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CHAPTER I

INTRODUCTION

Since most water treatment plants are subject to fluc-
tuations of some uncontrollable variables in their raw water
supply at various times, the dynamic aspect of optimization
is always present. By "dynamic optimization” it is meant the
eastablishing of how best to change the controlled variables
in order to correct for fluctuation or suddenly changing
values of the uncontrolled variables. But dynamic optimiza-
tion is not always justified; for example, it is not justified
when normal operation is smooth and no serious effects occur
if major changes are made in a non-optimal manner. But if
conditions necessarily fluctuate, there may be much to be
gained from superimposing an optimal controlled function on
the optional steady-state procedure.

After reviewing several articles (%, 2, 3, 4, 5) and
text books (6, 7) on coagulation and the jar test procedure,
it became apparent that there was no good procedure for de-
termining the optimum dose of several controlled coagulant
variables. At best it seems that the only method now used
in obtaining the optimal dose is the one~variable~at-a-time
method. Since the trend in recent years has been for water

treatment plants to use more controlled variables {(coagulant



aids, pH regulation, and alkalies) in the unit operation of
chemical coagulation, the one-variable-at-é-time oétimization
procedure will prove fo be very inefficient for the rapid
determination of the optimum dose of several controlled co~
agulant variables.

At the present time there are a number of investigators
(2, 3, 4, 5) studying the basic relationship between the
optimum coagulation conditions and a measurable property of
the raw water or of the system during treatment. Many at-
tempts have been made to develop such relationships, but
none has proven capable of wide application. Until a better
-understanding of the relationships is known, the only method
for obtaining the optimum dose of the contrdlled coagulant
variables will be - in spite of its known shortcomings -~ the
jar test procedure,. |

In the past the jar test procedure has proved valuable
in water plant operation, partiéulafiy in the hghds of an
experienced,inQi&idual. An.improvemeﬁt of the basic proce-
dure has:been reported by Jesse M. Céhen‘(s) which has prern
to be a,éuqh better procedure than the oné used in the bast.

Even with this improVed proéedure it is known and has
been reported by A. P. Black, J. E. Singly, G. P. Whittle,
and J. S. Maulding (3) thgt in plant operation the time
required to run the jaf-tést is one of the main disadvan=,
tages. Thé time lag between the‘change of an uncontrolled

coagulation variable in plant operation and the determination



of the optimum dose of the controlled coagulant variable will
seldom be 1ess than three hours and may be as long as.eight
to ten hours.

Various methods have been developed for determining the
optimum level of several variables which have proven to be
very useful; therefore it is felt by this author that one of
these methods could be utilized and applied to the jar'test
procedure to decrease the time lag mentioned above -and make
the jar test procedure more expedient when studying several

control variables.
- Purpose of Study

The purpose of this particular study was to select a
method of empirical optimization and apply it to the jar

test procedure.



CHAPTER II
REVIEW‘@F MAXIMUM-SEEKING METHODS

lThevobject 6f“many endeavors is to achieve some maximum
response by an: examination of the effects of various combi-
nations of the factors that more‘or less determine the
response, If fhe iunctional‘relétipn between the»responsé
and the factors-is nbt known, an.estimate of the optimal
factor combination is made from the responses determined by
trying various combinations experimentally. The methods that
.have been used for making such estimates are one-variable-at-
a-time method, féctorial designs, methods of steepe?ﬁ ascent,
and randOm.experimentation. The most recently developed pro-
cedure is the Sequential Simplex Method,

It will bevconvenient to describe optimization proce=:.
dures first in terms of tWo variables, and to use the topa;
logical analogies introduced by Box ‘in which the optimum is
assumed to be a maximum. Reaching the optimum corresponds to
climbing a hill. Theé hill is not in practice usually found
to be of simple:shaper' ridges are much more‘common. The
criterion to be - -optimized isrcalled the "response;" it may
be the yield or output of the plant or some derived economig
criterion, such as profitability. Fig. 1 showé a contour

map of a response surface summit. From this map can be read
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off the response y;, for any pair of values of.the.process vari-
ables, Xq and Xg . ‘The problem is to .climb the hill from any
starting point. To do this requires at least two observations

to determine whéther a given move leads uphill or downhill.
One-~Variable-at-a-time

In the 'bne-variable-at-a-timé' method (9) all variables
except one are held constant, and>fhé_bptimumvva1ﬁé of this
one for a given value of the remainder-is found by trial and
error. The procedure is repeated for each variable in turn
until all have been sub-optimized for a particular set of
values of the remaining variables. It will usually be neces-
" sary to repeat the cycle several times before a stable
solution is found, and it is by no means certain that this
is & true optimum. Even if it is, the method is wasteful of
effort in that it requires many more trials than othef methods
which study all variables simultaneously,.especially whéh thé
number of variables is more than two.

