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CHAPTER I
INTRODUCTION AND BACKGROUND

Impetus for Entrance of Computers

into Mathematics Instruction

Since the middle sixties considerable interest has been generated
within the mathematical community, particularly among persons involved
with undergraduate mathematics educatidn, concerning the impact modern
computers and computer based methods have had and should have on the
instruction of mathematics, There have been many suggestions for alter-
ations of both the .content of modern mathematics curricﬁlé and methods.
of teaching it’ﬁhich>are a;tributable to the availability of~computers.l

The authors of the influential Committee on the Undergraduate

Program in Mathematics (CUPM) publication, A Geperal Curriculum in

( Mafhemétics'for Colleges, observed in 1965 that the prevelance of the
high-speed computer necessarily affects the teaching of mathematics in
a significant way. Many mathematically trained students will work

closely with computers, and even -those who-do not should be taught to

) 1This discourse as well as all subsequent comments refer to the
content of mathematics courses and not the technique of using computers
as mechanical teaching devices such as for computer assisted instruc-
tion (CAI) or automated programmed instruction.

Later when the terms "computer calculus' and 'computer oriented
_calculus" are used they will refer to a calculus course revised in some:
way So as to make use of the computer's ability to manipulate symbols
and do rapid numerical calculations. In general, an old subject is
being approached with a new weapon.



appreciate the type of algorithm approach that enables a problem to be
handled by a . machine. Such a point of view should, therefore, be
presented; along with the more classical one, at appropriate places in
calculus, differential equations, and linear algebra. (7, p. 14)

In a report to the 1967 conference on 'Computers in Undergraduate
Education: Mathematics, Physics, Statistics and Chemistry,' the pre-
selected Mathematics Panel gave a strong recommendation for computer
usage in mathematics teaching, = They indicated that the availability of
computers has created new challenges for cﬁrriculum development in math—
ematics. Specifically, the undergraduate mathematics curriculum must
be changed to téke into accecount new ways for selving old problems and
the host of new problems which have arisen with recent computer appli-
cations. The Panel expressed the feeling that students can be enor-
mously stimulated by the introduction of computing .into the curriculum,
and that, for many it can turn the all-too-often totally passive
college experience irnto one of active participation. It can provide a
powerful problem-solving tool; and enable students to do genuine
research at an early period in their-training, whereas only the truly
exceptional student is capable of anything worthy of the name research
in the classical areas of mathematics (5 ).

The Panel stated

"If the basic undergraduate mathematics courses are not
appropriately modified to reflect the new points of view
which are associated with computer applications in mathe-
matics, these courses will ‘lose much of thelr relevance

for the coming generation of college and university
students. This could lead to the unfortunate situation

in which instruction in certain basic aspects of mathematics
would be incorporated in the programs of -other subject areas
by default. Thus, it is urgent that-experimental programs
emphasizing this' type of curriculum development be

initiated ..." (5, p. 1)



The Panel stated that.computers have clearly changed the nature of .
the solution process in mathematics, In addition to existence proofs,
it has now become important to provide constructive methods for
obtaining,solutions. From a general point of view, mény traditional
special techniques have been rendered obsolete while the need for an
algorithmic approach to mathematical thinking has been strongly
reinforced. At the same time, the use‘of‘computiﬁgvmethods provides
the student with a greater understanding of ‘the concepts-iﬁvolved as
well as with greater problem solving ability, The Panel stated that
"computing activities" and relevant areas of nuﬁerical anélysis should
be integrated into the earliest college mathematics courses-and in subr
sequent courses ''when appropriate and natural." By way of illustration:
they noted that it is important in the study of calculus for a student
to understand that-a definite integral is a number.. The computer can
contribute effectively to this understandipg. The role of the Funda-
mental Theorem of the Calculus is-nof likély to be misunde;stood after
this approach (5, p. 2)

Scholarly informainn about computer usage was gathered and pub-

_ lished in 1966 'in the. National Academy of Sciences ~ National Research

Council publication Digital Computer Needs in Universities and Colleges
(10, p. 123)., Their recommendations concerning mathematics were similar
to the Panel's recommendations above.

Philip Davis of Brown University .remarked,

"A case can be made out that all undergraduates should

(a) pass a swimming test, (b) pass a driving test, (c) ‘take
a course in computers. To remain ignorant of computers is to
remain ignorant of the world as it is, in fact, rapidly be-
coming. Computer calculus offers one possibility for elemen-
tary -contact with this aspect of the New World, Brave or
otherwise." (8, p. 15)



vDavis does not recommend wholesale’changes in the calculus as he states,
"In my view only slight changes in the traditionmal calculus curriculum
and problem assignments are necessary in order to convert them to a
profitable computer calculus course." (8, p. 1)

Other.conferences in which 'calculus with computers!' was on the
agenda are listed in an article by E. P. Miles which ‘also contains a
brief ‘history of the Center for Research in College Instruction of
' ‘Science ‘and Mathematics (CRICISAM) calculus project which will be‘men_

tioned from time to time in this discourse (26).
The Computer and Elementary Calculus

The first year elementary calculus course, because of the nature
of the subject and its. placement in the undergraduate curricu;um, is' a
rather natural course' for the.idtroduction of computers into the
students' domain of experience, An increasing number of students who
enroll in such a course have had either calculus or computer experience,
frequently both, in their high school mathematics ‘curricula, Having
learned of its relevance there, they can ‘be interested and somewhat
self-motivated in a college calculus course if it uses computers.

The krnowledge obtained in calculus really rests upon the under-
standing of ‘limit processes, and an associdation with computers can

deepen such an understanding. Kuller states,

"... explicit computation definitely makes things clearer,
and even. the epsilontics of convergence can be gotten
across by considering examplées in which the epsilon serves
as a test for termination of the execution of ‘a computer
program." (23, p. 4.2)

The machine setting imposes a discipline-of logical thought in

preparing a program while, in processing a program, the student is



supplied with rapid reinforcement, experiencing success or failure then
and there, a cornerstone of many‘ﬁodern theories of learning. Porter

suggests using thé-computéf'tovhelp the student arrive at some of the

definitions and proofs of calculus.

"The precision required in order to communicate with a
computer forces students to approach preoblems in a manner
more conductive to the teaching of mathematics. This
method of thinking is meore analytic and should be an
advantage in other subjects as well as mathematics."

(28, p. 4.17).

There appears to be sufficient reasons for expecting that overall
student comprehension, interest, insight, and motivation can be in-
creased by giving more emphasis to conmstructive and algorithmic aspects
of the calculus. For example, suppose  f(x) - and g(x) are functions
of x and suppose the limit of ‘each at zere is zero. Does the limit
of f(x)/g(x) at zero exist?. Iflit‘does; what is it equal to? To a
beginning calculus student the determination of-such a limit may be
quite difficuit, and, even after applying L'Hospital's Rule (when
possible), the result may mean little to him. However, with the aid of
a computer this limit can be approximated, if it exists, and the probiem
‘can become very stimulating and real to the student as he watches the
sequence of numbers converge.

Other reasons advanced for introducing computers into college
calculus include the opportunity they provide for experimentation with
certain important calculus concepts such as summation definitions of
the integral, infinite series, improper integrals, and indeterminate -
fofms of limits. Also, many calculus problems are very laborious when
done by hand. Such problems can be more instructive, interesting, and

much less tedious when programmed for a computer,



A summary of rationale and purposes for using the computer in

elementary calculus instruction includes the following statements: .

(a) To motivate and improve learning by giving students a.
laboratory-type involvement with some of -the numerics
of calculus. |

(b) To encourage the development of insight into the ‘whys"
of calculus theory and techniques,

(e) To‘introduce‘computeré into students' domain of exper-
ience 'In a reasonably natural setting at a relatively
early time in their college career,

(d) Provide an opportunity for students to do instructive
problems that are too tedious to.-be done by hand.

(e) " To stimulate overall student interest, comprehension,
and motivation by turning learning inte a more active
and less passive expérience by  giving more emphasis to
the constructive and algorithmicaaspect of ‘the calculus.

(f) To react to the profound effect the computer has had on
how mathematics is applied by modifying the way it is

taught.
How Has the Computer Been Used?

A result of recommendations by groups and individuals as stated
above has been the creation of many programs devised to integrate
computers and computer methods into traditional -elementary calculus
courses. Philip Davis and Charles Strauss of Brown quversity stated
in a report; dated May 1969, that-there were then about ''ten to

fifteen' computer oriented calculus courses given in a variety of

¢



colleges throughout the nation (f; Py 1), In the August, 1969 CUPM
Newsletter, computer calculus programs of fourteen colleges and univer-
sities were briefly described (24). In March, 1971; Miles reported
that -the computer-oriented .calculus text (6) had undergone “successful -
test use" on about fifty campuses by the end of the 1969-70 academic
year (26). A National Science Foundation Summer Institute was held at
Florida State University in 1969 ‘and again in 1970 to train céllege
teachers (mostly with doctorates) for using computer-oriented calculus
materials. The use of such materials, thus, seems to be gaining wide~-
spread attention.

The nature of computer-orieénted calculus programs varies from
minimal revisions in which a student is expected to independently use
the computer to solve a few selected‘problems,‘to complete revisions of
the traditional -calculus content, The approaches at most institutiOns
seem to be experimental, beginniﬁg with one or two sections of '"Calculus
with Computers' under the direction of instructoré especially enthusias-
ti¢ about such an assignment.‘ This may be extended the following year
to a larger body of students with the whole freshman calculﬁs class the
eventual objective (24, p., 2).

Not much published material has appeared yet, although apparently
some ‘is in théﬂprocess of being published (8, p. 11). Tﬁe limited
amount of material that has been published appears to take -essentially
one of three forms. Ihe'first‘and most typical is in the form of a

supplemental booklet such as Richard W. Hamming's, Calculus and the

Computer RevqutiQn(ls). " This short booklet examines the general
relationship between computing and mathematics, particularly calculus

topics, indicatirig some of the possibilities and limitations of



computers. Secondly, the materlial may be part of a calculus text
written with computer applications in mind but which contains the tradi~
tional calculus approach. Computei related material 1s usually included
in exercises, section-ending comments and a part of the appendix. . An

example of this type is Henriksen and Lee's Single Variable Calculus (18).

This type may have an accompanying exercise book such as the Elementary

Computer Programming With Illustrative Problems by Lisa and Judah

Rosenblatt (32) written to be used with the Henriksen and Lee text.
Thirdly, the material may be a complete revision of the traditional

calculus such as the text Calculus: A Computer Oriented Presentationm,

‘developed by the CRICISAM at Florida State University. A team of
writers sponsored by a National Science Foundation grant produced the

text in the period 1967 to 1969.

An Approach to Using the Computer in

Calculus Instruction

The author of this thesis, having taught courses in elementary
calculus for several years, finds the list of topics to be 'covered" in
the course already so time and effort consumming for students that the
addition of supplementary material, like that of Hamming (15) and the
Rosenblatts (32), would too severally deplete time allotted for topics
the author considers necessary in a beginning course. CRICISAM authors
found it expedient to delete or minimize several traditional topics
including parametric equations, polar'coordinates, partial fractions
and indeterminate forms. ﬁaﬁy m#theméfiéians, including this author,

are not prepared to modify the curriculum this ‘severally.



It is also true that a majority of students are now being taught .
elementary calculus from one of a handful of calculus texts which have
evolved through several editions into thelr present forms. Such texts
" have become more or less, complete and érror'frée'in‘their‘list of
topics, presentations,_and exercises;. Most,inétructors of .the subject
prefer to use such texts and probably this situation will continue for
several years. As a resglp, the typical calculus instructor's problem
is ‘how to improve his teaching of calculus while not deviating too much
from the particular text and list of necessary topics. In particular,
if there is a‘computer‘available, how might‘he'harness.its-capabilities
for improving his calculus teaching efficiency? He may envision
several possible benefits to students who get -an introduction to
computing while taking his class, but he probably lacks experience or
training suitable for making .a sound"judgﬁent on the real~benefits. He -
does know that -he would 1ike‘his studen;s to learn faster, obtain .
insight into the subject andvsome~of:its épplicatidns, to develop some
apptreciation offthe.subject, and modern~uses, The teaching of anything
of significance about ‘computer hardware, software or programming is
precluded, however, since by our assumption the instructor does not
know very much about these subjects.. Also, he is pressed by time to do
justice to the topics he considers essential in calculus. = He simply
sees promise in using the computer to increase understanding,and
insight through actual numerical calculation, with a fringe benefit
‘being the students' exposure ‘to a smali sample of the capabilities of
thebdigital computer.

The author has developed. "calculus with computer' materials for

use by .instructors having the objectives and needs as-described above.
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The materials have been devised to motivate, develop insight, reduce
tedious computations, provide for student experimentation, support.
modern text material without replacing large portions of it, and

tion, These\materials are intended to be usable by teachers of limited
computer experiendeland knowledge.'vlf ié imperative that computer time
vusage and student programming be kept within very reasonable limits so
that the expense can be minimized and so that students' time for
theoretical study is not &eéléted. - The tendency toward "baby numerical
analysis! must be resisted, keeping numerical methods in proper per-
spective with beginning calculus. But at thé same ‘time, basic numerical
methpds.necessarily receive‘more‘emphasis‘than,is traditionally the
case.

These materials will not Substaﬁtially‘change the traditional
coﬁtent; But wi1l«provide'ah opportunity for a student to experiencg
sucecess and fallure in éplving several pertinent exercises which have
been introduced to him in the calculus.  This would not be possible -
without a computer.

Abundant Opportunity.is‘provided for individual' instructors to
choose from several key-éfeas the particular flow ‘charts programs -and
-ekercises‘which‘besr-meet the needs of their course objectives and-
student population. The materials are described in a manner which
makes them independent of any specific programming language. However,
examplgs‘of programs written in Conversational Programming System
BASIC -(CPS BASIC), the language all of the programs have been developed
and tested in, will be presented. The purpose for such examples will .

be to.give the prospective user some perspective for what a given

L
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computer usage will entail. Flow charting is gaining popularity as a
device for teaching and learning efficient analytical habits of problem
solving. Hence, the author encoﬁrageS’its use as such, in addition to
the usual preprogramming function. The use of flow charts also provides
a means for making the materials computer-language-independent.

In general, the intent will be to present a reasonable way to use
the computer in a calculus course for the average college in the
present and near future; with the assumption that the average college
mathematics student and instructor will have at least limited access to

a computer.
An Experimental Use of the Materials

By way of providing an example of how such materials can be used,
as well as what effect they bave on student learning, description of an
experiment with their use is provided in Chapter III. A portidn of the
materials was chosen and adapted for use in a course given at Oklahoma
State University during the first semester of 1970-71. Data was
collected and analized on students using the materials, along with a .
comparable group of students not introduced to the computer.

The plan for the remainder of this discourse, after having
provided an introduction to computer use in calculus instruction, is to
proceed with a description of the author's ideas for such computer use.
Chapter II will consist of this déscription. In Chapter III the exper-
imental study will be presented. Finaily, a set of recommendations for
further use of the comfuter and possible items for study will be listed

in the last chapter, Chapter .IV.



CHAPTER II

ON USING THE COMPUTER, FLOW CHARTS AND

RELATED EXERCISES WITH CALCULUS

As at the beginning of any new subject, symbolism, rules for
operations, and procedures must be introduced. If one plans to use
flow charts during the course, it is necessary to spend some time dis-
cussing thelr nature, purpose, and use. The amount of detailed discus-
sion will depend, of course, on student background as well as how exten-
sively flow charts are to be used. Much programming is done by people
who do not use flow charts, so they are not necessarily basic to
computer usage, much less to elementarybcalculus. Also, flow charts
can detract attention from the algorithms they serve to diagram. How-
ever, this writer sees value in their use as a programming aid and for
instructive thought organizing.

Since flow charting involves considerable diagramming, it is
helpful to standardize commonly used symbols. This reduces the amount
of writing and description necessary to transmit the intended ideas.
Symbols used in flow charting vary from person to person and may depend
on the nature of routines to be diagrammed. The author has derived a
set of symbols which he finds adequate for flow charting of the type
done in these materials. The set is listed in Appendix A.

An important technique when developing a flow chart with the class,

as well as discussing one already completed, is to emphasize the crucial

12
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step or steps within the logical structure. Attention to the somewhat
routine parts such as imput, output, and function definition should be
put off as long as possible. The instructor should construct the flow
chart around the ''big step." For example, in the flow chart illustrated
in Figure 6 on page 29 the important steps occur in the box marked with
an asterisk.

The method by which the computer is presented to a class of
students depends on how it is to be used as well as on the students’
background. One of the first instructor decisions (if he has an option)
is what programming language he will use. The most common languages are
BASIC, FORTRAN, PL/1l, and ALGOL. Some installations have their own
individual languages, but most have at least FORTRAN. The author has
used versions of all the above except ALGOL and presently feels BASIC
to be most suitable for students in their first computer experience.

The language was developed for such use, and its conversational nature
is relatively easier to learn thaﬁ most others. The author has found
two or three hours of BASIC programming experience to be adequate if
individual guidance can be provided for the initial few weeks of pro-
gramming. There are several adequate BASIC manuals available which
students can use as reference material. The author has found a simple
general introduction~to-computer booklet helpful. This can be
instructor-written fairly easily. A good example can be found in

Elementary Computer Programming With Illustrative Problems (32) as well

as SMSG's textbook (35).
Another decision to be made is what the ratio will be between
instructor-provided programs and student written programs. While

student programming is instructive, it is also very time consuming for a
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student to write, debug, and execute a program. In the author's opinion
time spent on flow charting and analyzing data from provided programs is
more instructive; in general. But course objectives must be the princi-
pal deciding factor. Also, if a laboratory period is adjoined to the
calculus course, as is possible in some situations, more programming
will probably be beneficial.

