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PREFACE

It is the purpose of this study to find a general and widely appli-
cable method of solution of the laminar mixed convection heat transfer
problem, Mixed convection refers to those flow and heat transfer situs-
tions which are neither clearly forced convection nor free or natural
convection,

The application of the integral method to mixed convection heat
transfer was originally suggested by Dr, J, D, Parker, I am also in-
debted to him for his encouragement and suggestions during the course of
this work and for his insight into the almost deily problems which arose,
I wish to thank Dr, D, Grosvenor of the Oklahoma State University Com-
puter Center for making aveilable the considerable amount of computer
time that has been used, Thanks are also extended to my wife, Ardyce,

for her heroic typing of the drafts and final copy.
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NOMENCLATURE

Symbols are listed in the order of their appearance in the text.

Xy ¥ = coordinate distances

Gr, = Grashof number, !?l-,@'l(;\;’—Tw})XB

g = acceleration due to gravity

V4 = volumetric coefficient of expansion

T = fluld temperature as a function of x and y

Tw = wall temperature

T = free stream temperature

», M = fluid viscosity, >)=/§§

Use = free stream velocity

U = longitudinal free stream velocity as a function of x

just outside of the boundary layer

u, v = velocities within the boundary layer
£ Pos = local fluid density and free stream density
P = fluid pressure
8y = X component of acceleration due to gravity
R = universal gas constant
k = fluid thermal conductivity
C = fluid specific heat st constant pressure
P
o - T
Tw "‘Tbo

. Ux

Re = Reynolds number, =5

.
Uy = U
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temperature profile function

Prandtl number, 2
o¢

velocity profile function

dimensionless velocity boundary layer thickness
dimensionless thermal boundary layer thickness
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52
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57"/_—
JT - 95,
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, boundary layer thickness ratio,
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temperature factor, 9]77 = (I-—/U")
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velocity factor, u,],z=, = wr

velocity profile coefficients
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order of derivatives of uy or & at the boundary layer edge

clU.>

-+ 1
Filrg iz

viii



Hy, Hp, H5 = polynomials in A) Z2=0

q = heat transferred per unit time
h = heat transfer coefficient

N ux = Nusselt number, %Z/é

/L'w = fluid shear stress at the wall
Cp = wall friction factor, %

Y = constant in (TW—T.,.,) =YX

J = (_RV— ee>
= heat transferred per unit time per unit area or heat flux
. ! py) Uea '/Z '
) - ¥Flpre)
l9l-2

Yw , ratio of viscosity at the wall to free stream
Ve viscosity : :
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CHAPTER I

INTRODUCTION

The purpose of this thesis is to present & reasonably complete anal-
ysis of mixed convection heat transfer associated with the external flow
of & fluid over a vertical or nearly vertical surface., Mixed convection
implies that both free and forced convection effects are present, This
study is restricted to the laminar flow of an incompressible fluid, in-
compressible in the sense that density varies only with temperature and
only in the buoyancy body force term of the applicable differential
equation,

Fluids with Prandtl numbers from 0,01 to 1000, & range which in-
cludes liquid metals, gases, and viscous oils, are investigated. Flow
situations are those for a flat plate and a wedge in an infinite medium,
The effects of variable properties and different boundary conditions at
the wall are analyzed.

The mixed convection problem is & challenging one since it involves
the interaction in the boundary layer equations of the Reynolds, Gras-
hof, and Prandtl numbers, surface geometry and surface thermal boundary
conditions, and the orientation of a body force. The buoyancy force,
which is opposite in direction to the fluid body force and which is
characterized by the Grashof number, is always present in forced convec-
tion. The determination of the buoyancy effect on forced convection and

the conditions existing when that effect becomes important are two objec-



tives of this study. Another is to explore further the popular integral
method: to see if it can be improved so as to work more effectively on
this type of problem, to determine its degree of accuracy, and to find
out how practical the integral method is for different mixed convection
geometries and boundary conditions, The fourth object of the study is
the exploration of the velocity distributions of different Prandtl num-
ber fluids in the boundary layer when free and forced convection are
competing.

Let us consider an example of a mixed convection problem which
might arise during the designing of a nuclear power reactor, Suppose
that for some reason the reactor was to be shut down after a long run.
Afterheat removal is necessary, and the designer must be able to calcu-
late the cooling fluid flow rate that would be required to do this,
However, to cover possible emergency situations, he would alsoc want to
know the minimum flow rate that could be used and at what point free
convection effects alone were reliable,

The integral method for solving pertial differential equations of
the boundary-layer type is employed throughout this thesis, By this
method one or more partial differential equations can be reduced to
ordinary differential equations, which in turn cen be more readily in-
tegrated, The integral method yields an approximate solution since the
original partial differential equations are not solved at every point
in the field as they should be for exactness, The solution instead de-
pends on the choice of boundary conditions at the wall and at the edge of
the thermal and velocity boundary layers and on the choice of the analyt-
ical expressions for temperature and velocity profiles across the bound-

ary layers,



Mixed convection has been studied by several authors, A, Acrivos
(1958) used the integral method to investigate combined forced and free
convection on a vertical flat plate for fluids with Prandtl numbers of
0.73, 10, and 100, J, R, Kliegel (1959) improved upon the work of
Acrivos and also verified his own theory by experiments with air flowing
over a vertical heated plate, The present thesis further extends the
work of these two investigators and generally uses the same approach
to & solution through the integral method but with significent modifica-
tions, Sparrow, Eichhorn, and Gregg (1959) errived at an exact solution
for the mixed convection flow of & gas over a vertically oriented wedge
surface although similarity requirements restricted their results to
special cases of wedge angle and wall temperature distribution, Their
results are used to check the accuracy of the integral method employed
in this study.

Rosen and Hanratty (1961) reported on mixed convection flow in a
vertical tube and also used & variation of the integral method. Gill
and Del Casal (1962) and Mori (1961) have studied the effects of
natural convection, or buoyancy effects, in forced convection flow over
a horizontal plate., Mori made use of the integral method, Eckert and
Diaguila (1954) have shown the regime of Grashof and Reynolds numbers
for flow in a vertical tube over which mixed-convection effects are
important, Sparrow and Gregg (1959) have done the same thing for a
vertical flat plate. A good summary of mixed convection work up to
1961 wes given by Gebhart (1961) on pages 273 to 279 of his book,

H, C, Agrawal (1962) used a variational method to solve the mixed
convection flow of a fluid in a vertical rectangular duct at two Ray-

leigh numbers, Finally, Brindley (1963) used Meksyn's approximate



technique to solve the mixed convection problem for a wedge and extended

Sparrow, Eichhorn, and Gregg's (1959) sclution to Pr = 7 as well,

However, Brindley's method is restricted to those situastions in which

a similarity transformetion cen be made,



CHAPTER II
THE INTEGRAL METHOD APPLIED TO MIXED CONVECTION

Convection heat transfer can be described as forced convection,
mixed convection, or free or natural convection, In forced convection,
either the free stream velocity of the fluid is so large or the tempera-
ture difference between the wall and the fluid, the distance along the
wall, and the volumetric coefficient of expansion of the fluid are all
go small that free convection buoyancy effects can be neglected, Con-
versely, in free convection the temperature difference, body length,
and expansion coefficient are controlling, and any one of the three can
become large enough to override the effect of at least a small free
stream velocity and cause the flow situmtion to be essentially a free
convection one, This combination of circumstances is well described
by the value of the ratio of two dimensionless parameters, the Grashof

number, =
Gh., = Ig’l/g'l(Tw—Tm)[ 4
x 2)3

and the Reynolds number squared,

Rn..: = (%)z :

Their ratio, which occurs as a coefficient in the buoyancy force

term in one non-dimensional version of the boundary layer equation,

(Appendix B), is: .G;n"—z e l%lﬁ ’%—V;'TM)‘ el

Lo




For small values of er/ReXQ, the flow situation is forced convec-
tion since inertia forces dominate. For large values of er/Rex2, the
quantities in the numerator have become important, the buoyancy force
term is large, and the flow is free convection, Mixed convection occurs
for intermediate values of er/Rex2, between about 0.1 and 15.0, as will
be shown,

Forced and free convection problems have been solved in the past by
the integral method, This method was first used in boundary layer prob-
lem solutions by K, Pohlhausen, The method is especially useful when no
exact or similarity solutions can be found for the governing partial
differential equations, With the availability of digital electronic
computers the integral method is most useful, for example, in reducing
e two-dimensional velocity and temperature field problem to a one-dimen-
sional problem involving two ordinary differential equations which the

electronic computer can easily handle,
The Governing Equations

The steady-state, two-dimensional boundary layer equation derived
from the Navier-Stokes equations by boundary layer assumptions is

(G +vi4)=- 21 -4E +4 2

This single equation with its body force term, —f?z , implies
that there is no force term of significance in the y-direction and
that %2 = 0, The orientation of U_, & 4, V, and the immersed
body's surface are shown in Figure 1.

If the above equation is evaluated at the edge of the boundary

layer, the result is
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Fig. 1, Orientetion of Immersed Body

dU '
waa‘;:".ﬁ,?x—S’-g s

dP _ _
3-32“ .Paa ax ‘Pwvé—g

Then upon substitution for ELP in the boundery layer equetion,

p(uld + ”91;,)= U%—“%(f -f) +. 4 U 7 .

For constant ﬂ , Where p is the volumetric coefficient of expansion,

fo - -
Z= 1+ p(T-Te)

or

Therefore,

W)= 9= 2(E-1)= 9 pp(T-Tx) -

With the assumption that %; 1 and is therefore not significant

as a coefficient of Uﬁﬂ , the boundary layer equation becomes
x

R
‘bl.g_;-lz +w 2l =g, 8 (T-Tu)+ Ua’.gq-y 3_?;%2 .

]



The buoyancy term, ?),/@(T—T&) , is :necessary for free convective action,

For a perfect gas, at any x,

P _ T(Y)

Py T

since P=f. at any given x, and P=p RT. Therefore,

P BrP)= 9 p (L -1)= 9 p-L (T-T-)
L

which implies that for a perfect gas, B = -;i-r_; , and not ?- .
The constant property mixed convection problem is described com-
pletely by the boundary layer equation with its buoyancy term, by the
thermal boundary layer equation, by the continuity equation, and by
boundary conditions, one of which specifies that,LLgﬁo . The three

equations involved, the boundary layer equations, are:

U U - T dU 24
=t ?x/é(TT>+U;‘7 ‘*‘J)Jy‘z

Q

The problem is to solve these equations simultaneously for the three
unknowns, u, v, and T, in terms of the space coordinates, x and y., This
is essentially what the integral method does, but it solves the equa-
tions in an indirect menner,

Appendix B details the two consecutive transformations of these
equations to their final non-dimensional form in terms of uy, v2; o, Z,

Yo, and the Prandtl number, Pr. After the first transformetion, it is



seen (Appendix B) that the buoyancy term is i(er/Rexz)e, as mentioned
earlier, The signs preceding the term are necessary since er/Rex2 is
always positive., The plus sign refers to the normal aiding flow case of
a fluid being heated in upflow or cooled in downflow, The minus sign
refers to the opposing flow case, a fluid being heated in downflow or
cooled in upflow,

The results of the transformations in Appendix B are the non-
dimensionalized boundary layer equations in the new variables which
will be used hence in this thesis. They apply to steady-state, con-

stant-property, non~dissipating flow,

w 2t QU —+ U2+ UdlU U 2%

,a'z'_z +/Vz 2?; Z]l + ‘;-]_ZL + I_a—?-zz (1)

W2 ya 20 = U 28

|az+ zZ‘fz —}5/-,1- 2?; (2)
2 Lo =0 (3)

In these equations the new independent and dependent variables are

defined ast Gy
Zz= 7?5;?
Ye = % VR 2
U
U=
and

M=%€W%Y%{



10

The dimensionless temperature is

T“‘Tao
o= —=
To-Tw
and the dimensionless velocity just outside of the velocity boundary
layer is U = __..U .
i er

Appendix C deteils the usuel steps employed to convert equations
(1), (2), and (3) to their differential-integral forms, the momentum in-
tegral and the energy integral equations, In their more general forms

for a velocity distribution Uy about a body they are (Appendix C):
! {
£ (U6 [$0-fan] +U 4L 5, [ (i-f)dn
_ — 772 ! (4)
=it (lr. 1 (43)

d y __ U roe
t [t = 5 (5, 2

The four definite integrals and the two partial derivatives in
equations (4) and (5) can be evaluated and the resulting two simultane-
ous ordinary differential equations in é; and J;b with Z as their in-
dependent variable can be solved numerically if uy and © are known as
functions of y, and Z, Since uy end © are functions of Vs end Z, the
procedure at this point in an integral method solutioﬁ is to let Uy and
8 be represented by some type of series in Yy with the coefficients of
the individuel terms in the series as yet undetermined functions of Z,
Tﬁese coefficients will actuelly be expressed‘in terms of Jé and‘c‘fr2 .

which are themselves functions of Z; J% and )}k are, of course, in=-
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dependent of Yoo

It is also convenient to use 7( and 7?%, to replace Yy in the ser-~
ies representations of u, and €. Since 7Z=—_. _%_ and 7?T= 2& ,

4; JTz

the integrations that are required in equations (4) and (5) cen be per-
formed to an upper limit of one instead of to upper limits of 5% and
J}k . The introduction of 72 and 77T' also mekes it much easier to
apply boundary conditions at the edges of the boundary layers to Wy and
© since now 77 =1 or 77.,. = 1 instead of '?z-—-d; or %2; 0(7;,.’ . The
final results are naturally the same whether 7? and 7Zr or y, are
selected to form the series for uy and &,

The introduction of the two parameters é; and é}é ; the velocity

and thermal boundary layer thicknesses, makes possible the evaluetion of

the improper integrals that occur in the integral equations (4) and (5).
For exeample, =
f’d, (U- %) O(?z
°

becomes the readily integrable

élﬁi{%“‘{)dﬂ-

In this exanple, J; represents the Y, distance at which the integrand
uq (U;=uq ) becomes zero and stays zero, and the integral therefore is
bounded, Similarly, ‘ffa represents the Vs distance at which the in-
tegrand in fée&('lyz becomes zero and the integral bounded, 8Since the
[}

parameters é; and ‘ﬁﬁl arise in this way, they can be physically mean-
ingful dependent variables,

However, it is at this point that the integral method displays some

of its weaknesses. In actuality Wy approaches U, and & approaches zero

1
”m ”
asymptotically; that is, jz—Zﬁ and 12_9 ,y n=1, 2, 3,...,

Y, Yy

are all zero as y, approaches infinity. But in the integral method it
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is the practice to say that u, = U1 gt Yo = 52 , and 6 = 0 at Yo =

5

z °
defined, for example, by Schlichting (1960), as the point at which u, =

Further, the velocity boundary layer thickness is customarily

.99 Ugs the true thermel boundary layer thickness would have a similar
definition, say 6 = ,01 at y, = ‘ﬁtz . Also, the neture of the integral
method requires that the lgrgest value of n be some reasonably small
number instead of infinity, siﬁce it has been specified that uy = Uq and
6 = 0 at some finite trﬁnsverSe distances, éé_and 632 , contrary to
the definition of an asymptoté.

