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PREFACE

In this paper some properties which occur in the spe-
clal type of linear programming problem known as the trans-
portation problem are explored in a generalized form. A
self-contained sketch of this problem is included in Chapter
IT. In this investigation an important role is played by the
property of unique representation of elements of an abstract
Cartesian product of two sets of points. As part of the
development of these properties a known result for finite
Cartesian products is reformulated and investigated in terms
of graphs of functions in an infinite Cartesian product which

is also a topological space.

Indebtedness 1s acknowledged to all members of my advi-
sory commlittee, and especially to Prof., O, H, Hamilton for
his patient and continued guidance during this investigation;
to Dr. L. Wayne Johnson, Head of the Department of Mathemat-
ics, for my graduate assistantship and for his sound advice
given on many occasions; and to Continental 0il Company for

assistance in completing this study.
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CHAPTER I
INTRODUCTION

It is the purpose of this paper to present a general-
1zed development of certain properties encountered in net-
work flow problems and tozfurther investigate some of these
properties in terms of topological structure. Much of the
theory for network flow 1s considered as part of graph
theory. (1); However, the development here proceeds dlrect—
ly from a type of network flow problem in which material is
allocated from sources to destinations in an optimal way.
This probleﬁ is known generally as a transportation problem,
and methods for its solutlon are widely treated in the field
of linear programming, since it may be expressed as a special
type of linear programming problem. (2). (3). (4). In Chap-
ter I1 a well-known general solution method for a transpor-
tation problem is discussed to 1llustrate the notion of a
basis for a transportation problem and to indicate how it
can be used to obtain an optimal solution. Even though the
basis presented has a direct correspondence with the basis
for the assoclated linear programming problem, the treat-
ment here does not require the structure of linear algebra
used 1n the linear programming method. This simplified

treatment results from speclal properties of the problem



some of which are generalized in this study.

In the third chapter the setting of the transportation
problem is generalized to a Cartesian product of two sets of
points which are identifiable as the two index sets for the
éources and destinations of the transportation problem. A
network is defined on a general Cartesian product and vari-
ous properties stemming from the transportation problem are
investigated in terms of chains of arcs belonging to net-
works. One property introduced is that of cross connectivity
which is a rudimentary form of the property known as span-
ning in a linear space. A basis 1s defined to be a minimal
cross connected network on a Cartesian product and the ex-
istence of a basis on an arbitrary Cartesian product is es-
tablished in Theorem 3.2. A number of other theorems are
proved which indicate relations between chains, cross con-
nectivity and bases. One important property of a basis 1is
that of giving unique representations for elements of a
Cartesian product. All proofs given for the theorems as
well as the generalized definitions of the properties they
involve are original with the author although some of these
definitions and theorems have equivalents in terms of finite
networks. Examples are included to illustrate all proper-
ties discussed. The-khown result for finite networks which
appears in Theorem 3.9 shows that the number of routes join-
ing sources and destinations in a basis for a transportation
problem is one less than the number of sources and destina-

tions. A reformulation of this property of a basis for a



finite network suggests questions which are investigated in

~the fourth chapter.

In Chapter IV the elements of a Cartesian product which
belong to a basis are represented as points of the graphs of
two functions defined on the two factor sets. When consild-
ered with this representation the result of Theorem 3.9 shows
that for a finite Cartesian product there is a common point
on the graphs of the two functions which represent a basis.
It 1s an extension of this property of a basis with this
representation that is investigated for an infinite Carte-
sian product. In particular the Cartesian product 1s taken
to be the topological space which is the product of the unit
interval in the space of real numbers with itself. In this
| Cartesian product space the graphs of functions mapping the
unit interval into itself are investigated with regard to
being closed and connected. The main result obtained is
vthat if the union of the graphs of two functions mapping
the unit interval into itself is both closed and connected,
then the two graphs have a common point., In this case the
functions have the same domain and range sets. An open
question is whether or not the theorem holds when the do-

main of one function is the range of the other.



CHAPTER II
SOME PROPERTIES OF THE TRANSPORTATION PROBLEM

In this chapter appears a sketch of the transportation
problem. The description here suffices to illﬁstrate sever-
al notions to be developed 1n succeeding chapters, but for
a more complete and detalled discussion of this problem re-

ference should be made to other treatments, e.g. Dantzig (2).

The classical Hitcheock (7) transportation problem was
formulated originally as a problem in economics and more re-
cently has been considered to be one of the larger class
known as mathematical programming problems. The situation
which gave rise to the transportation problem was that of
distributing homogeneous material from several sources to
numerous destinations. Here it was assumed that there were
various routes joining sources to destinations to which ma-
terial could be allocated at a constant cost per unit of ma--
terial for a given route. The problem, then, was that of
finding a set of allocations to various routes such that all
requirements of supply and demand were satisfied and such
that the total cost of the set of allocations which 1s the
sum of the allocation costs for individual routes was a min-

imum cost.



For a more precise definition of a transportation prob-

lem (T) lJet there be given the sets of real numbers

day 1 a, 20, 1= 1,...,m§,

A
o
.
o
e
v

QJYJ = livvfingi

and.

{Cij HE l,...,m; j= 1,....;1'1},

whefe these sets represent, respectively, the number of u-
nits of material available at the sources, the number of
units of‘material required at the destinations, and the costs
per unit of material fof transporting it on routes joining
sources to destinations. Then determine a set of real num-

bers
{Xij 1 = l‘,...,m; ,j = 1,...,1’1},

representing allocations to routes, which satisfiles the con-

ditions
n
(i) inj__-ai fOI’i=l,...,m,
J=1
m .
(11) = Xij = by for J = 1,...,n,.
1=1
(111) X34 20 for all i, J, 1 =1,...,m; J =1,...,n,

and for which the'expréSSion

m n
2 2 Csg 94X
121 j=1 T971d



is a minimum. An additional condition

m
(1v) S a3 = 2 by
i=1 J=1

may be assumed without losing generality.

‘As Indicated earlier this problem is one of the class
of linear programming problems and may be solved with the
simplex method of Dantzig (2). However the special condi-
~tions (i) through (iv) above permit a simplified method for
the solution of (T). In describing (T) and in following 1ts
'solution:process it is convenient to use the matrix tableau.

of Figure 1. A position (i,j) of thils matrix represents a

1 2 n
1 X112 X192 Xin
X X X
21 22 2n
2 021 022 . ch as
X X X
ml m2 'mn
m Chl Cpo . . . Cun | @m
bl b2 . . . bn

Matrix Tableau.

Figure 1.



route joining the i'th source and the jith destination. The

values c, s and x; . of the cost and allocation, respectively,

ij iJ
associated with route (i,j) are indicated by entries at that
position. The sums of the xij“s in rows are the aj;'s and

the bj's are the sums of the xij's in columns.

The solution process is described by first determining
a subset R of the set of all routes Joining sources and des-
tinations such that R has both of the two following proper-
ties designated as property F and property B. The first of
these is known as feasibility and belongs to a subset of
routes if allocations assigned to routes of the subset sat-
isfy conditions (i) through (iv) when all other allocations
assigned to routes not belonging to the subset have the val-
ue zero. And the second is the property of being a basis
and belongs to a subset of routes if every route (i,j) in
the matrix tableau has a unique representation as a finite
sequence of routes (matrix positions) such that the sequence
has the form ((iljjl),(ig,jl),(ig,jg),(is,jg),(is,js),...,
(ik,jk_l),(ik,jk)) where 1, =1, j, = J, and every route of

the sequence belongs to the subset.