. Some criteria for consideration when programming problems for

calculus are:

(a) - Can the computer be used effectively to do the given type
of problem?

(b) How complicated will the problem of programming become?

(c) How much computer time is involved?

(d) Can a general program fo: all problems of this type be
written?

(e) What degree of accuracy is required?

(f) How should the output look?

Flow Charting, Computers, and Analytic_Geometry2

The author has found it rather efficient to combine the initial

programming instruction and introduction with topics of analytic

2An explanation about the format for presenting the author's ideas
is probably needed here. Under each of the eight main topics of this
chapter, the author will list several subtopics which will delineate how
he suggests using the computer. These subtopics will include examples,
flow charts, computer programs, and sample exercises. One important
purpose of these subtopics is to stimulate the reader to improve on the
author's approach as well as develop other ways to utilize the computer
in his calculus instruction.

A reference matrix is presented in Appendix C to provide a conven-
ient source of reference information for the interested reader. The
author's materials are cross-referenced with eight other text sources.
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geometry. Since many calculus courses begin with consideration of
analytic geometry and simple function topics, two objectives can be
accomplished simultaneously. Namely, the computer, computer language,
programming, and flow charting can be introduced by using examples from
analytic geometry, thus enabling students to learn about all of these

together.

n Factprial. A reasonably easy but helpful place to start programming
and flow charting is the computation of n! for n up to at least ten.
The program should be about eight to ten statements long, but students
can be required to use certain techniques such as interation segments
and if statements. Data output in iInteger, decimal, and exponential
forms can be required so that experience is obtained in determining
output format. The nature of what is happening should be mathematically

transparent.

Absolute Value of a Number. Another very simple programming exercise

is to compute the absolute value of a (real) number. Experience with
data input and output .can be gained as well as a review of the nature

of the important absolute value function. For some students, their

definition of absolute value as "leaving off the sign' will be quite

inadequate.

Table of Ordered Pairs for a Function. Another simple programming

exercise is to write a program which will produce a table of function
values for a given function at partition points of an interval [a,b].
It is handy for each student to have this program available during the
calculus course. He can then investigate the nature of any function he

meets by looking at some function values in a given interval.
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Finding the Slope and Equation of a Line Through Two Points. A slightly

more involved program is required to find the slope and slope-intercept
equation of the line through two given points (xl, yl) and (x2, yz).
This serves to review the often used slope-intercept equation form

y =mx + b and the algebraic definition of slope (including nondefini-
tion.for a vertical line). The program should check for a vertical
slope first, then compute the slope m if it is defined. The intercept

is easily shown .to be given by b = vy~ mxi._

Finding An Equation of the Perpendicular Bisector for a Line Segment.

Another slightly involved program 1s required to find the slope m and
midpoint of a line segment through two points (xl, yl), (x2, yz) and
then compute the slope and slope-intercept equation of the perpendicular
bisector of the line segment. Such a programming exercise can review
the ideas of midpoint, slope, slope-intercept equation of a line, line
length formula, and slope relationship of two mutually perpendicular

lines.

Other Possible Introductory.Programming And Flow Charting Exercises.

(a) Write a program to read ten numbers, find their sum, their
mean, and then sort into increasing order.

(b) Write a program to input coordinates of three (nonlinear)
points and then compute the area of ‘the triangle having
these three points as vertices. The only formula for area
allowed being A = bh. (Hint: consider two cases, one
side parallel to x~axis and no side parallel to x-axis.)

This exercise is more difficult than the preceeding ones.
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(c) Write a program to determine if points P, Q, and R all

lie on a single line.

The Limit of a Function

Since the limit concept is so fundamental to calculus, one is
hopeful that the computer can be used in a vital way towards developing
insight and comprehension. Many textbook presentations of the limit
try to use a spiral approach, beginning with simple detailed examples
using an .intuitive approach and building slowly to the rigorous epsilon-
delta definition. In an analogous manner, computer estimation and
illustration of the limit of a function at a point can be spiraled. At
first the computer is programmed to perform a fixed number of iterations
while computing function values for points approaching a fixed number

X, from below and above. Then a tolerance stop is added to the program

0 .
so that it will stop when a reasonable estimate for the limit is
reached. Anqther.step would be to have'the computer estimate suitable
values of delta corresponding to values of a given epsilon. Such an
approach encourages students to consider the characteristic behavior of
function values for a function f whose limit at Xy does or does not

exist.

An Initial Limit Estimator. When considering the limit of a function

f at a point we are examining the nature of the function values .

Xy
f(x) as x approaches (but does not equal) Xy Of course, x can

approach x in many ways. Since the computer works only with discrete

0

rational numbers, we must decide on a reasonably illustrative but

general way for obtaining a set of such numbers approaching the fixed
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numbey Xq The author has usually chosen to form sequences of the type

L =x - Dn and R = x
n

n
N ot D n=0,1,2,3, ...

If D is given the value 1/2, for example, then

{Ln} = {x5 - 1, xy - 1/2, x, - 1/4, -
and
{Rn} = {xo +1, X, +1/2, x, + 1/4, ..},
See Figure 1 for an illustration.
LO Ll L2 Lees *oeeR R2 | R1 R0
| I | 1 1 1 "h' | I L] 1 1
f N | LN 11120 i1/4 L1/2 Ll
X, 1 %4 1/2 X, 1/4 ) %, N X5
Figure 1: Diagram of Sequences {Ln} and {Rn}
0f course, Ln < Ln+1 < % for all n and {Ln} has limit Xg»
while x, < R <R for all n and {R } has limit x,. also.
0 nt+l n n 0

Clearly, so long as D 1is a positive number less than one, the sequences

{Ln} and {Rn} will have the property of approaching X, from the

left and from the right, respectively. The ''rate" at which the sequences

converge to X, is dependent upon the value of D.



19

Logical steps for obtaining function values at numbers in the two
sequences {Ln} and {Rn} is illustrated by the flow chart in
Figure 2.

A computer program can be easily written which will iteratively
produce a table of the two sets of ordered pairs (Ln,f(Ln)) and
(Rn’f(Rh)) corresponding to n =0, 1, 2, 3, ..., N. Students will be
able to investigate the limit of several functions at a fixed point X,
from the left and right. For reference let us refer to such a program
as LIMIL.

An immediate question should come to mind: When will this process
be ended? 1In the routine illustrated above there is no provision for
stopping. When should it be stopped? Well, in using it to estimate

the limit of £ at we are concerned with the two sets of numbers

X0
{f(Ln)} and {f(Rn)} as n increases. We will recognize that we

have an estimate k for

limit £(x)
X > X

0

if and only if (a) f(Ln) approaches the number k as n increases
(and hence Ln approaches xo) and (b) f(Rﬁ) approaches k as n

increases (and Rn approaches x Symbolically, this is indicated by

0)'

limit £(x) = limit f(Ln) = k = limit f(Rn) = limit £(x%)
X > X - n > « n —+> « X > XO

0

Figure 3 illustrates output from the author's version of LIMlL on
two limits.
LIM1L can also be used to examine the continuity of a function at a

point x since a function £ is continuous at x if and only if

0’ 0
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Specify f and X

Set Value of D

Set n=20
=
Let
_ _ 0
Ln XO Dn
Rn = XO 4+ D

Print a table of values:

L £, R, £(R)

Increment n by one

Figure 2. Flow Chart for Estimating

the Limit of f at

X

0"

20
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in x

[N

ML NNRERO

[

[ ARV IR NN "

Figure 3.

Output from LIML

An Investigation of 1limit EELES using LIML
x>0 *
- DL** - *%
X, DL*%*{ f(x0 ) X, + DL#**i f(xo+)
~1.0000000000 .8414709848 1.0000000000 . 8414709848
-.1000000000 .9983341665 .1000000000 .9983341665
-.0100000000 .9999833334 .0100000000 .9999833334
-.0010000000 .9999998333 .0010000000 .9999998333
-.0001000000 .9999999983 .0001000000 .9999999983
An Investlgation of 1limit sin L using LIM1
x>0 X
- DL*%*1i - *k
X, DL*#*1i f(x0 ) X + DL*%{ . f(xo+)
-1.0000000000 -.8414709848 1.0000000000 .8414709848
-.5000000000 ~.9092974268 .5000000000 .9092974268
-.2500000000 .7568024953 - .2500000000 -.7568024953
~.1250000000 -.9893582466 .1250000000 .9893582466
-.0625000000 .2879033167 .0625000000 -.2879033167
-.0312500000 -.5514266812 .0312500000 .5514266812
-.0156250000 -.9200260382 .0156250000 .9200260382
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oD limit f£(x) = limit £(x).

x-*x_ > XA
0 X7 X

An Improved Limit Estimator. Let us see how LIML could be extended

such that it will be self-stopping and produce estimates for the two
limits on line (1) to a given tolerance. The new program will be called
LIM2. One way to accomplish the modification is as follows: After
printing a line of values for Ln, f(Ln), Rn’ f<Rh) for a given n,
compute ]f(Ln) - f(Ln_l)I. If this number .is not less than the
specified tolerance (for example, .0000l) then increase the subscript

by one and produce another line of values, examining the absolute value

again for n+ 1. If |f(Lﬁ) - f(L is less than the tolerance,

n+1)l

’

consider |f(Rn) - f(Rn+1)|. Continue until the tolerance is met by
" both absolute values simultaneously. Then f(Li) and f(Ri) of the
last line printed are estimates for the limits of the limits in (1) to
the specified tolerance. A maximum for n can be specified in case the
tolerance is never met.

By now students will know that

limit £(x)
X > X

is the common value of the left hand and right hand limits (estimated
by LIM2) if such exist. (If the programming language being used has
a "greatest integer' library routine, as BASIC does, an easy example can
be given for which the left hand and right hand limits exist but are not
equal.) |

The tolerance check for LIM2 could be set up to compare f(Ln)

and f(Rn) for a given n, and thus the process would be stopped when
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estimates for the limits in (1) appear to be sufficiently close or after
a maximum number of iterations.
A sample of some limits to which students could apply - LIM2 in-

structively includes:

(a) 1limit SRX  *

x>0 =
(b) 1limit - E T [left hand limit is -, right hand limit is «].
x> 1

(¢) 1limit sin 1/x [neither one-sided limits exist]
x>0

(d) 1limit ~—2x—-'——2—

x+2x%x -4

[1/4]

One~sided Limit Estimator. The author has found it instructive to

provide students with a program for estimating the limits in (1) inde-
pendently. The program“is caﬁable_of estimating either or both one-
sided limits, has a tolerance stop for one-sided limits which are finite
and has a tolerance stop in case the limits are infinite. Such a
program is particularly useful for experimenting with certain limits
usually found in the text section called "indeterminate forms."

Examples are

limit (1/x + 1n x) and limit %,
+ +
x>0 x>0

Figure 4 is a flow chart for such a routine which will be called

ONESID for reference. Symbols in the flow chiart have the following

* ‘
Answers and hints to exercises will be placed in brackets
following the given exercises.
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meaning:

TL d1s a tolerance stop for a finite limit estimate.

N  is the maximum number of iterations allowed.

IC is analogous to D in the LIML and LIM2 programs
discussed previously.

L and R are flags. For an estimate of the left hand limit
at X, we set L = -1, otherwise let L =0, Similarly

for R, except we let R =:1 when the right hand limit

is wanted.

K is a holder for the value of L and R during limit

estimation.
When successive function values at XI differ by more than 1000 we

will estimate the limit to be (plus or minus) infinity.

Estimator for limit f£(x). Another type of limit is that denoted by
X >

limit f£(x).

X > *oo
This occurs, for example, when sequences are being studied. A routine
for estimating such limits can be obtained by creating a sequence of
numbers {Xi} where X =K - bl for i = 1, 2, 3, e The terms in
this sequence are always positive, and they become arbitrarily large if -
K=1 and D > 1. The terms in this sequence are always negative and
become arbitarily small, that is, Xi »> -0 4if K=-1 and D > 1l.

Again, the rate at which X, increases or decreases can be determined

i

by the choice of a value for D. (When examining sequences,. Xi- is

simply defined to be Xi = i.) The set of numbers {f(Xi)} indicates

an estimate for the particular limit at hand.



DEF
f(x)

IC, N, TL

K+L
I$ « 'Left'
F$ + "£(x5-)’

M ]

Tolerence of (TL) 1is
not met. Stop trying.
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Pt 4

Consider f(x) as x
goes to (xo) from the

18).

True

K« R
I1$ « 'right
F$ « "E(xgh)

<
<

Call LIMIT

18, K

—

——

FI « £(XI) |&

¥
»
}
B
£

True 1

A

A

True

False

4

True

LS « 'minus infinity'

[

LS « 'plus infinity'

Figure 4.

y

-

False

y
(1?1 - £(XD)] < 1000)(——5-513‘-([}*1 - £(X1)] < 'I'D

True

An estimate for the (I$) hand

1imit of f(x) at (xo) is (L$).

Flow Chart for

hand limit of

ONESID

An estimate for the (I$)

(xg) 1f (£(XI)).

f(x) at
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A logical flow chart is provided in Figure 5. For reference the
program written from this flow chart will be called LIMINF.

The author has made a point of avoiding subscripted variables up to
this point to keep the programming easier to understand. In some cases
the programming would be improved by using subscripted variables. When
and if they are to be used is a matter left to the instructors' judg-
ment.

Problems to which the routine LIMINF might be applied include:

(a) limit (1 +.1/x)* with D = 2 in the above routine. [Most

*7 computers will have trouble when x gets
sufficiently large --- after about
X = 248. Such an example can be used to
discover some limitations of the computer.]
(b) - limit x° e™* [0]
X > o
() Limit SBX =X 1o 504e, oscillation]

X > ®

Another idea which the author has not yet pursued, but which some
(22, p. 4.39) have is that of a delta finder program. That is, a
routine which, when a function £f, number xO, and value for epsilon

¢ - are specified, will find a value for ¢ such that

| £(x) - f(xO)] < g

for x satisfying [x - xol < 8. Such a program may well have value
for teaching the epsilontics associated with a precise theoretical

approach to limits.



k=1

Specify £ and set
k=-1 if x + - or
if x> 4+

Vv

® > 1)

Set:- I =1 and
specify a value for D

Let
XI =K »

D

L \

Increment

I by one

Print a table of values for
I, XI, £(XI)

Make a tolerance check by
comparing f(XI) with its
value at previous iteration

Figure 5.

If tolerance is
not satisfied

If tolerance

is met

Flow

Chart for Estimating

X > Fow

limit £(x).

27
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The Derivative And Derived Function.

Egstimating the Derivative. Using the program LIM2 discussed in the

preceeding section, students can be given experience estimating the

limit of a function f at a number x

0 by computing one-sided limits

simultaneously until successive function values from both sides meet a
specified tolerance.. Since the derivative of f at Xy» f'(xo), is

the limit of the expression

f(xo + Ax) ~ f£(x,.)
Ax

(called the difference quotient of £ at xo)

as - Ax ~ 0, LIM2 could be used to estimate f'(xo). We could simply

define a function g by

f(x, + Ax) - f£(x.)
By - 1%,
g(Ax) = e

and use LIM2 to find

limit g(Ax)
Ax +~ 0
which equals f'(xo), if the limit exists.
The author has chosen to write a separate program, which will be
called DERIV for reference, to estimate f'(xo). In principal it is
the same as LIM2. Figure 6 is a flow chart of the routine.

Exercises using DERIV could be of the following type:

(a) Estimate f'(xl), f'(xz), and f'(x3) where f is a

linear function such as £(x) = 2x + 3.



Specify f and x

)

0

Specify N, .the maximum no. of
iterations and the tolerance for
one-sided limits. Set n = 1.

Let:
Ax = 107"
f(x0 - Ax) - f(xo)
LN = -
=-AX
f(x0 + Ax) - f(xo)
RN::
Ax

Increment n by one

A

i

Print a table of values:

Ax, LN, RN

*

Make a tolerance check by comparing LN
1and RN with their values at the
previous value of Ax.

N

If tolerance is not | If tolerance
satisfied is satisfied or n = N
ra
Figure 6. Routine to Estimate f'(xo)

*
See page l4.

29
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(b) Estimate f'(xl), f'(xz), f'(x3) where f is a quadratic
function such as f(x) =.x2 -x + 2,

(¢) Estimate f'(0) where f£f(x) = lx].

Discoverin& the Derived Function £f. After using DERIV to obtain

f'(xo), a number, for a given function f and point x a routine

0’
can be developed from it to provide for student discovery of the derived
function, f'. We modify DERIV so that it can estimate f£'(x) at
partition points of an interval [a,b]. For reference we will call the
modified program SHTDER (printout from DERIV is shortened to save
time and paper). From this program a set of ordered pairs (x,f'(x))
will be obtained. Students can be directed to graph these pairs and
then guess at the defining equation for the curve. If they guess
correctly, of course, they obtain the defining equation for f'.

The detailed flow chart of SHTDER 1is illustrated in Figure 7.

Symbols in the flow chart have the following meaning:

[A,B] denotes the interval on which derivatives of f are

to be estimated.

IN denotes increment between points of derivative esti-
mation.
X0 is holder for value of point at which derivative is

being estimated.

TL is tolerance stop for derivative estimate.
N is maximum number of iterations in a derivative
estimate.

DX denotes Ax 1s the difference quotient.
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DEF
£(x)

( A, B, IN

l X0 « A

X0 « X0 + IN

vy

Heading:
Estimates for]

£'(X0) are:

1 «1 N iterations have been
{ < N |False performed. Tolerance

> 1 « 1+1 not met.

