A STUDY OF HETEROSIS IN INTERSPECTFIC

CROSSES OF BOTHRIOCHLOA

By
ROBERT RHEA BRIDGE
Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1961

Submitted to the Faculty of the Graduate School of The Oklahoma State University
in Partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
May, 1965

A STUDY OF HETEROSIS IN INTERSPECIFIC CROSSES OF BOTHRIOCHLOA

Thesis Approved:

I. 9. de wee.

587452

ACKNOWLEDGEMENTS

The author would like to take this opportunity to express his appreciation for the valuable advice, guidance, and encouragement throughout the course of this study by his major advisor, and chairman of his graduate committee, Dr. J. R. Harlan. The author would also like to thank the other members of his advisory committee: Dr. A. M. Schlehuber, Dr. J. M. J. deWet, Dr. L. W. Reed, and Dr. L. H. Bruneau for their valuable advice and assistance in writing this dissertation.

Gratitude is expressed to Dr. R. M. Morrison, Bob Walls, Robert Ahring, and Bill Richardson for their able assistance in this study.

Appreciation is also expressed to the United States Department of Health, Education, and Welfare for the National Defense Graduate Fellowship, the National Science Foundation and Oklahoma State University Department of Agronomy for providing assistantship funds and facilities for conducting the study.

The author is also grateful to his wife, Jean, for typing the manuscript and for her patience and encouragement.

TABLE OF CONTENTS
Chapter Page
INTRODUCTION 1
REVIEW OF LITERATURE 3
A. Explanations of Heterosis 3
B. The Measurement of Heterosis. 10
C. Some Examples in Different Crops 14
MATERIALS AND METHODS 17
Accessions 17
The Origin of Parents and Hybrids Used 18
Cultural Methods 19
Data Collection 20
Analysis of Data 21
RESULTS AND DISCUSSIONS 22
Results 22
Discussion. 42
SUMMARY AND CONCLUSIONS 49
LITERATURE CITED 51
APPENDIX 55

LIST OF TABLES

Table Page
I. The Deviation, in Percent, of the Hybrid Generation Means From the High Parent and Midaparent Means for Plant Height in Bothriochloa in 1963 23
II, The Deviation, in percent, of the Hybrid Generation Means From the High Parent and Midmparent Means for Platt Height in Bothriochloa in 1964 24
III. The Deviation, in Percent, of the Hybrid Generation Means From the High Parent and MidnParent Means for Height of Leaves in Bothriochloa in 1963 26
IV. The Deviation, in Percent, of the Hybrid Generation Means From the High Parent and MidwParent Means for Height of Leaves in Bothriochloa in 1964. 27
V. The Deviation, in Percent, of the Hybric GenerationMeans From the Nigh Parent and Mid-Parent Meansfor Grow. Width in Bothriochloa in 1963. 28
VL. The Deviation, in Percent, of the Hybrid Generetion Means Fxom the High Parent and Midmparent Means fox Crown Width in Bothriochloa in 1964 29
VIL The Deviathon, In Pexcent, of the Hybrid Genexation Means From the Hegh Parent and Midmparent Means for Grean Welght in Pothriochloa in 1963 31
VLIL. Whe Devtations in Pexcent, of the Hybrid Generation Mens Fxom the High Parent and Maupaxent Means Cor Green Welght in Bothriochloa in 1964 32

1. The Deviationg in Percent, of the Hybrid generation Means From the High Parent and Midnfarent Means Cow Try Weight frn Pothrigelyon in 1963 33
X. The Deviation, in Percent, of the Hybrid GenerationMeans From the High Parent and Mideparent Meansfor Dry Weight in Bothrlochioa in 196434
Table Page
XI. The Deviation, in Percent, of the Hybrid GenerationMeans From the High Parent and Midmparent MeansLor ixis Length in Bothriochloa in 1964 36
XII. The Deviation, in Percent, of the Hybrid GenerationMeans From the High Parent and Mid-parent Meansfor Leagth of Upper Racemes in Bothriochloa in 1964.37XIIT. The Deviation, in Percent, of the Hybrid GenerationMeans From the High Parent and Mdu-Parent Meansfor Length of Lower Racemes in Bothriochloa in 1964. 40
XIV. The Deviation, in Percent, of the Hybria GenerationMeans From the High Parent and Midwarent Meansfor Percent Seed Set in gochriochloa in 196341
XV. Plant Height of the Parents and Hybrids in Bothriochloa
in 1963 and 1964 56
XVI. Height of Leaves of the Parents and Hybrdds inBothriochlog in 1963 and 1964 57
XVIL. Crown Width of the Parents and Hybrids in Bothriochlosin 1963 and 196458
XVIII. Dry Weight of the Parents and Hybrids in Bothriochloa in 1963 and 1964 59
XIX. Green Weight of the Parents and Hybrids in Bothriochloa in 1963 and 1.964 60
XX. Axis Lergth and Length of Upper and Lower Racemes ofParents and Hybuids in Bothriochloa in 1964.Duncan's Multiple Range Test61
XXI. Percent Saed set of the Parents and Hybrids in Bothriochloa in 1963. Duncan's Multiple Range Test. 62
XXIT. The Coefficient of Varialion of the Parents and Hybrids in Bothriochloa for Plant Height, Helght of Leaves, Crown Width, Green Weight, and Dry Weight in 1963 and 196463
XXITI. Means of the Hybrid Plants for plant Hefght, Height of Leaves. Crow Width, Green Weaght, and Dry Weight With the Hybrids Grouped on the Bacis of a Common Pareat. 64

INTRODUCTION

Heterosis is a phenomenon that is at once intriguing and economically important. It is manifested in different groups of organisms, being by no means confined to plants. Heterosis in various groups of organisms is not everywhere the same phenomenon, but these various manifestations probably have much in common and a satisfactory explanation of one will aid considerably in understanding others.

In recent years there has been an increased interest in heterosis resulting from population crosses of various species. The interest in heterosis stems partly from the agricultural superiority of the hybrids over their open*pollinated or pure line parents and partly from the fact that such hybrids presumably represent good experi* mental material for the study of certain gene actions. There is a need for more information relative to the characterization and magnitude of hybrid vigor to provide a basis for more efficient breeding procedures. Our limited understanding of the cause of heterosis does not provide a basis for predicting the relative amount of heterosis expected in crosses of parents with varying degrees of genetic diversity, but experiments indicate that crosses of unrelared inbred lines of corn show greater heterosis than crosses of related lines. The genetic differences between varieties have probably arisen through isolation accompanied by a combination of mutation, genetic drift, and selection in different
environments. Therefore, the degree of geographical separation and the degree of ancestral relationship can be used as an indication of genetic divergence.

The superiority of artificially produced hybrids over their open*pollinated or pure line varieties has been shown in corn, sorghum, cotton, and many other crops. These hybrid populations have produced higher yields, phenotypically more uniform populations, improved qua1ity of the product, and are buffered against environmental variations. The manifestations of heterosis have already increased the value of our corn and sorghum crops by millions of dollars annually and its potential for other crops is being realized and exploited. With the ever growing need to increase production to meet the demands of the rapidly increasing population, the effects of heterosis will need to be exploited on a very large scale.

The objective of this investigation was to compare certain interspecific F_{1} hybrids of Bothriochloa with their respective parents to determine if heterosis exists and to measure its magnitude, if present. To make this comparison, both green and dry weight yields were determined along with plant height, leaf height, crown width, percent seed set, inflorescence characteristics, and winter hardiness.

In Bothriochloa, apomixis can be used to $f i x F_{1}$ hybrids, but little is known of heterosis in this genus.

REVIEN OF LITERATURE

A. Explanations of Heterosis: Dr. J. G. Koelreuter (1776) was one of the first modern hybridizers of plants and he noted some impressive examples of greater luxuriance in his Nicotiana hybrids. Koelreuter had no suggestions as to why the hybrids should exceed their parents in general vigor, and consequently had no concept of heterosis. Probably every hybridizer since the time of Koelreuter has noticed the greater vigor of some hybrids over their parents. Knight (1799) noted the superiority of hybrids over pure types in many plants and concluded that "nature intended that a sexual intercourse should take place between neighboring plants of the same species." Although he advanced a theory concerning physiological vigor and its decline, he did not recognize the heterosis concept.

Darwin (1868) crossed and selfed plants from the same stock and raised plants from each of two types of seed from zea mays. He noted that in many plants that crossmfertiligation resulted in increased size, vigor, and productiveness, and that inbreeding usually caused deleterious effect on the plant population. Darwin also demonstrated that an increase in vigor was not a direct result of crossing, since crosses involvine different flowars on the same plant and closely related flowers did not cause an increase in vigor. He corcluded that the benefit of croseing was only inportant if the plants which were crossed dirfered in some characteristic.

Shul (1905) first recognined ase of hybrid vigor in the result of a coss between a so-called gussian sunflower and the wild Helianthus annuus. Both paxent types were approximately six feet in height and the tallest of the F_{1} hybxids was 14.25 feet in height. Shull concluded that the hybrid vigor resulting from crosses was due to the unlikeness in the constitution of the uniting gametes.

The concept of East and Shull was that both heterosis and the decrease in vigor due to inbreeding naturally crossmertilized species were manifestations of one phenomenon and that this was closely tied to amomt of heterozygosity. Crossing produces heterozygosity in all characters by whlch the parents differ and inbreeding tends to prow duce homozygosis automatically. Shull 1914 stated:

My investigations on the effects of cross and self fertiliwation in maize has led me as early as 1907 to the conclusion that hybridity itselfy the union of un like elements, the state of belng heterozygous, has e stimulating effect upon the fhysiological activities of the organisms, which eftect disappears as rapidly as continuous inbreading reduces the progenies to homozygous types. There is some danger of misconception due to the fact that all discussions of the atimulus of hybridity have taken place as their stateing point for the sake of sinplicity, the typical Mendelian dis. tribution of gexmiaal substances. The essential feature of the byperhesis may be stated in more general terms es tollows "the physiological vigor of an organiam as mandest in ite rapidity of growth, its height and genw eral robustness, is possibly correlated with the degree of dissimilarity in the gametes by whose union the organism was formed. The nore numerous the differences betwen the untting ganetes fat least within certain Jimber, the grater on the whole is the anmunt of stimuw lation. These diflerences nesd now be Mendelian in their Lnherthance. To avoid the lnapleation that all the geow typic dxicerences whioh stimalate call division. growth and other physiological activities of an organiam are Mendeliat in their duherghance and also to gain brevity
of expression, I suggest that instead of the phrases, stimulus of heterozygosity; heterozygotic stimulation; the word heterosis be adopted.