Next in the solution process the cost of every route
not belonging to the set R is compared with a cost evalua-
tion of the unique representation of the route in terms of
routes of R. Then if there exists some route whose cost is
less than that of 1ts representation, an allocation is as-

signed to this route and previous allocations assigned to



routes in 1ts representation in terms of R are adjusted to
yield a new set R' of routes which has properties F and B.
This procedure is repeated until a set R, of routes 1s ob-
tained for which every route's cost is not less than that
of its representation in terms of Ry. Then the vaiues of
the x43's assoclated with routes of R, give an optimal so-

lution of (T) with the xij's for routes not belonging to

Ro having values of zero.

The steps of this procedure are illustrated in the
sample problem of Figure 2. The matrix positions which con-
tain entries in their upper left-hand corners represent
routes of a set R which has properties F and B. Property
F for thils set 1s easily verified directly, and property
B can be shown by consideration of the equivalent linear
programming problem as in Gass (3), p. 193ff,. It is nec-
essary that the set R contain m % n - 1 elements, or six in

the case of the sample problem.

1 2 3 L
6 1 10
177 5 - 0 2 4
3 U 2 9
2 7 + 8 5 - 5
|
6 6
ol 4 6 3 3
6 7 4 8

Sample Problem.

Figure 2.



The "northwest corner rule", as described in Gass (3)
on pp. 196-198, was used to obtain the initial allocations
shown in Figure 2. According to this rule x5 = min éal,blg
and either the row or the column corresponding to aj; or Dby,
respectively, has ifs equality in (1) or (ii) satisfied by
X711 having the value given by this rule and the remaining
X1j's in that equality having values of zero. Then the larg-
er of a; and b; is reduced by x;yq, (1,1) is included in R,
and a éimilar allocation is assigned to the X4 3 for the row
and column of least index which contain some X1j whose value
is not assigned. This procedure i1s continued from the
"northwest corner" to the "southeast corner" where the final

allocation x,, is assigned. The resulting set of xij's sat-

n
isfies (i) through (iv) and an associated set R of routes is

obtained that has properties F and B.

The sequence of routes (matrix positions) of R which
represents a given route can be obtalned by finding a se-
quence of indices starting with the row index of the given
route and ending with its column index such that the se-
quence elements alternate between row and column indices and
such that matrix elements identified by adjacent indices of
the sequence belong to R. This is illustrated in Figure 2
in which route (3,1) is represented by the sequence ((3,4),
(2,4),(2,2),(1,2),(1,1)) belonging to R. It is observed
that the combined effect of allocation 1lncreases of one u-
nit to routes (3,4),(2,2) and (1,1), and allocation de-

creases of one unit to routes (2,4) and (1,2) is just that
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of an allocation increase of one unit to route (3,1). This

can be expressed as

(8) 1(3,1) = Y3,0) = L2,8) * Ye,2) - Y1,2) T 1(a,1)

or equilvalently as

) 15,0y " Tz e T Me,e) t Ha,e) T M) < °

where expression (b) shows that for such unit changes of al-
locations conditions (i), (1i) and (iv) are satisfied. De-
termining costs for each of these modés of allocating and

comparing gives

3-5+8-2+5
9

e}
1
¢
+
e}
1
+
¢
1l

and

31
Since the cost of route (3,1) is less than that of its rep-
resentation in terms of R, an allocation x31 to route (3,1)
can be made and the allocations to routes in its represen-
tation adjusted such that conditions (i) and (ii) are sat-
i1sfied and the value of the expression

m n

5% cq4Xq
1=1 g=1 7

is reduced. For adjusted allocations to satisfy condition

(iii) the value x37 is the smallest value of an allocation
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to a route upon which l( has positive dependence in ex-

3,1)
pression (a). In the sample problem this is xpp = 3 for
route (2,2). Making the appropriate adjustments to the al-
locations by respectively decreasing and increasing by three

units those allocations upon which 1(3,1) has positive and

negative dependence in expression (a) gives

Allocation X171 x21 Xon x23 X2LL x34 x31
0l1d Value 6 4 3 4 2 6 0

New Value 3 7 0 4 5 3 3

and a new set R' of routes is obtained which consists of
the routes of R with the exception that route (2,2) has been

replaced by route (3,1).

The new set R'!' of routes alsoc has pfoperties F and B,
and the procedure may be repeated until an optimal set RO
of routes ié obtained. This will not be done here since
the purpose of this section has been to illustrate several
notions which occur in the solution process of a transpor-
tation problem. In particular the concepts involved in
property B illustrated here are to be investigated and de-

veloped in a more general setting.



CHAPTER III
SOME PROPERTIES OF NETWORKS ON CARTESIAN PRODUCTS

In the preceding chapter a notion was described whereby
a subset of a set had the property of being a minimal subset
in terms of which every element of the set had a unique rep-
resentation. Thils concept is related notably to that of a
linear basis in the treatment of linear spaces in which al-
gebraic field structure is required to formulate the notion
of linear independence. (6). The present chapter is con-
cerned with a development in which a type of basis is de-
fined in the general setting of a Cartesian product and then
some theoremsbpertaining to various properties of this basis

are proved.

The generalization here proceeds from the setting of
the previous chapter in which a matrix representation of a
network was illustrated. A network, linear graph or graph
is usually defined to be a system consisting of a collection
of points (generally finite) called nodes or vertices to-
gether with branches or arcs Jjoining various pairs of nodes
or vertices. (1). If the branches are not directed, the
term "edge" is frequently used instead of "arc" which im-

plies the existence of an order between the pair of vertices

which are its end points. Although for some of the consid-

12
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erations in thié paper an order of thls type is not neces-
sary, the term "arc" will be used uniformly in the treat-
ment here to mean an ordered pair of vertices with order
being emphasized for those situations in which it is essen-
tial. There will also be occasions when functional rela-
tionships between two sets are considered as well as the
point sets which are the graphs of these relationships. In
view of these preliminary remarks the following general def-

initions are made and the particular terminology will be

selected for the situation being studied.

Definition 3.1, Let A and B be two non-empty sets and:

let A x B denote the Cartesian product {(a,b) : a € A and

b € B} of A and B. The sets A and B are assumed to be dis-
joint unless stated otherwise, in which case the common
elements of A and B are distinguished to indicate member-

ship in A or B. A network (binary relation, graph) on

A x B is defined to be a system consisting of the sets A
and B and a subset of A X B, The sets A and B are called,

respectively, the first and second factor sets and thelr

elements are called vertices. The ordered pairs of ver-

tices which are the elements of A X B are called arcs.

According to this formal definition an arc is a point
in a Cartesian product. However, 1t may be that for such
a point, which is an ordered pair of vertices, the vertices
may be identified with two points of some topological space
in which there exlsts a topological arc from the first point

to the second point. In the case of an electrical network
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an arc of this type may represent a wire or connection Join-
ing two terminals. But in the case of a blnary relation on
two sets an arc Just indicates that the first vertex is re-
lated to the second. In the case of a graph of a function
an arc is a point in the Cartesian product of the domain and
range sets and indicates that a pair of points from these
sets are related by the function. For all of these sltua-
tions the terms "vertices" and "arcs" will be used although
the term "end point" will occasionally be used to mean a

vertex.

Some definitions pertaining to networks are now given.
These are essentlally equivalent to similar definitions for

finite networks as in Hadley (4) on pp. 284-291.

Definition 3.2. A chain in a network is defined to be

a finite sequence of arcs ((al,bl),...,(ak,bk)) belonging

to the network such that either aj = aj41 or bi = byyq, but
not both, for 1 < 1 < i+l < k. The first and last arcs of

a chailn are called end arcs of the chain and two arcs (ai,bi)

and (aj,bj) are said to be adjacent arcs of the chain if

‘i - jl = 1. A vertex of an end arc of a chain which does
not belong to an adjacent arc of the chain is called an end

vertex or end point of the chain. Hence a chain has a first

end point and a last end point belonging to the first and
last end arcs, respectively. A vertex is said to belong to
a chain 1f it belongs to some arc of the chain. A simple
chain 1s a chain in which a vertex belongs to two arcs only

if the arcs are two adjacent arcs of the chain. A chain is
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sald to be a closed chain if the first end point and the

last end point of the chain are the same point, and a sim-

ple closed chain is a closed chain in which each vertex of

the chain belongs to exactly two arcs of the chailn.