~——]

True -

DX « 101
+ -
ap . E(XODX)~£(X0)

DX

LT < £ (X0-DX) ~£(X0)

-DX

R « RT
L « LT

A

A

o

False

Figure 7. Flow Chart for Estimating Derivatives on [A,B]
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RT and LT are holders for right and left hand limit estimates

of f'(X0).

AFigure 8 is an illustration of output from SHTDER with the
associated graph.
Some rather obvious functions for students to apply SHIDER to

include sin x, cos x, e*, 1n x, and 1/x.

Chain Rule. To help students learn the chain rule, obtain some insight
into functional composition, and experience some feedback from the
computer, a routine called CHNRUL has been used. The program DERIV
for estimating f'(xo), discussed at the beginning of this section, is
incorporated as a subroutine in CHNRUL.

Figure 9 is a flow chart illustrating the logic of the program.

A student must find and define for the computer the functions £,
f', g, g', and (fog)', the latter using the chain rule. The computer
evaluates these functions and some pertinent composed functions at X
and then, using f and g independently, estimates (fog)'(xo). The
computer then ''checks'" his use of the chain rule. He must find three
derivatives correctly, and the printout is such that mistakes can
usually be pinpointed by'noting how the three values outputed for
(fog)'(xo) are produced. A sample of output from CHNRUL is illus-

trated in Figure 10.

Rate of Change Exercise. Since the ideas of distance traveled,

velocity, and acceleration are frequently used to motivate the deriva-
tive, a reasonably instructive problem will be suggested. It can be

easily programmed.



Estimates for f£f'( -4.000) are:
-.737 and ~.757
Estimates for f'( -3.500) are:
-.351 and ~-.351
Estimates for f£'( -3.000) are:
.2%1 and 141 f(x) = cos x
Estimates for f'( -2.500) are: for x e [~4,4]
.598 and .599
Estimates for f'( -2.000) are:
.909 and .909
Estimates for f'( 4.000) are:
.757 and . 757
£1(x) A
1 +
i -3 2 -1 o N 2 f‘
ol o

Figure 8.

Student's guess: y = - sin x?

Sample Output and Graph From SHTDER

33



. Specify the functions:
f, £', g, g', fog and (fog)'

Specify X,

34

Output a line of values for

xps 80k s £(@0xp))s 8 (xg) s £ (8lx)) s ' (8lxg)) 8" (xg), (F00)' (i)

Use DERIV to independently
estimate (fog)'(xo) from

definitions of f and g only

Figure 9. Flow Chart for CHNRUL
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For x =1, f(x) = /x, and g(x) = 2x + xz, the computer output

is:

Using the student's answers for f', g', and (fog)', the

following results:

x g (x) £(g(x)) g'(x) f'(g(x)) £'(g(x))*g'(x) (fog)'(x)
1.00 3.000000 1.732051 4.000000 .288675 1.154701 1.154701

Now using DERIV, estimate the derivative of fog.

Estimates for (fog)'(1.0000) are as follows:

dx Df(xo—) Df(x0+)
.10E00 ' 1.1650136543 1.1456772369
.1E-01 1.1556692496 1.1537446578
.1E~02 1.1547963276 1.1546043774
.1E~03 1.1547101615 1.1546909165
.1E-04 1.1547015006 1.1546995761

Both 1.154702 and 1.154700 seem to be good estimates for
(fog) ' (1.000).

Tolerance is .l1E~04.

Figure 10, Sample Output From CHNRUL
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Exercise: Suppose tﬁe posifion of a.certain automobile moving
along a straight highway at time t is f(t) = vVt, For each value of.
t =0, .2, .4, .,., 5 calculate and print out the average speed of the
car over the time interval extending from t to t + At where
At = .1, ,01, and .00l successively. Also print 1/(2/t) for each
value of t. Explain the‘resultsi
[As At gets smaller, the average speed over the interval from t ko
t + At, for fixed t, . approaches the value of 1/(2V/t) since these
are estimating f£'(t) which is defined by £'(t) = 1/(2/t). The ap-
proximations get better as- t approaches' 5 since the slope of f£(t)

is decreasing.]
Applications of the Derivative -

Tangent and Normal Lines. A common and reasonably useful application of -

the derivative is to find equations of :the tangent and normal lines to
the graph of a function at a point (xo, yo). The programming of a
routine to find these is likewise a reasonable student exercise., Logic:

for a routine to do this is given in Figure 11.

Differential Approximation. Another.application of the derivative ds

the use of differentials in the approximation of certain numerical

expressions. Justification for differential use briefly goes like this:

Ay = f(x + Ax) -~ f(x) and dy = f'(x)dx by definition. Re-
writing the first equation and choosing Ax = dx in the second equa-
tion, we get f(x + Ax) = f(x) + Ay * and dy = £'(x)Ax, Now using the
fact that Ay approximately equals dy . for Ax relatively small, we

have the useful expression f£(x-+ Ax) = £(x) + dy = f£(x) + f'(x)Ax.



Specify £, f' and e

Let
Slope of tangent, MT = f'(xo)

Slope of normal, MN = ~1
ML

Compute

y - intercept of tangent, BT = f(xo) - (MT) - X,
y - intercept of normal, BN = f(xo) - (MN) - Xy

Print equations

'y = (MI)x + (BT) for tangent line
and
y = (M)x + (BN) for normal line

Figure 11. Flow Chart for Tangent and
Normal Lines

37
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To approximate v25.1, for example, we choose f(x) = /;,

x=25 and Ax = .1, then f'(x) = 1/(2V%).
V25.1 = £(5 + .1) =~ /25 + 1/(2/25)(.1) = 5.01.

An instructive programming exercise is to have students do the
above derivation and then write a program which computes
A= f(x) + £f'(x)Ax
and
B = f(x + Ax)
for given £, f', x, and Ax. The error in the approximation is, of
course, B -~ A.

A sample of expressions which can be approximated includes:

7

3
V 214, [5.981]; WV 126, [1.9955];

cos 61°, [0.4849] and Arc tan 0.99, [0.7804]

Newton's Method. Newton's Method, a relatively important numerical

method for approximating the roots of an equation f(x) = 0, can be
interesting and instructive fo a beginning calculus student. Conver-—
gence is usually rapid, if it occurs, and students see value in its
potential use. (Other root‘épproximation methbds-%ight also be used,
See pages 61 - 96 of Henrici (16). The temptation to overemphasize
such topics must be resisted at this level.)

Newton's method can be viewed in terms of differentials, Refering
to Figure 12, suppose that X is an initial.approximétion to a root
of f(x) = 0, and that r is the actual root. The tangent line at
(x ,f(xo)) meets the x-axis at x;. By definition of dy,

dy = f'(xo)dx. From the figure, dy’'= f(xo) and dx = Xy ~ Xqp- Thus,



39

tangent line

\
%{

Figure 12. Illustration for Newton's Method

dy = f(xo) = f'(xo)(x0 - xl)
so

f(xo)/(f'(xo)) = X3 " X;.

Rewriting this equation we obtain X, =Xy - f(xo)/(f'(xo)). Repeating

. = _ '
the process with x; in place of Xy, we get X, = X f(xl)/(f (xl))

and, in general,

X =X

n n-1 f(xn—l)/(f'(xn—l))'

Under certain conditlons the sequence {xn} has r as its limit.

(16, pp. 77 - 83). The conditions can not be stated very simply and,
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in general, involve the first guess so any rigorous study of

Xy»
Newton's Method would take a calculus class too far afield.
Figure 13 is a detailed flow chart for a routine using Newton's

Method. Symbols in the flow chart have the following meaning:

f and £' denote the function £ and its derivative.
X0 denotes first guess for a zero of f(x).

N  denotes maximum number of iterations.

TL denotes desired tolerance for estimate of a zero.

X1 is a computed estimate for a zero of £(x).

An exercise which can be instructive is the following: Verify

2
the Mean Value Theorem for Derivatives where f£f(x) = e ¥ /2, a=0 and

b =1, that is, on [0,1] using Newton's Method. [Note that £(0) =1

~-1/2

and f(1) = e and use Newton's Method to find root of

—x2/2 -1/2
e -

g(x) = -xe - ( 1)
between 0 and 1.]

Finding Relative Extrema. Techniques for finding relative extrema are

given considerable attention in a beginning calculus course. It is
important that students develop and understand a sequence of logical
steps which one by one apply the various tests and criteria until the
necessary information has been extracted.

Flow charting such a routine, even though the routine may be rather
limited, can be instructive. The author has joined Newton's Method
described previously with a common theorem, often called the Second
Derivative Test for Relative Maxima and Minima, to obtain a routine

called RELEXT for reference.
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False
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Tolerance is not

I«I+1

rue

f (X0)

Xl « X0 - ETTiay

True /

—— ]

A

I, Xl,jif%ij
2 )

=

False

Figure 13.

False/T

Qo - x1| iTD

True

Tolerance of (TL) is
satisfied. (X1)

appears to be a good
estimate for a zero
of f(x).

met. Stop
trying.

Flow Chart for Newton's Method
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Figure 14 is a flow chart of the logic for the routine. In
practice, several first guesses for zeroes of f' were specified and
the routine performed for each guess.

An example exercise using RELEXT would be the following:
Examine the.function f defined by f(x) = x5 - 20x2 + .4 over the
interval [-5,5] for relative extrema. [relative maximum at (0,4),

relative minimum at (2,-44), and flex point at x ='€/2]

Indeterminate Forms and Taylor's Formula

Indeterminate Forms, An important topic in first year calculus is the
study of limits of functions for which the initial attempted evaluation
(using the elementary limit theorems) results in one of several particu-
lar forms, called indeterminate forms. A very powerful tool for han-
dling such limits>in L'Hospital's Rule. Two programs written by the
author for examining such limits have been discussed previously. ONESID,
discussed on page 23, is designed for estimating one-sided limits, but
can be used on ordinary (two-sided) limits. LIMINF, discussed on
page 24, 1is designed to estimate limit of £(x) as x goes to either
+o© or —~, Both programs have a tolerance stop for a finite limit and
an infinite limit.

Some limits, in addition to those suggested earlier, for which

ONESID may be instructive are:

2x _ 1 e2x -1
(a) limit_ cos % - 1 and lim1t+ o8 x - 1

x+ 0 x +0

[+ and ==,

respectively]

(b) limit;+ x/; [quite slow convergence to 1]
x>0



Specify f, £', and f''

\

Specify xo,‘ a guess for

a zero of f!

Use Newton's Method to

approximate a root, T,
of f'(x) =0 from the
first guess, Xq

Check sign of f£f''(x).
Using Second Derivative Test:
f has a relative minimum at r 1f £''(r) > O
f has a relative maximum at r 1if £''(r) < O
No conclusion if f''(r) = 0.

Print information on nature of r
and value of f(r).

Figure 14, Flow Chart for Investigating
Relative Extrema
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(c) 1imit+ x(x—c)

x>0

[» 4f ¢ >0, 0 if c < 0]

eX +e X -2 sin x
(d) limit % = 5in = [4 1is the 1limit, but most computers
x>0

will have trouble getting the limit
if x> 0 rapidly.] (from either

side)
Some limits for which LIMINF may be instructive are:

(a) 1limit x2ex

X > ~o00

(0]

(b) limit (1 + c/x)* [e°]

X >

sin x - x

X [-1, note that L'Hospital's rule cannot

(c)  limit

X >

be applied directly.]

Iaylor Polynomial Approximation. The application of a Taylor polynomial

[ n (n)
P_(x) = £(a) +f—1!(ﬂ (x - a) +f-2-!i§->- (x ~ a) + oo +-f———t-1-!iél (x - a)®

(called the nth-degree Taylor's polynomial of f at a) to estimate the

value of a function £ at a point x is a good example of where hand

0
computation often obscures the pedagogical objective to such an extent
that effective exercises are difficult to obtain. Computer usage can

improve the situation. A program called TAYLOR has been written

which computes the coefficients

@, .
i——géél for n=0,1, 2, ..., 3

(5 was arbitrarily chosen for the maximum degree of Pn(x))



for a given function f and number a. Then,

program evaluates the Taylor polynomial Pn(x)

n=0,1, 2, ..., K (0 £ K< 5) successively.

D= [£(xy) - P_(x)]

are also computed and printed out for each n.
Rn(x) is the nth remainder term of f at a.
vestigate how well Pn(x) estimates f(x) as

independently.
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for a given x the

0’

at xo for

Values of f(xo) and

D is IRn(xo)[ where
Students can thus in-

n and xo are varied

A detailed flow chart for TAYLOR dis illustrated by Figure 15.

Symbols in the flow chart have the following meaning:

f(x) 4is function to be considered.

a is number about which £(x) is expanded in Taylor
polynomials.
n is maximum degree of Pn(x).

K, ¢c(1), ..., C(n) are coefficients of Pn(x).

X is number where Pn are always evaluated.

P(I) 1is value of PI at x.

D is absolute value of difference between £(x) and
PI(x).

An example of output from the author's program on two problems is

provided in Figure 16.

Instructive exercises using TAYLOR include:

(a) Compute the value of Pn(x) for n=0,1, 2, 3, 4 for

f(x) =e~, a=0 and x = 0.1l. [P,(.01) = 1.105171,

R

4 < .0000003]



DEF
£(x), £'(x), ..

., £l

o

4

K « f(a)

c(l) « £'(a)/1
C(n) « f[n](a)/nl

The Taylor's polynomial of
f(x) at a =

coefficients (K) (C(1)) (C(2)):::(C(n))

(a) has

k' 4

For n=20

is (K)

the Taylor
approximation of f((x))

False

For n = (I) the Taylor
approximation of f((x))

is (P(1)).

The computer evaluation

of £((x)) is (£(x)).

The difference is (D).

;@

True

P(I) =K + C(I) * (x-a) ** I

K « P(D)

p « |[f(x) - K

Figure 15. Flow Chart for Taylor Polynomial Approximation .
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With f(x) = cos x, a»v/3, x=1

Coefficiente for the Taylor's polynomial of f£(x) at a = 1.05 and a =3 are:

«50700 -.86603 -.25000 14434 .02083 ~.00722

For n = 0, the Taylor approximation of f( 1.00) {is .4999978793
"For n = 1, the Taylor approximation of £( 1.00) is .5408743361

The computer evaluation of f£( 1.00) is’ .5403023059

The difference is .0005720303

For n = 2, the Taylor approximation of f( 1.00) {is .5403173785

The computer evaluation of f( 1.00) 1is » 5403023059

The difference is .0000150726

For n = 3, the Taylor approximation of f( 1,00) {s . 54030220088

The computer evaluation of f( 1.00) s »5403023059

The difference is .0000001051

With f(x) = In(l + x), a =0, x = .95

Coefficients for the Taylor's polynomial of f(x) at a = 0. and n = 4 are:

0. 1.00000 -.50000 <33333 ~.25000 . 20000
For n = 0, the Taylor approximation of f( .95) 18 0.
For n = 1, the Taylor approximation of f( .95) 1s .9500000000
The computer evaluation of f( .95) 1s .6678293726
The difference is .2821706274
For n = 2, the Taylor approximation of f( .95) 18 .4987500000
The computer evaluation of f( .95) s .6678293726
The difference is .1690793726
For n = 3, the Taylor approximation of f( .95) 1s .7845416667
The computer evaluation of f¢( .95) s .6678293726
The difference is .1167122941
Por n = 4, the Taylor approximation of f( .95) is .5809151042
The computer evaluation of f( .95) 1s .6678293726

The difference is .0869142684

Figure 16. Sample Output from TAYLOR



(b)

(e)

Riemann Sums. Rather early in a study of integration the concept of a

Compute V3 26 to four decimal places. (Choose a = 27

and f(x) = xl/3

2) [|R2| < .00002]

An example where the first few Taylor polynomials (that
is, for n small) do not approximate the function very
well is 1n(l + x) with |x| near 1. That is,

f(x) = In(1 + x), a=0 and x near to +1 or -1.

[For x = .95, ]PA(.95) - £(.95)] > .08)

The Integral

48

Riemann sum for the function £ and the interval [a,b] is introduced.

For a partition Pn = {xo, S SEIRERE xn} of [a,b], and 2z, a number

in the ith subinterval ([x, ., x,], 1 =1, 2, ..., n, a Riemann sum
i-1 i

i

(for £ over Pn) is defined by

Either by definition or theorem (depending upon the instructor's

n

R(Pn) = :E: f(zi)(xi - xi—l)°v
i=1

logical beginning)

where

b
/ f(x)dx = limit R(Pn)
a mesh Pn >0

mesh Pn = max {(xi - xi_l) I i=1,2, ..., n}.
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In order to demonstrate the nature of a Riemann sum the author has’
required students to write a flow chart for a routine to compute R(Pn)
for a specified f, [a,b], and n.

The author's detailed flow chart is illustrated in Figure 17.

Symbols in the flow chart have the following meaning:

[a,b] is interval of integratiom.

TL is tolerance for approximation.

J is a counter.

SM is total Riemann sum after a given iteration.
N is number of subintervals.

DN is length of subintervals.

[XL,XR] 1is ith subinterval,
CI is midpoint of ith subinterval.

S(J) is holder for Riemann sums after Jth iteration.

In the flow chart the midpoint of [xi_l,xi] is chosen for zi, also,
each partition is regular, that is, produces equal subintervals., If
one's programming system has a random number library function, it might .
be instructive to choose zy from the subinterval in a random fashion
since this is the way a Riemann sum is formed. A tolerance stop has
been included with the flow chart.  For reference let us call the
program written from this flow chart RIEMSM.

Possible exercises using RIEMSM include:

(a) Estimate

2
/1/4—x2dx

0
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-

J<«J+ 1

SM <« 0O b -a

DN « N

False
i< N . = 1

= 1« i+ 1 For (N) subintervals a
Riemann sum for the

function f on the interval
XL < a + DN+ (i - 1) from a to b dis (8M).

