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CHAPTER I 

INTRODUCTION 

The valuation-theoretic approach is used in conducting current 

research in algebraic number theory and algebraic geometry. Many books 

written on algebraic number theory in the past decade emphasize this 

approach [18]. In addition, this valuable concept is applied to such 

research areas as diophantine equations [7], theory of algebraic func

tion fields [3] and topics in number theory [SJ. 

However, the student arriving on the threshold of graduate studies 

in mathematics has probably not heard of the term valuation or even of 

p-adic numbers. Furthermore, there is very little lite;t:"ature available 

that is suitable for a student at this stage. Many of the published 

books which discuss valuations claim to be self contained, but such 

works as Schilling's, "The Theory of Valuations" [16) are for the 

advanced student. Typical of comments found is "articles are all self

contained, in the sense that they can be read without extensive prior 

knowledge of number theory." This statement occurs in the intrc;>duction 

of "Studies in Number Theory" (7). However, on page 94 of the 1970 

January issue of "The American Mathematical Monthly" a review of this 

book states that "The paper by D. J. Lewis on p-adic methods seems to be 

the most difficult to follow and may require frequent consultation of 

references." 
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While much of the literature is on a level somewhat more advanced 

than the mathematical maturity of the beginning graduate, it is felt 

that the concepts and their implications can be made accessible to these 

students. In addition to their value in research, the fields of p-adic 

numbers are very interesting to study. Of further interest is the 

analysis that may be carried on in these fields. In the study of these 

fields we see such commo~ areas as algebra, number theory and analysis 

combined in conducting research. 

This paper is intended to help fill the gap that now e~ists in the 

literature on valuation theory and p-adic numbers at the advanced under

graduate or beginning graduate level. It would be studied at a time 

when the student is in the transitional period of leaving behind under

graduate mathematics and embarking on graduate level courses. Some of 

the purposes to be served would include (1) to strengthen the student's 

background and promote the development of mathematical maturity, (2) to 

stimulate an interest in a new and unfamiliar area of mathematics, 

(3) to reinforce the concepts acquired in undergraduate mathematics by 

investigating these concepts in a different setting, and (4) to present 

a study where algebra, number. theory and analysis are combined and used 

in arriving at new conclusions. The material in this study could 

probably be used best in a seminar or for independent study. 

Finally, this study is not intended to be a treatise on valuation 

theory and p-adic methods. It is written for the student who is' 

beginning graduate studies. The accomplished mathematician is not only 

encouraged, but urged, to proceed directly to such publications as 

Artin [3], Schilling [16], or O'Meara [12]. 
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In preparation for the development of p-adic numbers and valuation 

theory, some of the important properties of algebraic systems, number 

theory and analysis, to be used in the subsequent discussion will be · · 

reviewed here. The reader who is already familiar with these concepts 

may proceed directly to Chapter II. 

Sets and Mappings 

Suppose A and B are two sets. If with each element a in A 

there is associated a unique element b in B, we say that there is a 

mapping or function f of A into B and write f(a) = b. If 

f(a) = f (b) implies that a = b, f is said to be one to one. If for 

each b in B there exists an element a in A such that f(a) = b, 

then f is called an onto mapping. 

Let f be a mapping of A into B. Then for a subset E of A 

the image set f (E) is the set {f(x): x is in E}. For a subset D 

of B the pre-image set is f-l(D) = {x: f(x) is in D}. Now if f 

is a mapping of A into B and E is a subset of A, the restriction 

of f. to E, denoted by f!E is fjE(x) = f(x) where x is in E. 

A relation in a set s is a subset of ordered pairs (a,b) of the 

product set s x s. If is a relation and (a,b) is in -, we say 

that II a is in the relation - to b II and write a-b. 

Let S be a set and let - designate a relation defined between 

elements of S such that, given any two elements a and b in S, 

a - b is either true or false. The relation is called an equivalence 

relation if it satisfies the following conditions: 

(a) a -a for all a in S (reflexivity); 
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(b) a - b implies b - a (symmetry); and 

(c) a - b and b - c implies a - c (transitivity). 

Suppose that S is a set and - is an equivalence relation 

defined on S. Let [a] = {x in S: x - a}. This set is called an 

equivalence class. 

Theorem 1.1. If S is a set with an equiva~ence relation defined on 

S, then S is decomposed into disjoint equivalence classes. 

We denote this by S = l.J[a]. Here it is understood that the 

union is taken only over certain elements in S so that the sets are 

disjoint. 

Algebraic Systems 

A group is a set with an operation ". " such that is in G 

whenever a and b are in G, and for which the following properties 

are satisfied: 

(a) for all a, b, and c in G, (a·b)-c = a·(b•c); 

(b) there is an element e in G such that for each a in G, 

a•e = e•a a; 

(c) for each a in G there is an element 

-1 -1 
a·a a •a e. 

-1 a in G such that 

If for all a and b in G, a·b = b·a, then g is said to be 

an abelian group (commutative). A subset H of G is called a sub-

group of G if H is also a group. A group G is said to be cyclic 

if there exists an element g in G such that for each h in G, 

n h = g for some integer n. The element g is called a generator of 

G. The number of elements in a group is said to be the order of the 
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group. A group is said to be finite if it has a finite number of 

elements. Otherwise, it has infinite order. The order of a group G 

is denoted by IGI. 

Let G be a group with the operation 11 • 11 and H a group with 

an operation 11*11 • . A mapping f of G into H such that 

f(a•b) = f(a)*f(b) 

is called a homomorphism of G into H. The mapping f. is called a 

monomo+phism if f is one to one. If f(G) = H · then f is said to 

be an epimorphism of G onto H. A mapping f that is both a mono-

morphism and an epimorphism is called an isomorphism. In this case G 

and H are said to be isomorphic. 

Define a relation - on Z by a - b if. and only if m divides 

a - b for a positive integer m. We say that a is congruent·to b 

modulo m and write a == b(mod m). Let Z = {[O]J[l], ••• , [m - l]} 
m 

and defirte an operation 11+' 1 

operation is·well defined and 

on Z by ·[a]+ [b] = [a+ b]. 
m 

Z is a cyclic group since 
m 

n[a] = ~ [a] = [na] 

for each integer n. 

This 

Theorem 1.2. A cyclic group of order m is isomorphic to. Z • ·A 
m 

cyclic ~roup of infinite order is isomorphic to Z. 

By this theorem we see all infinite cyc+ic group$ have two get).era-

tors, since Z has generators 1 and -1. Let G be a group and H 

a subgroup of G. Let aH ={ah: h is in H}. This set·is called a 
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left coset. Similarly, Ha is a right coset, For two subgroups H 

and K of G, HK = {hk: h is in H and k is in K}. The subgroup 

H is called a normal subgroup of 
-1 

aHa = H for all a in G, 

Suppose. a and b are in G and H is a normal subgroup of G, then 

aH•bH = abH2 = abH. 

With this definition G/H = {aH: a is in G} . is a group referred to 

as the factor group (quotient). If G is a finite group then 

IG/HI 

The mapping from G onto G/H defined by f(a) = aH is a homomor-

phism. 

A set R together with two operations "+" and "·" is called a 

commutative ring if the following properties are satisfied: 

(a) R is an abelian group under addition; 

(b) for a, b, and c. in R, (a·b)·c = a•(b·c); 

(c) for a and b in R, a·b = b•a; and 

(d) for a, b, and c in R, a·(b + c) = a·b + b·c. 

A ring is called a commutative ring with unity if there exists an 

element e in R such that a•e = a for all a in R. The identity 

for addition will be denoted by 0 and the identity for multiplication 

by 1. A ring R such that a•b = 0 implies a = 0 or b = 0 is 

called an integral domain. The set R * = R - {O} denotes the set of 

* all non-zero elements of R. Now if for each a in R there is an 

a-l in R* such that a·a-l = 1 then R is called a field. Only a 

commutative ring with unity will be considered in further discussion 

and will simply be referred to as a ring, It is customary to denote 
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a ring by the symbol (R,+,•), emphasizing it is a set with two.opera

tions. Similarly, (G,·) is used to denote groups. In this study:the 

practice will be adopted to simply use the symbol R for (R,+;•) and 

likewise G for (G' •) • 

A non-empty subset s of a ring R is a subring if it is a ring. 

The set s is a sub ring if and only if a - b and ab are in s 

whenever a and b are in s. If R is a field and s is also a 

field, then we call s a subfield of R. We say a non~empty subset I 

of R is an ideal of R if (a) a - b is in I whenever a and b 

are in R, and (b) for each r in R and a in I ra is in I. 

An ideal I is always a subring of R and under addition I is a 

normal subgroup of the additive group R. Let 

R/I = {a+ I: a is in R} 

and define addition and multiplication by 

(a + I) + (b + I) = (a + b) + I 

and 

(a+ I)(b +I) =ab+ I. 

These are well defined operations and R/I is a ring. If we form a 

set· S by choosing an element from each coset (a+ I) in R/I such 

that R =\)(a+ I) and the sets (a+ I) are pairwise disjoint, then 

S is called a complete residue system for the ring R/I. 

A mapping from a ring R to a ring T is a ring homomorphism if 

f(a + b) = f(a) + f(b) and f(a•b) = f(a)•f(b). The same terminology 

is used for rings as for groups. The mapping from R to R/I defined 

by f(a) =·a+ I is a ring homomorphism called the natural homomor-
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phism. For a ring homomorphism f the set ker f = {x: f (x) = O} is 

called the kernel of f, This set is always an ideal in R. The func

tion f is a monomorphism if ker f = {0}. If f is a ring homomor

phism from a ring R to a ring f(R) then R/(ker f) is isomorphic 

to f(R), 

Suppose R is an integral domain. The set 

{(a,b): a and b are in R and b ~ 0} 

is called the set of quotients of R. The relation defined on the set 

of quotients by "(a,b) - (c,d) if and only if ad = be" is an 

equivalence relation. Let F be the set of all equivalence classes 

of the set of quotients of R and define "+" and fl• II by 

[a,b] + [c,d] = [ad + bc,bd] 

and 

[a,b]•[c,d] = [ac,bd]. 

With this definition F is a field, called the field of quotients of 

R. The mapping f(a) [a,l] defines an isomorphism of R into F. 

We say that R is embedded in F. 

Let m be a positive integer and r an element of a ring R. 

Then 

and (-m)r = m(-r). If there exists a least positive integer m such 

that mr = 0 for all r in R, then we say that R has characteris-

tic m. If no such positive integer exists, R has characteristic 
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zero. For an integral domain either m is.a prime or m • O. The set 

Z , for a prime p 
p 

is a field with characteristic p. In a field'· 
n n n 

with characteristic p we have that (a + b)p = ap + ap for each 

a and b in F and each positive integer n. 

Any field F is called a prime field if the only subfield of F· 

is F itself. If F' is a prime field that is also a subfield of F 

then F' is called a prime subfield of F. Every field F of charac-

teristic 0 contains a unique prime field isomorphic to the rational 

integers. If the characteristic of F is p then F contains a 

unique prime field isomorphic to z . 
p 

Any field F with a prime field 

isomorphic to the rational numbers contains a subring isomorphic to Z. 

IQ this sense we say that an integer n is in F. What we act\lally 

mean is n•l is in F, where 1 is the unity of F. 

For an ideal I of R, .. I·· is called a principal ideal if 

I = {ax: x e: R}. A ring R is called a principal. ideal ring if every 

ideal I of R is a principal .ideal. An ideal p of R is called a 

prime ideal if ab in P implies that a is in P or b is in P. 

An ideal M of R is maximal if M ~ R, and whenever N is an ideal 

in R such that . MC N C R, then either M = N or N. = R. Any 

ideal I of R containing 1 is equal to R. For an ideal M of R, 

R/M is a field if and only if. M is a maximal ideal. 

The set 

R[x] • {~ 
.';'. ·. 

i 
a.x 

l. 
is in R and n is a positive intsge~ 

is a ring with the usual definitions of addition and multiplication of . 

polynomials. The ring R is a subring of R[x]• The ring R[x] is 

··''f 
'1'·,il:: 

:.i./'. 
.. ' 
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an integral domain whenever R is. The quotient field of R(x] is 

denoted by R(x). Suppose f (x) ~ 0 and g(x) are elements of R(x]. 

There exist unique elements q (x) and r(x) of R[x] such that 

f(x) = g(x)q(x) + r(x) where r(x) - 0 or the degree of r(x) is 

less than the degree of g(x). If r(x) ;ac 0 then we say g(x) 

divides f(x) and write g(x) Jf(x). If f(x) is in R[x] then 

x - s is a factor of f(x) if and only if f (s) = o. A polynomial 

f(x) in F[x], where F is a field and the degree of f(x) is one 

or greater, is said to be irreducible if f(x) = h(x)g(x) implies that 

h(x) is a constant or h(x) is a constant multiple of f(x). 

Let R be an integral domain. For a and b in R, we say a 

divides b if there exists an element c in R such that b = ac. 

We say that a in R is a unit in R if there is an element b in 

R such that a•b = L The elements a and b are associates if 

there exists a unit u such that b = a·u. The relation "is an 

associate of" is an equivalence relation. A non-unit a is called a 

prime if whenever aJbc, then either alb or ale. An integral 

domain R is a unique factorization domain if each non-zero, non-unit 

a of R can be expressed uniquely as 

n ,--

a= u /I b., 
i=l 1 

where u is a unit and the b.'s are primes. A principal ideal 
1 

domain is a unique factorization domain. An element d in a unique 

factorization is called a greatest common divisor of a and b if d 

divides both a and b and for each e that divides both a and b, 

e divides d. In a unique foractorization domain a greatest common 
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divisor always exists and is denoted by (a,b). It is unique up to 

associates. 

Let K be a field which is a subfield of some field E. · Then E 

is said to be an extension field of K. If E is an extension field 

of K then E is a vector space over K. The degree of E over K 

is the dimension of E as a vector space over K. The degree of E. 

over D is denoted by [E:K]. 

Theorem 1. 3. If F is a finite extension of E and E is a finite 

extension of K then [F:K] = [F:E][E:K]. 

Definition 1.4. An element a in E is said to be algebraic over K 

if there exist elements a0 ,a1 , •.. ,an in K such that 

Suppose E is an extension field of K and a is in E. Let 

K(a) "'()E., where KC E. and a is in E.' Then K(a) is the 
l. l. l. 

smallest field containing. both K and a, and 

,, 
i. 

= {~ aiai: integ+ K(a~ a. is in K and s is a positive 
l. 

Theorem 1.5. The element a in E is algebraic over K if and only 

if K(a) is a finite extension. 

The element a in E is said to be algebraic of degree n over 

K if it satisfies a non-zero polynomial over K of degree n but no 

non-zero polynomial of lower degree. 
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Theorem 1.6. If a is algebraic of degree n over K then 

(K(a) :K] = n. 

Definition 1.7. If E is an extension field of the rational numbers 

Q, and a is algebraic over Q, then a is said to be an algebraic 

number. 

The algebraic numbers in an extension field form a field. 

Definition 1.8. If p(x) is in K[x] then an element a in an ex-

tension field E of K is called a root of p(x) if p(a) = 0 in 

E[x]. 

Theorem 1.9. If p(x) is a polynomi~l in K[x] of degree n ~l and 

is irreducible over K, then there is an extension E of K, such 

that [E:K] = n, arid p(x) has a root in E. 

If p(x) is an irreducible polynomial then the ideal (p (x)) is 

a maximal ideal in 
.. 

K[x] and K[x]/(p(x)) is a field~ This field has 

a root of· p (x) and K[x]/(p(x)) is isomorphic to K(a) where 

p(a) = 0. The set {l, n-1 is a basis for K(a) a, ... ' a } over K. 

Theorem 1.10. If a is algebraic over K, it has a unique irreduc-

ible minimal polynomial. 

Let a be algebraic over K, and let p(x) be its minimal 

polynomial of degree n. Let be the roots of p(x) 

in some extension field where These n numbers are distinct 

and are called the conjugates of a over K. 

Any polynomial satisfied by a over K contains the minimal 

polynomial of as a factor. Since {l, n-1 a, ••. ,a } is a basis for 
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K(a) over K every element S in K(a) can be expressed uniquely in 

the form· 

(1.1) ... + n-1 
an-la = r(a), 

where the are in K and n is the degree of a over K. 

Definition 1.11. Let K(a) be a finite extension of K and suppose 

S is in K(a). The conjugates of 8 for K(a) are Si= r(ai) 

where the ai are the conjugates of a and r(ai) is defined by 

replacing a by ai in (1.1). 

The polynomial 

,-D-
f(x) = / r ex - r <ai)) 

i=l 

is a polynomial over K called the field polynomial for s. If S 

is in K(a) and g (x) is the minimum polynomial for s of degree 

then f(x) = [g(x)]n/m. If s is in E and E is of degree n 

K then s has n conjugates sl' s2' . ~ . ' Sn for E. 

Definition 1.12. The norm of S is defined by 

,..L 
N(S) = NS = / l. S .. 

i=l l. 

Theorem 1.13. NS is in K. 

Proof: See Pollard, p. 72. 

m .. 

over 



In particular if 

,.lL 
f (x) = / I (x - Si) 

i=1 
=~ 
~ 

is the field polynomial for then 
n NS = (-1) a0 • 

g(x) = m + b xm-l + + b 
x i ''' m 

If 

is the minimum.polynomial for S then NS = (±b )n/m where min. 
m 

Theorem 1.14. N(Sy) = N(S)N(y). 

Proof: See Pollard, p. 72. 

Number Theory 

The rational integers will be referred to in this study as 

integers. The integers form a unique factorization domain. For any 

14 

two integers a and b, (a,b) exists and (a,b) = as + bt for some· 

integers s and t. If (a,b) = 1, we say a and b are relatively 

prime. 

Let (ll(m) denote the number of positive integers less than or 

equal to m and relatively prime to m. We have 

,k- a.-1 
0 (m) = / I pi i (p - 1) 

isl 

where 
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Theorem 1.15. (Euler's Theorem) If (a,m) .. 1 then ar/J(m) - l(mod m). 

Theorem 1.16. (Fermat's Theorem) If . p is a prime and if (a, p) = 1, 

then 
1 . 

ap- == 1 (mod p). 

