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CHAPTER I 

INTRODUCTION 

A. Background 

Except for the simplei:;t cases, accurate solutions of molecular wave 

functions require the evaluation of many difficult multi-dimensional, 

multi-center integrals. 
1-7 

A considerable amount of work has been done 

in evaluating such integrals over Slater orbitals using sophisticated 

and ingenious analytical techniques. These techniques include the use 

of spherical, ellipsoidal, and bipolar coordinate systems, the expansion 

of atomic orbitals on one center in terms of functions on another, and 

the application of transform convolution theorems. Often the resulting 

"closed" expressions are long sums of terms containing auxiliary func-

tions or infinite series which ultimately must be evaluated numerically 

or by means of recurrence relations. 

8-12 Some researchers have chosen to use Gaussian orbitals which 

lead to integrals that are relatively easy to evaluate analytically, 

even when many centers are involved. The disadvantage is that a much 

more extensive set of Gaussian orbitals is required to attain the same 

precision of the wave function as that attained by using a set of Slater 

orbitals. Using these orbitals, cusps and tails of the wave function 

are difficult to reproduce which in turn leads to less accurate expecta-

tion values of observables. Calculations in which large sets of Gaussian 

orbitals are used in order to obtain high accuracy involve sophisticated 
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studies in data handling. 

Integral evq.luation can be avoided altogether, except for overlap 

integrals; by the use of semiempirical approximations. Sets of such 

approximatioqs are the basis of the HUckel13 scheme and the "PPP Method" 

14 .15 developed by Pariser, Parr ,and Pople for use on rr-bonded electronic 

systems; and the scheme developed by Pohl, Rein, and Appe116- 19 for use 

on cr-bonded electronic systems. Semiempirical app~oximations to the 

integrals become imperative when studying large systems such as organic 

molecules13 ' 20 • 

21 Another approach which has been used .to evaluate molecular inte-

grals is to perform the simple integrations, or in the case of two-elec-

tron integrals, the integration over the coordinates of one electron 

22 analytically , and then perform the remaining integrations numerically 

by means of Gaussian quadrature. 

This study is concerned with the evaluation of atomic and molecular 

integrals by a purely numerical means. Relatively few investigators 

d h h . 23 4 d 1 1 h d haye use t is approac • Frost in 19 2 use a pure y numerica met o 
A 

in which the variance of the local energy H~/~ from the average of the 

local energy was minimized. The points at which the local energy was 

ev;aluated were selected arbitrarily and hence the method was completely 

in,dependent of the concept 'of integration. 24 In later studies however, 

the points and corresponding weights were chosen to be the same as those 

in.dicated by numerical integration rules. 

Boys and Rajagopal have performed SCF calculations using purely 

numerical methods. The systems considered ranged from H2 , with which 

25 26 27 
exploratory calculations were made, to NC + H2 , NH3 , OH3+ , and 

28 c2H4 • The only analytical operations that were performed resolved 
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multi-centered distributions into' a sum of single-center distributions. 

Numerical integration was performed around each center using Riemann sums 

for the radial ·integrations and Gauss-Legendre quadratures for the angu-

lar integrations. Special devices were :Lntroduced to handle the l/r12 

singularity which appeared in the electron-electron repulsion integrals. 

In a _later calculation2,9 involving the LiH system, the resolution of 

multi-centered distributions into single~center distributions was still 

carried out, but a form of Diophantine integration was used and, because 

of the nature of the correlated wave function employed, no special de-

vices were necessary to handle the l/r12 singularity. 

C 3o-4o has d 1 i 1 · t t• th d f th onroy use a pure·y numer ca in·egra ion me .o o e 

32 39 Monte Carlo and Diophantine type to evaluate atomic and molecular 

integrals• There.are several unique ideas employed in his work. The 

f . . d31 h h ki i wave . unction is .. constructe so t at t e net c energy operator 

operating upon it produces terms which cancel, in an additive manner, 

the nuclear attraction terms. A correlation function34 , 36 is included 

in multi-electron: wave fl,lnctions which allow the electron-electron re-

pulsion terms to be canceled in the same manner as the nuclear attrac-

tion terms. The variational principle was not used in Conroy's work 

sipce the errors occurring in the approximate integrals tended to con-

tribute to the lowering of the energy e:, rather than canceling, "with 

the result that thee: obtained may be very seriously in error1133 • How-

ever, it was found that meaningful results could be obtained using the 

approximate integrals when the energy varianc.e, 

v2 = 

was minimized with respect to the adjustable parameters of the trial 
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w~ve function. 

Since the calculation of the expectation v:alue of the square of the 

Hamiltonian was required when minimizing the energy variance, little 

additional effort was necessary to implement'lower bound formulas which 

require such expectation values, 33 38 Conroy ' develop.ed and applied a 

technique using upper arid lower bounds equations to predict a refined 

2 value of the energy by extrapolati9n to U = 0 from the calculated wave 

functions. 

B. This Work 

This work also involves purely numerical integration of the Diophan-

tine type, but the integrals are evaluated to such precision that the 

variational prd,.nciple can be applied with confidence. The precision is 

attained by using a unique ·importance sampling of points.technique which 

not only selects points from import?nt regions of space but also removes 

the singularities originally appearing in.the integrals. 

E,xplicitly correlated wave functions constructed of Slater orbitals 

multiplied by interelectronic.coordinates are employed. The total wave 

function is a linear combination of such products after they have been 

properly antisymmetrized. A combined configuration interaction - explic-

itly correlated wave function of this type is used in this thesis to test 

the numerical method by calculating the ground state energies of the 

lithium atom and the linear symmetric u3 activated complex; both 3-

electron systems. To make the calculations as meaningful as poss.ible, 

a complete set of fully projected spin functions is employed, 

The lithium calculation is performed principally as a test of tech~ 

niques and programs since direct comparisons can be made with the work 
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41 of Larsson· • To show the flexibility of the wave function employed, 
\ 

additional configurations which sifuultarieously include all poss$ble in-

terelectronic coordinate terms are added to the Li atom wave function. 

Such a calculation has never before been made on a system with more than 

two electrons. 

'1he H3 calculation is considered to be an excellent test of the 

usefulness of the techniques developed during the study since explicitly 

correlated orbitals over three centers are involved. Previous bar'!ri>er. 

height calculations on the. H + H2 t' a3 t . H2 + H i;~a~~t:f.pn .have never 

attained "chemical.. accuracy". of .1 Kcal/moJ,e. It was hoped that the· 

adding of e~plicit correlation.terms through interelectronic coordinates 

would give some·insight into the poor energy convergence problem. 



CHAPTER II 

THEORY 

A. Sehr.Hdinger Equation. 

The solution of the time dependent'Schrodinger equation, 

[1] 

-+ subjeat to initial and boundary conditions, is a wave function ~(r,cr,t) 

which cqnt~ins all the information describing the state of the physical 

system at time t. 

If the Hamiltonian H does not explicitly depend upon the time, the 

energy E is a constant of the motion and ~ has the form 

-+ 
~(r,cr,t) = 

_,._ -iE.t/h 
(
--r ' (, 

E ip. r,cr)e. 
i (, 

[2] 

-+ The function ipi(r,cr) depends upon the coordinates of configuration and 

spin space but not upon the time and is a .solution to the Schrodinger 

time independent wave.equation 

A 

Hip. = E.!J!. 
(, (, (, 

[3] 

The description of the electronic structure of atoms and molecules re-
A 

quires the solutions of ·this equation, The Hamiltonian H, in the molecu-

lar case, has the form 
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= N "2. - ~ zY, N E[-~v i.. :.J+.r. 
i ~ y riY ~<J 

1 [4] 
r .. 
~J 

where the N electrons. are indexed by the letters i and j, and the n 

nuclei are indexed by the Greek letter Y. Atomic units have been chosen 

h L 2 d. h such that = m = e = 1. The linear operator -~v. correspon s tote e ~ 

kinetic energy of electron i, Zy is the charge on nucleus Y, Zy/riY is 

the potential energy of interaction due to electron i and nucleus Y, and 

l/r .. is the potential energy of interaction due to electrons i and j. 
~J 

The Hamiltonian is non-relativistic in form; spin-orbital inter-

action and various other terms have been omitted. Also employed is the 

Born-Oppenheimer approximation which assumes the motion of the nuclei to 

be negligible compared to that of the electrons and therefore allows the 

separation of the two motions, Thus the nuclear coordinates appear only 

as parameters in the electronic Hamiltonian. 

B. Variational Method of Solution 

-1 A 

Due to the terms r .. in the many-electron wave equation Hlj; = EiJ;, a 
~J 

direct solution is impossible. However, there exist .techniques for 

solving the equation which theoretically will converge to the correct 

solution to any desired degree of accuracy. The technique that is used 

most frequently, and the one used in this thesis, is the variational 

42 method • It is based on the theorem that if ~ is a trial wave function 

satisfying the correct boundary conditions, then.the normalized expecta-

tion value of the Hamiltonian operator, 

<H>~ = J ~* H~ dT I [5] 
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is always greater than or equal to the lowest eigenvalue of the Hamil-

tonian. The trial wave function normally contains several parameters.,_,,...,-.. -

which can be adjusted to give a minimum for the above energy integral. 

The procedure yields the closest value to the true energy subject only 

to the limitations of the functional form of ~. 

The way in which this theorem is used in this work is a form of the 

method of linear combinations: the true wave function$ for the system 

under consideration is approximated by the trial function ~ which is 

written as a linear combination of well chosen functions: 

~ = "£, c !J. • 
n n n 

[6] 

The expansion functions !J. are linearly independent and possess all of 
n 

the synnnetry of the true wave function ~. 

When the Variational Principle is applied using ~ as the trial wave 

function with adjustable parameters C , a system of linear equations is 
n 

obtained: 

(HI - E3') ~ = 0 • [?] 

The elements of the matrices R and S are defined by 

8 = f tJ.* !J. dT, nm n m [8] 

and the elements of the column vector ~ are the coefficients C • Since n 

only ground states are discussed here, the energy E appearing in the 

above secular equation is assumed to be that of the lowest eigenvalue, 

and the vector C the corresponding eigenvector. 
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C. Construc.ti9n o.f Expansion Functions 

1. · General Structure 

Thepurp0 se of this section b tc:l d:l,scuss the construction of the 

configurations An used in the expa,.nsio.n of the tria,.l wave function 

w .=; EC 6 nnn 
[9] 

For now the discussion will be confined to three-electron systems in 

general and later to the.lithium atom and linear symmetric H3 molecule 

specifically, 

The total wave function and each expa,.nsion term .is a function of the 

coordinates of each elect.ran. These coordinates consist of three posi-

t:i,.on coordinates and one spin coordinate for each electron ma.king w a 

nine-dimensional function of position coordinates and a three~dimensional 

function of spin coordinates. 

More explicitly, the general structure of an expansion function is 

chosen.to be 

[10] 

The subscript n now represents the set of indices (i, j,, k, ·i ',, j ',, k ',, 

q)~ 
+ .. 

The functions cpi(t) = <Pi(rt) are one-electron symmetry orbitals in-

volving only the position coordinates of electron t~ Only those products 

of synunetry orbitals cp.(l) cp.(2) cpk(3) that yield a term 6 having the 
~ J . n . 

symmetry of the ground stat\e are .allowed, T]J.e interelectronic. distances 
\) . . \) .. 

1' .~J = · It. - t ·I ~J are inserted directly into. the wave .equation to re-
1,,J J ~ 

duce correlation error, The presence of these term!:! allows the use of 
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the phrase "e:x:plicitly correlated wavefunction" for describing Eq. [10]. 

Thelast term 8 (1,2,3) is a 
q 

3-electron spin function which is an eigen-

2 function of the operators S and S corresponding to the square of the z . 

total and z-component of the spin angular momentum respectively. The 

" operator A is the antisymmetry operator, 

= - 1- L (-l)p P, 
/3!p 

[11] 

where the sum is over all 3? possible permqtations P of the electronic 

coordinates and p is the parity of the corresponding permutation. Note 

that the function ~ can be written as a linear combination of deter­
n 

minants only if i', j', and k' are all zero, since only then can detel;'-

minants be formed having as their elements one-electron spin functions, 

2.\ Significance of Correlation Terms 

The correlation energy is usually defined after Lowdin43 to be the 

difference between the energy calculated by means of the Restricted 

Hartree-Fock procedure and the lowest eigenvalue of the nonrelativistic 

Hamiltonian: 

= [12] 

The Hartree-Fock model assumes that each electron moves in an effective 

potential created by the nuclei and the averaged field of the other 

electrons. There is no provision .made for the dynamical correlation 

among the individual motions of the electrons due to the instantaneous 

Coulomb repulsions. 

One of the most enlightening ways of considering spatial electron 
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correlation is by associating it with the cylindrical coordinates p,8,2. 

"In-out" correlation cE;tn be associated with the radial coordinate. p; 

that is, electron motion is correlated in such a way that when one 

electron is close to ·an internuclear axis, the others tend to be farther 

out radially. Angular correlation, associated with the coordinate a, 

can be described as the tendency of electrons to stay on the opposite 

sides of an axial plane, The third type, "left-right"·correlation, 

describes the tendency of electrons to avoid each other by staying at 

opposite ends of the molecule. 

The first of these correlation effects can be.described mathemati-

cally by assigning to different electrons occupying the same shell dif-

ferent orbitals which differ only in the radial parts. Angular correla-

tion .can be described by using as orbitals basis functions having strong 

angular dependencies, The "left,..right"correlation can be taken into 

consideration by building molecular orbitals which have a large ampli-

tude in one region of the molecule and a small amplitude in al1 other· 

regions. An excellent example of a study describing electron correla-

tion as has been done here is that of the H2 molecule by McLean, Weiss, 

and Yoshimine44 • 

It is clear that a trial wave function built of configurations, 

each emphasizing a certain type of correlation, would be useful in ac-

counting for a large percentage of the total electron correlation . 
' . 

energy. However, the convergence becomes very .slow after the first few 

45 46 47 terms ' , even if a transformation to natural orbitals is made in an 

48 attempt to obtain the maximum convergence rate • 
\) . . \) .. 

The introduction .of interelectronic coordinates I~ . ...; ~.I i.J=ri • • ?,,J 
1,, J 1:,J 

directly into the trial wave function accounts for all types of elec-
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tronic correlation simultaneously. One way of observing the effect of 

r .. terms on toe correlation is by noting that the amplitude of a wave 
1,,J 

function containing these terms becomes large when r .. is large and be-
1,,J 

comes small as electrons i and j approach one another. 
49 

Hylleraas was 

the first to employ internuclear coordinates and did so in calculations 

involving the helium atom. Convergence was significantly faster than 

had been attained in the past: by using configuration interaction. Cal-

culations using explicitly correlated wave functions have since been 

41 50 51 52 . 53 
performed on lithium ' , bery.l,li:um ' . , and the hydrogen molecule • 

Two less obvious reasons have been noted for the superiority of 

explicitly correlated wave functions. The first is that such wave func­

tions are much better suited for describing the cusp54 at r .. = O. The 
1,,J 

term "cusp" is used to describe the discontinuity of the first deriva-

tive of the wave function with respect to !', . at P • • = 0. The "local 
1,,J 1,,J 

energy" expression HtjJ/tjJ for an exact wave function tjJ is constant and 

equal to the total energy of the system at every point in coordinate 

space. The analogous expression for a trial wave function ~ will not in 

general be constant and, in fact, may possess singularities at r .. = 0 
1,,J 

due to the electron-electron repulsion terms in H. The presence of r .. 
1,,J 

terms in the trial wave function tends to cancel those in the Hamiltonian 

and thus reduce the fluctuation of H~/~. 

The other reason for the superiority of explicitly correlated wave 

functions was noted by Coulson and Nielson55 • They made a quantitative 

study of the "Coulomb hole" defined as the region in space in which tbe 

two electron density function, 

[13] 
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is less than it would be without correlation. In the c.ase of helium 

this region is spheri~ally synunetric 

-+ I - r < r . 1 - Coul. hole 
[14] 

from an.uncorrelated wave function will be greater than the same proba-

bility calculated from the true wave function. 

The striking fact here. is that re 1 h 1 is large--about the same 
OU • 0 e 

size as the atom--and not just the immediate region about the cusp. 

Gilbert56 has continued this line of investigation by taking note of 

Coulson and Neilson's discovery that ·the correlation error in the energy 

of a trial wave function.is proportional to the average electron-electron 

repulsion energy calculated by that wave function: 

2 
E <~> CORR a: 1'!12 

[15] 

The implication of Eq. [15] is that the correlation error is due mostly 

to electron-electron inte.raction with little or no· contribution coming 

from electron..,.nucleus interaction. He then expresses the correlation 

error contribution due to the differential volume element of the Coulomb 

hole as 

dECORR [16] 

The results again show that the region of space in which the true wave 

function produces the greatest contribution to the correlation energy is 

about the size of the atom. Further evidence that the immediate region 
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about the cusp does not contribute greatly to the correlation error is 

that the non-differential part of dECORR approaches zero as 1'12 ap-

proaches zero: 

lim 
1'12-1-() 

f HF(!'i?) - f E~CT (1'12) : 

1'12 
0 • [1?] 

Gilbert sunnnarizes his study by stating that the superiority of an 

explicitly correlated wave function over a configuration interaction 

calculation is mainly due to the fact , that the Coul.omb hole has a much 

simpler structure when viewed relative to an electron than it has when 

viewed relative to a fixed point. 

3. Group Theo+eticq.l Considerations 

Symmetry adapted expansion terms are used in the cal.culations be-

cause of the significant·reduction in effort that comes about. The next 

few paragraphs will outline the group-theoretical considerations that · 

are necessary to show the reasons for the reduction. An excellent group 

theory text which gives a more complete description is one by Hamer-

57 mesh • 

Consider the operator eigenvalue problem 

it t>. v . 
n,1-

v v 
£ /:). • ' n n,-z, [18] 

where the index i is used to label the n independent degene~ate eigen­
v 

functions belonging to the eigenvalue Ev. The index n labels the various n 

energy levels and the associated set of degenerate eigenfunctions. Ail 

of the degenerate eigenfunctions can be considered simultaneously if 



they are pla.ced it). an, nv-dimensional column vector A~. The eigenvalue 

problem becomes 

15 

fj /Ji\) 
n = [19] 

... 
After applying the operator OR corresponding to some symmetry transfor-

mation R, one has 

= [20] 

If H is invariant under the transformation R, then 

= [21] 

and the eigenvalµe equation becomes 

= [22] 

... \) 

which clearly shows tba t the functions (OR 6 . ) are also eigenfunc ti~ms n, i. 
A \) 

of H belonging to the same eigenvalue En' Since the set of functions 

11" • completely spans the space of solutfons of the eigenvalue problem n, i. 
\) A \) 

with eigenvalue E , the eigenfunctions(00 6 .) must be expressible as a n n' n,i. 

linear .combination of these functions. This can be stated in matrix 

notation as 

[23] 

where D is the transformation matrix and the tilde indicates that the 

transpose of the matrix is to be taken. 

By carrying out the above procedure for all the symmetry operations 
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under which the Hamiltonian is invariant, one obtains a set of n - di-. v 

mensional square matrices which constitute a representation. This can 

be seen by considering another transformation S belonging to the symmetry 
,., 

group of the Hamiltonian. The Gorresponding operator 08 acting upon the 

basis gives 

" 11.V -v V 0 L» ;::: ID (S) & • 
S n n 

[24] 

Applying the two operators in succession leads to 

[25] 

But since the product of two symmetry operations is another symmetry 

operation, one also has 

[26] 

Comparing the last two equations the desired result is obtained: 

[2?] 

That is, the matrices transform among one another under matrix multipli~ 

cation in exactly the same way as the elements of the corresponding group 

transform among one another, and hence form a representation with the 

v eigenfunctions & providing the basis for the representation. 
n 

If the highest level of symmetry of the Hamiltonian is considered, 

the represen:tation will be irreducible and the many theorems of group 

theory applying to such representations will be applicable. Since for 

finite groups every representation is equivalent to a unitary represen-

tation, the matrices ID(R) will henceforth be taken as unitary. 
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Since· the symmetry· of the quantum mechanical systems under investi-

gation is known, the most general expansion of the trial wave function, 

Eq. [9], is one in terms of functions that transfo.rm in the same manner·· 

as.the degenerate basis functions of tlie various irreducible representa-

tions·associated with the symmetry group of the system:. 

[28] 

The index n lab~ls the occurrence of the vth irredu~ible representation. 

The application of the Variational Principle using Eq. [28] as the trial 

wave function will result in a secular equation with matrix elements.of 

the form 

A µ 
H 6. .> ' m,,J 

where.the operator H possesses the full symmetry of the sy~tem. By 

[29] 

means.of a group-theoretical analysis it is possible to determine the 

conditions under whiqh the matrix element [29] is zero and therefore 

which of the terms in the sum will contribute to the state being con-

sidered. 

The unitary operators of the symmetry group do not change the 

scalar product, so the matrix element can be written 

v <A • n,,i.. = 

= 

OA Av ' 
< R u n,,.-z.. 

.... .... µ 
OR H 6. .> m,,J 

[30] 

If all of the operators of the gro4p are considered and.the terms added, 

then Eq. [29] can be expressed as 



\) 
<A • n,'/, 

= 1 E <OR Av • 
g R n,'/, 

18 

[31] 

where g is the order of the group. It is understood that the sum is to 

be replaced by an integral and appropriate density function when includ-

ing infinitesimal operators of a continuous group. Allowing OR to oper­

ate on the basis functions, Eq. [31] becomes 

\) 
<A • 

n,1, = 1 ~ <A\) 

g k~Z 0 n, k 

[32] 

According to the orthogonality relations among unitary irreducible repre-

sentations, the last sum can be written as 

= * ok-i 0 •. cS v " 1,J vµ 
[33] 

After inserting Eq. [33] into Eq. [32] and performing the remaining sum-

mations, the matrix element'becomes 

\) 
<A , n,'/, = 

= 

nl ~ A\) <u k n, 
\) 

[34] 

which clearly indicates that unless i = j and µ = v the matrix element 

of any operator possessing the full symmetry of the Hamiltonian is zero. 

\) 
Furthermore, the value Hnm of the matrix element does not depend on which 

degenerate basis function of the irreducible representation is used to 

form the matrix element. 

If only one state is of interest, then only those terms which trans-
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form in the same manner as one of the basis.functions of the irreducible 

representation associated with that state need be included in the trial 

wave function expansion: 

l: c n n 
'\) 

(b. • ) • n, 1.-
[35] 

Terms included which do not transform in the same manner as the state 

under investigation cannot contribute to the energy of that state due 

to the orthogonality conditions that cause the subsequent factoring of 

the secular equation •. 

Since the lithium Hamiltonian has spatial symmetry of the 0(3) 

group, its eigenfunctions are a basis for the various irreducible re-

presentations of that group and therefore may be classified by the 

quantum numbers associated with the operators corresponding to the square 

"2 of the total orbital angular momentum (L) and one component of ·the total 

orbital angular momentum such as that along the Z axiS (L;/• The Hamil­

tonian, Eq. [4], does not include.spin operators and therefore the oper..,. 

--2 ators associated with the square of the total spin (S ) and the com-

ponents of the total spin (S , S , S ) commute with the Hamiltonian, 
,,.:x: y z 
-+ 

The total angular momentum J 1s defined as 

.+ .+ -+ 
J = L + S, 

and its s(luare :12 and components (J , J , J ) also commute with the :x: y z 

[36] 

A A2 A A A A2 A A A 

Hamiltonian. All of the operators (H, L , L , L , L , S , S , S , S , :x: y . z x y z 
A2 A A A A2 A A2 A 

J, J, J, J) do not. mutually commute, but the subset (L, L, S, S) x y z z z 

does commute and is chosen here to describe the state of the lithium 

atom. This mode of description is called L-S coupling and assumes there 



20 

to be no interaction between to.tal o.rbita~ a.lid total spin angular mo-

mentum vectors. Stich an approximation is usually made when working with, 

systems involving a small number of electrons since the spin-orbit in-

teraction is sm~ll in these systems and does no·t cause a ·coupling of 

spin and angular momenta.· The eigenvalues.belonging to ,the operators 

--2 .... --2. " L, L,, S and S will be designated L(L+l), ML, S(S+l), and MS respec-z , z . 
. 2 

tively. The ground state of the lithium atom is.well known to have S 

symmetry. The symbol S implies L = 0 and the superscript is the multi­

plicity, 2S+l. It -follows that S = ~' ML = O, and MS = ± ~. The system 

is doubly degenerate with respect to the two possible values of MS' so 

MS = ~ was arbitrarily chosen for the calculation. 

