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CHAPTER I
INTRODUCTION
1.1 General

Engineers concerned with the design and construction of buried
structures have long been preoccupied with the problems of structure-
medium interactions. With the advent of thermonuclear weapons, which
may subject buried structures to severe ground motions and very high
loads, a clear understanding of structure-medium interaction has be-
come vitally important. Conventional methods, of empirical nature,
used in the design of culverts and pipelines, cannot be used in the de-
sign of buried structures which have to withstand nuclear effects, as
this would result in extremely costly structures. In anleffort to reduce
and control the magnitude of the forces applied to the buried structure
by blast loadings, comprehensive studies were conducted both in the
field and laboratory of structure-medium interactions,

A technique employed is to isolate the structure from the effects
of nuclear blast by surrounding it with an energy absorbing medium
called "'packing.” Such a packing material is normally elasto-plastic
with a low yield strength and high compressibility. The packing is
intended to absorb part of the shock energy and to redistribute the

pressure around the structure, thereby reducing the loads applied to it.



1,2 Statement of Problem

This study is an effort to evaluate the feasibility of applying the
finite element technique to the solution of structure-medium interaction
problems and to inv‘estigate the magnitude and distribution of pressures
around a lined or unlined horizontal tunnel subjected to a static uniform
over-pressure on the ground surface. The structural liner considered
in this study is made of reinforced concrete, although other materials
could have served just as well, and is encased in a packing material
placed between the liner and the face of the tunnel cavity.

An assumption made in the study is that the surrounding medium
behaves as a continuous, elastic, isotropic and homogeneous medium.
Using the well established theory of elasticity then, it is possible to
determine the displacements and, hence, the stresses throughout the
medium, A condition of plane-strain along the axis of the tunnel was
considered, as most field observations from conventional installations
such as culverts and pipelines approximately conform to such

conditions.

1.3 Previous Work

The composition of various materials that could be satisfactorily
used as back-packing for shock isolation of buried structures has
interested several authorities and institutions for the past few years,
and has been the subject of a number of experimental and theoretical
studies.

During operation "plumbbob,' in 1957, Vaile (1) studied the

effects of violent ground motions on buried vertical concrete pipes,



some of which had glass bottles for back-packing, while others had soil
and served as control pipes. Vaile observed that the accelerations,
velocities and displacements produced in the isolated pipes were mark-
edly reduced compared to those of the control pipes. The reduction
was due partly to the collapse and crushing of the bottles, which re-
sulted in the dissipation of some of the shock energy.

Sevin (2) has performed studies on small scale structures and
points out the effectiveness of the packing materials even when
stressed only to the elastic region of the stress-strain curve, He also
notes that ''at sufficiently high stress levels this form could also be

expected to behave as a dissipative isolation system.'' This study was
primarily concerned with the redistribution of soil pressure around the
structure-packing system.

Da Deppo and Werner (3) studied the influence on the response of
a buried cylinder, with a crushable material placed adjacent to the
cylinder. The packing material, they observed, greatly reduced the
magnitude of the loads reaching the cylinder. The results of this study
also indicated the effects of the softness of the packing material on the
stress redistribution around the structure.

More recently, numerous studies have also dealt with the static
and dynamic analyses of lined and unlined tunnels (4) and (5). The
usual assumptions of linear elasticity, homogeneity and isotropy were
made. It was observed, in these and other studies, that the displace-
ments and stresses from a dynamic analysis obtained by an assumed
plane stress wave of a certain amplitude were about 20% higher than

the displacements and stresses obtained from a static analysis of the

same amplitude (as that of plane wave stress). Because of the close



agreements then, it is possible to predict the behavior of such cylin-
drical structures under dynamic conditions from studies of their

behavior under static conditions.

1.4 The Finite Element Method

The finite element method is, basicél].y, a process by which a
complex structure is idealized as an assemblage of a finite number of
structural elements of appropriate size and shape, interconnected by a
finite number of nodes, and retaining all the material properties of the
original structure. This model of the actual structure is used in all
subsequent structural analyses and the accuracy of the results wili de-
pend on how well the behavior of the model simulates that of the actual
structure; i.e., actions and deformations of the nodes are interpreted
to be the actions and displacements of the corresponding points on the
structures.

Idealization of a structure as an assemblage of structural ele-
ments is not new. The slope-deflection method of structural analysis,
for example, is an idealization where the structural elements are one-
dimensional in character. What is new in the finite element method is
that the idealization is extended by the use of two- or three-dimensional
elements to represent an elastic continuum.

Most of the approximate methods of structural analysis (such as
finite differences) depend for their solution on approximate mathemat-
ical procedures. The only approximation involved in the finite element
method, however, is that of replacing the actual structure by an
articulated structural model, but there is no need to use an approximate

mathematical analysis of the model.



Matrices representing element characteristics, such as force-
displacement or stress-strain relationships, are obtained from an
assumed displacement (or stress) function throughout the element.
Once these matrices are derived, the behavior of the entire structure
may then be determined by satisfying simultaneously the equilibrium,
compatibility and force-deflection relationships at the nodes.

Of the force and displacement methods of analysis, the latter is
more suitable for computer programming and has been used in this

study.

1.5 Liner-Packing Materials and Configurations

Figures 1 and 2 show a liner-packing system and its finite ele-
ment idealization, respectively. The liner material is shown to be

concrete, but steel liners would work just as well.
1.5.1 Reinforced Concrete Liners

The behavior of a structure under load depends, to a large ex-
tent, on the stress-strain relationship of the materials from which it
is made. For the liner under consideration, therefore, typical stress-
strain curves for concrete under compressive loads are shown in
Figure 3, for various cylinder strengths, f’C. Each curve starts with
an initial nearly straight elastic portion, then begins to curve to the
horizontal and attains a maximum stress at a strain of approximately
0.002 in, per in., and follows a steep downward path beyond the peak
stress, probably indicating internal disintegration of the material. It
is noted that concretes of lower strength are less brittle than high

strength concretes. Tests have shown that unit strains of 0.003 to



0.0045 occur before a beam fails. For concretes of cylinder strength

f’C over 6000 psi, the maximum observed strains range from 0.0025 to
0.0040, For high strength concretes, therefore, a maximum strain of
0.003 is considered the limit of usefulness,

The modulus of elasticity EC, which is the slope of the initial
straight portion, is seen to vary with the strength of the concrete; the
higher the strength, the larger the modulus., The ACI Code (15) recom-
mends the use of an empirical formula for the computation of the modu-
lus of elasticity and is given by

E = 330 ° ¢/
C

where w = weight of the concrete in pounds per cubic foot.

When stressed in one direction, concrete expands in the trans-
verse direction and the Poisson's ratio, for concretes stressed up to
0.7 f’c, varies from 0,15 to 0.20,

The tensile strength of concrete is very small compared to its

compressive stress and is usually neglected.
1.5.2 Back-packing

The most important characteristic that a back-packing material
should have is that it be highly compressible with a low yield stress.
It should also be capable of dissipating a large portion of the shock
energy. Several materials, with the desired characteristics, have
been developed for use as back-packing; a few of which are foamed
plastics, honeycombs, insulating concretes, and various granular
materials. |

The choice of back~-packing materials will depend largely on the

type and location of the structure, the assumed loading and, above all,



the cost of material. Generally speaking, the granular materials are
the least expensive. Typical stress-strain curves are shown in Figures
4 and 5 for elasto-plastic and plasto-elastic materials. To facilitate
calculations, both of these curves have been approximated as shown on
the same figures, although only the elastic range is of interest in this
study.

The material used in this study is cellular concrete which is

elasto-plastic with a yield stress of 40 psi,.
1.5.3 Surrounding Medium

Soils and rocks, in general, possess non-linear stress-strain
characteristics. A typical stress-strain curve for playa silt, in one-
dimensional compression, is given in Figure 6. As a result of compac-
tion and cementation that takes place, the initial part of the curve is
concave downward up to the point A, As the stress is increased, the
initial sﬁffness due to compaction and cementation is destroyed, and
the curve begins to increase with the stress level and becomes concave
upward, The one-dimensional modulus is determined as a tangent of
such a stress-strain curve or from measurements of wave propagation

through the medium.
1.5.4 Assumed Behavior of Materials

For the purpose of analysis, the above materials have been
idealized as being continuous, isotropic and homaogeneous. The study,
however, will be restricted to the initial regions of the stress-strain

curves where the behavior is almaost linearly elastic in nature,



CHAPTER I

FORMULATION OF MODEL

2;1 Formation of Structure Matrices

A structural model assembled from a finite number of discrete
eleménts is substituted for the continuous structure. These elements
are separated by imaginary lines and are interconnected by a finite
number of nodes, as shown in Figures 2, 7 and 8, The equations of
elasticity for the continuous structure are formulated in matrix form

using these elements.

2,2 .Development of Element Stiffness Matrix

It is assumed that the displacements at any point within the ele-

ment can be related to the displacements at the nodes by an equation of

G-pld 2

where {q} = {qx, qy} is a column matrix of internal displacements at a

the form:

point in the element, {Q} = {Ql, QZ’ .. .Qn} is a column matrix of
displacements of the nodal points, and [A] = [A (x, v, z)] is a rectangu-
lar matrix which is a functioh of the position coordinates of the point,
With the displacements at any point within the element given, the

corresponding total strains are obtained by differentiating Equation (2.1)



and
{e} =[B] {@} = the total strain (2.2)
= {e} + {0} (2.3)
where

[B] = the strain-displacement transformation matrix;
{G} = elastic strains

{co} = initial strains due to temperature changes, pre-
stress, etc.
Assuming linear elastic behavior for the material, the stresses are

related to the elastic strains by the generalized Hooke's Law:

(-t o

Substituting Equation (2. 2) into Equation (2. 4) gives

(o} - [IB1 ) - [e] eo)- 2.5

where {cr} = {cr , 0,0 T _, T _,T } is a column matrix of
x’ 'y’ Tz’ xy’ xz’ yz
stresses, and [C] is a square matrix of elasticity coefficients.
For virtual nodal displacements 6 {Q} , the corresponding virtual
displacements at any point within the element are obtained from

Equation (2. 1).
o{a} = 4] e{e} @)
and from Equation (2. 2) the virtual strains become
s{s} = o{e} - (2] ofa}. @1

The governing finite element equations for a unit length of the structure

will be developed from a consideration of the principle of virtual work
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which takes the form:
6U = OW (2.8)
where
6U = virtual strain-energy;

5W = virtual work of all external forces,

2,3 Virtual Strain Energy

The strain energy may be expressed as

U=jVUO av (2.9)

where UO = strain energy density, and V = volume.
If now, virtual displacements are imposed on the structure, there
will be accompanying virtual strains, and the variation of the strain

energy density will be given by:

5 = 6{€}t{0} : (2.10)

Consequently, the variation of the strain energy will be

6U = | 87y av = | 6{e}t{o}dv. (2.11)
v v

Substitution of Equations (2.5) and (2.7) into Equation (2.11) yields

o= ] o} (=] [) D {a}av - [ s{a}[=] [c] {sg}ev.
(2.12)

2.4 Virtual Work of External Forces

The structure is assumed to be subjected to a system of surface

forces {T} , body forces {X} , and a set of concentrated forces {P}
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applied at the nodes interconnecting the boundaries of the elements.
The virtual work of external forces, due to virtual displacements at the

nodes, is:then given by:

sw=] s{a} {x}av+ [ s{a) {r}as + s{a} {B}. (21
v S
where s = surface area, and

(= (5 %, %)
y
{T} ={Tx’ Ty’ Tz} ;
{P} ={PX’ Py’ Pz} '
Substitution of Equation (2.6) into (2.13) yields
ow = [ ofa [a] (x}av + | s{a} [a] {r}as + s{a} {7}
v S
(2.14)

2,5 The Governing Equation

Equating the Equations (2.12) and (2.14) as required by Equation

(2.8) results in

| T ] Bl e ov - ] o) T [e] oo}
<[ o} ) (5} + [ ofa} [a] {r}es + ofa} {7}

(2.15)

This equation is valid for any value of virtual displacements. Whence
K19} = [ ] [e) ook av e [ [8T v
v

+ rA_‘ {T}as (2.16)



12

where

t
[k] = IV [B:\ [C] l:B‘J = element stiffness matrix.

Addition of these elemental matrices yields the stiffness matrix for the

entire structure. Equation (2.16) then becomes

[<){a}= {e} +] [B] [c] {so}av + | [a] {x}av
+ [ [a] {r}as )

where [K] = gstructure stiffness matrix.

2.6 Displacement Function

The structural element considered is a quadrilateral element of
unit thickness. A convenient way of calculating its stiffness properties
is one proposed by Turner et al (7). The method consists of subdivid-
ing the quadrilateral into four triangular elements and combining the
stiffnesses of the triangles to obtain that of the quadrilateral.