Fig. 2 shows a map of the response COntours and the
experimental points for a univariate-experiment example.

The first set of points (points 1, 2, 3, 4, 5 and 6) is

where Xy is held constant and x, is varied, The value of x

2
whiéh gives the maximum response is found. :Point 5 on the

2

map represents the maximum for the first set of trials. The
second set of trials, represented by points 7, 8, 5, 9, 10 and
11 are those where Xg is held constant and X is varied along

a line containing the maximum response from the first set of
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Fig. 2 - UNIVARIATE-EXPERIMENT MAP



trials. The third set of trials is represented by points 12,
10, 13, 14, 16 and l&. The maximum of this set is point 13.
The fourth set of trials is represented by points 17, 18, 13,
19, 20 and 21, The maximum from this set is point 13; there-
fore the co-ordinants of the optimum response are located af
point 13.

Although this method ig simple and easy to apply for two
variables, the number of trials for three or more variables.

becomes excessive.
Factorial Method

The factorial method (10, 11, 12) is characterized by
the use of a single factorial design, either fractional, com~
plete, or replicated. Although the results of a complete
factorial experiment provide a systematic over-all picture of
the response surface, which may be a highly desirable but
secondary objective of the experiment, it usually requires a
large number of factor combinations when the number of control
variables is more than three. Also for the '"best" design it
will require a large number of levels of each factor.

Fig. 3 represents a factorial experiment example, two
factors each at four levels., It is seen from this example
that it would require sixteen trials. If three variables
each at four levels were to be investigated, it would requiré
sixty-four combinations. From this map it is suggested that
points 2 or 6 may be the optimum combination of the two

factors. Taking the region of points 2 and 6 to be close to
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the summit, another factorial experiment would have to be run

in this region with smaller differences between levels.
Steepest Ascent Method

The principle of the method of steepest ascent (12, 13,
and 14) is to determine the slope of the response surface in
the neighborhood of the starting point and to move in the
"direction of steepest ascent." This is'not'necessarily the
most direct route to theisummit, but enables the maximum ad-
vantage to be.gained froﬁ.the first mové. Subsequent trials
are made af pdihtS-along'the’path, uhtil no further improve-
ment is found. A further set of trials is made to determine
the new direction of steepest ascent and so on until no fur-
ther progress is possible, when it is assumed that the summit
has been reached. In experimentation, the direction of
steepest ascent is deduced from a set of trials, usually in
the form of a factorial experiment.  Statistical tests of
significance are used to decide whether the direction of
steepest ascent has been reasonably well defined, taking into
account the effect of experimental errors, or whether the
trials should be repeated until this is so.

For optimization by means of test procedures this method
has the disadvantage that considerable time may be spent in
experimenting in one region before a move is made. There is
also the risk that the operating personnel may tire of re-
peating a quite elaborate pattern of changes before‘making

a purposeful move.



In maximizing a mathematical function, the dirsction of
steepest ascent is found by calculating the derivatives of’
the function by any suitable method. Fig. 4 shows a contour
map of the method of steepest ascent. The contour map rep-
resents a two factor response surface. After the initial
set of trials is run (represented by points 1, 2, 3, and 4)
the line of steepest ascent is calculated. This line is rep-
resented by points 5, 6, and 7. Further trials along this
line show a decrease; therefore: ancther set of trials is run,
letting the last point showing an increase be one cornexr of
the new square. From the second square (represented by
points 7, 8, 9, and 10), the second path of steepest ascent
is calculated. This line is represented by points 11 and 12.
Further points along this line show a decrease; therefore a
new square has to be constructed and a new path of steepest
ascent has to be calculated. The third line is represented
by point 17 on the map. Further points along this line would
show a decrease. The same procedure is carried out unfil no
further improvement is made or the last set of trials shows

the same response.
Random Experimentation

There are three possible situations in random experi-
"mentation. They are simple random sampling (9), stratified
random sampling (9), and random search (15).

Simple random sampling is characterized by making trials

at points selected completely at random over the entire ex-
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perimental region. Fig. 5 represents a possible selection of
points. It is seen that if one were real lucky he might pick
the ”winnerf (point 15).