The series representations for uy and 6 were chosen to be polynomi-
als in 77 and 7?.,- whose coefficients a, b,' Cy.». and A, B, C,,., are

functions of J; and é}k (or Z) as stated abovet

U

—ﬁ,-‘-r- f(7(>= ¢7Z+,Z7?z+,<;723+"'
and |
e =»4(7z7->= 1+A7Z7-+B7Z7:a+ C‘_—)?T'?_;_.,,
The form of these two polynomials allows & to equal one and u1/U1
to equal zero at the wall or the surface of thé immersed body, The
evaluation of the coefficients and the degree of the polynoﬁials will
&epend directly on the other boundary conditions that can be applied at
the wall and at the edges of the defined boundary layers, If a suffi—
cient number of bounﬁary conditions cou1d>be found and a corresponding
pair of high degree polynomials employed for u1/U1 end 6, the resulting
final solutions for Uys Voo and 6 as functions of Z and Yo would closely .

approach the exact solutions of equations (1), (2), and (3). Anything

o

less, of course, is responsible for the necessarily approximate nature

of this type of solution.
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Selection of Boundary Conditions

It was decided to use both similar and equal numbers of boundary
conditions on u, end 8, so that in the limiting case of Z = 0, which
would imply pure forced convection, for a Prandtl number‘of one and for
a flat plate with constant wall temperature, the velocity boundary layer
thickness, d;, , w&uld equal the thermal boundary layer thickness, cﬁna.
This equality is dictated by the similarity of the velocity and thermel
boundary layer equations under thése'special conditions where the buoy-
ancy force term is small enough to be ignored: |

S A
9 + Nz é%? = éizi
rA Eryé?

7Y
These two equations obviously would have a common solution,

At the edges of the boundery layers, at 7?T % 1 and 7?. =1,
6=0

and

U=y

There are also available & finite number of "asymptotic" boundary

conditions at 71 = 1 and 7ZT-= 12

2}.(.'- -_:_éfyn' _—__-;.aj’y"s -_-_,--.-:O
IYa M= Y, n=t 2Y; 7=
so] _Zel_. .o

20 | _

2Y P} _33__

9 o 33 nol %z 7@:!
It was decided to employ these boundary conditions up to the third

partial derivative although the use of only the first and also only the
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first and second derivetives was evaluated at the same time, If the
final forms for 6 are plotted against 7@T it is seen, Fig.‘2, that the
use of three derivatives gives a better simulation of the shape of an
exact solution temperature profile curve thean either the use of one or
two derivatives, The same would be true for the velocity profile,

If equations (1) and (2) are evaluated at the wall, where u, and

V4 8re zero, z ]
2| ~-(xy+ 4y )
oY, |w 4z

e

and
22
2
ayz Jw

Further, if equations (1) and (2) are each differentiated with

= 0.

respect to Yos

ey 20 +9U 20 |4 20 4 o5 20 _ U JB

W

T TR T oy 7R By,

Since g—zﬁ—‘—'a_/uj from the continuity equation, at the wall:
Y2

2, | _ 26
ayfw +U ag

U 2e | _ oy ae
B %, oYl "

Subsequent differentiations of equations (1) and (2) with respect

and

to y, would introduce partial derivatives of the coefficients with re-



]

1.0
v Fxact- Solution
\ —————— = 2

0.8%F Q\\ —— o = 3 n
0.6F
0.4%
0.2

h

p

Figure 2. Comparison of Temperature Profiles From a Wedge Flow -
Exact Solution, z = 0, Sparrow, et al-(1959) and
From the Approximate Solution With One; Two, and
Three Asymptotic Boundary Conditionms.
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spect to Z, This would greatly complicate the determination of the co-
efficients of the polynomials representing u.]/U1 and 8. Therefore, this
procedure was not utilized beyond one differentiation, For example, the

next differentiation of equation (1) gives

2%, 1 )Y,

U T U | aaz | 2
?ﬁ w 1 %L W Q?LBZ W
which involves terms in & and ;ﬂ? » Wwhere a is the first coefficient
Iz
1ng(’()

The six boundary conditions on uy then are:

1“:]7=t‘= -LL ! (6)

z

U, 2%, | >,
= %3 = O (7)

o
!

g,, M= 973; N=1

2

e,

o

2
+ 1 . dU
Z (8)

%
d ?

-

and 3
2, _ 26
E_Zﬁz,__+‘[j"__ ’ (9)
gj"w %"W

and the six boundary conditicns on ©, if & constant wall temperature is

assumed, are:

e] = 0 (10)
Tr=!
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2 23
e | - 26| _ 28 | _ o (11)

=0 (12)

and 263 |
.15
M (13)

The twelve boundary conditions selected will allow the polynomials
chosen for u1/U1 and © to be determined in terms of é&; s cfnb s 7z ,
and %?T’ although they are only epproximetions to the true velocity and
temperature profiles, Nevertheless, when these approximetions are in~-
serted into the momentum and energy integral equations, (4) and (5), the
final solutions for uy, vy, and 6 will satisfy the condition of conti-
nuity and the conservation of energy and momentum. The results, there-
fore, can be misleading and must be carefully weighed against known

exact solutions and other criteria.
Evaluation of Coefficients
The polynomials that represent u1/U1 and © are now writien asi
—y—t=%(7l)=@7(+/ﬁ- 2 dn en”, 7(‘
T 7z/c7f N 7 +% (14)

and

0= #{(?Z.,-)= L+AY7, + By + C?Zf—r— D777—4— (15)
+ E7r " FWT‘
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since a total of twelve boundary conditions are available,

The six derivetives of equetions (14) and (15) with respect to y,

that are required by the boundary conditions are

I E A (“’*2/ 7{)3/077*44724-537?

" (Z,Z-(—é/o?z-ﬁ—/ZC/?Z +2ae7z+30(77 )

5
73—%4%’ %( + 244 + c0en +/20/7Z)
L 28
o1y, IMr

.
_g_gz__,. =J (A *25727-: 3C777. 7" 4D7774 -,4-55777—-
‘+‘6F72‘T 2
_ | 2 3
%;9-: = 3> (28+6C7, +12D7% "+ 206 7+ 30F 7% ),

9yw = 35 (6C+ 24D 71 GOED + 120F 7,7 ) -

First, looking at the temperature profile coefficients, from
equation (10),
A+B+C+D+E+F =-1,
from equation (11),
A+2B+3C +4D+5E + cF =0 ,
B+3C + 6D+ I0E+I5F =0 ;
C +4D+[0E+ROF =0,
and from equations (12) and (13);
B=0
C=20
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The four linear coefficient equations are solved simultaneously

to give! A=_Z
D=5
E=-6
F= 2
so that

O=l-27m +5m%en."+27:°. (16)

The coefficients of © are constants and not functions of Z, The
approximate integral method predicts that all temperature profiles for
any fluid are similar in mixed convection for a constant wall tempera-

ture, Heat transfer at the wall, however, is proportional to éﬁ% i] and

since aﬁ _ Q_@ L __Z_ , ayb w
aww w-— o 3"1 w o2
heat transfer is inversely proportional to the thermal boundary layer
thickness,
Equation (9) is applied as a boundary condition on uy after the

expression for © has been determined,

The coefficients of the polynomial expressing u1/U1 can now be

determined. From equation (6),

®+»(;/'+¢c+d+.e,+{= 4

and from equation (7),

w+2¢+zp+4d+5@+é/=o
,g'+3,c,+60(+102,+/5,{=0

/C+4c(+IOL+ZO(=O



If these four equations are solved for b end c,
@t d+ e +‘{=1—K—/c
®+4-cé+5,§,+6%=—2%—3,/c,

cd + IOL+'/5BZ= —/—B/C,
4 +roz,+zo§=-_/c

From equation (8),

L (2f)=-[t U+ %]

2 L dy
b=-%(t1+5 93

or

From equation (9),

Lce)=-tu(-£)

" 5> & 5,
-— -+ -'L et — —£ i’} — JT
;( — N 3 5 where A - Jz
2

= = -

an
The introduction of A= —% affords a convenient variable, the

Iz

ratio of the thermal boundary layer to the velocity boundary layer

20

thickness, which will replace Z;EL . It is also moré convenient to use

2
é;' instead of gié as the other dependent vaisble, The two dependent

variables then that will be solved for in equations (4) and (5) are,

therefore, 2 5%/ Gh S*
521 = -};2- —R—;Li; (‘Q‘ex) = 72' Z ax P

and = éi:& = fét_ = -ZZL .
4 Ja, P} ?77'
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2
4\ and éﬂb can subsequently be used to find the velocity and
temperature at any‘point within the boundary layer and to find the local
Nusselt number and local shear stress at the wall,
The coefficients of the velocity profile polynomial cen now be

written as:

L&
< = 3 A
2 2 -
Cé: —5+Jzﬂf;_§'-% (17)
2l
Z
L-6-4y L%

where

7 U d=z
For a flat plate, j = +1 for aiding flow (upflow with heating or
downflow with cooling) and j = =1 for opposing flow.,

Reduction of the Differential~Integral Equations to First-
Order Differentiel Equations in ¢§,* eand ¢4

dz  dz

The individual terms in the momentum integral equation, (4), can
be solved in terms of the velocity and temperature profile coefficients,

8, b, ¢,... and A, D, E, and F, as follows:



3 5 e
h[s-3-f-%-g-5-4 ]
+.C i“%"‘é“%”%“é“%j
Ax-¢-4-5-5-%F]
+4 é”%*—gﬁgﬂ%—%“/zj

<_é_%ﬁ ) 2 U
2%% w Jz

Similarly for the energy integral equation, (5):

(Qﬁ) _ A
I w O
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(18)

(19)

(20)

(21)

(22)

For O(T-;V<52- or A(i s Which implies PA;>1 , the integral in

equation (5) takes the form

ﬁ.@of«gf U &A[% 5 A7,
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=5, U[w (14 2+ 57 §)
+ha*(5+5 545+ )
+eof(F+ é’*‘ép‘*§+7%>
rdoi(trZ B £+ ) 7
tLE (g S+ B EE)
+{Aq(%+§+%+%+%)], 4< 1 |

In other words, this integration need only be performed out to the
edge of the thermel boundary layer, for from there on 6 is zero,

If JTL>5 or A >_1_ , B, <! , the ebove integration is performed

s ser P -
(s by [ Thdyou [ [T 4[R2y, ],

since £ = 1 when "%7‘> JZ . Here, {=((7Z> and 4:%(’47).

Theé_iirst integral in /the brackets is
[ {4 dg= 5 (4497
J f(awé?( +/C7Z 0(77 +,¢7Z {726)(14—,44;
D 21’21.4-5 Zz‘s >6{7z
= 4, f{(;ab?z-f%?( +c? +6/7 +L7Z +{’f’(
* @ Ay S e ) B
—i—(aﬂz -nZ?( -+/c’)z+c/77 +“Z7Z 1(;Z/o __D;
+(®7(+/7]+ ’T""GW? —h@?Z’D {7’( )As’
+ (m(-f-ﬁ?( rc? e dn "+ M") j“(’l
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fdoged-bet)
EN A f)A
+(3+4+§+Z+—’7—+ N
@b, e, d 2 D
+<é+ﬁ+8+°’+75+%)‘54 (24)
o, b, < £ E
*’(‘f?*a*'é‘*%*//*/é)z—s
~ .
The second integral for the case of A> 1 is
7 T2 Y 2 }
J'J?L f(i+A§ +D”4"“éﬁ"5+’:ﬁz‘e>0{%
2 7; >
I
_ l& D 5 = ¢ 7 %
(b2 SLer S b8 (o)

Equations (18) to (25) are expanded forms, for the more general

case, of the individual terms in the momentum and energy integral equa-~

tions, (4) and (5). They apply to mixed convection flow of & fluid over

an immersed body, with its mejor axes vertical, a constant wall tempera-

ture, and constent fluid properties,

Equations (18) to (25) are next substituted into the integral equa~-
tions, (4) and (5).

The result will be two simul taneous first~order

differentisl equations in d

:12‘ ¢ ’
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5%15{'(5;:A,£)

and f%%é _ 6!2' (ééfi‘A , Zz )

for a given Prandtl number,

(26)

In turn, if starting or initial conditions can be determined, these
2 2
two equations can be solved numerically for é& and A . é? and A
are finally used to find velocity and temperature profiles, Nusselt

number, and wall shear stress at any Z.



