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CHAPTER I 

INTRODUCTION 

Phosphorus is a major nutrient occurring in most plants in quanti­

ties that are much smaller than th9se of nitrogen and potassium. Only 

a small percentage of fertilizer phosphate will be used by plants while 

a major port ion soon becomes "fixed" in the soil. 

Avail~hility of phosphorus in the soil is dependent on stage of 

soil weathering, pH, organic matter content, soil texture, percentage 

of calcium carbonate and percentage of hydrated iron and aluminum 
/ 

oxides.. Under acidic conditions where the exchange complex contains 

ionized aluminum and iron, these ions combine with phosphate to form 

insoluble compounds of aluminum and iron. The large amount of soluble 

and exchangeable iron and aluminum in acid soils means high "fixation" 

of phosphorus./:iPhosphate fixation;; in alkaline and calcareous soil is 

usually due to the.formation of calcium phosphate. The phosphate ion 

may form a clay-calcium-phosphate complex. It has also been suggested 

that phosphorus may form carbonate-phosphate complexes rather than 

simple tricalcium phosphate.~ 
Soil phosphorus may be broadly clas~ified into organic and inor-

ganic forms. The inorganic forms are more related to plant availabi-

lity and they may be grouped into the chemical forms of aluminum phos-

\>hate, iron phosphate, calcium phosphate and reductant soluble phos-

phate (25). Phosphate fertilizer added to the soil is changed into all 
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of the four forms of phosphate not only in acid aoils but alao in neut­

ral 1oils. According to the principle of the solubility product, cal­

cium phosphate is ~ore soluble than the other forms of phosphate; there­

fore, it is more eaaily removed by crops or is easily shifted to the 

leas soluble forms. 

Total p\losphorua supply in most soils appears to be adequate to 

supply crop needs for many years, but the major portion of the phospho­

ru1 compQunds in soil are not available for the crop plant. 

Many soils of the world are calcareous and the phosphorus chemis­

try of these soils has not been as intenaively investigated as the non­

calcareous acid soils. Most of the important agricultural soils of 

Afghanistan are calcareous and for this reason it was decided that a 

study of ~alcareous soils to learn more about their phosphorus chemis­

try would be remunerative. 

The objectives of this study are as follows: 

1. To study the extent and rate of conversion of ammonium phos­

phate into various phosphorus compounds both in the greenhouse 

and under a constant temperature condition. 

2. To relate the amount of soil phosphorus extracted by several 

procedures to yield, aluminum phosphate, easily soluble phos­

phate, calcium phosphate and available phosphate. 

3. To study the mineralogical composition of these calcareous 

soils. 

It was hypothesized that applied phosphorus fertilizers will 

greatly decrease in solubility after 24 hours of contact with the soil 

and will be converted to aluminum phosphate but after 10 and 30 days 

calcium phosphate content will begin to increase and aluminum phosphate 
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concentration will decrease. It was also hypothesized that the availa­

bility of fertilizer phosphorus to plants after one, 10 and 30 days of 

incubation will not be significantly different from each other. 



CHAPTER II 

REVIEW OF LITERATURE 

Total supply of phosphorus in many soils might be.adequate to take 

care of crop needs for many years but a large portion of phosphorus in 

the soil may not be available. Different forms of phosphorus· are dif­

ferent in their availability to plants. 

Fractionation of Soil Phosphorus 

Fractionation of inroganic phosphorus in the soil has recently 

received extensive study in soil fertility and soil genesis. The only 

important difference between the different methods of fractionation 

lies in the type and concentration of extraction solutions. 

Dean (34) was one of the first investigators to attempt a complete 

systematic fractionation of soil phosphorus. He found that many soils 

contained a large amount of insoluble phosphorus. He divided the soil 

phosphorus compounds into three fractions: 

1. Organic phosphorus soluble in sodium hydroxide. 

2. Inorganic phosphorus dissolved by extraction with sodium hy­

droxide followed by an acid extraction. 

3. Insoluble phosphorus compounds. 

His initial extraction solution was 0.25 N sodium hydroxide with 

which $oluble or exchangeable calcium and magnesium interferred in the 

extraction of phosphorus from alkaline soils. To overcome this Ghani 

4 
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(47) modified the procedure of Dean b~ extracting first with 0.2 N ace­

tic acid until the phosphorus extract was very low or nil in basic ions 

and finally with 2 N sulfuric acid. Ghani separated phosphates into 

the following fr act ions: 

1. Mono-, di- arid tricalcium phosphate soluble in acetic aciel. 

2. Iron and aluminum phosphate soluble in alkalies. 

3. Total organic phosphate (nucleic acid, phytin, licithin, etc.) 

also soluble in alkalies. 

4. Phosphates of apatite nature, soluble in sulfuric acid, 

5. Insoluble phsophate. 

Iroa and aluminum fractions included adsorbed and surface precipi­

tated phosphorus. Ghani (48) further modified his procedure by adding 

8-hydroxyqQinoline to the acetic acid. 

Fisher and Thomas (41) developed a ~apid extraction method to es­

timate the phosphorus present in the following three groups of mater­

ials: 

1. Amorphous and finely divided cyrstalline phosphates of cal­

cium, magnesium and manganese. 

2. Amorphous phosphates of aluminum and iron. 

3. Phosphorus adsorbed upon hydroxides and present in the form 

of apatite. 

They used two extracting solutions, 0.002 N sulfuric acid and 0.3 

per cent solution of potassium acid sulfate. 

Ghani and Islam (49) have shown that the addition of either one 

per cent of hydroxyquinoline or 0.5 per cent of selenious acid to ace­

tic acid almost inhibited the adsorption of phosphorus by iron and alu­

minum hydroxide films. Williams {145) modified the procedure of Ghani 



(48) by extraction with 2.5 per cent acetic acid and one per cent hy­

droxyquinoline and 0.1 N sodium hydroxide. These procedures mentioned 

so far did not differentiate aluminum phosphate from iron phosphate. 

Both Ghani (48) and Williams (145) used an acid extraction before al­

kali extraction. Therefore, they may not have obtained a complete se­

paration of calcium phosphate from the iron and aluminum phosphates. 

Bhangoo and Smith (11) fractionized phosphorus into: 

1. Calcium phosphate soluble in 0.1 N hydrochloric acid. 

2. Adsorbed phosphorus, soluble in cold alkali. 

6 

3. Phosphorus soluble in hot alkali after the removal of 1 and 2 

and this extraction included iron and aluminum phosphates. 

4. Organic phosphorus. 

According to Chang and Jackson (24) inorganic phosphorus in the 

soil can be divided into four main groups: calcium phosphate, aluminum 

phosphate, iron phosphate and reductant soluble phosphate extracted 

after the removal of the first three forms. Calcium phosphate exists 

mainly as apatite, but dicalcium, monocalcium and octacalcium phos­

phates also exist in small amounts as transitional forms. 

The methods presently receiving the widest use for fractionation 

of inorganic phosphorus are those of Chang and Jackson or a modif ica­

tion of their procedure. Chang (25) after reviewing the criticisms of 

other investigators made the following modifications: 

1. Extraction of aluminum phosphate with 0.5 N ammonium fluoride 

at a pH of 7 for one hour for paddy soils and extraction at a 

pH of 8.2 for one hour for upland soils. 

2. Extraction of iron phosphate with 0,1 N sodium hydroxide for 

nine to 12 hours. 
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3. Extraction of calcium phosphate with 0.5 N sulfuric acid for 

one hour after the extraction of occluded phosphate. 

This modification differs from that of Chang and Jackson only in the or-

der of the different forms and the pH of the ammonium fluoride solution 

used to extract aluminum phosphate. ~ 

Glenn, et al. (51) studied the selectivity of different extraction 

solutions used by Chang and Jackson (25) for fractionation of discrete 

compounds in the soil by using natural soil samples, and synthetic and 

natural phosphate minerals. In the modifed flow-sheet proposed, alumi-

num-bound phosphate is extracted from soils with a minimum extraction . 

of iron phosphate by use of 0.5 N ammonium fluoride of pH 8 to 8.5 in-

stead of pH 7. Iron phosphate is extracted with 0.1 N sodium hydroxide 

after extraction of aluminum phosphate and the extraction was found to 

be complete during a nine-hour or longer extraction period. The reduc-

tant-soluble iron phosphate and occluded aluminum phosphate are extrac-

ted after sodium hydroxide extraction of iron phosphate and before ex-

traction of calcium phosphate with 0.5 N sulfuric acid. (This reagent 

was otherwise found to extract appreciable amounts of occluded iron and 

aluminum phosphates.) Dithionite-citrate and 0.5 N ammonium fluoride 

at pH 8 to 8.5 extracted negligible amounts of calcium phosphate from 

natural soil containing much calcium phosphate, indicating a very large 

particle size for the latter. 

Petersen and Corey (103) described a modified Chang and Jackson 

procedure for routine fractionation of inorganic soil phosphates. They 

stated that the use of constant suction pipettes, two molybdophosphoric 
~ 

reductants with different sensitivities, and isobutyl alcohol extraction 

for the determination of reductant-soluble phosphates greatly increased 
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the speed of phosphate determinations. 

Williams, et al. (146) fractionated inorganic phosphorus in the 

soil by using a modified Chang and Jackson procedure (25). Their second 

acid treatment increased the amount of extracted calcium phosphate. 

Further modification simplified the colorimetric determinations of in­

organic phosphate in several of the extracts. Their final procedure is 

outlined in Table I. They stated that phosphate sorbed during the 

fluoride extraction was usually completely recovered in the succeeding 

sodium hydroxide extraction. This enabled mutually compensating correc­

tions to be applied to the ammonium fluoride phosphorus and the first 

sodium hydroxide phosphorus values. 

Mehta, et .!!_. (92) developed a procedure for determining organic 

phosphorus in soils which consisted of successive extraction with con­

centrated hydrochloric acid and 0.5 N sodium hydroxide at room tempe­

rature, and 0.5 N sodium hydroxide at 90 C. The difference in content 

of inorganic and total phosphorus in the combined extract was taken as 

the total organic phosphorus in the soil. 

Russell (114) stated that various chemical methods have been used 

for determining the properties of the principal inorganic phosphates 

present in the soil and these are based on the following assumptions: 

1. Dilute acid dissolves all calcium phosphates present except 

the apatites. 

2. Concentrated solution of ac~ds dissolve apatite. 

3. Fluorides displace phosphate from the surface of hydrated alu­

minum o~ide and subsequent treatment with alkali displaces it 

from the surface of hydrated ferric oxides. 
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TABLE I 

PROCEDURE AND NOMENCLATURE USED FOR THE FRACTIONATION 
OF SOIL INORGANIC PHOSPHATE 

No. Treatment Name of fraction 

1 0.5 N NHL.Cl for 30 minutes. Easily soluble P 

0.5 N NHL.F pH 8.2 for 24 hours with cor­
rection for resorption of phosphate from 

2 solution during extraction. N1I4F-P 

3 0.1 N NaOR and 1 M NaCl for 17 hours. First NaOH-P 

4· 

5 

Extraction with dithionite-citrate-bi­
carbonate. 

l M NaOH for 17 hours. 

Reductant soluble P 

Second NaOH-P 

First HCl-P 
Second HCl-P 

9 

6 

0.5 N HCl for one hour followed by 1 N 
HCl for four hours if first HC1-P>20 
ppm. 

Sum ~ acid extractable 
Ca~P 

I 

7 

Ignition at 550 C for one hour followed 
by 1 N HCl for 16 hours. Residual organic P 

Residual inorganic P 
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4. Reducing solutions containi.ng an iron chelating agent will re~ 

move phosphate present below the surface of iron oxide films 

and in the particular phosphate present in nodules of hydrated 

oxides. 

Distribution of Phosphorus 

Total and available phosphorus have been extensively studied. 

Little work has been done on the distribution of the various discrete 

chemical forms of inoirganic pho:'llphate" The distribution of various 

forms of inorganic phosphorus in soil~ is affe~ted by the activities of 

different ions in the soil~ pH, age, drainage, fertilizer practic~s and 

mineralogical nature. 

Hamilton and Lessard (5:3) conch1ded that subsurface Bamples were 

more highly saturated with bases than the surface soil samples. The 

contri.biut:i.on of calcium phogphate to total phosphates increased from 

41.1 per cent in the surface layer to 88.4 per cent in the 18 to 24 

inch layer. Aluminum phosphate was higher in the 0 to 6 inch layer and 

accounted for five per cent or less of the phosphorus in the subsurface 

layers. Iron phosphate concentration was negligible for all layers. 

Residual phosphates formed as a substantial percentage of the total 

phosphorus in the surface soil. Organic phosphorus decreased with 

depth into the ,soil profile, 

Chang and Jackson (24) stated that the relative am@unts of the 

four inorganic phosphate fractions in various layers of two soil pro­

files studied were, in increasing order of abundance; aluminum phos­

phate, calcium phosphatei iron phosphate and reductant-soluble iron 

phosphate, but the third layer of Kirwin profile was an exception and 



11 

in that horizon the amount of calcium phosphate was higher than both 

iron phosphate and reductant-soluble iron phosphate. All of these four 

forms of inorganic phosphate were in general higher in the subsoil than 

in the surface soil. 

Williams and Walker (147) fractionated 62 horizons from 16 New 

Zealand basaltic soil profiles varying widely in degree of weathering 

and leaching. They concluded that as the degree of weathering of the 

profile increased acid extractable calcium phosphate declined rapidly 

to zero, ammonium fluoride phosphate increased to maximum values and 

then declined. 

Weir (139) stated that occluded iron phosphate accounted for 46 to 

75 per c~nt of the total fractionated phosphorus in 12 soils represen­

tative of the major agricultural soils of Trinidad. The 0.002 N sul­

furic acid extractable phosphate test was well correlated with calcium 

phosphate but not with the iron or aluminum phosphate content. 

Ghobdian (50) found that about 60 to 90 per cent of inorganic 

phosphorus in the soil occurred as calcium phosphate while iron phos­

phate made up four to 45 per cent, and up to 10 per cent of these were 

occluded phosphate. 

McGeorge (89) concluded that sandy soils were lower in electro­

dialyzable phosphate than loamy or clay loams. Non-calcareous and acid 

soils were usually lower in electrodialyzable phosphate than calcareous 

soils. He believed this was due to the fact that acid soils have been 

largely depleted of their phosphate because phosphates are more soluble 

at acid reactions. 

Shaimukhy (121) showed that in the upper humus horizon 45 to 75 

per cent of the total phosphorus was organic phosphorus. Aluminum» 
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iron and calcium phosphate was not higher than 25 per cent of the total 

phosphorus. The concentration of total phosphorus decreased with soil 

depth and calcium phosphate increased with depth. 

Aldrich and Buchanan (1) and Walker and Adams (136) found that the 

total phosphorus content of the soil was closely related to the phos­

phorus content of the parent materials. 

Bates and Baker (6) determined the distribution of total, total 

organic, total inorganic and extractable phosphorus for samples from ~ 

Nigerian forest profile. For the sand fraction and aggregated fraction 

of the fine earth, they concluded that soil phosphorus was accumulated 

in the surface soil. Below two inches there was a marked reduction in 

the content of total phosphorus reflecting a large decrease in the 

amount of organic phosphorus. Thereafter the total phosphorus was 

fairly constant down the depth of the profile. Only the surface soil 

contained an appreciable amount of phosphorus soluble in acetic acid, 

Williams and Saunders (145) stated that total soil phosphorus dec­

reased downward and then increased in the lowest horizon in the soils 

they studied. They concluded that in general, poor drainage was ref­

lected in: 

1. Much lower total organic phosphorus, lower total phosphorus» 

but rather higher inorganic phosphorus. 

2. A very abrupt fall in the organic phosphorus with depth. 

3. Higher phosphorus content for sands, but much lower contents 

in clays. 

4. Higher amount and proportions of the soil inorganic phosphorus 

was present as sand correspondingly lower amounts and propor­

tion as clays. 
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S. Higher acid-soluble inorganic phosphorus in the soil reflecting 

both the higher amount• and higher solubility of the phosphorus 

in the sands. 

6~ Lower content of hydrosulfite-extractable iron in the upper 

hori~ons but higher contents in the gleyed subsoils. 

Nye and Bertheux (98) stated that in thoroughly leached soils the 

acid-soluble phosphate decreased sharply with depth and the alkali­

soluble phosphorus decreased rather more slowly with depth. 

Patel an4 Mehta (101) stated that in six typical soil profiles of 

Gujarat the top soil layers were richer than the subsoil in total and 

available phosphorus. 

B•uwin and Tyner (7) studied the distribution of non-extractable 

(insoluble) phosphorus in the soil horizons of four Illinois soil type 

1equences developed on Peorian loess, The relative portion of the 

total soil phosphorus occurring in non-extractable form in the various 

horizons was B>A>C. No relation was found between the degree of soil 

maturity and level of non-extractable phosphorus for the A horizons, 

h¥t a very significant increase in the non-extractable phosphorus of the 

B horizons was found to occur with increasing.soil maturity. This was 

parttcularly true from the early through the medial stages of soil de­

velopmtnt. They also concluded that the accumulation of non-extractable 

phosphorus was associated with the soil development process. 

Available Phosphorus in the Soil 

Methods of determination of plant available phosphorus have been 

discueeed in the iiter•ture for more than a century. Initially, the 

soil che~ists looked for a chemical that would extract the same amount 
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of phosphorus from the soil as the plant roots, but they did not con­

sider the difference between different plants to extract phosphorus 

from the soil. A soil may contain a large amount of total phosphorus 

but a very small amount of available phosphorus. The form of phospho­

rus in the soil is an important factor in availability of phosphorus 

for plant growth. 

In the ~ethods of determining available phosphorus in the soils 

not only the extraction is important by itself but it should be accom­

panied by an accurate reading of phosphate in the extract. Tisdale and 

Nelson (l~O) defined available phosphorus as the sum ~f water-soluble 

and citrate-so1uble phosphorus in the soil. 

Petter and Averitt (104), Staddart (126) and Frap (42) developed 

a 0.5 N nitric acid method for extraction of available phosphorus. 

Truog (13Z) later suggested O.OOZ N sulfuric acid buffered with ammon­

ium sulfate at a pH of 3 and a ratio of extraction of 200 ml of solvent 

to one gram of soil. Morgan (94) used a 10 per cent sodium acetate 

solution to extract available phosphorus from the soil. 

McGeorge (88) suggested a carbonic acid extraction for alkaline 

~rizona soils, because this acid was weak and was similar to the mecha­

nism he believed was operative at plant root surfaces. Bray (14) deve- .. 

loped a test for extiaction of available phosphorus for Illinois soils. 

Bray ('15) also developed rapid tests for measuring and differentiation 

between adsorbed and acid-soluble forms of phosphorus. Finally, Bray 

and Kurtz (16) introduced their #1 and #2 methods. The extracting so­

ll,l,tion in the #1 meith:>d was made up of 0.03 N ammonium fluoride and 

0.02 N hydrochloric acid while in the #2 method the concentration of 

•mmonium fluoride remained the same as #1 but the concentration of 
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hydrochloric acid was increased to 0.1 N. They also stated that their 

methods will need to be modified if appteciable amounts of arsenic or 

quantities of iron much over 15 ppm are extracted. 