Theorem 1.17. The linear congruence ax EOE b(mod m) has a solution if 

and only if (a,m) lb. 

Consider the quadratic congruence 
2 , , 

x == a(mod p) where p is a 

prime. If (a,p) = 1 and this congruence has a solution, a is said 

to be a quadratic residue modulo p. If a is not a quadratic residue 

modulo p, it is called a quadratic nonresidue modulo p. Let 

(a,p) = (b ,p) .1. The following properties hold: 

(a) If a and b are quadratic residues, so is ab. 

(b) If a and b are quadratic nonresidues, theri. ab is a 

quadratic residue. 

(c) If a is a quadratic residue and b is ·a quadratic non-

residue, then ab is . a quadratic nonresidue . 

Theorem 1.18. Suppose (a,p) = .1. If p is of the form 4k + 1, 

then -a is a quadratic residue (mod p) if and only if a is a 

quadratic residue. If p is of the form 4k + 3 then -a is a 

quadratic nonresidue (mod p) if and only if a is a quadratic 

residue. 

Theorem 1.19. If the prime number p is of the form 8k ± 1 then 2 

is a quadratic residue (mod p). If· p is of the form 8k ± 3 then 

2 is a quadratic nonresidue (mod p). 
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For any integer n and any prime p, r n .. p m where (p,m) = 1. 

The exponent r is said to be the ordinal of n with respect to p 

and written ordpn = r. Any integer n can be expressed uniquely in 

the form 

n = 

where o.~ ai L. p - 1. 

Theorem 1.20. Suppose n is a positive integer. Let 

Then 

n = 

n.-. t 
ord (n!) = ~~-n-

p p - 1 
where 

Proof: Let For ea.ch k such that 1 L. k L. n we have that 
~ •. J ' 

where ord k = m. Now, 
p 

k - 1 

Hence, 

.~ (p -
~ 

i m l)p + (b - l)p + 
m 
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tk-l = m(p - 1) + (b - 1) + ! bi = m(p - 1) + tk - 1. 
m i=m+l · 

But th.is implies that m • (tk-l - tk + l)/(p - 1). Therefore,. 

Metric Spaces 

A met+ic for a set S is a function d from S x S into R 

sueh that 

d(x,y)::::::... 0. with equality only ·if x • y, 

d(x,y) = d(y;x), 

d(x,z) L. d(x,y) + d(y,z) 

for each x, y, and z in s. The set S with metric; d is a 

metric space. Elements of the space are called points. 

In a metric space (S,d), the set 

S(x~r) = {y: d(x,y) < r} 

is called an open sphere with center x and radius r •. The set 

S[x;r] = {y: d(x,y) £ r} 

is a closed sphere with center. x and radius r. 

Let· (S,d) be a metric space. Then. X, a subset of S, is 

open. if for each x in X there exists an open sphere S(y;r) such 

that x is in S(y,r) and S(y;r) is a subset of X. An open sphere 
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is an open set. A point x of a metric space (S,d) is an accumula-

tion point of the set S if every open set containing x also 

contains a point of S distinct from x~ A subset of a metric space 

is closed if its complement is open. Closed sets contain all their 

accumulation points. Closed spheres are closed sets. The closure of 

a set S is the union of S with the set of all accumulation points 

of S. 

A sequence is a function s from the non-negative integers into 

some set T. It is customary to write s 
n 

instead of 

indicate the sequence value at n and to write {s } 
n 

s (n) to 

to indicate the 

sequence. If {t } is a sequence obtained from {s } by the deletion m n 

of certain elements, the remaining elements retained in their original 

order, then {t } 
m 

is a subsequence of {s }. 
n Two sequences {s } 

n 
and 

{t } are equal, {s } = {t } if and only if s = t for each n ~O. 
n · n n n n 

A set X is dense in S if for each s in S there e~ists a sequence 

{x } in X such that lim x = s. 
n n 

Let (S,d) be a metric space. A sequence {s } 
n 

of S converges 

with respect to d to a point s if for each e: > 0 there exists an 

N such that d(s ,s) < e: whenever n ~N. 
n 

Let S and d be respectively, the set of real numbers and the 

ordinary absolute value function. Suppose {s } 
n 

is a sequence of real 

numbers, and E = {s: s = lim s for some subsequence n. 
J. 

set contains all subsequential limits with possibly +oo 

{s } } . This 
ni 

and - 00 • 

Then we define lim s = lub of E, where lub stands for the least 
n 

upper bound of E. Similarly, lim s 
n 

glb of E where glb stands 

for the greatest lower bound of E. The usual results about. sequences 

in the metric space of real numbers will be assumed. 



CHAPTER II 

VALUATIONS 

The notion of a valuation is encountered at a very early stage by 

the student of mathematics. The ordinary absolute value function 

defines a valuation on the set of integers. This function can be 

extended uniquely to the rational numbers, the quotient field of the· 

integers. A further extension can be made to the field of real numbers 

in which every Cauchy sequence converges to a real number. With a 

function similar to the absolute value function this process can be 

generalized on the set of.rationals. The resulting extension field is 

very interesting and useful in current research. These concepts will 

be investigated in the ensuing discussion. 

Definition 2.1. A valuation is a function v from an integral domain 

D into the non-negative real numbers such that 

(2 .1) v(a):::::.. 0 and v(a) = 0 if and only if a= O, 

(2. 2) v(ab) = v(a)v(b), 

(2. 3) v(a + b)~ v(a) + v(b). 

In the theory of valuations the valuation defined here is referred 

to as "rank one valuation." The rank one valuation defined in defini

tion 2.1 is the most interesting special case in the general theory of 

valuations. It is of importance in the valuation-theoretic approach to 

in 
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algebraic number theory. In this paper the term "valuation" will refer 

to a rank one valuation. For a general development the reader is 

referred to the references [4], [11), [12) or [16) in the bibliography. 

Before proceeding further, a clarification of the term "extended" 

is needed. 

Definition 2.2. Suppose K and E are fields with valuations v 

and vl' respectively. If K is a subfield of E and for each a 

in K, v1 (a) = v(a), then vl is said to be an extension of v. 

The valuation v is said to be a restriction of vl to K. 

Now if v is a valuation defined on an integral domain D and 

if K is the quotient field of D, define a func;.tion v1 on K by 

(2.4) v1 (a/b) v(a)/v(b) 

for each non-zero element a/b of K, and v1 (0) = 0. 

Theorem 2.3. The function v1 is a valuation of K and 

restricted to D is the valuation v. 

Proof: By d~finition v1 is non-negative and v1 (O) = 0. The 

equation 

shows satisfies (2.2). Now, 

( ad + be)·= 
= vl bd 

v(ad + be) L v(ad) + v(bc) 
v(bd) v(bd) 

= v(a) + v(c) = vl(a/b) + vl(c/d). 
v(b) v(d) 
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Therefore, v1 satisfies (2.3). For each a in D, a• ab/b and 

v1 (a) = v(~b)/v(b) = v(a). Hence, restricted to D is the 

valuation v. 

Note further that if v1 and v2 are both valuations defined on • 

the quotient field K of D satisfying (2.4) that for ea~h a/b in 

K, 

v1 (a/b) = v(a)/v(b) = v2(a/b). 

In other words, v1 is the only extension of v defined on K in 

this manner. Since this extension process of valuations can be carried 

out on any integral domain, further discussion will be primarily 

concerned with v~luat.ions defined on a field K. 

Property (i.2) states that a valuatipn v . is a homomorphism from . ·•, . 

the multiplicative group of a field K into the non~negative real 

numbers. Consequently, v satisfies· the following properties: 

(2 .5) v(l) = 1, 

(2.6) -1 -1 v(a ) = v(a) , 

and 

(2. 7) v(a/b) = v(a)/v(b). 

F\J,rthermore, v(-l)v(-1) = v(l) = 1, which implies 

(2. 8) v(-1) = 1. 

Now, 

v(a) - v(b) = v(a + ,b - b) - v(b) L. v(a + b) + v(b) - v(b) = v(a + b). 
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Similarly, v(b) - v(a) ~ v(a + b). Therefore, v satisfies 

(2. 9) I v (a) - v (b) I ~ v (a + b) • 

Definition 2.4. A valuation v that satisfies the stronger inequality 

v(a + b) L max { v(a), v(b)} is called a non-archimedean valuation. All 

others are c~lled archimedean valuations. 

The following theorem gives a characterization of a non-archimedean 

valuation. 

Theorem 2,5. For a valuation, v, the following statements are 

equivalent: 

(2.10) v is a non-archimedean valuation 

· .. 
(2 .11) v(a) ~ 1 implies v(l + a) L 1 

. . ~· 

(2.12) v(n) ~ 1 for all natural numbers n. 

Proof: (2 .10) implies (2 .11) : 
,,.t\:!'. 

Suppose v is non-archimedean and v(a) L 1. Then 

v(l + a)~ max {v(a) ,l} = 1. 

(2.11) implies (2.12): 

Now v(l) = 1 by (2.5). Suppose v(k) L 1, then 

v(k + 1) L 1 

and (2 .11) follows by induction . 

(2.12) implies (2.10): 

Without loss of generality, suppose v(a) ~ v(b). Then, 
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Since v [(~)] L 1 we have that 

Thus, 

n 
v(a + b) L Y (n + 1) max{ v(a,), v(b)}. 

If we consider the limit as n becomes infinite then 

n __ _ 

v(a + b) = lim v(a + b) ~ lim V(n + 1) max{v(a) ,v(b)} = max{v(a) ,v(b) }, 

The following theorem and especially its corollaries are very 

useful in some of the theorems to follow. 

Theorem 2.6. If v is a non-archimedean valuation on k and 

v(a) > v(b) then v(a + b) = v(a). 

Proof: Since v(b) < v(a) we have 

v(a) = v(a + b - b) L max{v(a + b) ,v(b)} = v(a + b) 

L max{v(a) ,v(b)} = v(a). 

Therefore, 

v(a) = v(a + b). 

Corollary 2.7. If v is a non-archimedean valuation on k and 

v(a) #= v(b) then v(a + b) = max{v(a),v(b)}. 



Corollary 2.8. If v is a non-archimedean valuation on. k and 

Corresponding to theorem 2.5 the following characterization is 

given for an archimedean valuation. 

Theorem 2.9. For a valuation v the following statements are equi-

valent: 

(2 .13) v is archimedean 

(2 .14) v(n) > 1 for any natural number n:::::::... 2. 

Proof: (2.13) implies (2.14): 

Suppose there exists an integer m:::::::... 2 such .that v(m) L 1. For 

each integer n:::::::... 2 the division algorithm can be used repeatedly to 

write 

n = 

where o'..c:.a.Lm - l and ak :f 0. Since mkL.n < mk + 1, vie have 
. l. 

that "k. L logmn. Now for any i.nteger j, 

j 

v (j) LI v(l) 
i=l 

so that, 

= (m - 1)(1 + k) L. (m - 1) (1 + log n). 
m 
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aence, for any positive intege~ s, 

[v(n) ]s = v(ns) L. (m - 1) (1 + log n 8 ) = (m 
m 

Therefore, 

1)(1 + s • log n). 
. m 

s -··-------------
v(n) L. lim V (m - 1)(1 + s • lo8mn) = 1. · 

S-7<X> 
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By (2.12) of theorem 2.5 we have. that v is non-archimedean, which is 

a contradictio~. 

(2.14) implies (2.13): 

By part (2.12) of theorem 2.5, if v is non~archimedean then 

· v(n) L. l for all natural numbers n. This statement is .the cont-ra-

positive of the statement we wish to prove • 

.Several examples will now be considered. As mentioned previously, 

the ordinary absolute value function is a valuation on the set of 

rational numbers. This same function is a valuation on the field of 

real numbers as well as the field of complex numbers. Since In I > 1 

for any natural number n:::::::.. 2, it follows that the absolute value func-

tion: is an archimedean valuation. . A similar example follows. 

Example 2.10. Let C be the set of complex numbers and define 

v(a) = I a Ir for a in C and 0 < r L. 1, where r is a real number. 

Properties (2. 2) and (2. 3) follow from the corresponding p·roperties of 

the absolute value function. Property (2.3) follows also since :for 

lal ~lb l we have, 

v(a + b) = la+ blr = lair ll + b/alrL lair. (1 + lb/al)r 
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Example 2.11. Let D be a unique factorization domain and suppose K 

is the field of quotients of D. For a fixed prime 'IT in D and for 

any element x in K, x has the form k where b and x = 'IT (a/b) a, 

'IT are pairwise relatively prime. Define a function v on K by 

letting v(x) = k where is a real number such that 0 < c ~1. c ' c 

Properties (2.2) and (2. 3) follow readily. By definition of v, if 

v(x) L. 1 for k x = 'IT (a/b) then k ~ O, a and b are relative prime, 

and 'IT 'h, b. Then 1 + x = 1 + a/b = (a+ b)/b where 'IT '1-. b so that 

v(l + x) L.l, By theorem 2.5, v is a non-archimedean valuation. 

As a special case of example 2.11, consider the set of Gaussian 

integers G = {a+ bi: a and b are in Z and i = {":].}, The set of 

Gaussian integers is a unique factorization domain and 1 + 2i is a 

prime element. If G' denotes the quotient field of G then each 

element x in G can be written as x = (1 + 2i)h(a/8) where a,8 

and 1 + 2L are pairwise relatively prime. Define a mapping v by 

v(x) 
h = c for 0 < cL.1. v will be a non-archimedean 

valuation. 

Another unique factorization domain is the set of integers Z 

which has the rational numbers as a quotient field. For each prime p 

of z a mapping may be defined on Q by setting v(x) = h 
c ' where 

h x = p (a/b), 0 < c L. 1, and (a,b) = (a,p) = (b ,p) = 1. This dis-

cussion gives another example of a non-archimedean valuation. 

Definition 2.12. The valuations defined on Q by using a fixed prime 

p are called p-adic valuations. If c is taken to be 1/p the 

resulting valuation is referred to as the normalized p-adic valuation, 

and will be denoted by I I . p 
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Example 2.13. Let C(z) be the set of .all meromo+phic functions of a 

complex variable .z defined on a Riemann surface. Each function f (z) 

of C(z) has a laurent expansion of. the form· 

f (z) ~! 
n=-k 

n 
a (z - z ) n o 

where k:::::.... 0 and z is a fixed complex number. Define a function v 
0 

by v[f(z)] =ch where c is a real number such that 0 < cLl, and 

ah is the first non-zero coefficient in the laurent expansion of f(z). 

Let v(O) = 0 for the zero function. With this definition the function 

v is a non-archimedean valuation defined on C(z). 

Finally, we can define a trivial valuation on a field K in the 

following manner. 

Example 2.14. Define a function on a field K by v(a) = 1 for each 

a in K such that a :/: 0 ;. and v(O) = O. Since 

v(a + b) = 1 = max{v(a),v(b)} 

for each a and b in K the. trivial valuation is a non~archimedean 

valuation. For c = 1 in Example 2.11 we have the trivial valuation. 

For any field K of characteristic p, a non-archimedean valua-

tion is the only valuation that can be defined as shown in the ne·xt 

theorem. 

Theorem 2.15. If K is a field of characteristic p with a valuation 

v then v is non-archimedean. 



n n n 
Proof: For each a and b in K, (a+ b)p = ap + bp • Thus, 

n 
[v(a + b)]p 

Therefore, 

n 
= v[(a + b)p ] 

n n n 
L. v(ap ) + v(bp ) = [v(a) ]p 

n 
L. 2[max{v(a),v(b)}]p. 

n 

n 
+ [v(b) ]p 

v(a + b) ~ p\12 max{v(a) ,v(b)}. 

The same argument used in theorem 2.5 shows that 

v(a + b) L. max{v(a) ,v(b)}. 

Equivalent Valuations 

Definition 2.16. Two non-trivial valuations and defined on 
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a field K are said to be equivalent if v1 (a) < 1 implies v2 (a) < 1. 

Theorem 2.17. Equivalence of valuations is an equivalence relation. 

Proof: See Mosley, p. 47 or Snook, p. 58. 

In example 2.10 it was shown that the absolute value function 

defined on the set of complex numbers can be used to define a valuation 

for each real number r such that 0 < r L 1. In an analogous manner 

a non-archimedean valuation may be defined on a field K for each real 

number r, for which 0 < r L 1. It is not too surprising to find 

that equivalent valuations are related in this manner. 
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Theorem 2.18. If and v2 are equivalent valuations then 

r v1 (a) = [v2(a)] for some real number r. 

Proof: See Mosley, p. 48 or Snook, p. 56. 

At this time it is convenient to define what is meant by the limit. 

of a sequence in a valuated field K. The definition is stated exactly 

as it occurs in the case when K is the field of real numbers and the 

valuation is the ordinary absolute value. 

Definition 2.19. Let K be a field with a valuation v. A sequence 

{a } from K is said to converge to the element a of K if for each 
n 

real number E > 0 there is a natural number N such that 

whenever n ::::::.. N. 

v(a - a) < E n 

To denote ,that a sequence {a } 
n 

converges to a, the same 

notation will be used here that is used for the absolute value, namely, 

lim a = a or briefly, lim a = a. n · n 
n-+<x> 

Definition 2.20. Two valuations vl and v2 determine the same 

convergence criteria if for each sequence {x } there exists an x n 

such that lim v1 (x - x) = 0 if and only if lim v2 (xn - x) = o. 
n 

The following theorem gives another characterization of equivalent 

valuations. 
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Theorem 2.21. Two non-trivial valuations and defined on a 

field K are equivalent if and only if they determine the same con-

vergence criterion. 

Proof: See Snook, p. 59. 

Metric Properties of a Valuated Field 

A failing of the set of rational numbers is the fact that bounded 

Cauchy sequences of rationals exist which do not converge in this set. 

Some of the most interesting Cauchy sequences of rational numbers such 

as 

do not converge to rational numbers. In this sense the rationals are 

somewhat incomplete. 

One method to remedy this situation is to construct the set of 

real numbers by means of Cauchy sequences of rational numbers. In this 

process the convergence of sequences is defined in terms of the 

absolute value function. Since the absolute value function is a 

valuation, it seems probable that this process could be generalized for 

any field with a given valuation. This is actually the case, and in 

the ensuing discussion it will be demonstrated that an arbitrary field 

with a given valuation can be extended to a so-called complete field 

where all Cauchy sequences have a limit. A few familiar definitions 

are needed. 