Fig; 6 shows a possible stratified réndom—experimenf
example.' Here the experimental region is divided up in a
grid, and points are selected at random in each grid. Also
‘here the selection of the optimum combinatipn is by éhance
alone. | |

The - third possible procedure, mentioned by Spendley,
.Hext, and Himsworth (15) is to start at some arbitrary point

in the space of the variables, and then to move in a randomly
chosen direction to a second‘point° If the second point
gives a bétteréresponse than the first, it is‘used as the
-starting pointbfar-é ffesh random move,v If fﬁe-second point
~gives a worse response than the first, it is assumed that a
move in the opposite direction would have been more favorable
and this point is used as the'starting point for the next
random move., Thus, so 1oné’as the-respdnse surface does not
have a maximum in the immediate neighbdrhood, and ignoring
the effect of experimental error, every move will lead to
some improvement énd the optimum will be“reéched by a tor-
turous path.

Such a procedure»has obvious drawbacks for use in plant
experimentation. Only a plant manager with strong gambling
instinctS'would appfbve of a change in conditions*which all
tﬁe evidence suggested.Would be in quite’the-ﬁrong direction

- as must sometimes happen if the direction:is chosen at
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random. There would obviously be a preference for a proced-
ure which made some use of previous data in planning the next.
move. Random Search ignores everything except the current
and the immediately previous results.

Fig. 7 represents such a procedure., The original
starting point is taken at point 1. . The next point, selected
at random, i§~point 2. »It.is.séen that'this point gives a
lower responSe~than point 1; therefore the next point would
be selected in the opposite-direction from point 2.,  This
combination is shown by point 3. This procedure is carried
out until a move in every direction gives;a 1ower-resg6nse
than the poihtJin_quéstion; " This pOintsébﬁid:be'taken.as
the optimum, but it could be very misleading. The point
could be riding'a ridge which is not the true optimum, but
only a high response-in the immediate vicinity of the factor

space one is experimenting in.
Sequential Simplex:Method

-The“Sequential4Simp1ex'Method‘(15) has some resemblance
to.thé’methbdsﬂoffsteepestﬁascent;’thé main difference being
that no attempt is made to find the best direction in which
to move. A rapid determination is made of a direction which
is steep, though not steepest, so that frequent moves are
‘made in directionsthich.are»at least favorable, though not
in general most favorable, The procedure with two-va?iables

is as follows:
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Three trials are made, the values of the two variables
being such that the three points correspond to the vertices
of an equilateral triangle; for example, points 1, 2, 3, on
- Fig. 8. (It is convenient to think in terms of an equi-
lateral triangle, but this is not necessary. Any triangle
can be made equllateral by adgustlng the ‘scales of the var1—
vables, and in. the convent10na1 scales 1t 1s unnecessary to
form an eQuilateral triangle.) A move is then made to a new

point which is constralned ‘to be such that, together with

two of the pomnts of: the or1g1na1 trlangle, it forms a second
equllateral trlanglef' (See point 4 on F1g4%$;) If the re-
sponseﬁenffaeeiierloCally a plane or nearly so, one of the
three permitfed new points will give a higher result than. the
other’two,»and_it is easy te see that this new point is the
"mirror-imege" of the lowest of the first three points. Thus,
after the first three trials have been made, the point giving
the worst result is discarded,'and replaced by‘its mirror
nimage to formia second triangle. This is repeated, and so
-long as the surface is'sloping and reasonably plane over the
area of the triangle, every move leads to a more favorable
reglon and eventually the - ”summlt” 1s reached.

The path taken. is - a zigzag one, but oscillates::iabout™
the line of steepestfascent. Points 1 to 12 on Fig. 8 show
this peth 1eading to the summit. . Experimental errors may
“lead to‘sbme.move beiné downhill instead of uphill, but these
false moves are rapidly corrected, and simply slow down the

average rate of climb.



Fig. 8 - SEQUENTIAL SIMPLEX MAP
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For more than two variables the procedure is the same,
except that the first set of trials consists of (k + 1)
points, where k is. the number of variables. Thereafter a
move is made after every point. The (k + 1) points corre-
spond to the vertices of a regular simplex in k dimensions.
(A simplex is a geometrical figure. A simplex in three
dimensions. would requireﬁfourvpoints andeould form a
tetrahedon; in two dimensions a Simﬁlex has -three points ar-
ranged.in a-triangle. In more than three dimensions the
analogoﬁs figure is called sihply a "simplex,"f Thus, after
the initial set of trials, which for k variables could not
be smaller, theﬁnuﬁber of variables does not matter. The
simplex methoq has other attractive features: vthe calcula-
tions.involved are trivial, calling for no mathematical or
statistical knowledge, and each move is completely determined
by the previoUS‘resuits, so that judgement or extrapolation
is not required.

