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PREFACE 

In this paper some properties which occur in the spe

cial type of linear programming·problem known as the trans

portation problem are explored in a generalized form. A 

self-contained sketch o~ this problem is included in Chapter 

II. In this investigation an important role is played by the 

property of unique representation of. elements of an abstract 

Cartesian product of two sets of points. As part of the 

development of these properties a known result for finite 

Cartesian products is reformulated and investigated in terms 

of graphs of functions in an infinite Cartesian product which 

is also a topological space. 

Indebtedness is acknowledged to all members of my advi

sory committee, and especially to Prof. O. ij, Hamilton for 

his patient and continued guidance dur~ng this investigation; 

to Dr. L. Wayne Johnson, Head of the Department of Mathemat

ics, for my graduate assistantship and for his sound advice 

given on many .occasions; and to Continental Oil Company for 

assistance in completing this study. 
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CHAPTER l 

INTRODUCTION 

It is the purpose of this paper to present a general

ized development of certain properties encountered in net

work flow problems arid to further investigate some of these 

properties in terms of topological structure. Much of the 

theory for network flow is considered is part of graph 

theory. (1). · However, the development here proceeds direct

ly from a type of network flow problem in which material is 

allocated from sources to destinations in an optimal way. 

This problem is known generally as a transportation problem, 

and methods for its solution are widely treated in the field 

of linear programming, since it may be. expressed as a special 

type of linear programming problem. (2). (3). (4). In Chap

ter Ila well-known general solution method for a transpor

tation problem is discussed to illustrate the notion of a 

basis for a transportation problem and to indicate how it 

can be used to obtain an optimal solution. Even though the 

basis presented has a direct correspondence with the basis 

for the associated linear programming problem., the treat

ment here does not.require the structure of linear algebra 

used in the linear programming method. This simplified 

treatment results from special properties of the problem 

1 
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some of which are generalized in this study. 

In the third chapter the setting of the transportation 

problem is generalized to a Cartesian product of two sets of 

points which are identifiable as the two index sets for the 

sources and destlnations of the transportation problem. A 

network is defined on a general Cartesian product and vari-

ous properties stemming from the transportation problem are 

investigated in terms of chains of arcs belonging to net

works. One property introduced is that of cross connectivity 

which is a rudimentary form of the·property known as span-

ning in a linear space. A basis is defined to be a minimal 

cross connected network on a Cartesian product and the ex

istence of a basis on an arbitrary Cartesian product is es

tablished in Theorem 3.2. A number of other theorems are 

proved which indicate relations between chains, cross con

nectivity and bases. One important property of a basis is 

that of giving unique representations for elements of a 

Cartesian product .. All proofs given .for the theorems as 

well as the generalized definitions of the properties they 

involve are original with the author although some of these 

definitions and theorems have equivalents in terms of finite 

networks. Examples are included to illustrate all proper

ties discussed. The known result for finite networks which 

appears in Theorem 3,9 shows that the number of routes join-

ing sources and destinations in a basis for a transportation 

problem is one less than the number of sources and destina

tions. A reformulation of this property of a basis for a 
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finite network suggests questions which are investigated in 

the fourth chapter. 

In Chapter IV the elements of a Cartesian product which 

belong to a basis are represented as points of the graphs of 

two functions defined on the two factor sets. When consid

ered with this representation the result of Theorem 3.9 shows 

that for. a finite Cartesian product there is a common point 

on the graphs of the two functions which represent a basis. 

It is an extension of this property of a basis with this 

representation that is investigated for an infinite Carte

sian product. In particuiar the Cartesian product is taken 

to be the topological space which is the product of the unit 

interval in the space of real numbers with itself. In this 

Cartesian product space the g·raphs of functions mapping the 

unit interval .into itself are investigated with regard to 

being closed and connected. The main result obtained is 

that if the union of the graphs of two functions mapping 

the unit interval into itself is both closed and connected,· 

then the two graphs have a common point. In this case the 

functions have the same domain and range sets. An open 

question is whether or not the theorem holds when the do

main of one function is the range of the other. 



CHAPTER II 

SOME PROPE~TIES OF THE TRANSPORTATION PROBLEM 

In this chapter appears a sketch of the transportation 

problem. The description here suffices to illustrate sever

al notions to be developed in succeeding chapters, but for 

a more complete and detailed discussion of this problem re

ference should be made to other treatments, e.g. Dantzig (2). 

The classical Hitchcock (7) transportation problem was 

formulated originally as a problem in economics and more re

cently has been considered to be one of the larger class 

known as mathematical programming problems. The situation 

which gave rise to the transportation problem was that of 

distributing homogeneous material from several sources to 

numerous destinations. Here it was assumed that there were . ·, 

various routes joining sources to destinations to which ma

terial could be allocated at a constant cost per unit of ma-· 

terial for a given route. The problem, then, was that of 

finding a set of allocations to various routes such that all 

requirements of supply and demand were satisfied and such 

that the total cost of the set of allocations which is the 

sum of the allocation costs for individual routes was a min-

imum cost. 

4 

--, 
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For a more precise definition of a transportation prob-

lem (T) let there be given the sets of real numbers 

{ ai ai > 0, i = 1, ... , m }, 

{ bj bj ~ 0, j = l, .. ,,n}, 

and 

{cij: i=l, ... ,m; j =l, ... ,,n}, 

where these sets represent, respectively, the number of u,... 

nits of material available at the sources, the number of 

units of material required at the destinations, and the costs 

per unit of material for transporting it on routes joining 

sources to destinations. Then determine a set of real num-

bers 

f xij : i = l., ... ,m; j = l, ... ,n}, 

representing allocations to routes, which satisfies the con-

ditions 
n 

( i) }:: Xij = ai for i = 1, ... , m, 
j=l 

m 
}:: Xi . = bj for j = l, ... ,n,. 

. 1 J l= 
(ii) 

(iii) xij > 0 for all i, j, i = l, ... ,m; j = l, ... ,n, 

and for which the expression 
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is a minimum. An additional condition 

(iv) 

may be assumed without losing generality. 

As indicated earlier this problem is one of the class 

of linear programming problems and may be solved with the 

simplex method of Dantzig (2). However the special condi

tions (1) through (iv) above permit a simplified methodf,or 

the solution of (T). In describing (T) and in following its 

solution process it is convenient to use the matrix tableau. 

of Figure 1. A position (i,j) of this matrix represents a 

1 
Xll 

2 
x21 

x ml m 

1 

. . . 

b 1 

Xl2 
ell 

X22 
c21 

Cml 
xm2 

2 n 

xln 
c12 . • . cln 

- -

x2n 
c2n c22 . • . 

. . 

. . 

. . 
x . mn 

cmn cm2 . . . 

Matrix Tableau. 

Figure 1. 
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route joining the i'th source and the j 1 th destination. The 

values c 1 j and x 1 j of the cost and allocation, respectively, 

associated with route (i,j) are indicated by entries at that 

position. The sums of the xij 1 s in rows are the ai's and 

the bj's are the sums of the xij's in columns. 

The solution process is described by first determining 

a subset R of the set of all routes joining sources and des-

tinations such that R has both of the two following proper-

ties designated as property F and property B. The first of 

these is known as feasibility and belongs to a subset of 

routes if allocations assigned to routes of the subset sat

isfy conditions (i) through (iv) when all other allocations 

assigned to routes not belonging to the subset have the val-

ue zero. And the second is the property of being a basis 

and belongs to a subset of routes if every route (i,j) in 

the matrix tableau has a unique representation as a finite 

sequence of routes (matrix positions) such that the sequence 

has the form ((i1 ,j1 ),(i2 ,j1 ),(i2,j 2 ),(i3,J2),(i3,j3), ... , 

(ik,jk_ 1 ),(ik,jk)) where 1 1 = i, jk = j, and every route of 

the sequence belongs to the subset. 

Next in the solution process the cost of every route 

not belonging to the set R is compared with a cost evalua

tion of the unique representation of the route in terms of 

routes of R. Then if there exists some route whose cost is 

less than that of its representation, an allocation is as-

signed to this route and previous allocations assigned to 



routes in its representation in terms of Rare adjusted to 

yield a new set R' of routes which has properties F and B. 

