into a space T is said to be neighborly at a point x oi S il and only if ror every neighborhood V of $I(X)$ and for every neighborhood U_{X} of X there exists an open set U such that $U \subset U_{X}$ and $I(U) \subset V_{0}$ Function I is said to be neighborly on S it i is neighborly at every point oi S.

One should note that x is required to be an element or U_{x}, but is not necessarijy an element or U.

For T a metric space, with metric ρ, one can restate Deinition 5.1 as İollows:

Derinition 5.l.b. A runction I^{\prime} from a space S into a metric space T, with metric p, is neighborly at a point x OI S if and only if I^{*} or every $\varepsilon>0$ and 10 every neighborhood U_{x} or x there exists an open set $U \subset U_{X}$ such that $\rho\left(I^{n}(x), I^{\prime}(y)\right)<c$ for every $y \in U$.

Derinition 5.2. A Iunction I^{3} Irom a space S finto a metric space T, with metric ρ_{y} is said to be cliquish at a point X or $\underline{\underline{S}}$ if and only
 open set $U \subset U_{X}$ such that $\rho\left(I^{0}(y), I^{0}(z)\right)<\in$ Ior every pair y, z oI element in Uo A function is said to be cliquish on S in is cliquish at every point in S.

One can asily verity that every continuous iunction is neighborly and that continuous runctions and neighborly runctions are cliquish,
provided the range space is a metric space.

Example 5.l. The Iunction I 'rom the real numbers R into R detined by:

$$
I^{\prime}(x)=\left\{\begin{array}{l}
\sin \frac{1}{x}, \text { iI } x=0 \\
0, i i^{2} x=0
\end{array}\right.
$$

is not continuous at $x=0$ but is neighborly and cliquish at that point. To verity that I° is not continuous at $x=0$, one can note that the sequence $\left\{\frac{2}{n \pi}\right\}_{n=1}^{\infty}$ converges to 0 but the sequence $\left\{\mathbb{T}^{\prime}\left(\frac{2}{n \pi}\right)\right\}_{n=1}^{\infty}$ does not converge to $I^{\prime}(0)=0$. This $I^{\prime} O l$ lows $I^{\prime \prime}$ rom the Iact that $^{\prime}\left(\frac{2}{n \pi}\right)= \pm 1$, or O, depending on the choice or n .

Function I° is neighborly, however. To show this, let U_{0} be a neighe borhood oi 0 and choose a positive integer N such that $x=\frac{1}{2 N \pi}$ is contained U_{0}. Now $I^{\prime \prime}$ is continuous at point x since i is a composition OI continuous functions at all points except 0 . Furthermore, $I^{2}(x)=$ $I^{0}\left(\frac{1}{2 n \pi}\right)=\sin (2 N \pi)=0$. Now given $\epsilon>0$, let V be a neighborhood or x
 $y \in U, \rho\left(I^{\prime}(0), I^{\prime}(y)\right)=\rho\left(I^{\prime}(X), \vec{r}(y)\right)<\epsilon \operatorname{since} I^{\prime}(0)=I^{\prime}(x)$ and since $y \in V_{0}$ This implies in neighborly at $x=0$. Since a neighborly lunction whose range is a metric space is cliquish, I^{\prime} is also cliquish.

Example 5.2. The Iunction $I^{\prime r} 0 \mathrm{~m}$ into R detined by:

$$
I(x)=\left\{\begin{array}{l}
\sin \frac{1}{x}, \text { iI } x=0 \\
2, i I^{\prime} x=0
\end{array}\right.
$$

is cliquish, but is neither neighborly nor continuous.

PROPERTIES OF CLIQUISH AND NEIGHBORLY FUNCIIONS

Since every continuous runction is neighborly and since every
neighborly function whose range space is a metric space is cliquish, neighborliness is a weaker condition than continuity and clisuishness is a weaker condition than neighborliness. This suggests that neighborly functions might possess certain properties or continuous runctions that the still weakex cliquish Iunctions might not possess. The Iollowing discussion will verity that such properties exist.

Detinition 5.3. A subset A or' a topological space S is said to be everywhere dense in S ii $\bar{A}=S$.

Deininition 5.4. A runction I is said to be pointwise continuous on a space S ir the set or point where I is noncontinuous is everywhere dense in S but is not closed relative to S. A Iunction I is said to be pointwise noncontinuous on S it the set or points where S is continuous is everywhere dense in S but is not closed in S.

Der'inition 5.5. A İunction I is said to be pointwise neighborly on a space S ir the set or points or゙ S where I is non-neighborly is everywhere dense in S but is not closed in S. A function is said to be pointwise non-neighborly on a space S ir the set or points or S where $I^{\prime \prime}$ is neighborly is everywhere dense in S but is not closed in S.

The following example gives a function that is pointwise continuous, pointwise noncontinuous, pointwise neighborly, and pointwise nonneighborly on the open interval (0,1) with the usual topology.

Example 5.3. [25] Let I be delined on (0,1) as İollows:

$$
I^{\prime}(x)=\left\{\begin{array}{l}
0 \text { if } x \text { is irrational, and } \\
\frac{1}{q} \text { if } x=\frac{p}{q} \text { where } p \text { and } q \text { are relatively prime. }
\end{array}\right.
$$

Let us now show that is pointwise continuous and pointwise non continuous by showing that I is continuous at every irrational point, and discontinuous at each rational point.

Iet x be an irrational point and let $\varepsilon>0$ be given There exists only a finite number oif q for which $1 / q>\epsilon$. Let $A=\{p / q \mid p$ and q are relatively prime, $1 / q>\epsilon$ and $\left.|x-p / q|_{1}<\epsilon\right\}$. Now set A contains at most a İinite number or points. For each $p / q \in A$, let $\delta_{p / q}=|x-p / q|$ and let $\delta=I / 2 \min \left\{\delta_{p / q} \mid p / q \in A\right\}$. Now ior any $y \in N_{\delta}(x), y$ is irrational or $y=p / q$ where $I / q<\epsilon$. In either case, $\left|I^{\prime}(x)-I^{\prime}(y)\right|<\epsilon$ so that I° is continuous at x.

If X is rational, $I^{\prime}(x)=I / q$ Ior some integer q. Now Ior $\in<I / q$ it is impossible to Ind a δ such that $\left|I^{\prime}(x)-I^{\prime}(y)\right|<I^{\circ}$ any $y \in \mathbb{N}_{\delta}(x)$. This is true, since every neighborhood of x must contain an irrational point y and $\left|P^{\prime}(x)-f^{\prime}(y)\right|=|1 / q-0|=1 / q>\varepsilon_{0}$ Thus is discontinuous at every rational point.

Since i is continuous at every irrational point, and discontinuous at every rationai point, is pointwise continuous and pointwise noncontinuous on R.

The iunction detined in Example 5.3 is also neighborly and nonw neighborly on (0,2) . To verit'y this one can note that is neighborly at each irrational point since I is continuous at each irrational point.

To verir'y that I is nononeighborly at each rational point, let x be a rational point. Since x is a rational point, $I(x)=1 / q$ Ior some positive integer q. Choose $\epsilon<1 / q$. Now for each neighborhood U oI x and ror each open set N contain in U, there exists an irrational point y in No Now $\left|\mathrm{I}^{\prime}(\mathrm{x})-\mathrm{I}^{\prime}(\mathrm{y})\right|=|1 / q-0|=I / q>\varepsilon$; so that I_{a} is not
neighborly at x.

The following theorem shows that it is impossible to find a runction that is both pointwise cliquish and pointwise nonwcliquish on any space S.
 is cliquish at each point of a set which is everywhere dense in S, then \mathbf{I}^{\prime} is cliquish on S .

Prooi. Let I^{\prime} be a function derined on S which is cliquish on a set, which is everywhere dense in S. Then there exists a set C, everywhere dense in S, such that for every point $c \in C$ the runction I is cliquish at c. Let x be an arbitrary point of S and let N_{x} be an arbitrary neighborhood of x 。 In N_{x} there must exist at least one point c of \dot{C}, since x is either a point or C or a limit point or C. Let a positive number $\&$ be given, and let \mathbb{N}_{c} be a neighborhood of c such that \mathbb{N}_{c} is contained in N_{X}. Since I is cliquish at c, there exists a neighborhood \mathbb{N} contained in \mathbb{N}_{c}, and hence in \mathbb{N}_{x}, such that for every pair x_{1}, x_{2} oi' elements or N, $\rho\left[I^{\prime}\left(x_{1}\right), I^{\prime}\left(x_{2}\right)\right]<\epsilon$. Since N is contained in N_{x} and since \mathbb{N}_{x} was an arbitrary neighborhood $\mathrm{OX}^{\prime} \mathrm{X}, \mathrm{I}^{\prime}$ is cliquish at x 。 But x was an arbitrary point or S, so that I° is cliquish at every point or S.

As a consequence of the above theorem, every pointwise noncontinuous runction, whose range is a metric space, j.s cliquish, and every pointwise non-neighboriy runction whose range is a metric space is cliquish at all points.

Derinition 5.6. A subset A ori a space S is said to be nowhere
dense in S if and only if for every open subset 0 of S there exists an open subset $V \subset U$ such that $V \cap A=\varnothing$.

The function defined in Example 5.3 was both pointwise continuous and pointwise neighborly. The points where f was continuous and neighborly was the set of irrational points in (0,1). The set of irrational points in $(0,1)$ is not nowhere dense. Thus it is possible to have pointwise continuous functions whose points of continuity are not nowhere dense, and to have pointwise neighborly functions with an analogous property. In contrest, the points where a pointwise cliquish function is cliquish must be nowhere dense.

Theorem 5.2. [24] The set of points at which a pointwise cliquish function is cliquish is nowhere dense.

Proof. Suppose the set of point C at which a pointwise cliquish function f is cliquish is not nowhere dense in the domain of definition of f. Then there would exist at least one neighborhood N such that C would be everywhere dense in \mathbb{N}. By Theorem 5.1, f would be cliquish at every point of \mathbb{N}. This contradicts the hypothesis that the set of points where f is non-cliquish is everywhere dense.

Definition 5.7. A subset A of metric space S is said to be of the first ρ category if A can be expressed as the union of a denumerable number of nowhere dense sets.

We shall now show, for a function f which is the limit of a sequence of neighborly function, that the points of discontinuity of f form a set of the first ρ category. Since a sequence of continuous functions is
also a sequence of neighborly runctions, we will also obtain the result that yor a function I which is the limit oin a sequence of continuous tunctions, the points of discontinuity or 1 lorms a set or the Iirst p category. In contrast, in Theorem 5.4 we shall show the set or points of discontinuity of a convergent sequence of cliquish functions need not be ot the rimst ρ category.

Theorem 5.3. [1] II g is a Iunction Irom a metric space S, with metric ρ, into a metric space T, with metric ρ_{\prime}^{\prime} and $i I^{\prime}\left\{I_{n}\right\}$ is a sequence of neighborly $I^{\prime} u n c t i o n ~ s u c h ~ t h a t ~\left(i m ~ \rho^{\prime}\left(I_{n}^{\prime}(x), g(x)\right)=0, I^{\prime}\right.$ every " x in S, then the points of discontinuity of g form a set of "the rirst o category.

Proot. Let $u(x)=\operatorname{Lim} \sup _{y \rightarrow x} \rho^{\prime}(g(x), g(y))$ for x in , Since the set oi points or discontinuity of g is the set or points for which $w(x)>0$, the desired conclusion iollows from the following statement:

Statement, It n is a positive integer, in $0<\epsilon<\infty$ and, if $A_{n}=$ $\left\{x \mid \omega(x) \geq \in\right.$ and $\rho^{\prime}\left(I_{m}^{\prime}(x), g(x)\right) \leq \in / 16$ tor each integer $\left.m \geq n\right\}$, then A_{n} is nowhere dense.

Proot. Suppose (1) A_{n} is everywhere dense in some open sphere α. Let x_{1} be an element or $A_{n} \cap a$ and use the neighborliness of I_{n} to rind an open sphere $\alpha_{1} \subset \alpha$ such that (2) $\rho^{\prime}\left(I_{n}\left(x_{1}\right), I_{n}(z)\right) \leq \varepsilon / 16$ whenever $z_{1} \in \alpha_{1}$. Let x be an element of α_{1} and choose an integer m such that $m \geq n$ and (3) $\rho^{2}\left(I_{m}(x), g(x)\right) \leq e / 26$. Now use the neighborliness or I_{m} to secure an open sphere α_{2} such that $\alpha_{2} \in \alpha_{1}$ and (4) $0^{0}\left(\mathrm{I}_{\mathrm{m}}(\mathrm{x}), \mathrm{I}_{\mathrm{m}}^{\prime}(\mathrm{z})\right) \leq$ $\epsilon / 16$ whenever $z \in \alpha_{2}$. Let x_{2} be an element or $A_{n} \cap \alpha_{2^{\circ}}$ From statements

3, 4, 2 and rrom the ract that x_{1} and x_{2} are elements or A_{2} it follows that

$$
\begin{aligned}
& \rho^{\prime}\left(g(x), g\left(x_{1}\right)\right) \leq \rho^{\prime}\left(g(x), I_{n}(x)\right)+\rho^{\prime}\left(f_{n}(x), I_{n}^{\prime}\left(x_{2}\right)\right) \\
& +\rho^{\prime}\left(x_{n}\left(x_{2}\right), g\left(x_{2}\right)\right)+\rho^{\prime}\left(g\left(x_{2}\right), r_{m}^{\prime}\left(x_{2}\right)\right)+ \\
& \rho^{\prime}\left(r_{m}\left(x_{2}\right), I_{m}^{\prime}\left(x_{1}\right)\right)+\rho^{\prime}\left(I_{m}\left(x_{1}\right), g\left(x_{1}\right)\right) \leq \\
& e / 16+e / 16+\varepsilon / 16+e / 16+e / 16+e / 16=3 e / 8
\end{aligned}
$$

Thus $\rho^{\prime}\left(g(x), g\left(x_{1}\right)\right) \leq 3 \in / 8$ whenever $x \in \alpha_{1}$ 。Accordingly, $\rho^{\prime}(g(x), g(y))$ $\leq 3 \in / 4$ whenever $x \in \alpha_{1}$; y $\in \alpha_{1}$ 。 Thus $\omega(x) \leq 3 \in / 4$ whenever $x \in \alpha_{1}$, A $\cap \alpha_{1}$ is empty, and in contradiction to (1), A_{n} is nowhere dense in α. Hence set $A=U_{n=1} A_{n}$, which is the set of points of discontinuity of g, is of the inrst p category as claimed.

Corollary. The points of discontinuity or a neighborly fiunction $r^{\prime \prime}$ constitute a set or the rirst p category.

Proor'. Let sequence $\left\{x_{n}\right\}$ be derined by $I_{n}=I^{\prime}$ Ior each n and apply Theorem 5.3.