>It i1s implicit in the definition of a chain that the
chain 1s ordered from its first end point to its last end
point and in this way order is assigned to its vertices and
arcs. From the definitions of simple chains and simple
closed chains the following remarks are immedlate. Every
simple closed chalin contains an even number of arcs and

containg at least four arcs. Each of the sequences

((al’bl)’ (angg): LR ] (ak’bk)) and ((angg): o0y (ak:bk):

(o2}

(al’bl)) 1s a simple closed chaln if and only if the other
is. If the sequence of arcs ((al’bl)’(a2’b2)’""(ak’bk))
1s a simple chain, then the reverse sequence ((ap,bk)s ...,

(ag,bg),(al,bl)) is also a simple chain.

Example 3.1. Let A = ga,c,e,gg and B = {b,d,f% and let

N be the network on A x B consisting of A and B and the sub-
set of A x B indicated in Figure 3. The chain ((g,d),(a,d),
(a,f), (e, f),(e,b)) 1s a simple chain with end points g and
b. An example of a closed chain in the network N is the
chain ((a,d),(c,d),(e,d),(e,f),(a,f)). The chain ((a,d),
(e,d), (e,f),(a,f)) is a simple closed chain contained in
the preceding closed chain. The chain ((e,b), (e,d), (a,q),
(a,f)) is an example in network N of a simple chain both

end points of which belong to the same factor set.
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A
Network on A X B.

Figure 3.

‘Theorem 3.1, In a network every chain with distinct

end points contains a simple chain with the same end points.

Proof. ILet C = ((al,bl),...,(ak,bk)) be a chain in a
network on A x B with end points x and y belonging to the
first arc (aj,bq) and last arc (ay,by), respectively. . Let
11 be the largest index for 1 < 1; < k such that x is an
end point of the arc (ail’bil) belonging to the chain C and
let zq be the other vertex of arc (ail’bil)' If z7 =y,

then ((ail,b )) 1s a simple chain in C and has the same

11
end points as C. If zy ¥y, then let i, be the largest in-
dex for 15 < i, < k such that zj 1s a vertex of the arc
(aig:big) belonging to the chain C and let z, be the other
vertex of (ai2,bi2). If zo =y, then ((ail,bil),(ai2,bi2))
is a simple chain in C and has the same end points as C.

If 2o % ¥, then this procedure is repeated at most k times

until an index 1, is found such that Z1, is an end point of

5

n
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the arc (aj ,b; ) belonging to C such that z3, = ¥- By con-

ll'l
),.,.,(ai s b

n in)) is a simple

struction the sequence ((ail,bil
chain contained in C having the same end points as C.

Chains may be congidered as beling a sequence of rela-
tionships between vertices belonging to them. . For example
the simple chain ((g,d), (a,d),(a,f),(e,f), (e,b)) of Example
3.1 could indicate that the vertex g is related to vertex d,
which in turn is related to f, f to e, and e to b. Thus g
is related to b by this sequence of relationships. In sim-
ple chains this sequence of relationships 1s unique. For
simple closed chalns a vertex ig related to 1tgelf through
a single cycle of relationships since the first and last
end points of these chains are the same point. Avtype of
network in which evéry distinct pailr of vertices 1s related

by a finite sequence of relationships 1s deflned next.

Definition:3.3. A network N 1s sald to be cross con-

nected if for every pair of distinct vertices of the net-
work, there exists a simple chain belonging to N such that
each vertex of the palr lg an end point of this simple chain.
The two vertices may belong to the same or to different fac-

tor sets.

‘Definition 3.4. A subnetwork S of a network N on A x B
i1s defined to be a system consisting of subsets A and Bl of
A and B, respectively, together with a subset of the set of

arcs belonging to N provided S is a network on Ay x Bl'
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Example 3.2.  Referring to the network in Figure 3 it

.

is seen that the subnetwork S consisting of the sets Ay =

A - {g} and By = B - {f} and the subset{(a,d), (c,b), (e,b)§
of A1 X Bl,is not cross connected because for the vertices

a and b of S there doegs not exist a simple chain in S having
these vertices as end points. However, if the’afc (e,d),
for example, is included with S, then the resulting system

is a cross connected network on Al X Bl'

If a network N on A x B includes the entire set A x B,
then 1t 1is apparent that N 1s a cross connected network.
One necessary requirement for a network to be cross connect-
ed is that for every vertex of the network there exists in
the network an arc contalning the vertex. For otherwige
there is some vertex not belonging to any arc of the net-
work and for such a vertex there exists no simple chain in
the network having this vertex for one of its end points.
On the other hand if for every vertex there are many arcse
to which it belongs, as in the case of a network N on A.x B
which includes the set A x B and in which neither A nor B
is degenerate, then there may be many simple chalns in the
network Jjoining a given pair of distinct vertices. A net-
work in which a unique simple chain joins each ordered pair

of distinct vertices is described next.

Definition 3.5. A bagis for A x B is defined to be a

cross connected ne@work on A x. B that is minimal with re-

spect to belng cross connected.
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Example 3.3. The'netWOrk shown in Figure 4 is cross

connected since for every pair of distinct vertices of the
network there is a simple chain belonging to the network
such that the vertices of this pair ére the end points of

the simple chain. If an ordered pair of vertices is one of

2 | (a,1) (a,4)
b (b,2) (b,4)
c | (c,1) (c,3)
1 2 3 4
Basis for a Cartesian
Product.
Figure 4,

the afcs of this network, then the simple chain congisting
of that single arc is a simple chain belonging to the net-
work such that each of the vertices of the palir is an end
point of this simple chain. The network in the figure is
minimal with respect to being Cross connected because for
every network on thls Cartesian product whose set of arcs
is a proper subset of those in the figure there is some
_pair of vertices which are not the end points of a simple
chain containéd in the network. Hence, the network in the

figure is a basis for that Cartesian product.

The fbllowing theorem establishes the existence of a
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basis for the Cartegian product of two non-empty sets.

Theorem 3.2. If A x B is the Cartesian product for

two non-empty sets, then if (a,b) belongs to A x B, the net-
work N consisting of A and B together with the subset

(§a§ x B) U (A x ib}) of A x B is a basis for A x B.

‘Proof. If x and'y are two distinct vertices belonging
to A or B, then by considering the possible cases, 1t 1is
shown that x and y are the end points of one of the follow-

ing simple chains belong to N:

(1) ((x,D), (y,0)),
(11)  ((x,), (a,%)),
(111) ((a,x),(a,y)),

(1v)  ((x,b), (a,b), (a,¥)),
(v) ((a,p)).

Hence the network N on A X B‘is cross connected.

Suppose that N properly contalns a cross connected sub-
network S on A x B. Then there exists an arc (c,d)’belong—
ing to N - 8. If (c,d) = (a,b) and if x ¢ A and y € B, then
a simple chain in. S having x and y for its end points has
the form ((x,b), (a,y)) and either x = a or y = b and (a,b)
belongs to S which is a contradiction. If (c;d) # (a,b),
then either ¢ # a or d # b and there exists no arc belong-
ing to S such that either d or c¢, respectively, 1s a vertex
belonging to it because every arc belonging to S is of the

form (x,b) or (a,x). Consequently S must be empty and it
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follows that the network N is a basis for A x B.

The next theorems establish the uniqueness of simple
chalns from one vertex to another when the arcs of the sim-
ple chains belong to a basis and they also indicate the re-
lationships between a basis for a Cartesian product, simple

chains, and simple c¢losed chains.

