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CHAPTER I
INTRODUCTION

Over the course of the last three years the author has conducted
an intensive study of the unresolved questions which confront research-
ers in hydraulic filtration mechanics. The general approach, which
involves the stochastic analysis of these problems from measurable
geometric probability density functions, has become known as "Filtration
Physics." A fundamental goal of the initial study was to order the
unresolved problems into a logical sequence whose solution would lead
to the understanding and possible optimization of the hydraulic fil-
tration process. Ideally, the total investigation will provide the
answers to practical questions as well as idealized questions.

In Chapter II the state—of-the-art in hydraulic filtration will be
discussed. It will be shown that one of the most fundamental an& least
resolved problems in hydraulic filtration is the relative importance of
mechanical particulate removal by sieving. As a consequence, the ob-
jectives of the research presented herein include the modeling of the
sieving process in terms of geometrically measurable random variables.
In Chapter ITT formulation of the present investigation will‘be present—
‘ed in such a way that the techniques developed can be extended to
further aspects of filtration mechanics problems. The general analysis
necessary to describé the sieving process is defived in_Chapter Iv.

Solution techniques for the eipressions obtained are presented in



Chapter V. OSpecial geometric cases are then treated experimentally in
Chapter VI, and analytically in Chapter VII. The resultant comparison
demonstrates factors which cause the experimental model to deviate from
predicted performance. The total development is presented to demon-
strate the applicability of stochastic analysis to the problems inherent
to viscous liguid filtration mechanics. Final conclusions and

extensions of the present study are presented in Chapters XIII and IX.



CHAPTER II
STEVING IN HYDRAULIC FILTRATION
Hydraulic Filtration

Hydraulic filtration, in the context of this study, is meant to
denote the removal of particulate matter from liquid hydraulic fluids
such as those used in automotive, mobile, or aerospace systems. Just
as in any field in which success is largely measured by economic con-—
siderations, progress has been made at a rate governed by supply and
demand. The resulting approach to hydraulic filtration mechanics
research has left many fundamental questions unanswered. For instance,
the various filter performance rating systems, based upon the largest
particle observed after passage (1), the cumulative particulate
separation efficiency (2), or gravimetric separation efficiency, all
tend to obscure the stochastic nature of the basic problem. That is,
neither the influent particulate distribution nor effluent particulate
distribution is treated as a function of random variables. Instead,
only a representative value (usually the expected value) is considered.
This example 1s typical of the vast majority of parameters by which
hydraulic filters are evaluated and compared.

The development of filtration mechanics technology may be
characterized as "applications oriented." TRelatively new applications,
however, are rapidly providing motivation for the solution of some of

the problems which had been heretofore circimvented. An example is



the trend toward higher pressure hydraulic systems (3). As system
pressures are raised the clearances between moving parts of hydraulic
components must be reduced. Consequently, the system fluid cleanli-
ness level must reflect a lower concentration of particles in the new
range of component vulnerability. Thus, a new demand is present in the
market and new technology may be required to economically design a
filter medium possessing at least the minimum required performance.
Another factor which will undoubtedly bring about the demand for
systematically designed filter media is the increasing availability of
system component contaminant tolerance levels (3). If the minimum
particulate cleanliness level at which a component will survive for a
specified life is indeed known, the filter which will provide that
cleanliness level for a given particulate ingression rate becomes
economically desirable. That is, a cost optimal combination of filter
element price and cost of replacement may be obtained for the most
economical system contamination level. Only through a more complete
understanding of the filtration process than has been found in the
literature, can filter media be selectively designed to meet specific

cleanliness levels.
Relationship to Aerosol Filtration

By comparison with hydraulic filtration, research in aerosol
filtration has had a long and rigorous history. The reason may be
attributed to users of aerosol filters in bio~medical and chemical
process fields who have been able to define their requirements in terms
of acceptable particulate probability density functions since the mid

19)40's. The current state—of-the-art in aerosol filtration reflects



significant understanding of the mechanisms involved and consitututes
ample evidence that rigorous analysis of the filtration process is a
reasonable goal. Furthermore, recent aerosol research has demonstrated
the feésibility of stochastic analysis based on geometrically measurable
random variables, as in the findings of Clarenburg and Van Der Waal (1),
and Corte and Lloyd (5).

Many aspects of hydraulic filtration can be treated similarly to
those of aerosol filtration. For instance, the medium geometry found in
commercially available aerosol filters is geometrically similar to that
found in hydraulic filters. That is, the shape of the solid surfaces
and void volumes found in each medium are geometrically similar to the
other. Also, the velocity profile of a viscous fluid slowly flowing
through a small tortuous passage can often be modeled by the same
equations for the aerosol or for the hydraulic problem (6).

Unfortunately, complete solutions for the mathematical models of
the similar cases mentioned above have not been found by aerosol
researchers. Also, there exist other problems which are unique to
hydraulic filtration. These problems center around modeling of the way
in which particles are captured by the filter medium. It can be con-
clusively shown that the sieving mechanism is not dominant in aerosol
filtration. If the design of aerosol filter media were such that sieving
were allowed to predominate, rapid clogging and short life would result.
Instead, these filter media are designed so that surface forces will
cause small particles to be retained on the sides of comparatively large
pores. The relative importance of particle retention by surface forces
as opposed to retention by sieving is a question which has not been

resolved by hydraulic filtration experts. Increased understanding of



this basic phenomenon is obviously fundamental to the systematic design
of filter media. The importance of this probiem'lends relevance to

rigorous study of the sieving mechanism.
~ Transport and Retention Mechanisms

Any particle capture not dﬁe to sieving must be explained in the
classic terms of transport and retention mechanisms. These principlés'-
have been applied with wide acceptance to_aerosol‘problems. To a lesser
degree the same principles have been applied to the filtration of small
biological and inorganic particulate matter from wafer (7),’(8).

Transport mechanisms are4a categbrization of the way in which
particle trajectories may Be forced to encounter elements of the filter
medium. Ives (7) and Chen (9), as well as many other authorities,
classify transport mechanisms as gravity, diffusion, inertia‘and im-
paction (see Figure 1). These terms will be only briefly diséussed here.
A more detailed exposition may be found in Reference 6.

Gravity simply describes the settling of particles in a viscous
'liquid.‘ For most particles in the typical hydraulic filﬁration.SiZe
distribution;.gravity is not an important transport mechanism.

Diffusion is caused by the intefaction ofvparticleélfebounding or
repelling from other bodies. Normally,.diffusiOn is not important to
the transport of particles larger than one micrometer (2, 6). |

Impaction describes fhe case of the streamline which coincides
with a particle trajectory that passes within a particle radius of &
solid boundary. Since in stéady flow there is no deviation of the ‘
partiéle from the streamline, the analysis is reduced to modeling flow

patterns around an obstacle.



ImpactiOn
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The inertia mechanism denotes the deviation of a particle from a
curved streamline due to the difference in particle and fluid densities
Authors sometimes include particle movement due to hydrodynamic forces
(or 1lift) in this category. Accurate modeling of the inertia mode
requires modeling of the fluid velocity field surrounding the elements
of the filter medium.

Bach of the above mentioned transport mechanisms is important to
the capture of particles only if there exists a mechanism which retains
particles that come into contact with (or at least come very near) the
filter medium. That is, if capture is based on the transport mechanisms,
the assumption must be made that a particle which approaches a fiber or
element of filter medium ié forced tQ remain in a fixed position. The
attractive forces which constitute the adsorption process are often |
called surface forces. These forces are further classified as Van Der
Waal's-ILondon forces or electrostatic forces.

In the case of a liquid interface between particle and filter
medium the system is known as a secondary system. Secondary systems are
difficult to model, although some pertinent literature is becoming
available (10). Measurement of the parameters associated with the
description of secondary systems is also a formidable obstacle.

Further details on surface forces may be found in Reference 6.
The Sieving Mechanism

The apparent alternative to capture of particles by surface
forces is capture by mechanical forces. A more common name for the
mechanical process is "sieving." Sieving is the capture of a particle

by virtue of its geometry at several points of contact with other solid



matter. In a relatively nontocrtuous, recleanable filter medium,
capture by surface forces or sieving appears to adequately categorize
all possible retention mechanisms.

For the purposes of this research, only the sieving mode will be
modeled. That is, the capture mechanism which is modeled will be
mechanical in nature and involve at least one point of contact between
the particle in question and the filter medium. There remains the
possibility of an unstable sieving mode in which a fluid transient or
impact of another particle could dislodge a previously captured particle.
In order to realistically analyze the unstable sieving mode, surface
forces would have to be calculated. Since this discussion is to deal
exciusively with the sieving mode, the analysis wiil be restricted to
particle and pore configurations in which stable sieving is predomimsmt .

A particle which has been captured will remain captured and motionless

for all subsequent time.
The Relevance of Sieving to Depth Medium Filtration

The disagreement about the quantitative importance of the sieving
mechanism in hydraulic filtration is a dramatic illustration of the
need for research in fundamental filtration physics. Only when the
phenomena involved in particle capture can be édequately modeled will
there be real hope of filter medium optimization. A logical first
step in the sequence of research needed to bring about the final model
is the analysis of the sieving mechanism.

The qualitative existence of the sleving mechanism has been easily
demonstrated in the Oklahoma State University Fluld Power Research

Center laboratory. Filtration tests in which particle sizes exceed
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pore sizes have demonstrated the existence of the sieving mechanism.
Filtration tests in which significant numbers of particles smaller
than the smallest pore were captured have provided evidence supporting
the existence of active surface forces. The conclusion to be drawn
from the qualitative data is that both sieving and capture due to
transport mechanisms and surface forces can be important in hydraulic
filtration. The relative importance of each phenomenon is dependent
upon many parameters which include pore and particle geometry. An
accurate model of the sieving process could be used deductively to
estimate the magnitude of capture by surface forces.

An important extention of a planar sieving model would be the
simulation of depth medium filtration. To implement such a model, it
would be necessary to know particle shape and size densities, pore shape
and size densities, and the velocity patterns of the liquid phase in the
pores. Ideally, these parameters would be known in terms of geometri-
cally measurable random variables. While a completely satisfactory
pore size model has not been found in the literature, some promising
work has been done (5, 6, 11, 12, 13). In any case numerical pore size
data gathered by porosimetry or other techniques could be used to ana-
lyze filtration performance in the three dimensional problem. A more
complete discussion of the parameter measurement which would be
necessary to initialize a sieving analysis can be found in Reference 6.

The previous work of the author and that of other investigators
summarized in this chapter has established the need for a fundamental
model of the sieving process in hydraulic filtration. In the following
chapter the requirement will be stated in the definitive way necessary

to attack the problem in a systematlc manner.



CHAPTER TIT
FORMUTLATION OF THE PROBLEM
Objectives

The primary objective of the present research was to rigorously
model the process by which particles suspended in a hydraulic fluid are
mechanically captured by a sieve type filter mediumt The'mechanical
capture, or sieving mechanism, is defined as the geometric interference
between the particle and filter medium or between the particle, filter
medium, and previously captured particle(s), which results in the
capture of the particle.

In order to insure the utility of the model, some secondary
objectives were defined. First, the model must be derived in terms of
geometrically measurable random variables. %his restriction insured
that the resultant model would lend itself to compensation. Also the
basis for rigorous derivation of the process was established.

Second, all variables which are random in nature were treated as
such. In much of the literature random variables in filtration problems
are represented by an expected value. A third objective was to eval-
uate solution techniques appropriate to the general model. The most
applicable solution technique was applied to the solution of several
problems to demonstrate the use of the model.

A further objective was a controlled laboratory study designed

to be compatible with the problems previously considered.

11
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As a final objective, a comparison of the experimental and
theoretical results was desired. The comparison was needed to

demonstrate the validity of the analytical process.
Constraints Used to Narrow the Problem

Certain constraints were applied to the general topic in order to
narrow the study to a meaningful scope. With respect to the analytical
development the following conditions were imposeds

1. Geometrically regular shapes, such as spheres, ellipsoids and
prisms, were used to model pore and particle geometries.

2. Modeling was restricted to the sieving mechanism. That is,
only mechanical capture due to geometric properties of £he particle and
pore .was considered. In the case of partially blocked pores, capture
was required to involve contact with the filter medium on at least one
point.

3. Onlysteady flow conditions were considered over the gross area
of the filter medium.

L« Since the sieving mechanism was to be studied the model of
each sieve mesh layer was considered a two dimensional problem.

The following constraimnts were defined to describe the empirical
test conditions:

1. Measurement of all measurable random variables was accom—
plished by microscopic observation. These variables included pore size,
pore shape, particle size and particle shapé.

2. The sieve mesh tested was to be devoid of any tortuosity.

This restriction had the effect of limiting the geometric capture to a

stable and observable sieving process.
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3. ‘Measures were taken to reduce the effect of surface forces.
Grounding the filter media and use of a conductivity additive were

anticipated.
Statement of the Problem

In view of the stated objectives and the constraints just
mentioned, the following statement of the prdblem was formulateds

The principal goal of the research is to rigorously derive a
model of the sieving mechanism in hydraulic filtration. The model will
describe stable sieving of particulate matter on one or more two
dimensional layers of sieve mesh. Solution techniques for the model
will be evaluated. A comparison of laboratory and predicted filtration

performance will be made.’
Previous Investigations

A thorough literature search has shown that previous research in
hydraulic filtration has been characterized by the use of expected
values to represent what, in reality, are random variables. Since the
present research is based on treatment of these parameters'as random
variables, only the few references, which are in some part relevant to
hydraulic sieving, will be discussed. Aerosol research was discussed
in the previous chapter since the sieving mechanism is not important in
aerosol filtration. The bulk of literature which is most relevant to
the problem as it has been defined pertains to the fundamental stochas~
tic process relationship necessary for the analysis and will be mentioned

4

where appropriate throughout the development.
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A large volume of literature exists on dry sieving. The dey
sieving procedure consists of shaking dry dust through a sieve mesh
series, Such sieves are available in standard pore sizes as small as
20 micrometers. The literature is primarily concerned with separation
rates and is based on mean values of the random parameters involved.
Obviously this literature is of limited relevance to the present study.
A good summary of dry sieving literature is given by Herdan (1L).
Herdan menticons the wet sieving process but states that it is bounded
by a 60 micrometer lower separation limit. The wet sieving process
does not fit the requirements of the present problem since the contam-
inant is in a concentrated solution in which particle interactions are
very significant. No stochastic analysis of wet or dry sieving was
discovered.

Banacki and Bowers (15) have attémpted to measure the pore size
distribution of a paper filter by filtration of a solution containing
a distribution of classified glass beads. No explanation was given to
gsubstantiate their equating downstream bead distribution with pore
size distribution. Actually, what these authors measured was separation
efficiency for the explicit conditions of their test.

Since empirical modeling of the sieving process has been
mentioned, it is at least historically appropriate to note that strictly
empirical single pass separation efficiency tests have appeared in the
literature, e.g., (16). These tests were, in general, run on tortuous
filter media. |

The first positive step toward understanding the phenomena under
study was made by Tucker (17). Tucker conducted tests using Dutch

twiltl woven wire mesh and artificial contaminants. Although the wire
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cloth did possess considerable tortuosity some of the results reported
appear to be caused by the sieving mechanism. Tucker stated that
separation efficiency at a given particle size can be expressed for a

single layer as

F
E(p) = f f‘H (7)‘/7 (3-1)

separation efficiency in the interval P __S,a/z ' _E( /9 t % )

where § P approaches zero as a limit

where,

€(p)

P
fu

The observation was extended to the case of n wire cloth layers in

particle size

1

probability density function of pore size.

series whose overall efficiency iss

: 2 r -2

€,(p) = 1= ~[ 1. p)dy] 52
The experimental results reported show reasonably good correlation
between the pore size and efficiency measurements.

It will be shown in the following chapters that what Tucker
observed is actually a special case of the general model for sieve
performance.

In the present work, several random variables not considered by
Tucker have been treated, inclﬁding: particle shape, pore shape, par—
ticle attitude, and relative angular orientation between particle and
pore. Partial pore blockage is also considered for the series cascade
of sieve mesh layers. The general nature of the analysis presented
herein allows the modeling of filtration due to arbitrary contaminant

and pore shapes in terms of geometrically measurable random variables.
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Since the experimental portion of the present research was
restricted to nontortuous media all capture due to sieving was micro-
scopically observable. OCareful control of the particle concentration

was possible.

Plan of Attack

Once the problem had been defined and the pertinent work of
other investigators reviewed, a plan of attack was formulated. The
course of action which was followed will be discussed briefly here to
explain the continuity of the research effort.

The first step in the research was to formulate the general model
based upon the assumptions implied in the statement of the problem and
in terms of the following random variables:

1. Particle size.

2. Particle shape.

3. Pore size.

L. Pore shape.

5. Particle attitude.

6. Angular relationship between projection of particle in plane
of mesh and the pore.

The following sub~processes were to be modeled:

1. Partial blockage of a pore by a particle of differing size and
shape.

2. Passage of multiple populations of particles through one or
more layers of sieve mesh.

It was anticipated that some of the input probability density

functions would be known only in numerical form. Also, it was
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anticipated that known functional forms of some input probability
density functions would be too complicated to allow solution of the
integral expressions in the general model in closed form. The following
solution techniques were proposed for a feasibility evaluations

1. Direct numerical integration.

2. Weighted simulation.

3. Monte Carlo simulation.

The general model and the appropriate solution technique were to be

demonstrated by application to the problem types described in Table I.