A typical triangular element subjected to inplane loads is shown
in Figure 9. The displacements within the element can be eXpressed

by an assumed displacement function as

{q} = [m(x, Ys z)] {a} (2.18)

where [m(x, Y, z)] is a rectangular matrix of displacement functions
and {a} is a column matrix of generalized coordinates representing
the amplitudes of the displacement functions.

The number of generalized coordinates chosen must be at least
equal to the number of independent nodal point displacement compo-

nents. Since a triangular element has six degrees of freedom of nodal
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displacements, the displacements at any point P(x, y) within the ele-
ment will be taken as

= +
u, <o + agX * agy

, (2.19)
uy = a4+ a5x + a6y

expressed in standard matrix form, Equation (2.17) becomes

u N
S x1_T1]x|y]0]0)01 (e
{q} {u } [OIOIOillxiy. L
y ay
< 3 2
= (- (2.204q)
_4
%5
%6 J
Symbolically, :
{a} = [m] {a} . (2.20b)
The six constants @ . . .Gz can be obtained from a consideration
of the displacements at the nodes, given by:
R R ][]
Uy LIZ 91| | %
Q) U3 L|x5| 92| “3
Q = < — ?: < (2.213)
Uy L%y |va| ||
Ug 1 X3 | Y3 azE
%6 ) L Lixs|v3] %]

Symbolically,

{Q} - R] {4} (2.21b)

{a} is now calculated in terms of {Q} and substituted into Equation

(2.20) to yield:
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=[] <)
[2]{a)

"
O

~
it

H

(2.223)
_ r92] 0]95]0 |d5° 1{a)
0 |dllO |d2l0 E
where
dy = ap+tbyx +cyy
d2 = a, + b2x + CoY (2.22Db)
dg = ag* bgx * cgy
and
= —1-(x - X
a1 = 5x (Xg¥3 = %3Yy)
b, = —1—(y - Vo) = [ 2A (2.22¢)
1~ 2A Y2 T Y3/ T Ya3 y
C, = e (Xq = Xo) = Yool 20
1~ 2A\3 7 *2) 7 Y32
ag, bz, c, and g, b3, cg are obtained by a cyclic permutation of the

subscripts in the order 1, 2, 3.

2A = DET |1 X9 ¥y | = 2(Area of triangle @, @, @).

2.7 The Stiffness Matrix [K}

Equation (2. 22a) is now differentiated to give the total strains at

any point within the element
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aux A . (v,

[ 3 ) e o el [

X uz

ou u

} i 3
{e} =4 e J 7 b =10 Jc 0 ey |0 |eq Ji;

aux ou ug

%y) |7, * Cp|Pylce|Pafeg Pyl |

LY x ] 5 - LY
(2.23)

Symbolically,

fe} - [ | @)

The stiffness matrix for the triangular element can now be

obtained from the relationship .

] [J]10) (6] e

Since the element being considered is of unit width, the above reduces

to

[k]= I] [B]t [c] [B] dx dy , (2.24)

the integration being carried over the area of the triangle, The ma-
trices [B] arid {C] are independent of x and y and are, therefore,
taken out of the integral sign and the resulting integral becomes the
volume (vol) of the triangle.

Hence

[k] = [B]t [C] [B]-(vol) i (2.25)

To obtain the stiffness matrix for the quadrilateral element, con-
sider the quadrilateral element as built up from four triangular ele-

ments as shown in Figure 10, The stiffness matrices [kJ of the
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triangles are of order 6 x 6, By adding appropriate rows and columns
of zeros, the order of these matrices is increased to 10 x 10. It is now
possible to superimpose these stiffness matrices to obtain for the

quadrilateral a relationship of the form:

- : T
Py ) i |22 25 8 (21,9 [21,0 | ™1
Pol |21 |222 298 1229 (22,10 | [Y2
P3

\ [= £
Pg 33 8 (28,9 |28,10 | U8
9 891 | 89,9 |%9,10 | |9
F1o) [P10,1 210,9 |210,10] | "10

(2.26)

where.{P”} is the column matrix of nodal forces. Since the forces
applied to the quadrilateral element are acting at the nodes @, @, ®,

and @, it is necessary to impose the conditions P9 = 0 and P10 =0;

i. e.,

1

Hence,
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1 .1 = ;“ ¢ r_ -] ,‘i
100 = ko QI kyy Q']
which gives
Ql=- k.. Voo iqr 2.97
QY= - kogy Koy 1R (2.27)
fol /T 1.t 1 1-LT ]\ £
EPJ ‘\Lkll_i :_“klz,,i Lk22__l l_kzl J ika’
1. €.,
el 1 g
(P= [k {q}. (2.28)

The matrix Ekil in Equation (2.28) is the required stiffness matrix of the
quadrilateral element,

A more convenient way of obtaining the [k] matrix without having
to invert any matrix is as follows., The rows (and columns) corres-

ponding to P9 = 0 and Plo = 0 are eliminated one at a time., Thus, for

the 10th rows:

j=1
from which
9
wy = - Vag
10,10 a0.10 & 10,77
j=1
and
9 a .a
P.=Z<a.. 1,10 10’>u (i=1,2...9),
1 & N1 210,10 J
j=1
9
=‘Zaf.-u
. 1] ]
j=1

The above procedure can be repeated to obtain
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8 ;o
a’ al ..
po=y {al - 25 Ll (i=1,2...8),
i j/;'l\ ij 29 g j
8
=) kij -uj . (2.29)
j=1

The matrix Ekij] 8x8 in Equation (2. 29) is the required stiffness matrix
for the quadrilateral element in terms of the four external nodes. The
proper matrix addition of all the elemental stiffnesses in accordance
with the nodal numbering of each element produces the overall struc-

-
tural matrix 'LK] shown in Equation (2.17),



CHAPTER III
STRUCTURAL IDEALIZATION

3.1 Description of Model

A uniform over-pressure of 100 psi was assumed to act on the
surface of the ground and the investigation dealt with the following
cases:

1. Stress distribution in the undisturbed medium.

2. Stress distribution around an unlined tunnel cavity.

3. Stress distribution around a tunnelrwith liner-packing system.

4, Stress distribution around a tunnel with a cracked liner (one
or three cracks).

The tunnel cavity was considered at a depth of 5D below the
ground surface, where D is the diameter of the tunnel cavity. It was
assumed that (due to St. Venant's theory) the tunnel would not cause
appreciable change on the stress distribution at distances of 2D or
more from the tunnel cavity, | The investigations for the lined and un-
lined tunnels were, therefore, based on the models shown in Figures 7
and 8, respectively. Due to symmetry of structure and loading, only
one-half of the model is shown. In each case, the vertical boundary
was considered fixed in the X-direction but free to displace in the Y-
direction, and the horizontal boundary at the bottom was considered

fixed in the Y-direction but free to displace in the X-direction.
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3.2 Finite Element Idealization

The finite element idealization of the structure was carried out
on the model. For each case, the model was divided by a number of
radial lines and concentric circles. In both the lined and unlined tunnel
studies, the radii of the circles, in the surrounding medium, were
chosen with a weighting factor so as to obtain, wherever possible, a
mesh of well proportioned quadrilateral elements. Due to the storage
limitations of the computer, the maximum number of radial lines, for
the lined tunnel, was kept at 49 which gave rise to a maximum of 945
nodes and 914 elements. Starting with the first line and going clock-
wise, every other line was extended beyond the tunnel cavity to end at
the boundary of the model (see Figures 7 and 8). A systematic order
was then followed in numbering the nodal points and elements, with the
restriction that the maximum difference between the numbers of any
two nodes in any one element be less than a predetermined number, 55
in this case. This, in essence, subdivided the structure into partitions
containing a maximum of 55 nodes.

The unlined tunnel required only 25 radial lines starting at the
cavity and ending on the boundary of the model (see Figure 8). Also
shown in Figure 8 is the system followed in numbering the nodes and
the elements.

The sizes of the elements in the surrounding medium grow pro-
gressively larger due to the weighting factor used. In the case of the
unlined cavity, the elements in the surrounding medium adjacent to the
cavity are quadrilateral, while in the lined tunnel these elements are
triangular and serve as a transition zone from the smaller elements in

the packing to the larger elements in the medium.



CHAPTER IV

THE COMPUTER PROGRAM

4.1 Description

The nodal displacements were determined by solving Equation
(2.17) on an IBM computer system 360/50, The main program is made
sufficiently flexible to handle two dimensional plane strain or plane
stress problems with a maximum of 950 nodes and 930 elements.

Referring to the program flow chart given in Figure 11, the elas-
tic constants of materials used were first read in as data, followed by
the automatic generation and storage of the ncdal coordinates in the
global system. For the lined tunnel, the generation of the nodal coor-
dinates was carried out in two stages: the nodes in the liner-packing
system first, followed by the nodes in the surrounding medium. In
each stage, only the first and last nodal numbers on each radial line
were read in as input, after which, the numbering of the intermediate
nodes and the corresponding coordinates, together with information as
to whether load or displacement is prescribed and its magnitude, were
generated automatically. For nodes not on radial lines, the coordinates
and other relevant information were read in from punched cards.

The generation of the elements, material properties, and the
associated nodal numbers was automatic and accomplished in two
stages, as mentioned above. Each element, whether quadrilateral or

triangular, had four nodal numbers associated with it; in the case of a
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triangular element, one of the nodal nufnbers was recorded twice., In
a string of quadrilateral elements, only the first and last eleménts and
their four nodal numbers were read in, after which, the intermediate
elements with their four nodes and material properties were generated.
For triangular elements, all the pertinent data had to be provided as
input. All the input or generated data were then printed out for check-
ing, A listing of typical input data is shown in Appendix C..

Next in order of execution was the calculation of the element
stiffnesses. Each quadrilateral element is agssumed to be made up of
four triangles by introducing an extra node in the middle of the quadri-
lateral, The coordinates of the auxiliary node are the average of the
other four nodal coordinates. The stiffness matrix obtained by adding
the stiffnesses of the four triangles is of order 10 x 10. This is re-
duced to an 8 x 8 matrix by eliminating the. extra node introduced to
yield the required element stiffness matrix for the quadrilateral.
These element stiffnesses are then added in accordance with the nodal
numbering to obtain the structure stiffness matrix. The structure load
column matrix is formed next by adding all the element nodal loads
according to the nodal numbering. Before going on with the calculation
of displacements, the structure stiffness matrix and load vector were
revised to account for the prescribed displacements. The resulting
simultaneous equations were solved for the other displacements using
the Gaussian elimination method for banded matrices. Finally, the
displacements of each ncde were printed.

The average global stresses in each quadrilateral element were
calculated from the average of the strains of the four triangles making

up the quadrilateral element. In order to do this, the element stiffness
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matrix had to be regenerated for each element and used to calculate

the displacement of the middle node. A 10 x 1 displacement vector was

thus produced which made it possible to calculate the average of the

strains on the four triangular elements. The global stresses were

then determined from Equation (2.5), with {e O} set to zero. The global

stresses were used to calculate the principal stresses and directions,
The output consisted of the coordinates of the middle node, the

global stresses, the principal stresses and directions, for each ele-

ment in the mesh. A typical computer output is shown in Appendix D.

4.2 Input of Parameters and Elastic Constants

The material properties and other pertinent parameters entered
as data are given below.

Concrete Liner

Modulus of Elasticity 3 x 108 psi
Cylinder Strength (f'c) 4000 psi
Poisson's Ratio 0.15 |
Steel Reinforcement
Modulus of Elasticity 30 x 10° psi
Poisson's Ratio 0.3
Packing Material (Cellular Concrete)
Modulus of Elasticity 1.5x% 104 psi
Poisson's Ratio 0.1
Surrounding Medium ,
Modulus of Elasticity 4.0x 10* psi

Poisson's Ratio 0,33



Inner Radius of Liner 36 in.
Outer Radius of Liner 44 in.
Radius of TunnelACavity 68 in.

A flow chart showing the logic of computations is shown on

page 38 and a program for one of the cases considered is given in

Appendix B.
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CHAPTER V

DISCUSSION OF RESULTS

5.1 General

As mentioned in Chapter III, the output for each of the cases
studied consisted of the stresses in the continuum together with the
principal stresses and principal directions for each element of the
mesh. The principal stresses were plotted, to a convenient scale,
directly on the mesh and from these, contours of principal stress
directions and contours of major and minor principal stresses were
drawn, In the following few sections, the results obtained for each

case will be discussed in turn.

5,2 Stress Distribution in Undisturbed Medium

This case was considered primarily to serve as a check on the
computational procedures and the program developed. The finite ele-
ment mesh was made up of square elements and the output for this case
showed that the directions of the principal stresses coincided with the
axes of the coordinate system used and that the principal stress in the
Y-direction was 100 psi compression, as would be expected. No

figures are given for this case as it is self-explanatory.
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5,3 Stress Distribution Around an Unlined Tunnel Cavity

Figure 12 shows the relative magnitudes and the_directions of prin-
cipal stresses for this case. .Figure 13 shows the direction contours of
the principal stresses. In Figures 14 and 15 are given the contours of
equal stresses of the major and minor principal stresses, respectively.
These figures indicate that at distances far from the tunne!l cavity, the
minor principal stress is not appreciably different from the applied
loading, both in magnitude and direction. The stresses at the crown,
side and bottom of the tunnel are about 55 psi, 233 psi and 56 psi, all

compression, respectively.