Theorem 3.3. A cross connected network N on A x B

contains no simple closed chain if and only if for every
pair of distinct vertices x and y of N there exists a unique
simple chain belonging to N for which the vertices x and y

are, respectively, the first and last end points.

Proof. First let every palr of distinct vertices of N
have a unique simple chain belonging to N for which these
vertices are the first and last end points in some order.
Suppose that there exists a simple closed chain ((a1,bq1),
°°°’(ak’bk)) belonging to N and let x be the vertex which
is both the first end point and the last end polnt of this
simple closed chain. Let y be the other vertex belonging
to arc (al’bl)' Then the chains ((ae’be)’°“”(ak’bk)) and
((al’bl)) each are simple chains belonging to N from y to x
contradicting the assumption of uniqueness for such chains.

Therefore, N contains no simple closed chain.

Next, let a cross connected network N contain no simple
closed chain and suppose ((al’bl)’°'°’(ak’bk)) and ((ul,vl),

.,.,(un,vn)) are two distinct simple chains in N each having
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a pair of vertices x and y for its first and last end points,
respectively. Then the vertex x belongs to both arcs (aj,bj)
and (u1,vqy). Let 17 be the smallest index, i; < min gk,n},
for which arcs (ail’bii) and (uil’vil) have only one common
vertex and let 1, be the smallest index greater than 1,

i1 < i, < min {k,n}, for which arcs (aig’big) and an -arc
(uig’vi3) of the simple chain ((uy,vq),..., (uy,v,)) have a

common vertex. Then the chain ((ail,b ),...,(aig,big),

1q

(ui3,vi "’(uil’vil)) in N has first and last end points

)s .
3
which are the same point and each vertex of the chaln be-
longs to exactly two arcs of the chain.  Therefore, this
chain is a simple closed chain in N. From this contradic-
tion it follows that there do not exist two distinct sim-
ple chains in N having both the same first end points and
the same last end points. And hence, for every distinct
palr of vertices x and y of N there exists a unique simple

chain belonging to N having x and y as the first and last

end points, respectively.

This last theorem is illustrated by referring to Figure
4 where it i1s seen that there are no simple closed chains in
the network indicated there. TFor the vertices b and ¢ of
this network the unique simple chaln in the network having
b and ¢ for its flrst and last end points, respectively, is
((b,4),(a,8), (a,1), (c,1)). Likewise, for vertices 3 and a
the chain ((c¢,3), (c,1),(a,1)) is the unique simple chain in
the network having vertices 3 and a, respectively, for its

first and last end points.
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Theorem 3.4, If the network N on A x B is a basis for

A x B, then N contains no simple closed chain.

Proof. Suppose the basis N for A x B containg a sim-
ple closed chain ((al,bl),.na,(ak,bk)) and let z be the ver-
tex belonging to each of the end arcs (al,bl) and (ak,bk)
of this simple closed chain. To show that S = N - §(a1,b1)§
1s a cross connected network on A x B let x and y be a pair
of distinct vertices belonging to N such that there exists
a simple chain. C contalned in N from end polnt x to end
point y and such that C contains the arc (al,bl). If C =
((al,bl)), then ((ap,bs),...,(ak,bKk)) 1s a simple chain in
S with end points x and y. On the other hand, if C #
((al’bl))’ then C 1s a simple chain ((ug,vy), ..., (Ui, vy),
(al,bl),(ui+1,vi+1),,..;(un,vn)) from end point x to end
point y. The vertex z of the simple closed chalin belongs
to either (ui,vy) or (uys1,vi+1) since i1t is a vertex of
(a1,b1). Suppose that z belongs to (ui,vy). (The argument
for the other case where z belongs to (uj41,viq]) is simi-
lar.) Then replacing the arc (a1,by) by the sequence
((@psD5)5 .+« v (aysby)) in the sequence of C gives the se-
quence of arcs C' = ((ul,vl),...,(ui,vi),(ag,bg),..q,(ak,bk),
(Ugg1sVia1)s s (Up,vp)) in.S and in which adjacent arcs
have at least one common vertex. ILet Cé be the subsequence
of C' which 1s obtained by successively deleting one arc
of adjacent arcs which have both vertices in common, i.e.
by replacing an arc which is repeated consecutively in C'

by a single arc of the repeated set. Then CJ 1s a chain in
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S from end point x to end point y and by Theorem 3.1 C& con-
tains a simple chain Co with end points x and y. Since in
either of the above cases a simple chain is contained in S,
it follows that N is not minimal with respect to being cross
connected. From this contradiction the conclusion of the

theorem follows.

Theorem 3.5. If N is a cross connected network on A X B

such that for every pair of distinct vertices x and y of N
there exists a unique simple chain belonging to N from end

point x to end point y, then N is a basis for A X B.

Proof, Suppose N satisfies the hypothesis of the the-
orem but is not a basis for A x B. Then N is not minimal
with respect to being cross connected and properly contains
a cross connected subnetwork S on A x B. Let (x,y) belong
to N - S. There exists a simple chain ((a;,b7),...,(2,,by))
in S with end points x and y. But this simple chain and the
simple chain ((x,y)) are distinct simple chains in N from
end point x to end point y. This contradiction shows that

N is a basis for A x B,

The results of the three preceding theorems can be com-

bined to give the following results.

Theorem 3.6. The following properties of a cross con-

nected network N on A X B’are equivalent:

(1) N is a basis for A x B.

(11) N contains no simple closed chain.
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(ii1) For every pair of distinct vertices x and y of N
there exists a unique simple chain from end

point x to end point y belonging to N.

To show that every cross connected network on a Car-
tesian product of two non-empty sets contains a subnetwork
which ig a basis for the Cartesian product the following

form of Zorn's lemma is used.

Theorem 3.7. (Zorn's lemma). If the partially ordered

set S 1s such that every linearly ordered subset of S has an

upper bound, then S hasgs at least one maximal element.

Theorem 3.8. ILet A and B be two non-empty sets. Then

every cross connected network on A x B containg a basig for

A x B.

Proof. TIet N be a cross connected network on A x B
and let S be the set of all subnetworks E of N such that if
E 1s a network on C x D where C « A and D <« B, then E is a
basls for C x D. Assuming neither A nor B is empty, then N
1s not empty, so there exist an arc (a,b) belonging to N,
two sets C = ga} and D = §b§, and a basgis E for C x D conF
sisting of C, D and g(a,b}i. Hence S is not empty. ILet a
basis Ej for C; x D be defined to be < a basis E, for
Co k‘DQ in 8§ if E; 1s a subnetwork of E,. Then S ig par-

tially ordered by <.

Let K = gEt on Ct X Dt : T e T} be a linearly ordered

. subget of S, Then i1f C = U Cy and D = U D¢ and 1f E is
teT teT
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the system consisting of C and D and the set of arcs {(a,b)%:
~(a,b) € Ef and t ¢ T}, it is seen that E is a subnetwork of'
N. The following argument shows that E is a basis for C 2 D
and belongs to S, so every linearly ordered subset of S has
an upper bound. . E 1s cross connected becauselif x and y are
distinct vertices belonging to-C or D, then they belong to

some C or.D and Ct.. or Dt., respectively, and hence to
tx ty ty

y .
some Co or D, where Cp contains Ctx and Cty and D, contains
Dtx and Dty. It follows that ﬁhere exists a simple point
chain belonging to Eg, and hence E, such that each of the

vertices x and y is an end point of thig simple chain.

