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PREFACE 

The solution of large scale allocation problems is an important 

factor in the current complex world economy. Decisions that were once 

made based solely upon subjective judgement must now be aided by 

powerful mathematical tools. Those factors which influence or control 

industrial management decisions are sometimes so numerous and compli

cated that intuition alone cannot be relied upon to render optimum 

decisions. 

The objective of this investigation is to add to the tools avail

able for solution of such problems. The technique developed in this 

thesis can be used to obtain the solution of many types of integer 

programming problems, such as the allocation problem, without being 

restricted by the "curse of dimensionality" which limits the size of 

problem that can be handled with conventional dynamic programming 

techniques. 

I would like to take this opportunity to express my gratitude to 

those individuals without whose help and encouragement the attainment of 

this level of education would not have been possible. Primary among 

those are the members of my committee, Dr. James E. Shamblin, Dr. Earl 

Ferguson, Dr. Palmer Terrell, and Dr. Larry Perkins. Dr. Shamblin and 

Dr. Terrell provided the quantitative insight necessary for my major 

interest of operations research; Dr. Ferguson contributed wisdom in the 

art of leadership and management; and Dr. Perkins helped my under

standing of real-world problems by tempering my enthusiasm on the 
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quantitative aspects with reminders that humans seldom fit exactly the 

mold of mathematical symbols so readily fashioned by operations 

research analysts. 

My special thanks to Dr. Shamblin who suggested this thesis topic 

and provided help and encouragement during its development. 

My appreciation a~so to Margaret Estes for her excellent typing. 

Above all, I would like to express my deep gratitude to my wife, 

Johnnie, and daughters, Tammy and Pamela, for their encouragement and 

patience during the attainment of this degreeo 
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CHAPTER I 

INTRODUCTION 

The allocation problem has received a considerable amount of 

attention in the literature, as might well be expected., The allocation 

of resources in order to maximize some kind of return is a fundamental 

problem in mathematical economics.. As such, it is a fruitful area for 

study by the methods of operations research. Operations research is 

based in economics; it is the science of getting the most output for 

the least input -- i.,e., optimization, and optimization is measured in 

terms of the economics of some objectiv~ function .. 

Types of Allocation Problems 

Gue and Thomas (1) divide allocation problems into three broad 

areas.. The first type occurs when there are tasks to be performed and 

there are exactly enough resources to perform the tasks.. If each task 

requires only one resource, it is called an assignment problem.. If 

there are tasks to which more than one resource is required, and if 

each resource may be used for more than one task, it then becomes a 

distribution problem. The transportation problem is a specific form of 

the distribution problem .. 

A second class of problem concerns the allocation or assignment of 

resources to activities when there are insufficient resources to satisfy 

all of the requirements, and one must decide which activities to include 

1 



in the allocationo In this case, it is a zero-one problem in that 

activities are either included or excludedo 

In the third type of problem, it is possible to control not only 

which activities are to be included, but also the level of resource 

that will be allocated to each of the activitieso 

2 

This thesis is concerned with the third type of allocation problem, 

which may be described as follows: 

Given a limited quantity of resource, such as money, time, 

materials, machines, etco 7 it is desired to distribute this resource 

in an optimum manner among competing activities, such as projects, 

products, etco For each activity, the allocation of a quantity of 

resource provides a return of some kindo This return, or utility 

function, may be a linear or non-linear function of the amount of 

resource allocated to that activityo 

Examples of Allocation Problems 

Allocation problems of many forms arise in business and industry~ 

The basic allocation problem considered in most texts is the "knapsack" 

problemo This general type of problem is aimed at determining the 

optimum loading of cargoi weapons, et.co, in order to maximize return, 

whether the return is profit, damage potential, or some other measure 

of utilityo These problems are usually referred to as one-dimensional, 

since only one resource is considered and there is a single constraint, 

such as volume or weighto 

More complicated problems arise when there are multiple constraints 

because of several resources to be allocated, or because of several 

constraints on the allocation of a single resourceo 



The transportation and distribution problem are forms of the 

allocation problem with multiple constraints. In the transportation 

problem, it is desired to determine the least expensive routing system 

for shipping goods between shipping points and demand pointso The 

distribution problem considers the optimum placement of goods or 

services at various facilities., 

3 

One of the important allocation problems with multiple constraints 

is that of budgeting and project selection., In this general type of 

problem 1 there are limited resources that must be divided among 

competing projects$ There may be limitations on the amount of resource 

that can be given to a single project, as well as limitations on the 

amount of resources available in any given time periodo Baker and 

Yormark (2) refer to this as the allocation problem with two-dimensional 

constraintsa Two-dimensional refers to the fact that there are 

constraints on two entities, such as projects and time periodso 

As an example, a manufacturer may produce automobiles and boats, 

each requiring a specific amount of a raw lllaterial such as steelo 

Since both products are to be produced, there is a limit as to the 

amount of steel that can be given to each production lineo Also, since 

steel is provided to the manufacturer over a period of time, there may 

be limitations as to the amount of steel available to both production 

lines during any given time periodo Because of seasonal variations, 

the return (profit) to the manufacturer may be a function of the time 

period; iae.,, period of year, as well as the type of producto 

Additionally, the market can become saturated with either of these 

products, so that the return may not be a linear function of the amount 

produced, which complicates the problem even furthero Thus, 



determining the optimum allocation for each production line and time 

period is not a simple problem. 

A mathematically similar problem is that of portfolio selection, 

where a limited amount of money is available for investment in each of 

several time periodso In addition to the time period constraints, 

there may also be constraints on the type of investment, such as a 

limitation on the investment in a particular industry, or limitations 

on the general types of investments, etco 

There are innumerable other examples of allocation problemso In 

fact, many problems that at first appear to be totally unrelated can be 

shown to be a form of the allocation problem, or can be formulated and 

solved as sucho For example, a linear or non-linear programming problem 

can be formulated as an allocation problem where a resource is to be 

"allocated" to each of the variables, and the amount of resource is 

governed by the problem constraintso 

Mathematical Formulation 

The allocation problem may be mathematically formulated as follows: 

n 

Maximize R(X) I 
1:=1 

r. (x.) 
l l 

subject to: ( 1-1) 

c .. x. ~A. 
lJ 1 J 

j 1, 2, ooo, m 

where r.(x.) is the return obtained from the ith of n activities when 
l l 

an amount of resource x. is allocated to that activityo There are m 
l 

constraints, each constraint controlled by an allocation amount A ... 
J 
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In those cases where the return (or utility) functions are linear, 

the solutions can usually be obtained through one of several mathe

matical programming techniques. The problem becomes more complex when 

the return functions are non-linear, although techniques are available 

which make them tractable, such as Beale's algorithm when the objective 

function is quadratic (1). In some instances, linear approximations 

to the objective function can be used and an approximate solution 

obtained using linear programming techniques. However, the linearized 

versions are usually inadequateo 

The introduction of an additional requirement for integer solutions 

eliminates most available mathematical programming techniques. Exhaus

tive search is a possible, but very expensive, alternative. An approach 

often suggested is to assume a continuous problem, obtain a solution, 

then round or truncate to an integer solution. Unfortunately, the 

solution obtained in this manner is usually infeasible and/or 

non-optimal. 

There have been various approaches to the solution of the differ

ent types of allocation problemso Some of the original techniques for 

the solution of linear versions of Equation (1-1) were developed by 

Koopmans (J)o The capital budgeting version of the allocation problem 

was attacked through Lagrange multipliers by Lorie and Savage (4)o 

Weingarten (5) applied integer programmingo However, Nemhause~ (6) 

concluded that dynamic programming provided the most efficient tech

nique when there are not more than three constraints. 

A survey of various approaches to the capital budgeting alloca

tion problem is contained in Weingarten (7). 
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Solution by Dynamic Programming 

Most of the work on allocation problems with integer solutions 

has been accomplished with dynamic programming. Examples are contained 

in Gue and Thomas (1) and Hillier and Lieberman (8). Unfortunately, 

this approach can be used only if there are few constraints. When there 

are several constraints, usually more than two or three, the number of 

calculations and size of computer memory required prohibit the use of 

this technique. This results from the fact that computer memory re

quirements increase exponentially with the number of problem con~ 

straints. This is referred to by Bellman as the "curse of 

dimensionality" (9). 

The technique proposed by this thesis circumvents the limitations 

of conventional dynamic programming through the use of a recursive 

search technique. This technique eliminates the need for large computer 

memory which usually makes the solution of large scale problems 

impossible. 



CHAPTER II 

THE RESOURCE ALLOCATION PROBLEM 

The general form of the resource allocation problem is given by 

Equation (1-1). When there is only one constraint, the problem may be 

written in the following form: 

n 

Maximize R(X) :;: l r. (x.) 
i:;:1 l. l. 

subject to: 
n 

\' x. S. A if 1 l. 
• 

This particular form is referred to in the literature as the Lori-

(2-1) 

Savage model, since it was discussed originally by Lorie and Savage (4). 

Wagner (10) refers to this as the when-or-where model. This title 

comes from the fact that the Lorie-Savage model has several interpre-

tations from an allocation standpoint. The usual definition is that 

there are n projects (products, etc.) and it is desired to maximize the 

return given by Equation (2-1) when an amount of resource A is dis-

tributed among these projects during a single time period, or single 

planning horizon. By a redefinition of terms, it can be considered as 

a problem of allocating an amount of resource A among the n time 

periods of a single project. Since only one constraint is present, 

this is a one-dimensional allocation problem. 

7 
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Although the problem description has been in terms of projects 

and time periods, it could have easily been defined as availability and 

requirements in a transportation problem, or in many other terms. 

Throughout this thesis, the problem will be described as one of 

allocating resourc;es over projects and time periods, recognizing the 

many other possible interpretations of this model., 

Multiple-Constraint Problems 

Generally, the allocation problems solved in textbooks are of the 

form given by Equation (2-1); i.e., single constraint or one

dimensional problems. This type of problem can be easily solved with 

dynamic programming, which is the most efficient approach when the 

solution is constrained to integer values., However, the problem takes 

on a different character when there are several constraints, such as 

the general allocation model given by Equation (1-1). Although dynamic 

programming is still the best approach for problems of this nature, the 

"curse of dimensionality" mentioned earlier limits the size of problem 

that can be handled. 

As a specific example of a multiple-constraint problem, consider 

the project selection analysis studied by Baker and Yormark (2). As 

discussed earlier, in this situation, there are several projects and 

time periods, with varying budget constraints on both entities. This 

particular problem will be used as a model to demonstrate the recursive 

search technique. 
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Mathematical Model 

The mathematical formulation of the allocation problem with 

constraints on two entities is given by: 

Maximize R(X) 

subject to: 

m n 

.l .l 
1:::1 J:::1 

x .. S.A 
1J 

r .. (x .. ) 
1J 1J 

x .. SA. 
1J 1 i = 1, 2, •••, n 

x .. :S'.B. 
1J J j = 1, 2, • •• , m 

x .. ~o for all i, j 
1J 

x .. integers 
1J 

where, for the project selection problem: 

A total budget constraint 

A. budget constraint for the = 1 
.th 

project 1 

B. budget constraint for the 
.th 

time period = J 
J 

amount of resource allocated to the 
.th project x .. = 1 

1J 

the .th t. . d J ime perio 

r .. (x .. ) = return from allocation x .. 
1J 1J 1J 

m = number of time periods 

n = number of projects. 

9 

(2-J) 

in 

In this model, it is desired to maximize the return from allo-

cation of a resource to specific projects and time periods. There are 



n projects and each project can be allocated no more than A. of the 
i 

resource. In addition, the projects will last a maximum of m time 

10 

periods, and during any one time period the resource allocation to all 

projects must not exceed B .• As an overall constraint, the total amount 
J 

of resource available is A. For each project-time period there are 

discrete feasible funding levels, so that the x .. must take on integer 
1J 

values corresponding to these levels. This is, therefore, an integer 

programming problem. This problem is shown in Figure 1. 

Assumptions 

As mentioned previously, this type of problem is difficult to solve 

by any method, but the most promising approach is dynamic programming. 

As with all methods for the solution of complex problems, certain 

assumptions are necessary. For this problem, the following assumptions 

are made: 

(1) The return from different activities (where here an 

activity is a project-time period) can be measured in 

common unitso 

(2) The total return from any activity is independent of the 

allocations to the other activities. 

(J) The total return can be obtained as tne sum of the 

individual returns. 

