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CHAPTER I
NATURE AND SIGNIFICANCE OF THE PROBLEM

There are many situations that can be illustrated by a set of
points joined by lines. -Transportation and communication situations
are outlined on paper with maps. A chemist draws molecular diagrams
to represent the chemical bonds between the atoms of complex molecules.
Engineérs use diagrams of electrical circuitry and flow in pipe line
networks. A geneologist draws family trees. Sociograms are used by
psychologists. The administrative organization of an institution can
be represented by points to indicate the staff, with lines representing
the line of command. Blue prints are used by architects. Diagrams of
some nature are used in some respect by nearly everyone. The question
arises as to whether all such patterns have anything in common?
Certainly all the diagrams consist of points representing atoms, people,
cities, electrical connections, etc. with lines indicating some relation-
ship between the things represented by the points.

The first published systematic attempt to study'all such patterns
was made by a GCerman mathematician Denes Konig in 1936. He named such
geometric figures or patterns "graphs." It is unfortunate that such a
name was picked since it means something quite different from the graphs
studied in analytical geometry andﬁfuﬁction theory. Nevertheless, bow-
ing to tradition, any set of elements and a relationship between the

elements will be called a graph.



Need for the Study

The very nature of graphs is so fundamental that nearly any
discipline has at some time an occasion to use graph theory. There-
fore it is natural that such disciplines have developed theories
pertaining to graphs. However, each discipline developed only that part
of the theory significant in the discipline. The terminology arising
from such a diversified development is unrelated and sometimes mis-
leading. Such a beginning has led to a need for a systematic
development of the theory divorced of any particular setting and that
can be universally applied.

There are many fields of mathematics now in the mathematics
curriculum that overlap into graph theory. Large areas of set theory,
pure combinatorics, algebra, geometry and especially topology consider
problems of graph theory. However, since graph theory now makes its
appearance in so many fields and especially since a large amount of
graph theory could be developed and presented at the high school or
undergraduate level, it would seem to merit more than just a passing
glance in the curriculum. First, however, a great effort is needed to
introduce graphs as a logical abstract mathematical system. A sequen-
tial rigorous development with preciseness of definitions and
sufficiently complete to reveal its basic nature and gpplications is
needed.

There are also pedagogical implications involved in developing a
suitable introduction to graph theory. Graph theory can be introduced
in several ways, depending upon the natu;e of the concepts used in

the definitions and the analysis used in the development. Some means of



developing the subject lend themselves more directly to an intuitive
understanding while others may lend themselves better to expedite the
subject. Each method has certain advantages and disadvantages. One can
first determine the most expedient way to develop the sﬁbject and then
investigate the amount of maturity and knowledge prerequisite to its
understanding; or he may assume a certain level of maturity and back-
ground and dévelop the subject accordingly.

Since the theory of graphs has been developed in so many fields and
referred to by'so many names, it is easy to overlook important
contributions. To this extent, there exists a need to compile an exten-
sive bibliography complete enough to reveal the major contributions to

the subject.
Procedure

It is for the above reasons that this study has been written.
The general approach was a careful survey of the existing contextual
development of graph theory and its applications in order to redevelop
the theory in an abstract formal manner with universal application.

Since graph theory is an old subject dating back to the solution
of the KSengsberg bridge problem by Euler in 1735, much of the language
used in graph theory has historical overtones and is out-dated. For
instance, very few of the earlier papers on graph theory used the lan-
guage of sets which is in common practice today. Great care was used in
this paper to formulate explicit and precise definitions in an up-to-
date mathematiéal language. The definitions are complete enough to

avoid ambiguous remarks and paradoxical situations.



The theory in this paper is developed and presented in a sequential
deductive manner better to relate the theory and to expedite its devel-
opment. A logical and complete argument is presented for nearly all
theorems. It was intended that the rigor used in this paper will‘merit
the use of the material as a basis for further future development.

The simple nature of graph theory lends itself to many applica-
tions. Any introduction to graph theory would be sadly incomplete if
certain applications were neglected. This paper has numerous examples
and applications appearing where it is appropriate. Such applications
and examples will not only show the significance of the subject, but
will serve as models to help trigger the associations needed to reason
with the abstract development.

The maturity and mathematical concepts attained by an undergraduate
student of mathematics are sufficient for him to understand the
material presented in this paper. It was found that a great amount of
graph theory can be developed in a cdncise manner without utilizing any
far-reaching tools of mathematics. There are several occasions in
Chapter VII to use some basic concepts of point-set topology, but all
such concepts are found in an undergraduate course in point-set topol~
OgY » _However, the material in Chapter VII can be read with a great
ambunt of understanding without knowledge of point-set topology. The
most important prerequisite for an understanding of the material pre-
seﬁted is the maturity to work with abstractions and knowledge of the
nature of "proof."

An extensive search of the literature was made to compile ﬁ

bibliography revealing work pertinent to the theory and application of



‘“graphsa”'There‘ié“nowwayjof“kncningithgt'the list is complete, but it

does include most of the notable works.
Limitations

 This paper is limited to the very basic concepts that make up the
aubject of graph theory. Tt is further limited by the mathenaticel
tools used_in its development? Certainly more cemplex_and detailed“
conjectureg can be‘proved provided a broader background is assumed Qf
the reader. The applications presented are limited to only basic and

immediate understandable situations.
Expected Outcomes

It is expected that this paper will sérve as a readable source ini
an'up;to~date language for an undergraduate to gain an understanding and
appreciation of the nature of graphs. The reading of this paper reveals
the historymof the subject and an_acquaintance with the men who contrib;
uted to its growth.

It is further intended that the preciseness and rigor used in
developing the subject will furnish a suitable foundation for any
further detailed develcpment. The large bibliography is intended to

supplement the efforts made for such future study.



CHAPTER II

BASIC DEFINITIONS

Any mathematical system consists of a set of elements. In dealing
with number systems one may discuss the set of integers, rational
numbers, real numbers, complex numbers, Gaussian integers, or quater-
nions. Algebra is concerned with sets for which binary operations
are defined on the set. Geometry ordinarily deals with various sets
of points called lines, planes, triangles and so forth. However, in
constructing a useful mathematical system more 1s needed than Just a
set of elements; a relation between the elements of the set is needed.
A set by itself is not very exciting unless some relation is expressed
between the elements. In the various number systems one defines re-
lations such as equality and order or as in the integers, the relation
a divides b. In geometry one deals with relations such as are illus-
trated by the terms collinear points, parallel lines, perpendicular

lines, congruent triangles and so forth.

Relations and Graphs

Relations are of such importance in mathematics that a general

definition and convenient notation is needed:

Definition 1.1. A binary relation R between sets A and B is a subset

of A X.B.



When A = B a binary relation between elements of A and elements of
A is called a relation on A. By subset we are including the empty set
and the whole set. The symbol A € B denotes that A is a subset of B.
If R is a relation and (a,b) € R then it is said that, "a is in
relation R to b." (a,b) € R is sometimes denoted by aRb. The notation
Rb will be used to mean the set of all x such that xRb. The notation
aR will be used in a similar manner to mean the set of all x such that
aRx. That is,
Rb = [xlxRb] and
aR = [xIaRx}.
The theory of graphs is a very general theory with many applica-
tiong. In fact, the theories of graphs and of relations are very

closely related as revealed by the definition.

Definition 1.2. A graph consists of a nonempty set S and a relation

R on the set, denoted by (S,R).
Note that a graph is not just a set nor a relation on S, but both.
Definition 1.3. An element of S in a graph (S,R) is called a vertex.

" Definition 1.4. An element (a,b) of R in a graph (S,R) is called an

arc from a to b. The vertex a of arc (a,b) is called the initial vertex

and vertex b is called the terminal vertex.

In order to gain an intuitive feeling for graphs a dot is used to
represent a vertex and a line segment with arrows from a to b to repre-
sent an arc (a,b). For example, if S = {a,b,c,d,e} and R = {(a,a),
(a,b),(v,a),(b,c),(d,d)} then the graph (S,R) can be represented as in

Figure 1.



b a y
E:::: a ~e
a o€

Figure 1.

Since graphs and relations are similar much of the terminoclogy
fegar@ing relations will be carried over into graphs. It may'happen
that in a relation R every element is in relation to itself.  A rela--

tion R such that aRa for all a is called a reflexive relation.

Definition 1l.5. A graph (S,R) where R 1s a reflexive relation is called

a reflexive graph.

Definition 1.6. If (a,a) € R in a graph (S,R), then the arc (a,a) is

called a loop.

In Figure 1. there are two leoops, namely, (a,a) and (d,d).
If a relation R is such that aRa does not hold for any element,

then R is said to be irreflexive.

Definition 1.7. A graph(S,R) where R is an irreflexive relation is

called an irreflexive graph.



For a graph (S,R) to have an irreflexive relation R is equivalent
to the property that it has no loops.
Certain relations R have the property that whenever &Rb then bRa.

Such relations are said to be symmetric.

Definition 1.8. A graph (S,R) where R is a symmetric relation is called

a symmetric graph.

It may be that in a relation R, aRb always implies that b is not in

relation R to a, denoted by bfa. Such relations are called asymmetric.

Definition 1.9. A graph (S,R) where R is an asymmetric relation is

called an asxgggtric graph.

An asymmetric graph has no loops and is therefore irreflexive.
Another important property of relations is that of transitivity.
If R is a relation such that aRb and bRc implies aRc, then the relation

is said to be transitive.

Definition 1.10. A graph (S,R) in which R is a transitive relation is

called a transitive gzagh.