The linear symmetric H3 complex has D~h spatial symmetry. Its 

eigenfunctions are a basis for the various irreducible representations 

of.that group and therefore may.be classified ·by the eigenvalues of the 

operators assoc:Lated with the compouent of orbital angular momentum 

along the internuclear ax.is (L2 ), the reflection of the electron cqordi­

nates in a plane containing the internuclear axis (o ), and the inver-v 
oil\ 

sion of the electron coordinates through the center of the molecule (I). 

An. argument which considers the electronic spin can be made for the 

linear symmetric H3 complex. It is analogous to the one.made for the 

lithium atom and results in.a mode of description based on the mµtually 

" A A "2 " co:oimuting set of opera-tors L , ov' I, B,, and S . The eigenvalues be-
2 2 

longing to these operators will be designated ML' ±, g oru, S(S+l),and 

MS. The symbol (-) is used ·when the sign of the wave function is 

changed upon reflection and the symbol (+) is used when no sign change. 

occurs. Likewise the symbol (u) is used when the sign ,of the wave func-

tion changes upop. inversion, and (g) is used when there is no change. 
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The lowest state of the linear symmetric H3 complex is well known to 

have the symmetry of the E: irreducible representation of Dmh• The 

symbol E implies ML = 0. The spin state for the ground state n3 complex 

is the same as that for the ground state of Li; that is, S = ~ and 

MS=±~. The multiplicity is again 2 and MS=~ is chosen for the cal­

culations. The ground state of the linear symmetric H3 molecule: is com­

pletely described by the symbols 2E+. 
u 

4. Explicit· Structure of Expansion Functions 

The one-electron orbitals ~ which are used to build the expansion 

functions described at the beginning of this chapter, 

[10] 

are either analytical Slater orbitals in the case of Li or a linear com-

bination of such orbitals.in the case of H3 • Slater orbitals are de­

fined as 

= [3?] 

where the Y0 are the normalized spherical harmonics. These functions 
JV,m 

are cortvenient to use since they have relatively simple radial dependence. 

"2 " a.nd are eigenfunctions of Lt and L , the operators corresponding to the 
zt 

i 
square of the orbital angular momentum and the z-component of the orbi,d.1 

angular momentum respectively of electron t. 

The one-electron symmetry orbitals are classified according to an 

irreducible representation of the appropriate symmetry group in the same 

way as the total wave func~ions. However, lower case Latin.letters 
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s,p,d, etc., are used to identify the orbital angular momentum quantum 

number of orbitals belonging to the 0(3) rotation group and lower case 

Greek letters a, TI, o, etc., are used to identify the z-component of the 

orbital angul-ar momentum of the orbitals belonging to the D 00 h group, A 

principle quantum number n, labeling the occurrence of an irreducible 

representation, is also necessary and will be indicated by an integer 

preceding the symbols describing the symmetry of the one-electron atomic 

orbitals~ A similar notation is also necessary for labeling the D00 h 

one-electron molecular orbitals but is done by using the principle quan-

tum number of the atomic orbitals making up the symmetry orbital and 

simultaneously using an integer superscript equal to the number of atomic 

orbital,s used to build the particular symmetry orbital. 

The· symmetry prop.erties of the expansion terms /J.n considered in 

this work are completely independent of the explicit correlation portion 
N v • . 

(.TI. r. . i.J). An equivalent statement is that the commutator of the 
1.,<J 1.,J. 

explicit'correlation portion of the configurations and any operator Q 
associated with the 0(3) rotation group or the Drx}z group is zero. That 

\) .. . N 
is, the operator Q-has no effect on the product (.TI. r .. 

1.,<J 'Z-J 
'Z-J) and there-. 

fore 

N \) .. 
[Q, • TI . r .. 'Z-J] =· 0 . [38] 

t.<J 1.-J 

A AZ A 

Proofs for the cases Q = L and Q = L are given in ·Appendix A. The z 
A 

Q = J. other cases of interest are Q = a and In the first case the 
v 

application of the operator a is equivalent to changing the sign of the v 
-+ -+ -+ -+ 

x components of the position vector r = xlx + yly + 21 2 for every elec-

tron, assuming that the plane of reflection contains the x and z axes. 
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In the second case, Q-= I, all components of the position vectors of all 

electrons are reversed in sign where the point of inversion is taken to 

-+ 
be the origin of the coordinate system used to define the vectors r, 

Hence, it is now easy to observe that the general term in the explicit 

correlation product 

\) .. 
r .. i-J 

1,,J 

2 2 2 \) . . / 2 
[(x.-x.) + (y.-y.) + (z.-z .) J i-J 

1,, J 1,, J 1,, J 
[.39] 

is unaltered by these symmetry operations. If a component of the posi-

tion vector of one electron changes sign, the corresponding component of 

the position vector of all other electrons must simultaneous.ly change 

sign. Since only the squares of the differences in components are con-

sidered, there will be no net change after application of the synunetry 

operators. For example, if there is a change in sign of the x-components 

2 
of all the electronic coordinates, then the term [x.-x.] becomes 

t- J 

[(-x.) - (-x.)] 2 = 
1,, J 

\) .. 

2 [x.-x.] , 
1,, J 

with no net change in itself or in the term r .. 1,,J containing it. 
1,,J 

A 

Since. the antisymmetrizer A and the explicit correlation term 

\) .. 

[40] 

1,,J) commute with all of the spatial and spin operators that 

have been considered, the remaining product of one-electron orbitals, 

¢.(1) ¢.(2) ¢k(3), 
1,, J 

completely determines the spatial symmetry, and the spin function, 

e (1,2,3), 
q 

[41] 

[42] 
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completely determines the spin symmetry of the expansion .term ~n· 

Only atomic orbitals XnR.111 with i = m = 0 (s-type atomic orbitals) 

are considered in this work. It was decided that the use of Slater 

orbitals having angular dependence was unnecessa~y due to the inclusion 

of explicit correlation terms in the trial wave function. If only s-type 

atomic orbitals are used to build the expansion term, then the possible 

spatial symmetry properties that the expansion term may possess are 

s-type states (L = O, ML = 0) for the atomic case, and E+ (NL = O, 

crv + +) in the linear symmetric molecule case. The proof that ML = 0 
A 

in both cases follows from the definition of the operator L , 
' 2 

and 

£ [$.(1) $ .(2) $k(3)] z 1, J 

since 

A 

L z 

= 

= mi $(t), 
t 

[43] 

[44] 

[4.5] 

If the orbitals $(t) are constructed of only s-type orbitals, then by 

definiti.on mi = 0 and 
t 

E mi 
t 

o. 
.. 

[46] 

The proof that L = 0 is constructed most easily by firs.t expressing 

" A2 A A 
the operator L in terms of the raising and lowering operators L+ and L_, 



25 

" "2 
- L + L • z z [4?] 

All of these operators can·be expressed in terms of one-electron opera-

tors: 

"2 N )2 N 
[48] L = (E L = E L L , 

z t zt t,u zt z u 

and 

" N " N" [49] L+ = E L+ , L = E L , 
t t t -t 

where 

" [50] L+ = L + i L 
Y/ 

L = L - i L 
xt - xt Yt t t 

" " on an atomic orbital XnRm The effect of L+ and L is to increase 
t t 

or decrease respectively the azimuthal quantum number m: 

" 
L+ xnRm = N+ x 

nHm+l) 
if (m<fl), 

[51] 
" L x = N 

nflm 
x 
nfl{m-1) 

if (m>-fl), 

and 

" 
L+ x = 0 if (m=fl) , 

nU 
[52] 

" 
L x 

nfl(-fl) 
= 0 if (m=-fl), 

where N+ and N are appropriate constants which preserve normal.ization, 

The zero reimlts in Eq. [52] come about when the allowed range of m, 

-fl $. m $. fl, [53] 

would otherwise be exceeded. 
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A2 
The result of the operation L on the product of one-electron orbi-

tals, 

£2 [~.(l) •. (2) .k(3)] = o, 
i. J 

[54] 

can \now be shown by considering three steps corresponding to the t'h.ree 
A 

terms in Eq. [4?]. According to Eq. [5~], the operation L_ innnediately 

produces a zero result since. the orbitals ~ (k) are assumed to be con-

structed of a-type atomic.orbitals with i = m = O~ The second and third 

steps likewise give a zero result since 
•. 

l [•.(l) ~.(2) •k(3)] = 0 z 1,, J 
[55] 

A 

by Eqs. C~4] and [46]. Since all three terms of the expansion of L pro-

duce a zero result, Eq. [54] holds, 

The N-electron reflection operator a can be written in terms of 
v 

one-electron operato.rs q 
Vt 

= [56] 

!hus, applying av causes all electron coordinates to -be reflected simul..., 

taneously in an arbitrarily chosen plane containing the internuclear 

axis. Since a-type orbitals are spherically symmetric, any reflection irt 

a plane containing the center of the orbital will have no effect on the 

orbital. A similar statement holds for a linear combination of s-type 

orbitals whose centers lie on an axis and for a reflection plane that 

contains that axis. The conclusion is that an N-electron reflection 

operator applied to a product of N one-electron orb~tals constructed of 

a-type orbitals produces no change. In the present case of a 3-electron 
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linear symmetric molecule, one has 

+l [~.(l) ~.(2) ~k(3)]. 
'l, . J 

[5?] 

The remaining spatial symmetry property that must be considered is. 

that of inversion in the case of the linear symmetric molecule. Before 

this is done, it is necessary to examine the symmetry prop·erties of the 

individual one-electron orbitals. Tables I and II show the explicit 

functional form of the one-electron atomic orbitals used in the lithium 

calculation and the one-electron symmetry orbitals used in.the linear 

symmetric H3 calculation. · As previously stated, the orbitals are con­

structed from s-type Slater atomic orbitals. All of the orbitals used 

in the lithium atom case are centered on the nucleus at the origin of 

the coordinate system (see Fig. 1). 

The symmetry orbitals used in the linear symmetric H3 case are con­

structed of linear combinations of atomic.orbitals centered on the var-

ious nuclei of the molecule. These one-electron molecular orbitals are 

called symmetry orbitals since they possess the symmetry of-one of the 

irreducible representations of the group Da:>h' They are labeled accord­

ingly, as discussed earlier in this section. The subscripts a, b, and 

con the atomic orbitals making up the symmetry orbitals·refer to the 

corresponding nuclei as indicated in Fig. 2. 

+ As indicated, all of the symmetry orbitals are of nscr symmetry. 

The particular linear combinations chosen are the simplest possible 

leading to a linearly independent set possessing the symmetry of the 

point group of the molecule and they are therefore referred to as primi-

tive symmetry orbitals. The superscript enclosed in parentheses refers 

to the number of atomic orbitals used in constructing the symmetry 
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TABLE I 

ONE-ELECTRON ATOMIC ORBITALS AND EXPANSION TERMS 

USED IN THE-12-TERM LITHIUM ATOM CALCULATION 

,Atomic Orbitals E:x;ponents Integration 
Parameters 

cp = ls 1 

cp = 2s 
2 r;:ls = r;:2s = r;;3s = 2.76 

81 = 3.0 

cp = Js 
82 = 0.3 

3 

cp 4 = 2s' r;: 28 , = 0.65 . 

S Expansion Terms 

Atomic Orbital !' .. Exponent 
1-

ti cp • cp • cpk 
i, j' k' 

n 1- J 1"12 !'13 !'23 

1 1 1 4 0 0 0 

2* 1 2 4 0 0 0 

3 2 2 4 0 0 0 

4* 1 3 4 0 0 0 

5 1 1 4 1 0 0 

6 1 1 4 2 0 0 

7 1 1 4 2 1 l" 

8* 1 2 4 1 1 1 

9 2 2 4 2 1 1 

* functions are possible. Two spin 
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Figure 1. Spherical Coordinate System Used for Lithium Atom 
Calculation 
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TABLE II 

ONE-ELECTRON PRIMITI'f!:"'S!i'IMETRY ORBITALS AND EXPANSION 

TERMS USED IN THE 21-TERM LINEAR :SYMMETRIC 

H3 CALCULATION (Rab= Rbc = 1.7924 a.u.) 

-
Symmetry Orbitals. 

ct> = lscr+(l) = ls 
l. g b 

ct> = lscr+(Z) = ls +la 
2 g a c 

.!. - 1 +(2) 
~3 - 80u = ls - ls 

a c 

ct> = 2scr+(Z) = 2s - 2s 
4 u a c 

Exponents 

z; ' = 1. 2796 
lsb· 

z; 1s = z;1s = 1.1303 
a c 

+ L Expansion Terms 
u 

Integration 
Parameters 

S = B = 1.54 1 2 

Symmetry Orbital !' .. .Exponent 
1.-J.. 

. I 1 
An cl>. cl> • ct>k 

i' 
!'13 k' 

1.- J !'12 !'23 

1 1 1 3 0 0 0 
2* 1 2 3 0 0 0 
3 2 2 3 0 0 0 
4 1 1 4 0 0 0 
5 1 1 3 1 0 0 
6* 1 1 3 0 1 0 
7* 1 2 3 1 0 0 
8* 1 2 3 0 1 0 
9* 1 2 3 0 0 1 

10 2 2 3 1 0 0 
11* 2 2 3 0 1 0 
12 1 1 4 1 0 0 
13* 1 1 4 0 1 0 
14 1 1 3 1 1 1 

* Two· spin,functions are.possible. 
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Figure 2, Spherical Coordinate Systems Centered on the 'Three Nuclei 
for the Li.near Symmetric H3 Calculation 

31 



32 

orbital and serves to identify uniquely, along with the principle quan-

tum number n, symmetry orbitals belonging to the same irreducible repre-

sentation. 

The symmetry with respect to inversion through the molecular mid ... 

point of the symmetry orbitals is specified by the subscript g or u. 

The orbital ¢1 = lsb transforms into itself under inversion with no 

change and so has g-type symmetry. The orbital ¢2 = ls + ls also 
a c 

transforms into itsel~ since the ls atomic orbitals on centers a and c 

are simply interchanged. The.orbitals ¢3 = lsa - lsc and ¢4 = 2sa -.2sc 

transform into themselves under inversion except.for a sign change and 

therefore both have u-type symmetry. 

The inversion property of an expansion term.can now be determined 

from the symmetry orbitals used to construct it. The inversion operator 

written in .terms of one-electron operators is 

A 

I = [58] 

A 

and so the eigenvalue of the operator I is just the product of the eigen-

value:; of the N operators It. For the 3-electron problem considered here, 

there are only two ways of obtaining an expansion term with the u-type 

2 + 
symmetry of the L ground state desire~. One way is by taking a prod~ct u 

of two g-type symmetry orbitals and a u-type symmetry orbital: 

J [¢. (1) ¢ . (2) ¢k (3) J 
i.g Jg . u -1 [¢. (1) ~. (2) ¢k (3)], 

i.g Jg u 
[59] 

or another way is by taking a product of three u-type symmetry orbitals: 

A 

I [¢. (1) ¢. (2) ¢k (3)] = -1 [¢. (1) ¢. (2) ¢k (3)]. [60] i.u JU u i.u JU u 
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A subscript u or g has been added to the symbol for a general symmetry 

orbital <j>(t) to indicate the inversion symmetry. 

Expansion terms can now be constructed for lithium and linear sym-

metric H3 using the corresponding one-electron orbitals.given in Tables 

I and II. Any 

relation terms 

product of three orbitals with the general explicit cor..:. 

i' j' k' (r12 r 13 r 23) is allowed, subject only to the restrictions 

that the resulting ,expansion term satisfies the symmetry conditions of 

the true wave function and that it is not related to another possible 

expansion term by a simple.permutation of electronic coordinates. The 

first condition guarantees that no effort'will be lost by including 

expansion terms which do not transform according to the irreducible re-

presentation of the ground state wave function. The second condition 

assures linear independence of each term with all others. In the work 

presented here the configurations are systematically constructed by re-

quiring the indices i, j, and k of~ to conform to the inequalities n 

i s. j s. k i, j, k = 1,2,3 ••• i', j', k' = 0,1,2 ••• , [61] 

and then rejecting those terms with improper symmetry, or if one of the 

equalities in condition [61] holds, those terms which are linearly.de-

pendent with a term occurring earlier in the sequence. 

Additional terms which did not include <1> 4 = 2s' were rejected in 

41 the lithium case in order to allow direct comparison with Larsson' s .. 

work. Also, after the fifth term the systematic addition of terms was 

suspended in favor of adding appropriately chosen ones as discussed 

later. In the H3 case, the systematic addition of terms was suspended 

only for the addition of the last one. The total number of terms con-

sidered in each case was dictated by the computer time available. 
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s •. Construction of Spin Eigenfunctions 

The ground states of both the lithium atom and the linear synnnetric 

H3 comple~ are doublets (S = 11), The z-component of the total .spin has 

arbitrarily been chosen as ~ from the two possibilities MS = ± ~ • There 

exist two 3-electron spin eigenfunctions with these properties. Con-

struction of these spin eigenfuncti9ns by either the genealogical con-

4 ' 58 
struct~on method or by the projection operator method yields the same 

orthonormal eigenfunctions 

G1(1,2,3) = ..!.. [a(l)S(2)a(3) - S(l)a(2)a(3)], 
12 

G2(1,2,3) = ..1. [a(l)S(2)a(3) + S(l)a(2)a(3) - 2a(l)a(2)S(3)], 
16 

[62] 

where the functions.ci(t) and S(t) are one-electron spin.eigenfunctions of 

" 2 " the operatars St and S such that 
2t 

s; S(t) = ~(~ + 1) S(t), 

S a(t) = ~a(t) 
2t· 

" S S(t) = -~ S(t) 
2t 

<a(t)la(t)> = 1, <S(t)IS(t)> = 1, <a(t)je(t)> = o, 

[63] 

The spin functions G1 and G2 are not used in this work, but instead 

special linear combinations of these functions are used•: 

[64] 
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The properties imposed on e1 and e2 are that they be orthonormal and that 

the permutation of electron spin coordinates 1 and 2 on spin function e1 

produces e2 • This can be written symbolically as 

[65] 

.... 
where the superscript a indicates that the permutation operator P acts 

only on spin coordinates. The transformation from spin functions G1 and 

a2 to e1 and e2 can be thought of as a rigid rotation in spin space which 

maintains the orthonormality of .the functions but positions them in such 

a way that Eq, [65] holds. Imposing these conditions requires the 

coefficients in Eq. [64] to be 

= 1/12 

c21 = -1//2 • 

The spin functions e1 and e2 become 

[66] 

1 1 1 1 1 
e1 (1,2,3)=(- + 2)a.(l)i3(2)a.(3) + (- -2) S(l)a.(2)a.(3).,.. - a.(l)a.(2)6(3), 

2/3 2/3 /3 

[6?] 
1 1 1 1 1 -

e2(1,2,3)=(213 - 2)a.(l)i3(2)a.(3) + (2/3 + 2) i3(l)a.(2)a.(2)- /3 a.(l)a.(2)13(3). 

These are the spin functions employed by Gianinetti, et, a1. 59 in their 

calculation involving the linear symmetric H3 complex. 

The reason for using spin eigenfunctions with the permutation 

symmetry of Eq. [65] is that only one spin function need be e~plicilty 
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considered, The other spill function is included by violating the rule 

that no configura,tion be considered that differs from any:other expan-

sion te.rm only by a permutation of coordinates in. the spatial part~ 

Such a violation would in general produce a function which is linearly 

dependent with all other expansion terms: 

E C /1 , n n n [68] 

"V where P is some permutation operator which acts only on the spatial 

part of the wave ft,mction. "V If P is chosen to be the permutation opera-

"V tor P12 that interchanges the spatial coordinates of electrons 1 and 2, 

then becaus.e of the way the spin functions have been constructed, Eq. 

[68] becomes 

[69] 

11jik i 'k 'j' q=l = - 11ijk i'j'k' q=2' 

These equations indicate that expansion terms containing spin function 

e2 can be constructed in two ways; either explicitly as indicated on the 

right side of the equations, or by interchanging the electronic coordin-

ates 1 and 2 in the spatial part of the configuration but retaining spin 

'·function e1 as indicated on the left side of the equations, 

In order to show that Eq. [69] holds, it is necessary to use the 

relations 

[P, A] = O, PA = 

" where P is an arbitrary permutation operator which can be written as a 
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Av Acr 
product of a spatial permutation P and a spin permutation P : 

A "V"cr p = pp • 

Combining the two previous equations, one obtains the relation 

" " If P is chosen to be P12 , then this relation becomes 

= 

"cr -1 Acr 
since p ~ 1 and (P12 ) = P12 • Using this operator relation on the 

general product wave function 

one obtains Eq, [69]. 

In some cases expansion terms differing only in the spin function. 

6 are linearly dependent and therefore are not considered. By examin~ 
q 

ing Eq. [69], this is seen to occur when i = j and k' = j'. In this 

case the expansion terms differ only in sign. 



CHAPTER III 

EVALUATION OF MATRIX ELEMENTS 

A. Integration Over Spin 

To.solve the time independent .SchrBdinger wave equation by the 

method of linear combinations, the evaluation of matrix.elements of the 

Hamiltonian operator and the unity operator appearing in Eq. [?] is re-

quired. The symbols B and S respectively are used to represent these 

matrices with components 

Hnm = <t:. IH' t:. > n m 

and 

snm = J ·~ * !::. dv da - < t:. I !::. > • n m n m 

[?O] 

The symbols !::. and !::. represent general N•electron expansion terms, n m 

and the integration is over both space and spin. 

The following discussion indicates the steps taken to "integrate" 

over the spin coordinates leaving only the spacial integration to be 

performed by numerical methods. 

The general 3-electron expansion term considered irt this work is 

given by Eq. [10], 

!::. n 
[?1] 

except, as explained in the last section, q can always be taken as 1 if 

38 
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the proper -permutation of spatial coordinates is .carried out. It is 

assumed here that any such permutations have been"completed for the term 

under consideration. The following notation is,introduced in order to 

keep the algebraic equations relatively simple. Only the subscripts are 

reta~ned when writing the spatial part of an expansion term: 

A = A[i ;i k i' j' k' e1J., n . [72] 

where now the order of the indices ia important•and corresponds to the 

electronic coordinates as indicated by Eq. [71]. The spin eigenfunction 

e1 given,.by Eq. [67] is expressed briefly as 

[73] 

Again the sequence of symbols is important, and the constants di are 

d· = - ~ ~. 
3 13' 

[74] 

When the antisymmetrizer acts on the product wave function as in 

Eq. [72], new spatial products with permuted indices appear and are de-

noted by the following symbols: 

A 1 = i j k i' j' k,, 
n 

A 2 = k j i k' j' 
. , 

n i. , 

A 3 = k i j j, k' 
. , [76] n i. , 

A. 4 = ·n j i k i' k' 
. , 

J , 

A 5 = j k n 
i k, i' . ' J , 

A 6 = n 
i k j j, i, k,. 
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Using these symbols and the definition of .the antisynnnetrizer given by 

Eq. [11], Eq. [72] can be written as 

!::i. = A[1::i.1 e1J n n 
5 6 + d3 (1::i. - A )] aSa n n 

[76] 

The usual technique followed in reducing the matrix element· 

0 = <l::i. Jo A > nm n m = [77] 

" of an operator 0 totally symmetric with respect to interchange of elec-

tronic coordinates is to eliminate one of the antisymmetrizers by making 

use of the following properties associated with it: 

[A,,.O] = O, AA=INTA. [78] 

The dagger is used to indicate the hermitian conjugate. However, in this 

study it was discovered that a greater precision was attained when per-

forming the numerical integration over the spatial coordinates if both 

antisymmetrizers were retained. After the substitution of Eq. [76], and 

the analogous equation for A , into Eq. [77] and the "integration" over m 

spin is carried out, it is seen that all cross terms involve different 

products of one-electron spin functions and so drop out due to the spin 

function orthogonality relation given by Eq. [63]. The spin portion of 

the direct terms "integrate" to unity leading to the following expression 

for the matrix element: 
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0 = <6 18 6 ~ = nm n m 

1 f {[d (61 a2) + d (63 - a4) + d (65 - 66)]* 3T ln-n 2n n ·Jn n 

X a[dl(6m1 - a2) + d (63 - a4) + d (a5 - a6)] m 2m m 3m m 

+ [79] 

x o[d ca5 - 64) + a ca1 - 66) + a ca3 - 62)] lm m 2m m 3m m 

It should be noted that this matrix element is over complete 3-

electron expansion terms and therefore involves an integral over 9 di-

mensions. 