TABIE T

EXAMPLE PROBLEMS TO BE CONSIDERED

Problem Pore Shape Particle Shape
A elliptic ellipsoidal
B square ellipsoidal
C elliptic spherical
D square spherical
E A two mesh layer combination with one

of the contaminants, which was chosen
to be two layers of elliptic pore
media and spherical particles.

Critical steps in the empirical study were foreseen to be:

1. Preparation and evaluation of artificial contaminants.
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2. Design of special test apparatus.

3. Performance of tests.

L. Evaluation of results.

The final phase of the investigation was planned to be a
comparison of the experimental and analytical portions. The comparison
was meant to show the validity of the work and to demonstrate the po-

tential of the techniques developed for the solution of other problems.



CHAPTER IV
GENERAL ANALYSIS

Introduction

Objectives

The objective of this chapter is to rigorously derive a model for
the sieving mechanism in hydraulic filtration. It is proposed to treat
all truly random variables as such. Input data for the model will
include all random variables and functional relationships which describe
pore and particle, size, shape, frequency and orientation at the up-
stream sieve mesh surface. The desired output of the model will consist
of particle size distribution downstream of the mesh, separation effi-
ciency for each particle size and the new pore size density function for
the sieve mesh after passage of the population of particles. Appropri-
ate extensions of the basic model are desired to describe multiple

sieve mesh layers and/or multiple populatioﬁs of particles.

Sequence of Derivation

The rationale which explains the continuity of the entire
derivation is expressed in the following sequence of steps: First,
the variables of the problem are defined. Second, expressions for the
probability of capture and escape are derived for the most fundamental

case in which particle capture is defined by the function,

19
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£ > H, (4~1)
where

F
H

Third, separation efficiency is derived for the fundamental case.

Fourth, the fundamental model is extended to consider the effects of

longest particle dimension

longest pore dimension.

multiple layers of sieve mesh and/or multiple populations of particles.
The fifth step is to extend the model to capture due to more compli~
cated pore and particle shapes. This step involves consideration of
particle orientation with respect to the plane of the sieve mesh and
particle attitude with respect to a vector perpendicular to the sieve
mesh. The final step is to derive the effects due to pores only
partially blocked by captured particles.

The output variables will, thus, be expressed as integral functions
of the input variables and the functional relationships stated by the
assumptions. In general, the output functions will represent probabil-
ity density functions conditioned to meet the statement of the

problem.
Assumptions

The fundamental problem which has been defined may be
visualized as filtration of a dilute solution of particulate matter
through a sieve mesh. The following assumptions are made to relate the
physical problem to the model which is being derived:

1. ©Sieving is the only filtration mechanism considered. That is,
particles are captured only by virtue of particle size and shape, and

pore size and shape and by virtue of orientation. FEach particle
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captured must touch the sieve mesh on at least one point.

2. An infinite number of pores and particles exist. In the
experimental problem, where finite numbers must exist, satisfaction of
the first assumption is sufficient to preclude a filter cake mode from
being formed.

3. The sieve is two dimensional. That is, no significant tor-
tuosity exists in the pore structure of the sieve mesh. The pores are
thus characterized by their two dimensional geometry on the upstream
side of the sieve mesh.

L. All of the following random variables are mutually independent:

a. particle size.

b. particle shape.

¢. pore size.

d. pore shape.

e. angular orientation between pore major axis and the
projection of the particle major axis in the plane of the sieve mesh.

f. particle attitude with respect to the plane of the sieve
mesh.

5. .Particles and pores can be modeled by idealized geometric
shapes.

6. Pores are blocked by particles in a concentric manner (particle
and pore center are on a common vector perpendicular to the plane of the
sieve mesh). Experimental observations have shown that while this
assumption is not strictly correct, the expected value of particle and
pore relationship is reasonably concentric.

7. New pore openings formed by partial blockage of a sieve mesh

pore by one or more particles are the same shape as the original pore.
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In some instances, this assumption leads to the formation of equivalent
pores which fit the assumption exactly only so far as capture properties
are concerned. For an example see Series C in Appendix A.

8. No inter-particle reactions take place.

9. Flow velocity profiles of the carrier liquid do not alter the
assumptions mentioned above.

Conclusions which affect the character of the general model are
discussed chronologically as they are required along with appropriate

references and explanation.
Definitions

Consider a population of particles éabh of whose iohgest dimension
is a random variable, P. The probability density function which re-
lates any value, p, to its frequency of occurrences within the pop-
ulation is defined as, fP(;ﬂ. Similarly, the probability density
function of a longest pore dimension random variable, H, is, i&{h).

The graphical representation of two particular values of these random
variables is shown in Figure 2. In the general case the relationship
between the particle position and that of the pore is also a function
of random variables which define the spacial orientation of the particle
with respect-to the pore as well as the shape of both fundamental
geometric figures. The relationship which defines capture for the

general case is, then,

P*(ﬂ 2, 0, 6> W h)ch)) (1-2)

where

P* and h* are algebraic functions defining critical
dimensions of p and h, respectively.
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cp and ch are variables which determine the shape of the
particles and of the pores and are distributed according
to_fCP(cp),and fon (ch), respectively.

= the angular relationship between the major axis of the
particle and the plane of the sieve mesh. (Pis distributed
according to f <w(())
A = the angular relationship between the maJor axis of the

pore and the projection of the major axis of the particle,
in the plane of the sieve mesh. &is distributed according

to fg(é)'

Obviously, Inequality L4~1 is a special case of Inequality L-~2 for
which the sizes of the particles and the pores are each completely
characterized by a single random variable and the angular relationships
vanish. Examples of such a combination are spherical particles con-
fronting round or square pores. More specific examples are discussed
in Appendix B. The method of development here will be to derive a set
of relationships based on the relationship of Inequality 4-1 and there-
after employ transformations to treat the more general case represented
by Inequality L-2.

By definition, the fraction of p sized particles in a population

is defined by the limit:

-4
F(Io) = [crm Pr‘)(ﬂ —£<£\<P’L——£} (1-3)
Af~>0 AP
Further the integral of Equation l~3 represents the probability that a

randomly selected particle will be of a size less than p, as expressed

by:

)
7 ie<pi| fetpdy. (-

Of course, exactly analogous expressions to Equations 4-3 and 4-) for

the pore size random variable, H, could be written.
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Probabilities of Capture and Escape

For the fundamental case characterized by Inequality L~1, the
probabilities of capture can be derived b& consideration of the
arbitrary pore and particle density functions shown in Figure 3a.

- Since the pore size is independent of the particle size, and since
capture of a randomly chosen particle is given by integration of the
pore and particle density functions over the crosshatched area shown

in Figure 3b,

75031} ﬁ I £ eoda] £, )iy

-_-[[ jﬂ(x)d?(] fp (g)é/y .

Equation L-5 is also the expected fraction of all particles which will

(4-5)

be retained by the sieve mesh.

Integration of the'appropriate density functions overvthe Cross—
hatched region shown in Figure 3c yields the expected fraction of all
captured particles less than any arbitrary size, r. The resultant

expression is,

LU s dy
>H- -
R o oidny

The fraction of captured particles within a certain size interval,

say r"—%f(fgm‘-"é‘ , is given by
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RS r- 4P rHL| poH3= f f £ (0dx £, (y) dy
f U’Hz)c/ﬂff(y)dg (4=1)

In a similar way the pore distribution blocked by particles can be

used to condition the probability. Thus, the expected fraction of

pores less than size r blocked after one passage is:

(L hedAt, idy (12
f"U fodRf, ipdy

The expected fraction of blocked pores in an interval of size dr is:

/?fr‘ Uy r 4 | PoH3=
fd,, U7 @(Z)C/ﬂ f.(y)dy (4-9)
"~z _ _
I, U, fewda £ () dy

p.SH<r|E>Hy=

The same rationale is used in conjunction with Figure L to describe

the probability of escape. That is, each probability is conditioned by

the probability §P< H} . The analogous results are:

(4~10)

rsr< =L L fedz] futpety
LU R d7]) Faty) dy

P§ P<rlE<H3= f;[f;ﬁ&)c/r] Fety)dy (1-11)
LU E e ) Fatg)dy
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/?,;,A are P< Ffdp,f<H}—-
fc,,, U ficodx] by (pcy (1-12)

[ [ fitea] o dy

r' 3
9 f H< r| P<H§= UO (z)f/z]ﬁ//y)c/y
“”[fﬂ @ dr |f,(y) dy (1r13)

o

f?ﬂg:f1 r<HL Pt QZ(C?
rm"[f f,adx|{,¢4)dy
[ U I () dx] £, dy

(4-1L)

Filtrate and Pore Size Densities

The remaining step in the fundamental analysis is to derive the
probability density function which describes the pore size distribution
and downstream particulate distribution after passage of one population

()
of particles through a layer of sieve mesh. The notation {;()(h)

J
will denote the density of open pores of the jth sieve mesh layer after

: : - #L) :
passage of the i th population of particles. Similarly, P G{) will
[6))

denote the size density of the i th population of particles after

passage through the j th sieve mesh layer.
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Figure L. Schematics for Derivation of the Probability of Escape
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By definition the distribution function, F, is an integral function
of the probability density function, f, and can be related to the

associated probability as follows for the particulate density,

(o<t (£ ple<k] =i Rizcpiea] ™

With the notation given above and using Equation 4-11, Equation 4~15

becomes,

fplE<H) = fer /’>f OW/Z

[T A mb e dy

which is the particulate density of the filtrate after passage of one

population of particles through one sieve mesh layer. Hereafter the
subscripts and superscripts of the probability density functions re-
presenting initial conditions will be suppressed. The notation
p*< H* will be used to denote the critical condition for capture on
the appropriate population of particles at the appropriate sieving
source.

Similarly, the pore size density of a single layer after passage

of a population of particles can be expressed as follows:

fu(h1ee<i)= 2 [£,2 (h 1 £<i)]

:5’74 [ 5 Heh | B<H3)]

(4~17)

_E () 0z
o [ ReodXfugpdy
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Separation Efficiency
The fraction of p sized particles downstream is

Particles Downstream = [/ f ® H; 1@:: ( ID lf < H) ' (4-18)

Thus, the separation efficiency for a single layer may be defined,

E((.':(F) = 'LP'”§P<H}&<fg)(PIF<H):]/FE(/9)' (m9)

As a matter of clarity, the equivalent frequency analysis expression

would be given by,

E;(p)'= No. p size particles upstream ~ No. p size particles downstream
No. p size particles upstream
(L~20)

For any general condition of capture, the efficiency can be expressed,

ep1= 1 - [rlescape) £y, (plescape) fr,py. w0

For the fundamental case under discussion, use of Equations L-16

and 4-19 yields the special case,

) P
G(:)(p) =/-L f, (y) o/y ’_L ﬂ(y) 6@. (1-22)

which demonstrates that the condition observed by Tucker (16) is a
special caée of the general expression.

A hypothetical example is now presented to clarify the
preceding exposition. Consider spherical particles which oppose
cylindrical pores with the following densities

f24(%7) = /3 ) o <h S;:g)

and,
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=
t(p)= 7t | O<p<3,
The resultant pore and particle size densities, probability of

capture and separation efficiencies can %e calculated as follows:
Q) - 2 1~-16
ﬁoo) (P/E<H> 5(3-P) (1-26)

ﬂf(f: (hlpe<H)= h | (4=17)

=z
]
/?"?EQL/} = f (4-10)

e(P) = /0/3' (L-22)

The reader will, no doubt, perceive that problems of even limited
complexity will generate integral expressions that will be difficult
!

or impossible to solve in closed form. Solution techniques will be

discussed in Chapter V.
Multiple Sieve Mesh layer Analysis

It is of interest to extend the single layer analysis to include
passage of a population of particles through n sieve layers in series.
Later we will discuss m populations of particles passing through one
sieve layer and m populations of particles passing through n sieve
layers in series. Since the single layer case has been derived, the
objective of this section is to find an algebraic identity which will
reduce the effort of performing the single layer calculation n times.
Tt is obvious that if the initial pore size distributions are not iden-
tical, the simplification may not be obtained. Thus, consider a

population of particles with density function, fP(p), passing through n
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. . - @)
sieve meshes with densities, Féo))(h):ﬁ;?m) = .= {;J(n(;,;) :.’C;(h) .
1

A simple iterative process based on Equation L-16 yields the

desired expression as follows:

£ (o LESH) = £ ")y 2
Iy (= L0 dafglpdy

_ @) futodz [T Godx
[ heodafuy) [ fada dy

e@lphedd

foﬂ () ) ) Ay
/

G (plEXH") = oy )|y 17
[ f f.edz £, (”(5/)4/7

- e[ 60dA]
[ edx] ﬁw)a/f/

The process 1s repeated until the expression for the n th layer is

obtained, or,
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6ol 2%t ~ folp )[04 (-
NN RTL,

The density function of unblocked pores in the n th layer after passage

of the first population of particles is found by combination of

Equations L-23 and 4-17 to be,

£ (h 1 PXHY) = £,00) [Mop @) i
LUt 4] fe, (ndy

G ROl oa) dx
f Uy f,,éwc/x] f(y)a’y

The combination of Equation L-10 and Equation 4=23 for the

(4-21)

population after the n-1 th layer, represents the probability that a
randomly chosen particle in the population remaining between the n-1 th

and n th sieve layer will escape capture, or,

I ERAD NG 2
[ ([ f.eoda]™dy

The probability that a randomly chosen particle from the original

population will escape capture is expressed by the product,

T¢ * _.n 0 X %
Y {E<H"} kil §P<H 3.
(n) i= O]
Use of the above expression and Equation L4-25 with appropriate

cancellations gives,
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TU (P </—l> f (3)U {H/X)/W]dy (1-26)

Combining Equations L4~18, L4-R6, and L~R3 yields the series separation

efficiency for n layers, or,

;(I)(,D) = /- [ffu(y)a'g] (1-27)

Now consider the previous example as applied to the multiple layer
problem. If a population of pafticles is passed through three (n = 3)
sieve layers in series the resultant pore size density, particle size
density, probability of capture and separation efficiency are

respectively, calculated by the appropriate equations as follows:
(/) Ko % 3 (4-23)
2 = —
(/9 2<HY) % (3-P)

H“(h | P<HY) = iLz *~(3-h)] (1-21,)

(/)(E* ) = ?/‘7’ (4=25)

/3)
Ta) X _ K> | :
/%é) %f </7’§ = Yy (1-26)

7'0)

€Em(P) T 1~ £ s

) . (4-27)
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Multiple Populations of Particles Analysis

A similar development can be established for the case of m
identical populations of particles which are sequentially passed through
a single sieve mesh. The iterative process is based on Equation L-17

and is summarized below:

fﬁzz)) (h|P<H) = ﬁ, >(/7) f fo0) dx
ff[fo Lo dz) £, () dy

W[ hmdd
[ {,(w[f”f(m/x]

so that,

67 (h1E<H) = fapy (h)f £ dz
ﬂf F(%)clz H()@)dﬂ (1-28)

_fmllhydd”
[Fo|f)feoda"dy

Combination of Equations 4~16 and 428 yields the expression for the

particle size density due to passage of the m th population of

particles through the single layer, or,

71 25<HY) = o (o) [ JZ’,‘”(W’&]
[T dx BTy
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‘F@?P“?(H*) @@f [:f 7[(76) 6171] 'FH () dff (u-zé)
f”[fﬂ,a(z) Az)"f,(g)dy

The probability of a particle randomly selected from the m th

population escaping capture can be found from Equations 4-10 and 4-28

to be,
2 (m=1)
B (ekn) - J, [ heoda) b ) dy

(4~30)

_ L hal tedy dy
Lol fedx]dy

The probability that a particle randomly selected from a randomly

selected population will escape is found by the summation,

Pres” NEATLE ZP (P<H)

m

(4-31)

o)

1S Ltwlleedd 4y
m =1 hd ’ y TR
[t [ o da] "y

The total efficiency can be found from the summation,

€)= 1 = foo (pl e VR (E5H)
= fo(P)
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(4-32)

m i~/
ezl‘)(mg)p) =[~%Z" fp:[[: {‘;(Z)é/}?ﬁ] {/(lj)i{g |
L ([ fadx] ey

It should be noted that the limiting case of Equations 4-30 and
L-31 as m becomes lafge may violate the assumption which prohibits
capture by means other than sieving. The expression for overall
efficiency for multiple populations of particles is essentially a
stepwise calculation and, thus, is only reported in the form of
Equation 4-32.