5.4 Stress Distribution Around a Tunnel with a Liner-Packing System

The magnitudes and directions of the principal stresses for this
case are as shown in Figure 16, Figure 17 shows the direction con-
tours of the principal stresses, and Figures 18 and 19 show contours
of equal stress, of major and minor principal stresses. It is observed,
again, that the stresses are all compressive and that the directions and
magnitudes of the stresses at sections far from the tunnel boundary
do not differ by a great deal from the applied loading of 100 psi. The
maximum compressive stresses at the crown, the side, and bottom of
the cavity are 77 psi, 130 psi, and 77 psi, respectively. The presence
of a liner-packing system has increased the stresses at the crown and
bottom of the cavity by about 40%, while the stresses on the side have
been reduced by about 45%, compared to those of an unlined tunnel.

The compressive stresses in the packing at the crown, the side and the

bottom of the cavity are about 80 psi, 42 psi and 77 psi, respectively.
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5.5 Stress Distribution Around a Tunnel with a Cracked Liner

There were two studies made of this case; a liner with just one
crack at the crown and a liner with three cracks, cone at the crown and
one on each side of the crown along a radial line making an angle of 30°
with the vertical through the crown. The cracks were introduced into
the liner by specifying the ultimate moment that would develop at the
section when it fails. The moment is produced by a couple whose
forces are applied at the nodes of the steel elements. The two cases

are discussed separately.
9.9.1 Liner with One Crack

Figure 20 shows the principal stresses and their directions
plotted on the mesh. Contours of principal siress directions and con-
tours of equal stresses for the major and minor stresses are shown in
Figures 21, 22, and 23. The stresses far from the cavity are about
the same as the applied compressive stress of 100 psi. The compres-
sive stresses at the crown, side, and bettom of the cavity are about
124 psi, 128 psi, and 90 psi, respectively. The crack at the crown of
the liner has increased the siresses there by about 60%, at the bottom
of the cavity by about 15%, but has not affected the side stresses as
compared to those of an uncracked liner. The stresses far from the
cavity are still nearly equal to the applied loading. Compressive
stresses in the packing range from 130 psi toc 320 psi for elements at

the crown, about 42 psi at the side, and about 100 psi at the bottom,
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5,5.2 Liner with Three Cracks

In Figure 24, the magnitude and directions of the principal
stresses are given. Figure 25 shows the direction contours, and
Figures 26 and 27 show the equal stress contours for the principal
major and minor stresses. Far from the cavity, the stresses are
nearly the same as the applied loads. Some tensile stresses have de-
veloped at the cavity boundary about 25° - 30° from the crown and the
maximum tensile stress produced is about 122 psi., The maximum com-
pressive stress in the crown, the sides, and the bottom are 530 psi,
120 psi, and 86 psi. While there are no appreciable increases in the
stresses on the side and bottom of the cavity, there seems to be a
sharp rise in the stress at the crown. The stresses in the packing at
the crown range from 600 psi to 1400 psi, about 60 psi at the side, and

about 88 psi at the bottom.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

The objective of this study was to evaluate the feasibility of using
the finite element method in the investigation of stress distribution
around a tunnel cavity with or without lining due to a uniform over-
pressure applied at the surface of the surrounding medium, under con-
ditions of plane strain. It was assumed that the tunnel was at a depth -
of 5 tunnel diameters, which was just over 28 feet. For the cases
studied the surrounding medium was assumed to be continuous and
linearly elastic. For the purposes of analysis, the actual situation was
approximated by a structural model made up of a finite number of ele-
ments interconnected at a finite number of nodes. This model was to
simulate the actual situation, in its actions and deformations. The
boundary of the surrounding medium was assumed to be about 2

diameters from cavity boundaries.

6.2 Conclusions

It was stated in Chapter III that the study was restricted to the
nearly linear initial regions of the stress-strain curves of the materials
used. Stress conditions obtained for some of the studied cases, how-
ever, show that this assumption is violated. The yield stress of the

packing medium is about 40 psi. For the tunnel with an uncracked
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liner, the stresses at the top and bottom of the packing medium range
from 2 to 23 times the yield stress of the material. This ratio is much
higher for the cracked liner. In the case of a liner with three cracks,
the stresses in the surrounding medium, next to the liner at about 30°
from the vertical, are tensile. This state of stress is undesirable
since rocks and soils are either weak in tension or incapable of resist-
ing tension. The analysis is, therefore, unrealistic.

These situations can be remedied by improvement on the analysis,
For cases where tensile stresses occur and cracks take place, any
crack can be represented by separating the elements on each side of
the crack and assigning them different nodal numbers (12). Another
approach would be iterative in nature, consisting of the following
steps (14):

a. An analysis is carried out and elements are noted in which
tension occurs.

b. Principal tensile stresses are eliminated and the effect of
their omission balanced by external ''equivalent' nodal forces,

c. The elastic analysis is repeated to remove the balancing
nodal forces and a check for tensile stresses is made again.

d. Steps b. and c. are repeated until no tension remains.

For non-linear elastic cases, the stresses can be calculated by
applying the load in a stepwise fashion until the desired loading is
reached. References (8) and (9) give details of the various approaches
that can be used to account for yielding of the material.

The major drawback to using the finite element method in this
study was that for the large number of nodal displacements to be calcu-

lated, the time required for computer run was excessive. An attempt
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was made by the writer to apply the finite element method to the deter-
mination of the dynamic response of a tunnel liner-packing system.
The approach taken is summarized in Appendix A. This had to be
abandoned at an early stage, however, because the computer time re-
quired made the cost prohibitive. It is hoped that this would set the
stage for further investigation in this area.

It must be concluded, therefore, that with the present computer
facilities at Oklahoma State University, the finite element method does
not lend itself feasible cost-wise to the type of studies attempted in

this investigation.
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APPENDIX A

DYNAMIC RESPONSE OF TUNNEL

LINER-PACKING SYSTEM

The possibility of investigating the dyriamic response of a tunnel
liner-packing system using the finite element technique was examined.
A computer program was written for this study, but had to be abandoned
early, as the required computer run-time was prohibitive. The

following is a brief outline of the procedure used.

A.1 Derivation of Element Stiffness Matrix

The liner-packing system was idealized as shown in Figure 2,
It was assumed that the displacements {q} at any point in the continu-
ous structure could be related to a finite number of displacements at

some arbitrarily selected points on the structure and expressed in the

(-] .1

form

where

{a}
{q}
[A] = [A] (x, v, z)

Strictly speaking, Equation (A.1) is not valid, but would give a

{qx, qy, qz} matrix of internal displacements;

{Ql, QZ’ Q3. . .Qn} = matrix of nodal displacements;

1

function of position coordinates.

very good approximation if a large number of displacements calculated

60
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from dynamic equations are considered (9).

Differentiation of Equation (A. 1) yields the total strains at the

(-9
SO e

where [B—J is a strain-displacement transformation matrix, {e} is the

point:

elastic strain component, and {eo} is a prestrain component which
may be caused by temperature changes or some mechanical means.

Using Hooke's Law, the stresses are expressed as
{af = le]ie} = [e](B)iaf -<) - (.3)

The virtual work pr'inciple, modified to include inertia forces,

is given by
t
5U = oW - | pa{q} {a}av (A.4)
v
where the second term on the right hand side of the equality represents

the virtual work due to inertia forces.

The virtual strain energy is given by:
t
su = [ s{e} {o}av (A.5)
v

and the virtusl work of all external, surface and body forces is given by:

o ofd (7 + (o (m)ee+ [ ol ne

From Equations (A.1) and (A. 2), the V1rtua1 displacements and the

3 e
e -

virtual strains become -

o +[a] 0 .1
sfe) - o(e} - [5] ¢ 4} e
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Substituting Equations (A.7) and (A.8) into (A.4), noting that

{a} =[a]{a}

and rearranging, the following is obtained:

[ofa) BT[] 8 av + | sfaf [5)[c] [e] o} o
< ofa) )+ [ ofaf [a] {r) s
o[ ofa) ] fde + [ofef [B] [e] fp}av. au

v v

Since the virtual displacements are arbitrarily chosen, Equation (A. 9)

o) 6} + ] )= ) .10

may be expressed as

where

/1
=
| I—
1l

t . :
jvp[A] [A] dv (mass matrix), (A.11)

1
o

| —
"

f r ) )
JV [B]t LC] [B] dv (stiffness matrix), (A.12)

and

&b
vt
I}

b {Pe} +JV [A]t {T} ds +U:A]t{X} dv +U:B]t [C] {eo} dv.
(A.13)

Equation (A. 10) represents the equation of motion.

A,2 Mass Matrix, [M]

It was pointed out earlier that Equation (A. 1) was not valid, be-
cause, for general dynamic conditions, the matrix [A] does not exist,
except for very few special cases. The mass matrix [M] as given by

Equation (A.11) is, therefore, approximate. In order to facilitate
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computations in generating the mass matrix, it was further assumed
that the mass of the elements was equally distributed among the nodes

of the element, resulting in a diagonal mass matrix.

A.3 Stiffness Matrix, [K.J

The discussion given in page 14 of the text also applies to this

case,

A.4 Description of Forcing Function

A high energy explosion creates a shock wave which, for mathe-
matical analysis, can be expressed as a displacement wave. The wave
may produce elastic or plastic deformations, depending on the type of
soil through which it propagates. Since the nature of the wave is not
known precisely, it was idealized by the sketch shown in Figure 28,

By varying the parameters shown in the sketch, a wide range of pulse
shapes can be simulated.

The effect of the shock wave on the system is given by specifying
the displacements of the nodes on the tunnel cavity. The time it takes
for the wave front from the moment it arrives at one end of the dia-

meter of symmetry to reach the jth node is given by

_ R3 + X.
tex = ———lv (A.14)
where
R3 = radius of tunnel cavity;
V = velocity of wave propagation;
X. = the X-coordinate of the jth node.
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It is assumed that for t < teX each node on the cavity boundary
is unaffected and for t > teX each node translates in the direction of
the wave freely.

The translation of the jth node is obtained from the displacement
curve as one of the following expressions:

letting ta =t - tex’ then for

-SXj= (ta/tl)Al
t Stl H
a S =0
Vi
ij=A1
t. st st ;
172" 205 -9
i
t -t
/ = a2 -
Sy A1+<t3— 2>(A2 Ay
tZStaStS< ’
S .= 0.0
SN2
Xj=A2
t, St { .
3 a S =0
L Y]

It is assumed that successive wave fronts follow within a few milli-
seconds of each other or that the system has come to rest after the

passage of the last front, and the effects are superimposed.

A,5 Methods of Solution

In evaluating the response of a structural system to arbitrary
dynamic loads, the actual distributed mass system requires partial
differential equations to describe its equilibrium state. However, the

assumption (11) that the mass properties of the system are separate



65

from its elastic properties, permits the idealization of the structure
as a lumped mass system whose equilibrium state can be formulated
by a finite number of simultaneous differential equations. These equa-
tions may then be solved by either of the following methods:

1. The modal superposition method which requires the-deter-

mination of the eigenmodes of the system and superimposing these to
calculate the response of the system.

2. The step-by-step method (10) which essentially uses recur-

rence formulas that involve the direct numerical integration of the
equilibrium equations. The latter is a very useful method which can
be used to deal with linear, damped or non-linear systems, and is the

one followed in this study.

A.6 The Step-by-Step Recurrence Formulas

Referring to Equation (A. 10), the equilibrium of the lumped mass

system, without damping, at time t can be expressed as:
] @), - [x]{a),- P 815

where .

{Q} = acceleration of the system at "t'’;
t

Q)
@},
P
{e}.

[M] = mass matrix;

[

displacement of the system at 't'"';

force on the system at ''t"';

1]

[K] = gtiffness matrix.
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It will be assumed that the variation of the acceleration for each mass
point of the system is linear over the time increment, At, as shown in
Figure 29,

A simple integration over the time interval for all mass points
yields the following matrix equations for the velocity and displacement
at the end of the time interval, At.

@ - @), 3@, 5

1}

= {af + & E@t (A. 16)
OO IRECONIEE B C A S C )

BORACRC) .17
o} -{a 39 (4.18)
o} - (@ oy @G (8.19)

Substitution of Equations (A.16) and (A.17) into Equation (A.15) yields

-, I 42 )= )

or rearranging

0]+ 4| @ - [} -} e
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Equation (A. 20) is the required recurrence formula which expresses
the accelerations at the end of an interval in terms of displacements,
velocities, and accelerations at the beginning of the interval. Using
Equations (A.16) and (A.17), it is now possible to calculate velocities
and displacements to be used in determining the accelerations at the
end of the next time interval, and so on.