All ope~ators 8, except one, t~at will appear in Eq. [79] are simple 

scalar functions representing either the unit.operator or the electron 

-nucleus and.electron~electron interaction potentials~ The operator 

which b not a simple scalar function is the kinetic energy operator 

[BO] 

1 
The action of this operator on the spatial product.an is considered in 

Appendix B. The result for any other product 8i can be obtained by per. n 

muting the indices of the equations appearing in Appendix B. 

Additional accuracy is obtained when performing numerical integra-

tion of the kinetic energy integrals if they are symmetrized by using 

the self-adjoint property of the k~netic energy operator: 



T m ~[<A IT A > nm n m 
" + <T 6 IA >] n m 
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[81] 

The potential energy matrices are auto.matically hermitian by 

symmetry and the kineti.c energy matr:i,x is hermitian by Eq. [81], The 

hermiticity of these matrix elements is independent of tne numerical 

integration procedure and the corresponding accuracy. 

B. Spatial Integration 

1. 
-1 1 Inclusion of the 2' •• and l';y Singularities in the Density Function 
1,J "' 

The most troublesome problem in the use of numerical integration 

techniques for the direct evaluation of the Hamiltonian matrix elements 

of an atomic· or molecular system is the 

Numerous techniques have been developed 

-1 presence of the 2' • • singular! ty. 
1,J 

to handle the problem, . but all 

appear to have limitations. Examples include the moving of the singu-

60 larity to the surface of the sampling volume and the additive cancel-

lation of the singularity by means of the kinetic energy term acting on 

an explicitly correlated wave function. Moving the singularity to a 

surface produces only a slight improvement and additive cancellation 

places a significant restriction on the flexibility of a conventional 

basis set61 , or requires an unconventional basis set and a non-varia-

31 tional.approach to the solutions such as those used by Conroy or Boys 

and Handy62-65,29. 0 h 1 h i 1 i bl ne at er attempt to so ve t e s ngu ar ty pro em 

25 was that made by Boys and Rajagopal · , By an argument using approximat~ 

ing Gaussian functions for the electronic distributions, they found that 



-1 the singulati ty could be removed by replacing the r . . terms by 
1-J 
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r:~ + [r~. + u~ u1/3J-113 , 
1-J 1-J '/, J 

[82] 

where U. represents the product of the weight w. and the.non-differential 
'/, '/, 

part of the volume element 'dv i associated with a numerical integraticm . 

point for the ith electron. Although this approach is applicable to the 

problet11s considered in this work, the use of expression [82] and similar 

devices consistently gave.poorer results than if the singularity was 

simply ignored. Possibly the differences in success are due to the 

numerical integration technique that was used; Boys and Raj.a,.gopal used 

a Gaussian quadrature when applying expression [82], but a Diophantine 

type of numerical integration is used here. 

The method used in· this work to remove the singularity does. not in 

any way restrict the flexibility of the basis set and involves no a,p-

proximations to the integrals other than that resulting from using a. 

finite number of integration points. Sobo166 calls 1..t the incZ.usion of 

the singularity in the probability density funation. 

-1 method it is possible to simultaneously remove the r .. 
'l-J 

larities from the integrand, 

By means of this 

-1 
and riY singu.-. 

The method can be expressed formally by considering a general n-

dimensional integral: 

I "" 

A transformation of variables from t to n may be performed with the 

Jacobian 

[83] 



ax1 ax2 ax 
_..?!. 

an1 an1 an1 

ax1 ax2 Bx n 
an 2 an 2 

. . • an2 

J= .J 

so that Eq. [8.3] becomes 

or 

I ... in:<1,1, ... 1> tE~<n>J Jan, 
n-(O,O, ••• 0) 

I = 1-n ... c1,1, ... 1> tEt<n>J a+ 
+ ( ) p[i(n)] n ' n= O,O,; •• O 
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[84] 

[85] 

-1 
where p = J is the function describing the density of points in.t-space 

that results from a mapping of a uniform distribution of points from the 

+· 
n-space unit hypercube 

[86] 

The numerical approximation to the integral can now be written in 

general as 

I ~ I' E 1} = 1, 
i 

[Br] 
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where the 1i are weights depending on the integration scheme and -:Ji is 

the ith n-dimensional integration point.· Integration p0ints ·are now 
' +. + ' 

selected in n-space, the corresponding vector x is determined by the 

transformation equations, and the transformed integrand and weights are 

computed and summed~ 

Usually the transformation is chosen so that p will have.a form as 

-1 
close as possible to I f, where I is the value of the integral. This 

approach is called impoPtanae sampZing since if p « f ,the density of 

point's will be greatest in the "most 'important regions· of space"; i.e., 

where f is largest. The approach is also known as minimization of 

-1 VaPianae since, as p approaches I f in functional form, the variance of 

the transformed integrand from the value of the integral I, 

2 
(J :;: [BB] 

approaches zero. The concept is especially applicable to Monte Carlo 

numerical integration because the error in the integral approximation 

using random, integration points. is proportional to the .square root of 

the variance. 

-1 
If indeed it is possible to find a transformation such that p =I f, 

which requires even more effort than simply finding I, then by Eq. [87], 

it can.be seen that any integration rule that integrates a constant 

exactly will give the exact value for the integral. 

It is most important to note that if the integrand f[°i] in Eq. [8.3] 

exhibits singular behavior, then the transformed integrand f[°t~)]/ 

p[l~)] in Eq. [85] can be made to exhibit no singular behavior if the 

transformation is chosen so that p will contain a singularity of the 
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s~me nature as the one present inf. The singularity in the transformed 

integrand will then be removed through cancellation. 

The above procedure can be carried out without the knowledge of the 

+ + 
transformation equations between the coordinates x and n by choosing the 

+ 
integ:ration points directly in x-sptl.ce according to the distribution 

p[i] instead of mapping a uniform distribution of points in i-space onto 

+ 67 x-space, Or, as suggested by Ellis and followed extensively in this 

.+ 
work, several uniform distributions may be mapped onto X':"'space in such 

+ 
a way that a set of points in X':"'space is constructed according to the 

desired clensity function. In this way it is possible to constn,i:ct dis-

tributions of points that "track" the atoms of a molecule.or complex, 

+ + 
The corresponding single transformation from n-space to x-space having 

the desired composite density function may be very complicated and ex..:. 

pressible.only.after the composite density.function is written in terms 

d 32 of products of series, each involving a single indepen ent variable • 

+ Once the points in x-space are determined according to some distribu-

tion p, then Eq, [87] must be used to evaluate the integral of the func-

tion f with those points, 

Including the singularity in the density function for the evalua-, 

tion of quantum mechanical integrals was first done by Cowdrey and 

68 -1 Reeves to remove the nuclear attraction term riY' In this work a 

general sampling procedure is presented for the first time which will 

remove a singularity over a manifold, such as the electron-electron 

singularity -1 
r .. • 1,,J 

Before describing in detail the point selection technique used in 

this work, a simple example will be presented which shows clearly the 

relatio'Qships among the transfol'."mation, the Jacobian, and the density 
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funation. Consider the integral over all 2-dimensional space· of some 

function f: 

[89] 

A transformation can be made to polar coorciinates 

[90] 

with the Jaaobian 

J = 1" • [91] 

The integral written in terms of the new coordinates is 

21T 00 f[x 1 (r,, 6) , x 2 (r , e ) ] 
I = 6~0 r~O 1 dr de, [92] 

1" 

where 

x1 (r,6) = 1" cos 6 
[9.3] 

x 2 (r, e) = 1" sin e • 

Additional independent transformations on the coot"dinates .1" and e can 

be performed to normalize the range of integration to the interval 0, 1 

so that Eq. [92] will correspond exactly .to Eq. [85]. Neglecting the 

normalization of·the range of integration, the density function is 

p 
1 [94] = 
1" 
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Figure 3. Distribution of Points in i-space With Density Function p = 1/r 
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~- 1 
'!he density of points in x-space will vary as r if the points are mapped 

from a.uniform- distribution inn-space [(r,,e)-space]. The most 'straight 

forward way of selecting points uniformly in (r,e)-space is to choose 

the poitits using equal inte.rvals of r and. e. 'Ihis ·has been done for a 

few points and the.results mapped onto the x1 - x2 plane in Fig. 3. By 

inspection it is easily seen that the points do vary in density _accord-

ing to.Eq. [94]. Using these points, the integral in Eq. [89] may be 

approximated by, 

I "' I' = 

... i [ ( i i ( i i J w f x1 r ,,a ), x 2 r ,,e ) 
4 ~~~~ ....... ~,.._.,......,......,......,......~ 
1- 1 

ri 

[95] 

where the 1i depend on t;he numerica.1 integration rule that is used. 
. 1 

Finally, if f contains a singularity of the form r' then the singularity 

will be canceled ~Y the density function •. 

In order to show-the specialization of the importance·sam.pling 

technique used in this work to remove a singul~rity over a manifold, a 

reli!-tively simple case of a one-center, two-electron integral will first 

be considered: 

[96] 

The object of the transforma.tions that follow is to select integration 

1 points with a density not only proportional, to ~ but also proportional . r 
-~lrl -~22"2 12 

to functions which simulate.· e and e 

After transformation of the coordinates. of electron 1 from rectang-

ular to spherical coordinates, Eq. [96] becomes 
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I= ff [9?] 

where 

o :;;: e s 1T, 

An additional transformation is made on th~ coordinates of electron 1 

in order to normalize the range of integration to a unit hypercube and· 

simultaneously simplify the density function to the desired form: a 

function proportional.to an exponential function which is taken as 

-slrl 
(it • 'Jhe transformations from the coordinates (rl, el' 4>1) to 

Cn1 , n2, n3) are 

= 

The Jacobian of the transformation is diagonal: 

-1 
J 

= 

After the transformation, Eq. [9?] becomes. 

[98] 

[99] 



I= ff 

'Ihe final distribution function for electron 1, 

= 

-s1ri 
e 
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[100] 

[101] 

-1 
differs from the desired density function by the fact.or r 1 • Another 

transformation for n1 , instead of the one given by Eq, [98], could have 

-1 
been considered which would have eliminated the r 1 factor. It is 

allowed to remain in this --example since it is present in the density 

function used to make the actual calculations performed during the 

-1 
course of this study. · The presence of the r 1 . factor guarantees the 

cancellation of the nuclear attraction singularity appearing in the 

Hamiltonian matri~ elements. 

When an integration point (n1 , n2 , n3) is selected from a uniform 

distribution in the 3-dimensional unit cube, the corresponding coordin-

ates (r1 , e1 , ~l) .can be determined by inverting Eq, [98]: 

= 

= 

1 - 2n 
2 

[102] 

The transformation equation for r 1 has been written symbolically since 

it can only be performed numerically, To do the inversion numerically, 
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69 an iterative, second order Newton-Raphson method is us.ed: 

(n+l) 
1'1 

= 1' (n) 
1 

+ h(n) 
' [103] 

= 

2 (n) 
8 1 1'1 

[~-.....,.-~~-=--"'-~....,....,~~~-
8 1' (rz) + 1 - exp[811'1. (n)] (1 

1. 1 - n ) 
1 

where the superscripts in parentheses represent the iteration number. 

The method is very fast, acquiring 12 significant figures in about four 

iterations. 

A technique will now be presented which selects·the integration 

points of electron 2 according to.a distribution functio~ proportional to 

- 8 21'2 
-1 e 

1'1· 2 and ---
1' 2 

'!he general approach is an extension of that suggested 

70 
by Sobol • 

It is clear that any selec.tion technique for electron 2 with a 

-1 density functic;m proportional to 1'12 must depend on the position of 

electron 1. The dependence of the density function of electron 2. on 

the distances 1'12 and 1'2 can most easily be incorporated by taking a· 

confocal~elliptical coordinate system for electron.2 with one focus at 

the nucleus and the other focus at the position of electron 1 generated 

through Eqs. [102]. The coordinates are defined as usual, 

-1 < µ2 < 1 [104] 

where these coordinates may be expressed in terms of interparticle 

coordinates indicated in Fig. 4: 
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Figure 4. Confocal-Elliptical Coordinates Used to Obtain Density 

-+ -+ Function for Electron 2 of the Form D2(r1 ,r2) 
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•, 

µ2 ~ (r2 - rl2)/rl, [105] 

+ 
and <1>2 is the angle of rotation about the vector r 1 which is now con-

sidered to be fixed. The volume element'written in terms of the inter-

particl~ coordin~tes is 

[106] 

W~th this tran$formation, Eq. [100] becomes 

-z;;lrl -z;;2r2 
I.., ff 

e _ dn1 dn 2 dn3 
e 

clJ,2 dµ2 d<1>i • [10?] 
2 8 lrl 2 

s 1 e rlr2 
L;; rl 

The transformation is sufficient to cancel the r 12 singularity; however, 

an additional transformation is necessa-,:-y·to,normalize the l!'ange of in-

tegration to a unit cube and make the final distribution of points for 
-s2r2 

eleetron.2 proportional to an exponential function (e ). This can 

be accomplished by the transformations 

[108] 

:z 

The Jacobian of the transformation is diagonal: 
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-1 J • 

[109] 

With the inclusion of this final transformation, Eq. [107] becomes 

[110] 

The density function for electron 2, as a result of transfo+mations 

[105] and [108], is 

[111] 

The term in square brackets does not introduce.or remove a singularity 

since 

. . l' 
lim 1 1 ] 
:r> i"~o [1-exp (-s 2:r> 1) [112] 

Once the integrat::f.on point (n4 , n5, n6) has been selected from a 
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uniform distribution, the corresponding .spherical coordinates C,!)2 , 62, 

~ 2 ) can be obtained by means of three ~teps. First, Eq. [108] must be 

inverted giving 

[113] 

$. .. 
2 

Using these coordinates, Eq. [105] can be inverted giving 

[~14] 

+ .+ 
where 62 is the angle between the vectors r 1 and r 2 • 'Ille last .step re-

quires the use of simple geometry. Making use of the projections indi-

cated in Fig. 4 and the line segment 

the spherical coordinates 62 and $2 are found to be 

-1 $2 ~ $1 +tan · ( 0 , 
cos 2 

sin 6 1 sin$' 2 2 
sin a1 + sin 02 cos IP2 

The extended range of the inverse tangent functfon, 

cos a ) • 
1 

[115] 

[116] 
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-1T < 
-1 tan · (y I :f:) [11?] 

has been assumed in Eq. [116] which requires consideration of the signs 

71 of the numerator and denominator of the argument • 

It is easy to show that the density functions D1 , D2, and D12 = 

D1D2 are all properly normalized. 'Ihat is, the following integrals over 

all space are equal to unity: 

+ 
for any r 1 , [118] 

-1 The expansion of r 12 in terms of the associated Legendre polynomials is 

required for proof in all but the first integral of Eqs. [118] (see 

Appendix C). 

In order to construct a single density function suitable for use 

in all of the integral app~oximations, the preceding ope'f;-ations are 

symmetrized by alterQately selecting the points for electrons 1 and 2 

according to density functiona v1 and D2 respec;tively, then selecting 

the points for electron 2 according to density function D1 followed by 

seleq.tion of points. for electron 1 from D2 • 'Ille final form of the 

numeric.al.integration approximation rule [8?] can be written as. 

[119] 

since, by the discussion above, the term in square brackets is the func-
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+ 
tion describing the d.ensity of integration points in x-space. If f con-

tains the r~~ singularity as in Eq. [,96], then it will not appear in Eq, 

[119] since the density ft,Jnction D2 contains the.same singularity and 

causes a cancellation. And if f contains exponentials of (-r1) and 

(-r2) then, due to the fact that D1 and D2 also contain similar exponen­

tials, the variance given by Eq. [BB], will be low, and relatively 

higher accuracy is expetted by using the distribution indicated in Eq, 

.+ 
[119] than by simply using a uniform distribution in X•space. 

The above technique will now be extended to a system of many elec-

trans moving about many centers. Again, for clarity, a specific example 

is considered: three arbitrarily positioned nuclei and three elec;,trons. 

The procedure requires the use pf the density functions D1(riY) &nd 

D2 (tiY'tjY) defined by E\f:s" [101] and [111] for all electrons i and j, 

and for all centers Y. Using these functions, a completely symmetric 

point selection density function is. constructed by including all possi-

ble perm:utations of electrons i, j, and k, and the centers Y, Y', and 
:+. + 

Y" when sampling first from D1 (riY)' then D2 (>riY' ,rjY') and finally from 

D1 (rkY''). The composite distribt.Jtion is independent of the ,particular 

sequence (D1 , D2, D1) of individual density functions and can'be written 

-1 The factor (162) is necessary for normalization of the density func~ 

tion 

[121] 
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sinc.e there are 3 X 3 x 3 X 3! . = 162 terms in the sum. The operator 

P permutes electronic coordinates and the sum over the permutations in-

eludes al,l 3! terms. ,Appendix C establishes the.normalization of any 

term in the expans,ion [120] and thus verifies Eq, [121]. 

If a new symbol D2 is defined which allows the factoring of the 

-1 r . . term from D2, 
1,,J 

[122] 

and.tQe three centers are explicitly designated by a, b, and c, then 

Eq. [120] can be written 

[125] 

+ . + + 
It is easily seen that the density function D(r1 , r 2 , r 3) cancels the 

singularities due to electron-electron potential energy terms since 

these teJ:;"ms can be written 

1 

r12 
1 - = 

r13 r23 + r12 1'23 + 1'12.~~J.'3.: 
r12 rl3 r23 , 

[124] 

An analogous argument .can be constructed to show the·cancellation of the 

nuclear attraction singularities. 

The spacial integration of all matrix elements. Eq. [?9], appearing 
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in the H3 calculations is performed'using the distribution of points 

D(!1 , t 2, 't:3) described by Eq. [120] or Eq. {1.25]. The adjustable para­

meters 8 1 and 8 2 that appear in the density functions D1 and D2 are con­

strained to be equal and are determined so that the estimate of the 

variance, given by Eq. [BB], is a minimum. 

In the lithium case a density function is used that is completely 

analogous to Eq, [120] but which spans only a single 'center. Ttua para-

meters 8 1 and 8 2, however, were adjusted independently in order to 

achieve minimum variance, Tile use of the density 

-1 in the evaluation of integrals not possessing riY 

' (+ + +) function D r 1 , r 2 , r 3 
-1 and !'. . singularities 
1.-J 

resulted in a convergence rate.not significantly slower than the rate 

+ + + 
which occurred when a density function analogous to D(r1 , r 2 , r 3), but 

not possessing _these singularities, was used. 

2. Diophantine Numerical Iritegration 

'lhe Diophantine numerici:il integration method formulated by Richt""' 

72 73 39 myer and Haselgrove and extended by Conroy was-used to evaluate 

the 9-dimensional integrals in this work. In one case the Monte Carlo 

integration technique was used for comparison purposes, Only a brief 

outline of the methods will be presented here; a more thorough treatment 

can be found in the original papers or in the texts by Hammersley and 

Handscomb 74 , and by Davis and Rabinowitz 75 • 

The general form of the integral to be evaluated is 

+ 

I= f rul d; 
+ 

P (n) 
= [126] 

where the region of integrat:I,on is over a d-dimensional unit hypercube 



O<n.:sl 
- J j = 1,2,3, ••. d. 

The integral is approximated in the simplest Diophantine method by 

•1!1 ,_,i F(+z..n .) 1 N I [ + I I-:~ I' = i.~- w a !{ m~l F( 2 (m-~) a.] ) , 
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[126] 

[12?] 

where the a.. are constants and the brackets []indicate that an appro­
J 

priate integer is to be subtracted from the argument so that the result 

lies within the interval -~, ~. The a.. are chosen here to be a set of 
J 

irrational numbers that are linearly independent over the rational 

numbers x.; that is, 
J ' 

N 
·~1 x . a. • r:F o 

J J J /i, 

+ 
unless x = 0. [128] 

When irrational numbers are used, the technique is called open Diophan-

tine integration since the corresponding set of integration points 

l2[(m-~);JI never repeats. The method is called alosed Diophantine 

integration when rational a.. -(linearly independent over the integers) 
J 

are used since the set of integration points will then repeat when the 

number of points exceeds the common denominator of the a. •• Whether the 
J 

a.. are taken to be rational or irrational numbers, it can be shown that 
J 

the integration points generated in Eq. [12?] are uniformly distributed 

within the unit hypercube'., 

The open form of Diophantine integration was used in this work 

since the number of points need not be predetermined, If the closed 

Diophantine ia-tegration had been used and convergence was unsatisfactory 

+ for the number of points chosen, then a new vector a. would had to have 

been selected with a common denominator equal to the number of points 

desired, and the integration repeated. 
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The analysis of the error associated with the approximation [127] 

to\the integral I is somewhat detailed arid therefore only.the.conclusions 

will be stated here, If the Fourier coefficients in the d-dimensional 

expansion of the int.f!grand, 

.+ + 
2'1T-Z..n' n 

e ' [129] 

satisfy the inequality 

[130] 

for t > 1, for some Mt' and :with zero factors on the right removed, then 

the error is of "order N-111 : 

Error( II - I' I) = O (N-1). 

The meaning of the last equation is that as N + oo, then I+ I' at the 

same rate as N-l + 0, 'rhe inequality [l30], with t = 1, may be applied 

to bounded functions F(~) with a finite number of discontinuities within 

the unit hypercub~; with t = 2, it may be applied .to bounded continuous 

functions with discontii;iuities in their first partial derivatives; with 

t = 3, to functions with continua.us first derivatives but discontinuous 

second derivatives; and so on. The· term 'Diophantine' is used for 

describing the method since the theory of Diophantine approximation is 

used in proving that Eq. [131] follows from inequality [130]. 

The integrals considered in this thesis easily satisfy the inequal-

ity [130] since the singularities have been removec;l from the integrands· 

by an appropriate choice of the point selection density function. · 

Therefore the integrands are at least bounded and continuous. 
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If the integral [125] is approximated by 

I ::: I' [132] 

where. the components of the vector ~ are selected at random from a µni-

form distribution on the interval 0 , 1, then the technique is called 

Monte Carlo integration. Provided the integrand is bounded, the error 

associated with this method is of order N-~ and proportional to the 

square root of the variance o2 defined by Eq. [BB}. 

'lhe superiority of the Diophantine integration over the Mpnte.Carlo 

integration .is clear, with a convergence of O(N-1 ) opposed to O(N-~); 

but the superiority of closed Diophantine integration over the open type 

. 76 d 1 is not as apparent • Because of these facts an the re ative ease of 

application, the open form of Diophantine integration was used in this 

work. 

The set of irrational a.. used here.is not the."opti)llal set" capable 
J 

of best integrating .some "worst possible function" defined by the be-

havior of its Fourier coefficients. Such a set has never been deter-

mined for nine dimensions and would require an extensive amount of com-

puter time. The set of a. actually used in the integrations is made up 
J 

of square roots. of prime numbers. The prime numbers were selected so 

+l 
that the first integration point n has its components approximately 

I 

evenly distributec;l on the interval 0 ,1. Shown in .Table III are the 

prime numbers P. such that a. . = ff: , and the corresponding components 
J J . J 

1 n. of the first integration point: 
J 

1 
n .. = 

J 
IZ[(m-~)a.JI m=l. 