Definition 2.22. Let K be a field with a valuation v. A sequence 

{a } from K is a Cauchy sequence. with respect to the valuation v 
n 
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if for each real number e > 0 there is a natural number N such that 

v(a - a ) < e whenever m, n > N. m n The sequence {a } is bounded if 
n 

there is a positive real number M such that 

natural number n. 

v(a ) < M for each 
n 

Definition 2.23. The sequence {a } 
n 

is a null sequence with respect 

to the valuation v provided that for each e > 0 there is a natural 

number N such that v(a ) < e whenever n > N. 
n 

With these definitions many theorems about limits can be proved 

in exactly the same manner as those of elementary calculus. The proofs 

depend on the fact that the range of a valuation is a subset of the 

non-negative real numbers. The theorems are stated here without proof, 

Theorem 2.24. If {an} converges to q and also to t then s = t. 

Theorem 2. 25. Every conver.gen t sequence is a Cauchy sequence. 

Theorem 2.26. Every Cauchy sequence is bounded. 

Theorem 2.27. If {a } converges to s and {b } converges to t n n 

then 

(a) lim ca = cs, 
n 

(b) lim (c + a ) = c + s' n 

(c) lim (a + b ) = s + t, n n 

(d) lim a b = st, n n 

(e) if t I: 0 and b n I: 0 for all n then lim (a /b ) s/t. n n 

The next theorem will be very useful in later discussion. 
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Theorem 2.28. Suppose K is a field with a valuation, If lim a .. a 
n 

then lim v(a) = v(a). n -

Proof: For each e: > 0 there exist an N such that for n :::::... N, 

v(a - a) < e:. By (2.9), lvCa) - v(a) I < e: so that n n 

lim v(a) = v(a). 
n 

Definition 2.29. A field K is said to be complete with respect to a 

valuation v if every Cauchy sequence has a limit in K. 

The real numbers are complete with respect to the ordinary 

absolute value function, a fact that will be accepted here. 

Let B, C and M denote, respectively, the set of all bounded 

sequences, the set of all Cauchy sequences and the set of all null 

sequences of a field K with respect to a given valuation. In the 

sequel the completion process is outlined in a number of lemmas, some 

of which are stated without proof, 

Lemma 2. 30. M C C C B. 

Lemma 2.31. If {a } is a Cauchy sequence containing a null sub
n 

sequence, then {a } 
n 

is a null sequence. 

Proof: Suppose {a } is a null subsequence of {a } • Choose E > Q, 
ni n 

There exists an N1 such that for ni -4 N1 , v(a ) < e:/2. 
n. 

exists an N2 

implies that 

such that for m, 

v(a ) < v(a ) + e:/2. 
m n 

Now if 

l. 

v(a - a ) < e:/2. 
m n 

m, 

v(a ) < v(a ) + e:/2 < e:. Hence, {a } is a null sequence. 
m n. n 

l. 

The next lemma is a consequence of the preceeding one. 

There 

This 

then 



Lenuna 2.32. If {a } 
n is a Cauchy sequence which is not a null 

sequence then there exists a real number 0 > 0 and an N such that 

v(a ) > 0 whenever n > N. 
n 

Lenuna 2.33. If {a } and {b } are in c then {-a } {a + b } 
n n n.' n n 

and {a b } are in c. 
n n 

Lenuna 2.34. If {a } and {b } are in M then {-a } {a + b } 
n n n ' n n 

and {a b } 
n n are in M. 

With the aid of Lenuna 2.32 two binary operations can be defined 

on C that will make it a conunutative ring with unity. Let the sum 

and product of sequences be defined by 

(2.15) {a } + {b } 
n n 

and 

(2 .16) {a } • {b } 
n n 

{a + b } 
n n 

{a b } • 
n n 

Lemma 2.35. The set C with addition and multiplication defined by 

(2.15) and (2.16) is a conunutative ring with unity. 

Lemma 2.36. The set M is a maximal ideal in C. 

Proof: M is closed under addition and subtraction by Lemma 2. 34. 

Suppose {a } is a sequence in c and {b } is a sequence in M. 
n n 

Let B be a bound for {a } . For each r:: > 0 there is an N such 
n 

that for n > N, v(b ) n 
< r::/B • Hence, 

v (a b ) = v (a ) v (b ) ~ Bv (b ) < E. 
n n n n n 
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This verifies M is an ideal in c. To show maximality suppose there 

is an ideal I in c distinct· from M such that MC I cc. 

There is a sequence {a } 
n in I such that {a } 

n is not in M. Since 

{a } 
n is a non-null sequence there exists an. Nl and a 8 > 0 such 

that for each n > N1 , v(a ) > 8. Define a sequence {b } by lettitig n n 

b = 0 for n LNl and b = l/a for n > N1 . For E > 0 there 
n n n 

exists an N2 such that for m, v(a - a) < c: • o2 • 
m . n 

If 

v(b - b ) 
m n 

v(an - am) c:o2 
v(l/a - l/a ) = __...,.(_...,)-(.,...-.,...) < - = c:. 

m n v a v a -"2 n m u 

Hence, {bn} is a Cauchy sequence. Let {en} be the sequence defined 

by c = 1 for n L N1 and c = 0 for n > N1. Now {c } is in n. n n 

M c I and {a b } is in I which implies {l} = ({c } + {a b }) 
n n n n n 

is in I. Therefore, I = c and M is a maximal ideal. 

Lemma 2.37. The quotient ring C/M is a field. 

Definition 2.38. Denote C/M by E. For {a } + M in E define 
n 

lim v(a ). 
n 

Lemma 2.39. is a valuation on the field E. 

Proof: Since I v(a ) - v(a ) IL v (a - a ) and {a } is a Cauchy m n ·m n n 

sequence, the sequence {v(a )} is a Cauchy sequence of real numbers. 
n 

This implies the lim v(a ) 
n 

exists since the real numbers are complete. 

Therefore, v1 is well defined. To establish (2.1) of definition 2.1, 

null sequence and 

lim v(a ) = 0. 
n 

This means that {a } is a 
n 

{a } + M = M, where M is the zero of the quotient 
n 



ring E. When {a } is a non-null sequence 
n 

= lim v(a ) > O. 
n 

The following equations, 

v1[({a } + M) + ({b } + M)] = v1 ({a + b } + M) 
n n n n 

(2 .17) 

v 1 [({a } + M)({b } + M)] 
n n 

(2.18) 

= lim v(a + b ) L. lim v(a ) + lim v(b ) 
n n n n 

= v 1 ( {a b } + M) 
n n 

= lim v(a b ) = lim v(a )lim v(b ) n n n · n 

serve to establish (2.2) and (2.3) of definition 2.1. Therefore, v1 

is a valuation on the field E. 

Lemma 2.40. The field K is isomorphic to a subfield of· E. 

* Proof: For each a in K the element a = {a} + M is in E. Let 

* * * f be defined by f(a) a . Now a = b implies that a = b , or 

f(a) = f(b). If f(a) = f(b) then {a}+ M = {b} + M. Hence, 

{a - b} + M = M and {a - b} is a null sequence. But this implies 

a = b. From the equations 

* * * f(a + b) = (a + b) a + b f(a) + f (b) 

and 
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f (ab) * * * = (ab) = ab = f(a)f (b) 

we can deduce that· f is an isomorphism. 

* In further discussion the symbol. a 'will.denote the coset· 

{a} + M where {a} is a constant sequence in K •. The field K is 

isomorphic to the' field f(K) CE, ··and YJe may consider K as a 

subfield of : E. The element * a of K . is to be identified with a 

of E in the same sense that the natural numb.er . n is identified as 

the integer + . n • 

Definition 2. 41. If two fields K and · K' · . ar~ if?omorphic and the 

isomorphism preserves distances then K and· K' · . are said to be 

isometric. 

Lemma 2.42. The f:i.eld K and f(~). are isometric. 

* Proof: For each a in. 'f(K),. 

* vi(a ) v1 ({a}"+ M) ·= lim v(a) = v(a,). 

Theorem 2.43. The field f(K). is dense in E. 

Proof: Let a be an element of- E. We will show that there is a 

sequence in f(K) that co~verges to a. Now a ~ {a } + M · where 
n 

{a } is a sequence·in K. For each term a of the sequence {a 
n m n 

* f (K) .. in K there is an element a .in Now m. 

* ' 00 a - a = {a · - a } + M. 
m. n. .m n=l · 

} 
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Since {a } is a Cauchy sequence, for each e > 0 there is an N 
n 
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such that for n and m ~N we have that v(a - a ) < e/2. Then for 

m::::::.. N, 

Therefore, the sequence * {a } 
m 

· n m 

converges to ct. 

Theorem 2.44. l'he field E is complete. 

Proof: Let {ct } be a Cauchy sequence in K. Since f(K) is dense 
n 

in E · there is a sequence 

For each n choose a term 

* 

{a (n) *} in f (K) 
m 

ct 
n 

= lim (n)* 
a . 

m 

such that 

of the sequence such that 

v1 (ctn - a(n» < l/n. By this process we can construct a sequence 

* {a(n)} in f(K). This sequence determines the sequence {a(n)} in 

K. Now K and f(K) are isometric. Thus, for each E > O, there is 

an N such that for k and n ~ N, 

< l/n + e/2 + l/k < s, 

This implies that {a(n)} is a Cauchy sequence in K so that 

ct= {a(n)} + M is in E. Now 

lim lim v(a(m) - a(n)) = 0 
n-+oo n-+oo 

* which implies that ct= lim a(n)' 



The last: two terms can be made as small as we please. Therefore, 

and E is complet:e. 

a = lim a 
n 

The preceeding theorems and lemmas demonstrate how a given field 

K with a valuation v can be embedded in a field E where all 
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Cauchy sequences of E converge to an.element of E. This process is 

a generalization of the Cantor method of completing the rationals with 

respect to the absolute value function. For each a in K we have an 

* * element a in E and v1 (a) = lim v(a) = v(a). By the identif:i,ca-

tion of a with. a , we see that v1 (a) = v(a). In this sense the 

valuation on E is an extension of the valuation v on K. 

Valuat.ion Rings 

Associated with any field having a non-archimedean valuation is a 

special ring referred to as a valuation ring. This ring contains the 

ring of integers as a subset. It also has the property that it has a 

unique maximal ideal. There are many similarities between this ring 

and the ring of integers which will be investigated in the ensuing 

discussion. 

Definition 2. 45. For a field K with a non-ar.chimedean valuation v 

let V = {a in K: v(a).2: l} and P ={a in K: v(a) < l}. 

The following theorems follow rather easily. 
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Theorem 2.46. Suppose K is a field with a set V defined above. 

Then v is an integral domain and K is the field of quotients of V. 

Proof: That V is a ring with unity follows from the following 

statements: 

v(a - b) £. max{v(a) ,v(b)} ~ 1 

v(ab) = v(a)v(b) ~ 1 

for each a and b in V, and 

v(l) = 1. 

The ring V is an integral domain since it is a subring of a .. field. 

For each a in K, if v(a) ~ 1 

a-l is in 

then a is in V. If· v(a) > 1 

then v(a-1 ) < 1 and v. 

a quotient of elements of. V. 

Hence, -1 a= l/(a ) 

Theorem 2.47. P is a unique maximal ideal of V. 

Proof: Suppose a and b are in P, then 

v(a - b)~ max{v(a),v(b)} < 1, 

and a is 

which implies a - b is in P. For each a in V and b in P we 

have v(ab) = v(a)v(b) < 1. This implies ab is in P. Therefore, P 

is an ideal in V. Now if I is an ideal of V such that 

PC r Cv 

and p :f I, then there is an a in I that is not in :El. But .• then 

v(a) 1 and also -1 -1 
1. Thus -1 is and = v(a ) = v(a) = a in v 

1 = ·aa -1 is in I. Therefore, I = V and p is a maximal ideal in 
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V. If M is any ideal of V such that P ~ M then there is an 

element a of M such that a is not in P. As argued previously, 

M = V. Therefore, any proper ideal of V is contained in P. 

Since P is a maximal ideal of V the quotient ring V/P is a 

field. 

Definition 2.48. The field V/P is called the associated.residue 

class field. 

* For any valuation v let v(K ) = {x: x = v(a) for some a E K*} 

* where K = K - {0}. 

* Theorem 2.49. v(K ) is a multiplicative subgroup of the non-negative 

real numbers. 

* Proof: For each x and y in K ' x = v(a) and y = v(b) for 

* * some a and b in K . Hence, xy = v(a)v(b) = v(ab) is in v(K ). 

-1 -1 -1 * * We also have x = v(a) = v(a ) is in v(K ). Therefore, v(K ) 

is a multiplicative subgroup of the non-negative real, numbers. 

* Definition 2.50. The group v(K ) is called the value group for the 

valuation v. The non-archimedean valuation v is called discrete 

* whenever its value group v(K ) is an infinite cyclic group. 

An example of a discrete valuation was given in example 2.11. The 

p-adic numbers arise from the completion of the rational numbers with 

respect to a discrete valuation of this type. The following theorem is 

valid for non-archimedean valuations in general. It will be important 

later for a characterization of elements in a complete field with 

respe~t to a discrete valuation. 
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Theorem 2.51. If K is a field with a non-archimedean valuation v 

* * and E is the completion of K then v(K) = v(E ). 

Proof: Suppose a. is a non-zero element of E, then a. = .lim a n 

where {a } 
n is a sequence in K. There is an N such that for 

n > N, v(a. - a ) n < v(a.) • Therefore, by Corollary 2.7, 

v(a) = v[a. +(a ~a.)] = v(a.). n · n 

This implies that v(a.) * is in v(K ) and we have that , 

* * * v(E ) C v(K ) C v(E ) • 

Deno·te the valuation ring and maximal ideal of E by v1 and 

P1 , respectively. If V denotes the valuation ring of K and a is 

in V then a is in v1 since v(a) ~ 1. Therefore, V C v1 • 

Similarly, P C P 1 . 

Theorem 2.52. The field v1/P1 is isomorphic to V/P • 

Proof: Let a. = lim a where {a } 
n n 

.. 
is a sequence in V. Since 

v(a ) ~ 1 we have that v(a) = lim v(a.) L 1 and a. is in v1 . n n • 

Therefore~ v1 is the closure of v. Similarly, P1 is the closure 

of P. Define a mapping g from V/P into v1/P1 by the relation 

g(a + P) =.a+ P1 . If a+ P = b + P then a - b is in P which is 

contained in P1 • Thus, a+ P1 = b + P1 • Since 

and 
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we see that g is a homomorphism. For some N we have v(a - a ) < 1 
N 

which. implies a - 2N is in P1 and thus a+ P1 = aN + P1 . But then 

g(aN + P) = 2N + P1 = a+ P1 implying g is an epimorphism. Finally, 

if g(a + P) = P1 then a + P1 = P1 and we have v(a) < 1. Therefore, 

a is in P and a+ P = P. With this result we have that g is an 

isomorphism. 

Consider now the set 1 + P = {l + x: x is in P}. This set 

under the operation of multiplication is a group and will be of con-

siderable importance later when the logarithm function is considered. 

Theorem 2.53. The set 1 + P is a group under multiplication. 

Proof: For each x in P we have v(x) < 1 and by corollary 2.7 

v(l + x) = 1. If y is in P then 

v(x + y + xy) £ max{v(x) ,v(y) ,v(xy)} < 1. 

Hence, (1 + x)(l + y) is in 1 + p. Now if 1 + x is in 1 + P 

then v[ (-x) I (1 + x)] = v(-x) /v(l + x) = v(x) < 1. Hence, (1 + x) -l 

is in 
-1 

1 + P since (1 + x) = 1 + (-x)/(l + x). Now v(O) < 1 and 

the element 1 + 0 is the identity for 1 + P. Therefore, 1 + P is 

a multiplicative group. 

The discrete valuations defined in definition 2.50 will be of 

primary interest in the remaining discussion. Some theorems character-

izing a complete field with a discrete valuation will now be given •. 

Theorem 2.54. Suppose v is a discrete valuation. There is an 

element * in K such that v(TI) < 1 and v(n) generates * v(K ) • 
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Furthermore, v('IT) is the largest of all v(a) * in v(K ) such that 

v(a) < 1. 

* Proof: Since v(K ) is an infinite cyclic group there exists an 

element 'IT 

one of v('IT) 

* in K 

or 

such that and -1 
v('IT) generate 

-1 
is less than V('IT) one. We may suppose 

* 

* v(K ). 

V('IT) < 

Now 

1. 

Suppose a is in K and v(a) < 1. Then for some positive integer 

h, v(a) h v ('IT). = [v('IT)]. < 

Actually the theorem says more than 'IT is in K. The·element 'IT 

is in the ideal P of V. This element plays a distinct role in a 

field with a discrete valuation. It is a prime in the set V and each 

element in K can be expressed in the form where n is 

an integer and E: is a unit. If a is in the ring V this expression 

is similar to the expression of an integer n as a product of primes. 

In the ring V we have only one prime whereas in the ring of integers 

there are infinitely many. These properties will be verified in the 

discussion that follows. 

Another special set associated with a non-archimedean valuation 

is the set of units. 

Definition 2.55. For a non-archimedean valuation v the set of units 

for v is the set U = V - P = {a E V: v(a) = l}. 

Theorem 2.56. The set U is a group with respect to multiplication. 

Proof: This follows rather easily since v(ab) = v(a)v(b) = 1 and 

-1 -1 v(a ) = v(a) = 1 whenever a and b are in U. 
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Theore~ 2.57. If E is the completion of K with respect to a 

discrete valuation and is in K then n a •.'IT e for some iuteger n 

and e in U. 

Proof: For each a in K there is an integer n such that 

and n v('IT /a) = 1. Hence,. a/'ITn = e: where 

unit in V, or equivalently, n a = 'IT e. 

Theorem 2.58. The element 'IT of V is a prime. 

J;>roof: Suppose 'IT I ab. Then 7Td = ab for some d in V and 

v(a)v(b) = v(ab) = v(d'IT) L v('IT) < 1. 

e: is a 

Either v(a) < 1 or v(b) < 1. Then or b = 'ITje where 
2 

h and k are non-negative integers• Hence, either 'IT divides a 

or 'IT divides b. 