True

o=
XR < XL + DN \/
op « Tt XR
2
L1SM < SM + £(CI) + DN
S(J) <« SM
Tru J< 2
False
False’ |g(g - 1) - SM| iTD
True '

Figure 17. Riemann Sum Approximation to the Integral
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using n = 4, 8, 64, 128 (for example). Notice that the
area of one-fourth of a disc of radius 2 is being approx-
imated, that 1is, we are approximating =. [The last
approximation should be accurate to the third decimal
place. All sums will be too large.]

(b) Most texts list several Riemann sums for students to
compute by hand. After doing so, they can investigate
such problems further with RIEMSM,

(c¢) Riemann sum approximations to a definite integral should
be compared with approximations by other techniques such
as the trapezoidal rule and Simpson's rule when these are
studied.

(d) Use RIEMSM on

1

.
1 t°+1

[The result is zero due to cancellation.]

Upper and Lower Sums. Many texts begin integration theory with the con-.

sideration of upper sums and lower sums (sometimes called Riemann upper
and lower sums) where 24 for [xi—l’ xi] in the above discussion is
taken to be the point of the subinterval at which £ is a maximum, for
upper sums, and minimum, for lower sums with i =1, 2, ..., n, of
course.

The flow chart of Figure 17 and resulting program RIEMSM can be
modified easily to find these sums for functions which are always mono-

tone increasing (or, with another modification, for functions always
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monotone .decreasing). CI is simply taken to be XL (or XR for
monotone decreasing functions).

0f course, a flbw chart and program can be written to find upper
and lower sums .for a function f over an interval [a,b] where the
function need not be monotone. Provision must be made for dividing
[a,b] into subintervals [ci, di] say, on which f 1is always monotone.
The program then applies the appropriate modified version of RIEMSM to
each [ci, di]. The flow charting of such a routine is of moderate
difficulty. For reference the program for such a routine will be called
UPLWSM.

Exercises for which the use of UPLWSM may be instructive include:

(a) The same integrals to which students have applied RIEMSM,
followed by a comparison of the results.
(b) On-

100
/ xzdx

0

to find l2 + 22 + s + 1002. " [The sum 1s simply an

upper sum. for the integral with regular partition of
mesh 1 unit.]

(¢) Similarly for 2'-2 + 3—2 + see + 100_2 using

100
/ x_zdx.

0

[Use lower sum as above.]
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(d) Show that

10 xdx

0 x3 + 16

< l.

[Break integration into two intervals [0,2] and [2,10]
on which the function is increasing and decreasing,

respectively.]

To 1llustrate the relationship of integration with concepts of displace-
ment, speed and acceleration, an exercise of the following nature is

instructive:

The speed of a certain automobile at time t 1s Vt. For each
value of t = .1, .2, ..., 1.0 calculate and print the distance
traveled by the car in the first t seconds. Do this by splitting up
the time interval from 0 to t dinto 10 pieces, 50 pileces, and
100 pileces and summing the distances traveled in each pilece on the

3/2

assumption of constant speed in that plece. Also print (2/3)t for

each value of t. Explain what you see. [Riemann sums for

/T /t dt,

0

T= .1, .2, ..., 1.0 are being computed with 10, 50, and 100 sub-
divisions. These sums should approximate (2[3%t3/2 for each value of

T.]

The Fundamental Theorem of Calculus. In an attempt to give meaning to

the Fundamental Theorem of Integral Calculus, the author has written a

program (FNDTHM) which approximates the integral
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fb f(t)dt
a

using Simpson's Rule. Students are asked to consider this technique
simply a "black box" and believe that it works if the Simpson's Rule has
not been studied yet, which is usually the case. They are instructed to

use the procedure to obtain values of F, where

X
F(x) = f f(t)dt,

a

for suitable choices of x ¢ [a,b]. Then, from the set of ordered
pairs (x, F(x)), a graph is sketched. Students are then told "see if

you can find the defining equation for F." Of course, they find

/f(x)dx + f(a)

if they are correct. Next, they differentiate this function and obtain
f, finding that F'(x) = f£(x). One naturally begins with f defined
to be of the type 2x, sin x, ex, or 1/x, and preferably with £f(a)
nearly zero, so the defining equation for F 1is not too difficult to

guess. This is another example of where hand computation of

/x f(t)d;

a

would be too laborious for such an exercise, but which is easily done

by machine.
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Students, having experienced the above computer treatment of the
Fundamental Theorem, can usually give the correct response to a ques-

tion like:

: X
What do you think Dx [/ Ysin t2 dt] = 7

0

Improper Integrals. Using an approximation technique of integrals

(usually Simpson's Rule) the author has devised a way for students to
investigate improper integrals.

One type of improper integral occurs, for example, if one has an
integral of the type

/l f(x)dx

0

with f having the y-axis as an asymptote. Its graph might look like
that of Figure 18, for example.

In general, this type of improper integral has the form

jrk)f(x)dx

a

with f having x=a or x=D>b as asymptote. (A related but more
iﬁvolved improper integral occurs if f is allowed to have x = ¢ for
c £ (a,b) as an asymptote.)

By definition, the integral for the situation illustrated in

Figure 18 is given by

1 1
/ f(x)dx = limit / f(x)dx

0 t>0"t
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Y

Figure 18. Graph of a Function f£.

if this limit exists and is finite. Using the area interpretation of a

definite integral,

/‘l f(x)dx

0

should be representable as the shaded area of Figure 18. For some
functions £ the integral exists (that is, the limit on the right
exists) while for some functions it does not exist (limit is infinite).
That is, geometrically sometimes the "area" is finite and sometimes

infinite. The surprise, of course, is that it is ever finite!



Similar comments hold for integrals of the form

/'” f(x)dx

a

where f has a graph of the form illustrated in Figure 19 (that is,

having a horizontal asymptote such as the x-axis).

Figure 19. Graph of a Function f.

The author has written a program, called IMPROP for reference,

which uses Simpson's Rule to investigate such improper integrals.

57
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To consider integrals of the first type,

/ ' f(x)dx,

0

as 1llustrated in Figure 18, for example, the routine approximates

/ . f(x)dx

n

setting n = ,1, .0l, .00l, .0001, ... successively. The results of
these approximations are then examined with the intent of determining
whether the sequence of numbers seems to be converging or diverging.

It is instructive to use IMPROP to examine

2 dx 2 dx 2 dx
-y = and _,
o /x ‘o 0 x/x
successively., [The first exists while the last two do not.]

To consider integrals of the second type, IMPROP 1s used to

approximate

/n f(x)dx

a

for n =.10, 100, 1000, ... . The results of these approximations are
examined as above to determine, if possible, whether the sequence of
numbers converges or diverges.

It is instructive to c;nsider the improper integrals related to

those suggested above, namely
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[For this type of integral the results are inverted for the first and
third integrals previously mentioned and the same for the second. That .
is, the first and second do not exist while the third does.]

After doing these exercises, students can usually give a correct

answer to questions of the type

(a) If

fl dx
0 xa+l
exists, what about

J,.l.Q§ ?
0 a

(b) If

_F§.~}
% |8

exists, what about

Jruv dx_,
1 xa+l

(c) For what values of a do the following improper integrals

exist?

(i) fl xa,dx (ii) f°° xdx

0 1
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Other improper integrals which may be instructive to consider are

oodx o 1
=’ sin x dx, In x dx.
0

[exists, does not exist, exists]

‘Since the integration routine used is only an approximation
process, errors will always occur, and these get significant as n gets
near zero or large in the previous suggested use of . IMPROP. This must
be pointed out and discussed with students. An assumption is made that,
on a given interval [a,b], errors for integrals of a given type are

about the same.
Application and Approximation of the Integral

In the previous section programs to compute Riemann sums as well as
upper and lower sums for a .given function f and interval [a,b] were

described. These can be used to approximate the integral

/b f(x)dx,

a

but more precise methods are usually used for this. Two such methods
are Simpson's Rule and Trapezoidal Rule, the former being most used,

but both are worth some consilideration.

The Trapezoidal Rule. The derivation of this common approximation is

well known (see (20, pp. 268 - 270), for example) and will not be given

here. The formula is:



b
o D=3 ces :
‘{ f (x)dx -~ l:f(xo) + 2f(xl) + + 2f(xn_1) + f(xn):l

where Pn = {x ooy xn} is a regular partition of ([a,b]. The

0) x1’

error term, Rn’ such that .

b .
= k-8
[ f(x)dx o™ [f(xo) + 2f(x1). + + 2f(xn_1) + f(xn)] + Rn
is given by

R oo bma)d £ ()
n n2 12

for z ¢ (a,b) (30, p. 118).
A flow chart for the Trapezoidal Rule is given in Figure 20. For
reference the program written from this flow chart will be called

TRAPEZ, Symbols in the flow chart have the following meaning:

f(x) is integrand function.

[A,B] 4is the interval of integration.

N is the number of subintervals (max 50).
DX is length of the subintervals.

I is a subscript counter.

SM is sum after the i-th iterationm.

IN is the final integral estimate.

Simpson's Rule. Simpson's Rule is given by

b |
/ £(x)dx =~ -‘?-;-;la—. I:f(xo) +AE(x)) + 2£(x)) + 4E(xg) + co0 + 2 (x )
a

+ Af(xn_l) + f(xn)]
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DEF
£(x)

L
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Dimension
X(50), Y(50)

A,B

B-A
N

DX « ——

Y., « £(A)

I «1

I

I «I+1

<N False ‘ oM <« Y

True I «1

I <N-1| False

I1X(I) « A+ DX * 1 I «I+1

Y(I) « £(X(1

)) LEue

1SM « SM + 2 * Y(I)

SM « SM + Y(N)
l

IN « (2§) * SM

For N = (N) subintervals
the integral of f(x) on
((A), (B)) is approximately
(IN).

Figure 20, Flow Chart for the Trapezoidal Rule



where Pn = {xo, Xps oo xn} is a regular partition of [a,b], and
n 1is even. (See (20, pp. 271 - 275).

The error term is given by

e ROV

R
180 n4

n
where z ¢ (a,b). (30, p. 119)
A flow chart for Simpson's Rule is given in Figure 21. For
reference the program written for this flow chart will be called

SIMPSN. Symbols in the flow chart have the following meaning:

DX is mesh of the (regular) partition having n sub~
intervals.

[A,B] is the interval of integration.

N must be even and < 100 (unless dimension for
X(I) and Y(I) is changed).

Y1), Y(2), +.., Y(N) denote V1o Yos =evs Yy respectively,
(yix= f(xi), of course).

Similarly for X(1), ..., X(N).

SM is sum after nth iteration.

IN is final approximation for the integral.

Exercises on which students might instructively use RIEMSM,

UPLWSM, TRAPEZ, and/or SIMPSN include:

2
@ J & [1n 2]

1
®) / 4 l—x2 dx [w]
0
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DEF
f(x)

L

Dimension
X(100), Y(100)

N
A,B
B~-A
DX <« N
YO « £(A)
¥
I<«1
I<N False
I «I+1
True

[|X(I) « A + DX *
Y(I) < £(X(1))

I

I

SM « YO
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I<N-1

I «I+2

True

SM « SM + 4 * ¥(I)

v
I« 2
I <N-~-2
I «1I+2
True

SM « SM + 2 * Y(I)

J

SM <« SM + Y(N)|

IN < (%) % SM

For N = (N)
integral of £
is approximate

subintervals, thev
(x) on ((4),(B))
ly (IN).

Figure 21. Flow Chart for Simpson's Rule
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1
4
(c) — dx [7]
4: 1+ x2

2
(d) / x3 dx [4, 1illustrates the fact that Simpson's
0
Rule is exact on polynomials of degree

< 3]

Arc Length. For a function £ such that f' is continuous on [a,b],
the arc of the graph of f joining points (a,f(a)) and (b,f(b)) 1is

rectifiable and has length

b
L = f A+ £ )12 dx.

a

For'many simple functions f the evaluation of this integral in
closed form is difficuit.
An exercise of the type which involves both the arc length formula

and numerical approximation is the following:

Approximate the arc length of the graph of y = 1l/x between the
points (1,1) - and (5,1/5). [Simpson's Rule with n = 4 approximates

the length to be about 4.187.]
Infinite Series

A major hurdle when teaching (and learning) infinite series is
obtaining a reasonable understanding of the definition of convergence,
divergence, and sum of a series. The author has found it instructive

to have students draw a flow chart for finding the nth partial sum
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for a series

having it produce values of n, Sn’ and a -
Figure 22 is such a flow chart. For reference let us call a
program written from this flow chart SERIES. Symbols in the flow

chart have the following meaning:

a(K) denotes ay of the series

e

N is number of terms to be added (to get SN)

SN is the Nth partial sum.

Students are instructed to run SERIES (on a given series

S

with values of N such as 10, 50, 100, 200. And then, after looking
at the successive values of Sn and perhaps at a decide whether
(1) they think the series is converging or diverging, (2) what its
sum is 1f the series is converging, and (3) whether the convergence

or divergence is'rapid or slow.



DEF
a(K)

1}

SN« 0
value of

K <« (initial index)
of serieg

[ x

I +«K

/N

 False

I «I+1

True

SN « SN + a(I)I

’After M) iterationé S, = (SNiJ
while a(n) = (a(n)).

Figure 22. Flow Chart for Finding Partial Sums

*

It may be wise to add a check at ZES to make sure that an
unreasonable value of N is not read in causing the routine to use up
too much machine time.
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Another, possibly better, way of writing a program to investigate

series would be to put a tolerance stop into the routine such that

successive values of Sn are checked until |S - Snl is less than

n+l

a specified tolerance or a maximum number of iterations has been

performed.

The last value of Sn would be the estimated sum with

accuracy according to the specified tolerance.

Example exercilses which might be used include:

(a)

(b)

(e)

(d)

(e)

(£)

ANAE
L

)
|_l

for values of |r| > 1 and |r| < 1. [This is a

g
La}
=]

geometric series, of course, and for |r| < 1 the

sum has a closed form of 1/(1 - r)%]

[Here a thousand or more terms can be added to

illustrate rather slow divergence.]

[rather rapid divergence]

N

~
1]
l—l

(2k-1) (-1¥

K+ o

[very, very slow divergence]

K=1

= K+1
E (=1)

K=1

‘ (l)
Z bk - M
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CHAPTER III
AN EXPERIMENT
Statement of the Problem

In Chapter II a set of topics from elementary calculus was described
along with specific suggestions for utilizing the computer to improve
students' learning of ideas from these topics. The purpose of this
chapter is to describe and report the results of an experiment involving
the use of materials derived from Chapter II.

The problem to be examined is: What effect does this use of a

computer have on achievement in an elementary calculus course?
Review of Related Literature

Subjective evaluations of the effectiveness of using the computer
in an elementary calculus course have been given by several persons in
their published and unpublished notes. Instructor's reports include
such comments as: ''The course has been a great success and next year's
should be even better." (9, p. 14); '"We think it would be foolish to
claim that a student learns calculus better in a computer calculus
section than in a conventional section." (8, p. 13)3; '"The course has
been successfully carried out.” (1). In the 1967-68 academic year, a
computer oriented calculus course was taught at the University of
Minnesota by Warren Sternberg. The students (all honor students) took

the same final exam as other calculus students at the University, and

69



70

the results were judged 'highly successful' but apparently no empirical
study was performed (13, p. 94). During the 1968-69 year H.C. Griffith
and Emile Roth at Florida State University used the CRICISAM text in a
team teaching effort with a group of high ability freshmen through an
honors calculus sequence carrying credit for calculus, computer program-

ming, and laboratory work. E.P. Miles reported,

"The class responded very favorably during the sequence, giving
the best overall performance on proofs Dr., Griffith had observed
in a long teaching career. His follow-up study of these honor
students during 1969-70 indicates that they continued to excel
after re-entering the traditional calculus sequence.' (26, p. 289)

A limited number of empirical studies involving aspects of computer
usage have been conducted. Wallace (39) and Kieren (21) investigated
the effect of computer use in conjunction with coutses from the high
school curriculum.

Wallace's research hypotheses were (a) the learning of trigono-
metry will be facilitated by introducing algorithmic and flow charting
techniques from computer mathematics, into the one-semester trigonometry
course; (b) the learning of trigonometry in a one-~semester course by
eleventh and twelfth grade students will be facilitated by prior comple-
tion of a one-semester course in computer mathematics; (c) the learning
of first semester high school physics will be facilitated by the con-
current completion of a one-semester course in computer mathematics.

The research concluded that the use of flow charts and algorithmic
method in teaching mathematics appears to fortify conventional teaching
methods, with the result that higher learning rates are attained. No
evidence was presented indicating an influence of learning computer
techniques concurrently with learning physics. Finally, no significant

different was found to indicate that the learning of trigonometry in a
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one-semester course by eleventh and twelfth grade students will be
facilitated by prior completion of a one-semester course in computer
mathematics (39, pp. 1 =~ 63),

Kieren's study was to determine if there is a difference in means
of mathematics achievement tests between students in intermediate high
school mathematics who use a computer in their study of mathematics
and those who do not, The conclusion was that -the results couldipdt be
considered as strong evidence that the computer hae a great effecé on
mathematics learning,l Kieren concluded, “while the evidence is not
incontrovertable, it appears'that:use of the computer has some positive
effects on mathematics learning," (21, pp, 121 ~ 128) °

Stannard's (37) study concerned-the: use of computer assisted
instruction in conjunction with conventional instruction in calculus,
He attempted to determine the effect on final achievement in'a‘Begin~
ning college calculus course resuiﬁiﬁg.from theé use of programmed
materials written to supplement,regular classroom instruction. The
programmed materials were oﬁ.topice which ordinarily cause learning
problems in the introductory college calculus. Stannard‘'s investigation
_concluded that statistically there is very little reason to believe
_that ;programmed materials have aﬁ effect on the final achievement of
students in a beginning college calculus course.,

Fiedler's (12) 4investigation treated the problem:

"Does a student gairn a greater understanding of a mathemati-
cal concept by programming it for a-digital computer than
when he studies ‘that. concept in the .usual course structure?"