J 
[133] 
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TABLE III 

OPEN Dl.OPHANIINE INTEGRATION;.PARAMETERS 

j P. CL "" /P: 1 ! 2[ c1 ... ~)a .JI n. == 
J' J J J' J 

1 101 10,049 ••• 0. 049 ••• 

2 97 9. 848 ••• 0 .151. •• 

3 3 1. 732 ... 0. 26 7 ••• 

4 13 3. 605 ••• 0. 394 ••• 

5 157 12.529 ••• 0.529 ••• 

6 29 5. 385 ••• 0. 614 ••• 

7 127 11. 269 ••• 0.730 ••• 

8 47 6 .855 ... 0. 855 ••• 

9 167 12.922 ••• 0. 922 .•• 



Relatively good results are expected with the use of the a. given in 
J 
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Table III because of the lemma, proved by Haselgrove73 , that for most· 

sets of numbers a., the en:or is not substantially worse than that which 
J 

wo1,1ld.occur using an optimal set~ 

The pseudo-random numbers that•are used for the Monte Carlo com­

parison were generated using the IBM-supplied subroutine RANDU 77 which 

has been converted for double-precision arithmetic. 

Once the integrals are evaluated, the matrix eigenvalue problems·. 

78 
are solved using the QCEP-supplied computer subroutines CEIG and NESBET 

that have been slightly modified for use on IBM/360 computers. The main 

program used for the linear symmetric H3 calculations and all subroutines 

are listed in Appendix D. The main program for the lithium calculation 

is very similar to the H3 main program; the only differences are that it 

allows two integration parameters s1 and s 2, and it is specialized to 

a single center. Double-precision arithmetic was used throughout all 

programs and subprograms. 



CHAPTER IV 

CALCULA'rIONS 

A. Choice of Parameters 

The choice of parameters used in the calculations on tne lithium 

atom and the linear synnnetric H3 complex is heavily dependent on the pre ..... 

vious large scale calc~lations made on these systems. The purpose in so 

choosing thi= parameters in.this way was not only to use the best para~ 

meters without resorting to the variation of non-linear parameters, but 

to be able to allow direct comparison with these earlier studies. 

For the lithium atom case, the orbital exponents and the first six· 

41 . 
expansion terms are the same as those u,sed by Larsson· in his study 

(see Table I). The first expansion term approximates most closely the 

groun~ state with two electrons in a ls inner shell and one electron in 

a 2s outer shell. Expansion terms 2 through 4 can be considered as ex-

cited state contributions of the same symmetry as the ground state. Ex-

pansion terms indicated with an asterisk are actually two terms, each 

with a different spin function and expansion coefficient. 

The fifth and s~xth expansion functions are the first to include 

explicit correlation factors. It is expected that these terms would 
;:> 

contribute significantly to the lowering of the energy since the corre­

lation factors r 12 and r~2 will cause the two electrons occupying the 

same orbital to avoid each other. The remaining three expansion terms 

are added in order to investiga~e the importance of terms simuitaneously 
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containing more than. one !' .. factor. These terms simultaneously contain 
1,,J 

all· possible !' •. factors with a power of 2 if the factor involves elec­
i.J 

trons within the same orbital and a power of 1 if they do not. The 

capability of including expansion terms which simultaneously.contain all 

possible!' .. factors is evidence of the nearly complete generality of 
1,,J 

the approach used in this study. 

Although identically the same paramet'ers are used for the first six· 

expansion te.rms in this study and Larsson' s study of the lithium atom, 

the spin basis functions are not the same, Both studies do, however, use 

the complete set of spin eigenfunctions; thus a direct comparison of re-

sults is possible, which provides a means of checking the accuracy of the 

computer programs. 

Of the three recent and exte.nsive ab initio calculations· on the 

46 
linear synnnetric H3 activated complex by Shavitt, et. al.; Riera and 

79 59 
Linnett ; and Gianinetti; et. al.; the work of Gianinetti, et, al. is 

relied on most heavily for the selection of parameters in this work. 

The principle reason for this choice was that they made use of 2$ atomic 

orbitals which are usually used in trial wave functions involving ex-

plicitly correlated expansion terms. Another reason for the choice was 

the inclusion in their work of a small.scale full configuration interac-

tion calculation which allows a simple.means of checking the computer 

programs when multiple centers are involved. 

Presented in Table IV are the parameters used in the full conf igu-

ration interaction calculation performed for testing purposes. The.para-

meters are identical to those used by Gianinetti; et. al. for the same 

calculation. The phrase "full configuration interaction" applies when all 

possible linearly independent molecular orbitals formed from a given 
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TABLE IV 

ONE-ELECTRON SYMMETRY ORBITALS AND EXPANSION TERMS USED 
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basis are used to cqnstruct all possible linearly independent'expansion 

tenns which do not include explicit correlation facto.rs. In this case 

the given basis is a ls atomic orbital on each of the three centers. 

The parameters used in the linear symmetric H3 activated complex 

calculation involving explicit correlation terms is given in Table II. 

The ls·and 2s atomic orbital exponents and internuclear distance are the 

same as those used by Gianinetti, et. al. in their most extensive calcu-

lation, a 200 tenn full configuration interaction calculation using ls,, 

2s,, 2p ,, 2p ,, and 2p atomic orbitals on each center as a basis. The x y z 

expansion terms 1-3 are the terms that contributed most to the 200 tenn 

wave function as indicated by the corresponding expansion coefficients. 

Expansion tenns 5-13* are of the same form as the terms 1-3 except that 

1 they contain a single r .. correlation factor included in all possible 
1.,J 

ways. Although the results from the lithium atom calculation show that 

the contribution due to an expansion term containing multiple correla-

tion factors is very slight, one such tenn (term 14) was included in 

the linear symmetric H3 calculation. 

Two more linear symmetric H3 calculations were performed which were 

in every way identical to the calculation just described except that the 

internuclear distance was changed to Rab = Rbc = 1.7650 a.u. and 1.8198 

a.u. The purpose of these calculations was to determine the force con.,-

stant·associated with the "symmetric stretching vibration" at the saddle 

point. 

B. Numerical Results 

Since each of the 162 distributions making up the 3-center composite 

distribution given by Eq. [120] must be sampled the same number of times, 
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the total number of integration points must be a multiple of 162. The 

progress of the calcul~tions presented here was monitored at the end of 

each cycle defined as the processing of 13 X 162 = 2106 9-dimensional 

integration points. The same 2106-point cycle was retained for the 

lithium c~lculations. Since the !-center cpmposite density function in 

the lithium case contains only 6 terms, each term is sampled 2106/6 = 

~51 times during each cycle. 

The elements of eight matrices were tabulated at the end of each 

cycle. These included the kinetic energy, electron-nucleus interaction, 

electron-electron interaction, overlap, and the normalized variances. 

2 2 
a /I , of each of these elements. 

As stated earlier, the integration parameters 8 1 and 8 2 contained 

in the density functions D1 and D2 are chosen so that the average 

normalized variance of ali the ,matrix elements is a minimum. Figure 5 

shows this average as a function of 8 1 and 8 2 for the lithium case in­

volving only terms 1-3 of Table.I when 2106 points are used to evaluate 

the integrals. If the two parameters are constrained to be equal, then 

2 2 
the minimum average <cr /I >av is equal to 3.30 when 8 1 = 8 2 = 1.05. 

However, if there are no constraints places on the parameters, then the 

minimum.average variance drops to 1.28 at 8 1 = 3.0 and 8 2 = 0.3. Even 

though the integrals may be far from convergence, the change in the 

variance with respect to 8 1 and 8 2 is much greater than the change in 

the variance with respect to the number of integration points. For ex-

ample, if 8 1 = 3.0 and 8 2 = 0,3, the average normalized variance changes 

from 1.2792 when only 2106 points are used to 1.2848 when 208,494 points 

are used. 

In the linear symmetric H3 case a minimum normalized average var-
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iance of 1.27 was attained when using 6318 points even with the con-

straint that 8 1 = 8 2; therefore it was deemed unnecessary to vary each 

parameter independently. Figure 6 shows <o2/I2> as a function of av 

s = s 1 = 8 2 with a.minimum occurring at 8 • 1.54. 

The calculated energies of the lithium atom are presented in Figure 

7 for every step in the extension of the trial wave function. That is, 

the matrix eigenvalue problem (H - E~)C x 0 is transformed to (H' - El.) 

C' = 0 and.the eigenvalues an<;l eigenvectors are determined each time an. 

expansio~ term is added to the trial wave function. In this way.there 

is no contribution to the energy due to the expansion terms that are 

added later. The energies are plotted against the number of integration 

points so that the convergence.properties of the wave function can be 

observed.both with respect to the number of expansion terms and with re-

spect to the number of integration points. The full length horizontal 

lines represent the analytical solution to the matrix eigenvalue problems 

for each step. The first amalytical energy was calculated independently 

using standard integral formulas and the remaining analytic~! energies 

were taken from Larsson's study41 • Since the calculations corresponding 

to the last three energies E1_7, E1_8*, and E1_9 have not been carried 

out using analytical techniques, no exact energy values are available. 

The horizontal line labeled E(ACCEPTED) is the energy value calculated 

from experiments after· subtracting contributions due to relativistic and . 

80 finite nuclear mass effects . • This energy was determined by the use of 

a semi-empirical scheme, based on conventional perturbation theory, by 

accurately extrapolating the total electronic energy and ionization 

potentials as a function of the nuclear charge. 

The analytical, accepted, and final numerical energies are tabu-
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lated in Table V along.with the potential and kinetic energy ratios 

(PFJ/KE), the eigenvector of the final null).erically calculated wave func­

tion ~1-9 , and the overlap of each term of 11> 1- 9 : <iI>1- 9 Jc1- 9ti >, Al-
n n 

though only three-four figures are significant·when describing the final 

lithium atom energies calculated in this work, seven are presented to 

show the relative improvement in the energy with the addition of .each 

expansion term, 

Figure 8 shows'the contributions to the energy of expansion terms 

7, 8*, and 9 when added to the non-explicitly correlated trial wave 

function consisting only of terms 1-3. The analytical and numerical 

results for terms 1~3 are reproduced from Figure 7. 

The results of a Monte Carlo calculation on the lithium atom using 

a trial wave function of only,term 1 is shown in Figure 9 (upper curve) 

along with the corresponding results obtained with the open Diophantine· 

calculation (lower curve). The analytical.energy and Diophantine re-

sults for term 1 are reproduced from Figure 7. 

The calculated energies for the linear symmetric H3 test case, a 

full CI (ls), are presented in Figure 10. The value of the analytic· 

energy, indicated by the horizontal line, is that given in the work by 

G. . . 1 59 ianinetti, et, a • The values for the analyt~c and final numerical 

energy are given in Table VI along with the final numerical value for 

the potential and kinetic energy ratios (PE/KE), 

Becaus.e of the large range of energies and the small energy differ-

ences, two figures are required to. display the results of the linear 

symmetric H3 calculation described by the parameters in Table II. 

Figures 11 and 12 present the energies of .the H3 complex for every step 

in the extension of the basis as a function of the number of integration 
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1 
1,2* 
1-3 
1-4* 
1-5 
1-6 
1-7 
1-8* 
1-9 
1-.co 

* 

8. n 

114 000 
124 000* 
224 000 
134 ooo* 
114 100 
114 200 
114 211 
124 111* 
224 211 

TABLE V 

RESULTS OF LITHIUM CALCULAT~ON FOR THE PARAMETERS AND VARIOUS NUMBERS OF 

EXPANSION TERMS GIVEN IN TABLE ·r. THE TOTAL NUMBER OF INTEGRATION 

POINTS IS 208,494. THE ENERGIES ARE PLOTTED IN FIG. 7. 

~ (a •. u.) Ff (a.u.) (PE/KE)N 
l-9c <~1-~lcl-9 "f1 > d 

b c 
(Ref.~ 4l)a (This Work) n n n 

-7.412461 ~7~413264 ~1.947 0.650 0.861 
-7.417823 -7.418650 -1.998 -0.0966, -0.0807 -0;0723, -0.0568 
-7.430033 -7.430632 -1.996 -0.163 -0.0640 
-7.444700 -7.445210 -2.001 0.126, 0.119 0.0726, 0.0572 
-7.472382 -7~472356 -2.001 0.233 0.250 
-7.473999 -7.474415 -1.999 -0.0485 -0.0524 

-7.474425 -1.999 -0 .000728 - -0.0153 
-7 .474592 -1.999 0.000769, 0.000596 a\=trITTJ13:-,:: O • 00 7 84 
-7.474626 -1.999 0.000156 0~00168-

-7.478069 

Expansion terms with both possible spin functions have been added. 

a 1 l~ 
Energies are from Larsson's work except for E which was calculated independently and E = E (accept-

ed) which is from Ref. 80. 

bAlthough only three-four figures are significant, seven figures are included to show the relative im­
provement in the energy with the addition of each expansion term. 

cExpansion coefficients for the trial wave function containing all of the expansion terms listed in the 
second column. 

~he overlap of each expansion term of the complete wave function with the complete wave function. --.J 
Cl' 
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points:~ For ease of compariSon the_ energies E1_4 and E1_5 are plotted 

ort both figures. The range of the estim.ateq exact:energy of the H3 

system at the top of tl;ie barrier is taken to be 7-11 Kcal/mole above 

the energy of the.H2 + H system• The zero point of the scale on the 

81 right_ is taken at .. 9 ~ 8 Kcal/tnole. · above the energy of the H2 + H system, 

the most recent estimate to date fo.r the H3 complex at· the top of .. the 

barrier. 

The.final numerical energies for the linear symmetric H3 cem.plex 

are tabulated in Table VII along with the.-most .recent ·exact estimate, 

the potent,ialand kinetic ·enei-gy ratio, the eigenvector of the final 

1-14 '' 
nUJqerical calculated wave function w · , and·the overlap of ·each term 

of. w1- 14 with w1-l4 : <w1- 14 I c~-14 t.n>. · Although only. four figures are 

significant when describing th_e final H3 complex ,energies calculated 

in this work, seven are presented.tc;> show the relative improvement .in 

the energy with the addition of .each expansion term. 

Figure 13 shows the converg~nc~ properties of the energies of·the 

thr~e 21-term linear symmetric .H3 calculations·with parameters that 

differed only in the internuclear distance. The· final ertergies and 

potential to kinetic en,ergy ratios are listed in·Tal?le VIII. These three 

~nergies, along with the.corresponding internuclear distances, were used 

to fin4 the force conetant k associated _with the "symmetric stretching 

vibration" at the saddle point. For irtf,initesimal displacements, this -

force constant is defined by the equation E - E • ~(R - R ) 2, where. 
. 0 0 

B~ • R0 are the energy and internuclear distance at the ,saddle point 
. t'; 

and R =. Rab =. Rbc •. The calculatec;l value of ~at the end o.f each 

integrat,ion cycie is_plotted in Figure 14. 

The·comp~ter time required to obtain the _lithium atom results pre-
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TABLE VI 

RESULTS OF THE FULL CI (ls) CALCULATION ON THE H3 ACTIVATED COMPLEX 

FOR THE PAR.(\METERS GIVEN IN TABLE IV. THE TOTAL NUMBER OF INTE-
1 

1-3 

GRATION POINTS IS 86,346. THE ENERGIES ARE PiiOTTED IN FIG. lOa 

~ (a.u.) 

(Ref. 59) 

-1.6106 

~ (a~u .• ) 
(This Work) 

-1.6107 

(PE/KE)N 

-2.005 

81 
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1 
1,2* 
1-3 
1-4 
1-5 
1-6* 
1-7* 
1-8* 
1-9* 
1-10 
1-11* 
1-12 
1-13* 
1-14 
1-oo 

TABLE VII 

RESULTS OF THE·H3 ACTIVATED COMPLEX. CALCULATION FOR THE PARAMETERS AND VARIOUS NUMBERS 

OF EXPANSION TE~S GIVEN IN TABLE II. THE TOTAL NUMBER OF INTEGRATION 

POINTS IS 86,346. THE ENERGIES ARE PLOTTED IN FIGURES 11 AND 12. 

~ (a.u.) (PE/KE)N 
1-14c <41 1-14 101-14 fi > 

d 
fi ab c n (This Work) ' n n n 

113 000 -1.182417 -1.488 -0.00985 -0.0102 
123 000* -1.591908 -1.845 0.0585, 0.209 0.0901, 0,371 
223 000 -1.605270 -1.888 0.0822 0.208 
114 000 -1.613066 -1.938 0.00301 0.00219 
113 100 -1.621626 -1.974 0.0403 0,0873 
113 010* -1.623268 -1.978 0.0304, -0.0266 0.104, -0.0740 
123 100*. -1~623553 -1.977 -0.00420, 0.0196 -0.0159, 0.0865 
123 010* -1.627838 -2.012 0.0242, 0.0385 0.123, 0.181 
123 001* -1.634601 -2.028 0.0171, -0.0305 0.0742, -0.226 
223 100 -1.634757 -2.028 -0.00103 -0.00718 
223 010* -1.635524 -2.027 -0.0105, 0.00944 -0.110, 0.0651 
114 100 -1.636335 -2.037· 0,0496 0.0754 
114 010* -1.636534 -2.036 -0.0138, 0.0224 -0.0375; 0.0514 
113 111 -1.636646 -2.036 -0.00178 -0.0382 

-1.65884 

a 1-00 . . . -E corresponds to the estima.ta of the exact energy given in Ref. 81. 

*,b,c, and dSee corresponding footnotes in Table V. 
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Figure 13. Convergence Properties of Linear Symmetric H3 Energies 
With Respect to 21-Term Explicitly Correlated Wave 
Functions Describing Different Internuclear Dis­
tances 
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TABLE VIII 

RESULTS OF 21-TERM EXPLlCITLY CORRELATED WAVE FUNCTION CALCULA-

TION.S ON THE LINEAR SYMMETRIC H3 SYSTEM WITH DIFFERENT INTER­

NUCLEAR DISTANCES. THE TOTAL NUMBER OF INTEGRATION POINTS 

IS 86,346. THE ENERGIES ARE PLOTTED IN FIG. 13. 

R=R =R (a.u•) · ab be 

1. 7650 

1~7924 

1.8198 

E (a. u.) 

-1.636006 

-1.636646 

-L636997 

(PE/KE) 

-2.031 

-2.036 

..,2.041 
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sented in Figure 7 and Table Vis about 4.5 hr. and that'required to 

obtain the linear symmetric H3 results presented in Figt.tres 11 and.12 

and Table VII is. about 3.5 hr. using the IBM 360/65. The time varies 

88 

approximately linearly with the number of expansion terms in the trial 

wave function. 

C. Discussion 

-+ -+ -+ 
The integration point distribution fl.,mctions D(ri,r2,r3) given by 

Eq. [120] for the H3 case and the analogous distribution functic;>n in­

volving only one center for the lithium case appear to have.been well 

2 2 
chosen when the average normalized variance <cr /I >av is considered. 

When the parameters 8 1 = 3.0 and 8 2 = 0.3 (determined as shown.in·Figure. 

2 2 5 by m;t:nim~~.1ng the variance <cr /I > · using only terms 1-3 of the lith-
~ ~ . 

ium trial wave function) are used in the calculation involving all of 

2 2 the terms listed in Table I, the variance <cr/I > is found to be equal av 

to 1.91. And when the parameters 8 = s 1 = s 2 = 1.54 (determined as 

shown in Figure 6 by minimizing the variance <cr 2/I2>av using only the 

H3 full CI (ls) wave function of Table IV) are used in the calculation 

2 2 involving all.of the terms listed in Table II, the variance <cr /I >av 

is found to be 1. 6 7. These values for the normaliZed variance are very .. 

68 good considering that the smallest value Cowdrey and Reeves obtained 

was 2~56 for a.3-dimensional 2-center integral using an integration 

point density function specially constructed for that integral. 

The convergence rate of the energies failed to be as rapid as the 

inverse of the .. number of points N'"'.'l as predict;:ed by the error analysis 

associated with open Diophantine integration. However, the rate of con­

vergence was som.ewhat ·faster than N-~ in the. lithium case and signifi-
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_1 

cantly faster than N ~ in the H3 case. The correctness of the stated 

convergence rates can be verified by considering the most ill-conditioned 

case; the lithium atom calculation involving only the first expansion 

term. 1 The greatest deviation of the energy E from the exact value be-

yond 150,000 integration points is E1 = 7.411008 when N = 168,480. The 

ip.equality 

1 w< 1 . 
E 1 . ana ytic 

1 
< -
N~ 

[134] 

indeed holds with the substitution of E1 · from Table V as seen by 
analytic 

the resulting numerical values, 

0.000006 < 0.000196 < 0.002436, [135] 

and thus verifies the above statements. 

The complexity of the calculation appears to have an effect on the 

rate of convergence. The presence of both antisymmetrizers in Eq. [??], 

the use of symmetry orbitals in the H3 case as opposed to atomic orbi­

tals in the lithium case, and the use of a large number of expansion 

terms all contribute to the complexity of the calculations and also re-

sult in an increase in the rate of convergenceof the energies. Indeed, 

200,000 nine-dimensional integration points were required in the lithium 

calculations to achieve the same accuracy (1 Kcal/mole) as obtained using 

80,000 integration points in the H3 calculations. 

The results of the Monte Carlo calculation on the lithium atom using 

only term 1 of Table I is presented in Figure 9. Although the rate of 

-~ convergence is slightly more rapid than N predicted by the associated 

error analysis, it is 4 clearly slower than the rate of ~onvergence of the 
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analogous c~lculation using open Diophantine integration. 

As shown in Figure 7, the lithium atom energies plotted for each 

step in the extension of the trial- wav:e functic;m converges to- the 

analytical energy.to within,l Kcal/mole,-but;only-after 200,000 nine-

dimensional integration points have been used to evaluate the integrals. 

The expansion terms 7-9 defined in Table I which simultaneously 

contain all possible interelectronic distances a~e found to contribute 

little to the reduction in the energy of the lithium atom. Referring 

to Table V, it can be seen that the. contribution to the energy of these 

terms is about 0.0002 a.u. or 0.13 Kcal/mole. The contribution of these_ 

terms to the total-w~ve function, as measured by the amount ·of overlap 

with the total wave function (listed in the last column of Table V), is 

seen to be the smallest of all the terms making up the wave function. 

Even when these terms are added to a trial wave function containing only 

terms 1-_3 with no explicit correlation, their contribution iS still -

relatively small as can be seen in Figure 8. The reduction .in energy 

is not as great ,as that which originally resulted when the uncorrelated 

term 4* of Table I was added. 

The ratio of potential and kinetic energies, referred to as (PE/J{E) 

in Table V, 'is consistently _close to -2 .O which indicates, according to 

the_virial theorem, that-the atomic orbital exponents are-nearly optimum 

even for this relatively small basis. 

Before discussing the linear.symmetric H3 results, an example of a 

rather rec~nt s1:udy-will.be described which was made in order·to deter-
',-

mine the barrier heiih"'t'o'ftlie''reaction 

[,156] 
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The barrier height is defined as the energy difference between the H3 

activated complex and the reactants H + H2, 

[137] 

and is the lowest relative translational energy at which reaction can 

occur. The"activated complex" is the name given to the intermediate 

state when it possesses maximum energy with respect to the reaction 

path and minimum energy with respect to motions at right angles to the 

reaction path, and is usually designated by the symbol +. · 

The experimental study described here was made by LeRoy, Ridley, 

and Quickert82 who used the spin states of the hydrogen nuclei to trace 

the progress of the chemical reaction. The term 'para-hydrogen' is 

used to describe the H2 molecule when the spins of the nuclei are anti­

parallel; the term 'ortho-hydrogen' is used·when the spins are parallel. 

Equation [137] can be written as 

[138] 

to indicat.e the reaction describing the conversion of para-hydrogen to 

ortho-hydrogen. The rate of the above reaction is found to be directly 

proportional to the concentrations of the reactants: 

Rate= k[H][p-H2], [139] 

where k is the proportionality constant called the· .. rate constant. The 

hydrogen atom concentration was found experimentally be measuring the 

temperature rise (increase in re·sistance) brought about by H-atom com-

bination on a current-carrying wire. The para- and ortho-hydrogen 
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molecule concentrations were determined by measuring the ~rea under the 

peaks produced by a gas chromatograph which had recieved 'njection 

samples fr.om the reaction vessel. 