Corollary 2.59. For a discrete valuation v, 

P = 'ITV = {Tix; x is in V}. 

Theorem 2.60. If is another prime in V then where 

e: is a unit. 

Proof: By theorem 2.54, we have that v(TI1 ) L v(TI) which implies 

is in P. Therefore, and 'IT and are associates. 

In this sense the prime 'IT is unique in V. An interesting 

divisibility property holds for a discrete valuation ring V. 
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Theorem 2.61. In a discrete valuation ring V, x divides y if and 

only if v(x):::::::.. v(y). 

Proof: Suppose x and y are in v. There exist units El and E2 

in v such that h and k for some non,-negat;ive x = 'IT El y = 'IT E2 

integers h and k. If x divides y then there is a w in v 

with m k w = 'IT E3 such that y = :i&. Now y = 'IT E2 

Hence, k h m h v(y) = v('IT) = v('IT) v('IT) L v('IT) = v(x). 

Conversely, if v (y) L v (x) then k :::::::.. h and 

Therefore, x divides y. 

With this background it is now time to investigate a very inter-

esting field with a discrete non-archimedean valuation. For any prime 

p in Z, any integer 
r 

n = p m where (p,m) = 1. Define a valuation 

on Z by the following relationship: 

if n 1' 0 
(2.19) 

if n = O. 

As in example 2.11 this gives rise to a non-archimedean valuation 

defined on the integral domain z. This valuation can be extended 

uniquely to the quotient field Q of Z. A further extension can be 

made in which Q is embedded in a complete field denoted by Q . 
p 

Now 

every element x in is of the form h 'IT E where 'IT is a prime in 

the valuation ring V. For each integer n we have v(n) ~ 1 and 

thus Z C::: V. Since p and 'IT are both primes in V, we must have 

that p and 'IT are associates and we can use p for the prime 
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element in v. The extended valuation of on z to is 

also denoted by I IP and is referred to as the normalized p~adic 

valuation. The field is called the field of p-adic numbers and t:he 

ring V is denoted by 0 • 
p 

It is called the ring Ef p-adic integers. 

A further characterization of this field will be given in the next 

chapter after the topic of series in non-archimedean valuated fields 

has been investigated. For a very interesting exposition of p-adic 

number fields the reader would be advised to read the references [2] 

or [15] in the bibliography. 

The next theorem completely characterizes non-archimedean 

valuations on the set of rational numbers. 

Theorem 2.62. Every nontrivial non-archimedean valuation of Q is 

equivalent to one of the p-adic valuations. 

Proof: Suppose v is a non-trivial non-archimedean valuation on Q. 

Since z c v the set p nz is an ideal in z. For ab in p n 
the relation v(a)v(b) = v(ab) < 1 implies either v(a) < 1 or 

v(b) < 1. Hence, either a or b is in p n z and the ideal 

p n z is a prime ideal in z. Now pn z :f. z' for p n z z 

would imply that v(l) < 1. Also, p n z 7'= (0)' for p n z = (0) 

would imply that v(n) = 1 for each non-zero element in Z and v 

would be the trivial valuation. Then P n Z = (p) for some prime in 

z. For any m in Z, v(m) < 1 if and only if p divides m. For 

a in Q, a = pr (m/n) where (p ,m) (p ,n) = (m,n) = 1 and r is 

v(a) r v(p)r~ an integer. Then = v[p (m/n)] Therefore, v is a 

p-adic valuation which is equivalent to I I . p 

z 
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This theorem is part of a theorem due to Ostrowski which states 

that the only non-trivial valuations defined on the rational numbers 

are the ordinary absolute value and the p-adic valuatioµs. The refer

ences [5] and [15] are recommended tor this theorem. 



CHAPTER III 

INFINITE SERIES IN A NON-ARCHIMEDEAN 

VALUATED FIELD 

Infinit«;! Series 

The theory of infinite series plays an essential role in real and 

complex analysis. In these fields a limit is defined using the ordin-

ary absolute value function. In Chapter II we saw that the absolute 

value function is a valuation. Now we might ask, if we choose a 

different valuation, defined on a complete field, can a similar theory 

of infinite series be developed? In a non-archimedean complete field, 

a theory of infinite series can be developed. Many of the theorems 

about infinite series in the real number field have an analogue in a 

complete non-archimedean field. Further, the notion of "absolute con-

vergence" required in some of the theorems in the real and complex 

numbers is not needed in a complete non-archimedean field. 

In this chapter a theory of infinite ser~es will be developed in a 

complete non-archimedean field. The succeeding discussion will be 

restricted to fields of this type. 

Definition 3.1. If {a } is a sequence, define a sequence of partial n 

sums by 

Ld~ 



n = 1, 2, 3, ••.. If the sequence {s } has a limit s, 
n 

is said to converge to s. We write 

k "n = s. 

Theorem 3.2. The series 

!a 
n=O n 
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the series 

converges in K if and only if {a } 
n 

is a null sequence in K. 

Proof: Suppose 

converges. Then the sequence 

! 
n=O 

a 
n 

{s } is a Cauchy sequence. 
n 

e: > 0 there is an N such that for n ::::::.. N, 

v(a ) 
n 

For each 

Conversely, if {a } 
n 

is a null sequence then for each e: > 0 there is 

an N such that for n::::::.. N, v (a ) < e:. 
n 

But for m > n, 



v(s - s ) m n 

Therefore, {s } is a Cauchy sequence in the complete field K and 
n 

must converge. 
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This theorem presents a contrast to the situation with respect to 

absolute value. It shows that the series 

converges if lim a = 0. 
n 

The reader may recall the well-known example of the series 

! l/n 
n=l 

which diverges in the reals while lim l/n = 0. 

The concept of absolute convergence remains the same for non-

archimedean valuations as it is for absolute value. 

Definition 3.3. The series 

!a 
n=O n 

converges absolutely if the series 



converges in the real numbers. 

v(a ) 
n 

Theorem 3.4. Absolute convergence implies convergence. 

Proof: If the series 

converges then lim a = 0. 
n 

converges by theorem 3.2. 

The series 

may converge while the series 

But then 

!a 
n=O n 

!a 
n=O n 

! v(a) 
n=O n 

diverges. The next example illustrates this possibility. 

Example 3. 5. 

and 

Define a sequence 

if 

{a } 
n 

in by a 
n 

p 
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for 



The series 

formed from this sequence converges because 

we see that 

and 

where 

Therefore, the series 

diverges. 

r = i 
p • 

i 
p • 

lim la I = O. 
n P 
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However, 

Theorem 3. 6. If v (a ) ~ b for n ~ N, where N is a fixed integer 
n n 

and {b } is a sequence of real numbers, and if 
n 



converges then 

converges. 

Proof: Since 

! 
n=O 

a 
n 

b 
n 

converges, lim b = 0 and thus lim v(a ) = O. 
n n 

and the series 

converges. 

a 
n 
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But then lim a = 0 
n 

What is needed here is a test for the convergence or divergence of 

an infinite series. The next theorem gives such a test, commonly 

referred to as the "root test". 

Theorem 3.7. For a given series 

00 

~ a n 

n --
let a = lim Vv(a ) . Then 

n 

(a) if a < 1 the series 

00 

~ a n 

converges, and 
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(b) if a > 1 the series 

00 . 

~ a n 

diverges. 

(c) if a = 1 the series 

00 

~ a n 

may either converge or diverge. 

Proof: Suppose a < 1. There is a real number b such that a < b < 1 
n 

and an N such that for n::::::. N, Vv(;) < b. This imp.1,ies that 
. n. 

n o. Therefore, lim v(a ) ~ lim b = 
n 

{a n 
} is a null sequence and 

converges. Now suppose 
n. __ _ 

that lim V' v(a ) = a. 
ni 

Therefore, 

diverges. 

lim a #- O, 
n 

a > 1. There is a subsequence 

Then for infinitely many terms 

n. ____ _ 

V'v(a ) > 1. 
n. 

]. 

and the series 

such 
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Consider the series 

n 
in Q . For this series a= lim \lipn + ll = 1. This series is seen 

p p 

to diverge since lim IPn + lj = l·~ 0. 
p 

Now let [log n] denote the greatest integer less than or equal 

to log n. The series 

converges because 

that 

[log n] 
p 

lim lp(log n] I = 0. 
p 

lim 

We have lim [log n] = O 
n 

All rearrangements of terms of a convergent infinite series 

converge to the same limit in a non-archimedean field. 

Definition 3.8. Let 

so 

be an infinite series. If g is any one one-to-one function of the 

set {l, 2, 3, ..• } onto {l, 2, 3, ... }, then the infinite series 

! 
n=l 

a g(n) 



is called a rearrangement of the series 

Theorem 3.9. Let 

be a series converging to s 

any rearrangement of 

Then the series 

converges to s. 

Proof: For each n let 

and 

00 

~ 
and 

00 

~ 

00 

}: 
n=l 

00 

~ 
n=l 

s 
n 

a 

a 

a . 
n 

a n 

g(n) 

a . n 

g(n) 

~a. fu1 
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Since {s } converges to s and {a } is a null sequence, for each n n 

e: > 0 there is an N such that for n ~ N, v(s - s) < e:/2 
n 

v(a ) < t:./2. Since g is one-to-one, for some M ~N we have 
n 

{l, 2, ... , N} C {g(l), ·-·~' g(M)}. Therefore, for n~M, 

v(s' - s) L. v(s' - s ) + v(s - s) 
n n n n 

< e:/2 + E/2 = E, 

and 

The following theorem for non-archimedean valuations is an im-

mediate consequence of the corresponding result for sequences. 

Theorem 3.10. Suppose 

and 
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converges to s and t respectively. Then for any c and d in K 

the series 

! 
n=O 

(ca + db ) n n 

converges to cs + dt. 
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Pt:"OOf: 

There are several ways to define the product of two series. The 

purpose of this paper will be best served if the definition of a 

product of two series includes the multiplication of polynomials as a 

special case. For this reason the following definition is given. 

Definition 3.11. Let 

and 

be two infinite series. For each n, define 

The infinite series 

is called the "Cauchy product" of the two given series. 



An immediate question is whether the series 

converges. The answer is affirmative, if the given series converge. 

Lemma 3.12. If 

converges and 

!a 
n=O n 

{b } is null sequence then the sequence 
n 

{~ a.b .} 
l. n-i 

i= 

is a null sequence. 

Proof: Since {a } 
n and {b 

n 
} are null sequences there is an Ml 
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and 

an M2 such that v(a ) < Ml and v(b ) < M2. For each E: > 0 there 
n n 

is an N such that for n:::::::... N, v(a ) < E:/2M2 and v(b ) < E:/2M1 . 
n n 

Therefore, for n .:::::::., 2N, 

'i'. 

Z max { v (a . ) v (b . ) } + max { v (a. ) v (b . ) } 
1 L i L N l. n-i N+l ~ i ~ n l. n-i 

< M1 max { v (b ) } + M2 ma,x { v (a . ) } 
1 L i L. n n-i N+ 1 ~ i L n l. 



Theorem 3.13. Suppose 

converges to s and 

converges to t. Then 

converges to st. 

Proof: Let 

A = ~ ai, B n 

and d = B - t. For each n, 
n n 

=At+~ 
n ~ 

Since 

a.d .. 
1 n-1 
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00 

~ a n 

00 

~ b n 

00 

~ c n 

= ~ Ci' c = ~ c. n n 1 



converges and {d } 
n 

is a null sequence, by the previous lemma the 

sequenGe 

{~ a.d .J 1 n-1 = 

is a null sequence. Therefore, 

= lim C 
n n-+<x> 

= lim A t + lim ~ 
n-+oo n n-+<x> ~ 

Power Series 

a.cl . 
1 n-1 

st. 

With this background it is now time to take up a special type of 

infinite series called a power series. Since this kind of series is 
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first encountered in elementary calculus, many of the results will not 

be new. However, recall that we are dealing with a non-archimedean 

valuation. Many of the series which converge with respect to the 

absolute value function diverge with respect to a different valuation. 

Others have a somewhat different circle of convergence with respect to 

a non-archimedean valuation. Some of the power series of calculus will 

be investigated in the sequel, 

Definition 3.14. For a given sequence 

archimedean field K the series 

(3.1) ! 
n=O 

n 
a x 

n 

is called a power series for x in K. 

{a } in a complete non
n 
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In the field K two possibilities exist for the series (3.1) for 

a given choice of x. Either the series will converge or it will 

diverge. The next theorem gives a condition for convergence. 

Theorem 3.15. Let 

n 
a x 

n 

be a power series in a complete field K and let 
n 

a= llm ~). 
n 

If a ~ 0 let r = l/a; if a = +oo let r = 0 and if a = 0 let 

r = +ro. Then the series 

(a) converges for v(x) 

lim a r n 
n = 0, .and 

(b) diverges for v(x) 

< r 

> r 

n 
a x 

n 

or for 

or v(x) 

v(x) 

= r 

Proof: By theorem 3.7 the series 

converges whenever 

! 
n=O 

n a x 
n 

n 
v(x)/r = lim ~v(x) = 

n 

= r and 

and lim n I: 0. a r 
n 

which implies convergence for v(x) < r. Similarly, the series 

diverges for v(x) > r. If v(x) = r then the series converges for 

n 
lim a r = 0 

n 
and diverges for lim a rn # 0 by theorem 3.2. 

n 
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In the preceeding theorem r is called the radius of convergence 

for the series (3.1) and the set of all x such that v(x) < r is 

called the circle of convergence. 

A very useful and familiar series is the "geometric series". This 

series will turn out to be the derivative of the logarithm function to 

be considered later. 

Example 3.16, For v(x) < 1 the series 

converges to 1/(1-:x). 

Now n n v(x ) = [v(x)] and v(x) < 1 imply that 

Hence, lim xn = 0. Therefore, 

00 

~ (1 - x) ~ n (1 - x) lim i 
= lim (1 - xn+l) 1 - lim 

n+l x = x x = 
n-+oo n-+oo n-+oo 

which implies 

00 

L n 1/(1 - x). x 
n=O 

With example 3.16 and theorem 3.13 the negative binomial theorem 

can be established for non-archimedean valuations. But first a 

definition is needed. 

Definition 3.17. For positive integers n and i define the symbol 

( n
1
_)=-n_! 

i ! (n - i) ! and (~) 1. 

0 



Note that 

(i + 1) 

This identity suggests the following generalization 

(3.2) + i + 1) 
i + 1 

which can be established by induction on n. 

Example 3.18. The Binomial Theorem for negative exponents. 

00 

(3. 3) fro (n + i -
1) 

n 1 for v(x) < 1. x = i 1 (1 - x)i 

Since (n:i-1) 
J_ - 1 is an integer and v(x) < 1, 

v[n 
+ i ~ l)xn] [(n + i - 1 )] [v(x) Jn -+ 0 = v i + as n -+ oo, 
i + 1 

Hence, the series (3. 3) converges. For i = 1 the series 

the geometric series of example 3.16. For i = 2, 

is 

00 00 

~(~ lk 1 1 1 ~ ~ 1 • = = x x 
(1 - x)2 1 - x 1 - x n=O n n=O n 

=! 
n=O 

n 
x • 
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just 



Again an induction argument is needed. Suppose for i = m, 

Then for i = m + 1, 

1 1 1 = 
(1 - x)rn+l (1 - x)m (1 - x) 

~ [k (k + m -
= 

m - 1 

co 

= ~ (" 

1) J x" = 

+ 

n 
x • 

m -
m - 1 

00 

fro (" 

co 

l)xn ~ n x 

+ m) n x . m 
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Later the Binomial series will be established which is a general 

form of the series (3.3). Other power series of interest to be con-

sidered here are the logarithm and exponential series. These series 

will be examined in the field of p-adic numbers. 

Example 3.19. The Logarithm series is defined by 

(3. 4) ! 
n=l 

This series converges for all x 

r this, write n = p m where (m,p) = 1. 
n . n 

hence, 1 L.VJl/nJ L.~ Therefore, 
p 

such that jxJ < 1. 
p 

Then 1 L. j l/n J 
n p 

lim ~ = 1 
p 

To see 

r p L. n 

and (3.4) 

converges for Jxl < 1. Actually, this series converges on the 
p 

maximal ideal P of the valuation ring 0 . 
p 

and 

So far in the p-adic numbers the geometric, negative binomial and 

logarithm series seem similar to their counterparts defined on the reals 
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with respect to the absolute value function. There we have convergence 

tor lxl < 1 which is similar to lxJ < 1. However, when th~ exponenp 

tial series is considered the situation is quite different. 

Example 3.20. The Exponential series is defined by 

(3.5) 

This series converges for all x such that 
n - t 

By (1.20) of Chapter I, ord n ! = ___ n_ where 
p p - 1 ' 

n = 

and 0 L a. ~ p - 1. Then 
l. 

Now 

J 11n1 I p 
~=:nJ 
p • 

Jxl < P-l/(p-l). 
p 

r(p - 1) 

so that ~/(p-1) nw nVn-: 
l L. n L. rL. - p - p - n. Hence, lim~ =l. 

Therefore, 

n 
lim VI l./n! Ip lim ~ = pl/ (p-1) lim ~ -tn/ (p-1) • l/(p-1) 

p 

so that (3. 5) converges fo'r all x such that lxJ < p-l/(p-l). Now 
p 

l/(p-1) l/p < l/p-1/(p-l) < 1. 1 < p < p so that Therefore, if 



!xi ~ l/p p 
then I. I -1/ (p-1) 

x < p 
p 

and the series converges. This 

result seems rather strange since ord x is always an integer for 
p 

in Q • 
p 

The answer lies in an algebraic extension of 

For any series of the form 

00 

L n=r 

n 
a 1T 
n 

Q • p 

where for each n, a is in V of a complete discrete field K, 
n 

with m > n. 

Since lim [v(n)]n+l = O, the sequence 

is a Cauchy sequence in K. Hence, there is an a in K such that 

00 

a = ~ n=r 

n 
a 1T 

n 

x 

An interesting fact about a.field of this kind is that each a in K 

can be represented in this form. 