Olsen, et .!!· (100) developed a method in which the extraction so­

lution was 0.5 N sodium bicarbonate and applicable for most calcareous 

or alkaline soils. Watanabe and Olsen (137) finally recommended the 

Murphy and Riley (96) procedure which used a single reagent for deter­

mining phosphorus. They also reported that this method was accurate 

for determining phosphorus in the soil extract. The method is based on 

the reduction of the ammonium molybdi-phosphate complex by ascorbic 

a~id in the presence of antimony. The color produced is stable for 24 

hours and it is less subject to interfering substances than are other 

methods involving reduction of stannous chloride. A disadvantage of 

ascorbic a~id as the reductant has been that certain phosphorus com­

pouqds through the hydrolysis reaction may produce inorganic orthophos­

phate during the long period .required for development of the molybdenum 

blue color. This tends to give higher values in solutions enriched 

with the dissolved organic phosphate. The use of the Murphy and Riley 

(96) method on the sodium bicarbonate extract eliminated the use of 

carbon black in the· determination of soluble phosphorus by the sodium 

Qicarbonate procedure. 

Saunder (117) introduced a method in which the extracting solution 

was hot 0.1 N sodium hydroxide for extracting available phosphorus from 

tropical soils, particularly red soils, where phosphorus was present in 

strongly sorbed forms. Watanabe and Olsen (137) slightly modified the 

procedure of Tr~og and Meyer (133), and Dickman and Bray (35), however, 

this did not change the procedure of Pons and Guthrie (108) whc 
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concluded that phosphorus determination in water extracts of soil may 

be inaccurate due to the interference from dissolved organic matter or 

some material sorbed by carbon black. Watanabe and Olsen (137) also 

1tated that for ~tudies which involve large soil water ratios or low 

concentrations of phosphorus the isobutyl alcohol method of concentra­

tion by Pons and Guthrie (108) is recounnended. They also stated that 

the isobutyl alcohol method is suitable but undesirable for routine 

procedure. Stannous chloride has not been entirely satisfactory for 

reducing the molybdi-phosphate complex because organic matter in the 

soil extract causes instability of the blue color, but ascorbic acid 

as a reducing agent appears to overcome these objections. 

Ohiar~ (99) and Pratt and Garber (109) were not able to find a 

significant correlation between calcium phosphate and the Bray and 

Kurtz #1 method in relation to available phosphate. They also stated 

that calcium phosphate as measured by the Chang and Jackson (25) method 

was not related to available phosphorus as indicated by the Bray and 

Ol~en tests. However, OhiJri (99) found a significant correlation bet­

ween aluminum phosphate and the Bray and Kurtz #1 test, but no signifi­

cant correlation with iron and organic phosphate in Oklahoma soils. 

Benavi~es (9) on the other hand, found a significant correlation bet­

ween the Bray and Kurtz #1 available phosphorus and calcium phosphate, 

iron phosphat~ and organic pho~phate but no significant correlation 

with aluminum phosphate. 

Weir (140) concluded that the 0.002 N sulfuric acid extractable 

pbospborus t~st was well ~orrelated with the calcium phosphate content 

but not with the iron phosphate or aluminum phosphate contents, 

·caldwell (17) used the Murp~y and Riley method on sodium bicarbonate 
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extracts with a favorable result in estimating the phosphorus require-

ment of wheat soils. Experimental results (33) suggested that phos-

phoru1 fractions associated with aluminum in acid pasture soils under 

clover were more available than those associated with iron and organic 

phosphorus. 

Plessis and Burger (107) extracted soil samples with eight re-

agents for available phosphorus. They found a relationship between 

plant phosphorus and aluminum phosphate, iron phosphate and calcium 

phosphate. Weir (140) on the other hand, placed procedures in the or-

der of decreasing precision of estimating the available phosphorus in 

the soil aa follows: first, 0.002 N sulfuric acid method by Truog; 

second, 0.1 N hydrochloric acid method of Bray; third, 0.5 N sodium 

bicarbonate metqod by Olsen, et al.; fourth, 10 per cent sodium acetate 
. -

method of Morfan; and fifth, the 0.1 N sodium hydroxide method of 

Saunder. 

Dean (34) found that occluded phosphorus in the soil was not 

changed by long continued use of phosphorus fertilizers. He stated 

that c•lcium, iron and aluminum phosphate fractions were related to 

available phosphorus. Thomas (129) found that plant uptake of resi-

dual phosphorus in calcareous soil was significantly correlated to the 

phosphorus extracted in sodium bicarbonate and dilute acid annnonium 

fluo-.:-ide. 

Khanna (70) stated that soil test values obtained with the Bray 

and Kurtz method #2 had a significant positive relationship with cal­

ci~m phosphate fraction while the Olsen, et al. (100) method had a cor-

relatiOll with "saloid-bound" phosphorus, and the aluminum and iron 

pho•phat~ fractions. Significant negative relationships indicated that 
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calcium phosphate increased or decreased at the expense of aluminum 

phosphate or iron phosphate by fertilization and cropping. 

Jackson, et al. (64) extracted available soil phosphorus with ........ 

0.025 N hydrochloric acid and 0.03 N ammonium fluoride (modified Olsen 

procedure). The extracted phosphorus was correlated with the phospho-

rus uptake by oats and clovers in the greenhouse and with the phospho-

rus uptake and yield of lucerne in the field. They concluded that no 

method was found to be significantly superior to any other in predict-

ing the phosphorus status of the soil. However, the Olsen method was 

the least affected by soil pH and generally yielded the highest corre-

lation coefficient. Kaila (67) compared the Bray #1 test and the Olsen 

test with acetic acid extraction in 346 mineral soils. He determined 

the inorganic phosphorus fraction extracted by ammonium chloride, arnmon-

ium fluoride, sodium hydroxide and sulfuric acid and concluded that the 

Bray #1 t~st gave higher average significant correlation values in sandy 

soils than in the clays; the acetic acid test did the reverse. The 

Bray #1 and Olsen tests on the average extracted equal amounts of phos-

phorus and were closely correlated with each other and least closely 

with acetic acid values. Chang (20) reported that in eight paddy soils 

representing the main types of Taiwan soils the availability of alumi-

num phosphate, iron phosphate and organic phosphorus decreased while 

that of calcium phosphate tend to be increased with decreasing pH. Oc-

eluded phosphorus was unavailable in these soils. Availability of soil 

alum~num phosphate to rice was higher than that of added aluminum phos-

phat• -nd the availability of soil calcium phosphate was lower than 

tricaclium phosphate. Availability of organic phosphorus was low in 

acid soils but higher in neutral soils. 
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Islam and Rahman (62) suggested that for tropical soils or red 

earths with high phosphate adsorption capacity the availability of soil 

phosphorus to the plant was controlled by the degree of phosphate satu­

ration of the soil. Determination of the degree of phosphate satura­

tion would give a better measure of soil phosphate status than other 

methods. 

Stroehlein, et al. (128) compared ammonium polyphosphate to ammon­

ium orthophosphate with successive ~rops grown on four calcareous soils 

in the greenhouse and found that a1Illllonium polyphosphate was a suitable 

phosphorus source for barley and tomatoes growing in calcareous soils. 

Dutil •nd Duman (37) applied basic slag, superphosphate and ground rock 

pho15ph~te to calcareous soils in pot experiments. They k~pt the pots 

free from vegetation for one year and then extracted phosphorus with 

0.5 N sodium bicarbonate, 0.005 N sulfuric acid, and 0.5 N ammonium 

oxalate. They found that extractable phosphorus decreased very rapidly 

with superphosphate and basic slag for the first four months and then 

very slowly with little difference noted between the two fertilizer 

forms at the end of the experiment. They also stated that in a stan­

dard biological test the uptake of phosphorus by wheat was slightly 

better from basic slag than from the superphosphate treatment, and with 

rock phosphate phosphorus uptake was similar to that from untreated 

soils. Kigh rates of rock phosphate reduced both yield and phosphorus 

uptake, 

Ensminger (39) stated that applied phosphorus accumulated in the 

soil and the extent of accumulation was in proportion to the amount 

applied. The yield of cotton, vetch and ladino clover showed the ef­

fec~ of resid~al fertilizer phosphorus and was directly related to the 
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fe~tilization history. 

Rogers (113) found that the eroded soil material from corn fields 

was richet in nitrogen and phosphorus than the total soil. Bar, et al. 

(5) concluded that the rate of decreasing availability of phosphorus on 

addition of calcium carbonate was higher in soils of low phosphorus 

content than those richer in phosphorus, and soil treatment with cal~.• 

cium sulfate enhanced the decrease in phosphate solubility. 

Hinkle (57) found by chemical analysis that calcareous soils are 

well supplied with total phosphorus, but the amount available to crops 

during the growing season is often very small. McGeorge (89) also 

stated that at alkaline reactions the soil requires more soluble phH­

pbate to supply the need$ of the crop than do neutral or slightly acid 

1011•. In acid soils available phosphorus is present in a large part 

as the B2P04 ion while in alkaline soils HP04 is ~he important phos­

phate 10111. 

~idgley (93) stated that the lack of phosphorus availability in 

alkaline calcareous soils seems to be due to a carbonate phosphate com­

pl~ rather than simple tricalcium phosphate. He also stated that the 

1~licate ion is capable of replacing phosphorus. Weir and Sopur (141) 

stated that the pbosphate activity in calcareous •oil was governed only 

by such ccnappunds aa dicalcium phosphate and octacalcium phosphate 

which dissolve or prtcipitate fast enough to affect the phosphate solu­

tion cence~tration, because hydroxyapatite attains solution equilibrium 

so slowly that changes imposed on a soil which would necessitate either 

dissolution Qr precipitati~n of this phosphate compound will require a 

considefable period of time for any new equilibrium to be established. 

Thus eolubility measurements of phosphate reactions in calcareous soil 
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very often do not correspond to any known solubility product, 

Gracio and Lima (52) applied p32 alone or in combination with oxa­

lic acid, EDTA, starch, starch-carbonate, calcium carbon•te or soluble 

glass. They grew a test crop for 37 days in pots. They concluded that 

with the ~ception of starch all treatments tended to increase the up­

take from the soil phosphorus supply but the increase was significant 

only with EDTA, calcium carbonate and soluble glass. Only soluble 

glass was effective in promoting phoephorus uptake from fertilizer 

phosphorus. In~reasing the rate of added organic substance decreased 

the plant dry weight and phosphorus uptake. They also stated that dry 

weight of plants from silicate-treated pots compared favorably with 

that of plants from pots pretreated with large amount of unlabelled 

superphosphate. 

Lewis, et al. (79) concluded that in general the salts of calcium 

whic:;h have a common ion with phosphate fertilizer compounds caused the 

greatest fixation of both fertilizer and soil phosphate. Sodium salts 

on the other hand increased the availability of both fertilizer and 

soil phosphate. Magnesium salts were intermediate between calcium and 

1odivm in their release of soil phosphate and fixation of fertilizer 

phosphate. In general, increasing the rate of salt application dec­

reased the availability of fertilizer and soil phosphate. Increasing 

the rate of sodium carbonate, however, increased both available soil 

and fertilizer phosphate. 

i~tz and Rich (84) measured the effect of 13 salts and urea on 

•vailability of phespharus in monocalcium phosphate tagged with p32, on 

the yield of oats in the greenhouse. They measured the yield and per­

centage fertilizer phosphorus in the plant and then calculated the 
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a•ount of phosphorus removed. They concluded that the salts did not 

increase the percentage of water-soluble phosphorus in the soil but in 

general the salts increased the amount of phosphorus removed from the 

soil by the Bray and Kurtz #1 method. Where lime was applied, with a 

few exceptions, salts increased the availability of phosphorus applied 

to the plantl in the greenhouse and field experiments. _ 

Phosphorus Fixation· and Mechanism 

Only a small portion of the phosphorus appiied to soil will be re­

moved in the harvested portion of the crops or lost by leaching and 
;> .. u,/T'..,, 

volatilizatiOll. The major part of the added phosphorus fertilizer soon 

becomes "fixed". The clay fraction of the soil is responsible for this 
I"..,_· c,.,..J Gtlli fJlc\ ~ 

fixation but the exact mechanism by which clay is able to fix phospho-

rus is not known. Tisdale and Nelson (130) defined fixation of phos­

phorus as a reduction in the solubility of phosphorus added. Phospho-

rus fixation in the soil is dependent on pH value, content of clay and 
"·•. 

nature and amount of exchangeable cations present in the exchange com-

plex (131). 

Bear (8) indicated that the retention of phosphorus may be due to 
., 

the result of a reaction between free oxides of iron and alainum or 

formation of insoluble salts of iron and aluainum or calcium as well as 

fixation by clay minerals. Harter (54) showed that the sediments of a 

eutrophic lake were capable of adsorbing a large amount of phosphorus 

from water. 

c'oleman, et al. (30) found a significant correlation between ad--
sorbed phosphorus and the exchangeable aluminum content of the soil~ 

They also stated that the removal of exchangeable aluminum reduced 
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phosphate sorption. Cho and Caldwell (28) found more of the total soil 

phosphorus in the aluminum and iron fractions in acid soils and more of 

the total soil phosphorus in the calcium fraction of calcareous soils. 

Chandler (18) showed that phosphate f i.xation in acid soils was due to 

iron and aluminum, but in calcareous soils calcium was responsible for 

phosphate fixation. Stoddart (126) found a higher ratio of iron and 

aluminum to calcium for acid soils than non-acid soils. 

1-;.. Kittrick and Jackson (73) stated that phosphate compounds of alu­

minum, iron and calcium gave higher phosphate concentrations in solu­

tion when ~uspended in pure water than the phosphate concentration 

known to exist in the soil solution. They also stated that the common 

ion effect indicated that an excess of the common ions» aluminum, iron 

or calcium supplied by non-phosphate soil minerals ehould indeed main­

tain pho•phorus at very low levels of concentration. 

Hsu and Rennie (60) stated that sorption and precipitation are the 

results of chemical union between aluminum and phosphate. They repor­

ted th•t the factor governing the availability of phosphorus is not its 

form but the total activity of ions that can fix phosphate, i.e., alu­

minum in the system. They also found that exchangeable aluminum on 

resin precipitated phosphate from solution and an exchange reaction 

likely occurred between the Al~+ in the soil and other cations in the 

~otution. Precipitated phosphate may be adsorbed by the resin through 

aluminum bridges. In this case the decrease of phosphate in solution 

is controlled by the solubility product of aluminum phosphate and the 

data should be expected to follow the adsorption isotherm. 

Lindsay, et al. (80) stated that the Ksp value of highly purified 

synthetic varisite, Al(OH)2H2P04, was found to be 30.5 at 25 C and 
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the equilibrium between varisite and its constituent ions in solution 

was attained only very slowly. The solubility criteria indicated that 

the immediate reaction products of phosphate applied to acid soils are 

much more soluble than varisites, but upon aging these intermediate re­

action products are tlowly transformed into varisite which may exist 

with gibbsite as a stable solid phosphate. 

Kittrick and Jackson (74) found that at pH 4 the predominant alu-

minum and phosphate ions in solution were Al3+ and H2Po4- Rennie, et 

~- (111) on the other hand, concluded that the calcium ion will not 

precipitate phosphate from solution if the pH is sufficiently low. 

They obtained no significant precipitation of calcium phosphate until 

the pH approached 5.5 and maximum precipitation did not occur until the 

pH approached 7.6. The precipitation of iron and aluminum phosphates 

were negligible at pH 5. 

Lagos (77) analyzed seven soils for four phosphate fractions and 

reported that in two soils of pH>7.5 a larger portion of the fertili­

zer occurred as the tricalcium phosphate fraction while in soils of 

pH-<.7.5 the phosphate fertilizer was more pronounced in iron and alumi­

num phosphate fractions. An average of 25 per cent of the added phos­

phorus was retained in the soluble and loosely bound fraction. Phos­

phate fixation capacity of the soils ranged from 48 to 64 per cent and 

averaged 58.7 per cent. The phosphate content of each fraction as a 

percentage of the inorganic phosphorus was used as a criterion for de­

termining the degree of chemical weathering of the soil. 

McGeorge and Breazeale (90) believed that phosphate fixation in 

calcareous soils is due in many cases to formation of a compound more 

basic than tricalcium phosphate and additional calcium as calcium 



25 

carbonate is a definite part of the calcium phosphate molecule. 

Midgley (93) also believed that phosphate in calcareous soils seems to 

be fixed as a carbonate-phosphate complex rather than simple tricalcium 

phosphate. McGeorge (88) stated that Arizona soils have a strong fixing 

power for soluble phosphate because of the large amount of solid-phase 

calcium carbonate and high pH. 

Perkins (102) studied the effect of various mixtures of cations 

with phosphate on phosphate precipitation through a range of pH values 

from 2.5 to 9.5 and concluded that increasing cationic concentrations 

increased phosphate precipitation whether single or mixed cations were 

used. As the pH increased from 2.5 to 9.5 phosphate fixation by cal­

cium steadily increased. At acid reactions ~alcium phosphate precipi­

tated slightly more phosphate than magnesium, but at basic reaction, 

much more. In general the more complex the cationic solution with to­

tal cation concentration remaining constant the lower the phosphate 

precipitation. 

Joos and Black (65) pointed 0ut that the availability of phosphate 

rock was relatively high at pH 4.6 and 5.6, but was reduced at pH 6.6. 

They also reported a reaction between phosphate rock and bentonite at 

pH 4.6 and 5.6. Stelly and Pierre (125) found that the amount of phos­

phate dissolved from apatite and phosphate rock increased as the pH of 

the solution was lowered. 

Mack and Barber (85) concluded that soil incubated at -20.5 C for 

nine months released more phosphate when leached with water than the 

soil incubated at 2.7 c. At a leaching temperature of 32 C more phos­

phate was released than at 16 c. They also found a direct relationship 

between rele~sed phosphorus and a decrease in acid-soluble phosphorus 



26 

and an increase in alkali-soluble phosphorus. 

Neller and Comar (97) stated that phosphorus fixation varies di­

rectly with soil clay content and to a lesser degree with the silt and 

organic matter content. Rennie and Mackercher (111) on the other hand, 

believed that organic matter is equally as important as inorganic col­

loids in sorption of phosphorus. However, Kardus (68) stated that the 

Gver-all effect of the organic phase in soil is a reduction in phospho­

rus fi.x~tion. 

Stout (127) found that ground samples of kaolinite and halloysite 

fixed three te four millimoles of phosphate per 100 gram~ of oven dried 

clay but he did not find a significant phosphate fixation with bento­

nite clay. Murphy (95) also stated that grinding of kaolinite increased 

phosphorus fixation bv kaolinite. He believed that this intense grind­

ing exp~ses a considerable number of hydroxyl ions which become active 

in fixation of phosphate by an anion exchange reaction between the phos­

phate ion and the hydroxyl ion of the clay. 