The. rate.constant k was determined experimentally by means of the 

equation 

[140] 

The positions 0 and 3:o refer to. the ends of· the chrqmatograph ·column 

and f ~s. th,e linear flow rate of the carri.er gas. The ratio on the left 

is related to the areas A .under the chromatograph peaks by.the equation 

- (A H /AH )0/ (A . H /AH ) • 
p- 2 e p- 2 e xo [141] 

where ~elium is used as the carrier gas~ 

The experimental rate·constants k(T), determined at various tempera-

tures and multiplied by 4/3 to convert from experimental net rates' to 

theoretical rates, ~ere- thc;mused in.an absolute transition'"".state theory 

analysis • to find the bar~ier height Eb.: According to: this theory, . the 

k(T) • [l42] 

where Q H and QH are the complete partition functions·for the reagents 
p- 2 

and QH+ is the analogous partit~on function for the complex except for 
3 

the.contribution.from motic;>n along the reaction coqrdinate. After ·the 



appropriate substitutions are made for the partition functions and 

tunneling is considered, Eq. [142] can be written as 

Q(T) r(T~va'El{) -E /RT 
k (T) • A -------- e o 

~ T 
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[145] 

where A is a constant, Q(T) is the harmonic oscillator partition function 

ra~t1;1, r(T,va,Eb) is a tunneling factor, and E0 is the energy difference 

between complex and reagents ineas-uf"e:ci from the zero-point....:energy levels. 

By iterating E0 and the parameters in r, the best least squares fit of 

Eq. [145] to the experimental k(T) was obtained with a resulting value 

for Eb of 9.2 Kcal/mole. This value is approximately the average of the 

7-11 Kcal/mole range of energies usually obtained by experiment. 

- 81 
Shavitt has recently made a careful study of the experimental data 

' 46 
in light of results obtained from an extensive CI calculation • He 

found that best agreem.ent with the experimental data re_sulted when the 

theoretical energy surface was_ sea.led down to a point where the barrier 

height is.9.8 Kcal/mole, corresponding to a total energy of the H3 

activated complex of -1.65884 a.u. 

The results of the full CI (ls) preliminary test calculation on the 
' 

H3 activated complex presented in Figure 10 and Table VI are good evi-

dence of the uorrectness of the computer programs when three centers are 

involved. The convergence of the calculated energy to the analytically 

obtained energy is well within 1 Kcal/mole using 80,000 integration 

points. ' The ratio of the potential energy to kinetic energy is near 

-2.0 which indicates, according to the virial theorem, that the atomic 

orbital exponents and internuclear distance are nearly optimum for 

describing the H3 system while in the quasi-equilibrium--activated com-



plex state. 

As shown in Figures 11 and 12 and tabulated in Table VII, the 

energies for the H3 activated complex fall far short of the estimated 

exact energy range. However, the energy from the 21-term explicitly 
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correlated calcµlation used here was superior to the energies of the 

83 27-term CI calculation of Michels and Harris , the 34-term CI calcula-

46 tion of Shavitt, et. al. , and the 100-term.CI calculation of 

Gianinetti, et. ai. 59 The energies of these calculations as well as 

those from superior Cl calculations are presented in Table IX. The 

atomic orbital basis functions used in these various calculations are 

also indicated, 

The trend that appears among the energies calculated here and those 

calculated by CI methods is that explicitly correlated wave functions 

require about 1/3 as many terms a·s do CI wave functions for attaining 

equ1valent accuracy in the energy. This can be seen by noting the 

1-8* closeness of the energies of ~ of Table VII containing 12 terms and 

the first two CI caicu'.bations of Table IX containing 34 and 27 terms. 

1-14 Likewise, the energy of ~ containing 21 terms is near the energy of 

the 62-term CI calculation~ It appears that a 100- to 200-term explic-

itly correla.ted wave function (equivalent to a ,300- to 600-term CI wave 

function) would be capable of describing the true energy of the H3 com­

plex to within 1 Kcal/mole. It is important to note that because of the 

complexity of such a wave function, the number of integration points re-

quired for convergence of the integrals would be substantially reduced 

from the 80,000 points used here. 

Terms that simultaneously contain all possible interelectronic co-

ordinates such as term 14 of Table II appear to contribute more to the H3 
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TABLE IX 

TOTAL ENERGIES AND FORCE CONST.Af)lTS OF THE H3 ACTIVATED COMPLEX 

Reference Basis" NumbeT"' ·.·E (a.u.) K (a.u.) 
of Terms ., 

83 ls, 2p 27 -1.6302 10.0 
2 

46 ls, ls' 34 -1.6305 0'.30" 

59 ls, 2s, 2p 100 -1.6343 ------
2 

This Work Correlated 21 -1.6366 0.385. 

79 ls, 2p 62 -1.6387 0.296 :x:, y, 2 

59 ls, 2s, 2p 200 -1.6473 ------. :x:,y, 2 

46 ls, ls, 2p 200 -1.6521 0.31 :x:,y,2 

81 co ... 1.6588 



96 

wave function than to the lithium wave function. As can be seen by 

examining the overlap of each term with the total wave function, term 

14 contributes more to the wave function than the same term with no ex-

plicit correlation factdr (term 1), but less than term 5 containing only 

the factor r.12 • 

The ratio of the potential energy to the kinetic energy is seen in 

Table VII to deviate more from -2.0 for the 21-term H3 calculation than 

in the other calculations report.ed here. The deviation indicates that 

either the atomic orbital exponents or the internuclear distance (or 

both) are not optimum for describing the H3 actiyated complex using the 

expansion terms in Table II. 

The convergence properties shown in Figure 13, of the linear 

symmetric H3 energies associated with different internuclear distances 

indicate that convergence is not necessary in.order to determine the 

optimum internuclear distance s·ince the energies are well separated 

The convergence properties of the "symmetric stretching vibration" '' 

force constant are shown in Figure 14. Although convergence has not 

been achieved, the value of K is approximately 0.385 a.u. This is some-

what larger than 0.30 a.u. usually obtained using CI wave functions as 

indicated in Table IX. The cause of this difference is probably due to 

the use of non-optimum atomic orbital exponents. This is indicated since 

the potential to kinetic energy ratio (PE/KE) diverges from -2.0 as the 

internuclear distances R = Rab = ~c approaches the optimum value (see 

Table VIII) • . , 
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CHAPTER V 

CONCLUSION 

Trial wave functions containing explicit correlation due to the 

presence of interelectronic distance coordinates r., are used to make. 
1,J 

2 . 
calc\llat:Lons on the S ground state of the lithium atom and the linear 

2 + 
symmetric Eu state of the activated H3 complex. A type of quasirandom 

integration--open Diophantine integration--is·used to evaluate.the 9-

dimensional Hamiltonian matrix elements~ A technique is developed which 

-1 
removes the rij singularlties over a manifold by including the singular-

ities in the integration point density function. 

The rate of convergence of the variationally found energies was 

found to be more rapid than N-~, where N is the number of integration 

-1 points, but not as rapid as N which is usually associated with open 

Diophantine integration. The. convergence rate was found to increase as 

the cow.plexity of ·the calculation .increased. 

When expansion terms simultaneously containing all possible·inter-. 

electronic distances were added.to the trial wave function for the 

lithium atom, the reduction in energy was relatively small, indicating 

that there is little or no advantage in being able to inc+ude this type 

of term in the calculation, 

A 21-term explicitly correlated trial wave function used in the.H3 

calculation resulted in a .barrier height of 0.037.8; a,u. for the 

H2 + H t.H + H2 exchange reaction which was superior to an'earlier 100-

0"7 
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term configuration interaction (CI) calculation, but inferior .to the 

200-term CI calculations that have been reported. It appears that a 

100- to 200-term explicitly correlated wave function (equivaient to a · 

300- to 600-term CI wave function) would be capable of describing the 

true energy of the ~3 complex td within 1 Kcal/mole. Because of the 

complexity o~ such a wave function, the required number of integration 

points should be significantly less than the 80,000 points needed for 

the 21-term wave function considered in this study. 

There are three significant features associated with the approach 

used to solve atomic and molecular problems in this thesis. The first 

is that a minimum amount of computer storage is required since only two 

hermitian matrices, which are calculated directly, must be stored, 

These are the Hamiltonian and overlap matrices over the many-electron 

expansion terms of the trial wave function. Another feature is that the 

computation time increases only slightly faster than the number of ex-

pansion terms since it is unnecessary to reduce the matrix elements to 

one- and two-electron integrals over atomic orbitals, The third feature, 

due to the purely numerical methods used to evaluate the integrals, is 

that any reasonable type of basis functions may be used such as the new 

integral.transform functions of Somorgai84 • Likewise any reasonable 

type of potentials may be considered such as those that appear in nuclear 

physics. 
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APPENDIX A 

THE COMMUTATORS [£2 , .TI. r .. 
'l-<J 'l-J 

2 \) • . 
[L , . TI • r . . 'l-J J 

i.<J 'l-J 

\) .. 
i.JJ AND 

In this appendix a proof is presented that shows that the commuta-

tion relations· 

N [L , ,TI. r .. 
z i.<J 'l-J 

"2 N 
0 and [L , . TI • 

i.<J 
r .. 

'l-J 

\) .. 
'l-JJ = o, [A.1] 

hold for any number of electrons. By definition the total angular mo­

mentum operator f is the sum of the one-electron angular momentum opera-

tors of all N electrons: 

A N A 

t = t'~l tt [A. 2] 

A 

The z-component of L is 

A 

~ i ' L = z zt 
[A. 3] 

A A 

with analogous relations for L and L . The square of the total angular x y 

momentum operator is 

j,2 = £, 2 + .£ 2 + i 2 
x y z 

= (E L )2 + (E L )2 + (E L )2 
t xt t Yt t zt 

[A. 4] 
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The proof begins with the use of the conunutation relation, 

[L , F] G = G L F, ' [A. 5] 
2t 2t 

" where F and G can be any function and the operator L:x: in Cartesian co-
t 

ordinates is 

[A.6]. 

Again, analogous.relations hold for the operators Lxt and LYt Taking 

\) .. 
F = .ir. !'. • 'tJ and G to be the remaining portion of a product wave 1,,<J 1.-J . 

function, it will first be shown that · 

}'; [L , F] G = [L , F] G = o. 
t 2t 2 

[A. 7] 

It is convenient to factor from F parts which d~pend 9n the coordinate 

F= F. '..J.t Ft= F. ·•..J.t '/,_,Jr- . 1,_,Jr-. 
i=t-1 "it 
. i~l ':!'it 

N "t. 1f . YI J. 
j=t+l ·'.-tj [A. 8] 

The two product terms in Eq. [A.B] will be referred to as Ftl and Ft2'. 

respectively allowing F to.be written as the product 

" Using this notation, the commutator involving £2 is 
t 
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[A.10] 

The required partial derivatives of Ftl and Ft2 are found to be 

[A.11] 

After substitution of these derivatives into the expression for the com-

mutator and summing over all electrons, the result is 

= [L ,F]G 
2 

[A.12] 

t-1 
E v 1' u=l ut ut 
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Rewriting the second sum so that it has the same structure as the first 

sum, one has 

[A.13] 

By interchanging subscript names in the second sum and noticing that 

both sums are over all possible subscripts, the two sums are seen to 

cancel giving 

[L ,, F] G == o, z 
[A.14] 

which concludes the first part of the 

ition of a commutator, the commutator 

proof. By the use of the defin­

" 2 involving L can be written in z 
" terms of commutators involving L : z 

[i 2 ,F] G = L z z [L ,, F] G + [L ,, F] i G • z z z [A.15] 

The first term on the right is clearly zero from the discussion above 

" 
and the second term is also seen to be zero if a new function G' =LG. z 

is used in the place of G. The arguments above cart be repeated with the 
', A I'\ 

angular momentum components L and 'L leading to analogous ~elation•; x y 

s.hd.-ps ..:::· The commutator. invqlv;:;l.t;ig the square ·of the .. · total. angular momentum 

operator.can.now be.written 

[A.16] 

and is zero since the commutator involving each component is zero. 



·APPENDIX B 

ACTION OF TilE KINETIC ENERGY OPERATOR ON THE 

GENER.AL.' PRODUCT WAVE FUNCTION 

'lbe explicit evaluation of the kinetic energy operator acting on a. 

general product·wave function of the type used in this study is carried 

out in this appendix. Using the notation of Chapter III, Section A, the 

term under consideration can be written symbolically as: 

[B.1] 

where, for simplicity, the symbol g is used for the explicit co.rrelation 

product: 

g = i' j' k'. [B.2] 

According to the theorems of vector calculus, Eq. [B.1] can be expanded · 

as follows: 

[B.3] 
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The orbitals i, j, and k are assumed to be Slater a-type atomic orbitals 

(defined by Eq. [37] with ~ = m = o) or a linear combination of such 

orbitals. The grac:lient of a Slater a-type atomic orbital is easily found 

to be 

UB.4] 

and the L aplacian is found to be 

2 . 2 
= (r,; - 2.r,; n/r>t + n(n-1)/rt ) xn00 (t) • · [B. 5] 

The remaining terms in Eq. [B.3] involve the gradient and Laplacian 

of the function g. These are easily determined by again applying the 

theorems of vector calculus and are found to be: 

~lg = [ (~ lri~) j' i' + j, k' 
rl3 + r12 (\/ lrl3)] r23' 

+ + i, k' i' + k, j, 
"2g = [-(Vlrl2) r23 + rl2 (V2r23)] r13· 

+ + j, k' j' + k, k' 
\I 3g = [-(\/ lrl3) r23 - rl3 (\/ 21." 2 3) ] rl2'1 

2 2 . , j' + i, + j, i' 2 . , k->f [B.6] "1 g = [ (\/ 1 l" ~2) l" 13 + 2(V1r 12) . (\/ lrl,3) + rl2 (\71 rf3)] r23' 

\I /g = 
2 . , k' + i, + k, i' 2 k, j, 

[(Vl r~2) r23 - 2(Vlrl2) . (\7 2r 23) + rl2 (\/2 r23)] rl3' 

2 2 . , k' + j, + k' j, 2 k, i, 
\73 g = [ (Vk r~3) r23 + 2(Vlrl3) . (V 2r23) + rl3 (V2 r23)] r12· 

\) .. 
The gradient and Laplacian of the general interelecttonic term r .. 

. 1,,J. 
1,,J 

remain.~o be determined. These are most easily calculated using rec-
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tangular coordinates and are given by 

+. 
\) .. 

+ 
\) .. \). ·-2 '{,J i.J + + i.J I/ .r .. = - I/ .r .. = v .. (r .-r .) r .. 

'{, i.J J i.J i.J '},, J 1,,J ' 
[B. ?] 

and 

2 \) .. 2 
\) .. \). ·-2 

I/. r .. i.J = I/. r .. i.J = v .. (v .. + 1) r .. i.J 
'{, i.J J i.J '{,~ '{,~ 1,,J 

[B.B] 

Equation [B.?] shows that the gradients with respect to the coor-
v .. 

dinates of electrons i and j of the term r .. i.J differ only in sign. 
i.J 

This is the source of the negative signs appearing in Eq, [B.~], since 

a change of sign is made when some of the individual terms are rewritten 

so that the gradient is always with respect to the ith electron's coor-
\) .. 

dinates of the r. . i.J term. 
i.J 



APPENDIX C 

+ + + 
NORMALIZATION OF DENSITY FUNCTION D(r1 , r 2, r 3) 

In this appendix the normaliza.tion of the general 3-center, 3-elec­

tron point selection density function D(~1 , ~2 , ~3 ), given by Eq. [120], 

is established. Thus, it is to be shown that 

[C.1] 

Factoring a term of the density function ~nto three separate density 

functions as indicated by Eq. [120], the general term of the normaliza~ 

tion integral becomes 

[C.2] 

The integration over the coordinates of electron 3 can be performed in~ 

dependently. It -is easily shown that the density function D1 is normal-. 

ized: 

The normalization integral term can now be written 

and explicitly 
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[C.3] 

The integral 

-s2P2Y 1 
= J _e ___ _ 1 -· ·-dv 

pl2 2 
[C.4] 

over the coordinates of electron 2 will be considered first. The inter-

electronic distance P12 is conveniently defined in terms of vectors 

originating from center~': 

= [C.5] 

The term P12 can be expanded in terms of the associated L engendre poly-

nomials 

1 
-- = 

00 k 
l: l: k=O m=-k 

<k- Im I>: 
<k+jm I>: 

k 
P < Im! 

k+l pk (cos 
P> . 

[C.6] 

where P1 , e1 , ¢1 and P2 , e2, ¢2 are the spherical coordinates of the 

+ + 
vectors rlY' and r 2y' respectively, and P>' r.< are the larger and 

smaller of the quantities Pl and P 2• Since the remaining portion of the 

integrand in Eq. [C.4] is independent of angles, and 

J~ p O (cos e) sin e de = 
0 k 

[C.?] 

the substitution of the expansion for P~~ into Eq. [C.4] and subsequent 
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integration over angles yields 

[C.8] 

= 

Inserting this expression for K into the normalization integral [C.3], 

the result is simply 

[C.9] 

since the density function D1 is normalized. 

The normalization of a general term of the point selection density 

+ + + 
function D(r1 , r 2 , r 3) has been established and is completely independent· 

of the location of the various centers. Since there are 162 terms, the 

factor (162)-l is required to normalize the complete density function, 

and Eq. [120] follows. 



APPENDIX D 

PROGRAM LISTINGS AND DESCRIPTIONS 

The computer programs (main and subroutines) used to make the H3 

calculations are listed in this appendix. The function of each routine 

is described in detail. Sample input and output are also given. 

MAIN The main program supervises input and output, generates the 

integration points; calculates the integrals, and supervised the solution 

of the eigenvalue:p~oblem, All arrays are singly subscripted except· 

those used as input to the routines acquired from the Quantum Chemistry 

Program Exchange, The equations and appendices referred to in the 

programs are those appearing in this thesis, '!he description of the 

input deck follows: 

Parameter 

DTAIL 

PUNCH 

CDNO 

SOINDX 

Description 

I/O Card 

(Logical) TRUE--all matrices are printed, 
FALSE--Hamiltonian matrix is printed 

(Logical) TRUE--reproduce parameter cards and 
write matrices, eigenvector, and energy in 
1P4D20.12 format using FORTRAN logical output 
file 7. 

(Integer) 

(Integer) 

Expansion Term Cards 

Expansion term number ~ 26: bn 

Symmetry orbital indices ~ 4: .<j> • 
i. 

$. 
J 

1 1 ... 

Columns 

10-14 

50-54 

1-3 

11-20 

21-30 



EEXP 

999 

J 

FILL 

zz 

" 999 

SETN9 

IEND 

PTSEI.:I' 

SCHEME 

RAIDS 

(Integer) Interelectronic distance exponent 
i' 

~ 2: 1"12' 
j' 

1"13 
k' 

1"23 

Separation Card 

Indicates end of expansion terms 

Atomic Orbital Exponents 

(Integer) Sequence number S 3 

(Alphabetic) Description or label 

(Real) Exponent 

Separation Card 

Indicates end of exponents 

Integration Parameters 

(Integer} Closed Diophantine integration point 
set ~ 7 

(Integer) Number of last cycle to be processed 

(Integer) Point selection technique 
1--closed Diophantine integration 
2--Monte Carlo integration 
3--open Diophantine integration 

(Integer) Integration point distribution 
1--single distribution (Eq. [120]) used 

for all integrals 
2--Eq. [120] used for l":~ integrals; same 

distribution, but wi~~ D2 replaced by 
D1 , used for all other integrals 

(Real) Rejects points that lie closer than 
this distance from a nucleus 
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31-40 

51-55 

56-60 

61-65 

l".'"3 

1-3 

4-8 

21-30 

1-3 

l-6 

13-14 

17-18 

19-20 

21-30 



NOPTS9 

I BEGIN 

.Rl2IDS 

ROOTS 

NROUT 

RR23 

SSS 

(Integer) Number of integration points (N) 
NOPTS9 < 0 + N = jNOPTS9I 
NOPTS9 = 0 + N = smallest multiple of 162 

greater than the number of 
points implied by the closed 
Diophantine integration set 
requested 

NOPTS9 > 0 + N "" smallest multiple.of 162 
greater than NOPTS9 

(Integer) Number of first cycle to be pro­
cessed, may be omitted if !BEGIN = 1 is de­
sired. If !BEGIN ~ 1, then data from last 
cycle must follow next card (see I/O card 
'PUNCH' parameter). 

(Real) Rejects points that lie closer than this 
distance from another electron 

(Integer) Number of eigenvalues desired (N) 
ROOTS = 0 + N • 5 
ROOTS ~ 5 + N = 5 
Otherwise N • ROOTS 

(~nteger) Eigenvalue routine desired 
NROUT = 1 + GIVENS (Listed here as dummy) 
NROUT = 2 + NESBET 

Internuclear Distance and 
Distribution Function Parameter 

(Real) Internuclear separation 

(Real) Distribution function parameter 
8 = 81 - 82 

LAPS! This subroutine calculat~s the numerical value of 

T = -~(v 2 + v2 + V2) (i j k i' j' k') 1 2 3 

as indicated.in Appendix B. 
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41-45 

52-53 

61-70 

77-78 

79-80 

1-10 

11-20 

DRANDU This subroutine is a double precision version of RANDU dis­

tributed by IBM77 • 

.f!!Q. This subroutine, slightly modified for use on the IBM/360, was 
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78 
obtained from the QCPE • It transforms the original eigenvalue problem 

from the form (H - E~)e • 0 to the form (ll' - El)C' • O. 

NESBET 78 This routine is also from the QCPE , and is slightly modi-

fied from the original version for use on the IBM/360. It solves the 

eigenvalue problem after transformation by CEIG. 

GIVENS This routine is a dummy form of the subroutine by the same 

name available from the QCPEo 

DTRMNT This routine calculates the determinant of a matrix and is 

used to check the relation det!HI - E~I • O. 

OUT! This routine writes out a linear array using an alphabetic 

literal to label the elements. 

OUT2 This routine writes out a two-dimensional array using an alpha-

betic literal to label the elements. The number of rows and columns to 

be written can be specified and whether the matrix is to be written in 

transpose form. 

OUT2Sl This routine is similar to OUT2 except that it handles two-

dimensional matrices that have been stored using a single subscript. The 

matrix may be stored by rows or columns. 

ELAPSE This assembler language routine determines the time that has 

elapsed since it was last called. It is distributed by the Oklahoma 

State University Computer Center. 

Sample input data to the programs is given in Table X. The result-

ing outpu~ immediately follows the program listings. The meaning of the 



symbols used in the output is indicated in the following list: 

I -1 -1 -11 
GG <An rl2 + rl3 + r23 Am> 

SS 

KEKE 

<A IA > n m 

<An 1-~<v~ .+ v~ + v;) I Arl 

3 3 . 
NUCNUC -- <A It Er. IA> 

n i Y 'ty m 
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The suffix 'V' applied to the above symbols indicate the normalized var­

iances of these integrals, cr2/I2 (see Eqo [88]). Additional symbols have 

the meanings : . 