The topié¢s which were investigated were chosen from analytic geometry
and calculus. Control and experimental groups were selected from

analytic geometry and Calculus I at Black Hawk College, Moline, Illinois,
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The conclusion was that there is no apparent difference in achievement
between students who learn mathematical concepts by computer program-
ming and those who learn the concept in the usual homework structure.
Bitter (2 ) studied the effect of computer use in introductory.
college calculus classes at three private liberal arts colleges.
Control and experimental groups were selected from introductory:calculus
students "at Colorado College, Colorado Springs, Colorado, Regis College,
and the University of Denver both at Dénver, Colorado. Students in the
experimental grdup were required to write computer programs to solve
selected homework exercises which sometimes replaced normal homework
~ assignments, A significant difference in favor of the experiméntal

~group was  found on topics in differential calculus and also in favor of

- female students on these same :topics.

Thus, evaluations of using a computer to improve the teaching of
mathematics are limited. Studies and personal evaluations menfioned
above provide evidence bearing on the effect of computer use on calcu-
lus instruction. However, the evidence is neither conclﬁsive nor com-

plete, and further study is merited.
Hypothesis

The experiment will involve three groups of students, one control
group and two experimental groups., The experimental gréups will be
referred to as "Group One-half' and "Group One' for reasons to be

provided later,
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Hypotheses to be examined are the following:

Hypothesis 1, There will be no significant difference in the level of
achievement and understanding of calculus, as measured by the
Calculus Cooperative Mathematics Test (C.C.M.T.) between the con~
trol group and the two experimental groups.

Hypothesis 2. There will be no significant difference in the level of
achievement and understanding of calculus, as measured on a pre-
chosen selection of questions from the C.C.M.T., between the con-

trol group and the two experimental groups.
Experimental Procedure and Design

The experiment was conducted on the campus.of Oklahoma State
University, Stillwater, Oklahoma, dufing the first semester of the
1970-71 school year. Dr. Craig Wood,.the author's thesis adviser, was
responsible for sections 5, 6, and 7 of Mathematics 2055 Calculus, and
the author was assigned as his teaching assistant. The class met
Monday, Wednesday, and Friday at 9:30 a.m. for conventional lectures by
the principal instructor. Tuesday and Thursday classes were met by the
assistant instructor, with students enrolling in one of the three
sections for recitation, group discussion, and problem solving.

Section 5, which had recitation meetings at 7:30 a.m., was designated

as the control group. Section 6, having recitation meetings at 8:30 a.m.
was called experimental Group One-half, and Section 7, having recitation
meetings at 9:30 a.m., was called experimental Group One. Choice of
which section would be control and which experimental was determined by

lot.
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Treatment of the groups was as follows:

Control Group, Recitation meetings were used in the conventional

manner, namely, to answer questions, work and discuss problems. Home-
work was-collected, graded, and returned weekly,

Experimental Group One-half. Recitation meetings were used to

answer questions, work and discuss problems as in the control group.
In addition, the students were taught flow charting as an approach to
problem solving, were supplied with computer programs written by the

author for their use, and had one~half hour of time per week provided

for thelr use on the university's time sharing computer terminals.
Students were required to hand in some flow charts and computer output
with analysis from five sets of selected exerclses, in addition to their

regular homework.

Experimental Group'One. This group was treated like Group One-
half except that. they were -taught CPS BASIC, ‘a simple programming
language, required to write some of the programs provided for Group One-
half, and were given one hour.of time per week for their use on the

terminals.

All ‘three groups received the same Monday, Wednesday, and Friday
lecture presentations and took the same in-class examinations.

To test the hypotheses, a non-equivalent control group design as
described by Campbell and Stanley (4, pp. 47 - 50) was employed. This
desipgn was dictated'by the fact that the control group and experimental
groups did not have pre-experimental sampling equivalence. Due to
student self-gscheduling into the three sections comprising the three
groups, assignment of students to the course and to individual sections:

on a random basis was not possible,
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Assignment of control and experimental status was random among the
three class sections. Analysis of covariance was employed to analyze
the results of the experiment because it has the property of statisti-
cally adjusting for irnitial differences between groups. Two covariate
scores, the pretest and American College Test in Mathematics (A.C.T.M:)
scores, were used as the control variables with only one criterion
variable, the post~test scores. A description of the evaluation instru-

ments is given on pages 81 - 83.
Sample

The sample -for this study consisted of eighty~six students who
enrolled in Mathematics 2055 for the fal1 semester. of 1970, excluding
those who withdrew from the course during,the\first week of class,
Thirty~one of these students were in the Controi Group, twenty-five in
the‘Group One—ﬁalf;‘while thirty were in Group One., Students who with~
drew later, or who lacked scores on one of the instruments were excluded
from the analysis. (A.C.T.M, scores’%ere.not available on students who
transferred to Oklshoma State University.)

Excluded from the analysis in the Contrel Group wére two who with-
drew and nine for whom related data was not available., In Group One-
half three withdrew during the semester, and ten had some of the
related data missing and were .excluded from the analysis, In Group One
the respective exclusions were one withdrawal and eight -for unavailable
data. As a result of these omissions, the analysis involved twenty
students in the Control Cr;up, fweive étudénts in Grsub-bne—half and

twenty-one students in Group One. From this point on when reference is-
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made to the sample, the author shall be referring only to subjects
included in the statistical analysis.

Mathematics 2055 is’ designed principally for beginning engineering
students and prospective science majors, but enrollment is not
restricted.. In. the, Control Group sixteen were engineering majors,
three were arts and sclences majors, and one was an .agriculture major.
Group One-half had nineyengineering_majors,'two arts and scilences
majors, and one- technical institute Major. Group One had fifteen
engineering majors, two arts and scilence majors, two agriculture majors,
one each from business and the technical institute, Table I summarizes
characteristics of the three groups. Three facts from the table which
stand out are the large proportion of sophomqres, consequent higher
mean age in Group One as compared with the other two groups, and the
wide range of mean A.C.T.M, scores. The Control Group A,.C.T,M. mean is
eleven percent higher than that of Group One-~half -and twenty~-three
percent higher than Group One.

One student in the Control Group indicated that he had cléssroom
experience using a computer, in Group One-half two indicated some exper-
‘iénCe, while in Group One nine students said they had experience. In
the author's judgment, the disproportionate amount of experience is more
a result of mean age and class level than of a specilal interest or

aptitude.
Subject Matter

Subject matter content of the contrel and experimental classes‘wasv‘
the same traditional elementary calculus materidl, with the experimental

groups using the computer to investigate certain ideas and verify some
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TABLE I
LE

SUMMARY OF THE CONTROL ‘AND EXPERIMENTAL
GROUP CHARACTERISTICS

(N'=.53)
Characteristics Control Group  Group One-half Group One

(N = 20) (N =12) (N = 21)
Time of Recitatidn‘Claéé‘ 7:30 a.m. 8:30 a.m. - 9:30 a.m. =.
Number of Subjects 20 12 . 21 |
Malg | 19 12 18
Female : 1 0 3
Freshmen 16 7 2
Sophomoreés 4 5 16
Juniors 0 0 2
Senlors : 0 0 1
Mean A.C,T.M, Score 30.45 . 27.33 24.81
Mean Age 17.9 >18.5 19.1

Mean Hours Enrolled for
Credit (In-class Hours 15.8'(18_7) 15,75 (18.5) 15?24 (18.6)
are in Parentheses) ‘

concepts ‘while solving some assigned problems, Calculus of the Elemen-

tary Functioms by Shanks and Gambill (34) ‘was ‘the required class text.

The text tends more toward a problem solving approach intended for
"development of students'! computational power" (34? p. v) than toward a
theoretical presentation .of the topics., ' Few complete proofs are
provided in the text. 'Topics'COVered'in Mathematics 2055 Calculus
include the derivative, technique of differentiation, Ifmplicit differen-

50 s
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tiation and higher derivatives, applications of the derivative, the

mean value theorems, indeterminate forms, Téylor‘s'formula and theorem,
series, introduction to the definite integral and its properties, the
Fundamental Theorem of Calculus, elementary applications of the integral,
and elements and techniques of formal integration. This material is
found on pages one to two hundred fifty-nine of the class text. Approx-
imately forty-five hours were used for class lectures and thirty hours

for recitation.
Method of Computer Use

Each of the experimental groups was given five exercise sets during
the term which required use of ‘the computer., These were introduced at
approximately three-week intervals. They were, like other weekly home-
work assignments, graded amd-returned to the student. The exercise sets
were produced by the‘author from topics listed in Chapter II and were
written to correspond iﬁ timing and terminology with the class text and
lecture. Appendix D presents the exercise sets for Group One-half and |
Appendix E presents the exercise sets for Group One, The two include
essentlally the same topics with the difference being that Group One was
required to write several programs and do several more problems than
Group One~halff Group One had. twice as much terminal time as Group One~
half available for use weekly. Thé-grdups did not use the maximum
allotted computer terminal time. Group One-half used five hours per
student, and Group One used eight and one-half hours per student during
the courgse. Maximum allotted time was seven and fourteen hours,

respectively.
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Topics included in the computer exercise sets were: computation
of nl, computation of absolute value of a real number, function evalu-
ation and graphing, finding the equation of a secant line, computing
one-sided limits, computing the defivative of a function at a point,
fin&ing the derived function,vinvestigating function compositien and
the chain rule, finding tangent and normal lines to the graph of a
function at a point, differential approximation, estimating relative
extrema, Newton's rule for root approximation, estimating limits of
functions at a point and at infini;y, Taylor's polynomial approximation
go a function at a point, computation of Riemann sums, computatidn of
upper and lower sums, finding the anti-derivative of a function, and
investigating the Fundamental Theorem of Irntegral Calculus, As these
toplcs were covered in class, the experimental groups would write flow
charts and programs using the computer to solve the special computer
homework assignments. At the same time, they and the control group also
solved traditional homework assignments from the class text. On two of
the five exercise sets the experimental groups had the option of
choosing a traditional homework assignment or exercise set. Most-all
chose the exercise set. An average of approximately eight minutes per
recitation sessioﬁ was used with computer materials in Group One-half,
This figure was approximately twelve minutes in Group One: This time
replaced that used for discussion of conventional problems with the
Control Group,.

Oklahoma State University's computer time éharing,terminals were
available -for use by the experimental groups, ‘Students were permitted
to sign up weekly for a thirty-minute period of terminal time at a

terminal in the Mathematical Sciences Building. They were also
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permitted to use terminals located elsewhere around the campus so long
as they held to the Weékly maximum time limit of either one or one-half
hour. No obvious abuses of this limit were detected.

Computer time sharing is a remote control system permitting
several persons to run programs simultaneously on a single computer.
Each individual communicates directly with the computer by means of a
teletype which, at Oklahoma State Univérsity, is connected to the
computer by telephone, Diréct, real time communication with the
computer 1s thus possible; and a student can input his program, correct
it while on-line, input his data, and then receive immediate results at
the terminal console. At Oklahoma State University the terminals
connect with an IBM 360 Model 65 computer,

During the experiment students were scheduled on the terminals at
mid—afternoon or evening times during Weékdays and Sunday, and through-
out the day on Saturday. Computer Center hours were approximately
9;00 a.m. to 12:00 p.m. Monday through Friday, 9:00 a.m, to 6:00 p.m. on
Saturday, and 2:00 p.m, to 12:00 p.m, on Sunday.

All programs were written in an IBM time sharing -version of BASIC
called CPS BASIC, The language, BASIC, 1is conversatipnal and was
developed specifically for time sharing communication, It is'simple
but - sufficiently potent enough to serve the purpose of its use in
classes of the type Eeing described, Brief booklets produced by the
author and introducing elementary programming concepts along with
BASIC were made available to the experimental groups at a nominal cost.
Two extra sessions for Group One and one extra session for Group One-
half were held thé first and second week of the semester tO demonstrate

BASIC programming and techriiques of flow chartiﬁg;‘ The first exercise
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set had problems designed to help students learn programming. A small
portion of recitation sessions the first month were used to answer.
questions on programming and terminal use, The author, having an office
in the Mathematical Sciences Building, encouraged students to seek aid -
- with terminal and programming difficulties as these occurred. Students

sought out such ald rather frequently throughout. the term,
Evaluation Instruments

Two instruments were used to measure levels of achievement and

understanding. They were the American College‘Test.;E_Mathématics

(A.C,T.M,) and the'Calculus.CooperatiVe-Mathématiqs Test Form A

(C.C.M.T.).

The A.C,T,M, test was one of four parts of the A.C.T, test
developed by the American College Testing Program. It is a mathematical
aptitude test considefed to be a good predicter of future achievement in
college mathematics (3, p.‘9). The test consiéts of forty multiple
choice questions that sample aptitudes related to pre-college mathema-
ties. Shana'a studied several variableS'fgr use as placement guide-
lines for freshmen at the University of Oklahoma and found that “the
A.C.T.M. appears to be the best singléAvariable for use as a placement

guideline." (33, P 85) Further, Shana'a states:

Discriminant functions dependent on the A,C,T.M,, the
A.C.T.C., the high school mathematies grade point average,
and the riumber of semesters of high school mathematics are
of value in distinguishing membership in different ‘mathéma~
tics courses at the five percent level of significance,
However, they do not prove significantly better than the
A.C.T.M. at this level as placement tools. (33, p. 85)

It was thus decided to use the A.C.T,M. as one of the covariates

in the statistical analysis.
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For .a second gqvariate, results of the C.C,M.T. produced by the
Cooperative Text Division of Educational Testing Service»ﬁere used as
the pretest in this expériment. The subjects were administered this
test ‘at the first class meeting. This same test was used for the post-
‘test and was given as the final examination during the regular univer-
sity final exam period. The test was administered to a national sample
of 450 students in 1962. The reliability of Form A was .87. The con-
tent validity was determined by an advisory staff :consisting of ten
leaders in mathematics education (11, pp. 55 --63). The test was
selected for use because it was thought to be the only commercially
produced test directly related to the objectives and content covered in
the experiment. Not all topiés-covered in the computer exercise sets,
however, are covered by the test. For example, the test~doeS'n§t
include one-sided limits,vTaylor polynomials, Riemann sums, or the
elementary chain rule formula.

. The C.C.M.T. consists of Part I and Part II with thirty multiple
choice items for each part. Each test item has four possible solution
choices.

Part I of the C.C.M.T. evaluates'mathematical concepts of function,
. graphs, slope of line, limits,-continuity,'derivgtive‘definition,

. .applications of the derivative, and differential -approximations.:

Part II evaluates the mathematical concepts of relation of e* to the
natural logarithm of x, chain rule-and related rateé; velocity and
acceleration, mean_value theorem, properties of the integral, formal
..integration b§ substitution, area volume,-arc,length,.and simple

differential equations (11, pp. 38 ~ 39).
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Of the sixty items on the C.C,M.T,, most are quite indirectly
related to topilcs covered in the computer exercise sets. In the author's
Judgment , atvmosf'ten.iﬁems can be considered difectly related to the

....... computer-materials. It thus appeared that.some actual differences in
‘vaChievement.couldee masked due to theAg¥oss criterion measure. Because
of this fact, the author decided to investigate the achievement of the
- subjects .on .the ten ltems as a separaté,part~of the experiment, The
items were pre-selected befqre'the C,C.M.1. had been scored. Informa-

tion on the' ten items is listed in. Appendix F.
Limitations

There are several limlting factors present in the experimental
study that .could place:certain restrictions on the findings and con-

¢lusions. These limitations include the following:

1. The sample.for this study was restricted to sfudents enrolled in
. Mathematics 2055 ‘Calculus, Sections 5, 6, and 7 at Oklahoma
State University. These.were<predominately students planning
to major in engineering. Also, students who had transferred
from another college had to be excluded.from the analysis
because their'A.C.TfM, scores were not available, Thus,
.caution should be exercised when attempting to generalize the
results to other schools and different:groups of students.
..2. . Intact groups ofvstudentsf‘who had:self-chosen the course, were
used. As has been noted, a rather, large difference in ability,
. as measured bY'the A.C.T .M., existed between groups, There was
also a substﬁntial;age difference between groups. An analysis

of covariance technique -was used in comparing the groups so
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‘that statistical adjustment has been made for much, but
probably not all, of the initial group differences.

3. Different recitation times for the three groups of subjects could
have-resulted .in .a difference between groups which is not
reflected .in the pretest and A.C,T.M. covariates, This limita-
tion is increased by the relatively early meeting times:.

7:30 a.m., 8:30 a.m., and 9:30 a.m.

- 4. The experimental groups were aware (after their enrollment) that

they were part of a:study, and the results could have been

affected by the Hawthorne -effect.

.5, Finally, since only two standardized tests were:given to each group,

. and -the same.form,was.used:fdr both pretest and post-test, the

effect of ‘taking the pretest may have affected the post-test

results.-
Analysis of the Data-

The purpose of this section is to report the findings of the
statistical tests used to determine the significance of the three
methods of instruction as demonstrated on the post-test scores. The
.05 level of probability was used to ‘judge the significance of the
statistics associated with each hypothesis,.

Data for the groups was prepared for an analysis 'of covariance
program. (BMDO4V~-Analysis of Covariance with Multiple Covariates)
supplied by the Oklahoma State University Computing Center, The program

was then executed on the University's computer,
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Analysis of Covariance -- Complete C.C.M.T, for Post-test. Table II
presents the results of analysis of covariance where the criterion

measure, the post-test, consisted of the complete C.C.M.T.