Theorem 504. [24] The Limito $f(x)$ or a sequence or cliquish functions can be nonecliquish at every point of its domain of derinition.

Proor. Let I be derined on the interval (0,1) or the real numbers with the usual topology. Derine I° by:

$$
\begin{aligned}
& \mathrm{I}^{\prime}(\mathrm{x})=0 \text { if } \mathrm{x} \text { is irrational, and } \\
& \mathrm{I}^{\prime}(\mathrm{x})=1 \text { if } \mathrm{x} \text { is rational. }
\end{aligned}
$$

Function 1 is non-cliquish at every point, and is the limit: of the sequence $\left\{I_{n}\right\}$ derined by:

$$
I_{n}(x)=\sum_{q=2}^{n} g_{q}(x),
$$

where $g_{q}(x)=1 i I^{\prime} x=p / q, p<q$ ，and p and q relatively prime integers， while $g_{q}(x)=0$ otherwise．Each $I_{n}(x)$ is cliquish at every point in $(0,1)$ 。

In Theorem 5.3 it was show that the paints or discontinuity oi＇a Iunction which is the limit of a sequence or neighborly fiunction is of the first p category．Theorem 504 implies this is not true for a runction which is the limit ox a sequence ox cliquish runctions．Fowerer，the points or discontinuity or＂a cliquish runction must be or the firstp category．This property oi nefghborly function wes shown in the corol－ lary to Theorem 5．3．

Theorem 5．5．［24］The points oi discontinuity of a cliquish runc－ tion must be of the firsto category．

Proot＂。 Let I be a cliquish t＂unction detined on a space S ．For each $x \in \operatorname{Let} \omega(x)=\operatorname{Iim} \operatorname{Sup}_{y \rightarrow X} p\left(I(x), I^{\prime}(y)\right)$ ．The set or points or discontinuity of \vec{x} is the set＇ox＇points or＇ S for which $\omega(x)>0$ 。

$$
\text { Let } \begin{aligned}
A_{1} & =\{x \mid x \in S, w(x)>1\} \\
A_{2} & =\{x \mid x \in S, w(x)>1 / 2\} \\
A_{n} & =\{x \mid x \in S, \omega(x)>1 / n\}
\end{aligned}
$$

Since each point of discontinuity or is an element of A_{n} Ior some n ， ${ }_{n=1}^{\infty} A_{n}$ is the set or points of discontinuity for in Let us show each A_{n} is nowhere dense．

Suppose for some n the set A_{n} is not nowhere dense．Then there exists some open set α in S such that A_{n} is everywhere dense in α ．Let $x \in A_{n} \cap \alpha$ 。 By the cliquishness or I_{0} ，there exists some neighborhood $\alpha_{1} \subset \alpha$ such that $\left(I^{\circ}(y), I^{\prime}(z)\right)<I / 2 n$ for every pair y, z of elements in α_{1} 。

But this implies that no point of A_{n} is contained in α_{1}, which contram dicts the assumption thet A_{n} is not nowhere dense. Thus A_{n} is nowhere dense for each n and $\bigcup_{n=1}^{\infty} A_{n}$ winch is the set of points of discontinuity of f is of the first ρ category.

Corollary. Every cliquish function is at most pointwise discontinuous.

Proof. Assume the contraxy of the corollary as stated. Then the points of discontinuity of f would be everywhere dense in the space S of definftion and closed with respect to S. This implies that the points of discontinuity of f would equal S. This contradicts Theorem 5.5.

The following example shows that a function which is the limit of a sequence of neighborly functions need not be neighborly at all points.

Example 5.4. Let S be the closed interval $[0,1]$ with the usual topology. Define sequence $\left\{i_{n}\right\}$ of functions on S by:

$$
\begin{aligned}
& f_{1}(x)=\left\{\begin{array}{l}
1 \text { if } x=1 \text { or } 0 \\
0 \\
\text { otherwise, }
\end{array}\right. \\
& f_{2}(x)=\left\{\begin{array}{l}
1 \text { if } x=0,1 \text { or } 1 / 2, \text { and for each } n=3,4,5, \ldots 0, \\
0 \\
\text { otherwise, }
\end{array}\right. \\
& f_{n}(x)=\left\{\begin{array}{l}
1 \\
1 \\
0 \\
\text { if } x=0 \text { ornerwise. if } x=1 / k \text { for } K=1,2,3, \ldots, n
\end{array}\right.
\end{aligned}
$$

Let $f=\lim f_{n}$. Now $f(x)=1$ if $x=0$ or if $x=1 / 1$, where $1=1,2,3$, \ldots, and $f(x)=0$ otherwise. Function is not neighboriy at point $x=0$ 。

As was shown in Example 5.4 and Theoren 5.4 , the ImAt of a sequence
of neighborly functions need not be neighborly at all points and the limit of sequence of cliquish functions need not be cilquish at all points. It is also true that a convergent sequence of continuous functions need not be continuous at all points. It is true, however, that the limit of e uniformy convergent sequence of continuous funco tions from space S into a metric space Mis continuous. Anmlogous results hold for uniformy convergent sequences of meighborly functions and uniformy convergent sequences of cliguish functions.

Theorem 5.6. A sunction from a space S into a metric space M which is the uniform limit of a convergent sequence of neighboriy functions is nelghboriy.

Proofo Suppose fis the limit of a unformiy convergent sequence $\left[f_{n}\right]$ of neighborly functions from a space S into a space T Let >0 be given. Pick an N such that $\rho\left(f_{n}(x), f(x)\right)<e / 3$ for all x © S and for all $n \geq N$. Choose x in the domain of f and let α be a neighborhood of x. By the neighooriness of $f_{n}(x)$, there exists an open set α_{1} cono tained in α such that for ail y in $\alpha_{1},\left(f_{n}(x), s_{n}(y)\right)<\varepsilon / 3$. Now consider $\left(f^{\prime}(x), f(y)\right)$ for any $y \in \alpha_{1},(f(x), f(y)) \leq\left(f(x), f_{n}(x)\right)+\left(f_{n}(x), f_{n}(y)\right)+$ $\left(f_{n}(y)_{s} f(y)\right)<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon$ Thus f is neighboriy at x, and since x was chosen arbitrarily, fis neighborly on S.

Wheorem 5.7. A function which is the limit of a uniformy conver. gent sequence of cliquish functions is cliquish.

Proofo Suppose fis the limit of uniformiy convergent sequence $\left\{f_{n}\right\}$ of cliquish functions from a space S into a metric space M. Let
$\varepsilon>0$ be given. By the unirorm convergence or $\left\{x_{n}\right\}$, an integer N can be chosen such that $p\left(f(x), I_{n}(x)<e / 3\right.$ ror all $n>N$ and for all x in S. Now let x be an arbitrary elenent or S, let α be a nefghborhood or x, and let $n>\mathbb{N}$ be given. By the cliquishness oril I_{n} there exists an open set $\alpha_{1} \subset \alpha$ such that $\rho\left(I_{n}\left(x_{1}\right), t_{n}\left(x_{2}\right)<\varepsilon / 3\right.$ ior all pairs or elenents x_{1} and x_{2} in α_{1}. Now for x_{1}, x_{2} in α_{1}, $\rho\left(x_{1}\left(x_{1}\right) I_{1}\left(x_{2}\right)\right) \leq$ $\rho\left(t\left(x_{1}\right), I_{n}^{\prime}\left(x_{1}\right)\right)+\rho\left(I_{n}\left(x_{1}\right), I_{n}\left(x_{2}\right)\right)+\rho\left(I_{n}^{\prime \prime}\left(x_{2}\right), I_{i}\left(x_{2}\right)\right)<\epsilon / 3+\varepsilon / 3+\epsilon / 3=\epsilon$. Thereiore, i is cliquish at x. Since x was chosen arbitrarily is cliquish at every point ox S as claimed.

CHARACTERIZATIONS OF DERIVATIVE FUNCIIONS

For a continuous real valued Iunction derined on a subset or the real numbers, it is well known that the derivative runction may not be continuous. The following example gives a function for which the derivative exists at every point, but the derivative is discontinuous at the point $\mathrm{x}=0$.

Example 5.5. Let a frunction $\mathrm{I}^{\text {a }}$ be derined by:

$$
I^{\prime}(x)=\left\{\begin{array}{l}
x^{2} \sin 1 / x i I^{0} x \neq 0 \\
01 t^{0} x=0
\end{array}\right.
$$

Now $I^{\prime}(0)=\lim _{x \rightarrow 0}\left(\frac{x^{2} \sin 1 / x-0}{x-0}\right)=\lim _{x \rightarrow 0}(x \sin 1 / x)=0$, and $I^{\prime}(x)=\cos$ $1 / x+2 x \sin 1 / x$ it $x \neq 0$. For $x \neq 0, I^{\prime \prime}(x)$ is continuous, but $I^{\prime \prime}(x)$ is not continuous at $x=0$ as one can see by considering points of the I'orm $1 / 2 n \pi$.

This example can be generalized ror the interyal (0,1) to give a function whose derivative exists at all points in (0,1), but for which
$f^{\prime \prime}(x)$ is continuous at ail irrational points，and discontinuous at all rational points．

Example 5．6．［22］Let the domain of i be the interval（ 0,1 ）． Order the retional in $(0,2)$ as sequence $\left\{x_{n}\right\}$ ． Let $g_{n}(x)=\left(x \omega x_{n}\right)^{2} \sin \left(1 / x-x_{n}\right)$ for $x \neq x_{n}$ ，and ror each n ， Let $g_{n}\left(x_{n}\right)=0$ ．
$*$ Let $u^{0}(x)=\sum_{n=1}^{\infty} g_{n} / n^{2}(x)$ 。
Now $\left\{g_{n}(x) / n^{2}\right\}$ is andromy convergent sequence since $-1 \leq g_{n}(x) \leq 1$ ． Thus $f^{2}(x)=\sum_{n=1}^{\infty} g_{n}(x) / n^{2}$ 。 Now $I^{\prime \prime}(x)=\sum_{n=1}^{\infty} \infty \cos L /\left(x-x_{n}\right)+\left(x-x_{n}\right)^{2} \sin L /\left(x-x_{n}\right)$ it $x \neq x_{n}$ for any n ，and is continuous at all points where $x f x_{n}$ for any n ．However， $I^{\prime \prime}(x)=\sum_{k=1}^{n-1} g^{\prime}(x) / K^{2}+\sum_{n+1}^{\infty} i^{\prime}(x) / K^{2}+0 i I^{\prime} x=x_{n}$ for some n ．At the point where $x=x_{n} f^{n}(x)$ is discontinuous since the sequence of points $\left\{1 / 2 n_{n}+x_{n}\right\}$ converges to x_{n}, but $x\left\{\left(1 / 2 n \pi+x_{n}\right)\right\}$ does not converge to $P^{f}\left(x_{n}\right)$ 。

From Example． 5.5 and 5.6 one can easily see that the derivative function of a continuous real yalued runction derined on a subset or the real numbers need not be continuous even though it may be derined at all points．Such derivatives ox continuous real valued runctions derin． ed on certain subsets or the real number can，however，be characterized as being either neighborly or eliquish．The next theorem stetes condi－ tions under which the derivative runction of a continuous real valued Iunction will be neighborly．Txis theorem was proven by Smith［22］． A similar theorem can be iound in［18］．

Theoren 5.8. [22] Let I be a continuous real valued function defined on the real numbers, an open interval, or a closed interval of the real numbers. If the function has a derivative at each point of its domain S of definition, then f^{n} is neighboriy.

The proof of this theorem will depend on a theorem due to Baire [12]. It will be necessary to give some preliminary definitions before stating the theorer by Baire and giving the proot of Theorem 5.8.

Definition 5.8. A subset A of the real number is said to be dense in-itself if every point x in A is a limit point of A.

Definition 5.9. A subset A of the real numbers is said to be perfect in it in closed and densemn-itselfo

One should note that a closed interval of the real numbers is a perfect set and that an open interval when thought of as a subspace of the real numbers is perfect.

Derinition 5.10. A function fir derined on a subset S of the real numbers is said to have the Darboux property on S if for every pair of points $x_{1} s x_{2}$ in 5 with $x_{1}<x_{2}$ such that $f\left(x_{1}\right) \notin \mathbb{f}\left(x_{2}\right)$ and for every η with $\min \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}<\eta<\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$, there exists an $x, x_{1}<$ $x<x_{2}$, such that $f(x)=\eta_{0}$

This property is of interest since continuous real valued functions defined on the real numbers, closed intervals of the real numbers, or open intervals of the real numbers are known to possess this property. The derivatives of such functions also possess this property.

Theorem of Baire. Let E be subset of the reail numbere which is either perfect or open, and let I be function defined on E. Function f is the limit of a sequence of functions, each of which is continuous on Eg if and only if is at most pointwise discontinuous with respect to every perfect set contained in 2

Definition 5.11. A function is said to be of Baire's class less than two if f is continuous ox in the IImit of a sequence of continuous functions.

A Lema and a theorem will now be proven, from which the proof of Theorem 5.8 will follow.

Lema 5.1. [22] Tf the real valued function f is defined on an open interval I of the real numbers and if x is a point of I where f is not neighboxiy, there exists a positive numbex and a neighborhood N of x such that for each point y of continuity of f in $N \cap I$, $|f(x)-f(y)| \geq e$

Froof. Let x be an element of I at which is not neighboriy. Suppose for every $s>0$ and $i o x$ every N_{x}, there exists a continuity point y of f in $N_{x} \cap I$ such that $|f(x)-f(y)|<e$. Choose a positive number ϵ_{1} such that $|f(x)-f(y)|+E_{1} \leqslant \epsilon_{0}$ Since y is a continuity point of f^{\prime}, there exists a neighborhood $\mathbb{N}_{y} \in \mathbb{N}_{x} \cap I$ such that for z in $M_{y^{\prime}}|f(z)-f(y)|<E_{1}$ 。 Thus for $z \operatorname{in} N_{y}|f(x)-f(z)| \leq$ $|f(x)-f(y)|+|f(y)-f(z)|<|f(x)-f(y)|+\epsilon_{1}<\varepsilon$ 。This, however, contradicts the bypothesis f is not neighboriy at x.