Application of the conditions of the previous example can be
used to demonstrate the calculation of particle and pore densities due
to passage of three populations of particles (m = 3) through a single

sieve mesh. The results are:

(3)
o (P1ECH) =4 (577 (129)

H?)) (h|P<H*) = _g_ (4-28)

Y(PIHY) = (130)

7 (3P
GT(,C?(/D) -4 S (br22)

L=
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&) X ¥\ =
gy (2<HY) = D5 -2

Equations 4-23 through 4-30 are expressed in terms of the initial
pore and particle density functions. They, therefore, offer a‘worth—
while computational tool. No apparent algebraic manipulation exists to
compute the conditions after passage of m populations of particles
through n layer of sieve mesh. The problem is one which must be solved
in a stepwise manner. A technique for mechanization of the problem

will be considered in the next chapter.
Particle Capture

Even in a study restricted to idealized particle and pore
geometries,_fhe criterion for particle capture is generally more com—
plicated than that of Equation L-1. Figure 2 graphically depicts the
random variables upon which capture depends. The most general condition
for escape can be written in terms of critical pore and particle random

variables P¥ and H¥, and is,
' (e, ce, @6 <H(ihcH (ir53)

where, the random variables correspond to those defined on pages 22
and 24. If the geometric relationships implied by Inequality 4~33 are
known and the random variables are independent, then the expressions
which were previously derived can be extended to reflect the more

complicated geometric capture.
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From geometric relationships the probabilities,

Fr§e<pl £"<H%

Pr §H<h | B*<H"3

are derived as integral expressions. Then the desired conditional

and

probability densities after filtration can be calculated as follows:

(n(/p P<H") = c/ /%5f</7f<“}) (4-31)

u)

and,

Fun (RIE<H) = 5 /74 §H</7 [EXHY. sy

Ha)

Examples will now be considered to demonstrate the use of Equations
L-3), and L-35. Some useful geometric relationships are derived in
Appendix A. Only the results are employed here.

Consider spherical particles approaching elliptical pores as
shown in Figure 5c. If the major and minor axes of the pores are

related by a constant, k., the proper criterion for escape is,

"
FP<fe H. (1-36)

The operations corresponding to Equation L-~3l) and Inequality L-36 are,

o (ple<hi)= 2 ) 4 [, fo0dx bpdy
ff £, Tp(y)dy

- (4-37)
= FP(Pw) fF/m f, @) Az
[, frc)dx Fpdy
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£, (] B H) th w0 s9)
[THEco dx ey

The region of integration is shown in Figure 6.

The, by now familiar, example can be solved for k1 = % to yield,

‘FEG) ,D/_E <H/l> = ';_(3—2/0>) /Omax =:%‘ (r37)

)

(0 (h E<H) = G b3 e

Now suppose the critical dimension of the particle had been an

arbitrary function of p such that the criterion for escape was,

£ <a(H), (1-39)

By referring to Figure 6b, the solution for the downstream particulate

density can be seen to be,

folpl B2 (Pl fi0dz
[ bodtuds

Similarly the remaining pore size distribution is,

b (hlE<gt)=1, (W e dn i)
AN FodaT, dy
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Once again the former example is employed, this time with g(H) ='Vﬁ.

The result is,

friy (p 1 29T 327, o,

Q)
1[,40) (/17/ P<In) = 5/%- ) hmﬁ:g-

(4-41)

Another possibility is that the criterion of capture can be
affected by more than one random variable. Suppose, for instance, that
the shape factor, CH, of the ellipsoidal pores shown in Figure 5c is
itself a random variable with density function fCH(ch). To find the
desired results of filtration, first define a new random variable by

use of the function,

h* = ch -+ h,
The density function, fH*(h*), may be found by a widely known trans-
formation (See Breipohl [18] on page 151). First, define

u=h,

then,

fowe (W)= £,y (h@) ch (e HD) 1T )
where _ghu((/) gﬁ{g) 85/) ((,/) /Ll")

7= |Qchtuh chuh? on*
Qu dh*

’

Since CH has previously been assumed to be independent of H, the joint
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density BEquation A-42 is known in terms of marginal densities, and the

random variable, U, can be removed as foilows,

0 o[Och @ F)
NCON NACICYTCT) b vl (TS

The problem of the downstream particle size distribution is, at this
point, analogous to the fundamental problem whose solution is Equation

4~16, so that

£ (pl E<H)=f, (L fe(Mdr o
() DD ’
ffy ‘FHn(%%/xf;,(y)&((j

(7
The remaining pore sige distribution is analogous to Equation

L=17. The calculation yields,

() * * " b
o (12 00 Limode
L[ f,e0dx fuly)dy

The remaining pore size density in terms of the measured dimension,

' h, is obscured since Cﬁ, and H are no longer iﬁdependent after fil-
tration. That is to say, the pores with small values of h and/or ch
tend to be selectively blocked. However, the h*¥ variable is more
meaningful physically than the h variable for further capture analysis.

For example, consider the density on ch given by,

£,(ch)= /'W//Ch ) , 5L chgll,

The density is shown in Figure 7 along with the mapping from the (h, ch)
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plane to the (u, h*) plane necessary to perform the integration
described by Equation 4-43. The new critical dimension density must be

expressed over two intervals as follows:

y |Qh7
d h*

du = _%- o< Z

*‘/47
{H*(h)‘ 3 p hx-

NN IRV, ;
b (W)= 11| du= S (F 1), 5<hs

The remaining épplication of Equations L4-LJ) and L-L5 is straightforward.

A still more general condition for particle capture involves a
particle of shape sﬁch that its capture is, at least some times, a
function of its orientation. Simple examples are shown in Figures 5a
and 8. The corresponding criterion for escape is,

(e, cp &) < H'(H, CH),

As an example of this sort of problem, consider an ellipsoidal
particle in the plane of the sieve mesh as it impinges concentrically
upon a square pore. the particle will escape, if

@ pIH

or

©) PP HLE
G in (/7» £)<E sz(/@) /7))

where

éQmin, Emax are the minimum and maximum angular
displacements which will allow capture. Here let
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cp = constant.

Examples of the functions é9min and c;%ax are presented for ellipsoidal
particles with square and elliptical pores in Appendix A. 1In the case
of concentric elliptical pores and elliptical particles the closed
form solutions for é?min and é9max does not exist and must be found
numerically. An algorithm to evaluate these quantities is presented in
Appendix B.

Since H, P, and &G are independent, the probability used to find

the pore size distribution after filtration can be written as

¢ i<k | B<H\ ) <2 < HS 2 ) Gin< ©< Oma 3.

The required operations may also be carried out in two steps and

Pr§ jich| escape3d P H<h| BH3 B5 <3
+ Pr§ H<h| Q3 Br$ @3/ [PrSB<H3t RG] (a6

= B SH<h, IKH3 + Pr§ H<h, &3
Fr§ P<H3 +Fréq3

Q=§ & E<HCE, Buin< 8<Eme 3,

Thus the desired density function is

where

a)

£, (Plescape)

(4=17)

_ 2 S H<h, P<HiT S RSN, &3
PrsP<Hi + 7 563
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which can be expressed in general terms, as,

(h/escape) F(/v)f @) dx +

(/)

hep G5
f @)z 1, p@)dZ] /o)

f,(h)]

Enil”

L

%9)
L[ TEeodxty ey + ], jﬁ ¢ o idniody)

In the same manner the analogous expression for the downstream

particle size distribution is derived with the result,

FEZ) (/9 escape) = [:75 (p) f feydx +

p 67,,79,,(7() 1) ,
) f.@ C/Z o (7()6/?8 "(L4~L9)
Q7 l; Emin Z%Z,/é) :]///

Ud)f £ eodr Fplyddy T lp f F edz2f Oodzﬂ,gdg]

It is quite obvious from the form of Equations 4-48 and 4-49 that even
the most simple density functions and algebraic functions can lead to
intractable integral expressions. Solution techniques are discussed in

the next chapter.
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Particle Attitude

Since particles approaching a sieve mesh are free to assume any
orientation in three dimensional space, it i$ necessary to model the
projection of the particle as seen by an observer looking out of a
sieve mesh pore. Once a probabiiity density function has been developed
for particle size and shape in a controlled spatial orientation, the
next step is to determine the probability density function for the size
and shape of particle projection in the plane of the sieve mesh. It
will be assumed that the particles are uniform solids of rotation or
regular flat-sided solids. Thus, the results of transport of a single
particle through the viscous medium can be the basis of the required
transformation in the stochastic problem. The resulting integral
expression can be solved only in closed form for the most simple cases.
A numerical technique is outlined in Appendix B for evaluating the

expression.

The Deterministic Problem

It is of fundamental interest to model the hydrodynamic forces
due to translation of a solid of rotation-through a viscous liquid.
The genéral problem must consider relative motion between the particle
and the fluid at infinity. Examination of the body forces on small
(nominally 2;&0 particles in hydraulic oil establishes a terminal
velocity yielding a Reynolds number well within the range of creeping
flow. The equations of motion in this case can be written without the
inertia terms.

Batchelor (19) on page 238, and Happle and Bremner (20) on page

220, refer to lamb's (21) development for the problem of settling of
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solids of revolution. It should be noted, however, that Lanb's
solutions for the ellipsoid of revolution settling slowly in a viscous
fluid applies only to the cases in which a major axis oflthe ellipsoid
is aligned parallel to its velocity. Happle and Brenner give some
useful extensions of Lamb's expressions.

A particularly important concept developed by Happle and Brenner
on page 199, is that bodies of revolution poSsessing fore and aft
symmetry and uniform density do not generate a hydrodynamic couple due
to slow translation through a viscous medium. Therefore, an ellipsoid
will not tumble as it settles in a viscous fluid. The ellipsoid will
tend to settle on a nonvertical trajectory with the same orientation
throughout its translation. Herdan (14 ) concludes that compact parti-
cles of irregular or angular shape will retain their initial orientation
while translating in the creeping mode. Herdan also states that
nonspherical particles with three mutually perpendicular planes of
symmetry will fall without any preferred oriéntation. The conclusion
which should be drawn for the idealized problem which has been defined
is that particle orientation is non—prefereﬁtial. Therefore, it is

appropriate to characterize the probability density function on

particle orientation as uniform between O andqu.

Modification of the Particle Probability Density Function

The general problem has been established to find the probability
density function of the projection of the particle, fS(s), from the
probability density function on the particle characteristic dimension,

fP(p) and the algebraic relation relating projection to length, or,

5= 5(p; @) (1-50)
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where(f = orientation perpendicular to sieve plane, and

£(o)y- 2%, o<g<h. (1-51)

The problem is solved by the application of a well known transformation
and the fact that the marginal densities fP(p), and gmﬁp), are inde-

pendent. In general the transformation is:

1ps,u (s;u) =Tea(p) )| J| (1-52)
= {E (P(SJCD)"% (0/5/))‘\7]) (4-53)

where,

S is defined in BEquation 4=50
u=d,

and, therefore,

[T =735 (-5

To find the marginal density we need only to integrate Equation 4~53
between the limits established by mapping the boundaries of the p,

(ﬂ plane into the s, u plane, or

“(‘:Prfux)
(6 =] (psanfy (@] Ildu,

u (S) P mz'n)

For example, if p is the diameter of a hemisphere with

(1-56)

fo(p)=%,  o<p<s3,

then,
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Equation 4~55 becomess

Vo
— L’t / Jq = 5 -
fs ()= 377’f0 rreasd sy, o5<T 0

and

cos™(% 1)
_ 4 | / U
f.(5) —B,rf;,fww d -LtnS 33 e

Integration of Equations L4-57 and L4-58 over their respective ranges of
S demonstrates that fs(s) is indeed a density function. A numerical

technique for solution of Equation 4-55 is presented in Appendix B.
Partial Blockage

Capture of a particle by a pore whose shape is not identical to
that of the particle projection will result in the formation of a
finite number of pores smaller than the original pore. It has been
previously assumed that the shape of the new pore can be modeled as
geometrically similar to that of the original pore so long as the criti-
cal size variable for capture, h¥, is accurately described. In general,
the new pore size is an algebraic function of the formerly mentioned

random variables, so that,

hneW:;Z //9/ ﬁ)é’ ?) Vi 6/7)

For the purposes of the following exposition, the case in which

the new pore size is a function of the former pore size and particle
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size, as well as the case involving the angular displacement,é9, will
be discussed. In the first case the new size relationship can be
expressed,

hoew = 25 (p, ).
If k., new pores are formed by one blockage the total pore size distri-

3

bution remaining after filtration of one population of particles is,

£ (B =, (B2 FieXn®y +
/(3 ﬂfmw(/g/ﬁk‘)h'*) Fr” 5/7 ¥>/‘/§] / (4-59)
I3 P"‘<H? th P § PN

ALL of the terms of Equation 459 have been previously derived with the
excepbion of -F ( h| P> Hj That term can be obtained, in
general, by defining,
u=h
so that
£ (st P2 6 (puan) £, (b)) T]
e fré f*‘>H g

7- @(H,,WU) a h ’”’ ) @p(ﬁw%/)

dh () ah(a) Ot
I ou

where

G2~ P (P, u),

and,
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3 pl et
FH new -E)L,)‘L‘]CE(P(A [/) Tf(ﬁ(ﬂ)),é Hyew ,6/6{
-~ Fr$ P >//}

As an example if

f s PH"3 = B3 P<H3

then Equation L4~59 becomes,

£(R)- 1, (/v)ff mc/xfkff(ﬂ/v AGIOYTI
ks =k [ 7f, (dxfddy

The modification of Equation L4-59 required for consideration of an

angular dependency upon capture is as follows, since,

Frew ~9s (h, ) &)

and defining

u=h

U6

and

it can be shown that

- 5,0 (hnau) U) U)
J= 750,

where

Y (’1_7”%.4). V)
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Comments on the General Model

In this chapter expressions have been developed for the particulate
densities and pore size densities resulting from filtration of ligquid
born particles ﬁhrough flat sieve mesh layers. Multiple sieve meshes
in series and multiple population of particles problems have been
analyzed also. The derivations are in terms of the geometrically
measurable random variables: pore size, pore shape, particle size,
particle shape, particle attitude and the angular displacement between
the particle and the pore major axes. Necessary algebraic relationships
were also introduced to describe particle capture and partial blockage
of pores. A few hypothetical examples have been included, and a number
more considered by the author

Examination of at least ten other example problems has led the
author to two notable conclusions concerning the utility of the general
model. First, equation forms presented above are the most convenient
for problem solution. Further manipulation of the general integral
expressions will tend to make the calculation of integration limits for
a particular problem more difficult. The problem represented by Figure
9 1s an example.

Second, only the most simple functional forms will admit closed
form solutions for the integral expressions. Therefore, whatever
quantitative results are to be obtained for practical problems will have
to be based on numerical solutions. Numerical techniques are discussed

in the next chapter.



CHAPTER V
SOLUTION TECHNIQUES
Introduction

The general expressions for the probability density functions of
pores and particles remaining after sieving have been derived. Of even
more specific interest i1s the expression for separation efficiency
which has also been developed. These expressions can be described as
nested integral functiéns of the original marginal probability density
functions.. It is immediately evident that difficulties will be en-
countered in integration of these expreasions for realistic
probability density function.

The elementary doubly nested integral density functions which are
integrable in closed form include: uniform, linear, exponential and
identical half normal. Those integral density functions whiéh are not
integrable in closed form include: Gamma, Beta, log normal, normal
and non-identical half normal. Thus, it can be immediately concluded
that since lognormal particulate densities are common, a closed form
solution cannot be obtained in the general case. It is then necessary
to evaluate the means of solution which will admit complicated functions.

The ideal solution method would be straightforward, accurate,
economical, and accept data in numerical rather than functional form.
Taylor series expansions were attempted without notable success. The

remaining methods of solution can be categorized as direct numerical
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integration, Monte Carlo simulation and weighted simulation. These

methods are discussed in more detail in the remainder of this chapter.
Numerical Integration

No doubt, the most straightforward method of solution for the

I

general forms:

rr-f
WA

frrex
_ @)d=* N
ro Lo

is numerical integration. Provision must be made for calculation of

Frax )

f ]CH @) dz FE(?C) 6/76 (5-1)
H(x)

the limiting values at appropriate points in the solution. A general
scheme for calling a numerical integration subroutine appropriate to
the solution of the expressions marked I IT and I IIT is given in

Flow Charts, Figures 10 and 11 respectively. The flow charts and their
corresponding digital computer user oriented algorithms are general.
However, the algorithm is left sufficiently flexible to allow the user
to arrange the order of integration to facilitate computation by taking
advantage of known functional relationships. Note that to solve a
given problem the algorithm may have to be applied several times.

The general numerical integration technique is easily programmed
to accept data in numerical form. With the probability density
functions given in numerical form the transformations necessary to
describe partial blockage (see Equation L4~55 for example) add

complexity to the problem. ILinear transformations do not affect the
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size of the independent variable intervals. Non-linear transformations
do affect the size of the independent variable intervals. Thus a
smoothing routine may be required. The smoothing process is a po-
tential source of significant error since the original histogram data
is not unique between data points.

Accuracy in the numerical integration is determined by the size
of the increments on the independent varisble and order of the inte-
gration fitting routine. The size of the increment is practically
determined by the data available. A third order fit such as Simpson's
Rule (see References 22 and 23) is considered adequate.

As an example the integral of the form of Equation 5-1 was

evaluated as,

%
T E{_/; V;di Ve dx = //l (5-3)

The numerical solution was solved without significant error since
Simpson's 1/3 Rule is exact for up to third order functions.

