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CHAPTER I
INTRODUCTION AND STATEMENT OF THE PROBLEM
INTRCDUCTION

Point set topology is one of the newer branches of mathematics,
having emergzed as a discipline in the early part of the twentieth centu-
rYa though topology has not been incorporated in many college
undergraduste programs, recent recommendaticns by the Committee on the
Undergraduate ?rogram in Mathematics of the Mathematics Association of
Anerica and by other groups indicate that topology may soon become an
iimportant part of the uhdergraduate mathematics program. Also, some or
the current experimentsel programs in secondary and elementary school
math@maticsﬁindicate that some concepts I'rom topology will be introduced
in the second&ry schools and even in the elementary schools.

The Committee on the Undergraduate Program in Mathematics was
establiched by the Mathematics Agsociation or America t0 study the under-
graduate pfogram in mathematics and to make recommendations ror a sound
vndergraduate program. The committee was divided into a number or panels
in recognition of the fact that the undergraduste program in mathematics
must serve a number or student groups with divergent needs. Speciticelly,
the Tollowing panels were estabiishedz

{1) The Panel on Teacher Tfaining,

(2) The Panel on Mathematics Por the Physical Sciences

'



agd Engipeering,

) The Panel on Mathematics For the Biclogical, Management
and Social_SQiencesa

(h) ‘The Panel on Pregraduate Training.

Each of these panels issued a report describing a program or studies
the members Telt would constitute a sound program in mathematics Tor
that panel's area or interest,

The panel on Teacher Training issued a report in December, 1960
[1931 in which the rollowing minimum requirements for secondary teschers
were given.

(A) ‘“Three courses in analysis.

{(B) Two courses in abetract algebra.

(C) Two courses in geometry beyond analytic geometry.

(D) Two courses in probability end statistics.

(E) 'Two upper level courses, e.g., introduction to real
varigbles, number theory, topclogy, history of mathemat~
ics, or numerical analysis (inclﬁding ése of high speed
computers).

For elementary'téach@rs the rollowing minimum requirements were listed,
(A) A two-course sequence devoted to the structure of the
real nuwmber system.

(B) A course devoted to the basic concepts or algebra.

(C) A course in informal geometry.

The.inclusion ot top@logy in the list of suggested electives ror secon-
dary teachers indicates that the committee reels certain concepts Trom
topology will probebly emerge in the high school mathematics curriculum.

1. Numbers in brackets refer to rerferences in the bibliography.
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The committee also recommended that the course in inrformal geometry ror
elementary teachers include the consideration of closed curves and
separation properties which are topological conceptso

The Panel on Pregraduate Trgining issued a repért in December,
1964 [ 26] with recommendations for the undergraduate program. In this
report the panel suggested that every college offering & pregraduste
program in mathematics should offer a core or basic CSurses Tor upper
divi§ian students. These courses are roughly described as: real
analysis, complex analysis, abstract algebra, geometry, topology, and
probablility or matbematical physics. The panel further suggested that
a8 rar as resources will permit, an institution offering pregraduate
training should olrer courses in algebras, analysis; applied mathematics,
foundations and logic, geometry, mathematicel statistics, number theory
and topology.

From these recomméndations, one can conclude that topology shows
rromise orf being important in a sound unde;graduate program Or the

future, and quite possibly will be important in teacher education.
STATEMENT OF THE PROBLENM

In the rield or mathematics, as in other academic areas, there is
always & gap between the material in current textbooks and material in
recent research. This gap often exists because the recent research is
usually published in & number or proressional journals with little or
no unitication nor standardization or terminology and symbolism. In
point set toPology, ror example, many orf the current textboocks do not

discuss noncontinuous transrormations extensively; however, much research



concerning certain classes orf noncontinuoug transrormations has been
published in recent years.

The purpose of this paper is to review and organize the :ecent
regearch concerning certain classes of noncontinuous transrormations in
& single paper with standdrdized notation and symbolism so that this
meterial will be more aveilasble and readable Tor the student of

topology .
FPROCEDURE

A careful survey and analysis orf the llterature to locate the
prohlished results concerning noncontinuous transrormations will be made.
The Mathematical Reviews, bibliographles or texts, bibliographies or
unpublished theses and the biblicgraphies or published papers. will be
used as primary tools ror locating source papers. This material will
then be presented in a systematic manner relating the resgults or each
source to results or & similar nature in other sources. Most orf the
proors given will not be original: however, the proors given by the
various authors will be modiried to obtain a standardization or notation

and symbolism.
SCOFE AND LIMITATIONS

The published materlal concerning noncontinuous transrormations is
guite extensive, Therer'ore, this paper will be limited to a relatively
small numbér or classes of noncontinuous transtormations, so that a more
COmplete discugsion caen be glven rfor these classes. The classes 0f non=

continuous transrormation Tor which a surricient volume of material has
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been published o justiry an attempt at correlation will be covered in
this paper. Since it is intended that this papesr be readsble by a
gtudent taking a rirst courge in topology, material rrom algebraic
topology and some branches of more advanced mathematics willinot'be
included. Occasional rererences to and use of more advanced coﬁcepts
will be made, however, Tor the purpose or giving & more complete
discussion. The use of such materials will be limited to cases in which
they will lead to particularly signiricant results concerning one or

more of the classes of transrormations covered by this study.
EXPECTED OUTCOMES

It is expected that as a result of reading this paper an individual
will become more aware 0f the current and past research in point set
topclogy. He should also dévelop an awareness or the continuous changes
through which this development has progressed and should anticipate
continued change in topology and related disciplines as new materials
gre developed through resesrch.

It 18 also expected that the pfesentation or ‘the published resulis
concerning certain clagses of transformations in one source will whet
the student’s curiogity ror rfuture sgtudy and help in the identirication

of areas for such study.



CHAPTER 1T
BASIC CONCEPTS OF POINT SET TOPOLOGY
INTRODUCTION

Throughout this paper it is assumed that the reader is ramiliar
with the basic notions, notations, derinitions, and operations used in
point set theory, and has a working knowledge or many o1 the basic con-
cepts of point set topology. Even irf an individual is rfamiliar with
many of these basic concepts, however, the dirrerences in definitions :
and approaches to the thepry of topology in wvarious texts may cause him
to encounter unnecessary Obétacles in reading and interpreting the
theorems and the proers. It is for this reaSOnrthat‘some 0T the basic
concepts of point set topology will be introduced in this chapter. In
general, the concepts given in this chapter will be concepts which will
be used rrequently in the remaining chapters. .Concepts which will not
be used extensively will be presented as needed. Since it is assumed
that the reader is ramiliar with most of the concepts in one rorm or
gnother, the proers will not be given Tor several of the theorems stated

in this chapter.
DE MORGAN LAWS

One or' the basic theorems Trom point set theory which will be use-

ful in this paper is DeMorgen's theorem (DeMorgen's laws). This theorem



will now be stated and a proofféupplied ror pa;t“(a)w This prooct is

given as an example or a proor by set cdntainmeqt,

Theorem 2.1. (DeMorgan's.Theorem). Let B be an index set, S &

set, and {A a collection or subsets of S indexed by B. Then

ra}aeB

1]

- U A S - A nd
S ocLéB x ozga( ol &

i

(b) S - aga A.a aLéB(S = Aa)a

Proor or {a).  Let p € (s~ U A). Thenp ﬁ Q%B Ad’ hence p ﬁ A

agga (4
rfor any ¢. This means P e (S - %3? ror every &, so that p € o[QB(S - %}L
and (8 - U A)ec N (5-4).
nd ( s o © s _a)

On the other hand, 1T p e‘agﬁ(s - Aa), P &S and p ﬁ @a ror any .

Thus p ¢ S and p ¢ U A Tt then rollows that p € (8 - U A ) so

agp @ aep o’
: S - A 8- U . s - , - »
that &QBK o) < ( ol Ay)+ Since (s ate)s a) O@B(s A, and
since 0@5(5 uﬂAa) < (s - agﬁ;Aa}, we have (S - Q%B Aa) = QQB(§ - Aa)o

The proor or (b) rollows in an analogous manner.
'BASIC TERMS OF BOINT®SET TOPOLOGY

The derinition or a topological space varies somewhat rrom text to
text. The rollowing derinition of a topological space will be

used in this paper.

Derinition 2.1. A set 3, together with a collection or subsets

called open sets, is called a topologlical space if and only if the
collection of open sets satisry the rollowing three properﬁies:

(1) S and @ are open sets,



(2) +the union or any collection or open sets is an open set,
(3) the intersection or any Tinite collection or open sets is open.

The collection or open sets is called the topology or S.

.Example 2.1. Let S = {a,b,c} and let the open sets or S be the
rollowing: @, {a}, {a}l U {v}, {a} U {c}, S. One can easily-verify‘that

S, with the collection or open sets listed, is a topological space.

Example 2.2. Let S be the set of real numbers, and let a and b be

any two elements or S with a < b. Derine the open interval (a;b) by
it N {

(a,b) = {x | a <x<b). Let a subsét U of S be an open set ir and only
ir U‘is the union of & collection or open intervals in S. Set § with
the open sets just detined is & topological space.

The topology or S derined in Example 2,2 is called the usual top=~
ology for S.

Givenva set. 8, several topologies can be derined ror S, The next
example gives another topology that can be derined ror the set or real

nunbers .

Example 2.3. Let S be the set or real numbers, and let a subset U
or 5 be an open set irf and only ir the complement or U in S is tinite.
Set S with the collection orf open sets thus defined is a topological

space,

In Example 2.1 all or the open subsets or space S were listed. We
can rreguently avoid listing all or the open sets by derining a sub-
collection or' the open subset or S which "generates” the entire

collection or open sets or S. Such a subcollection or the open sets is



called & basis of S. Let us now give a formal derinition or this

concept.

Derinition 2.2. Let S be a set and let ¢ and @ be two collections
or' subsets or 3. Then the collection ¢ is said to generate the collec-
tion @ if and only ir, ror every K € w, K is the union or & collection

or elements of c. Collection ¢ is said to form a basis ror w.

In Example 2.2 the topology or S was derined by iirst defining the

collectidn or open intervals in S as & basis ror the open sets.

For & glven topological space, it may be possible to derine more
than one basis ror that topological space. The rollowing discussion

will illustrate this ract.

Example 2.4. Let S be the Euclidean plane, let x be an element

orf S, and let € > O be a real number. Der'ine a spherical neighborhood

or radius € about x, (Se(x)), to be the set of all y € S such that

,d(x,y)l< ¢ vhere d(x,y) means the distance rrom x to’y.‘ The real number
€ is called the radius.of SE(x)a The collection or all spherical neigh-
borhoods about all points or 8 can be used as a basis ror a topology or

S, The collection o1 spherical neighborhoods about all points or S with

rational radii generates the same topology for S.

Closely associated with the open sets or & topological space is

the collection or subsets called closed sets.

Definition 2.3, A subset K or a topological S is said to be closed
if and only if 8 - K is open. |

A subset H or a space S may be open, closed or both open and closed.
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It is also possible Tor a subset H orf a space S to be neither open nor

closed.,

Example 2.5. Let S = {a,b,c} with every subset of S open. Then

‘every subset of 8 is also closed,

Example 2.6, Let S be the set orf all real numbers with the usual
topology and let &, b € S such that a <b. The set [a,b) =

{x | a <x <1} is neither open nor closed.

Derinition 2.k. Ir 8 is & topological space and ir x ¢ S then U

is said to be & neighbdrhdod of x if and only ir U.is an open set con-

taining x.

When working with open and/Or closed sets, it is rrequently userul
to work wlth characterizations or these sets other than the derinitions.
The next two theorems give characterizations of these sets which are

of'ten used.

ThHeorem 2.2. A subset G of a space S is open irf and only i, ror

each point p ¢ G, there exists a neighborhood Up or p contained in G.

Proor': 1If G is open, then r'or each point p € G, G is a neighbor-
hood of p such that G is contained in G.

On the other hand, if' ror each p e‘G there exists a neighborhood
-Ub or p contained'iq/G, thén G=_U, U . Hence G is open as the union

PEG P
or open sets.

Derinition 2.5. Let H be & subset of space 5. Then p is a limit

point or H ir and only ir every neighborhood U or p contains at least
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one point q of H such that g # p.

Theorem 2.3. A subset H of a space S is closed ir end only ir H

contains all of its limit points.

Proor's Let H be a closed set and let x be a limit point or H.
Assﬁme X ﬁ H. Then x € (8 - H) which is an open set. By Theorem 2.2
there exiéts & neighborhood U of x such that U is contained in (S - H).
This contradicts the ract that x is a limit point or H, hence we must
conclude x & H.

Now suppose H is a subset or' S such that H contains all of its
limit points: Consider (S - H). For any x € (S - 'H), x is not a limit
point or H, since x ¢ H. ihus, there exists some neighborhood U or x
such that U is contaiﬁed in(S - H). By Theorem 2.2, (S - H) is open.

‘Hence H = 8 - (S - H) is closed.

The r'irst portion or the proor or Theorem 2.3 is an example of a
proor by contradiction. This technique will be used Treguently through-

out this paper.

Derinition 2.6. Ir K is a subset orf 8, the closure of X is the
union or set K with all or its limit point. The closure or K is denoted

by K.

A concept closely associated with the concept or a limit point is

the concept or a boundary point.

Derinition 2.7. A point p is a boundary point or a subset H of a

space S 1f and only it every neighborhood U orf p contains at least one
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point of H and at least one point not in H.

Given a topological space'S and & subset K of 5, we can form a new
topologioal space using K as the set of points for the new.space and the
open ‘sets of S intersected with K as the open sets in X. The following

definifion will give.a formal characterization of this space.

Definition 2.8. Let S be.a topological space, let ® be the collec-
tion of open sets in S, and let K be a sﬁbset of S. Then the set K with’
oollection {w N K, where {® N K].denotes the collection of sets of the

s

form H n K, H € w, is a topological space. Such a space is said to be

a subspace 9£ §°

One can easily verify that the collection {w N K} described in
Definition 2.8 satisfies the-thrée conditions for a topology. One can

also verify that a basis for S will generate a basis for space K.

Example 2. 7 Let S be toe space of real nunbers w1th the usual
topology and let T --[O 1] = {x I 0<x< l] Let the topo%ogy'of T
be the topology of S 1ntersected with set T. Itbis interesting.tobnoté
that sets of the form [0,y) = : {x I 0<x<y, y<1} are ‘open in T

'although they are neither oPen nor closed in 3.

‘Given two topological spaces, one can describe a new topological
space_using the ca;tesian product. Qet us now give a formal definition

~ for this space which will'be used fréquently in this paper.

Defihition 2.9. Let S and T be sets, The set S >< T =

{Cx,y) l X €S, ye T] is called the cartesian product of sét§ S and T.
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Derinition 2.10. Let S and T be topological spaces. The set SXT
with U XV}, where [U>( V) = {(UXV) [ U open in S, V open in T}, as

the topology, is called the topological product or S and T.

One can easily veriry that {t!)(Vj satisries the three conditions

Tor a topology.
SHQUENCES

When a topology is placed on a set S, certain subsets or S take on
signiricant properties. For example, certain subsets become open or
closed sets. A subset A or S can also take on signiricant properties ir
it is indexedlfy the set or positive integers. Sets indexed by the
positive integers will be used rrequently in this paper. Thererore, a
rormal derinition or this concept will be stated and certain basic

theorems concerning this concept will be given.

Derinition 2.11. A sequence is a set A indexed by the set I or all
positive integers. The nth element or the sequence is the element a
which is indexed by the integer n. The nth element is denoted by &, and

the sequence is symbolized by {an}, where A = U a .

It is important to note that a sequence is not just a set or points,
but is a set or points indexed by the positive integers. The signiri-

cance or this ract 1s that the same set indexed in two dirrerent ways

gives rise to two dirrerent sequences.

Definition 2.12. Let S be a topological space and let {an] be a

sequence'of points in S. Then {an} is said to converge to the point p

or S ir and only ir, given any neighborhood U or p, there exists a



positive integer N such that & € U ror all n > N, Ir there exists a
point p ¢ S such that {an} converges to the point p then tan} is said

to be a convergent sequence. Ir fan} converges to a point p € S then

we say limit a = p. Point p is called the sequential limit point‘of

fan}.

Derinition 2.13. The geguence {ni} ig a subsequence g£ the

sequence of positive integers if and only ir the following conditions

hold:
(1) Each'n, is a positive integer, and
(2) For each positive integer i, n, <y -

From condition (2) it rollows at once that n, > i ror every i € I.

i

Definitien 2.14. The sequence {bn]’is a subseguence of {an} ir
and only if there exists a subsequence {ni} or positive integers such

that b, = a_ for every i.
1 ni‘

. Theorem 2.4. If point p is a sequential limit point or the
sequence {an}, and ir [bn} is a subseguence or {an], then p is a

sequential limit point or {bn}.

1k

Proor: Let p be a sequential limit point of {an] and let U be any

neighborhood o1 p. Then there exists a positive integer N such that

e € Uror any n > N. Consider b, wvhere i1 > N. Sincedb, =a_ , and
n i i ny

since n, >1 >N, b, € U. Thus, p is a limit point or {bn},
CLASSES OF TOPOLOGICAL SPACES

In the remaining chapters or this paper, the topological spaces
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used will or'ten have properties not common to a8ll topological spaces.
In the followingvdiscussion some of the important classes or topological

spaces will be defined™™

Derinition 2.15. A topological space S iz said. to be a Hausdorr?
space if and only if, given any two distinct points p, q or S, there

exigts disjoint open subsets U and V of S such that p e U, q € V.

The next theorem is an example of' a theorem which is true for a
topdlogical space with a particular property, but is not true r'or top-
ological spaces in general. The particular property in this case.is
that the space be Hausdorrr. This theorem also gives the second
characteristic of a sequence which will be used extensively in the

remainder of this paper.

Theorem 2.5. Let {an] be a sequence or points or a Hausdorf:i space
S, Ir this sequénce converges to a point p ¢ S and also to a point

qQ € S, then p = g.

Proor: Suppose P % g. Since S is a Hausdorrr space, there exists
open sets U and V containing p and q, respectively, such that UN V = ﬂ.
Since {an} converges to both p and q, there exists integers Nl and Né
such that n > Nl implies an ¢ Uand n > N2 implies an‘e V. For n >

meximum {N,, Naj we have & e UN V. This is a contradiction, hence we

must conclude p = q.

The next example shows that this theorem is:not true for topologi-

cal spaces in generé.l.



16

Example 2.8. Let S

[0,1] and let U be an open set in [0,1] ir

{1/n}

it

and only if U = [0,1], U

g or [0,1] - U is rinite. Let {a ]
for n =1, 2, 3,+. Sequehce {an} converges to every point p gvS with
this topology, for any open set U that contains p € S will contéin all
except possibly a finite number or points or {ﬁn);._fhus if all points
of [anl‘bélongﬁto;U, let N = 1, and ir all but & finite number or points

of {an} belongs to U, let N be the maximum index or the elements of [an}

not conteined in U..

Derinition 2.16. A space S is said to be regular ir and only ir,
given ahy closed subset F or 8 and any point p‘bf S not in F, there

exists disjoint open setsU and V in S8 containing F and p, respectively.

Derinition 2.17. A space S is said to be normal ir and only 1if,

1 and F2 or S there exisﬁs dis~-

and Fg,respectively.

given any two disjoint closed subsets F

Joint open sets U and V containing Fl

ﬁany important topological spaces such as the real numbers with the
usual topology and Euclidean n-gpaces are”Hausdorff, reguler and normal.
- The rollowing example illustrates the ract that an arbitrary topological

space need not posses any or these properties.

Example 2.9. Let S = [0,1] = {x] x is & real numbér and O <x <1},
and let U be an open set if and only ir U = ¢, or the complement or U is
Tinite. One can easily verify that set S with this topology is a

topological space. Space S 1s neither Hausdorrr, regular, nor normal.

_Berore defining'%he next class or topological spaces it will be

)

necessary to detfine mutually separated sets. This corcept will be
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important in the remainder or this paber,as well as being userul in

derfining completély‘normal gpaces.,

Derinition 2.18. Two subsets A and B-ot space T are said to be

mutually separated,if.énd'only 1IPAL B, BEB, ANB =0 and AN §,= B

Derinition 2.19. -A space. S is sald to be cqmpletely normal 1r and
only if, gi#en any two mutually separated subsets A and B of S, there

exists disjoint open setsU and V containing A and B, respectively.

For an example or a space that ls normal but not completely normal

see [8,191].

When working with a space such as the real numbers with the usual
topology, one orften uses the fact that s set consisting of a 'single

point is closed. A space having this property is said to be a Tl space.,

Y

Definition 2.20. A space 8 is saild to be a Tl space 1f and only if

every point p in S is a closed subset or S.

The spaces described in Examples 2.8 and 2.9 are Tl’ The space

Y

defined in Example 2.1 is not T, since {a} is not closed.

Some preliminary derinitions will now be given in preparation for
the derinition orf rirst and second countable spaces.

Derinition 2.21. Two sets X and Y are said to be in & one-to-one

N

correspondence 1r the elements of X and ¥ can be paired in such a way

YN

that distinct elements in X are paired with distinct elements in Y, and

~

distinct elements in Y are paired with distinct elements in X,
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Definition 2.22. A set A is said to be countable ir A can be

placed into a one-to-one correspondence with set I = {1,2,3,4,...} or

with any subset or I.

Definition 2.23. A collection ¢ of neighborhoods of & point p in
a space S is said to be a basis at p ir and only ir, given any neigh-

borhood U of p in 8, there exists & V € o such that V c U.

Definition 2.2%. A space S 1s said to be first countable ir and

only ir', for any point p in 8, there exists a countable basis at p.

Derinition 2.25. A space S is sald to be second countasble ir and

only ir there exists a countsble basis for S.

From the derinitions orf rirst and second countable spaces, it
rollows that a second countable space is rirst countable. The next

example shows that the converse 1s not true.

Example 2.1C. Let S be the set of real numbers with the discrete
topology. That is, each point or S is an open set. For each point x in
S the open set (x} constitutes a countable basis at x. Since set 5 is

not countable, space S 1s not second countable.

One of the most important classes or topological spacesis the class
of metric spaces. This class of spaces will be derined in Derinition

2.29. BSome preliminary derinitions will be presented rirst.

Definition 2.26. A rule 1 is called a Transrormation or a set S
into a set T ir and only ir I associates with each element x in S a

unique element y of T. This association is usually symbolized by
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r(x) = y. Set S is called the domain or r and T is called the range or
T.
The words mapping and runction will be used as synonyms ror trans-

!

Tormation.

Derinition 2.27. A set § is said to be a{metric set ir and only ir
there'is assbciated with S a mappingp from 5 ><S inte R, whera‘R‘is the
space of gll real nuﬁbers, having the rollowing iroﬁerties ror e&ery
tréple Xy, Vs 2 of elements in S.

(;) p{x,y) >0, andp (x,y) = O ir and only if X = Vs

(2) p(x,5) =p(y,x), and

(3) o (x2) <p(y) +p (v,2).

This maéping is called the metric ror S.

Example 2.11. For the set R or all real numbers, the usual metric

i

function is p (x,¥y) » For the Fuclidean plane the usual metric

x -y

. \ . 3 o 2 Ty o 2 _ :
function is p (x,y) = ’\/(xl x2) + (yl y2) , Where x = (xl,yl),
y = (X23y2) °

Intimately associated with a metric set S are the subsets or S

known as spherical neighborhoods.

Derinition 2,28, Let K be a metric set. Then with each point
P € S and each real number r, we éssociate a subset Sr(p) called a

spherical neighborhood of radius r.about p. A point g of K is an

element of Sr(p) ir and only irf o (p,q) < r.

Derinition 2.29. A metric space is & metric set with the collec-

tion w or all spherical neighborhdbds in S as a basis ror its topclogy.
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For a proof that a metric set S with the collection® as its -basis

is a topological space, see [8,60].

Many relationships exist between and among the various classes or
topclogical spaces that have been derined above. The rollowing collec-
tion of theorems are examples of such relationships which will be used
in this paper. Proors will not be given, since these theorems are

stated and proven in most elementary texts on point set topology.

Theorem 2.6. Every Hausdorfr space is a T

) space (8,641,

Theorem 2.7. BEvery regular-T

, space is Hausdorrf (18,1111,

Theorem 2.8. Every regular second countsble Hausdorrr space is

completely normal [8,111].
Theorem 2,9. Every completely normal space is normal (8,110].

Theorem 2.1C. Every second countable space is rirst countable

\[8,107].
Theorem 2,11. Every metric space is Hausdorrt [8,61].

Oﬁher theorems stating relationships that exist between and among
the spaces in the varioﬁs claéses derined above will be stated and
rererences given as needed in the remaining chapters.

It should be noted that the space R or real numbers with the usual
, space, a rirst

countable space, a second countable space, a normal space, a completely

topology is & metric space, a Hausdorrr space, a T

normal space and a regular space. As a consequence many Or the theorems



21

presented ip”thisbpaper can-bé stated as theorems fér functioﬁtdefined
on thé Sbéée of' real numbers.

Two othergsignfficént prope;ties that a topo;ogigal spacevand/or a
subset of a topological épacejm%y have are compactness and connected-

ness.

Definition 2.30. A collection of sets {D ] is said to bea
covering of a set A it and only ir A< U {D.}. Ir, in addition, each

of the sets Qi‘is an open set, then the Qollectionvfgy] is said to be

an‘openféoverihg‘gihé; ' Any subcollection or {Qj} covering A is said to

be a subcovering or A.

Definition 2.31. Let A be a subset of & space S. Then A is said
t0 be ggmpadtfif and only ir every qpenbcovering or A contains a ffﬁite

.subcovering or A.

Closely assoclated with cdmpact subsets of a space S 1s a class or
§dbsets éélled thé countably compact subsets of S, Thé derinition ror
a~bougtablylcd@pact subget of d topblogigalvgpace will now be presenfed,
The relati&nShips between compact and countably compact subsets will bé

givén~in Chapter b .

. Definition 2.32., A subset A of a space S 1s sald to be couﬁtably
compact ir and'only it every infinite,subset or A has at least one limit

poiht in A.