Theorem 5.9. [22] If the real valued function f, defined on an
open interval Is is a Bain＂s class less than two and has the Darboux property，then x^{\prime} is neighboriy on I ．

Proox．Suppose I^{\prime} is not neighborly at the point $\overline{5}$ in Io From
 Torms a set which is everywhere dense in Io Since $\mathrm{I}^{\prime}(x)$ is not neigh ，borly at 5 ，Lemma 5.1 implies there exists a positive number e and a neighborhood $\mathbb{N}_{2}(\xi)$ such that ior every continuity point x of $I^{\prime \prime}$ in $N_{I}(\xi) \cap I, \mid I^{\prime}(x)-I^{(\xi)}(\xi \in$ Choose a neighborhood $\mathbb{N}(\xi)$ or ξ such that $N(\xi) \subset N_{1}(\xi)$ and such that the end points or $M(\xi)$ are continuity point or I° ．Denote by R the set or continuity points or \vec{i} in $\mathbb{N}(\xi)$ ．Let $A=\left\{x \mid x \in \mathbb{N}(\xi)\right.$, and $\left.\left|\mathbb{P}(x)-X^{0}(\xi)\right|<e\right\}$ 。Consider the set B or points or A at which the saltus $S_{\mathbb{I}}(x)$ relative to A satisiles $S_{i}(x)>\in / 2$ 。 Set B is not null since ξ is an element or B 。 Let \bar{B} denote the ciosure of B ．Now every point or \bar{B} is an interior point or $\mathbb{M}(\xi)$ since the end points or $\mathbb{M}(\xi)$ are points or continuity or r^{\prime} and $S_{r}(x)=0$ at these points．Let us now show that \bar{B} is periect by showing that every point or \bar{B} is \＆limit point or \bar{B} ．

If x in \bar{B} is such that $|f(x)-T(\xi)| \geq \varepsilon$ ，then $x \& A$ and $x \& B$ ，so that x must be a limit point of B and a limit point or \bar{B} 。 In x in \bar{B} is such that $|\mathcal{I}(x)-I(\xi)|<E$, then x is in $B \operatorname{since} x$ ，A and the set of points where $S_{I_{0}}(x)>\in / 2$ is ciosed relative to B 。 Now ir x is in B ror an arbitrary neighborhood N_{x} of x whin is contained in $N(\xi)$ ，there exists two points x_{1} ，and x_{2} in N_{x} such that $\left|x^{x}\left(x_{1}\right)-x^{\prime}\left(x_{2}\right)\right| \geq e / 2$ 。 The following possibilities cin hold．
（1）$\left|\vec{r}\left(x_{1}\right)-r(\xi)\right|<c / 2$
（2）$\left|f\left(x_{2}\right)=I(\xi)\right|<e / 2$
(3) $\vec{T}(\xi) \propto \in<\mathbb{I}\left(x_{1}\right) \leq T(\xi) \infty \in / 2$, and

$$
I(\xi)+\epsilon / 2 \leq I\left(x_{2}\right)<I(\xi)+\epsilon_{0}
$$

Since R is everywhere dense in $N(\xi)$ and since I° satisties the Darboux property, in Case (1) x_{1} is an element or B, in case (2) x_{2} is an element of \bar{B}, and in case (3) there exists an x_{3} in N_{x} with $I^{\prime}\left(x_{3}\right)=I^{\prime}(5)$ and thererore x_{3} is in \bar{B}_{0} Ir it should happen that any one or the points x_{1}, x_{2} or' x_{3} equals x then by the Darboux property there exists an x_{4} in W_{x} with $x_{1_{4}} \neq x$ and such that $I\left(x_{4}\right)-I(\xi)<G / 2_{0}$ In this case x_{4} is in \bar{B}. In any case, the arbitrary neighborhood N_{x} or x must con tain a point or \bar{B} and \bar{B} is perrect.

The saltus $S_{\mathbb{I}}(x) \geq \varepsilon / 2$ ror each point or \bar{B} and, thererore, each point of \bar{B} is a discontinuity point of relative in \bar{B}. By Baire's theorem, $\mathrm{r}^{\prime \prime}$ could not be the limit or a sequence or continuous functions. This contradicts the hypothests that I is or Baire's class less than two and, thereiore, I must be neighborly on I.

Proor or Theorem 5.8. In I° has a derivative $\mathrm{I}^{\text {? }}(\mathrm{x})$ at each point x in S, then i^{7} is oi Baire's class less than two, since

$$
I(x)=\lim _{n \rightarrow \infty} \frac{I^{\prime}(x)-n^{\prime}(x+1 / n)}{1 / n}
$$

Thereiore, by Theorem $5.9 \mathrm{I}^{\text {i }}$ is neighborly on S .

Theorem 5.8 gives a characterization or the derivative functions of continuous real valued runction derined on the real numbers, open intervals or the real numbers and closed intervals of the real numbers, provided the derivative exists at all points. in the domain. The iollow ing theorem shows that a characterization ot the derivative fiunction can also be given if the derivative riunction is delined on all but a nowhere
dense set in s.

Theorem 5.10. [22]. Let space s be the real numbers, an open interm val, or a closed interval. It the real valued function I^{3} derined on S has a derivative everywhere on S with the possible exception oi a nowhere dense set D in S, then the derivative function $I^{\prime \prime}$ is ciquish on S.

Prooi. Let 5 be an arbitrary point ois S and let $\epsilon>0$ be given. For any neighborhood $\mathbb{N}(\xi)$ oi ξ, there exists an open set N contained in $N(\xi)$ such that $N \cap D=\phi$. By Theorem 5.8, $I^{\prime \prime}$ is neighborly on N. Thus Ior any X_{1} in N there exists an open set $N_{1} \subset \mathbb{N}$ such that $\left|\mathcal{I}^{\prime}\left(X_{1}\right)=I(y)\right|$ $<\epsilon / 2$ Ior, any y in N_{1}. Now let $y_{g} x$ be any two elements in N_{1} 。
 N_{1} is a subset or $N(\xi)$, is cliquish at ξ.

Let us now give an example of a continuous lunction whose dexiyam tive is cliquish but not neighborly.

Example 5.7. [22] Let S be the closed interval. [0, 1] and let I^{\prime} be detioned by:

$$
\begin{aligned}
I^{0}(x) & =\frac{(2 n+1)-\left(2 n^{2}+2 n+1\right)}{n(n+1)} \text { in } \frac{1}{n+1}<x \leq \frac{1}{n} \text {, where } \\
n & =0,1,2,3,00, \text { end } \\
I^{\prime}(0) & =0
\end{aligned}
$$

Now $I^{\prime}(0)=0$, but at all other points where the derivative exists, $\mathrm{I}^{\prime \prime}(\mathrm{x})<\infty$. Function I^{7} is, thereroxe, not neighborly at point 0 . Hown ever, by Theorem 5.10, $I^{\prime \prime}$ is cliquish at all points in S.

CHAPTER VI

CONNECTTVITY AND PERIPHERALXY COMYTNUOUS MAPFIMGS

INPRODUCTION

Much or the recent research in topology has been concerned with dew termining il a mapping in Irom a space S into itselx leaves a point or S ifxed. That is, in determining ir there exists some point x in S such that $f^{\prime}(x)=x$. For example, it is well known that a continuous mapping irom a closed n-cell I into I will leave a point ot I ioxedo A closed n-cell I is any homeomorphic image of the subset or Euclidean nospace consisting of points of the torm $\left(x_{1}, x_{2},{ }^{\circ}\right.$ og $\left.x_{n}\right)$; where $0 \leq x_{i} \leq 1$ lor each $i, 1=1,2, \% 0$, no Many Iunctions which satisiy conditions other than continuity can also be shown to leave points of an nocell inxed. John Nash in studying iixed point problems dexined a mapping which he called a connectivity map and inquired whether or not this kind or mapping leit a point of the n*eell ixxed [9]. Professor O. H. Hamilton [9] of Oklahoma State University and Professor JoStalling [23] of Princeton investigated the problem Iurther and gave an aritirmative answer. In Hamilton's investigation he derined and made use or another noncontinuous Iunction which he called the peripherally continuous mapping。

Although connectivity mapoings and peripherally continuous mappings were derined in connection with inxed point theorems, a considerable
amount of research concerning other properties or these runctions has taken place. In this chapter, such results concerning these functions will be given. Derinitions will now be stated for connectivity and perifipherally continuous transformations.

Derinition 6.1 A mapping 1 Irom a space S into a space T is said to be a connectivity mapping $i I^{\circ}$ and only if the induced mapping g of S into $S X T$, deifned by $g(p)=p X r(p)$, transiorms connected subsets oI's onto connected subsets or $S X T$.

Using the derinitions one can easily show that a connectivity map is a connected map.

Derinition 6.2. A mapping I' Irom a space S into a space T is said to be peripherally continuous $i I^{\prime}$ and only $i f^{\prime \prime} I^{\prime \prime}$ each point p ois S and for each pair or open sets U and V containing p and $I^{\prime}(p)$, respectively, there exists an open set $D \subset U$ containing p such that i transtorms the boundry F OI D into V 。

The iollowing examples show that connectivity maps and peripherally continuous mappings need not be continuous.

Example 6.1 Let S be the unit interval $0 \leq x \leq 1$ with the usual topology and derine I^{3} on S by:

$$
\begin{aligned}
& I^{(}(x)=1 \text { if } x \text { is rational } \\
& I(x)=0 \text { if } x \text { is irrational. }
\end{aligned}
$$

Function I is peripherally continuous at all points but is discontinuous at all points.

Example 6．2．Let S be the set ox rational numbers in $[0,1]$ with the usual topology，let $A=\{x \mid x \in S, x=p / q$ ，where p and a are rela－ tively prime and q is prime $\}$ ，and let $B=\{x \mid x \in S, X=p / q$ ，where p and q are relatively prime and q is not prime\}. Derine f on S ，by：

$$
\begin{aligned}
& I(x)=1 \text { if } x \in A, \text { and } \\
& I(x)=0 i I^{*} x \in B .
\end{aligned}
$$

Mapping I is a connectivity map since the only connected subsets in S are single points．Mapping I is not continuous on S since both A and B are everywhere dense in S ．

SOME FIXED POINT PROPERITES

Since the original work with connectivity maps and peripherally continuous maps was by O．H．Hamilton in connection with lixed point theorems，and since many of the other theorems concerning these mappings followed from his work，it seems appropriate to discuss his results first．Alter the presentation or Hamilton＇s work，a systematic presen－ tation or the other theorems concerning these mappings will be given．

Theorem 6．1．［9］In is a connectivity map Irom a Hausdori＇space S onto a Hausdori＇space T, p is a point or S, U and V are open set con＝ taining p and $r(p)$ ，respectively，then every nondegenerate connected subset or゙ S containing p contains a point q ot゙ U distinct from p such that $I^{\prime}(q)$ is an element or V 。

Froofo．Suppose C is a nondegenerate connected subset of S contain－ ing p but such that C contains no other point q of U such that $f^{\prime}(q) \in V_{0}$ Then $g(C)$ is the union or the two mutually separated sets
$g(p)=\left\{p \times r^{\prime}(p)\right\}$ and $g(C-\{p\})$, since $J X V$ contains $p \times r^{\prime}(p)$ but no point oİ $g(C-\{p\})$. This contradicts the hypothesis, hence C must contain a point q or U such that $q \neq p$ and $\mathbb{P}(q) \in V$ 。

Theorem 6.2. [9] In I is a connectivity map Irom a Hausdorif space S into a Hausdorit space T and $i I^{\prime} C$ is a closed subset or T, then each component \circ It $^{+\infty}(\mathrm{C})$ is a closed sübset or S .

Proot". Suppose C is a closed subset of 鱼 and that some component E or $x^{-1}(C)$ is not closed. Then there exists a limit point p of E such that p is not an element or E. Thus $f^{\prime}(p)$ i.s not an element or C. Since C is closed, $I^{\prime}(p)$ is not a limit point or C, and there exists an open set U in T such that $T^{\prime}(p)$ is in U and $U \cap C=\not \subset$. Thererore, $I^{-1}(U) \cap E$ $=\varnothing$. This leads to a contradiction, since the connected set $\mathrm{E} U\{\mathrm{p}\}$ must contain a point q distinct from p such that $f^{\prime}(q)$ is an element or U, by Theorem 6.1. Hence E is closed.

Corollary. II İ is a connectivity map Irom a Hausdoriti space S into a Hausdorif space T, P is a point in S, U is an open subset or T containing $I^{\prime}(p)$, and ill C is the subset or' S consisting or all points q or' S such that $\mathcal{I}^{\prime \prime}(\mathrm{q})$ is an element or \bar{U}, then each component. E or C is closed.

The next theorem was stated by Hamilton [9], and a proor or' a generalization of this theorem was given by Stalling [23]. The prooi or Stalling's theorem will not be given since it involves terms and techniques of algebraic topology which would not be appropriate in this paper. The statement of Hamilton's theorem will be given, however,
since his remaining theorems rely on this result.

Theorem 6.3. [9] II I is a connectivity map of a closed n-cell I, $n \geq 2$, onto a subset B or I, then I is peripherally continuous on I. Furthermore, it p is any point or I and U and V are open subsets or I containing p and $I^{(p)}$, respectively, there is a connected set D of I with connected boundary F such that $p \in D, D \cup F \in U$, and $I^{\circ}(F) \subset V$.

It should be noted that the second statement in Theorem 6.3 iollows because I is perifherally continuous, and not from Stalling's general. Ized theorem. A partial converse of this theorem will be presented later.

Theorem 6.4. [9] Let I be a peripherally continuous transiormation or a closed nocell I, $n \geq 2$ into itselt". Let it be assumed that is the closed nocube consisting of the points ($x_{1}, x_{2}, \ldots, x_{n}$) given by the inequalities $0 \leq x_{i} \leq 1$ for each i. Let the laces $x_{i}=0$ and $x_{i}=1$ be designated by A_{1} and B_{i} respectively. For each point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in I, let $f^{\prime}(x)$ be designated by $x^{i}=\left(x_{1}^{p}, x_{2}^{1}, \ldots o x_{n}^{1}\right)$. For each $i, 1 \leq i$ $\leq n$, let M_{i}, L_{i}, and N_{i} designate the subsets of I for which $x_{i} \leq x_{i}, x_{i}^{s}$ $=x_{i}$, and $x_{1}^{\prime} \geq x_{i}$, respectively. Then the components M_{1}, L_{i}, and N_{i} are olosed and it $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is a point in the common boundary between a component E or M_{i} or N_{i} and a connected subset oir $I-E$, then q is an element or I_{i} 。

Prooi'. Let $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be a limit point oi a component E or M_{i} and suppose that q does not belong to M_{i}. Then by the derinition or $M_{i}, q_{i}^{\prime}=q_{i}+d$ for some $d>0$. Then, since x^{\prime} is peripherally
continuous, by Theoren 6.3 , there exists a connected open set D or dia= meter $<d / 3$ containing q such that
(1) $\mathrm{E}-(\overline{\mathrm{D}} \cap \mathrm{E}) \dot{f} \phi$, and
(2) in x is a point or F, the boundary or D, then

$$
\rho\left[r^{0}(x), q^{(q)}\right]<d / 3 .
$$

The connected set E, since it conteins points outside of \bar{D} and within D, must contain a point x ot F. This means, $p\left[I^{\prime}(x), I^{\prime}(q)\right]<d / 3$, and $(x, q)<d / 3$. Hence, $\left|x_{i}^{\prime}-q_{i}^{1}\right|<d / 3$ and $\left|x_{i}-q_{i}\right|<d / 3$. With $q_{i}^{p}=q_{i}+d_{\text {, }}$ these inequalities give $x_{i}>x_{i}+d / 3$ and this contradicts the fact that x is in M_{i}. Hence the assumption that q does not belong to M_{i} is rialse and E is closed.