Suppose, now, that E is not a basis for C x D. This
means that E is not minimal with respect to being a cross
connected network on ¢ x D, so for some arc (a,b) belongiﬁg
to E the network E - g(a,b)} is a cross connected network
on C x D. Now, for some index f e T, (a,b) belongs to Eg.
Since Ei 1s a basis for Ct X Di¢, there is a palr of distinct
vertices x and y belonging to C¢ or Dt for which no simple
chain in E¢ - g(a,b)}, hence in any Eg, - g(a,b)§ where
Etl < E¢ 1In K, has end polnts x and y. Suppose X and y are
the end points of a simple chain in Eg, - g(a,b)} for some
Et, belonging to K such that Et < Et, and E¢ # Eg,. This
chain can not be the same as the simple chailn in E¢ having
end points x and y. But both of these distinct simple
chains having end points x and y belong to Et2 contradict-
ing the fact that»Etg is a basis for Ct2 X Dtg' Thus, E is

minimal with respect to being cross connected and hence is
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a basis for C x D. Therefore, E belongs to S and is an up-

per bound for K.

By Zorn's lemma S has a maximal element M on Aq X Bl
where A < A and By < B and M 1s a basis for Ay x By. OSup-
pose there exists an arc (a,b) belonging to N and not con-
tained in A x By. Then either a ¢ A - A] or b ¢ B - By
and there exists an arc (aj,d) or (c,by) belonging to N
where aj € Ay, d ¢ B - Bj, c ¢ A - Aj and by ¢ By. For
otherwise there would be no gimple chain belonging to N
one end point of which is a vertex of Al or Bj and the oth-
er end point a vertex of A - A or B - By, contradicting
the hypothesis that N is a cross connected network on A x B.
It follows that either M U g(c,bl)} or M U {(al,d)g is a
basis for (A] U gcg) x By or A1 x (By U {d}), respectively.
Since either of ﬁhese belongs to S and is > M, the exist-
ence of eifher one contradicts the fact that M is a maximél
element for S. Therefore, Aj = A, By = B and M is a basis

for A x B contained in N.

As a particular situation involving properties (1) and
(11i) of Theorem 3.6 every element (a,b) of the Cartesian
product A x B has a unique representation in terms of the
elements which belong to a basis for A x B. The number of
arcs required for a basis giving this unique representation
1s considered for the finite case in the next theorem.
First a lemma is established to aid in the proof the theo-

rem.
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Iemma 3.1. If a network N is a basgis for the Cartesian
product of two non-empty finite factor sets, then there ex-

ists a vertex of N which belongs to exactly one arc of N..

Proof. Let A and B be two non-empty finite sets and
let N be a basis for A x B. .Since N is a cross connected
network on A x B, for every vertex of N there exists at
least one arc belonging to N and contalning that vertex.
Suppose that for every vertex of N there exist at least two
arcs belonging to N which contain the vertex. Let xq be a
vertex of N. Then there exists a simple chain Cy of the
form ((aj,by),...,(ag,by)) belonging to N for which x; is
the first end pbint since N 1s crosse connected. If xp 1is
the end point of Ck contained in arc (ak,bk), then there
exists another arc (aj,q, bk+1) belonging to N for which
Xy 1s a vertex. Elther the chain Cyy1 = ((a1,b1), ...,
(aksby)s (apy1sbr+1)) 1s a simple chain or the end point of
Cry1 belonging to (ag41,by+1) 1s a vertex belonging to Cp
and hence Cry1 contains a simple closed chain. The process
of successively adding arcs belonging to N to simple chains
of N 1n the former case may be repeated until the latter
case holds since N is finite and.hence N contains a sim-
ple closed chain. By Theorem 3.6 thils is a contradiction
because N is a basis for A x B. Consequently there exists
a vertex belonging to N which belongs to exactly one arc in

N.

Theorem 3.9. If A = gai: 1= 1,9..,m} and B = gbj:

J = 1,...,n§ are two non-empty finite sets, then a cross
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connected network N on A x B is a basis for A x B if and

only if N contains m+ n - 1 arcs.

Proof. 1ILet N be a cross connected network on A x B and
first suppose that N is a basis for A x B. From Lemma 3.1
there exiéts some vertex x of N which beloﬁgs to exactly one
arc (a,b) belonging to N. The subnetwork of N which con-
sists of all vertices and arcé of N except x and (a,b) is a
basis for the assoclated Cartesian product. With this re;
sult a monotone decreasing sequence gNk on A X Bk§ of sub-
networks of N is obtained such that elther Ap,q = Ak or
Byl = Bk, but not both, and By4y = By - {bjkz or Apy) =
Ap - gaik§? respectively, where bjk or aj, is a vertex be-
longing to exactly one arc contained in Ny . Also Ny is a
basis for Ay x By. Let Ny(L) denote a basis Ny containing
L vertices. Then if Ny = N, the sequence above is
No (m#n) > Ny (min-1) o...o> Nppp-2(2) which terminates with
one arc joining two vertices in the finél network since a
non-empty network contailns at least two vertices. Since

only one arc belongs to Nj. and not to Np,;, it follows that

the basis No = N contains m + n - 1 arcs.

.

Next let a cross connected network N on A x B contain
m+ n - 1 arcs. An inductive procedure is used to show
that N is a basis for A x B. For k = 1 let aj; € A. Since

N is cross connected, there exists an arc (ail,b ) belong-

11
ing to N for which aj, 1s a vertex. ILet S, denote the sub-

network of N 'consisting of the subsets A = {ai1§ of A and
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By = §b11§ of B together with the subset g(ail,bil)g of

Ay X B1. By Theorem 3.6 the ngtwork S, 1s a basis for

Al X By since i1t 1is cross connected and contains no simple
closed chain. Suppose S 1s a subnetwork of N consisting
of k + 1 vertices of the subsets Ay, of A and By of B to-
il),...,(aik,bik)§ of

Ak X Bk such that Sk is a basis for Ak X Bk' If k =

gether with the subset of arcsg(ail,b

m+n -1, then Sy = N and N is a basis for A x B. If
k<m+n -1, then there exlist a vertex x ¢ N -~ Sk, a
simple chain belonging to N having x and a vertex belong-

k+1
of whose vertices belongs to Sy and the other vertex y be-

ing to Sy for its end points, and an arc (aj ’bik+1) one

longs to N - S,. If y e A, let Agyq = Ay U gyén. Otherwise
y € B and in this case let Bk+1 = Bk U §y§° -Let Sk+1 be
the subnetwork of N consisting of k + 2 vertices of the
subsets Ap 1 of A and By, of B together with the subset of

arcs g(ail,bil),,,,,(ai ’bik+1)§ of Apiq X Byyq. The net-

k+1
work Sy 1s cross connected since the vertex y is an end

point of a simple chain in Sk+1 whose other end point be-

longs to Sk < S and hence y 1s the end point of a simple

k+1

chain in Sk+1 whose other end point i1s some other vertex

belonging to S Since there is a single arc (a.

k+1” L1’ Tiee1
in Sk+1 to which the vertex y belongs, this arc is contain-
ed 1n no simple closed chaln in Sy 7. And since Sy 1s a
basis and contains no simple closed chain, 1t follows that

Sk+1 contains no simple closed chain and therefore Syy; is

a basis for Ap,q X By, by Theorem 3.6.
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This procedure is continued until a subnetwork Span -1
contained in N 1s obtained such that Sy4p-1 consists of
m + n vertices of the subsets Am+n—l of A and By,,-1 of B
together with the subset of m + n - 1 arcs {(ail,bil),...,
'(am+n41’bm+n-1)§ of Amyn-1 X Bpen-1 on which Spyn-1 is a
basis. Hence Spun-1 © N and since Spin-1 < N, 1t follows

that Spin-1 = N and, therefore, that N 1s a basis on A x B.