Bruce (1910) explained heterosis as the combined action of favorable dominant or partially dominant factors, based on mathematical expectations Bruce demonstrated algebraically that the total number of dominant factors was greater in a hybrid population than in either of the parental populations. He then proposed the dominant factor hypothesis since there was a correlation between the number of dominant factor and heterosis.

Keeble and Fellew (1910) used a similiar hypothesis on a dhybrid basis to explain hybrid vigor in peas. They assumed that two factors were involved and that both showed dominance over the allelo norphic condition, hence the 7 was taller than either parent because both factors were present togethe

Jones (1917) restated Bruce's theory and added the concept of linkage, Jones pointed out that, with linkage the consequences of the dominance hypothests were much closer to those postulating superiox heterogygotes. IL detrimental recessive vas Ifned with a favorable dominath, the heterowyzous chromosome vould be superior to both homosygotes, and the linted conbintion might not break up readily.

Ashby (1936) conchuded that if dominance of linked factore is inv: ked Lo explain the larger primordial siae in the embryo, it cannot explain how the metabolic rates in the bybrid (assimilation, resphtation. growth rates) remadn no greater than the parental rates. He therefoxe pointed out that the final sieg of pant is the result
of the initial size of its primordia and the relative growth rate. Since the relative growth rate of the hybrid has no advantage over its parents, size-heterosis must have been due to an initial advantage in embryo size. This was later disproved by East.

East (1936) gave the best idea of the way in which heterosis is expressed when he said, "that invariably it is something that effects the organism as a whole. Its effect is comparable to the effect on a plant of the addition of a balanced fertilizer to the soil. In plants the root system is increased, the branching is more profuse, the leaves are larger and more abundant, growth takes place faster, at least in the early stages and often retains its place longer before showing the characteristic slgmoid curve that indicates approaching maturity." His idea may be stated briefly as follows: size traits are controlled by a large number of genes in various linkage groups; among these genes dominance is virtually non-existent, but there are numerous multiple allelic series; if in a given series each member effects a different physiological condition, then the heterozygous condition may be expected to produce cumulative results: that is if A affects a somewhat different process than its allele $A_{2}, A_{1} A_{2}$ may have a greater effect than $A_{1} A_{1}$ or $A_{2} A_{2}$. This hypothesis implies some sort of complimentary action between alleles as A_{1} supplies what is lacking in A_{2}, or vice versa.

The idea of superior heterozygotes has been upheld by Hull (1945) who suggested the word overdominance. He noted that in some
cases the hybrid between two inbred maize lines had a greater yield than the sum of the two paxents. This could not be explained by com* pletely additive dominant gene unless it were assumed that a plant with no lavorable dominants had a negative yield. He suggested that over dominance would explain heterosis as the genes would be physiologically stimulated at a locus by the presence of two different alleles.

Dobzhansky (1941) and his conworkers have recorded that in nost species there has been, in the course of evolution, accumulations of deleterious recessive characters, which when homozygous reduce the efficency of the organism, but which in the heterozygous condition are without efficiencyweducing effects. The beneficial action of many of the dominant alleles probably is not the result either of directional mutation producing more favorable dominants or of selection tending to eliminate the unfavorable dominants. Instead, it may be due to the accumulation in the population of deleterious recessive mutations. These, if their effects are not too deleterious can often be piled up in signifleont numbers.

Castie (1946) emphasized the importance of interallelic action In relation ro heterosis. He suggested that the effect of interallelic action of a single pair of genes is similiar to that of the killer mutam ton of Sonneborm, except that the action induced in the dominant gene by its sensitiaed reaesaive is beneficial.

Quinby and karper (1946) xeported on the case of a single locus heterosis Lnvolving alleles that were free from deleterious effects, but when in certain heterozygous combinations produced hybrid
vigor. The conclusion was that heterosis in sorghum is a stimulation of tillering and cell divisionand that the stimulus to greater meristematic grovth is enhanced by the heterozygous condition of the Mama gene.

Grow (1948) reported that the dominance hypothesis assumes that an individual with maximum vigor would be one in which all gene loci contain at least one dominant factor. The difference in vigor between any individual and its theoretical maximum would be determined by the number of homozygous recessive loci. The maximum vigor after hybridization would occur if each parent could supply all the dominant alleles lacking in the other, the hybrid thus receiving, at least one dominant gene at each locus. Assuming that all beneficial genes are completely dominant and all deleterious factors are recessive, the average decrease in selective value due to homozygous recessives is equal to the product of the number of gene loci and the average mutation rate. This is crue of any population as long as it is at equilibrium regardless of the breeding structure or the amount of selective disadvantage of the individual recessive factors. Prevailing estimates of gene number and mutation rate make it appear unlikely that the product of gene loci and mutation rate is larger than . 05 . If one assumes that vigor is measurable in terms of selective value, this would be the maximum possible increase in vigor under the dominance hypothesis. Hence, any hybrids between natural populations that have larger increases in vigor must be explained by another hypothesis.

Dobzhansky (1949) reported on inversion heterozygotes in Drosophila pseudoobscura which carry two chromosomes derived from the same population and are superior in adaptive value to the homozygotes. In D. psedoobscura two different kinds of heterosis are well known. The first kind arises from the presence in the population of deleterious recessive mutant genes sheltered by their normal dominant alleles, Accumulation of these deleterious genes is a by-product of the mutation process. The second kind of heterosis is due to complexes of liaked polygenes which give specific heterotic interaction effects in the heterozygote. This kind of heterosis is engendered by natural selection as form of adaptation of the species to its environment. The balanced polymorphisn enables an outbreeding species to obtain high mean fitness, and at the same time to preserve great evolutionary plasticity.

Hayman (1957) reported on a survey of different crops and showed that only in maize is yield heterosis directly related to epistasis. In other species and characters, heterosis seems to be a composite phenomenon in which the possible causes of heterosis are epistasis, overdominance, and the accumulation of favorable dominants in the beterozygotes.

Robinson and Cockerham (1961) reported on experimental results on yield and ear height from two open-pollinated parental varieties of corn and found that the relationship between performance and heterozygosity was linear for hoth yield and ear height. The genetic model of additive and dominant gene effects fits the results satisfactorily.

Penny, Russell, and Spraque (1962) employed the procedure of recurrent selection to obtain information on the types of gene action in yield heterosis in maize. When all the data were considered, the predominant type of selection appeared to have been for genes exhibiting complete or partial dominance or largely additive effects.

The evidence relating to heterosis suggests that the phenomenon is to be explained genetically in terms of various recombination effects. In some cases dominance is the important consideration, while in other cases heterozygosity or overdominance must be considered. In any event, it is the resulting specific gene action which lies at the basis of the physiological advantage or advantages which give rise to heterosis.
B. The Measurement of Heterosis: Hybrid vigor in cotton has been measured in various ways such as: plant height, total length of limbs, fertility of anthers, flower shedding, boll size, bolls per plant, yield of seed cotton, ginning percentage, staple length, seed weight, and node number. Kime and Tilley (1947) found a significant heterosis for yield of seed cotton, yield of lint, rate of blooming, earliness to opening and higher lint indices in Upland cotton. Jones and Loden (1951) reported increases in yield of F_{1} 's over their most productive parent ranging from 0.8 to 47 percent with an average increase of 29.1 percent. This F_{1} generation also had an average of 71 percent of its total yield harvested at first picking as compared to an average of 61 percent for the parent generation. Turner (1953) reported that boll number was more important than boll size in determining final
yield with the hybrids tested. Hybrids that had higher lint yields, higher lint percent, larger bolls, longer and stronger lint, and that were earlier than the average of the parental lines were reported by Marani (1963). He concluded that the magnitude of average heterotic effects was greatest for yield, medium for boll weight and earliness, and relatively small for the remaining traits.

Hybrid vigor in corn and sorghum is measured in practically the same way: grain yields, stover yields, percentage of lodging, plant height, number of leaves on main stalk, weight of 100 kernels, node number, date of heading, and size of heads cr ears. Quinby (1963) reported on a hybrid, RS630, that was 5% earlier in blooming, 19% taller, produced 21% more tillers, and 11% wider, 2% longer, and 15% larger leaves, was 4% larger in stalk diameter, produced 97% more seed, had seeds 3% larger, threshed 7% higher, and had higher yields of stover by 44%, of heads 96%, grain by 106%, and forage by 71% than the average of its parents.

Webber (1900) crossed a Preuvian corn, Cuzco, with a native variety, Hickory King. The average height of the parental stock was eight feet three inches, while the cross averaged twelve feet four inches, an increase of four feet one inch. In a study of twelve openpollinated varieties and their intercrosses, Lonnoquist and Gardner (1961) reported that the average yield of the parents ranged from 54.9 to 96.6 bushels per acre, whereas the F_{1} yields ranged from 81.8 to 106.9 bushels per acre. The average heterosis relative to the midparent was 108.5% and relative to the high parent 102.8\%. Ashby (1936)
concluded that hybrid vigor in corn was only the result of an increased percentage of germination of hybrid seed and a greater initial weight of the embryo.

In studying the growth and development of two inbred lines of tomatoes and their hybrid, Whaley (1952) noted that the hybrid had a larger number of leaves, a larger leaf area, larger fruit size, and a greater yield than either parent. The hybrid also had a greater activity of the shoot apical meristem and appeared to have a higher catalase activity in the stem tips.