CHAPTER III
MIXED CONVECTION FLOW OVER A VERTICAL FLAT PLATE

For a verticel flat plate, the integral equations, (4) and (5),
simplify considerably since dU1/dZ =0and Uy = U /U =1, They

become

g—,-_.[ {(-¢)dn]= 7 ¢, AH dpr + ag,,) 21)
andji[f?j{,e Jng{l = ;;7‘) (28)

For a flat plate with constant wall temperature, the 6 profile is:
e-’:%(ﬁT) i 2?T+577T 67ZT+2777
or

A=-2,D=5,E=-6, F=2 ,
This was also the expression for an arbitrary constant temperature sur-

face,

The velocity profile is as before
2 3 4 s €
=%(7(>= a,’)z-ﬁ-%?z + 7 +a/7( +en T+ %7’(
but with the coefficients modified for the flat plate case (j = #1)s
2

2 | J
+ — L %2
L= 2%023 T 355 =

26



27

d=-5= 6, .- ;; é%%
2
P
L= GF 5z _—a.sf—
p-
6'.-_-— :toBJ é—_%é-

The upper signs of the pairs * or ¥ refer to aiding flow,
Upon substituting these coefficients into equations (18), (20), and
(21), Chapter II, combining to make up equation (27), performing the

ds}

differentiation with respect to Z, and solving for Tz ° the result is

A (29)
where
_ f— 4 = 2 _ L5
= (7 75;A+4'-*?5z i %) (292)

and

&
j,/ = ("'o 000825/00? Az + 0. OOO/528/0/7 é—
- 0. 0000 379867/2__2_ ) (29v)
Pt '

and

= (0.10933511 7 0.0031635034 &, = 0. 000777 5.+
¥ 0.00123765/4 & & 1000038 ROz&542 %4 (29¢)
— 0.00004748 33 89 fai >
In the limit as Z = Gr /Re goes to zero or approaches pure forced
convection, 5:' also approaches zero although A remains gremter than
zero, Therefore,

dé&” _
dz , © 1093357/

. = 36.584771 (509
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Calculation of the numerical coefficients in equations (29b) and
(29c) has been carried out to eight significant figures, No difference
in computer answers was noted between doing this and leaving the con-
stants in their common fraction form, Originally these constants were
carried to only six significent figures with drastically inaccurate
digital computer énSWers. This inaccuracy occurred because numerous
additions and subtractions are performed in the final differential
equations with numbers that are almost equal to one another,

In the same manner, substituting the velocity and temperature pro-
file coefficients into equations (22) and (23) for AL I and into
equations (22), (24), and (25) for A > ] , combining to compose egua-
tion (28), performing the indicated differentiation with respect to Z,

and solving for %%% , gives

J‘Z
o az,"'/'z %l‘éz—

dz = |7 =2 (31)
where
CLZ." AEAZ‘FK )
r2
bs-(Ht385 Hy)
2 4
and sz)'ZO(z Sj—g' i‘Z(g, f:]j-_%&

If A<], which implies 5%> 15 H, and Hy, which are functions

only of A , are

H = 01194762 4% 0.0202... 4% ©,01298703 4°¢
—0.0024975024 A"

and
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He=-0.0019841274 + 0. 011904 76 2 &~
3

— 0.007/42856 74 0.0026936027 A%
+ 0.00512265514°-0.00223,002 4 A°
+ 0.0003746 253647

For A71, or R,(j_, as is the case for gases and liquid metals,
H==0.28571429 (I-Az) + 0, 11904762 2~

-4 - _

=0,0202: 4 +0,0/298704 A 50;00249’75023A €

and

H, = ©.0095238096¢ -0.,00833-- A '+ 0. 001587301 A~F

-4 -
+ 0. 00144300144 —0,00/394-90/4 A fo. 000482850434 ¢
— 0, 000058R75058 &~ 7.

2

The derivatives dH’ and %ﬁz arise since C[Hl,zg c} H/)z . O/A .

dA A dz da  dz2
Equations (29) and (31) are solved simultaneously for dA/dZ and
2

%% to give

{:}5:,2 - a’/ ’c'z. + wZ ’él

dz ~ o, -4 4, ~ (32)
and CJA = a;L/C, -+ OJ'%L

dz <, -4 Fa ' (33)

"These two equations are solved numerically for 52. and A (Appen-
dix A) after initial values for 4 and dd are found at Z = 0, since
sz d2
?fé has already been determined in equation (30).

[+
In order %to find Aa ; 1t is noted that the denominator of equation
Z

(31) is zero at Z = O where JL-?O . To put equation (31) into an inde-

terminate 0/0 configuration so & limit can be found as Z approaches

zero, the numerator is made zero by letting
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For A<], >, the consequence is
Lo - 5200 +8.0988892 Qs - 47 666... 0,7
+ @3.777. ) (B) = o
and for AY] ,R,< 1, ,
Lo- AL+ (0.4166... — 038267258/, ) Al
- 0.070 7+ "Aoz+ 0.04545 Ag— 0. 0087412579 = O

These polynomials were solved numerically on an IBM-1620 for Aﬁo.

The correct root was easy to discern since the others generally were
either negative or had imaginary parts., Occasionally a second real
positive root would appear but it would be either much too large or
much too small, A semi-log plot of Pr vs 4, , Fig., 3, compares this
present calculation with Acrivos (1958), His values of Pr as a function
of ﬁ% were obtained without considering the third derivatives of uq and
@ at the surface and with two "asymptotic" boundary conditions on uq and
only one on 8, The present plot shows that Zﬁ°= i at F%J= 1 , as it
should, Eckert and Drake's (1959) relations of A°=0,02,é B/B ‘lfor F}b?’i
and &’=A:‘—?Af—f+3§f4— -for R,é i, fall véry close to the present curve,
although both of these equations are a little off the desired value of

A,=1 at Pr = 1, The use of one, or one and two, instead of three
asymptotic boundary conditions at 7z or 7%.= 1 did not change the plot
discernibly. As noted earlier, Z = 0 impiies pure forced convection, so

Figure 3 is also the Pr vs 4 relationship for forced convection flow

over a flat plate for all laminar flow Reynolds numbers when the param~-
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§
T
100+ Ao =
-y ‘ z =20
| l\
]
‘_ e Present Solution
\ = —= e Acrivos (1959)
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Figure 3. Pr vs AO for an Isothermal Flat Plate.
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eter er/Rex2 is negligibly smell, wall temperature is constant and dis-
sipation effects are unimportant,
i%%i} is more tedious to find. Equation (31) is of the from 0/0
(=]

as Z approaches zero, so L'Hospital's Rule can be applied, The result is
+
s _de]  on L&Dy (2&7)°
U O ATy
d Z(E;‘? da gz L% P )
= Z; is obteined by one differentiation and & simple limiting
process applied to equation (29)., Finally,

da |[_ _ - 58477/ Hy(20)+ H 0 (/57231 74200 —0. 34129 2, ")

32 d H L ©03¢445038
EIA o Agz PAJ

This equation was solved with the previously determined 43;3 , for

Prandtl numbers of 0,01, 0,73, 10, 100, and 1000, The d_Azl for op-

posing flow is of opposite sign to that for aiding flow, With A, ,

dA] , and .G-'-—j determined, and knowing that Jz ]: , equations (32)
o ®

d=z dz .
and (33) can now be numerically integrated to obtain é;,and A for any Z,

Heat Transfer and Shear Stress

The local Nusselt number can be found from the following general

‘considerations. The heat transferred per unit time from the wall to the

% - hAGT =4 A Y 5 Lo
= 20
97?] 47 G‘WT» W-%MW—

fluid is

from which

%”(Tw )

The Nusselt number related to a distance x along the body is
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va=%=—-7‘§§]w »’

. [ G
Since %2;-: %’ﬁ% /‘é;,? p
— Q-Q ] = Nu?: F“e’%z‘
9?2« W t/ IS ]/;;;‘ ] (54)

The shear stress at the wall is

K g‘; ayj = /R @

and therefore, the friction factor, Cg— 'fC/zs is
92{.} = R 22 /a/» 2 Gl

Consequently,

2
L& e /R
U Y, * “V Ghs (35)
For the flat plate problem of this section,

Mg BZ _ _ A - 2
Rt | Ghoe 5,4 &4 (36)

Cs q/fié — L 4
fé‘x C—_Tm, U; (J +0.2 *.,%f) (37)

These two quantities, equations (36) and (37), are calculated and

and

printed by the computer at each Z point at which é; eand A are printed
out.
Since pure forced convection is represented as Z - 0 and pure free

/ 2
convection as Z —»es , plots of V%i—‘ g__%_ and Zcif }RQ;J “;2222’:
Lx 2 2

vs Z should show asymptotic behavior to free and forced convection known
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solutions at either end of the graph,
From Eckert and Drake (1959), for forced convection over a flat

plate with constent wall temperature, Pr > 0.7,

/V'U)‘ = 0,332 =9 /3\/@%

and for Pr £ 0.05,

N’ux - Vpﬂx '\//D/b
155 B, + 3.09\0.372-0./5 Fb

From the first of these two expressions,

/ | s
M TRz _ 0332 %
&ﬁ%x GAx V2

and from the second, for Pr = 0,01, N

Nux R _ 004992 .
/?2;; 22;5;; ' V =

These are the forced convection heat transfer function asymptotes for a
u =

x| Ry
IRé% VGl

The free convection heat transfer function asymptotes mre found from

plot of vs Z,

Ostrach's (1953) numerical resultss

/\/7-(7: Rz; _ -0 '707)“/&)
l/? Ghw Z 4

where H'(0) is Ostrach's temperature function derivative at the wall for

a given Pr,

In a similar fashion, the free convection friction factor asymptotes

are C Fak-b _ 7 2;
%\[@\}gﬁ = I414F (o). 2
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where F#(0) is Ostrach's stream function second derivative at the wall
for a given Pr,

From Schlichting (1960), the forced convection asymptote for the
wall friction factor is 9_{ l?f _@@: _ 0,332
2z R Gl =
which is & common asymptote for all fluids and independent of the
Prandtl number, The asymptotes described above are the dashed lineé in

Figures 6 and 7, plots of the heat transfer function and the friction

factor or wall shear stress function vs Z,

Numerical Integration

Z

The numerical integration of the equations for %% and j'AZ' as
functions of é%fgand £\ is explained in Appendix A, This section will
describe in addition the problems encountered in these computer solu-
tions and present some of the remedies applied to the problems,

When the flat plate differential equations for 5% and A were
written with constants evaluated to only six significant figures, some
integration results were questionable, For example, for Pr = 10, alding
flow, one discontinuity after another occurred in E%é% as Z increased
from zero, For Pr = 100 and 1000, aiding flow, the Nusselt number and
friction factor plots compared favorably with asymptotic criteria, but
velocity profiles showed extreme forward and reverse flow peaks, How=-
ever, the aiding flow case for Pr = 0,73 and the opposing flow cases for
21l Prandtl numbers; with the exception of Pr = 1000, were satisfactory,

Moreover, when the constants of the differential equations were more

carefully evaluated to eight significant figures, it was found that Nus-

gelt number and friction factor values were now unacceptably far off for
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moderate and high Z values, with even worse velocity profiles for Pr2
10, aiding flow, This change to greater accuracy did not affect the
answers for Pr = 0,73, aiding flow, or Pr = 0,01 through 1000, opposing
flow,

If é; is defined alternately as the transverse distance at which
uq = welUy and é}i'the distance at which @ = (1-v), where w and v are in
the range of 0,95 to 1,05, then results which were questionable using
the standard method Uy = Uy and € = 0 at,7Z=377-= 1 become more satis~-
factory for certain combinations of w and v. Thus, for example, for the

» ‘
integral &Ja,ai"u,)d%z, , if w = 1,02, the integration is performed %o
(2]

Yo = 5£ where u, = 1.02U,, & fictitious upper limit to u;. Since

1
7-.—. %.L = i at this point and U, = f('/l )"U.l, the transformed inte-

T, |
2 e i s .

gral is still the same, JZU' j((l-() CI}'L , and it is still bounded by
our definition of a boundary {ayer thickness at which the integration
terminates, The integrend, f(1~f), is now 1,02(1=1,02) = ~0,0204 at the
upper limit, instead of zero, This device of using w and v factors en=
abled computer integration to proceed to more scceptable solutions in
some of the cases considered, It is believed that the w and v factors
allowed & better mathematical simulation of the initial transverse in-
tegrations to infinity, required in the integral method, by modifying
the velocity and temperature series representations, or profiles, in
such a way as to account and compensate for the loss of the true asymp=-
totic boundary conditions on Uy and 8 at infinity.

At this point, "numerical experimentation® was begun with the w and
v factors, so that u{]ﬂfi: w instead of one, and 9]7 =T (1=v) instead of
zero, This idea originated with Hugelmen (1964), wh: used & velocity "w

factor” to settle down an otherwise intractable integral method integra-
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tion for magnetohydrodynamic flow arcund a circular cylinder,

It was evident in aiding flow that the equations integrated cor-
rectly for small Z, or the forced convection range, but were unsatisfac-
tory for Pr2 10 at high Z. The final solution to this particular
problem, therefore, was to phase-~in the w and v factors linearly up to
Z = 0,10, thus letting the w and v correction act mainly in the mixed
and free convection renge. The ultimate choice of w = 1,03 and v = 0,95
was made from & study of the behavior of the Nusselt and friction factor
plots, for Pr = 1000, from Z = 0,01 to 1,0 with trial variations of w
and v, These selected values were then used in integrating from Z = 0O
to 1000 for Pr = 10, 100, and 1000, The results given in this chapter
for aiding flow for Pr 2 10 were found by this method. Numerical inte-
gration was stable, Velocity profiles were more normal in appearance,
Well~behaved Nusselt and friction factor plots at high and low Z asymp-
totes were thus the criteria for acceptable results with aiding flow af-
ter it was ascertained that no error was being introduced by rounding
off constants in the differential equations,

Another difficulty, slluded to above, arose from the discontinui-
ties in the differential equations, No discontinuities cccurred for Pr

>10, aiding flow; but one discontinuity did occur at Pr = 10, Z = 98.5,
. 48, da
and another at Pr = 0,73, 2 = 0,442, 1In both cases, 2% and R
d= dz
each of the numerators and their common denominator increased or de=-
creased without bound at that particular Z. However, J% and A were
not perturbed near these points since the discontinuities were sharply
s . 29 Y,
defined over & very small range of Z. Since = and ; the
2yﬂv w Jg% w
Nusselt number and friction factor functions, are functions of é; and

4, they too were not perturbed in the neighborhood of the discontinui-
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ties, Therefore, the integration was resumed beyond a discontinuity
point by making a graphical extension of aya:) I”and %Z{"Jwto some new 2,
which in the case of Pr = 0,7% was chosen to be Z = 0,6, for example,
and then calculating values of é}_and 4 for new starting conditions,
No physical significance was asttached to the discontinuities, especially
gince the differential equations for é; and A for the flat plate case
are independent of Z,

The differential equations were not well behaved for Fr = 0,01,
aiding flow, The liquid metal solution was acceptable up to about Z =
0.03 at which point A and CjA begin to increasse apparently without

d2

bound, an indication of a very broad discontinuity as opposed to the
gharply defined ones for higher Prandtl numbers., A reverse integration
from Z = 1000 was also tried where starting values of C%L and A ob=
tained from the free convection asymptotes described earlier were used
but without success, Double precision with eighteen significant figures
and several numerical integration schemes, as well as a variety of w and
v factors, were tried to no avail, It will be seen in Chapter IV that
the equations were integrable in the case of wedge flow and Pr = 0,01.

A situation similar to the case of Pr = 0,01 in aiding flow exists
for Pr = 1000, opposing flow, A broad discontinuity occurred at about

Z = 0,06, and the integration could not be resumed,
Streamline Plots

Streamlines were drawn for the uq and v, velocity profiles that
can be found at any Z, The ) profile was derived in the following way.