It was at this stage of development that the study had to be dis-

continued because of the excessive computer time needed.
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FORTRAN IV G LEVEL 1, MOD 4 MAIN DATE = 70188 20730707

occl
coc2
0003

0004

0005

Cx .
C* PARAMETERS USED IN THIS PROGRAM
. C*

. C* NUMNP = TOTAL NUMBER OF NODAL . POINTS

C* NUMEL = TOTAL NUMBER OF ELEMENTS

C* NP = INDICATOR NP=1 UNDISTURBED MEDIUM
C* NP=2 UNLINED TUNNEL

C* NP=3 LINED TUNNEL

C=* XsY = NODAL POINT COORDINATES

C* KI'KZrK3 = NUMBER OF DIVISIONS IN LINER-PACKING SYSTEM
Ce NR = TOTAL NUMBER OF RADIAL LINES

Cx op = CONCRETE COVER

Cx DS = DIAMETER OF STEEL

C* PS - = PERCENTAGE OF STEEL

C* FC » FY = STRENGTHS OF CONCRETE AND STEEL RESPECTIVELY
Cc* |3 ='MODULUS OF ELASTICITY

Cx PR = POISSON'S RATIO

C* S = ELEMENT STIFFNESS MATRIX

Cx [ = ELASTICITY MATRIX

C* P = ELEMENT LOAD VECTOR

Ce A = STRUCTURE STIFFNESS MATRIX

C* B = STRUCTURE LOAD VECTOR

ce ‘ eex SEEEEEEEE

C* - STRESS DISTRIBUTION AROUND A TUNNEL CAVITY
cx USING THE FINITE ELEMENT METHOD

Ce PROGRAMMER

Ce YOHANNES WOLDEMARIAM

Ce GRADUATE STUDENT

Ce SCHOOL OF CIVIL ENGINEERING
C* OKLAHOMA STATE UNIVERSITY
Ce STILLWATER 5 DKLAHOMA

C* UXTYPE,UYTYPE = PRESCRIBED LOAD OR DISP. IN X OR Y DIRECTION
Cx uUx LUy = VALUE OF PRESCRIBED QUANTITY

Cx IX{NyJ} = NUMBER OF NODE J OF ELEMENT NUMBER N

C* 0,004H,HH,FoTP = VARIOQOUS MATRICES EMPLOYED IN PROGRAM

Cx XXEJI P9 XXXUJI 5 YYL(J)oYYY(J) = NOMENCLATURES SYNONIMOUS WITH THE

L 2K 2R 2R JE BE A B IR 2R R L B N NP B N IR B R AR E BF BE N B NE NE N JR R OE K B 3K AR B N B N 3 N W )

ce* COORDINATES OF NODE J IN VARIOUS

C* ' . PARTS OF PROGRAM

ce

CHERRREMERERAR SRR RE KR XL X KA RARXE AL ERKKER AR * g kikk

(o

[ ]
L T P T
c* MAIN PROGRAM *

CHERR AR R AR SR RELAELRERKE KR RGEKER KKK BR SRR KSR RER AKX R RAR KKK KR RRER R R Rk kA K XL
IMPLICIT REAL*B(A-H,0-Z)
REAL*8 DFLOAT,DCOS+DSIN
COMMON TYPE(8),HED(18),E(8},X{950) ,Y{950) ,UX{950) ,UY(950} 4VOL+s
1UXTYPE{95C) ,UYTYPE{950) +PR{8},
2MTYPE(930) « NUMNP y NUMEL yNUMAT o N
COMMON /ARG/Z XXX{57+YYY(51,5(1C41C)+DD{3+3)sHH{6410)PLLOYeXXTL),
1YY(4)1Clay4)+H{6410),D106,46)F164101,TPL6},
2DK{2+2) s TYPEL, TYPE2yTESTLsTEST2+SIGIL0) ¢ IX(930+4)oLM{4}oNR
COMMON /BANARG/ A{220+110),48(220)MBAND,NUMBLK

NVEOD0dd YHLAdINOD

g XIONAJd Y
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0006
0007
0co08
G009

0010
0011
0012
0013

0014
0015

0016
0c17
0018
0019
0C20
0021

0022

0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038

0039
0040
0041
0042

0043
€044
0045
0046
0047
0048
0049
005¢C
0051

Cenxs LT re
Cx READ AND WRITE OF CONTROL INFORMATION £ MAT PROPERTIES =
CHesxnnEx . S )

READ(5+1G00) HED. TYPE,NUMAT
1000 FORMAT(18A4,4/48A3,4/,15)
WRITE{642000) HED,TYPE,NUMAT
20000FORMAT(1HL,4X+18A4y//5XyBA3/ ¢y 3Xe
130H NUMBER OF DIFF. MATERIALS..413,7/)
READ(5,1001) { E(M)¢PR{M) yM=1,NUMAT}
1001 FORMAT(2El4.4)
WRITE{642001)
20010F0RMAT (6XSOHMAT MODULUS OF POISSON'S
16X, 49HND. ELASTICITY RATIOD
WRITE(652002) { M E(M},PRIM},M=1,NUMAT])
2002 FORMAT (5X,13,1P2D12.3)

CHeskax *% EL T k&
C* INPUT OF NODAL POINTS DATA *
Cxess L e xEEx aREX k& P2

READ(S5,5C) NP
50 FORMAT (6X,15)
TFE(NP-2) 510,322,60
60 PI=3,141592653589793
READ (5,402) SP,DS
402 FORMAT(2F10.4)
Cc
E(2)={(PI*DS)/ (4. *SP})}*E(2)
Cc
READ (5+430) R1,R2,R3,DPyNRyK1,K2+K3
430 FORMAT(4El4.4,41061)
READ(5,433) FC,.FY
433 FORMAT( 10X, 2F13.3)
PB= (0, 72*FC*90000) /(FY*(30000¢+FY )}
AS= PI*(DS*%2}/4,0
DEP= R2-R1-DP-(DS/2.)
PS=AS/(DEP*SP)
IF{PS.GT.PBIGO TO 434
MU=PS*FY*SP*(DEP*%2)*(]1.~0.59*%PS*FY/FC)
G0 TO 436
434 MUz=AS*FYx*(DEP-DP) .
436 FO= MU/(DEP-DP-(DS/2.))
FS=F0/2
PRINT 438
438 FORMAT(//+10Xs59H AS PS P8 FC
1 FY) :
PRINT 439, ASy PSy, PBs FCe FY
439 FORMAT(/,10Xs 1P5D13.4)
WRITE(6+435)
435 FORMAT(//413Xs2HR1912X42HR2¢12X92HR3+12X42HDP412X+2HDSeBXs 2HNRy & Xy
12HKLy 4X¢ 2HK 244Xy 2HK3, /)
WRITE(6:432) R14R2¢R39y0P,DSeNRyK19K2+K3
432 FORMAT(5Xs1P5014.4+416)
DR1=DP/DFLDAT(K])
DR2={R2-R1-2.0%(DP+DS)}/DFLOAT(K2)
DR3=(R3-R2} /DFLOAT(K3)
ALPHA=PI/DFLOAT(NR-1)
NRM=( (NR=-1}/2)+1
NUMNP=0
NRS=NRM+1

PAGE 0002
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0052
0C53
0054

0055
0056
0057
0058
0059
006C
0061
0062
0063
- 0C64
0065
0066
0067
0Ge8
0069
0070
0071
0072
0073
0074
0Cc75
0076
0077
0078
0079
0080
0081
0082
0Gs3
0084
0085
0086
0087
[ [s]-1:]
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

451

452
453

455

465

470

485

486

490

445

446

447

466

467

469

1y, MOD 4 MAIN

NRN=NR+1
NRC=({ (NR-1}1/6)}+1
NCR=NRC+1

DO 320 I=1,NRN
READ{5,450) NL,N2

FORMAT( 10X,216)

IF(I-NCR) 451,453,452
THETA=ALPHA®DFLOAT(I[~-1)
GO TO 453
THETA=ALPHA®DFLOAT (1~2)
DO 310 J=N1,N2
NUMNP=NUMNP+] -

JR=N14K1

IF(J.GT.JR) GO TO 455
R=R14DR1#DFLDAT{J-N1)
GO TO 445

JR=N14K1+1

IF{J.GT.JR) GD TO 465
R=R14DP+DS :
GOTO0445

JR=N1+K]1 4K2+1 -
1F{J.GT.JR) GO TO 470
R=R1+DP+DS+DR2*DFLOAT(J-N1-K1-1)
GOTO445

JREN14K1+K242
IFIJ.GTL.JR) GO TO 485
R=R2-DP

GOT0445

IF{T.NE.NCR) GO TO 486
R=R2

GO0 TO 445

JR=N2-K3

1F(J.6T.JR) GO TO 490
R=R2~-DP+DR1*DFLOAT(J=K1~-K2-N1~2)
GOTO445
R=R3-DR3*DFLOATIN2-J)
IF{1.EQ.NRS.OR. 1.EQ.NRN) GO TD 446
X{J)=R«DSINITHETA)
Y{J)=R*DCOS(THETA)

GO TO 466

IF(1.EQ.NRN) GO TO 447
X{J)=R

Y{J)=0.0

GO TO 466

X(J)1=0.0

YiJ)==R
IF{1.EQa1.0R.1.EQ.NRC.OR.I.EQ.NCR} GO TO 469
IF(X{J}.EQ.0.0)} GO TO %67
UXTYPELJ)I=TYPE1
Ux{J1=0.0

GO TO 468
UXTYPE(J)=TYPE2
ux€J)=0.0

GO TO 468

IF(1.6T.1) GO TO 471
JRL= N142%K14K2+2
1F(J.GT.JRLY GO TGO 467

DATE = 70188

20/30/07
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0169 4T1  UXTYPE{J)=TYPEL

0110 JK1= N1+K1

0111 JK2= N1+K1+1

0112 JK3= N1+K1+K2+1

0113 JK&= N1+K14K2+2

0114 IF(J.EQ.JK1a0R. JoEQaJK2. DR JLEQ.IK3.ORJEQLIKG) GO TO 473

0115 UX(J)=0.0

0116 60 TO 468

0117 473 IF(1.EQ.NCR) GO 7O 475

0118 IF{J.EQ. JK1.0R. J.EQ.JK2) GO TO 472

0119 GO T0 474 :

0120 472 UX{J)=—FS*DCOS(THETA}

0121 UYTYPE(JI=TYPEL

0122 UY(J)= FS*¥DSIN(THETA)

0123 6010 310

0124 474  UX(J)= FS*DCOS{THETA)

0125 UYTYPE(JI=TYPEL

0126 UY(J)=-FS*DSIN(THETA)

0127 60 TO 310

0128 475 IF{J.EQ.JK3.0R.J.EQ.JIK4) GO TD 472

6129 60 TO 474

0130 468  UYTYPE(J)=TYPE1

0131 UY1J)=0.0

0132 310 CONTINUE

0133 320 CONTINUE

0134 IFINP.EQ.3) GO TO 330

0135 322 READ(5,325) R3,NR

0136 325 FORMAT( 10Ky Fl0.3, 16 )

0137 P1=3.141592653589793

0136 ALPHA=P I /DFLOAT(NR-1)

0139 NUMNP=0

C140 NRM={ {NR~1}/2)+1

0141 330 DIA=2.%*R3

0142 NRL= (3% (NR=11/4)+1

0143 READ{5,326) 01,D2:D34RT+F1,F2,F3

0144 326 FORMAT( 10X, 7F10.3)

0145 WRITE{(6,328)

0146 328 FORMAT(10X,66H DI D2 03 RT
F2 F347)

0147 WRITE(64326) D1,02,D34RT,F1,F2,F3

0148 XT={F2+0.51*DIA

0149 YT={F1+0.5}*DIA

0150 YB=(F3+0.5)#D1A

0151 READ{5,327) PRS

0152 327 FORMAT( 10X,F10.3 )

0153 DO 375 I=14NR

0154 IF{NP.EQ.2) GO TO 336

0155 K=MOD{ 1,2} o

0156 IF(K) 336,375,336

0157 336 READIS5,450) N1,N2

0158 THETA=ALPHA®DFLOAT (1-1)

0159 DO 374 J=N1,N2

0160 IF(NP.EQ.2) GO TO 338

D161 IF(J.EQ.NL) GO TO 374

0162 338 NUMNP=NUMNP+1

0le3 IF{J.EQ.N2) GO TO 361

0164 IF(J-N1) 342,342,344

@165 342 R=R3

207306701
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0166
0167
0168
0169
€170
0171
0172
0173
0174
0175
0176
0177
0178
0179
o1s8C
0181
0182
0183
0184
0185
o186
0187
olee
0189
0190
0191
0192
0193
0194
0195
0196
0197
0ls8
0199
0200
0201
0202
€203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223