A similar integral expression whose exact solution is,

W~ .
T I [ hde zdz=319, G-

was solved to demonstrate the error generated due to overlapping
intervals. In this case, reduction of the step size in the inner
independent variable by a factor of four decreased the error by a
factor of five. ‘

A triply nested example was solved according to the algorithm

shown in Figure 11. The expression which has the exact solution,
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ovil/g

5 X 30
[ =[] Fdebdntdg=ly. o

was solved without significant error.

Thus, in the manner shown, any of the expressions generated in
the previous chapters may be evaluéted. The major sources of diffi-
culty lie in the complexity of the limit functions and in nonlinear
transformations which may be required. The problem may be made easier
by modeling the numerical probability density function in functional

form. However, that modeling is another potential source of error.
Monte Carlo Simulation

The integral relationships solved in the previous section
effectively provided a stochastic model of particle capture and pore
blockage. These relationships can be estimated by performing the
deterministic problem with a large number of randomly selected samples.
The general Monte Carlo method is discussed in many references (18, ZA);;;
The Monte Carlo simulation is perhaps the most straightforward method
which can be applied since it circumvents most of the algebra and cal-
culus associated with the analytical solution of the problem. The
characteristic disadvantage of the method is that a large amount of
effort may be required to obtain enough random samples to insure the
desired accuracy in reconstruction of the data.

The necessary steps in performance of the Monte Carlo simulation
ares:

1. Select random variables from original distributions.

2. Por each set perform deterministic capture‘and blockage
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operations.

3. With the results build new pore and particle densities.

L. Test to see if sufficient samples have been taken.

5. If more samples are required repeat steps one through four.
Implementation of these steps is shown in Figure 12 as a digital
computer algorithm.

An additional advantage of the Monte Carlo simulation is that the
use of numerical data without a functional approximation is convenient.
A suitable uniform random number generator is required. The SSP (23)
generator called RANDU has been used thus far. It is assumed that the
accuracy of the result will be reasonably as good as the reconstruction
of the input probability density functions. The increments on the
output function can be made as small as needed.

Hahn and Shapiro (24) point out that estimation of the error band
associated with a Monte Carlo generated expected value is the same as
estimating the error band for the expected value of the pb parameter
of a binomial distribution. That is, if the investigator specifies an
initial estimate of Py pg, it is possible to use binomial tables (25)
to calculate the number of samples required to insure that the estimate
proportion‘ﬁb does not deviate more than *E from pg-for a specified
confidence level. The calculation is of interest since it is a conven-
ient means of estimating the number of samplings required to reconstruct
the input probability density functions within a given error band.

For example, suppose that we wish to use a probability density
function, fX(x) = .2 as an input function for a Monte Carlo simulation
where 0 < x< 5. We must select random samples by some process so that

the resulting distribution is uniformly distributed within a specified
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error bound. If an error of ¥10 percent is chosen, the number of values
on the x axis within any interval of unit length, Ny must satisfy the

expressions
168 <B- 22
» t

where n, is the total number of samples. The number of samples, n
necessary to satisfy the condition can be investigated with binomial
tables as explained above. For a 95 percent confidence level, the data

in Table IT was obtained:

TABIE IT

MONTE CARIO SAMPIE SIZE EXAMPLE PROBLEM

Number p' DPrss o) PERCENT
Samples fL Lo ERROR
1000 200 225 175 +12.5
LOO 80 98 N t21.3
200 10 52 30 r27.5

Thus, over 1000 samples will be required. Here the percent error
is based on the expected value, p'. Application of the Monte Carlo
algorithm shown in Figure 12 for a hypothetical example problem

verified the magnitude of the error predicted in Table IT.
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Weighted Simulation

The second alternative to numerical integration of the general
model is similar to the Monte Carlo simulation. In exhaustive weighting,
however, instead of reconstructing the input data from randomly selected
samples, each possible combination of the independent variables is
weighted according to its joint probability of occurrence. The method
is straightforward, but is inherently no more accurate than square law
integration. For well behaved problems, a smoothing routine might be
used to create smaller independent variable increments and thereby
improve accuracy. However, counter examples could be constructed which
would be less accurate due to the smoothing process.

The following steps are necessary for the weighted simulation:

1. For the first combination of independent variables, determine
capture and partial blockage.

2. With the results build the new pore and particle densities
weighted by the joint probability of the combination occurring.

3. Tterate through all possible combinations of the independent
variables performing steps one and two for each.

Implementation of these steps is detailed in Appendix B as a
digital computer algorithm,

The use of probability density functions in numerical data form
is convenient with the weighted simulation method. Example problems

were solved to demonstrate the accuracy of the method.
Method Comparison

Any of the three methods discussed is theoretically capable of

solving the entire multi~layer and/or multi-population problem.
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Comparison must be made on the basis of accuracy and economy. The two
criteria are dependent on each other since, in general, smaller step
size intervals improve the accuracy on each method. Resolution of the
output is limited to that of the input for the numerical integration
and the weighted simulation. There is no limit on the output function
resolution of the Monte Carlo method. Inaccuracies are generated in
the Monte Carlo method due to reconstruction of the input functions.

In practical solution schemes the weighted simulation procedure is
analogous in accuracy to the square law integration. The numerical
integration procedure is exact for up to n th order functions, de-
pending upon the numerical integration scheme used. Providing that a
very large number of samples are taken, the Monte Carlo process is as
accurate as the smoothing subprogram which operates on the integral of
the input probability density functions.

In terms of economy of operation we need to consider the effort
required to achieve a certain accuracy. The comparison is complicated
by the differences incurred in solution of particular problems. That
is, multi-layer problems vs. single layer problems, and numerical data
vs, functional form problems could lead us to different conclusions
for particular cases. With that condition in mind, we can still make
some generalizations in comparing the three_mefhods of solution.

The effort (number of operations) involved in all three methods
increases geometrically (as a product) with multiple sieve layers or
populations of particles. The weighted simulation technique also
increases the number of operations geometrically for each independent
variable, while the Monte Carlo technique increases the number of

operations additively for each independent variable. Explicitly,
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where n

and,

Nunber weighted.
simulation- operations
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n- m-NS' NIV

Number layers (5-6)

of particles

It

= Number populations

= Number samples for each passage

Number independent variables

= NP+NH+NCH+NCP+N9H$y,

N CP

particle

n m-NP' NH' Né,' NGP' Ncﬁ

Number intervals on
density,

Number intervals on pore density,

Number intervals on
attitude density,

particle
(5-7)

Number intervals on angular

density,

Number intervals on particle
shape factor density,

= Number intervals on pore shape
factor density.

In general each operation of the Monte Carlo method is computationally

about five times slower than those

of the weighted simulation method.

Comparison of these methods with the numerical integration method

is complicated by the differences in usage in the case of functional

rélationships and numerical relationships. For the single layer case,

the method is efficient, but the effort used in determining the re-

sultant forms and implementing them in subsequent calculations would

be significant.
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- Conclusion

The result of application of the three methods to a simple
idealized problem for which an exact solution exists has lead to the
following observationss

1; Ebr problems with reasonably simple (closed form) limit
functions, the exhaustive weighting simulation is much more economical
to operate than the Monte Carlo simulation. The Monte Carlo simulation
has the potential of greater accuracy but only at an exporentially
increasing number of samples. |

2. The most accurate and most eéonomical method is the’
numerical integration method so long as a transformation of independent
variables does not have to be made.

From these observations the folldwing conclusions are drawn about
problems not solvable in closed form: |

>1. Separation efficiency should be calculated by the numerical
integration method for the single layer/single population problem.

2. ‘Most probléms which involve an independent variable trans—
formation should bé solved by the weighted simulation method (includes
.single layer pore size distribution and therefore most multible layer/
population problems).

3. There rémains the possibility of a problem whose solution
reéuires the trial and error solution of a limiting function of such
complexity that the Monté Carlo simulation, due to its additive

property (Equation 5-6), will be more efficient.



CHAPTER VI
EXPERIMENTAT,

The experimental analysis was an essential part of the present
study. Satisfactory data was not found to describe the sieving
mechanism in hydraulic filtration throughout the long literature search.
Only in a microscopilcally observable experiment could the sieving
mechanism be studied in its entirety. The clean room and filtration
laboratory of the Oklahoma State University Basic Fluid Power Research

Program provided an ideal facility for the testing.
Objectives

Two main objectives were associated with the experimental
investigation. First, it was desired to compare the results of an ex-
perimental model with results predicted from geometrically measurable
random variables by the weighted simulation technique. In this way,
the summation of effects which detract from agreement of analytical and
empirical models could be observed. The data also served as a desired
response for the demonstration of parameter identification techniques.
That is, either random variables or deterministic parameters could be
adjusted to force the simulated results to more closely fit the
experimental results.

The second objective was to generate microscopically observable

hydraulic sieving data. The literature appears devoid of such
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information. Most hydraulic filtration problems are concerned with
tortuous media. Even Dutch twill wire cloth has sufficient tortuosity
that many of the captured particles are hidden from microscopic obser-—
vation of the medium's upstream surface. The nontortuous sieve mesh
chosen for the study provided easy microscopic observation of the
captures which had taken place on its surface. In so far as was
possible, the experiments were designed to promote the sieving mechanism

and retard other separation mechanisms.
Experimental Method

The experimental procedure consisted basically of filtration of a
dilute aqueous suspension of specially prepared contaminant through a
flat sieve mesh. The filtration was performed slowly but at a velocity
faster than the calculated sedimentation of the largest particle. The
apparatus used was specifically designed for the experiment and is
shown in Figure 13. A vacuum pump was attached to the flask to control
the rate of filtration. The filtration was categorized as single pass.
Microscopic observation of fluid samples upstream and downstream of the
sieve mesh provided the basic quantitative parﬁicle count data from
which separation efficiency was calculated. ‘In addition, microscopic
observation of the sieve mesh yielded an essentially qualiﬁative
evaluation of the capture process. Particles trapped by partial
blockage mechanisms were observable in this way. The upstream contam—
inant concentration was adjusted after several trials so that sieving
would predominate on the medium surface. “All of the filtrate was
collected downstream so that sampling error was absolutely minimized.

The complete test procedure is detailed in Appendix GC.
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Dispersion of particles was accomplished by subjecting the
particulate suspension to ultrasonic waves. Thirty seconds duration
was used for natural contaminants and five minutes was used for glass
beads. All suspensions were shaken in a commercial paint shaker for ten
minutes immediately before testing

Aqueous solutions were used instead of petroleum based solutions
to facilitate microscopic counting of the particles. Various additives
were evaluated to minimize the effect of surface forces. One percent
TAMOL - SN (a dispersant agent to prevent flocculation) was used in

all of the tests conducted.
Results of the Experimentation

The experiments performed are listed in Table I and shown
graphically in Figure 5. Square aperature'sieve mesh pores were
measured optically and the results listed in Table III. The elect;o—
formed square aperature mesh is nominally .001 inches thick. The sieve
mesh with elliptical pores is described in Table IV. The pores are

very straight although the nominal thickness of the mesh is .01l inches.

TABLE IIT

PORE SIZE DISTRIBUTION FOR SQUARE PORE SIEVE

Pore Size (side); Micrometers Pore Density
16.5 . OLl
17.5 .286
18.5 .330
19.5 .330

20.5 .011
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TABLE IV

PORE SIZE DISTRIBUTION FOR ELLIPTICAL PORE SIEVE

Pore Size (major axis); Micrometers Pore Density

7.0 .062
9.0 .118
11.0 .203
13.0 .078
15.0 .037

Two contaminants were selected on the basis of size, shape,
availability, homogeneity, and dispersion properties. The naturally
occurring contaminant used was A C Fine Test Dust. The distribution of
particles five micrometers and larger (longest dimension) was prepared.
Particles smaller than five micrometers were removed with a Roller
classifier since they have a greater tendency to agglomerate. The dust
in the range of interest is mainly crushed quartz. The size distri-
bution of the largest dimension for A C Fine Test Dust is presented with
the results of tests A and B.

The artificial contaminant used was glass beads. These beads are
very nearly spherical. Two different size distributions were prepared
for use with the two sieve meshes. The size distributions used are
listed with the results of tests C, D, and E.

The results obtained from test series A through E are presented
in Tables V through IX, respectively. A note on the statistical

procedures used to evaluate the data is given in the next section.
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TABLE V

RESULTS OF TEST SERIES A — ELLIPSOIDAL PARTIGLES AND O
IAYER ELLIPTICATL PORE SIEVE MESH .

Particle Size, Particles / Particlesf/ Separation Avg. Separation

Micrometers ml. Upstream #l. Downstream Efficiency Efficilency
- 2 tests”
12.5 L43.00 69.70 843 .8L6
17.5 148.70 12.25 .918 .930
22.5 61.15 3.25 C 946 .962
27.5 28.75 1.00 7 L965 .982
32.5 14.89 S5 © 950 975
37.5 8.29 25 .981 .990
L2.5 L.89 0. - 1. 1.
L7.5 3.01 0. 1. 1.
52.5 1.94 0. 1. 1
TABIE VI

RESULTS OF TEST SERIES B - ELLIPSOIDAL PARTICIES AND ONE
IAYER SQUARE PORE SIEVE MESH

Particle Size, Particles / Particles / Separation Avg. Separation

Micrometers ml. Upstream ml. Downstream Efficiency Efficiency
ST 2 tests
12.5 44,3.00 550,00 0. 0.
17.5 1,8.70 201.00 0. o.
22.5 61.15 56.92 .069 OLL
7.5 28.75 11.15 612 615
32.5 14.89 5.39 .638 617
37.5 8.29 0.38 .817 .781
L2.5 4.89 0. 1. 1.
L7.5 3.01 o. 1. 1.
52.5 1.94 o. 1. 1.
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TABIE VII

RESULTS OF TEST SERIES C - SPHERICAL PARTICLES AND ONE
TAYER OF ELLIPTICAL PORE SIEVE MESH

Particle Size, Particles / Particles / Separation Avg. Separation
Micrometers ml. Upstream ml. Downstream Efficiency Efficiency
2 tests

7.0 26.92 9.40 .613 .650

9.0 23.48 2.10 .910 848

11.0 14.92 .10 .993 .989

13.0 16.00 0. 1. .997

15.0 6.12 0. 1. -995

17.0 <92 0. 1. 1.

TABLE VIII

RESULTS OF TEST SERIES D - SPHERICAL PARTICLES AND ONE
IAYER OF SQUARE PORE SIEVE MESH

Particle Size, Particles / Particles /  Separation Avg. Separation
Micrometers ml. Upstream ml. Downstream Efficiency Efficiency
2 tests
11. 2.6 2.90 \ 0. 0.
13. 6.l 6.23 .07 .01
15. 26.9 25.15 .065 .033
17. 61.5 38.25 .378 .301
19. 78.2 22.50 712 .627
21. 82.1 6.23 <921 .925
23. 56.4 .25 .996 -996
25. 29.5 0. 1. 1.
27. 14.1 0. 1. 1.
29. 9.0 0. I 1.
31. 5.1 o. 1. 1.
33. 2.6 0. 1. 1.
35. 1.2 0. 1. 1.
37. 2.6 0. 1. 1.
39. 2.6 0. 1. 1.
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TABLE IX

RESULTS OF SERIES E - SPHERICAL PARTICIES AND TWO
IAYERS OF ELLIPTIC PORE SIEVE MESH IN SERTES

Particle Size, Particles/ Particles/ Separation
Micrometers ml. Upstream ml. Downstream Efficiency
7.0 6.5 8.,400 .683
9.0 23.8 1.600 <933
11.0 15.3 025 .998
13.0 4.5 0. 1.
15.0 5.0 0. 1.
17.0 1.7 0. 1.

Evaluation Techniques

Bach test series, with the exception of series E, consisted of
at least two identically performed tests to demonstrate repeatability.
The repeatability of series E was verified by series C. Upstream and
downstream samples were filtered through .45 micrometer black membrane
filters for microscopic particle counting. Most aspects of the particle
counting were carried out in accordance with Aerospace Recommended
Practice 598A (25). However, the number of counts required for validity
was checked in accordance with the method suggested by Fairs (26).
Fairs' criterion for microscopic sample size is shown in Figure 14.
Thus, the data given in Tables V-IX are arithmetic averages of the
counts recorded for several areas of the membrane filter.

Sizing of particles was done with a Cooke Model i.6ﬁ,image

splitter. A 10X occular and a 40X objective were used in conjunction
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Figure 1L4. Microscopic Particle Counting Accuracy After Fairs (27)
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with the image splitter. OCalibration Qas,accomplished with a
diffraction grating under the same (oblique) lighting conditions used
for particle illumination. The objective had a nominal aperature of
n.a. = 0.65x. Thus, for light of mean wave length, A Sus the

minimum resolution is given (28), by,

R=624 = .5 .
n.a.
Other factors including shadows and inaccuracies in the image splitter
linkages make a lower limit of 57M more acceptable. The smallest
particle which was measured had a diameter of éyu.

If the assumption is made that particle counts deviate normally
from a mean value, a confidence interval can be calculated by the
interval estimation technique which is covered in many elementary
statistics books (e.g., Miller and Freund (29) on page 148). The
ninety percent confidence intervals on the mean particle counts shown
in Figure 15 were calculated for six optical counts, from three tests
in series A. Thus, the author is ninety percent confident that for
each size particle the interval contains the mean particle count.