The method is thus ideally suited for operation by
plant staff with no knowledge of statistics, or by a computer
where fast or automatic operation is required.

It is easy to add an extra variable at any time. It is
only necessary to add one point, which completes a simplex
in (k + 1) instead of k dimpnsion, to give a starting simplex
for optimizing the (k + 1) variables. For -example, one point
is -added to an equilateral triangle to:form a regular

tetrahedon.
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In this method it is not necessary to have a numerical
‘measure of the response. It is only necessary to rank the
results and discard the worst. This is useful when it is
impossible to measure quality numerically, and also where
there are several responses which cannot be maximized simul-
taneously, and a judgement may have to be made as to the
relative importance Qf the various‘responses;

If it is required to fit a second degreevequation in
order to estimaté the form of the surface —'say'in the ‘region
of the optimum where the surface is not even‘approximately a
plane - it is easy. to:add furthér-points to the current sim-
plex and obtain. a set of points which efficiéntly estimate
the second degree surface which fits the results. ‘This is
also true for the method of steepest ascent.

It may be noted that Brooks and Mickey (16) ha&e shown
that. the most efficient experimehtal design for estimating
‘the slope of a plane;(i,é., the-desigh giving most informa-
tion per observation in the presence of ekperimentél error)
is the regular simplex. , L | }

The problem of restraints is easilyvdealth with} CIf it
is specified that.some'fuhction of the input variables or of
the response, or a subSidiary.reSpOnse, must not exceed a
stated value, it is only necessaty toﬁcalqulate‘this function,
compare it with the specified value, and if this is exceeded,
to replace the response'by some large negafive°coﬁstant which
énsures that the offending point is fhe»Worst in the;simplex

and is immediately discarded. Ih experimentation,the restraint
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might be simply an upper limit on one variable - a maximum
permissible pH for example. 1In this case the trial need

not - indeed, must not -~ be made; the response can at once
be set equal to a negative constant. The same would apply
to a function of several variables; for example, if a high
dosage of alum and a high mixing spged must not occur to-
gether. The restraint may be limited to a second response,
say a condition that the cost must not be above a given
limit, the object being to make turbidity removal a maximum
subject to this condition. In this case the trial would
have to be done, and if the cost were too high, the main
response -~ turbldlty ‘removal - would be set at a negative
value, so that the offendlng point would be immediately dis-
carded. Since the responses in a simplex need only be ranked,

this procedure is valid.
Summary of the Literature

The literature can be summarized as follows:

1. The "one-variable-at-a-time" method is only expe-
dient when the number of variables is not more than two.

2. Factorial experiments should be used only when an
overall picture.of the response surface is needed. Also,
the number of trials for three or more variables become
quite excessive.

3. The steepest ascent method is the best known and

currently most used optimization procedure. :Considerable:

knowledge of: statistics isérequired for'correctuapplication
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of this procedure. Another disadvantage is that considerable
time may be spent in experimenting in one region before a
move is made to another region. Also, numerical responses
are needed for this procedure.

4, Although random experimentation is easy to program
and can be made automatic, it haé the main disadvantage in
that the selectiqn of the optimum combihation of fhe levels
of each variable is by chance alone.

5. The Sequential Simplex Method has these attractive
fedatures: the calculations involved are trivial, calling for
no mathematical or statistical knowledge; each move is com-
pletely determined by'a'previous result so - that judgement or
extrapolation is not required; it is easy.to add an extra
variable at any time; and it is not necessary to have a num-
erical measure of the response.

Based on the above review of the 1iteratﬁre, the Sequen-
tial Simplex Method seems to be the method best suited for
application to the jar test procedure. The next chapter

will develop :and outline the formal procedure of this method.



CHAPTER III
FORMAL PROCEDURE OF THE SEQUENTIAL SIMPLEX METHOD

The basic design (15) of the scheme is the regular
simplex in k dimensions, wherevk is the number of factors
currently under investigation. Relative to a chosen origin,
a regular simplex of unit edge is conveniently specified by

the (k + 1) x k design matrix.

oo00. . .0
Paq. . . q
D, =lapa. . .qa
Q9d4q .+ «P
L. et
1 » 3
Where p = -m (k = 1) + (k + 1)%
And 4 = T 414% (x + 1)’. -1

The rows of the matrix give k coordinates of each of
the (k + 1) vertices of the simplex. D  is suggested as a
conveniént starting simplex once the origin and scales of
measurement have been de;ined.