A similar argument can be used to show that each component of L_{i} or \mathbb{N}_{i} is closed.

Now let $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be a point in the common boundary bew tween a component E of M_{i} and some connected subset R oI $I \propto E$, and suppose q does not belong to \mathcal{L}_{i}. Since q is an element or $M_{i}, q_{i}=q_{1}^{1}$ $+d$ tor some $d>0$. Let δ be a positive real number such that $\delta<d / 3$ and such that the spherical neighborhood with center q and diameter δ does not contain all or E. Then since I is peripherally continuous; it follows Irom Theorem 6.3 that there is a connected domain D with respect to I of diameter $<\delta$ containing q with connected boundary F such that
(1) D contain a point z or R,
(2) $R-(\bar{D} \cap R)=\varnothing$,
(3) if $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is in F then $p(x(x), f(q))<d / 3$.

Then $\left|x_{i}^{8}-q_{i}^{i}\right|<d / 3,\left|x_{i}-q_{i}\right|<d / 3$, and since $q_{i}=q_{i}^{8}+d$, it iollows
that $x_{i}>x_{i}$ 。 Hence $x \in M_{i}$ ，and therefore $F \in E$ ．But the connected set R contains a point of F and hence a point of E．This contradicts $R \subset I$ ．E．Hence the assumption q does not belong to L_{i} is false．By a similar argument，it can be shown that each point common to the bound－ aries of component g of N_{i} and a connected subset of $I=E$ is in I_{i} ．

The main theorems from Hamilton＇s paper will now be stated and proofs given．

Theorem 6．5．If \hat{i} is a peripherally continuous transformation of a closed nucell I ，$n \geq 2$ ，into itself，then f leaves a point of I fixed．

Proof．Let sets N_{i}, M_{i}, L_{i} and faces A_{i} and B_{i} be defined as in Theorem 6．4．Since set A_{i} must be a subset of N_{i} for each i and since A_{i} is a connected subset for each i ，let E_{i} be the component of N_{i} which contains A_{i} for each i．By Theorem 6．4， E_{i} is closed．Let $\left\{G_{\alpha}^{i}\right\}$ be the collection of all components of $I=E_{i}$ which contain points of B_{i} 。Let H_{i} be $\left[U_{\alpha} G_{\alpha}^{i}\right] \cup B_{i}$ 。 Now H_{i} is connected since B_{i} is connected and since each G_{α}^{1} is connected and contains a point of B_{i} ．Let K_{i} be the subset of E_{i} consisting of all points in the common boundary between H_{i} and E_{i} ．Then by Theorem $6.4, K_{i}$ is a closed subset of L_{i} and hence $F_{i}=K_{i} U\left(B_{i} \cap L_{i}\right)$ is a closed subset of L_{i} ．Nows
（1）Mo component C of $I-E_{i}$ contains point of both A_{i} and B_{i} For suppose C contains a point of A_{1} and a point b of B_{i} ．Then $a \in E_{i}$ and $b \in H_{i}$ 。Hence C contains a point of K_{i} ，the common boundary between H_{i} and E_{i} 。This contradicts $K_{i} \subset F_{i}$ and $C \subset I \propto F_{i}$ 。

Now for each point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in I 1et $d_{1}(x)=\rho\left(x_{1} F_{i}\right)$ ，and define a mapping W on I as follows．Let $W(x)=W\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be
designated by（ $x_{1}^{11}, x_{2}^{10}, \ldots o g x_{n}^{8}$ ）。 If x belongs to a component of I a F_{i} which intersects B_{i} ，hence contains no point of A_{i} ，let $x_{I}^{\prime \prime}=$ $x_{i}-1 / 2\left[d_{i}(x) \cdot x_{i}\right]$ 。 Then since $x_{i} \neq O_{s} x_{i} \neq x_{i}^{n}$ ．If x is an element of a component of $I-F_{i}$ which does not intersect B_{i} let $x_{i}^{* s}=x_{i}+$ $1 / 2\left[d_{i}(x) \cdot\left(1-x_{i}\right)\right]$ 。 $\operatorname{since}\left(1-x_{i}\right) \neq 0, x_{1} \neq x_{i}$ 。 If x is an elenent of \vec{x}_{1} let $x_{i}^{81}=x_{i}$ 。

Now since $d_{i}(x) / 2<1$ ，we have
（2） $0 \leq x_{1}^{86} \leq 1$ ，and
（3）$x_{i}=x_{i}^{8 i f}$ and only if $x \in \mathbb{F}_{i} \subset \mathcal{L}_{i}$ 。
The function W is by its definition a continuous function of I into itw self and hence，by the well known Brouwer fixed point theorem for nocells must leave some point z of I fixed．That $i s$, for each $i, i=1,2, \ldots, n$ ， $x_{i}^{n}=x_{i}$ 。 The point z must be an element of $\sum_{i=1}^{n} F_{i} \subset \prod_{i=1}^{n} L_{i}$ 。 But z in $\sum_{i=1}^{n} L_{i}$ implies $x_{i}^{i}=x_{i}$ for each i ，so that $f(z)=z$ ，and f leaves a point of I fixed，as required．

Theorem 6．6．If f is a connectivity map of a closed nocell I into itself，f leaves a point of I fixed．

Proof．If $n=1$ and if f is a connectivity map of interval I_{s} into itself，then $g(I)$ is connected by the definition of a connectivity map．Furthermore，$g(I)$ contains the points $0 \times f(0)$ and $1 \times f(1)$ in the subset $0 \times I$ and $1 X I$ respectively．Hence the connected set $g(I)$ must contain a point of the closed connected set $x \times x$ in $I X I$ ．This implies $f(x)=x$ for xome $x \ln I$ ．

If $n \geq 2$ then Theorem 6.6 follows directiy from Theorems 6.3 and 6．5．

GENERAL PROPRRTIES

As previously mentioned, a considerable amourt of research concern Ing the properties of connectivity and pexpheraliy continuous mappings has taken place since the publication of Hamitons paper concerning fixed point theorems. A systematic discussion of these findings will now be givex Genergh properties of conneqtivity and peripheraily continuous transformtions will begiven firste The irst of these general theorems gives property of periphexally continuous mapoings which is analogous to the property of connectivity mappings given in Theorem 6.2.

Theorem 6.7. [16] If a function from a Hausdorfe space S into a Hausdorfe space 1 is peripherally continuous and if C is a closed subset of $T_{\text {, }}$ then each component of $f^{-1}(C)$ is closed in S.

Proof. Suppose some component x of $f^{-1}(C)$ is not closed Then there exists some limit point p of E such that p is not an element of E. Now $f(p)$ is not an elenent of C, and since C is closed, thexe must exist an open set V about $f(P)$ in such that $V \cap C=\phi_{0}$

Since \mathbb{E} is non-degenerate, there exists an open subset for S con
 D of S such that $D \in U_{,} p$ e D and $f(F(D)) \subset V_{,}$since f is peripherally continuous. Now $\mathrm{D} \subset \mathrm{U}$ and p a limit parnt of E implies there exists points of E in D and ($\mathrm{S}=\mathrm{D}$) 。 Therefore, f(D) contains at least one point of E, and it follows that $f(T(D))$ is not a subset of which is a contradiction. Thus the assumption that E is not closed is fialse, and the conclusion of the theorem follows.

Corollary 1. If for each closed set C in $T f^{-1}(C)$ consists of a finite number of somponents. $f^{-1}(C)$ is closed for each closed set C in T 。

Froot. The conclusion follows from Theorem 6.7 since the union of a finite collection of closed sets is closed.

Corollary 2. If for each closed set C in $T f^{-1}(C)$ consista of a finite number of components, i is continuous.

Proof. By Corollary 1, $f^{-1}(C)$ is closed if C is closed. This implies $f^{-1}(y)$ is open if U is open. Therefore, f is continuous.

The next two theorems are concerned with point set properties which are preserved by peripherally continuous mappings.

Theorem 6.8. [16] If is a periphersily continuous transformation of a Hasdoref space S into a Hausdorff space T, if is a connected subset of 5 , and if $x \in \mathbb{N}$ then $f(x)$ is an element of $\bar{f}(\mathbb{N})$.

Proof. Suppose there exists a connected subset \mathbb{N} of S and a limit point x of N such that $f(x)$ is not an element of $\overline{f(N)}$. Then since $\bar{f}(\mathbb{N})$ is closed, there exists some open set V about $f(x)$ such that $V \cap \overline{f(\mathbb{N})}=\phi$.

Since N is non degenerate, there exists an open subset U of S containing x such that ($S-U$) $\cap N \neq \phi$. There also exists an open subset D of S such that $D \subset U, X \in D_{2}$ and $f(F(D)) \subset U_{\text {g }}$, since f is peripherally continuous. But $(S-D) \cap N \neq \varnothing$ and $\mathbb{N} \cap D \neq \phi$. Therefore, $\mathbb{F}(D)$ contains at least one point of N since N is connected, and it follows that $f(F(D))$ is not a subset of V. This is a contradiction, hence the
conclusion of the theorem follows.

Theorem 6.9. [16] Let S and T be Hausdorif spaces, let f be a onew towone peripherally continuous transtomation from S into T, and let $M \in S$ be a non-degenerate comnected subset such that S w has a finite number of components. If x is a boundary point of M, then $f(x)$ is a boundary point of $f(M)$.

Proof, Let x be a boundary point of M. If x is not an element of M, then $f(x)$ is a limit point of $f(M)$ by Theorem 6.8 , but $f(x)$ is not an element of $f(M)$ due to the one-toone property of P_{0} Thus $f(x)$ is a boundary point of $f^{\prime}(M)$.

Now suppose x is a boundary point of M which belongs to M but that $f(x)$ is not a boundary point of $f(M)$. Then $f(x)$ is an interior point of $f(M)$. Since there exists only a finite number of components of $S-M_{\text {, }}$ x must be a limit point of some non-degenerate component $E \subset(S-M)$. But $f(E) \subset(T-f(M))$ due to the oneotomone property of f, and thereo fore $f(x) \notin \bar{F}(\bar{E})$ which contradicts Theorem 6.8 . Thus $f(x)$ must be a boundary point of $f(M)$ 。

Another interesting point set property of peripherally continuous mappings is given in the next theorem.

Theorem 6.10. [16] If f from S onto T is a peripherally continuous transformation of a non-degenerate, connected, regular, Hausdorff space S onto a Hausdorff space T, and if y is an interior point of a subset M of T, then every point of $f^{-1}(y)$ is a limit point of $f^{-1}(M)$.

Prooś. Let y be an interior point of M and let V be an open subset
of containing y and lying entirely in M．Suppose there exists point x of $f^{-1}(y)$ that is not a limit point of $f^{-1}(M)$ ．Then there exists an open subset U of S containing x such that U contains no point of f^{-1}（M） due to S being reguiar．Consequently，any open set $D \in U$ containing x has the property that $F(D)$ contains no point of $f^{-1}(M)$ and，furthermore， $F(D)$ is non－empty since S is connected．Hence $P(D)$ is not a subset of V which contradicts the hypothesis that is peripherally continuous． The conclusion of the theorem thue follows．

In Theoren 6.2 a point set property of connectivity mappings was given in connection with Hamiton ${ }^{\circ}$ s fixed point theorems．Similar results for perdpherally continuous mappings were given in theorems $6.7,6.8,6.9$ and 6．10．Let us turn now to a further consideration of point set properties of connectivity maps．

Theorem 6．11．［5］Let i be connectivity map from the T_{1} space S into the \mathbb{T}_{1} space T 。 If Y is an open subset of T and K is a non degenergte component of $f^{-1}(V)$ ，then any point p in the closure of K such that p is not in K has the property that $f(p)$ is in $F(v)$ 。

Froof．Let p be a limit point of K which is not in K 。 Since $K U\{p\}$ is connected and comnectivity maps map connected sets onto con－ nected sets，$f(K \cup\{p\})=f(K) \cup\{f(P)\}$ is connected．How $f(K)$ contained in $V, f(p)$ not in V ，and $f(K) \cup\{f(p)\}$ connected implies $f(p)$ is a limit point of $f(K)$ by Theorem 6．8．Hence $f(p)$ is a limit point of V which is not in V ．Therefore，$f(p)$ is in $g(V)$ ．

Theorem 6．12．［6］Let f be a connectivity mapping of the locally
connected and comected T_{2} space B into the m_{1} space I . If V is an open subset of T, then $\mathrm{i}^{-1}(V)$ is densewin-itself.

Proos. Suppose $e^{-1}(V)$ is not denselnuitself. Then thexe is a point $p \ln f^{-1}(V)$ and as oper set U containing p such that $U-\{p\}$ contains no point of $f^{(1)}(V)$. Since S is locally connected there exists a connected open aubset C of U containing po Thererore, $C X V$ is an open set in $S X$ containimg onfy the point $p \times s(p)$ of $g(C)$. This implies $g(C)$ is not conected contradicting the hypothesis that f is a connectivity map. Therefore, every point of $f^{-1}($ (V) is a limat point of $f^{-1}(V)$ and hence $f^{-1}(V)$ is dense-1n-itself.

With any class of functions, it is always of interest to determine whether or not a convergent sequence of such function will always converge to a function of the same class. Example 6.3 below proves that the limit function of a sequence of connectrity maps or peripherally continuous maps need not be of the same type. However, it the sequence of functions is required to be uniformly convergent the limit function will be or the same class for certain spaces.

Example 6.3. Let S be the uniti unterval $0 \leq x \leq 1$ with the usual topology and define a sequence of function $\left\{f_{n}\right\}$ on S by, $f_{n}(x)=x^{n}$, for each $x \in S$. Now each f_{n} is a connectivity map and is peripherally continuous. Furthermore, sequence $\left\{t_{n}\right\}$ cosverges to the function f defined by:

$$
\begin{aligned}
& \mathscr{P}(x)=0 \text { iff } x \neq 1, \text { and } \\
& f(1)=1 .
\end{aligned}
$$

Function f is neither a connectivity map nor a peripherally continuous
mapping.

Theorem 6.13. [5] Let $\left\{f_{n}\right\}$ be a sequence of peripherally continuous mappings of a space S into metric space IT If sequence $\left\{f_{n}\right\}$ converges uniformly to function is S, then is perspherally continuous.