(~) The return functions are concave. 

The first three assumptions are necessary to apply the dynamic pro-

gramming technique. The last assumption is necessary to u~e the 

recursive search technique proposed by this thesis. This technique 
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makes an exact solution of Equation (2-J) possible within the limits of 

present day computers. 

Before discussing the details of the solution to Equation (2-J), 

it is necessary to briefly review dynamic programming as a basis for 

the solution developed in this thesis. 



CHAPTER III 

DYNAMIC PROGRAMMING 

The theory and application of dynamic programming are discussed 

fully in several texts, such as Bellman (9), who developed the concept, 

Bellman and Dreyfus (11) and Nemhauser (12)o There are also reports 

which discuss the specific problem of allocation of resources and 

solution using dynamic programming, such as Dreyfus (13) and Kalaba (14). 

These sources should be referred to for complete details; the following 

description is presented only as a basic review of dynamic programming 

and to establish the notation that will be used in the remainder of 

the thesis. 

Dynamic programming is an approach to the solution of multistage 

decision problems which transforms these problems into a series of 

single stage problemso Dynamic programming can be applied to a wide 

variety of problemso It is more of a concept than a specific technique, 

and for this reason it is difficult to develop an algorithm which can be 

used to solve many types of problems; each problem must be specifically 

modeled for solution by this technique. 

Principal of Optimality 

Decomposition of a multistage decision problem is accomplished 

through mathematical formulation of Bellman's "principal of optimality" 

which states (9): 

11 



An optimal policy has the property that whatever the initial 
state and decision are, the remaining decisions must 
constitute an optimal policy with regard to the state 
resulting from the first decision. 

This says, in effect, that the optimum decision is one in which 

14: 

all subsequent decisions are optimum with respect to the state resulting 

from the previous decision. 

Dynamic Programming Notation 

The usual method of depicting a dynamic programming problem is 

shown in Figure 2, where the stages of the problem are numbered in 

reverse order in accordance with convention. 

In Figure 2, the state variables and decision variables for the 

.th t d t db d t' 1 i sage are eno e y s. an x., respec ive y. 
1 1 

State variables 

represent the state or condition of the system at a particular point 

within the problem solution; i.e., at a particular stage. State 

variables are usually those conditions not under the control of the 

decision maker. The input state, s., is the value of the state variable 
1 

entering the ith stage. 
,.., 

The output state, s., is the value after the 
1 

decision x. has been madeo As can be seen in this figure, the output 
1 

of the i th stage is the input to the ( i - 1) st stage .. 

Decision variables, denoted by x., are those variables that are 
1 

under the control of the decision maker. 

Th t f t . ( ) t the return of the ~th ere urn unc ion, r. s., x. , represen s ~ 
,1 1 1 

stage where the input is s. and the decision made at this stage is x .• 
1 1 

The state transformation function, t.(s., x.), determines the value of 
1 1 1 

the state variable at the (i - 1)st stage as a function of the state and 

decision variable at the previous stage. That is, for a given input 



X.n X.i X.2 x, 

Sn 
sn 

n 
S[ si 52 52 = s1 

2 
s, 

Sn = tn ( Sn , X.n ) S · = t · ( S· X · ) 
L L l ' L 52 = t2 (s2, x2) 
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Figure 2. Dynamic Programming Notation 
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state and decision, the transformation function determines the output 

state for that stage. 

Recursive Relationships 

Now define the following: 

fk(sk, ~) = the total return from stages 1 through k (k stages 

remaining) when the input state is given by sk and 

decision ~ is made with optimum dec~sions made 

.... 
for the output state sk in stages 1 through k - 1. 

·* fk(sk) = the optimum total return for stages 1 through k for 

the input state sk. 

Then for any stage k, Bellman's principal of optimality may be mathe-

matically formulated as follows: 

16 

(3 .. 1) 

(3-2) 

for 

k = 1, 2, ••• , n 

where 

* f (s ) 0.-' 
0 0 -

where the input to the (k-1)st stage is detennined from the trans-

formation function: 

(3-3) 



Dynamic Programming Solution of the 

One-Dimensional Allocation 

Problem 

With the above definitions, consider the dynamic programming 

approach to the one-dimensional allocation problem. As described 

previously, this is an allocation problem where there is one type of 

resource and one constraint, such as the following formulation of the 

Lorie-Savage model: 

Maximize R(X) r. (x.) 
1 1 

17 

subject to: (3-4:) 

~ x. SA i?1 1 

x. ~O; integers • 
1 

In problem solving with dynamic programming, the first step is the 

definition of stages, states and decisions. For the allocation problem, 

the stages correspond to the activities. The decisions then correspond 

to the amount of resource allocated at each stage (or activity), and the 

state variables represent the amount of resource remaining that could be 

allocated at each stage. If the problem is considered as allocating a 

portion of A at each stage, it can be seen that the constraint yields 

a transformation function: 

• <3-5) 

The recursive equation, or fupctional relationship, of the 

principal or optimality for this problem is then given by: 
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<J-6) 

for k = 1, 2, ••• , n 

* where f (s ) = o. (Note that since the return is a function only of 
0 0 -

the amount of resource allocated, it may be written as rk(~) instead 

of rk(sk' ~).) 

Using the transfo~ation function, Equation (3-5), Equation (3-6) 

becomes: 

<J-7) 

for k = 1, 2, o •• , n 

* where f (s ) = o. 
0 0 

Notice that for a n stage problem, the optimum value for all 

stages is given by: 

* * f (s ) 
n n 

= f (A) 
n • (3-8) 

Computational Aspects of 

Dynamic Programming 

For each stage of the dynamic programming process, it is necessary 

to calculate fk(sk' ~) for each feasible ~ and sk, and then from 

these values, to determine the value of ~ which maximizes fk(sk, ~) 

* to yield fk(sk) for each sk. Therefore, for state transformation 

functions given by Equation (3-5), if there are v feasible input states 

for each stage, then for n stages, there are approximately }2nv2 

evaluations of Equation (3-7) required to determine the optimum 
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allocation. Although this may seem to be a large number, compare this 

to the vn calculations required for exhaustive search! 

If this problem is to be solved on a digital computer (a necessity 

for large problems), an important factor is the required size of core 

memory. This can be determined as follows: At each stage in the dy-

namic programming solution, it is necessary to save the optimum value 

of Equation (J-7), and also the decision variable that yielded the 

* optimum value, for each input state. However, fk(sk) is needed only 

* until fk+i(sk+i) is calculated. Again assuming n stages with v feasible 

values of sk at each stage, the total memory requirement, not including 

memory for the program statements, is v(n+2) storage locations. 

Obviously quite large one-dimensional problems can be solved using 

large computers. However, it will be demonstrated later that the 

memory requirements mushroom when problems with several constraints are 

encountered. 

Numerical Example 

As an example of dynamic programming solution to a one-

dimensional allocation problem, consider a single project, four time 

period optimization problem given by: 

Maximize R(X) 

subject to: 

x. <10 
i-

r. (x.) 
1 1 

xi~ o, integers 

U-9) 
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where the return functions, r.(x.) are given in Table I. These return 
1 1 

functions are of the form: 

ax. 
1 

ri(xi) = _b_x ___ +_c 
1 

• 

The first two derivatives of Equation (J-10) are: 

r~ (x.) ae 
2 1 1 

(bx. + c) 
1 

2 2 
r'.'(x.) 2b c + 2abc 

= 4: • 1 1 
(bx. + c) 

1 

From these equations, the maximum occurs at x = m, and from 

(J-10) 

(J-11) 

(J-12) 

Equation (J-12) the function is concave for all positive a, b and c. 

Thus, these return functions meet the assumptions of Chapter II. 

The recursive equation for the first stage of the dynamic pro-

gramming solution to this problem is given by: 

max r 1 (x1) 

x1 ;;ts1 
(J-13) 

The first stage returns are given in Table II for each feasible input 

state. At the right side of the table are the optimum returns and 

decisions from this stage as a function of the input state. For a 

computer solution of this type problem, only the values in the last two 

* * columns need to be saved, and f 1(s1 ) is needed only until f 2 (s2 ) is 

calculated. 

Table III contains the returns from the first and second stages, 

obtained from the second stage recursive equation: 

* * f 2 (s2 ) = max [r2(x2 )+f1(s2 -x2 )] • 
x 2 s,s2 

(J-14:) 
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TABLE I 

RETURN FUNCTIONS FOR NUMERICAL EXAMPLE 

Return 

x. r1(x1) r2(x2) r/x3 ) r4: (x4:) 
l. 

0 0 0 0 0 

1 2619 3529 124:4: 1274: 

2 34:37 3810 2074: 2062 

3 3837 3913 2667 2597 

4: 4:074: 3970 3111 2985 

5 4:231 4:000 34:57 3279 

6 4:34:2 4:022 3733 3509 

7 4:4:25 4:039 3960 3694: 

8 4:4:90 4:051 4:14:8 384:6 

9 4:54:1 4:060 4:308 3974: 

10 4:583 4:068 4:4:4:4: 4:082 



TABLE II 

FIRST STAGE RECURSIVE ANALYSIS 

0 1 2 3 4 5 6 7 

0 0 

1 II 2619 

2 I II II 3438 

3 II II 11 3837 

4 II II II II 4074 

5 II II II II II 4231 

6 II II II II II II 4342 

7 II II II II II " II 4425 

8 II II II II " II II II 

9 II II ti II II II II II 

10 II II II II II II II II 

8 9 10 * ) £1 (s1 

0 

2619 

3438 

3837 

4o74 

4231 

4342 

4425 

4490 4490 

II 4541 4541 

II II 4853 I 4853 I 

I 

I 

I 

I 

I 

l 

I 

I 

I 

* x1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

l.\j 
l.\j 



~ _s I 0 1 2 3 

0 I 0 

1 I 2619 3259 

2 I 2438 6148 3810 

3 3837 6967 6429 3913 

4 4074 4367 7247 6532 

5 I 4231 7603 7647 7351 

6 I 4342 7660 7884 7750 

7 I 4425 7872 8040 7987 

8 I 4490 7995 8152 8144 

9 I 4541 8019 8235 8255 

10 I 4583 8071 8299 8338 

TABLE III 

SECOND STAGE RECURSIVE ANALYSIS 

4 5 6 7 8 

3967 

6586 4000 

7404 6619 4022 

7804 7438 6641 4039 

8041 7837 7460 6658 4051 

8198 8074 7860 7476 6670 

8309 8231 8096 7876 7488 

* 9 10 f2(s2) 

0 

3259 

6148 

6967 

7247 

7647 

7884 

8o4o 

8152 

4060 8255 

6679 4068 8338 

I 

I 

I 

I 

I 

I 

I 

* x2 

0 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

llJ 
\...) 



Again for this table, the optimum return and decision for each input 

state are shown in the last two columns. 

Similarly, Tables IV and V contain the return for the third and 

fourth stages, respectively. The fourth stage contains the total 

return from all four stages as a function of the input state. From this 

table, it can be seen that the maximum possible return is 12,675. 

In order to determine the allocation which yielded this optimum 

return, it is necessary to trace back through the stages using the 

state transformation function, Equation (J-5). These calculations, as 

* shown in Table V, given an optimum allocation X = (2,1,4:,J). Thus the 

optimum return for this project is 12,675 for an allocation of two 

units in time period one, one unit in time period two, four units in 

time period three, and three units in time period four. Any other 

allocation, where the allocation is restricted to integer values, 

would yield a lower return. 

Dynamic Programming Solution of the 

Multiple Constraint Allocation 

Problem 

As seen from the above example, the one-dimensional allocation 

problem is straightforward and can be readily solved with dynamic 

programming. As mentioned previously, this is the most efficient 

means of solution when the solution is restricted to integer values. 