Theorem 3.21. Let K be a complete discrete field with a valuation 

v. Let S be a complete residue system for the associated residue 

field V/P. Then each a in K can be written uniquely in the form 
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(3.6) a = 
00 

.~ 
n=r 

n a 1T 
n 
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where r v(a) = [v(n)] , r is an integer, a 
n 

is in s for each n, 

and a is not in P. r 

Proof: If a = 0 then 

Suppose a is in K and 

some unit E: in v. There 

a = 

a :/: O. 

is an 

Then r for some a = 1T E: 

a in s such that a r r 
p and a/n r + p + P. Hence, a/n r is in p and = a - a r r 

v[a/n r - a ] < 1. Thus, v[a r r and r 
- a 1T ] < v(n ) a - a 1T r r r 

r+l r+l 
where v(c1) L v(n ) . Now v[c1/ (n ) ] L. 1 so there is 

such that r+l 
ar+l] ar+l in s v[c1/(n ) < 1, or 

[ r+l] ~ ( r+l) v c1 - ar+ln =v 1T • 

There is a such that We now have 

Repeating this process h times gives 

r and 

is not in 

= cl 

an element 

where L r+h+l v[ch+l] _ v(n ) . Since r+h+l 
v(ch+l) < v(n ), lim ch+l = 0 



and we must have 

Cl. = 

Now suppose 

Cl. = 

co 

I n=r 

co 

I 
n=r 

n a TI 
n 
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where each bn is in S and br is not in P. If ai # bi for some 

i, let m be the smallest integer such that a # b • 
m m 

co 

o =I 
n=m 

n 
(a - b )TI 

n n 

co 

= 1Tm I 
n=m 

n-m (a - b ) TI · 
n n 

which implies that 

(b - a ) m m 
:::;: 1T ! 

n=m+l 

n-m-1 
(a - b ) TI 

n n 

Then 

Thus, v(b - a ) < 1 and b + P = a + P. 
m m m m But this implies a and 

m 

b are in the same residue class and by the choice of S, a b . 
m m m 

Of course, a different choice for S would result in different 

in the series expansion. 

According to theorem 3.21 each element Cl. of the field 

be written as 

Cl.= 

n=r 

One choice for a complete residue system is the set 

a 's 
n 

can 



S = {O, 1, 2, ... , p-1}. 

When this set is used the resulting series expansion is called the 

canonical representation for a in Q . If r is a non-negative p 

integer, then 

00 

L n 
lim i i a p = a.p n l. n=r =r 

where 

is a sequence of integers. Let 

The sequence 

(3. 7) 

{x } has the following property: 
n 

n 
x 1 == x mod p n- n 

On the set of all sequences of integers satisfying (3.7) define a 

relation by 

(3. 8) {x } - {y } 
n n 

if and only if n+l x == y (mod p ) n n 
for each n. 

This relation defines an equivalence relation on the set of all 

sequences of integers that satisfy (3.7). With the resulting set of 
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equivalent classes the set of p-adic integers can be constructed. The 

field is constructed as a quotient field of 0 . 
p 
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For a development along these lines refer to [2] or [15] in the 

bibliography. 

Some of the essential theorems of Qp will be stated here, where 

all series representations are canonical. 

(3.9) Every positive integer has finite series representation. 

00 

For in 0 L n a. p' a. = a p . 
n=O n 

(3.10) 

(3.11) An integer b is a unit if and only if (b ,p) a: 1. 

(3.12) A rational number r/s is a unit if and only if 

(r,p) = (s,p) = (r,s) = 1. 

(3.13) 
n (p-l)p . 

(3.14) An element in is rational if and only if its 

canonical expansion, ! n 
a p ' n 

where I a. I p n=r 

is periodic. 

For proofs of these theorems see [2] or [15] of the bibliography. 

The arithmetic in a field is interesting and a few examples will 

be considered here. In the field Q3 the series expansion of -264 

can be found by expressing -264 as 465 - 36 . Now the series expan-

sion of 465 is 

and using (3.13) the series expansion for -36 is 



Therefore, the series expansion for -264 is given by 

Using (3.14) it is easy to show that the set of rationals Q is 

not complete in Q . 
p 

The partial sums of the series 

form a Cauchy sequence, but the series is not periodic and cannot 

represent a rational number in Q . 
p 

The next example is useful and uses some of the previous theory, 

Example 3.22. The polynomial xp-l - 1 has p-1 distinct rqots in 

Q . 
p 

To establish this fact consider the series 

(3.15) 
n 

lim ap , 

where a is in the set {l, 2, ... , p-1}. Now 

n n-1 n-1 r n-1 J 
ap - ap = ap La(p )(p-l) - 1 

and since 
( n-1) ( l) 

a p p- == l(mod pn) by Euler's theorem, we have 
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Therefore, and (3.15) converges. Let 
n 

a = lim ap , then 

ap-l = lim apn(p-l) = lim (1 + c pn) 
n 

n = 1 + lim c p = 1. 
n 
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There are p-1 choices for a, and hence p-1 choices for a. If we 

have 

a = 
co( ) co( ) n n-1 n n-1 

a + ~ aP - aP • b + ~ bp - bp 

where a and b both belong to {l, 2, ... , p-1} then 

a - b 
~ ( n n-1) = ~ bp - bp -
n=l 

! 
n=l 

Therefore, a== b(mod p) and hence, a = b. 

Infinite Products 

A theory of infinite products can be developed for a non-

archimedean valuated field in much the same manner as it is developed 

on the real or complex numbers with respect to the absolute value. 

Many of the same proofs can be established and these can be simplified 

somewhat for a non-archimedean valuation. 

Definition 3. 23. For a sequence {b } in a non-archimedean field 
n 

define a sequence of partial products {p } by 
n 
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where 
bi " 

0 for each i. If lim p exists and lim p = CL :/: 0 n n 

then we set 

00 

r--
Cl = /I b = lim p • 

n=O n n 

If lim p = 0 then {p } is said to diverge to O. We call 
n n 

00 

r--

r I 
n=O 

b 
n 

an infinite product. 

Again, as in the case for infinite sums, the ensuing discussion 

will consider infinite products in a complete non-archimedean valuated 

field K. Similar to the case for infinite series, a Cauchy criterion 

for infinite products can be established. 

Theorem 3.24. The infinite product 

00 

r--

1 I 
n=O 

b 
n 

converges if and only if for each e: > 0 there exists an N such that 

n~N 

(3 .16) 

implies that 

v (b - 1) < e:. 
n 
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Proof: Suppose {pn} converges to a. :/: 0. There exist an M such 

that v(p ) > M, since p :/: 0 for n n each n. For each e: > 0 there is 

an N such that n.::::..N implies that v(p - pn-1) < e: • M. But then n 

v(bn - 1) < e:M/v(pn-l) <.e:. 

Now suppose for e: = 1/2 there is an N1 such that for. n ~N1 , 
. 

v(b - 1) < 1/2. We must have v(b ) .:::::.. 1 
n n . 

for otherwise v(b ) < 1 
n 

implies that. v(bn .- 1) = max{v(bn),l} = 1 > 1/2. Similarly, v(b ) > 1. 
n· 

implies that v(bn - 1) = max{v(bn),1} = v(bn) > 1/2. 

Let v(pN ) = M. Then for n.:::::.. N1 , 

Thus, v(b ) = 1 
n 

1 

(3.17) v(p ) 
n 

= M. ·. 

For each e: > 0 there is an N2 such that for n .:::::.. N2 , 

(3.18) v(b - 1) < e:/M. n· 

U N > max{N1 ,N2} then both (3.17) and (3.18) are satisfied and 

= v(p 1)v(b - 1) = Mv(b - 1) < e:. n- . n n · 

Therefore, . {p } is a Cauchy sequence and must: converge in K. 
n 

To enlarge the class of infinite products it is desirable to allow 

zero factors as given in the next definition. 

Definition 3.25. (a) Given an inf;inite product 

00 
r--

11 b 
n=O n 
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with finitely many zero factors, let N be a positive integer such that 

all factors bN+l' bN+2 ' 

greater than N. Then 

exists and 

is defined to be 

are non-zero and let m be any integer 

lim 

,.m.._ 
um / I b1 

i=O 

b. • lim 
l. 

b .• 
l. 

(b) Given an infinite product 

00 ,.---

/ I 
n=O 

b 
n 

with infinitely many zero factors the product is said to diverge to 

zero. 

For infinite sums we had convergence of the series 

if and only if lim a = 0. 
n 

A similar result holds for infinite 

products which makes tests for convergence in a non-archimedean field 

somewhat easier than in the real case with the absolute value. If the 



infinite product 

00 

r--

11 
n=O 

b = b "' 0 n 

we have 

lim b n = lim (11 bi.)V(fi bi) = b/b = 1. 
i=l i=l 

If we set b = 1 + a then lim a = lim (b - 1) = O. Hence., if 
n n n n 

the infinite product 

then lim a = O. 
n 

Theorem 3.26. The product 

converges if and only if 

(1 + a ) = b ;' O, 
n 

00 r-

t I 
n=O 

(1 + a ) 
n 

lim a = O. 
n 

Proof.: The. preceeding discussion verifies that convergence of 

(3.19) 

00 
r-

fl 
n=O 

(1 + a ) 
n 
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implies lim a = 0. 
n 

Conversely, suppose that for e:: > 0 there is an 

n such that for n :::.a. N, v(a ) < e::. 
n 

Then v(b - 1) = v[(l +a ) - l]. 
n n 

Therefore, by tb,eorem 3. 24, (3 .19) cori.v~rge1f~-".1: ·. 



Corollary 3.27. The infinite product 

converges if ~nd only if 

converges. 

Proof: The product 

converges if and only if 

converges. 

00 
r-

11 (1 + a ) 
n n=O 

lim a = O, 
n 

that is, if a:nd only if 

In the case of the reals lim a = 0 does not imply convergence 
n 

of 

For example, 

is divergent since pn 

00 

r-

11 
n=O 

00 r-

(1 +a). 
n 

11 (1 + l/n) 
n=l 

n + 1, while lim l/n = 0. 
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A definition of absolute convergence may be given for infinite 

products as was ~iven for infinite series. 

Definition 3.28. The infinite product 

00 
r--

11 
n-=O 

(1 + a ) 
n 

is said to converge absolutely if 

00 ,--

/ I 
n=O 

converges. 

Il + v(a )] 
n 

Theorem 3.29. Absolute convergence of 

implies convergence. 

Proof: If 

converges then 

hence, 

converges. 

00 ,--

II 
n=O 

Il + v(a )] 
n 

lim v(a ) = 0 
n 

in the reals. 

00 ,--

/ I 
n=O 

(1 + a ) 
n 

Bu1: then lim a = 0 
n 
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and 
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The following examples are given to help illustrate the principles 

involved. 

Example 3.30. Let a be an element in a non-archimedean valuated field 

such that v(a) < 1. Then the infinite product 

co 

/i (1 + a2n) = 1/ (1-a). 
n=O 

Since 
2n 

lim a = 0 the given product converges. 

be established that 

i 
a • 

Hence, by example 3.16 

n+l 
2~-1 

lim = 
·i=O 

Note that 

co 
r--

i a 

(1 + a) / I (1 + a 2n) -- 1/ (l-a) 

or 

If 

n=l 

2 1/(1-a ). 

By induction it can 

co 

~ n = 1/(1-a). = a 
n=O 



then using the same procedure, 

or 

By induction 

Example 3.31. 

where c is 
n 

Each in 

( 2n) fi 2k+l) 
1 + a = 1/ ~-a • 

can be expressed in the form 

n 
(1 + c p ) ' n 

in the valuation ring v. By theorem 3.21 

r ! n a = p a p 
n=O n 

where 0 L. an~ p-1. For n.:::::,,.. 2, e'.'1-ch partial sum sn-l of 

has the property that lsn-llp = la0 1p = 1 by corollary 2.7. Then 
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I a Is 1 1 L. 1 and n n- p 
I nl -n (a /s 1 )p L.p • n n- p Hence, lim (a Is 1)pn = 0 n n-

and the product 



00 

r---

aoPr [I [1 + (an/sn-l)pn] 
n=l 

converges. By induction 

and we have 

• lim pr ~ n 
a p 

n 
= a. 

Since the a 's are unique, we also have that the c 's are unique 
n n 

where c = a /s 
n n n-l for each n. 

82 



CHAPTER IV 

SEQUENCES AND SERIES OF FUNCTIONS 

When we consider analysis.in the field of real or complex numbers 

the concept of limit is defined in terms of th.e absolute value function. 

Theorems involving this concept depend on the fact that the value group 

for the absolute value function is an ordered subset of the non-negative 

real numbers. For example, in case of complex analysis the theorems 

depend on the ordering of .the value group. The theorems involving 

infinite series in the preceeding chapter did not require that the 

series be defined on an ordered .field. 

In the case of a complete field with respect to a non-archimedean 

valuation v· the value group is an ordered subset of the non ... negative 

real numbers. A natural undertaking would be to consider the concepts. 

of analysis ·in a non-archimedean complete field. One would suspect 

that many of these concepts would be immediately applicable, but woul4 

possibly take different forms in so~e cases. 

Definition 4.1. Let {f } be a sequence of functions defined on a 
n 

set S. If the sequence of numbers {f (x)} converges for each x in 
n 

S, we define a function f by 

(4.1) f(x) = lim f (x). 
n 

The sequence {f } 
n 

is said to converge on S and f is called the 

limit function of {f }. 
n 



For a sequence of functions {f } and an x in S let 
n 
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Definition 4. 2. If {s (x)} convet:'ges for every x in S we define 
n 

a function f by 

(4.2) f(x) =! 
n=O 

f (x). n . 

The function f is called the sum of the series 

! 
n=O 

f . (x). 
n 

The concept of continuity in a complete non-archimedean valuated 

field K is defined in the usual way. 

Definition 4. 3. Let S be a subset of K and suppose f is a func...,. 

tion from S into K .. If a is in S, f is continuous at a if 

and only if for each E > 0 there is a cS > 0 such that for 

v(x - a) < cS and x in S, we have v(f(x) - f(a)) < E. The func-

tion f is said to be continuous on S if f is continuous at each 

a in S. We write lim f(x) = f(a). 
x-+a. 

With the aid of this definition the following theorems can be 

proven in the same manner as they are proven in elementary calculus on 

the field of real numbers with respect to the absolute value function. 



-

Theore111 4.4. Suppose f and g are continuous at a in s. Then 

(a) f + g is continuous at a; 

(b) f g is continuous at a; and 

(c) if g(a) .f O, then f/g is continuous at a. 

Theorelll 4.5. Suppose f is a funct:Lon defined on s and g is a 

function defined on S' where f(S) C s '·. If f is continuous at 

and g is contim~ous at f(a), then f 0 g is continuous at a. 

Theorem 4.6. Suppose f is a function defined on S. Then f is 

continuous at a if and only.if for each sequence 

verging to a, the sequence { f (x ) } 
n 

converges to 

{x } in S con
n 

f (a). 

A problem which arises is whether a function defined by (4.2) is 
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a 

continuous when each function in the sequence is continuous. Stated in 

another way the problem is whether 

(4. 3) lim lim ~ fi (x) = lim lim ~. fi (x). 
x-+a n~ ~ n-?<X> x+a ~ 

This may not be the case as seen in the next·example. 

Example 4.7. For each 

and !xi < 1. Then 
p 

n let f (x) = 
n 

lx/(l + x)I < 1 p 

{x/(l + x)}0 where 

so that 

f (x) = ! {x/(l + x)}0 = 1 + x 
n=O 

for x·~ 0 and f(O) = O. Now 

K = Q p 



and 

lim lim 
x+O n-+«> 

lim 
n-+«> 

so that (4.3) is not valid. 

lim (1 + x) = 1 
x+O 

86 

This example shows that one cannot be careless about interchanging 

the limit process. For (4.3) to be valid a stronger definition is 

needed than 4.1. The convergence in definition 4,1 is referred to as 

"pointwise convergence." 

Definition 4.8. A sequence of functions {f } is said to converge 
n 

uniformly on S to a function f if for every E > 0 there is an 

integer N such that n :::::.. N implies that 

(4.4) v(f (x) - f(x)) < E for all x in S. 
n 

This definition implies pointwise convergence. The series 

I· 

f (x) 
n 

converges uniformly on S if the sequence 

converges uniformly on S. 



87 

Theorem 4.9. The sequence of functions {f } defined on S converges 
n 

uniformly on S if and only if for every e: > 0 there is an N such 

that for n ::::::...·N 

(4.5) v(fn+l(x) - fn(x)) < e: for each x in s. 

Proof: Suppose, {f} converges uniformly on S to f. There is an 
n 

N such that n ~ N implies that v (fn (x) - f (x)) < e:/2 for all x . 

in S. Therefore, 

v(f +l(x) - f (x)) ~ v(f +l(x) - f(x)) + v(f(x) - f (x)) < e:. n n n · n 

Conversely, suppose (4.5) is valid. For a given x in S, 

{f (x)} is a Cauchy sequence ~nd converges in K. Let 
n 

f(x) = lim f (x), 
n 

Choose e: > 0. There is an N such that for n ;:::... N', 

v(f (x) - f +l(x)) < e:/2 
n. n 

for each x · in S. Now for each k, 

v(f n (x) - fn+k (x)) ·~ max{ v(fn (x) - fn+ 1 (x)) , ••• , 'V (fn+k-l (x) - fn+k(x)) } 

< e:/2. 

Therefore, < e: for 

each n::::::... N and every x in S. 



For a.sequence of functions {f } defined on S let 
n 

for each n. Suppose 

f(x) = lim s (x) n 
f (x). 
n 
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For a series defined in this manner theorem 4.9 takes the following form. 

Theorem 4.10. The series 

! 
n=O 

f (x) 
n 

converges uniformly on S if and only if for every e > 0 there is an 

N such that n ;::::... N implies v(f (x)) < e ·n for every x in s. 

The Weierstrass M-test takes the following simple form in a non-

archimedean field. 

Theorem 4.11. Let {M } be a sequence of non-negative numbers such n 

that v(f (x)) L:. M for each n and for each x in s. If n n 

lim M = O, then n 
co 

~ f (x) n 

converges uniformly. 
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Proof: Choose e; > 0. There is an N such that n::::::.. N implies 

v(f (x)) £ M < E: for each x in s. But then {f (x)} is a null n · n n 

sequence. Hence, 

00 

~ 
n=O 

f (x) n 

converges. Since N does not depend on x thi~ convergence is 

uniform. 