In a transitive graph if there exists arcs (a,b) and (b,c), then
there is an arc (a,c).
One of the most important types of relﬁtions is that of equivalence

relations. A relation R on a set S is an equivalence relation if and

only if:
1. For every a ¢ S, aRa. (Reflexive)
2. For a,b € S whenever aRb, then bRa. (Symmetric)

3. For a,b,c € S whenever aRb and bRc, then aRc. (Transitive)
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For example, let S = {rl?r2’wl’w2’w§’b1] be a set of colored blocks

with r, and r, red blocks; w,,w, and ¥z white blocks; and b, a blue

1 2
block. Define the relation R on S by the property that xRy if and only
if x has the same color_as y. The relation R is an eguivalence

relation. The graph (S,R) is illustrated in Figure 2.

Figure 2.

One of the major reasons why equivalence relations are of interest
is because any equivalence relation defined on a set partitions the set

into disjoint subsets, called equivalence classes. Conversely, a parti-

tion of equivalence classes of a set defines an equivalence relation of
the set. A partition of a set is a set of subsets, called cells, such
that each cell is nonempty, the intersection of any two cells is empty

and the union of all the cells is the set. A subset A of a set S is

said to be an equivalence class with respect to an equivalence relation
R if and only if: .

1. At P.

2. If x,y € A, then xRy.

%« If x € A and yRx, then y e A.
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In the example of the colored blocks the equivalence classes would
be the subsets of blocks with the same color. It is easily seen that
such equivalence classes partition the set of blocks into disjoint
subsets whose union is the whole set of blocks. : _

If the relation R in a graph (S,R) is the eﬁpty set, then the g;aph
has only isolated vertices. Each vertex 1s isolated for there are no

arcs.

Definition 1.11. A graph (S,R) where R is the empty set is called a

null graph.

For example, if S is a set of baseball teams and a relation R is
defined as aRb if and only if team a wins over team b, the graph (S,R)
at the beginning of the season is a null graph.

The other extreme to a null graph is a graph in which afb implies
bRa. That is, every pair of vertices a and b has either (a,b) € R or
(v,a) € R or perhaps both. A relation with this property is said to be

determinate.

Definition 1.12. A graph (S,R) in which R is a determinate relation is

said to be complete.
Subsystems of a Graph

In nearly any mathematical system it becomes necessary to consider
"subsystems" of the system such as subsets of a set, subgroups of a
group, linear manifeolds of a vector space and so forth. This same
situation is true in the theory of graphs. However, there are basically

two kinds of "subsystems" of a graph that will be of interest.
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Definition lalﬁs-’A“ﬁubgraph”of"afgrgph“(S;R) is a graph“(Téw) such that
TS and W is the'relatioh congisting of all (a,b) € R such that

a,b ¢ T.

- It may be that“one“would'want"tO“consider the entire set S of a

graph (S,R) and any subset W of R.

Definition 1.14%. A partial graph of a graph (S,R) is a graph (S,W)

such that W ¢ R.

In fact,; one may want to consider something more or less &

combination of a subgraph and partial graph as defined by:

Definition 1.15. A partial subgraph of a graph (S,R) is a graph (T,W)

such that Tc S and We R with Weae T X T.

-

To illustrate subgraphs, pa.rtial graphs and partial subgraphs
consider the following example. Iet the graph (s ,R) in Figure 3 repre-;
sent a road map of a small country with S5 the set of towns in the
country and (x ,y) € R any road from town x to town y. Further suppose
that some roads are gravel, indicated by dotted lines, and that towns

e and f are on islends not connected by roads.

Fig_ure Be
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One may be~interested«0nly in-the roads-directly connecting a set T
of’particular'townS"of“theﬁcoqntry“S. ;Such“awmap would be a subgraph.
If T =A{a2c,d} and W = {(a,c);(c)g);(d,c)}-thenjtbe‘graph (T,W) is a

subgraph of the graph (S,R) as represented in Figure b,

_.__._,<_______.d

Figure 4.

However, if one is interested only in the gravel roads of the
country S, then he would consider the partial graph (s,W) with

W = {(d,c),(£,£)} c R as given in Figure 5.

ae ®hb

Figure 5.

Moreover, if one is interested only in the gravel roads connecting
towns in set T, then this would be a partial subgraph of (S,R) &8s

illustrated in Figure 6.
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Figure 6.
Directed and Undirected Graphs

The orientatiqn of arcs may or may not be of significgnce inma
particular problem. For instance, if (S,R) is a graphjwithjs a;get‘gf
people and the relation R defined as aRb if and only if a can "éontaqt"
b then the importance of or;entation depends on the means of'contact.
If the contact is by direct personal contact, telephone, etc., then the
graph is symmetric. However, if the contact is by a one-way communica-
tion sys?em; carrier pigeon; Jungle drums, etc., then the orientation
becomes an impdrtant factor for aRb need not imply bRas. Because .the
ofientation may or may not be important in a particular problem, a dual

set of definitions will be used to distinguish the two‘sifuations.

Definition 1.16. An edge, denoted by [a,b], is any pair of vertices

a and b of a graph (S,R) such that aRb or bRa.

An edge is different from an arc for an edge does not carry a
direction whereas an arc does. Notice that the notation.[a,b] for an-

edge is not an ordered pair since [a,b] = [b,a]. The graph illugtrated

1
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in Figure 3. has six edges and ten arcs. An edge is usually 11lustrated

with a solid line between a and b without the arrows.

DPefinition 1.17. The'or&er'of"a“verteX isfﬁhe“numbe;qu"edggs containm
“ing the vertex, A verteX“ofoinitejor&er will be called even or odd

according as it's order is even or odd.

Definition 1,18. A path in a graph (S,R) is any ordered set ((a,b),
(b,e),(c,d),***) of arcs with the terminal vertex of each arc¢ being

the initial vertex of the succeeding arc, if it exists.

A path ((a,b),(b,c),(c,d),(d,e)***) is sometimes denoted by

'abcde°'°~

Definition 1.19. A path is finite or infinite depending on the number

of arcs.

Definition 1.20. If each arc in a path is used only once then the path

is said té be simgle and otherwise composite.

Definition 1.21. If a path goes through each of its vertices only once

then it is called an elementsry path.

Every elementary path is necessarily simple. In Figure 3. phe‘path
gcbd is a simple elementary path whereas the path dcbdcab is a cémposite
path.

An important special case of a finite path is that in which it

repeats itself.

Definition 1.22. If a finite path has the initial vertex of the first
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arc the same as the terminal vertex of the last arc it is called a

circuit.

In Flgure 5 the path abdca is a circuity-
Associated with “the~ terms path-and- circult for directed graphs

are the terms chain and cycle in undirected graphs.

Definition 1.23, A chain is an ordered set ([a;bl,[(b,c],[c,d]-->)
of edges with one vertex of each“edge”coinciding"with"a‘vertex in»the
succeeding edge and the other vertex coinciding with a vertex in the

preceeding edge.

In Figure 3. acdb would be a chain but not a path.

-

Definition 1.24k. If each edge in a chain is used only once, then the

chain is said to be simple and otherwise composite.

Definition 1.25. If a chain begins and ends at the same vertex it

is called a cycle.
- Connectedness

The idea of paths and chains gives rise to other important
properties of a graph. Two such properties are (1) that there exists
a path or (2) there exists a chain between any two distinct vertices

of (S,R).

Definition 1.26. A graph (S,R) with the property'of a path existing

between any two distinct vertices is said to be strongly connected.

Definition 1.27. A graph (S,R) with the prbperty of a chain existing



between-any two-distinet vertices -is-said to-be connected.

It'shoni&wbe“nobed“thatmawstrongiywconnectedfgraph~is¥c®nnected;

that ‘is-connected but -not strongly connected.

b
hFiguré Te

Definition-1:+28+- A“stronglymconnEtted“graph“(S,R) with-the property
“that for-all -arcs (a,;b);{S;R - (a,b)) is not stronglyrconneéted, is said

to be minimally strongly connected{

Definition 1.29. A comnected graph (8,R) with the property that for
all edges [a,b],(S,R) - [a,b] is not connected, is said to be minimally

connected.

Many times it is of interest to find -all the vertices of a graph

that are connected by a chain to a particular vertex.

Definition 1.30. The set of all vertices connected by a chain to a
vertex a and including vertex a is called the component of the vertex

a and denoted by Ca'

In Figure 3., C =C =C =C, = {a,b,c,d}, Cp = {f} and C, = {e}.



18

Isomorphic Graphs

It is easily seen that two graphs (Sl;Bl) apd’(s2,32)wsuch that

S and"82 consist-of ‘different elements-could have the same geometric

l e
representation. For instance, let S, = {a,b;c},_Ri = {(a,b)?(a,c)}
' anddsz = {1;2;3}) 'R2 = {(2;3))(2}_1)3' BOth'graPhs"(Sl,Rl)v and

(SQ’RQ) are represented in Figure 8. In such a case one may feel

that there is no significant difference between the graphs. In a

2 a

Figure 8.

sense (Sl,Rl) and (SE’RQ) are the same graph. This situation is des-

cribed in geﬁeral by saying the graphs are "isomorphic.”

Definition 1.31. Two graphs (S),R,) and (8,:R,) are said to be

risémogghic if and only if there exists a one-to-one mapping f of Sl
onto S, such that if (a,b) € Ry
The mapping f is called an isomorghism.

then (f(a),f(b)) e R, and conversely.