Derinition 2.33. Let A be a topological space or a subset or a
tolepgical space. Then A is sald %o be connec@gé ir and only ir A can

not be expressed as the union or w0 mutually separated sets.
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TRANSFORMATIONS

_‘.The~d§finition of a transformation f from a set S‘iﬁfp a set T was
giyen in pefinition 2.26. When workingfﬁith a particular problem one
usuallyvréquifes that a mapping from S.into T satisfies additional con=
ditions. One might, for instance, require that the mapping f be one-to-
one, onto, or continuous. Let us now define these-concepts and other
concepts gssociated ﬁith functions which will be used ffequently in this

paper.

Definition 2.34, ILet S and T be sets and let f from S into T be &
mapping. Then for any subset A of S, we define f(A) = xgAf(x). The

subset £(A) of T is called the image of A under f.

Definition 2.35. Let S and T be sets, let £ from S into P be a

mapping, and let B be a subset of T. We define f-l(B)'= xgs’xf(x)eB'

The subset £ L(B) of S is called the source or inverse of B.

Example 2.12. Let S = T be the set of real numbers and let A =
{1,2}, B = {1,4}, where A is a subset of S and B is a subset of T.
Define f from S into T by f(x) = %2, Then f(A) = B and f-l(B) =

{41, -1, +2, -2}. Note that £ £(A) £ A.

Definition 2.36. Let S and T be sets. A mapping f from S into T
is one-to-one if and only if, for every y ¢ f(S), fnl(y) is a single

point.

Definition 2.37. Let S and T be sets. A mapping f from S into T

is an onto mapping if and only if f£(S) = T.
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»A.mapping from a space 5 into a space T can be modified in ;everal
WAYS . We may change I by changing the rule og éssoqiation, or we»may
change the set S on which £ is definéd, ’A situation that will frequent~
’ ly arise in this paper is that we will want to consider fjdefined on a
subset A or S. This modirication or r is known as the restriction or r

to A.

Derinition 2,38. - Let S and T be sets, let r rrom S into T be a
mapping, and let A be a subset or S. A mapping g rrom A into T is said

[Pt U P

to be the réstriction of T to A irf and only ir. 7(x) = g(x) for every

x € A. The restriction of © to A is rrequently denoted by 7 } A,

'Examplé 2,13,  Let 3, T and T be derined as in FExample 2.12, and
let A =n{x ’x € S and x > 0}. r ]A‘is 8 One-to~one mapping,‘but T de-
fined on S is not. One rrequently uses a restriction or a mapping to

pbtain some such desirable property.

¥

The properties of functions derined thus rar have been properties
or functipns from a point set into a point set. If in addition S and T
are top@logical spaces, certain other properties ror runctlore can be

derined. One or the most fundamental of the properties ror runctiomsis

continuity.

Derinition 2.39. A mapping T from & space S intc a space T'is
said to be continucus at a point p in S ir and only ir, ror every open

set U in T containing f(p), there exists gn open set V in_S contgining

p such that (V) ¢ U.

1

Derinition 2.4C. A mapping T rrom a space S intota space T is said
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t0o be continuous if and only if I is continuous at every point » in S.

Other properties or rfunctions rrom one topological space into

another will be derined in the‘following chapters as needed.



CHAPTER IIT

OPEN AND.CLOSED TRANSFORMATIONS

INTRODUCTION

Given two topological spaces § and T, one is orten concernad with
whether or not S and T have similar structures ﬁifh gimilarity or struc-
tures derined in terms or mappings. In Chapter IT, continueus, one-+to-
one, and onto functions were defined. Each o thése conditions is a
strong condition to place on & function; hbwever, even ir a function
which is éontinubus} cne-to-one, and onto can be derined from.S5 onto T,
spaces S and T may have very dissimilar propefties as is shown by the

rollowing exemple.

Example 3.1. Let S be the unit interval O < x < 1 with the dis:
crete topology. That is, let -every point of 8 be an opén set, Let T
be the unit interval O < x < 1 with the usual topology and derine a
mapping I from S onto T by:

f(x)'; x for every x € S,
This runction is egsily seen to be continuous, one;tonone,and onto.
Héwever, it is quite obvious that spaces S and T are dissimilar, éince
the respectively topologies are ot a dirrerent nature. In rfact, many
of the oOpen sets in'T are not open in S.

IT one requires, in additien to the three conditions previously

25
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mentioned, that a funcfion map open sets of S onto open sets‘vaT? one
will Pind that S and T have mary properties in common. »In particgla;,

it will be implied inHTheérem 3.14 that the open sets of S and T will

be placed into s one-to-one correspondence. Formal definitions rfor

these concepts will now be presented.

Definition 3.1. Leﬁ T be a mapping from a space S into a.space‘$o
The mappihg r ;s sald to be Open 1r" and only ir the image or every open

set in S 1is open in T,

Definition 3.2, A mapping 1 Irom a space 3 onto & space T is said

to be a homeomorphism irf and only ir r is one-to-one; onto, open, and

continuous. The'spaces S and T are said to be homeomorphic.

The word homeomorphism is.derived I'rom Greek and means o1 a similar
rorm or structure. The following racts suggest that the térm bomeomor—
phism is appropriate. It spaces S and T are homeomorphic and ir S is a
metric space, a Hausdorrr space, a normal space, a completely normal
space, a tirst counteble space, & second countable space, or a Tl"space,
then T is orf the same type. The open subsets of S and T will be in a
énewtouone correspondence as will the closed subsets, ﬁhe connected sub-
sets and the compact subsets. This is by no means a cogplete listing or
the pfoperties S.and.T will have in common, however, a complete discus-y
sion or the properfies of homeomorphisms is not the'purpose or this
paper. Pfoofs oT the above statements and fufther propert;es or homeo-
morphisms can fe Tound in [8].

Closely associated with the class or open mappings is the class of

mappings which map the closed gubsets orf the domaln space onto eclosed
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subgets or the range space.

Definition 3.%5. A mepping r rrom a space 3 into a space T is saild.
to be closed ir and only ir the image or every closed subset or S is &

closed subset orf T.

It will be shown in Thecrem 3.10 that a homeomorphism could also be
defined as o one-to-one, onto, closed, continuous mapping rrom a space“S
onto a space T.

Open and closed runctions have been introduced here as Tunciions
possessing one o the properties of a homeomorphism. The purpose of
this chapter is to give a systematic presentation or éther interesting
properties these functions are known to possess. The following discu-
sion will show that a runction may be open, closed or continuous with=-
out possessing either or the other two properties.

The runction t det’ined in Example 3.1 is continuous, however, it
is neither open nor closed. To veriry that r is not open, consider a
point p in S. The set {p) is open in 8, but {r(p)} = {p} is not open
in T, hence T 1is not open. Any subset of 5 is closed, including sets
o the form & <x <b, where 0 <a <b <1l. The images of such subsets
are not closed in T, hence T is not a closed mapping. The rollowing
examples show that it is possible to derine functions which are open
but not closed or continuous, and Functions which are closed but.not

open or continuous.

Fxample 3.2. Let S and T be the closed intervals [0,2] and [0,1],
respéctively, each with the usual topology. Define a Tunction I rrom

S into T by:
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T{x) = x, i 0 <x <1, and

f(x) =x~1, ir 1 <x < 2.

The function © is open, hut is neither closed nor continuous.

Examplé 3.3. Let 8 = T be the open interval (C,1) with the usual
topology. Define f‘frém,é into T as rollows.
£(x) = 1/4, 1¥ x is irrational,
r{x) = 3/L, ir x is rational.
This runction maps all sﬁbsets or 8 onto one or the clesed subsets {l/h},
{3/41 or {1/h, 3/4} of T, and is thus closed. The Tunction r is aeither

open nor contipuous.

Cne can alsc construct examples of runctions possessing any two of

these three properties but not the third.
CHARACTERIZATIONS

The rollowing discusslon gives characterizations or open runctions
and closed functions. Necessary derinitions and preliminary theorems

will be stated as needed in the development of these characterizations.

Theorem %.l. A Tunctiom I Irom & space 8 into a space T is closed

ir and only ir ©(R) D r(R) where R is any subset or S.

Proof; wAssume T is closed and let R be any subset or S. Since R
is closed; aﬁd since T is a closed mapping, f(ﬁ) is a closed subset or
T. Thus t(R) = ©(R). Now R © R, so that £(R) < #(R). Tt now rollows
that T(R) < T(HY = r(R). |

Now assume T(R) < r(R) ror any subset R or S, and let H be any
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closed subset of S. Since H is closed, H = H so that r{H) = r(H). By
hypothesis T(H) & F(H) = (), which implies r({H) is closed. Thus r is

8 closed mapping.

Definition 3.4. The interior or a set é,(Int A} is the union of

all open sets contgined in A.

The rollowing theorem rollows immediately from the derinition orf

Int A,

Theorem 3.2. Let A be any subset orf a space S, then,
(1) Int A <A,
(i1) 4f A Int A, then A is open, and

(i1i) the set A is open ir and only ir Int A = A,

Theorem %.3. A runction I from a space S into a space T is open

if and only i7 ©{Int A) © Int r(A) for any subset A or S.

Proot’, Asgsume ¥ is cpen and let A be any subset orf S. Since Int A
is open by Theorem 3,2, and since r is open, P(Int A) is open. Further-
more, ©(Int A) C £(A), since Int A € A. Thus f(Int A) is an open subset
of £(A), so tha£ r{Int A) < Int £(A) by definition.

Now assume r{Int A) C Int z(A) Ffor any subset A or 8, and let G be
any open subset of S. By Theorem 3.2, G = Int G, so that (@) =
£(Int G). From the hypoﬁhesis, £(Int ¢) < Int r(G), which implies r(G)
< Int £(G). It now rollows rrom Theorem 3.2 (ii) that ©(G) is open, so

that © is an open function.

A gecond characterization or open transrormaticns can be expressed
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in terms of the limit inverior of & sequence of subsets of & space 5.

Definition 3.5. Ir {Xn} is & sequence of subssts or & space S,

then the limit inrerior (lim inr) {an is the set of all x such that,

for each neighborhocd U orf x, U contains points from all but & rinite

number of the sets in {Xn}e

The following theorem will be used in the proor of the next

charscterization theorem.

Theorem 3.4, I S is a rirst countable metric space and if x is a
l1imit point of a subset A of 5, then there exists a seguence {Xn} ot

distinct pointsof A that converges to x. [8,102].

Theorem %.%5. Let 8 and T be topological spacesand let 2(S) = T be
an opén transrormation. Then ror every convergent sequence {yn} in T,
the relationship fal(yﬁ C 1lim int {fal(yn)} holds, where y = limy .
If in addition, T is a Tirst countable metric spacé? the converse is

true.

Proof. Let.r be an open transformation r(8) = T and let fyn} be a
convergént sequence or points in T with y = lim Ve Suppose x € fml<y)
and that U is an open set containing x. Since © is an open transforma-
tion and x ¢ fal(y), it rollows that r{U) is an open set in T containing
y. Now y = lim yn implies there exists some positive integer N such
that y € ?(U) ror all n E‘No Point y in £{U) ror all n > N implies
there exists an X, in U such that f(xn} = ¥ fér all n > N. - Therefore,
for all n > N, U N f"’l.(yn)% P so that x is an element of 1im inf

{fﬁl(yn)} and hence fﬂl(y) < lim iﬁfA{fml(yn)}o
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Now let T be a Iirst .countable metric space with the property that
- o n . TS
for every convergent sequence {yn} in T with y = 1im Yy 1 (y) C lim

I
inT ' T4

yn)a Assume T is not an open mapping. Thenvthere must eiist»
some open set U in S such that (U} is nbt'cpen in T. Now z{U) not open
in T implies there exists some y in f(U} such that y isia limit point of
T - f(U}q Since T is a first countable metric space, there must exist,
by Theﬁrem 3.4, a sequence of distinct points {yn} in T - #{U} such

that v ﬁvlim Y, E@int y ig an element or r(U), so that there must
exist some x in U such that v(x) = y. Now Yy is not an element of 7(U)
for any n, so that fml(yn) NU =f ror every n, By hypotheéis, however,
X is an element orf lim in? {fml(yn}j which implies U must contain points
from &ll but a Finite number of the sets {ful(yn)}° This is a contra-

diction, hence T must be an open mapping.

Theorems %.3 and 3.5 give characterizations or open transf@rmations
Which are stated in terms of the interior or a sét and the limit inferm
ior or a éequence 0T subsets. o the domain sﬁaeeo ,A third charécteriza%
tion theorem ror opén transrormations and & second characterization
theorem fér closed transformations can*be stated in terms of inverse

gets,

Derinition 3.6. Given space S and T and a mapping T rrom S into T,

a subset Q of S sald to be an inverse set if and only ir fnl(f(Q))_: Q..

Definition 3.7. IT A is a subset of a space S, then a subset H of

A is said to be closed with respect to A ir end only 1r H contains ail

or its limit points which belong to A.
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Theorem 3.6. [17] A trapsrormation r from a’'space S into a space

T is closed if and only i I is closed on. every inverse set'Q or S.. N

‘Proor'. Let T be a closed transrormation from £ into T, and let Q
be an izxverse gset in S. Let H be & subset o Q@ that is cleosed with
respect to Q. Then H = B N Q. Ey hypothesis, ﬂ(ﬁb is closed in T.

Now r{H) = (N Q) = £(B)N ’f(‘Q) 1 27,146]. Since £(H) is closed,

r(H) = ;?ET, so that r'(H) = (H) N'r(Q). By Theorenm Balg'fEH)<: 7(H) =

vy

() so thét;ﬁ”‘?(ﬁ') n f(Q,)) c (z(E) N ij(Q,)) = 7(H). On tﬁe other hand,
f(H)<:_(§T§7vﬂ £{Q)). For let y be an element or r(H). Set fal(y) < Q,
since @ is én inverse set, hence y is in (£(E) N £(Q)) C:{ETﬁﬁaﬂ f(Q))om
Thus £{H) = £(H) 1V £{Q) which implies r(H) is closed with respect’té
r(Q)o Thererore, ¥ 1s closed with respect to Q.

On the other hand, ir £'is closed with respect to every inverse
get in S, then, in particular, r is cloged with respect tb g =1 (r(s))

Thus © is a closed mapping.

Définition 3.8, If A is a subset of & space S, an@ H is a subset

of Ay then H is said to be open with respect to A ir and only ir

H= TN A for some open set U in S.

Theorem 3.7. [17] A transrormetion r from a space S into a space
T is open ir and only ir I is. open with respect to every inverse set in

S.

Proor. Let Q be an inverse set in S and let £ be an open trans-
rormation on S. For a set H which is open with respect to §, H = vnQg

ror some open set U in S, Thus r(H) = £(UN Q) = (r(u) N f(Q)') [ 27,1461,
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Since T is-an open mapping, £(U) is open in T and hence r(H) is open
with respect to £(Q).
Conversely, if a mapping I from S into T is open with respect to

£ (2(8)).

il

every inverse set in S; then 7 is open on 5
SOME GENERAIL. PROFERTIES OF CLOSED MAPFINGS

Let us turn now to a consideration of some general properties or
closed mappings. The Tirst two theorems in this section make use of a

class of subsets called conditiconally compact subsets.

Derinition 3.9. A subset A or a topological space S is said to

‘be conditionally compact iT and only ir every infinite subset or A

has a limit peint which belongs to S.

Theorem 3.8. (171 I the transformatibn T from a space S onto a
space T is closed, and if F is any conditionally compact subset of T,
then there exists a conditionally compact subset H of S such that r(H)

’:;Fv

Proor. Let H be any subset of fnl(F) such that T is ohewtofone
Trom H onto F; Assume H is not conditionally compact; Tﬁen there
éiists an inrinite shbset A orf H such that A has no limit point in S.
Now set A and all éubsets of A are vacuously closed éince A has no limit
points. Set f(A) has inﬁinitely many points in F, and.since F is condi-~
tioﬁally compact, r{A) must have a limit point t in F. Furthermore,_f(&
is a closed subset of T aé-the image or a closed subset under a closed
mapping, so that t must be an element of r(A). Let s = fnl(t) N A and

‘consider set A - {s}. Set A - {s} is closed in S, hence



3h

£(A - {8}) = £(A) - {t) must be closed in T. But the set r(A) - {t}
has the limit point t. Thig is a contradiction; hence H must be con-

ditionally compact.

Theorem 3.9. {17] I function ¥(8) = T is & closed mapping I'rom a
space S onto a countably compact space T, and it fwl(y) is conditionally

compact Tor sach y in T, then S is countably compact.

Proof’. Assume S is not countably compact. Then there exists an
inrinite sequence {anj or poihts in 8 such that no point or S is a limit
point of {an}o Now {an} must contain peint from only a finite number
f"l(y), y in T. Otherwise, {an} would contain an inrinite number or
poinfé from 8t least one fwl(y), and hence, by hypothesis} {an] would
have a limit point in 8. Thererore, the image éet {f(an)} must be an
infinite subset of T.

Since T is countably compact, {f(an)} must have a limit point t in
T which belongs to .{f(an)], Now consider the set {{an} - (r‘."l(t)n {an}}
which is vacuously closed in S. The set f({an} - (£=1(t) N {an})) must
be a closed subset of T. But this set does not contain the limit point

t, which gives & contradiction. Thus 8 must be countsbly compact.
TRANSFORMATTONS THAT ARE BOTH OPEN AND CLOSED

In examples 3.1, 3.2, and 3.3 it wes shown that a function might
be open without being cleosed or continuous, a Tunction might be closed
without being open or continuous, and that a function could be contin-
uous without being open or closed. These facts naturally lead one to

inquire what conditions must be placed on & function having one of
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these properties to insure that runction will have one or both or the
other properties. The rollowing discussion is concerned with conditions

that imply a Tunction is both open and closed.

Theorem 3.10. If F(S) = T is one-to-one then T is open ir and

only if £ is closed.

Proof. Suppose £(8) = T is one-to-one and open, and let H be any
closed subset of S. Set(S - H 1s an open set in S, and since T is an
open mapping, ©(S - H) is open in T. Since T is one-to-one and onto,
T(H) must equal T - ©(S ~ H), which is closed as the complement of an
open subset of T. Thus the image of a closed subset Of § is closed in

T, and £ is a closed mapping.

The proor that & one-to-one closed mapping is open follows in an

analogous manner.

Theorem 3.10 implies that & homeomorphism could be defined as a
one-to-one, onto, continuous closed mepping rfrom one space into another.

For a sequence {Xn] of subsets or a space S; the derfinition of the
limit inferior of [Xn] was given in Definition 3.5. A related subset
associated with the sequence {Xn] is the limit superior {Xn]° This
concept will be defined and some prelimingry results will be demonstra-
ted in preparation ror the next theorem concerning open and closed

mappings.

Definition 3.10. Ir {Xn} is a sequence of subsetsor a space S,

the limit superior (1im sup) of {Xn] is the set of'.all x such that ror

each neighborhood U of x, U contains points from infinitely many of the
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sets in {Xn]a

Example 3.4. For the sequence {Xn} where each X  is the set
{(-1)" + 1/n}, both + 1 are elements or the lim sup {x_ 1, but neither
is an element of lim inf {Xn}° Thus lim sup {Xn} does not necessarily

equal lim inr {Xn}a

Lemmz 3.1, ¥For any segjuence {Xn} or subsets of a topological

space 8, lim in? {Xn} C lim sup {Xn}a
Proof. ‘The proor rollows immediately Trom the definitions.

Thecrem %.1ll. For any sequence {an or gubsets of & topological

space, both lim int {Xn} and lim sup {Xn} are closed.

Proor., Suppose x is a limit point of lim inf {Xn}a Then, any
neighborhood U of x contéins g point y of lim inf {Xn}° Since U is an
open set containing y, and since y is an element of lim inf {X }, U
must contain points rrom all but a rinite number of the sets in {Xn3°
This implies x iz an element o lim inr {Xn}y s0 that lim in? an} is
closed.

The proor ror lim sup {Xn] rollows in a similar manner.

Definition 3.1l. Let {Xn} be a sequence of subsets of a topologi-

cal space. If lim inT {Xn] = lim sup {Xn} then seguence {Xn} is said

to converge to limit {X } = lim in? {X } = lim sup {ano

Theorem 3,12, [17] Let S and T be Tirst countable metric spaces.
The closed transformation £(S) = T is open ir and only if for each

sequence {yn] in T converging to a point y in T,
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Lim {27 (y)} =2 ().

Proor. Let I be a closed and open mapping from S onto T, and let
{ynl be a sequence of points in T converging to a point y in T. Since
T is open, Theorem 3.5 implies fml(y)<: lim int {fml(yﬁ)}y and Lemma 3.1

implies that fm;(y) C lim in? {fwl(yn)} C lim sup {fnl(yn)}c Let us now

show that lim sﬁp ffml(yn)} c ;‘;'l(y)o Suppose there exists a point x in
lim sup {fal(yn)} - fwl(y)o Let U be a neighborhood of x. Set U con-
tains points Trom infinitely many of, the sets fml(yn), and hence t(U)
contains inrinitely many points or {yn}° The set f<ﬁ) is closed by
hypothesis, and hence must contain the limit point y of {yn}a There-
tore, (U N f“l(y)) £¢., 17UN f“l(Y) = §, then one could choose a
neighborhood V of x such that Vc U [ﬂ8 ;70 1, and such that ¥ N f“’l(y) ‘
= ¢oﬂ Since U was chosen arbitrarily, however, the argument given ror
U must also hold for V so that V ﬂrfal(y) # ®. This gives a contradic-
tion, hence U N fal(y) # f, and x is a limit poiﬁt or fml(y)o Thus we
have,

f@l(y) c lim inr {fﬂl(yn)j C lim sup {fal(yn)} c:;:IZ;)o
But lim ini' {fui(yn)] and 1lim sup {f”l(yn)} are always closed sets, 80
hthat
Hy)) = tim () = 2,

Assume now that lim {fnl(yn)} = f”l(§) and that © is a closed

lim in? {fwl(yh)} = lim sup {2

mapping. It remains to be shown thdt T ié open. By hypothesis

fal(y) C lim sup {fml(yn)] ror any seguence {yn] in T that converges

to a point y in T. Let U be any open set in S and assume f(U) is not :
open in T, Then there exists a point y in f(U) such that y is a limit

-point of T - f(U). Since T.is & Tirst countable metric space there
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exists a seguence {yn} of distinct points in T - r(U) that converges to
V. Since ful(y) < lim sup {fwl(yn)} and since v is mn elsment of ©(U),
it follows that U must contain an element x or :;t‘ml(y),i and that U, «s o
neighborheod orf x, must contain points rrom ihfinitely many ©oF the sets
ffl<;;}jwahisimplies 7(U) contains infinitely many of the points,oi )
fyﬁ}a This is a contradiction, hence T(U) must be open in T and 7 must

be an open mappring.

The next theorem glves & property possessed by Tunctions which are

both open and closed.

Derinition 3.12. A space S is said to be locally connected at a

point p ir and only ir;, given any nelghborhood U or p, there exists &

neighborhood V of p such that V& U and V¥V is connected.

Definition 3.13. A space 8 is said to be locally connected if and

only if S is locally conunected at each orf its points.

Derinition 3.1%. A subset Q or a topological space S is said to

be a component of 5 irf and only if Q satisties the following conditions:
(1) Q is non-empty, |
(2) Q is connected, and
(3) 4ir C is any connected subset of S satisfying € N Q £ f, then

CcQ.

Theorem 3.13. [17] Let S be locally connected and let #(S) = T be
an open and closed mapping rrom S onto T. Then if T is connected, and

if @ is any component of S, r(Q) = T.
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Proor. It will first be shown that § is both open and closed in S.
Since Q is a component of S, § is a connected subset of S, and Q is not
contained in any other connected subset of S. Let p be an element of Q;
and let U be a neighborhood or p. Since 5 is locally connected there
exists a connected neighborhocod Vb orf p such that Vb < U. Now Vb and Q
are both connected andiVﬁ ng # ¢a Thus Vb U Q is a connected éeta But
Q is & component of S, so that Vb U Q< Q, and hence Vb Q. It now,
Tollows that Q = %

peq

V? so that @ is an open set.

Tow let » be aviimit point of Q. >Since the union of & connectgd
set with one or all of the limit points or that set is a conneéted set,
Q U {F} is a connected set. If p is not an element or Q then Q UpPis
a connected set such that Q € (Q U P) and. (Q U P) £ Q. This contradiqts
the hypothesis that Q is a component orf S. Therefore; p is an element
of §, and Q is a closed set.

Since Q is both open and closed; and since £ is both open and
closed, r(Q) is both open and closed in T. Assume now that 2£(Q) # T.
Then ©(Q) and (T ~ r{Q)) are each open and closed in T and are disjoint.
This inip'lies that 7(Q) and (r - (Q)) are mutually‘ sepa,f_t’"a"éedob But

£(Q) U (T - £(Q)) = T, which contradicts the hypothesis that T is

connected. Thus £(Q) = T as claimed.
CONTINUITY OF OPEN MAPPINGS AND CLCSED MAPPINGS

The ract that a mapping can be open or closed without being contin-
uous raises the rollowing question. Under what condition will an open
mapping be continuous, and under what conditions will a closed mapping

be continuous? In the rollowing discussion, this guestion will be

considered.
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Berore proving the first theorem ror closed continuous mappings it
will be necessary to prove the rollowing theorems concerning continuous

Tunctions.

Theorem %.14. A function T rrom a space S onto a space T is con-
s 2 2 LN | " " 1 3
tinuous ir and only ir ror every open subset G in T, T (G) is an open

subset of S.

Proocf. Let © be_a continucus runction and let G be an open subset
of T. For any vy in G, and Tfor any x in fwl(y), there exists a neigh-
borhood VX or x such that f(V%) C G by the continuity of r. For each x
in f“l(G), let V_ be a nelghborhood or x such that f(Vk) C G. The

. . : M . !
union or all such Vx is an open set and rurthermore, x%f“l(G)Vx =T (@).

New suppose fal(G) is an open set in S whenever G is open in T,
Let y be an element of T and let U be any neighborhood or y. For any
x in f“l(y),‘f"l(U) is an open set about x such ﬁhat‘f(fml(U)) c U.