However, now consider the same problem as before, but add constraints 

on time periods as well. The problem now becomes: 



0 1 2 3 

0 0 

1 I 3529 124:4 

2 I 6148 4774 2044 

3 6967 7393 5604 2667 

4 7367 8211 8223 6196 

5 7648 8611 9041 8815 

6 7884 8892 9441 9634 

7 I 8040 9128 9722 10333 

8 I 8152 9285 9958 10314 

9 I 8255 9396 10114 10550 

10 I 8338 9416 10226 10707 

TABLE IV 

THIRD STAGE RECURSIVE ANALYSIS 

4 5 6 7 8 

3111 

6641 3457 

9260 6986 3733 

10780 9605 7263 3960 

10478 10424 9882 7489 4198 

10759 10823 10700 10108 7678 

10995 11104 11100 10927 10287 

9 10 * f 3 (s3 ) 

0 

3529 

6148 

7393 

8223 

9041 

9634 

1078o 

10478 

4308 10823 

7837 4444 11104 

I 

I 

I 

I 

I 

I 

I 

* X3 

0 

0 

0 

1 

2 

2 

3 

4 

4 

5 

5 

l'IJ 
VI 



'\4 
8 4 \ 

10 

TABLE V 

FOURTH STAGE RECURSIVE ANALYSIS 

* 0 1 2 3 4 5 6 7 8 9 10 f 4 ( s 4) 

11104 12097 1254o 12675 12619 12320 11731 11087 10005 7503 4o82 I 12675 

Optimum allocation: x1 = 2 

x2 = 1 

x.3 = 4 

X4 = 3 

* Optimum return= f 4 Cs4 ) = 12675 

* X4 

3 

I.\:) 
O"I 
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TABLE VI 

OPTIMUM DECISIONS FOR NUMERICAL EXAMPLE 

Input State Decision Output State 

s. x. s. - x. 
l. l. l. l. 

10 3 7 

7 4 3 

3 1 2 

2 2 0 
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Maximize R(X) .l 
J.=1 

r. (x.) 
1 1 

28 

subject to: 
(J-15) 

n 

.l 
J.=1 

x. <A 
1-

x. < B. 
J - J 

x. > 0 
J -

j = 1, 2, ., ., ., , m 

integer • 

In the dynamic programming formulation of the one-dimensional 

allocation model, the state variable represented the slack in the 

constraint the amount of unallocated resource at each stage in 

the solution. The state variable is also the slack in the constraints 

of Equation (J-15); however, since there are now m + 1 constraints, 1 the 

state variable is now a vector with m + 1 components. As in the previous 

problem 7 it is necessary to calculate the return for all feasible 

decisions and state variables., For the multiple constraint problem, 

however, the number of feasible states has increased significantly, 

since each combination of the m + 1 components of the state vector 

represents a feasible stateo If there are v feasible values of each of 

the m + 1 components of the state vector, then the amount of storage 

m+1 
space required to solve an n stage problem is approximately v (n+ 2) 

storage locationso If there are n projects to be considered as well, 

then the storage requirements are approximately vm+n+l(n + 2). 

1The non-negativity constraints are not included in this number., 
Since the problem can be structured such that only positive allocations 
are considered, the non~negativity constraints do not increase the 
dimension of the problem. 
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As an example, consider the problem where there are four competing 

projects, and it is desired to obtain the optimum allocation for these 

projects for each of ten time periodso Assuming ten feasible values 

of each component of the state vector at each stage; i.e., ten feasible 

funding levels at each time period for each ~roject, then the storage 

requirement is approximately 1015 locationso Obviously a problem of 

even this modest size could not be handled with present day computers, 

6 
which have internal storage on the order of 10 locationso Of course, 

external memory could be used, but at a significant reduction in 

computational speedo This is a rather minor point, however, since the 

time required to perfo:nn the calculations necessary just to fill these 

storage spaces, assuming 106 calculations per second, is on the order 

of a centuryo There is little consolation in the fact that 104:0 

calculations are required to dete:nnine the optimum solution with 

exhaustive enumerationo 

Obviously, conventional dynamic programming has severe limitations. 

Under certain conditions, however, these limitations can be overcome, 

as will be discussed in the next chaptero 



CHAPTER IV 

RECURSIVE SEARCH DYNAMIC PROGRAMMING 

As discussed previously, the dynamic programming formulation of 

large allocation problems with several constraints requires more storage 

space than is available in even the largest computers. To reduce the 

storage requirements, various approaches have been investigated. 

Bellman (11) discusses the use of a polynominal approximation to the 

recursive equations. With this procedure, only the coefficients of the 

polynominal are stored, and interpolation is used to obtain values of 

the recursive equation at specific pointso 

Kalaba (14) uses Lagrapge multipliers in conjunction with dynamic 

programming to reduce the number of constraints in the problem and, thus, 

reduce the dimensiono However, neither polynominal approximation nor 

the Lagrange multipliers provides an efficient method of getting around 

the problemo 

Various search techniques can be used when the return functions are 

unimodal. However, the search techniques discussed in the literature 

are not as efficient nor as easily programmed as desired; especially 

when vector state variables are involvedo 

One of the more recent and comprehensive investigations in the area 

of solution of the. allocation problem with multiple constraints is 

reported in the previously~mentioned reference by Baker and Yormark (2)o 

In this paper, a capital budgeting problem is investigated in which 

10 
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there are non-linear return functions, integer solutions, and several 

constraints. However, only an approximation to the optimum solution 

was obtained. Baker and Yormark also discuss related works by Hess (15) 

and Rosen and Souder (16) which formulate a research and development 

project selection problem, a form of the capital budgeting problem. 

In each case, the inherent limitations of conventional dynamic 

programming prevented obtaining exact solutions in an efficient manner. 

This problem can be solved, however, with a modification of 

dynamic programming. This technique, referred to as recursive search 

dynamic programming, considerably reduces the computer storage require

ments as well as the number of calculations necessary to obtain an 

optimum solutiono Basically, the recursive search technique starts 

with a feasible solution, then searches over each of the recursive 

relationships until an optimum solution is reached. If the return 

functions are concave, then the solution is a global optimumo 

Computational Advantages of 

Recursive Search 

The recursive search method of dynamic programming provides an 

efficient means of solution of many forms of the allocation problemo 

With this technique, only a limited number of states and decision 

variables in each stage need to be investigated, so that computational 

time and computer memory requirements are significantly reducedo As 

will be seen later, the number of calculations required to reach the 

optimum solution by this technique is a function of the starting 

solution and only in a worse case condition approaches the number 

required by the conventional method. (For worse case conditions; 
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i.e., starting solution at one extreme boundry of the constraints 

and the optimum solution at the other extreme boundry, the recursive 

search calculates all values necessary for the conventional method.) 

In trial problems using this technique, the number of calculations was 

a small fraction of that required using the conventional method. 

This technique utilizes a feasible starting solution which 

implicitly defines the state vector for each stage, so that it is not 

necessary to calculate the values of the state vector. A search pro-

cedure is then utilized which successively optimizes each recursive 

equation until a global optimum is reached. 

The computer algorithm was originally developed to handle problems 

such as given by Equation (2-J); however, with modifications to the 

program, it can also handle various other types of problems, such as 

the manpower leveling problem. 

Description of the Recursive 

Search Technique 

First consider the allocation problem with constraints on two 

entities, such as projects and time periods in the case of the R & D 

budgeting problem. To obtain a form more compatible with the usual 

dynamic programming formulation, Equation (2-J) can be written with 

single subscripted variables with no loss of generality as follows: 

~ubject to: 

Maximize R(X) 

5 .. x. <A. 
1J 1 - J 

r. (x.) 
1 1 

j = 1, 

· x. :::ro , integers .. 1 

( 1*-1) 
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where N = m X n and M = m + n + 1 so that there are the same number of 

variables and constraints as in Equation (3-2), and where each 8 .. =0 
1J 

or 1 to account for the fact that all x. 's do not appear in every 
1 

constraint. 

To solve Equation (4-1) by dynamic programming, let the N variables 

xi' x 2 , ••• , ~correspond to the stages of the usual dynamic pro-

gramming formulation. The decision variables are then the amount of 

resource to allocate at each stage. The states correspond to the 

amount of resource remaining to be allocated; ioee, the slack, and 

since there are M constraints, the state variable must be an 

M-dimensional vector. The kth member of the state vector is the amount 

of slack in the kth constraint. 

Let S. be the input state vector variable at stage i, and let s .. 
1 1J 

t .th . 
represen the J component of that vector. Then s 32 , for example, 1s 

a component of the vector s3 and represents the amount of slack in the 

second constraint at the beginning of the third stage. 

The state transformation resulting from the constraints of 

Equation (4-1) is given by: 

s. 1 
1-

or, letting 

T.(S.,x.) 
1 1 1 

( s . 1 - 8 . 1x. , s . 2 - 8 . 2x. , ••• , s . M - 8 . Mx. ) 1 1 1 1 1 1 1 1 1 

D. 
1 

Equation (4-3) can be written: 

s. 1 
1-

(S. ~D.x.) 
1 1 1 

(4-2) 

(4-3) 

(4-4) 

(4-5) 



With these definitions, the dynamic programming problem may be 

diagrammed as shown in Figure J. In this figure, the input to the Nth 

stage is given by the amount of resource remaining (slack) in each 

constraint, and since nothing has been allocated at this point, SN is 

given by: 

Thus, the slack at each stage is given by: 

Now let 

N 

s if = A j ~ I 6 jk ~ 
k=i+1 

represent the return obtained by optimally allocating the resource 

(4-6) 

(4-7) 

(4-8) 

represented by the state vector Sk over variables 1 through k, where 

min Sk indicates the minimum component of vector Sk. Then the dynamic 

programming principal of optimality is given by the recursive 

relationship: 

With conventional dynamic programming it would be necessary to 

detennine the optimum value of each decision variable, x. i = 1~ 2, ••• , 
,1 

N, for each feasible input state. As discussed earlier, this would 

require storing approximately (N + 2)vM values, so that a problem with a 
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Figure 3. Dynamic· Programming Formul·ation of. ·the Allocation Problem with 
Multiple Constraints 

w 
Vl 



modest number of constraints can easily exceed the memory capacity of 

the largest computer. 

Now assume a starting solution X = (x1 , x2 , ••• , ~) such that X 

satisfies the M constraints given in Equation (4-1)o Resources are 

allocated by stage, beginning with stage N in the regular (backward 

recursive) dynamic programming manner. The input to the ith stage 

(output of the (i + 1)st stage) is given by the state transformation 

J6 

function, Equation (4~J), which, using Equation (4-7) may be written as: 

S = (A -
i ' 1 

N 

l 
k=l.+1 

N 

l 
k=l.+1 

/ 
(4-10) 

th 
Now the input vector to the N stage, SN' is given by Equation 

(4-6). Since xN is defined by the starting solution X, the output of 

the Nth stage (which is also the input to the (N-1)st stage, SN_ 1) is 

defined by the state transformation function, Equation (4-J). Likewise, 

SN-l and xN-l specify the input state vector to the (N-2)nd stage, etc. 

Thus, with X defined, the input state vector to each of the N stages is 

specified., 

Although X defines a feasible solution to Equation (4-1), it is not 

necessarily the optimum solution. The recursive search technique 

provides a method of improving the solution by successively incrementing 

the decision variables, and implicitly the state variables, until the 

optimum solution is reachedo This technique begins by finding an 

optimum value for the first stage decision variable, x1 , for the stage 1 

state vector, s1 , defined by the starting solution x. The first stage 

vector is given by: 
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N 

- l 
k=2 

( 4-11) 

With the first stage state vector fixed, a search over x1 can be 

accomplished (while maintaining a feasible solution) to determine the 

value of x1 which maximizes the recursive relationship for the first 

stage: 

• ( 4-12) 

To determine the value of x1 which optimizes Equation (4-12) for a 

* given state s1 , increment x1 by an amount delta (6) until a point x1 is 

reached where 

( 4-13) 

or until one of the constraints prevents incrementing x1 further. 

As a matter of notation, let: 

(4-14) 

* so that f 1(s1) is the optimum return from the first stage for a fixed 

input vector S 1• 

For the second stage, the dynamic programming recursive relation-

ship is given by: 

(4-15) 
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where the first term is the return function for the second stage, and 

the second term is the optimum first stage return for the input state 

vector (s2 - D2x2 ). It is now necessary to find an optimum value of x2 

for the state vector s2• (Recall that s2 is specified by the starting 

solution vector x3 , x4 , ••• , ~which has not been changed thus far.) 

To determine an optimum x2 , increment this decision variable by an 

amount delta (delta may be positive or negative, depending on the 

direction which causes Equation (4-15) to increase). Changing x2 , 

however, not only changes the second stage return, r 2 (x2 ), but also 

the input to the first stage through the state transformation equation 

(4-16) 

Therefore, for each change in x2 and resulting change in s1 , it is 

* necessary to calculate a new value of f 1 (S2 - D2x2 ); i.e., reoptimize 

the first stage for the new input vector. This is accomplished in the 

same manner as before, incrementing x1 until f 1 (s1 , x1 ) is at a maximum 

within the constraints. It is necessary to reoptimize x1 for each new 

s1 before evaluating Equation (4-15) to determine if x2 is at a maximum. 