344
346

348
332

352

354

357
358

359
362
361
341
373

343

345

347

349

305

351
307
308

306

1y MOD 4 MAIN DATE = 70188

GO TO 354

IF{J=-N1~1) 346,346,348
R=R3+D1

GO TO 354

1F{J=-N1-2) 332,332,352
RaR+D2

GO TO 354

KE={J~N1-3)
RI=D3* (R T**KE)

R=R4+R1
IF{I.EQ.NRM,OR.I1.EQ.NR) GO TQ 356
X{J)=R&DSIN{THETA)
Y{J}=R*DCOS(THETA)

GO TO 358

IFt1.EQ.NR) GO TO 357
X{JI=R

Y(J)=0.0

GO TO 358

X{J)1=0.0

Y{J)=-R

TF(X{J) e EQ.0ORX{J).EQ.XT) GO TO 359
UXTYPE{J)=TYPEL
UX{J)=0.0

GO TO 362

UXTYPE{J}= TYPE2
Ux{J1=0.0
UYTYPE(J)I=TYPEL
uy{J1=C,0

GO TO 374

IF{I-NRM) 341,347,349
IF{THETA=(PI/3.)) 373,345,345
XN=YT#DTAN(THETA)
IF{XN=XT) 343,343,345
X{N2)=XN

Y{N2)=YT

GO TO 355
BETA={P1/2,)-THETA
X{N2)=XT
YIN2)=XT*DTANIBETA)

GO TO 355

X{N2)= XT

Y{N2)}=0.0

GO TO 355
THETA=PI-THETA
IF(THETA=-{PI/3.)) 305,305,353
IF{1.EQ.NR) GO TO 306
IF{1.EQ.NRR1) GO TO 307
XN=YB*DTAN(THETA)}
IF(XN-XT) 3514351,353
X{N2)=XN

GO TO 308

X(N2)=XT

Y{(N2)}=~Y8B

GO TO 355

X(N2)=C. 0

YIN2)=-YB

GO TO 355
BETA={P1/2.1-THETA

20730707
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0224 X(N2)=XT

0225 Y{N2)1==-XT#*DTAN(BETA)}

0226 355 [IF{X{N2)+EQ.Q0.OR.X{N2).EQeXT) GO TO 382
0227 UXTYPE(N2)=TYPEL

0228 UX(N2)=0.0

0229 GO TO 363

0230 382 UXTYPE(N2)=TYPE2

0231 UX{N2)=0.0

0232 363 IF(YIN2)eEQ.YT.OR.Y{N2}.EQe(~YB)) GO TO 365
0233 364 UYTYPE(N2)=TYPEl

0234 UY{N21=0.0

0235 GC TO 374

0236 365 IF{Y{(N2).EQ.YT) GO TO 366

0237 UYTYPEIN2)=TYPE2

0238 UYi{N2)=0.0

0239 GO TO 374

0240 366 IF(NPLEQ.3) GO TO 386

0241 IF(I-3) 367,368,368

0242 367 GAMMA=0.0

0243 GO TO 369

0244 368 GAMMA=ALPHAXDFLOAT(I-2)

0245 369 DELTA=ALPHA*DFLOAT(I)

0246 GO T0 377

0247 386 1F(1-5) 387,388,388

0248 387 GAMMA=0.0

€249 GO TO 376

025¢ 388 . GAMMA=ALPHA*DFLOAT(I-3)

0251 376 DELTA=ALPHA®DFLOAT(I+1)

0252 377 X1=YT*DTAN{GAMMA)

0253 X2=YT*DTAN{DELTA)

0254 IF{X2-XT) 37Cy370.371

0255 370 PR1=—PRS*0, 5*( X2-X1)

0256 GO 10 372

0257 371 PR1=-PRS*0.5%{XT-X1)

0258 372 UYTYPE(N2)=TYPEL

0259 . UY{N2)=PR1

026C 374 CONTINUE

0261 375 CONTINUE

0262 READ{5+380) NS

0263 380 FORMAT{ 10X,y I6 )

0264 DO 390 I=1,NS

0265 NUMNP=NUMNP+1

0266 READ(54385) JyX{J)sYUJ)yUXTYPEL ) yUX(I) »UYTYPE(J),UYIJ)
0267 385 FORMAT(I5,5X32F1043+6XsA4+F10.3+6XeA4,F10.3)
0268 390 CONTINUE

0269 GO TO 56C

0270 510 READ(5+515) N1,N2,XT,Y¥T,PRS

0271 515 FORMAT( 10X,216,3F10.3)

0272 . WRITE(6,4525)

0213 525 FORMAT{10X,44H N1 N2 xT YT PRS, /)
0274 WRITE{6:530) N1,N2,XT,Y¥T,PRS
0275 530 FORMAT(10X¢15,3X¢15,3X43F10.3,//)
0276 DR1=YT/N1

ca11 DR2=XT/N2

0278 NR=N1+1

0279 KN=N2+1

0280 NUMNP=KN*NR

0281 DO 550 I=1.NR

L
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0282
0283
0284
0285
0286
0287
0288
c289
0290
0291
0292
0293
0294
0295
0296
0297
0298
029%
0300
0301
0302
03032
0304
0305
0306
0307
.0308
0309
¢310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
. 0321
0322
€323
0324
0325
0326
0327
0328
0329
0330
0331
G332
0333
0334
0335
0336
0337
C338
0339

516

517

519

520

545
550

210
220

560

563
564

565
566
567

568
5T0
571

L1=KNe(1-11+1

L2=KN*]

DO 545 J=L1,L2
X{J)=DR2*DFLOAT (J-L1}
¥{J)=DR1*DFLOAT(1-1)
1F{J.EQ.L1.0R. JoEQ.L2)} GO TO 517
UXTYPE(J)=TYPEL
UX{J)=0.0
IF{1,EQ.1.0R.1.EQ.NR) GO TO 516
G0 TO 518

IF(I.NE.NR) GO TO 520
UYTYPE(J)=TYPEL
UY(J)=-PRS*OR2

G0 TO 545
UXTYPE(JI=TYPE2
UX(J120.0
IF(1.EG.1.0R.1.EQ.NR) 6O TO 519
UYTYPE(J)=TYPEL
UYtJ)=0.0

60 TO 545

IF(1.NE.NR} GO TO 520
UYTYPE(J)=TYPEL
UY(J)==0.5*PRS*DR2

GO TO 545

UYTYPE(J) =TYPE2
UY(J)=0.0

CONTINUE

CONTINUE

NUMEL=0

DO 220 I=1,N1
N3=N2#{I-1)+1

Ne=N2#* 1

DO 210 J=N3,N4
IX(Je11=Ji-1
TX(J92)=1X(Jy1}41
TX(Jo3)=IXCJ,2)4KN
IX(Jee)=IXCI s 1 +KN
MTYPE(J) =1
NUMEL=NUMEL+1

CONT INUE

CONTINUE

- 60 TO 595

LK=NR-1

NUMEL=0

D0 590 I=1.LK

KK=MOD (142}
READ{S+564) KF oKL
FORMAT( 10Xe216)
M=KF=1

REAC{54566) Ny (IX(NyJ}ed=1y4)
FORMAT( 10X, 518 }
M=M+1

NUMEL=NUMEL +1

IF(N-M) 5804571,568
00 570 K=1,4
IX(MeK)=IX{M=14K)¢1
IF{NP.EQ.2) GO TO 573
IF(KK-1) 572,572,576

20730707

PAGE 0007
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0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377

0378
0379
0380
0381

0382
0383

0384

572 JL=KF+K1l
JHEJL+K2+]
JP=JH+KL+1
IF{M.EQ.JL.OR. M. EQ.JH) GO TO 574
IF(M.GE.JP) GO TO 575

573 MTYPE(M)=]

G0 TD 577
574 MTYPE(M)=2
60 TO 577
575 MTYPE(M)=3
G0 TO 577

576 MTYPE(M)=4

577 1F{N-M) 580+578+567

578 1F(KL-N) 580,585,565

580 WRITE(642005) N

2005 FORMAT{21HO EL.NG CARD ERROR N=15)
CALL EXIT

585 I1F{NP.EQ.2) GO TO 590
IF{KK~1)- 587,590,590

587 KK=KK+2

G0 TO 563
590 CONTINUE
595 NM=0

D0 160 N=1,NUMEL
DO 633 M =144
DO 633 MM=1,4
KK=TABS{IX{N,M)~IX{ N, MM} )
IF(KK~-NM) 633,633,631
631 NM=KK
IF(NM=55) 633,634,634
634 WRITE(6+628) N
628 FORMAT{33H0C BAND WIDTH EXCEEDS ALLOWABLE N=I5)
CALL EXIT
633 CONTINUE
160 CONTINUE
. MBAND=2%NM#2

WRITE(65440)
440 OFORMAT | SQH1 NODE X-ORDINATE Y-ORDINATE X-LOAD
1 29H OR DISPL. Y-LDAD OR DISPL. ]

WRITE(642004) (JeXUJ)pY(J)UXTYPE(J) +UX(JI)4UYTYPELJI}»UY(J)y
1J=14NUMNP )
2004 FORMAT( 10Xs15,3X91P2D12.344XeA4s 1PD12.492X+A4,1PD12.4)
WRITE{6,605)
605 FORMAT(1HL,10X s SO6HEL.NGC Jl J2 J3 J4
1 MAT.NO)
WRITE(65650) (NyCIX{NyJI)+J=194) +MTYPE{N] 4N=1,NUMEL)
650 FORMAT( 10X,15,5110)

c
C ¥k kg dkkk ok R R ook kR R ok ook R R KRRk R Rk kR
cx FORM STIFFNESS MATRIX *
CREREBE RS ARG R ARG KRR RS R R EE R R AR F R R ARk
c
CALL STIFF
c
Rt et e e P et L S R LT A L Sl s R L L e R e s A RS2t
c SOLVE FOR DISPLACEMENTS *
CHEREREREKS AR R AR R KRR KRR R KRR RGN ERRR R R KRR R kR

[

PAGE 0008
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0385 CALL EANSOL
CHEFERERXARRER SRR RRRE R RKKRK K L1 1] PR IS T L s
Cx PRINT DISPLACEMENTS =
CRERERERREEEESERRRKRRRRERR KRR R RKK KK KK KRR F A R =%
ek X:1 PRINT 2009
0387 2009 FORMAT { 45H1 NODE NO. X~DISPLACEMENT
1 2CH Y-DISPLACEMENT,/)
c388 K=0
0389 DO 350 NB=1,NUMBLK
039¢C DD 350 NM=111,220,42
€391 K=K+l
0392 PRINT 2010+K+A{NMsNBI A{NMELI,NB)
0393 2010 FORMAT {10Xs15410X41PD15.6¢10Xy1PD15.61}
0394 TF{K—NUMNP} 350+360+360
0395 35C¢ CONTINUE
C
CRRERERRRRKK EEKE L e T 2]
C COMPUTE STRESS *
CHEXRRERETRERERRERRRERKERKERERE KRR KRR R KA X R R R KK
¢ .
03$6 360 CALL STRESS
C
c
0397 sToP
0398 END
DATE = 70188 20730707

FORTRAN IV G LEVEL 1, MOD 4 MAIN

TOTAL MEMORY REQUIREMENTS 002&DC EYTES
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0001

0002
0003

0005

0006
0007
0008
0009
o010

0011
0012
0013
0014

0015
0016
0017
0018
0019

0020

0021 .

0022
0023
0024
. 0025
0026
0027
0028
0029
0030
0031
0032
0033

0034
0035
0036
0037
0038

0039
0040
0041

c
c
c

SUBROUTINE STIFF

IMPLICIT REAL*S(A—H,0-1)

COMMON TYPELB) JHEDILB)Y ¢E1B) s X(950) +Y(950) LUX(950) LUY(950) +VOL,
LUXTYPE(950) +UYTYPE(950) +PR(8),
2MTYPEL930) s NUMNP ¢ NUMEL yNUMAT N .
COMMON ARG/ XXX(S5)+YYY(5)55(10410)¢DDU393),HH(6410)P(10)4XX(4),
1YY (4) ¢CUl%14) osHI6110)+D(646) 4F(6410)5TP{S),
2DK(2+2) o TYPELe TYPE2, TESTLo TEST2,SIG{10) 4 IX(930,4) +LM(4) ,NR

COMMDN /BANARG/ A12204110)48(220)4MBANDoNUMBLK

Chren

C*

INITIALIZATION -

c

50

REWIND 2
NB=55
ND=2#NB
ND2= 248D
NUHBL K=0

DO SO N=1,ND2
B{N}=0.0

DO 50 MelyND
A{NsM)=0.0

c*
c*
Crens

60

65

70

80
90
142
2000
144
145

150

FORM STIFFNESS MATRICES IN BLOCKS *

TEExy
NUMBLK=NUMBLX+]
NH=NB* ( NUMBLK+1)
NM=NH-NB
NL=NM-NB+1
KSHIFT=2#NL-2

DD 210 N=1,NUMEL

IF(MIYPEIN)I2104210465

DO 80 I=144 - .