This·procedure is repeated until a set R0 of routes is ob

tained for which every route's cost is not less than that 

of its representation in teims of R0 . Then the VRlues of 

the x1·'s associated with routes of R0 give an optimal so. J 

lution of (T) with the Xij's for routes not belonging to 

R0 having values of zero. 

8 

The steps of this procedur~ are illustrated in the 

sample problem of Figure 2. The matrix positions which con-

tain entrie~ in their upper left-hRnd corners re~resent 

routes of a set R which has properties F and B. Property 

F for this set is easily verified directly, and property 

B can be shown by consideration of the equivalent linear 

programming problem as in Gass (3), p. 193ff .. It is nec

essary that the set R cori.tain m + n - 1 elements, or six in 

the case of the sample problem. 

1 2 3 4 

1 
6 I 4J 
+ 5 - 2 2 4 

10 

_ii 41 2 I 
7 + 8 5 - 5 

.9 
2 

I 
61 -- _J 

2 4 6 + 3 
6 

3 

6 7 4 8 

Sample Problem. 

Figure 2. 
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The "northwest corner rule", as described in Gass (3) 

on pp: 196-198, was used to obtain the initial allocations 

shown in Figure 2. According to this rule x11 = min {a1,b1} 

and either the row or the column corresponding to a1 or b1, 

respectively, has its equality in (i) or (ii) satisfied by 

x11 having the value given by this rule and the remaining 

Xij's in that equality having values of zero. Then the larg

er of a1 and b1 is reduced by x11 , (1,1) is included in R, 

and a similar allocation is assigned to the xij for the row 

and column of least index which contain some Xij whose value 

is not assigned. This procedure is continued from the 

"northwest corner" to the "southeast corner" where the final 

allocation xmn is assigned. The resulting set of xij's sat

isfies (i) through (iv) and an associated set R of routes is 

obtained that has properties F and B. 

The sequence of routes (matrix positions) of R which 

represents a given route can be obtained by finding a se

quence of indices starting with the row index of the given 

route and ending with its column index such that these-

quence elements alternate between row and column indices and 

such that matrix elements identified by adjacent indices of 

the sequence belong to R. This is illustrated in Figure 2 

in which route (3,1) is represented by the sequence ((3,4), 

(2,4),(2,2),(1,2),(1,1)) belonging to R. It is observed 

that the combined effect of allocation increases of one u-

nit to routes (3,4),(2,2) and (1,1), and allocation de

creases of one unit to routes (2,4) and (1,2) is just that 
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of an allocation increase of one unit to route (3,1). This 

can be expressed as 

or equivalently as 

(b) 1( ) - 1( ) + 1( ) - 1( + 1 - 1 - 0 3,1 3,4 2,4 . 2,2) . (1,2) (1,1) -

where expression (b) shows that for such unit changes of al

locations conditions (i), (ii) and (iv) are satisfied. De-

termining costs for each of these modes of allocating and 

comparing gives 

c31 = 2, 

c + c = 3 - 5 + 8 - 2 + 5 
12 11 

= 9 

and 

Since the cost of route (3,1) is less than that of its rep

resentation in terms of R, an allocation x31 to route (3,1) 

can be made and the allocations to routes in its represen

tation adjusted such that conditions (i) and (ii) are sat-

isfied and the value of the expression 

m n 
.6 .6 C· ·X· · 

i=l j=l J_J lJ 

is reduced. For adjusted allocations to satisfy condition 

(iii) the value x31 is the smallest value of an allocation 
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to a route upon which 1( 3 ,l) has positive dependence in ex

pression (a). In the sample problem this is x22 ::::; 3 for 

route (2,2). Making the appropriate adjustments to the al

locations by respectively decreasing and increasing by three 

units those allocations upon which 1( 3,l) has positive and 

negative dependence in expression (a) gives 

Allocation 

Old Value 

New Value 

3 

0 5 3 

and a new set R' of routes is obtained which consists of 

the routes of R with the exception that route (2,2) has been 

replaced by route (3,1). 

The new set R' of routes also has properties F and B, 

and the procedure may be repeated until an optimal set R0 

of routes is obtained. This will not be done here since 

the purpose of this section has been to illustrate several 

notions which occur in the solution process of a transpor-

tation problem. In particular the concepts involved in 

property B illustrated here are to be investigated and de-

veloped in a more general setting. 



CHAPTER III 

SOME PROPERTIES OF NETWORKS ON CARTESIAN PRODUCTS 

In the preceding chapter a notion was described whereby 

a subset of a set had the property of being a minimal subset 

in.terms of which every element of the set had a unique rep-

resentation. This concept is related notably to that of a 

linear basis in the treatment of linear spaces in which al~ 

gebraic field structu~e is required to formulate the notion 

of linear independence. (6). The present chapter is con

cerned with a development in which a type of basis is de

fined in the general setting of a Cartesian product and then 

some theorems pertaining to various properties of this basis 

are proved. 

The generalization here proceeds from the setting of 

the previous chapter in which a matrix representation of a 

network was illustrated. A network, linear graph or graph 

is usually defined to be a system consisting of a collection 

of points (generally finite) called nodes or vertices to

gether with branches or arcs joining various pairs of nodes 

or vertices .. (1). If the branches are not directed, the 

term "edge" is frequently used instead of "arc" which im

plies the existence of an order between the pair of vertices 

which are its end points. Although for some of the consid-

12 
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erations in this paper an order of this type is not neces

sary, the term rrarc" will be used uniformly in the treat-

ment here to mean an ordered pair of vertices with order 

being emphasized for those situations in which it is essen-

tial. There will also be occasions when functional rela-

tionships between two sets are considered as well as the 

point sets which are the graphs of thes~ relationships. In 

view of these preliminary remarks the following general def

initions are made and the particular terminology will be 

selected for the situation being studied. 

Definition 3.1, Let A and B be two non-empty sets and· 

let Ax B denote the Cartesian product { (a,b) : a EA and 

b E Bf of A and B. The sets A and~ are assumed to be dis

joint unless stated otherwise, in which case the common 

elements or A and Bare distinguished to indicate member~ 
• 

ship in A or B. A network (binary: relation, e;raph) on 

Ax Bis defined to be a system consisting of the sets A 

and Band a subset of Ax B. The sets A and Bare called, 

respectively, the first and second factor sets and their 

elements are called vertices. ~he ordered pairs of ver-

tices which are the elements of Ax Bare called arcs. 

According to this formal definition an arc is a point 

in a Cartesian product. However, it may be that for such 

a point, which is an ordered pair of vertices, the vertices 

may be identified with two points of some topological space 

in which there exists a topological arc from the first point 

to the second point. Jn the case of an electrical network 
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an arc of this type may represent a wire or connection join-

ing two terminals. But in the case of a binary relati.on on 

two sets an arc just indicates that the first vertex is re-

lated to the second. In the case of a graph of a function 

an arc is a point in the Cartesian product of the domain and 

range sets and indicates that a pair of points from these 

sets are related by the function. For all of these situa-

tions the terms "vertices" and "arcs" will be used although 

the term "end point" will occasionally be used to mean a 

vertex. 

Some definitions pertaining to networks are now given. 

These are essentially equivalent to ~imilar definitions for 

finite networks as in Hadley (4) on pp. 284-291. 

Definition 3.2. A chain in a network is defined to be 

a finite sequence of arcs ( (ai, b1 ), ... , (ak, bk)) belonging 

to the network such that e.ither ai = ai+l or bi = bi+l' but 

not both, for. 1 < i < i+l < k. The first and last arcs of 

a chain are called end arcs of the chain and two arcs (ai, bi) ----
and (aj, bj) are said to be adjacent~ of the chain if 

11 - jl = 1. A vertex of an end arc of a chain which does 

not belong to an adjacent arc of the chain is called an end 

·. vertex or end point of the chain. Hence a chain has a first 

end point and a last end point belonging to the first and 

last end arcs, respectively. A vertex is said to belong to 

a chain if it belongs to some arc of the chain. A simple 

chain is a chain in which a vertex belongs to two arcs only 

if the arcs are two adjacent arcs of the chain. A chain is 
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said to be a closed chain if the first end point and the 

last end point of the chain are the same point, and a sim~ 

~ closed chain is a closed chain in which each vertex of 

the chain belongs to exactly two arcs of the chain. 