Proof. Let p be a point of s and let \mathbb{U} and V be open aets contain ing p and $i(p)$ respectively. Since T is a metric space, there exists an e >0 such that the spherical nelghborhood \mathbb{R} of radius sbout $f(p)$ is contained in V. Let R^{3} be the spherical neighborhood of radius $E / 4$ about $f(p)$. Since the convergence is uniform there exigts a positive integer \mathbb{N} such that for every $n>N, \quad A\left(f_{n}(x), f(x)\right)<$ e/4 for every x in S. Let n_{0} be a fixed positive integer such that $n_{0}>N$. Then $f_{n_{0}}(p)$ is contained in R^{0} and since $f_{n_{0}}$ is peripherally continuous at p, there exists an open set $D \in U$ and containing p such that $f(\mathbb{F}(D)) \subset R^{3}$ 。 If y is an element of $F(D)_{,}$then $p(f(y), f(p)) \leq p\left(f(y), f_{n_{0}}(y)\right)+$ $\rho\left(f_{n_{0}}(y), f(p)\right)$. Now $\rho\left(f(y), f_{n_{0}}(y)\right)<e / 4$ by the uniform convergence and $\rho\left(f_{n_{0}}(y), f(p)\right)<e / 4$ since $f_{n_{0}}(y)$ is in R^{3}. Hence $(f(y), f(p))<$ e/2 and $f(y)$ is in R. Therefore, $f(D)) \subset R \subset V$, and D is the required neighborhood which implies f is peripherally continuous.

An analogous theoren holds for connectivity maps: howeyer, the proof for this theoren requires the use of Pheorem 6.22 which states conditions under which a perdpherally continuous mapping is a connectivity map. This result will be discussed further after the proof of Theorem 6.22.

Some characterization theorms for peripherally continuous mapping Will now be given.

Detinition 6.4. A sequence $\left\{D_{i}\right\}$ of open sets is sald to close down on a point x if and oniy if $\{x\}=\prod_{i=1}^{\infty} D_{1}$ and for every open set U contain ing x there exists a positive integer N such that $D_{1} \in$ for all it $>$.

Theorem 6.14. [16] Let from Sinto. The a transformation where spaces 8 and T are xegular and first countable Then a necessary and sufficient condition that f be peripherally continuous is that for each $x \cdot \epsilon$ there exists a monone decreasing sequence of open set $\left\{D_{j}\right]$, $i=1,2,3,00$, closing down of x such that the sequence $\left\{f^{2}\left(\mathbb{F}\left(D_{i}\right)\right)\right\}$, $i=1,2,3,000$ converges to $f(x)$ 。

Proof" The fact that the condition is necessery follows from the definition of peripherally continuous mapping.

Now let $\left\{\mathrm{D}_{\mathrm{i}}\right\}, \mathrm{i}=1,2,3, \ldots 0$, be monotone sequence of open sets in s converging to x such that the sequence $f\left(F\left(D_{i}\right)\right)_{1} 1=1,2,3,00$ convexgea to $f(x)$ 。 Th R and V areany two open sets containing x and $f(x)$, respectively, there exists an open set $\left.D_{j} \in D_{i}\right\}, i=1,2,3, \ldots$, such that $D_{j} \subset R_{0}$ This follows since $\left\{D_{\mathcal{L}}\right\}$ closes down on $x_{\mathcal{L}}$ and since
 exists an open set $\left.D_{k} \in D_{1}\right\}, 1=1,2,3,00 \%$ where $k \geq j$ such that $f\left(F\left(D_{k}\right)\right) \subset U_{0}$ Therefore, by definition, fis peripherally continuous.

Corollary. Let from S into we a peripherelly continuous transo formation of a regular space S into a regular space finch that if x is
an element of S there exists a sequence $\left\{D_{1}\right\}, 1=1,2,3, \ldots$ of open sets closing down on x such that for ach $1, F\left(D_{i}\right) \not f \phi_{0}$ Thea for every point x in S there exists at least one sequence of distinct points con verging to x such that their images under f converges to $f(x)$.

Theorem 6.15. [5] If f is a mapping from a space S into a space T, then f is peripherally continuous if and only if g is peripheraly continuous.

Proof. Suppose f is peripherally continuous. Let p be a point of S and let U and V be open sets containing p and $p X f(p)$, respectively, where V is of the form $H X K$ with H open in S and K open in T. Then $H \cap U$ is an open set containing p and K is an open set containing $f(p)$. Since f is peripherally continuous, there exists an open set $D \subset U \cap H$ containing p such that $f(F(D)) \subset K$. Thus $g(F(D)) \subset V$ and g is peripherally continuous:

Conversely, suppose g is peripherally continuous., Let p be a point of S and let U and V be open set containing p and $f(p)$ respective Iy. Then $U X V$ is an open set containing $p X f(p)$, and hence there exists an open set $D \subset U$ containing p such that $f(F(D)) \subset U X^{\prime} V$. Therefore, $f(F(D)) \subset V$ and f is peripherally continuous.

MAPPINGS THAT ARE BOTH FERIPHERALIX CONYITUOUS AND CONNECTIVITY MAPS

Hamilton in his original work with conectivity mapping made use of the fact that a connectivity mapping from a closed nocell, $n \geq 2$, onto a subset of that nocell was peripherally continuous. Some additional theorems relating connectivity mappings to peripherally continuous
mappings will be given next. The first of these theorens is an extension of Hamilton's theorem.

Theorem 6.16. [16] Let I be the closed unit interval, $0 \leq x \leq 1$. If maping f from I into I is a connectivity map, then f is peripherally continuous.

Proof. Assume that f is not peripherally continuous at some point p in I. Then there exists some subintervai V containing $f(p)$ such that for some open connected subinterval $U=(a, b)$ containing p, no subinter* val $D \subset U$ containing p has the property $f(F(D)) \subset V_{0}$ There exists, by Theorem 6.1, a point q in $U, q \neq p$, such that $f(q)$ is an element of V. Suppose q is an element of (p, b). It follows from our assumption that no point of (a, p) can be mapped into V under f. Hence the graph of $(a, p), g(a, p) \subset I X I \sim U X V$.

The set $P X I$ separates $I X I$ into two mutually separated sets such that the graph $g(a, p)$ is contained in one and $g(p, b)$ is contained in the other. Since $g(p)$ is not a limit point of $g(a, p), g(a, b)=$ $g(a, p) \cup\{g(p) \cup g(p, b)\}$, where $g(a, p)$ and $g(p) \cup g(p, b)$ are mutually separated sets, which is a contradiction of the fact that f is a connectivity map. Thus f is a peripherally continuous mapping.

The following example shows that the converse of Theorem 6.16 is not true.

Example 6a4. Let I be the unit interval, $0 \leq x \leq 1$, and define f on I by:

$$
\begin{aligned}
& f(x)=\pi / 4 \text { if } x \text { is rational, and } \\
& f(x)=3 / 4 \text { if } x \text { is irrational. }
\end{aligned}
$$

Mapping if peripherally continuous, but is not a connectivity map.

Closely related to Theorems 6.1 and 6.16 is the following theorem concerning peripherally continuous mappings defined on nocells. The following definition will be used in the proof of this theorem.

Definition 6.5. Let S be a topological space and let A be a subset of A. Any component of the subspace (S, A) is said to be a component complementary domain of A_{0}

Theorem 6.17. [16] There exists no peripherally continuous transo formation f that maps an $n \omega c e l l$, $n \geq 2$, into itself such that $f(I)$ is the union of two closed disjoint subsets of I.

Proof. Suppose there does exist a periphexally continuous transformation from an n celi $I, n \geq 2$, into itself such that $f(I)=H U K$, where H and K are closed disjoint subsets of I_{0} Then the components of both $f^{-1}(H)$ and $f^{-1}(K)$ are closed by Hheorem 6.7 , and $f^{-1}(H) \cap f^{-1}(K)$ $=\varnothing$. Since $f^{\infty 1}(H) \cup f^{-1}\left(K^{*}\right)=I$, and I is not the union of a countable number of disjoint closed sets, one of the set $f^{-1}(H)$ or $f^{-1}(K)$ mustris have uncountably many components. Consider this to be $f^{-1}(H)$; similar results hold if this is $f^{-I}(K)$ 。

Let x be a point of I and let $U \subset I$ be any open set containing x. If $D \subset U$ is an open set containing x and D^{*} is defined as the component of D containing x unioned with its component complementary domains which are bounded in \mathbb{E}^{n}, then $F\left(D^{*}\right)$ is connected $[27,106]$.

We shall now consider the two possible resulting cases under our assumption that f is peripherally continuous and show a contradiction of
the hypothesis. First, iff $f^{-1}(H)$ has at most a finite number of nondegenerate components, $M_{1}, M_{2}, \ldots M_{n}$, then $\tilde{U}_{1}^{n} M_{i}$ is closed since each M_{i} is closed by Theorem 6.7. Let x be a degenerate component $0^{\infty} f^{1}(H)$, and let $U \subset I$ be an open set containing x such that $\bar{U} \cap\left[\hat{U}_{i=1}^{n}, M_{i}\right]=\phi$, and Let V an open set containing $f(x)$ such that $V \cap K=\phi$. If $D \in U$ is any open set containing x, then $F(D) \cap f^{-1}(K) \not F \phi$ for if not, $F\left(D^{*}\right)$ $\subset F(D)$ would be a subset of a non-degenerate component \mathbb{M} of $f^{-1}(\mathrm{E})$. But NGU is impossible by the definition of U. Hence there exists no set $D \subset V$ containing x such that $f(F(D)) \subset V$ and consequentiy is is not peripherally continuous at x, contrary to hypothesis.

Alternately, suppose $f^{-1}(H)$ has infinitely many non-degenerate components. Then there exists a non-degenerate component E of $f^{-1}(H)$ such that E union its complementary domains which are bounded in E^{n}, denoted by E^{*}, does not equal I_{0}. Let x be a point on the boundary of \mathbb{E}^{*} which is a limit point of $I=E^{*}$ and let U and V be open sets containing x and $f(x)$, respectively, such that $(I-U) \cap E^{*} \notin \phi$ and $V \cap K=\varnothing$ 。 Now if $D \subset U$ is any open set containing $x, F\left(D^{*}\right) \subset F(D)$ must contain a point of $f^{-1}(K)$. For if not, $D^{*} \cup F\left(D^{*}\right)$ woula belong to E^{*} since $F\left(D^{*}\right)$ is connected and $E^{*} \cap F\left(D^{*}\right)=\phi$; but this contradicts the fact that x is a boundary point of E^{*}. Thus there exists no open set $D \subset U$ such that $f(F(D)) \subset V_{8}$ which again contradicts the fact that f is peripheraily continuous.

The following theorem will be useful in proving the next theorem relating peripherally continuous mappings to connectivity maps.

Theorem 6.18. [5] If f is a maping from the space S into the T_{I} space T and if K is a connected subset of $g(S)$, then $g^{1}(K)$ is
connected.

Proof. Suppose $g^{-1}(K)=M \cup N$ where M and N are mutually separated. Then $K=g(M) \cup G(N)$ and $g(M) \cap g(\mathbb{N})=\phi$ since $M \cap N=\phi$. Therefore, one of the sets $g(M)$ and $g(N)$ must contain a limit point of the other, say, $g(M)$ contains a limit point $p X f(p)$ of $g(\mathbb{N})$. Then there is a sequence $\left\{q_{n} X f\left(q_{n}\right)\right\}$ of points in $g(N)$ converging to $p X f(p)$. Now q_{n} is in N, point p is in M and q_{n} converges to p. This implies that p is a limit point of N belonging to M contradicting the assumption M and N mutually separated. Therefore, $\mathrm{g}^{-1}(\mathrm{~K})$ is connected.

Theorem 6.19. [5] Let f be a peripherally continuous mapping from a T_{1} space into a T_{1} space T. If for every connected set K in $S_{g} g(K)$ has a finite number of components, then f is a connectivity map.

Proof. Since f is peripherally continuous, g is peripherally continuous by Theorem 6.15.

Now let K be a connected subset of S and suppose $g(K)$ is not connected. By hypothesis, $g(K)$ has a finite number of components C_{1}, C_{2},
 for $i f j_{j}$ since $C_{1} \cap C_{j}$ are mutually separated. Since K is connected, not all of the $g^{-1}\left(C_{1}\right)$ are mutually separated. Let p be a point of C_{i} for some 1 , such that p is a limit point of ${ }_{i=1}^{n} \mathbb{G}^{-1}\left(C_{j}\right), j \neq i$. Then p must be a limit point of $g^{\infty 1}\left(C_{j}\right)$ for some $j \neq 1$. Now $p X f(p)$ is in C_{i} and there is an open set V containing $p X f(p)$ such that $V \cap C_{k}=\phi$ if $k \neq i$, since sets C_{K} are mutually separated. Then g peripherally continuous implies, for any open set U containing $p_{\text {, }}$ there exists an open set $D \subset U$ and containing p such that $g(F(D)) \subset V_{0}$

By Theorem $6.18, \mathrm{~g}^{-1}\left(\mathrm{C}_{\mathfrak{j}}\right)$ is connected since C_{j} is connected. Since p is a limit point of $g^{-1}\left(C_{j}\right), g^{-1}\left(C_{j}\right)$ is non-degenerate and the open set D can be chosen such that $g^{-1}\left(C_{j}\right)$ has pointsinterior to D and exterior to D. Therefore, $g^{-l}\left(C_{j}\right)$ must have points in common with $f(D)$, since $g^{\mu-1}\left(C_{j}\right)$ is connected. Thus $g(F(D))$ is not a subset of V This is a contradiction of the hypothesis that. if periphersily continuous, hence $g(K)$ nust be connected. Therefore f is a connectivity map.

Theorem 6.20. [5] Let f be a peripheraily continuous mapping of the T_{1} space S into the T_{1} space T. If for every non-degenerate connected set K in $S, G(K)$ has no degenerate components, then f is a connectivity map.

Suppose f is not a connectivity map. Then there is a non degenerate connected set K in S such that $g(K)=M U N$ where M and N are mutually separated. By hypothesis the components of M and \mathbb{N} are nondegenerate. Hence $\mathrm{g}^{-1}(\mathrm{M})$ and $8^{-1}(\mathbb{N})$ have non-degenerate components. For suppose the point p is a component of $g^{-1}(M)$. Then $g(p)=p X f(p)$ Lies in some non-degenerate component C of M and $g^{-1}(C)$ is connected. Therefore $g^{-1}(C)=p$ and this contradicts the fact that g is always a one-to-one mapping.