From the continulity equation we have
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U _
PE-

l

&

n
R

_ L
T 5,

AV
=R
r

From the equatlon for u, in terms of 71

- 72) ()75 (%) > ()n*
g)ﬁﬁ(%)ﬂ-—zgz—-—(&b?{#—Z/?(
t B3NP+ 4dyt s Ban®+ é{%
=_1 M4
2 297Z

Then, by partial integration with respect to ’l ,

[() E-()F-(5)F
()5 (35 4 52 (2 ﬁj%f

+-‘/c7f-+i¢/725+ Fanle £ 4

As a typical example of one of the coefficients in the expression

for Vs above,

. -+ déz_ / dgz 2
( )“ 0L TF F 3545 (Az/‘é‘“éﬂ‘%)

Flat Plate Results

For comparison, the two differential equations derived from the use
of just one, and of two, "asymptotic" boundary conditions, but with all
the previous conditions at the wall, were solved for Pr = 0,73 and 100,
With Pr = 0,73 both comparison cases, as expected, haa & discontinuilty
at about Z = 0.4; and there were no significant changes in the values of

é&’and.ZS over the use of three "asymptotic" boundary conditions. How=-

ever, with Pr = 100 integrations from 2 = 0 to 1000 showed significant
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differences in heat transfer, shear stiress, and velocity profiles be=~
tween the three cases, Figure 4 compares these results for heat trans-
fer, with n the highest order of the asymptotic derivatives used. The
n = 3 case is obviously best at the forced convection end, and this is
the main reason it was used throughout, The heat trensfer curves for
all three cases drop below the free convection asymptote although n = 1
is superior and n = 2 is worst at high Z,

Figure 5 compares velocity profiles for n = 1, 2, and 3, Pr = 100,
Z = 1000, with the profile obteined with n = 3 and w, v factors (w =
1,03, v = 0,95), The closer the heat transfer function is to the free
convection asymptote, Fig, 4, the more believable the velocity profiles
are, Fig, 5, For example, the n = 2 velocity profile peaks at u, = +1.,8
and -7,1, All of the preceding differential equations had numerical
constants correct to at least eight significant figures,

Figure 6 is a plot of the Nusselt number or heat transfer function,

N Uy ,Qe Z .
ST —2%  versus Z for various Prandtl numbers, aiding flow, n = 3,
VRe. | G, '

and with w, v factors, At the point of intersection of the forced and
free convection asymptotes, the loecal heat transfer in mixed convection
is 2t 1its maximum deviation from the asymptotes, For the range of fluids
between Pr = 0,73 and 1000, this maximum deviation occurs at a Z between
0.5 and 2,0, At this point local heat transfer can be about 25 percent
higher than that predicted from either free or forced convection alone,
Figure 6 also indicates that mixed convection effects are important for
Z generally between 0,10 and 15,

Figure 7 is a plot of six times the local friction factor function

e e Rex . : -

which i8 5377 ﬁ? = . A multiplier of six was used to facilitate

comparison with Acrivos (1958) and Kliegel (1959). Local friction be=
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tween the fluid and wall at Z = 1 can be as much as 75 percent higher

than either free or forced convection considerations alone would pre-

dict., The results for Pr = 10, 100, and 1000 were obtained by using w
and v factors that were determined by observing the results of varying
w and v for Pr = 1000 over the narrow range of Z = 0,01 to 1,0.

Figures 8 through 11 are velocity profiles for the flat plate case,
Pr = 0,73 through 1000, The influence of increasing viscosity and/or
decreasing thermel conductivity with increasing Prandtl number is
evident, The extent of the thermal boundary layer is shown by the in-
fluence of the free convection velocity peak on the total flow, These
profiles are discussed further in Chapter Vi,

Figures 12 through 15 are typical streamline petterns within the
boundary layer derived from Uy and Vo velocity components, Figure 12
for Pr = 0,73 shows the gaseous fluid being drawn intec the higher veloc~-
ity region near the wall from the free stream, In Figure 135 a mcderate~
ly viscous liquid is shown to separate into two regionssg half or more
being forced out of the boundary layer region as the velocity boundary
layer thickens, and the rest being pulled into the high velocity region
near the wall, This behavior is also discussed further in Chapter VI,

Figures 16 and 17 are Nusselt number and friction factor plots for
opposing flow over a flat plate with constant wall temperature, Heat
transfer predictably decreases and falls below the forced convection
asymptote as the flow is retarded by the resultant adverse buoyancy
force, with the exception of Pr = 1000 where no valid answers were ob=-
tained, The separation points, indicated in Figure 17 by the rapid de~
crease to zero of the shear stress at the wall, are just downstream of

the intersection of the forced and free convection friction factor asymp-
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totes for aiding flow, Figure 18 shows the variation of the separation
point with Prandtl numbers for opposing flow, The separation point for
a gas, Pr = 0,73, is in fairly close agreement with an experiment by
Kliegel (1959) as will be discussea in Chapter VI,

Finally, Figures 19 and 20 depict the flow field in opposing flow
as the separaiion point is approached for a gas, Pr = 0,73, and a vis-
cous liquid, Pr = 10, The flow is much less disturbed in the latter

cese,



100¢ L T 7 = T
- _Fi-gure b, Corrii;arison of Heat Transfer Function for
i no= 1, 2,-and 3, Pr = 100, Isothermal.
Flat Plate
= Nu .
vRe Vz_ 9 vy 30g er
¥ X = = n = O , 7 = 2
0 0
\ Y2 _l Y2 nT=l Re
16 \\
8F ~ ]
6
T n=1 - N o
- \ 1
2 §\ =3
n=2
Free Convection
Asymptote \\
1.0 ~-; “‘?—2*_3,3%_
i Forced Convection ,f ~ \Qm ’ .
n Asymptote P\%E\ : ]
SSS
N | \\\‘Q:\ 1 |
n=« \
I n=3 =1 =
0.10 ‘ - * bl — il ! oty
0.01 0.10 1 2

4 6 8 10 100 -

c



0

Figure 5. Comparison of Velocity Profiles, Pr = 100, z = 1000,
Isothermal Flat Plate.

0.

2

0.4

0.

6

71

0.

8

1.0

]
1.2

44



100 7 e

Figure 6. Heat Transfer Function, Aiding Flow,
: Isothermal Flat Plate.

\ G
™~ Py--~mt—3-25G z = -i
A N Re_ 2
10 A ~——

8 - TG0 \\ i
L T . ]

, ) \‘ ) \ \\‘\

N
\\\ \\ \ ]
~ ~ ~ —
. .73 . \ . —
NU N [~
(VRex . /Z_ \ \\ T~ \\\\\ \

l a S = \\E\ \\\ 4
- Forced Convection \\ e S —~ \‘\\ \\ g
B Asymptote \\ T~ I~ \\ N
i \ Free Convection ‘>\\ F \\h‘\ |

nanl\;\ Asymptot T~ ~ T
P
\ \\
e10 N { I { S~ ] i ! 1 I L 1 4 1 L I *\\\ i
0.01 0.10 1 2 4 6 810 100 . 150

¥



100

10

.10

| ¥ 1 1 i T T T [ T 1 ki 1 ] i
:6'[ VRe |
X
‘pr Vz ]
. /" /
I i i
— -1 T s |-
= =T o1l
- ™ \\\, /% /‘/
| AN — —F
- N Tl — " 100
\ ————— —
3 \ ' / .
. /z% 1000
- Foreced--GConvection Asymptote "">\ \\
- Figure 7. Wall Shear Stress Function; Aiding Flow,
i Isothermal Flat: Plate.
] Gr
z = £
Re 2
b4
i 1 i i i { i i i bttt i i SN SO B S I | . i
0.01 0.10 1 10 100 150

v



47

6-»
100 Z
57-
50 4. = ==
s » 1 U
=L /
yl X Rex
GrX
3t z ="
20 : Re .
’ \ ’ X
10 \
2 \

] bpposing'f%OW'
1 2 3 4
Y1

Figure 8. Velocity Profiles, Isothermal Flat Plate,
Pr = 0.73, n = 3. '



. 100 z

Figure 9. Velocity Profiles, Isothermal Flat Plate,
‘ Pr = 10.

n=3,v=0.95 w=1.03



1.0

1.0 1.5 2.0

Y1

Figure 10. Velocity Profiles, Isothermal Flat Plate,
Pr = 100,

49



1.2

0.4ft

0.2H/

' = &
50 v
20 / V1 5% Re
; er
z = e——
Re 2
X
| J 8
1.0 1.5 2.0
4
Velocity Profiles, Isothermal Flat Plate,

Figure 11,

Pr = 1000.

n=3,v ;_0.95, w = 1.03

50



20-

Boundary Layer Edge

20 30 - 40 50 60 70

2

Figure 12. Streamlines, Aiding Flow, Isothermal Flat Plate, Pr.=0.73.

100

g4



25

20

15

10

Z

Figure 13. Streamlines, Aiding Flow, Isothermal Flat Plate, Pr = 10.

24



Figuré 14,

30 40 50 60 70 ’ 80 90 100

Streamlines, Aiding Flow,. Isothermal .Flat-Plate, Pr.= 100,

€4



10 |

1 j i T ! T 7 T
Uoo
B ——— i
N . _ -
& - Boundary Layer Edge — -
R L B
] . } ! 1 i ! I
. 20 30 40 50 60 70 80 90 100
z
Figure 15, Streamlines. Aiding Flow, Isothermal Flat Plate, Pr.= 1000.

4



100

0.10

_\ ¥ 1 T i T -1 T

T Figure 16. Heat Transfer Function, Opposing
\ \ Flow, Isothermal Flat Plate. -
| \ \ _ s
" N _ ° T R 2

~— S €
™S oy \\
~ | ~
B \\ \\ \\\
| B \ NG
Ty L . : <

- N \\ \ NPr = 1p00

Nu N

Nk \ \\\\ 5\\‘:\
\ @ " \ \\ \Q 100
~ /
M %\, \\\
- Y ~ 10
o o N T
\\ , \\\
- S ™~ 0.73
AN -
\>’\

i I L ! ot \qu Lodo bt J Ll d

0.001 0.01 0.10.-- 1 2 4 6 8v 10

44



100 - 1 !r{ T 7T
N Figure 17. Wall Shear Stress Function, Opposing
Flow, Isothermal Flat Plate.
Gr
z = —=
Re 2
x
8 N ]
= &N
6 RSN
- NIANKN
\ 3 N W
i Pr 01 \ 3.& 15\\\19c\
2 N
1 \\ \
- \ \Y A
.10 ' . . bl l ! . - i i §
0.001 0.01 0.10 2 4 6 8 10

4



57

1000 ]
i /‘/(
/’/
. "’,r
100 e
N // ]
- P i
/
, Pr ///
10
8f [ 1
) i
| }!
| 4/
l.‘
Figure 18. Pr vs Separation Point,:
0.10 z, Opposing Flow,
B | Isothermal Flat Plate. i
- ?I (z'= 2.6 Estimated for Pr=1000) |
E Gr j
z = —=
i Re 2 1
x
0.01
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8



o |

1 0.06 0.08 : 0.10 0.12 - 0.14 .. 0.16 0.18 0.20

Figure 19. Streamlines, Opposing Flow,  Isothermal -Flat- Plate, Pr-=0.73.

Separation. Peint at..z.-=-0.20.

=14



4 ; 7

3F .
2 b 4
l o =
0 0.1 0.2 0.4

z
Figure 20. Streamlines, Opposing Flow, Isothermal Flat Plate, Pr = 10.

Separation- Point at z = 0.33.

65



CHAPTER IV
MIXED CONVECTION FLOW OVER A VERTICAL WEDGE SURFACE

Sparrow, Eichhorn, and Gregg (1959) gave an exact solution for the
mixed convection flow of a gas, Pr = 0,70, over a semi-infinite wedge,
The wedge had a constant wall tempersture, and the wedge angle was
chosen so that the velocity distribution over its surface just outside
of the boundary layer was U = A1x%° These two choices allowed a similar-
ity type solution, The purpose of this chapter is to compare the ap-
proximate integral method with the exact solution of Sparrow and his

associates and to extend the approximate solution to Pr = 0,01 for com-

parison with the flat plate difficulties, Pr = 0.01, of Chapter III.
Development of Wedge Equations

Wedge flow being more complicated reguires the use of the full
momentum and energy integral equations of Chapter III.
Since

U _ A

U= .= 3. %

, for any wedge,

then U dU _ (A, T Em
Tz = U;)x .

By following the transformation of Chapter II where Z = x/L*GrX/ReX2

and L was replaced by x,

60
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) 1 = (38)
dz Z2Z
The integral method can, of course, be applied to any wedge angle or
value of the exponent m,

Three "asymptotic®

boundary conditions were used in the wedge solu~-
tion. At first, only two were tried but the resulting Nusselt number
function was 35 percent higher than the exact solution, and the differ-
ential equations for J, and A had a discontinuity at Z = 0,098,

Teo is the free stream temperature outside of the thermal boundary
layer, along the wedge surface, Since the temperature boundary condi-

tions are the same as those of the flat plate, the temperature profile

in terms of %?F is also the same:

o= 1-27.+ é?f,-&Z% ,

A2
pA ’/é/

problem iséﬁ‘-“-%‘]f or 120°, Figure 21 shows the orientation of the

With m = %, and since = , the wedge angle for this
vertical wedge surface,
Once again, Z = Gr_/Re 2, but:
el b [ (w-Teed| 2 _ /, L (T =Te)| 2
Re,c U AZ (x7)%
= lgelpl(mu=T)] .
A=

l

Therefore, for this wedge angle, necessary for a similarity trans-
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Fig, 21, Wedge Orientation, m =

formation to apply in th exact solution, Z is independent of x, 2 is

constant all along the wedge for a given (Tw - T ) if /3 , the volumet~

ric coefficient of expansion, is constant,
The same type and number of velocity boundary conditions are used

as in the general case, Chapter II, If only aiding flow is considered,

these are: K
€| =0

_ 20
A sixth degree velocity profile, (n), is again used, An evalua-
m
tion of the coefficients of 7_ in 6?« proceeds as before with much the

same results, The only difference is that now,
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_ U * 1
4= ZUU C/) '%(‘“E?é

Let j = (1+1/22); the velocity profile coefficients are then the same as
equation (17);
d=2+0.248,4 — 5 23
= ‘ z?".?o A
A

2%
A 5 .
2 7
._,.,545,_% 3 7*2;_
L—é-"é},j/-f-a.{—&

After evaluation of the momentum and energy integral equations of
Chapter II, the two differential equations can again be written in the

form of equations (29) and (31), Chapter III:

dd(z,z__: o@, *’é

mr—

d 2 (39)
and ,.C_Lé. - ’%2, 6{;}
dz /c,_ (40)