From Theorem 3.6 it is seen that for every pair of dis-
tinct vertices x and y of a network on a Cartesian product
A x B such that the network is a baslis for A x B there ex-
i1sts a unique simple chain in the network for which x and y
are, regpectively, the first and last end points. In‘par—
ticular 1t is noted that the elements of A x B are ordered
palrs of distinct vertices and for every one of these ele-
ments there exists a unique representation in terms of the
eléments of A x B, this representation being the unique
simple chain in the basis whose first and last end points
are, respectively, the first and second vertices of the
ordered pair. It is seen that for representations of this
typé the simple chains éontain an odd number of arcs and
also that if a chain consists of an arc together with the
arcs of its unique representation chain, then the chain so
formed ig a simple cloged chain. The next two examples il-
lustrate bases in both finite and infinite Cartesian prod-

ucts.
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Example 3.4. Consider the group table of the cyclic

group of order four in Filgure 5. In this case the binary
operation on the set A =.B = ge,a,b,cg gives a unique ele-
ment of A‘for every ordered pair of elements of A. Let S
be the sets A and B together with the subset of A x B in-
dicated by the elements with asteriske in Figure 5. Since
S 1s a cross connected network on A x B and contailns

4 + 4 - 1 = 7 elements, it is a basis for A x B. The ele-
‘ment (c,a), for example, has for its unique representation
'in S the simple chain ((c,c), (e,c),(e,a)) since ¢ and a
are, respectively, the first and last end points of this
simple chain whose arcs belong to S. And by using the
group operation to ldentify unique elements of the group
for ordered pailrs of vertices, the unique simple chain for
(c,a) is expressed uniquely as (b,c,a). It is observed
that alternating direct and inverse relationships for the
group operation in the two expressions for the unique re-

presentation and combining terms gives, respectively,

(c,e)(e,e) L(e,a) = (ce)(ec) t(ea)
= cce~le-lea
= ceea
= Cca
= e
and
bc‘la = baa

= Dbb
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In this manner every simple chain representation in terms
of 8 for arcs of A X B can be transformed into an element

of the group.

B
e a b c
e e *a b *c
a *g b c e

A

b b *c e a
c *c e *g *b

A X B

Basis for a Group Table.

Figure 5.

Example 3.5. For an examplé of a basis for an infinite

Cartesian product let A = {xs 0 < XE and let B = {yz 0L y§
so A x B 1s the closed positive quadrant of the plane. Let
S be the system consisting of the sets A and B together
with the subset of A X B which is the union of the graphs
of xy =1 and y = O restricted to A X B, Then S is a basis
for A x B and every point (arc) of A X B has a unique rep-
resentation in terms of arcs of’S. For if (x,y) is an arc
of S, then the simple chain ((x,y)) is the unique repre-
sentation in S for (x,y). And if (x,y) is an element of

A X B not belonging to S, then ((x,0),(1/y,0),(1/y,y)) is
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the unigque simple chain belonging to S representing (x,v).

The basis for a transportation problem, which was de-
gcribed in the preceding chapter as a set of routes having
property B, was a finite basis of the same type as the one
illustrated in Example 3.4. It is also noted that the arcs
(routes) of simple chains in the transportation problem ba-
sis which were the unique representations of arcs belonging
to the asgociated Cartegian product could be combined by
using an operation somewhat analogous to the group operation
of Example 3.4 to give esingle arcs. The development here
stemming from the transportation problem has given notilons
of cross connectivity and of a basis which are defined in
completely general Cartesian products. Some theorems
proved in this chapter relate certain properties of these
networks. In particular Theorem 3.9 shows that the number
of arcs belonging to a basls for a finite Cartesian prod-
uct 1s one less than the number of vertices contained in
1ts two factor sets. It i1s an investigation of this prop-
erty in terms of topological structure that follows in the

next chapter;



CHAPTER IV

SOME PROPERTIES OR GRAPHS OF FUNCTIONS

MAPPING THE UNIT INTERVAL INTO ITSELF

The property of Theorem 3;9 was seen to relate the
number of vertices and the number of arcs in a basis for
a finite Cartesian product.A This property is reformu-
lated in this chapter in a way that suggests some ques-
tions about.similar properties for the Cartesian product
space formed by the prdduct~of the unit interval in the
space of real numbers with itself. For this investigation
it is convenient to treat some of the subsets of this Car-
tesian product space as the graphs of functions mapping the
unit interval into itself. Here it is recalled from the
breceding chapter that the definition of a graph is the
‘same as that of a network on a Cartesian product. In this
discussion the functions involved will be single-valued
functions and for %hem the expression "graph of a function"
will be used to mean the subset of the Cartesian product of
the domain and range sets which is determined by the func-
tion. Also for the purposes here a continuum willl mean a

closed and connected subset of a topological space.

In Lemma 3.1 it was shown that in a basis for the Car-

teslan product of two non-empty finite factor sets there

35
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exigts a vertex belonging to exactly one arc of the basis.
It was with this property that a monotone decreasing se-
guence gNk on Ak X Bk} of subnetworks of a basgis N for A x B
was obtained in Theorem 3.9 such that for consecutive terms
of this sequence eilther Ay, 1 = Ap or By, = By, but not
both, and By, = By - {bjk§ or Aal = Ay - {ai,}, respec-
tively, where bjk or aik is a vertex belonging to exactly
one arc of the basls Nj. for Ap x By. By this sequence there
1s induced on each of the factor sets A aﬁd B functions T
and g, respectively, whose respective ranges are subsets of
B and A. Thus, if ai, or bjk 1s the vertex of Nk belonging

to exactly one arc (aik,bjik) or (aijk’b ), respectively,

Ik
of N, then define f(aik) to be bjik or g(bjk) to be aijk,
respectively. In this manner the m + n vertices of N cor-
respond one-to-one with the m + n - 1 arcs of N except that

the two vertices of the final basis N » of the sequence

m+n-
correspond to the single arc of this basis and every vertex
in the domaing of the functions f and g has an image 1n the
domain of the other function. This shows that for a basis
N .for a Cartésian product of two non-empty finite factor
sets A and B there exist two functions, T mapping A Into B
and g mapping B into A, having respective graphs F =
g(x,f(x)) T X € A§ and G = g(g(y),y) 1V o€ B% in A x B such
that the union of F and G 1s the subset of arcs of A x B
which belong to N. With this formulation of the conditions

of Theorem 3.9 it follows from that theorem that the number

of arcs contained in N 1s one less than the number of ver-
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tices belonging to N and hence that there exists a single
point belonging to both F and G. This is illustrated in

the next example.

Example 4.1. Let two functions, f and g mapping D into

A and A into D, respectively, have graphs whose union is in-
dicated by fhe subset of arcs in the basis for D x A illus-
‘trated in Figure 6. It ig seen in the figure that the point
(arc) (2,£(2)) = (g(d),d) is the single point belonging to

both of the graphs.

a (1:f(1)) (g(a):a)
b | (g(b),b) (4,£(4))
A
c (gle),e)
(2,r(2)) | ,
d (g(a).4) (3,£(3))
1 2 3 L
D

Basis as the Union of Graphs
of Functions,.

Figure 6.

It is noted that if one of the two functions mapping
one factor set into the other is one-to-one, then it has an
inverse function and in this case there exist graphs of two

functions having the same domain and range sets such that
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the union of the two graphs is the subset of arcs which be-
long to a basis. The function g of Example 4.1 is one-to-

one and hence has an inverse function g'l whose gréph in

D x A is the same set of points as the graph of g. The ex-
ample then illustrates that the gréphs of £ and g'l have a

single point in common.

The next two examples illustrate bases for infinite
Cartesilan producf spaces 1in which the set of arcs of the
basis ig the union of the graphs of two functions one of
which 1s defined on the first factor set with the second
factor set for its range and the other is defined on the
second factor set with the first factor set for its range.
These examples show that it is not necegsary for such graphs
to have a common point if either the Cartesian product space
is not compact or if the set of arcs belonging to the basis

is not a continuum.