Now $M \cap \mathbb{N}=\phi$ implies $g^{-1}(M) \cap g^{-1}(\mathbb{N})=\phi$, and $K=g^{-1}(M) \cup g^{-1}(\mathbb{N})$ being connected implies $g^{-1}(M)$ and $g^{-1}(N)$ are not mutually separated. Let p be a point of $g^{\infty 1}(M)$ which is a limit point of $g^{-1}(\mathbb{N})$. Then $p \chi f(p)$ is in M and there is an open set V containing $p X f(p)$ such that $V \cap N=\varnothing$ since M and \mathbb{N} are mutually separated。 Let U be an open set containing p. Then $U \cap g^{-1}(\mathbb{N}) \nLeftarrow \phi$ since p is a limit point of
$g^{-1}(N)$ ．Hence U intersects some non－degenerated component of $f^{-1}(N)$ ． Since g is peripherally continuous，there is an open set W containing p and contained in U such that $f(F(W)) \subset V$ ．Now U and W can be chosen such that $C \not \subset W$ but $C \cap W \neq \phi$ since C is non－degenerate．Since C is connected，and since C must have point interior to W and exterior to W ， $F(W) \cap C \neq \phi$. This is a contradiction since $f(F(W)) \subset V, g(C) \subset \mathbb{N}$ and $V \cap N=\phi$ ．Thus f is a connectivity map。

In Theorems 6.3 and 6.16 it was shown that a connectivity map from an nocell，$n \geq 1$ ，into itself is peripherally continuous．The question of whether or not a peripherally continuous mapping from an n－cell into Itself is a connectivity map has not yet been answered．Example 6.4 showed that for $n=1$ ，the conclusion need not follow．In Theorem 6．21 a partial solution to this question for $n \geq 1$ will be given．The following lemma will be used in the proof of Theorem 6．2l．

Lemma 6．1．［16］Let S and T be Hausdorff spaces，and let f be a mapping from S into T ．If M is a subset of S such that $g(M)$ is the union of two mutually separated sets H and K and if p is a point of $\mathrm{g}^{-1}(\mathrm{H})$ or $\mathrm{g}^{-1}(\mathrm{~K})$ which is a limit point of the other，then p is a point of discontinuity of f 。

Proof．Let p be a point of $g^{\infty-1}(H)$ which is a limit point of $g^{-1}(K)$ ． Since H and K are mutually separated sets，there exists open sets U and V containing p and $f(p)$ ，respectively，such that $U X V$ contains no points of K ．Thus no point of $g^{-1}(K) \cap \cup$ maps into V under f 。 There exists a sequence of points $\left\{p_{i}\right\}$ belonging to $g^{-1}(K)$ which converges to p．Hence infinitely many of the points p_{f} lie in U and the images of
these points lie in $(T-V)$. Therefore, the sequence $\left\{f^{\prime}\left(p_{i}\right)\right\}$ cannot converge to $f(p)$ and p is a point of discontinuity of f 。

A similar argument holds if p is an element of $f^{-1}(K)$ which is a Iimit point of $\hat{\mathrm{T}}^{-1}(\mathrm{H})$.

Theorem 6.21. [16] If f is a peripherally continuous mapping from a regular Hiausdorff space S into a regular Hausdorff space T which has at most a finite number of points of discontinuity, then f is a connecm tivity map of S into T.

Proof. Suppose that f is not a connectivity map. Then there exists a connected set in S such that $g(M)$ is the union of two mutually separated set H and K. By Lemma 6.I, every point of $g^{-1}(H) \cap \overline{g^{-1}(K)}$ and $\mathrm{g}^{-1}(\mathrm{~K}) \cap \overline{\mathrm{g}^{-1}(H)}$ is a point of discontinuity of f. Since the points of discontinuity of f is a finite set, let $x_{1}, x_{2}, \ldots, x_{k}$ and $y_{I}, y_{2}, \ldots, y_{r}$ denote the points of $g^{-1}(H) \cap \overline{g^{-1}(K)}$ and $g^{m 1}(K) \cap \overline{g^{-1}(H)}$, respectively.

Since H and K are mutually separated, there exists open set U_{i} and W_{i} containing x_{i} and y_{i} : respectively, and open sets L_{i} and N_{i} contain ing $f\left(x_{i}\right)$ and $f\left(y_{i}\right)$, respectively, such that $\left(U_{i} \cap L_{i}\right), i=1,2,3, \ldots, K$, contains no point of K and $\left(W_{i} \cap N_{i}\right), i=1,2,3, \ldots, r$, contains no point of H. By the peripheral continuity of f and the fact that S is a regular Hausdorff space, there exists open sets $D_{i} \subset U_{i}$ and $E_{i} \subset W_{i}$ containing x_{i} and y_{i}, respectively, having the following properties: (1) $f\left(F\left(D_{i}\right)\right) \subset \mathbb{N}_{i}$, $i=1,2,3, \ldots, r$ and (2) the closure of no two of the sets D_{i} and E_{i} have a point in common.
 union of two sets

$$
M_{1}=(D \cap M) \cup\left[(S \propto D-E) \cap g^{\infty l}(H)\right],
$$

and

$$
M_{2}=(E \cap M) \cup\left[(S-D-E) \cap E^{x 1}(K)\right],
$$

which can be shown to be mutually separated sets. Since $g^{-1}(H) \cap E^{-1}(K)$ $=\emptyset$ and $D \cap E=\not \subset, M_{1} \cap M_{2}=\phi$. Now the only pointa of $\mathrm{g}^{-1}(\mathrm{H})$ that are Limit points of $\mathrm{g}^{-1}(\mathrm{~K})$ Ife in the open $s e t \mathrm{D}$ and thus $(\mathrm{S}-\mathrm{D}-\mathrm{E}) \mathrm{C}$ $\left.\mathrm{g}^{-1}(\mathrm{H})\right]$ contains no limit points of $\left[(\mathrm{S}=\mathrm{D}=\mathrm{E}) \cap \mathrm{g}^{-1}(\mathrm{~K})\right]$; since $F(E) \subset g^{-1}(K)$, and $\left[(S-D-E) \cap g^{-1}(H)\right]$ contains no limit point of E \cap M. By construction $D \cap M$ contains no limit point of $E \cap M$ and since $\mathcal{F}(\mathrm{D}) \subset \mathrm{g}^{-\mathcal{L}}(\mathrm{H}), \mathrm{D} \cap \mathrm{M}$ contains no limit point of $\left[(\mathrm{S}-\mathrm{D}-\mathrm{E}) \cap \mathrm{g}^{-1}(\mathrm{~K})\right]$ 。 Therefore, M_{2} contains no limit point of M_{2} and in a similar manner M_{2} contains no limit point of M_{1} 。 Thus $M=M_{1} \cup M_{2}$ is expressed as the union of two mutually separated sets, which contradicts the fact that M is a connected set. Hence f must be a connectivity map.

As previously mentioned, Stalling [23] proved a theorem stating conditions under which a comectivity map will be peripherally contin* uous. Stelling's theorem and its proof were not presented, since it involved concepts from Algebratc Topology which are not appropriate for this paper. Hagan [5] proved partial converse for this theorem using a topological space called a Moore space [20]. It should be noted the Moore space is regular and T_{2}. Some preliminary definitions and a lemme will be given in preparation for the presentation of Hagan's converse to Stalling's theorem.

Definition 6.3. A space S is said to be locally peripherally connected at the point p if for every open set U containing p there is an
open set V containing p and contained in U such that $F(V)$ is connected. A space is locally peripherally connected if it is locally peripherally connected at every point.

Definition 6.6. A space S is said to satisfy property II if for every closed connected subset M of S and for every component C of $S=M$, the boundary of C is closed and connected [23].

Lemma 6.2. [5] Let W be an open connected subset of the locally peripherally connected, Moore space S such that $f(W)$ is connected. Let W_{1} and W_{2} be open connected sets such that $W_{1} \cap W_{2} \neq \phi, F\left(W_{1}\right)$ and $F\left(W_{2}\right)$ are connected, and $\overline{W_{1}} \cup \overline{W_{2}} \subset W$. If $W_{3}=\left(W_{1} \cup W_{2}\right) \cup\left(\cup_{\alpha} C_{\alpha}\right)$, where $\left\{C_{\alpha}\right\}$ is the collection of all component of $\bar{W}-\left(W_{1} \cup W_{2}\right)$ such that $F\left(C_{\alpha}\right) \subset$ $F\left(W_{1}\right) \cup F\left(W_{2}\right)$, and if C is the component of $\bar{W}-\left(W_{1} \cup W_{2}\right)$ containing the connected set $F(W)$, then
(1) $F\left(W_{3}\right) \subset F\left(W_{2}\right) \cup F\left(W_{2}\right)_{9}$
(2) $\bar{W}=\mathrm{CUW}_{3}$,
(3) W_{3} is open and connected, and
(4) if the space S has property $I I, F\left(W_{3}\right)$ is connected.

Proof of (1). Suppose there is an x in $F\left(W_{3}\right)-\left(F\left(W_{1}\right) \cup F\left(W_{2}\right)\right)$. Then since S is regular, T_{1} and peripherally connected there exists an open set G such that $F(G)$ is connected, $x \in G$, and $\bar{G} \cap\left(\bar{W}_{1} \cup \bar{W}_{2}\right)=\varnothing$. Since $F\left(C_{\alpha}\right) \subset F\left(W_{1}\right) \cup F\left(W_{2}\right)$ for each $\alpha_{9} x \notin C_{\alpha}$ for any α. Therefore, x is a limit point of $U C_{\alpha}$ such that $x \notin C_{\alpha}$ for any α 。 This implies G must intersect infinitely many C_{α}. If $C_{\alpha} \subset G$ for some α, then $F\left(C_{\alpha}\right) \subset G$ since C_{α} is closed. This is a contradiction since $F\left(C_{\alpha}\right)$ is contained in $F\left(W_{1}\right) \cup F\left(W_{2}\right)$. Therefore, if $C_{\alpha} \cap G \neq \phi$, then C_{α} has point interior to
G and points exterior to G. This implies $f(G) \cap C_{\alpha} \neq \phi$ since C_{α} is connected. Now $F(G) \cap \vec{F}\left(C_{\alpha}\right)=\beta$ since $\bar{G} \cap\left(\bar{W}_{1} \cup \bar{W}_{2}\right)=\phi$. Hence $F(G)=\left(F(G)-C_{\alpha}\right) \dot{U}\left(F(G) \cap C_{\alpha}\right)$, where $F(G)-C_{\alpha}$ and $F(G) \cap C_{\alpha}$ are nonempty and mutually separated. This contradicts $F(G)$ being connected. Hence $F\left(W_{3}\right) \subset F\left(W_{1}\right) \cup F\left(W_{2}\right)$ 。

Proof of (2). If K is a component of W a $\left(W_{1} \cup W_{2}\right)$ such that $K \cap C=\notin$, then $F(K) \subset\left(F\left(W_{1}\right) \cup F\left(W_{2}\right)\right)$. For suppose there is a point x in $F(K)$ - $\left(F\left(W_{2}\right) \cup F\left(W_{2}\right)\right)$. Since K is closed, $x \in K$. 1 Now $K-\left(F\left(W_{1}\right) \cup\right.$ $F\left(W_{2}\right)$) is equal to $U K_{\alpha}$ where $\left\{K_{\alpha}\right\}$ is the collection of components of the set $K-\left(F\left(W_{1}\right) U F\left(W_{2}\right)\right)$. Then each K_{α} is also a component of W - (U \bar{W}_{3}) since $K \cap C_{\alpha}=\varnothing$, and $K \cap C=\phi$. set $K \cap C_{\alpha}=\phi$ is implied by the fact that C_{α} a component and if $K \cap C_{\alpha} \neq \phi, C_{\alpha}$ must contain K so that $F(K) \subset F\left(C_{\alpha}\right) \subset\left(F\left(W_{1}\right) \cup F\left(W_{2}\right)\right)$ which gives a contradiction. Thus $\therefore\left(K \infty\left(F\left(W_{1}\right) \cup F\left(W_{2}\right)\right) \cap\left(C \cup \bar{W}_{3}\right)=\not\right.$ D $^{\prime}$ Since $W-\left(C \cup \bar{W}_{3}\right)$ is open K_{α} is open for each α, and $F\left(K_{\alpha}\right) \subset\left(C \cup \bar{W}_{3}\right)$. But $\bar{K}_{\alpha} \cap C=\varnothing$ implies $F\left(K_{\alpha}\right) \subset \bar{W}_{3} \cdot$ Now $\bar{W}_{3}=\left(\left(\bar{W}_{3}-W\left(W_{3}\right)\right)\right.$ and $\bar{W}_{3}-F\left(W_{3}\right)$ is an open set disjoint from K_{α} Therefore, $F\left(K_{\alpha}\right) \subset F\left(W_{3}\right)$. Now $K=\left(K-F\left(W_{3}\right)\right) \cup\left(K \cap F\left(W_{3}\right)\right)$. Thus, since x is in $\left(F(K) \quad F\left(W_{3}\right)\right.$), x is in K_{α} for some α_{0} But $x \notin$ interior K_{α} since interior K_{α} is contained in interior of K. Therefore x is in $F\left(K_{\alpha}\right)$. This is a contradiction since $F\left(K_{\alpha}\right) \subset F\left(W_{3}\right) \subset\left(F\left(W_{1}\right) \cup\right.$ $F\left(W_{2}\right)$). Hence $F(K) \subset\left(F\left(W_{1}\right) \cup F\left(W_{2}\right)\right)$. Now suppose there is a point x in $\left(W-\left(C \cup W_{3}\right)\right)$. Then x is in some component K of $W-\left(W_{2} U W_{2}\right)$. By the above argument $F(K) \subset\left(F_{1}\left(W_{1}\right) \cup W\left(W_{2}\right)\right)$ and hence $K=C_{\alpha}$ for some α. But $C_{\alpha} \subset W_{3^{\circ}}$. This contradiction implies that $\bar{W}=\left(\mathrm{CU} \mathrm{W}_{3}\right)$ 。

Proof of (3). Since $C \cap W_{3}=\phi$ and since C is closed $W=C=W-C$ $=W_{3}$ is open. Also, W_{3} is connected since $W_{1} U W_{2}$ is connected and each C_{α} is connected, and $C_{\alpha} \cap \overline{W_{1} U W_{2}} \neq \phi$.

Proof of (4). Since W_{3} is open, $F\left(W_{3}\right) \cap W_{3}=\phi$ and hence $F\left(W_{3}\right) \in C_{0}$ Therefore $\overline{W_{3}} \cap C=F\left(W_{3}\right)$ 。 since $\overline{W_{3}}$ is closed and S has property II, every component of $\mathrm{S}-\overline{\mathrm{W}}_{3}$ has a connected boundary. The closed connected set C contains $F\left(W_{3}\right)$, and W_{3} is connected, hence by Theorem 34 of $[20,103], \overline{W_{3}} \cap C=\mathbb{F}\left(W_{3}\right)$ is connected.

Theorem 6.22. [5] If f is a peripherally continuous mapping of the Locally connected, Moore space S having property II into the space T and if $S X T$ is completely normal, then f is a connectivity map.