These two equations can alsc be written as explicit expressions as
they were for the flat plate:

ds’ . avcora, L
72 e, p b Ay (41)

da _ a,c,+ a, /é,
2 ¢, -4 by (42)

and




However, the 84y b1, etc., terms are more complicated than they

A ]
were for the flat plate, With recognition that d ==—— . they are:
2z°

2
== (Cosr285725,2 +42+0f420‘}'~0 T f}z?;

) 5043845‘5‘ +0.011632812 sz +0.0003/080028 4., 7

~0.0032060532 Iz 5z —-0.006/5281017 22.9

-+0. 0000/8993355‘3:. ) 222( 0.002/09c022 57,

- O, 00062/600545;?/ + 0.000/528/0/7 ‘5‘.‘ > ’

4
/g;l = 0.000825/009 -i%_ + 0.000/528/0/7 di%
5 °
+ 0.00003798¢c7/ 2
AB )

=0,/093351/ - 0.00 3/635‘033&# - 0. 0007770006&f 472‘
4,

+ 0.00I12B3 7654 _@ -+ O. 000352025‘4,2 f_g_
A
—a. 000047483389 J 5

b= (38 4387 Hs )

and

=24, “dH L z28% dH “d
2 = -33_22_4-257_2_/;{5

For Pg_(, 1 or A>T, év_vhere 5
Ta 2 %
J;.{@c{%z f%eaf%wé@d% ,

H = 0.28571429 (&a=1)+ 0.11904 762 5 —0.0202 - .-

3 0.092%‘7042\%3—- o.coz,49750232% s

L
A4
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H,=o. 0095238096 - 0.00595238082>.L

+ 0. col44 30014 2L4 -0.00077402596 A5
+ o. 00049425019

H

and

Hy=—0.00238095234 + 0.0015873016 - Az

—~ 0.00042087542 5 + ¢, ooozaaé 0029 e
— 0. 0000582750858 =5 A

The Hy, H,, and H5 expressions again are different for Pr > 1,
AL g

H = 0.119047620% 0, 020204 5% 0,0/298 70/3 4%
—0.0024975024 A7,

H,= 0.001190476 2 Az— ©.00992 06345A3+ 0. 0040402
— 0.0021645022 A+ 0.000 3746 25 3¢ &' >

and

Hz = 0.00{984 1274+ 0.00277 e B0,002693 6027A
+ 0.00i108225// A ©.000 /665 006 A °

Since

, n>»1 and integer,
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e z
Jé "_.L JZ- 2
b 3575 (55)7),
P R - gb , ¢
by §= oo b Gmor b 45
é - 2,3
w8 4 -4 ()]
the value of c(é-:' as Z approaches zero is

42
2 2
L % - %] = 28.230347

In finding these limits it was assumed that as Z approaches zero,
ék‘ approaches zero, since Z is a function of x1=2m For m = L, this
is not true; but since it is true for any wedge withm & %4, m = & was
considered a limiting case,

As Z approaches zero, the denominator of equation (40) also goes to

zero, Therefore, to make EF%: a 0/0 indeterminate form, the numerator of

equation (40) in the limit must equal zero; or
2 2\ 2
A _2H ci.éz]_Hz(aa;> - o
AgBu 'd?_ ) 42 o

For Pr < 1, & > 1, this reduces to -
8.0658135 4~ 4.2708016 A5+ (0.9868732 - Z/PA) 4L,

+ 0.00469175 A~ 0.02149756L 0 + 0. 00683873 = O
For Pr > 1, A< 1,

z.8442085 A2 0.99/75932 Ac,7+ 2.079394,°
~7.9062874F + 16.2092294,°- 4/B, = O
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These polynomials can be solved for ZSO for any Prandtl number,

Although g%%;] hes been forced to a 0/0 form, successive applica-

o

tions of L'Hospital's Rule failed to produce a limiting value, There~
fore, the integration for Pr = 0,70 was started at Z = 0,02 with start-
ing values of é; and A derived from the exact solution's heat transfer
and shear stress values, The results were satisfactory, That is, there
were no discontinuities in the differential equations; the integration
was steble; and the results were in fair agreement with the exact solu=-
tion, An integration is considered to be stable if, for a given error
tolerance, the overall trend is to larger and larger intervals of inte-
gration as Z increases,

It was found later that integrations started from Z = O with arbi-
trary values of 3%;:]0 and starting intervals on the order of 10™9 were

also satisfactory, For example, for Pr = 0,70, regardless of the choice

da

of dZ'
: . . d4 ( :

ment with those obtained from starting at Z = 0.02, dz would oscil-

dAa

late at first; but as the interval automatically increased, E{Eg would
i

assume a stable value by & Z of about 1077,

i] the values of ¢§; and 4 at 7 = 0,50 were in close agree=-
o

An extension of the integration to the case of Pr = 0,01 was there-~
fore feasible, The integration was successfully carried out to 2 = 100,
The results appeared satisfactory, but there was no exact solution avail-

able for comparison,
Wedge Results

The Nusselt number and friction factor functions used in this chap-
ter are the same as those used by Sparrow, Eichhorn, and Gregg (1959) so

as to facilitate comparison with the exact solution, Figure 22 shows
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the Pr = 0,70 and 0,01 local heat transfer and shear stress resgultis,
The Pr = 0,70 curves follow the trend of the exact solution, but heat
transfer predicted is & consistent 10 percent or so high, and shear
stress is about 10 percent low at Z = 100,

Figure 23 depicts velocity profiles for Pr = 0,01, mixed convec~
tion wedge flow, The Pr = 0,01 profiles for a flat plate would be
similar,

It is interesting that the liquid metal flat plate equations failed
to integrate, but the liquid metal wedge equations integrated without
trouble, It is possible that Z, explicit in the wedge differential

equations, is & stabilizing influence at very low Prandtl numbers,
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CHAPTER V
THE NON=-ISOTHERMAL VERTICAL FLAT FLATE; VARIABLE VISCOSITY

The preceding two chapters dealt with examples of the integral
method as applied to mixed convection flow over isothermal surfaces,
4 more practical problem is mixed convection flow over a surface whose
temperature is not constant, The two cases of non-isothermel surfaces
which will be considered here are linearly varying surface temperature
and uniform surface heat flux, both for a vertical flat plate, The
case of variable viscosity is briefly considered for an isothermal sur=-

face in mixed convection,
Linearly Varying Wall Temperature

The temperature difference between the wall and the free stream is

taken to be directly proportional to the distance along the plate,

(To=Te) = T X (43)

From Appendix B, equation (B5) applied to a flat plate can be

written as

v l(TT=)e) | o[(r-To)e] L P[(Tu-Te)e ] "
2%, 37 Y,

Now, however,
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é)[z7lu--ﬁ&a>€9 e 26 C{ T~ Too
o, lg(m“’%)«% e (e:;%’é. |

= — oo Q;@
(To )5%-% orL

where x, = x/L.
By again using the second set of transformetions, equations (B4),
Appendix B, ' .

2
ae g@ %6 Y L YL R _ 1 2Je

2
[ By
and then replacing L by x, so that Z = er/Rax2 = l? ﬁi/ [
the new boundary layer equation iss
2%
7208 + A8 = = 22, (45)

a% Bg% T P ayb

The energy integrel equation is, therefore,

%[{Zed%} fy,e dYa== 3 = (2%:&) (452)

‘The boundary conditions on wy remein the same, Therefors, as in Chapter

II, the coefficients of the velocity profile éie, for siding flow,

l“’“’z,'é{z
e 4 wS’%JQ‘ cho (46)

and

{-—-«-Z"’ 55;3-:»’&

where ¢ is a8 yet undetermined,
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Five of the boundary conditions on © are the same;

l(sd

7

e °

Z@]:’.O
ay;w

m
2 69:] = O m=1,2, 3
Mr=

However, when equation (45) if differentimted with respect to Yo
and evaluated at the wall, the sixth boundary condition on © becomes

2o B ou -
2%&3\,\, Z()y:' w !

From the first five boundary condition, the coefficients of 8 are

/
=-=Z""/6Ca)
B=Oz
D= é?—'234; , (48)
E=%C-6,
and
:=-§C+Z,
Equation (47) defines C;
2% | _ ¢C
L=
B 4 |_ B %
= = 2
z Qyzw P
2
. oo Bb 47
S Z 2 : (49)
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MYl 92
and _ 06 _ A
oY w 57,
therefore, 2 ‘§2

L = 4 _L

F2

P 4, * )

= + = =

e S, Av+= =%

Upon substitution of this expression for c intec the one for a,

equation (46),

Z
L 5% L &
a4 = Z“*"’f)’é:a".Bo"Z;' . (50)
[ + ol 5 F 2%
300 “z2
Therefore,
4 L é’z ,JL ﬁia 2
SQPJA(Z‘M‘ 2 )
ST =10 h 9y 3é002+&54 =)+ 5 = . (51)

The velocity profile coefficients are now known in terms of ‘gzs
£, and Pr,

From equation (49),

JZ,,
C = QOOP5A3 2,—4—5'5 302‘%" o,

3600 Z + R.3,%A >

Thus the temperature profile coefficients are also determined,

But the use of eguations (46), (48), (50), (51), and (52) to eval-
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uate terms in the two integral equations such as
o /
d fzf@cl ard  d f /—{'d’
% [4] 9 ‘%Z 8_2 Qé( ) 71
d&?

represents a great amount of work before explicit equations for 23_—
and O!A can be found

;]% o

A simpler approach can be employed to illustrate the use of the in-
tegral method, Acrivos (1958) applied an integral method to the mixed
convection problem for an isothermal flat plate; the third derivatives
of 8 and uy evaluated at the wall were not considered; and only one
"asymptotic” boundary condition on 6 and two on u, were used, His re-
sults were satisfactory only for Pr = 0,73, but heat transfer and shear
stress functions were practically identical to the present study for
that Prandtl number, Therefore, it seems appropriate to try the flat
plate, mixed convection flow case, Pr = 0,73, linearly varying wall
temperature, with similar but simpler boundary conditions,

Two "asymptotic'boundary conditions were used on both 8 and Uys and
the third derivatives at the wall were dropped, The details of the solu~-
tion are similar to those previously given., The distinguishing differ=~
ence, of course, is in the use of equation (45a) as the-energy integral
equation,

The velocity profile coefficients are

2.
65_2
= -+' omea
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and the temperature profile coefficients are A = =2, B = 0, C = 2, and
D= -1,
The first differential equation is the same as Acrivos' with the

exception of the last term in the numerator:;

déf . 4+38° 2 57
dz#  0.//746032 — 0003/746033520000055/%’63954 (55)

The differential equation for E%%é is different, however,

do 7= E (M8 )-(l 23 ) %

dz
236; CJF% Z,ér H
ET__ -+ cfA;L

where Hy= 0,1333...4%0.02142857/ A%+ o.co55= .., A

(54)

and M, = 0.0011+..4%=0,011904 762 A +0.005357 1428 A%
— 0.000925925%2 & s

For Pr = 0,73, the starting conditions at Z = O are

H= O.75737809

da - _
Iz ©. 2922 3494

These are found by the limiting processes described in Chapter III,
Uniform Heat Flux

Free convection flow over a uniformly heated flat plate has been
studied by Sparrow (1955) and Sparrow and Gregg (1956)., The first pa=
per was based on a simple integral method solution and the second on a

similarity transformation. GChang, et al, (1964) reported on free con-
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vection on @& uniformly heated plate for low Prandtl number fluids; a
perturbation method was utilized, The only mixed convection constant
heat flux case analyzed has been one for a vertical wedge that mede use
of a similarity transformation to allow an exact solution, Sparrow,
Eichhorn, and Gregg (1959).

This section is an analysis of the integral method applied to mixed
convection flow over a flat plate with a constant heat flux. The plate~
to=free~fluid temperature difference, (Tw -~ T_), is not specified ini~-
tially but can be determined for & given heat flux, U, , and fluid
properties from the two variables 45; and 4 ,

If six boundary conditions are used on both u, and @, the same com-

1

plexities occur that did for the linearly varying surface temperature
case, The velocity and temperature profile coefficients are too lengthy
and involved for convenient coefficient cross-multiplication and subse-

guent differentiation with respect to Z and separation of the deriva=-

dé&,f

Becasue of these complexities, the constant heat flux case was

tives, and gé% , &8 explicit functions,
soived in the same manner as was the case of linearly varying wall
temperature, The third derivatives of Uy and © at both the wall and
at the edges of the boundary layer were not considered as boundary con-
ditions, and the solution was accordingly restricted to a flat plate
and a fluid of Pr = 0,73, |

With reference to equation (44), since (T, - T..) is & function of
X, the thermal boundary layer egquation after the first set of transfor-
mations (Appendix B) is

r
20 , U6 d(Tw-T=) . 406 . L 26
Uon, " mED T a 'S ,
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Upon applying the second set of transformations, equations (B4),

and replacing L by x,

/ 2
v, 26 20 J'_ . Je
Uoe T avg-u*u' T TR oyl 2

where J:: (E—Tw>

and

d (T = Tes)
d =

The energy integral equation is, therefore,

d [(odi]s L (yodn =L (29
a—‘-z_[ofyte ’%‘b ""Jo:ed%z, =3 (agzw p (56)

An expression for J is found in the following ways let g" be the

known constant heat flux from the plate (aiding flow), and therefore,

ﬂ] N

J

or (T =T 32,_] ='%‘ .
i

\.._/Qg

In terms of y2,‘this is

#

caisnr

29 [ _ _ i % __9Q
9%@ " £ (Tw=T~) P2 =72 (57)

! 2 e V2
where @ = % W , & constant for a given

situation,
The coefficients of the 7z and 7(1._ terms in the velocity and

temperature profile polynomials are the same as they were in the simpli=-
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fied linearly verying wall temperature case since the boundary condi-

tions are identical, Therefore, since A = =2,

a@]_ﬁ_ __ 2
Yz |, 2,4 I

Equations (57 and (58) are combined to give

%"
-J =(~9-—£2—-‘-3-—) ’ (59)

which implies that

TG ) ()

The energy integral equation is, therefore,

Zﬂ’;@d 2 3 Adé ’252, 2 Z{'@Cj L"’"""" .._.. R (61)
E’% d H

2
The expression for Cléé is the seme as equation (53), but

(28)

(60)

-z (62)
Z (H+ 5H,)

where H1 and H, are the same as they were for equation (54)

With Pr = 0,73, the initial conditions at Z = O are found to be

and

o

ﬂ] = 0.03817¢489

il
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Non-Isothermal Flat Flate Results

Figure 24 shows the heat transfer results from the integration of
2
the differential equations for %5%% and g%é% with Pr = 0,73, When
the plate temperature varies linearly with x, the local Nusselt number
function is predicted to be about 50 percent greater at a given value of
Z than that for a constant temperature flat plate, A plate with a con-
stant surface heat flux is seen to have a local Nusselt number function

about 12 percent higher at a given Z than a constant temperature plate,
Variable Viscosity in Mixed Convection

The viécosity of liquids is quite temperature sensitive, For
example, the Prandtl number for engine oil decreases by about a factor
of 10 when the temperature of the oil is raised to 200° F from an ini-
tial value of 100° F, This behavior is primarily caused by the vis~
cosity of the oil sharply decreasing with temperature; gf%i is a fair-
ly large negative number, Most high Prandtl number fluids behave in
this way: & viscosity very sensitive to temperature and a thermal con-
ductivity practically independent of temperature, Therefore, it is of
interest to study the effect variable viscosity has on the heat transfer
between the immersed body and & liquid in the mixed convection range.