Continuing in this manner, x2 is incremented (and x1 reoptimized) 

* until a point x2 is reached where: 

(4-17) 

where again: 

• (4-18) 

* At this point, f 2 (s2 ) is the optimum total return for the first and 

second stages for the state vector s2• 
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Going next to the third stage recursive equation: 

(4-19) 

The optimum third stage return for a state vector s3 is obtained by 

incrementing across x3 in the same manner as beforeo In this case, 

it can be seen that changing x3 changes the input to the second stage, 

and, therefore, to the first stage also, through the state transforma-

tion function. Thus, it is necessary to reoptimize the first stage, 

and then the second stage, in a manner identical to the previous stepso 

This procedure is continued in a similar manner through stage N; 

incrementing across ~ and subsequent reoptimization of stages x1 

through :x:.._ for the resulting state variables will result in an 
N-1 

optimum return: 

at an optimum solution vector: 

* ... , ~) .. 

(4-20) 

This process is shown in Figure 4 for a three stage allocation 

problem; i.e., solving the problem: 

(4-21) 

subject to: 

i 1, 2, 3' 4 • (4-22) 

This figure shows only the basics of the algorithm in order to 

describe the logic behind this technique. The details of the algorithm 



SET V=O 

SET X = FEASIBLE 
STARTING SOLUTION 

CHECK FEASIBILITY OF X . 
..._ ___ -1 IF CONSTRAINT VIOLATED, 

SET 
x = v, 

SET 
X = V2 

YES 

PERTURB DOWNSTREAM VALUES 
UNTIL FEASIBILITY RESTORED. 

NOTE: 
V = 3 x 3 matrix 
Vi = i th cotumn of V 

Optimum allocation = X 
Optimum return = R ( X) 

Figure 4. Recursive Search Algorithm for Three Stage 
Problem 
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vary depending on the particular problem being solvedo The computer 

code which implements this algorithm for the allocation problem with 

constraints on two entities is given in Appendix Aa 

The algorithm starts by setting three vectors, Vt' v2 , and VJ 

equal zero. Each vector contains the same number of components as 

stages, in this case threes Vector Vt' for example, will contain the 

current value of the vector with the optimum first stage decision for 

the input state specified by x 2 and XJo Similarly, v2 will contain the 

vector with the optimum value of x 2 for the input vector specified by 

XJo Finally, VJ will contain the optimum vector specified by the 

input state (At' A2 , AJ' A4). 

The starting solution X = (xt' x 2 , xJ) is set equal to a feasible 

starting solution; a solution that satisfies the constraints of 

Equation (4-22). 

Now letting 

R(X) r. (x.) 
1 1 

(4-2J) 

a comparison is made between R(X); ioeo, the return obtained from the 

starting solution, and R(Vt)o Since Vt = (o, o, O) at this point, R(X) 

is greater than R(Vt) so that the "no" branch is takeno The vector Vt 

will then be set equal to X and the first decision variable, xt' 

incremented by deltao Next, a check is made to determine if the new 

solution vector (xt + 6., x2 , xJ) still satisfies the constraints., 

If not, xt is at the optimum value for the input state specified by x 2 

and xJ' and the algorithm proceeds to the next stageo (The portions of 

the algorithm that perform the feasibility check are omitted from this 

figure for simplicityo) 
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If the new trial solution is still feasible, R(Vi) is compared to 

R(X) to determine if incrementing xi increased the return function. 

If so, xi continues to be incremented until a constraint is reached, or 

until a further increase in xi causes the return function to decrease. 

* At this point X = (xi, x 2 , x3 ) so that xi is at the optimum value for 

the input state Si specified by x 2 and x3 as follows: 

s2 - D x 
2 2 

( 4:-24:) 

(4:-25) 

At this point the working vector, X, is set equal to the optimum stage i 

vector, Vi, and R(V2 ) is compared to R(X). Since v 2 = (O, o, o) at 

this point, R(V2 ) < R(X) so the algorithm sets v 2 = X and increments 

the second stage decision variable, x2 , by deltaG However, incrementing 

x 2 changes Si' so a new optimum value of xi for this new input state 

must be calculatedo To accomplish this, the algorithm sets the elements 

* of Vi equal zero and reoptimizes xi until a point xi is reached; 

* E * xi (xi, x 2 + 6., x3 ) o x is then set equal vi so that: 

x (4:-26) 

(4:-27) 

R(V2 ) is now compared to R(X) to determine if incrementing x 2 increased 

the return functiono If so, x2 is again increased and xi reoptimized 

for the new input state vectoro This is continued until x2 and xi are 

both at an optimum value for the input state s2 specified by x3 o 
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It must now be determined if x3 can be improved, so this decision 

variable is incremented in a search across the third stage recursive 

equation. The algorithm continues to increment x3 , and reoptimize x 1 

and x2 for each new input state, until a point is reached where: 

(4-28) 

* * * . * * This is the optimum allocation X (x1 , x 2 , x3 ), and R(X) is the 

optimum return .. 

Maintaining Feasibility 

The recursive search technique requires that a feasible solution 

be maintained while searching across the recursive equations for the 

optimum value of the decision variableo This is accomplished as 

follows. 

As each decision variable is incremented, the new trial solution 

is checked for feasibilityo If the trial solution is infeasible, 

"downstream" decision variables are operated on until feasibility is 

restoredo For example, if x3 is increased and if this makes the trial 

solution infeasible, x 1 and/or x 2 are increased or decreased (depending 

on the type of constraint being violated) until feasibility is restored., 

This feature is not shown on the flow diagram due to dependence on the 

type of problem being solvedG 

Also included in the algorithm, shown in later figures, is a 

feature to allow the decision variable to be incremented in both 

positive and negative directions.. It is not known beforehand whether 

increasing or decreasing a particular decision variable will cause the 

objective function to increase.. Therefore~ the algorithm provides for 



a search in both directions before proceeding to the next stage. If 

increasing the decision variable decreases the objective (return) 

function, the direction is reversed and that decision variable incre-

mented in the negative direction. The algorithm continues to increment 

the decision variable in a direction that causes the return function to 

increase. After each increment is added, the trial solution is checked 

for feasibilityo This process is repeated until further increasing the 

decision variable violates a constraint such that the solution cannot 

be made feasible by perturbing downstream variables, or until the return 

function starts to decrease. At this point the algorithm proceeds to 

the next stage. 

Recursive Search Algorithm for 

n-Stage Problem 

To make the algorithm more efficient, define an n x n matrix V, 

and let V. represent the jth column of that matrix. Each column of V 
J 

t · t d V t · th t · 1 t · for the J. th con ains n componen s, an . con ains e op 1mum so u ion 
J 

stage for the input state defined by x , x 1 , •eo, x. 1• 
n n- J-

Also, let K represent an n-component vector, K = (k1 , k2 , 

The value of k. determines the direction of search for the jth 
J 

for k equal zero x. is incremented in the positive direction. 
J 

equal one x. is incremented in the negative direction. 
J 

variable; 

For k 

With these definitions, the algorithm for an n-stage recursive 

search solution is shown in Figure So To illustrate the use of this 

procedure, again consider the four stage dynamic programming problem 

given in Chapter III. 



SET ELEMENTS OF MATRIX 
V AND VECTOR K = 0. 

SET X = FEASIBLE 
STARTING SOLUTION 

1----l 
CHA'NGE DOWNSTREAM VALUES 
OF X TO RESTORE FEASIBILITY 

SET j = I 

SETX=Vj 

YES 

Figure 5. 

---l SET ki = 0 
FOR i< j 

SET 
1----x1· = x·1 +. ( - I )k j ~ v. = x 

J 

SET kj =I TO 
REVERSE SEARCH 1------' 

DIRECTION 

NOTE: 
V = n x n matrix 
Vj = jth column of V 
K = vector 
kj = j th element of K 

Optimum allocation =. X* 
Optimum return = R( X*) 

Recursive Search Algorithm for n-Stage 
Problem 



subject to: 

Maximize R(X) r. (x.) 
]. ]. 

where the return function for each stage is given in Table I. 

46 

In order to see the correlation between conventional dynamic pro-

gramming and recursive search, calculate the input state specified by 

the starting solution and compare each step of the recursive search to 

the conventional dynamic programming solution given in Tables II 

through V. Notice, however, that with the recursive search, it is not 

necessary to calculate the state variables. Since a feasible decision 

is always defined, the state variables are implicitly in the solution, 

but never need to be determined. 

Choose a starting solution X = (2, 2, 2, 2). With this starting 

solution, the input to each of the stages is detennined as follows, 

using the transformation function, Equation (3-5). 

S4 A = 10 

s3 S4- X4 8 

s2 = s3- x3 6 

s1 = s2- x2 = 4 

and, using the returns of Table I, 

R(X) r. (x.) 
]. ]. 

11,383 • 



In accordance with the recursive search algorithm, increment x1 by 

delta, which for this problem is chosen as a unit increment. The new 

vector is then X' = (J, 2, 2, 2). Since 

the constraint is not violated, and R(X) = 11,78J. 

Now since R(X 1 ) > R(X), x 1 is again increased to give a new trial 

solution x" = (4, 2, 2, 2). Again, the constraint is not violated and 

R(X") = 12,020 > R(X') o The first stage decision variable :i,.s again 

incremented to give X"'= (5, 2, 2, 2). However, this solution violates 

the constraint, so x 1 = 4 is the optimum value for the input state 

s 1 = 4. It can be seen from Table II that an identical result is 

obtained in conventional dynamic programming. 

Now set v1 = X" = (4, 2, 2, 2), the optimum value of x 1 for 

x2 = x3 = x4 = 2 (and, implicitly, s 1 = 10-6 = 4). Increment the 

second stage decision variable giving a new working vector 

X = (4, J, 2, 2). Since the constraint is violated for this solution, 

the downstream variable, x 1 , is reduced until a feasible solution is 

obtained, giving x' = (J, J, 2, 2). Since x 1 cannot be increased 

without violating the constraint, x1 = J is the optimum value for the 

input state s 1 specified by x2 = J, x3 = x4 = 2; i.e., for the input 

state 

s. = 10 -
1 

4 

\ x. = J 
ifi2 1 

At this point, R(X') = 11,886, and since R(X') < R(V) the 
1 

direction of search over the second stage is reversed to detennine if 
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decreasing x 2 will improve the solutiono Thus the new trial solution 

vector is: x'' = ( 1, 1, 2, 2). The input state to the first stage is 

now given by 

4 

s1 10 - .l x. 5 • 1 
1=2 

Incrementing x 1 as before gives an optimum value of 5 for this input 

state. Then, for X' = (5, 1, 2, 2), R(X') = 11, 896. Since R(X') < R(V ~' 

the optimum first and second stage decision variables for s 2 = 6 are 

* x 1 = 4, x 2 = 2. Note that from Table III, for s 2 = 6, x2 = 2. Then 

* s 1 = 6- 2 = 4 and from Table II, x 1 = 4. Thus, identical results are 

obtained with both conventional dynamic programming and the recursive 

search technique. The next step, in accordance with the algorithm, 

* * is to set A2 = X (x1 , x 2 , x3 , x4) = (4, 2, 2, 2). 

Next, x3 is incremented, giving a new solution vector X= (J, 2, 3, 2) 

where x 1 , as a downstream variable, has been reduced until a feasible 

solution was obtained. Before the new trial solution for x3 = 3 can be 

evaluated, however, it is necessary to reoptimize x 1 and x 2 for the 

input state s 2 = 10 - 3 - 2 = 5. This is accomplished in the same manner 

as before. 

Succeeding steps of this algorithm continue to improve the solu-

tion by incrementing the decision variable at each stage until an opti-

mum solution is found. In contrast to conventional dynamic programming, 

the recursive search calculates values of the return function only for 

those solutions on the path between the starting and optimum solution. 

Therefore, the number of calculations is usually reduced. 



As shown in Appendix A, the optimum solution for this problem 

* obtained by the recursive search technique is X = (2, 1, 4:, 3) giving 

an optimum return of 12,675; results that are identical with those 

obtained in Chapter III. 