Coffman (1933) crossed Richland X Fulghum oats and the F_{1} plants averaged 13.2% taller, bore 17.5% more culms per plant, weigted 48% more, and yielded 35.2% more grain and 51.3% more straw on the average than the larger parent, Cofiman and Wiebe (1930) reported on oat crosses in which the height of the hybrids was 4.9% over the mean of their respective parents and the mean length of the panicle was 1.53% longer in the hybrid plants.

In interspecific Andropogon hybrids, Newell and Peters (1961) reported that the hybrid clones exceeded the average of the parent types by 20% in height of leaves, 9% in total height of plants, and 59% in total plant yields. The basal spread of the hybrids was intermediate between the two parents.

These examples are ample to show that heterosis may be measured in a great variety of ways. There are two ways of expressing heterosis a) in terms of increase of the hybrid over the average of the two parents and b) in terms of increase of the hybrid over the
best parent. Heterosis would seem to be of little practical value
unless the hybrid was demonstrably better than the best parent.
C. Some Examples in Different Crops:

Author	Year	Crop	Heterosis Expressed
Dawwin	1876	Corn	Hybrid showed an eight percent increase in height over the best parent.
Richey	1922	Corrn	82.4% of hybrids exceeded mid-parent and 55.7 exceeded high parent in yield.
Jones	1985	Corn	Fybrid showed 3 to 104% increase in yield and 0 to 9% increase in height over best parent.
Lonnoquist \& Gaxdnex	196%	Corn	Hybrid showed an average of 108.5% in yield relative to the mid-parent.
Molle Salhuana, E Robinson	1962	Corn	124% of mid-parent value was found in between region crosses.
Paterniani \& Lonnoguist	1963	Corn	Hybrid showed a range of -11% to 101% in yield for individual crosses relative to the mid-parent values.
Conner \& Karper	1927	Sorghum	Hybrid showed an average increase of 66% in height over tallest parent.
Karper \& Quinby	1937	Sorghum	Hybrid was twice as tall and produced three times as much forage as the best parent.
Baxtel	1949	Sorghum	Hybrid showed from 6.2 to 113% increase in height over mid-parent.
Stephens \& Quinby	1952	Sorghum	Hybrid exceeded the highest yielding variety by 10 to 20\%
Sambandam	1962	Egg Plant	Hybrid yield ranged from 11 to 153% over the mid-parent.
Whaley	1939	Tomato	Hybrid yield was 60% better than best hybrid in fresh weighta
Hatcher	1939	Tomato	Hybrid seed number was lewer but seed wefght was higher than the calfar naronte.

Author	Year	Crop	Heterosis Expressed
Whaley	1952	Tomato	The hybrid was seven days earlier and had a larger number of leaves than the best parent.
Sikka et al.	1959	Wheat	Heterosis ranged from $\mathbf{1 6 . 4}$ co $\mathbf{1 3 1 . 4 \%}$ more than mid-parent.
Gandhi, et a1.	1961	Wheat	Hybrid produced 3 to 35% more foddex and 1.6 to 55.6% more tillers than better parent.
Lupton	1961	Wheat	Some hybrids yielded 4f\% more grain than the best parent.
Schmidt	1962	Wheat	Hybrids yielded from 3% below to 31% above the best parent.
Grafius	1959	Barley	Hybrids showed up to 123.6% increase in yield over midparent.
Coffman \& Wiebe	1930	Oats	Hybrids were 4.9% taller and yielded 35.2 more grain than parental strains.
Coffman	1933	Oats	Hybrids averaged 13.2% taller and yielded 35.2 more grain than the better parent.
Kime and Tilley	1947	Cotton	Heterosis was expressed in yield, earliness, and quality.
Simpson	1948	Cotton	Naturally crossed plants produced 5.7 to 24.0% greater yield than inbred plants.
Jones \& Loden	1951	Cotton	Hybrids averaged from 0.8 to 57% more than average of parents.
Turnex	1953	Cotton	The best hybrid averaged 22.5 and 31.8% increase in yield over the check variety.
Turner	1953	Cotton	The hybrid showed a range from 46 to 82% increase in yield over the mid-parent.

C. Some Examples in Different Crops: (Continued)

Ohristidit	1955	Cotton	The kybrid shoved a range of 3.0 to 9.5% inerease in yield over the best parent.
Frysell, Staten \& Porter	1958	cotton	A clear hetarotic expreswion found oniy in fiber lengthe
seroman	1961	Cotton	The best hybrid produced 299 pounds of lint more than its nearest strain competitor.
Milier \& Marami	1963	Cotren	The hybrid produced 27.5% more fint than mid-parent.
Whice \& Richmond	1963	Cocton	The hybrids exceeded the beter parent by 3 to 30% in yield.
Marans	3964	cotton	The hybrid was earifer, tailer, and had greater percent boll recention than mid-parent.
Milex and Lee	1.954	Cocton	Yields of top crosses ranged from 100 to 128% of tester parent.
Eate, Joyner \& Seale	1960	Sensevieria	Hybrid was superior to best parent in green yield ${ }_{3}$ fiber yields, and percent of fíber leaves.
Burton	1944	Millet	The hybrids produced about twice as much dry matter as the Napiergrass parent.
Buxton	1943	Paspalum	The hybrids produced twice as much dry matter as the parental species.
Carnahan	1947	Flax	The hybrids yielded 40\% more than average of parents.
Peters \& Mewell	1961.	Bluestem	The hybrid exceeded the average of parents by 59% in yield.

MATERTALS AND METHODS

Accessions: Twelve parental accessions having a tetraploid chromosome complement were used in comparison with their hybrid comblnations. The hybrids were the result of crosses made by Richardson using the technique described by him in 1958. All of the hybrids except 56*511-1 were produced by Mr. Richardson in 1958 and were identim fied as hybrids in 1959. Gince these plants reproduce apomic ically, seeds for the present study were harvested from fucrease rows established in a nursery and represent, in affect, clon increases of the original F_{1} plants. The cross 56×511-1 was made by Mr. Richardson in 1956 and is rathet sexual. In this case the material in this study Was, in part at least, en T_{2} population. The parents comprised two botanical varieties of Bothriochlog Liternedin, one variety of B ischaemum, and three hybrids. The B. incermedta var, grahamit in* cluded accessions $2655,5450,5168,5404,5400,4393$, and 4630 , The accestions 5400,4393 , and 4630 were used in various combinations of the above to produce the threa hybrids used as parents in this study, The B. intermedia ar. Erahami is the comon Bothriochlog of the Gangetic Punjabi platns of India and pakistany and is now rather wide spread in various tropical countries to which it was probably introo duced. This variety was used extensively as a fenale parent because it is more sexual than other varieties. The B, internedia var montana

B. intermedia var grahamii	X B. ischaemum var. ischaemum	Hybrid Designation
2655 British Guiana	X 7162 Tashkent, U.S.S.R.	58x503a-2
5450 Delhi, India	X 5704 Peking, China	56x511-1
5168 Pretoria, South Africa	X 7162 Tashkent, $\mathrm{U}_{6} \mathrm{~S}_{\circ} \mathrm{S}_{2} \mathrm{R}_{*}$	58x685a-1
5404 Delhi, India	X 7162 Tashkent, $U_{\text {c }}$ S.S.R.	$58 \times 733 \mathrm{~b}-1$
$56 \times 750=4630 \mathrm{~b}$ Source Unknows $\times 5450$ Delhi, India	X Afghanistan	58×323
$56 \times 750=4630 b$ Source Unknown x 5450 Delhi, India	X 7498 Mardin, Turkey	58×348
$56 \times 482=5400$ Hempur	X 6583 Afghanistan	$58 \times 70-\mathrm{as}$ b
$56 \times 428=4393$ Dehra Dung India $x 4630$ Source Unknown	X 7498 Mardin, Turkey	$58 \times 12 \mathrm{~B}$
B. intermedia var grahamii	X B. intermedia var montana	
2655 British Guian	X 5297 Lonavala, India	58x694a-2
5450 Delhi, India	X 5297 Lonavala, India	$58 \times 697 \mathrm{~b}-3$
으 - intermedia var montana	X B. ischaemum var. ischaemum	
5410 Matiana, India	X 7162 Tashkent, U.S.S.R.	58×768-1

accessions, 5410 and 5297, comprise part of a robust race found abundantly in the foothills of the Himalaya from Kashmir eastward. The B. ischaemurn var. ischaemum is widespread in temperate Eurasia and includes the accessions $5704,6583,7162$, and 7498 , The hybrid 56×750 is a highly self sterile and sexual plant obtained from a cross between two facultative apomictic accessions of B. intermedia var. grahamii. This variety seems to be an introgression product between B. intermedia and Dicanthium anulatum and the montana variety is believed to be an introgression product of B. intermedia and B. ischaemum (Harlan, et.al. 1961).

Most of the F_{1} 's stidied originated as hybrids between \underline{B}. intermedia var. grahanii and B. ischaemum, and resenbled B. intermedia var. indica in morphological traits.

Cultural Methods: Wich the exception of the maternal parents 5450 and 56×428, the parent and hybrid cross populations were evaluated both during 1963 and 1964. The maternal parent of the hybrid designated as $58 \times 12 \mathrm{~B}$ was missing during both years of study. Seeds of A-5450 were available in 1963, but were found to be contaminated with other strains. Measurements taken on A-2655 were substituted for this parent because the two accessions are essentially identical in every known respect.

Seeds of each hybrid and hybrid parent were harvested and processed by hand prior to study. The germination of the seeds was conducted under controlled laboratory conditions. Seedlings were allowed to grow in vermiculite, moistened every other day with a $1: 1: 1$ nutrient solution in the green house until they attained a height of three inches. The seedlings were then transfered by hand to plant vita-bands filled with soil, and remained under green house conditions until transplanted to the field.
fleld planting was made at the Agronomy Research Station, Perkins, Oklahoma on a Vanose sandy loan soll during both years of study. Ten repideations of ten plants pex replicate of each parent and hybrid combination were planted in a randomized block design in 1963. Six replications of the parents and hybrid combinations wexe planted in 1964. Each replicate consisted of one row 30 feer long whth the plants spaced at three toot intervals. After tramplanting, plots were checked at frequent intewvas and weak or dead seedx lags replanted.

 vary dry oond condutons. The experimentad plot was certupaed with anmonitu nitwace at the rate of 60 pound of actul atwogem por acre.