Theorem 4.12. Suppose {f } converges uniformly to f on S. If a 
n 

is an accumulation point of S 

then f is continuous at a. 

and if each f is continuous at a 
n 

Proof: For E: > 0 there is an N such that n.:::::,., N implies 

v(fn(x) - f(x)) < E:/3 for each x in S. Since fN(x) is continuous. 

at a there is a o such that v(x - a) < o implies 

Therefore, 

v(f(x) - f(a)) £ v(f(x) - fN(x)) + v(fN(x) - fN(a)) + v(fN(a) - f(a)) 

< €:. 

Corollary 4,13. Suppose 

converges uniformly to f(x). 

then f is continuous at a. 

If each f. is continuous at a in S 
l. 



(4. 6) 

Note that this corollary allows us to write 

lim ! 
x+-a n=O 

f (x) = 
n ! 

n-=0 
lim f (x). 

n 
x+a 
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Corollary 4.14. If {f } is a sequence of continuous functions on S 
n 

and if {f } converges uniformly on S then f is continuous on S. 
n 

For the remainder of this chapter we shall be interested in those 

functions represented by a power series of the form 

(4. 7) f(x) n 
a x 
n 

Here we have a sequence of functions {a xn} , 
n 

continuous. The partial sums are defined by 

s (x) 
n 

where each function is 

and are also continuous. Functions defined by (4.7) are called analytic 

functions. 

Theorem 4.15. Suppose the function f is defined by (4.7) and the 

series converges for v(x) < r. Then the convergence is uniform for 

v(x) ~ t < r. The function is continuous for each x such that 

v(x) < r. 



Proof: Now the series 

converges in the real numbers for t < r. Since 

and n lim v(a )t .. O, 
n 

theorem 4.11 applies. Therefore, 
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f converges 

uniformly for v(x) ~ t < r. By theorem 4 .12 f is continuous. 

Suppose f is an analytic function which converges for v(x) < r. 

If v(a) < r then v(x - a)~ max{v(x) ,v(a)} < r so that 

(4. 8) f(x) n 
a (x - a) 
n 

converges for v(x - a) < r. As a matter of convenience the discussion 

that follows will be concerned with functions of the form (4.7) rather 

than (4.8). 

Definition 4.16. The derivative of 

f(x) ! n 
a x 
n n=O 

is defined to be 

f I (X) ! 
n=l 

The nth derivative will be denoted by 

n-1 na x 
n 

n f (x). 



Note that this definition says to take the derivative of power 

series we differentiate each term 

Theorem 4.17. If 

f(x) = 

n a x • 
n 
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for v(x) < r then f' exists and has the same domain of convergence 

as f. 

Proof: Since n r = p m where (p,m) = 1, we have r l/n L!/p ~ 1. 

Now v(n) = 1/pr 
n 

lim ~ = 1. 

so that 

Therefore, 

1/n ~ v(n) ~ 1. This implies that 
n n 

lim 'V'v(na,) = lim ~' and we have · · n · n 

that f and ~' have the same domain of convergence. 

Co~ollary 4.18. With the. same hypothesis as theorem 4.17 f has 

derivatives of all orders which are given by 

(4.9) fk(x) = ~ n(n - 1) .•• (n - k + 1) 
n..,..k 

a x 
n 

=~ 
.. 
We also have 

n 
(n + k)(n + k - 1) ..• (n + 1) an+kx . 

f(x) = 
n· 

x • 

This representation is unique in the domain of convergence of f. 



Proof: Suppose (4.9) is valid for k = m, Then for k = m + 1 

~ n-1 
= (n + m) ••. (n + 1) nan+mx 

n• 1 

~ ~ (n + m + 1) ••• (n + 1) an+1n+1xn. 

' 
The corollary follows by induction. We have k 

f (O) • k!l\ so that 

a = k Let 

g(x) 

If f(x) = g(x) in the domain of convergence of f then 

a = 
n n! 

b • 
n 

93 

Theorem 4.19. If f and g are functions which converge for v(x) <.r 

and f' (x) = g' (x) then f(x) ::; g(x) + c. 

Proof: Let 

h(x) = f(x) - g(x) = ~ 

Then h' (x) = f' (x) - g' (x) = O. Hence, a - b = 0 for n .::::;.. 1 and 
n n 

h(x) = a0 - b0 . Therefore, f(x) = g(x) + (a0 - b0). 

-----



Theorem 4.20. If 

00 

f(x) = ~ 
for each x such that v(x) < r then 

Proof: We have that 

[~ (4.10) f(x + y) - f(x) (l/y) = y 

= (l/y) [~ 

n a x 
n 

f I (X) = lim f(x + x) 

y-+0 y 

00 

anxn] n -~ a (x + y) n 

a n ~ (~) xn-v] 

n-i i-1 
x y 
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- f (x) 

Choose x such that v(x) < r. For all y such that v(x) > v(y) # O, 

(n) n-i i-1 n-1 v(a · .· x y ) L. v(a )v(x) . By theorem 4 .11, (4 .10) converges 
n ;i.. n 

uniformly in y. Therefore 

lim f(x + y) - f (x) 
y-+O y 

! ~ (n) n-i i-1 
= ~~ n=O an f:1 i x y 

=! 
n=O 

n-1 na x 
n 

n-i i-1 
x y 

= f I (X) • 



Once the relationship f'(x) = lim f(x + y) - f(x) has been 
y 
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established for analytic functions the usual theorems about derivatives 

can be proved in an analogous manner as those in elementary calculus. 

For the sake of completeness and brevity, these will be stated without 

proof. 

Theorem 4.21. Suppose f and g are differentiable functions defined 

on S and differentiable at x. Then, 

(a) f + g is differentiable at x and 

(f + g)'(x) = f'(x) + g'(x); 

(b) fg is differentiable at x and 

(fg)'(x) = f(x)g'(x) + f'(x)g(x); 

(c) if g(x) ~ 0 then (f/g) is differentiable at f (x) and 

(f/g)'(x) f'(x)g(x) - f(x)g'(x) 
2 g(x) 

Theorem 4.22. Suppose f is defined on S and g is defined on 

f(S), If f is differentiable at x and g is differentiable at 

f(x), then go f is differentiable at x and 

Example 4.23. 

(g -0 f)'(x) = g'(f(x))f'(x). 

Let K = Q . 
p 

Suppose 

f(x) = ! 
n=l 
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where lxl < 1. · With the aid of example 3.l,6,· the ·deriva:~ive .is given 
p 

by 

Example 4.24. 
' ' 

f'(x) • ~ (-x)n-l • 1/(1 + x). 

In the field Q let 
p 

and f(x) = tx, where t is in OP and lxlp < 1. ·Let h(x) = g(f(x)). 

By example 4.23 and theorem 4.22, h'(x) "" [1/(1 + tx)]•t = t/(l + tx). 

Before proceeding to the next theorem, the following observation 

concerning polynomials is needed. 

Let 

f (x} • k 
where a = 1 and the coefficients are in the valuation ring V of a. 

n 

non-archimedean f~eld K. We have that 

(4.11) 

n n-1 · n 
+ (x + nx h + • . . + h ) 

2 = f(x) + hf'(x) + h g(x~h). 
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The function g(x,h) has its coefficients in V when h is in 

v. 

Newton's method gives a way to approximate roots of polynomials in 

the real numbers. This method of approximating roots has a counterpart 

in a non-archimedean field which is given in theorem 4.25. 

Theorem 4.25. (Newton's Method) Suppose. f(x) is a polynomial in a 

complete field K with respect to a non-archimedean valuation v. 

Further, suppose f(x) has coefficients in V and a leading coeffi-

cient of L If there is an· a1 in K such that v[f(a.1)] < 1 and 

then the se.quence {a } , where 
n 

Cl "" Cl -n n-1 

converges to a root a in V of f(x). 

Proof: Let · 

We note first that Cll' if it exists cannot have 

ai belongs to v, v(ai ai) .~ v(ai) for all i < 

v(a.1) > 

n. If 

i n for all then v(f(a.1)) n v(a.1) < v(a1) i.< n. But = v(a.1 >, 

is a contradiction •. Hence, and is in V. 

1. Because 

v(a.1) > 1, 

> 1, wh;i.ch 
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By 4.11, 

Since the coefficients of 

are in V, 

It follows that 

Using 4.Ll again we have 

Now 

imply that v[f'(a2)J = v[f'(a1)J = 1. We now have v[f(a2)J < 1 and 

v[f'(a2)J = 1 so that a2 satisfies the same conditions as a1 , 

2 Further, v(a3 - a2) = v[f (a2)] ~ [v(f (a1))] . 
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Repeating this process, we have inductively that 

Let 

a = 

The series for a converges since 

2n-l. 
The continuity of f and the relation v[f(an)] c:::::.v[f(a1)J imply 

n-1 
that v[f(a)] = lim v[f(an)] ~ lim v[f(a1) J2 = 0. Hence, f(a) = 0. 

Further, since v(a - a1) ~ max{v(a - a. 1), .•. , v(a2 - a1)} < 1 n n n- . 

and v(a - a1) = lim v(an - a1) c:::::.1, we have that 

Therefore, a is in V. 

In particular, this theorelll applies to the p-adic valuations. The 

following theorems are applications of Newton's method. 



100 

Theorem 4.26. If a is a quadratic residue modulo an odd prime p 

then f (x) • x2 - a has two distinct roots in Q • p 

Proof: Suppose a is a quadratic,residue modulo p. There is an 

such that a1
2 ll)E a(mod p). Then lfCa) I • la2 - al < 1 while 

1 p 1 

lf'(a1 )1p = l2a1 1p = 1. By the previous theorem there is an a in 

2 such that a = a. Similarly, there is a root S corresponding to 

Corollary 4.27. If p = 4k + 1, then v-::1. is in Qp' 

Proof: This follows since -1 is a quadratic residue modulo p, 

Theorem 4.28. If a is a quadratic non-residue modulo an odd prime 

then f(x) 2 is irreducible in Q . = x - a p 

Proof: Suppose there is in Qp such that 2 - a = O. Then an a a 

J a2 I ...::::. max{ J a? - a I , I a I } L 1. Hence, J a J ~ 1 which implies a p p p p 

is in 0 , Then for some integer b, a+ P = b + P. But then 
p 

0 
p 

p 

a+ P = a2 + P = b2 + P and b2 = a(mod p). This contradicts the fact 

that a is a quadratic non-residue, Therefore, f(x) = x2 - a is 

irreducible. 

Corollary 4. 29. If p = 4k + 3, then f=l is not in Q . 
p 

Proof: For primes of this form -1 is a quadratic non-residue. 

Elementary p-adic Analytic Functions 

The purpose of this section will be to investigat,e some of the 

special functions in the p-adic numbers. Certain elementary functions 

are of interest to students of mathematics, not only because of their 
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usefulness, but for the special properties they possess. The exponen-

tial and logarithm functions are examples. These functions are inverse 

functions that set up an isomorphism between the additive group of real 

numbers and the multiplicative group of non-negative real numbers. 

These functions are useful because they give a method for defining the 

symbol b a where a and b are real numbers. A question that arises 

is whether a similar process can be carried on in a p-adic number field 

Q • p 

A problem presents itself in the study of the logarithm function. 

In elementary calculus this function is sometimes developed as the 

definite integral of the function f(x) = l/x. From the properties of 

the logarithm the exponential function can be developed as the inverse 

function. Since this avenue is not available here, the study of these 

two functions and others will be carried out by considering power series. 

Definition 4.30. A p-adic analytic function is a convergent power 

series of the form 

f(x) n 
a x 

n 

where a and x are in Q . The set of .all x for which the series 
n p 

converges is called the domain of convergence and will be denoted by 

All polynomials 

g(x) 
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are analytic functions for which the domain of convergence Dg = Qp. 

By examples 3.16 and 3.18 the functions h (x) = 1/(1-x)m are analytic 
m 

functions where the domain of convergence is {x: lxl < l}. By example 
p 

3.30 the analytic·function h1 can be expressed as 

The first p-adic analytic function to be considered will be the 

logarithm function. 

Definition 4. 31. The logarithm function is defined on Q by 
p 

log (1 + x) = ~ 
f:1 

Many of the familiar properties of the logarithm can now be 

established for the p-adic number fields, as well as some peculiar to 

the situation. 

Theorem 4.32. The domain of log (1 + x) is {x: lxl < !}. 
p 

Proof: See example 3.19. 

Theorem 4.33. For x in 

(a) the derivative of 

D log' 

log (1 + x) is 1/(1 + x); 

(b) log -1 (1 + x) = -log (1 + x); and 

(c) I x I < p -1 I ( p-1) implies I log (1 + x) I = lxl · p p p 



Proof: (a) [log (1 + x)]' = 1/ (1 + x) by example 4. 23. 

(b) If !xi < 1 then Ix+ lj = Ill = 1. This implies that p p p 

j(-x)/(l + x) Ip< 1. By part (a) and example 4.24, 

[log (1 + x)-~]' = [log (1 + (-x)/(l + x))]' 

= [1/(1 + (-x)/(l + x))] • [-1/(1 + x) 2] 

= -1/(1 + x) = [~log (1 + x)]'. 

Hence, log (1 + x)-l = -log (1 + x) + c for all 

determine c, set x = O. We have c = 0 and 

-1 log (1 + x) =-log (1 + x). 

(c) For ord x > l/(p-1), 

x in Dl • og To 

ord nxn - ord x = (n - l)ord x - ord n.> (n - l)[l/(p-1) - ord n] 
n - lj 0 

r Now n. = p m where (p ,m) = 1. This il)lplies that 

(ord n)/(n-1) • r/(prm-1) E r/(pr-1) = r/ [cp-1) ~ p~ "'°l/(p-1) 

since· 

Hence, 
n 

ord ~ - ord x > 0 and we have 
·n 

for n::::,., 2. This implies that for tl:).e partial sums sn (x) of the 
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logarithmic series we have Is (x) I = lxl • Now since n p p 

log (1 + x) 

and 

= lim s (x) 
n 

we have I log (1 + x) I = lim Is (x) I = lim Ix! "" !xi • p n . p p . p 

Definition 4.34. The exponential function is defined by 

Theorem 4.35. The domain of exp x is {x: lxl < p-l(p-1)}. 
p 

Proof: See example 3.20. 

Theorem 4.36. For x in D exp' 

(a) the derivative of exp x is exp· x; 

(b) . exp {x + y) = (exp x)(exp y); and 

(c) I (exp x) - ll = p Ix! . p 

Proof: (a) 

(exp x)' 

(b) Using the Cauchy product for pqwer series, 

(exp x) (exp y) = ! ( ~ ~~ . dC~~ ! ) = ~ !! ~. (~) xiyn-i 
n=O ~ ~ ~ 

= ~ (~)n exp (x + y). 
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(c) Suppose ord x > 1/ (p-1). For n ~ 2, 

Hence, 

n ord (x /nl) - ord x = n(ord x) - ord n! - ord x 

• n(ord x) - (n-tn)/(p-1) - ord x 

• (n-l)(ord x) - n/(p-1) + t /(p-1) 
n 

> (n-1)/(p-1) - n/(p-1) + t /(p-1) 
n 

= (t - l)/(p-1) ~ o. 
n 

lx0 /nl Ip < lxlp· ·This implies that Is (x) - l I = Ix I ' n p p 
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where the s (x) are partial sums of the series for exp x. As in the 
n 

proof of theorem 4.33 (c) we have 

J(exp x) - lJ = lim Is (x) - lJ = lim !xi = Jxl • p n p p p 

Theorem 4.37. If x is in D exp' 

(a) log (exp x) = x; and 

(b) exp (log (1 + x)) = 1 + x. 

then 

Proof: (a) Set x = 0: exp 0 = 1 and log 1 = 0, Since 

!<exp x) - ll = lxl , p p 

log (exp x) is defined. Now, 

[log (exp x)]' = (exp x) 'I (exp x) = (exp x) I (exp x) = 1. 

Hence, log (exp x) = x + c. To determine c. set x = O. Since 

log 1 = O, this implies c = O. Therefore, log (exp x) = x. 

(b) Let f(x) =exp [log (1 + x)]. By theorem 4.33 {c), 

J log (1 + x) I · p 



106 

is in D so that f is defined. Now f'(x) m f(x)/(l+x). For 
exp 

n ~ 2, fn(x) • O. In particular, fn(O) • O. Therefore, the series 

expansion for f is f(x) • 1 + x. 

Theorem 4.38. If x and y are in D and 
exp 

log (1 + x) = log (1 + y) 

then x = y. 

Proof: Now 1 + x =exp [log (1 + x)] =exp [log (1 + y)] = 1 + y. 

This implies that x = y. 

Theorem 4.39. If x and y are in Dexp' and exp x = exp y then 

x = y ... 

Proof: For x and y in D exp' x = log (exp x) = log (exp y) = y. 

Theorem 4.40. If x and y are in then 

log (1 + x)(l + y) =log (1 + x) +log (1 + y). 

Proof: Since Ix+ y + xyl ~max{Jxl , IYJ , jxyl } < p -l/(p-l) 
p p p p 

log (1 + x)(l + y) is defined. By theorems 4.37 (b) and 4.36 (b) we 

have that 

exp [log (1 + x)(l + y)] = (1 + x)(l + y) 

Therefore, by theorem 4.39, 

=exp [log (1 + x)]exp [log (1 + y)] 

exp [log (1 + x) +log (1 + y)], 

log (1 + x)(l + y) =log (1 + x) +log (1 + y). 
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Theorem 4.37 verifies that the functions log and exp are 

inverse functions. By theorem 4.36 (b) and theorem 4.40 these functions 

are homomorphisms. Further, theorems 4.38 and 4.39 tell us these func-

tions are isomorphisms. The exponential function maps the additive 

subgroup P of onto the multiplica,tive subgroup 1 + p of 

(see theorem 2.53). Thus, the groups P and 1 + P are isomorphic. 

If a is in 1 + P (a .. 1 mod p) then log a is defined to be 

log [l + (a - l)]. With this definition the usual properties of the 

logarithm function can be established. These are as follows: 

(4.12) log aS log a + log S; 

(4.13) log (a/S) = log a - log S; and 

(4 .14) k log a ~ k(log a) for an integer k. 