It is the opinion of the author that the data présented in this
chapter is sufficiently repeatable and within the expected limits that
it will support reasonably drawn conclusions. In the next chapter
the results will be discussed and compared with those of the

analytical model.
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CHAPTER VI
DISCUSSION OF RESULTS

In this chapter the analytical techniques developed in Chapter V
are used to simulate actual hydraulic sieving problems. The weighted
simulation technique is used to obtain quantitative results in all of
the problems considered. A comparison of simulated results with the
experimental results obtained in Chapter VI is presented to demonstrate
the ways in which actual hydraulic filtration differs from the neces-
sarily idealized sieving model. The analytical model is idealized by
the use.of regular geometric shapes and considers capture only by
sieving. In the discussion which follows, separation efficiency and
downstream particulate density, both as functions of particle size,
are treated as output functions of the sieving process.

One of the main purposes of this chapter is to compare analytical
and experimental results. Deviation of experimental output functions
from those predicted analytically is due to measurement error and vio-
lation of the assumptions upon which the theoretical model is based.
Since the analytical model is geometric in nature, it is an accurate
representation of the sieving process. If, however, input density
funétions are iﬁexact representations of physically occurring popu- .
lations, then predicted output functions will deviate from exactly
measured physical downstream conditions. Those downstream conditions

are also subject to measurement error.

22
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If processes other than sieving are responsible for particle
capture, experimental and analytical results would be expected to
differ. Capture of particles by surface forces is an example of such
a process. Other violations of the assumptions upon which the analysis
is based are potential sources of inaccuracy. Since it is impossible
to geometrically model the exact shape of each particle of a naturally
occurring contaminant, such as A C Fine Test Dﬁst, a characteristic
geometric shape has been assumed.

The comparisons made between experimental and analytical results
in this chapter are made on the premise that the simulated results
correctly represent the sieving process for the numerical input data
furnished. Where appropriate, comments are made to reduce the number
of factors responsible for disagreement of analytical and experimental
results. Those comments, which are quaiitative in nature, arise from
the author's association with contamination control measurement and,
therefore, are, to an extent, subjective.-

The technique by which the output of a mathematical model is
forced to approximate a desired data set by‘adjusting the values of the
free parameters is known as parameter identification. If measured
values of the free parameters are available, then deviation of the
identified values from the measured values must be caused by error in
the measurements or infidelity of the geometric shape model. The

parameter identification technique is demonstrated in this chapter.
Use of the Weighted Simulation Method

A1l of the numerical simulations presented in this chapter were

obtained using the weighted simulation method. In addition, a direct
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numerical integration was performed for part of series D. The
simulation was required since the data, or models which would fit the
data, did not admit closed form solution of the equations derived in
Chapter IV. The weighted simulation technique was chosen over the
Monte Carlo simulation and the direct numerical integration based on
the comparison of the methods made in Chapter V. Detaills of the
numerical algorithm which was used are given in Appendix B.

As has been mentioned previously, the accuracy of the weighted
simulation technique is roughly that of square law integration. There-
fore, problem accuracy is enhanced by reducing the size of the intervals
on the input density function such as fP(p) and fH(h). The practical
limitation here is the size discrimination of the measuring techniques
used to obtain the input densities. An image splitting eye piece was
used to discriminate intervals as small as one micrometer. In the range
below two micrometers the instrument is sensitive to operator technique.

Throughou£ the five example problems under discussion the input
density functions are:

1. pore size, fH(h).

2. particle size, fP(p).

3. pore shape factor, fCH(ch).

L. particle shape factor, fCP(CP).

5. pore-particle angular relationship, Qg(éb.

6. particle attitude, fqﬂ@).

In special cases the random variables CH, and CP, are represented by
their expected values. In all cases in which particle capture is

dependent on (Jor §, the following density functions are assumed:

@,(@)=%7') 0<§<%)
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and,
'de (@>=2//7V/ 0<0<ﬂ/2.

The justification for this distribution of fdp((ﬂ) was given in
Chapter IV.

Algebraic relationships required to describe capture limits and/or
partial pore blockage are detailed in Appendix A. Only the results are
used in this chapter. Output density functions of the solution are:
downstream particulate density, fP(?)(p), total separation efficiency,
egigr(p), and pore size density aft:r passage of contaminant fHEi;(h).

Comparison of Analytical and Empirical Results

The problems chosen for simulation were meant to represent, as
closely as possible, the empirical studiés which were conducted. Glass
beads were modeled as spheres. A C Fine Test Dust particles were
modeled as ellipsoids of revolution. The random variable, P, repre-
sented the major axis of the ellipsoid and the minor axis was
represented by P-CP. Major and minor axes of the elliptic pores were
designated H and CGH+H, respectively. The combination of variables
which made up each test series is given in Table I and graphically
portrayed in Figure 5. Some general observations will be included at

the end of this chapter.

Series D

The contaminant modeled in series D is spherical and the pores
are modeled as squares. Obviously, particle attitude and angle do not
affect the simulation. The partial blockage expression describing the

new pore sige, hnew’ after blockage of a h size pore by a p size
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particle is

hnew= G/Pl'l'hg' -/D>/2/—i-_ -

In this particular case the criterion for capture is of the
fundamental nature and the separation efficiency can be calculated by
using Equation 4-22. A simulation was also performed. The results of
these calculations are displayed in Figures 16 and 17, and are listed
in Table X. Note that the separation efficiencies obtained by direct
numerical integration agree well with those obtained by the simulation
technique. This result is only to be expected since both aléorithms
are numerical processes with the same input data and comparable order
of accuracy.

Since the criterion for capture is geometrically rigorous, and the
idealized particle and pore geometries are good representations of
actual geometries, the discrepancy in efficiency between experimental
and analytical data at p = 12}&, must be attributed to measurement
error. Such error could be found in measurement of the input density
functions, the results of the empirical tests, and/or the step size of
the input density functions which is limited by the intervals of the
input density functions. A zero shift of one micrometer on the input
pore size frequency data improved separation efficlency data at p = 1?2@
but destroyed the previously good agreement for downstream particulate

density at p = 12&-
Series C

A distribution of spherical particles (not the same distribution
as for series D) was modeled in series G. The sieve mesh pores are

modeled as ellipses with major axes equal to the random variable, H,
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TABIE X

SERTES D NUMERICAL RESULTS

Particle Downstream Particle Density Separation Efficiency
Size, : -

Micrometers [Experimental Integrated Simulated | Experimental Integrated Simulated
11. -029 .019 .020 0. 0. 0.
13. L062 . 054 .050 .027 0. 0.
15. 251 222 221 .165 0. 0.
170 R u382 ol}86 ol.|,8[{. 0378 ooll.o -Ol.[l],
19. 0225 0222 0220 .712 0720 06&)
Rl. .060 0. 0. . 921, 1. 1.
23. _On Oo Oo 0996 1- 10

68
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and minor axes equal to CH'H, where CH is also a random variable.
Again, no angular relationship is required to describe particle capture.

The partial blockage relationship is,

heo = (HP) /265 .

Two pores are formed for each blockage. Note that the pores so
described are not the actual shapes formed but are ellipses with
smallest dimension equal to the smallest dimension formed.

The distribution which was microscopically measured to represent
fCH(ch) is designated Distribution 2 and is shown in Figure 18b.
Results of the weighted simulation using Distribution 2 to represent
fCH(ch) are compared with experimental data in Figure 19. Predicted
separation efficiencies are generally lower than those which were
experimentally measured.

Measurement errors, such as those discussed for series D, could
have been present. Another potential source of discrepancy, which was
not possible in series D, 1s the removal of particles by surface forces
on the long aspect ratio (eight times the aspect ratio of the square
pores) walls of the elliptic capillaries. The square pores in series D
did not have sufficient wall area for surface forces to be effective.
The particle size at which the deviation between experimental and
analytical results is most obvious is in the midrange of the sizes for
which Herzig (8) predicts surface forces and volume forces are of the
same order of magnitude. It was also observed that after the surface of
the medium was completely cleaned, beads could be collected in the
downstream collector by filtration of clean water at about ten times

test flow rate. It is theorized that the increased viscous shear on
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the particles at the higher velocity overcame the surface forces which
had retained them.

An identification procedure was performed to determine a density
on CH which would force the simulated data to more closely approximate
the experimental data. Distribution 1, in Figure 18a, meets this
requirement. However, it is the opinion of the author that Distribution
2 1s a reasonably accurate representation of fCH(ch). The difference
between experimental and analytical results is, with that assumptiocn,
due to measurement error and surface forces not described in the
sieving model. 1In all likelihood, the effect of surface forces accounts
for the larger part of the deviation since the deviation occurs over a
wide range of sizes and is more pronounced at the smaller end of the
range.

A comparison of experimental and analytical downstream particulate

density functions is given in Figure 20 and Table XI.
Series B

Series E was modeled exactly as was series C except that two
layers of identical sieve mesh in series were employed. The comparison
of empirical and experimental separation efficiency is shown in
Figure 21 and Table XII. Note that the simulation which uses fCH(ch)
= Distribution 2 (see Figure 18b), closely fits the experimental data
for this problem, while fCH(ch) = Distribution 1 (see Figure 18a)
yields a uniformly high value of efficiency. The values of the simu-
lation are, thus, more sensitive to the double sieve layer than are

those of the experimental model.
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TABIE XI

SERIES C NUMERICAI: RESULTS

Particle Downstream Particle Density Separation Efficiency
Size
Microme%ers Experimental Distrib, 1 Distrib. 2| Experimental DBistérib. 1 Distrib. 2
= fCH(ch) = fCH(ch) = fCH(ch) = fCH(ch)
7. .810 .786 .681 .613 631 126
9. .181 177 .260 .910 +305 . 7L9
11. .008 .033 .056J¥‘ .993 972 .915
13. o. .00L .00, ™ 1.00 <997 «99L
15. 0. 0. o. 1. 1. 1.

66
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TABIE XII

SERIES E NUMERICAL RESULTS

Particle . Downstream Particulate Density Separation Efficiency
Sigze, -
Micrometers [Experimental Distrib. 1 Distrib. 2 | Experimental Distrib. 1 Distrib. 2

= fCH(ch) = fCH(ch) = fCH(ch) = ch(ch)
7. .8l L9LR 8L5 .683 .863 .670
9. .16 054 <145 933 -990 <937
11. .003 .003 .011 .998 .999 .993

13. o. 0. 0. 1. 1. 1.

15 L] o L] o L d o L 1 L] 1 L] 1 L]

L6
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The explanation for this phenomenon is that, in the experimental
model, the gross separation efficiency of the first layer is on the
order of 87% (see series C). The remaining particulate distribution as
seen by the second sieve layer is, therefore, of a much lower concen-
tration. The main significance of this dilution is that particle
capture by surface effects is much less dramatic in the second layer.
Also, the assumption that an infinite distribution of particles exists
may be altered.

Downstream particulate density is graphically displayed in

Figure 22.
Series B

The model for series B consisted of square pores of side, H, and
particles described as ellipsoids of revolution with major axis P and
minor axis CP+P. In this case particle vs. pore angular relationship,
&, and particle attitude,dw, were considered in particle capture and
partial blockage calculations. The projected particle length in the

plane of the sieve 1is,

FP*= P Neosp + c225/7° @

The condition for escape is

PXH

or

P<IE"  8,.<E< Cnsx

O = tar™ (" P~ 1) /( H‘—f")]/%
g"'t‘n: %"Qmaz ] _

where
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The partial blockage condition is
hnew {/zh —éff)/l)
and two new pores are formed of this size.

The comparison between experimental and analytical results is
given in Figures 23 and 24 and in Table XIII. An optimization routine,
GOID 1, (see Reference 30) was used to fit the simulated results to the
experimental data by identification of the best expected value for cp.
The result was,

cpOpt = migor ax?s = 439,
major axis
fCP(cp) was also simulated as the distribution shown in Figure 18c. As
with series D, a possible cause of the discrepancy in separation
efficiency at p = 17.5u, is measurement error. In this series the
particle geometric shape is less faithful to the idealized model than

was that of series D.
Series A

Series A was the most complicated model of the examples attempted.
In this case the pores were elliptic and the particles were modeled as
ellipsoids of revolution. Thus, the projection of the particles could
be calculated as in series B. The pores formed by partial blockage

were modeled,

il Pl ) /b

Two new pores were formed for each blockage. The critical angles for
capture, é%mxx’é%nin’ could not be found in closed form. The solution

of a non-linear set of algebraic equations was regquired. A Newton -
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TABLE XIIT

SERIES B NUMERICAL RESULTS

Particle Downstream Particle Density Separation Efficiency
Size - :
Microme%ers Experimental CP = .439 Distrib. 6 | Experimental CP = .L39 Distrib. 6

= CP( CP) = fCP( Cp)

12.5 NN .690 692 0. 0. 0.

17.5 257 229 .230 0. .010 011

22.5 .076 .056 .05 .069 JA11 437

27.5 .015 .017 .016 612 .629 640

32.5 .00L .006 .006 .638 740 751

37.5 0. .002 .002 .817 .856 851

L2.5 o. 0. .001 1. .962 .932

€0T
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Raphson solution was attempted but was found to be unstable for some
values of interest. Also, the computational time required for each step
of the Newton-Raphson solution was prohibitive. An alternate derivation
enabled iterative solution of the problem by the method of successive
approximations (22) which provided the speed and accuracy required.
Detaills are given in Appendices A and B.

The comparison of experimental and analytical results for series A
is presented in Figures 25 and 26 and in Table XIV. Note that the
separation efficiency seems to have been influenced by adsorption in
the smaller particle sizes just as it was in series C. An optimization
routine, GOID 1, was used to demonstrate that the expected value of
CH = .348, yields the best fit of the experimental data while the
expected value of the particle shape factor was held at CP = .439. If
the effects of the surface forces are indeed more prominent than those
of measurement errors, then the majority of the deviation is due to

other modes of separation than sieving.
Some General Comments on the Results

While the captured particles can be observed on the surface of a
sieve mesh, their microscopic sizing is much more difficult than on a
membrane filter. The main reasons are due to light reflected from the
sieve and lack of contrast between the particles and the background.
Therefore, comparison between experiment and simulated pore size dis—
tributions remaining after filtration was not attempted. The simulated
post—=filtration pore size distributions are listed in Table VX.

The one sample Kolmogorov-Smirnov test, as given by Miller and

Freund (20), on page 222, was used to test the null hypothesis that the
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Separation Efficiency vs. Particle Size — Series A

Figure 25.
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Figure 26.




TABIE XIV

SERIES A NUMERICAL RESULTS

Particle Downstream Particle Density | Separation Efficiency
Size,
Micrometers [Experimental CP = .439 CP = .439 Experimental CP = ..439 CP = .139
CH = .348 £CH(ch) = CH = .348 fCH(ch) =
Distrib, 2 ’ Distrib. 2
12.5 .800 .910 .850 8.3 812 47
17.5 141 .086 .130 .918 L7 : JTL8
22.5 0037 -0014. 0017 091}6 '9914— 0916
27.5 .015 0. .002 .965 1. .976
32.5 .009 0. 0. 1. 1. .995

LOT
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empirically measured separation efficiencies and downstream particulate
densities were distributed according to the simulated model. 1In all of
the examples for series A through series E the null hypothesis could
not be rejected for a level of significance = .1, on the difference

between experimental and simulated results.

TABLE XV

PORE STZE DISTRIBUTIONS AFTER FILTRATION
- SIMUIATION DATA

Square Pore Media

Pore Size, Series B Series C
Micrometers CP = ..L39
16.5 041 .013
17.5 .285 +229
18.5 e .328 .265
19.5 335 L77
20.5 011 .016

Elliptic Pore Media

Pore Size, Series A Series C. Series E

Micrometers f,.. (ch) = DN 2 (ch) = 24 Iayer
CHap 2 .139 Chx 2 £ (ch) = DN 2
7. .032 o. 0.
9. - : .156 .093 .115
11. R2 156 183
13, L2L7 .280 260

15, LR 172 LR
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A considerable number of parametric values were used in simulations
over the course of the present study. It appears that simulated values
of separatioh efficiency are generally more sensitive to change in
parameters such as fCH(ch) and fCP(cp) than are the downstream partic-
ulate densities. This conclusion would lose significance, however, in
the case of downstream particulate densities which are severely skewed
toward one end of the independent variable interval.

Since the type of simulation employed is inherently laborious,

a word about the computational effort involved is in order. The
largest single simulation performed treated six input parameters as
random variables and performed an iterative solution of the critical
capture angle at éppropriate intervals. By use of the relationships
developed in Chapter V an estimated 3X1O7 major sets of calculations
were required. The computation required one minute and 56 seconds
execution time on an IBM 360/65 computer using fast core. While that
computation was reasonably economical, it is easy to see that multiple
layer problems or problems in which identification of more than one
parameter is required could become prohibitively expensive.

In the next chapter gome of the implications for extension of the

techniques reported herein will be discussed.