It is implicit in the definition of a chain that the 

chain is ordered from its first end point to its last end 

point and in this way order is assigned to its vertices and 

arcs. From the definitions of simple chains and simple 

closed chains the following remarks are immediate. Every 

simple closed· chain contains an even number of arcs and 

contains at least four arcs. Each of the sequences 

((a 1,b1), (a2,b2 ), ... , (ak,bk)) and ((a2,b2 ), ... , (ak,bk), 

(a 1,b1)) is a simple closed chain if and only ~f the other 

is. If the sequence of arcs ((a 1,b1 ), (a2,b2 ), ... , (ak,bk)) 

is a simple chain, then the reverse sequence ((ak,bk), ... , 

(a2,b2 ), (a 1,b1 )) is also a simple chain. 

Example 3.1. Let A= {a,c,e,gl and B = {b,d,f ! and let 

N be the network on Ax B consisting of A and Band the sub

set of A x :a indicated in Figure 3. The chain ( (g, d), (a, d), 

(a,f), (e,f), (e,b)) is a simple chain with end points g and 

b. An example of a closed chain in the network N is the 

cha in ( (a, d), ( c, d), ( e, d), ( e, f), (a, f) ) . The cha in ( (a, d), 

(e,d), (e,f), (a,f)) is a simple closed chain contained in 

the preceding closed chain. The chain ((e,b), (e,d), (a,d), 

(a,f)) is an example in network N of a simple chain both 

end points of which belong to the same factor set. 
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b (c,b) (e,b) 

B d (a,d) (c,d) (e,d) (g,d) 

(a,f) 
( 

(e,f) ! f 

a c e g 

A 

Network on Ax B. 

Figure 3. 

Theorem:3.1. In a netwo~k every chain with distinct 

end points contains a simple chain with the same end poin.ts. 

Proof. Let C = ((ai,b1), ... , (ak,bk)) be a chain in a 

network on.Ax B with end points x and y belonging to the 

first arc (ai, b1 ) and last arc (ak, bk), respectively .. Let 

i1 be the largest index for 1 < i 1 < k such that xis an 

end point of the arc (ai1,bi1 ) belonging to the chain C and 

let z1 be the other vertex of arc (ai ,bi). If z1 = y, 
1 1 

then ((ai1,bi1)) is a simple chain in C and has the same 

end points asC. If zl =/ Y, then let i 2 be the largest in-

dex for i 1 < i2 < k such that z1 is a vertex of the arc 

(ai2,bi2 ) belonging to the chain C and let z2 be the other 

vertex of (ai2,bi ). If z2 = y, then ((ai1,bi1), (ai2,bi2 )) 
. . 2 

is a simple chain in C and has the same end points as C. 

If z2 I y, then this procedure is repeated at most k times 

until an index in is found such that z· is an end point of ln 
II! 
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the arc (a1 ,b1. ) belonging to C such that z1 = y. By con-
n n n 

struction the sequence ((a1 ,b1 ), ... , (ai ,b1 )) is a simple 
1 1 n n 

chain contained in C having the same end points as C. 

Chains may be considered as being a sequence of rela-

tionships between vertices belonging to them. For example 

the simple chain. ((g,d), (a,d), (a,f), (e,f), (e,b)) of Example 

3,1 could indicate that the vertex g is related to vertex d, 

which in turn is related to f, f toe, and e to b. Thus g 

is related to b by this sequence of relationships. In sim

ple chains this sequence of relationships is unique. For 

simple closed chains a vertex is related to itself through 

a single cycle of relationships since the first and last 

end points of these chains are the same point. A type of 

network in which every distinct pair of vertices is related 

by a finite sequence of relationships is defined next. 

Definition 3,3, A network N is said to be cross con-

nected if for every pair of distinct ve~tices of the net-

work, there exists a simple chain belonging to N such that 

each vertex of the pair is an end point of this simple chain. 

The two vertices may belong to the same or to different fac-

tor sets. 

Definition 3.4. A subnetwork Sofa network Non Ax B 

is defined to be a system consisting of subsets A1 and B1 of 

A and B, respectively, together with a subset of the set of 

arcs belonging to N provided Sis a network on A1 x B1 . 
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Example 3.2. Referring to the network in Figure 3 it 

is seen that the subnetwork S consisting of the sets A1 = 

A - {g} and B1 = B - { f} and the subset{(a,d), (c,b), (e,b)} 

of A1 x B1 is not cross connected because for the vertices 

a and b of S there does not exist a simple chain in Shaving 

these vertices as end points. However, if the ~re (e,d), 

for example, is included with·S, then the resulting system 

is a cross connected network on A1 x B1 . 

If a network Non Ax B includes the entire set Ax B, 

then it is apparent that N is a cross connected network. 

One necessary require~ent for a network to be cross connect-

ed is that for every vertex of the network there exists in 

the network an arc c.ontaining the vertex. For otherwise 

there is some vertex not belonging to any arc of the net-

work and for such a vertex there exists no simple chain in 

the network having this vertex for one of its end points. 

On the other hand if for every vertex there are many arcs 

to which it belongs, as in the case of a network Non Ax B 

which includes the set Ax Band in which neither A nor·B 

is degenerate, then there may be many simple chains in the 

network joining a given pair of distinct vertices. A ._net

work in which a unique simple chain joins each ordered pair 

of distinct vertices is described next. 

Definition 3.5~ A basis for Ax Bi~ defined to be a 

cross connected network on Ax B that is minimal with re-
' 

spect to being cross connected. 
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Example 3,3, Tne network shown in Figure 4 is cross 

connected since for every pair of distinct vertices of the 

network there is a simple chain belonging to the network 

such that the vertices of this pair are the end points of 

the simple chain. If an ordered pair of vertices is one of 

a 

b 

c 

(a,1) (a,4) 

(b,2) (b,4) 

(c,1) (c,3) 

1 2 3 4 

Basis for a Cartesian 
Product. 

Figure 4. 

the arcs of this network, then the simple chain consisting 

of that single arc is a simple chain belonging to the net~ 

work such that each of the vertices of the pair is an end 

point of this simple chain. The network in the figure is 

minimal with respect to being cross conn~cted because for 

every network on this Cartesian product whose set of arcs 

is a proper subset of those in the figure there is some 

pair of vertices which are not the end points of a simple 

chain contained in the network. Hence, the network in the 

figure is a basis for that Cartesian product. 

The following theorem establishes the existence of a 
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basis for the Cartesian product of two non-empty sets. 

Theorem 3.2. If Ax Bis the Cartesian product for 

·two non"".'empty sets, then if (a,b) belongs to Ax B, the net

work N consisting of A and B together with the subset 

(!a} x B) u (Ax fb}) of Ax Bis a basis for Ax B . 

. Proof. If x and y are two distinct ve·rtices belonging 

to A or B, then by considering the possible cases, it is 

shown that x and y are the end points of one of the follow

ing simple c.hains belong to N: 

(i) 

(ii) 

(iii) 

. (iv) 

(v) 

( ( x' b ) ., ( y' b ) ) ,, 

( (x, b), (a,y) ), 

( (a,x), (a, y)), 

((x,b), (a,b), (a,y)), 

((a,b)). 

Hence the network Non Ax Bis cross connected. 

Suppose that N properly contains a cross connected sub

network S onA xB. Then there exists an arc (c,d) belong

ing to N - S. If (c,d) = (a,b) and if x € A and y EB, then 

a simple chain in, Shaving x and y for its end points has 

the form ((x,b), (a,y)) and either x = a or y =band (a,b) 

belongs to S which is a contradiction. If (c,d) I (a,b), 

then either c r a or d I band there exists no arc belong

ing to.s such that either d or c, respectively, is a vertex 

belonging to it because every arc belonging to Sis of the 

form (x,b) or (a,x). Consequently S must be empty and it 
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follows that the network N is a basis for Ax B. 

The next theorems establish the uniqueness of simple 

chains from one vertex to another when the arcs of the sim

ple chains belong to a basis and th~Y also indicate the re

lationships between a basis for a Cartesian product, simple 

chains., and simple closed chains. 

Theorem 3.3. A cross connected network Non Ax B 

contains no simple closed chain if and only if for every 

pair of distinct vertices x and y of N there exists a unique 

simple chain belonging to N for which the vertices x and y 

arei respectively, the first and last end points. 