Kittrick and Jackson (74) found that greenalite and kaolinite re­

act with phosphate by a mechanism of chemical precipitation to form a 

separate phase phosphate crystal at room temperature as well as at 

90 C. Berger and Thomas (10) reported anion sorption in soils high in 

kaolinite clay and aluminum and iron oxides. Mehlich (91) also stated 

that soils high in kaolinite, iron oxide and gibbsite have a high affi­

nity for anions. Schofield and Samson (118) stated that the mechanism 

of proton adsorption at low pH values could account for anion sorption 

by kaQlinite. Wada (135) showed that at pH 4.0 ammonium phosphate re­

acts rather rapidly with allophane and halloysite to form an insoluble 

phosphate "ammonium-substituted taranakite''. He also replllrted that the 



reaction was retarded at pH 7.0. He noticed that a 10.1 A spacing of 

halloysite changed to 13.2 A due to phosphate fixation. Kelly and 

Midgley (69) showed that phosphate fixation increased the pH of the 

kaolinite-phosphate mixture. He also observed that ferric hydroxide 

increa~ed the pH more than kaolinite. 
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Wild (143) measured the retention of phosphorus in kaolinite, mont­

morillonite and Rotbamsted subsoil clay. Re believed that the exchange­

able cations determin~. the extent of formation of basic aluminum phos­

phate. Allaiway .:i!nd Rhn"1!de~ (2) found that phosphorus accumulated in 

the soil as surface sorbed phosphate» or as a combination of iron and 

aluminum pho5ph~te or both. 

Ram\llu» et al. (llO) noticed .a significant correlation between 

phosphorus fixatfon and dithionite extractable iron. They also repor­

ted that pure kaolinite fixed more phosphorus than a mixture of kaoli­

nite and vermiculite. Kittrick and Jackson (74) stated that the addi­

tion of goethite to an iron phosphate suspension diminished the solut­

tion phosphate concentration from 10 ppm to one ppm and a similar re­

sult was obtained by the addition of kaolinite to an aluminum phosphate 

suspension. 

Coleman (31) studied the amount of phosphate fixed by the coarse 

and fine frs~tions of kaolinite and montmorillonite clays both before 

and after their free iron and aluminum oxides had been removed. He 

found that all of thti phosphorus held by coarse clay and most of the 

phosphate held by fine day wu fixed by free iron and aluminum oxides. 

Kaolinite and montmorillonite in fine clay fixed rather large amounts 

of phosphorus but the kaolinite~ montmorillonite~ quartz and mica in 

the coars~ clay mLneral were unable to fix phosphorus. He also stated 
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that phosphorus fixation by both coarse and fine clay was influenced by 

reaction and exchangeable cations only as long as the free iron and 

aluminum oxides were present which shows that the activity of these 

free oxides determines the amount of phosphorus fixed by clay and fixa­

tion was not influenced so much by the type of clay material but by the 

amount and activity of free iron and aluminum oxides. Coleman (31) 

also reported that the fixation of phosphate by montmorillonite and kao-

1 inite clay was due to both the free iron and aluminum oxides and the 

clay mineral, but the amount of phosphate fixed by either clay was 

largely dependent on the activity of the free iron and aluminum rather 

than by the type of clay. 

Ensminger (40) indicated that a crystalline compound was formed on 

phosphating kaolinite and Cecil colloid. He concluded that fixation by 

these clays was due to the precipitation of aluminum phosphate rather 

than by hydroxyl replacement in the crystal lattice of aluminosilicate 

minerals. 

Hemwall (56) hypotehsized that phosphate is "fixed'' by clay mine­

rals by reacting with soluble aluminum which originated frem the ex­

changeable sites or from lattice dissociation of the clay minerals to 

form a highly insoluble aluminum phosphate compound. The problem was 

approached in general by shewing (a) that clays support an appreciable 

aluminum concentration in solution and (b) that there is a solubility 

product relationship between the aluminum and phosphate concentration 

in a clay-phosphate suspension. On the basis of experimental evidence 

the hypothesis was correct. He also stated that the insoluble aluminum 

phosphate farmed was variaite (AlP04•2H20) and the rate of fixation was 

found to be dependent upon the rate at which the clay replenishes the 
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• 
the soil solution with soluble aluminum. Low and Black (82) also tes-

ted the hypothesis which stated that kaolinite dissociated into alumi-

num i0ns, thereby disturbing the equilibrium and causing the clay to be 

dissolved in accordance with solubility-product principles. The diges-

tion of kaolinite in phosphate solutions resulted in a release of si-

lica which was proportional to the phosphate fixed. Low and Black (83) 

also concluded that one of the mechanisms of phosphate fixation by kao-

linite was the phosphate-induced decomposition of the clay with the re-

leased aluminum being precipitated as aluminum phosphate. They presen-

ted evidence that kaolinite ionizes into a hydroxyaluminum complex as 

a cation and a silicate radical as an anion. 

Black (12) conducted a phosphate fixation study and concluded that 

ground kaolinite had a maximum fixation at pH 3 to 4 regardless 'of the 

concentration of phosphate or the time of contact. The importance of 

kaolinite in f;f.xing phosphate in an unavailable form in the soil was 

considered to be the greatest at the high phosphate concentration in 

immediate vicinity of the source of soluble phosphate. 

Coleman (32) was the first investigator who really postulated that 

phosphate fixation by clay minerals was due to the aluminum content of 

the clay. He suggested at least two different kinds of phosphate fixa-

tion mechanisms. One which operates above pH 5 and "fixes" phosphate 

more slowly. He also reported that at the pH range of most seils (pH 

5 to 7), montmorillonitic and kaolinitic clays fixed almost as much 

phosphate in 24 hours as in one month, but the more acidic reaction 

(belew pH 5) both clays fix considerably more phosphate in ont month 

than in 24 hours. He also stated that little or no phosphate was fixed 

by clay minerals, montmorillonite and kaolinite, but that all of the 
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phosphate was fixed by the free iron and aluminum oxides on the clays. 

There was evidence to indicate that phosphate ions replaced hydroxyl 

ions from the free iron and aluminum hydroxides rather .than the clay 

mineral. 

Kelly and Midgley (69) stated that phosphate fixation is a physiccr 

chemical exchange of phosphate ion for the exposed hydraxyl ions •. 

Though it seems to be an equilibrium reaction, in soil it is greatly 

shifted toward phosphate fixation, because of the very low concentra­

tion of hydroxyl ion in the soil solution and the high hydroxyl concen­

tration of hydrated ferric oxides on the surfaces of the soil particles. 

When they heated ferric hydroxide which lost its hydroxyl ions as water, 

its phosphate fixing capacity decreased from 100 to zero. After heat­

ing it resembled anhydrous ferric oxide which fixed no phosphate at any 

time. They also reported that if a soil contained a large amount of 

hydrated iron oxide heating at a high temperature will decrease its 

fixation capacity, but if it contains a large amount of hydrated alumi­

num oxides heating may actually increase its fixing capacity for phos­

phate. 

McAuliffe, et .!l· (87) measured the extent of hydroxylic surfaces 

for k•olinite, halloysite, diaspore and gibbsite. In the case of kao­

linite and halloysite the hydroxylic surfaces were about two-thirds of 

the total. They also studied the kinetics of the exchange between 

phosphate on the surface of soil minerals with phosphate in solution 

by use of phosphate solution containing p3 2• They reported two reac­

tions, the first of which corresponds to rapid exchange between phos­

phate in solution and phosphate on soil surfaces. Phosphate after 

sorption on the surface undergoes a further reaction, the nature of 
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which remains to be determined. 

Cole, et .!!· (29) stated that when a soluble phosphate fertilizer 

is added to calcareous soils, the reaction with calcium carbonate con­

sists of a rapid m0nolayer sorption of phosphate on the calcium carbo­

nate s~rface and at high phosphate concentrations in the vicinity of 

fertilizer particles, the precipitation of dicalcium phosphate or a si­

milar compound may be substantial. The initial products of these reac­

tions are characterized by very high specific surfaces and greater 

phosphate solubility than the stable hydroxyapatite or fluoroapatite. 

They also added that a sodium carbonate solution readily removes sorbed 

phosphorus from calcium carbonate surfaces by the combined effect of 

the reduction of the calcium concentration in solution and precipita­

tion of carponate and an exchange between the bicarbonate ion and the 

phosphate ~on for a position on the calcium carbonate surface. 

Low and Black (83) applied the solubility-product principle to 

clays by r~actions with strong acid or base. When they treated kaoli­

nit~ with strong acid, the silicate ions from the clays reacted with 

the hydrogen ion of the ac:l.d to form a weak silicic acid, the ioniza­

tion of which was repressed by the presence of an excessive acid con­

centration. In this manner the activity of the silicate ion is dec­

reased and clay dissolved. If, on the other hand, kaolinite was treat­

ed with a strong base, the activity of the aluminum ion would be dec­

reased by tne formation of a stable aluminate and would cause dissocia~ 

tian of the clay mineral. According to their hypothesis any ion that 

is capable of reducing the activity of either ion of the clay should, 

if present in sufficient amount, cause the clay to dissociate. Ions 

such as phosphate and arsenate in large excess should effect the 
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11breakdown' 1 of the clay by precipitating the aluminum. They also found 

that the addition of both phosphate and 8-hydroxyquinoline to kaolinite 

produced considerable increase in the concentration of silica in the 

solution. 

Weiser (142) studied the penetration and fixation of phosphates in 

both field and greenhouse experiments. He concluded that the soil pe­

netration of superphosphate may be en~anced by certain materials such 

as sulfate and nitrate salts of sodium, potassium, ammonium and magnes­

ium. Sodium, annncnium and certain organic phosphates penetrated more 

quickly in soil than did superphosphate. He also stated that exposure 

of phosphate to relatively large amounts of soil, a situation observed 

in cases of deep penetration resulted in enhanced fixation. 

Hsu and Jackson (59) stated that when a strongly acidic highly 

weathered soil undergoes an increase in pH by calcium carbonate addi­

tion, a slow back-transformation to calcium phosphate occurred but con­

siderable aluminum and iron phosphate persisted. The rapid fall in 

calcium phosphate as the pH dropped from 6.5 to 4.5 together with the 

phenomena noted above, gives evidence that transformation of phosphate 

in soils is mainly controlled by pH, but the rates of transformation 

are controlled by the slow rate of diffusion of an ion along moisture 

film joining adjacent soil particles. Iron coatings further slow down 

the rate of back-transformation. Reducing conditions promoted the for­

mation of alumip.um phosphate instead of iron phosphate. 

Samie, et al. (116) used tagged monocalcium phosphate on 16 

Egyptian soils of various calcium contents and found that exchangeable 

calcium, but not water-soluble calcium or calcium carbonate, increased 

phosphate fixation, 
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H~seman, et al. (55) stated that the rate of phosphate fixation 

by montmorillonite, illite and kaolinite clays increased with rise in 

temperature, increasing concentration of phosphate and lowering in pH. 

The rate of fixation by hydrous oxides, gibbsite and goethite increased 

with rise in temperature, but was affected little by variatien in pH in 

the 0.1 M phosphate selution. The decreasing order in which the soil 

minerals fixed phosphate was: gibbsite, goethite, kaolinite and mont­

morill0nite. 

Log and Dev (81) stated that clay fractions (>2"') having mont­

morillonite as the dominant clay mineral fixed more phosphate than pre­

dominantly kaolinitic clay. A sample rich in illite fixed more phot­

phate in the absence of ferric oxide at pH 4 while other samples showed 

high fixation when free ferric oxide was not removed. 

Weller (138) reported that the chelating ability of iron and alu­

minum found in the vicinity of phosphorus fertilizer granules was ef­

fective in reducing phosphate fixation. Plessis and Burger (107) sta­

ted that phosphate fixation took place in two steps: a rapid initial 

fixation which obeyed the Langmuir adsorption isotherm followed by a 

slow continuous process. Fixatien in these soils which contained pre­

dominiui.tly illite, mentmorillonite and kaolinite clays besides 1. 5 per 

cent free iron oxide was affected by time, pH, and amount of potassium 

dihydrogen phosphate ~pplied in the laboratory study, but was little 

affected by moisture and liming to pH 7.0. 

Hsu (58) calculated the amount of phosphate fixed from the dec­

rease in phosphate concentration in the solution and indicated that 

the relationship between the phosphate fixed and the concentration in 

the solution fellowed the Langmuir ads0rption isotherm. Adherence to 
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the Langmuir adsorption isotherm was considered for an adsorption reac­

tion under his experimental conditions (pH 7, absence of exchangeabie 

aluminum in the soil and a short period of shaking) although its appli­

cation to phosphate fixation should be subjected to some limitations 

in interpretation. 

Hsu and Rennie (60) studied the reaction of ''aluminum hydroxide" 

with phosphate in order to elucidate the role of this compound in the 

fixation of phosphate in the soil. They also studied the application 

of the Langmuir adsorption isotherm as an indicator of sorption. They 

concluded that the initial fixation of phosphate by X-ray amorphous 

''aluminum hydroxide" at pH values of 7, 6, S and 3. 8 and at initial 

phosphate concentration ranging frOJU 2 to 100 ppm of phosphorus and 

in certain instances upt to molar concentrations was shown to be prima­

rily a result of a sorption reaction which occurred very rapidly and 

was practically completed witqin a half kour, but was followed by a 

slow decomposition-precipitation process. The sorption mechanism was 

suggested to be basically the same as the decomposition-precipitation 

reaction, except that the latter requires the release of the duminum 

ion into solution. The solution Al 3+ activity was limited by the solu­

bility of aluminum hydroxide and thus became negligible at pH S and 

above, but this limitation did not affect the surface aluminum activity. 

They stated further that in the derivation of the Langmuir adsorption 

isothenn, it was implicitly assumed that the gas particles moved in the 

free space and no force other than the attraction of the solid inter­

ferred with their kinetic movement. The kinetic movement of phosphate 

ions in an aqueous solutionj however, was affected by other ions in so­

lution. The ions which attract phosphate will enhance the forces of 
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sorption. Langmuir sorption isotherm can only hold where the interfe-

rence froces due to the interaction of ions is negligible or when it is 

·constant throughout the experiment. In this phosphate-aluminum-hydro­

xide system A1 3+ ion can be released to the solution by aluminum hydro-

xide through dissolution. The aluminum ion in the solution can compete 

with the aluminum hydroxide surface for phosphate and shift the posi-

tion of the sorption equilibrium. Kurtz, et al. (76) on the other hand, 

concluded that the amount of phosphate sorbed was a function of concen-

tration of phosphate in solution and they recognized that the Freund-

lich equation may hold in a limited range but that it is not applicable 

to all sorption reactions. In equilibrium studies both with phosphate 

and with cations, sorption may follow Freundlich's equation and this is 

typical for polar sorptions of which exchange sorption is an important 

type. With the base exchange reaction other cations are released in 

amounts equivalent to those sorbed. 

According to Kolthoff (75) theoretically the Freundlich equation 

can represent exchange reactions when applied to ions and he believed 

that the sorption was an exchange reaction. However, his curve began 

to level off when as little as 0.13 gram of phosphorus was sorbed per 

gram of clay. It seemed that this sorption and the sorption that dis-

placed silica are not the same. 

Low and Black (82) plotted the amount of phosphate fixed by kaoli-

nite against the final concentration in the solution and produced a 

typical sorption curve which could be represented by the Freundlich 

adsorption equation having the form: 

X V. l/n 
• "·c m 
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where x • the amount of phosphate adsorbed per given weight of adsor-
m 

bent, 

x • the amount of the solute absorbed, 

m • the weight of the adsorbent, 

K • the proportionality constant, 

e • the concentration of the solutes in the equilibrium solu-

tion, and 

n • a constant. 

Obedience te this equation is an indication that a sorption equilibrium 

had been reached within the relatively short period of 3/2 hours. They 

also noticed that the degree of sorption was increased by increasing 

the temperature. The exchange of phosphate ions for hydroxyl ien1 of a 

crystal lattice is a type of chemical sorption. 

Fried and Shapiro (44) had earlier shown that the constant calcula-

ted from the Langmuir isotherm had a sound theoretical approach to same 

of the problems of phosphate retention in soils. The Langmuir adsorp-

tion equation (78) may be written in the form: 

x Koc 
q :: l+Kc. 

c = _! 
x/m Kb 

and in linear form this equation becomes 

+ .£ 
b 

where c • the final solution concentration (equilibrium concentration) 

in ug . P /ml, 

x m • ug P adsorbed per gram of soil, 

b = the adsorption maximum, and 

K = a constant related to the bonding energy of the solid col-

loids for the phosphorus. 
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A straight line plot of cl against c can be assumed to be indicative 
x m 

of a sorption reaction. Ill such a case the serption maximum and the 

energy of sorption can readily be calculated and it can be assumed that 

the conditions are such that a unimolecular sorbed layer is present on 

the surface of colloids. 

Rennie and Mackercher (112) plotted the sorption data according to 

the Langmuir equation and concluded that the data showed satisfactory 

agreement with the Langmuir isotherm when the phosphorus solution con-

centration was less than 20 ug P/ml as a straight line relationship 

existed for the four soils. The is0therm for all soils breaks in the 

vicinity of a final selution concentration of 20 ug P/ml. 

Fried and Shapiro (44) measured beth the intensity of phosphate 

supply and the capacity of a soil to continue to supply phosphorus. 

They found that the pattern of phosphate supply for four low phospmate 

fixing soils could be predicted by assuming the phosphate released was 

a desorption phenomenon as described by the Langmuir adsorption iso-

therm. Langmuir (78) stated that the sorbed molecules are held to the 

surface by valence forces of the same type as occurs between the bound 

atoms in a molecule. 

The Fate ef Soluble Phosphate Applied to Soils 

Generally, soluble phesphate added to the aoil is largely conver-

ted into iron and aluminum phosphates in acid soils and into calcium 

phosphates in calcareous soils. Chang and Jackson (25) and their modi-

fied procedures ia the fractionation of phosphate make it possible to 

trace the transformations of phosphorus applied to the soil. Juo and 

Ellis (66) noticed a rapid precipitation of phesphorus applied to soils 
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to form colloidal aluminum and iron phosphates and these products then 

crystallized into hydrated compounds which were less available for 

plants. 

Sharif and Ulrich (122) used neutral leam soils in a pot experi­

ment and found that monocalcium phosphate was completely converted and 

superphosphate partially converted into aluminum and iren phosphates. 

They also stated that calcium phosphate was highly available to wheat 

and beans and showed a high isotopic exchange associated with a large 

surface area. 

Robertson, et ~· (112) applied concentrated superphesphate and 

rock phosphate to soils at rates up to 349 lb/A. In lateritic soils 

phosphorus applied as superphosphate was largely converted to aluminum 

and iron phosphates after two years. Conversion of phosphorus from 

rock phosphate occurred at a much slower rate than concentrated super­

phosphate. They also reported that there was a conversion of phospho­

rus from superphosphate to occluded phosphorus other than aluminum and 

iron phosphates. Most of ~he phosphorus applied after 8, 11 and 13 

years had been converted to occluded phosphorus. 