Deta Conleatica: Data were condectod at plata maturity on ar badyddual plant bads for: plant helght, height of leaves, cown wheth green welght, dry welght pencent geed get acd infloreccence charactexg. Whace Hawdmess was evaluated the followirg sprimg Plant hedght and heqgt of leaves were heaguted aftet the plats were gatkexed up and dewn wo an upright positwon by eytag the top and botcora of the platu with binder ewne. Planto haght and hequt of Levves wexe repoxqed in mebes.

The green weight yields were determined by cutting the individually bundled plants and weighing each on a gram scale. These bundles were then allowed to air dry for approximately six weeks and then the individual dry weights were recorded in grams. The plants are air dried instead of being oven dried due to the large amount of space that would be required to oven dry this large number of plants. The length of time required for these plants to air dry depended on the prevailing climatic conditions.

Percent seed set as reported actually constitutes percent by weight and not by numbers. Hand stripped seed from each parent and hybrid were harvested and the caryopes extracted on a rub-board from two five gram samples and the percent seed set determined on a weight basis. Ahring (1963) reported that any parent or hybrid having 20 percent or more could be considered as having good seed set.

The length of upper and lower racemes shown were obtained by taking the average of the longest two upper and lower racemes on three heads of each plant and reporting the measurements in inches. The axis length was obtained by measuring the distance between the first node and the last branching node of the inflorescence.

Analysis of Data: A randomized block design with approximately ten plants per plot was used in this study. The analysis was done by the IBM 1410 on unweighted plot means to obtain the mean of each character for each population.

The F-test was made and if found to be significant, the Least Significance Difference (L.S.D.) and the Duncan's Multiple Range Test was used to test mean differences. The mid-parent and high parent means were used to evaluate heterosis.

RESULTS AND DISCUSSIONS

The mean, coefficient of variation, and L.S.D. are tabulated in Appendix Tables XV through XIX for plant height, height of leaves, crown width, green weight, and dry weight. The coefficient of variation for each hybrid and parent is tabulated in Appendix Table XXII, for the above characters. A Duncan's Multiple Range Test is presented in Appendix Table $X X$ and $X X I$ for the inflorescence characters and percent seed set. The means of hybrids after being separated into different groups on the basis of a comon parent are presented in Appendix Table XXIII.

Results

Plant Height: The heights of all hybrids plants (Table I and II) with the exception of hybrid $58 \times 685 \mathrm{a}-1$ were significantly greater than their midmarent values in both years of study. An increase in height over that of the taller parent was expressed in 1963 by hybrids $58 \times 503 \mathrm{a}-2,58 \times 694 \mathrm{a}-2,58 \times 697 \mathrm{~b}-3,58 \times 768 \times 1$, and $58 \times 70 \mathrm{adb}$ (Table I). The same hybrids, with one exception, exhibited an increase in height over their taller parent in 1964. The height attained by hybrid $58 \times 768-1$ (Table II) was slightly greater than its taller parent, but not statistically different in 1964. The hybrid designated as $58 \times 697 \mathrm{~b}-3$ was not avallable for study in 1964.

TABLE I

THE DEVIATION, IN RERCENF, OF THE HYBRTO GENERATHON MEANS FROM THE HTGH PARENS AND MID-PARENI MEANS FOR PLANT HETCHI IN BOCHRTOCHLOA IN 1963

Hybatic	Midepaxent	MLit Pavent
58x503a*2	28.58 \%	8. 37%
58*694和 2	18.76\%	14.69\%\%
$56 \times 511{ }^{1}$	29.31 m\%	-8.96
58x697b-3	18.62mb	14.56\%
$58 \times 685 a^{-1}$	8.90 \%	$=5.32$
$58 \times 768 \times 1$	20.68\%*	6,39w\%
$58 \times 733 \mathrm{~b}-1$	15.77**	-3.64
58x70-ach	$62.10 \% \%$	33.16\%
58×323	21.61**	-1.17
$5 \mathrm{Bx} 3{ }^{4} 8$	20.59**	-14.62

*) Significantly higher at the 0.01 leval.

THE DEVIATTON, IN PERCENT, OF THE HYBRID GENERATION MEANS
FROM THE HIGR PARENT AND THE MID PARENT MEANS FOR
PLANT HETGHT IN BOTHRTOCHLOA IN 1954

Hybrid
Moprarent
\%igh Parent
$58 \times 503 \mathrm{a}-2$ 21.80** 3.17*

58x694-2
12.88**
12.82**

56×511-1
22.98**
-0.46
$58 \times 685 \mathrm{~m}-1$
3.20
-9.46
58x768-1
19.68\%*
2.03

58×733b-2
14. $64 \% \%$
-2.54
58×70-a\&b
$42.84 * *$
21.97%
58×323
25.70\%*
-3.13
58x348
10.73**
-11.32

[^0]The hybrids in which heterosis was not expressed relative to the best parent exhibited negative deviations ranging from 14.62\% for 58×348 in 1963 to 0.46% for $56 \times 511-1$ in 1964.

Height of Leaves: All hybrids in 1.963 showed a significant increase in height of leaves over the mid-parent values of their reso pective parents (Table IV). In 1963, the only hybrids showiag a negative deviation from its mid-parent was 58x768-1. The other hybrids exhibited a significant increase over their mid-parent with the exception of hybrid 58x685a-1 (Table III). An increase in height of leaves over that of the best parent was expressed by hybrids $58 \mathrm{x} 70-\mathrm{a} \& \mathrm{~b}, 58 \mathrm{x} 503 \mathrm{a}-2$, and $58 \mathrm{x} 733 \mathrm{~b}-1$, during both years of study. This increase was significant only for hybrid 58x70-a\&b. Three other hybrids exhibited positive deviations from the mean of their best parent, but were not statistically significant (Table III and Iv).

The negative demations of the remaining hybrids from their best parent was rather low, with a range from 0.59% in $56 \times 511-1$ to 9.96% in 58×348. Hybrid 58×348 was the only one to show a negative deviation from its best parent during both years of study.

Crown Width: The crown width of all hybrid plants, with the exception of hybrids $58 \times 694 a-2$ and $58 \times 768-1$ was significantly greater than their mid-parent value in both years of study (Table V and $V I$). These two hybrids exhibited negative deviations of less than three percent both years. The hybrids $56 \times 511-1$ and $58 \times 70-a \& b$ were the only ones to show an increase in crown width over their best parent during both years of study; however, only in 58×70 a\&b was the increase significant. Hybrid $58 \times 697 b-3$ in 1963 and 58×348 in 1964 were the

TABLEE IIT

THE DEVTATYON, ZN PLRCINT, OF THE HYBETD GENERATRON MEANS FROM THE HTGH PARENT AND THE MID PARENT MEANS FOR HETGH OF LEAVES IN BOTHTOCHLOA IN 1963

Syberid	Hidwarent	HGh ditent
58x503a-2	5. 52% \%	3.02
58x694a-2	1.20	-6.05
56x511-1	35.35**	-0. 59
58x697bu3	5.97**	-1.62
58×6859	0.81	-0.04
58.4768-1	-4.04	- 11.43
$58 \times 733 \mathrm{~b}=1$	4.09*	0.15
58×70 exd	62.07 * ${ }^{\text {b }}$	25.25**
588323	38.80w	0.00
58×348	18.64**	-9.94
$\begin{array}{r} * S i \\ \operatorname{m}^{n} \mathrm{Si} \end{array}$	at the 0.05	

TABLE

THE DRYTATTON, LN PERCENT, OH THE HYBRTD GENERATHON MEANS FROM THE HTGH PARENT AND THE MID- PARENE MEANS HOR HexGTE OR LEAVES IN BOHRMOCHOA IN 1964

M14. Panhe		
984503ax 2	19.50**	2.04
	10.74 74	8. 17 **
S6xStuel	20. 24 \#*	-0.76
58x885a 1	28.69世*	1.99
58x748=	29.76 **	2.38
$58573.36{ }^{5}$	29.03**	2.44
$50 \times 70=04 b$	37.00\%	16.67wn
588323	14.86 \% ${ }^{\text {\% }}$	-9,87
58×348	14.28**	-9.96

wh Sigudicanty hisher at the 0,01 leval.

TABIEE V
THE DEVTATTON, IN PURCENT, OF THE HYBRZD GENEKATLON MEANS FROM THE HIGH PARENT AND MIDPARENT MEANS FOR GROWN WIDTH IN BOTLR YOCHLOA IN 1963

Hubrda	Mustatent	Hiah Parant
$58 \times 5036 \times 2$	4.69\%	-0.85
58×694.2	0.0 .82	-3.97
54*511.	12,054\%	0.42
588697be3	10,86**	7.34\%r*
$58 \times 685{ }^{-1 / 4}$	6.97 fot	-1. 01
58x768m	-8.00	-13.57
58×733602	9.13 **	0.60
58x70masb	9,56\%*	5. 25% \%
$58 \mathrm{x} 32 \%$	15.73**	-2.05
58×348	12.2900\%	-2.0\%

W Signticantly haghe et che 0,05 Leval. som signiflcantly higher at the 0.01 levod.