Thus £ is continuous.

Corollary. It £ is a one-to=-one continuous mapping from a space

S onto a space T, then the mapping fnl Irom T onto S is open.

Theorem %.15. A function r rfrom a space S onto a space T is con-

tinuous it and only ir fnl(H) is closed in S whenever H is closed in T.

Proor. Suppose I is continuous and H is a.closed subset of T.
Then G = (T - H) is an open subset of T, and by Theorem 3.12, f“l(G) is
open. Thererore f“l(H) = (8 - fal(G)) is closed in S.

If on the other hand f“l(H) is closed in S whenever H is closed in
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T, then for any open set ¢ in T, f”l(G) = (S « f°1(T - §)) is open in

S. 'Thus T is conbinuous by Theorem 3.1k.

Theorem 3.16. [17] A runction f from a space 5 onto a space T is

closed and continuous iY and only if f(ﬁ) = T(R), Tor any subset R of S,

Proor: Assume T is closed and continuous on 5; and let R be any
subset of S. By Theorem 3.1, t(R) < r(R), so it remains to be shown
that r{R) C T{R). Let y be an element of ©(R). Since y is an element
of T(R), fel(y) contains an element x of R. Given any neighborhood U
of' v, there exists a neighborhood V os x such that (V) < U because
of the continoity of ¥« Now since x is an element or ﬁ, x is an
element of R or x is & limit point of R. In either case, V must con-
tain a point of R, so that U must contain a point or #(R). Thererore,
v is a point of f(R) or a limit point o r(R). In any cése v is any
element of fTﬁ?mso thatlf(ﬁﬁ < ©(R). Since T(R) € £(R) and r(R) ©
W? f(§> = mo |

17 £(R) = T(R) ror mny subset of R of S, then T is closed. This
rollows since fof-any closed subset H of 8, ©(H) = r(H) = r(H) which is
closed in T. Let us now show that r is continuous by showing that
fml(K) is closed in 8 vhenever K is closed in‘T, and applying Theorem

3,15,

Let K be a closed subset of T and let x be a limit point of‘fml(K)a
Since x is a limit point of r“l(K), 7(x) is an element or r(r=1(K)) by
hypothesis., But'gz§:I?E7) = K since K is closed which implies'f(x) is
an element of K. Thus x is an element of fal(K) and ful(K) is closed.

Now by Theorem 3.15, 1 is contimious. This completes the proor.
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The rollowing theorem concerning continuous Tunctionswill be use-

Tul in the remainder or this chapter.

Theorem 3.17. Let S and T be rirst countable metric spaces and
let 7(8) = T be a transformation of S onto T. The mapping r is contin-
uous if and only i Tor every sequence or points {xnj in S converging

to a point x in S, sequence ff(xn)J converges to r(x) in T,

Proof:' Let the transformation r(S) = T be continuous at the point
X :i’,mvS}7 and let {xn} be a seguence or points conve;ging to x. Consider
f(x) in T and let U be an open set containing r(x). By the continuity
of ¥ there exists an open set V in 8, containing x, such that (V) < v.
Since x = lim xn, there exists a positive integer N such that for all
n >N, x isin V. This implies ror all n >N, f(xn) is in U. There-
fore, T(x) = lim f(xn)o

Now let x be.a point of S such that for every sequence {xn}

"]

converging to x, [f(xn)} converges to ©(x); and assume T is not contin-

uous at x. Then there must exist some nelghborhood U of r(x) such that

Tor eny neighborhood V of x, V) ¢ U. Let Vi'be a spherical nelghbor-

, in V; such that’f(xl) is not an

element of U. Let r, = p(x,xl)o Since S is Tirst countable, it is

hood of radius 1 about x and pick x=

possible to choose a neighborhood V. or x such that V2 is contained in

e

the spherical neighborhood or radius“rz about x. Pick x2 in V2 sﬁch

that f(xz) is not an element of U. IT points x g0 00 ,%X_ have been
: n

17%2
be an open set about x such that

chosen, let r =F>(xyxn) and let V .

+1 1

v is contained in the spherical neighborhood of radius r about x.
n+l n+l

i : . -
Choose x ., in Vn+l such that f(xn+l) is not an element of U.
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Continuing in this manner, one can inductively choose a» seguence {xn}
of points in § such-that x = lim x , but such that,{f(xn)} does not
converge t2 x. This contradicts the hypothesis, hence f must be con-

finuous &t X.

The next two theorems as well as the last two theorems in this

chepter are conseguences of Theorem 3.17.

Theorem 3,18, [17] Let S and T be separable metric spaces and let
£ from S onto T be a closed transrormation. Ir for each y ¢ T, f'l(y)

is countable compact, and ir ror each convergent sequence {xn1 in §, .

{f(xn)} has a limit point in T or is finite; then £ is continuous.

Prooffs Let {xn} be a convergent seguence in 8 with limit point x
and assume [f(xn}} is inrinite, Assume {f(xn)} has a limit point z in
T such that z % £(x). Since the only limit point of & sequence in a
metric space ls the sequential limit point, this is equivalent to assum-
ing © is not continuous by Theorem 3.17. Since x N f“l(z) % $, and
since a metric space is completely normal {8,110], we can rind disjoint
open sets U and V contalning x and fwl(z) respectively. Furthermore,
since S 1s a metric space, there exists a nelghborhood Ux of x such
that ﬁg < U. Now %; NYV=peince UNTV = ?o But £(U ) is closed since
T is a cldsed mapping, and'furthermore'f(ﬁ;) mﬁst contain all but & rin-
ite number of the points of {f(xn)?o Thué f(ﬁ%) must contain z, which
leads to a contradiction. Hence it must be true that z = f(x), so that
T is continuous at x. Now by Theorem 3.17 ¥ is continucus on S.

I the sequencev{f(xn)} is Tinite, then ff(xn}} = bysbgs00050,

where k 1s Tinite. Now there must exist some i, 1 < i <k such that
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fnl(bi) is an inrinite subsequence of {kn}o ‘By hypothesis, fal(bi) is
cQuntaEly compact, hence must contain a limit point in S. But f”l(bi)
as a subsequence of {xn} can have only the point x as a limit point, so
that x ¢ fwl(bi} and ©(x) = b,. Thererore, T(x) is a sequential limit

point or f(xn}y end T is continuous at x., Now by Theorem 3.17, T must

be continuous at every point of S.

IT we reguire that spaces S and T in Theorem 3.18 be countably
compact, then the requirement fhat for each convergent seguence {xn}
in 8, {f(xn)} bave a limit point in T or be rinite can be dropped.
Furthermore, this theorem can be generalized tc the rollowing ir and

only ir theorem.

Theorem 3,19. Let S and T be Tirst countable metric spaces and
let T be a transformetion from S onto T. Then S is countably compact
and © is continuous on S irf and only if T is closed, T is countably

compact, and Tor each y in T, f’l(y) is countably compact.

Proor. Let r be closed, T be countably compact, and, Tor each y in
T?.lgt f“l(y) be countably compact. By Theorem 3.9, S is countably
.compacta Since T is countably compact for any sequence {xn) in 8§, the
set {f(xn)} in T must have a limit point or be rinite. Hence by
Theorem 5;l8, mapping © is continuous.

Now assume.é is countably compact and that £ is continuous. Let H.
be a closed subset of S and consider f(H)a Ir y is & limit point of
f(H) there exists a convergent seguence {yn} of distinct points of H
such that lim Y, = s since T is a first countable mebtric space. Pick

a sequence K from the indexed collection of sets ffal(yn)} guch that
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K'C H and ¥ is one-to-one rrom X onto {yn}a Since S is countably com-
pact, K has a limit point x in S such that x in an'elemenp or K.
Furtherﬁgre,Ax is a sequential limit point of K since S is a first.
countable metric space. By the continuity or 1, f(K)‘: {yn} has |
1imit point r(x) = y. Thus y is an element of r(H), r(H) is closed,
and 1 is a closed mapping on S.

To show that T is countably compact when S 1is countably compact,
let A be an infinite subset orf T. Let {yn} be an infinite seguence or
points in A, Now by the argument used for sequence fyn} in the pre-
ceeding‘paragraph, one can show that {yn] must héve a sgquential limit
roint y which belongs to (yn}a Thus A has a limit point y which belongs
to A, and T is countably compact.

For y ¢ T, fm;(y) is either finite or infinite. Ir ful(y)vis in=-
finite, let B be an infinite subset or ?fml(y)_a Since S is countably
compact, there éxists some X in B such that x is a limit point of B.

Thus fél(y) is countably compact. This completes the proof.

The next theorem concerning continuity of closed mappings will be

useful in Chapter IV.

Theorem 3.20. {6] Ir S is a regular space, T is a compact space,
and if T is e closed mapping rrom S onto T such that fnl(y) is closed

for each y ¢ T, then 1 is continuous.

Proef, Suppose 1 is not continucus at a point x in S. Then there
exigts a neighborhood V of P(x) such that for any neighborhood U of x,
(u) N (T = V) #¢. Since T is compact and since (T - V) and £(U) are

compact, it follows that (T - V) N f(ﬁ) is closed and compact. For any



b6

o R
finite collection U ,U,;...,U of neighborhoods of x, (igl Ui) n(t-v

# f. Otherwise, U = iél U, is an open set containing x such that

f(ﬁ) CV, and 1 is continuous. .This implies that the intersection of all
sets of the form £(0) N {T ;'U), where U is an open sét containing x, is
non-empty [14,136]. Let y be an element of the intersection or all sets
of the form ¥(U) N (T - V), where U is an opén set’ containing x. Since
y £ 2(x), x ¢ fml(y) and‘since fnl(y) is closed and S is regular, there
exigts disjoinﬁ open sets U, and Uy containing ful(y) and x, respective-

Y

y) < U; and since U N U, = $ it rollows that

v £ f(ﬁé) N (T - V). This is & contradiction, hence T must be

ly. Since 4

continuous.

Let us turn now to a consideration of theorems concerning conti-

nuity of transformation which are both open and closed.

Theorem 3.2l. Let 5 and T be rirst countable metric spaces with T
countably compact and let © be a transformation rrom S onto T which is
both open and closed. The transformation T is continuous if and only

if}ful(y) is closed for each y in T,

Proof. Let r be an open and closed mapping and let {xn}‘be a
sequence in § with sequential limit point x. IT we can show that T(x)
is a sequential limit point of [f(xn)f} s then © will be continuous by
Thecrem %.17. Now {f(xn)} is either an infinite subset Of T or {f(;n?}
can be expressed as a set fyl,ye,oqoyyk} of point in T with k Tinite.
I {f(xn)} is infinite, then [f(xn)] must have a limit point y in T,

and since y is a irst countable metric space, y is a sequential
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limit point of ff(xn)}a Since fal(y) = fml(y) for each y ¢ T, and

since ff(gn)} converges to ¥y, lim in? {fwl(f(xn))} o fal(y} by Theorem
3.5, Fufthermore, x is an element of lim in? [fml(f(xn))},so that
{x) = y and © is continuous by Theorem 3,17

Ir ff(xn)} = ;yl;y2y0093yk} with k Tinite, then there exists at
least one 1, 1 <1 <k, such that fml(yi) is inrinite. Thus fﬁl(yi) is
Y

8 subsequence of fxn} and x is a seguential limit point orf {f“ yi)}q

But [fmliyi)} is closed by hypothesis so that x € f’l(yi) and r(x) = Yy
Now suppése there exists some J, 1 < j <k, J # 1, such that f&l(yj) is
infinite. Then (x) = Y5 50 . that Yy =Yy and i = J. ‘This is a contra-
“diction, so that Cf“'l(y_j)} is Tinite if 1 # j. This implies that all
but a Pinite number of ﬁoints or {xn] map onto y, = {x) so that 1(x)
is & seguential limit point orf {f(xn)j and 1 is. continuous by Theorem
Bl T
Now assume T is continuous and let y be an element or T. II x

iz a limit point of f“l(y)j then there exists a seguence {xn} of boints
in fml(y) which converges to 'z, By the continuity of 1, {f(xn)} must

converge to £{x). But {f(xn)] = {y} so that r(x) = y. Therefore; x

is an element of fml(y) and falfy) is closed as claimed.

Corollary. I 1 is a one-to-one runction r'rom a rirst countable
metric space S onto a irst countable metric spa¢e T which is both open

and closed, then r is continuous.

Theorem 3.22. Let S and T be rirst countable metric spaces and

let © from 8 onto T be aﬁ open mepping. Ir T is countably compact and

i 1 (y) is a single point rfor all but a finite number or limit points

-y
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in T, then £ is a homeomorphism.

Proof. Le£ us first show f 1s one-to-one. Supbose there exists a
limit point y in T such that f"l(y) contains two or more points. Now y
a limit point of T implies there exists a sequence of diétinct points
{yn} converging to y. Since f is open,.f“l(y)_c lim inf {fnl(yh)}"by
Theorem 3.5. " Let x, and xa'be elements of ffl(

1 y) and let U and V be

digj@int open sets in S containing Xy and X55 respeétively; It ndﬁ‘
follows that both U and ¥ mugt contein pointe from.f"l(yn) for &ll butla
finite number of n. This contradicts the hypothesis, hence ful(y) must
be.a single point and £ is one-to-one. The one-to-one, open mappipg hif

is onto by hypothesis and is continuous by the corollary to Theorem

3.21. Thus f is a homeomorphism;



CHAPTER 1V
COMPACT PRESERVING MAPPINGS AND CONNECTED MAPPINGS
INTRODUCTION

The rollowing theorems give two charscteristics of a continuous

function r from & space S into a gpace T.

Theorem 4.1. Let S and T .be spaces and let © be a continuous map-
ping from S into T. If C is a connected subset of S then r(C) is a

connected éubset of T [8,78].

Theorem 4.2, Let S and T be spaces and let ¥ be a continuous map-
ping from S into T. IF C is a compact subset of S then r(C) is a

compact subset or T.

Proor. Let C be & compact subset of S and consider £{C). Let K
be any open covering of r(C). Since 1 is continuous, Tor any open set
U in X, f"’l(U) is open in S. Let H = {f"’l(U) ’U € K}. Now H is an
open coverihg of C, and since C is compact, a finite collection fnl(Ul),
f"’l(Ug),“@, f""l(Uk) of open set in H will cover C. Thus the Tinite
1

collection U sUgs oo U  of open sets in K will cover r{C), and 7(C) is

compact.

These two rundamental properties of continuous functions naturally

lead to two lines of research. The requirements ror a subset of & space

k9
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totbe eithef cqnnected or compact are rather strong. Thus one mightw
expect thatia fupction‘that'preserves ejther_¢qnne¢ted sqbsets‘qr com-
pact subsets wouid haye interesting properties. One is also lgd to
inquire what conditions, other tham preserving connectedlsgtanrAcgm-
pact sets;, & runction must possess to be‘continuousu ’The purpose of
this chapter is to investigate these lines of inquiryol Formal defini=-
tions will now be presentéd for connected‘ahd compact preserving

mappings.

Derinition 4.1l. A Tunction f from a space S into a space T is
sald to be connected if and only if for every connected subset C of S,

r(C) is a connected subset or T.

Derinition 4.2, A function r from & space S into a space T is

said €0 be compact preserving'if and only if tor every compact subset

C of 8, £{C) is a compact subset or T.

PROPERTIES OF COMPACT PRESERVING MAPPINGS

AND CONTTNUITY OF COMPACT PRESERVING MAPPINGS

Cdmpact sets and countably cowmpact sets were defined in Chapter II.
The rollowing theorem relating these concepts will be userul in the

development or the properties of compact preserving mappings.

Theorem 4.3. Every compact subset H of a space S is countably
compact. IT in addition, S is a metric space, the converse is also

true [8,108].

In the rollowing, properties of compact préserving mappings, and
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the relationship of compact preserving mappings to other mappings will
be discussed in one section. This organization has been chosen since
the theorems giving properties of compact preserving mappings lead

naturally into theorems of the other type.

Theorem 4.4. [15] Let S and T be metric spaces and let £ be a com~
pact preserving mapping from S into T, such that f is discqntinuous at
a point p in S. Then there exists a point q in T and & sequence {pi}_
of points in S converging to point p such that, f£(p) # q and f(pi) =q

for each i.

Proof. Since f is discontinuous at p and since S is a metric

space;, we can find a sequence of points [xi} in 8 with lim x, = p and

i
an open set V in T with f(p) € Vand v N {f(xi)} = f. If an infinite
number of points from {xi} map onto a gingle point g in T we are finish-

ed since the subsequence f_l(q) @] {xi} of sequence {x,} can be taken as

]
the sequence {pi]. Thus assume that each point q in the image of {xi}
is»the image of only a finite number of pointg of {xi}. Hence a sub-
sequence Y = {yi] of the seguence [xi} ﬁust map one~£o~oné onto the

set Q = {ql,qa,qB,O..j of image poiﬁts of {xi) under f. The set YU {p}
is & countably compact subset of a métfic spéce, hence is compact.
Therefore, the image set £(Y U {p}) = Q U £(p) is compact and countably
compact, since T is a compact preserving. Since £Y) NV = ¢, P can=
not be a limit point of (£(y) U.fp]), and hence set £(Y) must be
countably compact. This impliés that for some J, f(yj) is a limit
point £(¥). Now set {(y - {yj}}) U {p} is compact and, as above,

£(Y - {yjj) is compact. However the set f£(Y = {yj]) = {f(Y) - {f(yj)J}
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is not closed. This gives a contradiction since a compact subset of a
metric space is always closed. Thus we must assume that an infinite
nunber of the points of {xi} maps onto a single point q in T and {pi}

can be chosen as the subsequence ﬁml(q) n {xi} of' sequence {xi}a

The preceedihg theorém states an interesting property Qf:a'¢qmpact
pressrving mapping. The disclosure o this characteristic, howevey,
is not the only significance or thié théorem, since the next theorem
relating compact;preserving mappings to continuous mepping: is a conse-

gquence orf thls theorem.

Theorem 4.5. {15] Let S and T be metric spaces and let 1 from S
onto T be a compach preserving mapping. IT fnl(q) is closed Tor every

in T, then £ is continuous.
q P

Proor. Assume T is not éonﬁinuous and let p be an element or S
such that I is not continucus at p. By Theorem 4.U, we find a point
q in T and a sequence {pi} of points in S such that lim P, =P,

#(p) #£.q, and f(pi) = q for all i. Now the set fﬂl(q) is closed by
hypoihesis;»hence must contain p. This is a contradiction, so that r

must be continuous.

Corollary. ,Every~one=tdeoﬁé compactvpreserving‘mappihg-from a

metric space S onto a metric space T is continudus.-

- Proor. The preoof follows.immadiétélymfrom Théorem 405_since every

point or a metric 'space is a closed subset of that spacé.

Using the results of Theorem L., one can easily construct examples
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- -of functions that are not continuois but are compact preserving. The

following is one such example.

o _Exggplg hfl“.Let_S be the real numbers with the usual topology
and ief f be defined'byﬁ |
2(x) = 0 12 x 18 rational, and
f(x)‘= 1ir xiié irrétiongla
Funétion fvis»discontinuoﬁs'eVerywhere, but is compact‘presgfv@ng s;nge
every sdbsef df 8 ié mapped onto one of;the compact sets {0,1}, {0}, or -

{1}.

It spaces S and T are not metric spaces,_thevconclusion of ?heo:em
h;5_may no longer rollow. However, it is sometimes possible to place
alternate conditions on the spaces thatlwill insure contiﬁuity; fhe
next!two theorems glve examples of éuchlglternate conditions ror

‘certain spaces.

Definition 4.3. A space S is locally compact if and only if; for
every poin% p in S.and Tor evéfy*neighborhood U of p, there exists a

neighborhood V orf p such that:V cu and ¥ 1s compact.

Theorem 4.6. [7] Let S be & locally compact Hausdorf? spaée'and
let T be a Hausdorff space. Thén.if £ is cbmpact préserving, and ir

f_l(y) is closed for each y € T, T is continuous.

Proof, Conéider‘any point x 1in S. Since S is locally compdct;'
there exists a neighborhood U of x such that'ﬁ is compact. Since
continuity is a local property, one need.only cqnsidér T restricted to

'fﬁ with U regarded as a subspace of S. Let us now show that the
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conditionsvof Theorem 3%.20 are satisfied and the conclusion will fgl;owo
To see that U is regular, let F be a closed subset of ¥ and let x

be en element of T = F. For each y in U choose neighiborhood v, end Uy
6f y and x, respectively, such that V& N Uy ='ﬁa This is possible gince
U is Hausdorff. The collection {Vy], yeF, 16 an open covering of F.
Now F is a closed subset of a compact space and is, therefore, compacth.
Hence there exists a finite subcollection v, ,V&Eyo.g,vyk of {Vy},

k 1

y € F, that covers F. The sets U, V_ and
i=1 y';i v v

n
‘in Uy are the desired open sets containing F and x, respectively, so
i -

that U is regular.

Space F(U) is compact since U is compact and f is compact
preserving.

To verify that £ is closed on ﬁ, let F be any closed subset of U.
éince ﬁ’ié compact, any closed subset of U is compact. Therefore, f(F)
is a compact subset of f(ﬁ)° Because f(F) is a compact subset of the
Hausdorff space £(U), f(F) is closed [8,66].

Since all of the conditions of Theorem 3,20 are satisfied, £ is
continuous at x. Point x was chosen arbitrarily, however, so f is

continuous on S.

o *
Definition 4.k. A space S will be sald to have property K at

point p if and only if, for every infinite gubset A of $§ heving p as an
accumulation point, there exists a compact subset of A U {p} having p

as an accumulation point.

Theorem 4.7. [7] Let 8 and T be Hausdorff spaces and let £ from S

*
onto T be a compact preserving mapping. Then 1f S has property K at x
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and i7 ¥ (y) is closed for each y ¢ T, I is continuous at x.

Proor: IF X is an isolgtedvpgint the proof is trivial% sq‘it mey
be assumed x is not isolated. Suppose I is not continuous at x. Then
there exists some neighborhocd V of (x) such that for_eachmopgn sep_U
containing x there exists an X, in UN fml(T - V). ’For each neigﬁborf
hood U of x choose a point X, and let A be the set Qf.all-sgch ng Set
A is infinite since x is an accumulation point of A. Hepce, there
exists some compact subset XK o A U {x} such that x is an a¢¢umulati¢n
point of K. By Theorem ho6,vf restricted to K is cbntinuousc _This‘is
a contradictimﬁ since r(K) © (T - V) and]f(x) is in V. Thus runction

T is continucus at x.

The next theorems state a relationship between compact subsets
and closed subsetzs of compact Hausdorrf spaces which implies a corres-
ponding relationship between closed mappingsand compact preserving

mappings .

Theorem 4.8, Let S be & compact Hausdorfr space. A subset H of

S is closed ir and only if H is compact.

Froor: Assume H is a_cloéed subset of a éompact Hausdorr? space
S, ‘and let fqu} be aﬁ.open covering of H. The collection {qm} U (8-H)
is an open covering of 5. Since S iz compact a rinite number o1 the
sets in collection {qu} U (s f”H) will cover S. Thererore, a finite
number of sets from collection {Ua] will cover H and H is cémpacta

Now assuﬁé H is & compact subset of the compact Hausdorrr space S,

Let us show that H is closed by showing that no point or (8 - H) is a



limit point of H. Let q be any point of (8 - H). For each y in H,
choose disjoint neighborhoods Uy and Vy‘cdntaining'y and q,iresggctivew
ly. This is possible since S is a Hauédorrf space. The_gpilgcﬁiopw
{Uy}g y € H, is an open covering of the compact sét H, hence & Tinite

DR - : ) . R Tk . .
subcollection U_ ,U  ,...,U  will cover H. The open set (I, V  is

| 192 e =l oy

an open set containing x which' does not intersect H. Thus q is not a

limit point of H, and H is closed.

The significence or Theorem 4.8 is that a mapping T Irom & compact
Hausdorrf space $ into a compact Hausdorrr space T will be.closed”if
and only ir ¥ is compact preserving. Thus most of the theorems of

Chapter IIT concerning closed mapping give rise to theorems concerning

compact preserving mappings.
- PROPERTIES OF CONNECTED MAFPFINGS

In the rollowing theorems some properties of connected mapping will
be developed. As with compact preserving mappings, these theorems will

lead into theofgm relating connected mqppings-to continuous mappings. .

Theorem 4.9. [21] Let be a connected mapping of the Hausdofff.
space S-into the Hausdorrsr s@ace T If;C;is any Qonnected éubset or S

then £(C) < I"(C) .

. Proot's Let C be a connectéd subset or 5 and let g be an element or
fﬁa)o We wi§h to show that q is an elément or T(C). Since q ¢ r(C),
there exists some p in C such ‘that ?{p) = ¢c. If p is in C, then r(p)
= q is in r(C) and hence in r(C). If pvis not in C, then p is a limit

point or C. Now set C U fP} is a connected set since the union of a



57

connected set with a limit point or that set is connecteq anq B
r{cy {P}) =z(C) U {q] is connected. Now assume‘q‘is not an element

of f(C). Since T is Hausdorrr, no point of C is a limit point ofm{q}f

But this implies £(C) U {q} is not connected which is a contradiction.

Therefore; q & #(C) and £(C) < T(C).
The next theorem is a consequence of Theorem 4.9,

Theorem 4,10 [21] Let Sl’ 85 and 83 be Hausdorrf spaces and let
T be & comnected mapping of Sl>K:SE into S5m I fais a conne¢tedvmap7

ping, then ¥ has the following properties: (i) f(x,B) is gonnected Tor

any x.in 8, and ror any connected subset B in S, (11) r(A,y) is con-

1

nected r'or any connected subset A of S, and ror any y in qu

1

1 and a connected

;beof or (i), Assume there exists a point x in §
such that (x,B) = {(x,y) | ¥ € B} is not connected. Then

subséﬁ[B,of Sé

there exists disjoint nonémpty subsets Hl.and H2 in Sl>K:82 such that

(x,B)c:Hl_U‘HQ, HlnH2:¢andﬁlnH2=¢, Letmlz{y] y € B-and

(x,7) € Hl} and let T, fy | v € Band (x,7) € Heja For any y € B,

1 and T2 are

nonempty, for otherwise, Hl or Hajis empty. It is also true that

n Té = §; otherwise, ﬁi N H, # ¢.or H, N ﬁé £ D

yeT, ory @‘TE’ since {x,B) C© (Hl U Ha)o' Furthermore, T

T, n T, = $ and Tl
This, however, implies B is not comnected, which is a contradiction.
Therefore, (x,B) is connected and f connected implies r(x,B) is

connected.