For a one-dimensional allocation problem, there is a small savings 

in computer memory, and also a reduction in the required number of 

calculationso However, now consider a problem where there is one 

project with a budget constraint, and in addition, constraints on each 

of the four time periods, such as: 

subject to: 

Maximize R(X) 

4 
\ x. < 10 

if.1 l 

x. s 4: 
l 

4 

Ir.(x.) 
i=1 l l 

i 

x. > O, integers 
l 

Q 

With five constraints, the state variable is a vector with five 

components, and although there are only four feasible levels of the 

state variable at each stage, there are 4:5 feasible inputs to each 

stage, requiring approximately 6 X 4:5 storage spaceso However, with 

recursive search, the problem is not complicated in any way, since the 

optimum solution for every feasible input state need not be determinedo 

The storage requirements remain n X n, in this case 4: X 4:0 In fact, 

the problem requires fewer calculations since the. feasible range of 

each decision variable has been reducedo 



* The solution for this problem is X (2, 1, 4, 3), which is 

identical to the previous problem since the time period constraints 
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did not bindo If the time period constraints are reduced from four to 

* three, however, the optimum allocation is X = (3, 1, 3, 3) giving an 

optimum return of 12,6310 

Mathematical Proof 

The basis of this technique is that a search is conducted sue-

cessively over the dynamic programming recursive relationships: 

* where f (S , x 0 ) ~ O, to determine the optimum return from stages 1 
0 0 

through k, k = 1, 2, 0 0 0' N, given by: 

(4-38) 

In order for this search technique to converge to a global maximum, 

a necessary and sufficient condition is that each fk(Sk' ~) be concave 

(or conversely, to converge to a global minimum each fk(Sk' ~) must 

be convex) over the decision variable ~o This is proved in the 

following paragraphso 

* A function g(z) is said to be concave if, for any point z between 

* g(z) ?CXg(z 1 ) + (1-Cl)g(z2 ) (4-39) 

for 0 ~ C:X. 5 1 .. 

This says, in effect~ that if g(z) is concave, then the function 

evaluated at any point between z 1 and z 2 is greater than or equal to 



any point on a linear interpolation between g(z 1 ) and g(z2 ). If 

Equation (4-39) is a strict inequality, then g(z) is said to be 

strictly concaveo 

To prove concavity in Equation (4-37), first consider stage one, 
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where the recursive relationship is a function of the stage return only: 

max r 1 (x1 ) 

x1 .:S:min s1 
• 

As before, min s 1 indicates the minimum component of the vector S1 o 

* Since r 1 (x1 ) is assumed to be concave, f 1 (s1 ) is also concaveo It can 

be seen that the input vector simply limits the maximum value of x 1 to 

be less than or equal to the minimum slack in the state vectoro The 

constrained maximum value can, therefore, be easily determined by 

incrementing x 1 o Since integer values are desired, it is assumed that 

the decision variables are incremented by an integer amount in the 

search techniqueo 

The second stage recursive rei'ationship is given by: 

(4-41) 

Now r 2 (x2 ) is concave by assumption, and since the sum of concave 

* functions is also concave, f 2 (s2 , x 2 ) is concave if f 1 (s2 -D2x 2 ) is 

concaveo In searching for the optimum of Equation (4-41); ioeo, 

* f 2 (s2 ), x 2 is incremented, holding s 2 constant, until a maximum value 

of f 2 (s2 , x 2 ) is obtained within the constraintso This increments the 

input to the first stage, from the transformation equation 

000 (4-42) 

* and for each new state vector S1, a new optimum f1(S1) must be 



determined. Thus, incrementing across x2 causes a search across Si 

* in the function fi(Si). Therefore, it is necessary to prove that 

* fi(Si) is concave in Si. 

* For the continuous case, fi(Si) can be shown to be concave for 

concave stage return functions in a straightforward manner. However, 

the analysis becomes considerably more complex when the solution is 

restricted to integer values. Therefore, the continuous case will be 
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proved, then a heuristic argument used to show where integer solutions 

can introduce non-concavity in constrained optimization problems which 

are more general than that given by Equation (4-i)G 

i 2 i 
Let Si and Si be two state vectors in the first stage, and xi and 

x~ be optimum values of xi for states S~ and S~, respectively. Then 

(4-43) 

(4-44) 

Multiplying Equation (4-43) by a and Equation (4-44) by (i-a) and 

adding: 

(4-45) 

Now· if Si is a 

and x~, and if 

i 2 i 
state between Si and Si' and xi is a decision between xi 

min S ~ < min S~ and x~ < x~, then using the fact th.at 

the stage return is concave: 

fi(si, xi) 
i i . 2 2 (4-46) ~afi(Si, ,xi) + ( i - a) f i ( s i , xi) • 

* But since fi(Si) = max fi(Si, xi)' and using Equations ( 4-43 ) and ( 4-44) , 

(4-47) 
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Therefore, from the definition of concavity given in Equation (4-39), 

* * f 1(s1 ) is concave across s1• Since both r 2 (x2 ) and f 1(s1 ) are concave, 

then f 2 (s2 ,x2 ) is concave. Using an argument identical to the previous 

* proof, if f 2 (s2 ,x2 ) is concave, then f 2 (s2 ) is concave, and thus 

f 3 (s3 ,x3 ) is concave. Then, by induction fk(Sk'~) is concave for 

k = 1, 2, • ••, N. Since each fk(Sk' ~) is concave, it is possible to 

search across each of the functional relationships successively to 

arrive at a global maximum. 

It was assumed in the above proof that there were no integer 

restrictions. Now consider the more complex case of integer solutions. 

Recursive Search with Integer Restrictions 

For the first stage, Equation (4-4<>) is a function of the stage 

return only. Since x1 takes on only integer values in the problem 

formulation, Equation (4-40) is concave for integer solutions also. 

However, consider the second stage return, Equation (4-42), where the 

components of the vector Dare not restricted to zero or one; i.e., the 

more general case where the constraints are of the form: 
n 

L'c .. x. SA. 
i=1 1J 1 J 

with no restrictions on the c ..• 
1J 

j ::: 1, 2, ••• , m (4-48) 

Since the optimum first stage return is a function of r 1 (x1 ), the 

second stage recursive relationship, Equation (4-~2), may be written as: 

(4-49) 

where min [s1/c1] is the minimum component of 



and where the brackets indicate that integer values are to be taken. 

Assume that the kth constraint of Equation (4-48) is binding, so 

that the maximum value of the second term occurs at this constraint. 

Then 

(4-50) 

Using the state transformation function, Equation (4-5), x 1 is limited 

by: 

(4-51) 

and since the maximum occurs at this value, Equation (4-49) becomes: 

(4-52) 

It can be shown that the second term of Equation (4-52) is not 

concave for certain values of c 1k and c 2k when the solutions are 

restricted to integer valueso To prove this, choose c 1k and c 2k such 

that: 

(4-5.3) 

For example, let c 1k = 3 and c 2k = 1, and consider the case where 

s 2k = 10, x 2 2, 6 = 1. Then the terms in Equation (4-53) become 

3oO, 2.67, and 2~33, respectively. Taking integer values, these numbers 

become 3, 2, and 2 so that Equation (4-53) holdso Now consider the 

simplest case of a linear (and thus concave) return function of the 

form: 
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r. (x.) = x. 
]. ]. ]. 

i 1, 2, o••' N • 

For this case, the test for concavity, Equation (4-39), does not hold; 

i.e., x2 is between x2 -/J. and x2 +I::., but 

(4 .... 55) 

since, using Equation (4-53) 

(4-56) 

For example, with a= .5, using the values calculated previously, 

Equation (4-56) yields: 

2-;. (.5)(2) + (.5)(3) 2.5 

and, thus, the second term of Equation (4-42) is not necessarily 

concaveo As a consequence., f 2 (s2 , x2 ) is not necessarily concave for 

all functions. Notice, however, that under many conditions, this 

function is concave and a search technique can be used. For example, 

if the constraints do not bind, then Equation (4-41) is concave even 

for integer solutionso 

If we now consider the problem given by Equation (4-1); ioeo, 

coefficients on the constraint variables restricted to zero or one, 

then Equation (4-51) is of the form; 

• (4-57) 

01k must be equal one, since if it were zero that term could not have 

been the minimum and, thus, could not bindo 
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Since the x. are restricted to integer values, each s .. must also 
1 1J 

be integer-valued, from Equation (4-5),o As a result, Equation (4-57) 

always produces integer values and, thus, there are no values for which 

Equation (4-53) holds. Therefore, the dynamic programming formulation 

of Equation (4-1) is concave for integer solutions, and a search 

technique can be used to determine the optimum solution. For the more 

general case, however, where the coefficients of the constraints are 

not restricted to zero or one, the constrained objective function is 

not necessarily concave for integer solutions, and a search technique 

may not converge to a global optimum. 



CHAPTER V 

RELATED PROBLEMS AND CONCLUSIONS 

The technique for mathematical programming developed in this 

thesis provides an efficient method of solving certain classes of 

allocation problems with multiple constraintso The specific problem 

studied has been that of project selection; a form of the capital 

budgeting problem. As already mentioned, recursive search dynamic 

programming can also be applied to other types of problems amenable to 

solution by conventional dynamic programmingo Any problem that can be 

formulated as a dynamic programming problem can be solved using this 

technique providing: 

(1) The return functions are concaveo (Or convex in the case of 

minimization problemso) 

(2) The constraints are of the form given in Equation (2-J)o 

Although the discussions in this thesis have been centered around 

the economy of recursive search when applied to multiple-constraint 

problems, some unconstrained or partially constrained problems can be 

efficiently solved using this technique, especially when the solutions 

are restricted to integer valueso 

Manpower Leveling 

Another optimization problem considered in the operations research 

literature is that of manpower levelingo In many businesses, the 
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manpower requirements vary from year to year or from season to season. 

Although it would be possible to change the manning level to meet the 

requirements of each time period, there is a cost involved due to 

administrative expenses in hiring and firing and due to inefficiencies 

caused by the continual flux of personnel. On the other hand, however, 

if the same manpower level were to be maintained, during some of the 

time periods there would be an excess of personnel charged to overhead 

while in others a shortage would require increased costs for overtime. 

Thus, it is desired to determine employment levels which will minimize 

costs. 

An example of manpower leveling is discussed in Hillier and 

Lieberman (8). In this case, continuous solutions are assumed to 

simplify the problema However, recursive search can be readily applied 

to obtain integer solutions. 

For this problem, the manpower requirements for each season of the 

year are as shown in Table VII. The manpower level for the preceeding 

season is 255, which is assumed to be fixed. 

Season 

Requirements 

TABLE VII 

MANPOWER REQUIREMENTS FOR MANPOWER 
LEVELING PROBLEM 

Summer Autumn Winter 

220 240 200 

Spring 

255 
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The decision 

employment levels 

variables for this problem, ~' (k = 1,2,J,~) are the 

th 
at the k stage from the end, where stages correspond 

to seasons. The state variables, sk, are the employment levels at the 

beginning of stage k. In this problem, the state variables are scalars 

instead of vectors as encountered in the multiple-constraint problem. 

The cost of maintaining levels above the required manpower is 

assumed to be $2000 per man per season. The total cost of changing 

the level of employment is assumed to be $200 times the square of the 

difference in manpower levels. It is further assumed that the level 

cannot fall below the requirements (no overtime allowed), so that this 

is a partially constrained problem. 

th 
The recursive relationship for the k stage of this problem is 

given by: 

(5-1) 

th 
where wk is the required manpower level for the k seasono 

Since the state at the (k-1)st stage is the employment level at 

th 
the k stage, the transformation function is given by: 

(5-2) 

so that Equation (5-1) can be written as: 

(5-J) 

The basic recursive search algorithm given in Figure 2 is applied 

to this problem, using a starting solution vector X= (255,200,2~0,220)0 

In this case the starting solution is set equal to the requirements~ 



Since the stages are numbered in reverse order, x. corresponds to the 
1 

Spring employment, x2 to the Winter level, etc. 

Appendix B contains the computer code of the recursive search 

algorithm developed to solve the manpower leveling problem. 

* 
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The solution obtained using recursive search is X = (255,247,244, 

247); i.e., Summer, Autumn, Winter, and Spring requirements of 247, 24~, 

247, and 255, respectively. The corresponding cost is $185,200. The 

solution obtained by Hillier and Lieberman, assuming continuous 

solutions, is 247.5, 245, 247.5, and 255 for a total cost of $185,000. 