AVE -- Average of variances 

vv -- GG + NUCNUC + nucleus-nucleus 
repulsion enel:'gy 

HH -- KEKE + GG + NUCNUC or <A IHA > n m 

COET -- Eigenvectors Ci 

E -- Eigenvalues 

CCR <11>jH11>> = E E c. c. (HH) •• 
i j '/., J 7,,J 

CCKE <11>jT11>> - I: I: c. c. (KEKE) •• 
i j '/., J ·. 'tJ 

"· 
CCV <~jVll>> = I: E c. c. (VV) •• 

i ·J' 
7,, J 'f.,J 

VRATIO -- CCV/CCKE 

OVRMAX -- Maximum of the <ll>IC A > n n 

OVER 

ccs <ii> I ii>> = E I: c. c . (SS) •• 
i ·j '/., J 1.,J 

HESC (ID - ES>)C 



DET 

ETOTAL 

det la - E~I 

Eigenvalue + nucleus-nucleus 
repulsion energy. 
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OS/3b0 FORTRAN H 

OPTIONS - NAME• iMAIN~OPTzOZ,LINECNT•bOtSOURCE,EBCOIC,NOLIST,NOOECK 
IMPLICIT REAL*81A-H,L,O-ZI 
OIHENSION A9163),0VERl27,271,SUHRl31,A9SAVEl91,AA9191, 

1 XXl91,ZZZl101,SSI 3781,GGI 3781,VVI 3781, 
Z HHI 3781,HHATI 3781,SMATI 3781,COETIZ9,291,VECIZ9,5lt 
3 EIZ71,CCKEl271,CCVIZ71,CCHl271,CCSI03781t0VRHAXIZ71, 
4 VRATIOIZ71,HESCl271,0ETl271,ETOTALl271,HESl27,271, 
5 XXXXl31,YYYYl31,ZZZZl31,ROl101,0T1131,0T2131,0T3131, 
b OT4131tDT5131,SSVI 3781,GGVI 3781,CAl31,D8131,0Cl31, 
7 A8UFF1101 

REAL*8 KEKEI 3781,NUCNUCI 378ltMU,LAHBOA,KBRAl,K8RAZ,K8RA3, 
1 LAHBHU,NUCNUVI 3781,KEKEVI 3781,NOAloNOAGtKET11271t 
2 KET21271,KET31271,KEBRA11271,KEBRA21271,KEBRA31271, 
3 KET1JJ,KET2JJ,KET3JJ,NDAS 

REAL*4 TIH9DS,TIHEVS,TIMTS 
REAL*4 FLOAT 
INTEGER CONOl271,SOINOXl8ll•SETN9,ROOTS,P917,91,L,LP,TSUB, 

1 SUB,TIHEV,ROWSW,TIM90,EEXPl811,SEQIX3,SEQINX,ELSEQl181, 
2 ELN,ELNTH,ELNltREJG,REJl,SCHEHE,PTSELT 

OIHENSICN H9171,KPPl291 
LOGICAL NOTAIL,OTAIL,NPUNCH,PUNCH,LLINIT 
COMMON /KEGRUP/SOl451,LSDl451,0SOXl451,0SOYl451,0SOZl451, 

2 OR1ZXl41,0R13Xl4),0R23Xl41,Rl2El41,LR12141, 
3 OR12Yl41,0R13Yl41,0R23Yl41,Rl3E141tLR13141, 
4 OR12Zl41,0R13Zl41,0R23Zl41,R23El41,LR23141, 
5 MAXSO,MAXS02 1 HALF 

DATA ZNUCNU/ 1NUCNUC•/,ZKEKE/ 1 KEKE 1/tZGG/ 1 GG•/,ZVV/' vv•/, 
2 ZHH/ 1 HH•/,ZCOET/ 1 COET•/,ZE/ 1 E1/,ZCCH/' CCH1/, 
3 ZCCKE/' CCKE•/,ZCCV/' ccv•/,ZVRAT/ 1VRATl0 1/, 
4 ZHESC/' HESC•/,ZOET/' DET 1/,ZETOT/'ETOTAL'/, 
5 ZCCS/' ccs• / ,ZOVER/' OVER•/, 
b ZOVMAX/'OVRMAX•/,ZSS/' ss•/,ZNUCNV/'NUCNUV'/, 
7 ZKEKEV/ 1 KEKEV'ltZGGV/ 1 GGV 1/,ZSSV/' SSV'/ 

CCCCCC CONSTANTS FOR CONROY'S CLOSED DIOPHANTINE INTEGRATION 
CCCCCC ~ ONLY REFERRED TO -- NOT USED IN THESIS 

DATA M9/ 20,3722,6044,9644,15014,20018,3002b/, 
l P9/ l, 119, 43, 457, 823, 1003; 1639, 
2 2, 339, 87, 509, 1633, 2047, 3207, 
3 3, 437, 179,1677, 2443, 3029t 4821. 
4 4, 773.1421 .1123, 3215, 4043, 6443, 
5 5, 937,1479,2173, 4039, 5035, 8015. 
6 6,1219,1589,2423, 4827, 6031, 9671, 
7 7,1503,2189,2489, 5671, 7067,11249, 
8 9,1691,2191,3431, 6485, 013s,i29s9, 
9 9,1747,2783,3719, 1211, 9071,14531/ 

CCCCCC ELECTRON PERMUTATIONS IN EQ, 11201 
DATA ELSEQ/ 1,2,3, 

1 1,3,2, 
2 2,1,3, 
3 z,3,1, 
4 3,1,2, 
5 3,2,11 

CCCCCC STARTING VALUES FOR EQo 11031 
DATA RO/ 3.60-l,6.80-l,9o60-ltlo20+0,lo50+0, 

l lo80+0,2o20+0,2o7~+0,3.40+0,4.70+0/ 

CCCCCC ATOMIC ORBITAL NORMALIZATICN ~ EQ. 1371 
ZZ.NORINN ,ZZ lzOSQRTI ZZ**l Z*NN+l 11 

CCCCCC . OPEN DIOPHANTINE INTEGRATIPN CONSTANTS GIVEN IN TABLE III 
AA91llzDSQRTll0loOD+OI 

AA9 I 2-1•DSQRT197 .oo+o I 
AA9131•DSQRTl3.00+0I 
AA9141sOSQRTll3oOD+CI 
AA9151•0SQRTl157.00+DI 
AA9161•0SQRTl29.00+0I 
AA9171•DSQRTI 127.0D+D I 
AA9181•DSQRTl~7.00+0I 
AA9191•DSQRTI 167.0D+O I 
MAXSO•l5 . 
MAXS02•2*MAXSO 
MAKCON•27 
MXCON2•MAXCCIN+2 

C MAXSS•MAXCON*IHAXCCl<+ll/2 
C MAXSS•378 

MAXEXP•lO 
NOCNTRs3 
P1•3.l41592~53589793 
RtPil•l.00+0/0SQRTIPII 
TkOP1•2.00+0*PI 
RT32•DSQRTl3oOD+Ol/2.0D+O 
RT31•loOO+O/OSQRTt3.0D+OI 
SIXTHslo00+0/6000+0 
HALfs1.00+012.oo+o 
l<OOENS•lf>Z 

CCCCCC EQ. 173 I 
Ol•HALF•IRT31+1.00+DI 
D2•HALF*IRT3I-l.OC+DI 
03z0.0D+O-RT31 
READt5.9091 OTAIL.PUNCH 
NDTAIL•oNOT.DTAIL 
NPUNCtts.NOT.PUNCH 

909 FCiRMATl9X.L5 1 T50.L5 I 
WRITEl619Z41 OTAILtPUNCH 

924 FORHATI' DETAIL - '•Ll.20X1PUNCH - •.Lll 
C CONVERT INTEGRATION POINT SETS FROM INTEGER TO DOUBLE PRECISION 

1999 DO 37 I•l,7 
ISUB•l I-11•9 
00 37 Jzl19 

37 A911SUB+Jl•DFLOATIP911,Jll/DFLOATIM91111 
c ................................................................... .. 
c ................................................................... . 
c ................................................................. . 
C CONFIGURATION INPUT 
c ................................................................. . 

DO 30 Jzl• MAXCON 
JSUB•I J-11*3 
REA015.9001EH0•90001 CDNOCJl1ISOJNDXCJSUll+Ilol•l,311 

l C EEXPCJSUB+I h 1•1~3J,ABUFF 
900 FORMATI 13. rx.3110, T5lt315, Tl.10A81 

IF IPUNCHI WRITE17~9271 ABUFF 
927 FORHATl10A81 

IF CCDNOIJl.EQ.9991 GO TO 32 
30 CONTINUE 
32 l<NN•J-1 

NOSS-NNN•INNN+ll/2 
WRITEl!>,9011 IJ,CONCIJl.ISOINDXICJ-ll•3+ll.I•l•311 

l IEEXPllJ-11•3+11tl•l•311J•loNNNI 
901 FORMAT l'l co.NO.•,T20,•coNF.•.T~~.·so.1•,Ts1,•so.2•,r70,•so.3•. 

....... 

"" ....... 



l TB9t 1 RlZ 1 tT10Zt 1 R13',Tl151'RZ3'1 
Z /1 1 1 ,I5,TZOtI3tll~3Il315X3Ilill 

NOELEC.,3 
If ISOINDXl31.ECaOI ~DELECzZ 
liRITEl619Z51 NOELEC 

925 FORMATt•o•,12, 1 ELECTRON SYSTEM'! 
C EXPONENTS 

liRITEl6,9061 
W6 FORMAT II' l', T 16, 'EXPONENT! SI', T37, 'VALUE 'I I 

C READ INITIAL ORBITAL EXPONENTS 
DO 33 l•l, 998 
READl5,9D51 J,FILLtZZtABUFF 

905 FORMATII31A8,T211-4PD10.4,TltlOA81 
IF IPUMCHI llRITEl7~~271 ABUFF 
IF IJ.EQ.9991 GO TD 34 
Z.ZZ I J l•ZZ•laOD-4 

33 llRITEl6190BI 1,J,FILL1ZZZIJI 
908 FORMAT!' •,15,Tl6,12tA8oT3311PDl2a51 

34 CONTINUE 
ZZl•ZZZll I 
ZZ2•ZZZIZI 
ZZ3•ZZ.Z 131 
ZZ lM-Oa OD+O-ZZl 
ZZ2M•OaOD+O-ZZ2 
ZZ3M•Oa00+0-ZZ3 
TOZZlN•ZaOO+O•ZZl 
TOZZ2Na2a0D+O•ZZ2 
TOZZ3N-4aOD+D•ZZ3 
ZZ12•Zll•ZZ1 
ZZ2Z•ZZ2*ZZZ 
Z Z32•ZZ3*ZZ3 
XNORl•RTPI I *ZZNORI 1·1ZZ1 I 
XNOR2•RTPll•ZZNORlltZZ21 
XNOR3•ZZNORl21ZZ3l/CSQRT13aOO+O•P.1 I 

C SET NUMBERS 
READl5 19041 SETN9,IEND,PTSELT,SCHEME,RAIDS,NOPTS9,IBEGJN, 

l Rl21DS,ROOTS,NRDUT,ABUFF 
904 FDRMATl4Xl216XIZ1ZX21Z,T2loDlOo01T4ltl5oT52ol2o 

1 T6loD10.0oT77,212,TlolOA81 
IF IPUHCHI liRITEl7o9Z71 ABUFF 

C R23 
READl5 190ZI RR23,SSS,ABUFF 

902 FORMATl-4PDl0.4,-2POlOa2tTl,10A81 
IF IPUNCHI llRITEC7,9271 ABUFF 
RR23-RR23*lo0D-4 
SSS-SSS•l,OD-Z 
RRZ32•RR23*RR23 
TORR23s2o0o+O•RRZ3 
SSSM&O,OD+O-SSS . 
S24Pl•SSS•SSS/l4aOD+O•Pll 
llRITEl619031 RR23,SSS 

903 FORMATl/ 1 0 1 oT7t 1 R23 1 ,TZ9o 1 SSS 1 t 
i 1• •,1Po1z.s,T24,012.s1 

CCCCCC REFINE STARTING VALUES FOR EQ. 11031 
LLINIT•• TRUE, 
l•O 
l•·l H 
ETA•IDFLOATll-ll+HALFl*loOD-1 

GO TO 136 
3 ROlll•R 

IF Cl,LTolOI GO TO l 
LLIHIT•~FALSE, 
IF INOPTS91 26,27,28 

26 NOPTS9-0-NOPTS9 
GO TD 29 

27 NOPTS9-IM91SETN91/2/NODENS+ll*HOOENS 
GO TO 29 

28 NOPTS9•1NOPTS9/NOOENS+ll•NODENS 
29 CALL ELAPSEITIM901 

c ................................................................. . 
c ................................................................. . 
c ................................................................. . 
C 9-D INTEGR.ATION OVER CONFIGURATIONS 
c ................................................................. ~ 
cccccc EOS. 18~71 AND IB.81 . 

LR121 ll•O,OD+O 
LR1213la6,0D+O 
··LRn111-o.o~o 
LRl3l31•6oOO+O 
LR23Cl l•0,00+0 
LR231 31 •6. OD+O 
DIUZXI 11•0,00+0 
DR13Xll l-Oo0D+O 
Dll23XI 1,1•0o00+0 
DR12YC1 l•O,OD+O 
DR13Y 11 lsOoOD+O 
DR23YI ll•0,00+0 
DRlZZU l•O.OD+O 
DR13ZU l•O. 00+0 
DR23ZI l l•0,00+0 
Rl2Elll•laOD+O 
Rl3EI l l•loOO+O 
R23Elll•l,OD+O 
REJl•O 
REJG-0 
TSUB-ISETN9-ll*9 
IF llBEGIN.LEoll GO TO 89 . 

CCCCCC RESTART PROGRAM lllTH.CYC.LE IBEGIN rF IBEGIN ,GT, 1 
IREPTX•IBEGIN-1 
NXT•IREPTX•NOPlS9 
READl5t20061 IG61lltl•loNOSSI 
READl5o20061 ISSlllol•loNOSSI 
READl5t20061 IKEKECllol•loNDSSI 
READl5t20061 INUCNUClllol•ltNOSSI 
READC5t20061 IGGVlllol•l,NDSSI 
READl5,20061 u·svllJ.l•l,NOSSI 
READl5,20061 IKEKEVlllol•loNDSSI 
READl5,20061 INUCNUVlll.l•loNOSSI 
REA.Cl 5,20061 ICDETI 1.u tl•loNNNI 
READCS,20071 ElllolX 
NDAl•loDD+O/DFLDATINXTI 
NDAS-NDAl 
ND AG-ND Al 
GO TD 25 

89 DO 90 l•l,NOSS 
SSVlll•O.OD+O 

...... 
N 
N 



KEKEVlll•OoOO+O 
NUCNUVlll•OoOO+O 
GGVll l=OoOD+D 
SSI 11•0.DD+O 
KEKEI I l•0.00+0 
NUCNUClll•OoOO+O 

90 GGlll•OoOD+O 
IREPTX=O 
IX•65549 
NXT•O 

160 IREPTX•IREPTX+l 
NTPTS•IREPTX•NOPTS9 
WRITEl6,9121 NOPTS9,IENO,IREPTX,NTPTS,PTSELT,SCHEME,RAIOS,RlZIDS 

912 FORHATl'l',161' 9-D POINTS',I4,' TIMES 1,5X'CYCLE 11•,12, 
l 5X 1TOTAL OF•,17, 1 POINTS'/ 
Z 5X1# 1,12, 1 PCINT SELECTION TECHNIQUE•, 
3 5XI2,' DISTRIBuTION SCHEMEISI'/ 
4 BX 1MINIMUM R DISPLACEMENT •'11PDlOo31 
5 BX'MINIMUM Rl2 DISPLACEMENT • 11010,31 

NX•O 
SECINX•l 
INTGNO•l 
NCl•l 
NCZ•l 
NC3•1 

7 2 NX•NX+l 
t.XT•NXT+l 
IF IPTSELT-ZI 48,50,52 

CCCCCC GENERATE CONP.OY POINTS -- CLOSED DIOPHANTINE INTEGRATION 
48 XM•DFLOATINXl-Oo5D+O 

DO 49 J•l,9 
XXX•XM*A91TSUB+JI 
XXX•XXX-DFLOATIIDINTIXXXll 
IF 1xxx.GT10o50+01 XXX•XXX-loOO+O 

49 XXIJl•ZoOD+O*DABSIXXXI 
GO TO 151 . 

CCCCCC GENERATE PSEUDO RANDOM NUMBERS 
50 DO 51 J•l19 

CALL DRANDUllX,IY,YFLI 
IX•IY 

51 XXI Jl•YFL 
GO TO 151 

CCCCCC GENERATE OPEN DIOPHANTINE INTEGRATION POINTS~ EQo 11271 
52 XM•OFLOATINXTl-Co50+0 

DO 53 J•l19 
XXX=XM*AA91JI 
XXX•XXX-DFLOATllDINTIXXXll 
IF IXXX.GT.0.50+01 xx~-xxx-1.00+0 

53 XXIJl=ZoOD+O*DABSIXXXI 
CCCCCC SELECT CENTER AND ELECTRON FOR EQo 11201 
CCCCCC IF INTG0•2, REPLACE INTEGRATION POINT GENERATED BY 02 WITH 
CCCCCC POINT GENERATED BY Ol AND USE TO INTEGRATE REIU.INING 
CCCCCC INTEGRALS !ALL INTEGRALS EXCEPT ELECT.-ELECTo 
CCCCCC REPULSICN REMAINI 
CCCCCC INTG0•2 POSSIBLE ONLY IF SCHEME•2 
CCCCCC ~ ONLY REFERRED TO -- NOT USED IN THESIS 

151 IF .tlNTGNO.EQo21 GD TO 57 
SEQIX3•3*SEQINX 

El.NTH-1 
NC•NCl 
ELNaELSEQISEQIX3-21 
GO TO 42 

57 ELNTHa2 
NC•NC2 
EltlaELSEQISEQIX3-ll 
GO TO lt2 

58 IF IINTGNO.EQ.21 GO TO 60 
ELNTH-3 
NC•NC3 
ELNaELSEQISEQIX31 
GO TO 42 

60 XlMXZ•XXXXlll-XXXXl21 
XlMX3•XXXXCll-XXXXC3l 
X2Mll3•XXXX121-XXXXl31 
YlMYZ•YYYYlll-YYYYIZI 
YlMY3-YYYYlll-YYYYl31 
YZMY3•YYYYCZl-YYYYC31 
ZlMZZ•ZZZZlll-ZZZZl21 
ZlMZ3•ZZZZlll-ZZZZ13l 
Z2MZ3•ZZZZl21-ZZZZC31 
Rl2Z-IXlMX21••2+1YlMY21••2+cz1MZZl••2 
Rl3Z-1XlMX31••2+1YlMY31**2+1ZlMZ31**2 
R23Z-IX2Mll31**2+1Y2MY31**2+1Z2MZ31**2 
Rl2•DSQRTIR1221 
Rl3•DSQRTIR132 I 
R23-DSQRTIR2321 
IF CR12oGT.Rl21DS.ANDoRl3oGToRl21DSoANDoR23oGToR12IDSI GD TD 93 
IF COTAILI WRITEl6110151 Rl2,R13,R231NX,ZGG,NC1INTGHO 

1015 FORMAT I' NOTE 10 lP3020olO,Il0,4XA6,31101 
IF llNTGNO.EQ.21 GO TO 157 

1"0 REJG•RcJG+l 
GO TO 154 

93 Rl2El2l•Rl2 
Rl2EC 31•Rl22 
Rl3El21•Rl3 
Rl3El31•Rl32 
R23EI 21•R23 
R23EC31•R232 
IF llNTGNO.EQ.21 GO TO 152 

CCCCCC DENSITY FUNCTION EQ. Cl201 
TEMP.162000+0 

1 /CllDT21ll•DAl21+DT31ll•DBl21+DT41ll*DCl21 
2 +DT2121•DAlll+DT312l*DBlll+DTltl21*0Cllll*DTlC31*Rl3 
3 +IDT21ll•DAl31+DT3111•DBl31+DTlt(ll*DCl31 
4 +DT2131*DAlll+DT3131•DBlll+DT413l*DCllll•DT1121•Rl21•RZ*' 
5 +IOT2121*DAl31+DT31Zl*DBl31+DT4121*DCl31 
6 +OT2131•DAl21+DT3131•DBl21+DT4131*DCl211*DTllll*Rl2*Rl3J 

SRIJDT•llR13+Rl21*R23+Rl2•Rl31•DT51ll*DT5121•DT5131*TEMP 
DTT•R12*Rl3*R23*TEMP 
GD TO 159 

CCCCCC DENSITY FUNCTION EQo 11201 WITH D2 REPLACED BY Dl 
CCCCCC -- ONLY REFERRED TO IN THESIS, NOT USED 

152 DTT•27oOD+O/IDTllll•DT1121*DT11311 
159 OT•DT51ll*DT5121*0T5131•DTT 

IF ISCHEMEoNEoloAND.INTGNO.EQ.11 GO TO 153 
SRIDT•llSUKRlll*DT5121+0T51ll*SUMRl211•DT5131 

I-' 

"' w 



l ·+DT5Cl l•DT51Zl•SUMRI 31 l•DTT 
Rl21•loOD+O/RlZ 
R 131• lo OD+O/R 13 
R231•1.0D+OIR23 

CCCCCC EQ. 18. 91 
LR12C21•2oOD+O•Rl21 
LR13121•2o0o+O•Rl31 
LR23C21•2oOD+O•R231 

CCCCCC EQ. 18.71 
ORl2XC21•XlMX2•Rl21 
DR12X13l•2oOD+O•XlMXZ 
DR13XC21•XlMX3•Rl31 
DR13Xl3l•2oOO+O•XlMX3 
DR23XC2l•X2MX3•R231 
DR23XC31•2.00+0•X2MX3 
DR12YIZl•YlMY2•Rl21 
DR12Yl3l•2.00+0•YlMY2 
OR13Y12l•YlMY3•Rl31 
OR13YC31•ZoOO+O•YlMY3 
DR23YC21•YZMY3•R231 
OR23Yl31•2.00+0•Y2MY3 
DR12Zl21•Z1MZ2•Ml21 
DR12ZC31•2.0D+O•ZlMZ2 
DR13Z12l•ZlMZ3*Rl31 
DR13Zl31•2.0D+O•ZlMZ3 
DR23Zl21•Z2MZ3•R231 
DR23Zl31•2.00+D•Z2MZ3 

153 DD 134 JJ•l,NNN 
JJSUB•I JJ-11•3 
L•SOINDXIJJSUB+ll 
LPsEEXPI JJSU!+l I 
M•SOINOXIJJSUB+21 
MP•EEXPIJJSUB+ZI 
N-SOINOXIJJSUB+31 
NP•EEXPCJJSUB+3l 
SOLl•SOILI 
SOlZ•SOIMAXSO+L I 
SOL3•SOIMAXSOZ+LI 
SOMl•SOIMI 
SOMZ-SOCMAXSO+M I 
SOM3•SOCMAXS02+MI 
SONl•SOI NI 
SONZ•SOIMAXSO+NI 
SON3•SOCMAXS02+Nl 
R 12LP•Rl2E I LP+ll 
Rl2MP•Rl2ECMP+l I 
Rl2NP•Rl2EINP+ll 
IH3LP•Rl3EILP+l I 
Rl3MP.Rl3EIMP+l I 
Rl3NP•Rl3EC NP+ll 
R23LP•R23EILP+ll 
R23MP•R23ECMP+l I 
R23NP•R23E INP+l I 

CCCCCC EQ. 1751 
PSI l•SOLl•SOM2* SCN3• Rl2LP•R13MP•R23NP 
PSIZ•S0Nl•SOMZ•SOL3•Rl2NP*Rl3MP•R23LP 
PSl3•S0Nl•SOL2•SCM3•Rl2MP•Rl3NP•R23LP 
PSl~SOMl•SCl..2*SON3•Rl2LP•Rl3NP*R23MP 

PSl5•SOMl*SOH2*SOL3•RlZN ... Rl3l.P*R23MP 
PSI 6•SOLl *SOH2•SOM3 *ltl2M.P*Rl3l. P•R23NP 

CCCCCC EQ. 1761 
KET1CJJl•Dl•CPSI1-PSI21+D2*CPSI3-PSl4l+D3•CPSIS-,Sl61 
KET21 JJl•Dl•C PSl5-PSI•U.+D2•1 PSI1-PSl6 l+D3•C PSl3-PSl21 
KET3CJJ l•Dl•C PS13-PSl61+D2*1PSIS-PSI21+D3•C PSI1-PSl41 
IF CSCHEMEoNEololNDolHTGNQ.EQoll GO TO 134 

CCCCCC SEE APPENDIX B 
LAPSll•LAPSllL1M1NtLP,MP,NPl 
LAPSIZst.APSICNtMtl1NP,MP,LPI 
LAPSl3•LAPSICNtLtMtMP,NP,LPl 
LAPSl4&LAPSICMtL1N1LP1NP1MPI 
LAl'Sl5•LAPSICN,N,L,._P,LP,NPI 
LAPS! 6-LAPSI Cl tN1M1 l'P ,LPtNP l 
KEllllAlCJJl•Ol*ILAPSll-LAPSl2l+D2*1lAPSl3-LAPSl41 

1 +D3*CUPSl5-LAPSI61 
KElllA21JJl•Dl•ILAPSl!5-LlPSl41+D2*CLlPSl1-LAPSl61 

l .+D3*1LlPSl3-LlPS121 
KE81llJCJJl•Dl•CLlPSl3-t.APSl61+02*lLlPSl5-LlPSl21 

1 +OJ•lllPS11-LlPS141 
134 CONTINUE 

DO 135 11•1,NNN 
llllAl•KETl 1111 
BRAZ•KETZCIJI 
IAAJ-KET3l JI I 
IF CSCHEltEoNEoloANOolNTGHOoEOoll GO TO 149 
KllllAl•KEBllAlllll 
KllAAZ-KEBRl211 I I 
KllllAJ-XElllllJI 11 l 

149 DO l" JJ•IItHNH 
INDEX•JJ*IJJ-11/2+11 
KETlJJ•KETl IJJI 
KET2JJ•KET21JJI 
KET3JJaKET3 C JJI 

CC£CCC EQ. 1791 
TEMP.llRAl*KETlJJ+BRl24'KET2JJ+BRl3•KET3JJl*SIXTH 
BSK .... TEM ... DT 
SSllNl>EXl•SSllNOEXl+BSl<J 
SSYllNDEXt•SSYllNDEXl+BSKJ*BSKJ 
IF UNTGNO.NEoll GO TC 150. 
BEKJ•TEMP*SlllJDT 
GGllNl>EXl•IOGllNDEXl+BEKJ 
GGVC INOEXl•GGYC INDEX I +BEKJ*BEKJ 
IF CSCHEMEeNEoll GO TD 148 

'cccccc Eo. 1111 . 
150 BKEKJ•fK'BRAl*«ETlJJ+KllRl2*1C.ET2JJ+KIRl3•KET3JJ 

l +lltll*KEllRAllJJl+llRl2*KEBRA2CJJl+BRl3•KEllllJIJJll 
2 •SIXT...-HALF*DT 
KEKECINDEXl-XEKECINDEXl+BKEKJ 
KEKEYllNOEXt•KEKEVCINOEXl+llKEKJ*BKEKJ 
8RlKJ•TE-SRIOT 
NUCNUCCINOEXl-NUCNUCtlNOEXl+BRIKJ 
NUCMUYCINOEXJalllUCNUVCllll>EXl•llAIKJ*IRIKJ 

148 CONTINUE 
135 CONTINUE 
154 CONTINUE 

INTGNO-INTGNO+l 
IF CINTGNO.LE.SCHEMEI GO TO 151 

...... 
NI 
.p.. 