In the example illustrated in Figure 8., (Sl,Rl) and (S2;R2) are

isomorphic since the mapping f defined by



is an isomorphism between (Sl’R

fla) = 2
£(b) =1
£(e) =3
l) and SE,RE)O

19



CHAPTER TTI
FUNDAMENTAT, THEOREMS

This chapter*ihcludes some of tﬁe'very“basiC'theoremszrelating _
the"terms defined in Chapter II and’that will be needed for discussions
to follow. An 1llustration Qr'application'is given for some of the
theorems in ;rder to help reveal the nature of the theorem and show

its application.

Theorem 3.l. If in a graph (S,R) there exists a path (chain) from
a to b? and a path (chain) from b to ¢, then there exists a path (chain)

in the graph (S,R) from a to c.

The proof of Theorem l.1 follows directly by merely combining the

two given paths (chains).

Theoren 3.2, If there exists g path‘(chain) in a finite graph (S?R)
from & to b # a, then there exists an elementary path (chain) from

a to b.

If any two vertices coincide in & path (chain) then the circuit
(cycle) between them can be deleted from the path (chain) without
destroying the defining pfoperties of a path (chain). If this procedure
is repeated until no vertex is used twice in the resulting path (chain)
then an elementary path (chain) will be obtained. It should be noted

that this can be done in a finite number of steps. This proves

20
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the theoremn.

'Corollary"3.3;"'Every“circuit((cycle) of a finite graph {S;R) contains

an elementary circuit (cycle).

‘"Theorem“ﬁ;h. Every"arc:in“a"strqnglytconnected graph (S,R) is contained

in some elementary circuit of (S,R).

Ley"(a,b)jbe'anyjerc in“a'strqngiy"conneéted“graphf(S,R). Since
(S,B)»is etrongiy connected than'there existe a_pathefrem'b'to_a,_’By
Theorem 3.2 fhere exists aﬁ elementary path frem b’te:aa vThe_elemeptary
path‘from‘b to a together with the arc (a,b) constitute an eleﬁentary

circuit containing arc (a,b).
Theorem 3.5. A subgraph of a complete graph is complete.

Ilet (T,W) be any subgraph of a complete graph (S,R). If a,b e T
then a,b ¢ S since T< S. Since (S,R) is complete the (a,b) ¢ R or
(b,a) € R. By definition 1.13 of a subgraph then (a,b) € Wor (b,a) e W

and (T,W) is complete.
Theorem 3.6. A connected symmetric graph is strongly connected.

Let (S,R) be a connected symmetric graph and x,y € S. Since (S,R)
is connected then there exists a chain ([x,al],[al,ae],°°’[an,y]) from
X t0 y. Since (S,R) is symmetric then the paths ((x,al),(ae,aB)-"
(an,y)) and ((y,an),<an,an _ l)°-°(al,x)) exist. Therefore (S,R) is

strongly connected.

Theorem 3.7. A strongly connected greph is connected.
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-The-theorem~iswimmediate~since-there exists a path between any two

vertices and hence a chain exists between them.

TheoremmB;Bt““For"any“tWOvdiStinct“edgee~of a8 connectea graph there is

an elementary chain with the given edges as ends.

_vConeider“any“two'distinct~edgese[a,bj‘and {e,d] of a ‘connected
graph‘(S,R)._ If either vertex of [a,b] coincides with a vertex ef [e,d]
then the other vertices are necessarily distinct'and“([a,b];[c,d]) is
a required elementary chain. If verfices a,b,c, and 4 are all distinct
then since (8,R) is connected there exists a chain between b and c. By

Theorem 3.2 there exists an elementary chain bx x,.x '--xnc between b

17273
and c. If & £Fxg, af X, for all i = 1,2,+**n, then abxlx2x3"‘xncd is
an elementary chain. If a = x, for some i, 1 <i <n and d # x, for
all i =1,2,***n, then a.bxixi + l---xncd is an elementary chain. If

a fx, forall i=1,2,2""n and & = x, for some 1, 1 <1 <n, then

a.bxl“'xi -1 icd is an elementary chain. If a = X for some i,
l1<i<nandd-= xj for some j, 1 < j <n, then either 1 < j or j < 1i.
For i < j then a.bxi 1+ l * Xj _ IXJCd is an elementary chain and for

J <1 ecdx,x *rex X ab is an elementary chain.

JJ+1 i - l i

Theorem 3.9. Every component Ca of a graph (S,R) determines a connected

subgraph (Ca,w)'of the graph (S,R).

Ca c S by the definition of a component and if W is the relation
consisting of all (x,y) e R such that x € C,» then (ca,w) is a subgraph
of (S,R). Consider any two distinct vertices x,y ¢ C,o If x=aor

y = a then there exists a chain including x and y since Ca is a
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awchain”includinng‘and“a;““HencewbyfThe?rem 3,1 therg‘exigts a chain

including x and y. Therefore the subgraph (Ca,W) ig connected.

Theorem 3.10. The set of all components of a~graph-(S;R) is a pértition

of thé set S.

By a partition of § into components it is understood that each.
cqmponent“is_nonempty;:the intersection“of distinct compgneptg is gmpty
and"the‘union‘of‘all componepts is the set'S. It is obvious thqt eagb
cqmponent Ca 9f the_graph (S,R) is nonempty since a ¢ Cé by definitiOn
1.30 of a component. Also ags Ca = S.

In order to prove that the intersection of distinct components is
empty it will suffice to show that C, N C # f implies C, = Cpe
Cy n % # ¢ implies there exists an x € Ca n C,+ By Theorem 3.1 and the
definition 1.30 of a component then a and b are connected by a chain,
Furthermore, if y € Ca then there exists a chain from y to b going
through a and y ¢ Cb and conversely. Thus Ca C:Cb, Cb C:Ca and
Ca = Cb,

A simple illustration of Theorem 3.10 is an organization where
person x is in relation to person y if and only if x has contact with y.
A component Cx in the organization is the set of all people, including
X, that can make contact with x through a sequence of people. One might
call component»Cx a ﬁgfapevine" which includes x. Theorem 3,10 indi-
cates that all grapevines {components).partition the organization,

That is, every person belongs to some grapevine, but only one. Any two

members elther belong to the same grapevine or they cannot make contact
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with each other through the grapevines.

partition of the graph (S,R) into connected subgraphs.

“‘“Bwaheorem"§;9-an@fﬁng the‘sgt S‘isvpa;titionediinto qonneqted
gubgraphs,” QOnsider'any'(a,b)ve‘R. ‘The vertex’a 1s contg1n§d in
some componentfcg since the'set'of all componentS“partitionjthg set
S, and b € c% since (a,b) € R. Since a,b e.C¥ then' the arc (a,b) is
coptainedfin“the connected subgraph'(c*;wx). vThe:efo:e,ﬂgach»arc of ‘
(S,R) is contained in some connected subgraph. Any two such connected

subgraphs-(Tl,Wl) and (TE’WE) are disjoint since T NT = ¢ and the

2
definition of a subgraph implies W, n W, = p.

Theorem 3.12. A graph (S,R) is connected if and only if S is a com-

ponent.

If the graph (S,R) is not connected then there exists vertices
‘a and b that are not connected by a chain. Hence S»is not a component.
Conversely, if S is not a cOmpohént then by Theorem 3.10 there exists
at least two diéjoint components Ca and C_.. Thus b is not connected

b
to a by a chain and the graph (S,R) is not connected.

Theorem 3.13. A complete graph has only one component.

let a and b be distinct vertices of a complete graph (S,R). Since
(S,R) is complete then (a,b) ¢ R or (b,a) € R. Thus (S,R) is connected.

By Theorem 3,11 (S,R) has only one component.
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Theorem 3.1% (7);. A finite graph“(S,R) is strth}y“¢onqect§d if gnd

ohly if there are no proper'subsets A c S such that [xR]x € A] c A.

If & graph (S,R) consists of only ome vertex then the theorem
fo}lows sinq¢fit is strongly connected“and“Swhas:pQ proper'subsets. let
(S,B) be'g st;ongly'cOnnected”graph ;ith“A any p;ope; subsetjofis.
Since_A is a_proper“subset of“S'thgn tﬁére'existS‘a vertgx_b“sgch tpat
b £ A. Since (s,R) is strongly connected then there exists a path from
any vertex a € A to b-¢ A. Hence there exists an arc (c,d) in the path
such that ¢ € A and' d § A. This means that d ¢ {xR|x ¢ A}, but d £ A
and therefore [xR]x € A} ¢ A. Conversely, let a and b be any two
vertices of a graph (S,R) that has no proper subsets A c S such that

»
{lex € A} ¢ A. Consider the subset B = {x’there is a p&th from a to x}.
Ifye {xR[x ¢ B} then there is an arc (x,y) and a path from a to x
which together give a path from a to y. This means y € B and therefore
{xR[x ¢ B} ¢ B. Since there are no proper subsets such that
{lex € B} © B then B=S. Hence b € S and there is a path from a to
b. Therefore (S,R) is strongly connected.

Iet a graph be represented by a complex system of pipes with
0il flowing in the system. Suppose it is known that oil flows from
every proper subset of joints (vertices) directly to at least one
joint not in the set. By Theorem 3.14 it is known that oil flows from

any joint directly or indirectly to any other joint.

Theorem 3,15. If‘(S,R) is a finite minimally strongly connected graph

lArabié numerals in parenthesis indicate a reference to the
Bibliography. o
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with at least two vertices, then in‘(S,R);yhere'are‘at least two
vertices each contained in exactly two arcs.