CHAPTER VIIT

RELEVANCE OF THE SIEVING PROCESS AND EXTENSIONS

OF THE INVESTIGATION

In this chapter an additional feature of the methods already
introduced is discussed. An example of filtration of multiple popu-
lations of particles with partial pore blockage is given. Some of the
many problems in hydraulic filtration mechanics and contamination
control which can be treated with the same generai approach will be
mentioned. It would appear that the input daﬁa for a number of inter-
esting extensions of the present study will be available in the near
future.

While application of single layer sieve mesh is infrequent in
real hydraulic filtratign applications, the extension of the models of
thié study is believed to be of considerable practical value. The use
of ﬁire cloth filters is a closely related application which could be
modeled by the techniques derived herein. At least one manufacturer
has proposed the use of a nontortuous sieve mesh for specialized fil-
tration applications. One apparent advantage of the material would be

the availability of an accurate sieving model.
Multiple Population of Particles Example Problem

The digital computer algorithm which is presented in Appendix B

to implement the weighted simulation technique is versatile and user

110
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oriented. Some of its features were not demonstrated in the preceding
chapter and at least one more is worthy of mention.

Consider a sieve mesh made up of elliptic pores and a spherical
contaminant as was the case in series C. As before, the partial

blockage relationship is,

o = (H-PY 2t

Two new pores will be formed for each pore blockage. For this example
the effect of multiple populations of particles on the separation
efficiency of a single mesh layer will be demonstrated. The initial
particle and pore size distributions for the problem are shown in
Figure 27. The value of CH will be held at, CHY= 5.

Quite obviously, the efficiency of the first population of
particles will be a unit step function at p = 5, since all particles
below that size will penetrate and all particles above that size will
be retained. The pores formed due to partial blockage of the first
population will change the pore size distribution so that a non-zero
efficiency will be seen at smaller particle sizes. For subsequent
populations a more efficient filtration would be expected. The sepa—-
ration efficiency of the problem simulation for individual populations
is shown in Figure 28a. Figure 28b shows the total separation
efficiency for the populations on a cumulative basis.

Note that the individual layer efficiency reaches a final value
more quickly than does the total efficiency simply because the total
efficiency includes the early populations of lower efficiency. The
practical interpretation is only valid so long as sieving is the pre-

dominant mode of capture. In Figure 28a and 28b the regions
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in which one might expect a transition to cake mode filtration are

marked.
Extensions of the Present Study

Several direct extensions and a countless number of indirect
extensions to the present study exist. In this éhapter only topics
which pertain to filtration and contamination control will be discussed.

One worthwhile general extension would be to modify the analysis
to consilder finite input distributions. The extension of the weighted
simulation technique to treat a single finite input distribution would
be straightforward. |

The most obvious extension of the study would be the modeling of
depth medium filtration. Since the sieving mechanism has been reason-
ably modeled for a single layer, and the simulation technique has been
developed for multiple layers, extension to the depth medium case
requires only an accurate pore geometry model of the depth medium.

If the pore geometry model is in terms of geometrically measurable
random variables, then direct compensation to change the separation
properties of the filter by alteration of its constituent geometry
would be possible. The pore size models mentioned in References 4, 5
and 10 are pioneering steps toward such a model.

With a reliable simulated sieving model experimental data gathered
from depth media filtration would provide the basis of comparison to
identify other retention mechanisms which are active in the process.
That is, by deductive reasoping separation not accounted for by the
sieving simulation must be attributed to other mechanisms. As was

mentioned earlier, the fundamental question that this rationale is
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proposed to answer is, at present, unresolved among hydraulic filtration
experts. |

The broader applications of the techniques utilized in this study
include areas of filtration other than the sieving mechanism. In fact,
any process in which random variables can be modeled, even as data sets,
and deterministic processes described algebraically, can be treated in
an analogous way. In all of the possibilities mentioned below, the
input random variables include particle geometry, particle position,
medium geometry, and fluid velocity field. For practical purposes the
velocity field needs to be deseribed in terms of medium geometry.

A deterministic problem which is pertinent is discussed in Reference 6.

First, consider unstable sieving. In this mode a particle might
be held against an element of the filter medium by viscous shear forces.
If the fluid velocity changes significantly the viscous shea£ exper-—
ienced by the particle will change and the particle may be removed from
its former position. Or, under the new force balance, body forces may
overcome viscous forces and the particle be carried away from its
former location.

To model the unstable sieving process it would be necessary to
supply a deterministic model for drag forces on a particle in terms of
particle geometry and the fluid velocity field. The additional com-
plexity introduced by modeling of the velocity field renders the problem
significantly more difficult than the ones described in the preceding
chapters. Output relationships would ideally describe particles
ultimately retained and the remaining pore size distribution.

If the fluid velocity field could, indeed, be modeled as a random

variable, then all of the classic deterministic transport mechanism
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models summarized in Chapter II could be treated stochastically. The
rationale would be to model the spacial concentration of particles at
some arbitrary initial condition. The deterministic models then
describe the trajectory of a single particle. The methods described
herein could be used to describe a concentration which has been modified
by the velocity field.

In a similar manner the technique can be applied to a problem for
which experimental data is becoming available. The case of particle
capture by viscous shear forces was defined by Bensch (31). In this
mode it is theorized that a particle may be carried into regions of low
fluid velocity by inertial forces. The viscous shear on the particle
surface then serves as a retention mechanism.

If the force balance on the particle and the velocity distribution
of the fluid can be modeled, this phenomenon can be investigated. The
most tractable form of the analysis would treat the nontransient case.

The experimental data which is bécoming available treats a
semitransient problem in which the medium is used to gather contaminant
and the filtrate collected after a fixed period of depressurization.
The model to fit such a case would need to simulate unstable sieving
and capture due to viscous shear forces as a minimum.

One further attractive filtration problem.should be mentioned.

The modeling of retention due to surface forces is important in aerogol
filtration and, as has been demonstrated, can be significant in
hydraulic filtration. Models of attractive forces such as those pro-
posed by Zimon (10) could be coupled with hydrodynamic models such as
those of Speilman and Goren (32) to form the necessary deterministic

relationships. The techniques treated herein could then be applied to
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determine the density of particles actually retained by some idealized
medium geometry. In this instance identification of random variables
such as particle charge or medium surface roughness might be performed
from experimental data.

Many worthwhile extensions of methods presented in this study
fall outside the context of filtration mechanics. One example would be
the prediction of wear in hydraulic components. If a model of the
damage done by a single contaminant particle as it is crushed between
two moving surfaces were available, stochastic techniques could be
used to introduce such random variables as particle size, particle
hardness and component surface properties. Again, identification
techniques could be used with experimental data to determine numerical
values for random variables for which measurements cannot be obtained.

The above mentioned problems point out the versatility of the
approach employed. Limiting factors generally include: the availa-
bility of appropriate deterministic models, the measurability of
pertinent random variables, and the computational effort required for
complicated problems. As has been mentioned previously, closed form

solutions have been obtained for only the most simple problems.



CHAPTER IX
SUMMARY AND CONCLUSIONS
Summary

The problem considered in this thesis is the modeling of the
sieving mechanism in hydraulic filtration. The overall objective of
the study is to develop such a model and demonstrate its use for the
case of a nontortuous sieve mesh.

The analytical model is derived in terms of the following
geometrically measurable random variables: particle size, particle
shape, pore size, pore shape, particle attitude and angular displace-
ment between particle and pore. Generalized integral expressions are
developed for separation efficiency, downstream particulate size
density, and pore size density after filtration of a population of
particles through a sieve mesh. The expressions are extended to con-
sider filtration of multiple populations of particles by a series of
combination of sieve mesh layers.

Numerical solution methods for the general problem have been
mechanized for digital computer implementation. Five empirically
studied example problems, as well as one hypothetical case, are
simulated numerically.

In the experimental analysis, five test series were performed
under carefully controlled conditions so that the surface of the sieve

mesh was microscopically observable. Thus, it was possible to verify

118



119>

that caking and flocculation did not occur to a significant extent on
the surface of the medium. Microscopic analysis provided data for
calculation of separation efficiencies and particulate size density
after filtration.

Since the simulation of the sieving process is geometric in
nature, the deviation‘of experimental from analytical results can only
be due to measurement error or the presence of factors not within the
context of the derivation assumptions. The conclusions drawn from the

study are summarized in the next section.
Conclusions

From the research described in the preceding chapters, a number
of evaluations have been made. The following list summarizes the major
conclusionss

1. A rigorous modeling procedure for the sieving mechanism in
hydraulic filtration has been developed based on geometrically
measurable random variables.

2. Only the most simple input functions allow the closed form
solution of the resulting integral expressions. Therefore, numerical
techniques must be employed to obtain quantitative results.

3. A weighted simulation technigque has been developed to obtain
numerical approximations of the post—filtration random variables.

That algorithm required less computational effort to achieve a compa-
rable accuracy as that achieved by the Monte Carlo simulation or direct
numerical integration of the full integral expressions.

L. Qualitative microscopic observation of the sieving process is

possible on the upstream surface of a flat sieve mesh.
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5. Simulated output data approximated experimental data in shape
and magnitude when geometrically measured and logically assumed input
random variables were used. Deviations could be éttributed to
measurement errors or the effects of surface forces.

6. Random variables can be identified as parameters to force
simulated data to more closely approximate experimental data.

7. The general methods developed herein should prove to be a
useful tool for further research in filtration mechanics and

contamination control.
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APPENDIX A
GEOMETRIC RELATIONSHIPS

The solution of example problems given in Chapter VII requires
geometric relationships derived in this appendix. Expressions are
derived for partial pore blockage in series A through E. Since the
particle and pore shapes are idealized representations of irregular
shapes occurring in nature, some compromise between computational
effort and rigorous shape description must be considered.

Before treating of each series geometry individually it will be
.convenient to derive an expression for the projection of an ellipse.
Consider the ellipse of Figure 29 with the major axis p and the minor
axis cp-p, which has been rotated through the angle &. It is desired
to find p*.

Define z, x, y, and (X as shown so that by definition,

2= +yT (a-1)

prY= Pt wn)

pa = 2-5Ln (=1 &) (a-3)

. 7= Y. (8-1)

Substitution of Equations A-1, A-2, and A-4, into Equation A-3, yields

12L



Figure 29. Projection of Ellipse

i

Figure 30. Partial Blockage
Series A
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p*=2(cpPly —2* cosrasing). O

To find the maximum value of p* for an arbitrary value of & with

respect of x, set,
op”
=0
SN ’

to find,

"= manmum)* 5011 :
7(/7 ) f /\/4;15&5% +5(7*E  (a-6)

Combination of Equation A-6 and A-5, yields the desired result,

o= Prlepcos &+ stmé. (a~7)

To find p** consider the same problem with the ellipse tipped through

T/2 ~ @, so that,

4 "= PA/ (psin®6 +ios 2 (4-8)

Now the problem geometries of each series will be considered.
Series A

In this series particles are ellipsoids of revolution and pores
are elliptic. A two dimensional analysis can be achieved by comparison
of the particle projection and pore shape. The particle projection
is an ellipse with major axis p and minor axis cp-p.

Partial blockage can be modeled with the aid of Figure 30, and by

FE Y =P (-9

Yy =2 (a-10)

definition,
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Yx =tan 6. (a-11)

Combining Equations A-9 through A-11 yields,

2*=pep (1 Hon'G) (eprtan’s) e

Then the desired value of the new pore size is,

h = /7/7-‘7-')/4/5 (4-13)

new

The critical angle, 69, must be found as the limiting case for
escape if the condition :
Cﬁ'ﬁ</0< ﬁ/éﬁ
is met. Using the nomenclature of Figure 31 the following general

relationships can be obtained:
ch '22/2% 72:5’#67% (A-14)
4/7?7/2% Y =cpp/ (a-15)

-1
A= Ifc?n y/% (4-16)
~l 0,
ﬁ = tar 3/7( (a~17)
ﬂ =X —4. (A-18)
Now if tangency is assumed
~ ne +cpeos’e
aﬁd )
XY ="ty (4-20)

Bquations A-1L through A-20 are seven independent nonlinear algebraic
N Va /
equations in seven unknowns (Z,Z’,'j,y o ,/)),5). This set is of a

form which can be manipulated into the relationship,
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Figure 31. Critical Escape .
Angle ~ Series A

LN

Bmax

oy

*{_— pore

1\

Ao

mw

Figure 32. Problem Geometry
— Series B
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5’7(5))

which will converge iteratively from an initial guess of &. A
subroutine, THETCP, was programmed to carry out the iterations. Details
are presented in Appendix B.

Another set of eight nonlinear equations in eight unknowns was
derived. However, it required a Newton-Raphson solution which was

prohibitively slow.
Series B

The geometry of series B consisted of square pores and ellipsoidal
particles. The two dimensional projection of the problem is shown in
Figure 32. By use of the conventional nomenclature and Equation A-7,

- the limiting relationship is written as,

h= /%/ Scnet C/O?ws’é’f (8-21)

Equation A-21 can be solved for ((h,p) by defining
SUNE =y (X +Y*)’>

‘The result is the desired limiting value,

= tan|ep Pt =h
Gaz A/—f;—ﬁ/j/;z— ' (a-22)
Also from Figure 32 it can be observed that,

ég;htz Q{ -f.ézgazj_ (AFZB)

Since the size of the pores formed due to partial blockage is

more sensitive to p, and h than to &, the new pore formed is modeled on

the basis of E@) =T/L. The resulting expression is,
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h,w %Z /7 '5/9 ' /0 ) /2 - (A-21)

Series C and E

This model consists of elliptic pores and spherical particles.
Symmetry of the particles precludes any angular dependence. The

assumption of concentric blockage yields the relationship,

b (h-pY/2:ch. oo

Note that the pore in Figure 33 is not exactly the shape of the pore
actually formed, but is an ellipse of the same shape as the original
pore and has the correct smallest dimension. Equation A-25 is valid
so long as the new interval formed on the pore major axis is shorter

than the other dimension of the new pore. The limiting relationship is,

chh <h(1-¢ch)/z
ch 2.

That condition is satisfied in all the problems considered.

or

Series D

In series D pores were modeled as squares and particles were
modeled as spheres. Again, no angular dependency exists. In this case
partial blockage is considered in three dimensions as shown in Figure
34. From the right triangle formed in the front view the new pore
size formed is seen to be,

ho NP AT —p (8-26)
2z
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APPENDIX B
NUMERICAL TECHNIQUES

In this appendix the weighted simulation technique will be
documented. Also, the subroutine for calculatién of the critical angle
formed by one ellipse turning concentrically within a second ellipse
will be discussed.

In the present study, the weighted simulation technique is used
to describe the filtration of a dilute solution of particles through
a sieve mesh. OCapture conditions and partial pore blockage can be
modeled geometrically. The assumption is made that the following input
random variables are independent with known density functions:

pore size, H, fH(h)

pore shabe, CH, fCH(ch)

particle size, P, fP(p)

particle shape, CP, fCP(cp)

particle attitude {f, fa(gﬂ),

particle/pore angular displacement, &, .fe(e).
If input density functions are given in data form they are characterized
by the density function value at each interval midpoint. From inde-
pendence, the joint probability oi occurrence of any combination of

discrete independent variable values is,

FH)Cﬁ)f; ez 6.0 (Pch pep, 8, 0) = £, (h) fylch) .

)
f(0) 1 (cpp) fo6) Tg@).
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If every permutation of the independent random variables is
considered and the associated deterministic problem describing capture
is solved, the resultant downstream particle size density,'g;:(fi), and
remaining pore size density,{;::(h), can be determined. Partial
blockage is weighted according to the number of new pores formed by
each capture. The resulting raw density functions are normalized so
that their integral summation will have a value of unity.

Accuracy of the method is essentially that of square law
integration. The intervals on the independent random variables can be
made arbitrarily small to improve accuracy at the expense of increased
computational effort.

Separation efficiencies can be calculated by the definition:

6@) = |- [/Qf’f 5565/953‘7;,,0))0’ ]/{E (P, (s-2)

éifi): No. Upstream (p) = No. Downstream (p)
No. Upstream (p)

In terms of the algorithm, Pr i?scapéB is the summation of all joint
density expressions (Equation B-1) for which escape is calculated over
the entire permutation of the independent random variables.

«

Extension of Equation B-2 to describe the overall separation

efficiency of a population of particles through n sieve layers yields,

\

L

60:0(;17) =/ -ﬁ l;/?"z 585({,06’}] ﬂa:) (}7) (B-3)
£:(P)

To further extend the model to m initially identical populations of
particles the summation of particles escaping must be made. Thus, the
expression for the overall efficiency of m populations of particles

passing through n sieve mesh layers is,
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m 7 ¢
)= L e ic £ I

The algorithm which has been developed is user oriented and
reasonably versatile. Definitions of program variables are found in
the program listing given at the end of this appendix. The flow charts
in Figures 35 through 38 summarize the logic of the érogram. Subroutine
SIMSTV iterates through all possible permutations of the independent
random variable intervals. SIMSIV calls a function subroutine when
calculation of a critical angle of rotation is needed. In the case
of series A that function calls subroutine THETCP. Subroutine SIMSIV
also calls subroutine CAPTUR. CAPTUR evaluates whether capture or
escape occurs for the current valﬁes of the independent random
variables and calls function PARBIK if a partial blockage must be
calculated, This subroutine also increments the new particle and pore
density functions. Separation efficiencies are calculated in subroutine

SIMSIV.