TABLE II

ANALYSIS OF COVARIANCE -- COMPLETE C.C.M.T.

Source of Sum of Mean Sum.

Variation df Squares of Squares F
Between - 2 9.56 4.78

Within 50 2038.05 - o 42,46

Total 52 2047.61 0.11%*

*Not significant at .05 level., Critical value for F(2,48) = 3.19

Table III presents a summary of group means for the three groups
when .the .complete C.C.M.T. was used as criterion measuré.

From Table III'it can be seen that. the Control Group scored
significantly higher on both the A.C.T.M. and pretest, Likewise on
the post-test, this'grqup scored better than both experimental groups.
After adjusting the post-test means using the A,C.T.M. and pretest
.8cores as covariates, .the adjusted means were much nearer the same,
However, the control group still held a .71 edge over Group One and
.1.22«edge,over Group One-half.

Table IIvindicates-a calculated F value of 0.11 from analysis of

covariance.. The critical F value given by Hoel (19, p. 406) for the -
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TABLE III

GROUP MEANS -~ . ALL ITEMS OF C,C,M.T.

- Post- Adjusted

Number A.C,T.M.. Pretest test Post-test
Control Group 20 30.45 7.10 33.20 - 30.18
.- Group One-half 12 27.33 4,50 27.67 28,96
- Group One 21 24,81 - 5.38 27,33 29.47

Total 53 27,58 5.66 29,40 29.54

glven degreeslof freedom at the .05 level was 3.19, ' Since the calcu-
lated F: value was smallef éhan this, no significant difference is
observed between .the three groups on .the adjustéd post~test results.
Thus, Hypothesis 1 mqst'be accepted, concluding fhere was no difference

among treatments.

.Analjsis of Covariance —- Ten Items from C.C.M.T, Used for Post-test.
Table IV presents the results of analysis of covariance where the -
.criterion’measure,_the post~test, consisted of ten pre-selected items
- from C.C.M.T. which relate better than.other items to the' computer
materials used in the experimental treatment.

| TaﬁIe~V presents a summary of .group means for the three groups
when»ten.items*of_CfC.M.T, were used as criterion measure.

From Table V it can be seen that the Control Group scored higher
on the ten items at the pretest-.and again at the post<test. However,
after .adjusting thetpostrtest means using the A,C,T.M, and pretest

scores' as covarlates, the adjusted means had a different relationship.
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TABLE IV

ANALYSIS OF COVARIANCE -~ TEN ITEMS OF C.C,M.T.

e ——— e
Sources of Sums ‘of Mean Sum .
Variation : - df Squares of Squares F
Between 2 3,54 1,7710
Within 50 117.83 2.,4549
Total 52 121.38 0,72%

*Not .significant at .05 level. Critical value for F(2,48) = 3.19 -

TABLE ¥V

GROUP MEANS "-~ TEN-ITEM- SUBSET OF C,C.M.T,

Post~- Adjusted

Number A,C.T.M.  Pretest test Post-test"
Control Group 20 30.45 1,70 6.65 6.10
Group One-half 12 27.33 1,08 5.50 - 5.61"
Group One 21 24.81 1.48 5.86 6.31°
Total 53 27.53 1.42 6.00 6.01

The .Control Group and Group One~half differed by 0.49 with the Control
Group still higher, but . the Control Group and Group One means were
reversed with Group One going from a 0.79 deficit to a 0.21 edge.

There seems to have been a change in’ the positive direction.
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The calculated F  value of 0,72 shown in Table IV is still not
significant, however, as the critical F wvalue remains at 3.19. Since
the .calculated - F value 1is less than 3.19, no significant ‘difference
between the groups can be claimed, Thus, Hypothesis 2 must be accepted,

concluding that there was no difference among treatments.
Summary of Statis:ical Analysis -

Included in -this section is a summary of the results of the
statistical analysis related to the two hypothesls of the experiment.
Other conclusions and recommendations are presented in Chapter IV.

The experiment was separatedrinfo two main parts.’ First, an
analysis comparing the three .groups on results of a post-test criterion
which was the Calculus Cooperative Mathematics Test., Second, an
analysis comparing the ‘three groups on a ten-item pre-selected subset
of the C.C.M.T. was conducted. The ten items were selected for their
pertinence to the computer extended treatment of the experimental
groups.

In both analyses it was revealed that the null hypothesis should
be accepted implying that .there was no significant difference in the
level of achlevement and'understanding between the three groups:

. Control Group, Group One—half,’and Group One,

In the first analysis the Control Group held a large advantage in
A.C.T.M., and pretest mean scores over both experimental groups. On the
post~test  mean scores the advantage was narrowed slightly and on
.adjusted mean scores the three groups were nearly the same with the

Control Group.still highest.
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In the second analysis the Control Group again held a large-
advantage in A.C,T.M. mean and somewhat smaller advantage in pretest
‘mean .as .compared with the two experimental groups. On the post—test
. mean .scores, .the advantage was narrowed slightly, and on the adjusted
mean gcores, .the advantage went over to experimental Group One.. No
difference between experimental Group One and Group One-~half could be

detected.



CHAPTER. IV
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS"
Summary

In preceeding chapters the author has traced the relatively
recent entrance .of ‘computers ianathematics‘instruqtion, particularly
calculus instruction, at :the college.leﬁel.t The use of computers has
resulted in large part from the expanding appligations and availability
of computers in today's world. Many individuals and grouﬁs have begun
to experiment with calculus aﬁd.the'computer applications of calculus,
The .author has.presentedfhis.approach.tonthé“marriage'of calculus
instruction and the computer. Basically, this 1s to use the computer
to extend calculus instruction,.that.is, broaden it to include compu-
tatién,.numericalpExperimentationwand.applicaﬁion,.without’substantial
deletipn.of.traditional topics. The purpose for computer -use is, thus,
to stimulate, ﬁotivate, and broaden students' learning of calculus by .
adding .a new dimension, numerical computation.

Attemptiﬁg.to;pbtain.some.measurE'of the effect of such a computer .
extended approach On-students{ understanding and achievement of the
calculus, the .author devised an experiment. A control group receiving
‘the .conventional lecture~discussion treatment was compared with two
experimental groups who had thé=same‘1ecture, but who used some computer
calculus materials adapted from Chapter II. One experimental group

wrote flow charts and used the author's programs while the second

90
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- experimental group wrote flow charts, used the author's programs, and
.in.addition;.w;ote some of their 6wn programs. Stedents in both exper-
-.imental .groups had computer-related assignmenes in addition -to the
..regularvassignments.. Statistical results of the experiment indicated
‘that there was no sighificant difference in achievement for the three
..groups. There was some evidence that studente in the experimental
.group which did some programming may have achievedvbetter on those:
calculus topics which were directly related to their computer. experi~

ences.
Conclusions

Learning and ‘understanding of traditional calculus concepts. by
students in the sample .did mot seem,to.beesubstantially changed by the
experimental approechfto.caleulus~with.a.computer. Hence, the approach
described-hereﬁhasﬂnot.been‘demonstrated«tovimprove»inétrection of such
.concepts. . .On .the .other hand?.sinhe.overall'achievement of the -groups
was not .changed by introduction .of computer materials, apparently the
.added .dimension of :computer .application need not diminish learning of -
.the .calculus .concepts. Thus, skepticism .of many mathematicians con-
"cerning the matter of maintainingia'hiéh.leVel of conceptual learning
should be reduced:by the'auther‘s”experimene. Apparently, an instrﬁctor
.can.prOceedeitthhis"typefef modification of his instruction process
C¥rlthout serious worry of doing students harm,

"~ ~An'instructor of calculus, perhaps even an entire department of-
fatheitaties, will have to examine the objectives of its various calculus
c@ﬁﬁﬁée%inflight”of'whether or not the' computer 9houldfbetusee. Con=

giderable money'for'computer.time“and“supplieS‘can_be‘inVolvéd, as well
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as student'and instructor time. - For a liberal arts student computer
calculus may be his only serious encounter with the computer, and thus,
‘the .added expense can be justified AS‘cqntributing_to his liberal
- .education. .For, an engineering student, whO‘wili meet,the,compu;er often
~.in'his.undergraduate_studies,-the added expense might not be justifi~
.aﬁle,inzthisﬁway.. But such a .student will most likely apply-his
..calculus via a cémputer.so computer .extension 1is 'surely relevant. Also,
of -course, there is a prerequisite of adequate computing capability and
instructor interest. Availability‘of these seems to be growing as was

indicated in both Chapter I and III.
Recommendations for Further Study

There are several implications ‘for further.study, Some of these:

are:

1. .DupliCatéuthe‘study:With.a'1grgermsample, with groups that. are more
-alike on,abilityﬁmeasures,.and.with an attempt to more
thoroughly integrate computer materials with the traditiopal
calculus. This would probably require a different experimental

- .design so that computer.applications-could be made a part of
most class lectures.

- 2. To investigate the effect computer use in mathematics instruction

has on.achievementain;relation tQ'studént ability. There 1is

.some .evidence in the“auphorﬂsgstudy'thatulower‘ability

students may respond favorably to the computer extension.

,u3r;-Toﬂstﬁdyithe‘effect.compute;“exténsion-hés on -the more theoretical

oriented calculus students, for example, prospective mathema-
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tics majors. ' The study described in this thesls had a sample
of mostly beginning;engineering,students who are traditionally
problem oriented. . |

- 4. . Investigate the effects of ‘computer use on student motivation,
interest, and attitude, both for arshort term and over an
extended period of time.

. 5. Determine what-effect; 1f any, the computer applications have on
algorithmic-understanding“gnd skills.and,ability to generalize

from experimental results to general patterns and conclusions;

Recommendations:fo:.Use of ‘the

Computer in Calculus

Recommendations for pessible use of the computer in caléulus

instruction are the following: -

. 1. Organlze iclasses into teams of students which could meet weeklyror»
oftener;‘dividé up their programming, computing, and flow
charting needs and then meet1to.cqmpgre and discuss their
results as a group. |

. 2. Obtain a time sharing terminal along,With.a closed: circuit televi-
sion system for dgmonstration duringfclass. Such a system can
be devised for much less than equipment catalogs indicate if
some improvision 1s practised,

- 3. . Provide ‘copies of output for stgdents tQ'anglyze'after.they have
discussea and examinea the computer program to be used.
Students need hands-on experience, but much duplication by the
cpmputerﬂtan'be'reduced5 resulting in-a considgrable saving of

time and money. .
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4. Integrate the elementary calculus course with a beginning computer
sclence course. ' Programming instruction and time for calculus
applications would bé available from the. .computer science
course, while application exercises;wou;d be available from
calculus. |

5. Integrate the .use of flow charts into calculus dinstruction in a
substantial way, using them to.teach analytical techniques
applicable to conceptual understandihg, problem solving, and
theoretical proof construction, - A principal -use of computer
prggramming.wquld‘be to verify the logical accuracy of flow

charts and the reasonirng put into their .construction.
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Symbol Name Symbol Effect in Program; Example BASIC Statement
Indicates the initial and terminal points,
Start respectively.
and @ @ XEQ or RUN
Stop 300 STOP or 300 END
0 Defines a function, £, that 1s to be
used in the program.
Function DEF
Definition £(x)
- 20 DEF FNF(x) = x + 1
Y
Cauges values to be read into the computer
for the variables listed in the box.
Input
20 READ X0, TL, N
‘I or
. 20 READ X0, TL, N
(looks like an IBM card) 30 DATA 2, .0001, 10
Causes values of variables in the box to
be printed out.
Output X0, L 50 PRINT X0, L
T

Asgignment

Connector

(looks like a torn page of paper)

or

50 PRINT USING 55, X0, L
55 IMAGE
At KO = -—-,

L= ...,

the value of

Causes a position labeled "N" inside the
computer to be occupled by the number at
right of arrow.

50 LET N = 3
or
50 N=3

Used in flow charting to separate flow
chart into segments. (to conserve space,
for example).

1no computer statement
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Syambol Name

Symbol

100

Effect in Program; Example BASIC Statement

Iteration

I+«1
I < = 20}»False

+ True

I« I+l

Cauges computations to be performed with

I =1, then 2, then 3, ..,, then 20, After
I = 20 the computer moves on to the state-
ment after NEXT I.

20 For I =1 to 20

... other statements ...
50 Next I

Decision

la-38) <=

False

Causes the computer to branch (to right
here) 1if statement inside the box is
true, otherwise continue on by box.

50 IF ABS(A - B) < = TL THEN 100
... other statements ...
100 PRINT A

Subroutine

Call

L

Subroutine name

input , output
arguments = values

v

Causes a set of statements somewhere in
the program to be executed.

70 GOSUB 300
... other statements ...

300 LET L = X0 * 5
310 RETURN

Subroutine
Entrance and

Exit

arguments
inputed

‘argumen ts
outputed

First symbol denotes start of subroutine
with whatever 1s in hopper used as data.
Second symbol indicates end of subroutine
with value for whatever 1is 1in chute to be
returned to the program.

No special start statement other than GOSUB.

310 RETURN
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Program SIMPSN

10 REM This program approximates the integral of £(x) on (a,b) using
20 REM Simpson's Rule. N is the number of subintervals.
30 REM Change statements 50, 90 and 120 to change the problem.
40 REM CAUTION: N must always be even!
50 DEF FNF(X) = EXP(X)
60 RESTORE
70 DIM X(100, Y(100)
‘80 READ A,B
90 DATA =10, 1
110 READ N
120 DATA 20, 40
130 LET DX = (B ~ A)/N
140 LET YO = FNF(A)
150 FOR I =1 to N
160 LET X(I) = A+ DX * I
170 LET Y(I) = FNF(X(I))
180 NEXT 1
190 LET S¥ = YO
200 FOR I =1 TO ™ - 1 STEP 2
210 LET SM = SM + 4 * Y(I)
220 NEXT I .
230 FOR I =2 TO N - 2 STEP 2
240 LET SM = SM + 2 * Y(I)
250 NEXT I
260 LET SM = SM + Y(N)
270 LET 1IN = DX/3 * SM
280 PRINT "
290 PRINT USING 300, N,A,B
300 IMAGE
For N = ———~ subintervals, the integral of f(x) on (=== =~=— o=n ~==
310 PRINT USING 320, IN
320 IMAGE
is approximately --—--- e by Simpson's Rule.
330 PRINT "
335 GO TO 110
340 END

Sample Output from SIMPSN
For N = 20 subintervals, the integral of f(x) on (-10.000, 1.000)
is approximately 2.71957006 by Simpson's Rule.

For N = 40 subintervals, the integral of f(x) on (-10.000, 1.000)
is approximately 2.71832202 by Simpson's Rule.
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i Henriksen Johnson Protter
Thesis | CRICISAM Flanders Lees Kiekemeister Morrey Randolph Schwarts Thomas

Analytic 14-17 1 - 64 1 - 72, 1- 70,| 1- 47 }116 - 253 1- 22
Geometry 374 - 414|279 - 320 '
Limit of 17-27 |125 - 205, {888 - 894 | 75 - 94 73 - 105 71 -130 | 48 - 61 |376 - 412 | 3& - S8
Functions 355 390

391.-422, | 1- 31,| S2- 74,| 106 - 135 |131 - 152 | 62 - 83 1- .5 | 23~ 33,
Derivatives 28-36 1479 - 523 |225 - 244" | 95 - 156 | ' 59 - 98
Derivati 423 - 478, ] 32 - 72, {157 - 224 | 136 - 18 [153 - 205 | 84 - 133 423 - 457 | 99 - 143

T 3-42 | 524 - 540, | 202 - 224,

Applications 613 - 665 | 245 ~ 264
Indeterminate 648 - 665, | 900 - 905, 415 ~ 447 432 - 440, | 819 - 823, |593 - 597,
forms - 42-48 | 449 - 462 | 215 - 224, 416 - 426 |789 - 823 |578 ~ 584
Taylor's Formula 593 - 621

207 - 324, | 108 - 127, | 225 ~ 292, | 185 - 245, |201 - 278, {167 - 237 | S7 - 115, |144 - 185,

: _ S41 - 574, | 327 - 372, | 427 ~ 458 | 342 - 373|453 - 489 329 - 369, |279 - 313
Integration 48-60 |66 - 756 | 666 - cas 413 - 422,
504 - 508
Applications 60-65 | 325 - 354, {128 - 151, | 293 - 348 | 246 - 279 490 - 548 |426 - 432 |370 - 375, |186 - 228,
of Integration 757 - 851 | 373 - 411 458 - 503 |307 - 313
;nfizite 65-68 |852 - 937 |622 - 660 |371 - 397 | 448 - 499 448 .- 481 | 750 -~ 823 |563 - 610
erlies .

& Programming 98-100 3

Complete bibliographical information on the following page.
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Exercise Set 1

Load, list, and execute FACIN. (No handin required.)

Write a flow chart to read numbers from a data list, find the abso-
lute value of each, and then print out this value. Execute the lab
instructor's program, ABSVAL, on the 1list -5, -2.1, =-sqr(2), O,

sin(-3.1416), .25, 3/4, and 521.

Hand in flow chart and output on the given number list.

3.

Frequently throughout the course it will be necessary to sketch the
graph of a function f over an interval [a,b]. A computer program
can produce the table of ordered pairs (x,f(x)) needed for graphing
f. A flow chart and computer program written by the lab instructor
to produce this table will be discussed in class. Using this
program, called FCNEVA, have the computer produce a table of
values for the two functions of Problems 1 and 2 on Page 8 of your
text.3 Divide (-2,2) into subintervals of length (a) .5 and

(b) .25.

Hand in only the four tables the program produced.

4,

The lab instructor has written a program, called SECLIN, which
computes the slope and equation of a secant line through a point
(xo, yO) on the graph of a function f. A flow chart and program
will be discussed in class. This program is very helpful on
Problems 1 and 2 of page 8 of your text. Use the program on these

problems.