Proof. First let every pair of distinct vertices of N 

have a unique simple chain belonging to N for which these 

vertices are the first and last end points in some order. 

Suppose that there exists a simple closed chain ((a1,b1), 

... ,(ak,bk)) belonging to N and let x be the vertex which 

is both the first end point and the last end point of this 

simple closed chain. Let y be the other vertex belonging 

to arc (a1 ,b1 ). Then the chains ((a2 ,b2 ), ... ,(ak,bk)) and 

((a1 ,b1 )) each are simple chains belonging to N from y to x 

contradicting the assumption of uniqueness for such chains. 

Therefore, N contains no simple closed chain. 

Next, let a cross connected network N contain no simple 

closed chain and suppose ((a1 ,b1 ), ... ,(ak,bk)) and ((u1 ,v1 ), 

... ,(un,vn)) are two distinct simple chains in N each having 
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a pair of vertices x and y for its first and last end points, 

respectively. Then the vertex x belongs to both arcs (a1,b1) 

and (u1, v1). Let i 1 be the smallest index, i 1 < min i k, n }, 

for which arcs (ai1,b11) and (ui1,vi1 ) have only one common 

vertex and let i 2 be the smallest index greater than i1, 

i1 < i 2 < min {k,n}, for. which arcs (ai2,b12 ) and an arc 

(ui3, v i 3 ) of the simple chain ( (u1, v1), , .. , (un, vn)) have a 

common vertex. Then the chain ((~i1,bi1), .. ,, (ai2,b12 ), 

(ui3,vi3),, .. , (uil'vi1)) in N has first and las't end points 

which are the same point and each vertex of the chain be-

longs to exactly two arcs of the chain.·· . Therefore, th;i.s 

chain is a simple closed chain in N. From this contradic-

tion it follows that there do not exist two distinct sim-

ple chains in N having both the same first end points and 

the same last end points. And hence, for every distinct 

pair of vertices x and y of N there' exists a unique simple 

chain belonging to N.havlng x and y as the first and last 

end points, respectively. 

This last theorem is illustrated by referring to Figure 

4 where it is seen that there are no simple closed chains in 

the network indicated there. For the vertices band c of 

this network the unique simple chain in the network having 

band c for its first and last end points, respectively, is 

( (b,4), (a,4), (a, 1), (c, ;t.)). Likewise, for vertices 3 and a 

the chain ((c,3), (c,1), (a,1)) is the unique simple chain in 

the network having vertices 3 and a, respectively, for its 

first and last end points. 
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Theorem 3.4. If the network Non Ax Bis a basis for 

Ax B, then N contains no simple closed chain. 

Proof. Suppose the basis N for Ax B contains a sim-

ple closed chain ( (a1, bl),.,.' (ak, bk)) and let z be the ver-

tex belonging to each of the end arcs (a1,b1) and (ak, bk) 

of this simple closed chain. To show that S = N - { (a1,b1)} 

is a cross connected network on A x B let x and y be a pair 

of distinct vertices belonging to N such that there exists 

a simple chain C contained in N from end point x to end 

pointy and such that C contains the arc (a1,b1). If C 

((a1,b1)), then ((a2,b2),., ,, (ak,bk)) is a simple chain in 

S with end points x and y. On the other hand, if CI 
((a 1,b1 )), then C is a simple chain ((u1,v1), ... ,(ui,vi), 

(a1,b1), (ui+1,vi+1), ... ,'(un,vn)) from end point x to end 

pointy. The vertex z of the simple closed chain belongs 

to either (ui,vi) or (ui+l,Vi+l) since it is a vertex of 

(a1, b1). Suppose that z belongs to (ui,vi). (The argument 

for the other case where z belongs to (ui+1,v1+1) is simi

lar.) Then replacing the arc (a1,b 1 ) by the sequence 

((a2 ,b2 ), ... , (ak,bk)) in the sequence of C gives these

quence of arcs C' = ((u1,v1 ), ... , (ui,vi), (a2 ,b2 ), ... , (ak,bk), 

(ui+1,V1+1), ... , (un,vn)) in.sand in which adjacent arcs 

have at least one common vertex. Let C~ be the subsequence 

of C' which is obtained by successively deleting one arc 

of adjacent arcs which have both vertices in common, i.e. 

by replacing an arc which is repeated consecutively in C' 

by a single arc of the repeated set. Then C~ is a chain in 
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S from end point x to end pointy and by Theorem 3.1 C6 con

tains a simple chain C0 with end points x and y. Since in 

either of the above cases a simple chain is contained in S, 

it follows that N is not minimal with respect to being cross 

connected. From this contradiction the conclusion of the 

theorem follows. 

Theorem 3.5, If N is a cross connected network on Ax B 

such that for every pair of distinct vertices x and y of N 

there exists a unique simple chain belonging to N from end 

point x to end pointy, then N is a basis for Ax B. 

Proof. Suppose N satisfies the hypothesis of the the~ 

orem but is not a basis for Ax B. Then N is not minimal 

with respect to being cross connected and properly contains 

a cross connected subnetwork Son Ax B. Let (x,y) belong 

to N - S. There exists a simple chain ((a1 ,b1 ), ... ,(ak,bk)) 

in S with end points x and y. But this simple chain and the 

simple chain ((x,y)) are distinct simple chains in N from 

end point x to end pointy, This contradiction shows that 

N is a basis for Ax B. 

The results of the three preceding theorems can be com

bined to give the following results. 

Theorem 3.6. The following properties of a cross con

nected network Non Ax Bare equivalent: 

(i) N is a basis for Ax B. 

(ii) N contains no simple closed chain. 
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(iii) For every pair of distinct vertices x and y of N 

there exists a unique simple chain from end 

point x to end pointy belonging to N. 

To show that every cross connected network on a Car-

tesian product of two non-empty sets contains a subnetwork 

which is a basis for the Cartesian product the following 

form of Zorn's lemma is used. 

Theorem 3,7, (Zorn's lemma). If' the partially ordered 

· set Sis such that every linearly ordered subset of S has an 

upper bound, then S has at least one maximal element. 

Theorem 3.8. Let A and B be two non-empty sets. Then 

every cross connected network on Ax B contains a basis for 

A x B. 

Proof. Let N be a cross connected network on Ax B 

and let S be the set of all subnetworks E of N such that if 

Eis a network on C x D where Cc A and D c B, then Eis a 

basis for C x D. Assuming neither A nor Bis empty, then N 

is not empty, so there exist an arc (a, b) belonging to N, 

two sets C = i a } and D = { b }, and a basis E for C x D con-

sisting of c, D and f ( a , b) l · Hence s is not empty. Let a 

basis· E1 for c1 x D1 be defined to be< a basis-E2 for 

C2 x_D2 in S if E1 is a subnetwork of E2 . Then Sis par

tially ordered by<. 

Let K = { Et on Ct x Dt : t E T} be a linearly ordered 

. subset of S. Then if C = U Ct and D = U Dt and if Eis 
te~ tET 
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the system consisting of C and D and the set of arcs {(a,b)): 

(a,b) e Et and t e T}, it is seen that Eis a subnetwork of 

N. The following argument shows that Eis a basis for C x D 

and belongs to S, so every linearly ordered subset of S has 

an upper bound. Eis cross connected because if x and y are 

distinct vertices belonging to C or D, then they belong to 

some Ctx or Dtx and Cty or Dty, respectively, and hence to 

some C0 or D0 where 00 contains Ctx and Cty and D0 contains 

Dtx and Dty· It follows that there exists a simple point 

chain belonging to Eo, and hence E, such that each of the 

vertices x and y is an end point of this simple chain. 