TABLE VI

THE DEVIATYON, TN PERCENX, OF THE HYBRID GENERATION MEANS FROM THE HTGH PARENI AND MTD PARENT MEANS FOR CROWN WTDTH IN BOTHRTOCHLOA IN 2964

Hybria	M ${ }^{\text {dowerent }}$	Htgh Parent
58x50302	18.53\%*	0.88
$58 \times 6944{ }^{-2}$	-2.70	-9.10
56\%512-1	16.79\%*	2.41
$58 \times 685 a-1$	18.39**	$00^{1 /}$
58×768-1	2.21	-17.92
$58 \times 733 \mathrm{~b}=1$	17.21\% $\%$	-2.53
58×70madb	29.73**	17.38\%
58×323	14.97\%	2.21
58×348	$24.42 \% \%$	9.15\%

He Sigmificantly higher at the 0.01 level.
a/ $58 \times 685 a-1$ had the same crown width as its best parent
only other hybrids to show a significant increase over their best parent (Table V). Two other hybrids exhibited small increases over their best parent that were non-significant. Negative deviations of the remaining hybrids ranged from 0.85 to 13.57% in 1963 (Table V) and from 2.53 to 17.92% in 1964 (Table VI). The crown width of 58×768-1 in 1963 was smaller than efther parent.

Geeen Welght: The green welght of all hybrids was significantly greater than their midaparent value in 1964 (Table VIII). In 1963, only $58 \times 768 \infty$ I and $58 \times 694 a=2$ produced less than their mid. parent value. The remaining hybrids expressed a significant increase over their mid-parent with the exception of hybrid 58\%685a-1. A significant increase in green weight production over the best parent was exhibited only in hybrids $58 \times 70 \times a \& b$ and $56 \times 511 \sim 1$ during both years of study (Table VTII and IX). Two hybrids in 1963 (Table VIII) and three hybrids in 1964 (Table IX), exhibited increases up to 15% over their best parent that were non-significant. Four hybrids exhibited negative deviations from their best parent ranging from 6.01 to 38.93%.

Dry Weight: The dry weight of all hybrid plants, (Table X), with the exception of hybrid $58 \times 783 \mathrm{~b}-1$ was significantiy greater than theix mideparent value in 1964. In 1963, only three hybrids; 58x694a-2, 58×685a-1, and $58 \times 768-1$, failed to show a significant increase in dry weight over their midmparent (lable IX). The hybrid 58x70adib produced over two and oneahalf times more than its midaparent and over twice as much as its best parent during both years. An increase over their best parent was exhibited by hybrids $58 \times 70-a \& b, 56-511=1$, and $58 \times 503 a-2$ during both years of study. The increase exhibited by hybrid 58x503a-2

THE DEVTATLON, IN PERCENL, OF THE HYRRID CENERATLON MEANS FROM THE HLGH PARENL ANO MTD PARENT MEANS TOR

GREEN WELGHN IN BOMRETOCHLOA LN 1963

Hybr2a
Madedacent
$24.878 \% 60.31$
$58 \times 503 \mathrm{ac} 2$
$48 \times 694 \cos ^{2}$
$56 \times 511 \times 1$
$588697 b=3$
$58 \times 6 \mathrm{C} 54 \mathrm{~m}$
$58 \times 768 \cdot 1$
58×733601
$58 \times 70{ }^{\circ} \mathrm{d}$
58×343
58×348
-24.96
98.27 Hv
11. 30 orte
5.38
-30.39
24.24 wh
$154.1 .6 * *$
53. 5.5 w
17. 314%

Hith raxent
-32.01
$22.69 \% \%$
0.33
-6.01
$=38,93$
0.94
66.42w
$=10.42$
-27.69
** Signifleanty higher at the 0.01 level.

TABLE VIII

THE DEVTATLON, IN PERCENT, OF THE HYBRID GENERATION MEANS FROM THE HTGH PARENT AND MLD-PARENT MEANES FOR GREEN WELGHT IN BOTMRTOCHLOA IN 1964

grbext	Mas Eatent
58x503*2	58.42\%*
585694**	37. 32.4 \%
56x511-1	112.53.**
$58 \times 6850 \mathrm{~m}$	61,05**
58×7681	22.34**
$58 \times 7336 \pm 1$	16.14*
$58 \times 70 \times \mathrm{acb}$	163.05\%
58×323	35.80\%*
58×348	47.08**
\% Signilicantly higher at the 0.05 level.\% Stinificanty higher at the 0.01 devel.	

TABLE IX
THE DEVIATION, IN PERCENT, OF THE HYBRID GENERATION MEANS FROM THE HIGH PARENT AND MID PARENT MEANS FOR DRY WEIGHT IN BOTHRIOCHLOA IN 1963

Hybrid	Mid-Parent	HLgh Patent
58×503a-2	11.11\%	10.51
58x694a=2	-20.63	- 31.90
56x511-1	115.65\%	33. $25 \% \%$
58x697b=3	16.78\%	2.00
58x685a	-1.15	-1.19
58x768-1	-21.63	-28.08
58x733b-1	30,49**	16.08*
58x70-adb	216.16 k\%	103.88**
58×323	49. 27 **	-13.79
58×348	39.76**	-15.57

* Significantly higher at the 0.05 level. ** Significantly higher at the 0.01 level.

TABLE X
THE DEVIANTON, TN PERCENT, OF THE HYBRTD GENERATION MEANS FROM THE HIGH PARENT AND MIE PARENE MEANS FOR DRY WEIGHT IN EOTHR TOCHHOA IN 1964

Hybrid	MH-parent	High Perent
58×5038.2	49.62\%ers	14.91
$58 \times 6940=2$	35.024*	7.15
$56 \times 511-1$	103.53t*	59.00\%*
$58 \times 685 m-1$	51.27 年碞	11.73\%
$58 \times 768 \sim 1$	39.96 \% 2	m\% 7.28
$58 \times 7336 \mathrm{~d}$	13.14	-23.17
58*70ªcb	163.224*	107.42**
58x323	83.97	3.96
58*348	60.52 \%th	5.32

We Signiflcantly higher at the 0.01 levedo
was not statistically different from its best parent (Table IX and X). The hybrid designated as $58 \times 733 b-1$ was the only other case of a hybrid exhibiting a significant increase over its best parent during either year.

Five hybrids in 1963 and two in 1964 showed negative deviations from their best parent ranging from 1.19 to 31.90%. Hybrid 58x768-1 exhlbited a negative deviation from its best parent during both years.

Axis Length: Axis length was studied only in 1964. Most of the hybrids were intermediate between the mid-parent and the high parent Only two hybrids, $58 \times 768-1$ and 58×348 failed to show a signifirant increase in axis length over the average of their parents. These hybrids exhibited negative deviation from their mid-parent of 34.52 and 34.48% respectively (Tab1e XI). The other hybrids showed positive deviations from the average of their mid-parent ranging from 8.42 to 49.79%. The only hybrids to exhibit an increase in axis length over their best parent were $58 \times 694 a-2$ and $58 \times 685 a-1$, but these increases were not statistically significant (Table XI). The remaining hybrids expressed negative deviations from their best parent ranging from 10.18% in $58 \times 70-a \& b$ to 57.90% in 58x768-1.

Length of Upper Racemes: Length of the upper racemes was studied only in 1964. A significant increase over the mid-parent was exhibited in hybrids $58 \times 694 \mathrm{a}-2,58 \times 768-1$, and $58 \times 733 \mathrm{~b}-1$. The hybrid designated as $56 \times 511-1$ expressed a 2.58% increase over 1ts mid-parent, but this was not statistically significant. The other hybrids exhibited negative deviations from the average of their parents ranging from 2.76

TABIE XI
THE DEVIATTON, IN PERCENT, OF THE HYBRDD GENERATYON MEANS FROM THE HIGE PARENT AND THE MTD-PARENI EOR AXIS LENGTH IN BOTHRTOCHLOA IN 1964

Hybrid	Mic- Patent	High Parent
588503 xa	16.88*\%	-20.02
58\%694ms 2	8.42 **	3.58
56\%5i4 -	29.39**	-20.76
$58 \times 685 a-2$	49.79 \%48	2.85
53\%768*1	-34. 52	- 57.90
$58 \times 733 \mathrm{~b}$ - 1	15.57**	-1,3.06
58×323	9.68\%\%	- 29.06
58×348	- 34.48	-61. 21
$58 \times 70 \mathrm{adb}$	23.92**	$=10.28$

** Significantly higher than the high parent at 0.01 level.
the deviation, in percent, of the hyrrid generation means FROM The high parent and thi mid-parent for lengit OF UPPER RACEME OF BOTYRTOCHLOA IN 1964

Hybrid	Mid-Parent	HLgh Patant
58x503a-2	-2.76	-16.10
58×694a-2	15.32\%m*	9, 25 \%
56x511-1	2.58	-6. 51
58×685a-1	- 21.63	- 30.48
58×768-1	10.80**	3.4 .1
58×733b-d	25.35 \% ${ }^{\text {\% }}$	21. 95%
58*323	-14.99	-26.36
58×348	-18.50	-29.31
58*70acb	-6.73	-10.00

* Stgnificently higher at the 0.05 Leval.
** gignificantly higher at the 0.01 level.
to 21.6% (Table XII). Ar increase in upper raceme length over the best parent was expressed in hybrids $58 \times 733 \mathrm{~b}-1$, $58 \times 694 \mathrm{a}=2$, and $58 \times 768-1$, but the increase was not significant for hybrid $58 \times 768 \mathrm{~m}$. Five hybrids exhibited negative deviations from the mean of their mid-parent and high parent during both years (Table XII).

Length of Lower Racemes: This character was studied in the parents and hybrids in 1964. The only hybrids that failed to show an increase in lower raceme length over the average of their parents were $58 \times 685 \mathrm{a}-1,58 \times 323$, and 58×348 (Table XIII). The other hybrids exhibited significant increases ranging from 5.17 to 32.78%. An increase in lower raceme length over the best parent was expressed by hybrids $56 \times 511-1$ and $58 \times 733 \mathrm{~b}-1$, but only in $56 \times 511 \times 1$ was the increase significant. The hybrids in which heterosis was not expressed relative to the best parent exhibited negative deviations ranging from 2.51% in $58 \times 694 \mathrm{a}-2$, to 39.70% in 58×323 (Table XIII).