To illustrate the method of analysis, a constant temperature flat
plate in aiding flow, T, 7 Tees is considered, The velocity boundary
layer equation is written so as to take viscosity variation with temper-

ature into effect:

U U 4 U =0 + L (—?-a fﬁ’!z) .6
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If Pr, Rey, and Gr, are based on Yoo , the free stream viscosity,
the thermal boundary layer equation and the continuity equation remain
the same, The energy and momentum integral equations are the same as

they were for the constant property case except for the last term in

equation (64) below:

< c&of{/(%)a/?(]

fl

/
- Yy (2
5,4 f / dnfr + 22 5 )W (64)

" __ L [Je
%{N,edgb =- 7 —2-%>W , (65)

The type of variation of viscosity with temperature has not yet
been specified, In the development of equation (63) it has been assumed
that fluid density is constent except in the buoyancy force term.

The simpler procedure of letting n = 1 in

)" _ 2",

Jy”m Ir =t Q%LW 77=/-»

is used for illustration,

The @ boundary conditions arej

06
- = Q
2% = ’
and 2 3
[
22 | _ 28 |. o,

Prom which

4
'3’,"'777’""'37”77’ - - (68)
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The boundary conditions on u, aere

2u ] _ 4
2%1 = }
2. (2 Y - (67)
Yo \ Ve EDR )jw !
and
a"l(_y_ M.) __ 9¢ j
be PR ag‘k " ?7‘ w ’ (68)

An expansion of equation (67) gives

L (% %)L

A linsar variation of 2} with @ is now selected, in which 2 in-

creases as © goes from 1 to O,

D= (V-2 ) O + Ve .

4

Since ﬁ% = (7 2k) end 37?% = g——rs ond 1f we define
w Z

K?s ;:)W, equation (69) becomes

_4 K-1) U +KZ§/JZ + 14 =0

E S (70)

Z w

In & similar manner, equation (68) can be expanded and then simli-

fied to
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N |25 a2
2 (K-1 ) ”%} 3 /(JZAM: W+ 1

i
o)

(71)

If u, is written as

U =an+ bt e s dn?

1

with the above boundary conditions, then

| £_2 4L .
0w-3-5 b5

d

and

‘__L__L/_‘_%,c'

u
Ut
Ol

ﬂ' — _@ 222{4 = _é_,é 2 | _ 6/C

Since = 5 ) = and 5 | = ==,
3
equations (70) and (71) can be solved explicitly for the cosfficients b

\EQN

and ¢ in terms of Jz 5 A , and K. 3

- K(K-)a-F(K-1)4E IK 275"
8K(K-1)a+ % (K-1)% LBKD®

and
Z

v’@*%%‘zg%""%m

For ﬁ{ = 1, these four ccefficients, a; b, ¢, and d, reduce to the

same form as those for the constant property case with n = 1,

The momentum and enérgy integral equations can then be evaluated to

2
give -fj% and % .

2
the determination of 4, , %’%] , and C?a@rg,]by limiting processes. The
o Zle

The most tedious part of the sclution would be

differential egquations for d4 and 44 would be lengthy and would have
CER

to be assembled and solved on a digital computer., The computer program
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given in Appendix A would apply with the statements for the new differ=-
ential equations inserted between statement numbers 1000 and 100,

The solution of the variable viscosity mixed convection problem was
not carried beyond this preliminary analysis, This section presents a
method of solution by integral teéhniques and demonstrates the complexi-
ties that can arise from a slight change in the boundary layer equations,
The essumption of a linear varietion of viscosity with temperature would

be accurate for moderate wall-to=free-stream temperature differences,



CHAFPTER VI
DISCUSSION OF RESULTS
Summary and Conclusions

In Chapter I, the three ma jor objectives of this thesis were set
forth as 1) the determination of the effect of buoyancy forces on forced
convection, 2) the exploration and improvement of the integral method,
and 3) the investigation of the boundary layer velocity field when free
and forc?d convection effects are competing.

A straightforward end rational approach to setting up the problem
for an integral-type solution was used, That is, velocity and tempera~-
ture profile expressions were both chosen as polynomials; and the poly~
nemial coefficients were then determined strictly by the applications of
the available boundary conditions. A minimum use was made of specieal
functions and variables such as shape factors and special boundary layer
thicknesses, The three prime variebles, 5; 5 JAN , and Z were employed
for all cases without modification of their definitions, Furthermore,
only the integral equations derived directly from the bdundary layer
equations were employed, These simplifications make extension of the

roblem to other than a constant property fluid and a constant temperas~-
ture flat plate somewhat easier and more understandable, By employment
of the integral method in this manner to the mixed convection case of

steady, leminar, vertical flow of constant property fluids over simple

86
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vertical surfaces, new insights into boundary layer flow distributions
and heat transfer phenomena for & wide range of Prendtl numbers were ob-
tained. The main accomplishments of this study can be listed, not neces-
sarily in order of importance, as:
(1) the determination of constant fluid property heat transfer coeffi=-
cients and friction factors for G—rx/Rex2 ranging from O to 100 fors
() =miding flow over a constant temperature vertical flat plate
with fluid Prandtl numbers of 0,73, 10, 100, and 1000,
(b) opposing flow as in (a) for Prandtl numbers of 0,01, 0,73, 10,
and 100 with the ascertainment of separation points,
and (c) aiding flow over a constant temperature vertical wedge surface

%
for fluid Prandtl numbers of

with a potential flow of U= A, x
0.01 and 0,70,
(2) the development of the method of solution of the mixed convection
problems of constant property fluids flowing over a vertical flat plate
fore
(a) a constant plate heat flux,
and (b) a linearly varying plate temperature,
(3) the simplified solution and determination of heat transfer coeffi-
cients for the problems in (3) for a fluid of Pr = 0,73 in aiding flow
over a vertical flat plate for small values of GrX/Rexgg
(5) the development of the method of solution of the mixed convection
flow of high Prandtl number fluids with viscosity a linear function of
temperature for an isothermal vertical flat plate,
{5) +the determination of longitudinal velocity profiles for constant

property fluids flowing over isothermal vertical surfaces for Prandtl

numbers from 0,07 to 1000,
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(6) the construction of streamline plots of the boundary layer velocity
field for aiding and opposing flow of constant property fluids over a
vertical isothermal plate for Prandtl numbers of 0,73, 10, 100, and 1000,
and (7) the refinement of the integral method solution and ascertain-
ment of its weaknesses and failures,

Acrivos (1958) and Kliegel (1959) have mlso investigated mixed con-
vection flow and heat transfer by means of the integral method, the lat~
performing an experiment as well with air flowing over an isothermal
flat plate, They considered only the flow of a constant property fluid
over an isothermal vertical flet plate, with fluid Prandtl numbers rang-
ing from 0,70 to 100,

Acrivos' approach was similar to the present one although he used
only one "asymptotic® boundary condition on © and two on uy at the
boundary layer edges and did not consider the third derivatives of u,
and ® at the wall as boundary conditions, He gave heat transfer coef-
ficients and friction factors for Pr = 0,73, 10, and 100 in aiding and
opposing flow situations, Only the results for the gas, Pr = 0,73, were
sa.tisfactory, Other Prandtl numbers resulted in discontinuous plots.

He did not present velocity profiles or streamline plots,

Kliegel used the same boundary conditions as Acrivos except that he
introduced a second "asymptotic" boundary condition on © and an expres~
sion for uq as & polynomial in 72 and ﬁ%r to account for the coupling
between the velocity and temperature fields in the mixed convection
range, He gave heat transfer and shear stress results for fluids of Pr
= 0,70, 6, and 100, His results for aiding flow for Pr = 0,70 and 100
agree with the present study although he, too, did not present velocity

profile or streamline informetion. Kliegel's veloecity profile was actu-
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ally a superposition of a free convection profile upon a forced convecw
tion one and therefore could not represent the type of velocity profile
found by the present method and shown in Figures 9 through 11.

Some general conclusions and observations can be made as a result
of this study of mixed convection phenomena, The first is the conclu~
sion that in the mixed convection, aiding flow regime both the heat
transfer coefficient and the friction factor are greater than either
free or forced convection considerations alone would predict, The mixed
convection regime can be defined as the range of GrX/Rexg, or Z, over
which the increases in heat transfer and friction are, say, 5 percent
or more, For a gas this would be 0.15 < Z < 5 based on heat transfer
and 0,02 << Z <C 20 based on shear stress, A rule of thumb for any
fluid would be to consider increasing the local heat transfer coeffi-
cient when Z is greater than 0.10 but less than 15, The heat transfer
increase 1s greatest at the Z value where the heat transfer coefficients
based on pure free and forced convection are equal, that is, at the in=-
terssction of the free and forced convection asymptotes, TFeor fluids of
0,01 £ Pr € 100 this increase is about 25 percent but is considerably
less for very high Prandtl numbers of around 1000. At this Z value the
shear stress may be as much as 75 percent higher than the asymptotic
values, but this fact is of less practical importance in free convection,

In oppesing flow the buoyancy effect causes separation at very
small values of Z; and the smaller the Prandtl number of the fluid is,
the earlier the separation occurs., Prior to separation, the local shear
stress and heat transfer are less than the pure forced convection values
and, &t separation, the local heat transfer coefficient will be about 30

percent low, This separation at low Z indicates instability and the on-
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set of turbulence, and thus heating in downflow or cooling in upflow

should be most effective for Z greater than one,

/V'Z/;t
VR VZ

e e _ %l (1T x

Figures 6 and 16 are plots of versus Z, Since

Z is directly proportional to x for an isothermal flat plete, Also, since

/Vzéz = fékz

MNux A » U &
Rex VZ z' I?%/'/g'/(TW"T%M

and

it is seen that the local heat transfer coefficient is directly propore
tional to the ordinate, or heat transfer function, in these'plots,

Since k is large and 2 is small for small Prandtl numbers, the fact
that === is less for Pr = 0,01 than for Pr = 1000 should not
s V2

be misinterpreted, For example, at Z = 0,20, a typical liquid metal
with Pr = 0,01 will have & local heat transfer coefficient roughly 30
times that of an oil with a Prandtl number of 1000, The heat transfer

ordinate in Figure 22 was used so that comparison could be made with the

4 Ny
wedge results of Sparrow, Eichhorn, and Gregg (1959). It is = , and
e \ \,’ R—e-x
since U ~~ x®, the local heat transfer coefficient in this plot is pro-
portional to the ordinate divided by x%; As noted in Chepter IV, this
is also an unususl case since 2 is independent of x, because again
L
U ~~ x% for this wedge,

=

rectly proportional to the friction factor, i@é;gi s for an isothermal
(-]

[
In Figures 7 and 17 the ordinate, 3§%3#%: —%lg%ﬁ& , is also di=-

flat plate, However,
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and therefore C,f for Pr = ?.OT is actuelly much less than Cp for Pr =
1000 because of the Clﬁj A&factor, Figure 7 also shows the correct
relationship between wall shear stress and x in forced and free convec—
tion, As x increeses in forced flow, ?ZV decreases as the boundary
layer thickness grows and the transverse velocity gradient, é%%; , flat-
tens out, Then, as x, or Z, goes into the free convection range,
increases as the fluid near the wall accelerates and :] again
becomes steeper,

Especially interesting aspects of this study are the unexpected
velocity profiles and streemlines for high Prandtl number fluids in
mixed convection., First of all, the velocity profiles for fluids of Pr
= 0,01 and 0,7% are to be expected. The thermal boundary layer is equal
to, or thicker than, the velocity boundary layer. Therefore, the buoy~
ancy effects from heating result in = peak velocity near the wall from
which the velocity decreéses monotonically across the velocity boundary
layer back to the free stream velocity. As Z increases, 23 s, the veloc~
ity boundary layer thickness, increases under the influence of the iner=-
tia and viscous forces of forced convection and the body forces of free
convection until at some large value of Z the thermal and veloecity
boundary layer thicknesses are almost equal. Figure 8 shows that for
Pr = 0.73 and Z = 5 on an isothermal vertical flat plate, u,, or 1/ Vs
is about 1.5 and at 2 = 100, u, is about 5,75, 1In contrast, Figure 23

shows that for Pr = 0,01 and Z = 5 on an isothermal wedge surface, uq is

about 2,75; and at Z = 100, Uy has increased to almost 13, The highly
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conductive and less viscous fluid responds more readily to free convec~
tion forces,

The behavior of fluids with Pr > 1 is very different, The forced
convection thickness ratio, 4\, , is less then 1,0 as shown in Figure 3;
and the free convection thickness ratio, according to Ostrach (1953), is
also considerably less than 1.0, Figures 9, 10, and 11 show mixed con=~
vection profiles for fluids of Pr = 10, 100, and 1000 flowing cover an
isothermal flat plate, For Pr = 100 and 1000 the velocities peak near
the wall and then drop back to the forced convection profiles as Yo in-
creases; the free convection velocity components are not simply additive
to the forced convection profiles as they appear to be in the case of
Pr < 1, The streamlines for Pr = 100 show that fluid across the entire
velocity boundary layer is pulled into the accelerated layer near the
wall, while for Pr = 1000 where the free convection velocity peak is
less pronounced part of the fluid is drawn towards the wall and the re=
mainder continues about parallel to the boundary layer edge, The most
extreme case is that of Pr = 10 where the velocity profiles show uj =1
for 2 > 10 with a2 slowing down of the fluid in the center of the bound=-
ary layer and, at Z = 100, the beginning of reverse flow, It is probable
that if this is the true predicted situation in laminar flow, the flow
would become turbulent before this point, The Pr = 10 streamlines show
thet as Z increases about half of the fluid is drawn towards the wall
and the remainder is forced transversely out of the thickening boundary
layer., It appears that for this Prandtl number the fluid is accelerated
near the wall by buoyancy effects that do not influence the entire veloc-
ity boundary layer and the fluid is not viscous encugh for all of the

velocity boundery layer fluid tc be drawn into the accelerated region
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in an orderly manner,