The binomial theorem of elementary algebra is valid in any com-

mutative ring with unity and, hence, is true in Q • 
p 

By example 3.18 · 

the binomial theorem for negative exponents also holds for Q . 
p 

Hence, 

for x in P C Q , (1 + x)m is defined for any integer m. The 
p 

next question that arises is whether this expression can be defiµed for 

y in 

in 0 
p 

other than integers. The binomial series is valid for 

Definition 4.41. The Binomial series is defined to be 

where y is in 0 
p 

(1 + x)y • ~ (~) x" 

and 

y 



if n ~ 0, Let (~) = 1. 

n-1 r--

(y) = .-L-~ __,(y,__-_i_) 
n n! 
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The identity (-l)n (n : ~ ~ 1) = (-!) can be established by 

induction on n. With this identity, example 3.18 and definition 4.41 

we have that 

Hence, example 3.18 is a special case of the binomial series. Thus, 

for y in Z the binomial theorem and the binomial theorem for nega-

tive e:icponents are special cases of this definition. The next question 

is whether this series converges when y is not in Z. 

Theorem 4.42. The binomial series converges for all x such that 

I I -1/(p-l) 
x < p • 

p 

Proof: Since. Jy - iJP ..:::::.max{ jyJP, Jijp} ...:::::.1 we have that 

l(Y)I =[II 1y-ij ]1c/n! I ) ~l/(jnt I ). 
n P i=O P P p 

By the proof of example 3.20 

-1 -VrmG 1/ (p-1) r = lim L.. p • 
n p 

Therefore, -1/ (p-1) r::::::.. p and the series converges at least for 

I I -1/ (p-1) x < p • 
p 
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Note that the domain of convergence is not completely determined 

in this theorem. 

Theorem 4.43. If y is in 0 and 
p 

(1 + x)Y •exp [y •log (1 +.x)], 

JxJ < p-l/(p-l) then 
p 

Proof: Let f(x) •exp [y • log (1 + x)], Now, 

I y• log (1 + .x) I ... I y I I log (1 + .x) I ~ J log (1 + x>-1 = Ix I < p""11 (p-l) p p p p p 

so that f(x) is defined. For x.= O, f(O) =exp 0 = 1. By induc-

tion it can be shown that 

f 0 (x) c [rt (y-i) • f(x)J/(l+x)n. 
- 1=0 

Hence, fn(O)/n! = (~) and 

Corollary 4.44. If s and t ate in 0 and 
p 

I I -1/(p-l) 
x < p ' p 

Proof: Since s ap.<l t are in 0 , 
p 

s + t is in 0 and 
p 

(1 + x)s+t =.exp [(s + t)log (1 + x)] 

=exp [s•log (1 + x) + t·log (1 + x)] 

=exp [s·log (1 + x)] • [exp t•log (1 + x)] 

s t = (1 + x) (1 + x) • 



110 

Corollary 4.45. If s is in op' lxlp < p-l/(p-l) and IYIP < p-l/(p-l) 

then [(l + x)(l + y)]s • (1 + x)s(l + y)s. 

Proof; For lxl < p-l/(p~l) and 
p 

Ix+ Y + xyl < p-l/(p~l). He~ce, 
p 

I I -1/ (p-1) 
y < p 

p 

[(l + x)(l + y)]s .. exp [s•log (1 + x)(l + y)] 

we have that 

=exp [s•log (1 + x) + s•log (1 + y)] 

=exp [s•log (1 + x)] • [exp [s•log (1 + y)]] 

s s = (1 + x) (1 + y) • 

Theorem 4.46. If y is in 0 and 
p 

log (1 + x)Y = y [log (1 + x)]. 

Proof: For n ~2, 

lxl < p-l/(p-l), then 
p 

< lxl • p 

Then if s (x) is the nth partial sum of the binomial series, 
n 

I s ( x) - l I = I x I , Hence, n p p 

l<l + x)y - ll = lim Is (x) - ll = lxl . P n P P 

and log (1 + x)y is defined. Also, 

llog (1 + x)yl = j(l + x)y - lj = lxl < p-l/(p-l). 
p p p 

Therefore, , exp [log (1 + x) Y3 = (1 + x) Y = exp [y log (1 + x)] and by 

theorem 4.39, log (1 + x)y = y [log (1 + x)]. 



Coroll~ry 4. 4 7. If s and t are in 0 and 
p 

Proof: By the previous theorem 

lxl < p-1/(p-l)' 
p 

ls[log (1 + x)ll = llog (1 + x)sj • Ix! p p p 

which. implies that 

jexp[s•log (1 + x)J - lip"" ls·log (1 + x) Ip= lxlp < p-l/(p-l). 

But this implies that [(l + x)s]t is defined. Therefore, 
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s t t [(l + x) ] = [eJq> (s•log (1 + x))] =exp {t•log [exp (s•log (1 + x))]} 

=exp [ts•log'(l + x)] = (1 + x)ts = (l+ x)st. 

Suppose a is in 1 + P. Then a ~ 1 is in P. For s in 0 
p 

the symbol 

(4.15) 

s 
a 

:~ ' 

is defined to be 

s s 
a = [l + (a - l)] . 

By theorem 4. 42 this expression is well defined. Now suppose a and 

S are in 1 + P. If s and t are in 0 , the following relations 
p 

are consequences of the previous corollaries and theorems. 

(4.16) s+t s St; a = a 

(aS)s s SS; and = a . (4,17) 

(as) t st a (4.18) 

The reader has no doubt noticed a distinct difference in defining 

the symbol b a b in the real numbers by a =exp [b(log a)] and the 
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definition given here. While this definition has meaning in the reals 

for a positive and all b, in the field we are restricted to 

those elements a in 1 + P and b in 0 • However, with these 
p 

restrictions in these concepts are still useful as seen by theorem 

4.48 and example 4.52. 

The functions defined by the exponential, logarithmic and binomial 

series are defined for x in P C 0 • Furthermore, for x in P · 
p 

these series represent p-adic integers. A further observation is that 

exp 1 is not defined in Q . p Hence, we cannot define a number in Q 
p 

in the same manner as e = exp 1 in the reals. 

Theorem 4.48. If m is an integer such that (m,p) = 1 and Ct is 

1 + p then f(x) 
m has a root in 0 = x - Ct . p 

Proof: Since (m,p) = 1, ll/ml = 1 and p l/m is in 0 . Hence, p 
l/m is in 0 By (4.18) (al/m)m = Therefore, m has Ct Ct. x - Ct a p 

root in 0 . p 

One further theorem on the binomial series is worth noting. 

Theorem 4.49. The derivative of (1 + x)y is y(l + x)y-l. 

Proof: For each n, n (;) = y (;=i)· Hence, 

n-1 
x 

in 
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The circular functions can be examined in Qp' with results 

similar to those established for the exponential, logarithm and binomial 

functions. The sine and cosine will be considered here. 

Definition 4. 50. The sine and cosine functions are defined by 

sin x = ~ 
~ 

and 

cos x = 

respectively. 

(-l)n x2n+l 
(2n+l)! 

(-l)n x2n 
(2n)! 

From previous experience with these functions, one would expect 

them to have the same radius of convergence as the e?Cponential function. 

Theorem 4.51. The sine and cosine series converge for I I < -1/ (p-1) x p • 
p 

Proof: The sequences 

are subsequences of {Y'litn! lpj and since 

(see example 3.20) we have that 

n 
lim v,.,..11_/_n__,! ,,_ = pl/ (p-l) 

p 

2n ,.-~-=-~~~-
1 im VI (-l)n I (2n) ! I = lim 

p 

2n+l.--~-::-~~~~~ 
VI (-],)n/ (2n+l) ! I 

p 
l/(p-1) 

p • 

Therefore, the sine and cosine series converge for I I -1/(p-J,). x < p 
p 



A natural question that arises is whether 

(4.19) 

for x in D exp x· 

exp (H x) = cos x + fl sin x 

If f'::.1 is in Q 
p 

11=11 2 
p 

then 

Hence, if jxj < p-l/(p-l), we have that 
p 
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so that ji='ljp = 1. 

it='l xi < p-1/(p-l) 
p 

which means that exp cf:l x) is defined, which 

is encouraging. The question to be answered first then is whether {':I. 

is in Q • The following example shows this to be the case sometimes. 
p 

Example 4.52. 

is in Q • 
p 

We have 

theorem 4.42, 

Suppose p can be expressed as 2 
P""m +1. Then H 

I-Pip 

-1 = 

-1/(p-l) 
< p 

2 (l/m ) [ (1 -

and jl/2j = 1. Hence, by (4.18) and 
p . 

(m2 + 1)) 11212 . Therefore, 

is in Q . So in Q exp (V-1 x) is defined and, 
p p 

00 00 

exp (H x) 
L<f})2i x2i + L<t=1)2i+l x2i+l 
i=O . (2i) ! i=O · (2i+l) ! 

00 00 

~ (-l)i x2i ~ (-l)i x2i+l 
=fro (2i)! +(:::;fro (2i+l)! 

Therefore, 

(4.20) exp <Fi x) = cos x + H sin x. 
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The primes in example 4.52 are a special class for which (4.20) is 

valid in Q • 
p 

By corollary 4.27, M is in whenever p is of 

the form 4k + 1. For all primes of this form (4.20) is also valid. 

However, for p = 4k + 3 corollary 4.29 shows that the polynomial 

x2 + 1 is irreducible in Qp. An algebraic extension of the field Qp 

as well as an extension of the valuation j JP will be required before 

the relation (4. 20) is true in general. This case will have to wait 

until more theory is developed in the next chapter. The case p = 2 

will also be discussed them. 



CHAPTER V 

EXTENSION OF VALUATIONS 

The subject commonly known as algebraic number theory is concerned 

with factorization in an algebraic number field. By an.alge~raic 

number field is meant a finite extension field of the field of rational 

numbers. There. are several approaches to this subject matter, and one 

of these is the valuation theoretic approach. Since the concept of 

extension fields plays a central role in the development of algebra~c 

number theory, the question of extending a valuation from a given field 

to an extension field arises. In Chapter.II it was verified that a 

valuation could be extended from a given field to an extension field 

that was complete.. The general theory of extending valuations is of 

such magnitude tQ..at it cannot be explored in detail in th.is study, How

ever, the problem of ext~nding a valuation defined on a complete field 

K to a finite extension field E is within the realm of the theory 

developed in Chapter II. 

The classical theorem known as Hensel's Lemma will be proven. 

With the resulting corollaries, conclusions can be.made about factori

zation of certain polynomials in a non~archimedean field. Once this 

lemma:is verified, it is possible to prove that a non-archimedean valu

ation defined on. a complete field K can be extended uniquely to a. 

finite extension field E. 
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Let V be a valuation ring for the non-archimedean valuation v. 

For any real numbers rL 1 let I= {a: v(x) Lr}. 

Theorem 5.1. The set I is an ideal in V. 

Proof: See. proof of theorem 2.46. 

Let TI be an element of V. The set of all elements of V such 

that v(a) L.. v(TI) form an ideal in V by theorem 5.1. 

Definition 5. 2. Def:l,ne the se.ts J and TIV by J = {a: v(a) L.. v(TI)} 

and . Va {Tib: b is in V}. 

Theorem 5.3. The set TIV is an ideal in V and TIV = J, 

Proof: For each a in J, v(a) .c-_ v(TI) so that v(a/rr.) L..1. Hence, 

a/TI is in V, so that a= Tib for some b in. V. Therefore, 

J C TIV. For each Tib in TIV, v(nb) = v(TI)v(b) L v(TI) which implies 

that Tib is in J. Therefor.e, J ~ TIV and J = TIV. 

Suppose 

f(x) i a.x 
l. 

where the coefficients are in TIV. Then f(x) is in TIV[x]. Now if 

f(x) - g(x) is in TIV[x], the coefficients of f(x) - g(x) are 

divisible by TI. 

Definition 5.4. If f(x) - g(x) is in TIV[x], we write 

f(x) ~ g(x) mod TI. 
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Suppose K is a complete field with respect to a non-archimedean 

valuation v and K = V/P is the associated residue field. The 

canonical mapping of the valuation ring V onto the field K defined 

by g(a) = a + P = i is a ring homomorphism. This homomorphism induces 

a ring homomorphism, h, of V[x] onto K[x] defined by 

(S .1) 

Definition S.S. The polynomial f(x) in V[x] is said to be primitive 

if f (x) rfF 0. The polynomial is said to be manic if the leading coef-

ficient is 1. 

. If 

and f(x)=/= 0 then for some ai, ai + P :f P. This implies that ai 

is not in p so that the greatest common.divisor of the coefficients 

of f is the .unity of v. For K = Q and f(x)~O, we have that . p _.,..,; 

p does not divide all the coefficients of f. The symbol v(f) will 

be used to denote max{v(a0) ,v(a1), ..• , v(an)}. If v(f)..::::. 1 the 

coefficients of f are in V. For v(f) = 1, some coefficient of f 

is a unit and f(x) =/= 0. 

Theorem S.6. Suppose K is a complete field with respect to a non-

archimedean valuation v, and suppose v(TI) < 1. Further, suppose 

{gn(x)} is a sequence of polynomials in V[x] such that 



(5.2) n-1 g (x) == g 1 (x)modTI and deg g (x) = r. n n- n 

Then there exists a polynomial g(x) in V[x] such that 

g(x) = lim g (x). 
n 

Proof: Let 

Since 

v(a(n) 
i 

g (x) 
n 

(n) i 
a. x . 

l. 

g (x) E!l g l(x)modTin-1, (n) - (n-1) d n-1 n n- ai = ai mo TI , 

(n-1)) ( n-1) d h { (n)} - a = v TI an t e sequence a 
i i 

But then 

is a Cauchy 
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sequence in K for i = O, 1, .•• , r. Hence, there is an ai in K 

For each n, such that ai = lim a~n) . 

v(a.) = lim v(a~n)) L 1 and a. is in v. Let 
l. l. l. 

then g(x) 

g(x) ~ i = aix , 

is in V[x] and g(x) = lim g (x). 
n 

Theorem 5.7. (Hensel's Lemma) Suppose K is a complete field with 

respect to a non-archimedean valuation and f(x) is a primitive poly-

nomial of V[x]. Suppose further that go(x) 

ly prime polynomials in K[x] such that 

there exists polynomials g(x) and h(x) 

(a) f(x) = g(x)h(x), 

(b) g(x) = g0 (x),h(x) = h0 (x), and 

(c) deg g(x) =deg g0 (x). 

f (x) 

in 

and h0(x) are relative-

= g0 (x)h0 (x). Then 

V[x) such that 
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Proof: Let 

and 

Without loss of generality, we m.ay choose g0 (x) to be manic. To see 

this note that we may write f (x) = . g0 (x)h0 (x) = [ (l/ ar) g0 (x)] [arhO (x)]. 

If ar ~ I, then (l/ar)g0 may be chosen in place of g0 . Let 

deg f = s. Then deg IL s so that deg h0 .~ s - r. 

Suppose 1T .. is an element in V such that v('IT) < L In order to 

prove the theorem, two sequences of polynomials will be constructed in 

V[x] by starting with g0 and h0 in. K[x], which satisfy the 

following conditions: 

(5. 3) 

(5 .4) 

(5 .5) 

(5. 6) 

n f = g h (mod'IT ), 
n n 

. n~ ~l g :::: g 1 (mod1T ), h I!!! h 1 (mod1T ), n > 1, 
n n- n n-

deg gn = deg g0 = r, and deg h L s - r. 
n 

Then g(x) = lim g (x) and h(x) = lim h (x) will be the desired n n · 

polynomials such that f(x) = g(x)h(x). 

For the case n = 1, we let 

=~ 
~ 

i 
a.x 

1 
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and 

The polynomials So and ho are rel,atively prime in . i<(xl, so that 

for some polynomials k and .e. in V[xl, 'k80 + Ih0 • 1 in K[xl. 

We have I - 81 h'1 • I - s0h0 • 0 and 'kg1 + lh1 - 1•.ks0 +1h0 - 1 ~ 

in K[x]. This implies that the c~efficients of these polynomials are. 

in P. Thus, f - s1 h1 and ks1 + lhl_ - 1 are in P [x]. Let 

d - max{v(f - g1h1>,v<kg1 + .e.h1 - l)}. Then d < 1. If d = O, th.en 

f - s1h1 = 0 or f = glhl' . and the theoreip. is true. If 
d "' 

0, le,t 

1T be an element of v such .that . v(ir) = .d. The coefficients of 

f - g1h1 and . ~g1 + lh1 - l 

kg1 + lh1 - 1 are in 

are in the ideal irV so that . f - S h l 1 

and irV(x]. We now have that f =!lE g1 h1 (mQdTr); 

g1 = g0 ; h1 = h0 ; deg g1 = deg g0 = r; and deg h1 L s - r. 

Suppose now that (5.3),(5.4),(5.5) and (5.6) have been verified 

for m = 1, 2, 3, ..• , n-1. We want to det.ermine polyno.mials g h 
n~ n' 

u and t. such that 

(5. 7) and h = h 1 + irn-lt. 
n n...,. 

There is a polynomial w(x) such that n-1 f-g 1h 1 =Tr w·. n- n-

g h - f 
n .n 

n-1 2n-2 = gn-lhn-l - f +Tr (gn_1t + hn_1u) +Tr uv 

from (5. 7) and 2n - 2::::::.. n, we have that 

n-1 n g h - f == ir (g 1t + h 1u. - w) (mod Tr ) • n n n- n-

Because 

Hence, n f a; g h (modTr ) if and only if we can determine t and u in 
nn 

0 
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such a way that 

g t + h 1u • w(mod7T). n-1 n-

Now, from the definition of g1 and h1 we have kg1 + lh1 - l(modTI) 

which implies that 

(5. 8) wkg1 + wlh1 == w(modTI), 

By the division algorithm there exists polynomials q(x) and u(x) 

such that w(x)l(x) = q(x)g1 (x) + u(x) and deg u(x) <deg g1 (x) = r. 