Suppose if not a connectivity map and let A be a connected subm set of S such that $g(A)=M \cup N$, where M and N are mutually separated. Let $g^{-1}(M)=H$ and $g^{\infty 1}(N)=K$ 。 Then $A=H \cup K$, where $H \cap K$ is empty. Since A is connected H and K are not separated and hence one must contain a limit point of the other Let p be a point of H which is a limit point of K_{0} since $S X T$ is completely normal, there exists disjoint open set U and V in $\mathrm{S} X \mathrm{~T}$ containing M and N , respectively.

Let R be an open set containing p such that A is not entirely contained in Ro. Then f peripherally continuous and S Iocally connected implies there exists an open connected set W containing p and contained in R such that W and $F(W)$ are both connected and $g(F(W)) \subset U$ [23]. Since p is a limit point of K there is a point q of K in W.

Let Q be the collection of all open connected sets D such that q is in $D, \vec{D} \subset W, D$ and $F(D)$ are connected, and $g(F(D)) \subset V$. The
collection Q is non－empty since f is peripherally continuous at point q ． Let Q^{+}denote the union of the collection of sets in Q ．Then Q^{+}is an open subset of W ．Consider the boundery $F\left(Q^{+}\right)$of Q^{+}．If $F\left(Q^{+}\right) \cap A=\phi$ ， then $A=\left(A-Q^{+}\right) \cup\left(A \cap Q^{+}\right)$and $\left(A-Q^{+}\right)$and $\left(A \cap Q^{+}\right)$are mutually separated．For $A-Q^{+} \neq \phi$ since A does not lie entirely in Q^{+}and $A \cap Q^{+} \neq \dot{p}$ since q is in $A \cap Q^{+}$．Furthermore，$A \cap Q^{+}$is open in A and hence cannot contain any limit point of $A-Q^{+}$，and any limit point of $A \cap Q^{+}$which is in $A=Q^{+}$is in $F\left(Q^{+}\right)$which is disjoint from A 。 Thus， since $A-Q^{+}$and $A \cap Q^{+}$are disjoint they are mutually separated and this contradicts A being comnected．Therefore，$F\left(Q^{+}\right) \cap A \neq \phi$ 。

Since $F\left(Q^{+}\right) \cap A \neq \phi$ ，either $F\left(Q^{+}\right)$contains a point of H or a point of K ．Suppose there is a point h of H in $F\left(Q^{+}\right) \cap H$ ．Then there is an open set E containing h but not q such that $F(E)$ is connected and $g(F(E))$ \subset U．Since h is a limit point of Q^{+}，E must intersect some set D belong＊ ing to the collection Q ．Now $E \notin D$ since h lies in $E \infty D$ and $D \notin E$ since q is in D－E．Thus E and D both have point interior and exterior to one another and $F(D)$ and $F(E)$ being connected implies $F(D) \cap F(E)$ F申．But this contradicts the fact that $g(F(D)) \subset V, g(F(E)) \subset U$ and $U \cap V=\phi$ ．Hence $F\left(Q^{+}\right) \cap H=\phi$ and therefore $F\left(Q_{0}^{+}\right) \cap K \neq \phi$ 。

Let k be a point of $F\left(Q^{+}\right) \cap K$ ．Now k is not a point of $F(W)$ since $g(F(W)) \subset U$ and $g(k) \in V$ ．Thus k is in W and there is an open connected set W_{1} containing k and contained in W such that $F\left(W_{1}\right)$ is connected， $\bar{W}_{I} \subset W$ and $g\left(F\left(W_{1}\right)\right) \subset V_{0}$ Since k is a limit point of Q^{+}there is a set W_{2} in the collection Q such that $W_{1} \cap W_{2} \neq \phi$ 。

Now from the set Wh referred to in Lemma 6．2．By this lemma，the set W_{3} is open，connected，$F\left(W_{3}\right)$ is connected，$W_{3} \subset W$ ，and q is in W_{3} ．

Furthermore, $g\left(F\left(W_{3}\right)\right) \subset V$ since $F\left(W_{3}\right) \subset F\left(W_{2}\right) \cup F\left(W_{2}\right)$. Therefore W_{3} possesses all of the requirements to belong to $Q . B u t W_{3}$ is not in Q since k is in $W_{3} \cap F\left(Q^{+}\right)$. Therefore, the assumption that $g(A)$ is not connected leads to a contradiction. Hence f is a connectivity map.

It was shown in Theorem 6.13 that a uniformly convergent sequence of peripherally continuous functions from a space S into a metric space T will converge to a function which is peripherally continuous. If the spaces S and T are required to satisfy the hypothesis of Stalling's theorem and Hagan's theorem, then the same result must hold for connectivity maps since connectivity maps and peripherally continuous mappings are equivalent under these conditions.

Since an n-cell, $n \geq 2$, satisfies the hypothesis for both Stalling's theorem and Hagan ${ }^{\text {t }}$ s theorem, a mapping f from an nocell into itself, $n \geq 2$, is peripherally continuous if and only if f is a connectivity map.

CONTINUITY OF PERIPHERALLY CONPINUOUS MAPPINGS AND CONNECTIVITY MAPS

It was shown in Exampies 6.1 and 6.2 thet peripherally continuous mappings and connectivity maps are not necessarily continuous. The problem of when connectivity maps and peripherally continuous maps will be continuous will now be investigated.

Theorem 6.23. [16] If f is a one-tomone real valued connectivity map defined on a locally connected metric space S, then f is continuous on S .

Proof. Since connectivity maps carry connected subsets of S onto
connected subsets of the image space, f is continuous by Theorem 4.19.

Theorem 6.24. [5] If f is a connectivity mapping of the T_{1} space S into the T_{2} space T and $i f g(S)$ is semimocally conected, then f is continuous.

Proof. Suppose f is not continuous at a paint p in S. Then g is not continuous at p and hence there exists a sequence $\left\{p_{n}\right\}$ of points of s converging to p such that $\left\{p_{n} \not\left\langle f\left(p_{n}\right)\right\}\right.$ does not converge to $p \times f(p)$. Since $g(s)$ is semi-locally connected and since $\left\{p_{n} X f\left(p_{n}\right)\right\}$ does not converge to $f(p)$, there is an open set U containing $p \times f(p)$ such that $p_{n} X f\left(p_{n}\right)$ is not in U for infinitely many n and $g(S)-U$ has only a finite number of components. Thus infinitely many of the points of $\left\{p_{n} \times f\left(p_{n}\right)\right\}$ lie in a single component K of $g(s)-U$. Now $K \cup\{p X f(p)\}$ is not connected but $g^{-1}\left(K \cup\{p X f(p)\}=g^{-1}(K) \cup\{p\}\right.$ is connected since $g^{\sim J}(K)$ is connected by Theorem 6.18 and p is a limit point of $f^{-1}(K)$. Point p is a limit point of $f^{-1}(K)$ since infinitely many of the points p_{n} lie in K and $p=\operatorname{limit} p_{n}$. Since the set $g^{\alpha-1}(K) \cup\{p\}$ is connected and since f is a connectivity map, the set $\mathrm{g}\left(\mathrm{g}^{-1}(\mathrm{~K}) \cup\{\mathrm{p}\}\right)=\mathrm{K} \cup\{\mathrm{p} \times \mathfrak{f}(\mathrm{p})\}$ must be connected. This is a contraw diction, so that f must be continuous.

The following theorem shows that a similar result holds for peripherally continuous functions.

Theorem 6.25. [16] Let \pm be a peripherally continuous transforma. tion from a Hausdorff space S into a Hausdorff space T. If X is a point of S such that for any open set. R containing $f(x)$ there exists an open
set $V \subset \bar{f}$ containing $f(x)$ having the property that $S=f^{-1}(V)$ has oniy a finite number of components, then f is continuous at x.

Proof. Suppose f is not continuous at x. Then there exists some sequence $\left\{x_{n}\right\}$ in S converging to x such that $\left\{f\left(x_{n}\right)\right\}$ does not converge to $f(x)$. Thus, by the hypothesis, an open set V can be found such that $f(x) \in V$, an infinite number of the points of $f\left(x_{n}\right)$ belong to $T-V$, and such that $S-f^{-1}(V)$ has only a finite number of compenents. Thus an infinite number of the points of sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ must lie in some com* ponent E of $S=\mathbb{I}(V)$ and x must be a limit point of the connected set E, but $f(x)$ is not a ilmit point of $f(E)$ since $f(x)$ is an element of V 。 This contradicts Theorem 6.8 , so that f must be continuous.

Theorem 6.26. [16] If a mapping from a Hausdorff space S into a Hausdorife space T is peripherally continuous and is such that for each closed subset N of T and for each $x \in\left(S-f^{-1}(N)\right)$ there exists an open set U containing x such that U intersects at most a finite number of components of $f^{-1}(N)$, then x is continuous.

Proof. Suppose f is not continuous. Then there must exist some closed set N in T such that $f^{-1}(\mathbb{N})$ is not closed. Let x be a limit point of $f^{-1}(\mathbb{N})$ which does not belong to $f^{-1}(\mathbb{N})$. By the hypothesis, there exists an open set U containing x such that U intersects at most a finite number of components of $f^{-1}(N)$. This implies some component of $f^{-1}(\mathbb{N})$ is not closed which contradicts Theorem 6.7. Thus f must be continuous.

The following theorem gives a necessary and sufficient condition for a monotone peripheraily continuous mapping to be open. This result
will be used to obtain conditions which imply a pexipherally continuous mapping is continuous.

Theorem 6.27. [5]. Let \& be a monotone peripherally continuous mapping of the compact metric space S onto the regular T_{1} space T. Then f is open if and only if every sequence $\left\{y_{n}\right\}$ of points of T with sequential limit point $y_{p} \operatorname{Iim}\left\{f^{-1}\left(y_{n}\right)\right\}=\left\{f^{\infty 1}(y)\right\}$ 。

Proof. Suppose if an open, monotone, peripherally continuous mapping and Let $\left\{y_{n}\right\}$ be a sequence of points of T with sequential limit point y. Let $G=f^{-1}(y)$ and $G_{n}=f^{-1}\left(y_{n}\right)$ for each n. since f is monotone, G and G_{n} are connected. Furthermore, G and G_{n} are closed by Theorem 6.7. Now S is a compact space, so that G and G_{n} are compact. Suppose there exists a point x in G and a neighborhood U of x such that $U \cap G_{n}=\phi$ for all but a finite number of n. Then since f is open $f(U)$ is an open set containing $f(x)=y$ such that $f(U)$ contains only a finite number of points of $\left\{y_{n}\right\}$. This contradicts the fact that $y=$ Limit y_{n} since T is a regular w_{1} space Therefore, $G \subset \lim$ inf $\left\{G_{n}\right\}$ $\subset \lim \sup \left\{G_{n}\right\}$. Let us now show that $\lim \sup G_{n} \subset G$ 。

Suppose there exists a point p in $\lim \sup \left\{G_{n}\right\}$ such that p is not in G. Since $\{p\}$ and G are closed subsets in a metric space and since G is compact, it is possible to find disjoint open sets U and V such that $p \in U, G \subset V$, and $U \cap V=\phi$. Let \mathbb{N} be any open set about $f(p)$. "Since f is peripherally continuous, there exists an open set $D \subset \mathbb{U}$ containing p such that $f(F(D)) \subset \mathbb{N} . \operatorname{Now} p \in \lim$ sup $\left\{G_{n}\right\}$ and $G \subset \lim \inf \left\{G_{n}\right\}$ implies an infinite number of G_{n} must intersect both D and V. Further more, $D \subset U$ and $\bar{U} \cap V=\emptyset$ so that an infinite number of set G_{n} must
have pointsinterior to D and exterior to D. since G is connected for each n, this implies $F(D)$ contains points from infinitely many G_{n}. Thus \mathbb{N} contains infinitely many of the points of $\left\{y_{n}\right\}$. This is a contradic. tion, since the only limit point of a sequence in a regular T_{2} space is the sequential limit point. Thus lim sup $\left(G_{n}\right) \subset G$.

We now have
$G \subset \lim \inf \left\{G_{n}\right\} \subset \lim \sup \left\{G_{n}\right\} \in G$ so that $F=\lim \left\{G_{n}\right\}$ or $f^{-1}(y)=\lim \left\{f^{-1}\left(y_{n}\right)\right\}$ which completes the proof of the first assertion. Conversely, suppose U is an open set in S such that $f(U)$ is not open. Then there exists a point y in $f(U)$ and a sequence of points $\left\{y_{n}\right\}$ in $T-f(U)$ such that $\lim y_{n}=y$. By hypothesis, $f^{\infty}(y)=\lim$ $\left\{f^{-1}\left(y_{n}\right)\right\}$. Now $U \cap\left\{f^{-1}\left(y_{n}\right)\right\}=\phi$ for every n since $y_{n} \& f(U)$. But $U \cap f^{-1}(y) \neq \emptyset$ since y is in $f(U)_{2}$ and by hypothesis U must intersect all but a finite number of set $\left\{f^{-1}\left(y_{n}\right)\right\}$. mbis contradiction implies $f(U)$ is open, so that f is an open mapping.

Theorem 6.28. [5] Let f be peripherally continuous mapping of the compact metric S onto the countable compact, regular T_{1} space T. If f is an oper monotone mapping, then f is continuous.

Froof. Let $\left\{x_{n}\right\}$ be a sequence of points in S with sequential Iimit point x. Let $y_{n}=f\left(x_{n}\right)$ for each n. Since I is countably compact, some subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ must have a sequential limit point in T. By Theorem 6.27 , $\lim ^{1}\left\{f^{m 1}\left(y_{n_{1}}\right)\right\}=f^{-1}(y)$. Since $\left\{x_{n_{1}}\right\}$ must converge to x. Therefore x is in $f^{-1}(y)$ and $y=f(x)$ 。 Since every sequence $\left\{x_{n}\right\}$ converging to x has a subsequence converging to $f(x)$; is continuous, at x 。

The following example shows that the inverse image of a connected set under a connectivity map or a peripherally containuous mapping need not be connected. In Theorem 4.29 conditions which will impiy that the inverse image of a connected set under a peripherally continuous mapping will be connected will be given. The results of Theorem 4.29 will then be used to prove a theorem giving conätions under which a peripherally continuous mapping will be continuous.

Example 6.5. [5] Let S be the union of the intervals $\{-1,0$) U $(0,1)$ and let T be the interval $(-1,1)$. Define from S into T by:

$$
\begin{aligned}
& f(x)=x-1 \text { if } x \in(0,1), \text { and } \\
& f(x)=x+1 \text { if } x \in(-1,0) .
\end{aligned}
$$

The mapping f is a connectivity map and is peripherally continuous. The inverse map f^{-1} is neitaer a connectivity map nor peripherally continuous as one can verify by considering the point 0 in T.

Theorem 6.29. [51 Let f be an open, monotone, peripherally contin uous mapping of the compact metric space S onto the regular T_{1} space T_{0} If K is a connected subset of T, then $f^{-1}(K)$ is a connected subset of S.