IFCIX(Ns 1)-NL)} BO,70.70

IFCLIX(N21)=NM) 90,90,80

CONTINUE -
G0 TO 210

CALL QUAD

MTYPE(N)==MTYPE(N]

IF(VOL) 1424142144

WRITE(6,2000) N

FORMAT (26HONEGAT IVE -AREA ELERENT NO. 14}
CALL EXIT

TFCIXINS3)-IX(Ne4)) 145,165,145

DO 150 1I=1,9
€C=S(11,10975410+10)
PUIII=P(I1)-CC*P(10)

DG 150 JJd=1,9
S(11,3J3=S{I1,J3)-CC*S(10,49)

DO 160 11I=1,8
CC=S{]1+9)/5(9,9)
PLII)=P(I]1)-CC*P{(9)

"PAGE 0001
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20730/07
60%2 DO 160 J4=1,8
* 0043 160 SUITaJ31=STI1,Jd)=CCS194d3) C
¢ . i
Crons
Cx ADD ELEMENT STIFFNESSES TO TOTAL STIFFNESS *
[ X
c
0044 165 DO 166 k=l,4
0045 166  LMCII=2%IX(Ns K )=2
c
0046 DO 200 I=1+4
0047 DO 200 K=1,2
0048 LT =UM( T +K=KSHIFT
0049 KK2Z®]~24K
0050 BUTI F=B( 111 ¢P{KK)
0051 DO Z00 J=leé
0052 DO 200 t=1,2
0053 JJD!.N(J!i'L—!lfl-KSHlFT
0054 LL=2ea-2+L
0055 IFLIIY 200+200,175
0056 175 IFIND—J3) 180,195,195
0057 180 WRITE(6+2001) N
0058 2001 FORMAT{29HOBAND WIDTH EXCEEDS ALLOWABLE 14)
0059 CALL EXTT
0060 195 AEITedd}=ALTLedd )45(KK,LL)
0061 200 CONTINUE
0062 210 EONTINUE
c
Craes
C* ADD CONUENTRATED FORCES WITHIN S8LOCK *
Lo
c o
0063 DO 250 N=NL),NW
0064 K=2#N-KSHIFT
oCes TFLUYTYPE (M) LKE2 TYPE1) GO TO 240
0066 N B{K) = B{K)+ UY(N)
0067 Lo 240 -IF(UXTYPEIN) LNELTYPELY 60 YO 250
0068 T BUK=1)= BAK~1)+ UX(N)
0069 © 250 CONTINUE !
€ .
€
--C _BOUNDARY CONDITIONS
€
0070 310 DO 400 M=NLNH
0071 B IF. (M=KUMNP) 315,315,400
o072 315 UsUX(M)
0073 i ‘N=2#M=1=-KSHIFT . .
0074 IF { UXTYPE(M) «NE. TYPE2 ) 6D TQ 370
0075 CALL MODIFY ( A, By ND2¢ MBAND, Ny U 1}
0076 370 N= N+ 1 _
0077 U = UY{M)
0078 IF ( UYTYPE(M) .NE. TYPE2 ) GO TO 400
0079 CALL MODIFY ( A; By ND2o MBANDs No U )
0080 400 CONTENUE :
v ¢
c
C* WRITE BLOCK OF EQUATIONS ON TAPE AND SHIFT UP LOWER BLOCK *

PAGE 0002
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Ck¥x ’
0081 WRITE (2) { BN} o(A(NyM} ¢M=]1,HBAND)} 4N=14ND )
C .
0082 DO 420 N=1,ND
0083 K=N+ND
0084 BIN)=BIK)
0085 B{K)=0.,0
0086 D0 420 M=]1,ND
0087 Af{BeMI=A{KyH)
0088 420 A(KM)=0.0
- € ok
C* CHECK FDR LAST BLOCK *
c . PP,
0089 . IF(NM-NUMNP) 60¢480+%80
0090 480 CONTINUE
0091 S00 RETURN
0092 END
FORTRAN IV G LEVEL 1, MOD 4 STIFF DATE = 70188 20/30/07

TOYAL MEMORY REQUIREMENTS 000834 BYTES
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0001
0002
0003
0004

0005

0006
0007
0008
0009
0010
0011

0012
0013
0014
0015

00186

0017
ool8
0019
0020
0021
0022
0023
0024

0025.

0026
0027
0028
', 0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

c
c
[#

SUBROUT INE QUAD

IMPLICIT REAL*8(A~-H,0-2)

REAL*8 DCOS.DSIN

COMMON TYPE(B),HED(18)+ELB)+X{950) 4Y¥{950) sUX{950) +UY{950) ,VOL,
1UXTYPE(950) »UYTYPELS50) PR(8B),
2MTYPE( 9307 ¢ NUMNP ¢ NUMEL ¢ NUMAT o N

COMMON 7 ARG/ XXX(5) e YYY{5)3S(10+10)¢DD{3+3) oM 6510} ,PL10) 4 XX(4),
1YY(4) 9Cl404) yHIS010) 4D(696) yF(65410),TPI6)
20K{2+2) s TYPELy TYPE2s TEST1oTEST2,SIG(10) s IX(930,4)sLM{4) oNR

COMMON /7BANARG/ A0220+110)48(220), MBARD, NUMBLK

I=IX({Ns1)

JeIX(Ns 21}

K=I1X{Ns3)

L=IX{Ny&)

MAT=MTYPE(N)

STRESS —STRAIN RELATIONS -~LINEAR ELASTIC *

IF(TYPE(4)-TEST1)10,+30,10
IF{TYPE(4)-TEST2)20+40,20

WRITE(652000)

FORMAT(38H0 PLANE STRESS QR STRAIN TYPE ERROR }
CALL EXIT

COMM=E(MAT}/ (1.0-PRIMAT)*PR(MAT}}
Cll,1)=COMM
Ci1l,2)=CCMM*PRIMAT)

- C{1+31=0.0

Clly4)%0.0
Cl2,1)=C(1,2)
€l2,21=C11,1)
€(2431%0.0
C(2,41=0.0
€43:+1)=0.0 -

L. C43,2)=0.0

C(3,3)=0.0

7. Cl394)=0.0

40

Clael)=040

-Clée2)=0.0
Cl4431=0,0 et T

Cla o4 )=COMMR0, 5%{ 1. 0-PRIMAT))

"GO TO SO - -
COMM=E{MAT)/((1.0+PRIMAT} ) %(1,0~2,0%PR{MAT}}) -

- Cl1ly1)=CONM#*{1.0-PRIMAT})}
T C{1+2)=COMM*PRIMAT)

C{1,3)=0.0
Cll,4)=0.0
Cl2+11=C{1,+2)
Cl2+21=Cl1,1) -
C(2,3)=0.0
Cl(2+4)=0.0
C{3,1)=C(1,2)
Ci3,2)=C(1,2)
C(3,3)=0.0
C(3,4)=0.0

TAGE D001
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0048 C(441)=0.0
0049 C{442)=0.0
0050 Cl443)20.0
0051 Cl444)=COMME0.5%(1.0-2.0%PR(MAT))
CA SREERRRE -
c* FORM QUADRILATERAL STIFFNESS MATRIX *
[ T2 1 s
0052 50 XXX(5)={X(I)+X{J)¢X{KI¢X(L}}/4.0
0053 YYY(S)={Y{I)eY(J)eY(KIeY(L))}/4.0
0054 DO 94 M=1,4
0055 Mit=IX (N M)
0056 XXX(M)=X {MM)
0057 94  YYY(M)=Y(MM)
c
0058 DO 100 [I=1,10
0059 PLI1)=0.0 :
0060 DO 95 JJI=1,46
0061 95 HHIJJI,I11=0.0
0062 00 100 JJ=1,10
0063 100 StIL+JJ}=0.0
0064 IF(K-L)125,120,125
0065 120 CALL TRISTF{l1s243}
0066 XXX(5)={XXX(1)¢XXX(2)¢XXX(3})/3.0
0067 YYNIS)=(YYY{1)¢YYY(2)4YYY(3))/3,0
0068 GO TO 130
0069 125 VOL=0.0
0070 CALL TRISTFl4¢1,5)
0071 CALL TRISTF{1+24+5)
0072 CALL TRISTF(2,3,5)
0073 CALL TRISTF(3+4,5)
c .
0074 00 138 1I=1,6
. 0075 00 138 JJ=1,10
0076 138 HHIIT4J3)=HHIIIJJ) /4.
’ c
0077 *130 RETURN
0078 END
20730707

FORTRAN IV G LEVEL 1, MOD 4 - QUAT : DATE = 70188
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0001
0002
0003

- 0004

0005

0006
0007
0008
0009
0010
0011
002
0013
0014
0015
0016

0017
o018
0019
G020
0021
0022

. 0023.

0024
0025
0026
0027
0028
0029
0030
0031

0032

0033

0034
0035
00386

0037
0038

0039 .

0040
0041

c
c

SUBROUTINE TRISTF(I14JJsKK)

IMPLICIT REAL*B{A-Hy0-Z) e

COMMON TYPEL8) ,HED(18),EL8),X{950) ,Y(950) ,UX(950) ,UY(950) ,VOl,
1UXTYPE{(950) LUYTYPE(950) +PR(B),

2MTYPE(930) ¢ NUMNP , NUMEL ¢ NUMAT o N

COMMON /ARG/ XXX{5)sYYY(5)4S{10410)¢DO(393)9HH(6+10}sP(10YsXX{4),
1YY{4)yClas&)osH(6410) sD{6456)F(64103,TPL6),

2DK(242) s TYPEL+ TYPEZ2 4 TESTL o TEST24SIGL10} 9 IX(930¢4) +L M4} NR

COMMON /BANARG/ A(220,110),B8{220),MBANDs NUMBLK

Catse

C*

INITIALIZATION *

Crens

Lot 2

LM{1)=11

LM(2)=J)

LH(3) =KK

XXC1 P XKX{IT)
XX{2)=XXX(JJ)
XX{3¥=XXX(KK)
XXt4)}=XXX{IT}
YY{1)=YYY(II}
YY(2)=YYY{JJ)
YY{3)=YYV(KK)
YYU(4)=YYY(I])

DO 100 I=146
DO 90 J=1,10
FU1,3)=0.0
HI1¢J}=0.0"
DO 100 J=1.6
D(1,J}=0.0

FORM INTEGRAL(GIT*(C)*(G) *

» 107

COMM=XX{21%{YY (3 }-YY{1}) +XX{2D*{YY{2)=YY(3))¢XX{3)®{YY{1)=-YY(2})
VOL=VOL+COMME0.5 . : -
IF{COMM)107,500,107

D12+ 2)=C (1o 11*COMMN%0.5

D{2+3)=C(1+4)*CONM*0,.5

D{2,5)=D(2,3)

- DI2s6)=C(1,2)*COMME(Q.5

D{3431=C (444 )*COMME0.5 -
DI(3,5)1=D(3,3)
D{5,5)=D(3,3)
DI(646)=C1292)%COMMS0.5

DO 110 I=146
R0 110 J=1,6
D{J+I1=D{1yJ)

FORM COEFFICIET-DISPLACEMENT TRANSFORMATION MATRIX *

DD{1e1d=(XX{2}%YY{3)-XK(3)2YY(2))/COMM
DD(1+20={XX{3)%YY{1)-XX(1)%YY{3))/COMN
DD{1,3)={XX{1)*YV{2)=XXE(2)*YY(1))/COMM
DD(2,1)=EYY(2)~YY(3))/COMM
DDU2+42)={YY{3)-YY{1))/COMM

PAGE 0001
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TOTAL MEMORY REQUIREMENTS 000796 BYTES

FORTRAN IV & LEVEL 1, MOD 4 TRISTF DATE = 70188 20730707
0042 DO(2,3)=(YY(1)=YY{2))/COMM ’
0043 DD{3,1)={XX(3)=XX12)})/COMM
0044 DD{3+2)= IXX(1)~XX[3} ) /COMM
0045 DDA3 ¢3 1= (XX(2)~XX (1)) /COMM
c
0046 DO 120 I=1,3
0047 J=26UM(1)-1
0048 H(1,4)=DD(1, 1)
0049 H(24J)=D0(2, 1)
0050 H(3,J)=DD{3,1)
0051 H{5,J+1)=DD(2, 1}
0052 120 H{6,d+#1)=DD(3,1}
c ,
c* FORM ELEMENT STIFNESS MATRIX (H)T#*(D)%(H) .
c
0053 DO 130 J=1,10
0054 DO 130 K=l,6
0055 IF(HIK,3)1128,130,128
0056 128 DO 129 I=1,6
0057 129 FUI,JI=F(1,3)¢D(I,KI*H(Kyd)
0058 130 CONTINUE
c
0059 ' DO 140 I=1,10
0060 DO 140 K=1,6
0061 IF(H(K,1))138,140,138
0062 138 DO 139 J=1,10
0063 139 S{IeJ1aS(I5J)#H(Ky II2FIK,3)
006% 140 CONTINUE
c
c* FORM STRAIN TRANSFORMATIOA MATRIX .
c
c e .
0065 400 DO 410 I=1+6
0066 C DO 410 4=1,10 - .
0067 410 HHUT,J)=HH(T,J) +H( 149}
0068 500, ‘RETURN - < . - -
0069 END ;
FORTRAN IV G LEVEL 1, MOD 4 20730707

"PAGE 0002

PAGE 0003

78
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0001
0002
0003
6004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019

0020
0021
0022

0023
0024
. 0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

0038

0039 .