SIMSIV

)

ANGLE

THETCP

CAPTUR

Figure 35.

PARBIK

Example of Calling Program

Iogic for Series A
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Do Populations of Particles

|  ProPAR -1, 1

Do Sieve layers

Do Particle Intervals

Do Projection Intervals

Do Particle Shape Intervals

Do Pore Shape Intervals

Do Pore Intervals

PROJ = [¢f 7S/ A reos @] "
1
l CALL ANGLE 1

Do Angular Digplacement Intervals

CALL CAPTUR

i &

rNormalize Fu..(.iﬂ f;’.,,..,([’) j

PRDPAR = PRDPAR + 3 7pue(f)

feser S (), SF (P) 2 |
1

[ Focum = FPCUM + PROPAR - F, (2) |

1
E(p) = 1 - proPAR 12 (P)/fpmie (P) ]

[ REsET Gé’)f’fmw(p) ' ]

¢ M(p) = 1 - FPOUM/(ING *fams (P))

! WRITE OUTPUT

Feie 2(cp)-€, () |

Figure 36. Flow Chart for Subroutine
SIMSIV
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yes

Initialize

1

P CH * H

na*

Yes

P>CK * H/CP

m*

yes

Possible Capture

1f ‘Qmin< @ < 6!7131

no
1 \

Sure Capture

HENW = PARBIK
I = IFIX(HNEW/DFH)
IF 11 > M-

rig

SMHNEW(I) = SMHNEW(I) + NBK*FH*FP*FB

Figure 37.

T >
-
Sure Escape
SMPNEW = SMPNEW + FH*FP*FB
SMHNEW = SMHNEW + FH*FP¥FB
Y
RETURN
END

Flow Chart for Subroutine CAPTUR
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E=NE=IERK=0O.
1

——=<IF P<CHH, or, P>H, or CP-P3CH-H

IEZ
< GO TO

(9=5’+5" -
1

GO TO

A

6=0-5,
1

H esam-0 |

NO=/E +1
1 .
IF NG 2> NMAX >‘L¢i\/—\/—————
‘ no
IF (PROTECTION 1) &
1
IF (PROTECTION 2) >ﬁ—
g- {©)
¥
IF | © —9SAVEK & >—L
no
e
< G
TER = 2 3
y
RETURN
~ IER=1 |
RETURN / END

Figure 38. Flow Chart for Subroutine THETCP
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TrIS 1S THE MAIN CALL ING PROGRAM

SEKIES A eeesne ACF RITH CHS, CP%e439,LH=DISTRIBUTION 2
COMMON/DATAL/FHELIC,5)sHI1CO) s FPUL001+PL100) +FPSAVE(190},

1 FHSAVE(I00) 4PRCICICCIeFBIL00),8(1003 FPCUM{100),SHHNENLL00),
2SPENEWTL0C) o FPRGJI(1CO)

COMMON/ DATA2/ INCYLAY o IPART « IPORE, IBETA, IPRCJ, DFP,OFH,DFB
CCMMCR/DATAZ/IPALIPO 1A+ IPRyLA,IL

COMPCN/DATAGL/PPROTHETA
CCMMCN/CATAS/CPU10) oFCPU10)sCHILOV ,FCH{10)»TCPo1CHy ICPNy ICHN
COFMON/OATAGL/ECCMP (20 3 ¢HBK yNECOMP

CALL HEAD

CALL SIMSIVIY)

CALL €EXIT

END

SLBRUUTINL READ
TH1S SUURODUTINE PRCVIDES INITIAL VALUES FOR THE COMPUTATIONM

COMMON/DATALZFH(200,5),H{100)FP(100)+PLL1OCHFPSAVEL100),

1 FHSAVE(100) PROJILCCIsFBIL00)BI100}+FPCUMLILCO), SMHNEW(100),
2SMFNEW L1001 FPRCILLCCY

CCMMON/OATA2/INC (LAY o IPART , IPOREs IBET Ay IPROJ OFP, DFH,DF8
CUMMUN/NATAI/ZIPA IPO¢ 1A IPRyLAIT

CCMMON/DATAG/PPRO, THETA
COMMUGN/DATAS/ZCP(100s FCPELOY,CHIL0) 4 FCHULO) o TCP TCH, ICPN, TCHN
COMVYON/DATAG/ECGMPL20) 4 BK o NECOMP

101 FDFK‘T(IHI"INCREHEN150--oo-uo--ooco.-c-o-o--ooo---o. 21347/,
1' LAYEHSceesesecosscccsccoocsccvcnsscccccee’el3s/y
2' DIVISICNS GN PARTICLE HISTOGRAM 11307,
3* DIVISICNS ON PORE HISTCGRAMeseo e13e/
4 CIVISICNS ON ANGULAR HISTUGRAMsceee 03134/,
5¢ CIVISICNS CN PROJECTIUN HISTCGRAMsoscceos®r 134/}
102 FGRMAT{1X,*SIZE OF DIVISICN OF PARTICLE HISTOGRAMeee® F1l0e5+7¢
3% SIZFE GF DIVISICN OF PORE H1STOGRAMeeesvee®sFl0e5:/y
4% SIZE UF UIVISICN CN ANGLUAR HISTOGRAMesee®eF1Ce5,/)
103 FGFMATI(1X,*INTERVAL PCRE SIZE OENSITY LAYER = *,13,/)
104 FORNAT(1Xe11092F1446)
1C5 FCRMAT(1X,*INTERVAL PARTICLE SIZE DENSITY
106 FCRMAT(1X,*INTERVAL ANGLE SIZE DENSITY*,/)
167 FCRMAT(LHO,' INTERVAL SUM PART PDF EFFICIENCY, AFTER PASSAGE OF*,
113,° INCREMENTS THROUGH’ #134% LAYERS®)
1C8 FCFMAT(1Xs® PROJECTICN  ANGLE SIZE DENSITY %4/}
109 FORFATILX*ICPN="4134¢ ICHN=',13)
110 FORMAT(1Xs*INTERVAL PARTe SHAPE £ DENSITY' (/)
111 FCRMAT(1X,*INTERVAL PORE SHAPE F DENSITY? /)
112 FCRMATULIXo ECOMP(® ¢12¢°)=?,F10.5)
201 FURMAT(BI1O)
2C2 FCORNMAT{EF10,51
203 FORMAT(2F10.5)
204 FORMAT(F1045,110)
READ(5,201 ) INC JLAY (T PART » EPORE IBETA »NFHFUN NFPFUNy 1PROJ
wWRITE(69101 ) INCo LAY, IPART o IPORE 4 IEETA, IPRCY
REAL(5902C2)CFPoCFH4OFE
WRITE(64102)0FPCFH,CFB
REL0{5,2C1) ICPN,ICHFA
WRITE(6+129) ICFNs ICHN

LAYER = #,13,/)

v

10
20

25

30

32

35

)

IFINFHEUNGEGe1 1 CALL CALFR
1F(NFHFUNL,EGo0 JREAC 55231 {H{I) oFHI1s 1) 5 =L, IPORE)
K=

WRITE (64103)K

WRITE (601043C1oHtT3sFhlT,13=1,1PORE}
1E (NFPFUNGEQeL) CALL CALFP
IF(NFPEUNGEQeO) READIS,203H{P(T1,FP{1) ,1=1,1IPART)
WRITE 1641050K
WRITE(6,106) (1P (1} eFP (1) ol=1 ¢ IPART)

CALL CALF8

WRITE(6,1C6)
WRITESOeLG) (130N, FRUTY o], IBETAS
SUMETAXC.

WRITE(6y108)

00 5 [=1,I8ETA

SUMETASSUMBTA+FB( 1}

00 10 I=1,IBETA

FB(I)=FB(1)/SUMBTA

WRITE(6, 10611430101 ,FRLT)

CCNTINUE

SMHNEwW(1) =DFH

SPGREZFH(1 41 }*SKHNER(1)

D0 25 I=2,1PORE

SMBNEW(1 )22, # (H{ T)-H{ I=1)=SHHNEW(T=1)/24)
SPCPERSPURE+FHI 1411 @SKRNEWIT)

CCNT INUE

WRITE(6,1C3)K

00 20 I=1,IPCRE
FHECT411sFh( 141 )8SMHNE®R(T }/SPORE
SMANEA(1) =0,

FRSAVE(I1=Fnilol)
WRITE(6,1041 1o (1),FhiT,1}

0C 32 I=1,IPORE

00 32 J=1,LAY

FHUT IV xFh(T,41)

SMPNEm(1) =DFP

SPART=FP (1)#SMPAEW(L )

DO 35 [22,1PART
SHPNEW(1)82.%(P(1)=P(1~1)=SHPNEN(I-1}/2¢}
SPART=SPART#FP( L) eSMPRENLT)

CONTINUE

WRITE(651050K

CC 40 F=loIPART
FP(1)sFP(1)®SMPNEW(])/SPART
FPSAVELTI=FP(1)

SMFAEW (1 )u0,

FPCUMLT 150, ,

WRITE (641C414PU1)4FPLT)

CALL CALPRO

WRITE. (651C8)
WRITE(£4104) 0T, PROJCIDeFPROJILN ¢ I=1,IPROJ)
SUMBTA®O,

WRITE(641C8)

£C 5C I=1,1PRO4

SUMETABSLMBTA+F PRCJ(1)

DD &0 I=1,1PROJ

FPFCJILT)sFPRCI (1D/SUNETA

6€1



70

75

80

85

90

10

10

WRITEL6s1Ce1 Ty PROJIE T FPROJITD
CALL CALFCP
WRITE(64110)
WRITE(6s10411EsCPIL1)4FCPLIT,Tn1,1CPN)
SUMBTA=O0.
WRITE(6,110)
D0 70 I=1,ICPN

SUNBTAaSUMBTA+FCPII)
DO 75 I=1,ICPN

ECPL1)=FCP(I1/SURETA
wRITE(6¢104)1sCPIT)FCPIID
CALL .CALFCH
WRITE(6.111)
WRITELO¢1C4) (1 4CHITI FCHUT ), E=1, [CHN)
SUFBRTA=(,

WO ITE(6,111)

DC 60 I=1,ICHN

SUMBTA=SUMBTA®ECHIT)
DG £5 I=]adcHn

FCRTII=FLRCII/5UMBTA
WRITE(6s124)1,Crill FCHITY
READ(S,2C4IHBK (NECCMF

1F INECCMPLEQL0) GO TO 90
REAC(5,2C11 (ECCMP (1), 1%1 ¢ IPART)
WRITE (65112101 ,ECOMP(I} 11, IPART)
CCNT INUE
RETURN

END

SLERCUTINE CALF
CCPPUNIUAIAIIFH(ICC.5'|f(lC0l.FP(lOO).P(lOO)'FPSAVE(IOO'.

1 FHSAVE{10C) PRIJLIC0)FBU1000,B(LOC) JFPCUMILCC) oSMHNEMI100),
2SPEAER{100) FPRCILLIOC)
CCMMON/UATA2/7INC LAY G IPART,IPORE, IBETA,1PROJ,
Cu 1T I=191PART

PLII=LI=11%DFP

FP(l}=le/IPART

CCNTINUE

RETURN <

END

DFP,DFH,CF8

SULBROUTINE CALFH

CCMPON/OATAL/FHILCC5) +H(10C)FPL100) +PLICC) oFPSAVELLDO},

1 FHSAVEL1CO) PROJILCCI,FBULOO),B(100) oFPCUMIL0C) o SMHNEN(100),
2SVFNEw(100} o FPRCILICO)
CCMMUN/DATA2/INCyLAY s IPART yIPORE o IBETA,IPROY,
DO 10 I=1,IPCRE

HUl ) =(]~1)*DFH

FHU1,1)=1./1PJRE

CONT INUE

RETURN

END

DFP ,DFH,OF8

10

10

10

SLBRCUTINE CA
CCHVONIDA'AIIFH(1C0.5'-P(lOOloF’llOOloPllOOlvFPS‘VE(lOO’v

L FHSAVE(LNGEPRGCI(10C)FBLL00I,8(100) FPCUMILO00), SHHNENIL100)
2SFFAEW (100} +FPROJI(100)
CCMMCN/DATAZ/INC, LAY (1PART y 1PORE , IBETA, IPROJ,
RIBETA=FLCAT(IOETA)

PID28=3e 14186/ (4. *RIBETA)

DO 107 1=]1,18ETA

FE(I)=ab36

FIsFLOAT(])

Bl{1)=P1026%(2,¢F]~1.)

CCNYINUE

RETURN

END

OFP,DFH,CFB

SLBRCUTINE CALFCP
CCHHCN/DAIA 5/CP(1
CP(l)=.439
FCP(l)=1,

RETURN

ENC

1o FCPULCISCHILO) o FCHIL0) s ICP ICH, ICPNy LCHN

SLBROUTLIKE CALFCH
CCMPCR/DATAS/CPULIC) o FCPULO)sCHELO0D ,FCHELO) s TCP o ICH, ICPN, ICHN
00 10 I=1,I1CHN )
FI=FLOAT(I?

CH{1)=,35+F1/1C.

CCATINUE

FCH{1)=0,

FCHiZ)=17.

FChi3}=17.

FChi4l=11,

FCH(5)=17,. .
FCH{b) =6, .
RETURN

ENC

SLBRCUTINE CALPRO

CCMPEN/DATAL/FRILG0,5) o+-(1C01,FPI100)2PC100) »FPSAVEL100),
1 FHSAVE(LGC) PROJCLCC),FBIL001,B(100),FPCUMCLGO), SHHNEW(100],
2SPPNEW(100) ,FPRAILLCC)
CCPMCON/DATAZ2/INC LAY, IPART, IPORE, IBETA, I PROJ,
RIPRC=FLCAT(IPRCJ)

PID2= 301416/ {44, #RIPRC)

G0 10 I=1,IPROJ

FPRCI(I)=, 030

FIsFLCAT(L}

PRCJ(II=PID2%L2,¢F1-1,)

CCNTINUE

RETURN

END

DFP'DFM.DFB

o1
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103
1Cea
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107
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SLBROUTINE SINSIVIY)

TH1S PROGRAM CALCULATES SEPARATION EFFICIENCY BY A WEIGHTED
SIMULATICN TECHNIQUE

Foebe STUNTZ, SCHCCL MAE
DEFINITICNS

I8t TA = NUMBEK INCREMENTS IN ANGULAR RELATIONSHIP

IPAKT = NUMBER INCREMEANTS [N PARTICLE SIZE UISTRIBUTION
IPOKE = NUMBER INCFEMENTS IN PORE SIZE DISTRIBUTION
LAY = RUMBER SIEVE LAYEKS

INC = NUMBER PARTICULAYE INCREMENTS

NFRFUNEY MEAKS F+ I3 SUPPLIED IN FUNCTICNAL FGRM
NFRFUNTD MEANS FH IS SUPPLIED IN CATA FIRM,

NEPFUN = 1 MEANS FP IS SUPPLIED IN FUNCTICNAL FCRM
NFPFUN = O MEANS FP IS SUPPLIED Th OATA FCRM

Fiez= PRCEABILITY CISTRIBUTICN FUNCTIUN OF ORIGINAL PURES
FPs PRGBABILITY DISTRIBLTICN FUNCTICN OF URIGINAL PARTICLES

FURCTICNS ANL SUEBRCLTINES REQUIREC: USER SUPPLIES EITHER FUNCTIONAL
FORMS IN CALFH, CALFP AND CALFH, IF DATA IS NOT READs FUNCTION
PARELN MUST EE SUPPLIEC FOR PARTIAL BLOCKAGEe IF NO PARTIAL BLCCK-~
AGE EXISTS 3ET NHPROK20. FUNCTICN ANGLE MUST BE SUPPLIED TO DEF INE
THE CPRITICAL ANGLE CF CAPTUREe. IF NO ANGULAR RELATICNSHIP EXISTS
SET IANGLEt=1 IN MAIN, SET B(1)=0. AND FB8(I)=1ls IN CALFUB.

ANl ANGLE=Cs IN FUNCTICN ANGLE

Chk = PGKE SHARE FACTCR

CCMMTN/OATAL/ZFHIL00,5),+{1C0},FP(100)+P{100),FPSAVE(L1CO},

1 FHSAVE(100) ,PRGJICLCCHFBI1001+8¢1C0),FPCUMI100),SMHNEWLL10D],
2SMFHEW(10C) FPRLILLICO)
CCMMGN/DATA2/INCy LAY, IPART,IPORE, IBETA,IPROJ,
CCMMCN/DATA3/ZIPASIPO. 1A 1PRyLAyL
CCMMON/DATAL/PPRCHTHETA .
CUMMON/DATAS/CPILCY yFCPL10)+CHILO0) o FCHILO) oy ICPyICH ICPNy ICHN
COMMON/GATABZECCMP (201 HBK yNECOMP
Y=Ce

FORMAT{1X,* INTERVAL PCRE SIZE
FUFMATILX,110,2Fl4e6)

FCRMLTILX, INTERVAL PARTICLE SIZE DENSITY LAYER = 1,]3,/})
FUGRMAT (1HC,9 INTERVAL SuM PART PDF EFFICIENCY, AFTER PASSAGE OF*,
115," INCREMENTS THROUGR® »I13," LAYERS')

FCFMAT (1X9T13,¢E140¢)

ITERATE THRUUGH ALL CCMBINATIONS OF INTERCEPTION AND ESCAPE.