Maning and Solomon (86) studied the form of phosphorus after more 

thAn 65 years of phosphate fertilization. They concluded that super­

phosphate treatments resulted in a major portion of the phosphate re­

verting to aluminum and iron phosphate and calcium phosphate was found 

to a lesser degree, Rock phosphate treatment, on the other hand, 

showed an increase in the calcium phosphate fraction. Organic and oc­

cluded phosphate fractions were not greatly affected by various treat-

ments, 
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Shelton and Coleman (123) stated that phosphate applied to many 

red clay soils was rapidly fixed as iron and aluminum phosphate there­

by reducing the solubility and availability of phosphorus fertilizers. 

They further stated that applied phosphorus was rapidly cenverted 

(within six months) to aluminum and iron phosphates. The initial in­

crease in aluminum phosphate was greater than iron phosphate at all 

rates~ but with increasing elapsed time after application there was a 

decrease in aluminum phosphate and an increase in iron phosphate. They 

believed that aluminum phosphate cemes into solution and can be used 

by plants before it changes to the less soluble iron phosphate. 

""- Chang and Jacksen (24) reperted that the application ef soluble 

phosphate fertilizer greatly increased the ameunt of aluminum and iron 

phosphate at all three lime levels but increased the calcium phesphate 

only slightly at the highest lime level. They stated that at tae ini­

tial stage of weathering and also right after application of phosphate 

fertilizer, calcium phosphate and aluminum phosphate are more likely 

to be formed than iron phosphate. This is due to higher activities in 

the soil of calcium and aluminum ions than iron ions which are con­

trolled by the activities of the respective catiens of calcium carbo­

nate and aluminum silicate and gibbaite and iron oxides. As time 

elapsed the calcium and aluminum phosphate decreased in concentration 

and iron phosphate gradually increased which is the least soluble com­

pound among them. 

Chang and Chu (23) studied the fate of added soluble phosphate 

in six Taiwan soils, with pH ranging from 5.3 to 7"5. After three 

days they feund that the added phosphate was mainly fixed in decreas­

ing order of aluminumi iron, and calcium phosphate. After 100 days 
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the •mount of aluminum and calcium phosphate decreased while ir@n phos­

phate was increasing. Chang (22) also concluded that phosphate added 

to the soil was fixed at early stages mostly as aluminum phosphate in 

the acid ~~ils ~nd wa~ ~t~bilized as long as waterlogged conditions 

were maintained, He also found that the availability of iron phosphate 

increased due to the reducing conditions in the soil produced by addi­

tion of organic matter to waterlogged soils. 

Lewis~ et al. (79) feund a reduction in availability of applied 

phosphorus within 24 hours. Khan and Chowdhury (7) also stated that 88 

per cent of the phosphate added as superphosphate was retained by the 

soil in iusoluble forms three days after application. Most of the su­

perphesphate was converted into sesquioxide-bound pho~pbate a~d serbed. 

Yuan~ et al. (148) found tm~t ev~r 80 per cent of the applied phosphate 

was retained by the soil as aluminum and iron phosphates. Less than 10 

per cent was in the water soluble and calcium phosphate forms, 

Chang (22) studied s@ils with pH 7.6~ 5.5 9 4.5 and 4.15 by apply­

ing phosphorus alone and/or with organic matter in flooded centainers 

~nd then fractionated the soil for forms of phosphorus. He concluded 

that in acidic seils fixation of added phosphorus was generally com­

pleted after five to nine days. Thereafter soluble phosphate increased 

slightly. In alkaline soils phosphorus fixation was generally comple­

ted after 13 days. Gerth (46) stated that decalcification leads to the 

formation ef iron and aluminum phosphates~ while slow weathering in the 

pre~ence of calcium c~rbonate promoted the formation of apatite and 

tricalcium and octacalcium phosphates. High levels of exchangeable 

c•lcium resulted in increase in total and lactate-soluble phesphates. 

Hsu (58) treated a slightly acid soil (pH 6,4) with dilute SQdium 
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dihydrogen paospmate solution at pH 7 and stated that there was rapid 

fixation of paosphorus due to surface serption en am0rphous aluminum 

hydroxides and iron oxides present in the soil. Sen Gupta and Cern­

field (119) stated that the water soluble ph•sphate added to soil con­

t5ining 16.5 per cent calcium carbonate was fixed largely in easily re­

placeable and non-apatite calcium phosphate forms; fixati9a in soils 

with 0.15 per cent calcium carbenate content occurred as aluminum and 

iron phosphate. Fixation of added phosphorus increased witk time and 

usually decreased with rates. Sen Gupta and Cornfield (120) alse re­

ported that aluminum-bound phosphate expressed as a percentage of the 

total seil phosphorus was negatively cerrelated with calcium carbenate 

percentage. The proportion of other phosphate fractions was not signi­

ficantly correlated with calcium carbonate content. Inert phosphorus 

and apatite fractiens accounted for a greater proportion of the phos­

phorus in calcareous soils than in non-calcareous soils. 

Fried and Black (43) found that a surface c0ating of iron or alu­

minum compounds on exchange materials was found to retain a large por­

t ion of added phosphorus. The amount of this retention increased as 

the concentration of phosphate in solution increased. They added that 

retention was a function of both the concentration of phospherus in so­

lution and the length of time allewed fer equilibrium. 

Dinca and Serbannescu (36) studied the nature and content of phos­

phorus formed by contact between phosphorus fertilizers and the soil. 

In high calcium carbonate chestnut and chernozem soils mainly calcium 

phosphate was formed; in podzolic brown soils easily and difficultly 

available iren and aluminum phosphates appeared. Ryzhove and Saak­

yant (116) applied high rates of phosphorus to calcareous soils low in 
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humus and cropped with a r@tatien of cotton and lucerne. They stated 

that phospherus accumulated in the surface and subsurface layers and 

was soluble in hydrecarbonic acid and 0.5 N citrate, Bapt and Bedeker 

(4) stated that in soils high in calcium carbonate most of the retained 

phosphorus was bound to calcium but in the soils low in calcium carbo­

nate phosphate was bound to aluminum and iron. Arrambarri (3) applied 

phosphorus to calcareous soils and found that the total phosphorus con­

tent and specific surface of soil are the most important factors affec­

ting the fertility of calcareous soil in relation to phosphorus. Soils 

with high absorbing surfaces contained higher amount of exchangeable 

phosphorus and the ratio of exchangeable phosphorus to total phosphorus 

provided a measure of phosphorus availability. Fuller and McGeorge (45) 

stated that a certain amount of phosphorus added to c~lcareous soils 

becomes unavailable to plants and is referred teas "fixed". They also 

et~ted that soluble ph•spberus may be fixed in organic as well AS in­

organic forms. 



CHAPTER III 

MATERIALS AND METHODS 

The c~lcareous soils studied in this investigation were collected 

from fields in Afghanistan and Okalhoma, USAj where crop plants had res­

ponded to phosphorus fertilization. A modified version ef the Chang and 

Jackson (26) phosphate fractionation procedure was made of the soils 

studied before and after incubati0n with ammonium phosphate and after a 

period of plant growth in the greenhouse. 

The soils studied in this investigation were collected from Bol•u~ 

Darulaman» Pos-i-shani» Shlshem Bagh» Kekor5in» Mazar j Shamalan and 

Boghra experiment stations in Afghanistan and frGm Marshall~ Harper and 

Texu counties in Oklahema, USA. 

Soil Properties 

Physical Properties 

Mechanical analysis. The particle 1ize di~tribution was deter­

mined by the use of the soil hydrometer (13) while carbonate and orga~ 

nic matter were removed by using 1 N sodium acetate buffered at pH 5 

•nd hydrogen peroxide~ respectively (72), 

Chemical Propertie~ 

Data fer chemical preperties of the soils studied in this investi­

gation ._re reported iiil Table JClL 

43 
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'!'ABLE II 

CHEMICAL CHARACTERISTICS OF THE BOLAN CLAY LOAM, SAN SABA CLAY 
LOAM, WOODWARD LOAM AND RICHFIELD LOAM SOILS 

pH Per cent Per Total Organic 
Sample Depth (1: 1 organic cent phospho- phospho-
No. Soil type (in.) KCl) matter CaC03 rus (ppm) rus (ppm) 

1 Bohn clay 0-9 8.3 1.25 19.12 918 293 
2 loam 9-16 8.4 0.75 20.58 888 288 
3 16-24 8.4 0.43 20. 71 791 231 
4 24-32 8.4 0.25 20.55 667 147 
5 32-39 8.4 0.15 21.73 650 140 
6 39-47 8.4 0 .13 21.00 650 138 
7 47-55 8.4 0.12 23,00 617 138 
8 55-63 8.7 0.10 23.41 600 127 
9 63-71 8.4 0.08 23.53 528 48 

10 71-79 8,6 0.06 23.54 518 33 

11 S<1.n Saba 0-9 7.2 2.90 3.81 450 210 
12 clay 9-24 7.3 1.30 13.47 383 80 
13 loam >24 7,6 0.88 10.26 347 22 

14 Woodward 0-6 8.0 1.33 5.29 591 256 
15 l@.tm 6-13 7.9 0.95 4.25 445 220 
16 13-25 7.9 0.50 6.75 400 90 
17 25-36 7.9 0.25 20.26 385 50 

18 Richfield 0-12 7.6 1.22 2.15 560 238 
19 loam 12-18 7.9 1.15 15.65 667 117 
20 18-28 8.0 0,60 12.95 638 68 
21 >28 8,0 0.50 8.20 576 55 



Soil pH. Soil pH was determined by using a Beckman Zeromatic pH 

meter with glass electrode in a soil suspension of 1 N KCl-soil ratio 

of 1:1 after one hour. 
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Organic matter and calcium carbonate. Determination of organic 

matter and calcium carb0nate was done by the methods outlined in Hand­

book 60 of the US Department of Agriculture (134). 

Phosphorus: 1. Available phosphorus. Available phosphorus was 

determined by the #1 method of Bray and Kurtz 1:50 soil:extracting so­

lution ratio (16) and by the Dickman and Bray modified procedure (35) 

and in the 0.5 M sodium bicarbonate extract of Olsen, et al. (100). 

2. Total and organic phosphorus. Analysis of total and organic 

phospberus was made by the procedure of Mehta, et al. (92). 

3. Inorganic phospherus fractienations. Fractionation of inor­

ganic phosphorus was accomplished by a modified Chang and Jackson (25) 

precedure as outlined by Petersen and Corey (103). The modifications 

are as follows: Calcium phosphate was extracted twice with 0.5 N sul­

furic acid instead of once (26j 103). The soil was also washed twice 

with 25 ml pQrtions of saturated s0dium chloride after 11 saloid-bound" 

phosphate extraction. There was nQ washing with saturated sodium chle­

ride in the procedure of Chang and Jackson or Petersen and Corey at 

this peint (26, 103). This was d(l>ne 01.ly in incubation study where 

there was a significant amount of bound phosphate. 

Mineralogical Properties 

Preparation of soil for X-ray diffraction was done by the proced­

ure outlined by Kittrick and Hope (72). 
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Analysis of Applied Water-Soluble Phosphate 

A 10 ml aliquot of 1000 ppm phosphorus standardized solution of 

monobasic ammonium phosphate (NH4H2P04) was added to a 50 gram soil 

sample in a 250 ml beaker to give 200 ug of phosphorus per gram of soil. 

The soil was kept at approximately field capacity by periodic watering 

from a wash bottle and allowed to stand for one» 10, and 30 days in a 

constant temperature room. Then the samples were immediately placed 

in an oven at 110 C for 24 hours. The oven-dried soil samples were 

analyzed for "salaid-bound" phosphate, aluminum phosphate, iron phos­

phate, reductant soluble phosphate~ calcium phosphate and available 

phosphorus. The phosphorus fixed was taken as the difference between 

the concentration of phosphorus added to the soil and the phosphorus re­

covered by the modified Chang and Jackson (25) procedure after one, 10, 

and 30 days. 

Greenhouse Study 

Four levels of ammonium phosphate were added to each of the three 

soils collected from Marshall County (San Saba clay loam), Harper Coun­

ty (Woodward loam) and Texas County (Richfield loam) of Oklahoma and 

the treatments were replicated three times. No phosphorus was added to 

80 soil samples from Afghanistan for the first crop. Nitrogen was ap­

plied as ammonium nitrate at a rate of 200 ppm t© all of these soils. 

Ammonium phosphate was applied in solution at rates to give O, 200, 

400, and 600 ppm of added phosphorus. 

Sorghum-Sudangrass hybrid, sorghum (Sorghum vulgare Pers.) x Su­

dangrass /Sorghum vulgare~ var. sudanensis (Piper) Staph._7, wat 
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planted on June 30, 1970 for the first crop, Eneugh distilled water 

was added to bring the soil to appr0ximately field capacity as prev­

iously determined, The plants were thinned to four plants per pat af­

ter they had become established, 

The first crop was harvested en July 21, 1970 approximately three 

weeks after planting. They were oven-dried in a forced air ovea and 

the individual weight of all four plants in each pot was recorded. 

The secend planting was done om July 24» 1970. All Afghan soils 

received 200 ppm of phosphorus and 200 ppm of nitrogen while soils from 

Oklahoma received only 200 ppm of nitrogen. The second crop was aar­

vested on August 14, 1970. Total phosphorus of both crops were deter­

mined by published procedures (27, 63, 105), 

In both croppings the pots were arranged in a randomized complete 

block design. Statistical analyses of the desired variables were done 

according to the procedures of Steel and Torrie (124). 



CHAPTER IV 

RESULTS AND DISCUSSION 

Chemical Pr0perties 

The chemical properties of the 10ils studied in this investigatien 

are shown in Table II. The pH of tnese seils ranged from 7.2 to 8.7. 

The pH of Afghan soils, due to their high carbonate conteat, was higher 

than the Oklaaema soils. The Afghan soils were high in free carbonates 

compared with tke Oklahoma calcareous soils. Bolan clay loam, at a 

deptb of 71 te 79 inches had 23.54 per cent calcium carbonate. Gene­

rally the Afghan soils increased in carbo•ate content with depth. 

Woodward loam at the depth of 25 to 36 inches had 20.26 per cent cai~ 

cium carbonate, which was the nighest for the Oklahoma soils, while 

Richfield loam at a depth of 0 to 12 inches had the lowest calcium car­

bonate content ef the soils reported here. 

Tke organic matter content of these soils ranged frem 0.06 per cent 

for Bolan clay loam to 2.9 per cent for San Saba clay loam. 

Total phospaorus was the highest in Bolan clay loam and was the 

lowest in San Saba clay loam. Total phosphorus in Bolan clay leam, 

Woodward loam and San Saba clay loam decreased with deptn while the 

Richfield loam total phosphorus first increased with depth and then 

decreased. Organic ph0sphorus in the surface soil samples was high in 

Bolan clay loam, while the Oklahoma surface seils had more er less 

similar organic phosphorus content. Inspite of their low organic matter 

48 
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these calcareous soils contain significant amounts of organic phospho­

rus. The lowest organic phosphorus of the soils studied is present in 

Bolan clay loam at a depth of 71 to 79 inches, while the surface sample 

of the same soil has the highest organic phosphorus of the soils 

studied. Organic phosphorus in all of these soils is less than 50 per 

of the total phosphorus. Organic phosphorus in all the soils studied 

in this investigation decreased with depth. 

Fate of Applied Water-Soluble Phosphorus 

Soluble phosphorus applied as ammonium phosphate was predominantly 

converted to calcium phosphate, followed by aluminum phosphate. Reduc­

tant soluble and iron phosphates were negligible before and after the 

incubation period. 

Calcium Phosphate 

Calcium phosphate contents as affected by applied soluble phosphate 

are shown in Figues 1 to 3 and Tables III and IV. In Bolan clay loam 

calcium phosphate increases with time of incubation at all depths, and 

generally decreases with depth as shown in Figure 1. In San Saba clay 

loam (Figure 2) calcium phosphate content increases with time of incu­

bation at all depths. Calcium phosphate in all of the incubation per­

iods and in all of the soils studied increases with depth. Before in­

cubation the surface soils had the lowest calcium phosphate content of 

the entire soil profile, while at a depth of more than 24 inches calcium 

phosphate was the dominant phosphate compound. Thirty days after the 

beginning of the incubation period 45 to 52 per cent of the soluble 

phosphate applied to San Saba clay loam was converted to calcium 
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Figure 2. Calcium Phosphate Extracted from San 
Saba Clay Loam by 0.5 N H2so4 after Treat­

ment with 200 ppm of P as NH4H2P04 
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phosphate. More than 35 per cent of the phosphorus applied to the San 

Saba soil was converted to calcium phosphate one day after the beginning 

of the incubation period. 

The conversion of soluble phosphate to calcium phosphate in Rich­

field loam soil is shown in Figure 3. The rate of conversion of soluble 

phosphate to calcium phosphate increases with incubation time at all 

depths. The amount of calcium phosphate in the untreated soil increases 

with depth to a maximum and then decreases again. Conversion of soluble 

phosphate to calcium phosphate was lower in the surface one foot than 

in the deeper layers 30 days after the beginning of the incubation per­

iod. 

The data on the conversion of soluble phosphate to calcium phos­

phate in Woodward loam indicate that calcium paosphate increased with 

time of incubation as shown in Table III. Calcium phosphate content is 

the lowest in the 6 to 13 inch sample and then increases in the deeper 

samples. Calcium phosphate content in this profile is the highest at a 

depth of 25 to 36 inches. 

Aluminum Phosphate 

Aluminum phosphate content of these soils is reported in Tables III 

through VI. 

Bolan clay loam did not show any significant amount of aluminum 

phosphate before incubation. Soluble phosphate applied to this soil 

was converted to aluminum phosphate largely during one day of incuba­

tion and then the rate of conversion decreased with time. The conver­

sion of soluble phosphate to aluminum phosphate was highest in the 0 to 

24 inch sample. 
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TABLE III 

DISTRIBUTION OF FORMS OF PHOSPBQ~USliIN WOODWARD LOAM 

Incubati0n Depth (blches) 
Form of phosph~rus time (days) 0-6 6-13 13-25 1J:36 

ppm 

Total inorganic p 0 335 225 310 335 

Aluminum P 0 11. 7 1. 7 6.7 0 
1 102.0 130.2 88.1 4.4 

10 115.1 138.1 92.2 4.7 
30 120.3 174.0 94.3 6.7 

Calcium P 0 325 215 280 330 
1 364 218 315 425 

10 375 225 317 440 
30 377 226 319 450 

Easily soluble P 0 0 0 0 0 
1 115 70 83 93 

10 108 60 80 88 
30 105 53 76 80 

Total added 0 337 217 287 330 
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San Saba clay loam at a depth of 0 to 9 ineae1 had 33.4 ppm ef alu­

minum ph01phate befere incubation which ii the high.Ht am•unt ef alumi­

num pl:u>1phate in the aoih studied in thi• inveattgatiC1>n, while Bolan 

clay was the lowest. The largest cenversi•n of 10luble pbo1paate te 

aluminum plaeaphate t•ek place in thi1 soil during one day of incubation 

ae shewn in Table IV. At a ci:lepta of 0 to 9 inches 44. 35 per cent 0f 

the aoluble pko1phate was converted te aluminum phosphate after 24 

bC1>urs incubation, while the rate 0f conversion was very slow io the 

next 29 days. At a depth of 9 to 24 inches 26.65 per cent •f the sol­

uble phosphate was converted to aluminum phosphate after 0ne day of in­

cubation. Thirty days after the beginning of incubation period 38.9 

per cent 0f the applied ph01phate was present as aluminum phesphate. 