There is nothing in the literature at present to verify or dispute
the above phenomena, However, Morton (1959), in an exact Bessel func-
tion solution foor laminar mixed convection flow in a vertiqal pipe with
uniform wall heat flux, showed that in aiding flow a slow=-up and flow
reversal was possible at the center of the pipe at a Rayleigh number
of 600,

The work in Chapter V on the non-isothermal flat plate concurs with
previous investigators in that, for a uniform heat flux, the local Nus=-
selt number function at a given Z is only about 12 percent higher than
that for an isothermal flat plate, Although this solution was for Pr =
0.73 over a small range of Z, it may be true for all fluids for a wide
range of Z, For the case of a linear increase of plate temperature with
x, it was shown that the local Nusselt number function for a given Z is
about 50 percent higher although the total heat transferred would be
less than that for an isothermal plate of the same length and which ter-
minated at the same Z,

With reference to the section on variasble viscosity in Chapter V,
it is necessary to know T and (Tw = Teo ) in order to select the value
of k&ﬁ= %ﬁi for the liquid of interest. The effect of viscosity de=
creasing with temperature in mixed convection would be an accentuation
of the velocity peaks near the wall and a decrease of the velocity
boundary leyer thickness, The result would be an increase in wall
shear stress,

It was shown that the number of Y"asymptotic® boundary conditions,
n, at the edges of the boundary layers had a significant effect at high

Prandtl numbers; and the inclusion of the third derivative boundary con=-
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ditions at the wall was necessary for acceptable results, In addition,
the wedge problem results were divergent with n = 2 but acceptable with
n=3%, Itis gratifiying that the integral method worked as well as it
did since integrations over 2 covered two orders of magnitude or more
and the equations contained a parameter, the Prandtl number, that ranged

over five orders of magnitude,
Experimental Verification

Kliegel (1959) performed an experiment with a heated plate in a
vertical wind tunnel and took heat transfer data for aiding flow %or Z
from 0,002 to 100 and for opposing flow from 0,002 to separation. Fig-
ure 25 shows the good agreement between theory and experiment for Pr =
0,70, Xliegel's theory predicted a separation peint for air of Z = 0,26
and the experiment showed it to be af 0.17. The present theory predicts
separation at Z = 0,20,

Experiments with viscous fluids would be more difficult because of
more complicated equipment requirements; and, in order to interpret the
results, the variable viscosity problem would first have to be solved,
In order to achieve reasonably high Z values in laminar flow with a
moderate (Tw ~ T, ), the free stream velocity would have to be very low,
on the order of 0,25 feet per second., As an example, ethylene glycol at
T = 68°F, (T, - T, ) = 36°F, U, = 0.25 ft/sec, B = 0.36 x 1077, and
g o= 32,2 ft/sec gives

z = 7/@(’T‘C§f]‘j°e>7c = &.18%

A plate length, %, of 4 feet would give a maximum Z of about 25

which would be adeguate to obtain velocity profiles that might show a
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peak near the plate and then a decrease to below U, &8 in Figure 10,
However, over this (T - T, ) range, Pr would vary from 94 at the wall
to 204 at the edge of the thermal boundary layer, primarily because of

viscosity change,
Suggestions for Extensions

Suggested extensions of the present investigation are listed below
numerically:

(1) Non-Isothermel Vertical Flat Flates

The two cases investigated briefly in this study, uniform wall heat
flux and linearly varying wall temperature, might be solved with all
available boundary conditions and w and v factors (if necessary) for
a wide range of Pr and Z,

(2) Variable Viscosity:

A complete analytical study of the effects of viscosity as a func~
tion of temperature in the boundary layer for high Prandtl number 1i-
quids for & wide range of er/Rex2 should be made,

(3) Experimental Works:

After (2) above an experiment with liquids as mentioned in the
preceding section would be worthwhile,
(4) 1Isothermal Flat Plates

An analytical study could be made to determine if fourth derivative
boundary conditions at the wall and at the boundary layer edge would
contribute to the stability of the solution at high and low Prandtl num~
bers, and further numerical experimentation could be undertaken to study
the effect of the v and w factors of Chapter III,

(5) Other Geometries:
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The approximate solution for the wedge was about 10 percent off of
the known exact similarity solution. If a way were found to match the
integral solution to the exact solution, the method could be confidently

extended to other geometries.
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APPENDIX A
COMPUTER PROGRAMS

The two differential equations in ‘Egé&? and 94 yere solved ex-
‘o dé* A 2—2 =
plicitly for EJE? and 555? in terms of é; s A 5 Pry and Z, These
two simultaneous ordinary differential equations were then solved numer-
ically on Oklahome State University's IBM=1410 digitel computer,

The final computer program evolved from one written for the Okla=-
home State University IBM~1620, This first progrem used & simple Runge~-
Kutta method of integration, 1In order to speed up the caculations, the
first program was rewritten in Fortran IV for the 1410, 1In its ultimate
form the program employed a Runge-Kutta starter routine, a Milne pre=~
dictor=corrector, four=point, step~by=-step integration and an automat~
ically varied increment in the independent variable,

The Milne predictor-corrector program with variable increment al-
lowed a continual check on the relative error incurred at each step and
was significantly faster, even without the variable increment feature,
than the straight Runge-Kutta integration.

One version of the final integration program is included in this
appendix, With variations this basic program was used for all of the
different cases that were solvedi A< | , A >1, aiding and op-
posing flow, etc, AL Z = O, da can be found only by a limiting pro-

. dz
cess and must therefore be read in, The MON$$ statements signify moni=

tor control peculiar to the 1410 PR=155 control system which directs the
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computer to load the Fortran processor and compile the Fortran statements
into machine language.

The basic forma of the predictor~corrector equations are

mpine B fi2le) orasen
y’,éﬂ = ?x)—/ ""‘4 (%/U"/ * 40/,« + %,o' -+ ) (corrector)

The value of yi+1 from the predictor equation is used to find a value of

£,

541 which is then used in the corrector equation to give the final Yiats

from which the final fi+ is calculated, The corrector equation is Simp=-

1

son's one~third rule, The relative error in y, is proportional to the

141
difference between the predicted and the corrected value,

With initial values of the two variables and the two derivatives
given or calculated, the next three points are found by the Runge-Kutta
method, These four consecutive values of the dependent variables are
then used to find the fifth one by the Milne equations., The error term
is checked after this calculation, and if i4 is within the preset limits
the integration continues via the Milne equations, If the error term is
too large, the integration sets back four increments in the independent
veriable, divides the present increment by two, and restarts with the
Runge-~Kutte equations,

The error term must be too small for four successive steps before
the increment is doubled and the integration restarted., However; an er-
ror term too large will jmmediately cause the program to back up, de=
crease the increment, and restart. If the step preceding the one in

which a too=large error is detected is & Milne computation, the program
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goes back to that point to restart instead of going back four points as
it does when the error is too large in the step immediately after a
Runge~Kutta start or restart.

The maximum and minimum error tolerances used most frequently were
2 x 10&6 and 2 x 1Oa8, respectively. The choice depends on the accuracy
desired. These relatively stringent limits in some cases automatically
allowed a step size or inc¢rement as large as 12,0, In other cases; with
the same limits but more difficult equations, the stiep size was automat-

6

ically restrained to 1 x 107" for a wide range of Z, The program stops
when the step size becomes less than a preset lower limit,

The program also caculates and prints a Nusselt number function
and a friction factor function (GNU and TAU) each time the values of

égzand Z\ are printed, Asnwers are read out at each Nth calculation,
N being & number preselected for a particular run. In addition, the
values of the error terms, the integration increment, the two deriva-
tives, the common denominator of the two explicit differential equations,
and the numerator of each differential equﬁtion are printed with the
answWwers, The latter items are useful in checking on the trend and
stability of the integraticns.,

The data for the velocity profile and streamline plots were also
ortained with the aid of the 1410, A sample program that caculates 1 ,
Yqs Yos Ugs V1, &nd v, for a given Prandtl number, Z, &;Z , and A is
also included in this appendix,

Roots of the polynomials in /\, were found on the IBM-1620, Gener-
al progremming information was found in Ralston and Wilf (1960),

Ma jor Fortran symbols that were employed are:

H = interval of integration
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Y, ¥ = &
Y2, YY2 = A -
P = Pr
. _ déa
1 = 922
D1, DD1 o=
D2, DD2 = da
3 a—z--
VBL = O
DEL = 45
z
TAU ]/ K%
,P Uao /?17( G/C;,
GNU = Nux

Ko~
VRex V&7

Sample Integration Program

MON$$ . JOB 252740032 (INTEGRATION CASE IIIBPC/VH)
MON$$ . ASGN MJB,A2 :
MON§$  ASGN MGO,A3
MON$$ ASGN‘MW1,A4
MON$$ ASGN MW2,A5
MON$$ MODE GO, TEST
MON$$ EXEQ FORTRAN,SOF,SIU,10,05,,,CASEIIIBPC
DIMENSION D1(5), D2(5),Y2(5) Y1(5)
500  FORMAT (48X,3CHMIXED CONVECTION PROBLEM CASE IIIBPC//)
501 FORMAT (38x,58HFLAT PLATE, CONSTANT PROPERTIES, CONSTANT WALL TEMP
~ 1ERATURE WL
502 FORMAT (54x,24HDONALD H ASIRE MECHEN/)
503 FORMAT(I3, 3E9.3,2E14.8)
504  FORMAT (2E14.8,F7.2,2E9,3,E14.8)
505  FORMAT (15X, 261 INITIAL CONDITIONS ARE/20%X, 2HZ=,F8 4 52X, 3HY 1=, E
114,8,4X, 30Y=2,E14,8, 4X, 3HD1=,E14,8, 4X, 3HD2=, E14 8)
506 FORMAT . (15x,10HINTERVAL =,B14,8,5X, 11HZ MAXIMUM =,E9,3)
507 FORMAT (15X, 28HANSWERS ARE PRINTED AT EVERY,15,14TH CALCULATION)
508 FORMAT (15X, 16HPRANDTL NUMBER =,F7.2,10X,9HZ CHECK =,E14.8//)
509 . FORMAT (bX,1HZ,8X,3HVBL,11X,3HDEL, 1ox ZHTAU, 7x,3HGNU 9X,2HD1,13X,2
1HD2, 13X, SHDENOM, 10X, 4HNUM1 10X 4HNUM2/)
510 FORMAT(1X £10,4,E14,7,E14, 8 2E1O 3,4E15,8,E14,7)
511 FORMAT (11X,6HERR1 ,E10.4, 5x 6HERR2 =,E10,4,5X,3HH =,E10.4)
512 FORMAT (1X, 1 6HDENOMINATOR ZERO)
513 FORMAT (1X,11HRESTART R-K)
514 FORMAT(1X,E10.4,E14,7,E14,8,2E10,3,5X, 3HH =,E10.4)
WRITE(3,500)
WRITE(3,501)
WRITE(3,502)
1 READ(1,503)N,H,ZMAX,Z,VBL,Y2(1)
Y1(1)=VBL*%2



15

20

s

30

READ(1, 504)D1(

WRITE(3, 505 )2

WRITE(s,soégH
)P
)

1),D2(1),P,ERMIN,ERMAX, ZCK
,Y1(1),¥2(1),D1(1),02(1)
,ZMAX :
WRITE(3,507 )N
WRITE(3, 508
WRITE(3, 509
B=SQRT(0.5)
K=0

M=O N .
K=K+4 '
IF(H,LT..1E-09)GO TO 1

DO 33 J=2,4

L=1

Y1(J)=Y1(J~1)+0,5*H*D1(J~1)
Y2(J)=Y2(J=1)+0,5%H*D2(J~1)
Q1=H*D1(J~1")

Q2=H*D2(J~1)

Z=Z+H/2,

YY1=Y1(J)

YY2=Y2(J)

GO TO 1000

D1(J)=DD1

D2(J)=DD2

A=1,-B

Y1(J)= Y1(J)+A*(H*D1§J)-Q1)
Y2(J)=Y2(J)+A*(H*D2(J)~-Q2)

Q1=2, *A*H*D1(J)+(1,=-3,%A )*Q1

Q2=2, *A*H*D2(J)+(1,~3. %A )*Q2

L=2

YY1=Y1(J)

YY2=y2(J)

GO TO 1000

D1(J)=DD1

D2(J)=DD2

A=1,4B

Y1(J)=Y1(J)+A*(H*D1(J)-Q1)
Y2(J)=Y2(J)+A*(H*D2(J)-Q2)

Q1=2, % A*H¥D1(J)+(1.~3. %A )*Q1

Q2=2, *A*H*D2(J )+ (1.-3, %A )*Q2
Z=7+H/2,

L=3

YY1=Y1(J)

YY2=Y2(J)

GO TO 1000

D1(J)=DD1

D2(J)=DD2

Y1(3)=Y1(3)+(1./6. Y*(H*D1(J)-2.*Q1)
Y2£J) =Y2(J)+(1./6. )*(H*D2(J)~2,*Q2)
L....