The proof of (ii) rollows in an analogous manner.

»

The following example shows that conditions (i) and (ii) or

Theorem 4.10 are not sufficient for a runction to be connected.,
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Example 4.2. [21] Let £ be defined on the Euclidean plane as

follovs:
£(x,y) = m§§z—é ifxfOory# o
X+ y
£(C,0) = 0.

Function £ is continuous in each variasble separately, and is therefore
connected in each varisble. This means that f satisfies conditions (1)
and (ii) of Theorem 4.10. However, along the line x = y, which is a

connected subset of the plane, £{x,x) = 1/2 if x #£ O while £(0,0) = O.

Hence, mapping £ is not connected.
A partial converse does exist for Theorem L4.10.

Theorem 4.11. {21] ILet 8 S, and S, be Hausdorff spaces and let £

19
be a transformation from Sl.>< 82 into S

3

30 If f has properties (i) and

(i1) of Theorem 4.1C, then £(A,B) is connected whenever A is connected

in Sl and B is connected in S2°

Proof. Let f satisfy conditions (1) and (ii) and let A and B be

connected subsets of S1 and 32

x € A, ¥ € B} is not connected. Then £(A,B) can be expressed as the

respectively. Assume f(A,B) = {f(xgy)]

union of two nonempty disjoint sets H and XK such that HN K = ¢ and
HNK=gp. Now for a fixed point x, of A, f(xlyB) = {f(xl,y)l y € B}
is connected by condition (i), hence must be entirely contained in
either H or K, say H. Similarly for a fixed point y, in B, f(A,yi)
must be contained in'either H or K by cendition (ii). However, ;
£lxyoyy

the same argument is true for every y € B, £(A,B) is contained in H.

) is an element of H, so f(A,yl) must be a subset of H.  Since
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Thig implies K = ¢ which is & contradiction. Thererore, r(A,B) must be

connected as claimed.

A set will now be defined which will lead to 8 theorem giving a
property or connected mappings as well as & theorem giving necessary

and sufficient conditions for a connected mapping to be continuous.

Definition 4.5. Let T be a mapping rrom a space S into a space T.

For every point p in 8 let the set or limit points oI I at p, denoted
by L(f,p), be the set of all peints q in T rfor which there exists a
sequence of {ppj of points in S such that limit P, =P and limit f(pn)

= Jo

The rollowing property of set L(f,p) will be used in the proor of

the next two theorems.

Lemma 4.1, [21] Suppose © is & mapping from a rirst countable
Heusdorr® space S into a rirst countable space T. For every point p

in 8, L(?,p) is closed.

Proor: Let p be any point in 8 and let q be & limit point of
L(f,p). Since 8 is Pirst countable, there exists a sequence fUn} of
open sets containing p such that Tor any open set U containing p there

exists & positive integer N, such that n > N, implies Uh C U, We may

1 1

assume that fUh] is monotone decreasing. Similarly, a monotone seguence
{Vh} Oor open sets can be chosen in T with the property that g € v tor
each n, and such that for each open set V containing g there exists a

positive integer N2 guch that n >’N2 implies Vh < ¥

Now consider Vj ror some Tixed positive integer j. Since q is a
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limit point of L(r,p) there exists some point g' of L(f,p)'in'

v Vj N {r{<,p) ; {é})a Because g' ¢ L(f,p), there exists a sequence of
points {pn} in S”such that limit p = p and limit f(pn)»& g'. Now
8ince 1limit f(pn) = q', and since Vj is an open set containing gq', there
exists @ positive integer N5 guch that n > N3 implies f(pn) & Vjo

Furthermore, sinece limit B, = p there exists a positive integer Nh such

that n > I, implies P, is in U,. Let N = max{NB,Nk} and choose & point

J
pn where n > N. Then P, is in Uj and f(pn) is in Vja Relabel the
point p_ a8 x;u By the abgve construction we can pick a point x in Uj

n J J

for each J such that f(xj) will be an element or Vju The sequence ij},
so selected; will have the property that limit x_,,l = p and limit,f(xj)

= g. Thus q is en element of L{f,p) and L(I,p) is closed.

Thecrem 4.12. [21] Irf P is a connected mapping from a locally
connected rirst countably Hausdorfr space S into the compact rirst
countable Hausdorf? space T, then L{f,p) is a connected subset of T Tor

every p in S.

Proof. Let us first note that T as a compact Hausdorfr space is
normal: Now assume L(fgp) ig not connected ror some p in S, Then
L(fgp) can be expréssed 8s the union of two sets A and B where
AfP,BES, ANB=Fand ANE = P. By Lemma 4.1, L(f,p) is closed,
Thisvimplies that both A and B are cl@se%o Since space T ‘s normal,
open sets ¥ and V can be round such that AC U, BC Vand UNV = P, so0
that' L(f,p) = (AU B) € (UU V). We shall now obtain a contradiction
by showing thaé\L(f,p) is a subset or either U or V.

It will Tirst be shown that there exists at least oné cpen set M
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containing p such that (M) < (v U V). Asgume'fhﬁt no open set contain-
ing p is mapped into(U U V). Spage.s is first ccuntablsp hence there
exists & monotone decreasing sequence {Mi} or open sets each containing
P and such that for any open set M conteining p there»existsman integer
N such that Mi C M rfor all 1 > N. For each i, pick an element Py in"Mi
such that f(pi) ¢T - (UU V), Since = (UU V) is a closed subset of
8 compact metric sﬁace, it is compact, henéewcountably compact. Thus
seguence {f(pn)j must have a limit point g in:T - (UU V), and some
subsequence of [f(pn)} will have g as a sequential limit point. This is
g contradiction since limit p, =D which implies ¢ ¢ L{f,p). Thué)we
must concluéelthat some open seﬁpM containing p maps inte (U U V).

Now considér an open set M about p such that (M) <« (U U V). Since
S is locally -connected, there exists a connected open set‘G containing p
such that £{C) < (U U V). Transformation T is connected, so that £(C)
must be connected. Thererore,r{C} c U or 7(C) < V. This impiies,Lnyp)
-mﬁqplbe contained in either Uor¥ which contradicts the assumptibﬁs |

L(z,p) NU # p and L{<;p) N v # 0. Hence L{r,p) must be connected.

One can note the L(r,p) is never empty, since r(p) is always an
element or L{7,p). This Follows From the fact #(p) is the limit of the

seqﬁenee-[f(pi)}, where p, .= p for each i.
CONTINUITY OF CONNECTED MAPPINGS

. Theorem 4.12 leads to the rollowing theorem which states a neces-

sary and suftficient condition for a connected Function to be continuous,.

Theorem 4,13, [21] If r is a connected mapping from the locally
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connected first counteble Hausdoryt space S into the cowmpact rirst count-

able Hausdorrt space T, then 7 is conbtinucus at a point p in 5 1 and

only if set L(f,p) is Tinite or denumerable.

Proor. BSince a continucus mapping is connected and has L(fgp) =
©(p), we need only prove that the. condition L{#,p) is finite or
denumerable 1s surricient. By Theorem h,12, L{f,p) is connscted and
as a closed subset of a compact space is compact., Let us now show that
L(r,p) is either a single point or is non-denumerable. -Assume set L(#,p)
ié denumerable but does not consist of a single point. If L(f,p) is
assumed to be rinite we get an immediste contradiction since each point
of & Tinite subset of a Hausdorry space;is an isolated point which
implies L(fyp} is not connected. If L(#,p) is assumed to be an infinite
denumerabie éet, a contradiction can be dbﬁained ag rollows., Let L(f,p)

be ordered by the positive integers and let M. and Ué be disjoint open

1
set containing Xy and x., respectively. Now consider ﬁio Since Ml N U2
=4
= ¢, X, is not an element of ﬁia Thus ﬂ@ cen not contain all of L{r,p).
Now i L{#,p) - M, is rinite we can obtain a contradiction by construct-

1

"ing an open set about x. that would contain no cther point of L(f,p)°

2

This would lead to a contradiction since no point or a connected set can
be an isclated point.

in L{¥,p) - M, and let x, be the element
2 1 13
- ﬁia Consider the closed set B, = X, U

Since this set is a compact subset of a Hausdorrr space

Now congider the point x
of least index in L{<,p)
(Boundry-Me)u

it is possible to comstruct disjoint open sets M2 and Ui containing B
3 —
and x13 respectively. Nowvxi3 is not & limit point of Mi U M2 = Mi U M2
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and as above, (L(fgp> - Ml U M2) must be infinite. Continuing in this
manner until the elements of L(f,p) are exhsusted one can construct an

m N
open covering igl M, or L(7,p) and a seguence {xi} or points or L{7,p)

n

such that Xy is not an element or *31 Mi° s Thus no rinite subcollec-
@ "D+l - ’

tion of 1%1 M, can cover L(t,5). But L(r,p) as & closed subset of a

compact space is compact., This is & contradictlon;, hence L{r,p) must
be a single point or non-denumerable. By hypothesis, L{f,p) is Tinite,

g0 L(ﬁgp) must be & single point and r must be continuous.

The following theorems give alternste surrficient conditions for a
conneéted}functi@n to be continuocus. Since a gontinuocus function is
always connected, these conditions will not need to be stated as neces~
sary and gufficient conditions. The rirst two of these theorems make

use of the concept of atworst a removable discontinuity.

Definition 4.6.a. A mapping ¥ from a Hausdorr:i space S intc a

Hausdorry space T is said to have at worst a removable discontinuity at

8 peint p in 8 i and only ir for every sequence {pn} of points in S

converging to p with each pﬁ1 ;/: Py, 1im f(pn> = g Lor some q in T.

Under definition 4.6.8., a function T which is continuous at &
point p, in S has at worst a removeble discentinuity at p. The rollowing
example gives a function which is not continuous; has at‘worst 8 remove

able disceontinuity at each point, and is connected.

Example L.3. Let S be the set of points on the real number line
or the rorm l/n, n=1, 2, 3, s00, along with the point O, and let S

have the usual topology. Define I by:
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[}

£{p) = 1 4f p # 0

£{0)

T B

Oe

T@eifﬁggtgpnuﬁlis Qonﬁipgops;at’every'pcint-in‘S ex¢ept 0. At_thg point
92 ﬁhpag‘a@ w@rst'g rem@vgbieidisgontinuity sincg for»gny segue@ce fpn}
'Q£ pointshcgnverging"@0 Q5-lim'f(pn)_z 1. Furthermoreglf ig g@nn@cted

on 8 since the only connected subsets of S consist of single points.

The next theorem gives conditions that will imply & connected

function with at worst a removeble discontineity is continuous.

Theorem 4.14. [21] Let f be a connected mapping of the locally
connect@d first countable Egusdorff space S into the Hausdorff space T,
Then f is continuous at & p@int p in 8 if and only if £ has at worst a

removable discontinuity at p.

Proof. Suppose f is connected and has at worst a removable dis-
continuity at p. Assume there exists s seguence {pn} which converges to
p and is such that the unigue point ¢ = lim f(pn) is not equal to f(p).
This is equivalent to assuming £ is not continucus. Since T is Hausdorff,
disjoint dﬁen sets U and V can be chosen such that g ¢ U and £(p) € V.
Now there must exist at least one open set M containing p such that for
any point x in {pnj N M, £f{x) iz an element of U, If this is not true,
one can use the fact that S is first countable to construct a sequence
of pointé fpn} converging to p and such that lim f(pn) # 9. Since S is
locally connected, there exists & connected open set C containing p such
that C c M. Set £{C) must be a connected subset of T sinte £ is connecte-
ed. But f(p) is contained in V and £{C = [p}) must be contained in U.

This is & contradiction, since this implies £(¢) is not connected. Thus
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(£{p)) must equsl g and T is continuous at p.
Bince a continuous mapping is connected and has at most a rencovable
liscontinuity at & point p, the conditiong glven are both necessary and:

sufficient.

The corditions placed on spece S in Theorem 4.14 were rather strong
conditions. Ii the derfinition of at worst a removable discontinuity at
a point p is generalized appropriately, the restriction thaet S be first
countable can be removed., The{desired generalization ig stated in the

next definition.

Definition %.6.b. A tunction P rfrom s space S into a space T is

said to have at worst a removable discontinuity at a peint p of S ir

there exists a point g in T such that For every neighborhood U of g,

there exists a neighborhood ¥ of p such that £(U - {p}) < v.

From the derinition of & convergent seguence, one can easily show
that Definition 4.6.b always implies Definition 4.6.a. In the procr of
Theorem 4,14 it was shown thet Definition 4.6.s implies definition 4.6.b
whenever S is & rirst counteble Hausdorrf space. Thererore, Derinitions
L.,6.a and 4.6.b are eguivalent ror irst countable Hausdorr? spaces.

Theorem 4.14% can now be restated as rollows ir Definition 4.6.b is used.

Theorem %.15. {7] If ¢ is & connected mapping rrom a locally con=
nected Hausdorit space S into s Hausdor?s space T, then £ is continuous
at & point p in S i and only if © has at worst & removable discontinuity

at p.

Proor, ‘The proof is essentiaslly the same as the proor of Theorem
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In the next example, & runction is presented which is c@nn@cted
everywhere, but i1s discontinucus at one point. All of the hypotheses
0f Theorem .15 are gatisried except the hypothesis that I has at worst

a removeble conbtinuity at each point.

Fxample 4.4. [21] Let S be the Buclidean plane and let T be the

gpace Of real numbers. Define r rrom S into T by

Plx,y) = mngzlmﬂsin wwﬁmg“f” . 1T x and y are not both O,
2 27 2, . 2.1/2
X+ y (x%+ ¥7)

£(0,0) = C.

This functien is continuous at every polnt except possibly (¢,0) and
therercre maps any connected subset not containing (050) ontc a connect-
ed‘subset of T, t is not continuous at (0,0) as one can verify by
congidering the line x = y. On this line T reduces to the rollowing

Tunctions

B
n
jko
]

g(x)
g(0) = o,

Now consider points of the form @Jé/nﬂ Jé/n)o This segiuence of points

i

converges to (0,0) but the seguence f@Jé/ny‘Jé/n) does not converge to
£(0,0) since:rQJé/n,tJé/n) = + 1, depending on whether n is even or odd.
Thus ¥ is not cohtiﬁﬁous.at {0,0V.
Let us now veriiy that I maps connected subsets orf S eomtaining
(0,0) onto connected subsets of T. Suppese € is a connected subset or
8 containing (0,0) and such that f(@) is not connected. Then {C) can
" be expressed 8s the union of two sete A and B such that A B, BE DS

"ANB =fand ANB =B, Now £(0,0) is an element of either A or B,
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1

How fa¥(A> U fal(B) = ¢ and fwl(A) nr (B) =P, Let us show that

for eny ¥ in fml(A)y %x is not & limit point of fgl(B)a ﬁSuppose x is an

- element of ffl(ﬁ)a Then ¥(x) is an element or A and since A B =g,
there exists a neighborbood U of {x) such that UN B = $. By the con-
tinuity of ¥ at x there exists an open set V about x such that f(V)tc U,
Now V I fml(B) must be empty since}f(vﬁ\c'U and Un B = f. Thus x is
not & limit 'péin‘t; of "(B). Similarly ror x in B, if x £ (0,0), xis
not & limit point o f“’l(A)o.' Now (0,0) must be a limit point of f“’l,(A)a
I¥ not, fgl(ﬁ) and ful(B) are mutually separated and C is‘nOt connected.
Now f”l(A) éannot consist of & single point; rfor if fnl(A) is a single
poﬁnt (030) is not a limit point or fal(A) and C is not connected. Thus
let ®q
integer n such that l/n2 < d and consider the spherical neighborhood N

be an element of fﬁl(A> let d = 5({0,0]; xl)a Pick 'a positive

or radiungan gbout (0,0). Now the boundary orf N must contain a point

X, OT fal(A)o IT not, C can be expressed as (ful(B) U Int §) U (fﬂl(A)

2

- fal(A) N N}). But these sets are mutually separated so thet C is not

.comnected. Now Tor point x., {x,} = 0 = £(0,0) which implies f(xz) is
: - 2 2

in B. %his is a contradiction, hence P{C) must be comnected, and T is

& connected mepping.

A connected function 1 maps comnected subsets or the domain space
onto connected subsets or the range space. I in addition T is one=to0-
one and fsl maps connected subsets of the imeage space ento connected
subsets of the range space seversl theorems concerning 0©ntinui£y or

connected mappings can be proven.
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Derinition 4.7. A mapping r from & space S onto a space T is saild
to be biconnected ir snd only ir ' is one-to-one; £{C) is connected in
. RS I ‘
T whenever C is connected in S and. ¥ ~(H) is connected in S whenever H

<

is connected in T.

Derinition 4.8. A space S is said to be semi-locally-connected
if and only ir, ror any point p‘in S and Tor any open set U containing
P, there exists an open set V containing p such that Vc Uand S - V

congists of & Pinite number o closed connected sets.

Fxample 4.5, The set R of real numbers with the usual topology is
semi-locally~connected. . This rollows since Tfor any cpen set U contaln-
ing p there exists an open interval (a,b) with p & (a;b) < U, The

complement of (a,b) is two closed rays each orf which is connected.

Theorem 4.16. [21] Ir r is a biconnected mapping of the Hausdorry
space S ontothe semi-locally-connected Hausdorftr space T, then r is con-

tinuous.

Proorf. The proor will fellow ir it can be shown that the inverse
image or every open set in T is open in S. Let U be an open set in T,
and consider I"‘ml(U)° Let p be an element of fnl(U)° Since T is semi-
locally~connected, there exists an open set V‘such that (p) ¢ V& U and
such that (T - V) consists orf a rinite number or closed connected sets.
Thus (T - V) can be expressed ag Hl U Hg U eao U Hn where Hi is closed
and connected for each i = 1, 2, ..., n. Let Ci ;wal(Hi) ror each
is= l,g,ooana Fach Ci is connected since P is & biconnected mepping.

- Let us now show that p ﬁ‘ﬁi for any 1. Suppose p were en element or Ci
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for éome i, Then Ci U {p} is connected, since the union of any connected
subset with some or all i7 its limit points is connected. Mapplng 1 is
biconnected, hence I"(Ci u {pl) = Hi U-r{p) is connected, It i U {z(p)}
is connected, however, then {p) must be a point of Hi or & limitrpoint
oﬁ-Hio Either assumption contradicts the rfact that Hi T = ¥ where V is
an open set containing r{p). Thus, the assumption p e Ei for some i
leads to contradiction, and we must conclude p ﬁ Ei rTor any i. ©BSince

an . - n
p ¢ C, Tor any i, then ror each i, let M, = § «'C, and let M = N, M

i=1 1°
éet M is open as ﬁhe intersection of a Tinite number or open set., Now
MAc, = $ ror each i so that r(M) N f(Ci) = £(M) N H, = p, for each i,
and #(M) & V< U. By the above construction we can rind an open set M?
fof every p € ful(U) such that f(Mp)(: U. One can easily veriry that
f”l(U) = P%ffl<U7 Mb which is open as the union or open sets. Since

fml(U) is open in S whenever U is open in T, T is continuous.

I space S is also required to be semi~locally-connected the rollow-

ing stronger theorem holds.

Theorem 4.17.f2ANet ¥ be 2 biconnected mapping or the semi-locally-
connected Hausdorrf? space S onto the seml-locally-connected Hausdortr

space T. Then ¥ is a homeomorphism.

Proof. Mapping 1 is one-t¢-one and onto by definition of biconnect-
ed. By Theorem %.16 r is continuous. Also, by Theorem L4.16 fwl is

continuous s0 that I° is open. Hence 7 1s & homeomorphism.

One can replace the requiremeht that S and T be semi-~locally-

connected with the requirement 5 and T be locally connected, provided
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space T is compact.

‘Theorem 4.18. [21] Let f be a biconnected mapping of the.locally
connected compact Hausdorff space S onto the locelly connected compact

Hausdorff space T. Then f is a homeomorphism.

Proof. As in Theorem 4,16 it will be shown that £ isucontinuous by
showing that fml(U) is open for every U opén in T. Let U be an open sub;
set of T and let p be an element of fal(U)° Since T is locally connected,
there exists é connected open set C in T such that f(p) ¢ C € U, Consid;

‘er'(T"= C) which is a closed subset of T. Since T is Hausdorff, for
each q € (T = ) there exists an openiset Uq such that q € Ué and

r ﬁ ﬁ;p. Also, because T is locally connected, one can find a connected
subset Vé such that q ¢ Vé c Uq for each q € (T - C)o Now q%(Tuc)Vq is
an open covering of (T - C) and by the compactness of (T - C), which is
a closed subset of T, one can find a finite number of sets V ,Vé,oun,Vh

1

from collection fV } ) which covers (T = C). Let us note that

q’qe(T-C
£p) ¢ Vi for any 1 =1, 2, ..., n, since £(p) ﬁ_ﬁé for any q, and for
each'i, ?} = Vét: ﬁa, for some q. Now let C, = fél(Vi) for each i.
One can now_cbmplete the proof that f;l(U) is open by the same construc-
tive argument as in Theorem 4.16.

By the same argument, £t 1g continuous, hence £ is oﬁen° Thus, f

is one-to-one, onto, open and continuous, and is, therefore, a homeo-

morphism.

Several of the theorems from the first of thls chapter concerning

i

compact preserving mappings required that the domain space be locally

compact and that fml(y) be closed for each point y in the range space.
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Results of a similar nature can be obtalned for connected mappings if one
requires that the domain space be locally connected and that fgl(y) be

closed for each point y in the range space.

Theorem 4.19. [15] Let M be a metric space and let p be an element
of M. The following conditions are equivalent: (i) M is locally coh;
ﬁécted ét p; (1i) every connected map f from M onto a metric space f(M)
with the property, fal{z ‘ z € £(M) and p(z,q) = €} is closed for each
e >0 and,fbr every q ¢ £(M) is continuous at p, (iii) every real
#alued connected map with the property that fgl(q) is closed for

q € £(M) is continuous at p.

Proof. For a real valued map the requirement that f"l(q) is closed
implies f”l{z ] z € £(M) and p(z,q) = €} is closed for every ¢ > C and
for every q e £(M). This follows from the fact that for a given € and a
given q, N = {z I z ¢ £(M) and p(z,q) = €} is either empty, contain one
of the points g - €, g + g, or contain both of the poihts q - €, g4 + €,
If N is @, fnl(N) = § which is closed. If N contains only one point
f"l(N)'is closed by hypothesis. If N contains two points, ful(N)
= f'l(q -e)u fsl(q + ¢) which is the union of two closed sets, hence
closed. Thus condition (11) implies condition (iii). It remains to be
shown that (i) implies (ii) and (iii) implies (1).

Suppose condition (1) is true, and let f be a connected mapping
from M onto £(M) such that fcl{z ’ z € £(M) and ¢ (z,9) = €} is closed
for‘every € >0 and for every q € £{M). Let V be an open set containing
point f(p)rand let 1) > O be such that the -spherical neighborhood of

radius 7 about f(p) is contained in V.



72

5,

Let Bn = {z fz ¢ T(M) and o(z,¢(p}} = N}, Set fbl(Bﬂ)‘is‘closed and
el é f_l(B%a ASihceiM is 1ocall§ connected at p, there exists & connected

‘ :
set U e (s - fwl(B )) such that p is.interior to U. WNow r(U) is
connected, contains r(p) and does not intersect B. Hence r(U) is con-
tained in the spherical neighborhood or radius 1 about r(p) which is
containgd in V. Hence 1 is continuous at ps Thus, qonditicn (1) implies
conditiOn (ii)Q

To see that: condition (iii) implies (i), assume (iii) is true and

that M is not locally connected at p. Sinée M is not loecslly connected
at p; there is a &, 0 <% < 1, such thét p is not an element or any open
connected open set in the spherical neighborhood Na(p) of radius 5 about
p. Let @ be the component of Né which contains p. Note the p cannot be

an interior point o Q. Derine 1 by:

{x)

i

5irxeM - Né(p),

£{x) = p(x,p) if x € Q, and

i

r{x) =85 - (5 - o(x,0) [p(x,Ql.
Now f] Q is continuous, hence f‘ Q is cOnnectedo.’Also, £ is continuous
on (8 m‘Nq(p))U (Nsp -Q) = (8 -Q), hepce by ’(S - Q) is connected.
Now Tor any connected subset C of S, CecQ or CNQ = § since @ is a
component. Thus f(G) is GOnnécted and r is & connected mapping.
Y

Furthermore, point“inverseSvare closed, To verify this note that T 5)

= M - Nq(p) which is closed. fwl(

0) = {x} which is closed. For 0 < g <
3, f“l(@) = A U B where A = {x) x ¢ Q atd o{x,p) = €} and B = {x |x €
(Ng(p) - Q) and & = (& = »{x,p)) ° Ep(x,Q] = e}, Let us note that Q as
a component of Nﬁ(p) must be close& with respect to Né(p)a .Furthémere,

{x ’p(x,p) = €} is closed. Thererore, set A = Q N {x, (x,p) = e} is
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closed wiph‘respect to Na(p). But A iéwcon@ained in Int(Na(p)), hence
A is c;osed. Now consider B. Let us show that no point of Q can bema _
limit poiht of B. Suppose some ¥y in Q is a limit point of‘Bol Then pick
z in B such that p(z,y) <& ; €. Then (& - p(z,p)) ° [p(2,Q)] <8 - ¢
since (5 ;ip(z,p)).< 1 and hence & = (5 - p(z,p)) ° [p(2,Q)] > € which
céﬁtradicts the cholice of 8 ¢ B. Thus no point of @ is a limit point
of B so that B is closed with respect to (Na(p) - Q) Now-(Na(p) - Q) is
-open as the complement of MUQ) so that B is a closed set. Now this
implies fnl(ﬁ) = A B is closed so that point inverses are closed.
Function f is discontinuous at p, since p is a limit point Nﬁ(p)bu Q,
and in any neighborhood of p there mus% eiist a point x for which
]f(x) ; f(p)‘ is arbitrarily clesed to &. Thus under the assumption M
is not loecally conneéted we have been able to construct a real valued
function £ on M which is connected, has closed point inverses, and is
discontinuous. This contradicts the hypothesls, hence M must be locally

connected and (111) implies (1), This completes the proof.