Suppose, now, that Eis not a basis for C x D. This 

means that Eis not minimal with respect to being a cross 
' 

connected network on C x D, so for some arc (a,b) belonging 

to,E the network E - { (a,b)j is a cross connected network 

on C x D. Now, for some index t e T, (a,b) belongs to Et, 

Since Et is a basis for Ct x Dt, there is a pair of distinct 

vertices x and y belonging to Ct or Dt for which no simple 

chain in .Et - { (a,b)}, hence in any Et 1 - { (a., b)} where 

Et1 < Et in K, has end points x and y. Suppose x and y are 

the end points of a simple chain in Et2 - { (a,b)} for some 

Et2 belonging to K such that Et< Et2 and Et I Et2 , This 

chain can not be the same as the simple chain in.Et having 

end points x and y. But both of these distinct simple 

chains having end points x and y belong to Et2 contradict

ing the fact that Et2 is·a basis for Ct2 ><Dt2 . Thus, Eis 

minimal with respect to being cross connected and hence is 
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a basis for C x D. Therefore, E belongs to Sand is an up-

per bound for K. 

By Zorn's lemma S has a maximal element Mon A1 x B1 

where A1 c A and B1 c Band Mis a basis for A1 x Bi, Sup

pose there exists an arc (a,b) belonging to N and not con

tained in A1 x B1 . Then either a e A - A1 orb e B - Bi 

and there exists an arc (a 1,d) or (c,b1) belonging to N 

where a1 e A1, de B - B1, c e A - Ai and b1 e B1, For 

otherwise there would be no simple chain belonging to N 

one end point of which is a vertex of A1 or B1 and the oth-

er end point a vertex of A - Ai or B - Bi, contradicting 

the hypothesis that N is a cross connected network on Ax B. 

It follows that either MU {(c,b1)} or MU { (a1,d)} is a 

basis for (Ai U f c}) x B1 or A1 x (B1 U {d}), respectively. 

Since either of these belongs to Sand is> M, the exist

ence of either one contradicts the fact that Mis a maximal 

element for S. Therefore, A1 = A, B1 =Band Mis a basis 

for Ax B contained in N. 

As a particular situation involving properties (i) and 

(iii) of Theorem 3,6 every element (a,b) of the Cartesian 

product Ax B has a unique representation in terms of the 

elements which belong to a basis for Ax B. The number of 

arcs required for a basis giving this unique representation 

is considered for the finite case in the next theorem. 

First a lemma is established to aid in the proof the theo-

rem. 
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Lemma 3.1. If a network N is a basis for the Cartesian 

product of two non-empty finite factor sets, then there ex-

ists a vertex of N which belongs to exactly one arc of N .. 

Proof. Let A and B be two non-empty finite sets and 

let N be a basis for Ax B. Since N is a cross connected 

network on Ax B, for every vertex of N there exists at 

least one arc belonging to N and containing that vertex. 

Suppose that for every vertex of N there exist at least two 

arcs belonging to N which contain the vertex. Let x 1 be a 

vertex of N. Then there exists a simple chain Ck of the 

form ((a 1 ,b1 ), ... , (ak,bk)) belonging to N for which x 1 is 

the first end point since N is cross connected. If xk is 

the end point of Ck contained in arc (ak,bk), then there 

exists another arc (ak+l' bk+l) belonging to N for which 

xk is a vertex. Either the chain Ck+l = ((a1,b1), ... , 

(ak,bk), (ak+1,bk+1)) is a simple chain or the end point of 

Ck+l belonging to (ak+l,bk+l) is a vertex belonging to Ck 

and hence Ck+l contains a simple closed chain. The process 

of successively adding arcs belonging to N to simple chains 

of Nin the former case may be repeated until the latter 

case holds since N is finite and hence N contains a sim-

ple closed chain. By Theorem 3.6 this is a contradiction 

because N is a basis for Ax B. Consequently there exists 

a vertex belonging to N which belongs to exactly one arc in 

N. 

Theorem 3,9, If A= {ai: i = 1,, .. ,m} and B = { bj: 

j = 1, ... ,n} are two non-empty finite sets, then a cross 
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connected network Non Ax Bis a basis for Ax B if and 

only if N contains m + n - 1 arcs. 

l'roof. Let N be a cross connected network on Ax Band 

first suppose that N is a basis for Ax B. From Lemma 3.1 

there exists some vertex x of N which belongs to exactly one 

arc (a,b) belonging to N. The subnetwork of N which con

sists of all vertices and arcs of N except x and (a,b) is a 

basis for the associated Cartesian product. With this re

sult a monotone decreasing sequence {Nk on Ak x Bk} of sub

networks of N is obtained such that either Ak+l = Ak or 

Bk+l = Bk' but not both, and Bk+l =Bk~ !bjk} or Ak+l = 

Ak - Jaik~' respectively, .where bjk or aik is a vertex be

longing to exactly one arc contained in Nk. Also Nk is a 

basis for Ak x Bk. Let Nk(L) denote a basis Nk containing 

L vertices. Then if N0 = N, the sequence above is 

N0 (m+n) ~ N1 (m+n-1) ~ ... ~ Nm+n-2(2) which terminates with 

one arc joining two vertices in the final network since a 

non-empty network contains at least two vertices. Since 

only one arc belongs to Nk and not to Nk+l' it follows that 

the basis N0 = N contains m + n - 1 arcs. 

Next let a cross connected network Non Ax B contain 

m + n - 1 arcs. An inductive procedure is used to show 

that N is a basis for A x B. Fork = 1 let ail E A. Since 

N is cross connected, there exists an arc (ail' bi1) belong-

ing to N for which ai 1 is a vertex. Let S1 denote the sub-

network of N·consisting of the subsets A1 = {ai1 } of A and 



B1 = {bi1 } of B together with the subset { (ai1 ,bi1 )} of 

A1 x B1, By Theorem 3,6 the n~twork s1 is a basis for 
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A1 x B1 since it is cross connected and contains no simple 

closed chain. Suppose Skis a subnetwork of N consisting 

of k + 1 vertices of t0e subsets Ak of A and Bk of B to

gether with the subset of arcs { ( ai1 , bi1 ), ... , (aik' bik)} of 

Ak x Bk such that Skis a basis for Ak x Bk. If k = 

m + n - 1, then Sk = N and N is a basis for Ax B. If 

k < m + n - 1, then there exist a vertex x € N - Sk, a 

simple chain belonging to N having x and a vertex belong-

ing to Sk for its end points, and an arc (a· b· ) one 
1 k+l' 1 k+l 

of whose vertices belong~ to Sk and the other vertex y be-

longs to N ..... Sk. If y € A, let Ak+l - Ak U { yf .. Otherwise 

y EB and in this case let Bk+l = Bk U {y~. Let Sk+l be 

the subnetwork of N consisting of k + 2 vertices of the 

subsets Ak+l of A and Bk+l of B together with the subset of 

arcs { ( ai , bi ) , .•. , ( ai , bi ) ~ of Ak+l x Bk+l · The net-
1 1 k+l k+l S 

work Sk+l is cross connected since the vertex y is an.end 

point of a simple chain in Sk+l whose other end point be

longs to Sk c Sk+l and hence y is the end point of a simple 

chain in Sk+l whose other end point is some other vertex 

belonging to Sk+l' Since there is a single arc (a. ,b. ) 
1 k+l 1 k+l 

in Sk+l to which the vertex y belongs, this arc is contain

ed in no simple closed chain in Sk+l· And since Skis a 

basis anq contains no simple closed chain, it follows that 

Sk+l contains no simple closed chain and therefore Sk+l is 

a basis for Ak+l x Bk+l by Theorem 3.6. 
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This procedure is continued until a subnetwork Sm+n-1 

contained in N is obtained such that Sm+n-1 consists of 

m + n vertices of the subsets Am+n-l of A and Bm+n-l of B 

together with the subset of m + n - 1 arcs { (ai1,bi1), ... , 

.(am+n~1,bm+n-i)} of Am+n-1 x Bm+n-1 on which Sm+n-1 is a 

basis. Hence Sm+n-1 ~ N and since Sm+n-1 c N, it follows 

that Sm+n-l = N and, therefore, that N is a basis on Ax B. 