"Regularity" is, of course, one of those metrical con-

cepts which is not scale-invariant, and therefore cannot be

24
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strictly applied in a multidimensional factor space in which
scaling is inherently arbitrary. Regularity in some sense,
however, is preserved if the scales for the separate factors
‘are chosen in such a way that the unit change in each is of
equal interest to the experimenter. Therefore it will be
assumed in what follows that ''regular' has its customary geo-
metrical meaning. It is noted, nevertheless, that by a
suitable 1inear'transformation'ofcx»ordinates any simplex can
be made regular, sb*that regﬁlarity in a specified co=ordinate
system is not essential to the ap?lication of the technique.
In the most general case we can cénsider a "regular"
simplex S0 with vertices Vli V2’ o o s Vk¥i.;andf center Co.
On each face of the S0 it is possible to construct a new
1° Vos o o @

=17 Vj+1 ‘. e e Vk+1 in common ‘with Soband is completed by

simplex Sj with center Cj, which has k vertices V

\'

one new vertex,V?,*the mirror image of Vj-in common face. To

find any one co-ordinate of V?vwe také twice the éverage of

the correspohding;coordinates for the common vertices-Vl, V2,
v .

N A

j=1? k-1
co-ordinate of Vj.a.In“vecfbr-notation

FFSER R and subtract the corresponding

= 2 -
Vﬁ = E-(Vl + Vy o +VJ._1 + Vj+1 o +Vk+1) Vj

Suppose now that-So is a simplex in the factor space and

i

that the responses n, (j 1, 2, . . . k+1l) at the vertices
of S0 are known or have been estimated by experimental read-
ings yj. Then we move through the factor'Space in that

direction C C ' which is "nearest" to the direction of
O—> D
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steepest ascent by applying

Ruyle 1 -~ Ascertain the lowest reading yp of Yy ¢« -

Yies1s complete a new simplex Sp'by e#cluding the

point.Vp corresponding to yp and replacing it by

V% defined as:above.

When the procedure is uséd on observations which are sub-
 ject tézé}}éﬁj7iﬁéié7ié’%ﬁefﬁdééibiiityfthat the system of
simplexes may become;anchoréd fo-some spuriously high result
which isjfreated as ifjitiwere-a genuine optimum. To reduce
the risk'of this,.wevapply |

Rﬁ1é 2f;'If'é”resu1t.has occurred in (k+1) successive

simplexes and is not then.eliminated by application of

Rule 1, do not move in the direction indicated by Rule 1

or at all, but discard the result and replace it by a

new observation at the same point. If the point is a

genuine optimum, the»repeat obserﬁation-will also tend

to be high. 1If, however; the result was high only by
reason of errors - of observation, it is unlikely that

the repeat observation will also give~so high a result,

and the point will be eliminated in due course.

‘When the responses are not subject to error (i.e., when
the procedure is uéed for numerical 6ptimization) a different
‘Rule 2 is required, and a different criterion for deciding
when the system is no longer progressing. TFor a discussion
of this different Rule 2 reference should be made to Hext

and Himsworth's original paper (15).
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Less difficulty will be caused by spuriously low re-
sults, since these will tend to be eliminated from the
system fairly rapidly. However, there are advantages to be
gained by also applying

Rule 3 - If yp is the lowest reading in SO, and if

the next observation made, y;, is the lowest reading

fih the new simplex Sp, do not apply Rule 1 and return
to S, from;Sp. Move out of SPUSW-rejecting the

second lowest reading (which is also the second

lowest reading in SO);

This willggéstme way toward reducing wandering caused
by spuriouslygIOWfresults, but - its chief:purpose is that it
.forceS'the-simplexes'to‘circle continuously about an indi-
cated optimum rather than oscillate over a limited range.
It also makes progress possible if by chance the system of
simplexes shou1dbstraddle a "ridge" ‘in the.factor space.

The three-ruleS‘given'above‘may be-Summarized briefly
as: - move by rejeéting thé-lowest observation unless (a)
.another . observation is too.old -~ in which case we renew the
latter, or (b) such a move would cause us éo return to the
previous simplex,’in whichvgasé'we tfy the next most favor-
able direction. Between them. these rules define an evolu-
tionary procedure capable of indefinite application. Given
a fixed optimum, the system of simpléxes-will approach this
with a closeness determined by the basic step size, and will
then circle continuously around it, any straying caused by

observational errors being corrected by later observation.
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If the optimum should move - -with time, the continuous circling
‘will ensure that information is generated enabling the moving
optimum to be followed. Only the most trivial calculations
are involved, so that the procedure is as suited to manual
application as to electronic computation.