In samples taken at a depth greater than 24 inches 39.65 per cent of 

the phosphorus applied was converted te al~minum phosphate after 24 

hours of incubation while after 30 days 52.2 per cent ef the phesphorus 

applied was aluminum phosphate. In general, h•wever, aluminum phes:.. , 

phate content increased with time of incubation in all ef the samples 

of the whole profile. 

Woodward lgam fellowed more or less the same trend as San Saba 

clay loam as shown in Table III. The amount of aluminum phosphate in­

creased with the time of incubation. The largest conversion of soluble 

phosphate to aluminum phosphate took place one day after the beginning 

of incubation period. In samples taken at a depth of 0 to 6 inches 

45.15 per cent of the phosphate applied was converteci to aluminum phos­

phate, while at a depth of 25 to 36 inches, only 2.2 per cent of the 

phosphate applies was converted to aluminum phosphate after 24 hours of 

incubation. Conversion was the highest at a depth of 6 to 13 inches in 
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TABLE IV 

DISTRIBUTION OF FORMS OF PHOSPHORUS IN SAN SABA CLAY LOAM 

Incubation Depth (inches) 
Form of phosphorus time (days) 0-9 9-24 >24 

ppm 

Total inorganic p 0 240 303 325 

Aluminum P 0 33.4 0 0 
1 122.l 53.3 79.3 

10 133.6 54.8 85.0 
30 135.0 77 .8 104.4 

Calcium P 0 223 300 320 
l 298 392 395 

10 308 397 405 
30 313 403 410 

Easily soluble P 0 0 0 0 
1 30 27 25 

10 25 25 7 
30 13 15 5 

Total added 0 256 300 320 



TABLE V 

DISTRIBUTION OF FORMS OF PHOSPHORUS IN BOLAN CLAY LOAM 

Incuba-
tion time De2th (inches) 

Form of P (days) 0-9 9-16 16-24 24-32 32-39 39-47 47-55 

p~ 

Total inorganic P 0 625 600 560 520 510 512 479 

Aluminum P 0 0 0 0 0 0 0 0 
1 7.2 8.2 7.6 3.1 3.0 2.2 2.1 

10 2.5 2.6 1.6 1.5 1.3 1. 2 0.8 
30 2.2 2.1 1.5 1.0 1.1 1.0 0.4 

Calcium P 0 638 594 530 502 468 463 443 
1 646 614 546 525 494 488 469 

10 650 615 560 525 510 495 475 
30 655 640 583 542 527 510 487 

Easily soluble P 0 0 0 0 0 0 0 0 
1 190 180 183 176 173 173 173 

10 186 180 183 173 170 173 170 
30 174 156 158 155 153 155 148 

Total added 638 594 530 502 468 463 443 
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this profile and after 30 days of incubation 86.15 per cent of the 

phosphate applied was converted ta aluminum phosphate. 
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Richfield loam followed mere or less the same trend as San Saba 

c~y loam and Woodward laam in which the highest rate of conversion was 

obtained after one iay of incubation as shown in Table VI. The rate of 

conversion was also higher in the surface hotiz.ons than in the subsoil 

where 34.55 per cent of the phosphorus applied was converted to alumi­

num phosphate after one day of incubation. The rate of conversion wa1 

the lowest in the 12 to 18 inch sample and then increased with depth. 

Easily Soluble or "Saloid-B•und" Phasphate 

The easily soluble or "saleid-bound" phosphate is reportea i• 

Tables 111 te VI. 11 Saloid-bound'' pllosphate e0ntent was •egligible be­

fore incubation in all of the soils studied in this investigation. 

One day after the beginning of incubation period in Bolan clay 

loam in the 0 to 9 iach sample, 95 per cent of the soluble phosphate 

applied was still present as "saloid-boundn phespborus an.a thea dec­

reased with depth as shown in Table v. However, in the sample taken at 

a depth of 71 to 79 inches 85.0 per cent of the phesphorus applied was 

still presellt as "saleid-boundn phosphate. The amount of "saleid­

bound" phesphate decreased with time CDf incubation in samples from all 

soil depths. 

The data on "saleid-bc:nmd11 phesphate for San Saba clay lgas are 

reported in Table IV which shows that at a depth of 0 to 9 inches 85 

per cent of the soluble phosphate applied was converted to ferms other 

than ''saloid-bound" phosphate and only 15 per cent of the phosphorus 

was present in this form. The rate of conversion to forms other than 
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TABLE VI 

DISTRIBUTION OF FORMS OF PHOSPHORUS IN RICHFIELD LOAM 

In cu bat iotil Dee th ~inches~ 
Form of phosphorus time (days) 0-12 12-18 18-28 >28 

ppm 

Total inorganic p 0 322 550 570 521 

Aluminum P 0 19.2 0 0.8 0.24 
1 88.3 26.7 37.6 68.00 

10 94.0 28.0 39.0 76.00 
30 96.0 30.1 60.l 82.00 

Calcium P 0 300 525 565 525 
1 320 545 618 582 

10 329 570 620 586 
30 332 580 625 588 

Easily soluble P 0 0 0 0 0 
1 145 105 llO 128 

10 130 93 100 113 
30 123 83 .:s:r- ··- 105 

Total added 0 319 525 566 525 



60 

"saloid-bound" phosphate increased with depth of sampling. The a:mount 

of "saloid-bound" phosphate decreased with time of incubation at all 

depths. At a depth of greater than 24 inches only 2.5 per cent of the 

phosphorus applied was present in this form 30 days after the beginning 

of the incubation period. 

The data for "salc>id-bound" phosphorus in Woodwarfi loam are re­

ported in Table III. One day after the beginning of incubation of 0 to 

6 inch sample, 57.5 per cent of the phosphorus applied was present as 

"saloid-bound" phosphorus while at the same time at a depth of 6 to 13 

inches only 35 per cent of the phosphorus applied was present in the 

form of "saloid-bound11 phasphate. The amount of "saloid-bound" phos­

phate decreased with the incubation period. Thirty days after the be­

ginning of the incubation period in the 6 to 13 inch sample only 26.5 

per cent of the soluble phosphate applied was present in this form. 

The data for Richfield loam are reported in Table VI. One day af­

ter the beginning of incubation period the 0 to 12 inch sample showed 

72.5 per cent of the phosphorus applied to be present in this farm. 

Thirty days after the beginning of incubation period at the same depth, 

61.5 per cent of the phosphorus applied was still present in this form. 

This profile followed more or less the same trend as Bolan clay loam, 

in which a large portion of the phosphorus applied was still present 

in this form 30 days after the beginning of incubation period. The 

amount of "saloid-boundn phosphate decreased with the time of incuba­

tion in samples at all depths. 

The total inorganic phosphorus before incubation agrees very 

closely with the total inorganic phosphorus added in all of the soils 

studied in this investigati@n as shown in Tables III ta VI. In Bolan 
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clay loam, at lower depths, in spite of two extractions of calcium. phos­

phate with 0.5 N sulfuric acid, the values obtained by the fractiona.;;J 

tion procedure was still lower than that obtained by the procedure of 

Mehta, et .!!· (92) which indicates that the fractionation procedure did 

not extract all of the inorganic phosphorus. In some cases, even a ... , 

third extraction of calcium phosphate gave some phosp~ate yield. Three 

washings with 25 ml portions of saturated sodium chloride seems to be 

better than two washings. 

The first hypothesis which indicates that phosphorus applied to 

soil will greatly decrease in solubility in 24 hours cannot be rejected 

because the rate of conversion of soluble phosphate to other fractions 

was the highest one day after the beginning of incubation period in all 

of the soils studied.in this investigation. However, the second part 

of the hypothesis which s~ys that a major fraction of the soluble phos­

phate will be converted to aluminum phosphate one day after the begin­

ning of incubation period cannot be rejected in San Saba clay loam. 

The same thing is true with the samples from the surf ace horizons of 

Woodward loam and Richfield loam, but the second part of the same hypo­

thesis cannot be accepted for Bolan clay loam where the amount.of con­

version of soluble phosphate to aluminum phosphate was very small. The 

third part of the same hypothesis which says that 10 days after the be­

ginning of the incubation period the amount of aluminum phosphate will 

start to decrease while the amount of calcium phosphate will still be 

increasing cannot be accepted for San Saba clay loam, Woodward loam and 

Richfield loam. But it cannot be rejected for Bolan clay loam. 
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Available Phosphorus 

The data for available phosphorus of the soils studied in this in­

vestigation are reported in Figures 4 to 11. 

Bray f/:l (16). Bolan clay loam before incubation J:ia,d,the lowest 

available phosphorus content compared to the other soils studied in· 

this investigation. The data for Bolan clay loam are reported in Fig­

ure 4. The amount of available phosphorus extracted by this procedure 

generally increased with the incubation period in all samples at all 

soil depths. The amount of available phosphorus present is higher in 

the surface horizons while at the lower depths the amount of available 

phosphorus after 1, 10 and 30 days incubation is not significantly dif­

ferent from each other. 

The data for San Saba clay loam are reported in Figure 5 which 

shows that the amount of available phosphorus increases with the incu~:,.­

bation period in all samples taken at all depths. One day after the 

beginning of incubation period the 0 to 9 inch sample showed 60 per 

cent of the phosphorus applied as available phosphorus, while at a 

depth of 9 to 24 inches only 37.5 per cent of the phosphorus applied 

was still available. Thirty days after the beginning of incubation 

period at a depth of O to 9 inches, 62.5 per cent of the phosphorus ap­

plied was still available, while at the same time, the amount of avai~ 

lable phosphorus at lower depths was smaller than the amount of the 

available phosphorus in the 0 to 9 inch sample. 

The data for Woodward loam are reported in Figure 6. The amount 

of available phosphorus extracted by the Bray #1 procedure (16) from 

Woodward loam is higher than all of the other soils studied in this 
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investigation. The amount of available phosphorus increases with the 

incubation period in samples taken at all depths. At a depth of O to 6 

inches after one day of incubation 87 per cent of the phosphorus ap­

plied was still available, while 30 days of incubation in the same 

sample, 96 per cent of the applied phosphorus was in the available form. 

The amount of avilable phosphorus in:this profile increased with the 

time of incubation, The amount of available phosphorus was the highest 

at a depth of 0 to 6 inches, Even at a depth of 25 to 36 inches 86.5 

per cent of tne soluble phosphorus applied was available after 30 days 

of incubation. The amount of available phosphorus in Woodward loam was 

higher than the amount of available phosphorus present in Bolan clay 

loam and San Saba clay loam. 

Available phosphorus extracted by the procedure of Bray #1 (16) 

from Richfield loam is shown in Figure 7. The data in this figure fol­

low more or less the same trend as that for the Woodward loam soil. 

One day after the beginning of incubation period of the 0 to 12 inch 

sample, 84 per cent of the soluble phesphate applied was present in the 

available fonn, while 30 days after incubation at the same depth, 94 

per cent of the soluble phosphate applie6 was still available. The 

amount of available phosphorus at the lower depths was much smaller 

than the amount of available phosphorus at a depth of 0 to 12 inches. 

The amount of available phosphorus in Richfield loam increased with the 

time of incubation. The amount of available phosphorus in this profile 

was the lowest after 0ne day of incubation and then increased with the 

time of incubation. Thirty days of incubation of samples taken at a 

depth of greater than 28 inches only 4.3 per cent of the soluble phos­

phorus applied was present in the available form. The second hypothesis 
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s,ays th,~t the availability of phosphorus to plants after 1, 10 and 30 

days of incubatior will not be significantly different from each other, 

The amount of a\ailable phosphorus extracted by the procedure of Bray 

#1 (16) was the lowest after one d$y of incubation in all of the soils 

etudied in this investigation» although the amount of available phospho­

rus after one aay of incubation was increasing slightly which resulted 

in the highest available phosphorus after 30 days of incubation in all 

of the soils studied. Still, there was no significant difference bet­

ween 1, 10 and 30 days, Therefore, the hypothesis cannot be rejected. 

Bicarbonate procedure (34, 100). The data for the bicarbonate me­

thod are shown in Figures 8 to 11. In Bolan clay loam the amount of 

available phosphorus extracted by this procedure was higher than all of 

the other soils studied in this investigation (Figure 8). One day after 

the beginning of incubation period at the 0 to 9 inch sample 74.25 per 

cent of the soluble phosphorus applied was still available, while 30 

days after the beginning mf incubation period at the same dEpth 68,25 

per cent of the soluble phosphorus applied was present in this form. 

The amount of available phosphorus present in the Boil samples after 

each incubation period was not significantly different frQm one depth 

to another in this profile, Before incubation the amount of available 

phosphorus was the highest at ~ depth of 0 to 9 inches, 

San Saba clay loam did not follow the same trend as Bolan clay 

loam as shown in Figure 9, The $mount of available phosphorus in San 

s,ab<t clay loam increased with the incubation period at all depths. The 

~ame thing was true with the trend of available phosphorus of this pro­

file as it was extracted with Bray #1 (16), The amount of available 

pho!iphorus before incub£ttion was the highest in the 0 to 9 inch sample 
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and then it decreased with depth. The am0unt of available phosphorus 

was the highest 30 days after the beginning of incubation period of 

samples from all three depths of this profile. One day after the be­

ginning of incubation perioe of the 0 to 9 inch sample 8 per cent ef the 

phosphorus applied was still available, while 30 days after incubation 

at the same depth 13.5 per cent of the soluble phosphorus applied was 

available. Thirty days after the beginning ef incubation perioa the 9 

to 24 inch sample had 21 per cent of the soluble phosphate applied 

still in the available form and this amount is the highest in the whole 

profile. 

The amount of available phosphorus extracted by the bicarbonate me­

thod from Wooaware loam is given in Figure 10. The amount of available 

phosphorus extracted by this method increased with the incubation per­

iod at all soil depths except the 13 to 25 inch sample. Other depths 

were similar to San Saba clay loam and at this depth the amount of 

available phosphorus after 1, 10 and 30 days was very close to each 

other. One day after incubation the 0 to 6 inch sample showed that 40 

per cent of soluble phosphate applied was available. Thirty days after 

the beginniog of incubation perios of the 13 to 25 inch sample bicarbo­

nate phosphorus was the lowest in this profile, while samples taken at 

depths greater than 25 inches had 54 per cent of the soluble phosphorus 

applied still available and this was the highest amount for this period 

of incubation in this profile. The amount of available phosphorus was 

the lowest at all depths one day after incubation, compared to 30 days. 

Available phosphorus fr(l)lll Richfield loam is shown in Figure 11. 

This profile followed more or less the same trend as San Saba clay loam9 

in which the amount of available phosphorus in~reased with the 
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incubation period. One day after the beginning of incubation period the 

0 to 12 inch sample showed 46.5 per cent of the soluble phosphorus ap­

plied was ~till available, while in the same sample 30 days after the 

beginning of incubation period» 64 per cent of the soluble phosphorus 

applied was present in this form. The amount of available paosphorus 

before incubation was the highest in the 0 to 12 inch sample. One day 

after the beginning of incubation period these soils were significantly 

lower in available phosphorus than after 10 and 30 days of incubation. 

The second hypothesis which says that the availability of phos­

phorus to plants after 1, 10 and 30 days of incubation will not be sig­

nificantly different from each other cannot be rejected» based on the 

data obtained by the bicarbonate method for Bolan clay loam, San Saba 

clay loam and Woodward loam but the same hypothesis cannot be accepte4 

based on the data obtained from the Richfield loam. 

Generally, as the result of the soluble phosphate applied, the pH 

of the soils studied in this investigation decreased which might be due 

to the conversion of ammonium ion in the fertilizer applied t@ ni.trate 

through microbial activities which will finally make nitric acid 

(Table VII). At the same time phosphoric acid can also be formed. 

Dry Matter Prgduction of Sorghum Plants (Sorghum x 

Sudangrass Hybrid) 

The dry matter obtained from the greenhouse experiment is reported 

in Tables VIII and IX and the analysis of variance for the forage yield 

on San Saba clay loam~ Woodward loam and Richfield loam is shown in 

Table X. Phosphate fertilization of all of the soilB studied in this 

iovestigatimn increased the yield over their control treatments" 
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TABLE vn 

EFFECTS OF AMMONIUM PHOSPHATE APPLICATION ON THE pH 

Depth Incub.ition period (~~~L_ 
Type of soil {in.) 0 --1 - --- 10 30 

Bolan clay loam 0-9 8.3 8.1 8.0 8.0 
9-16 8.4 8.2 8.0 8.0 

16-24 8.4 7.9 8.0 8.0 
24-32 8.4 8.0 7.9 8.0 
32-39 8.4 8.2 8.1 8.1 
39-47 8.4 8.0 8.0 8.0 
47-55 8.4 8.4 8.2 8.3 
55-63 8.7 8.7 8.5 8.4 
63-71 8.4 8.3 8.3 8.1 
71-79 8.6 8.4 8.3 8.3 

San Saba clay loam 0-9 7.2 6.8 7.0 6.9 
9~24 7.3 7.2 7.2 7.1 
)24 7.6 7.2 7.2 7.1 

Woodward loam 0-6 8.0 7.3 7.3 7.3 
6-13 7.9 7.5 7.6 7.8 

13~25 7.9 7.6 7.8 7.8 
25-36 7.9 7.6 7.6 7.7 

Richfield loam 0--12 7.6 7.5 7.5 7.5 
12-18 7.9 7.8 7.9 7.8 
18-28 8.0 7.7 8.0 7.9 

>28 8.0 7.9 7.9 7.8 



TABLE VIII 

DRY MATTER PRODUCTION OF SORGHUM-SUDANGRASS HYBRID 
AS INFLUENCED BY THE RATE OF PHOSPHATE FERTI­

LIZER IN THREE OKLAHOMA SOILS* 

76 

Rate of 1st crop, ave. 2nd crop, ave. 
Location p (ppm) wt. (g/pot) wt. (g/pot) 

San Saba clay loam 0 0.073 0.395 
200 1.025 0.066 
400 1.278 0.058 
600 1.244 0.114 

Woodward loam 0 0.264 G.300 
200 1.112 0.153 
400 0.959 0.272 
600 0.815 0.431 

Richfield loam 0 0.003 0.766 
200 0.587 0.578 
400 0.883 0.449 
600 0.654 0.841 

*The mean values of dry matter not joined by a common line are sig­
nificantly different at 5% level. 