Another interesting aspect of this problem can be studied through 

a simple change to the return functions. Assume now that overtime can 

be used at time and one half regular time. In this case, the cost for 

a shortage of personnel is given by 1.5(2000)(~-wk). The problem was 

solved again using recursive search, with the return function appro-

priately modified. The total cost in this case was $159,400, with the 

manning levels shown in Table VIII. Thus, a savings of over $25,000 

can be obtained by using overtime. 

Season 

No overtime 

With overtime 

TABLE VIII 

OPTIMUM MANPOWER LEVELS WITH AND 
WITHOUT OVERTIME 

Summer Autumn 

24o 236 

Spring 

255 

237 

Cost 

$185,200 

$159,400 
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The project selection and manpower leveling problems illustrate 

the variety of applications of the recursive search algorithm given in 

Figure J., Although details of the computer code implementing the 

algorithm vary from one problem to another depending on the form of the 

recursive relationships and the number and type of constraints, the 

solution technique remains essentially the same., 

Computational Considerations 

Improved Search Technique 

The recursive search technique can be made more efficient by modi

fication of the method of search employed., In seeking to optimize the 

dynamic programming recursive relationships, the recursive search 

algorithm increments the decision variable, then reoptimizes previous 

stages until an optimum value of the decision variable is obtained.,for 

that particular stage and input stateo In most problems, since integer 

solutions are desired, the decision variables are incremented by a unit 

amount in the search., However, for problems where the range of the 

decision variables are large, incrementing by a unit amount can use a 

lot of computer time, especially if the feasible starting solution is 

considerably different than the optimum solution .. 

In order to reduce computer time, the algorithm can be modified 

so that fewer calculations are required to converge to the optimum 

decision variable for each recursive equationm One method of doing 

this is to solve the problem several times; initially with a large delta 

(incrementing value) then reduce delta in subsequent passes until a unit 

delta is reached0 This is analogou~ to the course~fine grid search 

technique proposed by Nemhauser (7). 
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For example, for the first pass through a problem, a delta of 100 

can be used for the course grid search. This will result in a more 

rapid convergence to an approximate solutions If the solution obtained 

on this pass is given by X = (x1 , x 2 , ,,.e, xn)' then it is known that 

the true optimum lies within the interval,, 

* x 
• Q 0 ' 

* x -A<x <x +A) 
n ~ n - n • 

In the next pass through the problem, delta can be reduced to obtain an 

even better approximation until finally the exact integer solution is 

obtained when a unit delta is usede 

Since it is known that each true optimum decision variable lies 

within delta of the approximate optimum, the algorithm must be changed 

to ensure that the recursive search for each decision variable is 

* limited to the range ~ ~ !::.~ ~ $~ + !::.,, This can be accomplished by 

adding additional constraints after each course grid solution9 Since 

the number of constraints do not increase the number of state variables 

in the solution as with conventional dynamic programming, the additional 

constraints do not complicate the problemo 

This feature has been incorporated into the manpower leveling code 

of Appendix Bo The code initially sets limits within which the optimum 

solution vector must lieo For example, the lower limit is zero and the 

upper limit is arbitrarily set at 500 for this problemo The initial 

delta was set at 2 9 which yielded an approximate optimum solution of 

X = (256, 246, 244, 246)m The search width for the next pass was set 

at ~ ± b. so that the problem constraints for each decision variable were 

re~set to these valueso The optimum allocation for the subsequent pass, 

* for a unit delta, was X = (255~ 247, 244, 247), as beforeo 



A reduction in the number of calculations can also be achieved 

through the use of the Fibonacci search (7), which, under some 

conditions, may be more efficient than the course-fine grid search. 

Improved Starting Solution 

6J 

Since the number of calculations necessary to converge to the 

optimum solution is a function of the starting solution, the efficiency 

of the algorithm can be improved by judicious selection of this starting 

solution. 

Although the optimum solution is obviously not known in advance, 

the analyst usually has a fair idea of approximately where it lies. 

In this case, it is best to choose a feasible starting solution equal 

to this guess to reduce the number of feasible sol~tions on the path 

between the starting and optimum solutionsa 

The recursive search technique relies on maintaining a feasible 

solution, therefore, this initial guess must be feasible as well as 

being in the vicinity of the optimumo To simplify matters, the computer 

code given in Appendix A allows the analyst to choose the starting 

solution without worrying about feasibilityo The code checks the 

starting solution and, if infeasible, restores feasibility before 

proceeding into the main part of the program. For the manpower 

leveling problem, the starting solution must be feasible, therefore, the 

algorithm sets the starting solution equal to the manpower requirement 

vector. 
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Infeasible Stages 

In the project selection recursive search algorithm, it is assumed 

that there are n x m feasible stages., This means that there are n 

projects, and each project lasts m time periods. However, in many 

cases, the projects may last an unequal number of time periods. For 

example, project 1 may last ten time periods whereas project 2 may last 

only nine, or project 2 may not start until time period 2., In the first 

case, the stage corresponding to decision variable x 29 is not feasible. 

Similarly, in the second case, the stage for variable x 21 is not 

feasibleo To ensure that no allocations are made to these infeasible 

stages, an artifical return is assigned to each such stage in the 

algorithmo For maximization problems, infeasible stages are assigned 

a large negative return., This is analogous to the "big M" technique 

of linear programmingo 

A similar problem can occur in a transportation problem where 

there is no route between a supply point and a demand point. Here the 

cost, or distance between these points, would be chosen as infinity. 

Summary of Results 

This research is directed to the solution of the allocation problem 

with multiple constraints and non-linear objective function using a 

technique referred to as recursive search dynamic programming., Integer 

solutions of resource allocation problems are usually obtained through 

application of dynamic programming developed by Richard Bellmano 

However, this technique becomes very inefficient when the resource 

allocation is restricted by several constraints, since the amount of 

computer memory required increases exponentially with the number of 
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constraints. Thus, when the number of constraints is greater than two 

or three, the memory requirements usually exceed computer capacity. 

Recursive search dynamic programming circumvents this "curse of 

dimensionality" by successively incrementing the decision variable in 

the recursive equation at each stage of the problem while maintaining 

a feasible solution. In this manner the number of constraints does not 

decrease the efficiency of the algorithm, but actually increases the 

efficiency by limiting the feasible range of the decision vector, and 

excluding some of the possible stateso 

This technique is proved to converge to a global optimum for 

problems of the form: 

n 

Maximize (Minimize) I 

subject to: 

n 

\' xJ. •. ($, ~)AJ. if 1 

r. (x.) 
l. l. 

j = 1, 2, ,.., o, m 

pr.ovided the return functions are concave for a maximization problem 

or convex for a minimization problemo 

Recommendations for Further Research 

Generalized Constraints 

In the proof of the recursive search algorithm, it was demonstrated 

that integer solutions can introduce non-concavity when the constraints 

are not restricted to specific formso For the cases discussed in this 

thesis, the constraints must be of the form given in Equation (2-1)., 



In solving integer programming problems of the more general form 

given by Equation (1-1), the recursive search algorithm yielded the 

optimum solution in most caseso In some cases, however, the non

concavity problem discussed earlier was encountered and the algorithm 

did not reach the global optimum. 
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It is believed that further research could result in a set of more 

general rules under which the recursive technique would provide the 

optimum solutione This would allow the use of this algorithm for a 

wider class of integer programming problemso 

Non-Concave Objective Function 

From the mathematical proof of the recursive search technique, 

convergence to a global maximum was shown only for the case of a 

concave objective functionm There are several "real-world" problems, 

however, where the return functions are neither convex nor concave, 

but are monotonico The proof for the recursive search technique should 

be extended to determine convergence properties of the algorithm when 

only a monotonic objective function can be assumedo 
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APPENDIX A 

COMPUTER CODE FOR ALLOCATION PROBLEM 



___ _E_CJUHMl_UL(LLE.JLE_L_]Jl_ _____ __tl~ JJATE = 1.1-020 .--19:Ll&LJ.!L _____ . _ _tlfil~Q=O~O-l ____ .,--__ _ 

____ JlO_O:l. ________ JH1"ENS.W1'LYL2.!hZ.0.1.JlU20l.i:K-i.Z<ll_._Bl2.0J_Jj"_UQJ..R.t2.0J..J:A.UOLJ'Ailll:b ___ . _____ _ 
1Clt201 rC2120J,C31201 ,FKJI llJ 

_______ QQ0.2__ _______ C.OrJJ-IUN __ jy /Jl,C,L"CL.-J:3 _/U.D.ELli.t.NPJ,.NIP.1.BA.JklA.Jt 
0003 INTEGER v,x,DELY-A-,.s,, TA,PA,.f!A 
0004 PATA V.1.'t!l~/, K/2Q"~'Qltl.J l2c.Q~~-----

C OlMENSlO:'-IED FOR 20 STAGE: PROSLEM .c __________________ _ 
--------·---· 

c 
-------·-· -------_ t**'!..*:!:!.*'!'.!:.~-~*:*'*~:'!'~*-*****~·······~'!'*"*""'** .*c*.*.!.*·•·~~~!.*.:!.~***~~*.**.!:!_*_*.*.*!.*~*:!!:I'~.:.·_!___ 

c 
c 
c 

l~Ul'SER STAGf'S AS FOLLil.!lS_ 

c _____________ JlftE_e_au_o_Q..s ____________________ _ 
c 

________ t_ __________ _l _ _2__3_ 
. c 

C _ l_ _ _L_ _2 3 
C PROJECTS 2 4 5 6 
~------3 __ . 1 l;! __ 9 
c 

____ __,,C******"*!"****·**!'*~*'!'·*** *.*...!******'*****.!!*·*'!"**!:!c!"*'***..!******:1''******.!'.***** * *****"**** 
C DELTA = SEARCH INCREM1:NT 

------~----------

0005 RE:A.O I 515001 DEL TA~--------------~------------------·-------------
0006 500 FORM-Al I I LOI 

----· ________ c;_ ___ !lA = T{:[[_AJ-_!:H.l.iLGcE~!._l,_Q:.CATION __ _ 
0007 READ I 515101 BA 

---~O~OQ.6_ 5-llLfORMALJJ_lQL ___ _ 
C NP = NUMBER OF PROJ•ECTS 

----------"---P'--"'A,__1~1~1-= MAX_rnVM ALLOCATION FOR PROJ=·E,.C_,_T__..I _____________________________________ _ 
RE:ADl5,~201 NP,!PAIJl~I=l,NPI 0009 

__________ __L__N.Ie... = MM_!_fiUJLMJ!16.EJLJJ:I' TIMEJJ;.BlQ!lL 
C. TAlll = MAX11-IUM ALLOCATION FOR TIME PERIOD l 

____ Jljl 10 _R~~!LJ_:;_.2_2_0_1_ J'lJJ>_,j_ :r A IJJ_,_1=1_1..N.T:_V _____ _ ·-·----------------
0011 520 FORMAT 151101 

--~~0012 N=tlTP<O<hl' __ _ 
0013 NPl=N+l 

C ___ CJ_t C 2 o_f:} =' _ (Gf'l_ST_Afll T~_ l'Q'l!_E~_Tl)_Bl'l__EUNC.ll()N 
------------------~--·-· ----

C Rill = RETURN FUNCTION FOR STAGE I 
--------""c___ = __ .(l!J_l~_lC_IJIL.U;_~U1*Xl_! _ _l~_C3J.LLL 

0014 READ 15,5301 1c1111,c2111,C3llltl=l.NI 
0015 530 FORMAT 13Fl0.51 
OCllb READ 15,5401 IXI II tl-l9NJ 
0017 540 FORMAT 110151 

----OOl~B JCOUNT=O 
_______ C LOOP TRAP STOPS CALCULATIONS IF SOLUTION HASN'T 

e: coNvE:RG-Ea-sv-1 couNr-
---~0~0.1 <1 ICOUNT=5000 0020 CALL~X~C~S~T~l~t~~P~l~.-&~5~5~8~,~&~5~5~6~1:----------------------------------------------~ 

0021 10 J=l ---Oci.22 ______ 20-co"Nf i""Nu_E __ 
0023 DO 30 l=l1N --- ---OOZ4 ________ 3n-sill;;-v I .J~ Ii 
0025 JCCUNT=JCOU•~lT~+~l.__ ________________________________ __; ______________ ~ 

-.J 
0 



_ . __ . ..£!):_~TR ~tLJJL<Lli\'J;J._J._ft -----~M~A~IJL JM_TE = 7J02.0 _____ lQLlQ.Ll5 ________ ~(iE O_QQZ_ ______________ _ 