I

Theorem“j;;ﬁ"will_bejprovedjbyjinductionfoq the number"of_edges,
Lét_(S,B) be”a~fin%tejminimally'strpng1y chnecte&"grgph;;;First‘hofé
thgt"(S,R)“is'irreflexive since 1f it contained-a loop (a,g).thenu
(S,R‘; {(a,§)})_would“beEstrongiy'cpnneqtedwgontra&tcting“that (S,R)
iévmiqimally strongly;connecpédf If (S,R) contained only one edge
[aeb],”then'to be strongly connected (a,b) e R and-(b,a) € R. Since
(S,R) containS'ﬁQ loops then»vertices-a and b- are each contained in .
exactly two arcs, namely, (a,b) and (b,a). Assume the theorem:is true
for a minimally strongly connected graph with less than k edges. Let
(s,R) be any minimally strongly connected graph with k edges.

It will now be shown that the new graph (T,W) is also minimally
strongly connected. ILet a and b be any two vertices of (T,W). There

exists an elementary path ax eeeb from a to b in (S,R) since it is

12
strbngly conhected. If the path contains only one or no vertex in the
circuit then the path also exists in (T,W). If the élementary path
axlxe-e-b contains more than one vertex in the circuit, then the

part of the path between the first and last vertices in the circuit can
be deleted from the path axlxe-oob still leaving a patp from a to b in
(T,W). Therefore (T,W) is strongly connected. Now suppose there exists
an arc (a,b) e¢ W such thé%l(T,W - [(a,ﬁ)}) is stroﬁgly connected. Thus
there exists a path in (T,W) from a to b other than (a,b). This,pgth;
with part of the circuit if necessary, provides a path in (S,R) from a
to b other thanf(a,b), contradicting that (S,R) is minimally strongly

connected. Therefore (T,W) is minimally strongly connected. Since
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'(T)W)“iS“minimally“strongiywconnepte@*@nd“hagjleSS‘thggjkfedggs,:then'
*“by“assumpticn'(T;W)ﬁcontains~at.least two vertices x and y -each con-

tained in exactly two arcs.

- Lemma~3.16, Any vertex-of (S;R) not in'the“circﬁit is contained in the

same number of arcs in (T,W) as in (S,R).

_ ‘If”thelverteX'is‘not connegted“to;the"circuit“by4an ¢dge,5then_
the lemma follows since any arcs in(S,R) that:contain»the vettex are
- also‘inJ(Tzw) and vice versa.'"Let b”be‘a vertex not infthe:ciyggit,m
but cqpnected to the-cirguit by an‘edge.' VerteX'b‘cannotvbe coptain¢@
in three orvmqré arcs each with the other vertex in the circuit, since
at least two of the arcs would be from b to the circuit or from the
circuit to b and one would make the other superfluous (unneéded for
minimally strongly connected) in (S,R). Similarily, if vertex b is
contained in exactly two such arcs, then one is‘from b to the circuit
and the other from the circuit to b. Hence, these two arcs and any
other arc in (S,R) containing b are transformed to distinct arcs in
(T,W), so b is contained in the same number of arcs in (T,W) as in
(S,R). It should also be clear that if b is contained in only one
arc with another vertex.in the circult, then such an arc and any other
arcs containing b are transformed to distinct arcs in (T,W). This
proves the lemma.

Now in (S,R) there are either, (1) three or more distinct vertices

not in the circuit, but each contained in an arc with the other vertex
in the circuit, (2) exactly two such vertices, (3) exactly one such

vertex or (4) none if (S,R) is the circuit.
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First consider case (1). If there are three or more vertices
qot ig1the"g;rcgit“butic9pt§inedfinfa;cs“with“ajverﬁex7ih“the‘circuit,
thep"thelcirggitfis transforggq“into a“vert§x“in (T,W)‘tpgp is con;
-tainedjipfthreefor”mqre“distinqt'arcs'in (T,W), It4fo;lgy§ that
neitherjyerteg X" or yfis:that"ve:tex}j ?herefore'X'Qr4y»are'vertice§ of
(S{R)‘nppfipjthe circuit. By the lemma, x and y are vertices in (s,R)
each cpntained'in'éxactiy“twq arcs of (S,R).

'Cgse'(E) is a”little'mqre involved. Let b and c be the only
two vertices in'(S,R) not in1the circuit, but each contaiped ig an arc
with a vertex in the circuit. Note that there cannot be'two arcs frgm
b or from c to the circuit or two arcs from the circuit to b or to c,‘
sihce one would be superfluous in (S,R). Hence, if there is a total
of three or more arcs each containing b or ¢ with the other vertex in
the circuit, then the circuit is transformed into a vertex of (T,W)
included in at least three-arcs of (T,W). fNeither vertex x or vertex
y is tﬁat vertex. By the lemma, then x énd y are vertices‘in (S,R)
each contained in exactly two arcs of (S,R). If there is a total of
only two a}cs between the circuit and vertices b aﬁd ¢, then omne arc
is from a vertex, say b, to the circuit and the other from the circuit
to c. Now there must exist a path not including a vertex of the
circuit from ¢ to b. Therefore, if the circult contained only two
vertices then the path from ¢ to b would make one arc in the circuit
superfluous in (S,R). Hence the circuit must have at least three
vertices, with at least one contained in exactly two arcs of (S,R).
Also either x or y must be a vertex of (S,R) not i#cluded in the-

circuit. By the lemma, that vertex is contained in exactly two arcs in
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(8,R). ‘Tuts makes at least two such vertices i (8,R).

Tow -consider case (3). Let b be the only vertex mot in the circuit,
bu?i;opt§in§dfin“anfarcfw;th:a“vertex“injthe:ci;cuit. -fhére must“b§ two
- arcs; one from the'éirguiﬁ pp“bfandmthe“cher'fromjb’§0 thg c;rcgit,
stace (8,) 1s strongly comected. If botir arcs include the same
'vgrtexiinfﬁpe“circuit;jthgn‘anyjother“verteglin'the girgﬁit (there is
Yy in (T,W)_is a vertex in:($,R)’no§ %n:the'qirquit'and by“the;lemmg
each:is‘contqined in~exact1y twq_arqs*of (S,R), The iny'othe;_pos;

sibility‘is fo; the two arcgwingluding“b"to contain differenp_vertices
of phevcircuit. If thiS'happens_then"the'cirduit must'QOntgin more
than twbkvertices or otherwise one arc in the circuit is superfluous
in (S,R). Thus, there is a third vertex in the circuit, belonging to
exactly two arcs. Again x or y is not in the circuit and there are at

least two of the desired vertices in (S,R).

Theorem 3.17. A finite irreflexive graph has an even number of odd

vertices.

Theorem 3.17 is easily proved by mathematical induction. A gfﬁph
can have any number of edges. An irreflexive graph with only one edge
obviously has two odd vertices. Assume the theorem is true for a
finite irreflexive graph with k edges and let (S,R) be any graph with
k + 1 edges. If any edge of (S,R) is deleted, then the number of odd
vertices changes by O or 2. By assumption the deleted graph has an
even number of odd vertices and hence (S,R) has an even number of odd

vertices. This completes the proof.
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Corollary 3.18, A finite-reflexive~graph has an even number of even

vertices,

{ - c

i
H

Theorem- 3.19., The sum ofAthe orders of all the vertices of a finite

irreflexive graph is even.

By Theorem 3,17 the sum of the orders of the odd vertices is
even. Since the sum-of the ordersvof‘all even'vertices is even then

the sum of the orders of all vertices is even.

Corollary 3.20. .The stum-of the orders of all the vertices of a finite
reflexive graph if even or odd according as the number of vertices is

even or odd.

_ Theorems 3,17 and 3.19 lead to interesting comments that one can
make about various situations. For example, consider all the animals
in the world with two animals related if and only if one depends on
the other for survival. Do not consider that an animal depends on
himself for survival, that is, make the graph irreflexive. It is
therefore known that an even number of animals exist that give vital
assistance to or depend on an odd number of animals. Also if one adds
the total number of animals that directly dependent on and necessary to

a particular animal, then it is even.

Theorem 3.21. If all vertices 8 1 =1,2,¢eonand b,, j=1, 2000om

J
of an irreflexive graph are such that laiRl = {ijl = kl and

|Bail = ‘bjR| =k, K, #k,, thenn = m.

The theorem states that if each vertex is either a terminal vertex
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to exactly ki arcs and an initial vertex to exactly k2 arcs or & te;mif

nal vertex to exactly k, arcs and an initial vertex to_exactiymkllaycs;

then there are as many vertices of one kind as»there are of the gther..

Such a graph exists as illustrated by Figure 9. with kl = 1 and k2 = 2,

a

Figure 9.

Theorem %.21 can be proved by counting the number of arcs. One can

count the arcs by associating with eaéh vertex ai the kl arcs with ai

its initial wvertex and with each vertex bj the k2 arcs with bj as its

initial vertex. Thus k;n + k,m is the total number of arcs. But, one

can also count the arcs by associating with each vertex 8y the k2 arcs

with ai as its terminal vertex and with each b, the kl arcs with bj as

J

its terminal vertex. Thus k2n + klm also is the number of arcs and

kln + k2m = kgn + klm which implies n = m.

Theorem 3.22. If a graph (S,R) is connected, then the partial graph
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(s,R - {(a,b)}) where (a,b) e R has one component (connected) or two

components Ca and Cbo

Iet p € S. pr::aorpmbthenpeCaorpecg._ pr;é_aand
e % b then since (S,R) is connected there exist chains frqm p to a gnd
p to b. By Theorem 3.12 there exist elementary chains from ? to a apd
from p to b. TIf at least one of the elementary chains from p.to 8 does
not include the edge [a,b] then p is connected to a in the graph
(S,R - {(a,b)}). If every elementary chain from p to a includes the
edge [a,b], necessarily as the last edge in the chain, then P is connect:
ed to b by ;n eiémentary chain not'including {a,b] in the graph
(8,R - {(a,bj}). A similar argument holds for a and b interchanggd,
Therefore each vertex p of (S,R - {(a,b)}) is connected to a or b, or

1A

p=aorp=">_bs, This implies for components Ca and C_ that Ca U Cb = 5

b
in the graph (S,R - {(a,b)}). By Theorem 3.10 either C, =G, or
c,Ne = § and Theorem 3,22 follows.