Since g0 (:!1:) is monic, g1 (x) can be chosen to be monic. Then the 

coefficients of q(x) and hence the coefficients of u(-:x) will be in 

V[x]. Thus, wkg1 + wlh1 :ill!! (wk + qh1) g1 + uh1 ~ w(modTI). Define the 

polynomial t(x) by replacing all the coefficients of wk + qh1 which 

are divisible by TI, by zero. Then 

(5.9) tg1 + uh1 iii'!: w(modTI). 

Since we have determined t and u, we now define gn and h by 
n 

(5. 7). By (5. 4) ' gn-l == g1 (modn) and hn-l == h1 (modn) so that 

gn_1t + hn_1u == g1t + h1u :-w(modTI). This verifies (5. 3) for m = n. 

Also, (5 .4) now follows from (5. 7). Since n-1 and n-1 in TI u 1T t are 

P[x], and h = h = h n n-1 0 so that (5.5) is satisfied. 

Only (5.6) remains. Because deg u(x) < r we have by (5.7) that 

deg gn = deg gn-l = r. Now, if deg h > s - r, 
n 

degt>s-r. Since degw~s and 

(5.7) implies that 

deg uh1 = deg u + deg h1 ~ r + s - r = s 

by (5. 9), we must have that deg tg1 L s. For deg tg1 to be greater 

than s, the coefficient of the term of highest degree in the poly-
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nomial tg1 is divisible by TI, In particular, since g1 is monic, 

the leading coefficient of t is divisible by TI. This is a contradic-

tion; hence, deg h ~ s - r and (5.6) is satisfied. 

The construction is now complete, and by theorem 5.6 there exists 

polynomials 

g(x) 

and 

h(x) 

=~ 
~ 

i 
b.x 

1 

in V[x] such that g(x) = lim g (x) and h(x) = lim h (x). Hence, 
n n 

for each n 

n f (x) == g (x)h (x) == g (x)h(x) (modTI ) 
n n 

so that f(x) = g(x)h(x). Finally, 

h = hn = h0 • Now deg g L r and deg h L s - r. But 

s = deg f = deg g + deg h ~ deg g + s - r 

and 

which implies that deg g ~ r. Therefore, deg g = r = deg g0 • This 

completes the proof. 

The question of deciding whether a given polynomial is irreducible 

or not can be difficult. This lemma gives criteria which is sufficient 

to show that a polynomial is reducible. To illustrate this lemma, 

some examples will be given. Recall that if a polynomial 

f (x) 
i a.x 

1 



with integer coefficients has a rational root r/s then rja0 and 

sja • This elementary theorem is very useful in determining when a n 

polynomial is irreducible over Q. 

Example 5.8. The polynomial f(x) = x2 + 2 is reducible over Q3 , 

but not over Q. 

The only possible rational roots are ±1 and ±2 so it.can be 
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determined that f(x) is irreducible over Q. Now in Q3 the valua

tion ring is o3 and the unique maximal. ideal is P. Since we have 

that f(x) == x2 + 2 == x2 - 4 == (x - 2)(x + 2)(mod 3) then in 

(03/P) [x], f(x) = (x - Z) (x + 2) where (x - 2, x + Z) = 1. By 

Hen$el' $; lemma f (x) factors in Q3 . 

Example 5.9. The polynomial f (x) 
3 2 = x - x + x + 4 is reducible over 

Q5 , but is irreducible over Q. 

By checking ±1, ±2 and ±4, it is seen that f(x) is irreduc-

ible over Q. Now 

f(x) = x3 - 6x2 + llx - 6(mod 5) = (x - l)(x2 - 5x + 6)(mod 5). 

Therefore, in (Q5/P)[x] we can choose g0 (x) = x - l and 

h0 (x) = x2 - Sx + 6. Again by Hensel's Lemma, f(x) g(x)h(x) in Q5 . 

With the aid of Hensel's Lemma, we can now prove some corollaries 

which will be essential in proving that a valuation v can be extended 

to an extension field where the degree of the extension is finite. 



Corollary 5.10. If 

f (x) =~ 
~ 

is an irreducible polynomial over K[x], then 

Proof: First suppose f(x) is primitive. Then v(f) = 1 and 
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v(ai) • 1 for some i. If max{v(a0),v(an)} < 1, there exists an r 

su.ch that 

Let go(x) 

v(a ) = 1 
r 

= f(x) and 

(g0 (x),,h0 (x)) = 1 and 

h0 (x) = 1. 

deg g0 (x) 

for i""r+l, ... ,n. Now 

Then f(x) = g0 (x)h0 (x) where 

= r. Hence, by Hensel's Lemma 

f(x) = g(x)h(x) with deg g(x) = r and deg h(x) = s - r. This 

contradicts irreducibility. Therefore, v(f) = max{v(a0),v(an)}. 

Suppose f is not primitive. Choose a coefficient b such that 

v(b) = v(f). For each coefficient -1 -1 
v(b a.) L v(b )v(b) = 1. 

J. 

-1 
Since b is one of the coefficients and v(b b) = 1, we have that 

- ,....1 - -1 -1 -1 
v(b· · f) = 1. Hence, v(b f) = max{v(b a0),v(b an)}. From the 

relation 
- -1 -1-
v(b f) = v(b )v(f), we have that 

- - -1 -1 -1 
v(f) = v(b)v(b f) = v(b)max{v(b a0),v(b an)}= max{v(a0),v(an)}. 

Corollary 5 .11. If f (x) 

ible polynomial in K[x], then f(x) 

is in V. 

+ b n 

is in V[x] 

is a manic irreduc-

if and only if b 
n 
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Proof: If f(x) is in V[x], then all coefficients are in V. Con-

versely, if b 
n 

is in v, 

max{v(b ),v(b 1), n n-

then 

... , v(l)} • max{v(b ),v(l)} • 1. 
n 

But then bi is in V for each i. Therefore, f (x) is in V [x]. 

Corollary 5.12. Suppose f(x) is in V[x] and that a in K is a 

simple root of f(x). Then there exists an element a in V such that 

a = a and . f(a) = O. 

Proof: In i<IxJ, f(x) = (x - a)h0 (x) where (x - a,h0 (x)) = 1. Then 

there exists g(x) and h(x) in V[x] such that f(x) = g(x)h(x) 

and deg g(x) .. 1. Now g(x) .. x - a for some a in v. Therefore, 

g(x) =x-a=x-a so that a = a. 

Finally, we are ·prepared to show that valuations can be extended 

to extension fields of finite degree. 

Theorem 5.13. Suppose K is a complete field with respect to a non-

archimedean valuation v and E is a finite extension of degree n 

over K. Then v has an extension v1 to E defined by 

(5 .10) 

for each a in E. 

Proof: Since , Na is in K by theorem 1.13, we have v(Na) ::::... 0 and 

so v1 (a)·".::::.. O. If v1 (a) O, then v(Na) = O. But then Na = 0 

which implies that a= 0. This verifies (2.1). To prove (2.2) suppose 

a and S are in E. Then 



127 

n 
v1 (aS) = Y v(N(aS)) 

To show that (2.3) is valid, we will verify that v1 (a).Ll impli~s 

For in E, let p(x) 
m m-1 .. = x + b1 x · + •. , + bm be 

the irreducible minimum polynomial for a over K. Now if v1 (a) L 1 . 

then 

and v(Na) ..::::... 1. Since Na = (±b )n/m, we have that v(±b ) . ..::::... 1 and 
m m 

v(b ) ..::::... 1. By Corollary 5.11, p(x) 
m 

is in V[x] since b is in V. 
m 

But this implies that • • • ' b m 
are all in V • Let 

q(x) p(x - 1). 

Then q(l + a) = p(a) = 0 and q(x) is the minimum polynomial for 

1 + a. We have that 

N(l + a) = (±q(O))n/m = ±[(-l)m + b 1 (-l)m-l + .•• + b ]m/n 
m ' 

which is an element in V. Therefore, 

n . 
v1 (1 +a)= yv(N(l + a))~l. 

This shows that v1 is a non-archimedean valuation defined on E. For 

each a in K, Na = an so that 

n 
v 1 (a) = Vv(Ji) = v(a). 

Therefore, is an extension of v. 
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By theorem 5.13 there always exists a valuation v1 which is an 

extension of v from K to E where [E:K] = n. Several questions 

can now be asked. Is the valuation v1 unique? Is the field E com

plete with respect to the valuation v1? If v is a discrete valuation, 

will v1 also be discrete? The answer to all these questions is affirm-

ative. We pause to consider an example. 

Example 5.14. If p = 4k + 3 then can be extended to Q Cv:::f.). 
p 

Since -1 is a quadratic non-residue modulo p, x2 + 1 is 

irreducible over by theorem 4.28. Then x2 + 1 has a root {':J. 

in the algebraic extension field Q Ck) 
p 

of degree 2 over Q • 
p 

basis for Q ({:1) 
p 

a= a+ b~or 

a =a+ b(- H) 
1 

is u, f:iJ. If a is in Q (H) 
p 

then 

some a. and b in Q • The conjugate of a 
p 

= a - bH so that Na. = a2 + b2 • Then 

is 

A 

This looks very similar to the extension of the absolute value function 

from the real numbers to the complex numbers. 

Denote v1 on Q (M) 
p 

by 

( /v'=i/ ~) 2 

I I I • 
p 

Since 

we have that /t'=i/' = 1. Now if x · is in Qp 
' p 

and I I -1/ (p-1) x < p 
p 

then /v=i x/' = /xi' = /xi < p-l/(p-l). 
p p p Because /l/n! I' = /l/n! I , · 

p p 

we see by example 3.20 that exp is defined on Q c-r:i) for all a 
p 

such that /a.I' < p-l/(p-l). In particular, for 
p 

a. = {::j_y where y 

is in Q , exp({::iy) = cos y + i=lsin y. 
p 

/a./~ < p-l/(p-1)' !xi~ < p-1/(p-l) and 

Suppose a. = x + Y-iY. If 

/y/' < p-l/(p-l) where x 
p 



and y are in then we have 

exp(x + {"::iy) = (e~p x)(cos y + v::l.sin y)• 

Theorem 5.15. The valuation v1 is discrete if and only if v is 

discretE;!. 

Proof: Suppose v is discrete and TI is the prime such that v(n) 

* generates v(K ). For each a in E, log v1 (a) = (l/n)log v(Na) 

129 

where n = [E:K]. Now 
h v(Na) .,. v(n) for some h. If we choose v(n) 

as a base for the logarithm function then 

log v1 (a) = (l/n)log v(Na) = h/n. 

Then v1 (a) = [v(n)l/n]h. The set {[v(n)l/n]k: k is in Z} is an 

infinite cyclic group generated by v(n)l/n so that v1 . is discrete. 

A similar argument shows that v is discrete whenever v1 is. 

The next theorem is stated to complete the discussion on extensions 

of valuations started in theorem 5.13. 

Theorem 5.16. The field E is complete and the valuation v1 is 

unique. 

Proof:. See Van der Waerden, p. 252 or Mosley, p. 74. 

The field Q 
p 

is the quotient field for the ring 0 . 
p Hence, 

Gauss' lemma and Eisenstein's Criterion Cqn be proven in the same 

manner as the proofs given in many beginning abstract algebra books. 

The theorems are stated as follows. 
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Theorem 5 .1 7. A polynomial n n-1 
f(x) = x + an-lx + ... + ao is 

irreducible in V[xl if and only if it is irreducible in K[x]. 

Theorem 5.18. Suppose K is the field Q . 
p 

If all the coefficients 

of n n-1 
f(x) = x + an-lx ' + ... + ao, excluding the leading coefficient, 

are divisible by p but 2 
p does not divide then f is irreduc-

ible. 

The last theorem can be generalized by supposing that K is a 

field with a non-archimedean valuation and that the · ai are in P but 

that is not the product of two elements of P. The same conclu-

sion follows. This generalization will not be needed in further discus.-

sion here. 

Corollary 5.19. The polynomial f(x) = xn - p is irreducible over. 

for each n. 

Corollary 5.20. The polynomial 

irreducible over Q • 
p 

Proof: Let 

(5. ll) g(x) = f(x + 1) 

p 

=~ 
i=l 

f(x) p-1 p-2 
=x- +x + ... +1 

p-i-1 
x 

is 

By theorem 5 .18 g (x) · is irreducible which. implies f (x) is irreduc-

ible. 

Corollary 5.21. The polynomial f(x) = x2 + 1 is irreducible over Q2. 

Proof: The polynomial f (x + 1) = x2 + 2x + 2 is irreducible over Q2 

by theorem 5.18. Hence, x2 + 1 is irreducible over Q2 • 
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With the aid of corollary 5.21 and the discussion following 

example 5.14, we see that x2 + 1 has the root y-::1. in Q2 ({':1.) an 

extension field of degree 2 over Q2. The valuation I 12 can be 

extended to the valuation 12 defined on Q2 <f-i). In this field 

exp ({::ix) • cos x + ~-!sin x for all x such that JxJ 2 < 1/2. 

Consider the field Qp for an odd prime p. By corollary 5.20, 

the polynomial p-1 + 1 is irreducible Q • Let f (x) = x + over p 

be a root of f. The element t is a pth root of unity since 

t 

0 - (t - l)(tp-l + ... + 1) tp - 1. Furthermore, e~ch element of the 

set 2 p-1 {t, t , ••• , t } is a pth root of unity. So f(x) factors over 

Q (t) as 
p 

Hence, in Qp(t), 

p-1 
r--

f(x) = /I (x - ti). 
i;:l 

p-1 
,--

p = f(l) = II 
i=l 

i 
(1 - t ). 

This shows that in the extension field Qp(t), p is not a prime. The 

polynomial g given by (5.11) is irreducible over Qp and 

g(t - 1) = o. 

Thus, g is the minimal polynomial for t - 1. Hence, the norm for 

t - 1 is given by N(t - 1) = p. If I I ' is the extension of 
p 

to we have 

Jt-ll'= 
p 

p-1 
V jN(t - l)j 

p 
-1/(p-l) 

= p < 1. 
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By the same reasoning as in example 3.19, log (1 + x) converges on 

Qp(t) for lxl I < 1. In particular, log t • log 1 + (t - 1) is p 

defined and 0 .. log 1 • log tp = p(log t). This implies that 

log t .. o. Note that in Qp(t), log is not one-to-one. This follows 

because log t - 0 .. log 1, but t ;. 1. 

Suppose t .;. 1 and log t = o. We must have lt-11'<1. p 

1T is a prime in Q (t) 
p 

such that 

some a in the valuation ring V' 

for some S in V'. Hence, 

11TI' < 1 then t = 1 + a1T 
p 

of I I'. Then 
p 

for 

But this implies that tp is in 1 + P, where P is the unique 

maximal ideal for I I . Since the exponential function maps P 
p 

one-to-one onto 1 + P, we have exp x = tp for some x in P. 

Hence, x = log(exp x) = log tp = p(log t) = O, so that 

exp x = exp 0 = :i. 

Therefore, tp = :j.. We can now state the following theorem. 

If 

Theorem 5.22. In the field Qp(t), log t 0 if and only if tp = 1. 

This theorem is a special case of the next theorem which is valid 

in an extension field over Q . It will be stated here without proof. 
p 

The interested reader may refer to Schilling, page 179. 



Theorem 5. 23. If E 

if and only if 

is an extension field of Qp, 

= 1 for some positive integer 

then 

s. 
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log t = 0 

Note in the discussion preceeding theorem 5.22 that exp (t - 1) 

is not defined in Q (t). 
p 

As a final application of theorem 4.26 and Eisenstein's Criterion, 

it will be demonstrated that the fields and are not isomor-

phic for distinct primes p and q. 

Theorem 5.24. For distinct primes p and. q the fields and 

are not isomorphic. 

Proof: . Suppose p and q are odd and p is a quadratic residue 

modulo The polynomial f (x) 
2 

has in Qq by q. .., x - p p as a root 

theorem 4.2(). If Qq is isomorphic to Qp by the mapping 0 then 

0({P) 2 = 0(p) But then f (x) 2 has the root @({p) in = p. = x - p 

Q . 
p 

This contradicts the fact that f (x) 
2 

= x - p is irreducible in 

Q . If p is a quadratic non-residue modulo p choose an integer r 
p 

such that 1 < r < p and r is a quadratic non-re~ddue modulo q. 

Then rp is a quadratic residue in Q . 
q 

The polynomial 2 f(x) = x - rp 

has a root {;; in 

at a contra~ction. 
Q • The previous argument will suffice to arrive 

q 

Now if p = 2k + 1 then by theorem 4.48, the 

polynomial 3 f(x) = x. - p has a root in Q2 • If Q2 were isomorphic 

to we would have that 3 f(x) = x - p has a root in Q . 
p 

we have a contradiction. Therefore, in all cases the fields Qp 

Qq are not isomorphic for p ~ q. 

Again 

and 

To finish the discussion, it is easy to verify the following 

theorem. 
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Theorem 5.25. The field is not isomorphic to the set R of real 

numbers. 

Proof: The number (P is in R. If R is isomorphic to 

same proof·given in theorem 5.24 will suffice to show f(x) 

is reducible in Q , giving a contradiction. 
p 

Conclusion 

the 

- p 

The important Reducibility lemma of Hensel was presented in this 

chapter. Regarding this theorem and valuations, Schilling says: 

,The realization of the close connection between the 
theory of algebraic functions of one variable and the theory 
of algebraic numbers gave rise to the theory of valuations. 
The arithmetic approach of Dedekind and Weber to the theory 
of algebraic functions stimulated the question of whether 
there is an analogue to the power series expansions associated 
to a point of a Riemann surface. Hensel discovered such an 
analogue in his theory of p-adic numbers. He recognized that 
power series expansions can serv~ to clarify properties of 
systems of congruences which frequently occur in the allied 
theories of algebraic numbers and algebraic.functions. In 
his book "Theorie der algebraischen Zahlen" he stated in 1908 
the famous Reducibility Lennna on which a major part of the 
work on valuations is based. 

In this chapter the classical method of extending a valuation with 

the aid of Hensel's lemma was given. Another approach is to define the 

equivalent concepts of general valuations, general valuation rings and 

places. With the aid of Zorn's lemma, an extension theorem for places 

can be proved. Using this theorem on places, it can be demonstrated 

that general valuations can be extended. For an approach along these 

lines, confer with [11] or [16]. 
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