From Theorem 3.6 it is seen that for every pair of dis-

tinct vertices x and y of a network on a Cartesian product 

Ax B such that the network is a basis for Ax B there ex-

ists a unique simple chain in the network for which x and y 

are, respectively, the first and last end points. In par-

ticular it is noted that the elements of Ax Bare ordered 

pairs of distinct vertices and for every one of these ele-

ments there exists a unique representation in terms of the 

elements of Ax B, this representation being the unique 

simple chain .in the basis whose first and last end points 

are, respectively, the first and second vertices of the 

ordered pair. It is seen that for representations of this 

type the simple chains contain an odd number of arcs and 

also that if a chain consists of an arc together with the 

arcs of its unique representation chain, then the chain so 

formed is a simple closed chain. The next two examples 11-

lustrate bases in both finite and infinite Cartesian prod~ 

ucts. 
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Example 3,4. Consider the group table of the cyclic 

group of order four in Figure 5, In this case the binary 

operation on the set A= B = !e,a,b,c} gives a unique ele

ment of A for every ordered pair of elements of A. Let S 

be the sets A and B together with the subset of Ax Bin-

dicated by_ the elements with asterisks in Figure 5, Since 

Sis a cross connected network on Ax Band contains 

4 + 4 - 1 = 7 elements, it is a basis for Ax B. The ele

ment {c,a), for example, has for its unique representation 

· in S the simple chain ( (c, c), (e, c), (e,a)) since c and a 

are, respectively, the first and last end points of this 

simple chain.whose arcs belong to S. And by using the 

group operation to identify unique elements of the group 

for ordered pairs of vertices, the unique simple chain for 

(c,a) is expressed uniquely as (b,c,a). It is observed 

that alternating direct and inverse relationships for the 

group operation in the two expressions for the unique re-

presentation and combining terms gives, respectively, 

(c,c)(e,c)-l(e,a) = (cc)(ec)-1 (ea) 

= ceea 

= ca 

= e 

and 

= bb 

= e. 



In this manner every simple chain representation in terms 

of S for arcs of Ax B can be transformed into an element 

of the group. 

B 

e a b c 

e e *a b *c 

a *a b c e 
A 

b b *c e a 

c *c e *a *b 

A x B 

Basis for a Group Table. 

Figure 5, 
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Example 3,5. For an example of a basis for an infinite 

Cartesian product let A= ix: O < x} and let B = {y: O < y} 

so Ax Bis the closed positive quadrant of the plane, Let 

S be the system consisting of the sets A and B together 

with the subset of Ax B which is the union of the graphs 

of·xy 1 and y = 0 restricted to Ax B. Then Sis a basis 

for Ax Band every point {arc) of Ax B has a unique rep

resentation in terms of arcs of'S. For if. (x,y) is an.arc 

of S, then the simple chain ((x,y)) is the unique repre

sentation in S for (x,y). And if (x,y) is an element of 

Ax B not belonging to S, then ((x,0),(1/y,0).,(1/y,y)) is 



the unique simple chain belonging to S representing (x,y). 

The basis for a transportation problem, which was de~ 

scribed in the preceding chapter as a set of routes having 

property B, was a finite basis of the same type as the one 

illustrated in Example 3.4. It is also noted that the arcs 

(routes) of simple chains in the transportation problem ba

sis which were the unique representations of arcs belonging 

to the assoclated Cartesian product could be combined by 

using an operation somewhat analogous to the group operation 

of Example 3.4 to give single arcs. The development here 

stemming from the transportation problem has given notions 

of cross connectivity and of a basis which are defined in 

completely general Cartesian products. Some theorems 

proved in this chapter relate certain properties of these 

networks. In particular Theorem 3.9 shows that the number 

of arcs belonging to a basis for a finite Cartesian prod

uct is one less than the number of vertices contained in 

its twd factor sets. It is an investigation of this prop

erty in terms of topological structure that follows in the 

next chapter. 



CHAPTER IV 

SOME PROPERTIES OF GRAPHS OF FUNCTIONS 
I 

MAPPING THE UNIT INTERVAL INTO ITSELF 

The property of Theorem 3,9 was seen to relate the 

number of vertices and the number of arcs in a basis for 

a finite Cartesian product. This property is reformu-

lated in this chapter in a way that suggests some ques-

tions about similar properties for the Cartesian product 

space formed by the product of the unit interval in the 

space of real numbers with itself. For this investigation 

it is convenient to treat some of the subsets of this Car-

tesian product space as the graphs of functions mapping the 

unit interval into itself. Here it is recalled from the 

preceding chapter that the definition of a graph is the 

same as that of a network on a Cartesian product. In this 

discussion the functions involved will be single-valued 

functions and for them the expression "graph of a function" 

will be used to mean the subset of the Cartesian product of 

the domain and range sets which is determined by the func-

tion. Also for the purposes here a continuum will mean a 

closed and connected subset of a topological space, 

In Lemma 3.1 it was shown that in a basis for the Car-

tesian product of two non-empty finite factor sets there 

35 
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exists a vertex belonging to exactly one arc of the basis. 

It was with this property that a monotone decreasing se

quence {Nk on Ak x Bk} of subnetworks of a basis N for Ax B 

was obtained in Theorem 3,9 such that for consecutive terms 

of this sequence either Ak+l = Ak.or.Bk+l = .Bk, but not 

both, and Bk+l =·Bk - ibjk} or Ak+l = Ak - {aik}, respec

tively, where bjk or aik is a vertex belonging to exactly 

one arc of the basis Nk for Ak x Bk. By this sequence there 

is induced on each of the factor sets A and B functions f 

and g, respectively, whose respective ranges are subsets of 

Band A. Thus, if aik or bjk is the vertex of Nk belonging 

to exactly one arc (aik,bjik) or (aijk'bjk), respectively, 

of Nk, then define f(aik) to be bjik or g(bjk) to be aijk' 

respectively. In this manner them+ n vertices of N cor-

respond one-to-one with them + n - 1 arcs of N except that 

the two vertices of the final basis Nm+n-2 of the sequence 

correspond to the single arc of this.basis and every vertex 

in the domains of the functions f and g has an image in the 

domain of the other function. This shows that for a basis 

N for a Cartesian product of two non-empty finite factor 

sets A and B there exist two function~ f mapping A into B 

and g mapping B into A, having respective graphs F = 

i(x_,f(x)) : x EA} and G = J (g(y),y) : y EB! in Ax B such 

that the union of F and G is the subset of arcs of Ax B 

which belong to N. With this formulation of the conditions 

of Theorem 3,9 it follows from that theorem that the number 

of arcs contained in N is one less than the number of ver-
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tices belonging to N and hence that there exists a single 

point belonging to both F and G. This is illustrated in 

the next example. 

Example 4.1. Let two functions, f and g mapping D into 

A and A into D, respectively, have graphs whose union is in-

dicated by the subset of arcs in the basis for D x A illus-

trated in Figure 6. It is seen in the figure that the point 

(arc) (2,f(2)) = (g(d),d) is the single point belonging to 

both of the graphs. 

a 

b 

A 

c 

d 

(1,f(l)) (g(a),a) 

(g(b),b) 

(2,f(2)) (3,f(3)) 
=(g(d),d) 

----·--------

1 2 3 

D 

Basis as the Union of Graphs 
of Functions. 

Figure 6, 

-

(4,f(4)) 

(g(c),c) 

4 

It is noted that if one of the two functions mapping 

one factor set into the other is one-to-one, then it has an 

inverse function and in this case there exist graphs of two 

functions having the same domain and range sets such that 



the union of the two graphs is the subset of arcs which be

long to a basis. The function g of Example 4.1 is one-to

one and hence has an inverse function g-1 whose graph in 

D x A is the same set of points as the graph of g. The ex

ample then illustrates that the graphs off and g-l have a 

single point in common. 

The next two examples illustrate bases for infinite 

Cartesian product spaces in which the set of arcs of the 

basis is the union of the graphs of two functions one of 

which is defined on the first factor set with the second 

factor set for its range and the other is defined on the 

second factor set· with the first factor set for its range. 

These examples show that it is not necessary for such graphs 

to have a common point if either the Cartesian product space 

is not compact or if the set of arcs belonging to the basis 

is not a continuum. 

Example 4.2. Let A and Beach be the half-open inter

val [0,1) in the space of real numbers. The Cartesian prod

uct space Ax Bis not compact. A subset S of Ax Bis now 

defined by means of graphs of two functions, f mapping A 

into Band g mapping B into A. Let [x] denote the greatest 

integer in x for a real number x. Then let 

f(x) = [x/(1-x)J / (1 + [x/(1-x)]) for x EA 

and let 

g(y) = [1/(1-y)] / (1 + [1/(1-y)]) for y EB. 
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The respective graphs of these·functions in Ax Bare 

F = f (x,f(x)): x E Al and G = ~(s;(y),y): y EB}, Let 

S =FU G. The system S* consisting of A, Band Sis seen 

to be a basis for Ax B. ·In this example Sis a relatively 

closed and connected subset of the.continuum Ax Band 

F n G = ~- See Figure 7. 