It should be noted that Theorem 3.22 could be restated by deleting
an edge [a,b] instead of arc (a,b) from the graph (S,R) and still hold.

The srgument would be identical.

Definition 3.1, If (S,R) is a connected graph and (S,R) - [&,b] has two

components then the edge [a,b] is called a separating edge of (S,R). If

(s,R) - [a,b] is connected then the edge [a,b] is called a non-

separating edge.

Theorem 3.23., An edge of a connected graph 1s a separating edge if and
only if there exist two vertices such that every chain between them

contains the edge.
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let [a,b] be a separating edge of a connected graph (s, R) ~ The
partial graph (S R) -~ [a,b] has two components- C and C by deflnltion
of a separating edge and alternate form of Theorem 3.22. Hence there
are no chains in (S,R) - [a,b] connecting vertices a and b. Thergfore;
every chain in (8,R) that connects a and b must contain edge [a,b]. |
Conversely, suppose a and b are vertices such that every chain between
them contains an edge [c,d]. Consider the components Ca and Gb in the
partial graph (S,R) - [c,d]. Nowa £ C, since by hypothesis every chain
between a and b includes [c,d] which is deleted in (S,R) - [c,d]. By
Theorem 3,10 then Ca h‘Cb = ¢. By Theorem 3.22, Ca and Cb are the only

components and edge [c,d] is therefore a separating edge.

Theorem 3.24. If (S,R) is an asymmetric strongly connected graph, then

every edge is a non-separating edge.

Consider any edge [a,b] of a strongly connected graph (S,R). Since
(8,R) is asymmetric then either (a,b) € R and (b,a) £ R or (b,a) € R and
(a,b) ¢ R. Suppose without loss of generality that (a,b) ¢ R and |
(b,c) ¢ R. There must be a path from b to a since (S,R) is strongly
conneéﬁedc The path cannot be just (b,a) since (b,a) £ R. Since every
path is a chainithen there is at least one chain from B to a not includw
ing the edge [a,b]. By Theorem 3.23 then edge [a,b] is a non-

separating edge.

Theorem 3.25. If (S,R) is a finite connected graph with every edge a
non-separating edge, then there exists an asymmetric strongly connected

graph (S,T) such that (S,R) and (S,T) contain the same edges.



Let (S,R) be any finite"conngcted“graph“with‘every"edgevg non-
separating edge. For an edge to be a non-separating edge! then there
must exist a cycle fhat includes the edge. Since (S,R)\is finite and
there exists at least one simple cycle, then there exists_a_finite
number of simple cycles. Since (S,R) is connected then every vertex i;
contained in an edge and consequently included in some cycle. Consider

any one of the finite number of simple cycles, call it u Give an

l.
orientation to the cycle so thdt it becomes a simple circuit. Any

simple circuit is necessarily strongly connected. Hence if u, is the

1
only cycle, then the proof is complete. If vy is not the only cycle,
then it can be shown there exists another cycle u, that has at least

one vertex in common with u, since (S,R) is connected. Proceed with

1

cycle u, as if to give it an orientation to become a circuit except

leave any of the edges that are in cycle u, with the orientation previ-

1

ously assigned. Together, cycles uy and u, with the selected

orientation is strongly connected, because: uy by itself with the given

orientation is strongly connected. By the orientation given u ény of

2

its vertices has a path to a vertex of strongly connected'ul and has a

path from some vertex of ul to this vertex. Hence there is a path from

o to any vertex of ul, a path from any vertex of u, to

any vertex of u

1

o» and a path from any vertex of u, to any vertex of Usye

If all the edges are oriented, then the proof is finished. If not, then

any vertex of u

there exists a cycle u_, that contains a vertex in common with the al-

3
ready strongly connected set of vertices with the selected orientation.
Continue the process as before. Since there is only a finite number of

edges then the process must stop and the sets have an orientation by
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'which“itwiswstrongiy“connected;"’SinCE“eyeryjedge“Vas’giveannly one
’"orientatton“thewgraph“iswasymmetric;\“Everywedgemoff(S,R) was chsidered
sg*(S,R)‘and the new graph contain the same edges. This completes the
prodf;.

As an application-of Theorem 3.25 suppose Figure 10 A represents a
monorail‘system'betweentvarious displays, indicated by letters, at a
large fair. Notice that fhe system is connected and each track is
involved in some cyclemaﬂ.tracks. The fair committee decides since
several trains will be in use at the same time that every track should
be made one;way to prevent head-on collisions. Can it be done and still
assure service between ;ny two displays and if so how? Theorem 3.25
assures that it is possible and the proof of Theorem 3.25 indicates how
a solution might be obtained. First consider any simple cycle, say
cycle aefgibecda. Make it into a simple circuit as illustrated.in
Figure 1C B by following the single arrows. Next consider a simple
cycle that has a vertex in common with that cycle, such as cycle
abiehgida. The edges in this cycle that are not already oriented are
[a,b],[1,e],[e,h],[h,g] and [i,d]. If one were to proceed as if to give
this cycle an orientation, say the reverse of the order named, except
leaving edges already oriented with their orientation,hﬁhen the result
would be as indicated in Figure 10 B wiﬁh the double arrows showing the
additional orientation. fhere is no need to consider any other cycles
for all edges are now directed. Tﬁe graph illustrated in Figure 10B is

one of many solutions.
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q e <.

Figure 10.A. Tigure 10 B.

Theorem 3.25. dealt with a finite connected graph without
separating edges. A generalization of Theorem 3.25 is given in the

following theorem.

Theorem 3.26 (87). If (S,R) is a finite connected graph then there

exists a finite strongly connected graph (S,W) with the same edges, but
for any non-separating edge [a,b] of (S,R) either (a,b) € W or (b,a) € W
but not both, and for any separating edge [c,d] of (S,R) both (c,d) ¢ W

and (d,c) ¢ W,

It should be obvious that a connected graph (S,R) can be made into
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a strongly connected graph (S,W) by including a set ofrarcs T su¢h tha£
W=RUTis a symmetric relation. However;‘this statement is not
nearly so strong as Theorem 3.,26. Not only is Theorem 3.26 interesting,
but it takes on special importance in dealing with certain traffic
‘problems. In terms of traffic control of a city with linking bridges,
dead~-end streets, etc. as separating edges, the theorem.assures one that
proper traffic connections can be made everywhere by making the bridgeé,
dead-end streets, etc. as two-way streets and by making the other streets
one-way. This kind of map may be more restrictive than neécessary, but
the theorem does assure that such a solution is always‘possiblé.

The proof of Theorem 3.26 involves giving a proper orientatioﬁ to
all non-separating edges. lLet (S,R) be a finite connected graph. ﬁIfwéT
separating edge [a,b] is deleted from (S,R) then (S,R) - [a,b] has two
distinct components Ca and Cb by definition of a separating edge. |
Furthermore, the subgraphs (Ca’Wa) and (Cb,Wb) of (S,R) have no common
edges or otherwise Ca and Cb are not disjoint. Also, if there are‘any
other separating edges in (S,R) then necessarily it is a separatiné edge
of (Ca’wa) or (Cb,Wb)n Now if either subgraph contains a separatingv
edge of (S,R) then delete it from the graph and obtain additional
subgraphé. Since there can only be a finite number of separating edges
then such a process must stop. The result is a finite set of connééted
subgraphs of (S,R) which together contain all the non-separating edges
of (S,R) and no two subgraphs contain a common edge. .Consider any;éne.
such subgraph (cx,wx), If (Cx,Wx) contains an edge, necessarily awnbn—
separating edge, then there exists at least one cycle of non-separating
edges containing the edge or otherwise the edge would have been a

separating edge. All the edges of the cycle are contained in (Cx’wx)
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since these edges were not deleted and the subgraphs are disjointw
Hence by Theorem 3.25 there exlsts an asymmetric strongly connected
graph (C#’Tx) with the same edges as (CX,WX). Do this for every one of
the finite number of the connected subgraphs for the components. Now
the only edges of (S,R) not contained in the subgraphs are the separat-
ing edges. ©Since (S,R) is conhected then each separating edge must
connect two subgraphs and all subgraphs are connected. Therefore, if
all separating edges are oriented both ways then there exists a path
from any vertex to any other. It should be noted that if the vertices
are in different subgraphs the path between them méy go through several
other of the strongly connected subgraphs.

A kind of vertex that is similar to a separating edge is that of

a separating vertex.

Definition 3.2. If (S,R) is a connected graph and the subgraph
(s - {x},W) is not connected, then the vertex x is called a separating
vertex. If (S -~ {x},W) is connected then the vertex x is called a

non-separating vertex.

Definition 3.3. A separating vertex x is simple if and only if there
is only one edge connecting x to each of the components of the subgraph

(s - {}d W)

It should be obvious that separating veftices are of prime concern
in dealing with problems where connectivity is important. For example,
separating vertices in a graph rebresenting a communication system are |
invaluable, since without them certain communications would be

impossible.
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The following theorem characterizes separating vertices in the same

manner that Theorem 3.22 characterized separating edges.

Theorem 3%.27. A vertex of a connected graph is a separating vertex if
and only if there exist two verticeg such that every chain between them

contains the vertex.