Percent Seed Set: Percent seed set of the parents and hybrids was studied in 1963. A significant increase over the average of their parents was exhibited by hybrids $58 \times 503 a-2,58 \times 323,58 \times 348$, and 58x70-a\&b (Table XIV). Negative deviations of the hybrids not expressing hererosis relative to the mid-parent ranged from 8.03 to 62.7%, with three hybrids exhibiting a percent seed set that was lower than either of their parents. A significant increase in seed set over the best parent was expressed by $58 \times 503 \mathrm{a}-2$ and $58 \times 70-a \& b$. The remaining hybrids exhibited negative deviations from their high parent ranging from 9.87 to 70.50%, with most of the deviations falling between 17 and 36% (Table XIV).

Winter Hardiness: The hybrids and parents were evaluated in the spring of 1964 to determine which plants of the 1963 planting survived the winter. The only plants to recover were the four Bothriochloa ischaemum accessions which were used as male parents. There were no hybrids that survived the winter indicating that there was not a trans. fer of the winter hardiness character from B. ischaemum to the hybrid plants. The twenty chromosomes of hardy B. 1schaemum may not be sufficient to produce winter hardy hybrids, unless a specific combination is used.

TABLE XIII
the deviation, in percent, of the hybrid generation means FROM THE HIGH PARENT AND MID-PARENT FOR LENGTH OF LOWER RACEME OF BOTHRTOCHLOA IN 1964

Hybird	Mid-Parent	H2gh Parent
58×503a-2	7.76\%*	-10.41
58×694a-2	6.91**	-2.51
56x511-1	32.78**	20.45\%
58x685a-1	-7.82	- 16.12
58x 768 -1	5.95\%	-5.70
58x733b-1	15.97**	7.63*
58×323	- 22.87	-39.07
58×348	- 10.87	- 32.24
58×70-a\&b	5.17*	-6,18

TABCE XIV

THE DEVTATTON, TN GERCENF, OF TYE HYBRTD GENERATTON MEANS FROM THE HIGH PARENT AND MLD- PARGME MEANS FOX PERCENS SEED SER OF BORHRTOHLOA TN 2963

Hubede	Misuracht	Mich maxas
58\%503902	47.40\% ${ }^{\text {a }}$	42.64\%\%
$58 \times 694 \times 2$	-23.30	-32.30
58x697\% ${ }^{\text {a }}$	-62.78	- 70.50
$58 \times 685 \mathrm{am} \square^{\text {a }}$	-8.03	-9.37
$38 \times 768 \sim$ g品 $/$	- 36.27	- 51.68
$58 \times 733 \mathrm{bm} \mathrm{L}^{\text {a }}$	-22.06	- 28.29
58×323	28.42\% 4	- 28.69
58×348	20.29**	-17.03
58x\% 7000.6	51.03\%	10.03\%

* Siguticantily higher at the 0.05 levall.
\%t Signdicanty higher at the 0.01 level.

4
Parceat aed set was lower than ather pacam:

Discussion

Heterosis as used in this study is defined as i) a significant increase in the hybrid population over the mid-parent and 2) a significant increase over the best parent, for the character under consideration. Each character studied exhibited heterosis relative to the mid-parent in at least one cross. This was due in most part to the inferior quality and size of the male parents for most characters. The B. ischaemum var. ischaemum plants are low in yield, the plants mature early and are stemmy. With one exception, each character exhibited heterosis in at least one cross with respect to the best parent. This exception was for the character of axis length which was intermediate between the two parents in most cases, although two hybrids gave small positive deviations from the mean of their best parents. The intermediacy of the hybrids for inflorescence characters as found in this study is comparable to results obtained by Chheda and Harlan (1962), who found that hybrids between Bothriochloa intermedia X-750 and Dicanthium fecundum 6525 were intermediate in most characters. Their results showed of the seven hybrids studied, all were intermediate between their parents for axis length and five were intermediate for length of longest raceme. Two of these hybrids exhibited a raceme length longer than that of the longest parent raceme. Harlan (1963) reported that the introgression products between B. intermedia and
B. Ischaemum were intermediate between the parents with respect to raceme length and axis length. It should also be noted that the hybrid designated as 58x694a-2 in the present study was a hexaploid chat resulted from the fertilization of an unreduced egg. This could possibly explain the increase in axis length and upper raceme length over the best parent; since this hybrid would tend to show more maternal characters. The ranking of this hybrid near the top for most characters chould posaibly be explained on this basis, however, both parents of this hybrid were superior to the other parents used. The hybrids $56 \times 511-1$ and $58 \times 768-1$ were the only other hybrids that were known to be hexaploids. The hybrid $56 \times 511-1$ gave consistent increases over the best parent indicating that maternal inheritance may be importanc, however, 58×768 very rarely gave a significant increase over its best parent.

The increase in percent seed set of some plants could have been due to a specific pollen parent. Celarier and Harlan (1957) reported that most of these materials are pseudogamous and that pollen Of a certain kind is required to stimulate seed production. Dewald and Harlan (1961) reported that when B. Intermedia 2655 was used as a female, Dicanthium annulatum pollen proved to be much more effective in stimalating seed formation than the plant's own pollen. The foreign pollen not only stimulated more seed, but it was more rapid in its effects. Harlan et al. (1961) reported on the influence of various pollen sources on seed set of $X-750$. The results showed that when plants of B. intermedia var. grahamif were used as males about twelve seeds were set per inflorescence. When D. annulatum sources were used,
the seed set was about 33 per inflorescence. The crossability between X-750 and most accessions of B. Intermedia was poor, with only 6.6 seed set per inflorescence. Since the material used to determine percent seed set was collected without control of the pollen parent, the source of pollen could have come from a wide variety of plants.

The consistent heterosis for plant height found in this study in comparable to the results of Maranf (1961), who found a large degre of heterosis for plant height in interspecific hybrids of cotton The increase in height of the hybrids in this case was undesirable from an agronomic point of view because of the difficulties in harvesting, cultivation, irrigation, and other cultural practices, whe data of the present seudy indicate that plant height, helght of leaves, crown widh and yield characters will be most likely to give consistent increases over the mideparent. These results are comparable to those of Newell and Peters (196L), who reported that interspecific Andropogon hybrids exceeded the average of the parent types by 20% in height of leaves, 9% in total height of plants, and 59% in total plant yielda. The basal spread of the hybrids was intermediate between the two parents. The results of hybridization indicate that the expression of hetexosia depends on a specific combination of genes, since hybrids having practically the same parents show vaxying degrees of heterosis and that the mating of diverse types does not necessarily produce heterosis in the hybrids. The desixability of a specific combination depends upon the particular character of interesti, since heterosis for one character does not mecesarily mean that hybrid vigor will be exhibited for all characters.

In twenty out of thircy-six cases the crosses involving the Bothriochloa ischaemum 6583 as the male parent exhibited the greatest heterosis for a particular character over the midsparent or high parent. A hybrid superior to all others was found in thes group for dry weight production. Crosses involving the B. ischaemum 7162 as the male parent exhibited greatest vigor in only one out of seven cases relative to the best parent and four out of thirtyonine cases relative to the mide parent. This parent produced a higher percentage increase in vigor for hybrids having B. intermedia var. grahami as the other parent than those having B. intermedia var. montana. The hybrid $58 \times 733 \mathrm{~b}-1$ of this group gave the largest green weight yleld of all hybrids in 1963. Since the female parent of hybrid $58 \times 12 B$ was not avallable for study, the only hybrid having B. ischaemum 7498 as its male parent was 58×348. Maximum heterosis was not expressed by this hybrid for any character; however, the crown width of this hybrid was superior to all other hybrids in 1964.
the crosses involving B. intermedia var. montana accession 5297, as the female parent expressed heterosis in thixten cases reo lative to the midmarent and in seven cases reiative to the best parent. There were only two cases in which greatest vigor for a paxtheuiar character was expressed, but at the same the these hybude ware superLox to all othere fox three chargcters in 1963 and six chaxacters in 1964. The poswble explanation for the lack of heterosis in these hyo bride ig the fact that the B. gntemedta var. grehami and B. 2ntermedia var. wontens accessions used in these crosses are hybride thanselven.

These vigorous parents probably arose as a product of introgressive hybridization between two different species and may have built in heterosis as a result of their polyploid condition. The hybrids may, therefore, be very vigorous, but would not necessarily express heterosis relative to their parents. The two crosses involving the selfosterile parent 56×750 as their female parent exhibited heterosis relative co che midoparent for most characters, but heterosis relative to the best parent was expressed in only one character. This indicates that the specific combination of genes necessary for the expression of maximum vigor did not occur in these hybrids.

The only hybrid expressing heterosis in practically all characters with respect to both the midmparent and high parent was 58x70-adb. This hybrid expressed the highest percentage increase in hybrid vigor for six characters; however, only in dry weight production Gas it superior to other hybrids. This can possibly be explained by the fact that both parents of this hybrid were inferior plants and possibly because one parent was a hybrid itself. These results again indicate the need for specific combinations for heterosis to be expressed, since three other hybrids having practically the same paxents expressed varym ing degrees of heterosis or none at all.

From the present data, it appears that plant height, height of leaves, crown width, and yield characters will be most likely to give consistent increases over the midsparent as a result of hybridization, since these charactexs exhibited a hybrid mean greater than the midoparent more frequenty for all crosses. Plant height appears to be the character most frequenty expressing heterosis relative to
the high parent. The inflorescence characters showed a greater tendency to be intermediate between the parents, with very few instances of a hybrid giving a significant increase over its best parent for inflorescence characters.

The influence of environment was very important. The fact that one hybrid may rank near the top for a character one year and close to the bottor the next indiciates that some genotypes express heterosis in one environment, but not in others.

It should be emphasized that this study deals, for the most part, with true interspecific hybrids and that the parents must be genetically quite different from each other. The F_{1} plants should, therefore, be highiy heterozygous yet they do not necessarify show heterosis. Consistent heterotic expressions are found oniy in certain individual specific combinations such as in hybrid 58×70 asb. Other plants derived from almost identical crosses do not show consistent heterosis. Coneistent heterotic expressions are found only in certain individual specific combinations auch as in hybrid 58×70 a\&b. Other plants derived from almost identical crosses do not show consistent hecerosis. It may well be that the relatively poor performance of some specific combinations is due to physiological and/or genetic imbalance resulting from the very fact that these are interspecific hybrids and that oniy occseional specific genetic combinations are able to avoid this kind of imbalance and give a favorable response. In any case, the results would suggest that a relatively few major genes are responsible for heterosis or lack of it in these materials. If a large number of genes were involved, we would expect similar crosses to give similar results and sister plants of a given cross to be more or less alike.