- Example 4.2, Let A and B each be the half-open inter-

val [0,1) in the space of real numbers. The Cartesian prod-
uct space A x B is not compact. A subset S of A x B is now
defined by means of graphs of two functions, f mapping A

into B and g mapping B into A. ILet [x] denote the greatest

integer in x for a real number x. Then let

f(x) = [x/(1-x)] / (L + [x/(1-x)]) for x ¢ A
and let |
g(y) = [1/(1-y)] / (L + [1/(1-y)]) for y e B.
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The respective graphs of these functions in A x B are

F

|

g(x,f(x)): X € A§ and G = g(g(y),y): y € BEG Let
S=FUG. The system S* consisting of A, B and S is seen
to be a baéis for A x B. In this example S is a relatively
closed and connected subset of the continuum A X B and

FNG=g., See Figure 7.

1T

A

Basis for an Infinite
Cartesian Product Space.

Figure 7.

Example 4,3, Iet A and B each be the closed unit

interval [0,1] in the space of real numbers. 'Then the Car-
tesian product space A x B is a compact continuum. Let f
and g be the corresponding functions of Example 4.2 extended
to the closed unit interval such that f(1l,) = 1lp and

g(1lg) = Op. Refer to Figure 7. Then if F and G denote

the respective graphs of f and g in A X B, the union S of F
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and G together with A and B is seen to be a basis for A X B,
In this example S is a closed and hence compact subset of

A x B, but S is not connected and F N G = 4.

The preceding examples suggest that if the union of
vgraphs of the type 1llustrated forms a basis and if the un-
ion of these graphs is a compact subcontinuum of I X I
where I is the closed unit interval [0,1] of real numbers,
then the basis may have the property that two of its ver-
tices correspond to the same arc or, equivalently, that
there 1s a common point on the graphs of the two functions.
This leads to the following question 1f the requirement that
the union of the graphs forms a basis i1s omitted. If there
are two functions mapping I into itself such that the range
set of one is the domain set of the other and the union of
thelr graphs is .a subcontinuum of I X I, do their graphs
‘have a common point? The observation of Example 4.1 sug-
gests that if one of the functions has an inverse function,v
then two functions having the same domain and range sets
could be considered in the preceding question. A second
question, then, arising from this is whether or.not the
graphs of two functions mapping a common domain I into it-
self have a common point if their union is a subcontinuum
of I x I, This last.question is settled in the affirmative
in Theorem 4.4. It 1s an investigation stemming from this
question that follows. Some properties of connected graphs
of functions mapping I into itself are developed in the next

theorems.
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Theorem 4.1. Let a function f defined on the unit in-

terval I in thé space of real numbers and mapping I into
itself have a graph F in I X I such that F is closed. Then

F 1s a subcontinuum of I x I.

Proof. Let gxn§ be a sequence 1in I converging to x,.
The 1limit x, of this sequence belongs to I since I is closed,
Every subsequence of the sequence*%(xn,f(xn))i in the graph
F has a convergent subsequence with.a 1imit in F of the form
(xo,y) since F is compact and every subsequence of %Xni con-
verges to x,. But since f 1s a single-valued function, it
follows that y = f(x,) and hence that the sequence
g(xn,f(xn))é converges to (x5,f(xg5)). C&nséquently ;f(xn)§
converges to f(x,) and f is continuous. By Theorem 4.21 of
(5, p. 76) the subspace F of I x I is homeomorphic to I if
andvonly 1f £ 1is continuous, and by this homeomorphism 1t

follows that F is a compact subcontinuum of I x I.

Theorem 4.2. Let g be a real valued function on a non-

degenerate closed interval of the real numbers R and suppose
its graph G in R X R is connected and not closed. Then G

contains a limit polnt of G - G.

Proof. Since G 1s not closed, G 1s a proper subset
of its closureia, and since G 1is connected, E is connected.
et F =G -G. Since G = F U ¢ is closed and connected,
either G contains a 1limit point of F or F is closed. Sup-
pose 1t is the latter condition which holds. Since F is

non-empty, there exlists a polnt (x,y) € F and it follows
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that (x,g(x)) ¢ F. Consider the closed subinterval L of
{x% X R which has (x,y) and (x,g(x)) for its endpoints.
.The - subset of this interval not contained in F UG 1s non-
empty and open (relatively) and.containé a point (x,y) not
belonging to F U G. Since (x,y) 1s not a 1imit point of
the closed set F U G; thére exists an open connected rec-
tangular neighborhdod D=Ux7Vof (x,y) such that

DN (FUG) =@. Since (x,y) and (x,g(x)) are both limit
points of G, there exist points x; and xp belonging to U
such that (x;,y) and (x,,y) belong to D and y separates

g(xl) and g(xg) in R, See Figure 8.

{x1f x 5 ) ! I
T— f (x5, 8(x5))
| b
. _GF) |
l ]
E/i/ I
—_ : ' '
TSRS [

R X R
Illustration for Theorem 4.2.

Figure 8.

Let S1 and S, be the closures of the components of

2

R - g?} containing g(xg) and g(xl), respectively. And let
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So be the closed subinterval of U which has xy and x, for
its endpoints. ‘Let S be the union of §x1} X Sl, §x2} X 82,
and S, x,§§} in R x R. Since g 1s a single-valued mapping;
neither of the sets §x1§ x_S1 and §x2} X 82 contains a point
of G. The set So X {;},is a subsét of D and hence contains
no point of G. Therefore the set S contains no point of G
and, furthermore, S separates R X R into two mutually sep-
arated subsets, one containing (xq,g(x;)) and the other
containing (xg,g(x2)), whose union contains G. Since this
contradiction follows from the assumption that F is closed,

-1t must be that G contains a 1limit point of F.

The theorem just proved shows that if the graph G of a
function mapping I into I 1s connected but not closed, then
1t contains a limit point of G - G. The next theorem shows
that the graph'G of a function mapping I into I contains a
point of every closed subset of I X I whose union with G is
a subcontinuum of T x I. The followilng 1émma is needed for

the proof of the theorem,.

Lemma 4.1. Let L be a closed and bounded interval
[xo,yo] in the space of real numbers. If H is a decomposi-
tion of L such that the elements of H are subintervals of L,
thén there exists an element of H which is a closed sub-

interval of L.

Proof. Suppose that the collection H contains no mem-
ber which 1s a closed subinterval of L. Then every member

of H is a non-degenerate sublnterval of L which does not
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contain both of its end points. Let K = {x : [x,y) € Hg.
The set K is not empty since it contains Xos and since K 1s
bounded there exists a least upper bound x for K. It fol-
lows that x ¢ L since L 1s closed and bounded, and hence x
belongs to some member Hy of H. If Hy = [Xl,yl) or if

Hy = (xl,yl), then there éxists an interval [yjy,z) belong-
ing to H, and hence yj; ¢ K and yj > x contradicting the
fact that x is an upper bound for K. If H = (xl,yl] and

x € K, then x < x7 < X which contradicts that x is a least
upper bound for K. Therefore x is contained in no member
of H which is not a closed subinterval of L. Consequently,
H contains some closed, éossibly degenerate, subinterval of

L,’

Theorem 4.3, If g 1s a mapping of the closed unit in-
terval I in the space of real numbers into itself and G is
the graph of g in I X I, and if F is a non-empty closed sub-
set of I x I such that the union of F and G is a subcontin-

uum of I X I, then there exists a point belonging to F N G.

Proof. Suppose that F N G = ¢. Let %Ga= a ¢ A§ be
the collection of components of G for some index set A
where a = b if and only if G, = Gy,. For every a € A let
Hy = gx: x € T and (x,g(x)) € Ga}) i.e. Hy is the projec-
tion of Ga in the domainvof its first coordinate. Since a
projection mapping is continuous, it follows that for every

a € A, the image Ha of Ga under the projection is a connect-

ed subset of I. Furthermore, the members of the collection
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H = gHa: a € A} are pairwise disjoint; for if x € Hy N Hy,
then (x,g(x)) € G5 N Gy and a = b, And since I = U Hy, the
collection H is a decomposition oflI whose elemen%:Aare con-
nected subsets of I. From Lemma 4.1 there exists an element

Hy, of the collection H such that Hy i1s a subcontinuum of I.