Let (S,R) be a connected graph. If x is a separating vertex then
(s - {x},W) is not connected. Hence there are at least two components
Ca and Cb. There are no chains between a and b in the subgraph since
Ca and Cb are components. Hence, any chains between a and b in (S,R)
must pass through x. Conversely, if every chaln between & and b
contains x, then in (8 - {x},W) there is no chain between a and b.

Hence the subgraph is not connected and x is a separating vertex.



CHAPTER IV
FUNCTIONS OF GRAPH THEORY

This chapter contains an introduction to some important integral-
valued functions. Some of these functions are defined on the set of all
finite graphs, such as to associate with each finite graph the numbgr of
arcs it contains. Other functions are defined on parts of a graph, such
as to associate with each simple path in a graph the number of arcs it
contains. There will be occasions when it is beneficial to define an
arbitrary function on parts of a graph. . For example, in a graph
represented by a road map one may wish to assoclate with a road some
number that may indicate the condition or cost of the road. Functions
of this nature lead to applicable relatlons and many lead to character-

izations of terms and properties already discussed.
M-Graphs

One function associates with each arc of a graph a positive integer
called the multiplicity of the arc. Because of the definition of a
graph, any two vertices of a graph have at most two arcs between them.
However, there are many problems which present a need to have numerous
arcs from one vertex to another. For example, two towns a and b may
have n direct highways from a to ﬁl or two offices a and b in an organi-

zation may have n different means of direct communication from a to b.

4o
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This situation can be described by a function, call‘it M, that associ-
ates with each arc a positive integer. In the example, M((a,b)) = n,

that is, the multiplicity of arc (a,b) is n.

Definition 4.1, A function that assigns to each arc (a,b) of a graph

(S,R) a positive integer M((a,b)), called its multiplicity, is an

M-function.

Definition 4.2. An M-graph, denoted by (S,R,M) consists of the vertices
of a graph (S,R) and the arcs (a,b)l,(a,b)2,°"(a,b)n where n = M((a,b))

assigned by an M-function.

It should be noted that a graph (S,R) is a special case of an
M-graph (S,R,M) where M((a,b)) = 1 for all (a,b) ¢ R. Also, the defini-
tions pertaining to gfaphs will have corresponding definitions for
M—graphs. There is no need to list all such corresponding definitions,

but a few will be given to reveal the general idea.

Definition 4.3, An edge [a,b]j in an M-graph (S,R,M) is any pair of
vertices a and b and a number j such that a.rcs.(a.,b)j or (b,a.)j exist

in (S,R,M).

Notice that the number of edges connecting a pair of vertices
a and b in (S,R,M) is the maximum of M((a,b)) and M((b,a)). An edge
[a.,b]j in an M-graph is represented by an undirected line segment with

a and b as endpoints. Edges are undirected as was the case for graphs.

Definition 4.4. The order of a vertex x in an M-graph (s,R,M) is the

total number of edges [a,h]j in (S,R,M) containing x.
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Definition 4.5 A path in an M—graph’(S,R,M) is an ordergd'set
((a,b)i,(b,c)j,(c,d)k"°) of arcs in (S,R,M) with one vertex of each
arc coinciding with a vertex in the succeeding arc and the other vertex

coinciding with a vertex in the preceeding arc.

The definition of a chain in an M-graph is similar to that of a

path, but using edges instead of arcs.

Definition 4.6. A chain in an M-graph is simple if all the edges of

the chain are distinct and otherwise composite.

Definition 4.7. An M-subgraph of a M-graph (S,R,M) is the M-graph
(T,W,M) such that (T,W) is a subgraph of (S,R) with the M-function of

(S,R) restricted to (T,W).

Definition 4.8. A partial M-graph of an M-graph (S,R,M) is an M-graph

obtained from (8,R,M) by deleting any set of arcs.

It should be noted that a partial M-graph of (S,R,M) is an N-graph
(8,T,N) such that T < R and M((a,b)) > N((a,b)) for all (a,b) in (S,T).
A partisl M-graph is also obtained by deleting any set of edges from
(S,R,M) where the &eletion of an edge means deleting the arcs that give
rise to the edge. i

An M-graph 1is represented geometrically by drawing n lines with
arrows from a to bﬁ when the multiplicity of arc (a,b) is n. Figure ll-A
represents an M-graph with M((b,c)) = 3, M((c,b)) = 1, M((c,d)) = 2,
M((£,f)) = 3 and M((e,f)) = 1. There are three edges between b and c;
two edges between ¢ and d; three edges (loops) at f; and one edge

between f and e. Figure 11-B represents the"edgeso
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Figure 11 A. Figure 11 B.

Many of the previous theorems in Chapter III stated for graphs also
hold for M-graphs. In most cases the proofs for these theorems stated
for M-graphs, instead of for graphs, are similar to the proofs given for
graphs. . Ih fact, many pf the theorems are easier to prove for M-graphs
than for graphs. Since the previous theorems which hold for M-graphs
can be proved by arguments similar to the ones given for graphs, then

for the sake of brevity we merely state the theoremsu

Theorem 4.1. If in an M-graph (S,R,M) there exists a path (chain) from
a to b and a path (chain) from b to c, then there exists a path (chain)

in the M-graph (S,R,M) from a to c.

Theorem 4.2, If there exists a path (chain) in a finite M-graph (S,R,M)
from a to b £ a, then there exists an elementary path (chain) from a to

b.

Corollary 4.3. Every circuit (cycle) of a finite M-graph (S,R,M)

contains an elementary circuit (cycle).
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Theorem-4.4t. Every arc in a strongly connected M-graph (S,R,M) is

contaired in some elementary circuit of (S,R,M).
Theorem 4.5. An M~-subgraph of a complete M-graph is complete.
Theorem 4.6. A strongly connected M-graph is connected.

Theorem %.7. For any two distinct edges of a connected M-graph there

is an elementary chain with the given edges as ends.

Theorem 4.8. Every component Ca of a M-graph (S,R,M) determines a

connected M-subgraph (Ca,W,M) of the M-graph (S,R,M).

Theorem 4.9. The set of all components of an M-graph (S,R,M) is a

partition of the set S.

Theorem 4.10. The set of all components of an M-graph (S,R,M)

determines a partition of (S,R,M) into connected M~subgraphs.

Theorem 4.11. A M-graph (S,R,M) is connected if and only if S is

a component.
Theorem 4.12. A complete M-graph has only one component.

Theorem 4.1%, If (S,R,M) is a finite minimally strongly connected
M-graph with at least two vertices, then in (S,R,M) there are at least

two vertices each contained in exactly two arcs.

Theorem 4.1k, The sum of the orders of all the vertices of a finite

irreflexive M-graph is even.

Theorem 4,15. If an M-graph (S,R,M) is connected, then the partial



45

M-graph (S,R,M). = [a;b]j where [a.,b]J is an edge, has one component or

two components.

Theorem 4,16. An edge of a connected M~-grsph is a separating edge if
and only if there exists two vertices such that every chain between

them contains the edge.

Theorem 4.17. A vertex c¢ of a connected M-graph is a separating vertex
if and only if there exist two vertices a and b such that every chain

between a and b contains the vertex c.
" Fundamental Numbers of Graph Theory

Any finite graph or M-graph has a certaln number of vertices, arcs,
edges and components. The following non-negative integer-valued

functions are defined on the set of all finite graphs or M-graphs:

a function V that assoclates with each finite graph (S,R) or M-graph
(S,R,M) its number of vertices v, that is,
v = V((8,R) = V((5,R,M))

(V is the cardinal number of set S);

a function A that assoclates with each finite graph (S,R) or M-graph
(S,R,M) its number of arecs r, that is,

r

]

A((8,R))

r A((S:R:M)) =% M((a:b))

(summed over all arcs (a,b) of (S,R));

a function E that associates with each finite graph (S,R) or M—graph

(S,R,M) its number of edges e, that is,
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¢ = C((s,R)) = c((s,R,M))
Lemma 4,18. Theorems which hold for all M-graphs hold for graphs.

The conversion'iS'dQne“easily by considering an ordinary graph to
be an M-graph with each multiplicity 1, so that £ M((a,b)) counts the
~arcs of (S,R). |
The following theorems show relationships between the numbers

v, r, e, and c.

Theorem 4.19. If (S,R) is a finite graph then:
(1) e<r<2eorgr<ec<r

(2) e <v (also holds for M-graphs)

Theorem 4.19 is straightforward since every arc is associated
with one and only one edge and every edge can be assoclated with at

most two arcs. Every vertex belongs to one and only one component.
Theorem 4.20, An M-graph is connected if and only if ¢ = 1.
Theorem 4.20 follows directly from Theorem 4.11.

Theorem 4.21. A graph is irreflexive and symmetric if and only if

I'=26-

In an irreflexive symmetric graph, for every edge [a,b] there are
exactly two arcs (a,b) and (b,a). Irreflexitivity guarantees they are
different. Also, for every arc (a,b) there is one and only one edge
[a,b]l. Hence r = 2e. Conversely, let r = 2e. From Theorem 4.19

r < 2e. To have equality every edge must arise from two arcs. So
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there cannot be any loops. Hence the graph is irreflexive and symmetric.

The-orem““hi.22.“ Qf- the three following properties of a finite graph,
any two imply the -third: -

(1) The graph is reflexive

(2) The graph is symmetric

(3) 2e =1 +v

That (1) and (2) implies (3) and that (1) and (3) implies (2)
follows easily by using Theorem 4.21. To show (2) and (3) imply (1)

let the edges be divided_intoﬂ loops and e, non-laops. Tovbe sym-~

1

metric, then r = £ + 2e Hence, with property (3) 2(l+ e

1’ l)

(2+ 2el) +vand £ =v. But { = v implies reflexitivity.
Theorem 4.23, In a finite connected M-graph e + ; > V.