INTGNO=l 
If INX.GE.NOPTS91 GO TO 145 

CCCCCC PERMUTE CENTERS 
NC3•NC3+1 
If INC3.LE.NOCNTRI GO TO 72 
NC3zl 
NC2zNC2+1 
IF INC2.LE.NOCNTRI GO TO 72 
NC2=1 
NCl=NCl+l 
IF INCl.LE.NOCNTRI GO TO 72 
NCl=l 
SEQINX•SEQINX+l 
If ISEQINX.LE.61 GO TO 72 
SEQINX=l 
GO TO 72 

145 IF (SCHEHE.EQ.11 REJl•REJG 
NDAl•l.00+0/0FLOATINXT-REJll 
NDAS•NOAl 
IF ISCHEHE.EQ.21 NOAS•lo00+0/0FLOATl2•NXT-REJl-REJGI 
NOAG•loOD+O/OFLOATINXT-REJGI 
If (DTAILI WRITEl6ol0141 REJl,NOAl,REJG,NDAG 

1014 FORHATl'01,15, 1 R POINTS REJECTED',5X'l-EL NORHALIZATION ••, 
l lPD14, 7 / 
2 1 1,15, 1 RIJ FOINTS REJECTE01 0 5X'2-EL NORMALIZATION•'• 
4 014.7/1 

AGGV•O.POtO 
ASSV=D.OD+O 
AKEKEV=O.OD+O 
ANUCNV•O,OD+O 

CCCCCC EQS. I 871 ANO 1881 
DO 137 l•ltNOSS 
GGlll•GGIIl*NDAG 
GGVlll•OSQRTIGGVlll•NOAG/GGIIl•*2-l•OO+OI 
AGGVSAGGV+OGVlll 
SSlll•SSIIl•NOAS 
SSVlll•OSQRT(SSVlll*NOAS/SSlll**2-l.OO+OI 
ASSV•ASSV+SSVlll 
KEKEIIl•KEKElll•NOAl 
KEKEV(ll•DSQRTIKEKEVlll•NDAl/KEKElll**Z-loOD+OI 
AKEKEV•AKEKEV+KEKEVlll 
NUCNUClll•NUCNUCIIl•NOAl 
NUCNUVIIl•OSQRTINUCNUVIIl*NDA1/NUCNUClll**2-l.OD+OI 

137 ANUCNV•ANUCNV+NUCNUVlll 
RNOSSl•l.OD+O/DFLOATINOSSI 
AGGV=AGGV•RNOSSI 
ASSV=ASSV•RNOSSI 
AKEKEV•AKEKEV*RNOSSI 
ANUCNV•ANUCNV•RNOSSI 
If INPUNCHI GO TO 138 
wRITEl7,2006l IGGIIl,I•l,NOSSI 
WRITEl7,2006l ISS(llol•ltNOSSI 
WRITEl7o20061 IKEKEIIlol•l1NOSSI 
WRITEl7 120061 INUCNUClllol•l,NOSSI 
wR !TE I 7120061 IGGV( 111 I•l ,l~DSS I 
WRITEl7,20061 ISSVlll,l•l,NOSSI 
WRITE(7,20061 (KEKEVlllol•ltNOSSI 
WR I.TE 17 ,20061 I NUCNUVll I, l•l oNOSSI 

138 CONTINUE 
If INDTAILI GO TO 139 
CALL OUT2SlCGG 0 NNH,.TRUE.,ZGGI 
CALL OUT2SlCSS,NNHooTRUEooZSSI 
CALL OUT2SlCKEKE1NNN,.TRUE. 0 ZKEKEI 
CALL OUTZSlCNUCNUC,NNNooTRUEooZNIJCNUI 
CALL OUT2SlCGGV,111NNooTRUE01ZGGVI 
llRITEl60 9261 AGGY 
CALL OUT2S1CSSV,NHN,.TRUE.,ZSSVI 
WRITEC6,9261 ASSV 
CALL OUT2SlCKEKEV,NltNooTRUEooZKEKEVI. 
WRITEl6,9261 AKEKEV 
CALL OUT2SlCNUCNUV,NNNooTRUEooZNUCNVI 
WRITEl6,9261 ANUCNV 
ASUl!V•IAGGV+ASSV+AKEKEV+ANUCNVl*Oo250+0 
WRITEC6,9261 ASUMV 

926 FORMAT<• 11109X1AVE •'•1P017ol01 
139 CONTINUE 

CALL ELAPSEITIM9DI 
Tlll9DS-FLOATITIM901/1000o0/60o0 
WRITEl6,9191 TIM9DS 

919 FORMATl 10 1 oF7.2, 1 MlllUTES REQUIRED FOR 9-D INTEGRATION'! 
c ................................................................ .. 
c ................................................................. . 
c .................................................................. < 

C EIGEN-VALUES, -VECTORS AND CHECKING 
c ................................................................. . 

DO 62 l•l,NOSS 
V~lll•-NUCHUClll+GGlll 

62 HHlll•KEKEIIl+VVCll 
CALL OUT2SllVYoNNNooTRUEo•ZVVI 
CALL OUT251CHHoNNN,.TRUEooZHHI 
CALL OUT2S1CSS,NNN,.TRUE.,ZSSI 
L•O 
DO 76 I•loNOSS 
HllATI 1 l•HHI II 

76 SMATlll•SSlll 
DO 83 I•l,MXCON2 
KPPII l•O 
DO 83 L•l,.5 
COETIJ,Ll•OoOD+O 

83 VEClloLl•OoOOo-0 
If IROOTS.EQoOI ROOTS-5 
IF IROOTS.GTo51 ROOTS•5 
IF INROUT.EQ.21 ROOTS•l 
WRITE (6,9171 ROOTS,NROUT 

917 FORMATl/10FIND •,12, 1 ROOTCSI USING ROUTINE 1,121 
CALL CEIGINNH,RilOTS,MXCOH2,HMAT1SMAT1E,COET,VEC1KPP,NROUTI 
CALL OUTZICOEToMXCONZ1ROOTS.MXCON2,NNN10TRUE •• zcoETI 
CALL OUTllE,ROOTSoZEI 
If IPUNCHI WRITEl7,20061 ICOETllollol•l,NNNI 
If IPUNCHI WRITE17t20071 Elll,JX 

2006 FORMAT11P4D21lol21 
2007 FORMAT11PD20ol2o1ZOI 

IF INOELEC-31 122,123,123 
122 REPNUC-HALF/RR23 

GO TO 125 
123 REPNUC•5.0Do-O*HALF/RR23 

I-' 
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125 KLSUB•O 
DO 77 L=l,ROOTS 
CCKEI Ll•O.OD+O 
CCVIL l=REPNUC 
CCHIL l=O.OD+O 
DD 71 K=l1L 
KLSUB•KLSUBH 

11 CCSIKLSUBl•O.OD+O 
DO 78 L•l ,ROOTS 
IJSUB=O 
DO 78 J•l1NNN 
DO 76 1=1,J 
IJSUB=IJSUB+l 
CICJZC:OETll,Ll*COETIJ,Ll 
IF 11.NEoJl CICJ•CICJ•2o0D+O 
CCKEI Ll•CCKEILI +CICJ•KEKEI IJSUBI 
CCVILl•CCVILl+CICJ•VVllJSUBI 

78 CCHILl2CCHILl+CICJ•H~llJSUBI 
CALL OUTllCCH,ROOTS,ZCCHI 
CALL DUTllCCKE,ROOTS,ZCCKEI 
CALL OUTllCCV,RODTS,ZCCVl 
DO 103 L•l,ROOTS 

103 VRATIOILl•CCVILl/CCKEILI 
CALL OUTllVRATIO,ROCTS,ZVRATI 
DO 128 L•l,ROOTS 
DO 128 J•l,NNN 

128 OVER·IJ,Ll•OoOD+O 
DO 133 L•l,ROOTS 
00 130 J•l,NNN 
JSUB=J•I J-1 l /2 
DO 127 l•l ,NNN 
IF IJ.LToll GO TO 129 
SSIJ=SSIJSUB+ll 
GO TO 127 

129 SSIJ•SSII*II-ll/2+JI 
127 OVERIJ,Ll•OVERIJ,Ll+COETII,Ll•SSIJ 
130 OVERIJ1Ll•COET(J,Ll*OVERIJ,LI 

OVMAX•DABSIOVER{l,Lll 
IF INNN.LEoll GO TO 132 
DO 131 J•2 ,NNN 
If IDABSIOVERIJ,Lll.GT.OVMAXI OVMAK•OABSIOVERIJ,Lll 

131 CONTINUE 
132 OVRMAXILl•OVMAX 
133 CONTINUE 

CALL OUTllOVRMAX,ROOTS,ZOVMAXI 
CALL OUT210VER,MXCO~,ROOTS,MXCON,NHN,.TRUE.,ZOVERI 
KLSUB•O 
DO 79 L•l,ROOTS 
DO 79 l\•l,L 
KLSUB•KLSUB+l 
DO 79 J•l ,NNN 
JSUB•J•I J-1112 
COETJL•COETIJ,LI 
DO 79 l•l ,NNN 
IF CJ.LT.II GO TO 101 
SSIJ•SSIJSUB+II 
GO TO 79 

101 SSIJ•SSll•ll-ll/2+JI 

79 CCSIKLSUBl•CCSIKLSUBl+COETII,Kl•COETJL•SSIJ 
CALL OUT2SllCCS,ROOTS,.TRUE •• ZCCSI 
DO 100 L=l,ROOTS 
IJSUB•O 
DO lOlt J•l,NNN 
DO lOlt I•l,J 
IJSUB• I JSUB+l 
HESC l,Jl•HHCUSUBl-EILI •SSC IJSUBI 

lOlt If· ti.NE.JI HESIJ,IJ•HESU,JI 
DO 102 l=l,NNN 
HESCIIl•O.OD+O 
DO 102 J•l,NNN 

102 HESCIIl•HESClll+HESlltJl~OETIJ,LI 
WRITEC6,9161 L 

916 FORMATl/ 1 0RESUBSTITUTION OF EIGEN VALUE AND VECTOR 1 ,121 
CALL OUTllHESC1NNH,ZtESCI 
DETILl•DTRHHTIHES,MAXCON,NNNI 

100 CONTINUE 
CALL DUTlCDET,RDOTS,ZDETI 
WRITE(619101 REPNUC 

910 FORMATl// 1 0llUCLEAR REPULSION ENERGY •'lPDllt.71 
DO BO L•l ,ROOTS 

80 ETOTALILl•ElLl+REPNUC 
CALL OIJTlCETOTAL,ROOTS,ZETOTI 
CALL ELAPSECTIMEVI 
TIMEVs-FLOATCTll4EVl/l000.0/60oO 
WRITEl6,9201 TIMEVS . 

920 FORMATf'o•,n.2.• Ml"UlES REQUIRED FOR FINDING EIGENVALUES+ veclf' 
lORS, AND FOR CHECKING'! 
TIMTS•TIM9DS+TIMEVS 
WRITEC6,9231 TIMTS 

923 FORMATl/'0' ,F7o2t • MINUTES REQUIRED FOR CALCULATION' I 
If llREPTXoGEolEHDI Gt TO 1999 
IF CPTSELT.NEoll GO TO 25 
SAVE•A91TSU8+11 
00 158 J•lt8 

158 A9tTSUB+Jl•A9tTSUB+J+ll 
. A91TSUB+91•SAVE 

25 DO 161 l•l,NOSS 
GGVCll•CGGVlll••2+loOD+Ol>tGGCll••2/NDAG 
GGlll-GGCil/NDAG 
SSVCll•ISSVlll••2+1.0D+Ol•SSlll*•Z/Ml>AS 
SSCll•SSlll/NDAS 
KEKEVCI l•tKEKEVC 11••2+1.oo+ol•KEKEI 11 .. 2/lllAr 
KEKElll•KEKECll/NDAl 
NUCNUVlll-CNUCNUVCll••2+1.0D+Dt*HUCHUClll••2/NDAl 

161 NUCNUCCll•NUCNUCCll/IWAl . 
GO TO 160 i 

c ................................................................. . 
c ................................... ** ............................ ~: 
c ................................................................. ~ 
C CALCULATE COORDINATES AND EVALUATE ORBITALS 
c .................................................................. . 
C CENTERS ARE IN ORDER A, B, C. 
C NC•l INDICATES CENTER At NC•2 INDICATES CENTER B, 
C AND NC•3 INDICATES CENTER Co . 
C THE l AXES OF ThE CCORDINATE SYSTEMS CENTERED ON A, B, AND C, 
C ARE ALL ORIENTED IN THE SAKE DIRECTION. 
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~2 fi.NtzELN-1 
ROWSW•ELNl*MAXSO 
SUB•3*ELN-2 
If CELNTH.EQo2oANOol~TGNOoEOoll GO TO 200 
ETA•XXCSUBI 

CCCCCC EQo 11031 
136 R•ROC 10.0D+O*ETA+loOO+OI 

DO 146 J•l.20 
SSSR•SSS•R 
EXPSR•DEXPCSSSRI 
OENOH•SSSR+loOO+o-11.oo+O-ETAl•EXPSR 
IF IOABSCOENOllloLTol•00-401 OENOll•l.00-40 
DELTR•l.OD+O/ISSS*SSSR/OENCH+HALf*lloOO+O-SSSRl/RI 
R•R+DElTR 
If IDABSIETA-lloOD+O-ISSSR+l.OO+Ol/EXPSRllolTolo00-141 GO TO 147 

146 CONTI l'tUE 
147 IF llllNlTI GD TO 3 

CCCCCC EQ. 11021 
MU•XX I SUB+ll 
COST•l.OO+o-2.oo+oo~u 
PHl•TWOPl*XXISUll+21 
GO TD 41 

200 If INC-21 201,202,2c3 
201 Rl•RA 

COSTl•ZA/RA 
GO TO 204 

202 Rl 3 RB 
CDST!=Z.8/RB 
GO TO 204 

203 RI•RC 
COSTl•ZC/RC 

204 SINTl•DSQRTlloOD+O-CDSTl•COSTll 
ZE U•XXI SUlll 
XI•XX I SUB+ll 
PHIP•TWOPl*XXISUB+ZI 
CPHIP•DCOSIPHIPI 
SPHIP.OSINIPHIPI 
SRl2M•SSSH•Rl12.00+0 

cccccc eo. 11131 
LAM80A•l.OD+O+OLOGlloOO+O-ZETAl/SRl2M 
MU•DlOGll.OD+O-lloOD+O-DEXPl2oOD+O*SRl2Mll*Xll/SRIZM-loOD+O 
LAMBHU-LAllBDA~U 

CCCCCC Ello 11141 
R•LAl48MU*Rl/2.CC+O 
COSTP•Cl.OO+O+LAMBDA*HUl/lAMBMU 
SINTP=DSQRTtl.OD+O-CDSTP*COSTPI 

CCCCCC Ello 1111>) 
COST•COSTP•COSTI-SlhTP•SINTl-CPHIP 
PHI•PHl+OATAN21SINTP•SPHIP,COSTP*SINTl+SINTP-CPHIP~OSTll 

41 RSINT•R*OSQRTlloOO+O-COST*COSTI 
z~R•COST 
R2•R•R 
TEMPl•R2+RR232 

CCCCCC CALCULATE COO~DINATES WITH RESPECT TO All OTHER CENTERS 
CCC CCC I SEE F Hoo 21 

TEMP2•TORRZ3*Z 
IF INC-21 14lol42tl43 

141 RA•R 

RAZ•R2 
ZA•Z 
ZS-Z-RR23 
ZC•Z-TDRR23 
RB2•TEHP1-TEHP2 
RB•DSQRTIRB21 
RC2"4.0D+O•RR232+R2-2.00+0*TEMP"2 
RC•DS QRTI RC2 I 
GO TO 144 

142 R&-R 
R82-R2 
Z..,_Z+RR23 
ze-z 
ZC•Z-Rll23 
RA2•TEMPl+TEHP2 
R"8DSQRTIRA21 
RC2•TEMP1-TEMP2 
RC-OSQllTIRC21 
GO TO 144 

143 RC•R 
RC2•R2 
ZA•Z+TORR23 
Z&•Z+RR23 
zc-z 
llA2m4eOD+O•RR2J2+R2+2•0D+O*TEMP2 
llA-OSQRT I RAZ I 
llll2-TEllP1+TIMP2 
ll ... OSQllT I ll&Z I 

144 If Clllte&TeRAIOSeANOellleGTeUIDS.AHDellCeGTollAUISI GO TO 47 
If IDTAILI jjf111'1C61 lOHI llA1lllltAC1NX1ZHUCHUiHC1SUl1IHT&NO 
If CINTGHO.&Qell GO TO 1..0 

157 RE.ll•AEJ1+1 
GO TO 1'4 

CCCCCC CALCULATE COMPDHt!NTS Of IHflGAATUIN PO.INT DllfllTY fUHCTIGfl 
47 ESllR ... DEXPISSSM•llAI 

ESM&•DEXPI SSSM•A& I 
ESllRC-OtXPISSSM*Ael 
llARll•llA•ll& 
ESHRAP.lll*ll~ISf!R.-.S24PI 
E~RA~•tlflll'e•S24PI 
lS"""'91l/tAa9!SfllAC•S2~P I 
TE*""l!SltlllW+t!SHAIP+ESMltCP 
OTlllLNf•TEMP 
IF CINTGNOelQe21 GO TO 1'6 
OTZI ELNf•Tlflll'~A/I 1.0D+O-HMAAI 
OTJIELNl•TllW.,_l/lloOC+O-llAAll 
DT41£LNt•TflW*llC/lloOO+O•tSNACI 
DAll!lNl•UMllAP 
ClllELNl•ESMRIP 
Oct ELNI •ESflllGP 

156 OT5llElNl-AAAl~C 
SUMlllft..Nf• c-....Al-.C.ilAQ 
ll-«Sllrl-.C:OICflHI I 
Y-ASIHT•OSlflC 'WI I 
XXXXfEt.Nl•X 
YYYYf&Nl•Y 
ZZZZf ELHl•ZI 

CCCCCC EQe U71 ANO T AIU JI 
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AOlA•XNORl*DEXPIZZlM*RAl 
A01S-XNOR2*0EXPIZZ2M*RBl 
AOlC•XNORl*OEXPIZZl~*RCI 
A02A•XNOR3*RA*OEXPIZZ3~*RAl 
A02C•XNOR3*RC*OEXPIZZ3H•RCI 
SOIROWSW+ll•AOlB 
SOIROWSW+21•AOlA+AOlC 
SOIROWSW+3l•A01A-A01C 
S0(ROWSW+'tl•A02A-A02C 
lf ISCHEME.NE.l.AND.ELNTH.EQ.2.ANO.lNTGNO.EQ.11 GO TO 155 
RAI•l.OD+O/RA 
RBl•l.OD+O/RB 
RCl•l.OO+OIRC 

CCCCCC EQ. IBo'tl 
ZlRAl•ZZlM*RAl•AOlA 
DAOlAX•X*ZlRAl 
DAOlAY•Y*Zl RAl 
OAOlAZ•ZA*ZlRAl 
Z2RBl•ZZ2H*RBl•AOlB 
DA01BX•X*Z2RB1 
DA01BY•V*Z2RB1 
DA01BZ•ZB•Z2RB1 
ZlRCl•ZZlH*RCl•AOlC 
DAOlCX•X*ZlRCl 
OAOlCY•Y*ZlRCl 
OAOlCZ•ZC*Z lRC l 
RA12•RAl•RAI 
RCl2•RCl*RCI 
Z3RA2•1RA12-ZZ3•RAll*AD2A 
OA02AX•X*Z3RA2 
OA02AY•Y*Z3RA2 
OA02AZ•ZA*Z3Rf.2 
Z3RC2•1RCl2-ZZ3*RCll•A02C 
DA02.CX•X*Z3RC2 
DA02CY•V*Z3RC2 
DA02CZ•ZC*Z3RC2 

CCCCCC EQ. !B.81 
LAOlA•IZZ12-TOZZlN*RAll*AOlA 
LAOIB•IZZ22-TOZZ2N*RBll*A018 
LAOlC•IZZ12-TOZZlN*RCll*AOlC 
LA02A•IZZ32-'t.OO+O•ZZ3*RA1+2.0D+o*RAI21*A02A 
LA02.C•IZZ32-'t.OO+O•ZZ3*RCl+2.00+0*RCl21*A02C 
INOEX•ROWSW+l 
DSOXllNDEXl•OAOlBX 
OSOYIINOEXl•DAOlBY 
DSOZIINOEXl•OAOlBZ 
LSOllNOEXl•LAOIB 
INOEX•ROWSW+2 
DSCXllNOEXl•DAOlAX+CAOlCX 
DSOYllNDEXl•OAOlAY+DAOlCY 
DSOZllNDEXl•DAOlAZ+CADlCZ 
LSOIINDEXl•LAOlA+LAClC 
INDEX•RDWSW+3 
OSOXllNDEXl•DAOlAX-CAOlCX 
OSOYllNDEXl•DAOlAY-CAOlCY 
DSOZllNDEXl•DAOlAZ-CAGlCZ 
LSOIINOEXl•LAOlA-LAClC 
lNDEX•ROWSW+'t 