It should also be emphasized that the F_{1} plants studied reproduced aponictically with the exception of 56×511 is 1 which is rather sexual. In studying a given hybrid, therefore, we were not dealing with a population of F_{1} plants but with replications of a single clone.

SUMMARY AND CONCLUSIONS

Hetarosis wes foun in ac laset one crow for all chatactew seudied salatha to the midmarate. Axis denath whe the omy chatace tex in which hybrid mem waso not blgnixeanty differeat from the kish paremt la ary arode
 more frequently far piat heighto haightor leaves. grown widcho gracn weight and dry welght in all crosmes relative to the midoparent. Tt appeat that plart hoight will giva nore consistent increaecm ovar the high parent as xesult of hybxidagtions sinoe this ghereter exhibited a hybrid mem greater chan the high parent mean for all crosecs more frequently than ang other character. A posiefve deviation from the man of the best parent was axhbited in severall hybrids for haght of leaves, but signifteace was twely indicated. A signiflemit expresion of hetorosis for green and dry weight over the high parent was limited in nost cases to two hybrid. The inflonemence ghaxatexs nowed greater Enadancy to be intexmediate between the parents and there were very few Instances of a hywid exhibteing a signifeant knereme over leg best parext for these chareters. Hetcrois for perwent mead wet wa ex possed by four hybide re.ative to the mideparent nad two hybrids rela* the to the best parent. xhrea hybrids exhibited a pareent weed set that was lower than ithax parents The winterhaxdinese of the D. igehamum parents was not found in any hybxd.

Since the crosses between Botheiochloa intermedia var grahamii and B. intermedia var. montana axhbited less hetwosis than the other crosses, it sems to indicate that these parents have builte in heter owis due to their origin by introgressive hybxidimeion, The results also indleate that heterosis is probably due to specific combinathons of genes wather than to heterozygosity obtained by mating diverse types. since individual combinations may be outstanding, while simtex planes may be useless. Some iadividual clones may make sacollent paxents cven though they may give a poor performance by themselwes. The influence of matarmal inheritanee may also be important in the hexaploid hybrids for sonte characters.

H.TTERATURE OTMED

Ashby. F. 1936. Hybrid vigor in maize. Amex. Nat. 70:I79xy8.

Bartel. A. T. 2949. Hybrid vigot in sorghume Agrone Jo 41:14\%m 152.

Burion, G_{4} W. 1943. Interspecific hybrids in the gerus Pagpedum J. Hexedity 34: 15-23.
 Jo Hexedity $35: 2270232$
 tation of vigor Scisace 32:627-628.

 Ames.

 Dicanthxum, mad Gaph11pedium. Fhytomowhology 7:93. 102.

 Egcuncum Cytologis $27: 418 \times 43$.
 53: 2244 231.
 Soce Agron. 22:849m860.
 Scisnee 77:1H4u715.
 Agring Lrgta 84 e BuLd. 359.

 cation. D. Appleton and CO. New Yowk. 46 prom

 Coy Solexte I: 45×27.

 3 py.
5963. Hety

 22:1010.

 8ta, BuIL. Tm 7.

Karper, Re Fe and J. R. Quinby 1937 . Hybrid vigor in sorghumo Jour. Hexedity 58:8jo92.
 An. Sec, Ag\%oun. $32,308 \times 31 \%$.

 Scileace $4: 178=183$.
 coreals. 3. Futcher btudies in exose peddethoas. Euphytica 10: 2092224.

 ScIekce A:6460649.

Molls R. He Wo So Sathuana, and H, Fo Robingon 2962, Hecerosis and genethe diversiey in variaby monses of mater hop seience 2: $2.97=198$
 specise hybrid of Sanseyieria Econ. Bot. 4 a: 475×180.

Baterniand fo and Jo Honnoquit, 1963. Heteroade in intexxacial crosses of corn (gea mays Ir). Crop science 3: 504w507.
 divergent aypes of BLg BIuestom and Sand Bluestem luredation to envixommente frop Science 1.370.373.
 from thm hecerowgous condtrom of a shag gemw thet axdecs duration ot growthe An. Je Bot. $33: 7160721$.
1963. Mundestationc of hybe id vigon da doxemura Crop Scienek 3:28Ex 291。
 atg Jradan J. Genet and PU Bxde $48: 69475$

Richey. F. De 1922. The expermental basis for the present atatus of corn breding. Js An. Soc: Agron. 140 : 1 wil.

Robinson, H. F. and Ce Cokkrhan. 1961. Heberowis and inbreeding depression in populations involving two openmpollinated varieties of maize. Grop Science $1.588^{\circ} 71$.

Sambandar, C. No 1962. Fleterosis in egs plant (eglamumelongena unmo. Econ. Bot. 116:71m76.

Schmide, J. We, Johnsom, V. A., and S. S. Mem, 2962. Hybrid Wheat, Nebr. Exp: sta, Qtwly, 9: no. 3, p, 9.

1952. Beginning of the hetarosis concept. In Hetrosis,

Silka, S, Mo, Ko B. Lo Jain, and Ke So Parmax. 1959 . Evaluation of the potcnelalithes of whet oroasee besed on medn partantal and early generation values. Indian J. Cen. a PLo Brdo 19:150w170.
 cotion production. J. Am. Soc. Agron. $40: 970 \mathrm{~m} 979$.

Stephens, $J_{0} C_{0}$ mad $J_{s} R_{2}$ Quinby, 1952. Yteld of hand produced hybrid sorghume Agran. Jour. 44:231-233.

Stroman, $\mathrm{G}_{0} \mathbb{N}_{\mathrm{N}}$ 1961. An approach to hybeld cotiton as hown by intra and interopectic crosees. Grof sciencs 1.363×366.

Turnary J. H. 1953. A study of heteromis in upland cotwon. To Yiald of hybride comparod with vaxieties. Agron. Jour. 45.484 -487.
1953. A study of heterosim in upland cotton TI. Com bining ability and inbresding exfects. Agron. four. $4.5: 487 \times 490$.

Whaloys W. G. 1939. A developmentel analysit of betmomin in Iveopax sium An, Jour. Bote 26:609abl6.
1948. LRteromin. Bot. Gat. 10:4614490.
1952. Hybrid vigor in tomato cram. Bote Gax. 114:63-72.

Webber, Ho J_{8} 1900. Xamia or the immatate eftede of pollat in matae. $\mathrm{U}_{8} \mathrm{~S}_{3} \mathrm{D}_{4} \mathrm{~A}_{\circ}$ Div. Vag. Phys. Bullu. 22.
 in top and dallel crosses among primithya coraign and cuitivatad Amertean upland cotion. Crop Selence n.58.63.

APPENDIX

TABLE XV
PIAN HETGH: IN TNHES, OF THE TARENTS AND HYBRIDS TN BOTHRTOCHLOA IN 1963 and 196 t

TABLE XVI

HETGEL OF LEAVES, IN TNGHES, OF THE PARENXS AND HYBRTOS IN BOTHRTOCHLOA TN 1963 AND 2964

			4ccasitgn	2964
5987		34900	58x 6940	32.45
534697 be		35.32	568750	3t. 6.3
94.0		35.65	58x 23	30.84
5886948 ± 2		33.73	58×70006	29.88
58870×15		33.68	5297	29.72
$58 \times 12 \mathrm{~B}$		33832	58x768*1	29.38
58x323		33.23	5410	29.92
$568 \% 750$		33.21	383503a ${ }^{2}$	20.92
58w 7331		31.76	588323	28.54
5404		31.71	58×348	29.48
53×503 田2		31.70	2655	28.35
2655		30.77	$58 \times 733 \mathrm{bm}$	23.23
58×768.2		30.69	54.04	27.73
56ı511-1		30.59	5836854	27.67
58 x 348		29.91	5450	27.66
5168		29.82	$56 \times 511 \times 1$	27.45
58x6859\%		29.81	5168	27.23
7162		29.32	56×482	25,61
56×4.82		26.89	7162	20.03
7498		17.22	7698	18.22
6583		14.67	6583	28.02
5704		14.43	5704	15.97
Ins. SO_{0}	0.05	0.518		0.597
Ln $S_{*} \mathrm{D}_{\text {\% }}$	0.01	0.680		0.790
Cov.		6.31		6.16

TABLE KVII

CROWM WIDTH, IN INCHES, OF THE PLRENTS ANO HYBRTDS IN BCTHRTOCHLOA IN 1963 AND 1964

Accession		1963	Lccesslon	1964
$58 \times 697 \mathrm{bu} 3$		5.41	5297	5.17
58412 B		5.05	5410	5.08
5291		5.04	$58 \times 70 \pm 60$	4.93
$58 \times / 33 b^{m} 1$		5.02	58×348	4.89
5404		4.99	5404	4.75
5168		4.96	$58 \times 6944 \times 2$	4.70
58868541		4.91	560511×1	4.66
56×750		4.88	58*12B	4.63
588694ax2		4.84	58×7330-1	4.63
$58 \times 70 \mathrm{mab}$		4.81	5168	4.57
5410		4.79	58*685a-1	4.57
58×323		4.78	5450	4.55
58×348		4.75	$58 \times 503 \mathrm{ac} 2$	4.54
56×311-1.		4.74	58×323	4.53
2655		4.72	2655	4.50
58×503a-2		4.68	56×750	4.48
56×482		4.57	56×482	4.20
7162		4.22	$58 \times 768-1$	4.17
$58 \times 768 \mathrm{~m} 1$		4.14	5704	3.43
5704		3.74	6583	3.40
7498		3.58	7498	3.39
6583		3.38	7162	3.16
L.S.D.	0.05	0.1344		0.0992
L.S.D.	0.01	0.1749		0.1304
C.V.		7.67		8.98