If a finite connected graph has v vertices then the minimum number
of edges needed to connect them is v - 1. Thus, in any finite coanected
graph e + 1 <v. In an M-graph, since each arc is assigned an integer
> 1 giving rise to the same number or more edges, this inequality'is
merely strengthened.

One may wonder by Theorem 4.23% if there are any distinguiéhing
characteristics of a connected graph when e + 1 > v or whene + 1 = v.

- The answer is definitely "yes" as will be seen later by Theorem 6.2.
Theorem 4.24k. If (S,R) is a finite irreflexive graph, then r < v(v - 1).

The largest number of arcs in a finite irreflexive graph is the

number of arrangements of v vertices taken two at a time, that is,
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vi/(v = 2)! = v(v -~ 1). Thus r < v(v - 1).

Theorem 4 .25. 'A“finite“irreflexive}graph is-complete if and only if

2e = v(v - 1).

In a'complete'graph“ﬁny”pair‘of“vertices determines a unigque edge
and all edges arise only from pairs of vertices since it is irreflex- '
ive. Hence there are as many edges as there are combinations of v
“things taken two at a time, that is, e = vi/2(v - 2)! = v(v - 1)/2.
‘Conversely, if e = viv = 1)/2 end sinceirreflexitivity means:-edges can

only be formed between distinct pairs of vertices, thenreach pair of

vertices must determine an edge. Hence the graph is complete.
Corollary 4.25. In a finite complete M-graph 2e > v(v - 1).

Theorem 4.26. A finite graph is reflexive and complete if and only if

2e = V(V + l)o

In a reflexive complete graph any pair -of vertices, distinct or
not, determines an edge. Hence, the number of edges in a reflexive
complete graph with v vertices is the same as the number of edges in
an lrreflexive graph with v vertices plus the v edges formed by the
loops. By Theorem 4.25, the number of edges e = v(v - 1)/2 + v and
2e = v(v + 1). Conversely, if 2e = v(v + 1) then every edge possible
must be formed. Hence the graph is reflexive and complete.

Tt is easily seen in a graph or M-graph that either e >v or e <v
may-ﬁé true. This does not outrule the possibility of a simple re-
lationship between the number of vertices and the .number of edges in a

graph.
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Theorem 4.27. A finite M-graph has e + c > v.

graphs by Theorem 35:11. By Theoremik025'each'subgraph ei +12> vi

where'ei 1s the number of edges ir the subgraph and v, the number of

vertices. Since there are c-supgraphs then

i . i
1 i

c v c

S (e, +1)>23v,,
c c ¢
Ze+Zl_>_Zv and
e +c>v,

In an M-graph this inequality is merely strengthened.

Theorem 4.28. 1If (S,R) is a finite strongly connected graph with v > 1,

then v <r< v2.

Theorem 4.2f?>follows since in a strongly connected graph every
vertex is an initial vertex of some arc and no two vertices can be the
initial vertex of the same arc. The other inequality is true of any

graph.

Theorem 4.29. If k subsets of edges of a complete graph, v < 2, have
the properties that each edge is contalned in some subset and that any

two edges in the same subset have a common vertex, then k >v - 2.

The theorem is proved by mathematical inductlion. The theorem
follows easily for v = 3% since k > O. Assume the theorem holds for a
complete graph with v vertices. Iet (S,R) be any complete graph with
v7%11 vertices. Consider the collection of k subsets of edges Qf

(S,R) with the required properties. Note that q subset cannot contain
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a cycle'of“more'than”threeWedgeSManthhat‘forma cycle of three-edges
there could not be any other edge in the subset because ofthe second
property (and because two vertices have at most-one edge in common).

It three edges do not have a common vertex, then one does not-contain
"ﬁhé’vertexmin“common'tg‘the“other two; but'by'containing'their other
vertices forms a cycle. Therefore; either (1) there exists é subset
with & vertex in common with all of its edges or (2) every subset con-
tains three edges.

It (l)"@écurs then let x be the common vertex and consider the sub-

graph (S - {x},W). By theorem 3.5, (S - {i},W)_iéyééﬁﬁiéte. Further-

more, since x 1s in common with each edge in one of the k subsets then

zﬁe other k - 1 subsets satisfy the conditions for (8§ - {x},W). Hence
by assumption it follows that k - 1 > (v - 1) -~ 2 or k >v - 2. Now
consider case (2). If every subset contains three edges then
3k > e in (S,R), where the inequality occurs only if the subsets are
not disjoint. By Theorem 4.25, 2¢ = v(v - 1). For v an integer
(v - 3)(v -4) >0gives v(v - 1) >6(v - 2). Hence 6k >2e = v(v ~ 1)
> 6(v - 2) and k > v - 2.

Suppose one is to color the edges of the complete graph repre-
gented in Figure 11. such that any two edges with the same color have
& common vertex. Theorem 4.29 indicates that nc matter how one attempts

to do this, at least five colors will be needed. Figure 12. shows one

such coloring with r meaning red; b for blue, etcs..

Theorem 4,30, If every vertex of a connected M-graph is of order k,

then v < 2e/k.
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Figure l2.

et X = {(a,b)l a is an edge and b a vertex of a}. The cardinal
mumber of X, IXI < 2e, since each edge contains at most twe vertices.
Algo, kv < le, since each vertex is contained in k distinct edges.

Therefore, kv < |X| < 2e and v < 2e/k.

Theorem %,3l. The sum of the orders of the vertices in an irreflexive

M-graph with e edges is 2e.
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Theorem 4 .31 is'actually*a'generalization“of“Theo?em b1k wh?ch
states that in an irreflexive graph the sum of the orders of the vertices
~ig even. Theorem 4,31 follOWS_sincexevery'edge not ‘being a loop accounts

of an order of one in each of two vertices.

'Corollary“h.Bég"The“sum"of“themorders“of the wvertices in an M-graph

with e edges of which { are loops is 2e - L.

Theorem %.33.  An irreflexive!finite‘graph with the order of each

vertex > (v - 1)/2, v <1, is connected.

If the number of vertices v‘is odd, say 2k + 1, then the order of
each vertex is > k. If the number of vertices v is even, say 2k,
then the order of each vertex is > (2k - 1)/2 = k - & and hence the
order 1s > k. Consider any two vertices a and b. Since the order of
each vertex is > k then it follows that there exists elementary chains
aalazo-oak and bblbg"°bk each consisting of at least k + 1 distinct
vertices. The two chains are not vertexwise disjoint for if they
were then there would be at least 2k + 2 wvertices which is a con-
tradiction. Hence the two chains have a vertex x in common and the
chain aai'°'x-{'b b exists between a and b. Therefore the graph is

1

connected.
The Cyclomatic Function

Another integer-valued function defined on the set of all finite
graphs or M-graphs is concerned with eliminating the cycles of the
graph. In any finite M-graph there is a set of edges that when deleted

gives a partial graph without cycles. Hence there is a set A of edges
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of winimum cardinality such that when deleted give a partial graph with

no cycles.

Definition%,9. A function that -associates with-every M-graph the
“mintmum of the set -of cardinalities of -all sets-of-edges-that-when
deleted gives a-partial graph without cycles, is called a czclomatia:

function, denoted by Q.

Definition %.10. The number Q((S,R,M)) =‘é;is called the cyclomatic

number of (S,R,M).
Cyclomatic numbers lead to interesting characterizations.

Theorem 4%.34%. An M-greph (S,R,M) contains no cycles if and only if the

cyclomatic number 8 = O.

Theorem 4.34% is immediate.

Theorem 4.35. An M-graph (S,R,M) contains a unique elementary cycle if

and only if the cyclomatic number § = 1.

The "only if" part of Theorem 4.35 is immediate. Suppose that

"8 = 1 and there are two elementary cycles. Theﬁelementary cycles are

not edgewise disjoint for then 6 > 2. If an edge in their intersection
iis deleted, then the remaining parts of the éycles contain a cycle.
Hence 9{2 2, Therefore, there is only one elementary cycle.

' Is there a way of finding the cyclomatic number of a graph other
than by exhaustive examination? The answer is "yes", due to the follow~-

ing theorem.
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Theorem 4.36. In a finite M-graph (S,R,M) the cyclomatic number

B o=@+ ¢« Ve

The proof of Theorem %.36 is by mathematical induction. It is

easily seen that in a M-graph with no edges (nuil graph)'thatgj 2
w Y since ¢ = ve Next consider any -finite M-graph with exactly one
edges I the edge is a loop, then every wvertex is a distinet component
and the theorem holds. If the edge is not a loop, then v = 1 + c while
€ is still zero, so the theorem still holds. Now assume the theorem

is true for an M-graph with k edges. Let (S,R,M) be any Mmgréph with

k + 1 edges and (S,R,M) - [a,b]j the partial "§§5graph by deleting the
edge [a,b]j@ By assumption the cyclomatic number of the partial
M-graph is 91 = k + = Ve If the edge [a’b]j is not contained in s
cycle of (S,R,M) then the cyclomatic number of (S,R,M) § = 61, However,
since [a’b]j is not contained in a cycle%§f (S,R,M) then it is a
separating edge and necessarily connects two components of (S,R,M) -
Ea,b]je Therefore ¢, = ¢ + l. By substituting g =8

1

¢, = ¢ + 1 into Gl =k + ¢ - v, then in (8,R,M), 8

Now suppose edge [agb]j&gs contained in a cycle of (8,R,M). Thus

i” Vo= and

“1

minimum number of edges that when deleted eliminates all cycles. 8ince

= ¢, By Definition 4.9 the cyclomatic number of (S,R,M) is the

[a;b]j is in a cycle then one edge in the cycle must be in the set of

lyz 8@ - 1. Ifa dif-

ferent edge [c,d]i cof the cycle is deleted and it is not involved in any

those eliminated. IFf [a,,b]j is the edge then ©

other cycle then still @) = € - 1. If [c,d]i
other than the one containing [a,b]j then when deleted [a’b]j is still

is contained in a cycle

contained in a cycle in (S,R,M). It will eventually follow that
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= & = l. By substituting ¢, =6 - 1, v v and ¢, = c into

© 1 1 1
€8 =k + e =¥y then €« 1=k +c-vor@=(k+1) +c -~ v,

There are many very interesting applications of Theorem 4.35., For
instance, suppose the M-graph-in Figure 1%. represents the fenced=in land

of a farm. The farmer wishes to put all his land in pasture. What is

Figure 13,

the minimum number of fences he needs to cut in order that the cattle
can freely roam the entire farm? The answer is the cyclomatic number of
the M-graph and by Theorem 4,36 it is given by e + ¢ = v = 37 + 2 - 25

= 1k,

Theorem 4.37. If (S,R) is a finite irreflexive complete graph, then

the cyclomatic number & = (v - 1)(v -~ 2)/2.