Hand in your output on the two problems.

3The class text was Calculus of the Elementary Functions by

Shanks and Gambill (34).



108

5. An essential idea of calculus is the effect upon f(x) as x

approaches some number x We allow x to approach x., from the

0
0_), but x is not

(since then it could not continue to

0°

right (x - x + and from the left  (x > x

o)

allowed to actually equal X,

"approach" x Of special interest is the case where the f(x)s

0)‘
(numbers) approach some fixed number L as the x's approach X
and denote this by

1"

We then say L is the "limit of f(x) at X,

limit £(x) = L.
x > x,

(See pages 5 and 527 - 529 of your text.) We require that

limit +f(x)

X”*XO
equal

limit _£(x)

X"'XO
before we will say that

limit £(x)

X > X

exists (and it is then equal to the equal "one-sided limits'").

A +
Write a flow chart to estimate limit f(x) as x - X, and as

* (DL);'+ X if DL <1 and i takes

(Note that x = 0

XX . X,
successive values of 1, 2, 3, ...) The lab instructor has written
LIML from such a flow chart for your use.

Hand in your flow chart and the output from the program LIML applied

to the following. Write on your output what you think
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limit £(x)
I
is (if anything.)
1 2 .. .1
(a) limlt = (b) limit (x" - x) (c) limit sin =
x > 3 x > 2 x>0 X
(@) limit = () limit —5=2-
x>0 x> 2 (x7 - &)

6. As the definition on page 9 of your text indicates, the derivative

of a function £ at xo is simply the limit of a certain expres-

sion involving x, mnamely

f(xO + Ax) + f(xo)
Ax

(called the difference quotient of £f), To find f'(xo), then,

we need only find

f(x0 + AX) - f(xo)
Ax

limit
Ax >~ O

We could define a function g by

f(xO

+ Ag) - f(xo)

g(Ax) = .

and use the program from Exercise 5 above, to find

£'(x,) = limit g(Ax).

0 Ax -+~ 0

The lab instructor has written a flow chart and program frem it to

estimate f'(xo) in essentially this way. It is called DERIV
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and will be discussed in class. (Note that we are finding a number

f'(xo) and not the function f'.) Use DERIV to find the

following:
(a) f'(l) where f(x) =2x+ 3
(b) £'(2) where f(x) =x - x2 + 2

(¢) v . of Problem 5 on page 19 of the text
(d) £'(0) where f(x) = |x| (277)

Hand in your output from DERIV applied to the four problems.
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Exercise Set 2

1. 1In Chapter 2 of your text you have encountered a set of functions
called elementary functions (see page 65 for a convenient table
listing these functions). Frequently it -is quite helpful if one
can have clearly in mind or be able to recall a sketch of the graph
of these functions. To help you recall some of the graphs, use
FCNEVA to obtain graph points for sketching a graph of each of the
following functions on the given interval. Evaluate on values of
x that are Ax units apart. You may put two graphs on the same
set of axes if you want. Since you have adequate data, draw the
graphs with reasonable care so they can be used later; however, you

need not plot all of the points available.

(a) f(x) = log x on [.1,1] with Ax .1 and on [1,10]

with Ax = 1.

e* on [-4,4] with Ax = .5.

(b) £(x)

(c¢) f(x) = tan x on [~4,4] with Ax .5,

(d) £ seczx on [-1.5, 1.5] with Ax = .5.

Hand in your four graphs.
[At your option, time permitting, you could graph f(x) = sin x and
f(x) = cos x on ([-4,4] with Ax = .5. These are two functions with

whose graph you should be very familiar.]

2., In problem 6 of Exercise Set 1 the program DERIV was used to
obtain f'(xo), a number, for a function £ at a point xo. This
same program can be used to find the derived function, f', in the
following way. If we know the value of f'(x) at enough values of

x, we "know" f'. By repeatedly using DERIV, f£'(x) can be
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obtained for several values of x. A shortened form of DERIV,
called SHTDER, which has less printout (an operation that consi-
derably hinders a computer's work) and which evaluates f' on an
interval, can be used. Use SHTDER on the following five functions
on the indicated interwval. (Instructions will be given in class.)
Sketch a graph of f' for each f wusing the output, and see if you
can determine from this graph what f' is. (Hint: the graphs of

problem 1 above may be helpful.)

(a) f(x) = sin x on [-4,4]

(d) £f(x) = log x on [.2,10] (27)
(b) I(x) = cos x on [-4,4]

(e) f(x) = tanx on [-1.5,1.5]
(o) f(x) = e on {[-4,4]

Hand in the five graphs with your statement of what the defining

equation for f' 1is.

3, The operation of composition on functions is discussed on page 66 of
your text. The rule for differentiation of composed functions is so
important that it has a special name, Chain Rule (page 66). The lab
instructor has written a flow chart and program to verify numerical-

ly the chain rule at a point x, and to perform a partial check of

0

your computed derivative. The flow chart and program, CHNRUL,

will be explained in class. Use CHNRUL on the following:

(a) Problem 2 on page 69 of the text with XO = 2.
(b) Problem 5 on page 69 of the text with Xy = 2.
(c) Problem 1 on page 69 of the text with Xy = 1.

(d) Find (dy/dx)(1/2) if y = VYu and u = (1-x)/(1+x).

Hand in your output on the four problems, noting anything interesting

that may have turned up.
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Exercise Set 3

1. This exercise is on tangent and normal lines, refer to page 93 of
your text, Write flow chart for a program which will input £, £',
and a number X, and then compute equations, in slope-intercept
form, of the tangent and normal lines to the graph of f at
(xO, f(xo)). The lab instructor has written a flow chart and pro-
gram from it called TANNRM which does these things. Use it to
work (a) Problem 1 and (b) Problem 16 on pages 94 — 95 of your
text.

Hand in your flow chart and output on the two problems.

2., Write a flow chart that uses differentials (as in example 2 and 3

on page 116 of your text) to approximate certain expressions.

Recall that justification for differential approximation goes like

this: Ay = f(x + Ax) = f(x) and dy = f'(x)dx by definition.
Rewriting the first equation and using Ax = dx 1in the second
equation, we get f(x + Ax) = f(x) + Ay and dy = f£'(x)Ax. Now

using the fact that Ay approximately equals dy for Ax

"relatively small,”" we have the useful expression

f(x + 0x) = £(x) + dy = £(x) + £'(x)sx.

Have your flow chart output the approximation A = f(x) + f'(x)Ax,
the actual value B = f(x + Ax), and the difference, D, between
A and B. The lab instructor has written a program called DIFAPX
to do this. TUse it on the following:

(a) Problem 9 on page 117.
(b) Problem 10 on page 117.

(¢) Problem 11 on page 117. (60° = n/3, = = 3.14159)
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Hand in your flow chart and output on the three problems.

3. A flow chart and computer program called RELEXT which attempt to
use the Second Derivative Text for Maxima and Minima (page 103) have
been written by the lab instructor and will be discussed in class.
The program is quite limited since finding maxima, minima, critical
values, flex points, and so forth is rather difficult in general.
However, RELEXT, will work on some problems (principally where
f'' is continuous and f' is well-behaved). Use it on the
following problems with the indicated numbers as first guesses for

the zeros of f'.

(a) Problem 24 on page 108 using -6, -4, 4, 6
(b) Problem 29 on page 108 using -4, -2, -, 2, 4

(¢) Problem 35 on page 108 using -4, -2, 0, 2, 4

Hand in your computer output on the three problems,

4, Newton's method for approximating the roots for an equation
f(x) = 0 was used as a "subroutine'" (to find zeros of f') in
RELEXT of exercise 3 above.,. Problem 23 on page 118 of your text
explains very briefly how the method works. It is a useful proce-
dure for finding roots (if one has a suitable first guess for a
root). The lab instructor has written a program called NEWION
which uses the method. Use it on (a) and (b) of Problem 23.

Hand in your output on the two parts.
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Exercise Set 4

Sections 2 and 3 in Chapter. 7 of your text are concerned with limits
of functions for which the initial attempted evaluation results in one

of several particular forms, called "indeterminate forms."

A very use~-
ful tool for handling such limits, L'Hospital's Rule, is stated (in
several forms) and proven. The lab instructor has written two programs
specifically for these two sections.  ONESID is designed for estimating
one-sided limits (see example 2 on p. 182 and example 1 on p. 185), but
can be used on ordinary ('"two-sided") limits. LIMINF is designed to
estimate 1im £f(x) as x goes to either 4= or ==, Both programs

have a tolerance stop for a finite limit and an infinite limit. The

programs will be discussed in class before use.

[Note: Parts of problems below marked with a A are optional -- do
only 1f required problems have been completed and extra time is avail-

able.]

1. After you have evaluated the following limits by your own means,

use ONESID to obtain a partial check of your result.

(a) 4 on p. 183 (1c = 2)
(b) 5 on p. 183 (Ic = 2)
(c) 6 on p. 183 (IC = 10)
(d) 17 on p. 183 (IC = 10. Change 340 to 340 For

I =2 to N)

A(e) 26 on p. 183 (IC =10 and IC =2) 1?7

Hand in your output.
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After you have evaluated the following one-sided limits by your own

means, use ONESID to obtain a partial check of your result.

(a) 5 on p. 186 (IC = 10)
(b) 9 on p. 186 (IC = 10)
(¢)  limit L (IC = 10 and /2 =1.5708)
- sin x s
x > (1/2)
A(d) 28a on p. 187 with C = 5 (IC = 10)
A(e) 28b on p. 187 with C = -5 (IC = 2)

Hand in your output.

3.

The following limits have x going to -+~ or =-o, Evaluate by
your own means and then use LIMINF to obtain a partial check of

your result.

(a) 2 on p. 186 | (IN = 2)
(b) 10 on p. 186 (c =1, IN = 10)
(c) 23 on p.>187 (n =5, IN=2)

A(d) 37 on p. 188 show the limit.is -1 (IN = 2)

(e) limit x° ¥ (IN = 2)

X > =

Hand in your output.

4.

A theorem which is usually called Taylor's Rormula is introduced in
Section 4 (p. 188) of Chapter 7. The polynomials Pn(x), called
the Taylor polynomials (p. 189), provide good approximation to f(x)
if the remainder term Rn(x) is small. The lab instructor has
written a program called TAYLOR which computes the first 6 coef~
ficients of Pn(x) for a fixed x. Values of Pn(x) are printed

out for n=20, 1, ..., 5 along with the computer evaluation of
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f(x) and the differences between Pn(x) and f(x) for successive

.

(a)
(b)
(c)

A(d)

The program will be discussed in class. Do the following:

Use TAYLOR to partially check your answer on 11 of p. 192,

Use TAYLOR to partially check your answer on 15 of p. 193.

Use TAYLOR to partially check your answer on 13 of p. 193.

In Example 4 of p. 202 the authors describe the convergence of
Maclaurin's series for log(l + x) to be slow for ]xl near

1. Verify this by using TAYLOR with n = 5 and

x =1/10, 1/2, 3/4, 9/10 successively. (Recall that Maclaurins

series. has a = 0.)

Hand in your output.
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Analysis of Exercise Set 4

Problem 1

1. In (a) and (b) which function increases faster as x - X, ?

2x _ 1 or D(x) = cos x -1

2. Using (b) which function N(x) = e
approaches zero faster as x - 0+?
3. In (c) and (d) which function apparently approaches its limit

faster as x - 07
Problem 2

4, Without regard to sign, which function £(x) = 1/x or
g(x) = log x has the steepest (numerically) graph as x ~ x0+?
5. In parts (a), (b), and (c) which function approaches its limit

slowest?
Problem 3

6. Match the graphs with parts (a), (b), (c), or (e) using your

numerical output:

I 444 liy
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Problem 4

7. In (a) does the computed result for R4 using TAYLOR seem
correct as compared with the text's answers?
8. What is true of the Taylor polynomial coefficients printed out

by the computer?
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Exercise Set 5

The definite integral of a function £ from a to b is defined
(p. 224) as the limit of Riemann sums. Write a flow chart to com- -
pute a Riemann sum for a function f on an interval [a,b] using
n subintervals of equal length and choosing the midpoint of each

subinterval as the for that i-th subinterval (see p. 223).

1
The lab instructor has written such a flow chart and program called

RIEMSM. The program is to be used on the following:

(a) Estimate

_/.2 Vé—:w;iidx

0
using n = 4, 8, 64, 128, ~and 256 successively. Notice
that you have approximated the area of one fourth of a disc
whose radius is 2, that is, you have been approximating .
(Also note how long it takes the computer on the last sum —-
be glad we don't have to do it by hand! We shall eventually

have a much better way to evaluate this integral.)

(b) 4 on p. 227 (n =5 and 10)
(¢) . 5 onp. 227 (n =8 and 16)
(d) 6 on p. 227 (n =4, 8, 16)

(If you wish, examine some of the above integrals using more

division points.)

Hand in your flow chart and output on the four problems.

2,

The lab instructor has written a flow chart and program called
UPLWSM which finds upper and lower Riemann sums. Use it on the

following problems:
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(a) 3 on p. 227 (n=1, 8, 16, 64)
(b) 4 on p. 227 (n =5, 10, 20, 100)
(c) 6 on p. 227 (n =4, 8, 64)

[Note that sin x i1s increasing on [0,7/2) and decreasing on

(1/2,m1. ©/(2/2) ~ 1.11072 and (/2 + 1)/(2/2) = 2.68151.]

Hand 1n your output on the three problems.
3. The lab instructor has written a flow chart and program called

FNDTHM which approximates the integral

/b f(t)de

a

using a numerical procedure called Simpson's Rule. You will have a
chance to learn how this procedure works when we reach Section 3 of
Chépter 12 (p. 312); however, for now you will have to simply
believe that it works. Using it we can obtain a table of values
for the function F defined as in Section 4 of Chapter 9 (p. 232)
by

X
F(x) = Jr' f(t)dt

a

for x in [a,b]}. Graphing the pairs (x,F(x)) should help you
to understand the integral (and the Fundamental Theorem of Calculus)
better. For each of the followilng obtain a table of ordered pairs
(x;F(x)) for f and x. as indicated, sketch a graph of F(x),

and see if you .can find the defining equation for the graph.

(a) £(x)
(b) £(&)

[}
N
]
w

L}
o
o

Ii
(&}

and IC = .25

6, and IC = .5

]
)
o]
0
]
w

1l
o

-
o
]
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e, a=-5,

(o) f£(x)

(d) f(x) 1/x with a =

then a =
Hand in your output and graphs

the defining equation.

b =

122

4, and IC =1
1, b= .25, and IC = .25;
1, b=6, and IC = .5

for the four problems with your guess of
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Analysis of Exercise Set 5

1

After examining the output of (a) which do you think is the
most likely result for a Riemann sum for f(x) when n 1is
bigger than 256 (n = 512, for example): 3.14168111,
3.14161111 or 3.14141111?

In part (c) explain why the Riemann sums are zero while the

area between the curve and x—-axis is clearly not zero.

3]

In part (a): (i) does the computed answer agree with the

text's?

1 1
(ii) using gi and Ei as on p. 225 of the

text with N = 1, what are the values of

f1
Comparing part (b) with part (b) of Problem 1, how does the
Riemann sum compare with the lower and upper Riemann sums when
N = 57 When N = 107
As in 4 compare part (¢) with part (d) of Problem 1 Qhen N = 8.
How do the sums compare?

In each part of Problem 2 what happens to the lower sums as N

increases? What happens to the upper sums as N increases?

After doing this problem what do you think the defining equa-

tion for F(x) would be if



X
F(x) = / (= sin t)dt?
0

8. What do you think

Dxl:/xh: dt.] =7

0
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Exercise Set 1

Load, list, and execute TFACTN. (No handin required.)

Write a flow chart and computer program to read numbers from a data
list, find the absolute value of each, and then print out this
value. Execute the program on the list -5, -2.1, -sqr(2), O,

sin(-3.1416), .25, 3/4, and 521,

Hand in your flow chart, program, and output on the given number list.

3.

Frequently throughout the course it will be necessary to sketch ﬁhe
graph of a function f over an interval ([a,b]. A computer program
can produce the table of ordered pairs (x,f(x)) needed for
graphing f. A flow chart and computer program written by the lab
instructor to produce this table will be discussed in class. Using
this program, called FCNEVA, have the computer produce a table of
values for the two functions of Problems 1 and 2 on page 8 of your
text.4 Divide (-2,2) into subintervals of length (a) .5 and

(b) .25,

Hand in only the four tables the program produced.

4.

The lab instructor has written a program, called SECLIN, which
computes the slope and equation of a secant line through a point
(xo, yo)- on the graph of a function f. A flow chart and program
will be discussed in class., This program is very helpful on
Problems 1 and 2 on page 8 of your text. Use the program on these

problems,

Hand in your output on the two problems.