In Theorem 4.19 (iii) the requirement that fﬂl(q) be closed for
every q in the range space can be replaced with the requirement thaf hif
be monotone. These results will be given in Theorem 4,21 after the

following backgroup information is given.

Definition 4.9. If S and T are two Hausdorff spaces and if f is
a mapping of S into T, then f is monotone if and only if for every p in

T, f“l(p)‘is & connected subset of p.

Theorem 4.20. [21] If.f is a monotone connected mapping of a

Hausdorff space S onto a Hausdorff space T then for every q in T, fal(q)
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ig 8 closed subset of K.

Proof. Suppose fal(q) is not closed ror some q € T. Let p.be a
limit point of fwl(q) which does not belong to fml(qja Because T is
monotone, fgl(q) is & connected subset o S and f(ful(q)) = q. Now
congider the set f”;(q) U p whick is also évconnected set éince the
union of a connected set with some or all orf its limit points is
connected. Now f(fgl(q) U {p}) is & connected subset of T, since T is
connected. But f(fwl£q) U {p}) =aqU r(p). Since a connected subset of
a Hausdorf? épace cannot consist of two distinct points, r(p) must equal
q. This contradicts the statement p ¢ fwl(g), which implies f-l(q) is

closed.

Since a metric space is Hausdorrr, we can now restate a part of

Theorem 4.19 as rollows.

Theorem 4.21. Let M be a metric space and let © be a monotone
connected mapping from M ontc a metric space r(M). Mapping r is
continuous at a point p in M if and only ir M is locally connected at

point p.

Cerollary. A monotone real wvalued connected mapping defined on a

connected subset o the real numbers is continuous.
MAPPINGS THAT ARE BOTH COMPACT PRESERVING AND CONNECTED

. Conditicns have now been given Tor a compact preserving runction to
" be continuous and ror connected functions to be continuous. Conditions

will now be given which will imply a function which is both compact
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preserving and connected will be continuous.

Theorem 4.22. [15] Let S and T be metric spaces and let T be a
connected, compact preserving mapping rrom S onto T. Ir S is locally
connected, then r is continuous. If 5 is not locally connected there
exlsteg a compact preserving connected mapping from S into the real

numbers which is not continusus.

Proor. To prove the rirst assertion, suppose S is locally connect-
ed but that £ is not continuous at & point p in S. By Theorem Lok
there exists a sequence or points {pi} in 8 converging to p and a point
g in T, q # p, such that f(pi) = q Tor each i. By the local connected-
ness of S ét p and because {pi} converges to p, one can pick a subse-
quence {xi] or {pi} and a seguence {Oi} of connected open sets gbout p
such that {pyxi] CICi Tor each 1, and Ci is contained in the spherical
neighborhood or radius 1/i about p. Thus set {f(p, f(xi)j = {r(p),q}
must be contained in f(Ci) which is connected. Now point g9 cannot be an

isolated point in C,, for any i, since connected sets cannot contain

i
isolated'yointsa Thus, rTor each i, there exists a point 2y in f(Ci)
such thatfo < p(zi,qj < 1/i. For each i, let ¥y be an element of

¢, N fal(zi)° Set [p,yl,ygyya,ugo} is a countably compact subset or S,
and is, thererore compact. But set {r{p), zi,zg,23°oo] is not compact
since it does not contain the limit point q. This contradicts the hypo-
thesis that r is compact preserving. Therefor@, we must conclude 1 is
continuous.

Now suppose M is not locally connected at some point p in S. Then

there exists a real number &, O < & <1, such that no connected open
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subset of the spherical nelghborhood Ngg(p) about‘p contains P Let Q

be the cbﬁponent of Ngg(p) that contain p and note tﬂe p cannot be an

interior point of Q. Define f from Shinto the resl numbers by

f(x) =0 forxeS - Nas(p),

£(x) = 2 - p (x,0) for x e (W (p) ~ N, (0)),
f(x) = p(x,p) for x € Né(p) NQ, and

f(x) =& for x € Ny P - Q.

Let A=QU (8 - Ns(p>)o One can easily verify f restricted to A is
continuous and f restricted to § - (Nﬁ(p) ﬂ‘Q) is continuous. Let us
now show that £ is compact preserving and connected. Consider an arbif
trary compact subset C of S. Now £(C N A) is compact since A is closed,
hence compact, and £ restricted to A is continuous. Furthermore,

£(c ; A) = {8}, so f(d) must be compact and f is compact preserving.
Now consider an arbitrary connected set K in S. Since f restricted to
A is cohtinuous and £ restricted to S - NS(P) N Q is continuous, the
set f(K) must be connected if K is contained in either of the sets. In
the remaining case, K intersects both (Né(p) NQ) and Ns(p) - Q, and
being coﬁﬁected cannot be contained in Nes(p)a This follows since

K C Ny (p) would imply X would be a subset of the component Q of Neﬁ(p)
since KN Q # p. Hence {p (y,p) % y ¢ K} D [5,25] and £(K), from the
definition of £, must equal [C,3]. Thus in any case f is a connected
mapping. The function f is discontinuous &t p since f(p) = G, but
every neighborhood of p must contain a point z of (Né ~ Q) for which
f(z) = 8. This completes the proof of the second assertion of the

theorem.

The metric spaces S and T in the first assertion of Theorem 4.23%

can be replaced with Hausdorff spaces if S is required to have the
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property K derined in Derfinition 4.h,

. ¥
Theorem 4.23. [7] I S is a2 Hausdor?r space with property K -at
each point p and ir 1 is a connected and compact preserving mepping rrom

»

.3 onto & Hausdorfr space T, then ¥ is continuous.

Procﬁfo By Theorem 4.7 it will only be necessary to show point in-
verses are closed. Let v be an element of T and assume there exists &
limit point x of,fwl(y) such that x 1s not an element of’fﬁl(yjo Let
[Ca? be the collection of connected neighborhoods or x and let {U%} be)
the collection or neighborhoods or y. Since T is Hausdorri, and since
r(x) # y it is possible to select disjoint open set U and V containing
v and x, respectively. For each qa in {qa} and for each Uy in {I;}
let Yo,y be an element of f(ca) ﬂ‘((la N U), and let Xy be an element

3

of (f'l(xmjy) N qa)a The set A of all such Xoy is infinite and has x as
an accunulation point. By the property K*, AU {x} has an inrinite com-
pact subset K with x as an accumulation ﬁointa Since K is compact,
hence closed, x must be an element of K. Let g denote runction 1 res-
tricted to Ko Then M = (g(X) - g(x)) = 2(K) N (T - V) since g(K) c U
and UNV = B, Now g(K) N o{T - ¥) 15 an infiﬁite compact set, hence
must have & limit point z in T, I gnl(z) is &sn isolated point in K,
then K - {f”l(z)} and M - {z} are compact, which is a contradiction.
Thus ror each accumulation point z of M, fal(z) must be an accumulation
point of K. |

Let %tbe the set of all limit points o K with the exception of x.
For each p in L, select disjoint open sets Wb and Vb containing p and x
respectively. BFach (K - Wé) is closed hence compsct and each B =

g(K - Wp) nM ié a closed non-empty subset of M. Let 1 z‘{Bplrp e L},
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Suppose now that there exists a Tinite subcollection B. ,B_ ;00,8
| n b7 Py Py
such that iQI Bp = . Then the corresponding closed subsets

' n

' n
(k - W ) in (K - {x}) must have the property that igl(K - W, ) = B,
4 Dy ) = j’_

- n .
Now by DeMorgan®s law, igl Wp must cover (K - {xi})a However, 1or each
' i
W_ , there exists an open set V_ containing x such that V. N W_ = p.
The set .M, V. is an open set containing x such that {.N yn (LU.w)
lml pi 1= Pi iml pi
= . This leads to & contradiction since 30y Vb must contain points of
(K - {x}). Thus for any finite subcollection B_ ,B_ ,...B_ orf F, .N
; ? P’ Py P, 1=1
Bp # ¢, This implies glep B £ 6, [ 1k ,1%6]. Now rfor each point g
i P ;
in BDEF Bp, gul(q) is an isolated point of K since gml(q) is not an
P ‘

1

element of Wp TOor any P.

Let D denote the collection or all such isolated points in K. Since
D is open in K, Tor each p in I, the se@’K - (wp U D) is closed hence com-
‘pact and non-empty. Then {g(K - (wp QxD))] P ele N M is a null inter-
section of non~-empty closed sﬁbset or tﬁe comﬁact space M and there must
exist some fiﬁite cubcollection of these sets which hés an empty inter-
section, and wﬁich cover M. [,'lhj136']o This implies, by DeMorgan's laws,

that a finite subcollection wp yWp secay, With P, ¢ L Tor each i, must

i
cover K = (DU {x}). Since x %s aﬁ accumulation point of K, set D must
be infinite and hence D U {x} must have an inrinite subset H such that
x is the only accumulation point of H. Then g(H) N M is an infinite
compact subset of § and must have an accumulation point z which belongs
to H, This is a contradiction since gml(z) is an isolated point of K.
Since that assumption x ¢ (fil(y)) leads to a contradiction, x must

be an element of I"”l(y)j f”l(y) must be closed, and by Theorem 4.7, T is

continuous.



CHAPTER V
CLIQUISHE AND NELGHBORLY TRANSFORMATIONS
- INERODUCTION

The requirement that a runction be continuous is very restrictive.
Thererore, cne is often tempted to derine classes of runctions th&t sat?
isfy weaker conditions than continuity and to investigate these classes
of rfunctions torsee irf problems that are solvable using continuity would
also be solveble using a less restrictive condition. Since a consider-
able body of material has been developed concerning continuous runctions,
one will naturally inquire what properties the new class of Tunctions
‘will have in common with continuocus Tunctions, and what properties or
cbntinuous»functiOns are not true ror the new class or runctions,
Another line 6f inquiry is to ask if the new class of Tunctions will be
useful in dealing with topologicsl prdblems which are not solvable using
continuity.

In this chapter, two classes of Tunctions satisrfying weaker condi-
tions.fhan continuity will be derined and their properties investigated.
_Special emphasis will be placed on discovering whether or not certain
properties oOr continuous TFunctions are true ror these new classes or
functions. At the énd or the chapter; several theorems will be present-
ed which show that the new classes of functions can be used to

characterize derivative functions of contipmuous real valued rfunctions.

9
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This is particulasrly signirficant since it is well known that the deriva-
tive of a continuous function is not, in gemeral, continuous. Formal

derinitions will now be presented for these new classes of Functions.

Derinition 5.1. A funection I rrom a space S into a space T 1s

said to be neighberly at a point x of § ir and only ir ror every neigh-

borhood V of r(x) and for every neighborhood Uy,of x there exists an
open set U such that U< U and £(U) € V. Function r is said to be

neighborly on S if © is neighborly at every point or S.

One should note that x is required to be an element or Ux’ but is
not necessarily an element or U.
For T a metric space, with metric p, one can restate Definition 5.1

as rollows:

Derinition 5.1l.b. A function ¥ Irom a space S into a metric space

T, with metric p, is neighborly at s point x or S it and only ir for

every € > 0 and ror svery neighborhood Ux or x there exists an open set

Uc U, such that o(r(x), (y)) < ¢ Tor every y e U.

Derinition %.2. A function © rfrom a space S into a metric gpace
T, with metric ©, is said to be cliquish &t a point x of § if and only
if ror every € ,> O, and for every neighbofhood Ux or X, there exists an
open éet UC U, such that o(2(y),f(z)) < ¢ ror ever& pair y, z of element

in U. A function T is said to be cliguish on 8 if £ is cliquish at every

peint in S.

One can easily verify that every continucus rfunction is neighborly

and that continuous runctions:and neighborly Tunctions are cliquish,
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provided the range space is a metric space.

Example 5.1. The function T from the real numbers R into R derined

by:
sin =~, i x = O .
x? ’

r(x) =

0, it x = O,
is not continuous at x = O but is neighborly and cliquish at that poiﬁto
To verlxy that T is not continuous at x = C, one can note that. the

»

sequence { ne] CONVerges to O but the sequence {f( )}n 1 does not
converge totf(o) = C., This rollows from the rfact that f(£L) = + I, or
O, depending on the choice or n. nﬁ

Function t' is neighborly, however. To show this, let Uo be a neigh-
borhood or O and choose a positive integer N such that x = %ﬁ~ is
contained Uool Now r is continuous at point x since 1 is a composition
of continuous functions at all points exceﬁt 0. Furthermore, r(x) =

(Enﬂ ‘
such thatp (£(x),r(y)) < e for all y € V and let U = V N U,. For any

==-) = gin (2Nr) = 0. Now given € > O, let V be a neighborhood of x

¥y € U, p (£(0),2(y)) =p (£{x),#{y)) < € since £(0) = r(x) and since y ¢ V.
This implies ' is nelghborly at x = O. Since a neighbérly function whose.

range is a metric space is cliguish, ¢ is also cllqulsho

Example 5.2. The rfunction rrom R into R defined by:

gin “y ir x = O,
£(x) {2, ir x =0, -

is cliquish,'but is neither neighborly nor continuocus.
PROPERTIES OF CLIQUISH AND NEIGHBORLY FUNCTIONS

Since every continuous function is neighborly and since every
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neighborly function whose range space is a metric space is cliquish
nelghborllness 1s a weaker condltlon than contlnulty and cllsulshness -
is a weaker condition than nelgh'borlinessn This suggests that nelghborly
Iunctlons might possess certain propertles or contlnuous Iunctlons that

the still weaker cllqulsh Tunctions might not possessa The Iollowing dis-

cussion will verify that such properties exist.

Definition 5.3. A subset A or a topological space S is:said to be

everywhere dense in S ir A= 8.

Derinition 5.4. A function I is said to be pointwise continuous
on a space S ir the set or point where r© is noncontinuous is everywhere
dense in S but is not closed relative to S. A Tunction T is said to be

pointwise noncontinuous on S if the set or points where S is continuous

is everywhere dense in S but is not closed in S.

Derinition 5.5. A Tunction r is said to be pointwise neighborly on
y . ‘
a space S ir the set of pointsof S where f is non-neighborly is every-
where dense in S but is not cleosed in S. A function T is said to be

pointwise,non-neighborly on a space S ir the set or points orf S where T

ié'neighbbrly.is everywhere dense in S but is not closed in S.

The rollowing example gives a function that is pointwise continuous,
pointwise noncontinuous, pointwise neighborly, and pointwise non- _

neighborly on the open interval (0,1) with the usual topology.

Fxample 5.3. [25] Let T be defined on (0,1) as Tollows:s

0 if x is irrational; and

1 if x =,§'where p and q are relatively prime.

(%) =
g
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- Let us now show that 1 is pointwise continuous and pointwise non-
continuoug‘by showing that f is‘continuous at every irrational point, and
discontinuOus at each rétional,pointn

Let x be an irrational point and let ¢ > O be glven. Thgre”ekistsh
only g finite nunber oﬁ g ror whiéh l/q >e. Let A :.{p/q-I D and q are
relatively prime, 1/q > ¢ and lx ='P/qli< e}i Now set A containsugt
most a rinite number of points. For each p/q € A, let{&p/é = ]x‘w p/q’
and let & = 1/2 min {ap/q lp/q e Al. Now ‘Por any y € N8<X), y is
irrational or y = p/q where 1/q < ¢. In either case, Jf(x) - f(y)l <eg
so that ¥ is continuous at x. ‘ |

If x is_ratibnal, ?(x) = 1/q ror some integer q. Now ror e < 1/q
it iéiimpossible tbzfind a ® such thaﬁ lf(x)‘— f(y)j < g 'ror any
Yy evNa(x)o This is true, sénce every neighborhood of x must contain an

irrational point y and

2(x) -~ ©(y)|= |1/a - 0] = 1/qa > e. Thus ¢ is
discontinuous at eyery rational point.

Since T is continuous at every irrational point, and discontinuous
at every rational point, ¥ is pointwise continuous and ﬁointwise non-
continuous on R.

The Tunction derined in Example 5.3 is also neighborly and non-
neighborly oﬁ (0,1)n To veriry this one can note that r is neighborly
at each irrational point since T is continuous at each irrational point.

To vefify that © ié nQn=néighb6rly‘at each rapional point, ;et X be
a ratiépal point. Since x is & rational point, f(#) ='i/q for some
pos;tive integer q. Chooselg § l/q; Now for eéch heighﬁorhood U of x
aﬁd fo;,each open set N contain in U, there éxists an:irfaiional point

y.in N. Now

x) - f(y)l = [l/q - Of: 1/q > €, so that ¥ is not
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neighborly at x.

The rollowing theorem-shows .that it is impossible to rind a runc-
tion that is both pointwise cliquish and pointwise non-cliquish on any

space S.

‘e

Theorem 5.1. [24] Let r be a runction derined on a space S;\,If T

[

is cliquish at each point of a set which is everywhere dense in S, then

T is cliguish on S.

| .. Proor. Let f be a fungtion_defined on S which is cliquish on a:set;
'wﬁigh is everywheré dense iﬁ,su Thén'thére exists a seﬁ c, everywhe:e
dense in S, such that for everyipoint e G_G the fuhctioﬁ T is cliqﬁish
at c. Let x be an afbitrary pbint'of S aﬁd.let Nxfbelan érbitrary
neighborhood "ot xf ;n Nx there must exist ét legst one. point c_of é;
sincé X is éither a point of C or g limit pdint or' C. Let a positive
number ¢ be given, and‘let'Nc"be 8 neighborﬁood of ¢ such thét Nc %s
COptgined in Nxo‘ Since 1 is cliquish at c, there exists a neighborhood

2

elements of N, p[f(xi)yf(x?)] < ¢. Since N is contained in N_ and since

N contained in Nc’ and hence in NX’ such that for every pair“xl,x or

Nx was an arbitrary neighbqrhood of x, ¥ is cliquish at x. But x was an

arbitrary point of $, sc that f\is cliquish at every point of S.

As a consequence of the above theorem, every pointwise noncontinuous
fuanidn, whose range is a metric space, is cliquish, and every pointwise
non-neighborly runction whose range is a metric space is cliquish at all

points. &

Définition 5.6. A subset A or a space S ig sald to be nowhere

1
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dense in S if and only if for every open subset U of S there exists an

open subset V < U such that VN A = f.

"The function defined in Example 5.3 was both pointwise continuous
and pointwise neighborly. The points where £ was continuoﬁs and neigh;
borly was the set of irrational points in (0,1). The set of irrational
points in (0,1) is not nowhere dense. Thus it is possible to have
pointwise continuous functions whose points of continuity are not nowhere
dense, and to have pointwise neighborly functions with an analogous
property. In contrast, the points where a pointwise cliquish function

is cliquish must be nowhere dense.

Theorem 5.2. [24] The set of points at which a pointwise cliguish

fuhction is cliquish is nowhere dense.,

Proof. Suppose the set of point C at which a pointwise cliquish
function f is c;iquish is not novhere dense in the domein of definition
of fli Then there would exist at least one neighborhood N such that C
would'ﬁe everywhere dense in N. By Theorem 5.1, £ would be éliquish at
every point of N. This contradicts the hypothesis that the set.of points

where £ is non-cliquish is everywhere dense.

Definition 5.7. A subset A of a metric space S iz said to be of

the first p category if A can be expressed as the union of e denumereble

number of nowhere dense sets.

We shall now show, for a function f which is the limit of a sequence.
of neighborly function, that the points of discontinuity of f form a set

of the first p category. Since a sequence of continuous functions is
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also a séﬁuence of neighborly functions, we will also obtain the result
that for a function r which is the limit of a sequehce of’contigﬁous
functions, the points or discontinuity of r Torms a set or the rirst p
category. In contrast, in Theorem'BuM"we shall show the set of points

-or discontinulty of a convergent sequence of cliguish functions need not

be or the rirst p category.

Theorem 5.3, [1] If g is & runction Trrom a metric spaée 8, with
metfic p, into a métfic space T, with metrgc p, and if‘{fn} is a
sequence or neighhorly Tunction such that 11@ p'(fn(x),g(x))== 6; ﬂor”
"every}x inES? then the points of diséontinuityfof g éorm a‘sgt"of;the 1

Tirst o catégeryo

Proot'. Let a{x) = lim ;Ep o’ (g(x),eg(y)) rfor x in S. Since the set
% ' .
of points or discontinuity or g is the set or points ror which a(x) > O,

the desired conclusion rollows Trom the Following statement:

Statement: I n is a positive integer, if 0 < ¢ < ® and, if A£ =
{x[\n(x)uz ¢ and p”(fm(x),g(x}) < ¢/16 ror each integer m > n}, then A£

is nowhere dense.

Proof. Suppese (1) Ah is everywhere dense in some open sphere .

Let xl'be'én element or An N & and use the neighborliness of fn to rind

an open sphere @, ¢ such that (2) p/(fn<xl), fn(z)) < ¢/16 whenever

z €0 Let x be an elemént of o,

m >n and (3) p'(fm(x)5 g(x)) < ¢/16. Now use the neighborliness S

and choose an integer m such that

to secure an open: sphere @, such that &, ﬁ%al and (i) p”(fm(xy,fi(z)) <

¢/16 whenever z ¢ @, . Let x. be an element or A N a,.. From statements

2 2 2°
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3, 4, 2 and rrom the ract thatixl and x, are elements or A, it rollows

that
o' (8(x),80x))) < 0 (800),7,(0) + o (2, ()2, ()
+ e (x),e(xy)) + pieley),r () +
o (2003 ,7, ()] + 0 ( () 8y ))
/16 + /16 + /16 + ¢/16 + /16 + e/i6 = 3e/8.,

Thus gﬁfg(x),g(xl)) < 3¢/8 whenever x ¢ oy - Accordingly, o (g(x),g(y))

‘< 3e/4 whenever x ¢ % Y e, Thus o (x). < e/l whenever x ¢ o, ,

1
AN Oi-is'eﬁpty, and in contradiction to (1), Ah is nowhere dense in e
- n :
Hence set A = U, A, which-is the set or points of discontinuity orf g,

is of the firsﬁ p category as claimed.

Corollary. The points or discontinuity of a neighborly(funétion b

constitute a set or the first p category.

" Proor. Let seguence {rn}"be defiﬁed by fn'm T For each n and apply

Theorem 5.3,

Thecrem 5,4, [24] The 1imit £(x) of a sequence or cliquish functions

- can’ be non-cliguish at every point of its domain of definition.

ProoY. Let f be derined on the interval (0,1) of the real'numﬁers
Qith the ﬁsual topology. Define r byé
v f(x)bm G if x is irrational, and
(%) = 1 if x 1s raticnal.
Function 1 is non-cliquish at every point; an& is the limit: of the
squencé {fn} der'ined by: |

n

5 4 o -
7, = Ey g (x),
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where gé(x) =14if x = pfq, p <14, and p and g relatively.primé.inﬁ¢gerss

while gq(x}‘z 0 otherwise. Each.fn(x) is cliquish at every point in

In Théorem 5.3 1t was shown that the points of diééontinuity 6f:a
func%ion.whiCh ig the limit of a sequence or neighbofly funotiqﬁ ismof
‘the rirst p category. Theorem 5.4 implies this islnqt true fqrfa function
which is thé limit of & se@uence or éliquishvfuﬁctiOnsn Héwevér, the
‘points o1 discontinuity o a cliquish function‘must be of the rirstp

category. This property or neighborly Tunction was shown in the corol-

lary to Theorem 5.3.

Theoren 5.5. {2k] The points or discontinuity or a cliquish func-

tion must be of the firstp category.

Proef. Let r be s cliquish runction derined on a spaée 5. For
each x € 8 letw (x) = lim Sup p(2(x), £(y)). The set of points of
. YK ‘ : '

discontinuity of T is the set ‘of points of S Tor whichw (x) > 0.

Let A, = {x|x¢e8, olx) >1}
Ay = fx|x €8, w(x) >1/2]
A= {x EXR? w{x) > 1/n}

, Since each point or discontinuiﬁy\df r is an element or'A Tor some n,
ng ,Ahais éhe set or points of discontinuity fér\fo Let us show‘eaéh
A 1is nowhere dense.

Suppose rér some n the set An is not nowhere dense. Then ﬁheré
‘exists some open set & in S such that An is everywhere dense in &. Let

X € An N & By the cliguishness of ¥, there exists some neighborhood

@, <@ such that (r{y),;2(2z)) < 1/2n ror every pair y, z or elements in o
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But this implies that no point of An is contained in Oig which contra-

dicts the assumption that An is not nowhere dense. Thus A.n is nowhere
- .

dense for each n and ngl An which 18 the set of points of discontinuity

of £ is of the first p category.

Corollary. Every cliguish function is at wmost pointwise dlscontin-

uous .

Proof. Assume the contrary of the corollary as stated. Then the
‘_poiﬁts of discontinuity of f would be everywhere dense in the space S
ﬁfof definition and closed with respect to S. This implies that the
points of discontinuity of £ would equal S. This contradicts Theorem

5s5

The following example shows that a function which is the limit of a

sequence of neighborly functions need not be neighborly at all points.

Example 5.4. Let S be the closed interval [0,1] with the usual

topology. Define sequence {fmj of functions on S by:

Lifx=1o0r0

fl(x) “ 10 otherwise,
£ (x) = 1 if x = 0, 1 or 1/2, and for each n = 3,4,5,...,
2 ~ |0 otherwise, '
£ (x) = 1if x =0 or if x = 1/k for K = 1,2,3,.00,00
n ~ 10 otherwise.