DU 5C0 1N=z1sINC

PROFAR=L.

DO 400 LA=l,LAY

CC 300 1PA=]l,IPART

LC 250 1PR=1,1PRGY

3C 225 1CP=1,ICFN

DC 215 ICH=141CHN

Cu 200 I1PC=1,1PCRE
PERCzP(IP2)*SQRTL(CP(ICPIBSINI(PROJIIPKIII*#2+CCS(PRIJIIPR) )2}
THETAZANGLE (PPRUSHITFC) oCHITCHELZCPCOICPY)

OFPsCFHDFB

DENSITY LAYER = 9,13,/])

1C0
208
215
225
252
3C2

34C
4C0

405

410
500

6C0

00 10C TA=1,1BETA
1=1

CALL CAPTUR
CCNTINUE
CINTINUE
CCAMTINUE
CCNTINUE
CONT INWVE
CCNTIRUE '
NCEW2ALTZE AND STORE PARTICLE AND #CRE DISTRIBUTIONS.
SPLRE=C,
UG 212 I=1+]{PURE

> SPURC=SPCRE+SMEREwW(L}

RRETE(6,1C31LA
D0 220 I=1,1PJRE
FRIT2LAY=SMHNEWT ] 1/SFCRE
SMRNERIT) =0,

aRITE{H,1C&) TeHUL)vFH{ToLA)
SPART=C,
DU 220 I=1.IPART

SPART=SPART+ SHENEW(T)
PRCFAK=PRUPAR®SPAFT
WRITE(&6,1C05)LA

Ca 34C 1=1,1PART
FPLII=SYFNER{] }/SPART
SMFNEwW(1)=0.

WRITELGe1C)I PLTMFPLT)
CCNTINUE

RESET PARTICULATE INCRIMENT FOR NEXT TRIP THRGUGKM THE LAYERS
LAME=LA~]

RRITE(GLICTIIN  JLAM]
o) 41C I1=1,IPART
FPCLM(T)I=FPCUM{T 1 eFRLFARSFP(])
CALCULATE INCREMENT EFFICIENCIES FOR THE INTH INCREMENT
EFFsle=PRCPAR®FP( [)/FPSAVE{(L)
IF{NECOMFEQe0Y GC TC 405
YaYe{EFF=ECOMP (L) )*»2
CCNTENUE
RRITE(6,1Ca)IFPLIY EFF
FPLII=FPSAVELTL)
CONTINUE

INMl=IN-1
mRITE(H, LCTIINMLLAM]
CC 0 I=l,1pPaRT
EFF2l =FPLUB{TI/(TINCOFPSAVELTLD}
MRITE(S, 104 FPCUMLLE ), EFF
Ys-Y
RETLRA
ENC

T



a o a0

c

50

18

1

SUSROUTINE CAPTUR
CCMMCN/DATAL/FH{10095}),F1100),FP{100),P{1C0),FPSAVEL100),
1 FHSAVE{100) +PROJ(ICCI+FB{100)48(100)FPCUMILICO),SMHNEW(100),
2SMENEWLICCY ¢FPKCJLICC)
CCMMONR/DATAZ/INC LAY o IPART +IPURE, IBETA, [PRCU.,
CGMMON/DATA3/IPAIPOs1A+IPRyLAs]
COMMON/DATA4/PPRO,ThHETA
CUMMCN/DATAS/ZCPULIGI o FCP(L10),CHIL0) o FCH{10}, 1CPy ICH, ICPN, ICHN
COMMCN/0ATAG/ECCMP L 2C Y yHBK JNECUMP

SEt CUMMENT CARCS IN CTHER DECK

PIL4x341416/4,

1IFIPPRCLTLCH{ICH}*K{ [PO}} GG TC 100
IF({PPRULGTFBK*h(1POI/CPIICPY] GO TO 50

# 1S LT H AND GT Ch*h, CALCULATE LIMITING VALUES OF THETA
TFU(SIIA)oGToPID4~THETA) oAND. [B(IA}.LT. THETA+PID4)) GO TO 100
CAPTURE

CCNTINUE

RESET PARAMETERS BECALSt CF CAPTULRE
HNEw=PARBLK(PPRO,HIIFG),B{IA} +NHPRBK CH{ICH},CP{ICP}}

S1Zt HNEw
IF(rNEWaLTe HIL
i=sC

1=+1
1F(HNEwsLEs HLI
GC TG &C
CCNTINUE
SMHNEW( [ =SMHNEW( T )+ NHPRBK*FP{IPA)*FH(IPO LAY*FB( A} *FPROJ(IPR}
1sFCF(ICPI*FCHL ICH)

GC TC 15¢C

UFPyUFH,CFB

¥} €C TC 140

}) GC 1O 70

173 CONTLNUE

RESET PARAMETERS BECALSE OF ESCAPE
SMPKEW{IPA)=SMPAEW (IPAY¢FH(IPQ, LA} #FP{IPA)*FB(IA}*FPROJ(IPR}
1=FCP{ICP I*FCh( ICH)

SMHNEW{ IPCY=SMENER(IPCI+FPLIPA)SFHIIPO,LA)*FBIIAISFPRCI(IPR])
1*FCPIICPI*FCH{ ICH)

C 10 15¢C

14C 1=]
150 CCNTINUE

RETURN
ENC

[ XN alaRaNaKakal

90

100
110

SUBROULTENE THETCP (P ohCHoCPoIERJEPS NTHETANMAX, THETA)

THIS SUBROUTINE COPPLTES THE MAXIMUM ANGLE CF ROUTATICN OF CNE
ELIPSt wETHIN A SGCCAC EULIPSE,

ERRCRS: ICR=D == AC ERRCR
2] -~ PRCBLEK GECMETRY UNACCEPTABLE
a2 ~- CANNCT OBTAIN ACCURACY DEMANDED BY IER wITH
P2=Esifhe
THETA=D.
NTRETA=0
tEn=0
IF({PelEoCHOH) 4CRo(PaGELH] sORe {CP*PLGELCHOHI) GO TQ 100
CP2=(PaCP
s 1C 10
THETa=THETA+ .01
GC TO 18

THETA=THETA~, D30

THESTO=THETA

NTHETASKTHETA4]

IFINTHETALGToRMAX)Y GC TC 9C

Y22P2* {SIN(THETAJ®SIN(THETA) +CP2*COSITHETA)SCOUSITHETA})
RZ={H*14/4e ) =¥2/(CH2CLH)
XP2={X2+4Y2-CP2*P2}/{1,-CP2)
YP2aCP2e(P2-XP2)}

IFE(Y2 oaLEeOe) eOR{VP24LEeQe)IGD TN 5
IF(UX2eLEeOa)oURIXP2.LELD4))GO TO 7
THMIN=THETA

Yeux2=v2/ X2

YPCXPL=YP 2/ XP2

YOX=SCRT{Y20X2)

YPDXP=SQRTIYPDXP])

THETASATAN(YCX }=ATAN(YPDXP)

IFLABS{ THETA-THESTC) 4 LTo EPS) GO TO 110
6C To 16

1ER*2Z

THETA=THNMIN

GC TO 11¢C

1ER=1

RETURN

END

Al



FUNCTIGN ANGLELPsH,CHoC
SERIES S PE

eseser CH
EPS*4 005
AMAXK=160

CaLL © THETCP (P shsCHICPyIER (EPS)NTHETAJNMAX, THETA)

ANGLE=THETA
RETURN
END

FUNCg%Dg PARBLK P ¢ Hy BETALNHPREK yCHoLP)
=2

AHPR
Pé?ﬂLK'(H/Z.-CP'P‘SQﬁ“(IO'TANlBET‘)"Z)/‘CP‘CP'TAN(QEY‘l“z)))/CH
RETURN
END
INCREMENTSeovocscsonse ees 1
LAYERSceocosoccsscecsocscscnsne ee 1
DIVISICNS ON PARTICLE F1STOGRAMssscosoces 9
DIVISICNS GN PCRE HISTCORAMecesesecscases 5
DIVISICNS ON ANGULAR HISTOGRAPeseesasssse 9
DIVISICNS CN PRCJECTICN H1STOGRAMecessses S
SI2E OF DIVISIGN OF PARTLICLE RISTCGRAMeeoe 5+CCCCO
SIZE OF DIVISICN OF PCRt HISTCGRAMese . 24C0000
SIZE OF DIVISICN CN ANGLUAR K1STOGRAMeses C.07840
ICPN=" 1 [CHN= 6
INVERVAL PORE SIZE CENSITY LAYER = 0
1 T+ CCCOOC 11.0C00£€0
2 9,0C0C00 21.00%0C0
3 11.26CCOC 360CC000C
4 13, ¢00C0C 164,CCICC0
5 15.CGCCOC - 7.0T0LCO
INTERVAL PARTICLE SIZE DENSITY LAYER = [+}
1 12.5CCCCO Ce 616200
2 17.5000C0 0.206700
3 224500000 0.065000
4 27+ 5000CC - Ce040CCO
5 32.50C0CC €e02070C
) 37.,500C0C 0.0115CC
7 424 50€0CC 04CCHACC -
8 47.50CCC0 Ce C0420C
9 52¢5000CC . 0,002700
INTERVAL ANGLE SIZE CENS1TY .
1 Ce087267 066356000
2 0.2618C0 0.636000
3 0e43¢€333 Ce6360C0
4 0o 61CH6E . 0e63600C
5 00 7854CC 0e636CCC
[ 00956533 . Ce 636CC0C
7 1a134465 Ce 636000

P)
DIA AND ACF TEST DUST

8 1.308599 6o 636000
, 9 1.483£22 04636000

INTEAVAL ANGLE SIZE CENSITY

1 0.0b7267 0el11111

2 Ca2618CC Oel111111

3 Co436332 Cel11111

e Cotl0E60 0el111111

5 00 T654CC Cellllll

6 00555933 0.111111

7 1.1344¢€5 0el11111
v 8 14308555 Cellll11

9 10453532 Cell1111
INTERVAL PCRE SIZE CENSITY " LAYER =

1 7.CeCC0C 0,123565

2 9.000CC0 0.235955

3 11.£00€0C 0,404454

. 13,0600CC 0.157303

] 15.0CCCOC 0.0786%2
INTERVAL PARTICLE SIZE LENSITY LAYER =

1 12.5¢C00C Ce620045

2 17.500C0C 0e2C7990

3 22.5€CCCC 05085530

‘4 T27.5CC0CC 0040250 - -

s 32.500CCC €+020829

6 37,5€€0CC © 04011572

7 «245CCCCC 0.006842

s 47.502300 0,00622€

9  32.50C0CC 0,002717

PROJECTICN ANGLE SIZE DENSETY

1 0.CE7267 C.6363C0

2 0.20180C C+63600C

3 Ce436333 €.636C00

. Ce 610£66 . Ce636CCC

S O¢78540C 0463600C

6 0,959933 0+63690¢C

7 12134665 104 63660C

8 1.308999 00 636000

9 10483522 €e 636000

PROJECTICN  ANGLE SIZE -~ DENSITY
1 0eCE267 osl11111

2 Ce2613C0 Cell11ll

3 Ce436333 C.111111

. 2.61C860 Ce 111111

5 0. 7854CC %.111111

6 0.959632 0,111111

7 10134465 0l111111

s 10308599 0,111111

9 1.483532 - Cal11111
INTERVAL PART, SHAPE F OENSITY

1 C.43500C 1. 000000

0

Q

et



P E P crew e

INTERVAL™ PART. SHAPE¢ DENSITY

TN 0,436E0C. 1060088
ANTERVAL 'PORE SHAPE F. . DENSITY = - -

4500CC] - 6s0C00CO

-1 N .
L2 0 T 06550000 17.00c00C T~ R -
37 - Ce85CCLC -7 - 17.000C00 ’ ‘
& .. . 0eI5CCCO- . ..17.000CCO
) e 0.859C00 - 17,0000C0
R €+ 95030¢ &eC0OCT
SINTERVAL PORE:SHAPE. F DENSITY el
1 Cs45C00C 0.C75CCC i
2 0e55CCCC - Ce212500
3 Ce 65000C. . Ce212%0C -
. e 0. 75002C Ce212%0C - -
- 8 Co.85c00C 0e212%00 i
EE [y 0s95900C C.07500C
*SINTERVAL PORE SIZE DENS1TY LAYER = ' 1
1 7.€00COC 0.02211¢
- 2 ss.CCCCOC . 0156605
3 11.C000CC 0e422114
3 13.0600CC 04266738
o 5 15.€CL00D 00142626
~INTERVAL PARTICLE SIZE CENSITY LAYER = ]
- o1 12.5CCCCC 04 84996C ’
. 2 17.50C0CC 129657
al 3 22.50CCCC C.017713
R & 27.5000C0 0.002419
5 32.560CCC 0.000251
6 37.5CCCCC Ca0
' 7 42.,5CC0C0 040
Ty - ] 4Te5CCCCO Ce0
9 $2.5CC0CC 0e0
INTERVAL SUM PART POF EFF y
N c.a&osaoe lqlsrs‘aqegren PASSAGE OF 1 INCREMENTS THROUGH © LAYERS
2 04125¢57 Ce148477 ' :
3 2.017113 00916440
4 00002416 0.97574%
5 04000221 C.99514%
6 el 1.020C00 -
7 0.0 1.0CCCCO
8 2.0 1.£C000CC
° 9 0.0 . 1.0cCc00"
INTERYVAI M PART PDF EFFICIEN AFTER PASSAC }
L.lsu 0.3*29‘26 4 0.223901 ER PASSACE UF © lucngnEArs THROUGH O LAYERS
2 0052314 e 748477
3 0.0C7147 Ce 910664C
& €.0C0576 . Ca575749
s 0.C00101 0995145
6 0e0 1.GCCRCC
7 [ 1%+ 1.8C)6C0

BRI 2N+

0.2

1.0€0PCO

1e2€C0CC

71
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APPENDIX C

PROCEDURE TO TEST THE SINGLE~PASS FILTRATION
PERFORMANCE OF A FIAT RECLEANABLE
HYDRAULIC FILTER MEDIUM

Purpose: To evaluate the filtration performance of a flat,

recleanable hydraulic filter medium as exposed to a specific

contaminant.

Scope: The test shall measure the filtration performance of a

flat recleanable filter medium for a specified contaminant under

single pass conditions for the sieving mode or for the sieving
and the cake mode.

Definitions:

3.1 Sieving Mode: Separation due to mechanical capture of a
particle by the filter medium or the filter medium and other
particles.

3.2 Cake Mode: Separation due to mechanical capture entirely byi
other particles.

3.3 Adsorption Mode: Separation of a particle smaller than the
pore upon which it impinges due to surface forces.

Equipment and Supplies:

L.l Vacuum source.

L2 Wide mouth vacuum flask. See Figure 13.

4.3 Filter mounting funnel (and appropriate gaskets if necessary),

Millipore XX1504700 or equivalent.



5.

Lok
L5

L6
L7
5.8
L. 10

L.11

Test

5.1

5.2

146

Cleaning equipment (as necessary for particular medium).
Particle counting facilities (must be able to count largest
dimension regardless of distribution).

Microscope.

Filter medium.

Liquid vehicle (particle free).

Analytic balance.

Dessicator.

Sample bottles (particle free).

Procedure:

Clean filter medium.

5.1.1 Microscopic inspection should reveal no particles.
5.1.2 Pass clean test fluid at twice test flow rate through
medium. Downstream count must be less than one

particle/10 ml. in filtrate.

Determine proper dilution.

5.2.1 With apparatus set up'as shown in Figure 13 determine
the concentration required to give the desired mode
of filtration in three-fourths the volume of the
collection bottle.
5.2.1.1 Sieving mode: More than 50 percent of the

pores shall be blocked, but less than five
percent of the observed particles may be
captured solely by other particles.
5.2.1.2 OCake Mode: Flow stops at vacuum of 14.0 psid.
5.2.2 The concentration desired = (weight contaminant

determined in 5.2.1)/(.75 volume collection bottle).
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5.3 Disperse the proper amount of contaminant in the test liquid.

5.4 Determine wniformity of dispersion with counting and measuring
apparatus.

5.5 Remove an appropriate quantity of the contaminated solution
and count the particle size distribution (upstream count).

5.6 Filter the remaining quantity of contaminated fluid through
the filter medium at the flow rate recommended by the
manufacturer. Under no circumstances allow flow to cyclone
in the filtration funnel. The filter medium should be
grounded at all times.

5.7 Microscopically examine the filter medium to observe pore
blockage and verify mode of capture.

5.8 Count particles collected in the downstream sample.

6. Interpretation: Separation efficiency will be calculated for

particles size ,f', as,

(p) = Natp) = Nyep)
Nu(P)

where,

/M;Qik number particles/ml. of the largest dimension, d, upstream,

/7— 5/;_<é/ </9f S/Z ,

Aéﬁ?: number particles/ml. of the same size range in the
downstream sample.

5’= interval size.
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