0020 _________ IFJ_JCOUNJ..GE.ICOcUNJ.t GO_T0_555 ______ _ 
0027 IFllTIJ).EQ.01 GO TO 40 

__________ 0028_____ _ _______ CAL_L __ xfCNI lh\111 .. 
oozq CALL XFCN(X,.V2) 

_____ QJU.Q _______ ~J.ELYcJ.. .. f;.L .. 'l2LG.Q_.IC>.0._.1.._3._.o,__ __________ . 
003 l 40 CONTINUE 

_______ 0032_ .. ---·--------·-·- QQ_ 5Q _ l=.l •. N .. -. ·--------------~- .. ---- ----
0033 50 VIJ,J)=XllJ 

_____ 00_3't___ _________ JJ(,.!)=1 --·-------
003~ oO CONTINUE 
~ XIJ:l=XIJJ+C~ll•*K(JJ>!<OELTA --·----
0037 IFIXIJJ.G.E.Ol GO TO 80 
j)_03 e _______ . __ ()Jl_]O_l~l Li'J. ___ ___ -~---------·-_______ _ 
0039 70 XCil=VCJ,11 

____ Q.Q4Q ___________ G.O_ Hi_ 1!1.0 ____ --------·-
0041 80 CONT I NUE 
0042 Cltll XCSHJ,&l 30,&5581 
0043 90 CONTINUE 
0044 _________ J=L ___________ --·-··-------
0045 100 CONTINUE 

____ 004_6 _________ J!U,,.J.-c.L _______ . 
0047 IFIJ'Ml.E0.01 GO TO 120 
0048 DQ_ll!L.l.=.L.J!il 
0049 Klll•O 
0050 _______ _llO_lilJ_J_~O ___________ ·-·---··-·----·-··-·---·-·-·---·-·-· 
0051 120 CONTINUE 

____ Oc05Z _________ G_O_.r.IL2.0 ____________________ · ___ . __ _ 
0053 130 CONTINUE 

---~0~054 OD 140 l=hN 
0055 Xtll=VCJ,11 

---~o~o.56 140 _C.O!H.lN_UL ________ ------------· 
0057 IFIKCJl.EQ.11 GO TO 150 

____ QQ5 8 _____________ K_(_JJ_=_l __ _ 
0059 GO TO 60 

___ 00_6.0 15~J:l!J.~---------~--
006 l J=J+l 

____ 006z__ ________ ffJ_,t •. J,J;.._t_,1L_GJ1__.IQ_J_QIL ____ _:_ ________ . _______ _ 
00o3 160 CONTINUE 

_____ .ooolt ___________ oo_lJQ.J~hN.. __ ·-·----------------·-·---------
0065 170 Xlll=VCN,11 
0066 CALL XFCl'il.XJ~A=N=S~>------------·----
006 7 WRITE I 6,300 l 

_____ 0_0(>8 _____ ).QQ__fjl_RM_AT __ LU:l l.t~_O_Ji.,~ l!...!!C.!.l.1 Ol'L!.'.R..:..G.8_1,,f;f'.' '-'-----·- .. --·-··---------
0069 WAllE 16,3101 NP 

______ OQ:l.Q ________ ll.l'.U.'QRMAJ_l_ll:iQ._2~-•.'"lLir~BE!L 0£...l'RQ,,J_l;!;!S_~,_Hd ____ -·-----·--- ______________ _ 
0071 WRITE 16,3201 NIP 

---~0072 320 FORM_A.I__li!!Q.25X t '~WMBER Of Tl ME PERI ODS '.16 l ________ _ 
0073 WRITE (6,'.BDI' BA· . . .. _ 
0074 . . 330 FORMAT C'lHO;e5x',•r'oTAL RESOURC'E .. C:ONSlRAINT • ,}61 0075 ______________ wR.fri:·-16·.~j401'·1 11~P-Alf1~1;,;1-,NPI-- ·---- ---- ------ - -- ------ -----·-------

0076" . .. 340 FQRMAT 1 11H0,4'0i<,·•i>ROJECT R.ESol.JRCEC:ONSTRAHffs•,1/,4QX,'PR()JECT 1 ,9X 
------ -------- ------ -1.-•tONS-TR.AINT·0-,1/,(l,Ox;i4;1-5X,)411--·-· ... -- . -- --- . --

0077 WRJ TE: l_~_,j\_'2_.Ql_!_LJ:_MJ_L I =L_NTP I --·--------------------·- ----·------
-..] .... 



--~F-O.U!:tAl'lc..J.'L..G ___ ~L.J..8 ... ----~M=AI~i'< __ _ ·---=Uf..-~7J..Q;>_o ___ . ____ 1.Ql1Q/J5 PA.G..LQ.00'.l _____ _ 

________ QQJB ____ ~.::;..OJ_O_R~l>J_ J..lJ:!Q,. 40)(_,_!l_l.ME_!'_E B..LOJLC PN.SL'lAJlLLS_' .JJ_, 3.P_l\_. __ !_ l.l.M.LP_E;RJ GD_'__._9~------ -·-
1, • cO N ST RAJ NT 1, //, 140X, 14, l 5X, I 4 I l 

_____ O_OJ9._. ________ __w!UJT _L6...360L. ------------·--- _ -· ----------------- -- ---··-------------------------
0080 360 FORMAT I lH0120X1 '****'******************** RESULTS *'"*'"****** 

-------------...... ~···-*********-*-* ~ ---·--
0081 WRITE 16 1 3701 

_____ oo.ez.. ____ 31.!LEOR!'!AT__{ lliO..!tOXL~OJ>J:lM.Uc!LRE.SDIJRC LAL.LD.Cl! I j_QN.'_J ________________________ _ 
0083 WRITE 1613801 

_____ Q0_!14 ______ J.!l.!Lf.0Rt1A_T _UJ:!9.1Z.21<.1_'PR!1J:f;J,~..T_!_.LU!J\...!.l.IM . ...1'.ER.I0.!>-'-1. ___ . _________ _ ----- ····-----------
008 5 WR iT E I 61 390 I ( K-Jt KJ= l; ~HPJ 

---~0~6_.6 390 FOBJl~.L...1.l!:!.Q..r_:t.4.~X~9~t~9~J-----------------------------------------------
0087 OD 180 l=l,NP 

_____ Q_Qe_e _________ Jl.=J.1-:.H *.NIP:t-.l 
0089 JJzI*NTP 

---~Q. 11!U.!E __ LQ.L4Q!JJ __ _I d.~J.lJ.L.J.A.~U_._J..JJ ____ ---·--·- -----------
0091 400 FORMAT ( 1H0,2ox.19,5X,9191 

___ 00~2 180 CONTINUE ---~-------
0093 WRITE 16,4101 ANS 

---~0.0.9_4 410 FORP,AT -1.lt!O_llL~O.£.!I MUM_Rf;..UJ_lli'Jj_1_,£1.Q..._3J_ __ 
0095 WRITE lc,360) 

_____ O_Q96 WR_U_E __ lfu...~ZJlJ. ·-_____________ _ 
0097 it20 FORMAT I lHl, 30X, 'RETURN FUNCTIONS' I ----------·------------------------,--

---~0998 DO 20JL1.::.L._fi!'_ ___________________ _ 
ooqq 11=11-ll*NTP 

___ O_l_OO _________ WIUif'___J_6,430L__J ____ _ 
0101 430 FORMAT llH0,30·X;'PRO.tECT',J6l 

--~Ol_O_ _ WR 1T.E_l 6144_Q.l_____________ -----------------------------------
0103 't40 FORMAT llH0,5X, 1 ALLDCAHON 1 ,5X;•trME PERIOD l .. 5X 1 TIME PERIOD 2'; 

-----· ~~E PERJO.D 3 1 15X1'lIME PERI00 .. 4'1 
0104. on 200 KK=1.11 
0105 KMl=KK-1 -----Ol 06-------00-1-90 J= 1, NTP ---·---------------

____ QJ;QJ =U-~-L------- ----·-- ---------· -·---------------- -------------------····-----
0~08 190 FKJiLl=CllLl*KMl/IC21Ll*KM1+C31Lll 
0109 WRITE 161.lt:.501 KMl1 IFKJlll.t_L=l1NTPI _ --~---------------------·------------· 
0110 450 FORMAT llH ,5X,I5~4FlB.41 

______ Ol_l_I zoo C:.ON.HN\Jf... _______ _ ---·----------------- ------------
0112 GO TO 777 

_____ O_l!a _______ 5.22_'!f)!J.!.L1_Q_,9991_,JJ;..Q\INT _____ -----··--·----··----
OU4 9'19 FORMAT 11H0, 1 STOPPED AT JCOUNT='l61 

____ o~··~it5 GO TO 777 
0116 558 WRITE (b,9961 
0117 9% FORJ~!IJ_!.J.!:!_Q..r 'NO FE AS I SU SOLUT l_ON_'~'-~----· 
0118 777 CONTINUE 

---~O~.ll Cl STQP ----~~--------------------·---------------------- ------------
0120 ENO 

------------·----------------

.._j 
N> 
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__ __EPJUllANJ.ll __ G__~L..__~1~8 __ ----~xc;;_si ____ _ _fil_I_L=__JJ_Q__~Q_ ___ _l.9.1_1._QL.l_5 __ ~- ____ _l'..i\§f_Q\)01 __________ ----

____ 000 l_____ .SUJ>R,QUUNLJC~Sll_Ji..*_.!' __ ~----
0002 OIME~SION X(20l,TAllOl,PAllOI 

_______ ()OQ3 _________ c_o_~~O!~L.IU_DfLT_A,1'1P_._f'.,IJ_ei.!H\.J>_/bJA ... lL __ 
000·4 · lNTtGER X, TA,PA, BA ,TPP,A,DELTA 

---~OOJ). ll'P=•fU? .. ~!iP 
0006 A=O 

___ QOO_I_ __________ O_!LllLJ ~.l_._J_p_j>_ 
0008 10 A=A+XIII 

______ 0_0_09 Kl:ol ____ ~--
0010 20 IFIA.LE.BAl GO TO 50 
001 l 30 Dlll=KJ~--------~------------------
0012 IF! INX.GE.Jl GO TO 160 

____ 00 l __ l£_(_l_N_X_._GJ_. "(Pl" LJiiLTQ.J.10 
0014 XllNXl=X(INXl-OELTA 

______ O_Ql 5 I_FIJ.UlNlO ... Ji.E.JlLW _ T0~-4~0~-- ---------------
0016 XUW<l=O 

--~QQ.JJ KJ=KJ~_L__ _______ _ 
0018 CO TO 30 

---~OQ,19 40 A=~-=.!LE.!.JA _________________________ _ 
0020 GO TO 20 

_______ _Q_o_2_1 _____ . _sp_t;o11Jnl~l!£ ·------------------------0022 00 100 l=l,NP 
_0023 ll':J .. l~-~l ,__1 *~N=T"-'P'-+'--1,._ ___________ _ 
0024 JJ=I*NTP 

____ 0();!_5 _________ A':Q . 
0026 DO 60 K=ll,JJ 

_____ Q()_2_7 __t,_()_!:'11.~ XJKJ _____ _ 
0028 Kl=O 

____ 0,,_(),_2'L__ 70 IF(A.LE:.PA(tl) GO T~O"-'l,_,0~0'-------- ------------------------0030 80 INX=l l+KI 
0031 IF_Ll~lS~_!;__._.J..1 GO TO_H>_Q_ ______ _ 
0032 IFllNX.GT.JJ) CO TO 170 

________ 0()_33 ..x!_IJl_J()3XU.Nxl-QEJ .. IL ___________ _ ----- ---- ---·- ----------
0034 IFIXI Ill!Xl .GE.OJ GO TO 90 

___ _Q035 X_l IN>f_!_=O ______________ _ 

0036 Kl=Kl+l 
____ o_o.u _________ co_T_Q__so ____ - ___ _ 

~~---------· - ---------
0038 90 A=ll-OEL TA 

______ O_OJ_9 __________ GQ_lQ_lQ. _ _ _____ _ 
0040 I 00 CONTINUE 
0041 00 15:1 l=l,tHP 

---~0042 II= 1 +NT?* IN~P~-~l'""'l~---------

0043 A=C ---- ---oo4_4 __________ ilb~-l-l_O_K_=_I_, ll ,NT? 

0045 110 A=A+X{K) --·-004_6 ________ Kl=O ·----

____ 0047 120 lFIA.LE.TAlllJ GO TO 150 
0048 130-lr[x=l+KI 

--------·----------
0049 IF I 1!''1X.GE .JI GO TO lbO ----ooso ________ fF:1-1fix.GE:-11l1;or!iJ.1~0---- -- ·----·-----------------·- ------- - -~-

0051 XIINXJ=XllNXl-OELTA 0052 ___ -------IFIXfrNic-f:-61:-:0i-Go_To_i4o _______ -- -----

___ __,,_0><.e05__2 XI INX_l=O~-----
-..J 
w:-



N 
0 
0 
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"~-- ~ _" ______ , .,._ --· -~.:......,_~------- -~---·-'----"'A~IO;, PROBL,,...E..,K __________________________________ . 