Let f = lim £ . Now £(x) =1 4f x = 0 or if x = 1fi, where 1 = 1,2,3,
esooy and £{x) = 0 otherwise. Function f is not neighborly at point

x = O,

As was shown in Example 5.4 and Theorem 5.4, the limit of a sequence
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of neighborlyufunctions need not be neighborly at all p@igts and the
limit of & séqu@nce of cliquish functions need not be cliguish at all
pOintso It is also true that & convergent seguence of continuous
functions need not be continuous at all points. It is true; however,
that the limit of & uniformly convergent segquence of continuocus func-
tions from w space S into a metric space M is continuous. Analogous
results hold for uniformly convergent sequendes of neighborly functions

and uniformly convergent sequences of cliguish functions.

Theorem 5.6. A function f from a space S into a metric space M
which is the uniform limit of a convergent sequence of neighborly

- functions is neighborly.

Proof. Suppose T is the limiﬁ of a uniformly convergent sequence
ffn] of n@ighborly functions from a space S into a space T. Let € >0
be given. Pick an N such that p(fn(x)jf(x)) < ef3 for all x € S and
for all n z;Nf Choose x in the domain of f and let @ be a neighborhood
of x. By theiﬁeighborliness of fn(x)g there exists an open sét ai cons
tained in & such ﬁh@t for all y in @y, (fn(x),fn(y)) < ¢/3. Now consider
(£(x),£(y)) for any y € oy (£{x),8{y)) < (£{x),£ (x)) + (£ (x),£ (v)) +
(fn(y),f(y)) <ef3+ ¢35+ ¢3=¢c, Thus f is néighborly atAx, and since

x was chosen arbitrarily, f is neighborly om S.

Theorem 5.7. A function which is the limit of & uniformly conver=-

gent sequénce of cliquish functions is cliguish.

Proof. Suppose f is the limit of a uniformly convergent sequence

(fn} of cliguish functions frem s spgce S into a metric space M. Let
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€ >0 be given. "By the unif@rm convergence O {fn}, an'integer N can

be chosen such that p(f@X),fn(x) < ¢/3 ror all n >N and ror all x in

Seu Now let x be an arbitrary element Qf 8, let @ be a neighborhood or

X, 8and let n > N be given. By the cliquiéhness ofgfn there exists an

open set ai c o such that p(fn(xl), fh(xg) < ¢f3 tor all pairs or

elements x, and x, in @, . Now Tor x,,x, in di, p(f(gl)lf(gg)) <

o (20,7, (x,)) + 0 (2 (), 2,085)) + o (2, (x,),2(x)) < 6/3 + &/3+€/3 =e
Therefore,>f is cliquish at x. Since X was chosen arbifrarily T is

’éliquish at every point or 8 as claimed,
CHARACTERIZATIONS OF DERIVATIVE FUNCTIONS

For a continuous real valued runction derined on & subset or the
real numbers, it is well known that the derivative runction may not be
continuous. The rollowing example gives a tunction ror which the

derivative exists at esvery point, but the derivetive is discontinuous at

the point x = C.

"Example 5.5. Let s function T be derined by:

2 , “
o _ fx7 sin x if % ¢ 0
T = {0 11 x = 0

2 sin 1/x - O
) = li%@x sin 1/x)= ©, and ' (x)
: X ' o

]

Now £'(0) = lim & cos

1/x + 2x sin 1/x ir x £ 0. For x # 0, r'(x) is continuous, but £'(x)
is not continuous at x = O as one can see by considering points of the

Torm 1/2nmw:

‘This example can be generalized ror the interval (0,1) to give a

function whose derivative exists at all points in (O§l),vbut Tor which
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?'{x) is continucus at all irraticmal points, and discontinucus at all

rational points.

Example 5.6. [22] Let the domain of r be the interval (C,1).
Order the rational in (0,1} as seguence {x_}
Let gn(x> = {x - Xn>2 gin (l/xﬂxn) for. x % X and rfor each n,

let gn(xn) = 0,
o8

2,
; &/ (x).

Let (%) = R

Now fgn(x)/ne} is s unirormly convergent sequence since -1 < gn(x) < 1,
‘ . . ¢ - ‘ ‘ :
; 20 [ . 5 2 <
Thus ©' (%) = oI 8 n&x}/n .

" 1 w25 e -y - ’ - 2 ;
Wow ' (x) - oty - 908 l/(x xn>;+ {x xn) sin 1/ (x xn) ir x»% x_ for
any n, and is conﬁinuous at 8ll points where x # X for any n. However,

o

r“fl(x) = Ei 23“(3)/1{2 © B I"%(X)/KE ¢ 0ir x = x_ for some n. At the
poiht where X = X s f“(;) is diécontinu@us since the sequence or poigtSw
{1/on% + %} c@nvergeé to iﬁ, but r{(1/2nx + x )} does not converge to
‘f“<xn)b

From Example.5.5 and 5.6 one can easily seé thﬁt the derivative
function of & continuous rsel valued runction derined on a‘subéet or the
real nﬁmb@rs need not be c@ﬁtinuéus even though it may be defined at
all points. Such derivatives of coptinuous real Valu@d functions_d@finmv
ed on certain subséﬁs of the ré&l number can, howevef,‘be charaéferiéed
as being eithef neighborly or cliguish. The next theorem stetes condi-
tions under which the derivative funéti@n of & continuous real val%%é‘
funcétion will‘b@@neighborlyo This theorem was proven by Smith_[Ee]j‘

A similar theorem can be'Tound in [181.
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Theorem 5.8. [22] Let £ be a continuous real valued function defined
on the real numbers, an open interval, or & closed interv&l'of_the real
numbers. If the function f has & derivative at esch point of its domsin

S of definition, then £' is neighborly.

The proof of this theorem will depend on a theocrem due‘tp Baire [12]o
It will be necessary t¢ give some preliminary definitions before stating

the theorem by Baire and giving the proof of Theorem 5.8.

Definition 5.8. A subset A of th@ real number is said t0 be dense-

in-itself if eﬁ@ry point x in A is a limit point of A,

Definition 5.9. A subset A of the real nunbers is said to be

perfect if it is closed and dense-in-itself.

One should note that a closed intervai of the real numbers is a
perfect set and that an open interval when thought of as a subspace

of the real numbers is perfect.

Definition 5.10. A function f defined on & subset S of the real

numbers is said to have the Darboux property on S if for every psir of

points x,,%. in 8 with x, < x_ such that f(xl) # f(xe) and for every M

1’72 1 2
with min {f(xl);f(xg)j <7 < max ff(xl)yf(xg)}, there exists an x, Xy <

x < x,, such that £{x) = 7M.

This property is of interest since continuous real wvalued functions
defined on the real numbers, closed intervals of the real numbers, or
open intervals of the real numbers are known to possess this property.

The derivetives of such functions also possess this property.
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Theorem cf Baire. Let E be a subset of the real numbers which is
either perfect or open, and let f be a function defined on E. Function
f is the limit of a seguence of functions, each of which is continuous on

E, if and only if £ is at most pointwise discontinuous with respect to

every perfect set conteined In E.

Definition %.ll. A function f is said to be of Baire's class less

than two if f 1s continuous or is the limit of a seguence of continuous

functions.

A lemma and & theorem will now be proven, from which the proof of

Theorem 5.8 will follow.

Lemma 5.1. [22] If the real valued function f is defined on an
open interval I of the real numbers and if x is a point of I where £
is not neighborly, there exists & positive number € and a n@ighborpood
N of x such'thap for. each point y of continuity of £ in NN I,

| £(x) - £(y)] > e

Proof. Let x be an element of I at which £ is not neighborly.
Suppose for every €& > 0 and for every Nig there exists a continuity
point y of £ in N N I such that |f(x) - f(y)| < €. Choose & positive
number e, such that yf(x) - f(y)’+ €; < €. Since y 15 a continuity
point of £, there exists a n@ighb@fh@@& Ny,c:Nx N I such that for
zin N, |#(z) - f(y)} < €. e for z in N, |£x) - £(2)| <
lf(x) - f(y)i + if(y) = f(z)] < ﬁf(x) - f(y)ﬂ + € <e. This, however,

contradicts the hypothesis £ is not neighborly at x.

Theorem 5.9. [22] If the real valued function £, defined on an
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E.»z

open interval I, is a B&in" las less than two and has the Darboux

property, then ¥ is neighborly on I.

r@@fo Suppose 1 is not neighborly at the point g in.If"_Fer »
Beire's Wh@Qremg 1t Tollows that the @et of points of\conﬁinuityan"f
forms & S@t whnch is eV@rywhere dense in I. Since 2{x) is not neigh-
Jborly at €, Lemma 5.1 implies there exists a positive nuﬁber‘e and'a
neighborhood Nl(g) such that for every continuity point x“Qf T ;n .
Ni(g) ni, Af(x) - f(§)§21@o CHovse a neighborhood N(E) of € such that
ﬁ(g) CiNi(@) and guch that the end points of N(g) are céhtinuity_point
of t. ‘Denate'by R the set of continuity points of 7 in N(§)°',Let
= {x{ x ¢ N(E), and ﬁf(x} - f(g)ﬁ< €}. Consider the set B or points
of A at which the saltus Sf(x) relative t0 A satisties Sf(x) >'€/2°vv,
Set B is not null since g is an element of B. Let B denoﬁe the closure
or B. Now every point or B iz an interior point of N(g) since the end
points of E(g) are points of continuity of ¥ and Sf(x) = O at these
points. Let us now show that B is perrect by showing that every pbint
ofvﬁlis & liﬁit point or E. o
If % in B is such that | I(X) - 1(5)1 > e, thun x ¢ A and x p ‘B, so.
that x must be a llmit point of B and & limit point of B, II X in B is
such that EI(X) - f(a)g €, then x is in B since x € A and the set of -
points where Sf(x) > ¢f2 is closed relmtivé to B. Now ir x is in B For
an afbitrary neighb@rhood“wk or x which is conta%ned in N(g}, there
exists two pointé Xy andfx2
The rellowing possibilities can hold.

o . TR ) - = f
in N euch that E f(xl) I(xajgz €2,

(1) |2(x) - =g

)ﬂ < gf2
{2) Mx )= oele )i

< ¢f2
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(3) 2(e) < e< f(xl) < r(g) - ¢/2, and
(g) + e/2 <2lxy) < () + e
Since R is evefywhere dense in‘N(g) and since ¥ satisfies the Dgfboux
is an

property, in Case (1) x, is an element or B, in case (2) X,

in N, with £(x,) = 2(F)

element of B, and in case (3) there exists an x

‘ 3

and theréfore x, is in B. ~Ir it should happen that any one or the

3

points Xi’XP or'x‘ equale x then by the Darboux property there exists

)
an x, in Nx;with %, % X Qnd such that f(xh) - () < G/Qg In this case.
X, is in E: In any case, the arbitrary neighborhood Nx of x must con-
tain a point of B and B is perrfect.

The saltus Sf(x) 2;@/2 rfor each point of B and, thererore, each
pbint of B is a disc@ﬁtinuity'point of T relative in B. Bbeaire“s
theorem; T could nét be the limit o a sequence ot céntinuous functionéo

‘This contradicts the hypothesis that r is of Baire's class less than two

and, therefore, T must be neighborly on I.

Proof of Theorem 5.,8. If T has a derivative £'{x) at each point

x in 8, then ©' is of Baire's class less than two, since
P{x) - #{x + 1/n)
- 1fn .

£(x) = lim
ey
Thererore, by Theorem 5.9 r! is neighborly on S.

Theorem 5.8 giVeS a characterization or the derivative Tunctions
of.continuoﬁS‘reai valued function defined on the real numbers, open
intervals or the real numﬁers and closed intervals of the real numbers,
providea the derivative exists at-all poihts_in the domain. Thé rollow-
ing theorem shows that a characterization of the derivative function caﬁ

also be given, if the derivative function is derined on all but a nowhere
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dense.set in-S.,

‘Theorem 5.10. [22] Let space S be the real numbers, an open intern
val, or a closed interval. Ir the real valued function r derined on S
has g derivative everywhere on S-with the possible exception or' a nowhere

dense sét D in S, then the derivative function ' is cliquish om S.

Proot, Let g:be an arbitrary point of S and let € > O be givenanu
For any neighborhocd N(F) of £ there exists an 0pen set N contalned 1n
N(g)® ‘such that N N D = f. By Theorem 5.8, t' is neighborly on N. Thus
ror any x; in N there exists an open set Ny C N such that [f(xl) ; f(y)f
< 6/2 ?orjany v in Nlo Now let y,x be any w0 elements in Nl '
If(x) - f(y)[ < lz(x) - 7(x l + [x(x ) - (y) { < 6/2 + ¢/2 = e, Since

N, is a subset or N(g), Y ig cliquish at E.

T
Let us now give an example or a continuous runction whose deriva-

"tive is cliquish but not neighborly.

Example 5.7. [22] Let S be the closed interval [0,1] and let ¢

be derined by:

(2n+;L) - (en®4nsl) x .. 1 1

r(x) = - S n(n+l) = if =5 <x <%, vhere
n :A 0,1323530009 and

IB(O> = Oo

. Now r'(0C) = 0, but at all other points where the derivative exists,
' (x) < -2, Function r’ is, thererore; not nelghborly at point C. How-

ever, by Theorem 5.10, ' is cliquish at all points in S.



CEAFTER VI
' CONNECTIVITY AND PERIPHERALLY CONTINUOUS MAPFINGS
INTRODUCTION

Much or the recent research in topology has been concerneq with’de;
termining if‘a mapping T from a space S into itselfjleavesva point vaS
Tixed. That is, in determining if there exists some point x_in 5 sgch
that £(x) = x. For example, it is well known that & continuous @aﬁping
from a closed n-cell T into T will leave & point or I fi%edo A cloéed
n»éell I is any homeomorphic image §f the subset of Fuclidean nmépacej
‘consisting or points of thé rorm (xi,xz,éo;;xn)é.where olg Xy < lﬁfor"‘
“each i, i.m.ly 250005 Do Many functibns which satisfy<condiﬁi0nslofher
thah continuity can also be shown to leave poinfs of an n;cell rixed.
Jth Nash in studying rTixed point problems derined a mapping which he'
called & connectivity_map and inquired whether or not thisjkind or map;
ping lert a point of the n-cell rixed [9]. Profeséor_oo H. Hamilton
(9] of Oklahoma State University and Professér J. étglling [éB] ot
Priﬁcetén iﬁvestigated the problem rurther and gave aﬁ‘éffirmative
énswéru In Hamilton's'investigation hé defined aﬁd made use or anéfher '
noncontinuous runction which he called the peripherally continuéus
mappipg, (

Although connectivit&.mappings and péripheraily c0ntinu0us mappings

were defined in connection with fixed point theorems, a considerable

98
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amcunt Or research concerning other properties or these functlons has
taken place. In this chapter, such results concerning these functions
will be given. Derfinitions will now be stated wdor connectivity and

perifpherally continuous transtformations.

‘Definition 6.1 A mapping T from a space S into a space T is said

te be a connectivity mapping ir and oniy i the ihduced mapping g_of s
into 8 >< T, derined by g(p) = p >< 7(p), transrorms connected subsets

of- S onto connected subsets orf S >< T,

Using the derinitions one can easily show that a connectivity map

is a connected map.

Derinition 6.2. A mapping T from a space S into a space T 1is said

to be perﬁpherally continuous ir and only if for eéch point p or S and
Tor each pair of open sets U and V contgining p and r(p), respectively,
there exists an open set D < U containing p such that £ transforms the

boundfy F o D inte V.

The following examples show that connectivity'maps'and peripherally

continuous mappings need not be continuous.

Example 6ui Let S be the unit interval O < x <'1 with the usual
topology and define.f on S by:

r(x)

r{x)

Function ¥ is peripherally continuous at all points but is discontinuous

1l irf x is rational

it

li

0 if x is irrational.

at all points.
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Example 6.2, Let S be the set or rational numbers in [Q,i]_witﬁ
the usual topology, let A = {x lx ¢ 8, x = p/q, where p and qvarel?e}a~
tively prime and g is prime}, and let B = {x Ix e 3, X‘mbp/g, where p.

and q are relatively prime and g is not primeje Derine £ on S by:

i

.f(x_) 11ir x € A, and

ka).

Mapping ¥ is =& c@nnectivity'map since the only'connected subsets in 8

i

0 ir x ¢ B.

are single points. Mapping r is not continuous on S since both A and

B are everywhere dense in S.
SOME FIXED POINT PROPERTIES

Since the original wérk with connedtivity maps and-periphéfall&
continuﬁds maps was by C. H. Hamilton in connection with fﬁxed;point
theorems, an& since many of the other theorems concerning these-mappings
followed froﬁ his work, it seems appropriate to discuss his results
rirst. After the presentation or HamiltOn's work, a systematic presen-

tation or the other theorems concerning these mappings will be given.

Theorem 6.1, [9] If 7 is a conneétivity map Pfrom a Hausdorr? space
S onto a‘Hausdorffaspacé T, p iz & point of S, U and V are.open set con;
taining p:and f(p), respectively, then every nondegenefate ponnécted
subset Qf S contalning p contains & point g of U distinet tfrom p sucﬂ.

that r(q) is an element or V.

Proof. Suppose C is & nondegenerate connected subset or S contain-
ing p but such that C contains no other point-g of U such that f(g) e V.

Then g(C) is the union of the two mﬁtually separsated sete
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glp) = {p >K:f(p)} and_g(C - {p}),lsince U‘>< V contains p ><wf(p)Hpgt
no point or g(C - {p}). This contradicts the hypothesis, hence must

contain a point g or U such that g # p and ©{q) ¢ V.

Theorem 6.2. [9] If f is a connectivity mep rrom a'Hagsdqrff space
S into a Hausdorfr space T and ir C is a closed subset of T, then each

component of fml(C) is a closed stbset of S.

Proor, Suppbsevc is a ciosed subset of T and £haﬁ sgme.cqmponent
E of fml(c) ié not closed. Then there exists a limit point p of E such
that p is not an element of E. Thus r(p) is not an element of C. Since
C is closed,‘f(p) is not a limit point of C, and there exists an open
set U in T such that ©(p) is in Uand UN C =ﬂ¢v Theretore, f”l(U) N E
= . This leads to & contradiction, since the connected set E Uv{p}
ﬁmust contain a.point g distinct from p such that f(q) is an element or

U; by Theorem 6.1. Hence E is closed.

Corollary. I I is a connectivity map rrom a Hausdorfr space S
into é Hausdbrff space T, p is g point in 8, U is an open subset of T
containing ©(p), and ir C is Ehe subset o S consisting of’all points g
ot S guch thét f(g) ls an element of ﬁ, then each component E of C}is

closed,

The next theorem was §tated by Hamilton [9], and a proor of a gen-
erélization of this theorem was given by Stalling [23]. The proor or
Stalling’s theofem will not be givén since it involves terms and tech-
nigues of algebraic topology which would not be appropriate in this

paper. The statement of Hamilton's theorem will be given, however,
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since his remaining theorems rely on this result.

‘Theoren 6.§¢ (9] 1Ir f“is a connectivity map Qf”a.clqgngnféel} I
n>2, onto"a'subseﬁ B or T, then T is peripherally QOptingougiqn";; .
Furthermore, ir p is any point of I and U and V are open sﬁ@séﬁs‘éf I
containing p and f(p), respectively,‘the;é is a conngcted set D of.I’v

with connected boundary F such that p e D, DU F& U, and ©(F) V.

Tt should be noted that the second statement in Theorem 6.3 rollows
because T is peripherally continuous, and not rrom Stalling's general-

‘ized theorem. A partial converse of this theorem will be presented

P

later.

Theorem 6.4, [9] " Let I be a peripherally continuous transrormation
orf a closed n-cell I, n > 2 into itselr. -Let it be assumed that I .is
the closed n-cube consisting or the points (xl,xg,noo,xn) given by the

inequalities 0 < x, <1 for each 1. Let the races x, = 0 and X = 1 be

i i

designated by A, and Bi respectively. For each point % = (xl,x2,ono,xn)

1
in I, let r(x) be designated by x' = (xi,xé,oooxg)n For each 1, 1 < i

< n, let MiguLiﬂ and Ni designate the subsets of I for which xi < X4, x;

1

= Xy, and x; > X, respectively. Then the components Mi’ Li’ and Ni are
clogsed and i g = (ql,qE,ooo,qn} ls a point in the common bhoundary be-
tween a component E of Mi or Ni and a connected subsetvéf I - E, then g

is an element or L -

Proor. Let q = (ql,qg,eao,qn)‘be a limit point or a component E

or M, and suppose that q does not belong to M,. Then by the derinition

or Mi’ qirz a5 + d ror some d > 0. Then, since 1 is peripherally
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continuous; by Theorem 6.3, there exists é.connected open set D orf dia-
meter < d/B containing ¢ such that

| (1) 8- (DNE) £p, and

" (2) ir x is a point or F, the boundary of D, then

pLr(x),2(a)] < a/3.

The connected set E, since it contains pgints outside Qf D ahd Wi%hin
D, ﬁust contgin‘a point x or F. This meéns,‘p[f(x),r(q)}‘< d/3, ana
,Eix,q) < quQ Hence, |x; - qi[ < d/j and {Xi - qi} < d/Ba With

qi =dy + d, these inequalities give x] >x

1 i
the ract that x is in Min Hence the assumption that g does not'belong

+ d/3 and this contradicte

to M, is ralse and E is closed.
\ A éiﬁilaf argunent can be used to show that each compohent or Li
or Ni is closed°
Now let q = (ql,qg,oao,qn)'be & point in the common boundary be-

tveen a component B of Mi and- some connected subéet RorlI- Eg and‘
sdﬁpoée g does not belong to Lio Since g is an elémént or Mi’qi miqi
+ d Tor some d > C, Let & be a positive real number such that 5 < d/5
and such that the sphericaiin@ighbmrhoodiwith center q and dliameter B
does not contain all of E. Then since r is peripherally 60ntinuous;
it rollows rrom Theofem 6.3 that there is a connected domain D with
respect to I or diameter < & coataining g with conheéted'boundary F
such that

(1) D contain a point z of R,

(2) - (®NR) =9,

(3) ir x m‘(xl,xé,uoayxn) ig in F then p{r{x), ©(q)) < d/3.

Then |x} - al| <d/3, |x, - qi[ < d/3, and since g, = q) + d, it rollows
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thiat X, > x Hence % € Mi’ and therefore F < E. But the connected

00
i
set R conteins & point of F and hence a point of E. This contradicts
Rc I - E. Hence the assumption q does not belong to Li is false. By
a similsr argument, it can be shown that each point common tc the bound-

o

aries of & component B of Ni and a connected subget of I = E is in Li

The main theorems from Hamilten's paper will now be stated and

proofs given.

 Theorem 6.5. If £ is a peripherally continuous transformation of

a closed n-cell I, n > 2, into itself, then f leaves a point of I fixed.

Proof. Let sets.Ni, Mi’ Li and faces Ai and Bi be defined as in

Theorem 6.4. Since set Ai must be a subset of Ni for each i and since

A; is a connected subset for each 1, let E; be the component of N

which contains A

i

; for each i. By Theorem 6.4, E, is closed. Let fq;}

be the collection of’all compohents of T = Ei which contain points of

i ) ' v
B Let H, be [qz qz] UB,. Now H, 1is comnected since B

i’ i

and since each q; is connected and contains a point of B

1 is connected

| ‘ 50 Let Ki be
the subset cof Ei consisting of all points in the comimon boundary between

H, and E Then by Thecrem 6.4; K, is a closed subset of Li and hence

i’ i1
F, =K U (Bi N Li) is a closed subset of L;. Now,
(1) No component C of I - F, contains point of both A, and By

For suppose C contains & point»of'A and & point b of Bi° Then a € Ei

i

and b € H,. Hence C contains a point of Ky

, the commcn boundary between
H, and B, This contradicts K. € F, and Cc I = F,»
1 i i i , i

Now for each point x = (xl,x2,a°o,xn) in I let di(x) = p(x,Fi), and

define a mapping W on I as follows. . Let W(x) = W(xl,x2,noa,xn) be
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designated by (xl, ﬁwaaﬁx Yo 1t x belongs to a component of I = Fi
40 hence contains no point of A let x; =

- o : ; e 18 an
X, l/e[di(x) x,]. Then since x, £ O, x, #x{o If x is an element

which intersects B

of a component of I - Fi which does not intersect Bi let x: = Xy +

° f = = ) - 44 R 4 3
1/2la,(x) - (2 x;)]. Bince (1 x,) £ 0, x] #x,. If x is &n element

8
of Fi let xi = xio

Now since di(x)/z < 1, we have

(2) o© 5;{;‘1 <1, and

b1 o
(%) x, = x/ if and only if x € F, < Lo

The function W is by ite definition a continuous function of I into it=-
self and hence, by the well known Brouwer fixed point thecrem for n-cells

must leseve some point z of I fixed. That is, for each i, 1 = 1,2;,...,n,

xve = X

5 The point z must be an element of ﬂ F c ﬂ L But z in

=] i=1 “1°
for each i, so that f(z) = z, and £ leaves a

iﬂ
n

$ S I
igl Li implies xi = xi

point of I fixed, as reguired.

Theorem 6.6. If £ is a connectivity map of a closed n-cell I into

itself, £ leaves & point of I fixed.

Proof. If n =1 and if £ is & connectivity map of interval I,
into itself, then g(I) is connected by the definition of a comnectivity
map. Furthermore, g{I) contains the points O >< £(0) and 1 >< £(1) in
the subset O >< I andl >< I respectively. Hence the connected set g(I)
must contain a point of the closed conneéted set x >< xin I >< I. This
implies f£(x) = x for xome x in I.

If n > 2 then Theorem 6.6 follows directly from Theorems 6.3 and

6.5
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GENERAL PROPERTIES

As previously mentioned, a considerable amount of research concern=~
ing the properties of conneétivity.and peripherally continueus mappings
has ﬁaken place since the pﬁblicaﬁiOR of H&milténﬁs paper concerning
fixed point theorems. A systemstic discussicn of these findings will
now be glven. G@ner&l properties of connectivity and peripherally
¢0ntimu0us transformations will be given first. The first of these
general théorems gives a property of peripherally continuous mappings
which is analogous to the property of connectivity mappings given in

Theorem 6.2.