YY1=Y1(J)

Yy2=Y2(J)

GO TO 1000

D1(J)=DD1

s 2CK
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33
34

70

72
61

71
75

76

80

D2(J)=DD2

VBL=SQRT(Y1(J))

DEL=Y2(J)
TAU=(2,/VBL )4+, 2%VBL~(1,/30, )*(VBL/DEL)
GNU=2,/(VBL*DEL) o
IP(J,EQ.2 )WRITE(3,513)

wRITE(5,514)z VBL,DEL, TAU, GNU, H
CONTINUE

/3. YXHH (2, %D1(2)-D (3)42.*n1(4)g
/3. )¥E*(2,%D2(2)-D2(3)+2,%D2(4)

YY2=y2(5)

GO TO 1000

D1(5)=DD1

D2(5)=DD2 '

Y1(5)5Y1(3)+§H/5 )*(D1(3)+4,%D1 (4)4D1(5))
Y2(5)=Y2(3)+(H/3. )*(D2(3)+4.#D2(4 )+D2(5))
ERR1=(1./29 ; 2Y15A -Y1(5))

ER§2~(1 /29, )*(¥254-Y2(5)) j

YY1;Y1(53

Yy2=Y2(5

GO TO 1000

D1(5)=DD1

D2(5)=DD2 h

ERRAB=ABS| 3RB1)+ABS(ERR2)
IF(Z,LT..01)80 TO 61 ,
IF(ABS(DD1)+ABS(DD2) GT.200, )GO TO: 90
IF(Z.LT,2CK)GO TO T1 N
T¥(ERRAB,GT ERMAX)GO TO 100
IF(K.GE,N)GO TO 80

K=K+1

DO 76 J=1,4

Y1(J;=Y1(J+1)

Y2(J)=Y2(J+1)

D1(J)=D1(J+1)

D2(J)=D2(J+1)

I=I+1

IF(ERRAB,LT. ERMIN)GO TO 150

M.._

GO TO 34

VBL =SQRT(Y1(5))

DEL=Y2(5)

TAU =(2./VBL)+.2%VBL~(1./30. )*(VBL/BEL)
GNU=2,/(VBL*DEL )

,_WRI'IE?, 510)Z,VBL,DEL s TAU,, GNU,DD1 DD2,DENOM, UM1, UM2

WRITE(3 511)ERR1 ERR2, H
IF(2,CE,ZMAX)GO TO 1
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85
90
1000

100

110

115

150

105

17(Z,LT,,01)60 TO 85

IF(ABS(DD1 )+ABS(DD2),GT.200, )GO TO 1

K=1

G0 TO 75

WRITE(3,512)

GO TO 80

R1=YY2

R2=YY2%*2

R3=YY2%*3

RhU=YY2%*4

RS=YY2**5

RE=YY2**E

R7=YY2%*7

R8=YY2%*§

T1=YY1

T2=YY1#%2

T5=YY2**5
Hi=~,28571429+,28571429%R1+.11904762/R1~,02020202/R4+,01298 704/R5~
1,0024975023/R6
H2=,0095238096~,083333333/R1+,0015873016/R2+,0014430014/R4~, 001 304
19014/R5+, 00048285048 /R6~, 000058275058 /R7
DH1=,28571429~,11904762/R2+,080808081/R5~, 0649352/R6+,014985014/R7

DH2=,0083333333/R2~-,0031746032/R3~, 0057720056 /R5+. 0069 74507/R6~, 00
128971029/R7+.00040792541 /R8

A2=4, /(R1*P)

B2=~(H14+3,*T1*H2)

C2=2,*T1*DH1+2,*T2*DHE

A==, 57142857+ T1*R1+4, + ,4*T1~, 06666666 7*T1 /R1
B1=,0008251009*T2/R2+, 0001528101 7*T3/R2-~, 000037986712*T3/R3
C1=,10933511=,0031635034*T1 -, 00077700068*T2+,0012376514*T1/R1+,000
158202542*T2/R1-.000047485589*T2/Rz

UM1=A1*C2+A2%B1

UM2=A2*C1+A1*B2

DENOM=C1*C2~B1*B2

DD1=UM1/DENOM

DD2=UM2/DENOM

GO TO (15,20,25,30,70,72),L

IF(I.GE,1)G0 TO 110

IF(I.LT.1)60 TO 115

M=0

Z=2-H

H=H/2,

Y1(1)=Y1(4)

Y2(1 )=Y2(4)

D1(1)=D1(4)

D2(1)=D2(4)

G0 T0 5

M=0

Z=Z-4, *H

H=H/2,

GO TO 5

M=M+1

IF(M,GE,4)G0 TO 155
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[sXoNoNeNoNeNeNoNoNe]

GO TO 34
M=0

H=2,*H
Y1(1)=Y1(4)
Y2(1)=Y2(4)
D1(1)=D1(4)
D2(1)=D2(4)

GO TO 5

END

MON$$ EXEQ LINKLOAD
PHASEENTIREPGM

CALL CASEIIIBPC
MON$$ EXEQ ENTIREPGM, MJB

Sample Velocity Program

MON$$ JOB 252740032 (VELOCITY PROFILES CASE III)
MON$$ ASGN MJB,A2
MON$$ ASGN MGO,A3
MON$$ ASGN MW1,A4
MON$$ ASGN MW2,A5

MON$§$  MODE GO, TEST
MON$$ EXEQ FORTRAN,SOF,SIU,,,,,VELPROIII

D H ASIRE MECHEN . VELOCITY PROFILES CASE III
ETA = Y/DELTA :
YSUB1 = (Y/X)*SQRT(REX)
YSUB2=YSUB1*SQRT(Z)

USUB1=(U/U INFINITY)

VSUB1=(V/U INFINITY )*SQRT(REX )
VSUB2=(VSUB1 )/SQRT(2)

PLOT USUB1 VS8 YSUB1:

PLOT VSUB1 VS YSUB1

SEE SCHLICHTING PG 120

FORMAT(53X, 27HVELOCITY PROFILES, CASE III)
FORMAT(4E14.8,2F7,2)

FORMAT( 54X, 25HDONALD H ASIRE  MECHEN//)
FORMAT(1HL, 9X,20HINPUT CONDITIONS ARE)
FORMAT (12X,4HVBL=,E14w8,5x,5HY2=,E14.8)
FORMAT (13X, 3HD1=,E14.8,5X, 3HD2=,E14,8)
FORMAT (13X, 3HPR=,F8.2, 6x 2HZ=,F10.4)
FORMAT(10X,F5.2,5E20, 8)

106

FORMAT( 11X, SHETA, 10X 7HY~SUB-1,13X,7HY—SUB~2,15x,7HU—SUB—1,15X,7HV

1—SUB-1,15X,7HV-SUB-2)
WRITE(3,500)

WRITE(3,502)

READ(1,501 )VBL,Y2,D1,D2,P,2
WRITE(3,503)
WRITE(3, 504 JVBL, Y2
WRITE(3,505)D1,D2
WRITE(3,506)P,Z
WRITE(3,508)
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Y1=VBL*%2
QUOD=(Y2*D1-Y1*D2 )/ (Y2#*2)

AA=.2%D1-(1,/30, }*QUOD

BB==~, 5*D1

CC=(1./%. )*QUOD

DD=D1-(2./3. }*QUOD

EE=-D1+,5*%QUOD

FF=, 3*D1~,13333333*QUOD

DELTA=Y2

A=2,40,2%(VBL**2)=0,0333333%(VBL**2 )/ (DELTA )
B==0, 5% (VBL**2)

C=0,333333*(VBL**2 )/(DELTA )

D=~5,+(VBL#**2 )~0,666667*(VBL**2)/(DELTA )
E=6,=(VBL**2)+0, 5% (VBL**2 )/(DELTA )

Fe=w2, 40, 3% (VBL**2)=0,133333%(VBL#**2)/(DELTA )

ETA=0.0 | .

YSUB1=0.0

YSUB2=0,0
U=0,0

VSUB1=0.0

VSUB2=0.,0 -

WRITE(3,507 )ETA,YSUB1, YSUB2, U,VSUB1,VSUB2
ETA=ETA+0,02

YSUB2=ETA*VBL

YSUB1=YSUB2/(SQRT(Z))

VA=(AA/2, )*(ETA**2 )+(BB/3., )*(ETA**3 )+ (CC/4, Y*x (ETA**L )
VB=(DD/5, )*(ETA**5 )+(EE/6, )*(BTA**6 )+(FF/7, )*(ETA**7) _
VO=(A/2, Yk (ETA**2)4(2,/3, )¥B* (ETA**3 )4, 75%C* (ETA**L )4, 8¥D* (ETA%*5 )
14(5./6. Y¥E* (ETA**6 Y4(6./7. )*F*(ETA%*7) :
VSUB2=-VBL* (VA+VB )+(.5/VBL)*D1%VC

VSUB1=8QRT(Z )*VSUB2
U1=A*ETA+B* (ETA*%2 )4C* (ETA%*3 )+D* (ETA%*4 )

U2=E* (ETA**5 )4+ F* (ETA%*6 )

U=U1+U2

WRITE(3,507 )ETA,YSUB1,YSUB2,U,VSUB1,VSUB2
IF(ETA,LT.1.)G0 TO 10

IF(ETA.GE,1, )GO TO 1

END
MON$$ EXEQ LINKLOAD

PHASEENTIREPGM ¢ ..
CALL VELPROIII

MON$$ EXEQ ENTIREPGM,MJB



APPENDIX B
TRANSFORMATION OF THE BOUNDARY LAYER EQUATIONS

The constant property, steady state, two-dimensional, boundary

layer equations for incompressible flow are;

udl +/lr_E Y B (T Toe)—f—Ug_Cf—f-)J%

UI-/—/U’QT ,:é_.- 97’
7% 7% fgcp 29>

U . 2NV
ox T oy

The following two sets of transformetions are those used by Acrivos

(1958). The first set isi

Z1|== li’ :%> Y = ZJW t];“

(e
LR > =

<
%=1 = z=2L
L (81)
U= = U=U U~
_ T=Te =0 (Tw-Toe )+ oo
Re is the Reynolds number based on the local free stiream velocity,
b - UL
e, = —

2
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Substitution of these transforming equations into the boundery layer

equation yields

50, oe) (2/, L)
it 3020 " >
Vit

- gufp ()0 + UL d(g L)z 2 ;%/;,3)

or

U@a (U ,+/U’._2{'> 2?:/ng”)@

f%{;{%; PLU w2

%I ) 9?/
This further reduces to
ol L L U”
U 2«7 % =9 f (-T) 2 T2 ©
dU 2 U 7%
+tUZ Kol T ij’yﬁ,%

228 o U = g P(To-T)l 2

% 9’%/ . U, | !
+ U, dY + U é—?i,,
g% Y, (82)

The Grashof number is

G = l?x/‘ﬁ /(@"Tw)l L3
: : b))

If the Grashof number is divided by the square of the Reynolds number,

the result is Gh - /%/'ﬁ’/(m“‘&)[ va.l)lz
, E‘L _‘z)zU;Lz
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o G, - 928 | (Tw=Te=) L
A . Uz'

The boundery layer equation was written so ihat a positive pressure
gradient or a gravity force or acceleration vector in the opposite direc-
tion to fluid flow would produce body forces opposing the flow, Since
the Grashof number with its absolute value signs is always positive, a
% pair of signs must precede the Gr/Réngerm when it is placed in the
momentuméeqﬁatiqn as the coefficient of “the 0129 term, Thus & minus
sign indicates either that T..> T or g acts With the flow. Either
situation is called "opposing" fléﬁ. The bouhdary layer equation with

this substituﬁién becomes

UU o pr QU+ G B dU %
5% + :%1 -,_'_*"%’,ZU,G-PUZ%.I —I—ZJ,'_;’Q_?Z’_//?_ ) (B3)

A second set of transformations takes this equation into the form

that will be used in this thesis:

, _ 1 %
z-7%. > x-2Z:

%w:%\/%z = ’%,?"g‘a-\/—gf;—z (B4)
UALZATE S R AT

Substitution of these equations for Vs y1,,and Xy gives:
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u 24

1_"“% 9%, - @_ A
9(;_: /aa,) 9(%\[—-) = 5~U®
+ UdU. + U 2%
~or Cié?’ | ‘9(%%* VE%;i)z'
2U (1)
7422+ Zy—zif +U6+U;__/ -r—U_-% 1

The thermel boundary layer equation, after the first set of substi-

tutions for T, u, v, x, and y, is
Y, U JECTW—Tw)Gﬂ;j + MU 9&7@’7—”)9*7‘”]

JL) | V?Z &(7??;>

< 2 [(T-Te)o +T=] 2
4

7
(¥e)”
where =7z§2$; ) -

If T is constant, this reduces to

l;éf 760\ = C*C Ke 52_—
-~ (152 ”zy,> RET
=-.:s___~)_fé

2L 24>

Since ;5% = Pr, the Prandtl number, the final equation is

28 ) - U 28
7/12;{ /UIQ?, & 2% (B6)

The second set of substitutions for Xg2 Vyq» and vy gives

Gh y 28 + Gk 4z 96 _ UL 2% G/»

k™22 Re* L;yz._— P oY,

or
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Iz —Mq’()au B 92’}" (

The continuity equation after two sets of transformation substitu-

tions is unchanged in form but has new variables:

Iz 9%’21 ’

It is convenient to replece L by x in all of the previous defini-

(3)

tions and equetions so that parameters can be based on local coordi-

nates, Then Gr becomes er and Re becomes Rex:

92l 8| (Ta-Te=) | 22
[/ ¥ 2);L

Gloz =

- UL
Ren = 5%

Glx - 1§ulB:|(Tu=Te)|x
Ko U~

The last expression shows that for a flat plate, for which U= U_

er/Rex2 is directly proportional to x.

Since G

and now z,_—_ Z—_, 5

then . QAZ

With this replacement of L by x, it is also noteworthy that

-8 - 4 i/ B
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| C/-B 'ﬁtv’ )
Mo = (vl?xl-ﬁ-!(m—wl) . &7

Thus v, is directly proportional to v for a flat plate,

Also,

Therefore, for a flat plate, Yo is directly proportional to y3

o= (el LGp=1a21) " )



APPENDIX ©
DERIVATION OF THE DIFFERENTIAL-INTEGRAL EQUATIONS

If equationi(T) is integrated with respect to the transverse dis-

tance, y,, from ége surface to infinity, the result is:
[uerm gl )iy (e U iG-S )y

Prom the continuity equation, (2),

%g_l_%% c/%, .

This latter expression applied to the first eguation, with an in-

tegration by parts, yieldsi

f(u~“~U”"+%4)45--Uf@°'3»+ﬁf 4y
. “‘U( 4X
(P i ez ().
T g o),
Let %_:— =T§(7() , or 7,{,:[//“.0/(70 , and 9:7{(7(7_))
-¥-t-%

"\&

and
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Since |

. ‘,VC/?ZJ.—.JE,'CWZT:;Z«'Q/?Z’
f=t1= 1 e g

nd = = 1 whe 2;73‘ ’

a ©=0, 77' Yo %1-

the first integral equation in its most general form iss

(Vs ffo-p)en) 98 6 [0-0)n

=3 U Jff/a@(.r.,. yj (4)

In a similar menner, starting with the energy eguation, (2), the

gecond inteﬁxal eqﬁation'is found to be:

5[%[{ hed ‘3*] - %{ 5w ®)

Equation (4) is one form of the momentum inteégral equation, Equa=-
tion (5) is called the energy integral equaetion in this study, since it
is dérived by a partial integration of the’transformed thermal boundary

layst equation, (2).
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