TATLe SVIIT
DRY WELGHE, IN GRANS OF THE PARENTE AND HYBRTDE TN BOTLRTOCHOA IN 1963 ATD 1964

Actegai		Accesolos	1904
98*70** 6	967.99	58×70 actb	546.75
$58 \times 2.733 \mathrm{~b}-1$	912.71	58x6949-2	328.83
5688750	886.99	5297	493.54
$58 \times 697 \mathrm{bm}$	848.06	5410	436,83
5297	846.36	56×511 ${ }^{\text {] }}$	495.26
56x541-1	807.54	58412 B	434.00
$58 \times 12 \mathrm{~B}$	798.70	5404	433.48
5404	786.26	58×348	419.4
58×323	764.71	58×323	413.98
58×343	748.95	58x768-1	405.50
5410	733.38	56×750	398. 20
58x503am 2	677.02	$58 \times 685 \mathrm{~m}-2$	363.60
5168	613.10	$58 \times 733 \mathrm{~b}-1$	333. 8
7162	61.2 .60	58x\% 503 am 2	332.98
2655	606.00	5168	323.41
58x685a-1	605.81	2655	289.77
58x694a-2	576.42	5450	273.67
$58 \times 768 \times 1$	327.45	56×4882	263.59
56×482	474.77	7162	155, 31
7898	184.74	570%	1.53.93
5704	142.93	6583	151.84
6583	137.38	7498	124.36
L. Sobe	32.47		22e 45
$L_{4} S_{0}$ Do	42.98		29.18
Cov.	17.82		18.62

TABLE XIX
GREEN WETGHE, IN GRAMS, OF THE PARENTE AND HYBRIDS TN BOTHRTOCHLOA $\operatorname{NN} 1963$ AND . 964

Actesgion	1263	Acceraza	2264
56×750	1615.39	583694**	1082.46
58x 3 36m	1595. 54	58x70-6.cb	1040.08
5404	1580.68	3297	978.89
$38 \times 6976 \times 3$	1500.55	54.04	926.65
5297	2498.07	569750	906.23
56×584	1482.51	54.20	876.07
$58 \mathrm{~m} 70-\mathrm{ack}$	1476.27	58×228	371.10
58×323	1447.28	$56 \times 511 \mathrm{~m}$	862.20
$58 \times 12 \mathrm{~B}$	1334.17	588348	806.86
$58 \times 509 \mathrm{~m} 2$	1308.75	58×323	780.95
540	1308.62	588685as 1	755.05
2655	1208.30	$58 \times 768 \times{ }^{\text {d }}$	703.23
58×348	1168.17	58\%733bw	696.93
588685m*	1064.65		
5168	11.32 .65	5168	664.15
538694m 2	101.74	2655	603.21
7162	987.80	54.50	575.38
56×462	887.07	56×482	535.10
$58 \times 768 \times 2$	799.28	7162	273.48
7498	372,67	6983	255.67
5704	287.14	5704	236.06
6583	274.60	7498	190.92
B.S.0.0. 0.05	58.42		4.4.4.
L.S.D. 0.01	77.69		61.34
CAV 。	17.93		128.43

TABLE XX
AXIS LENGTH AND LENGTH, IN TNCHES, OF UPPER AND DOWER RACEMES OF parents and hybrids in boymidochioa in 1964.

DUNCAN's MULTIPLE RANGE TEST

Accomision	Axts joakth		Upper Reasene Langth		$\begin{aligned} & \text { Tower Raceme } \\ & \text { Leghth } \end{aligned}$	
\$420	3.700	a^{1}	2.082	Afegh	2.775	def
585694x-2	3.268	b	2.726		3.186	b
5297	3,155	b	2.224	dex	2.692	del
56x 7 0	3.098	be	2.580	ab	3.837	2
58×6351	2.918	ad	1.620	k	2.212	hit
2653	2.873	d	2.486	be	3.268	b
5168	2.837	$d{ }^{\text {d }}$	2.330	cd	2.637	cf
38.50	2.650	*	2.292	ade	2.555	fig
38*503a42	2.298	\%	22_{6086}	detgh	2.928	ed
58×323	2.198	fg	1.200	hil	2.338	gh
58xill 1	2.100	18	2.143	dxic	3.074	be
3404	2.099	1 E	1.707	1 l	2.529	fg
36×482	2.024	\%	2.035	Eth	2.836	cde
$58 \times 733 \mathrm{bw} 1$	1.825	4	2.200	def	2.722	def
58×500 asb	1.818	$\mathfrak{h l}^{\text {r }}$	1.830	1.jk	2.661	ce
$58 \times 768 \mathrm{~m} 1$	1.358	1	2.153	defa	2.617	es
58 m \%	1.499	1	1.937	ckij	2.920	cd
588948	1.205	J	1.824	\& jk	2,600	al
7162	1.059	jk	1.804	i, 3 k	2.266	ht
6583	. 920	jk	1.690	hid	2.225	hi
5704		2	1.887	Mij	2.079	1
7498	\$0.580	1	1.396	hil	1.989	1

1 Numbers followed by the same letter ave not gignifucatly disfurent at the 0.05 Leval ot probalstifisy.

TABLE XXX
 PEROMN SEED BLE OF THE PAPEMTE AND MYBRTOS IN gOTHRZOCHOA IM 1963
 DUNCAN'S MUTTTPLE RANGE TEST:

Actesiog	Oxent see	
5410	28.08	a^{4}
5297	26.4.4	,
56\%503a\%2	29.14	b
58×6940.2	18.19	c
568950	17.50	9
5406	27. 2.25	c
2655	13.50	cd
3450	25. 50	cd
58×348	14, 4.25	d
7162	14.50	d
58×323	14.93	d
5968	23.93	de
58x 763.1	13.57	de
58x7336\%1	13.07	$d e$
5896859w	12.37	$d e$
$56 \times 70 \mathrm{masb}$	24.20	¢
$53 \mathrm{x} \mathrm{S}^{2} \mathrm{~B}$	8.42	H
$5688697 \mathrm{b-3}$	7.81	+
56×482	7.45	${ }^{2}$
6583	6.66	48
7498	4.65	8
. 5704	4.37 m	g

TEBLE KXIE

TRE COEFRICIENT OF VARYETEOM OF TRE PRRRATS AND HYBRIDS
IN BOTHRIOCILLOA FOD PLENT HEIGBT, HEIGBT OF LEAVES, CROTH WIDTH, GREEN WEIGHT
AMD DRY EEIGHR TN 1963 AND 1964

TEBEE KXTE

BEARE OE THE HYBRD DLANS ROE RANT HETGHE HEMGPT OR LEAVES, CROWH WWTR GREEN WETGETE ARD DRE WETGRE WTKE THE HYBERES GROURETOW THE BASTS OF G COMON DARENE

Eyber	Plant Reight Trehes		Height at Leaves Taches \qquad		Cxom WLet Thohes		Green Weight Trehes		Dry Weight Trenes	
	1963	2964	1963	1964	1963	$\underline{1964}$	1463	1968	1963	1764
$540458162=58 \times 731 \mathrm{b-1}$	50.90	51.98	35.76	28. 23	5.02	4.63	5995.54\%	696.93	912.71	333,08
2655x 762 288503a-2	66.21	55.52	31.70	28.92	4.68	4. 58	1308.75	698.444	577.02	332.98
	53.82	禹复 80	29.8I	27.67	4.91	4.47	1064.65	755.05	605, 38	363.60
5810×162 - $88 \times 768 \times 1$	58.57	$55^{4} .05$	30.69	29.25	4.14	4.17	703. 23	799×28	527. 65	405.50
$56 \times 750 \times 6583=38 \times 323$	66. 33	57.11	33.23	28.51.	4.78	6. 53	1447.28	789.95	764.71	4.53 .98
$56 \times 750 \times 7498=38 \times 348$	57. 62	52.28	29.91	28.48	4.75	4.89	1168. 17	806.86	748.95	419.41
$56 \times 482 \times 6583=58 \times 70-28.5$	64.41	55.01	33.68	29,88	4.93	4.81	1476.67	1040.08	967.99\%	546.75*
$56 \times 750 \times 6583=58 \times 323$	66.33	57.51	33.23	28.51	4.78	4.53	1168.17	788.95	764:71	413.98
56x $28 \times 7498=58 \times 126$	67.85	36.87	33.23	39.81	5.05	4, 63	1334.87	871.10	798.70	634.00
56 x 50x $7898=58 \mathrm{~B} 328$	57.62	52.28	29.91	28.48	4.75	\%.89\%	1568. 17	806.26	788.95	49,44
$3850 \times 5297=58 \times 697 \mathrm{~b}-3$	59.86	$=$	35.32\%	\cdots		\cdots	1500.05	\cdots	848.06	**
$265585297=58 \times 694 x-2$	69, 98:	60.71\%	23: 73	32. ${ }^{\text {E }}$ S	4.85	4.75	1011\%74	1082* ${ }^{4} 6$	576.42	528.83

[^1]$V \operatorname{LTA}$

Robett Rhee Britge
Candidate for the Degred of
Doctor of Philosophy

Major Fiold: Plant Bxeding amd Genetios
Biographical:
Pergonal Daca: Born at Amaxil10, Texag, May 20, 1939, the son of LaRoy and Charlotta Bridgen

Education: Atcended grade school at Lacase, zase Follis. Okmaoms: graduaced from Hollis High school in 1957 reequed the Bachelor of Science degree from Okdahom State Uniwtenity, wheh majox in Agronomy, in May 1961% completed the re quixement for a Doctor of Philosophy deg gem in May. 1963.

Experience: Reawed on faxm; employed as a field man tor wood chemical

 Kappa Phit and shgne xi.

[^0]: * Significantly higher at the 0.05 level.
 ** Significantly higher at the 0.01 level.

[^1]: *The best bybid for that character in all groups.