Theorem 6.7. [16] If a function £ from a Hausdorff space S into a
Hausdorff space T is peripherally continuous and if C is a closed subset

of T, then each component of fﬂl(G) is closed in S,

Proof. Suppose some c@mponént E of fnl(c) is not closed. Then
there exists some limit point p of E such that p is not an element of
E. Now f£(p) is not an element éf C, and since C is clésedy there must
exist an open set V about £(p) in T such that VN C = P.

Since £ is non-degenerate, th@r@ exlsts an open subset U of S con-
taining p such that (5 =U)NE#pP. There also exists an open subset
Dof S suchb’cha.t De U, p e Dand #(¥(D)) c V, since £ is peripherslly
continuous. Now Dc U and p 2 limit point of E implies there exists
points of E in D and (S = D). Therefore, ¥(D) contains at least one
point of E, and it follows that £{F(D)) is not a subset of V which is a
contradiction. Thus the assumption that E is not closed is false, and

the conclusion of the theorem follows.
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. - l .
Corollary 1. If for each closed set C in T £ ~(C) consists of a
finite number of somponents, fml(C} is closed for each closed set C in

T,

Proof. The conclusion follows from Thecrem 6.7 since the union of

a finite collection of closed sets is closed.

Corollary 2. If for each closed set C in T ful(c) consists of a

finite number of components, £ is continuous.

Proof. By Corollary 1, fnl(C) ig closed if C is closed. This

implies fml(U) is open if U is open. Therefore, £ is continuous.

The next two theorems are concerned with point set properties

which are preserved by periphérally COntinuous mappings.

Theorem 6.8, [16] If £ is & peripherslly continuous transforma-
tion of a Hausdorff epsce S into a Hausdorff space T, if N is & connected

subset of 8, and if x € N then £(x) is an element of F(N).

Proof. Suppose there exists & connected subset N of S and a limit
point x of N such that £(x) is not an element of ?Tﬁ)fbAThen since F(N)
is closed, there exists some open seﬁ V about f£(x) such that
v N ) = p.

Since N is non-degenerate, there exists an open'subset U of S con-
taining x such that (S = U) N N £ f. There also @iists an bpen subset
"D of S such that Dc U, x ¢ D, and £{F(D)) <V, since f is peripherally
continuous. But (8 - D) NN # P and NN D £ p. Therefore, F(D) con-
tains at least one point of N é&nce N is chnect@d, and it follows that

f(F(D)) is not a subset of V. This is a contradiction, hence the
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conclusion of the th@orem follows.,

W_Thgpre@_6D90bil6] Let S and T be Hausdorff sp&cés,_let f be a one-
to;one“peripherglly continuous transformation from 5 into T, and lgt.
Mc S be‘a nqn;degenerate connected subset such that 8 - M has a finite
number of components. If x is a boundary point of M, then £(x) is &

boundary point of £(M).

‘ Proofo Let x be a boundary point of M. If x is not an element of
M, then f(x) is & limit point of £(M) by Theorem 6.8, but £(x) is not
an element of £{M) due to the oneateéone‘property of £. Thus f£(x) is
a boundéry point of £(M).

Now suppose % is z boundary point of M which belongs to M but that
f(x) is not a boundary point of £(M). Then £(x) is an interior point of
f(M). Since there exists only a finite number of components of S =lMQ
x must be & limit point'of some nonédege@@rate component E < (S = M),
But f£{E) c:($ - £(M)) due to the one-to-one property of f, ana-there;
fore £(x) # ?Tﬁ) which contradicts Theorem 6.8. Thus f{x) must be &

boundary point of £(M).

Another interesting point set property of peripherally continuous

mappings is given in the next theorem.

Theorem 6.10. [16] If f from S onto T is a peripherally continuous
transformation of a nonwdegeneratey connected, regular; Heusdorff space
.5 onto a Hausdorff space T, and if y is an interior point of a subset M

of T, then every point of f”l(y) is a limit point of fal(M)o

PrOQfo Let y be an interior point of M aﬁd let V be an open subset
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bf:T-chtaining y and lying entirely in M. Suppose th@r@‘exists g polnt
x of ffl(y) that is not & limit point of fml(M); Then there exists an
open subéet U of S containing x such that U contains no point of f=l(M)
due to S being regﬁl&ro Gonséquentlyp any copen szt D U containing x
hes the property that F(D) contains no point oflfml(M) end, furthermore,
F(D) is non-empty since S is cennected. Hence F(D) is not 2 subset of
'V which contradicts the hyp@thesié éhat £ is p@;ipherally continuous,

The conclusion of the theorem thus follows.

Tn Theorem 6.2 a point set property of'connectivity mappings was
given in connection with Hamilton's fixed point theorems, Similaf
results for peripherally continuous mappings were given in Thecrems
6.7, 6.8, 6.9 and 6.10. Let us turn now to s further consideration of

point set properties of connectivity maps.

Theorem 6.11. {5] Let £ be a connectivity map from the Tl space S

into the T. space T. If V is an open subset of T and K is a non~

1
degenerate component of fal(v)y then any point p in the closure of K

such that p is not in X has the property that f(p)} is in F(V).

Proof., Let p be & limit point of K which is not in K. Since
KU {p} is connected and connectivity maps map connected sets onto con=
nected sets, £(K U {p}) = £(k) U {£(p)} ié connected. Now f{K) contained
in V, £(p) not in V, and £(K) U {#(p)} connected implies £(p) is a limit
point of £(X) by Theorem 6.8, Hence £(p) is a limit point of V which is

not in V. = Therefore, f(p) is in F(V).

Theorem 6.12. [6] Let £ be a connectivity mapping of the locally
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2l

P, If V is sn

3 m

connected and connected T, space 8 into the % space °
ks .

. PN . .
open subset of T, then £ (V) is dense-in-itself.

|
Proof. Suppose £ (V) is not dense-in-itself., Then there is a

point p in fgl(

V) and an open set U containing p such that U - {p}
contains no peint of ful(v)o Since 8§ is locally connected there
existe a connected open subsel € of U comtaining p. Therefore, C >< ¥
is an open set in S >< T containing only the point p >< #(p) of gl(C).
This implies g{C) is not connected contradicting the hypothesis that £

) . _ \ S P . 4
is a connectlvity map. Therefore, every point of £ (V) 48 & limit

point of f”l(v) and hence ful(v) is dense-in-itself.,

With any class of functionsg, it is always of interest to determine
vhether or not a c@nﬁ@rg@nt peguence of guch function will always con-
verge t0 & function of the same class. Example 6.% below proves that
the limit function of a segquence of conn@étivity maps or peripherally
continuous maps need not be of the same type. However, if the sequence
of functions is reguired to be uniformly convergent the limit function

will be of the same class for certaln spaces.

Example 6.3, Let S be the unit unterval O < x < 1 with the usual
topology end define & sequence of function {fn} on 8 by, fn(x) = xny
for each x € 8. Now each fn is & connectivity map and is péfipherally
continucus. Furthermore, seguence {fn} converges to the function f
defined by:

£{x) = 0 1f x £ 1, and
f(l) = 1o

Function £ is neither s connectivity map nor & peripherally continuocus
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Theorem 6.13. [S]  Let {fn]‘be s sequence of peripherally contin-
uous mappings of a space S5 into s metric spacenTa If seguence {fnj
converges uniformly to a function £ on S, then £ is peripheraslly

continuousg.

Proof. Let p be a point of S and let U and V be open sets c@nﬁain;
ing p and £(p) respectively. Since T is a metric space, there exists an
€ > 0 such that the spherical neighborhood R of radius ¢ about £(p) is
conteined in V. ILet R' be the spherical neighborhood of radius e/l
gbout f(p). Since tﬁ@ convergence is uniform there exists & positive
integer N such that for every n > N, gﬁfn(x),f(x)) < g/h for every x in
5. Let n@'b@ a8 fixed positive integer such that nO > N. Then fn ()
is contained in R' and since fno is peripherally continuous at p,ch@r@
exists an open set D U and containing p such that f{F(D)) ¢ R'. If
y is an element of F(D), then p(f(y),f(p)) < p(f(y)yfn {y)) +
p(fn (y),£(p)). Now p(f(y)yfn (y)) < e/ vy the unifogm convergence
and z(fno(y),f(p)) < ¢fh sinceofm (y) is in R*. Hence {f{y),f(p)) <
¢/2 and £{y) is in R. Th@r@f@f@,@f(ﬁﬁIﬂ) cRcV, and D is the reguired

neighborhood which implies f is peripherally continucus.

An analogous theorem holds for connectivity maps; however; the
- proof for this theorem requires the use of Theorem 6.22 which states
conditions under which a peripherally continuous mapping is a connec-
tivity map. This result will be discussed further after the proof of

Theorem 6.22.
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CHARACTERIZATIONS

Some characterizeation theorems for peripherally continuous mapping

will now be given.

Definition 6.4, A seguence {D;} of open sets is sald to close down

. ’ o .
on a point x if and only if {x} migl b, and for every open set U contain-

ing x there exists a positive integer W such that Di<: ¥ for all 1 > N.

Theorem 6.14. {16] Let £ from S into T be & transformation where
spaces S and T are f@gular and first countsble. Then a necessary and
sufficient condition that f be peripherally continuous is that for each

x .

&}

S there exists a monotone decreasing seguence of open set {Dij,
i=1,2,3,000, closing down of x such that the seguence {f(F(Di))],.

= 1,8,3,..., converges to f£{x).

o
I

Proof. The fact that the condition is necessary follows from the
definition of & peripherally continuous mapping.

Now let'{rg}g 1=1,2,%,..., be 8 monotone sequence of open sets
in S comverging to x such that the seguence f(F(Di)), 1= 1,238,000
converges to £(x). If R and V are any two mpenrseﬁs containing x and
£(x), respectively, there exists an cpen set Dj e {Di}, L= 1,2,3000,
such that E% C R. This follows since YDE? closes down on x, and since
S is‘regulara Since the seguence {f(F(D&))} converges to £{x) there
exists an open é@t m, € {D&}; i= l,@;ﬁ,oooy where k > j such that

f(F(Dk)) C U. Therefore, by definition, £ is peripherally continucus.

Corollary. Let f from S into T be a peripherally continuous trans-

formation of e regular space S into a regular space T such that if x is
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an element of S there exists a sequence {Ei}, i=1,2,5,..., Of Open
sets closing down on x such that for each i, F(D&) # p. Then for every

point x in 8 there exists at least one sequence of distinct points con-

verging tc x such that their images under f converges to F(x).

Theorem 6.15. [?] If £ is & mapping from a space S into a space T,
then f is peripherally continuous if and only if g is peripherally

continuous.

Proof., Suppose ig peripherally continuous. Let p be a

point of S and let U and .V be open sets conteining p~and r >< f(p')ij
respectively, where V isxof the form H ><:K with H open in S and K open
in T. Then EN U is an open set ¢ontaining p and K is an oﬁen set con-
taining,f(p)o Bince f is peripherally contimuous, there exists an open
set DcUNH cénta,iniﬁg p such that f(F(D)) C X, Thus g(E(D)) cv
and g is peripherally continu&usu '

~ Conversely, suppose g is peripherally continuous. K Let p be a
point of S and let U and V be open set containing p and f(p) respective-
ly. Then U ><:V is an open set containing p >< £(p), and hence there
exists an open set D < U containing p such that £(F(D)) c U ;K:Vo

Therefore, £{F(D)) < V and f is peripherally continuous.
MAFPINGS THAT ARE BOTH PERiEHERALLY CONTINUOUS AND CONNECTIVTTY MAPS

Hemilton in his original work with comnectivity mapping made use of
the fact that a connectivity mapping from a closed n-cell, n > 2, onto
& subset of that n-cell was peripherally continuous. Some additional

theorems relating connectivity mappings to peripherally continuous
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mappings will be given next. The first of these theorems is an exten-

sion of Hamilton's theorem.

Theorem 6.16. [16] Let I be the closed unit interval, ¢ < x < 1.
If mapping £ from I into I is a connectivity mep, then f is peripherally

continuous.

Proof. Assume that f is not peripherelly continuous. at some point
p in I. Then there exists some subinterval V containing f(p) such that
for some open comnected subinterval U = (a,b) conteining p, no subinter-
val D< U containing » has the property f(FtD)) < V. There exists, by
Theorem 6.1, a point g -in ﬁ, q # p, such that f(q) is an element of V.
‘Suppose g is an element of (p,b). It follows from our assumption that

no point of (a,p) can be mapped into V under f. Hence the graph of
(a,p), &(a,p) I >< I-U ><Va

The set P'>< I separates I ;XiI into two mutually separated sets
such that the graph g(a,p) is contained in one and g(p,b) is contained
in the other. Since g{(p) is not a limit point of g(a,p), gla,b) =
g(a,p) U [g(p) U g(p,b)},where g(a,p) and g(p) U g(p,b) are mutually

separated sets, whilch is a contradiction of the fact that f is a con-

nectivity map. Thus f is a peripherally continuous mapping.

The following example shows that the converse of Theorem 6.16 is

not true.

Exemple 6.4. Let I be the unit interval, 0 < x <1, and define f
on I by:
f(x) = «/4 if x is raticnal, and

£(x) = 3/4 if x is irrational.
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Mapping f is peripherally continuous, but is not a comnectivity map.

Closely related to Theorems 6.1 and 6.16 is the following theorem
concerning peripherally continuous mappings defined on n-cells. The

following definition will be used in the preoof of this theorem.

Definition 6.5, Let S be a topclogical space and let A be a subset

of A. Any component of the subspace (8 « A) is said to be a component

complementary domain of A.

Theorem 6.17. [16] There exists no peripherally continuous trans-
formation £ that wmaps an n-cell I, n > 2,into itsell such that £(1) is

the union of two closed disjoint subsets of I.

- Proof . Suppose there does exist a peripherally continuous trans-
formation from an n-cell I, n >2, into itself such that £(I) = HU K,
where H and K are closed disjdint subsets of I. Then the components
of both fml(H) and ffl(K) are closed by Theorem 6,7, and fml(H) N fngK)
= 6, Since fml(H) U fwl<K) =T, and I is not the union of a countablé‘
number of disjoint closed sets, one of the set fnl(H) or ffl(K) mst
have uncountably many components. Consider this to be fml(H); similaf
results hold if this is ful(K)o
| Let x be a point o£ T and let U< I be any open set containing x.
If DS U is an open set cbntaining X and D*'is defined as the'qomponent
of D containing x unioned with its component complementary domains which
are bounded in E°, then F(D*) is connected [27,106].

"We shall now consider the two posgible re;ulting cases under our

assumption that f is peripherally continuous and show a contradiction of
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the hypothesis., First, if f%l(H) hag at most & Tinite number of non-

S n
degenarate components; M e,uooM » then U M is closed since each M,

LM
is clogsed by Theorem 6.7. Let x be a degenevate component of f 1(H)
and let Uc I be an open set containing x such that U N | Ul’ M 1 =g,
and let V an open set containing £(x) such that VN K =g, If DU
is any open set containing x, then }(D) nf" (K) % o) fOT\lf not, F(D )
c F(D) would be & subset of a nonwdegenerate nomponent N of £ l(h)
But‘N’Q U is impossible by the definition of U. Hence there exists no
set D < U containing x such that £(F(D)) © V and conseguently f is not
peripheréily continuous at x; contrary to hypothesis. |
Alternately, suppose fml(H) has infinitely many non-degenerate

=1
components. Then there exists a non-degenerate component E of f ~(

H)
such that E union its complementary domains which are bounded ih En,
denoted by E*, does not equal Io‘ Let x be a point on the boundsry of E*
- which is & limit point.of T - E andlet U’aqa,v be open sets containing
x end f(x), respectively, such thatv(I - )N E*.#_¢Hand VNK=0, Now
if D U is any open set containing x, F%If§ c F(Dj must contdin a point
of f”l(K)° For if not, D U P(D ) would belong to E since F(D* is
connected and B N ¥D ) ﬁ but this contradicts, the fact that x is
a boundary point of E o Thus there exists no open set D C U such that
£(F(D)) © v, which again contradicta the fact that f is peripherally

continuous.

’

The following theorem will be useful in proving the next theofém

;relating péripherally continuous mappings to connectivity meps.

Theorem 6,18, (5] If £ is a mapping from the T,

T, space T and if K is a connected subset of g(S), then gml(K) is

space 5 into.the
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connected.

Proof. Supposelg“l(K) = M U N~where M and N are-mutually sepa;gtedo
Then K = g(M) U g(N) and g(M) N g(N) = p since M N N = P, Therefore,
one of the sets g(M) and g(N) must contain a limit point of the other,
say, g(M) contains a limit point p >< f(p) of g(N). Then there is a
sequence {qn>x: f(qn)} of points in g(N) converging to p >< f£(p). Now
qn is in N, point p is in M and.qn converges to p. This implies that p
is a limit point of N belonging to M contradicting the assumption M and

N mutually separated. Therefore;ygﬁl(K) is connected.

Theorem 6.19. [5] Let f be a peripherally continuous mapping from

a T, space intc.a T, space T. If for every connected set K in 8, g(K)

1 1

has a finite number of components, then f is a connectivity map.

Proof. Since f is peripherally continuous, g is peripherally
continuous by Theorem 6.15.

Now let K be a connected subset of S and suppose g(K) is not con-
nected. By hypothesis, g(K) has a finite number of components Cl,Ge,
vos,C_o Thus g(K) = igl C,s K = ‘igl#g“l(ci), and g“’l(ci) N gml(Cj) =g
for i # Js since Ci N Cj are mutually separated. Since K is connected,
ﬁét all of the gfl(ci)vare mutually sgparatedo Let p be a point of ci
for.some i, such thatfﬁ ;s a limit point of igl gnl(Cj)g J #4i. Then
p must be a limit point of gml(Cj) for some j # 1. Now p >< f(p) is in
-C, and there is an open set V¥ containing p >< £(p) such that

i

vne = $ if k # 1, since sets C, are mutually separated. Then g

K

peripherally continuous implies; for any open set U containing p,

there exists an open set D < U and containing p such that g(F(D)) ¢ V.
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By Theorem 6.18, gml(Cj) is connected since Cj is connected. Since p-is
g R
a limit point of g “(Gj),g l(Cj) is non-degenerate and the open set D

can be chosen such that gwl(cj) has poinisinterior=to;D_and_extgr?or to

D. Therefore, gml(Cj) must have points in common with f(D), since

gml(Cj) is connected. Thus g{F(D)) is not a subset of V. This is a
contradiction of the hypofhesis that T is peripherslly continuous,

hence g(K) must be connected. .Therefofé T is a 66nnectivity mapa

Theorem 6.20. [5] Let f be a peripherally continuous mapping of

the T, space S into the T, space T. If. for every non~-degenerate con-

1 1
‘nected set K in'3, g(K) has no degenerate components, then f is &

connectivity map.

Suppose £ is not a éonnectivity map. Then there is a non-degener-
ate connected set K in S such that g(K) = M U N where M and N are
mutually separated. By hypothesis the components of M and N are non-
degenerate. Hence gwl(M) and gwl(N) have non-~degenerate components.
For suppose the point p is & component of gml(M)o»wThen'g(p) =D ;X:f(p)
lies in some nonmdegeneraie component C of M and gal(q)-is connected.,
Therefore gml(C) = p and this contradivts the fact that g is always a
one-to-one mapping.

) | - -1 | -1 -1

Now MN N = § implies g (M) Ng (N) =P, andK=g (M) U g (N)
being connected implies gml(M) and gwl(N) are not muﬂually separated.

. -1 e e . =1 y
Let p be a point of g (M) which is a limit point of g ~(N). Then
p'><-f(p)vis in M and there is an open set V containing p‘>K:f(p) such
that VN N = f since M and N are mutually separated. Let U be an ocpen.

set containing p. Then U N gbl(N) F f since p is a limit point of
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g“l(}l)o Hence U intersects some non-degenersted component of f‘l(N)° _
Sinée g is peripherally continuous, there is an open s;t W containing P
and contained in U such that f(F(W)) ¢ V. Now U and W can be éhosep
such that C ¢ W but C N W # ¥ since C is non-degenerate. Since C is
connected,‘and since C must have point interior to W and exterior to W,

F(W) N C £ $. This is & contradiction since f(F(W)) = V, g(C) c N and

VNN =p. Thus f is a connectivity map.

In Theorems 6.3 and 6.16 it was shown that a connectivity map from .
an n;cell,fn > 1, into itself is peripherally continuous.  The question
of whether or not a peripherally comtinuous mapping from an n-cell into
itself is & connectivity map has not yet been answered. Example 6.4
showed that for n = 1, the conclusibn need not follow. In Theorem 6,21
a partiasl solution to this question for n > 1 will be given. The

following lemma will be used in the proof of Theorem 6.21.

Lemma 6.1. {16] Let S and T be Hausdorff spaces, and let f be a
mapping from S into T, If M is a subsét.of S such that g(M) is the
union of two mutually separated sets H and K and if p is a point of
gml(H) or g”l(K) which is & 1limit point of the other, then p is a point

of discontinuity of f.

Proof. Let p be a point of gal(H) which is a limit point of g"l(K)o
Since H and K are mutually separated sets, there exists open sets U and
V containing p and £(p), respectively, such that U >< v contéins no
points of K. Thus no point of gel(K) N U maps into V under f. There
exists a séqqence of points ﬂﬁ} belonging to gwl(K) which converges to

P, Hence infinitely many of the points p, lie in U and the images of
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these points lie in (T - V). Therefore, the sequence {f(pi)} cannot
converge to f(p) and p is a point of discontinuity of f. o
A similar argument holds if p is an element of fﬁl(K) which is a

limit point of £7l(m).

Theorem 6.21. [16]1 If f is a peripherally continuous mapping from
a regular Hausdorff space S into a regularvﬁausdorff space T which;has
at most a finite number of points of discontinuity, then f is a connec-

tivity map of S into T.

Froof. OSuppose that £ is not a connectiwity map. Then there gﬁists

a connected set M in S such that g(M) is the union of two mutually sep-

arated set H and K. By Lemma 6.1, every point of gql(H) n‘gQI(K) and
g“’l(K) n 'm) is a point of discontinuity of f. Since t‘he pdints of
iscontinuity‘of fis a finitelset, let xisié)noo,xk and yl,yg,ooﬂ,yf
denote the points of gml(H) n ;:i?g) and gmle) N ;:i?;)’ respectivel&°
Since H‘and<K are mﬁtually separated, there exisés,épen set Ui and
wi containing Xy and yi;'respecﬁively, and open setsHLi and Ni contain-
ing ;(xi) and f(yi), réspectiv’ely, such that (Ui N Li), i - 1,2,3,0005K,
confainSaho point of X and (wi n Ni)’ i=1,2,35,...,r, contains no point
of H. By the periphefal continuiéy of £ and the f#ct that S is a
regular Eausdorff space, there exists open se%sIE c:Ui a,nd.Ei c:wi con-
taining X, and Vo réspecti&ely, ha#ing the following propertieg:
(1) f(F(Di)) SN, 1=1,2,3...,r and (2) the ciosure of no' two of
the sets D, and Ei‘have a point in common.

k- r .
Let D = fil Di and let E = igl E.. Then M may be expressed as the

i
union of two sets
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M, = (DN M) U (8 ~D-E)N g‘”‘l(H)],
and |

My = (ENM) U [(s-D-8) N (0],
which can be shown to be mutuslly separated sets. Since gwl(H) n gwl(K)
=Pfand DNE = P, M N M, = #. Now the only points of gelfH) that are
1imit points of gml(K) lie in the open set D and thus [§ - D -~ E) N
gml(H)] contains no limit points of [(S = D - E) N gnl(K)}; since
F(E) C:gwl(K}, and [(S = D=~ E) N gnl(H)] contains no limit point of
EN M. By construction DN M contains no limit point of EN M and since
#(D) © g X(K), DN M contains no limit point of [(S - D - E) N g ~(X)1.

Therefore, Mi contains no limit point of M2 and in & similar manner Mp

1
union of two mutuslly separated sets, which contradicts the fact that

contains no limit point of M,. Thus M = Ml u Mg is expressed as the

M is & connected set. Hence £ must be & connectivity map.

As previously mentioned, Stalling [23] proved a theorem stating
conditions under which a connectivity map will be peripherally contin-
uous. Stalling’s theorem snd its proof were not presented, éince it
involved concepts from Algebralc Topclogy which are not appropriate for
this paper. Hagen [5] proved & partial converse for this theorem
using a topological space called a Moore space [20]. It should be
noted that a Moore space is regul&randﬁglo Some preliminary definitions

and & lemmza will be given in preparastion for the presentation of Hagan's

converse to Stalling's theorem.

Definition 6.3. A space S is said to be locally peripherally con-

nected at the point p if for every open set U containing p there is an
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open set V containing p and’ centained in U such that F(V) is connected.

A space is locally peripherally connected if it is locally peripherally

connected at every point.

Definition 6.6. A space S is said to satisfy property II if for
every closed connected subset M of S and for every component C of S = M,

the boundary of C is closed and _ponnec;ted [23].

Lemma 6.2. [5] Let W be an open connected subset of the locally
peripherally connected, Mobre space S such that £(W) is connected. Let
Wl and W2 be open connected sets such that Wl N W2 f— ;6, F(Wl) and F(Wz)

are connected, and Wy U W, < We If W, = (W1 U W2) U ((L)J‘ Ca), where (Ca}

p)
is the collection of all component of W - (Wl u W2) such that F(Ca) c
F(Wl) U F(WE)’ and if C is the component of W = (wl U W2) containing the
connected set F(W), then

(1) Flwz) = F(Wy) U F(Wy),

(2) W =cuU W,

'(3) W, is open and connected, and

3
(%) if the space S has property II, F(WE) is connected.