4The class text was Calculus of the Elementary Functions by

Shanks and Gambill (34).
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An essential idea of calculus is the effect upon f(x) as x

approaches some number x We allow x to approach X, from the

o.
right (x -+ xo+) and from the left (x - xo_), but x is not

allowed to actually equal x (since then it could not continue to

0
"approach" xo). Of special interest 1s the case where the f£f(x)s
(numbers) approach some fixed number L as the x's approach X
We then say L 1s the "limit of f(x) at xo" and denote this by

limit f(x) = L.
X > X

(See pages 5 and 527 - 529 of your text.) We require that

limit +f(x)
X > X

0
equal

limit _£(x)
X+ X

0
before we willl say that

limit f(x)
X > xo

exists (and 1t is then equal to the equal "one~-sided limits").
Write a flow chart and computer program from it to estimate

limit f(x) as x =+ x + and as x + X, (Note that

0 0o’

x = X, * (DL)i - X,

if DL <1 and 1 takes successive values of 1, 2, 3, ...).
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Hand in your flow chart, program, and the output from the program

applied to the following. Write on your output what you think

limit £ (&)
X > X,
is (if anything).
. 1 2 . .1
(a) limit = (b) limit (x~ - x) (¢) limit sin =
X X
x> 3 x> 2 x + 0
(d) limit -;L; (e) limit —"—2—’—1—

x+0 x> 2 (x° - 4)

6. As the definition on page 9 of your text indicates, the derivative

of a function £ at x. 1is simply the limit of a certain expres-

0

sion involving x, namely

f(xo + Ax) - f(go)
Ax

(called the difference quotient of £). To find f'(xo), then, we

need only find

f(x0

) + Ax) - f(xo)

limit . ix

Ax + 0
We could define a function g by

f(x, + Ax) - £(x.)
) 0 0
g(4x) = Ax

and use the program from Exercise 5 above to find
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f'(x,) = limit g(Ax).
0
Ax > 0
The lab instructor has written a flow chart and program from it to
estimate f'(xo) in essentially this way., It is called DERIV and
will be discussed in class. (Note that we are finding a number
f'(xo) and not the function f'.) Use DERIV to find the

following:

(a) f£'(l) where f(x) = 2x + 3
(b) £'(2) where £f(x) = x - x2 + 2
(¢) v of Problem 5 on page 19 of the text

(d) £'(0) where £(x) = |x| (277)

Hand in your output from DERIV applied to the four problems.
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Exercise Set 2

1. In Chapter 2 of your text you have encouﬁtered a set of functions
called elementary functions (see page 65 for a convenient table
listing these functions). Frequently it is quite helpful if one can
have clearly in mind or be able ‘to recall a sketch of the graph of
these functions. To help you recall some of the graphs, use FCNEVA
to obtain graph points for sketching a graph of each of the
following functions on the given interval, Evaluate on values of x
that are Ax units apart. You may put two graphs on the same set
of axes 1f you want. S8ince you have adequate data, draw the graphs
with reasonable care so they can be used later; however, you need

not plot all of the points available,
(a) f(x) = logx on [.1,1] with Ax = .1 and

on [1,10] with Ax = 1.

(b) £(x) = e* on [-4,4] with Ax

]
o

L]
(9]

1
w

(c) f(x) = tan x on [.4,4] with Ax.

(d) fx) = seczx .on [-1.5,1.5] with Ax = .5
Hand in your four graphs.

[At your option, time permitting, you could graph f(x) = sin x and
f(x) = cos x on [-4,4] with Ax = .5. These are two functions with

whose graph you should be very familiar,]

2, In problem 6 of Exercise Set 1 the program DERIV was used to
obtain f'(xo), a number, for a function f at a point X This
same program can be used to find the derived functiom, . f', in the
following way. If we know the value of f£f'(x) at enough values of

x, we "know" f'. By repeatedly using DERIV, f£f'(x) can be
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obtained for several values of x. A shortened form of DERIV,.
called SHTDER, which has less printout (an operation that consi-
derably hinders a computer's work) and which evaluates f' on an
interval, can be used. Use SHIDER on the following five functions
on the indicated interval. (Instructions will be given in class.)
Sketch a graph of f' for each f wusing the output, and see if
you can determine from this graph what f' is. (Hint: the graphs

of problem 1 above may be helpful.)

(a) f(x) = sin x on . [-4,4]

(d) £f(x) =log x on [.2,10] (27)
(b) f(x) = cos x on [-4,4]

(e) f(x) = tanx on [-1,5,1.5]
(c) f(x) = e on [-4,4]

Hand in the five graphs with your statement of what the defining

equation for £' is.

3. The operation of composition on functions is discussed on page 66
of your text. The rule for differentiation of composed functions is
so important that it has a special name, Chain Rule (page 66). The
lab instructor has written a flow chart and program to verify numer-

ically the chain rule at a point x, and to perform a partial check

0
of your computed derivative. The flow chart and program, CHNRUL,

will be explained in class. Use CHNRUL on the following:

(a) Problem 2 on page 69 of the text with x, = 2

0
(b) Problem 5 on page 69 of the text with X, = 2
(¢) Problem 1 on page 69 of the text with Xy = 1

(d) Find (dy/dx)(1/2) 1if y = /u and u = (1-x)/(1+x).

Hand in your .output on the four problems, noting anything interesting

that may have turned up.
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4., Write a flow chart and computer program that will input the coor-
dinates of two points, P and Q and then find (a) the slope of
the line through P and Q, and (b) the slope-intercept form
equation of the line through P and Q. (Also print out coordin-
ates of . P and Q.)

Hand in your flow chart, program, and output .on pairs of points:
(a) (-1,1) and (3,5

) (-,1) and (5,1)

(¢) (2,-3) and (2,0)
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Exercise Set 3

1. This exercise is on tangent and normal lines, refer to page 93 of
your text. Write a flow chart and computer program from it which

will input f, f', and a number x,. and then compute equations,

0
in slope-intercept form, of the tangent and normal lines to the-
graph of f at (xo, f(xo)). Use the program to work (a) Problem
1 and (b) Problem 16 on pages 94 - 95 of your text.

Hand in your flow chart, program, and output on the two problems.

2. Write a flow chart and computer program that uses differentials (as
in examples 2 and 3 on page 116) to approximate certain expressions.
Recall that justification for differential approximation goes like
this: Ay = f(x + Ax) - £(x) ‘and dy = f'(x)dx by definition.
Rewriting the first equation we get f£(x + Ax) = f(x) + Ay and,
using Ax = dx 1in the second equation we get dy = f£'(x)Ax. Now
using the fact that Ay approximately equals dy for Ax rela-

tively small, we have the useful expression
f(x + Ax) = £(x) + dy = £(x) + f! (x)Ax.

Have your program output the approximation A = f£(x) + £'(x)Ax,
the actual value B = f(x + Ax), and the difference, D, between

A and B, Use your program on the following:

(a) Problem 9 on page 117
(b) Problem 10 on page 117

(¢) Problem 11 on page 117 (60° = n/3, = és3.14159)

Hand in your flow chart, program, and output on the three problems.



3.

134

A flow chart and computer program called RELEXT which attempt to
use the Second Derivative Test.for Maxima and Minima (page 103) have
been written by the lab instructor and will be discussed in class.
The program is .quite limited since finding maxima, minima, critical
values, flex points, and so forth is rather difficult in general.
However, RELEXT, will work on some problems (principally where

f'' dis continuous and . f' is well-behaved). Use it on the
following problems with the indicated numbers as first guesses for

the zeros of f'.
(a) Problem 24 on page 108 using -6, -4, 4, 6

(b) Problem 29 on page 108 using -4, -2, 0, 2, &

(¢) Problem 35 on page 108 using -4, -2, 0, 2, &

Hand in your computer output on the three problems.

4.

Newton's method for approximating the roots for an equation

f(x) = 0 was used as 'a "subroutine" (to find zeros of f') in
RELEXT of exercise 3 above.. Problem 23 on page 118 of your text
explains very briefly how the method works. It is a useful proce-
dure for finding roots (if one has a suitable first guess for a
root). The lab instructor has written a‘program called NEWTION

which uses the method. Use it on (a) and (b) of Problem 23.

Hand in your output on the two parts.
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Exercise Set 4

Sections 2 and 3 in Chapter 7 of your text are concerned with limits
of functions for which the initial attempted evaluation results in one
of several particular forms, called "indeterminate forms." A very use-
ful tool for handling such limits, L'Hospital's Rule, is stated (in
several forms) and proven. The lab instructor has written two programs
specifically for these two sections. ONESID dis designed for estimating
one-sided limits (see example 2 on p. 182 and example 1 on p. 185), but
can be used on ordinary ("two-sided") limits. LIMINF is designed to
estimate 1limit f(x) as x goes to either +» or -«, Both programs
have a tolerance stop for a finite limit and an infinite limit. The

programs will be discussed in class before use.
1. After you have evaluated the following limits by your own means, use
ONESID to obtain a partial check of your result.

(a) 4 on p. 183 (IC = 2)

() 5 on p. 183 (IC.

2)
(c) 6 on p. 183 (IC = 10)
(d) 17 on p. 183 (IC = 10. Change 340 to 340 For I =2 to N)

(e) 26 onp. 183 (IC=10 and IC = 2) 7

Hand in your output.
2, After you have evaluated the following one-sided limits by your own

means, use ONESID to obtain a partial check of your result.

(a) 5 on p. 186 (IC = 10)

(b) 9 on p. 186 (IC = 10)
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1

(c) limit _ rp— (IC = 10 and n/2 = 1.5708)
x > (n/2)

(d) 28a on p. 187 with C = 5 (Ic = 10)

(e) 28 on p. 187 with C = -5 (IC = 2)

Hand in your output.

3.

The following limits have x golng to +» or ==, Evaluate by
your own means and then use LIMINF to obtain a partial check of

your result,

(a) 2 on p. 186 (IN = 2)
(b) 10 on p. 186 (c =1, IN = 10)
(¢) 23 on p. 187 (n =5, IN=2)

(d) 37 on p. 188 show the limit is -1 (IN = 2)

(e) limit x° ¥ (IN = 2)

X > =,

Hand in your output.

4,

A theorem which is usually called Taylor's Formula is introduced in
Section 4 (p. 188) of Chapter 7. The polynomials Pn(x), called
the Taylor polynomials (p. 189), provide good approximation to f(x)
if the remainder term Rn(x) is small. The lab instructor has
written a program called TAYLOR which computes the first 6 coef-
ficients of Pn(x) for a fixed x. Values of Pn(x) are printed
out for n=0, 1, ..,, 5 along with the computer evaluation of
f(x) and the differences between Pn(x) and. £(x) for successive

n. The program will be discussed in class. Do the following:

(a) Use TAYLOR to partially check your answer on 11 of p. 192.

(b) Use TAYLOR to partially check your answer on 15 of p. 193.
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(¢) Use TAYLOR to partially check your answer on 13‘of p. 193.
(d) In Example 4 of p. 202 the authors describe the convergence of
Maclaurin's series for 1log(l + x) to be slow for lxl near
1. Verify this by using TAYLOR with n =5 and
x = 1/10, 1/2, 3/4, 9/10 successively. (Recall that

Maclaurins series has a =0.)

Hand in your output.
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Analysis of Exercise Set 4

Problem 1

1, In (a) and (b) which function increases faster as x - X, ?
2. TUsing (b) which function N(x) = e2x -1 or D(x) = cos x -1
approaches zero faster as x ~ O+?

3. . In (e¢) and (d) which function apparently approaches its limit

faster as x - 0?7
Problem 2

4, Without regard to sign, which function £(x) = 1/x or
g(x) = log x has the steepest (numerically) graph as x — x0+?
5. In parts (a), (b), and (c¢) which function approaches its limit

slowest?
Problem 3

6. Match the graphs with parts (a), (b), (c), or (e) using your

numerical output:

\j

N
N
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Problem 4

7. . In (a) does the computed result for R, using TAYLOR seem

4
correct as compared with the text's answers?.

8. What is true of the Taylor polynomial coefficients printed out
by the computer?

9. In Problem l(e), for which value of IC does ONESID work.

best?.

10, After doing Problem 2(e) what do you think

limit, £

t >0
is?
11. Sketch a general picture of what you think the graph of f(x)

looks like for Problem 3(d).

0 500 1000 1500 2000 2500
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12. Using Problem 4(d), which TAYLOR approximation of
f(x) = log(l + x), with n = 5, would you expect to be most.

accurate: one for £(.0l) or one for £(.99)?
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Exercise Set 5

1. The definite integral of a function f from a to b 1is defined
(p. 224) as the limit of Riemann sums. Write a flow chart to com-
pute -a Riemann sum for a function f on an . interval [a,b] using
n subintervals of equal length and choosing the midpoint of each
subinterval as the Ei for that i-th subinterval (see p. 223). The
lab instructor has written such a flow chart and program called

RIEMSM. The program i1s to be used on the following:

(a) Estimate

Jr'z /2_:_;5 dx
0
using n = 4, 8, 64, 128, ~and 256 successively. Notice that
you .have approximated the area of one fourth of a disc whose
radius 1s 2, that is, you have been approximating m. (Also
note how long it takes the computer on the last sum -~ be glad
you don't have to do it by hand! We shall eventually have a

much better way to evaluate this integral.)

() 4 on p. 227 (n =5 and 10)
(¢) 5 on p. 227 (n =8 and 16)
(d) 6 on p. 227 (n =4, 8, 16)

(If you wish, examine some of the above integrals using more

division points.)

Hand in your flow chart and output on the four problems.
2. The lab instructor has written a flow chart and program called
UPLWSM which finds upper and lower Riemann sums. Use it on the

following problems:
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(a) 3 on p. 227 (n=1, 8, 16, 64)
(b) 4 on p. 227 (n =5, 10, 20, 100)
(¢) 6 on p. 227 (n = 4, 8, 64)

[Note that sin x is increasing on [0,7/2) and decreasing on

(n/2,m). m/(2/2) =~ 1.11072 and m(V2 + 1)/(2v2) = 2.68151.]

Hand in your output on the three problems.

3.

The lab instructor has written a flow chart and program called

FNDTHM which approximates the integral

/b f(t)de

a

using a numerical procedure called Simpson's Rule. You will have a
chance to learn how this procedure works when we reach Section 3 of
Chapter 12 (p. 312); however, for now you will have to simply
believe that it works. Using it we can obtain a table of values
for the function F defined as in Section 4 of Chapter 9 (p. 232)
by

. X

F (x) =f £(t)dt

a
for x in [a,b]. Graphing the pairs (x,F(x)) should help you‘
to understand the integral (and the Fundamental Theorem of Calculus)
better. For each of the following obtain a table of ordered pairs
(x,F(x)) for £ and x as indicated, sketch a graph of F(x),

and see if you can find the defining equation for the graph.

(a) £(x)
(b) £(x)

#
N
~
]

]
(=]
o

(]
[\

and IC = .25

I
5
[15]

X
]

I

Nt

o
I

6, and IC = .5
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(¢) f(x) = ex; a==5, b=4, and IC=1

(d) £f(x) =1/x with a=1, b = ,25, and IC = .25;

then a=1, b =6, and IC = .5

Hand in your output and graphs for the four problems with your guess of

the defining equation.
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Analysis of Exercise Set 5

Problem 1

1. After examining the output of (a) which do you think is the .
most likely result for a Riemann sum for £(x) when n 1is
bigger than 256 (n = 512, for example): 3.14168111,
3.14161111 or 3.14141111?

2. 1In part (c) explain why the Riemann sums are zero while the
area between the curve and x-axis is clearly not zero.

Prob.lem 2 .
3. In part (a): (i) does the computed answer. agree with the
text's? |
] ) e

(1ii)  using Ei and Ei as on p, 225 of the

text with N = 1, what are the values of
) 'y .

El? El ?

4, Comparing part (b) with part (b) of Problem 1, how does the
Riemann sum compare with the lower and upper Riemann sums when
N =57 When N =107

5. As in 4 compare part (c) with part (d) of Problem 1 when N = 8,
How do the sums compare?

6. In each part of Problem 2 what happens te the lower sums as N
increases? What happens to the upper sums as N dIncreases?

Problem 3
7. After doing this problem what do you think the defining equa-

tion for F(x) would be if
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X
F(x) = / (- sin t)dt?
0

8. What do you think



APPENDIX F

TEN PRE-SELECTED ITEMS FROM THE CALCULUS
COOPERATIVE MATHEMATICS TEST

(C.C.M.T.)
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Five items were selected from each part of the C.C.M.T. (Form A).

These items were:

Part I: Questions 6, 10, 13, 15, and 19

Part II: Questions 3, 7, 21, 24, and 28



APPENDIX G

INDIVIDUAL SCORES OF 53 SUBJECTS PARTICIPATING

IN THE STATISTICAL ANALYSIS
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Control Group

- Post= 10-Item 10~Item
A.C.T.M. ‘Pretest : ‘ test ‘ P:etest ‘ Post-test
34 | s 35 B 7
32 ' 6 41 1 8
29 9 31- v 2 7
21 7 | 20 3 5
33 | 7 33 3 6
31 10 41 2 9
28 3 38 1 6
21 1 27 0 4
32 4 19 1 4
33 7 30 2 7
30 6 30 1 8
34 11 44 3 7
29 9 26 2 5
33 3 29 0 7
34 13 50 3 10
34 10 34 2 6
32 8 ‘ 47 1 8
32 14 39 4 7

31 3 | 27 1 7

26 6 23 1 5
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Group One-~half

Post- 10-Item 10-Item

A:C.T.M. o Pretest test Pretest 4 Post~test
2% 327 0 7
28 4 21 1 6
25 6 14 1 3
36 8 40 2 7
19 3 23 1 4
28 6 3i 2 6
30 3 23 2 4
29 - 6 ’ 37 2 6
28 3 35 0 6
28 4 30 1l 5
23 4 20 0 4

30 4 31 - 1 8
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Group One
| Post~ 10-Item | 10-Item
A.C.T.M. ‘ Pretest . . test Pretest Post-test
2% 4 27,“ 2 8
18 2 20 0 6
25 5. 38 3 9
24 | 5 14 0 2
21 2 31 1 7
28 4 30 2 oy
26 5 30 2 7
29 4 36 1 9
26 _ 9 30 2 6
27 4 26 1 5
28 4 19 | 0 5
30 4 30 0 6
29 9 29 2 7
29 5 24 2 8
22 5 19 ‘ 2 3
26 s 31 4 | 6
22 6 | 21 1 4
20 7 36 1 7
30 8 30 0 ' 5
18 5 28 8 2 | 6

17 8 25 3 | 3
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