With the assumption that F N @ = g, the set F =
(Fua) - aG. The‘conditions (1) F is & closed proper sub-
set of the continuum F U G, (2) G is compact, and (3) Gy is
a component of G for every a € A, satisfy the hypothesis for
Theorem 51 of (8, p. 18) from which it follows that F con-
tains a limit point of Gy for every a € A, Hence for every
a € A the component G, of G is not closed. In particular
the component Gy whose projecfion Hy is a subcontinuum of I
is not ciosed. Since Gb is non-degenerate, it follows that
Hy is a non-degenerate closed subinterval of I and, with re-
spect to Hy, the conditions of Theorem 4,2 are satisfied.
By that theorem Gy contains a limit point (x,y) of 55 - G-
Since (ag -’Gb) c F, the point (x,y) belongsto‘Gb N F which

contradicts the assumption that F N @ =-g.

The following theorem concerns two functions each map-
ping the unit interval I into itsélf and shows that if the
union of their graphs in I x T is a cohtinuum, then for
some point of thelr common domain I both functions have the

same value.

Theorem 4.4, Tet I be the unit interval [0,1] in the

space of real numbers. If F and G are the graphs in T x I



L6

of two functions f and g each of which maps I into itself

and if the union of F and G is a continuum, then F N G £ 8.

Proof. In the proof of this theorem a property is de-
fined for certain subsets of F U G, and a subset of F U G
having this property is shown to be not irreducible with re-
spect to this property if F N G = g. Also shown is that
this property is inductive whereby a subset of F U G is ob-
‘tained which is irreducible relative to this property. Then -
it is for this subset that the condition F N G = @ gives a

contradiction.

Let two functions f and g each mapping I into itself
have graphs F and G, respectively. A non-empty subset of
F UG has property P if it is the union of the graphs of f
and g restricted to a compact subinterval of I and is a com-
pact continuum. Under the hypothesis of the theorem the set
F U G has property P, so the collection of subsets of F U G
having property P is non-empty. Next suppose that F NG = s
and let [x5,x7] be the compact subinterval of I associated
with a set K which has property P. Since F N G = g, the
interval [xo,xl] is non-degenerate. Otherwise Xo = X7 and
the continuum K consists of (xq,f(x,)) U (x0,8(x5)) which
must be a single point whichvbelongs to F U G which is a
contradiction. For convenience of notation suppose that
f(x) < g(x) for x5 < x < x7. This results in no loss of
generality since -an interchange Qf points of F and G does

not affect either F U G or F N @ since F N G = @d. The
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closed subinterval of gXO§ x I having end points (x,,f(xg))
and (x,,8(x,)) 1s nondegenerate and has a midpoint (x,,y)

which does not belong to K. See Figure 9.

Illustration for Theorem 4.4,

Figure 9,

Since (xg5,y) 1s not a limit point of the closed set K,
there exists a rectangular region R = [X05X2) X (ylgyg) O~
ren in [Xo,Xl] X I where y1 <y < yp such that RNK-=4g.
If there exists an x e [x,s;%x5) such that £(x) >y or

g{x) < y, then for such an x the set (§X§ x [0,y]) U

([xq,x] x gyg) or the set (%X} x [y,11) U ([xg,x] X %y%)g
respectively, separates K in [xogxl} x I, From this contra-
diction 1t follows that for every x e [xg:xp) £(x) <y < g(x)
and that if gzng is a sequence of points belonging to {X03X2)

which converges to x, then the sequences {(zngf(zn))g and
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{(zn,g(zn))} converge to (x,f(x)) and (x,g(x)), respective-
ly, since K is compact. Consequently the functions f and g
are continuous on [xo,xg) and for every point x € (xo,xg),
‘the graphs of the resfrictions of £ and g to fxo,x] are ho-
meomorphic to the arc [xo,x] by a Theorem 4.21 of (5, p. 76).
Let x5 € (x55%5). Then the points (x3,f(x3)) and (x3,g(x3))
are cut points of K and each of them separates K into two
components. It follows from Theorem 60 of (8, p. 25) that
the set K3 = KN g[k3,x1] X‘I} is connected. Hence K, is a
non-empty compact propervsubcontinuum of K and has property
P. Thus, the subset K is not irreducible with respect to

property P.

Next let Ky o Ky > ... = K, 2 ... be a monotone
decreasing sequence of noh—empty compact continua every one
of which has property P. Let Dn be the compact subinterval
of I which is aSsociated with K, by property P for
n =‘1,2,... . Then gDn} 1s also a monotone decreasing se-
quencelof non-empty compact continua. Let K = 2 Kn’and
D = 2 Dn; By Theorem 9.4 of (9, p. 15) both of the sets K
and D are non-empty compact continua. If x € D, then x € D,
and (x,f(x)) U (x,g(x)) K, for n = 1,2,... from which
(x,f(x)) U (x,g(x)) = K. Also if (x,f(x)) or (x,g(x)) be-
longs to K, then (x,f(x)) U (x,g(x)) is contained in K, and
X € Dn forn=1,2,,.. and hence x € D, Therefore, K is
the union of the graphs of f and g restricted'to the com-
pact subinterval D of I. This shows that property P 1s an

inductive property.
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Since the non-empty compact set F U G has the inductive
property P, it follows from the Brouwer Reduction Theorem
(9, p. 17) that there exists a non-empty closed subset Ko
of;F U G which is irreducible with fespect to property P.
But with the assumption that F n G = § it was shown above
that a set with property P is not irreducible relative to
property P. Hence, for the subset Ko of F U G, the assump-
tion that F N ¢ = @ results in a contradiction and therefore

the conclusion of the theorem is obtained.



CHAPTER V
SUMMARY

The initial part of this study is concerned with the
notion of unique representation which is illustrated in
Chapter II as a property belonging to a basis for a trans-
-portation problem. This unique representation property is
generalized to Cartesian products in the absence of the
algebraic field structure of linear spaces required in the
usual treatment of the transportation problem. - A general-
ized basis is developed as a network on a Carteslan prod-
uct and its existence 1is shown for arblitrary Cartesian
products. The previously known result of Theorem 3.9 for
finite networks shows that the number of vertices of a
basis for a Cartesian product is one lafger than the num-
ber of arcs belonging to the basis. This result 1s seen
to be an extension of the property that a single arc has

two end points.

The subsequenﬁ portion of this paper is an investiga-
tion concerning an extension of the property given in Theo-
rem 3.9 for a basis for a finite Cartesian product to an
infinite Cartesian product. Examples indicate that addi-
tional conditions must be imposed if a similar property is

to be obtained. The Cartesian product for the investiga-

50
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tion 1s taken to be the topological space which is the Car-
tesian product of the unit interval in the space of real
numbers with 1tself. With a basis formed as the union of
graphs of two functions each mapping one factor space 1
into the other and with the conditions of being both closed
and connected imposed on the union of the graphs in I x I
the following question 1is considered: Does there exist a
common point on the graphs of fhe two functions? It is an
affirmative answer to this question without the condition
that the union of the graphs be a basis and with the mod-
ified condition that both functions have the same factor
space for their domains that is the maln result of the in-
Vestigation. If one of the functions has an inverse func-
tion, then this result appliles with the condition that the
domain space of one function is the range space of the oth-
er, It is an open question if neither of the functions has

an inverse function.

Several other questions for future investigations are
mentioned. The result obtalned here applies if the union
of the graphs of the functions forms a basls, but 1t is not
known 1f every basis for I x I which is a compact continuum
can be formed in this manner. Another problem 1is to charac-
terize the Cartesian product spaces in which the property of
the main result holds., Simple examples show that it does
not hold on a cyclinder or torus, both of which are compact

continua and which have a cyclic'factor space.
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