Proof of (1). Suppose there is an x in F(w5) - (F(Wl) U F(W2‘))o
Then since S is regular, Tl and peripherally connected there exi,sté an
open set G such that F(G) is connected, x € G, and G N (ﬁl U i-sfe) = Q.
‘Since F(Ca)lc F(Wl) U F(Wg) for each @; x £ C, for any &. Therefore,
-x 1s a limitl point of U Ca such that x ,é Ca for any &¢. This implies G
must intersect infinitely many C . If C, G for some ¢, then F(Ca) cG

since Coc is closed. This is a contradiction since F(Ca) is contained in

F(W,) U F(W,). Therefore, if G, N G # §, then C, has point interior to
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‘.(Km((w)uF(w) n(cuw_B)a;zSo Since W - (CUW
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¢ and points exterior to G. This implies f(G) n ¢, # ¢ since C,, is
connected. Now W( G) N ?(C ) = % since G N (W’ U W ) = ¢1 'Eence

F(@) = (1

b

s e B G) =~ ; (@) ‘
( ) ca) U (F(G) n cd;, where E (@) ¢, and F(G) 0 Cia_ﬂazjg_ |
nonempty and mutually separated. This‘contradictsfF(G) being connected.

Hence F(‘W;) c ﬁ(w Y U F(W ).

Proof of (2). If K is a component of W ; (W U W‘) such that
KnC =@, then F(K) < (F(wl)\u F(Wg)), For suppose there ie a point x
in B(K). - (1§=(wl) U ?F'(Wg))o Since’ K is closed, x & K. Now K - (F( 1 ) U
F(we)) is equal to U Ky ﬁhere {El}‘is the collection of componentg of the
set K - (F(Wl) U}F(W2>)o Then each K is also 8 component of W - (c U
i"fﬁ) since K N oav; p, and KnC=p. setkKnc,=pis mpli,ed by the
fact that C, a component and if K N Ca>% ﬁ, Cyy mist contain K so that

F(K) - (Faw ) U IF(W )) which gives a contradiction. Thus

F(Cy)
i)

is open for each &, and F(K&) = (C U ﬁé)o But Ea‘ﬂ C=p implies
F{Ws))and ﬁé
e F w5) Now K = (K - F(W

) is opep K,

F(Ka) < Wy Now w = ((W

from K, Therefore, F(

- F(w5) is an open set disjoint
O: 3))U (Knl“(wi))"

Thus, since'x is in (F(K) - F(w 1), x is in K for some . Bubt x £

s
)

interior Ka since inverior ﬁy iz contained in interior of K. Therefore
x is in F(Ez)a This is a contradiction since F(gm) - F<W3) - (F(Wl) U
F(We))o Hence F(K) < (F(wl) U F(wg))q How sﬁpposé there is a point x
in (w'= (C U WBJ)Q: Then x is ih some component X of W (Wl U WE)o By
theiabove argument F( ' c_(F(W ) U F(w )) and hence X = C& for soﬁe o

But C, c W,. This contradiction implies that W =(CU wﬁ)n
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Proof of (3). Since CN W5 = § and since C is cl@sgd ﬁ’@ qﬁz—w.fﬂc
= w§ is open. Also,w5 is connected since Wl U WE is connected and each

Cy 18 connected, and Cop n Wy W, U W Wy ¢

Proof of (4). Since W, is open, F {w ) Nw, = ¢ and hence Z(W ) c C.

3 3

Therefore ﬁg‘ﬂ C = F(w . Since w5 is closed and S has propevty II

every component of S - W. has a eonrected bounda,ryn The closed connect-

P

ed set C contains F(W ), and W, is connected, hence by Theorem 5h of

3
[20,103], w ne.: T(h ) is connected.

1

Theorem 6.22. [5] -If £ is a peripherally continuocus mapping, of
the locally connected, Méore space S having property II.intc the sgpace

T and if S ><U?i$ completely normal, then I is a connectivity map.

Suppose f ié net a Qonnectivity map and let A bé g connected sub%
set of S8 such that g(A) = MU N, where M and N aré mutualiy separated.
Leﬁ.gal(M) = g'and_gml(N) = K. Then A = HU K, Qhere‘H‘ﬂ K is empty.
Since A ié“conneCtéd H and X are not separated and'henée one must con=
tain a limit 901nt of the other. Let p be & point of H which is &
limit point of K. Since S >< T is completely normal, there ¢Xisps dis-
 joint open set U and V in S >< T containiﬁg M_and N? respectively.
| Let R bé ag open set cqntainigg p such that A is notrentirely
ccnﬁgined in R. .. Then £ pé?ipherélly conﬁinuousfand S locally copnected
implies there exists an open connected set W containing p aﬁd céntaipéd
in R such that W and‘F(w)_éreiboth connected and g(F(W)) < v [23].
Since p is & limit point of X there is avpéint é of K in W.

Let Q be the'coligction of 8ll open conhected’sets D such that q

isin D, Dc W, D and F(D).are connécted9 and g(F(D)) ¢ V. The
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'cpllectipn Q‘is nonfempty since f is peripherally ccntinubg§‘at po’intuqo
- Let Q%vdepote'the union of the'collection of sets in'Qo Then Q+ is an
open subset of W. Considef the boundary F(Q+) of . If"F(Q+) na-= g,
then A = (A - Q+) u(an Q") and (A - Q+)iagd (AN Q+) are mutually
separated. For A - Q" # & since A does not lie entirely in_Qf and
angt é_ﬁ;since g is in A A a*. Furthefmbre, AnQ is qpeﬁ.in,A'and
hence é;nnot contain any limit point of A - Qt and any limit point of
ANQ" which is in A - o 1s in F(Q") which is disjoint from A. Thus,
since A - Q+ and AN Q+ are disjoiﬁt=they are mutually_separated and
this contradicts A being copnected. Therefore, FQY) n A £ P

since F(Q©) N A £, either F(Q") contains a point of H era'point
of K. Suppose there is a poiﬁt h of H in,F(Q+) N H. Then there is an
open.éet E containing h but not g sucﬂ'that F(E) is goﬁneeted‘and g(F(E))
c U. Sinée h is-a limit point of Q+, E must intefsgct some set b‘belong;
ing to the collection Q. Now E ¢ D since h lies inE -~ Dand DEE
since q is in D - E. Thus E and D both have point interior and exterior
to one enother and F(D) and ﬁ(ﬁ) being connected implies F(D) n F(E)
#£ H. But this contradicts the fact that g(F(D)) v, g{F(E)) < U and
Unv=_g. Hence,F(Q+) N H = $ and therefore E(Q+) NKAB. =

Let k be a point of F(@7) 0 K. Now k is not a point of F(W) since
g(F(W)) < U and g(k) € Vo Thus k is in W and there is an open connected
set W

1

ﬁi c W and g(F(Wl)) < V. Since k is a limit point of Q  there is a set

W, in the collection Q such.that W, N W, £ D

containing k and contained in W such that F(Wl) is comnected,

>

set W, is open, connected, F(W

3

Now from the set W) referred to in Lemma 6.2. By this lemma, the

.

5) is connected,vw3 C W, and ¢ is iﬁ“WBQ
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Furthermore, g(F(WB)) c:V'since*F(WB) ;;F(wl) U E(wg)@ Therefqre_w5

possesses all of the rquirements to belong to Q. But WB is not in/Q

since k is in W, N F@Q™). Therefore, the assumptién that»g(A) 1s not )

3

connected leads to a contradiction. Hence f is a connectivity map.

It was shown in Théorem 6.13 that a uniformly convergént sequence
- of peripherally»contihuous functions from a space 5 into a metric space
‘T wili converge to0 a functionlwhich is peripherally continuous. If the
spaces S aﬁd T‘are reqqired to'satisfy the hypéthésis of Staliing's
theorem and Hagan?svtheoreﬁ, then the same result musf hold for connec-
Jtiviﬁy maps éince connectiv;ty’maps and peripherally continucus mappings
are équivaient under these qonditions,

Since an nwcell,'n > E,satisfies the hypotheSis for both Stalling”é
theorem and Eagan’é theorgm,a mappingrf from,aﬁ n-cell into.itself,
n‘iczy‘}syperipherally.continuous>if and 5nly,if f is a connectivity

maﬁa
CONTINUITY OF PERIPHERALLY CONTINUOUS MAPPINGS AND CONNEGTIVITY MAPS

It was shown in Examples 6.1 and 6.2 that peripherally continuous
mappings and connectivity maps are not hecessarily continuous. The
- problem of when éonnectivity ma.ps and;peripheyally continuous maps will

e continuous will now be investigated.

Theorem 6.2%. [16] If £ is a one-to-cne real valued connectiﬁity
map defined on a locally conhectedlmetfic space S, then f is continuous

on S.

Proof. S?ﬁce connectivity maps carry connected subsets of: 8 onto
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connected subsets of the image space, f is continuous hy Theorem 4,19m

Theorem 6.24. [5] If f is a connectivity mapping of the Tl space
S into the Tl space‘T and if g(s) is semi-locally connected, then f is

‘eontinuocus.

Pi'ooi"’a Suppose £ is not continuous at a point p in S. Then g is
not cpntinuoﬁs at p and hence there exists a sequence {pn} of points
of 8 converging to p such that'{pn ;xif(pn)} does;nét gonverge to
D ;(:f(p)o.,Singe\g(S) is semimlocally'connectgd and since {an><f(pn)}
does not converge to £(p), there_ié an open set U containing p >< f£(p)
suéh that p_ X f(pn) is not in U for infini‘gely many n and ‘g(‘s) - U
has onlxia finite number of cémponen’gs° Thus infinitely many’of the
isppinté éf {pé ><‘f(pn)]vlie in a single comp@nent-K of g(8) - U. Now
KU {p >< £(p)} is not connected;bgt gfl(K U {p >< f(p)} = g“l(K) U {p]
is connerted since gml(K) isbconhected by'Theorem 6.18 and p is a limit
point of fml(K).o Point p is 2 limit point of £ (K) since infinitely
many of the points P, lie in K and p}:fiimit P, Since the set
gml(K).U {p} is connected and since f:isxa connectivity map, the set
g(gml(K) U {f?) = KU {r >< £{p)} must be connécted. This is a cont%am
diction, so that must-ﬁé continuous.

Tﬁe following theorem éhqws that a similar result holds for peri-

pherally continuous functions.
: SHE

Theorem.§°25, [16] Let £ be a-periphefallyjcbnﬁinuous.trangforman
tion from a Hausd@rffﬁspa&é S into a Hausdorff space T. If x is a point

~of 8 such that for'aﬁy open set. R containing F(x) there exists an open
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set V ¢ R containing £(x) having the property that S - fulfv) has only a

finite number of components, then f is continuous at x.

Proof. 8uppose f is not continuous at x. Then there exists some
sequence {xn} in S converging to x such that {f(xn)] does not converge
to £(x). Thus, by the hypothesis, an open set V can be found such that
f£(x) € V, an infinite number of the points of f(xn) belong to T - V,
énd sﬁchuihat g = f“l(V) has only a finite number of coﬁpénentsa Thus
an ;nfinite number of the points of seguence {xh] must lie in some com=-
ponent E of 8 - £(V) and x must be a limit point of the connected set
E, but £(x) is not a limit point of f(E) since £(x) is an element of V.

This conﬁradicts Theorem 6.8, so that f must be continuous.

Theorem 6.26. [16] If a mapping f from e Hausdorff space S into a
Hausdorff space T is'péripherally continuous and is such that for each
closed subset N of T and for each x ¢ (8 - fal(N)) there exists an open
set U containing x such that U intersects at most a finite number of

components of fwl(N), then f is continuous.

Proof. BSuppose f is not continuous., Then there ﬁust exist some
closed set N in T such that fnl(N) is not closed. Let x be a limit
point of f“l(N) which does not belong to fm:'l“(l\.l‘)‘z By the hypothesis,
there exists an open set U containing x such that U intersects at most
a finite number of compoments of fal(N)u This implies some component
of le(N) is not closed which contradicts Theorem 6.7. Thus f must be

continuous.

The following theorem gives & necegsary and sufficient condition

for a monotone peripherally continuous mepping to be open. This result
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will be used to obtain conditions which imply a peripherally continuous

‘mapping is continuous.

Theorem 6.27.-[5]. Let f be a monotone peripherally continuocus

mapping of the compact metric space S onto the regular T space T.

1
Then f is open if and only if every sequence {yn} of points of T with

sequential limit pbi@t ¥y lim ffml(yn)} = {fal(Y)lo

Froofs Suppose f,isjan §peg9 monotone; péripherallyrcontinuous
mappihg*and let fynj'be a se@uence of points of T With"sequential Limit
point y. Let Gr:’fﬁl(y) and G = fgl(yn) for each n. Since f is ﬁono~
é@ne,G and Gn are connected. Furthermorég G and Gnigre closed by
Tyeorgm 6.7. Now 8 is a cempact\space,'so that G ghd‘Gn are compact.
Suppose tﬁgr@ exists a point x in G aqd.a neighborhood U of x such
that UN ¢ = p for all but a finite number of n. Then since f is open
£(U) is an open set eontainihg £(x) =y such that £{U) contains only a
finite number of p&ints of fyn]o " This contradicté the fact that y =
limit y since:T"i% a r@gula? T, space. Thereforeg,Gkg lim inf {Gn}

c lim sup {Gn}o Let us now show that lim sup Gn o G

Suppose there exiéts a point p in liﬁ sup fGn} such that p ;s not
in G. Since {p} and G are closed subsets in a metric space and since G
is)compact, it is possible to find disjoint open sets U aﬁd V such'that
pelU,GcV, andUN V=g, Let N be any open set about £(p). Since
f is peripherally continuous,-there exists an open set D < U containing
p such that £(F(D)) « N, Nowp e l‘imv Sup [an and G < lim inf {Gn}
imﬁlies an»infiﬁite numbey of Gn must inﬁersect both D and V.  Further-

more, D Tand TN V= ¢ so that an infinite nuriber of set Gn must
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ﬁéve ppintsinﬁeriQ: to b and_exterior to D. Since Gn is-cqnnected for»
each n, this implies F{D) contains points from infinitely'many Gﬁo Thus
N contains infiniﬁely many of the points . of {ynj, This is s contradic-
tion, siﬁce the only limit point of a sequence in.a regular Tl space is
the sequential limit point. Thus lim sup (G—n) C G
We: now have‘
G < lim inf {G } « lim sup {G j « G so that F = lim {G } or
l(y) = lim {f (y )} which completgs the proof of the first assertion.
Conversely, suppose U is an open set in S such that £(U) is not
open. Then there exists a point y ih £(U) and a sequence of points{yn}
in T = £(U) such thet lim ¥, = ¥o By bypothesis, fml(y) = lim
{fgl(yn)}a” Now U Q.ffal(yn)j = ) for every n since y_ £ £(u). But
Un ffl(y) P sincevy is in £(U)5 and by hypothesis U must intersect
all gutfa finité‘numben ofié@t {fgl(yh)ﬂo This cqntradiétion impiies

f(U)'is open, so ‘that f is an open mapping.

Theorem 6.28. [5] ILet f be a peripherally continucus mapping of
the compact'metric S onto the countable compact, regulér Tl space T.

If £ is an operi monotone mapping, then £ is continuous.

Proof. Let {xh] be‘a sequence of points in S With sequential
1imit point x. Let Y, = f(x ) for each n. Since T is countably compact;
some . subsequence {y } of {y } must have a seqﬁentlal llmlt pomnt in T.
By Theorem €.27, lim {f (y )} = l(y)o Since {xn 1 must-converge to .
x. Therefore x is in f (y)iand y = f(x) Since e?iry sequenge {xn}

converging to X has a subsequence converging tduf(x)5 £ is continuous,at

Xa
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‘The follawipg exa@ple shows that‘thg inv&rse image of & c@nmected
set undef a_conmectivity map or & peripherally gogtainuous ma@ping»ﬁeed
noﬁ be connected. In_Theofem 4,29 conditions which will imply thaﬁ»thev
inverse iﬁagé of & connecﬁed seﬁ under a peripherally continuous mapping
will be connected.will‘be given. The r@sults of Theorem L, 29 will then
be used to prove a theoren givlpg condlﬁlons under whmch a peri wherally
conbinuous mapping will be continuous .

Examﬁlé 605;‘[5] Let S be the union of the intervals {-1, O) u
(O 1) and let T be the 1nterval (=1,1). Define £ &Lfrom S 4into T by°

£(x)

£(x) = x+ 1 1f x & (-1,0).

i

x = 1.4f x & (0,1), and

Theﬁmapping f is a connectivity map and is peripherally continuous. The

’ . =1 I o .
inverse map £ & is neither a connectivity map nor peripherally continuous

as one can verify by considering the point O in T.

Theorem 60290'[5]"Let f be an open, monotone, peripherally contin-
uous mepping of the compact metric_space S onto the regular Tl space T,

If X is a connected subset of T, then ful(K) is‘a connected subset of S.

Froof. Suppose il (K) =MUN where M and N are mutually separated,
.Then K = £(M) U f§M)7 Now suppose there is a point y in £(M) N £(M).
Thén there'existsvpoints m and n in M and Nﬁ.réspectively, sﬁch thaﬁ
f(m)‘= f(m) = y. Hence £ (y) nNM4 ﬁ and Sd (y) nN4Ap. This is a
contradiction, 51nce f (y) is conn@utedl . Therefore, f(M) n £(N) ==¢o
Since K is connected one of the ‘sets f(M) or f(N) must contain a limit

p01nt of the other, say £(N) contains a llmlt point p of f(M) Then

there exists»a sequence of points {pn} 1n‘f(M) such'that 1lim pn =

i
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By Theorem 6,27, lim {fml( 1) = fml(y}o This is & contradiction since
-1,
(

Ks
“n

£ yn) o M for every n, fml(y) c N, and M and N are mutuslly separated.

A\

= 3 i . . 1\' °
Therefore, the assumption £7{K) 1s not conmécted leads to a contradic-

tion so that fml(K) is connected.

Theorem 6,30, [5] Let £ be an open, monotone, peripherally contin-

uoué~mapping_of the cbmpact mebric spacevs onto the semi-locally

connected, regular,Tl space T. Then £ is continuous. -

-~

Proof. Suppose. f is not continuous. Then there is a.peint x in 8

and a sequence {xn} of points of S cmnverging to x such that lim f(xn}

ﬁ‘f(x)a Since T 1s semi-locally connected,there is an open set U con=-
taining £(x) such that T - U has a finite number of comppneﬁt,rKigaoaﬁ
K 5 and such that infinitely many of the points of {f(xn)§ are in T ~ U,

Hence infinitely many points of {f($n>} are in some K, . By Theorem 6.29

fml(Ki) is comnected, and x is a limit point of ffl(gi§ since infinitely

many x, are in fél(Ki) and fxn} converges 0 X. .
Set fml(K%) U {x} is non-degenerate, so that one can choose an

wl<

open set V about x such that f Ki) has points interior to V and

exterior to V. Since f is peripherally continuous, there exists an open

'set D U such that £(F(P)) < U. Now fml(Ka) must have pointsinterior .

to D, and exterior to D. Therefore, F(D) must,contain a point of the

)

connected set ful(Ki)n This is a chﬁradictiOny since £{F(D)) ¢ U and

K, NU= $. Thus f must be continvous.

Corollary. If the hypothesis that T be‘sgminocally connected in

Théorem 6,30 is replaced with the requifement that T be locally connect-

v

ed and locally compact, £ i continuous.



Froof. BEvery locally connechted

locally connected [27,201].

Therefore,

A0

)
4

133

cally compact space is semi-

is continuous by Theorem 6,30,



CHAPTER VII
SUMMARY AND EIUCATIONAL IMPLICATION

In this paper the recent research c@hcernipg certain classes of
noncontinuous transtrmatiéns in poinﬁ set topology is orgénized and
sumharized.ﬁith stapdardization of terminolqu and sywbolisms. This.
presentgtiqn makes-the recent research'ccncerning these-trégsfofmations
bo?h mofe reédable énd ﬁore readily a&ailable to:the student of topélogyc

Several examples are supplied to help tﬁe reader grasp the significance

of the varicus concepts and theorems.
SUMMARY

In Ohaptér I, the:statemeﬁt of the problem, the,scoﬁe of the
paper, methods and pcheduge59 and exﬁecﬁ@d'outcomes are given. In
Chapter II a brief introduction to point set topology is given. This i
is”included in the‘interest of s@andagdiziﬁg notation and terminplogy;
since texts on point‘seﬁ topology différ slightly in'bgtho In Chaptsf
III & discussion of open and\clased mappings is given. This discussion
is b& no means complete since copen and closed functions aré defined in
cénnection with homeomorphisms in elementary hexbts on topology and many
rgsults concerning these functioné are included in these texts. Such

results are not inciuded in this study since the intent of this study

is to present the results of recent research which are not readily

13k
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o

avail&ble to 5tuasnts Ofvtapologyo Chapter IV givés 8 rather q@mp;ete
diééussion of compact preserving and connected mappingéa! These mappings"
are significéﬁtfsince continuous functions, which are the most fundameﬁn
tal funcitions i@ topology, are both compact preserving and_cdﬁn@cte&:

In Chapter V & révi@w of the recent reseaxch ccméerning neighborly andl
cliQuish fuﬁéti@ns‘i;égiveno Theorems 5.8 and 5.10 from this‘chapter
are particul&rly significant;since they glve characteriﬁ&fi@ns of deri-
vative functions of real valued comtinucus functions defined on the

real numbers. JIn Chapter VI the recent research doncerning ébnneetivity
mappings and peripherally continuous mappings is reviewved. It is noted
in Chapﬁér VI that these funcitions were originally definéd aqd studied
in connection with fixed point properties. Ei#ed,point pr@perties hévé
been studied;ext@nsively'by topologists iﬁ r@éen@ years.

Throughout Chapters 111; IV, V, and VI relationships between and
among the various classes'éf noncenﬁinuous transformations have been
emphasized. Alsé?‘the relationships bebween the classes of noncontin-
uous transformaﬂions and continuous transformations have been consideyﬁd

in detail.
EDUCATIONAL IMELICATIONS

Since the pody of material and ideas are constantly expanding in
mathematicgy it_is increasingly important that such be made available
in éjsﬁématiq, readable sources. These sources should ensble the - -
student. ¢f mathematics to bécome aware.éf the research that has been
done and the areas that need to be investigated further. The reader of

this paper will come abreast of the frontiers of knowledge in the study
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Qf some importanﬁ aspects of noncontinuous transf@rm&ﬁiono »FTQm this
‘vantage point ths reader can then proceed in further study of functioqs
apdﬂﬁopologygby study Qf_the professional journalsycr by inﬁependent
research iﬁto properties of the fuﬁctipns considered in this study.

qu the future mathematieian or mathematics teacﬁerg and particu-
lafiy for the Qollége teacher of mathematics, it is important to reslize
that curriculayr chénges ir the varimus disciplihés will occur as new
‘knoﬁledge is digcovered. An scquaintanceship with the ideas presented
in this thesis should help one tofénéicipate changes that msy occur as
point set topology becomes mere involved in the mathematics curriculum.

References to the bibliography are given for moét.of éhe theoregs
in this thesis. By consulting this bibliogfaphy, one may gain an
awa?eness.of the men who have contributed to top@lbgy in recent years.
It?is likely that these men, many of them eontemporaries\@f the reader,
will play a significant role in shaping point set topology and the
mathematics éurriculum of the future. Awareness of these potential
leaders should help interested individuals.keep sbreast of the develop-
ing mathemafics curriculum and should contribute to’their'implementation
of curricular changes.

Perhaps the most significant result of the development of this
paper has been the extent to which the investigatof has déveloped his
| 6wn‘intefést andiknOWiedge of pdint set topolegy. The skills developed
andtpﬁe résearch experiences ehcount@réd will add tb the background

needed for effective teaching at the college level.
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APFENDIX

INTEX
Baire's classes less.than two, Image set, 22
sets, Oh Interior of a set, 29
Baisis, 9 Inverse image of a set, 22
at a point, 18 Inverse set, 31 ‘
for a topclogical space, 9
Biconnected mapping, 68 Limlt inferior of & oequence
Boundry point, 11 ofsdm,BO‘
: Limit of a sequence of sets, 26
" Cartesian product; 12 ILimit point, 10
Cliquish function, Limit point of a function, 59
at a p01nnj 80 Limit supcrlor oW & seguence of
on & space, 90 sets, 35 . :
Closed mapping, 27 ‘ Locally compact space, 53
Closed set, 9 - Locally connected
with ?uSUEpt to a set, 31 at a point, 38
Closure of s set, 11 - . gpace, 38
Compact preserving mapping, 50 Locally perlpherally connected
Compact set. 21 ; space, 121
Completely normal space; 17
. Conditionally compact set, 33 Mapping, see Transfcrmation
Connected mepping, 21 Metric set, 19
Connected set, 21 Metric space, 19
‘Connectivity mapping, 99 ‘ Monctone mapping, 73
Continuous. function, Mutually separated sets, 17
at a point; 23
on a space, 2 ' Neighborhood, 10
Convergent sequence, lb Neighborly function,
Countable 'set, 18 at a point, 80
Countably compact set, 21 - on a space, 80
Covering, 21 Normal space, 16
‘ open, 21 Nowhere dense set, 8l
Darboux property; 93 , One-to-one correspondence” 17
Dense-in-itself set, 93 ‘One-to-one mapping, 22
Domain of a functlony 19 Onto mapping, 26
. Open mapping, 26
Everywhere dense set, 82 Open set; 7
w1bh regpect to a set; 52
First countable space, 18
First p category, sets, 85 Perfect set, 93
Function, see Transformation Peripherally continuous mapping, 99
' Pointwise continuous, 82
Hausdorff space, 15 ‘Pointwise neighpborly, 82
Homeomorphic spaces, 26 Pointwise noncontinucus, 82
Homeomorphism, 26 Pointwise non~neighborly, 82

Property K*, 54
Property II 122
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Range.of a function, 19
Regular space, 6 ¢
" Removeable dlSGOnt{nulty, 65 65
Restriction of a mapping, 23

- Second countable space; 18
Semi~locally-connected space, 68
Sequence, 13 ’

Sequential limit point, 1k
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Spherical neighborhood, 19
Subsequence, 1k
Subspace, 12

Ty space, 17.
Topological prod,ucwy 13

Topologlcal space, T

. Transformaticn, 18
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