TABLE IX 

DRY MATTER PRODUCTION OF SORGHUM-SUDANGRASS HYBRID IN GRAMS PER POT AS INFLUENCED 
BY PHOSPHATE APPLICATION ON BOLAN CLAY LOAM 

Soil No. III Soil No. IV Soil No. V Soil No. VI 
Sample No. 0 p 200 EEID p 0 p 200 E~ P 0 p 200 ppm P 0 p 200 ppm P 

1 0.260 l,858 0.219 1. 518 0.214 1.138 0.326 0.500 
2 0.191 L410 0.148 1.425 0.219 0.873 0.150 1.611 
3 0 .105 0.833 1.478 1.079 0.220 1.000 0.332 2. 713 
4 0.101 1.648 0.200 1.332 0.221 2.404 1.006 1.441 
5 0. 770 1.002 0.221 1.616 1.024 1.190 1.000 1.437 
6 0.332 1.939 0,423 2.671 0.433 1.276 1.000 0.978 
7 0.237 1.804 0.172 1.552 0.128 1.138 0.428 0.456 
8 0. 211 1. 721 0.108 1.048 0.200 0.920 0.120 1.609 
9 0.491 3.184 0.573 3.793 0.227 0.905 0.223 1.780 

10 0. 185 1.769 0.224 1.620 0.180 ],736 0.162 1.421 
11 0. 195 1.130 0.179 1.187 0.114 0.462 0.199 0.358 
12 0,.257 l.868 1.184 7.958 0.279 0.892 0.249 0.630 
13 0.894 6.936 o. 120 0.908 0. 744 1.325 0.247 1.913 
14 1.007 7.035 0.182 1. 921 0.265 0.550 0.122 1. 720 
15 0.262 2.626 0.182 1.280 0.170 1.471 0.315 1.029 
16 0.212 1.289 0.352 2.502 0.283 0.668 0.283 1.620 
17 . 0.732 4.703 0.310 2.258 0.853 0.565 0.247 1.414 
18 0.179 1.133 0.179 1.181 0.237 1.306 0.199 0.753 
19 0.202 1.476 0.205 1.521 0.201 1.361 0.813 1.098 
20 0.302 2.099 0.425 2.355 0.438 0.573 0.156 1.571 

......i 
-...! 



TABLE X 

ANALYSIS OF VARIANCE OF DRY MATTER PRODUCTION OF SORGHUM­
SUDANGRASS HYBRID AS INFLUENCED BY RATE OF PHOSPHATE, 

NUMBER OF CROPS AND LOCATIONS 

sv 

Blocks 
Locations (L) 
Crops (C) 
P levels (P) 
L x P 

L x C 
p x c 
L x P x C 
Error 

*Significant at 5% level, 
**Significant at 1% level. 

4£ 

2 
2 
1 
3 
6 
2 
3 
6 

46 

MS 

0.010 
0.002 
2.049** 
0.371** 
0.024 
1. 049* * 
1.439** 
0.137* 
0.056 
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Analysis of variance was also conducted for forage yielde of indi-

vidual soils and the results indicated that there was no significant 

difference in the yields between 200, 400 and 600 ppm of phosphorus. 

Control treatments in all of these soils significantly yielded lower 

than the fertilized treatments, The first harvest was fertilized with 

both nitrogen and phosphorus, while the second crop in all of the Okla-

homa soils was fertilized only with nitrogen, In Bolan clay loam the 

first crop was not fertilized with phosphorus but the second crop was 

fertilized with phosphorus. Two hundred ppm of phosphorus is more eco-

nomical than 400 and 600 ppm of phosphorus, but in a long-term experi-

ment the higher rates might work better as far as soil phosph•te 
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fixing capacity is concerned. Under similar conditions even 100 ppm of 

phosphorus might be more economical for the first crop. 

There was no significant difference between the soil sampling loca­

cations ~ but there was a significant difference between the rates of 

phosphorus as shown in Table X. However, Duncan's multiple range test 

did not show any significant difference between 200, 400 and 600 ppm 

treatments, while all of these fertilized treatments were significantly 

different from their control treatments. There was no significant dif­

ference in the yield of the second crop and in some cases the control 

treatment for the second crop was higher than the fertilized treatments. 

This might be explained by the removal of plant nutrients other th~n 

phosphorus by the first crop where the yields of fertilized treatments 

were much higher than the control treatments. All of the soils studied 

in this investigation gave high yields for the first crop. there was 

no significant increase in yield of the second crop due to residual ef­

fects of phosphorus from the first crop. There was an interaction bet­

ween locations and phosphorus levels and this interaction was largely 

due to phosphate levels because the soil •~mple locations were not sig­

nificantly different from each other. There wes also interaction bet­

ween croppings and phosphate levels •nd this is due to both croppings 

and phosphate levels because both of them were significantly different. 

There was also interaction between locations, phosphate levels and erop­

pings. The significant interaction betwean croppings and locations is 

mainly due to croppings because the locations were not significantly 

different from each other. 
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Phosphate Uptake by Sorghum-Sudangrass Hybrid 

Both crops were analyzed for t0tal phesphorus and the results inai-

cate that the higher the rate of phosphorus applied the greater the up-

take. The amount of phosphorus in the plant tissues was significantly 

different from each other between O, 200, 400 and 600 ppm of phosphorus. 

The amount of phosphorus removed from the soil by both crops is reported 

in Table XI. The amount of phosphorus removed by the first crop is 

significantly higher than the amount removed. by the second crop. 

TABLE XI 

REMOVAL OF PHOSPHORUS FROM THE SOIL BY SORGHUM-SUDANGRASS 
HYBRID AS INFLUENCED BY THE RATE OF PHOSPHORUS FERTI­

LIZATION IN THREE CALCAREOUS OKLAHOMA SOILS 

P level Average amount of P (mg/pot) 
Type of soil (ppm) 1st crop 2nd crop 

San Saba clay loam 0 0.33 0.621 
200 3.23 3.000 
400 5.55 2.420 
600 5.47 2.330 

Woodward loam 0 0.59 1.110 
200 3.88 0.466 
400 4.30 0.816 
600 5.22 1.800 

Richfield loam 0 0.19 0.962 
200 4.29 0.260 
400 9.17 0.350 
600 9.96 0.760 

Analysis of variance was conducted for both crops on soils from 

all of the three locations and the results are shown in Table XII, 

Phosphate uptake by sorghum plants from soils taken from three loea-

tions was significantly different from each other. Differences in the 



TABLE XII 

ANALYSIS OF VARIANCE OF PHOSPHATE REMOVAL IN MG/POT BY 
SORGHUM PLANTS AS INFLUENCED BY THE RATE OF PHOS­

PHATE FERTILIZATION 

sv df MS 

Blee ks 2 0.004 
Locations (L) 2 5.946** 
P levels (P) 3 47. 336*"' 
Croppings (C) 1 173. 527** 
L x P 6 3.034** 
L x C 2 17.153** 
p x c 3 33 .104** 
L x P x C 6 7. 363** 
Error 46 .014 

**Significant at 1i level. 

uptake due to difference• in the levels of phosphorus were signifi-

cantly different from each other. There were also significant diffe~ 

rence1 between the two crops in all of the 10111 studied in this in-

veatigation. There were 1ignificant interactious between location• 

and pho1phoru1 level•. This interaction wa1 due to both phosphorus 
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levels and loeation1. There was al10 1ignifieant interaction between 

loeationa and crop1. Thi• interaction wa1 due to cropping and loea-

tionep because there were 1ignificant difference• in pho1phoru1 yield• 

betwHo loeation• and erop1. Th~ •ignificant interuction b•twcen 

cropping, locations and phosphorus levels reeulted fr0m all ef the1e 

three factore. 
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A correlation study was conducted to compare dry matter production 

with phosphate uptake and the results are reported in Table XIII. In 

San Saba clay loam there was a highly significant correlation between 

the yield of the second crop with phosphate uptake and was significant 

at the 5% level of probability and was lower than the correlation ob­

tained for the first crop, Correlation ef ph~•phorus uptake versus 

yield of both crops together was also significant at the 5% level of 

probability. Correlation between yield aad phosphate uptake for Wood­

ward loam for both crops is only significant at the 5% level of proba­

bility, while the correlation for both crops together was significant 

at both 1% and 5% levels of probability. 

Correlation between yield and phosphate uptake for Richfield leam 

was highly significant for the first crop while the correlation for the 

second crop was not significant. Correlation between yield and phos­

phate uptake for both crops was significant oLly at the 5% level of 

probability. 

The correlation coefficient between yield and phosphorus uptake for 

both crops in the three soils studied was significant at both the 1% 

an& 5% levels of probability. In general there was a significant corre­

lation between the dry matter production and the phosphate uptake. In 

Richfield lGam soil the non-significant correlation might be due to a 

herbicide which was spread on that soil before the soil samples were 

taken. In the first crop the yield of the control treatment was very 

low because the herbicide might have interferred with growth. However, 

at the 200, 400 and 600 ppm of phosphorus treatments the effect of the 

herbicide on plant growth was not as great as on the control because 

more phosphorus was absorbed by the plants. 



TABLE XIII 

CORRELATION COEFFICIENT VALUES (r) COMPARING THE DRY MATTER 
PRODUCTION WITH PHOSPHATE UPTAKE OF SORGHUM-SUDAN­

GRASS HYBRID FROM THREE CALCAREOUS OKLA-
HOMA SOILS 

Type of soil Treatment 

San Saba elay loam First crop 
Second crop 
Both crops 

Woodward loam First crop 
Second crop 
Both erops 

Richfield loam First crop 
Second crop 
Both crops 

All three soils Both crops 

*Significant at 5% level of probability, 
**Significant at 1% level of probability. 

r 

0.8654** 
0,5857* 
0,6321* 

0,6658* 
0,6021* 
0' 7944** 

0.8617** 
-0,2481 

0.4309* 

0. 76%** 
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A correlation study wa~ alao conducted to compare dry matter pro~ 

duction with the form of pho~phorus and the re~ults ar~ given in Table 

XIV, There was a highly significant correlation for S~n S~ba clay loam 

between dry matter production ana aluminum phospbste~ c~lcium phosphate 

and av~ilable phosphorus (both bicarbonate and Bray #1) in the first 

harve~t, However, the cerrelation coefficient between dry matter pro-

duction and any of the phosph~te forms was not signific~nt for the ~e-· 

con.d cropo Although the second. crop w,H not fertilized 11<ith phosphorus 

the uptake of phosphorus W$S higher on those tre$tments which h~d the 



TABLE XIV 

CORRELATION COEFFICIENT VALUES (r) COMPARING THE DRY MATTER 
PRODUCTION AND SOIL FRACTIONS OF PHOSPHORUS 

Soil type Phosphorus fraction r 

San Saba clay loam Al-P 0.9920** 
(First crop) Ca-P 0.9785** 

Bicarbonate (available P) 0.9682** 
Bray #1 (available P) 0.9737** 

San Saba clay loam Al-P -0.2509 
(Seconlli crop) Ca-P -0.2510 

Bicarbonate (availabl• P) -0.1094 
Bray fF1 (available P) -0 .1304 

Woodward loam Al-P 0.8651** 
(First crop) Ca-P 0.8854** 

Bicarbonate (available P) 0.8033** 
Bray #1 (available P) 0.9716** 

Woodward loam Al-P 0.5978* 
(Second crop) Ca-P 0.6094* 

Bicarbonate (available P) 0.6804* 
Bray 11 (available P) 0.4141 

Richfield leam Al-P 0.8700** 
(First crop) Ca-P 0.9085** 

Bicarbonate (available P) 0.8904** 
Bray #1 (available P) 0.9458** 

Richfield loam Al-P 0.6123* 
(Second crop) Ca-P 0.4481 

Bicarbonate (available P) 0.5904* 
Bray #1 (available P) 0.5731* 

*Significant at 5'7. level of prob.ability. 
**Significant at 1% level af probability. 

84 
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high rate of phosphate fertilization applied for the first crop. The 

yield of the second crop might have been affected by factors other than 

phosphorus. San Saba clay loam produced a high yield for the first 

crop which might have removed some other plant nutrients from the soil. 

However, the yield of the control treatment was not as high to affect 

the level of other nutrients. 

Fer Woodward loam available phosphorus by Bray #1 (16) is highly 

correlated with the yield of the first crop. This was the highest cor­

relation between the yield and phosphate fraction of any of the soils 

studied in this investigation. There was also a highly significant 

correlation between the yield and the phosphate forms (Al-P, Ca-P, ana 

available P by the bicarbonate method) for the first crop. Fer the se­

coni crop the Bray #1 was not significantly cerrelated with yield, 

while all other forms were significantly correlated with the yield. 

For the second crop the phosphate uptake was high but may not have been 

high enough to increase the yield er the yield might have been limited 

by factors other than phosphorus. The first fertilized crop yielded 

very high compared to the control treatments. This high yield might 

have removed SC!llll.eother plant nutrients which might have been the limit­

ing factors for yield. 

Iron deficiency of the sorghum-sa4angrass hybrid plants was no­

ticed on the first crop grown on Woedwarcloam ana this deficiency was 

more severe on the second crop. For the second crop the forage yield 

was highly correlated with available phosphorus extracted by the bicar­

bonate procedure of Olsen, et al, (100). This was the highest correla­

tion in the second crop for any of the soils studied. 
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For Richfield loam the highest correlation of dry matter with phos­

phate form was obtained with Bray #1 (16) in the first crop as was the 

case for Woodward loam. Dry matter was also significantly correlated 

with Al-P» Ca-P and available phosphorus extracted by the proceeure of 

Olsen, et .!l, (100). For the second crop only Ca-P was not signifi­

cantly correlated with the yield, while all other forms of phosphorus 

were significantly correlated with the yield. 

Mineralogical Study 

The third objective of this investigation was to study the minera­

logy of these soils. Type of clay minerals is probably very important 

in phosphorus fixation. Percentage sane, silt» fine clay and coarse 

clay in these soils is reported in Table XV. Type of clay mineral is 

shown in Table XVI and Figures 13 to 34 show the results of an X-ray 

diffraction study of the soils investigated. Only one representative 

sample of fine and corase clay from each profile is shown. The schema­

tic diagram of the diffracted X-ray beam according to Bragg's law is 

represented in Figure 12. 

Bolan clays as shown in Tables XVI and XVII and Figures 13 and 14 

had a diffraction spacing of approximately 10 A. After potassium satu­

ration, however, in some horizons this spacing was very weak. Bolan 

clays alse had a diffraction spacing of 14.72 A. This spacing was not 

affected significantly by any of the treatments. This indicates that 

Bolan clays contain chlorite. Before heating Bolan clay had two spac­

ings of approximately 7.16 and 3.56 A» but after heating both of these 

spacings disappeared, This indicates that these spacings were due to 

kaolinite. The 3.56 A is second order maximum for k~elinite. Bolan 



Diffracted 
8' X-rays 
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Crystal 
plane 

Figu:i::e 12. Diffraction from Crystal Planes According to Br•gg's Law, 
nA. • 2dSin6 

clays also contained quartz and plagioclase feldspar. 

San Saba clays had a diffractien spacing of approximately 15.8 A 

after the clay was saturated with magnesium chloride *s shown in Tables 

XVIII and XIX and Figures 15 to 16. Upon glycerol solvation this spac-

ing expanded to approximately 18.4 A. Clay from the 0 to 9 inch eepth 

when saturated with potassium chloride collapsed to 12.99 A, while 

clays from the lower depths of this profile upon potassium saturation 

collapsed ana there was not an intense diffraction spacing at 12.99 A. 

This indicates that the San Saba clays ha~e montmorillonite in both the 
1'1,. 

fine ana cearse fractions. San Saba fine clay at a depth of 9 to 24 

inches before potassium saturation had a diffraction spacing of approxi-

' 
mately 10 A. This spacing also collapsed upon potassium saturation. 

This spacing is eue to the presence of illite. San Saba coarse clays 

from the 0 to 24 inch depth also hai a diffraction spacing of approxi-

mately 7. 2 A b~fore the soil wa.~ heated at 500 C for four hours ·anci 

upon heating this spacing eisappeared. This spacing is believed to be 

due to the presence of metahalloysite 9 San Saba cl~ys also have 
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TABLE XV 

PARTICLE SIZE DISTRIBUTION OF DIFFERENT SOILS AT VARIOUS DEPTHS 

Per cent 
Depth Fine· Coarse 

Location (in.) Sand Silt clay clax: 

Bolan clay loam (Bost, Af- 0-9 25 .10 35.86 24.60 14.39 
ghanistan) 9-16 28.47 27.57 23.50 20.42 

16-24 26.27 29.73 22.85 20.88 
24-32 29.52 26.35 20.00 23.96 
32-39 29.20 30.35 19.35 21.05 
39-47 29.15 30.30 20.05 20.32 
47-55 30.55 30.60 20.07 18.64 
55-63 28.75 40.25 20.10 10.84 
63-71 28.35 40.40 19.10 6 .14 
71-79 17.95 41.75 32.25 7.82 

San Saba clay loam (Okla- 0-9 11.26 21.98 21.98 44.70 
homa) 9-24 11.28 17.48 17.48 53.60 

>24 15.40 16.32 16.46 51.80 

Woodward loam (Oklahoma) 0-6 33.32 28.60 28.60 9.46 
6-13 37.00 22.48 22.48 18. 13 

13-25 40.34 18.40 18.38 22.84 
25-36 31.30 19.86 19.86 29.93 

Richfield loam (Oklahoma) 0-12 35.00 28.78 28.78 7.36 
12-18 19.00 31.46 31.42 18.12 
18-28 11.00 30.30 30.28 28.38 

>28 12.02 36.30 36.24 15.39 

Dorulaman clay loam (Uni- 0-8 10.35 48.90 10.10 30.20 
versity farm, Kabul 1 Af-
ghanhtan) 

Dorubman clay lo.am (Minis- 0-8 11. 75 49.00 9.00 29.60 
try of Ag. farm» Kabul~ 
Afghanistan) 

Continued next page 



TABLE XVp Continue« 

Location 
Depth 
(in.) 