0040

SUBROUTINE BANSOL
TMPLICIT REAL*B8(A-H,0-2)
COMMON /BANARG/ A(220¢110),8(220),RBAND,NUMBLK

NN=110
NL=NN+1
NH=NN+NN
REWIND 1
REWIND 2
NB=0
MM=MBAND
GO T0 150
C
C kg k
Cx REDUCE EQUATIONS BY BLOCKS ~ SHIFT BLOCK OF EQUATIONS *
[ 22 -3
[ .
100 NB=NB+1
00 125 N=1,NN
NRM=NN+N
BIN)=8(NM)}
BANM)=0.0
DO 125 M=],MM
A(NsMI=A{NHR,M)
125 A(NM,M)=0.0
C* &k
Ce READ NEXT BLOCK OF EQUATIONS INTO CORE *
Crrax
C
IF(NUMBLK~NB) 1504200,150
c . A
150 READ {23 € BIN),CAINyM) oM=], MM) o N=NL, NH)
c .
IFINB} 200,100+200
fok 2 1 12
Ce REDUCE BLOCK OF EQUATIONS *
200 DO:300 N=l.NN -
L IF(AINS1)Y 225,300,225
225 BIN)=B(N)/A(Ns1})
T D0 275 L=2.MM
< IFLA(N,L))} 230,275,230
230 Q=ALN,L) 7AINs1) o .
L N1 e i . :
3=0
© DO 250 K=LyMM
J=4+1 LT T
‘250 ALY JI=A(T,J)-Q%A(N,K)
T-BULI=BCII-A{N,L)*BINY .
AlNyL)=Q
275 .CONTINUE
300 CONTINUE
c ]
Cx WRITE BLOCK OF REDUCED EQUATIONS ON TAPE 1 *
c Rk t g
: IF{NUMBLK—NB} 375,400,375
375 WRITE (1) (BIN)2{AINsM) oM=24MM) o N=1,NN)
GO To 100
C

PAGE 0001
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c P PPy
C* BACK SUBSTITUTION =
C
c
0041 400 DO 450 M=]1,NN
0042 Nx=NN+1-M
0043 DO 425 K=2,MM
0044 L=NeK~-1
0045 425 BIN)=BIN)-AIN,K}*B(L}
0046 NM=N+NN
0047 B{NM)=B{(N)
0048 450 A{NM,NB}=B{N)
0049 NB=NB-1
0050 IF(NB) 4754500+475
0051 475 BACKSPACE 1
0052 READ (1) (BUN)Io{AINIM)oM=2,HM) ,N=]14NN)
0053 BACKSPACE 1
0054 GO TO 4«00
C
0055 500 RETURN
0056 END
FORTRAN IV G LEVEL 1, MOD & BANSOL DATE = 70188 20730707

TOTAL MEMORY REQUIREMENTS 000746 BYTES
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0001 SUBROUTINE MODIFY{A,ByNEQsMBAND,N,U}
0002 IMPLICIT REAL*8{A-H,0-1)
0003 DIMENSION A(220,110).8(220}
0004 DO 250 M=2,MBAND
0005 K=N-M+1
0006 1F(K)235,235,230
0007 230 BIK)=BIK)-A(K,MI®Y
0008 AlKyM}=0.0
0009 235 K=N+M-1
o010 IF(NEQ-X)} 2509240,240
0011 240 BIKI=B(K)~A(NsM)*U
0012 A(NsM)=0.0
0013 250 CONTINUE
0014 A{Ns1)=1.0
0015 BIN)=U
0016 RETURN
0017 END

FORTRAN IV G LEVEL 1, MOD 4 MODIFY

TOTAL MEMORY REQUIREMENTS O0002CE BYTES

DATE = 70188

DATE = 70188

20730707

20730707

PAGE 0001

PAGE 0002
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FORTRAN IV G LEVEL 1, MOD 4 ~ STRESS DATE = 70188 20/3C/07

0001

0002
0003

0004

0005

0006
0007
0008

0009

0010
0011
0012

0013
0014
0015
0016
0017
ools
0019
0020
0021
0022
0023
0024
0025

0026
0027
0028
0029

0030
0031
0032
0033

0034
0035
0036
0037

0038
0039
0040
0041

AOOOO

SUBROUTINE STRESS

IMPLICIT REAL®B(A~H,0-2)
COMMON TYPE(8)yHEDI(18)},E(8),X{950) ,¥{950) »UX{950) »UY(950) ,VOL,
1UXTYPE(950) +UYTYPE(950) 4PRIB), :

.. 2MTYPE(930) » NUMNP ¢ NUMEL yNUMAT ¢ N

COMMON 7ARG/ XXX(5),YYVI5)sS{10¢10}+DD{3¢3)oHHI6910) 9P(10) 4 XX {4},
1YY14) 4Clh94) +HI6 4100 4D(646)4F(6+10)5TPLG6),

2DK(2¢2) 9 TYPEL, TYPE2, TESTLoTEST24SIG(10) 4 IX{93044)4LM{%&},4NR
COMMON /BANARG/ A(220,110)48(220),MBAND,NUMBLK

COMPUTE ELEMENT STRESS

MPRINT = O
PI*3.141592653589793
NN=110

DO 90 M = 1,NUMEL

N=M
MTYPE(N) = LABS(MTYPE(N)}
CALL QUAD

DO 10 I = 1,4
I =2 %1
KK=2¢I X{Ny 1)
NB=KK/NN
NJ=MOD (KK ¢ NN)
IFINJ} 54645
NB=NB+1
JJ=NN+NJ

. G0 TO 8

10

JJ=28NN_ :
PUII-11=A{JJ-1,NRB)
PUIT)=ALJJ9NB) -
CONTINUE _

00 20 1 = 1,2

20

30

40

50
52

XX{1) = P{1+8)
DO 20 K = 1,8
XX(I) = XX{I) = SC{I+8.K} * P(K)

COMM = S{9,9) * S(10,410) - S{9,10) * S(10,9}

IF. (COMM) 30,40,30

P{9) = (S(10,10) * XX(1} = S(9,10) * XX(2)) / COMM .
P10) = (~S(10+9) * XX{1) ¢ $(9,9) * XX(2)) / COMM

DO SO I = 146
-~ TPUI) = 0.0

DO 50 K = 1,10

TPCI) = TPUI) ¢ HHUI,K) & PLK)

XX(1) = TP(2)

XX(2) = TP(6)

XX{3) = 0,0

XX(4) =

_TPL3) « TP(5)

PAGE 0001
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FORTRAN IV G LEVEL 1, MOD &

STRESS DATE = 70188 20/30/07

0042 56 DO 60 1 = 1.4
0043 SIG(1} = C,
G044 DO 6C K = 1,4
0045 60 SIGII} = SIG(I} + C(I,K} * XX{K)
0046 RAD= ({SIG(1)-SIG{2})/2.1%%2 & (SIG(4})*%2
0047 THAX=DSQRT(RAD)
0048 SAYR= {{S1G{1) + SIG(2}})/2.)
0049 SIGI= SAVR + TMAX
0050 SIG2= SAVR ~ TMAX -
0051 TAN2A=2.%S1G(43/(SIG(1}-S1IG(2))
0052 ANG=DATAN(TAN2A)*50.0/PI
CEEXREEERRREEE Pl *
Cx OUTPUT STRESSES *
Caxnk P, P
c
0053 62 1F (MPRINT} 80.70,80
0054 TO PRINT 2000
0055 MPRINT = 62
0056 80 MPRINT .= MPRINT - 1
c
0057 PRINT 2001y NyXXX(5)4YYYIS),(SIG(L),Ix1,4),SIGL,SIG2+ANG
c
oess 90 CONTINUE
c
0053 RETURN
c .
0060 20000FORMAT 50H1 EL. X Y X—STRESS Y-STRESS
1 4BH I-STRESS XY=SHEAR SIG1 S162
2 134 ANG}
co61 2001 FORMAT ( 5xy I3, 2FB.2y TO13.4 }
0062
FORTRAN IV G LEVEL 1. MOD 4 8LK DATA DATE = 70188 20/30/07
0001 BLGCK DATA
0002 T IMPLICIT REAL*8{A~H,0-2)
0003 COMMON TYPE(B),HED{18),E(8),X{F5C) »Y(950} ,UX{950) ,UY(9501 ,VOL»
LUXTYPELS50) JUYTYPE(950) ,PR(8),
2MTYPE( 930 ) s NUMNP 3 NUMEL o NUMAT o N
0004 COMMON ARG/ XXXUS5)yYYY(5)},S(10910),DC(343)HH(641C)+P{10),XX{4&),
1YY (4] 3004 44) oHIG641C) ¢D(696)4F(64101,TPLG),
20K{2¢23 s TYPELy TYPE2TEST1,TEST2,SIG{10}4IX(93044) LM%} +NR
00C5 COMMON /BANARG/ A(220+110)+8(220)4MBANDs NUMBLK
0006 DATA TYPEL1/4HLOAD/,TYPE2 /4HDISP/oTESTL/IHESS/TEST2/3HAIN/
00CT END

PAGE 0002

PAGE 0001
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CARD
0001
0002
0003
0004
0005
0006
0007
0008

0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

APPENDIX C

TYPICAL INPUT DATA

80/80 LISTY

0000000001 111111111222222222233333333334444444444555555555566666666667717177171178
12345678901234567890123456789012345678901234567890123456789012345678901234567830

FINITE ELEMENT ANALYS1S LINER WITH THREE CRACKS
PLANE STRAIN ANALYSIS

4
0.3500F 07 0.1500€ 00
0.3000€ 08 0.3000€ 00
0.1500E€ 05 0.1000€E OO
0.4000E 05 0.3300E 00

3
12.0 0.625

0.3600E 02 0.4400F 02 0.6800E 02 0.8000E 00 49 1 5 5
4000. 60000, )

1 15
26 40
41 55
66 80
81 95
106 120
121 135
147 161
162 176
168 197
198 212
213 227
231 251
252 266
215 289
290 304
313 327
328 342
350 364
365 379
387 401
402 416
424 438
439 453
461 415
476 490
498 512
$13  s27
535 549
550 564
sT2 586
567 601
609 623
624 638
646 660
661 675
684 698
699 713
122 736
731 151
760 774
775 189
798 812
813 827
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CARL
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
008l
0082
0083
0084
0085
0086
0087
o088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
ol00
ol01l
ol02
0103
0104
0105
0106
0107
0108
0109
olio

0000000001112E1111122222222223333333333444444444455555555556666666666777177777778
12345678901234567890123456789012345678901234567890123456769012345678901234567890

187

835
850
812
887
909
924

675
713

789
827

849
864
886
901
923
238

25

65
105
146
186
236
274
312
349
386
423
460
497
534
571

14.0

608

645
683
721
159
797
834
871
908
945

14

28

40

54

68

80

80/80 LIST

2649

D1sP

1.3

0.0

08

15
27

- 40

16
56
17
25

42
55

67
a0

56

5.0 2.0

LOAD -1510.0

PAGE 002
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'APPENDIX D

TYPICAL OUTPUT

X-ORDINATE Y-ORDINATE X-LCAD OR DISPL, Y-LOAD OR DISPL.