B 

1 
A x B 

s 

F 
0 

0 
A 

-------, . . . . ' 

F 

G 

F G 

G 

1 

Ba~is for an Infinite 
Cartesian Product Space, 

.Figure 7. 

Example 4.3. Let A and Beach be the closed unit 
.. I 

interval [Q,l] in the space of real numbers. 1hen the Car-

tesian product space Ax Bis a compact continuum. Let f 

and g be the corr~sponding functions of Example 4.2 extended 

to the closed unit interval such that f(lA) = lB and 

g ( lB) = OA. Refer to Figure. 7. Then. i.f F and G denote 

the respective graphs off and gin Ax B., the union S of F 
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and G together with A and Bis seen to be a basis for Ax B. 

In this example Sis a closed and hence compact subset of 

Ax B, but Sis not connected and F n G = ¢. 

The preceding examples suggest that if the union of 

graphs of the type illustrated forms a basis and if the un

ion of these graphs is a compact subcontinuum of Ix I 

where I is the closed unit interval [O,l] of real numbers, 

then the basis may have the property that two of its ver

tices correspond to the same arc or, equivalently, that 

there is a common point on the graphs of the two functions. 

This leads to the following question if the requirement that 

the union of the graphs forms a basis is omitted. If there 

are two functions mapping I into itself such that the range 

set of one is the domain set of the other and the union of 

their graphs is a subcontinuum of Ix I, do their graphs 

have a common point? The observation of Example 4.1 sug

gests that if one of the functions has an inverse function, 

then two functions having the same domain and range sets 

could be considered in the preceding question. A second 

question, then, arising from this is whether or not the 

graphs of two functions mapping a common domain I into it

self have a common point if their union is a subcontinuum 

of I x I. This last ,question is settled in the affirmative 

in Theorem 4.4. It is an investigation stemming from this 

question that follows. Some properties of connected graphs 

of functions mapping I into itself are developed in the next 

theorems. 
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Theorem 4.1. Let a function f defined on the unit in-

terval I in the space of real numbers and mapping I into 

itself have a graph Fin Ix I such that Fis closed. Then 

Fis a subcontinuum of Ix I. 

Proof. Let f xn} be a sequence in I converging to x0 . 

The limit x 0 of this sequence belongs to I since I is closed, 

Every subsequence of the sequence '~ (xn,f(xn)) } in the graph 

F has a convergent subsequence with.a limit in F of the form 

(x0 .,y) since Fis compact and every subsequence of lxn} con

verges to x0 • But since f is a single-valued function, it 

follows that y = f(x0 ) and hence that the sequence 

{ ( xn, f ( xn)) f converges to ( x0 ., f ( x0 )). Consequently { f ( Xn) ~ 
converges to f(x0 ) and f is continuous. By Theorem 4.21 of 

(5, p. 76) the subspace F of Ix I is homeomorphic to I if 

and only if f is continuous, and by this homeomorphism it 

follows that Fis a compact subcontinuum of Ix I. 

Theorem 4.2. Let g be a real valued function on a non-

degenerate closed interval of the real numbers Rand suppose 

its graph Gin Rx R is connected and not closed. Then G 

contains a limit point of G - G. 

Proof. Since G is not clo~ed, G is a proper subset 

of its closure G, and since G is connected., G is connected. 

Let F = G - G. Since G =FU G is closed and connected, 

either G contains a limit point of For Fis closed. Sup-

pose it is the latter condition which holds. Since Fis 

non-empty, there exists a point (x,y) E F and it follows 



42 

that (x,g(x)) i F. Consider the closed subinterval L of 

{ x l x R which has (x,y) and (x,g(x)) for its endpoints. 

The subset of this interval not contained in FU G is non

empty and open (relatively) and contains a point (x,y) not 

belonging to FU G. Since (x,y) is not a limit point of 

the closed set FU G, there exists an open connected rec

tangular neighborhood D = U x V of (x,y) such that 

D n (Fu G) = ~- Since (x,y) and (x,g(x)) are both limit 

points of G, there exist points x1 and x2 belonging to U 

such that (x1,y) and (x2,y) belong to Dandy separates 

g(x1 ) and g(x2 ) in R. See Figure 8 . 

. ---·------,~------------------

i s 
I. ..0 

R x R 

Illustration for Theorem 4.2. 

Figure 8. 

Let s1 and s2 be the closures of the components of 

R - {1} containing g(x2 ) and g(x1 ), respectively. And let 
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S0 be the closed subinterval of U which has x1 and x2 for 

its endpoints. ·Le.t S be the union off x1 } x S1, f x2} x S2, 

and S0 x f y} · in R x fL Since g is a single-valued mapping., 

neither of the sets jx1! x Sl and fx:2 } x s2 contains a point 

of G. The set sO x {y} .is a suoset of D and hence contains 

no point of G. ~herefore the set S contains no point of G 

and, furthermore, S separates Rx R into two mutually sep

arated subsets, one containing (x1,g(x1 )) and the other 

containing (x2 ,g(x2 )), whose union contains G. Since this 

contradiction follows from the assumption that Fis closed, 

it must be that G cbntains a limit point of F. 

The theorem Just proved shows that if the graph G of a 

funct:;i.on mapping I into I is connected but not closed, then 
,...... 

it conta.1ns a limit point of G - G. The next theorem shows 

that the graph G of a function mapping I into I contains a 

point of every closed subset of Ix I whose union with G is 

a subcontinuum of Ix I. The following lemma is needed for 

the proof of the theorem. 

Lemma 4.1. Let L be a closed and bounded interval 

[x0 .,y0 ] in the space of real numbers. If His a decomposi

tion of L such that the elements of Hare subintervals of L, 

.then there exists an element of H which is a closed sub-

interval of L. 

Proof. Suppose that the collection H contains no mem

ber which is a closed subinterval of L. Then every member 

of His a non-degenerate subinterval of L which does not 
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contain both of its Let K:::; { x [x,y) 
I 

end points. : E HS· 
The set K is not empty since it contains Xo, and since K is 

bounded there exists a least upper bound x fol;' K. It fol-

lows that x EL since Lis closed and bounded, and hence x 

belongs to some member H1 of H. If H1 = [x1,Y1) or if 

H1 = (x1,y1 ), then there exists an interval [y1,z) belong

ing to H, and hence Yl EK and Yl > x · contradicting the 

fact that xis an upper bound for K. If H1 = .(x1,Y1J and 

x EK, then x < x1 < x which contradicts that xis a least 

upper bound for K. Therefore xis contained in no member 

of H which is not a closed subinterval of L. Consequently, 
i 

H contains some closed, possibly degenerate, subinterval of 

L~ 

Theorem 4.3. If g is a mapping of the closed unit in-

terval I in the space of real numbers into itself and G is 

the graph of gin Ix I, and if F iscinon-empty closed sub

set of Ix I such that the union of F and G is a subcontin-

uum of Ix I, then there exists a point belonging to F n G. 

Proof. Suppose that F n G = r,i. Let {Ga: a E A} be 

the collection of components of G for some index set A 

where a= b if and only if Ga= Gb. For every a EA let 

Ha= {x: x EI and (x,g(x)) E Ga}, i.e. Ha is the projec

tion of Ga in the domain of its first coordinate. Since a 

projection mapping is continuous, it follows that for every 

a EA, the image Ha of Ga under the projection is a connect

ed subset of I. Furt:nermore, the members of the collection 
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H = {Ha: a e A} are pairwise disjoint; for if x e Han Hb, 

And since I= U Ha, the 
a EA 

collection His a decomposition of l whose elements are con-

then (x,g(x)) e Gan Gb and a= b! 

nected subsets of I. From Lemma 4.1 there exists an element 

Hb of the collection H such that Hb is a subcontinuum of I. 