Shishem Bagh sandy loam (Nin- 0-8 
gerhar, Afghanistan) 

Pos-i-shan silty clay (Baghlan, 0-8 
Afghanistan) 

Mazar silty clay (Mazari Sha-·• 0-8 
riff, Afghanistan) 

Kokoran clay loam (Kandahar~ 
Afghanistan) 

0-8 

Shamalon clay (Bost, Afghanis- 0-8 
tan) 

Baghra sandy clay (Bost, Afgha- 0-8 
nista.n) 

Per cent 

Sand 
Fine 

Silt clay 

54.50 24.22 6.80 

4.88 48.34 19.20 

3.89 45.37 23.80 

25.50 48.90 4.20 

20.75 36050 15.30 

47000 5.50 22.30 
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Coarse 
clay 

13.20 

26.00 

26.50 

22.90 

23.30 

19.75 



TABLE XVI 

X-RAY DIFFRACTION AND d-SPACINGS IN ANGSTROMS OF THE OOt FOR BOLAN FINE CLAY (LESS THAN 0.2<.() 

Depth 
(in.) Mg-sat.-25 C Mg-sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

0-9 
10.643; 4.307; 10.643; 4.287; 

10.643j 3.3482 4.1106 3.3606; 3.184 
10.155; 4.13; 
3.95; 3.26; 3.184 

Illite, quartz~ potas­
sium feldspar 

10.04; 3.49; 10.04; 3.348; Illite, quartz, plag-
0-16 10.643, 3.348 

10.643; 4.307; 
3.348 3. 348; __ 3 .167 3 ._lQI__ _______ ioclase feldspar 

Chlorite, illite, 
10.643; 4.307; 10.155; 3.348; quartz, plagioclase 

16-24 10. 643, 3. 348 3. 348 ___ _ _3_~1~, _lQ~4 ___ ---~_._1._~4____ __ feldspar 

10.643; 7.132; Chlorite, illite, 
9.927; 7.2; 4.092; 6.505; 3.559; 10.04; 3.49; 10.155; 3.348; quartz, kaolinite, 

24-32 3.39; 3.36 3.348 3.569; 3.14 3.184 plagioclase feldspar 

14.717; 10.773; 14.72; 10.643; 14.717; 10.643; Chl0rite, illite, kao-
7.189; 6.56; 3.559; 14.717; 10.040; 7.13; 7.189; 3.568; 7.36; 5.006; 3.56; linite, quartz, plag-

32-39 3.348; 3.118 ~.558;_~~348 __________ }_._'.!lf.?;3.1617 ___ '.!·_~4?.2; 3.1617 ieclase feldspar 

14.717; 10.773; 14.717; 10.517; 7.13; 14.72; 10.04; 14.717; 10.69; Chlorite, illite, kao-
7.189; 6.56; 3.558; 6.56; 5.03; 4.76; 7.13; 3.561; 9.36; 5.006; 3.56; Unite, quartz, plag-

39-47 3.348; 3.118 3.558; 3.34.EL__ 3.15 ___ 3._348; 31617 i<!>clase feldspar 

14.717; 10.64; 14.717; 10.517; 7.13; 14.72; 10.04; 
7.189; 6.56; 4.766; 6.56; 5.03; 4.76; 7.2; 3.36; 

47-55 3.348 3.558; 3.348 3.15 
Continues next page 

14' 72; 10. 04; 
3.56; 3.348; 
3 .15 

Chlorite, illite, 
quartz, plagioclase 
feldspar 

'° 0 



TABLE XVI, Continue& 

Depth 
(in.) Mg-sat.-25 C Mg-sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

10.517; 7.13; 6.56; 14.72; 10.04; Chlerite» illite, 
10.64; 7.189; 6.56; 5.03; 4.75; 3.558; 14.72; 10.04; 7.2; 3.56; 3.348 quartz, plagioclase 

55-63 4.766; 3.348 u~348 3.36; 3.15 3.15 feldspar 

10.517; 7.13; 6.56; 
10.64; 7.189; 6.56; 5.03; 4.75; 3.558; 

63-71 4.766; 3.348 3.348 
14.72; 10.04; 7.2; 10.04; 3.348; 
3.36; 3.15 3.15; 5.03 

Chlorite, illite, 
quartz, pl~gioclase 
feldspar 

10.04; 4.308; Calcite, illite, 
10.64; 4.3079; 10.52; 4.37; 4.07; 10.04; 3.558; 4.11; 3.348; .. quartz, plagfoclase 

71-79 4.11; 3.37 3.348 _Ll~ 3.15 3.1617 feldspar 

\.0 ..... 



TABLE XVII 

X-RAY DIFFRACTION AND a-SPACINGS IN ANGSTROMS OF THE OOt FOR BOLAN COARSE CLAY (0.2 to 2.0(() 

Depth 
(in.) Mg-sat. -25 C Mg-sat. Gly-. -25 C K-sat. -25 C K-sat. -500 C Type ef major mineral 

0-9 

: . ·, ; 

14.476; 10.155; 
7.1897 

14.476; 10.04; 
9-16 3.348 

14. 717; -10. 04; - 7.1897; 
S.00;.4.76; 3.5587; 
3 .1187 

14.717; 10.04; 7.189; 
4.3079; 4.11; 3.5587; 
3.348 

14'.243; .10.04; 
~7:132; 5.006; 14.717; 10.15; Chlorite, illite, kao-
4. 766; 3.558; 5.0065; 4.073; linite, quartz, plag-
3. 348; _:3.1~_ 3. 348; 3 .15 io~lase feldspar 

14.243; 10.04; 14.717; 10.155; 
7,132~ 6132;~; 4.269; 4.07; Chlorite, illite, kao-
5.0;:;_4. 76; 4;26; 3.56; 3.348; linite, quartz, plag-
3.56; 3.35 _-_.:: 3.15 ioclase felaspar 

14.717; 10.04; 7~189; 14.717; 10.04; 14.717; 10.155; Chlorite, illite, kao-
14.476; 4.282; 4.98; 4.716; 3.348; 4.26; 4.073; 4.269; 4.07; linite, quartz, plag-

16-24 4. 09; 3. 36 3.118_ ___ __ _ __ _ 3. 558_;__J_. _ _!_~ ~--:3_._:3ft.t!.i__3 .15 ______ :i.e>cl~_se _f~!_clst_par 

14.717; 10.04; 
7.1897; 5.035; 14.717; 10.04; 7.189; ~14~717;!10.04; 14.717; 10.155; Chlorite, illite, kao-
4.038; 4.1106; 4.98; 4.716; 3.34S; 4.26; 4.073; 4.269; 4.07; linite, quartz, plag-

24-32 3.558; 3.36 3.118 3.558· 3.139 3.348; 3.15 ioclase felispar 

14. 717; 10.04; 
7.189; 5.035; 
4.766; 3.5587; 

32-39 3.348 

14.717; 10.04; 7.189; 
4.98; 4.716; 3.348; 
3.118 

14. 717; 10.04; 
4.269; 4.073; 
3.56; 3.14 

Continued next page 

14. 717; 10.15; 
4.269; 4.073; 
3.1399; 3.348 

Chlorite, illite, kao­
linite, quartz, plag­
ioclase feldspar 

'° ...., 



TABLE XVII, Continue0 

Depth 
(in.) Mg-sat.-25 C Mg-Sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

14.717; 10.04; 
7.189; 5.035; 
4.766; 3.5587; 

39-47 3.348 

14.717; 10.04; 
7.189; 5.035; 
4.766; 3.5587; 

47-55 3.348 

14. 717; 10. 04; 
7.189; 5.035; 
4.766; 3.5587; 

55-63 3.348 

14 . 717 ; 10 . 04; 
7.189; 5.035; 
4.766; 3.5587 

63-71 3.348 

14.717; 10.04; 
7.189; 5.035; 
4.766; 3.5587; 

71-79 3.348 

14.717; 10.04; 
7.189; 4.98; 14.717; 10.04; 14.717; 10.15; Chlorite 9 illite, kao-
4.716; 3.348; 3.568; 3.348; 5.0065; 3.37; linite, quartz, plag-
3.118 3.15 3.16 io~!ase feldspar 

14 . 71 7 ; 1 0 • 04 ; 
7,189; 5.034; 
3.5587; 3.3482 

14.717; 10.04; Chlorite 9 illite, kao-
3.56; 3.2522; 14.717; 10.15; linite, quartz, plag-
3.3482; 3.15 3.3482; 3.15 iocl~~e feldspar 

14.717; 10.04; 14.717; 10.155; Chlorite 9 illite, kao-
7.189; 5.034; 14.717; 10.04; 5.03; 4.26; linite, quartz, plag-
3. 5587;_~.~48~------ --~·~~; __ ]_._15_____ :.L'.!Lf.8~; 3 .15 ioclase feldspar 

14.717; 10.04; 14.717; 10.04 Chlerite 9 illite, kao-
7.189; 5.034; 7.189; 5.00; 14.717; 10.155; linite, quartz» plag-
3._~~87;__~._348L _____ }.2§_§;_ 3_._'.!48~ _____ 5.0)_ft,; ___ 3_._348~_ ioclase feldspar 

14.717; 10.04; 14.717; 10.04; 14.717; 10.155; Chlorite, illite, kao-
7.189; 5.034; 7.189; 5.00; 5.034; 4.28; linite, quartz, plag-
3. 5587; 3. 3482 3. 568; 3. 3482 3. 3482 n -- ---- ioclase feldspar 
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TABLE XVIII 

X-RAY DIFFRACTION PATTERN AND 4-SPACINGS lN ANGSTROMS OF THE oot OF THE THREE 
OKLAHOMA FINE CLAYS (LESS THAN 0.2.({) 

Depth 
Location (in.) Mg-sat.-25 C Mg-sat. Bly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

San Saba 
clay 
loam 

Woetrlwarel 
loam 

0-9 

9-24 

15.77; 7.25; 17.4; 7.25; 3.56; 12.5; 3.56; 
3.56;_~._35 3.35 3.35_~----~~-·JL____ Mcmtmorillonite, quartz 

1 7 • 6 ; 10 . 04; 
3.35 

Illite, quartz, plagio-
10.04; 4.35; 4.13 3.35, 3.18 3.18 clas~ f~ldspar 

>24 14.28~ 3.56 17.65, 3.56 3.16 3 .16 
Montmorillonite, plag­

ioclase feldspar 

16.0; 4.29; 
0-6 3.35 

16.35; 10.04; 
6-13 3.35 

14.7; 10.73; 
13-25 3.35 

14. 7; 10.27; 
25-36 3.35 

22.07; 10.27; 
Montmorillonlte, il-­
iite, quartz• plagio-

4.27; 4.11; 3.35 3.35, 3.16 3.35, 3.16 --~!~!e feldspar 

22.07; 10.27; Mentmorillonite, il-
3.35 3.35 3.35 lite.z......9.!:!artz 

22.07; 10.27; Montmorillonite, il-
3.35 3.35 3.35 lite~rtz 

22.07; 10.27; Montmorillonite, il-
3.35 3.56, 3.35 3.35 lite, quartz 

Continued next page 
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TABLE XVIII» Conti11ue4 --~ ___ _ 

Depth 
Location (in.) Mg-sat.-25 C Mg-sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

Richfiel4 
leam 

:.,,,_ 

0-12 

12-18 

18-28 

>28 

17.66; 4.27; 
3.35 

16.98; 10.04 

15. 77; 10.04; 
3.35 

15.77; 7.189; 
4.27 

Montmorillonite, il-
22.07; 10.04; lite, quartz, plag-
4. 27; 3.35 3.35, 3.16_~._~~-~._!_§____ ioclase feldspar 

22.07; 10.04; 
3.56 

18.4; 10.04; 
7.24 

22.07; 4.13; 
3.35 

3.35, 3.16 

3.35, 3.16 

Montmerillonite, il­
lite, quartz, plag-

3.35, 3.16 iocalse felespar 

3.35, 3.16 

Montmorillonite, il­
lite, quartz, plag­
ioelase feldspar 

Montmorillenite, il­
lite, quartz, plag-

3.35, 3.16 3.35, 3.16 i~clase felaspar 
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TABLE XIX 

X-RAY DIFFRACTION PATTERN AND d-SPACINGS IN AGNSTROMS OF THE 001- OF THE THREE 
OKLAHOMA COARSE CLAYS (0.2 to 2<.I) 

Depth 
Location (in.) Mg-sat.-25 C Mg-sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

15.5; 7.19; 
San Saba 0-9 3.56; 3.35 

clay 
loam 

14.72; 7.25; 
9-24 3.56; 3.35 

15.22; 7.25; 
>24 3.56.i, 3.35 

Woodward 0-6 10.04; 3.35 
loam 

14. 72; 10.04; 
7.19; 3.56; 

6-13 3.35 

14. 72; 10' 04; 
13-25 7.13 

18.49 7.19 

17.65; 7.189; 
3.56 

17.75; 17.19; 5.0; 
3.56; 3.35 

3.56jl 3.16 

17.65; 10.04; 
7.19; 4.27; 
3.56 

10. 04; 7 . 13; 
3.35 

12.99; 7.13; 
3.56; ).35 _3.35, 3.16 

7.19; 3.36; 
3.16 3.35 

3.15 3.35 

3.16 3.35, 3.16 

10.04; 7 .19; 10.04; 3.35; 
3.35 3.16 

7.13; 3.35; 10.04; 3.35; 
3.16 3.16 

Continued next page 

Montmorillonite, meta­
halloysite, quartz, 
I>l.B.gioc:lase :f:eldspar 

Montmorillonite, meta­
halloysite, quartz, 
plagioclase feldspar 

Montmorillonite, quartz 

Illite, quartz, plagio­
clase feldspar 

Montmorillonite, meta­
halloysite, illite, 
quartz, plagioclase 
feldspar 

Illite, kaolinite, 
quartz. nJagioclase 
feldspar 

\0 
(/:) 



TABLE XIX, Centinuee 

Depth 
Location (in.) Mg-sat.-25 C Mg-sat. Gly.-25 C K-sat.-25 C K-sat.-500 C Type of major mineral 

Woodward 
loam 

Richfield 
loam 

25-36 

0-12 

12-18 

18-28 

>28 

14.72; 10.04; Illite, quartz, plagio-
4.98; 3.56 ~J-~--------- 3.16 }._J5_, __ 3_._l._~---- clase feltlspar 

15 . 77 ; 10 . 04; 19.2; 10.04; 7.2; 
7 .13; 3.56; 3.35 3.35 

15 . 77 ; 10 • 04; 18.4; 10.04; 
7.13 7.13 

15. 77; 10.04; 18. 4; 10. 04; 
7.13 7.13 

15.22; 10.04; 18.4; 10.04; 
7.13 7.13 

Montmorillonite, n.:..: te 
lite, quartz, plagio-

3.35~ 3.16 3.35, 3.16 clase feldspar 

7.13; 3.35; 
3.16 

3.35, 3.16 

3.35, 3.16 

3.35, 3.16 

Montmorillonite, il-
l ite, kaolinite, q~artz, 
plagioclase feldspar 

Montmorillonite, vermi­
culite, illite, quartz, 
plagioclase fledspar 

Montmorillonite, vermi­
culite, illite, quartz, 

3.35, 3.16 3.35, 3.16 plagioclas~_J~ldspar 

ID· 
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Figure 15. X-ray Diffraction Pattern and d-spacings in Angstroms of the Fine Clay (Less than 0.2.{/) 
Fraction of San Saba Clay Loam Soil Taken at a Depth of 9 to 24 Inches 
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plagioclase feldspar and quartz in the clay fraction. 

The diffraction spacings for Woodward clays are shown in Tables 

XVIII and XIX and Figures 17 and 18. Fine clay extracted from the 0 to 

6 inch sample had a diffraction spacing of 16 A after the clay was sat­

urated with magnesium chloride. When this fine clay was solvated with 

glycerol the 16 A spacing expanded to 22.0 A and upon potassium satura­

tion collapsed. This spacing (22.0 A) wae due to the preeence of mont­

morillonite. Coarse clay extracted from the same sample did not show a 

spacing for montmorillonite, Coarse clay extracted from the 6 to 13 

inch sample had a spacing of approximately 7.2 A before the clay was 

heated, but upon heating the spacing was destroyed, This is an indica~ 

tion of the presence of halloysite or kaolinite, Coarse clay extracted 

fr0m the 13 t0 25 inch sample before heating had a diffntct:d.on spacing 

of approximately 7.13 A. When the clay was heated the spacing was des­

troyed, This indicates that the coarse clay was k~olinite, The clays 

frem the Woodward soil also had a spacing of approximately 10 A. In 

some cases the 10 A spacing upon potassium saturation disappeared but 

in some gther cases this spacing was not affected by potassium satura­

tion, This indicates that Woeaward loam probably contains illite. 

Quartz and plagiocla~e feldspar were also present in the coarse clay 

fraction of this profile. 

X-ray diffraction spacings for the Richfield soil clays are repor­

ted in Tables XVIII and XIX and Figures 19 and 20. Richfield clay ~f­

ter magnesium saturation had a diffraction spacing of approximately 

16 A, When the clay was solvated with glycerol the spacing expanded 

and upon potassium saturatien the spacing was destroyed. This in<l:JL·­

cates that the Richfield soil contains montmorillonite, At a depth of 
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12 to 18 inches the coarse clay in this prefile had a spacing of approx-

imately 7.13 A after the clay was saturate& with magnesium. Glycerol 

solvation did not change this spacing. This spacing was not signifi-

cantly affected by potassium saturation but was <destroyed by heating. 

This indicates the coarse clay contained kaolinite. In,;~lay extracte<d 

frem the samples taken below 18 inches the 7.13 A spacing was destroyed 

when the soil was saturated with potassium. This spacing might be a 

sec<nul-order vermiculite, because it was not affecteci by glycerel solva-

tion. Richfield clays also had a spacing of approximately 10 A after 

the s0il was saturated with magnesium. This spacing was not affected 

by glycerol solvation but was collapsed after the clay was iautrated 

with p0tassium. This indicates that Richfield clays contabl illite. 

Richfield clays also had a spacing for quartz and plagioclase feldspar. 

Montmorillenite was present in the entire soil profile in both coarse 

ane fine fractions and at all depths. 