It muSt:be,realized, however, that this method is
intended. as a permanent mode of operation, and not as a short-

term investigational technique.



CHAPTER 1V
APPLYING THE PROCEDURE

The best way to describe the; procedure is by consideriﬁg
a hypothetical example. Thé example will involve several
simple calculations; thereforefFig. 9 represents a sample cal-
culation sheet for use in these calculations.

The hypothetical example will involve -a water treatment
plant which is using two éontrol variables in their unit op-
eration of chemical coagulation. The control variables are
ferric sulfate and a coagulant aid. The present dosage of
- the variables is 20 ppm of ferric sulfate and 0.2 ppm of
coagulant aid. For some reason a change in the raw water
supply occurs and the above dosage does not give good results.
The problem is to find the combination of the control vari-
ables that will give the optimum response. The optimum
response would be the levels of each factor that will give
the greatest turbidity removal at the lowest cost.

The first step in the technique is the selection of the
levels of the variables to use in combination with one an-
other. From Chapter Il it is seen that a convenient start-

ing simplex is given by
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Simplex No.

Line JJRun  {Rank | Xg
No. - JINo. ’
: {the ‘
(1)
(2
3) Co-ordinates of Points
(k+1)
(k+2) | Sum of Retained Sum of k Numbers
Co-ordinates
(k+3) 2x (Average of Line (k+2)x %
' Retained Points)
(k+4) | Co-ordinate of :
Discarded Point '
(k+5) Co-ordinate of " Line(k+3)-Line k+4)
New.Poipt
‘Remarks:

"Fig. 9 - FORM OF CALCULATION SHEET FOR SEQUENTIAL SIMPLEX METHOD
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o)

44q .« . .0p

b ol

I | ;

‘ 1 NE gl
And‘ q = 1414k [(k + 1) % - 1:]

The restrictions placed on this simplex are:

D=t

Where p-

1. .It must have one combination of:levélS more than the
number of VariableS undéf'study.,

2. Itbmusf conform tO‘”regulafity;" that is, it must
have the Séales of each variable chbsen in such a manner that
‘a unit change in each variable is of equal interest to the
investigator. |

Since there.are two control variables (k = 2), the first
- simplex will require)three-combingtions (k + 1) of.the two
factors. Thereforevthe~starting‘simplex-(in this case a tri-

angle) will have the followihg combination of levels, if we

- let the present dosage .be the origin.

X L g
o o
,sQ =
P q
a b
Where p = 0.966

And .q'= 0.260
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Mention ‘should be made at this time of a possible sec~
ond situation in which ;n investigator might find himself.
The situation is one where no starting point is known from
which to form the starting simplex. The first step in the
procedure given. above is hot altered in.;any way except a
starting point (origin) must be chosen. The starting point
can be=picked COmpietely af:random withih the response sur-
-face. An example of fhiS*situatiOn might occur at a design-
office‘where-no-previous knowledge of the raw water was at
hand. The designer could make a rough estimation of the
optimum dosage and conditioﬁs, and start his system of sim-
plexes from this point.

The next step in the procedure is to choose the scales
of each variable so. as to méke the simpleXA"régular." If we
let'é unit change in onervariable‘be of the -same interest  as
a (nit change in the other variablé and ﬁlot these on graph
‘paper, . the friahgle formed will be an-équilateral triangle
with unit sidés.”,To»méke~this s9=requires a suitable linear
scéle fransformation° Each,invesfigétor'Will have to decide
what tfansformations.are best suited for ‘his particular
problemn.

For example, if it were decided that an increase of 0,5
ppm of coagulant  aid was of the same interest as 5 ppm of
ferric sulfate, the scale transformation would be 5 for the
ferric sulfate and 0.5 for the coagulant aid. The co=

ordinates of the~triang1eﬁWOuldmberréprésented by:
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.5 0.5 (scale factor)
: Xl vX2
réo 0.2 ]
S, = |20 + 5(0.966) 0.2 + 0.5%0.260)
20 + 5(0.260) 0.2 + 0.5(0.966)

Two other comments should be made ét.this,time. They are:

1. The simplex_should not be too large; that is, it
should not cover the entire~response»ranger

2,  The simplex should not be too small; that is, it
should not cover too 'small a response -region,

However;aif the-éxperimenter”does;choose~too large or
too smali a range, ithill be detected . in due‘coursé, usually
after the first run of experiments,