Proof. Suppose $f^{-1}(K)=M \cup N$ where M and N are mutually separated. Then $K=f(M) \cup f(M)$. Now suppose there is a point y in $f(M) \cap f(M)$. Then there exists points m and $n i n M$ and N, respectively, such that $f^{\prime}(m)=f^{\prime}(m)=y$. Hence $f^{-1}(y) \cap M \notin \phi$ and $f^{-1}(y) \cap \mathbb{N} \notin \phi$. This is a contradiction, since $f^{-1}(y)$ is connected. Therefore, $f(M) \cap f(N)=\phi$. Since K is connected, one of the sets $f(M)$ or $f(N)$ must contain a limit point of the other, say $f(\mathbb{N})$ contains a limit point p of $f(M)$. Then there exists a sequence of points $\left\{p_{n}\right\}$ in $f(M)$ such that $\lim p_{n}=p$.

By Theorem $6.27, \lim \left\{f^{-1}\left(y_{n}\right)\right\}=f^{-1}(y)$. This is a contradiction since $f^{-1}\left(y_{n}\right) \subset M$ for every $n, f^{-1}(y) \subset \mathbb{N}$, and M and N are mutually separated. Therefore, the assumption $f^{-1}(\mathrm{~N})$ is not connected leads to a contradic tion so that $f^{-1}(K)$ is connected.

Theorem 6.30. [5] Let f be an open, monotone, peripherally continuous mapping of the compact metric space S onto the semi-locally connected, regular T1 space T. Then f is continuous.

Froof. Supposef is not continuous. Then there is a point x in s and a sequence $\left\{x_{n}\right\}$ of points of S converging to x such that $\lim f\left(x_{n}\right)$ $A f(x)$. Since 7 is semi-locally connected there is an open set u cone taining $f(x)$ such that $T=U$ has a finite number of component, K, \ldots, K_{n} and such that infintely many of the points of $\left.\left\{f^{(} x_{n}\right)\right\}$ are in T \sim U. Hence infinitely many points of $\left\{f\left(x_{n}\right)\right\}$ are in some K_{d}. By Theorem 6.29 , $f^{-1}\left(K_{i}\right)$ is connected, and, x is a limit point of $f^{-1}\left(K_{i}\right)$ since infinitely many x_{n} are in $f^{\infty 1}\left(K_{i}\right)$ and $\left\{x_{n}\right\}$ converges to x_{0}

Set $f^{-1}\left(K_{i}\right) \cup\{x\}$ is nonedegenerate, so that one can choose an open set y about x such that $f^{-2}\left(K_{i}\right)$ has points interior to V and exterior to V. Since f is perspheraly continuous, there exists an open set $D \subset U$ such that $f(F(P)) \subset U$. Now $f^{-1}\left(K_{i}\right)$ must have pointsinterior, to D, and exterior to D o Therefore, $\mathrm{F}(\mathrm{D})$ must, contain a point of the connected set $f^{-1}\left(K_{i}\right)$. This is a contradiction, since $\left.f(F)\right) \subset U$ and $K_{i} \cap U=\neq$. Thus f must be continuous.

Corollary. If the hypothesis that T be semilocally connected in Theorem 6.30 is replaced with the requirement that T be locally connecto ed and locally compact, if continuous.

Proof. Fuery locally connected, locally compact space is sem locally comected $\{27,20\}$. Therefore, is continuous by Theorem 6 . 30 .

CHAPMER VII

SUMMARY: AND EDUCAITONAL IMPLTCATION

In this paper the recent research concerning certain classes of noncontinuous transformations in point set topology is orgenized and sumarized with standardization of terminology and symbolisms. This: presentation makes the recent research concerning these transformations both more readable and more readily available to the student of topology. Several examples are supplied to help the reader grasp the significance of the various concepts and theorems.

SUMMARY

In Chapter I, the statement of the problem, the scope of the paper, methods and procedures, and expected outcomes are given. In Chapter II a brief introduction to point set topology is given. This is inciuded in the interest of standardizing notation and terminology, since texts on point set topology differ slightly in both. In Chapter III a discussion of open and closed mappings is given. This discussion is by no means complete since open and closed functions are defined in connection with homeomorphisms in elementaxy texts on topology and many results concerning these functions are included in these texts. Such results are not inciuded in this study since the intent of this study is to present the results of recent research which are not readily
avaliable to students of topolozy. Chapter IV gives a rather complete discussion of compact preserving and connected mappings. These mappings axe significant since continuous finctions, which are the most fundamental functions in topology, are both compact preserving and connected. In Chapter y a review of the recent research concerning nelghborly and cliquish functions is given. Theorems 5.8 and 5.10 from this chapter are particularly significant since they give characterizations of derim vative functions of real valued continuous functions defined on the real numbers. In Chapter VI the recent research concerning connectivity mappings and peripherolly contixuous mappings is reviewed. It is noted in Chapter VI that these functions were originally defined and studied in connection with fixed point properties. Fixed point properties have been studied extensively by topologists in recent years.

Throughout Chapters III, IV, V, and VI relationships between and among the varlous classes of noncontinuous transformations have been emphasized. Also, the relationships between the classes of noncontin uous transformations and continuous transformations hawe been considered in detail.

EDUCATIONAL IMFLICATIONS

Since the body of material and fdeas axe constantiy expanding in mathematics, it is increasingly important that such be made available in systematic, readable sources. These sources should enable, the student of mathematics to become aware of the research that has been done and the areas that need to be investigated further. The reader of this paper will come abreast of the frontiexs of knowledge in the study
of some important aspects of noncontinuous transformstion. from this vantage point the reader can then proceed in further study of functions and topology by study of the professional journals or by independent research into properties of the functions considered in this study: For the future mathematician or mathematios teasher, and particum. larly for the college teacher of mathematics, it is important to reailze that curricular changes in the various disciplines will occur as new knowledge is discovered. An acquaintanceship with the ideas presented in this thesis should help one to anticipate changes that may occur as point set topology becomes more involved in the mathematics curricuium. References to the bibliography are given for most. of the theorems in this thesis. By consulting this bibliogxaphy, one may gain an awareness of the men who have contributed to topology in recent years. It is likely that these men, many of them contemporaries of the reader, will play a significant role in shaping point set topology and the mathematics curriculum of the future. Awareness of these potential leaders should help interested individuals keep abreast of the developing mathematics curriculum and should contribute to their implementation of curricular changes.

Perhaps the most significant result of the development of this paper has been the extent to which the investigator has developed his own interest and knowledge of point set topology. The skills developed and the research experiences encountered will add to the background nèeded for effective teaching at the college level.

BTBLIOGRAPHY

(1) Bledsoe, Woodrow W., "Meighborly Functions", Proc. Amer. Math. Soc, Vol. 3 (1952), pp. 114-115.
(2) Cargal, Buchanon, "Generalizations of Continuity", Proc. Iowa Acad. of Sci., Vol. 60 (1957), pp. 465467.
(3) Fan, Ky, and Strubie, RoA., "Continuity in Terms of Connectedness", Mederl. Akad. Welensch. Proc., Ser. A, Vol. 57 (1954), pp. 161-164.
(4) Goffman, Casper, Real Functions, New York: Holt Rinehart and Winston, 1963.
(5) Hagan, Melvin Eo, Properties of Peripherally Continuous Functions end Connectivity Maps, (Doctoral Thesis), Oklahoma State University, Stillwater, Oklahoma, 1964.
(6). Halfar, Edwin, "Compact Mappings", Froc. Amer. Math. Soc., Vol. 8 (1957), pp. 828~830.
-3 "Conditions Implying Continuity of Functions", Froc. Amer. Math. Soc., Vol. II (1960), pp. 688-691.
(8) Hail, D.Wo, and Spencer. Go Lo, Elementary Topology, New York: John Wiley and Sons, Inc., 1959.
(9) Hamilton, O. H. "Fixed Point Theorems for Certain Mon-Continuous Transformations ${ }^{\text {si }}$ Proc. Amer. Math. Soc. ${ }^{\text {Vol. } 8 \text { (1957), }}$ pp. 750-756.
(10) Henai, Sitiro, "On Closed Mappings", Proceedings of the Japan Academy, Vol. 30 (2954), pp. 285-288.
(11) "On Open Mappings", Proceedings of the Japan Academy, YOL. 33 (1957), pp. $177{ }^{-180 .}$
(12) Hobson, E. Wo, The Theory of Functions of a Real Variable, London: Cambridge University Press, 1921.
(13) Hodel, Richard E., "Open Functions and Dimension", Duke Math. Journal, Vol. 30 (1963). pp. 461-467.
(14) Kelly, J. L., General Topology, Mew York: Do Van Nostrand Company, Ince., 1955.
(15) Klee, Vo Lo, and Ute, W. Ro, "Some Remarks on Continuous Transformations ${ }^{\text {if }}$ Proc. Amer Math. Soc. V Vol. 5 (1954), pp. 182-184.
(16) Long, Paul E.g "Properties of Certain Mon Continuous Transformations", Dake Math. Journal, Vol. 28, No. 4 (1961), pp. 639. 646.
(17) Manning, Rhoda, "Open and Closed Transrormations!, Duke Math. Journal, 7o1. 13 (1946), PP. 179-185.
(18) Maxtin, Abram Vo, "A Note on Derivatives and Nelghborly Functions", Proci Amer. Matb. Soc. Vol. 8 (1957), pp. $465-467$.
(19) Mathenatical Association of America, "Recommendations of the Mathematics Association of America for the Training of Mathematics Teachers ${ }^{18}$. American Mathematical Monthly, Vol. 67 (1960). pp. 982-991.
(20) Moore, R.L., Foundations of point Set Theory, Aratr" Math Soc., Colloquim Publication, Yol. 13, 1962.
(21) Pervin, W. J., and Levine, Norman, "Connected Mappings of Hausdorff Spaces", Proc. Amer. Math. Soc. Vol. 9. (1958), pp. 488-495.
(22) Smith, Newton Bo "Types of Eunctions" g Proc. Iowia Acad. Scio. VoI. 61 (1954), pp. 324-329.
(23) Stalling, Jo, "Fixed Foint Theorenis for Connectivity Maps", Eundamenta Mathematicae, Voi. 57 (1959), pp. 249263.
(24) Thielman, Ho Po, "Pathological Functions", Froc. Iowa Acad. Sci., Vol. 59 (1952), pp. 338-393.
(25)
_ "Types of Functions", Amer. Matho Monthly, Vol. 60 (1953), pp. 156-161.
(26) Wilcox, A. Bo, "Eregraduate Training in Mathenatics - A Report of a CUPM Panel", American Mathematical Monthly, Vol. 71 (1964), Rp. 1117-1129.
(27) Whyburn, G.To, Analytic Topology American Math. Soc. Colloguim Fublication, Vol. XXVIII, (1962)
(28) "Open and Closed Mappings", Duke Math. Journal, Vol. 17 (1950), pp. 69-74.

TMORXX

Baire's classes less than two, sets, 94
Baisisg 9
at a point, 18
for a topological space, 9
Biconnected mapping, 68
Boundry polnt, 11

Cantesian produet, 12
Cliquish functiong at a point, 80
on a space, 80
Closed mappung, 27
Closed set: 9
with respect to a set, 32
Closure of a set, 11
Compact preserving mapping, 50
Compact set. 21
Completely normel apaces 17
Conditionally compact set, 33
Connected mappings 21
Connected set, 21
Connectivity mapping, 99
Continuous function,
at a points 23
on a space, 2^{4}
Convergent sequence, 14
Countable set, 18
Countably compact set, 21
Covering, 21
open, 21
Dariboux "property", 93
Densexin-itself set, 93
Domain of a function, ig
Everywhere dense set, 82
First countable space, 18
First ρ category, sets, 85
Function, see Transformation
Hausdorff space, 15
Homeomorphic spaces, 26
Homemorphism, 26

Image set, 22
Interion of a set, 29
Inverse image of a set, 22
Inverse set, 31
Limitinferior of a sequence of sets, 30
Limit of a sequence of sets, 36
timit point, 10
Iimit point of a function, 59
Limit superior of a sequence of sets, 35
Locally compact space, 53
Locally connected at a point, 38 space, 38
Locally peripherally connected space, 121

Mapping, see Transformation
Metric set, 19
Metric space, 19
Monotone mapping, 73
Mutually separated sets, 17
Meighborhood, 10
Neighborly function, at a point, 80 on a space, 80
Normal space, 16
Nowhere dense set; 84
One-toone correspondence, 17
One-torone mapping, 22
Onto mapping, 26
Open mapping, 26
Open set, 7
with respect to a set, 32
Perfect set, 93
Perdpherally continuous mapping, 99
Pointwise continuous, 82
Pointwise neighborlys 82
Pointwise noncontinuous, 82
Pointwise nonmeighboriy, 82
Froperty $K^{*}, 54$
Property II9: 122

Range of a function, 19
Reguiar space, 6
Removable discontinuity, $63-65$
Restriction of a mapping, 23
Second countable space, 18
Semi-loeally -connected space, 68 Sequence, 13
Sequential limit point, 14

Spherical neighborhood, 19
Subsequence, 14
Subspace, 12
T2 space, 17
Topological product, 13
Topological space, 7
Transformation, 18

VITA

Burt Kenneth Burns
Candidate for the Degree of
Doctor of Education

Thesia: Classis of NONCONITNUOUS TRANSFORMATIONS

Major Field: Higher Education (Mathematics)
Biographical:
Personal Data: Born in Tuttle, Oklahoma, January 19, 1935, the son of Jolly Joseph and Lois Elva Burns.

Education: Attended Meridian, Tuttle, and Pioneer grade schools in Grady County, Oirlahoma; graduated from Verden High School at Verden, Oklahona, in 1954; received the Bachelor of Science degree from Oklahoma Agricultural and Mechanical College at Stillwater, Oklahoma, in 1957 with a major in Education (Mathematics): xeceived the degree of Master of Sclence from Oklahoma State University at Stillwater, Oklahoma, in 1958, with a major in Secondary Education; attended North Texas State College, Denton, Texas, in the summer of 1959, Kansas State University, Manhattan Kansas, in the summer of 1960, and Kansas Oniversity, Lawrence, Kansas, 1960-61; completed requirements for thre Doctor of Education degree at Oklahoma State University, Stillwater, Oklahoma, in August of 1965.

Professional expertence: Teught mathematics at Temple High School., Temple, Oklanoma, 1958-1959, and at Del City High School, Del City, Oklahoma. 1959-1960; was an instructor of mathe matics at Central Missouril State College, Warrensburg, Missouri from 196l-1963; was a graduate assistant at Oklahoma State University in 1963 and a stafe assistant from 1963-1965 while completing the requirements for the doctorate.

Organizations: Member of Pi Mu Bosilon and Fhi Delta Kappao