Dorulaman clays have a spacing of approximately 14.72 A after the 

coarse clay was treated witn magnesium as shown in Figures 21 and 22 

and Tables XX and XXI. The spacing did not change significantly when 
-

the coarse clay was solvated with glycerol. However, the spacing was 

collapsed when the clay was saturated with potassium chloride. This 

indicates that the coarse clay contains vermiculite. The coarse clay 

also had a second-orier spacing for veI'llliculite which followed the 

same trend as the 14. 72 A spacing. This spacing was also collapsed by 

potassium saturation. Dorulaman clays haa a 10 A spacing before the 

clays were treated with potassium chloride, but upon potassium satura-

tion this spac~ng collapsed which inaicates that these clays also con-
\-: 

tain illite. Dorulaman coarse clay also had diffraction spacings for 
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Location 

Dorulaman 
c. 1. (Univ. 
Fann, Kabul, 

TABLE XX 

X-RAY DIFFRACTION PATTERN AND d-SPACINGS IN ANGSTROMS OF THE ooi OF SOME AFGHAN FINE 
CLAYS (LESS THAN 0.2..(..() 

Depth 
(in.) Mg-sat ._.25 C ___ ]1g-~a_t;~ __ Gly. -25~_ K-sat ._=~~_g__ K-.~~t._-.200 __ C . ___ J'_yp~of major mineral 

10.155; 7.25; 10.04; 7.18; 5.0; 
5.0; 4.1; 3.56; 4.1; 3.56; 3.35; 10.04; 3.35; 10.04; 3.35; 

Afgan.) 0-8 3.35; 3.18 3.18 3.18 3.18 

Vermiculite, illite, 
quartz, plagioclase 
feldspar 

Dorulaman 
c. L (Roy. 
Afg. Min. of 18.30; 12.9; Vermiculite, illite, 
Ag., Kabul, 10.2; 4.07; 18.3; 13.4; 10.2; 10.04; 3.35; quartz, plagioclase 
Afghan.) 0-8 ____ 3__._2_6i___]_J_~ 4.07; 3.56; 3.18 3.35, 3.18 3.18 feldspar 

ShishemBagh Montmorillonite, il~ 

s. 1. (Nin- 15.77; 10,4; 20.53; 10.04; 10.63; 3.35; lite, quartz, plagio-
gerhar, Afg_.J_Q"."_§_ 3.35; 3.18 3.35; 3.18 3.35, 3.16 3.18 clase feldspar 

Pos-i-shan Montmorillonite, il-
si. c. (Bagh- 14.72; 10.643; 17.72; 10.04; 7.19; 7.25; 3.56; lite, metahalloysite, 
lan, Afg.) 0-8 7.19;5.03;3.35 5.03; 3.35 3.35; 3.18 10.4, 3.37 quartz 

Mazar si. c. 
(MazariShs-
riff ~ Afg.) 0-8 

15.77; 7.2; 
5.03; 3.35 

1 7 . 2; 10 . 04; 7 . 2; 
5.03; 3.35 

3.56; 3.35; 
3.16 

Continued next page 

10.27; 3.35; 
3 .16 

Montmorillonite, il­
lite, vermiculite, 
kaolinite, quartz, 
plagioclase feldspar 
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TABLE XX, Continued 

Depth 
Loc•tion (in.) Mg-sat. 25 . C Ma-~~~. _cgy_._--.~?_Q__K-sat. -25 (: ___ _K-S~h--.50Q_C. _____ 'fyp~ _ C!!f _ma,j or mineral 

Kokoran c. 14.72; 10.27; 14.72; 10.273; 7.3; Vermiculite, illite, 
1. (Kania- 7.13;5.03;4.07; 5.03; 4.07; 3.56; kaelinite, quartz, 
bar, Afg.) 0-8 3.56; 3.35 3.35 3.56, 3.19 3.35, 3.18 pla1ioclase feldspar 

Shamalon c. 14.72; 10.64; 
(AlkaliDfh fr. 7.19;5.0;4.76; 15.22; 10.04; 7.2; 3.56; 3.37; 10.52; 3.35; Vermiculite, illite, 
Bost, Afg.) 0-8 3.56; 3.35 _4..JJ,_____ 3.18 _____ l.J .. ~ _______________ k~0linit1e, quartz 

Shamaloa c. 14.72; 10.64; Chlorite, illite, kao-
(Non-alk., fr. 7.19;5.0;4.76; 14.72; 10.04; 7.2; 14.72; 7.13; 14.72; 3.35; linite, quartz, plag-
Bost, Afg.J o:...8 _.3..5§.;_'.3.-.:35 __ 5.0; 4.74;3.5_~_3.35 3.5~3.35 3.16 iQ.<:!.~St!_feldspar 

Boghra s. c. 
Q3ost, Afgha­
nistan) 

Interstratified mica-
12. 02; 10.5; chlorite, kaolinite, 
7.13; 4.26; 12.26; 10.52; 7.13; 12.26; 7.13; illite, quartz, plag-

0-8 4.oz; _'.3·'.3-~ ______ t.,.._~~--4.07;__3.35 3.35 1_._35~~6--- .. -~!o~J..~sce fel<{spar 

..... ..... ..... 



TABLE XXI 

X-RAY DIFFRACTION PATTERN AND d-SPACINGS IN ANGSTROMS:.·op· THE 001i QF;'SOME: AFGHAN 
COARSE CLAYS (0. 2 to 2. O.q) 

Depth 
Location (in.) Mg-sat.-25 C Mg-s~t._~ly_._,...z~_G ___ K-11.at ._..,2~-~--K-11~t_._-~OO~ ___ fype of major mineral 

Dorulaman c. 
1. (Univ. 15.23; 10.04; 
F•rmio Kabul, 7.13; 4.32; 15.22; 10.04; 7.3; Vermiculite, illite, 
Afghan.) 0-:8 4._!_~;__l_._~-2_ ___ 4.30; 4.13; 3.35 10.04, 3.16 10.04, 3.36 quartz 

Dorulaman c. 
1. (Ray. Afg. 17.65; 15.23; 
Min. of Ag. 10.04; 7.13; 15.22; 10.04; 7.3; Vermiculite, illite, 
Kabul. Afg.) 0-8 4.3;4.13;3.35 4.30; 4_._13;_3.35 __ ],_Q._04, ~_.16 J,Q.Q4, :3.3~ _quartz 

Shishem Bagh 
s. 1. Ninger- 15.2; 10.04; 15.2; 14.72; 10.04; 14.72; 9.8; 14.72; 1o:~:i1; Chlorite, illite, ver-
har!l. Afghan.) 0-8 7.J2_; __ 3._35 7.19; 3.56; 3.35 3.35; 3.16 3.37; 3.18 miculite, quartz 

Pos-i-shan 
s i . c -~ (Bagb.­
lan, Afghan.)0-8 

Mazar si. c. 
(MazariShar­
iff, Afghan.) 0-8 

Chlorite, illite, ver-
14. 727; 10.04; 14.72; 10.04; 7.25; miculite, kaolinite, 
7.19;5.0;4.31; 5.03; 4.31; 4.73; 10.04; 3.56; 14.72; 10.04; quartz, plagioclase 
3.56;3.35; 3.19 3.56; 3.35 3.13 3.37 _feldspar 

14. 72; 10. 04; 
7.13; 5.03; 
3.56; 3.35 

14.32; 10.04; 7.13; 
4.93; 4.71; 3.56; 
3.35 

3.56; 3.35 
3.16 

Continued next page 

10.27; 3.35; 
3.16 

Vermiculite, illite, 
kaolinite, quartz, 
plagioclase feldspar 

I-' -N 



TABLE XX!, Continued 

Depth 
Location (in.) Mg-sat .-25 C Mg-sat. Gly. -25 C K-sat. -25 C K-sat. -5QQ_C_ Type of major mineral 

Kokoran c. 
1. (Kanda­
har, Afg.) 0-8 

14. 72; 10.04; 
7.13~5.03; 4.76; 
3.56; 3.35 

17.72; 14.72; 7.13; 
4.9; 4.71; 3.56; 
3.35 

7.13; 3.58; 
3.35 

Vermiculite, kaolinite» 
quartz, plagioclase 

3. 35, -~. l~ feldspar 

Shamal@n c. 14. 72; 10.04; 18.39; 17. 72; 10.04; Chlorite, illite, kao-
(AlkalLj-fr.. 7.13;5.03;4.76; 7.13; 4.97; 4.77; 14.72; 3.56; linite, quartz, plag-
Bost, Afg.) 0-8 3.56; 3.35 3.56; 3.35 3.35; 3.16 14.72, 10.27 ioclase feldspar 

Shamalon c. 14.72; 10.04; 14.2; 10.04; 7.13; 14.72; 10.04; Chlorite, illite, kao-
(Non-alk., fr. 7.13; 5.03; 4.76; 5.03; 4. 74; 4.27; 7.13; 3.56; 14. 72; 10.04; linite» quartz, plag-
Bost, Afg.) 0-8 3.56; 3.35 4.07; 3.56; 3.35 3.35 3.35i3.Jt!_ _____ ~oe!ase feldspar 

Boghra s. c. 
(Bost, Afgha-
nistan) 0-8 

12.00; 10.52; 
7.13; 4.26; 
4.07; 3.35 

12.26; 10.512; 
7.13; 3.35 

12.26; 7.13; 
3.35; 3.18 

Interstratified mica­
chlorite, illite, kao-
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quartz and plagioclase feldspar. Dorulaman fine clay iid nQt contain 

vermiculite but illite was present. 

There was no significant difference in the mineralogy of the secon­

dary minerals of clays from the University farm in D•rulaman and the 

Royal Afghan Ministry of Agriculture farm in Dorulaman. 

Shishem Bagh soil coarse clay fraction had a Qiffractien spacing 

of approximately 10 A as shown in Tables XX and XXI and Figures 23 and 

24. This indicates these coarse clays contain illite. Shishem Bagh 

coarse clays also had a diffraction spacing of approximately 15.2 A af­

ter the soil was saturateQ with magnesium. This spacing was not des­

troyed by potassium saturation and was not affected by glycerol solva­

tion either. Heating at 500 C for four hours also did not cause this 

spacing to collapse. This indicates that the Shishem Bagh coarse 

clays contain chlorite, Shishem Bagh fine clays on the other hand, 

had a diffraction spacing of approximately 15.8 A after the clay was 

saturated with magnesium and upon glycerol salvation this spacing ex­

panaed to 20 A. However, potassium saturation destroyed this spacing. 

This is an indication that Shishem Bagh soil fine clay fraction con­

tains montmorillonite. 

Shishem Bagh soil coarse clay also had a 4iffraction spacing of 

7.2 A after the clay was saturated with magnesium. Upon glycerol sol­

vatien this spacing was not affected, but when the clay was saturated 

with potassium the spacing disappeared. This indicates that these 

clays have a second-order spacing for vermiculite. Quartz and plagio­

clase fledspars were also present in the Shishem Bagh soil clays. 

Pos-i-Shan soil clays have a diffraction spacing of approximately 

10 A before the clay was saturated with potassium as shown in Tables XX 
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and XX! and Figures 25 and 26. Upon potassium saturation this spacing 

disappeared in the fine clay, but was still present in the coarse clay. 

This indicates that both fine and coarse clays contain illite. Pos-i­

Shan eoarse clay also had a spacina of 14.72 A &fter the soil was sat­

urated with magnesium. This spacing did not disappear due to a~y of the 

treatments. This indicates that Pos-i-Shan co~rse clays contain chlo­

rite. Pos-i-Shan coarse clay had a diffraction spacing of 7.2 A and 

which was not affected by glycerol salvation and pot•ssium saturationp 

but was destroyed by heating at 500 C for four hours. Thi~ indicates 

that Pos-i-Shan coarse clay cont~ins hall@ysite and/or ka@linite. Pos­

i-Shan coarse clay also had a aiffraction spacing of approximately 

3.56 A before the clay was heated, but upon heating thi~ spacing w•s 

also destroyed, which further confirms the presence of k•olinite. 

Quartz and plagioclase feldspar were also present in Pos-i-Shan clays. 

X-ray diffraction pattern d-spacing for Mazar clays ~re rep0rted 

in Tables XX snd XX! and Figure.s 27 and 28. Msizar coane clay had it 

diffraction spacing of approxim~tely 14.72 A after the cl~y w~i ~aturat­

ed with magnesium, Upon glycerol solvstion this spacing wu not signi­

ficantly changed but when the cl~y was !l~turated with pot2~sium this 

spacins disappearfld, This indic.imtes that Mazar co.ilne day cont~ins 

vermiculite, Mazar co.arse cl~y also h~d ai diffr~ctfon sp~cing (!)f <llp­

proximately 7,3 A which followed the ~ame tr~nd ~e the 14"72 A spacing, 

This spacing h prob$bly vermiculite !lecond-order becl!l.use it did not 

change with glycerol solvation, but was destroyed upon potH1'ium satu~ 

ration, Mazar coarse cl~y also had ~ diffraction sp$cing of ~pproxi~ 

mately 3.56 A. This spacing w3s not affected by glycerol solv~tion or 

potas~ium saturation, but was de~troyed by he~tingo This ~pacing i~ 
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probably due to the presence ef kaolinite and is known as a kaolinite 

second-order spacing. Mazar coarse clay had a diffraction spacing of 

approximately 10 A before the soil was treated with potassium. Potassium 

saturation caused this spacin& to collapse which inaicates the presence 

of illite. 

Mazar soil coarse and fine clays also contain quartz and plagio­

clase feldspar. Mazar soil fine clay had a diffraction spacina of ap­

proximately 14.72 A after the clay was saturatea with magnesium. When 

the fine clay was solvated with slycerol the spacing was expan•ed to 

17.2 A and upon potassium saturation this spacing was destroyed. Mazar 

fine clay also contained illite and second-order vermiculite. Mazar 

fine clay also had a diffraction spacing of 7.13 A after the clay was 

saturated with magnesium. Upon glycerol solvation this spacing was not 

affectee but was destroyed by potassium saturation. This indicates the 

second-oraer of vermiculite. 

X-ray diffraction and cl-spacings of Kokoran soil clays are repor­

ted in Tables XX and XXI and Figures 29 and 30. Both coarse and fine 

clays had diffraction spacings of 14.7 A after the clays were saturated 

with magnesium. Upon glycerol salvation the spacings were net affected 

significantly, but when they were saturated with potassium these spac­

ings disappeared. This indicates that these spacings ·were ,due to1 the 

presence of vermiculite. Kokoran soil coarse clay also had a eiffrac­

tion spacing of 7.13 A. This spacing was also destroyed by potassium 

saturation. This is a second-order indication of vermiculite, because 

this spacing was not affected by glycerol solvation. Kokoran soil 

ct!larse clay als(l) had a spacing of approximately 3.56 A and this spacing 

was net affected by potassium saturation or glycerol salvation but was 
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destroyed by heating at 500 C for four hours. This indicates the pre­

sence of kaolinite in the Kokoran soil coarse clay as indicated by se­

cond-order diffraction. Kokoran soil clays also have a 10 A spacing 

which was not affected by &lycerol solvati11m but was collapsed by potas­

sium saturation. This spacina was probably due to the presence of il-

1 ite. K&keran clays also contain quartz and plagioclase feldspar. 

X-ray diffraction and d-spacings of Shamalan soil clays are repor­

ted in Tables XX and XXI and Figures 31 and 32. Shamalan fine clay (al­

kali or sodic 1oil area) had a diffraction spacing of approximately 

14.72 A after the clay was 1aturated with magnesium. This 1pacing waa 

not(af.ftcted li&niftcantly upon &lycerol IOlvation but WH dHtroyed 

when the clay wa1 saturate• with peta11ium. Thi• indicat11 that Sh•ma­

lan alk•lt;1oil fin• clay contains vermiculite. Another 1ample from 

the Shamalan arear(non~alkali) had a 4iffraction spacing of 14.72 A and 

wa1 not significantly affected by any of the treatments. Therefore, 

Shamalan non-alkali fine clay probably contains chlorite instead of 

vermiculite. Both fine 1011 clay• haa a 8iffraction 1paein1 of appro­

ximately 3.56 A and this 1pacin1 was not affected by 1lyc1rol 1olvation 

or pota1sium 1aturation, but was destroyed by heatina at 500 C for four 

hours. Thi• 1pacina wa1 probably second-order kaolinita. Fine clay 

sample• frCD111 both 1oil1 contain•• quartz, illite, and pla1iccla1e f•ld" 

spar. 

Boahra 1oil clay• had a diffraction 1pacin1 of 12.3 A after th• 

clay• had b11n 11turat1d with ma1n11ium •• 1hown in Tabl11 XX and XXI 

and Fi1ur11 33 and 34. Thi• 1pacin1 wa1 not affect•• by p•ta11ium 1at­

uration or h1atin1. This 1pacin1 i1 believed to be int1r1tratified 

mica-chl~rite. Both Boghra 1011 coar1e and fine cl1y1 have ~ 
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diffraction spacing of approximately 10 A. This spacing was collapsed 

by potassium saturation. This shows that Boghra clays also contain 

montmorillonite-illite. Boghra soil coarse clay als had a diffraction 

spacing of approximately 7.l3A before the clay was heated. After the 

clay.was heated at 500 C for four hours this spacing disappeare&. This 

indicates that Boghra soil coarse clay contains kaolinite. Both coarse 

and fine clays contained quartz and plagioclase feldspar. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Soluble ammonium phosphate added to the calcareous soils studied 

in this investigation was converted predominantly to calcium phosphate 

followed by aluminum phosphate. The rate of conversion was strengly 

influenced by the amount of calcium carbonate present. Afghan soils 

were very high in calcium carbonate CCl)1llpared to the three Oklahoma 

soils studied in this investigation. Aluminum phosphate content gene­

rally increased with time of incubation in the three Oklahoma soils but 

in Bolan clay loam the amount of aluminum phosphate formed one day af­

ter incubation was higher than after 30 days of incubation. 

Iron and reductant soluble phosphate content were negligible in 

these soils before incubation and did not change after incubation. Ge­

nerally the availability of phosphorus according to soil test was the 

lowest one day after incubation in the three Oklahoma soils. There was 

a slight increase in the amount of available phosphorus with time of 

incubation. This increase was n~t significant in most cases. Avai­

lable phosphorus extracted by the procedure of Bray #1 (16) from Bolan 

clay loam followed the same trend with respect to the incubation period 

as these Oklahoma soils. However, the available phosphorus extracted 

by the procedure of Olsen, et al. (100) was the lowest 30 days after 

the incubation compared to one day after incubation. The largest con­

version of soluble phosphorus to the other forms took place during the 

first say of incubation. Application of soluble ammonium phosphate 

111 
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slightly decreased the pH of all the soils studied in this investiga-

tion. 

Two extractions with sulfuric acid was better than one extraction 

for all of these calcareous soils. Three washings between each frac-

tionation ptocedure:with 25.ml portions of saturated sodium chloride 

was better than two washings. 

With the exception of Richfield loam the total phosphorus in all 

other soils studied in this investigation decreased with depth. How-

ever, the Richfield loam soil showed the total phosphorus to increase 

with depth in the upper horizons and then decrease in the lower hori-

zons. Organic phosphorus in all of these soils decreased with depth. 

All phosphate fertilizer treatments yielded significantly higher 

than the control treatment but there was no significant difference in 

the yields between 200, 400 and 600 ppm of phosphorus treatments. The 

first crop harvested which was fertilized with phosphorus, yielded sig-

nificantly higher than the second non-fertilized crop. The amount of 

phosphorus in the plant tissue was closely correlated with the amount 

of soluble ammonium phosphate applied. Yield of the second crop in 

some cases was slightly depressed by the residual phosphorus applied to 

the soil for the first crop. This might be due to inadequate supply of 

other nutrients in relation to phosphorus. High rates of phosphorus 
i ~,, ::~'.C~ .f 

generally require high rates of nitrogen for proper physiolo1.~pal ba-

lance in plants. 

Chlorite and illite are the dominant clay minerals in Afghan soils 

while montmorillonite is the dominant clay mineral in the Oklahoma 

soils. Both Afghan and Oklahoma soils contained quartz and plagioclase 

feldspar. Kaolinite and vermiculite were also present in some of 
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these soils. 

Suggestions for Future Research 

1. Phosphate fractionation of calcareous soils for calcium phos­

phate needs at least two extractions with 0.5 N sulfuric acid. 

2. Three washings with 25 ml portions of saturated eodium chlo­

ride between each fractionation procedure is better than two washings. 

3. Phosphate fertilizer should be applied to each crop grewn on 

calcareous soil. 

4. Large phosphate applications are not economical at least on a 

short-term basis. However, large phosphate applications need to be 

studied further in an attempt to determine the fixation capacity of 

these soils and to ascertain if the yields due to residual phosphate 

will continue or if these soils must be fertilized with phosphate each 

year. 

S. A study of long-time phosphate response on these calcareous 

soils should be conducted under field conditions. 
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