Fig. 10 shows:aplét of the points representing three
possible‘starting simplexes, Points 1, 2:and 3 represent a
simplex'which.is téoularge.v‘Points 1, 4 and ‘5 represent a
simplex 'which is ‘about ‘right. Points 1, 6 .and 7 represent
a simpiethhich,is toovsmall; »If’the.experimenter'chooses
avSimpleX‘represented by points 1, 2 and 3 he would find
after‘the new point.for the second SimpleX'was calculated it
.would fall outside the response region; therefore it.would
be concluded._ that the starting simplex covered too much of
the response surface. If the experimenter chose the simplex
represented by points 1, 6 ang:7, then after the first runs
were made it would be impossibie to detect the differences

between the samples. Therefore it becomes apparent imme-



" Coagulant Aid (x2)

f.3(22.60,1:17)

-
o

o
L1

4(24.84,033)
6(20.97,0,23)""
1 (20.0,0.20)

0 | I

20 25 - 30 35

Ferric Sulfate (xl)

Fig. 10 - THREE POSSIBLE STARTING SIMPLEXES FOR
EXAMPLE PROBLEM
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diately that the levels of the factoré will have‘to be
increased in ordér to be able to:digcriminateibetweéen.the
samples.

The next step after obtaining the starting_simplex is
to test the various combinations by the standard jar test
procedure. Once this is done, the calculations needed to
obtain the'éoﬁbinafiéﬁhoffié&éis“fof‘RuhﬁNég14'are straight
forward and’afe shown in Fig. 11. Note that Run No. 1 was
discarded in acéordancé With_Rule No. .1l (Chapter III). Rule
No., 1 states that@the combination of levels which gives the
lpwesf’faﬁﬁiné’fespdnseibé diséér&ed;  |

In Figl’lzﬁthe»stafting Siﬁplexfis fepresented by the
vertices'offﬁhe;tfiangleKlabeled‘”1"r'_The triangle labeled
na representS‘Simplex No;‘2,‘which is*theiretained points of
Simplex No. 1 and theycalculated ﬁewbpoint of Simplex No. l.n

After ranking Run-No. 4.a10hg With the other retained
runs of Simplex No. 1, the same calculations are carried out
to obtain the combination of levels for the fifth‘run. The
procedure does not reduiréithat'a rebeat.test of the retained
points of the_previous'simplex;be-madé, but - if a check is
desireﬁ on these combinatiohs'a’repeat test could be,made at
the time the new combinatioh:is-rUn,‘

- Calculations for Simplex Nos.;2,-3, 4, 5, and 6 are
given below. It should be noted that the lowest ‘rank in
Simplex No, 5 was not rejected, but the-sécond lowest re-
sponse was rejected. This is due to the apﬁlicafion of

Rule No, 3 (Chapter III). -Rule Nb; 3 states that if a cal-



Simplex No.__1

Line Run |Rank "Xy x
No No 2
. . ] Fest- 4 {Coag.
‘4 Aid
1) Co-ordinates 1 3 20.80 0.20
of —
_(2) Points 2 1 {2480 | 0.33
(3) ' 3 2 0.88
(4) Sum of Retained Sum of 2 Numbers 46.10" 1.01
i Co-ordinates ‘
(5) |2x(Average of Line(2) x-% 46.10 | 1.01
Retained Points) ,
(6) Co-ordinate of 20.00 0.20
Discarded Point
(7) |Co-ordinate of Line(5) - Line(6) 26.190 0.81
: New Point
Remarks: *Discarded Point

Fig. 11 - CALCULATION.SHEET FOR SIMPLEX NO. 1
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2.0}
Min. Response Contour
1.5
—
[o)]
]
A
©
o~
< 1.0
+
S
«©
=
=
Y
5
&) .
’\‘M,ax. Response
0.

Contour

0 ‘ 1 I |

20 25 30 35

Ferric Sulfate (xl)

Fig. 12 - RESPONSE CONTOUR MAP AND SYSTEM OF
SIMPLEXES LEADING TO SUMMIT
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culated new point in a simplek returned to the previous sim-
plex, the lowest rank in the present simplex should rot be
discarded, but the second lowest reading should be discardéd.
This will reduée wandering éaused by returning té 8 previous
simplex. Therefore, the second lowest ranking response was
discarded and the new.point calculated from the first and

third responses.