With the assumption that F n G = ¢, the set F = 

(FU G) ~ G. The conditions (l) Fis a closed proper sub

set of the continuum;F U G, (2) G is compact, and (3) Ga is 

a component of G for every a e A, satisfy the hypothesis for 

Theorem 51 of (8., p. 18) from which it follows that F con-

tains a lim:it point of Ga for every a e A. Hence for every 

.a EA the component Ga of G is not closed. In particular 

the component Gb whose projection Hb is a subcontinuum of I 

is not closed. Since~ is non-degenerate, .it follows that 

Hb·is a non-degenerate closed subinterval of I and, with re

spect to Hb, the conditions of Theorem 4.2 are satisfied. 

By that theorem Gt contains a limit point (~,y) of Gb - Gb. 

Since (Gt, - Gb) c F, the point (x,y) belongs to Gb n F which 

contradicts the assumpt:ion that F n G =·¢. 

The following theorem concerns two functions each map

ping the unit interval I into its~lf and shows that if the 

union of their graphs in Ix I is a continuum, then for 

some point of their common domain I both functions have the 

same value. 

Theoriem 4.4. Let I be the unit interval [0.,1] in the 

space of real numbers. If.F and Gare the graphs in Ix I 
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of two functions f and g each of which maps I into itself 

and if the union of F and G is a continuum, then F n G j ~-

Proof. In the proof of this theorem a property is de

fined for certain subsets of FU G, and a subset of FU G 

having this property is shown to be not irreducible with re

spect to this property if F n G = ¢. Also shown is that 

this property is inductive whereby a subset of FU G is ob

"tained which is irreducible relative to this property. Then 

it is for this subset that the condition F n G =¢gives a 

contradiction. 

Let two functions f and g each mapping I into itself 

have graphs F and G, respectively. A non-empty subset of 

FU G has property P if it is the union of the graphs off 

and g restricted to a compact subinterval of I and is a com

pact continuum. Under the hypothesis of the theorem the set 

FU G has property P, so the collection of subsets of FU G 

having property Pis non-empty. Next suppose that F n G = ¢ 

and let [x0 ,x1J be the compact subinterval of I associated 

0ith a set K which has property P. Since F n G = ¢, the 

interval [x0 ,x1 ] is non-degenerate. Otherwise x 0 = x 1 and 

the continuµm K consists of (x0 ,f(x0 )) U (x0 ,g(x0 )) which 

must be a single point which belongs to FU G which is a 

contradiction. For convenience of notation suppose that 

f(x) < g(x) for x 0 < x < x 1 . This results in no loss of 

generality since an interchange of points of F and G does 

not affect either FU G or F n G since F n G = ~. The 
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closed subinterval of {x0 } x I having end points (x0 ,f(x0 )) 

and (x0 ,g(x0 )) is nondegenerate and has a midpoint (x0 ,y) 

which does not belong to K. See Figure 9. 

1 
(xo,g(xo)) 

[xo,xl] x I 

I R 

I (xo,y) 

l 
(x ,f(x )) 

I (x3,f(x3)) 0 0 
o- I I I I 

1-------. -------- - . .-{--

XO X3 X2 xl 

Illustration for Theorem 4.4. 

Figure 9, 

Since (x0 ,y) is not a limit point of the closed set K, 

there exists a rectangular region R = [x0 ,x2) x (y1,Y2) o

pen in [x0 ,x1 J x I where y1 < y < y2 such that Rn K = ¢. 

If there exists an x € [x0 ,x2 ) such that f(x) > y or 

g(x) < y, then for such an x the set ({x} x [O,y]) U 

( [ x 0 , x] x { y } ) or the set ( { x } x [ y, 1] ) U ( [ x 0 , x J x { y } ) , 

respectively, separates Kin [x0 ,x1 ] x I. From this contra

diction it follows that for every x € [x0 ,x2 ) f(x) < y < g(x) 

and that if {zn} is a sequence of points belonging to [x0 ,x2) 

which converges to x, then the sequences {(zn 9 f(zn))} and 
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{ ( zn ,g( zn))} converge to (x, f ( x)) and (x,g(x)), respective

ly, since K is compact. Consequently the functions f and g 

are continuous on [x0 ,x2 ) and for every point x € (x0 ,x2 ), 

the graphs of the restrictions off and g to [x0 ,x] are ho

meomorphic to the arc [x0 ,x] by a Theorem 4~21 of (5, p. 76). 

Let x3 € (x0 ,x2 ). Then the points (x3,f(x3)) and (x3 ,g(x3 )) 

are cut poin~of Kand each of them separates K into two 

components. It follows from Theorem 60 of (8, p. 25) that 

the set K1 =Kn { [x3,x1 ] x I} is connected. Hence K1 is a 

non-empty compact proper subcontinuum of Kand has property 

f. Thus, the subset K is not irreducible with respect to 

property P. 

Next let K1 :::::, K~t :::::, .. , :::::, ~ :::::, ... be a monotone 

decreasing sequence of non-empty compact continua every one 

of which has property P. Let Dn be the compact subinterval 

of I which is associated with~ by property P for 

n = 1,2,, ... Then fnnJ is also a monotone decreasing se-

quence of non-empty compact continua. Let K = n ~ and 
n 

D = n D . 
n n 

By Theorem 9.4 of (9, p. 15) both of the sets K 

and Dare non-empty compact continua.· If x ED, then x E Dn 

and (x,f(x)) U (x,g(x)) c ~ for n = 1,2, ... from which 

(x,f(x)) U (x,g(x)) c K. Also if (x,f(x)) or (x,g(x)) be

longs to K, then (x,f(x)) U (x,g(x)) is contained in Kn and 

x E Dn for n = 1,2, ... and hence x e D. Therefore, K is 

the union of the graphs off and g restricted to the com-

pact subinterval D of I. This shows that property Pis an 

inductive property. 
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Since the non-empty compact set FU G has the inductive 

property·P, it follows from the Brouwer Reduction Theorem 

(9, p. 17) that there exists a non-empty closed subset K0 

of, FU G_which is irreducible with respect to property P. 

But with the assumption that F n G =¢it was shown above 

that a set with property Pis not irreducible relative to 

property P. Hence, for ~he subset K0 of FU G, the assump

tion that F n G =¢results in a contradiction and therefore 

the conclusion of the theorem is obtained. 



CHAPTER V 

SUMMARY 

The initial part of this study is concerned with the 

notion of unique representation which is illustrated in 

Chapter II as a property belonging to a basis for a trans

portation problem. This unique representation property is 

generalized to Cartesian products in the absence of the 

algebraic field structure of linear spaces required in the 

usual treatment of the transportation problem. A general

ized basis is developed as a network on a Cartesian prod

uct and its existence is shown for arbitrary Cartesian 

products. The previously known result of Theorem 3,9 for 

finite networks shows that the number of vertices of a 

basis for a Cartesian product is one larger than the num

ber of arcs belonging to the basis. This result is seen 

to be an extension of the property that a single arc has 

two end points. 

The subsequent portion of this paper is an investiga

tion concerning an extension of the property given in Theo

rem 3,9 for a basis for a finite Cartesian product to an 

infinite Cartesian product. Examples indicate that addi

tional conditions must be imposed if a similar property is 

to be obtained. The Cartesian product for the investiga-

50 
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tion is taken to be the topological space which is the Car

tesian product of the unit interval in the space of real 

numbers with itself. With a basis formed as the union of 

graphs of two functions each mapping one factor space I 

into the other and with the conditions of being both closed 

and connected imposed on the union of the graphs in Ix I 

the following question is considered: Does there exist a 

common point on the graphs of the two functions? It is an 

affirmative answer to this question without the condition 

that the union of the graphs be a basis and with the mod

ified condition that both functions have the same factor 

space for their domains that is the main result of the in

vestigation. If one of the functions has an inverse func

tion, then this result applies with the condition that the 

domain space of one function is the range space of the oth

er. It is an open question if neither of the functions has 

an inverse function. 

Several other questions for future investigations are 

mentioned. The result obtained here applies if the union 

of the graphs of the functions forms a basis, but it is not 

known if every basis for Ix I which is a compact continuum 

can be formed in this manner. Another problem is to charac

terize the Cartesian product spaces in which the property of 

the main result holds, Simple examples show that it does 

not hold on a cyclinder or torus, both of which are compact 

continua and which have a cyclic factor space. 
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