_______ , ____ NUJ:le~_R__J:lf__?ROJJ:CI_S _ 

_ ___ _ f'l_Y.!'filR_ P£._T_IBL!''f'$_1Ql2S ___ ~ ------------ ·--------------···--··-·-------- . 

TOTAL RESOURCE CDNSTRAJ~--~~--------------------------------· 

____________ l~JillJ_E_C_T_flE_fil!U.R_C_L.CONS_IR!\J NTJi ... _______ -------·--------·--------·------

---------~O.JE_C.L_ ____ CDN.STRAUlT _________________________________________ . __ . __________ _ 

1 10 

----·-------- __________ U M_E__f'_El1I O[)_t_!)f'l.S.IRA.UU_S __________________________ -----·----·-·--· 

________ . _________ T_ll!f___f'j;RllJ[) ____ ___c_!lNS_IB._A_l_liT 

4 
2 4 

4 4 

************************ RE SUL TS ** *******·********* ·-··· 
OPTIMUM RESOURCE ALLOCATION 

PROJECT TIME PERIOD 

1 2 3 4 

2 4 3 

-------·------------- -----------------------------
OPTIMUM RETURN 12.675 

************************ RESULTS ** ******** **** **** *** *** 

----------·--

--.J 
O'\ 
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APPENDIX B 

COMPUTER CODE FOR MANPOWER LEVELING PROBLEM 



__ ___..f....,Of\J: MN.ill G I EV EL__JJl.c_._ __ _ __ __,M.,,.l\lJ'J. QA TE = 710~0 _lQ/J.2L49 PAGE 0001 

_____ OOltL Q111~1Jlli_'liZfu2.0J_,)(12J1hilL2!2L_R12J)_l_,_KLU_QLl<iLl20L.JH2!1J_ • .uwzoJ_. ___ _ 
1K(201 

___ _o_{):QL_ __________ JJiJ E!iJ:J<__y_.._x__._o E_L Tfu_Xi_. x ULIJ_EL.lhR._l\XL_. xx_u 
0003 DATA V/100*0/,K/10*0/,IT/10*0/ .C N = NUMBER OF TU1.i:_Ee.lS_.l-UU_;,__ _______________________________________ _ 

C DIMENSIONED FOR 20 STAGE PROBLEM 
____ Ol>P4 _&fAO_.l!ii20Q_l__~-------------------------------

0005 500 FORMAT 115} 
___ _,OQ06 REAJ2__J!1.2Q5J__ljDl;_!,,I]li_!_filJ._l_l l, I=!_,NDEL TA~l __ _ 

0007 505 FORMAT 11015) 
c X = FEASJBLE~TARTING SOLUTION VECTOR 

NPl=N+l 0008 
0009 DO J_O_L=_L1JP_,l~-------_____ -----------------------

c 
L_ __ XLtr I = J,Q\oiER MANPOWEJLL_Il:!JJ:_fJJJLIJME PERlQD I __ _ 
C Rill = MANPl..iWER REQUIREMEl'lT FOR TIME PERIOD I 

--~-------"'C __ -'-'X~U~l~l~l--_-~U~PP,_,ER MANPOWER LIMIT FOR TIM~=E~P=E~R=IO~D~I------------------------~--------
C 

___________ c~-- NUMBER __ II_t~_E_f_Efil_Q_Q5_A_S__Q_,_l__,_2_._.~.__._j1J_T_f:!_Z_ERO_~_NIIJA_~__IJ_1'1_E 
------~~------------------------C PERIOD. INITIAL TIME PERIOD HAS FIXED MANPOWER LEVEL. 

c 
C USE ONE I~PUT CARD FOR EACH TIME PERIOD, EACH CARD CONTAINING 
C LDWER LIMIT, REQUIREMENT I IDEAL LEVELi AND UPPER LIMIT~------------------------

0010 
___ _,OOll 

0012 
____ 0013 

C RESPECTIVELY 
c c ----------------

FOR PROBLEM WITH NO OVERTIME ALLOWED, SET XLIII = Riii 
c 
c 
c 

c 

FOR FIRST CARD ITIME PERIOD ZEROl, SET XLIOl = XUIOl = RIOI 

10 READ 15,5101 XLINPl-I+ll,RINPl-I+l),XU(NPl-1+11 
21.Q_FORMAT (3Il01 

DO 20 I=l,NPl 
20 l\11J.=!UJ_l __ _ 

Rill = REQUIREMENTS FOR ITH TIME PERIOD 
0014 BINPlJ=RINPll 
0015 JCOUNT=O 
0016 ICOUNT=3Q_Q=O _______ _ 

C SET !COUNT AT REASONABLE NU:-1BEK OF ITERATIONS. LOOP TRAP 
---------~C STQ_~ _ _!;jl_LCULATIONS IF SOLUTION HASN'T C:UNYERGED BY !COUNT 

0017 IX=l 
0018 30 J=l 
0019 OELTA=OELIIXI 
0020 40 CONTINUE 
0021 00 501;1~ 
0022 50 Blll=VIJ,11 

--0~0=2=3 jcouNT~JC~O~U~N~T~+-1 _____________ _ 

0024 IFIJCOUNT.GE.ICUUNTJ GO TO 555-----------------------------------------~ 
0025 IFllTIJl.EQ.01 GO TO 60 

___ _Q_O_l_{;> _________ l;_AJ_J-__ ¥CN1J3_._tj_tfuj[!~l _______ _ 
0027 CALL XFCNIX,N1R1Y21 

____ __Q_Q_2J!__ IFlVh~_h'a_I GO.~T~O~l~5~0~--------
0029 60 CONTINUE 

~~-~0~0_30 DO 70 I=l,N 
--J 

'° 



FORTRAN 1v_i._u~------ MAIN ---~Ot.T.L=_IlQ.z_Q_ _____ _L~ PAGI: 0002 

_______ 0031 ---·-. __ 7Q__V:LJ, IJ=)LUJ _________ _ 
0032 ITIJl=l 

_____ 1)0_33 BO_ CONT I NUE _________ _ 
0034 XIJl=XlJt+l-ll**KIJl*DELTA 

----"-~ F JJU.Jl...__fil;;_.Jli_filLI!LlQQ_ 
0036 DO 90 J=l ,N 

______ PQ3.L_ _________ 'iQ_lUJ_l,,,_YlJ,_H __________ _ 
0038 GO TO no 

_____ OQ3_9 _________ _LOJLCmlTJNUL _______ ~-------
0040 IFIXIJl.LT.XLIJJ.OR.XIJJ.GT.XUIJll GO TO 150 
0041 110 CONTINUE 
0042 J=l 
0043 120 CONTINUE 
0044 ___ - -~- ---JM1-;-:J.:__1·---. 

_____ Q.Q~_2 _________ -_IEJ.Jl-!J.f:Q._OI_ GQ_JJl _ _l_~Q __ _ 
0046 DO 130 I=l,JMl 

004 7 Kl l}=O -------------- ----------------------------------
0048 130 IT! I l~O 

___ _J)04_2. _____ l__'tQ_(:QN_Il_1'l\.IE _________________________ _ 
0050 GO TO 40 

____ 0051 _______ _l_5Q__C_QNIJJ-tU_L ____ . ______ -_ _:__ ____ _ 
0052 DO 160 l=l,N 

___ __,,0_053 XI ll=VIJr II 
0054 160 CONTINUE 

____ QJl55__ __lELKI .J l_._l;;_Q,_ll__GQ __ l_O _ _l_IJL __________ _ 
0056 K(JJ=l 

---~0057 __ jiQ__U,1 __ 1;1() __________________ ------------------ ------------·· -----·---------------------- ------
0058 170 CONHNU·E 

----'9059. J=J+ 1 
0060 IFIJ.LE.Nl GO TO 120 

---~0_061 J_FI IX~GE.@_~LTAJ GO TO 1_90 ----·--------·-----
0062 DO 180 I=lrN 

_____ ----~ _ _J;__ __ R_E:::_S_EJ _LQ:W.f._IL_l\_f'lQ __ U_f>f'J;:JLJ.J_MlI_S __ Qf__EA_C!:L JlEClHPN_llA!UAB!-_E_ 
0063 XXL=V(N,Il-2*DELTA 
0064 XXtr-VINiJ1+2*PELTA 
0065 XL-lll=MAXOIXUil,XXLJ 

____ _Q__Q~fL_ Xl,JJJJ:.!11 N_Q__O<_UJ_J_ J_,__x_xlJJ_ 
006 7 I BO CONT I NUE 

_p_o6_B __________ B=:JlC'.':..L ____ _ 
0069 GO TO 30 
0070 190 _CON_!__lN~·u=E~----------------
0071 DD 200 I=lrN 
0072 200 X(l}=VIN,Il ------oci73 __________ CALL-ii=cr-lTx--;N,R,ANSJ ___________ _ 

______ OOH _________ WR!_lE_..JQ,_§.Q.P_J ________________ ---------------------------
0075 6QO FORMAT I 1HI,35X, '"IANPOWER LEVELING PROSL 

____ 0076 WRITE 16 1_610' ------------------------------- -------~------------------· 
0077 610 FORMAT llHO,//,lOXo'TIME PERIOD'o4X,'LOWER LIMIT',4X,'REQUIREMENT' 

___ _ l_,~~,_~_\l.eJE_B_ l I MJJ: _ _<_,3_~-'~_QPT I_!!ij_"Lf:IA f\J~fl__!!_E_~ _ _!,,_~ \,tg~L __ _ 
0078 00 210 I=l,NPl 
0079 IMl=I-1 

---------0060 ____ --2 li:J -II ii ill: 16~-63-o 1-i'~iii--;XL 1 NPi-1 +1--,--;R iN?i=l+-iT-;-iu1-tii'f·::1+11·-;-x 1NP1-1+i1 
---~O'-"QBl 630 FORMAT llH .12X,I3,lOX,!5,11XrI5rlOX,I5tl_?X,_J__~_~l------

°' 0 



__ __._E .... O,B.L&Afll __ l V G lEV El.__lJL MAIN DATE = 71020 _LQ[_l2L'f_9 PAGE 0003, ___ _ 

---~OJlJl jj_RlJ~!tj)J_Afj~-----------------
0083 640 FORMAT ( 1H0,//,1ox,•l-11NIMUM LEVELING COST =• ,EZO.Zl 

___ _Q__Q_84 (;Q__IQ_____1_I_I ____ _ 

0085 555 WRITE (6,9991 JCOUNT 
00.86 999_ FORMAT I JHO, 'STOPPED AT JCOtJNT='l6 l 
0087 777 CONTINUE 

_____ o_o_a_a ___ _ 

0089 END 

----------------------·----

------------ - ·-------- ----------. 

--------------------------- -

-------------------------------------------------

--·--------· ·-- --- -----
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_____ !1AW~.01LJ01LL.E,.V_ElJ N,_.G..__.P_,,R..,_O..,.t!c..L_..E"'Mc.__ ____ _ 

T IBE .!'.E.RIOD_. __ LOl>'fJL Ui-UL __ . _ __B.E_Q.U_lfLEMENL_ue.e.Ei:t_ UM_J r __ Q.J"..I.LMU'LMAN.!'.OWER .&..li;c.E l/y_Et;;.JL..._ _____ _ 
0 25.5 255 255 255 

220 2.QQ 
2 240 240 500 

__2_47~----------------..,.-----· 
244 

L_ U.l.Q _______ 200 50_Q ___ ·---··--- _2'f.J_ 
255 4 255 255 500 

MINIMUM LEVELING COST = 185200.00 

--------------------------·-· -----

----------------·-----------------------

----·------· 

---------------------- -··------

------------------------------· 
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