Simplex No, 2

Line No. Run No, Rank . xl

»

2

(1) 2 2 24,8 0.33
(2) 3 3 %*21,3 0.68
(3) , 4 1 26,1 0.81
(4) 50.9 1.14
(5) ‘ 50.9 1.14
(6) . 21.3 0.68
(7 * Discarded Point  29.6 0.46

Simplex No. 3

Line No. Run No. Rank ' 3 Xg
(1) .2 '3 *24,8 0.33
(2) 4 2 26.1 0.81
(3) 5 1 29.6 0.46
(4) 55,7 1.27
(5) 55,7 1.27,
(6) 24,8 0.33
(7) , . 30.9 0.94

*Discarded Point
Simplex No, 4

:Line No. Run No. Rank Xy X,
(D) 4 2 26.1 0.81
(2) 5 3 *29, 6 0.46
(3) 6 1 30.9 0.94
(4) 57.0 1.75
(5) 57.0 1.75
(6) 29.6 0.46
(7N 27.4 1.29

#Discarded Point
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Si@glex No. 5

Line No. Run No, Rank X, Xg
(1) 4 2 %26, 1 0.81
(2) 6 1 30.9 - 0.94
(3) 7 3 27.4 - 1.29
(4) ' . 58.3 2,23
(5) 58.3 2.23
(6) 26.1 0.81
(7) 32.2 1.42

#*Dlscarded Point

Simplex No, 6

Line No. Run No, 'Rank Xy : x2

(L) 6 1 *30,9 0.94
(2) - 7 2 27.4 1.29
(3) 8 3 32.2: 1.42
(4)
(5)
(6)
(7

*Optimum Combination

After obtaining the response from the jar test on
Run No., 8 and ranking the results, it is seen that the same
response has occurred in (k + 1) simplexes for Run No. 6.
Therefore Rule 2 (Chapter II1) is épplied. Rule 2 states
that 1if the same response has occurred in (k + 1) success-
ive simplexes, and is not then eliminated by application of
Rule 1, do not.move in the direction indicated by Rule 1 but
discard the result (Runt. 6 in.this case) and replace it by a
new observation at the same point. If_the point is a genuine
optimum, the repeat observation will also tend to be high.
If, however, the result was high only by reason of errors of
observation, it is unlikely that the repeat observation will
alsc give SO‘high a result, and the point will be-eliminated

in due course.
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. Fig. 12 represents the response contours and the system
of simplexes leading to the summit for the example problem.
Although the example problem involved only two variables,
any number of variables could have been used. In fact the
use of this‘technique with only two variables will prove to
be inefficient as compared with the Univafiate Method.
Therefore the use of this technique will prove to be of most

.Vglue when three 6r'm0fé»variables are under study.
- SUMMARY OF THE PROCEDURE

The procedure can_bevsummarizea as follows:

1. Determine the scales of méaSurement of each vari-
able in such a manner so:that a unit change in one variable
is of equal interest as a ﬁnit chahge‘in the other variables.

2. Select a starting péiht,(origin) in factor space -
either a present point or a point selected completely at
random, |

3. Calculate the vertices of the starting simplex -and
make the suitable scale transformation if necessary.

4, Test the combinations (k :‘1) of the levels of the
k variables. |

5. Rank;theiresponSes.-.

6. Calcﬁlaté the coordinate of the new point in accord-
ance with Rules 1 and 3 given in Chapter II.

7. Test the new combination and rank the response along
with the retained fesponses of the previous simplex,

8. Continpe the process untii the optimum is reached,

which is given by Rule 2 of Chapter 1I.



CHAPTER V
SUMMARY AND CONCLUSIONS

The purpose of this study was to select a method of
empirical optimization and apply it to the jar test pro-
cedure.

The Sequential Simplex Method appears to be the method
best suited'for use -as -an optimization technique in. the jar
test procedure when three or more vériables»are under study.

Even though the main purpose bf the study was to select
a method of empirical optimization for use as an aid in the
jar test procedure, the Sequentia% Simplex Method is equally
suited for use as an aid in any continuous optimization
problem,

The main'disadvantages of the technhique are:

1., The method is intended as a permanent mode of oper-
ation, and not as a short-term investigational technique.

2. It is more efficient than other methods only when
the number of variables is equal to or greater than three.

The‘ﬁain advantages of the techniques are:

1, The calculations involved are trivial, calling for
no mathematical or statistical knowledge.

2. Each move is determined completely by a previous

result.
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3. It is easy to add an extra variable at any time.

4, It is not necessary to have a numerical measure of
the response, since the technique is also valid for only
ranking the responses.

5. The problem of restraints is easily dealth with.
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