0.0 3.6000 01 LOAD 0.0 LOAD 0.0
0.0 3.680D 01 LOAD ~1.06160 04 LOAD 0.0
0.0 3.743D 01 LOAD -1.0616D 04 LOAD 0.0
0.0 3.846D 01 LOAD 0.0 LOAD 0.0
0.0 3.9490 01 LOAD 0.0 LOAD 0.0
0.0 4,052D 01 LOAD 0.0 LOAD 0.0
0.0 4.154D 01 LOAD 0.0 LOAD 0.0
0.0 442580 01 LOAD 1,06160 04 LDAD 0.0
0.0, 443200 01 LOAD 1,06160 G4 LOAD - 0.0
0.0 4,400D 01 LOAD 0.0 LOAD 0.0
0.0 4,880D 0} DISP 0.0 LOAD 0.0
0.0 5.360D 01 DISP 0.0 LOAD 0.0
0.0 5.8400 01 DISP 0.0 LOAD 0.0
0.0 6.3200 01 DISP 0.0 LOAD 0.0
0.0 6.800D 01 DISP 0,0 LOAD 0,0
0.0 7.400D0 C1 DISP 0.0 LOAD G.0
0.0 8.800D 01 DISP 0.0 LOAD 0.0
0.0 1.149D 02 DISP 0.0 LOAD 0.0
0.0 1.5010 02 DISP 0.0 LOAD 0.0
0.0 1.961D 02 DISP 0.0 LOAD 0.0
0.0 2.563D 02 DISP 0.0 LOAD- 0.0
0.0 3,3500 02 DISP 0,0 LOAD 0.0
0.0 44380D 02 DISP 0.0 LOAD 0.0
0.0 5.7270 02 DISP 0.0 LOAD 0.0
0.0 7.4800 02 DISP 0.0 LOAD -4.9238D 03
2.355D 00 3,592D Ol LOAD 0.0 LOAD 0.0
2.407D 00 3.56720 01 LOAD 0.0 LOAD 0.0
2.4480 00 3.734D 01 LOAD 0.0 LOAD 0.0
2.515D0 00 3.837D Ol LOAD 0.0 LOAD 0.0
2.5820 00 3.940D 01 LOAD 0.0 LOAD 0.0
2.650D 00  4.0430D 01 LOAD 0.0 LOAD 0.0
2.7170 00  4.,146D Ol LOAD ©.0 LOAD 0.0
2.7850 00  4.2480 Ol LOAD 0.0 LOAD 0.0
2.825D 00  4.3110 Ol L0AD 0.0 LOAD 0.0
2.8780 00  4.391D 01 LOAD 0.0 LOAD 0.0
3,192D 00 4.870D Ol LOAD 0,0 LOAD 0.0
3.506D 00  5.349D Ol LOAD 0.0 LOAD 0.0
3.8200 00 5.827D 01 LOAD 0,0 LOAD 0.0
4.133D 00 6.306D 01 LOAD 0,0 LOAD 0.0
4.447D 00 6.785D 01 LOAD 0.0 LOAD 0.0
4.6990 00  3.569D 01 LOAD 0.0 LOAD 0.0
4,803D 00  3.649D Ol LOAD 0.0 LOAD 0.0
4,8850 00 3.,710D Ol LOAD 0.0 LOAD 0.0
5.0190 00 3.813D 01 LOAD 0.0 LOAD 0.0
5.154D 00  3,9150 Ol LOAD 0,0 LOAD 0.0
5.,26880 00  4.017D 01 LOAD 0,0 LOAD 0.0
5.423D0 00 4.1190 01 LOAD 0.0 LOAD 0.0
5.5570 0G . 4.221D 01 LOAD 0.0 LOAD 0.0
5.639D 00  4.283D 01 LOAD 0.0 LOAD 0.0
5.743D 00  4.362D 01 LOAD 0.0 LOAD 0.0
6.,3700 00 4,838D 01 LOAD 0.0 LOAD 0.0
6.9960 00 5.314D 01 LOAD 0.0 LOAD 0.0
7.623D 00 5.790D Ol LOAD 0.0 LOAD 0.0
8.249D 00 6.266D 01 LOAD 0.0 LOAO 0.0
8.876D 00 6.742D 01 LOAD 0,0 LOAD 0.0
9,6590 00 7.337D O} LOAD 0.0 LOAD 0.0
1.1490 01  8.725D Ol LOAD 0.0 LOAD 0.0
1.5000 01  1.139D 02 LOAD 0.0 LOAD 0.0
1.959D 01  1.4880 D2 LOAD 0.0 LOAD 0.0
2.560D0 01  1.944D 02 LOAD 0.0 LOAD 0.0
3.345D 01  2.541D 02 LOAD 0.0 LOAD 0.0
4.3730 01  3.,322D 02 LOAD 0,0 LOAD 0.0
5.717D 01  4.343D 02 LOAD 0.0 LOAD 0.0
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NODE NO.

VONEWMSWN—

 X=DISPLACEMENT

~1.940117D 00
-1.800966D 00
-1.689101D 00
~1.5017450 00
-1.317465D 00
-1.1338470 00
-9,495885D0-01
-7.6269800-01
~645122430-01
~5,1212450-01
0.0

[+ NeoNoNoNoNoRoNoNoNoNoNeNe
EREEEEEEEERE
O0O0O0O0OOO0OO00OOOO

0.0
-1.948005D0 00
-1.806823D 00
-1.6960300 00
—1.5141900 00
-1.331908D0 00
-1.149748D0 00
~9.676352D-01
-T7.860797D-01
-6.756086D~-01
-5.346938D0-01
-6,4439260-02

3.400119D-02

4.096852D-02

3.097327D-02

8.576402D-03
-1.981586D 00
-1.842963D0 00
-1.733566D 00
~1¢5546660 00
-1.3754740 00
-1.196200D0 00
-1.017153D 00
-8.384817D0-01
—=T7.2963900-01
-5.9125930-~01
-1.398805D-01

2.215424D0-02

5. 7460180-02

4.7459140-02

7.884142D0-03

2.0201520-02

1.7968500~-02

1.2168328D-02 .

T.1483200-03
4.5516970-03
3.2151180-03
2.370338D-03

Y-DISPLACEMENT

1.844326D 00
1.844262D 00
1.844378D 00
1.844162D0 00
1.843740D 00
1.8433570 00
1.842966D0 00
1.842238D0 00
1.8410370 00
1.840511D 00
1.0431680 00
4,7577530-01
1.0133470-01
-1,759%4560-01
-3.9163870-01
-4.486675D-C1
-5.5765020-01
=6.8040690-01
~7.821159D0-01
-8,8387510-01
-1.000214D 00
-1.142552D. 00
-1.3222690 00
-1.5527C¢30 00
~1.849714D 00
1.427844D 00
1.4180390 00
1.4095070 00
1.397085D 00
1.384999D0 00
1.372858D 00
1.360662D 00
1.3487770 00
1.342055D 00
1.332939D0 00
8.031676D-01
3.8527960-01
5.057170D0-02
=2.0632790-01
-4.1113280-01
1.0153590 00
9.9679890~01
9.8202570-01
9.582206D0-01
94344278D0-01

9.1072000-01

8.8711580-01
8.6356740-01
844921060-01

8.3099990-01

4.580585D0-01

1.609371D~-01
-8.695361D0-02
-2.8856720-01
—=4.4950240-01
-4.,950976D-01
-5.8341690-01
~-6.910525D0-01
~7.859814D0-01
~8.8431160-01
<9.984223D0-01
-1.,138900D 00
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36.36
37.07
37.90
38.93
39.96
40.99
42,01
42.84
43.55
46.35
51.15
55.94
60.73
65453
36.21
36.91
37.74
38.76
39.79
40.81
4l.84
42,66
43.37
46415
50.93
55.70
60.47
65.25
69.95
Tl. 74

69455 .

80465
101.02
131.93
172.36
225424

. 294041

384.88
503.22
659.15
35.89
36.60
37.41
38243
39.44
40446
41.48
42.29
42.95
45.76
50.49
55.22
59.96
64,69
35.43
36.12
36.93
37.93
38.93
39.94
40494
4l.74

X-STRESS

D.1028D
0.46270
0.7085D
0.18930
-0.10100
-0.20260
~0.6353D
-0.4840D
-0.9392D
=0.39450
-C.2418D
0.32220
0+4430D
-0.41250
0.92360D
C.2584D
0.5426D
0.2839D
C.1991D
-0423290
—0.4749D
~0.2545D
~0.7960D
~0.3227D0
-0.2735D
-0.7953D
-0.16190
-0.4333D0
-0.1632D
-0.16930D
-0.1852D
—0.92380D
~0.5433D
~0.47320
=GC. 4779D
-0.4806D
-0.4824D
-0.4851D
-0.4884D
~0.4895D
0.6314D
0.2218D
0.3863D
Ce2290D
0.6892D
-C.9700D0
-0.2661D
—041633D
-C.5105D
-0.2728D
-0.27970
-0.17240
-C.10520
~C.869CD
0.2655D
0.1365D
0.2257D
0.1803D
0.12120
0.4768D
~0.4218D
-C.3142D

05
04
04
04
03
04

04

04
04
03
03
02
o2

Y-STRESS

0.4564D

0. 72470

0.7974D
~0.6042D
~0.9954D
-0.14520
-0.,22870D
-0.28220
—0.2565D
-0.20780D
~C.15560
-0.1106D
-0,8333D
-0.66150
~Ce1595D
-0.8318D
-0.5117D
~0.3955D
~0.8253D
-0.12210
~0.1038D
=0.7024D
-0.1115D
-0.1247D
-0.1C26D
-0.85050
-0.6813D
-0.55890
=C.5070D
-0.5351D
-0.3803D
-0.35200
-0.2153D
-0.14770D
~041209D
-0.1C97D
-0.1046D
-0.1021D
-C.10C8D
-0.10C2D0
-C.1379D
-0.2083D0
-0.4875D
-0.8371D
-0.9930D
-0.10420
-0.1094D
-0.1078D
-C.1C59D
—C.6626D
-G.5550D
~0.49270
=Ce4334D
-0.3757D
-0.2257D
-0.58140
-0.86600
~C.1172D
-0.1293D
-C.1246D

-0.1037D"

-0.7327D

Z-STRESS

0.16110

016060

0.1075D

0.19330
=0.1645D
-0.52180
-0.12960
~0,22990
-0.1794D
-0.2472D
~0.1798D
~0.1074D
-0.78900
=0+6656D

0.13620

0.5256D

0.73710

0436650
-0.9393D
-0.53250
-0.8680D
~0.97410
-0.1361D
-0.15690D
-0.1300D
-0.9300D
-0.6975D
~0.60220
—-0.,2212D
~0+2325D
~0.18660D
-0.1467D
~0.8897D
-0.6436D
-0.5568D
-0.5206D
=0.5044D
-0.4970D
-0.4937D
-0.49210D

0.9451D

0.6030D

0.50630D

0.21790
-0.4557D
-0.3019D
-0.56310
-0.8133D
-0.9246D
~0.9354D
-0.8347D
-0.6651D
-0.5386D
~0e4626D

0.3704D

0.2350D

0.2C87D

0.9466D
—0.12060
-0.1153D
-0.2189D
~0.3141D

04
04
04
03
03
03
04

XY<=SHEAR

-0.2585D
0.37870
0424730
0.62220
0.2151D
0.78550
0.2642D
0.4295D

~0.1857D

-0.1762D

-0.2910D

-0.1458D

-0.91320

—0.6645D

-0.5211D
0.5485D
0.8311D
0.16390
0.1786D
0.1838D
0.1389D
0.7050D
0.8247D

-0.3479D

~0.43600

-0.3476D

-0.2370D

-0.1664D

~0.70590D

-0.8034D

-C.1088D

-0.6159D

-0.2822D

-0.1090D

-0.4333D

~0.1873D

-0.8810D

—0.4494D

-0.2378D

-0.1D32D

-0.1383D
0.9567D
0.1217D
0.19220
0.2237D
0.2120D
0.1724D
0.9206D
0.1105D

~0.3806D

-0.4435D

-0.3967D

-0.3003D

-0.2249D
0.2547D
0.1188D
0.1662D
0.22410
0.2380D
0.2170D
0.1656D
©.8977D

04
03
04

5161
0.10920
0.4664D

0.78700 |

0.20350
-0.50170D
-0.90300
~0.98660D
=0+2734D
-0,20930
-0.37630D
~0.18020

0.50610D

0.5370D
0.2524D

0492650

0.26700

0455400

0435240

0.15450

0. 14460
~0e57540
~0+4635D
-0.1017D
—~0.2064D
=0.7396D

0.5402D

0.5964D

0.5698D
-0.1492D
~0.1525D0
-0.13670
~0.7851D
=0.4952D
-044615D
~0.4754D

~0.4801D .

-0.4823D
~0.4851D
~0.4884D
-0,48950
0.6317D
0.2550D
0.4180D
0.3204D
0.2238D
0411140
0.1641D
~0.3939D
~0.7767D
~0.4911D
0.4700D
6.9526D
0.7295D
0435980
0.27170
0.1927D
0.2976D
0.3005D
0.2649D
€+1950D
0.9547D
0.3984D

5162

-0.18220

0.68830D
-0.70550
~0.75060
~0+1046D
~0.2576D
-0.76530
~0.4928D
-0.9865D
-0.2096D
-0.1617D
~0.1124D
~0.8427D
-0.6682D
~0.1883D
-0.9178D
-0.6259D
-0.1081D
-0.2171D
-0.3695D
~0.5211D
-0.2783D
~0.8058D
-0,1363D
~C+1226D

~0.9840D

~0.75710D
-0.6079D
-0.5209D
~0.55200
~0.4289D
~0436590
-0.22010D
~0+14890
-0.12120
-0.1098D
-0.1046D
-0.1021D
-0.,1008D
-0.1002D
~0.16810
—0.54010
=-0.8C46D
-0.1751D
~0e25420
-0.31270
=-0.37710
-0.2317D
-0.5387D
-0.89530
-0.,8817D
=0.7604D
-0.6115D
=0449860
-0.2478D
-0.1144D
=0.1585D
-0.23740D
-0.27290
=0427190
=0.24140D
=0.1445D

ANG
-0.13880

0.5492D

017610
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