By Theorem 4.25, 2¢ = v(v - 1) and by Theorem 4.12, ¢ = 1. By
Theorem 4.36 the cyclomatic number ¢ = e + ¢ = Vv, SO 20 = 2e + 2¢ =~

ov=v(v-1l)+2 ~2v=(v-21)(v - 2).



Corollary 4.38:; - If (S,R,M) is & finite irreflexive complete M-graph

then the cyclomatic number © > (v ~ 1)(v - 2)/2.
The Shortest Path

Anotherwfunction“that"is'of'obviOHS"significancewassociates with
every-path (chain) or circuit (cycle) of ‘& graph or M-graph a non-

negative integer called its "length".

Definition 4.11. The length of a path (chain) u = x_x_**<*x x or
——— 12 n n+l

circuit (cycle) u = X Xyo o X Xy is? (u) = n.

It should be noted that the length of a path (chain) is not just
the number of arcs (edges) involved in the path (chain) for some arcs
(edges) may be used more than once.

Between any two vertices a and b of a finite graph or M-graph
there can be only a finite number of simple paths (chains). Hence,
if there is a path, there is at least one path {chain) of’minimum

length from & to b; moreover, such a path (chain) is elementary.

Definition 4.12. A shortest path (chain) from vertex s to b is a path

(chain) of minimum length from a to b.

56

It should be clear that a shortest path (chain) need not be unique

in a graph or M-graph.

Definition 4.13. The length of a shortest path from a to b % a, if
such exists, is called the distance from a to b and is denoted by

d(a,b). Also, d(a,b) = O if and only if a = b.
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Furthermore;'it“will“be”ponvenient to designate that there is no
path from a to b # a, by d(a;v) = =,

Before considering problems dealing directly with the length of
paths (chains), the more lmmediate problem regsrding the existence of a

3§gth from vertex a to a vertex b in'a graph should be discussed. Is
there a path in a graph going from a to b? 1If there is such a path how
can one find it?

There are several algorithms for finding a path (if it exists)
from a vertex a to vertex b. First consider a special case of a sym-
metric graph, one that can be represented on a plane with no edges
intersecting except at the vertices. Attention is given this specisal
case since a maze of passageways as used in experimenting with mice
and the House of Mirrors (Fun House) at carnivals are examples of this
kind of graph. Figure lk. represents a typical maze of seventy rooms

where one tries to go from a to b.
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The-following“algorithmMIS”sufficient for finding a path from

a to b in a finite planar symmetric-graph. The algorithm-is due to

G. Tarry.

Algorithm T (128). At each vertex x take an edge not previously
traveled in-that direction, but only take the edge by which one first

arrived at x when no other choice is available.

This procedure has an advantage in that one need not have any
_prior knowledge of the graph, but the disadvantage in that the path
traveled need not be the shortest path.

There still remains the problem of finding a path of minimum length
from a to b. An algorithm for finding a shortest path from a to b will
obviously be another way of finding a path a to b. The next algorithm
is for finding a shortest path from a to b (if‘one exists) in any

finite graph (5,R).

Algorithm 2. Label vertex a with an O. ILabel all vertices in Al = aR
except possibly a with a 1. Next label all vertices in A.2 = fo lx € Al}
-with a 2 if not already labeled. Now label all vertices in {yR Iy € A2}
with a 3 if not already labeled and so on as far as possible. If b is
labeled, say with n, then there is a shortest path with length n. One
can find a shortest path by starting at b, backing one edge to a vertex

n-=L x-27

labeled n - 2, and so forth until reaching a. The path axlxgaw-b is a

X,.1, . labeled n - 1, backing one edge from x to a vertex x

shortest path.

The proof of Algorithm 2 is guite simple. If there were a shorter



59

path—aylygvo-yi = b, 1 <m, then"yl would have been labeled by 1, y2 by

S
A

by 1, contradicting that n was the first-label given b;

o v
Figure 15. shows a finite graph with vertices labeled following
-such-a procedure. A shortest path will be of length 8 and there are

only two such paths.

_ Figure 15.

The following three theorems reveal some properties an@lcharacter—

izations of a shortest path between vertices in a graph or M-graph.
Theorem 4.39. A shortest path is an elementary path.

The theorem is obvious since if a path is not elementary, then part

is not true.

Theorem 4.40. If x.x eeX is a shortest path between x

1% 1 and X > then
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the portion of the path x, x,

+esx 1g a shortest path between x, and x,.
1i7i+ J :

1 i J

The proof of Theorem 4.40 is immediate.

Theorem 4.41 (7). A path x X,eeoX  in a graph {S,R) is a shortest
path from x, to x  if and only if for sets S, = {x| x € S and there
) 1 n Agsuiry L ‘

1, s,
exist a shortest path xixi+lala2v°-xi, in Si .

If x.x ...xn is a shortest path then each set Si contains the

12
 nzl n=1
vertex x . Hemee |07 S, f $. Conversely, if 107

exists an element y € Eﬁi Si' For i = 1 there is a shortest path

Si % ¢ then there

xlx2alla12'-ey by definition of S

path x2x

1 If i = 2 then there is a shortest

ey, - ce * 60 hOt t tho f
5a21a22 hg Hence xlxex_5a2la.22 y is a shortest pa I

i = 3 then there is a shortest path xﬁxua +++y and therefore

31%32
xlx2x5xua31a52'~-y is a shortest path. By continuing this process
n - 1 times then xlx2x5=-oxna(n_l)la(n_l)2

By Theorem 4,39, then xlx2*-°xn is a shortest path.

.s«y 1s a shortest path.

Theorem 4.42, 1In a finite M-graph (S,R,M) every cycle is of even

length if and only if every elementary cycle is of even length.

If every cycle is of even length then it follows that every
elementary cycle is of even length. Conversely, suppose (S,R,M) con-

tains a cycle x.X oooxn, X; = X 5 of odd length. If cycle x.x '--xp

12 1 12

is an elementary cycle then the theorem follows. If not, then some

xi.= xj for i < j« If j < n then the cycle xlxeoo»xn can be divided
3 - ceo X teoeW If 3
into two cycles X; x'j and xl xixj+l n' J
cycle xlxgwoxn can also be divided into two cycles xi“'xj and4x13°°xis

Therefore, any cycle that is not elementary can be divided into two

]

n then the
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.cycleslwhose;lengths tqtgl»that'of;the“given'cyclef Sincefgycle
#lxg'-oxﬁ‘baS"odd'léngthfthenmonewof'the'tWO”gyclés_mgstjglgovbe_of"
odd lengtha  If'the'one“cycle“thaﬁ“is odd is not’elementary, then it‘
can be divided into two cycles one-of which must be odd. Since (S,R,M)
is finite then this procedure would eventually arrive at an elementary

cycle that is of odd length. This proves the theorem.

Theorem % .43, In a finite M-graph“(S,R,M) every cycle is of even‘length
if and only if S can be partitioned into two sets A and B such that the

M-subgraphs (A,X,M) and B,Y,M) are null.

Let (S,R,M) be a finite M-graph such that every cycle has an even
number of edges. By Theorem 4.10 one can partition (S,R,M) into dis~
joint connected M-subgraphs. Furthermore, since (S,R,M) is finite then

there are only a finite number of these M-sﬁbgraphS'('Cv ’Wl’M)’
' 1

(CV )weiM))...(Cv
2 n
are connected to a vertex of {vl,ve,'*',vn] by & chain of even length

W ,M). Let A be the set of all vertices of S that

and B the set of all vertices of S that are connected to a vertex

of {vl,ve,"',vn} by a chain of odd length. Since every vertex of S is
~ contained in one of the connected M-subgraphs, then AUB=S. Also,
ANB =g for if a € A then there is an even chain from a to some

vi e{vl,v2-~-,vn} and any other chain from a to v cannot be odd or

i
otherwise together they form an odd cycle. Hence sets A and B partitien

the set S.
It will now be shown that the M-subgraphs (4,X,M) and (B,Y,M) are

null. Assume (A,X,M) is not null. Hence there exists a. ¢ A, a_ e A

1 2

such that [al,ae]j ¢ (S,R,M). Also since the connected M-subgraphs
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o o : _ i . B .
(C l,')"‘(C W M) 1s a partition of (8,R,M) then a; and a, are
Vn ,
contained in oneand only'one M~subgraph (C oW, M)‘. But al,a2:€ A
vy
means there are even chains