DSOXllNOEXl•DA02AX-CA02CX 
DSOYllNOEXl•DAD2AY-CA02CY 
DSOZIINDEXl•DA02AZ-CA02CZ 
LSOllNDEXl•LA02A•LAC2C 

155 lf IELNTH-21 57,58,6C 
9000 STOP 

END 
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OS/360 FORTRAN H 

OPTIONS - NAME• MAJN,OPT•02:LINECNT•60,SOURCE,EBCDJC,NOLIST,NOOECK 
lFUNJ;TION LAPSIII,J,K,IP,JP KPll 

CCCCCC SEE APPEt<iOIX e 
IMPLICIT REAL•SIA-H.L,o-zl 
COMMON /KEGRUP/S0145),LS014511DSOXl45l,DSOYl45ltDSOZl451, 

2 DR12Xl41, DR13Xl41,DR23Xl41,R 12EI 41,LR12141, 
3 OR12Yl41,0R13Yl41,DR23Yl41,Rl3El41,LR13141, 
4 DRlZZ 14 I ,OR13ZI 41.0R23ZI 4J ,R23EI 41,LRZ3141 t 
5 MAXSO,MAXSOZ ,HALF 
Rl21P•Rl2EllP+ll 
Rl3JP•Rl3EIJP+ll 
R23KP•R23EIKP+ll 

·soJ•SOlll 
SOJ•SOIMAXSo+JI 
5'll<•SOIMAXS02+KI 
SOJJK•SOl*SOJ*SOK 
DR121X•ORlZXllP+ll 
OR12 IV•DR12YI JP+l I 
DR121Z•DR12ZllP+ll 
DRl3JX•ORl3XI JP+ll 
0Rl3JY•OR13·YIJP+l l 
DR13JZ•DR13ZIJP+ll 
OR23KX•OR23XI KP+ll 
OR23KY•DR23YIKP+ll 
DR23KZ•DR23ZIKP+ll 
DSOIX•OSOXI Il 
DSOIY•OSOYI II 
DSOIZ•DSOZI I I 
INDEX•MAXSO+J 
DSOJX•DSOXllNDEXl 
DSOJY•DSOYllNDEXI 
DSDJZ•OSOZllNOEXI 
INDEX•MAXSOZ+K 
DSOKX*DSOXI INOEXI 
DSOKY•DSOYllNDEXI 
DSOKZ•DSOZI JNOEXI 
LAPS I• I I LR121 JP+l l*Rl3JP+Rl2IP~R131 Jl'+ll l*R23KP 

l +Rl21P*Rl3Jp•LR231KP+ll 
2 +I ORlZI X*DRUJX+Qll. 121V*DRl3JY+D!U21Z*DRl3JZ l•R23KP 
3 -IDR12IX•DR23KX+OR121Y*OR23KY+OR121Z*DR23KZl•Rl3JP 
4 +IOR13JX*DR23KX+DR13JY•OR23XY+oRl3JZ*DR23KZl•Rl2JPl•SOIJil 
5 +llDSOIX•DR13JX+DSOIY*Oltl3JY+DSOIZ*OR13JZl•R1ZIP 
6 +IDSOIX•OR121X+OSOIY*DR12IY+oSOIZ*OR121Zl*Rl3JPI 
7 •R23KP•SOJ*SOK 

LAPSI•O.O+o-ILAPSJ+((OSOJX•DR23KX+DSOJY*DR23KY+OSOJZ*DR23KZl•R121P 
1 -IOSOJX•OR121X+DSOJY*OR121Y+OSOJZ*OR121Zl*R23KPI 
2 ·•Rl3JP•SOl•SOK 
3 -llDSOKX*DR23KX+oSOKY*ORZ3KY+oSOKZ*DR23KZl•Rl3JP 
4 +IDSOKX•OR13JX+DSOKY•Olll3JY+OSOKZ•DR13JZl•R23KPI 
5 *Rl21P•SOl*SOJ 
6 +HALF*llLSOIIl•SOJ+SOl*LSOIMAXSO+Jll*SOK. 
1 +SOI •SO.l•LSCI MAXS02+KI J $Rl21P*Rl3JP•R23KP I 

RETURN 
END 

05/360 FORTRAN H 

OPTIONS - NAME• MAIN,OPT•02,LINECNT•60tSOURCE,EBCDIC,NOLIST,NODECK 
!SUBROUTINE ORANDU!JXrlYrYFLI I 
REAL*& YFL 
IY•IX•65539 
IF IIY.GE.01 GO TO 6 
JY•IY+2147483647+1 

6 YFL•IY 
YFL•YFL*Oo4656612!730l7393D-9 
RETURN 
ENO 
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OS/360 FORTRAN H 
OPTiONS - NAME• MAINtOPT•02tLINEC.NT•601SOURC.ErEBC.OIC.tjNOL1ST,NODEC.K 

Is BROUTINE CEIG CN.H1NN,HMAT1SMAT1E1COET.yEC.KP1NR UT! I 
IMPLICIT REAL*BIA-H,O-ZI 

CCEIG 
c 
c 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c. 
c 

c 

c 
c 
c 
c 
c 

c 

30 

3 

SUBROUTINE SOLVES SECULAR EQUATICNS OF FORM IH-LSI X•O, WHERE L 
IS A SCALAR. THIS ROUTINE BEGINS BY TRIANGULARIZATION OF S 
FOLLOWED BY A SINGLE DI,t.GONALUATlON. CMAT (WHICH CAN OCCUPY THE 
SAME LOCATION AS THE ORIGINAL OVERLAP MATRJ x, SMATI * CMAT TRANS­
POSE • SMAT • THE TRj:NSFOR~EO HMAT IS STORED BACK OVER THE ORIGINAL 
HMAT BEFORE THE DIAGC·NALlZATJON ROUTINE GIVENS IS CALLED ANO THUS 
DESTROYS THE ORIGINjl HAMILTONIAN MATRIX. Tl-IE PARAMETERS AREo•• 
N SIZE OF MATRIX BEING DIAGONALIZED 
Nl NUMBER Of· ROOTS WANTED •. 
NN FORTRAN DIMENSION OF THE MATRIX IN THE CALLING PROGRAM. 
HMAT HAMILTONIAN MATRIX - INPUT 
SMAT OVERLAP MATRIX - INPUT. 
E EIGENVALUE - OUTPUT 
COET EIGENVECTOR - OUTPUT 
VEC TEMPORARY STORAGE 
KP TEMPORARY STORAGE 
DIMENSION Elllt HMAHllr SMATlll. VECINN1511 CilETINN,NNlt KPlll 
00 3D l•lt N 
KPI II • U*Cl-111/2 
COETI ltll •DSQRTI SMATUI I 
CMATlll • loO/ COETlltll 
SMATlll • loD/ COETllrll 
CMAT HAS BEEN REPLACED HERE BY SHAT BECAUSE FORTRAN RULES SPEC.I FY 
THAT A VARIABLE APPEARING IN THE CALLING SEQUENCE CANNOT BE EQUI­
VALENCEO TO ANOTHER VARIABLE. ALL ORIGINAL STATEMENTS USING CMAT 
ARE SAVED ON COM'MENT CARDS SO THAT THE USER CAN FOLLOW THE. LOGIC 
MORE READILY. . 
IHN-11 2,2,3 
DO 10 .I • 2rN 
111 • KPIJI +l 

10 COETU,JI • SMATI IIIllCOETU,11 
DO 11 I • 2 ,N 

12 

6 

14 

13 
4 

SUM • OoO 
I II•KPI l l+I 
IMl • 1-1 
IPl • l+l 
DO 12 K • lt I Ml 
SUM • SUM + COETIKtll**2 
COETIJ,11 •DS-QRTISllATllIII - SUMI 
CMATllllJ • loO/ COETCJ,11 
SMATllill • loO/ COETCI,11 
IFllPl-NI 6,6,4 
DO 13 J • IPlrN 
SUM = a.a 
DO 14 K • 11IMl 
SUM• SUM +COETCK,ll*COETCK,JI 
III• KPIJI +I 
COETII,JI •CSMATlllll - SUMl/COETll,Il 
Il • 1-1 
UQ. l~ fl • hlMl , ...... ..; •a; ..... ". 
S!Mlr- ct ... 

UP • Il+l 
00 15 K • JIP, J 
KJW • K + KPIO 

C 15 SUM• SUM+ COETlll,KI * CMATIKJWI 
15 SUM• SUM+ COETClltKI *'SMATIKJWI 

C CMATC IJWI • - SUM/ COETC II~U I 
SKATCJJVI. - SUM/ COETCU,UI 

16 II • ll-1 
11 CONTINUE 

. 2 DO 40 Jl•l,N 
00 40 L•l.Jl 
COET CL,Jll•O.O 
DO 'tl K•l,Jl 
KJl • K + KPIJll 
IFIL-KI 1t2,1tz,43 

43 IIl•K+KPCLI 
GO TO 'il 

lt2 lll•L+KPIKI -
C U C.OETCL,.111 • COETIL,Jll + HM.4T·lllll * CMATIKJU 

41 C.OETIL,Jll • COETCL,.JU ·+ HMATCllll * SMATIKJll 
40 CONTl-NUE 

00 4lt Jl•l ,N 
DO 'tit 11•1.Jl 
KKK • 11 + KPCJll 

t WCKKKI • ·o.o 
HM·ATCKKKI • OoO 

C HMAT REPLACES W FOil THE 'SAME REASON THAT SMAT REPLACES CMATo 
00 'tit L•l,Il . 
Lil• L + KPIIll 

C 'tit WCKKKI • W·(KKKI + CMATILlll•COETILtJU 
. 1t4 HMATIKKl\I • HMATIKK«I + SMATILlll*COETCL,.all 

GO TO 164,651,NROUT 
6.r, CALL GIVENS CN,Nl,Nll,liMATwVEC,E,COETI 

GO TO 66 
65 CALL NES&ET IN,Nl.NN.liMAT,KP,e.coer1 
66 NlABS•IABSINll 

63 DO 61 J • ltNlABS 
•. 00 60 I•l,N 

vEcc i.11 • o. 
00 60 J.J • I ,N 
IJ.J • I + KPCJJI 

C 60 VECCl.11 • VECCl,11 +CMATlU.Jl*COETlJJ,JI 
60 VECIItll • VECIItll +SMATIJJJl*COETC.JJ,JI 

DO 50 I • l ,N . 
50 COETtl.JI • VECIJ,11 
61 CONTINUE 

RETURN 
_END 

...... 
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OS/360 FORTRAN H 

OPTIONS - NAME• MAIN10PT•021LINECNT•601SpuRCE1EBCDIC1NDLIST,NODECK 
' ROUTINE NfSBETIN1NROOTX1NN1H1KP1E1CI 
IMPLICIT REALiiiBIA-H,c-z 
DIMENSION Hlll1KPlll1Elll1CINN,NNI 
TOL•leD-14 . 
DO 30 I•l1N 

30 KPI 11•11•11-111/2 
NROOTX•l 
CA•2.0D+O 
CTEST•0.09990+0 
DO 5 l•l1N 

5 Cl Ii ll•D.OD+O 
48 Ell l•lOeOO+O 

DO 50 J•l1N 
JJJ•J+KPIJI 
IFIEl11-HIJJJll50150152 

52 El ll•HI JJJI 
JS•J 

50 CONTINUE 
JJ S•J S+KP I J SI 
Cl JS, 11•1.0D+O 
IFIN-110143155 

55 JS2•0 
DO TO Jal,N 
IFIJ.EQ.JSIGO TO 70 
JJJ•J+KPI JI 

· IFIECll.LT.HIJJJllGO TO 70 
71 Jl2•JS+KPIJI 

IFiHIJ121.EQ.OeOD+O.I GO TO 70 
JSZ-J 
GO TO 72 

TO CONTINUE 
72 IFIJS2.EQ.OI GO TO 73 

Hl2-HIJ121 
Elll•HIJJSl-DABSIH121 
CIJS2.ll•DSIGNtl.o+o,-Hl21 

73 CONTINUE 
8 CMAX•OeOD+O 

DO 3 J•l,N 
IFIJ-JSl9,3,9 

9 SIG-EUl•CIJ,11 
JJJ•J+KPIJI 
00 4 I•·l,N 
IFl1-Jll1l12 

2 I JJ•J+KP I II 
GO TO 4 

1 IJJ•I+KPIJI 
4 SIG•SIG+HI IJJl•CI I ,11· 

21 DELC=SIG/IElll-HIJJJll 
7 DELO•ICIJ,ll+CIJ,ll+CELCl•DELC 

D•O.OD+O 
DO 6 IC•l,N 

6 D•D+CIK,ll••z 
22 DELE•SIG*DELC/ID+OELDI 
24 CtJ,ll•CIJ1ll+DELC 

CMAX•DMAXllCMAX,DABSIDELCll 
25 EUl~Elll+OELE 

26 IFIDABSIDELCl-CAl3,3,8 
3 CONTINUE 

CA-CA/2.0D+O 
31 IFICMAX-CTESTl13rl318 
13 CTEST•oOlD+O•CTEST 

El•OoD+O 
o-o.o+o 
DO 36 Kl•l1N 
0-D+CIK I 111••2 
DO 36 KJ•KI 1N 
KKK•Kl+KPIKJI 
TERMaCIKl1ll•CIKJ,ll•HIKKKI 
IFIKI-KJl35,34135 

34 El•El+TERM 
GO TO 36 

35 El•El+TERM+TERM 
36 CONTINUE 

El ll•El/O 
IFICMAX-TOLl5915918 

59 BRAFN•HIJJSl-Elll 
DO 60 l•l1N 
IFII-JSl6l160,62 

61 Kl•I+KPIJSI 
GO TO 63 

62 K l•JS+KPI 11 
63 BRAFtl•BRAfN+HIKll-011,li 
60 CONTINUE 

El ll•EI ll+BRAFN/O 
32 0-DSQRTIDI 

DO 16 I•l 1 N 
16 Cll1ll•Cll1ll/D 
43 RETURN 

END 
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OS/360 FORTRAN H 

OPTIOfil.S - NAtlE• MAIN10PT-021 LHIECNT•601 SOURCE,EllCDIC oNOLIST ,ftOOECK-
· !SUBROUT !NE &I YENS INX1NROOTX,NJX1 A1B1RDOT, VECTI l 

IMPLICIT REAL•8IA-H1D-ZI 
DI MENS ION BINX,511A(l1 rROOT INROOTX 1 rVECTI NJX,ltROOTXI 
EQUIVALENCE llEMP, lTEMPI •- ITMr 1T141 

RETURN 
ENO 

OS/360 FORTRAN H 

OPTHlNS - NAME- MA1Nr01'T•02•LINE·CNP&O• SOURCE,E&CDIC,NOLIST,NOl>ECK 
fFUNCTION DTRMNTIArNltrNI I 

IMPLICIT REAL•B IA-MtO-ZI 
DIMENSION AIMN,NNI 
DTRMNT•AU, 11 
IF IN,EQoll RETURN 
DTRPIMT•loOD+O 
Nl-N-1 
DO 8 L•l,Nl 
AIJMAX•DAllSIAIL1L 11 
MAXROW•t. 
MAXCOL•L 
00 l I•L,N 
00 l J•L,N 
IF IDA8SIAH1JI lolEoAIJMAXI GO TO 1 
AIJMAX•DABSIAI J,JI I 
MAXROll•I 
MAXCOL•J 

l CONTINUE 
IF IMAXCOL.EQ.LI GO TO 3 
DO 2 I•LrN 
SAYE•A I I ,LI 
Al I,Ll•All,MAXC_Ol..I 

2 AII,14AXCOLl•SAYE 
DTRMNT•DTRMNT•1-1.oc+01 

3 IF IMAXROWrEQoLI GO TO 5 
DO It J•l 9 N 
SAVE•AIL1JI 
AIL 9 Jl•AIMAXRC»i,JI 

It Al MAXROW, J l•SAV E 
DTRMNT•DTRMNT•l-loOD+OI 

5 Ll•L+l 
DO 6 I•ll,N 
RATIO•AIIoLl/AIL,LI 
DO 6 J•Ll,N 

6 AII,Jl•AII,Jl-RATIO•AM.,JI. 
8 CONTINUE 

DO 1 I•l,N 
1 DTRMNT•DTRMNT•AII1ll 

RETUR!" 
END 

-DS/l60 FORTRAN H 

OPTlOKS - ltME- MAll .. OPT•02ollMECNT•601SOURCE,EllCDIC ,NOLIST 1NODEcK 
!SUBROUTINE flJTUXJlXXXX1N1ZZZZI I 
IMPLICIT ltEM.•8 u-11,0-u 
OUIEltSION XXXXXXINI 
lrRITEl6,U 
FllRllA Tl lffO I 
WRITE lf>o21 lllZZoJoXXXXXXlJ loJ•lrNI 

2 FORllATUPltllXA6_,lH( ,12 r31U •o020el3H 
RETIJltN 
END 

_ OS/360 FOllTRAN H 

Ol"TlllNS - HMU;a ""J.N,al'T-02oLINECHT•60, SOUltCE,ESCDIC,NJLIST ,NOOECK 
ISMH!Qun!!f WT2gxxxux.tc.Nl!Ax,M,MAX1TRANS,zzzz1! 

IMPLICIT REAL•B IA-hD-ZI 
LtllilCAL TRANS 
DlftENS lmt XXXXXXI N; MI 
ll!llTEC6 oll 

1 FORMATl///I 
.ll!AX•MAX 
DO 3 l•l,JIMAX 
IF OIAX.EQ.01 .fflAX•I 
IF i.NO-T.TUNSI GO TO 2 
llRITEC6,ltl UZZZ.Ji I .xxxxxxu,11,J•l ,JMAXI 
G01D3 - -

2 VRITE(6,ltl czzzz.I,J,XXXXXXtI,Jl,Jal,JMAXI 
3 COflTINUE 

- It FDaMAT l lPltl 1XA6, •I"• I2, ' .. •,·I2,' I •' oDl lo 101 ~ 
RETURN 
END 

DS/360 FORTRAN H 

OPTIONS - NAME• MAlN,OPT•02oLINECNTa60,SOURCE,EBCDlColtDLISToltDOECK 
• tsu8RQU! INE CIJT2Sll•.NrUPJ ZI I 

IMl't.lCIT REAL•B CA-HoO-Z 
LOGICAL U1' 
DIMENSION All I 
llRITEC6,51 

5 FDRMATC/I 
IF loNDToUPI GO TO 3 
DO 1 Jal,N . 
JSUS-J•C J-1112 

l llRITEC6o21 .cz,I,JrACJSUB+Ilol•loJI 
2 FORMATUP4l' •,A6o' 1 •,12,• •' o-I2,' I •' ,DllolOl I 

RETURN 
3 M!l•N-1 

MAXM.•N•IN-11 /2 
DO It J•l.Nftl. 
JPl•J+l 
hMJaN-J 
J SUB•MAXAL-t.;MJ* I NMJ+ 11/ 2-J 

It llRITE16o21 cz,I,J,ACJSUB+Il,J•JPloNI 
RETURN 
END 
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LOC OBJECT CODE 

000000 

ADORl AOOR2 STMT SOURCE STATEMENT 

000000 47FF OOOC 
000004 07 
000005 C503ClD7E2C540 
OOOOOC 90E5 DOOC 
000010 0540 
000012 
000012 5851 0000 

000016 4110 0001 
OOOOU OA2E 
OOOOlC 5830 402E 
000020 1830 
000022 5C20 4036 
000026 5D20 403A 
00002A 5.035 0000 

00002E 4110 402E 
000032 1800 
000034 OA2F 
000036 9825 DOlC 
00003A 92FF DOOC OOOOC 
00003E 07fE 
000040 
000040 7FFFFFFF 

000048 cccooou 
00004C 000003E8 

ooooc 

ooooc 

00000 

00001 

00040 

00048 
0004C 
00000 

00040 

OOOlC 

1 ffil>SEJ 
2 
3 
4 
5 
6 
7 
8 
9 

10+ 
11+ 
12 
13 
14 
15 
16 
17 
18+ 
19+ 
20+ 
21 
22 
23 
24 
25 GO 
26 
27 
28 

START 0 
BC 15,12(151 BRANCH AROUND CONSTANTS 

·DC X'7' 
DC CL7'ELAPSE I 

STM 14,5,121131 
BALR 4,0 
USING *t4 ESTABLISH 4 AS BASE REG. 
L 5,0(11 PLACE ADDRESS OF ARG IN REG. 5 
TTIMER CANCEL PLACE DECREMENTD TIMER IN REG 0 
LA 1,110,0I INDICATE CANCEL 
SVC 46 ISSUE TTIMER SVC 
L 3,GO LOAD ORIGINAL VALUE OF TIMER 
SR 3,0 SUBTRACT PRESENT VALUE 
M 2, 2 F126 1 MULTIPLY TIMER UNITS BY 26 GIVING MICROSECe 
D 2,sf'lOOO' DIVIDE BY 1000 GIVING MILLISEC 
ST 3tOC51 STORE ELAPSED TIME IN ARG 
STIMER TASK,,TUINTVL•GO START TIMER FOR NEXT CALL 
LA ltGO LOAD PARAMETER REG 1 
SR -010 INDICATE TASK,TUINTVLs 
SVC 47 ISSUE STIMER SVC 
LM 2,5,281131 RESTORE REGISTERS 
MVI 12(13t,X1FF 1 INDICATE CONTROL TO FORTRAN 
BCR 15,14 
OS OF 

·DC X1 7FFFFFFF' DEFINE INITIAL VALUE OF TIMER 
END 

•F 1 26' 
•F' 1000' 

' 
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TABIE X 

SAMPLE INPUT DATA FDR H3 PROGRAM 

Column Number 

11111111112222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

TRUE FALSE 

1 1 1 3 0 0 0 
2 1 2 3 1 0 0 
3 1 1 3 1 1 1 

999 
1 1.1303 
2 1. 2796 
3 1.0663 

999 
1 3 1 l.OOD-03 2000 l.OOD-03 1 2 

1. 7924 1.540 
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DETAIL • T 

CD~NOo 
l 
2 
3 

CONfo 
l 
2 
3 

PUNCH • F 

soo1 
l 
l 

.l 

3 ELECTRON SYSTEM 

EXPONENTISI VALUE 

l l 10130300 OC 
z 2 lo2796DD 00 
3 3 lo06630D CO 

RZ3 SSS 
lo79Z't0D 00 10540000 00 

SOoZ 
l 
z 
1 

SOo3 
3 
3 
3 

Rl2 
0 
l 
l 

Rl3 
0 
0 
l 

R23 
0 
0 
1 
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2106 9-0 POINTS 1 TIMES CYCLE t l TOTAL OF 2106 POINTS 
# 3 POINT SELECTION TECHNIQUE 1 DISTRIBUTION SCHEMEISI 

MINIMUM R DISPLACEMENT • l.OOOD-03 MINIMUM Rl2 DISPLACEMENT • 1.0000-03 

0 R POINTS REJECTED 1-EL NORMALIZATION• 4.74833810-04-
0 RIJ POINTS REJECTED 2-EL NOR~AL IZAT IGN • 4. 74833810-D4 

GGI lt 11 • 2.76C25315040 00 
GGI lt ZI • 5.14875194400 00 GGI 2, 21 • 3.54486091620 01 
GGI lt 31 • 2.80026067470 01. GGI 2, 31 • 8016001669940 01 GGC 3, 31-· 6.17097779790 0_2 

SSI lt 11 • lo64t57861390 00 
SSI 1, 21 • 3067648621980 00 SSI z, 21 • 2.66923378210 01 
SSI 1, 31 • 2.25608230610 01 SSI 2, 31 • 7.66D0291702D 01 SSI 3, 31 • 6.28525178160 02 

KEKEI i. 11 • 3o9254it924770 00 
KEKEI l• 21 • 5•68067207910 00 KEKEI 2, 21 • 5.07711553300 01 
KEKEI lt 31 • 3,43354852280 01 KEKEI 2• 31 • 9.07166058920 01 KEKEI 3, 31 ••• 62653092420 02 

NUCNUCI 1, 11 • 1.09461050910 01 
NUCNUCI lt 21 • 2022126606510 01 NUCNIJC( 2, 21 • 1.54063816320 02 
NUCNUCI lt 31 • 1.30726133740 02 NUCNUC( 2, 31 • -4.05858071650 OZ MUCNUC( 3, 31 • 3.196572193.W 03 

GGVI 1, 11 • l.43158Z6944D 00 
GGVI 1, 21 • 8.81395338510-01 -GGV( z, 21 • 1.29203534870 00 
GGVI 1, 31 • 1.38317248800 00 GGVI 2, 31 • 1.21410639190 00 GGVI 3, 31 • 2.19047739400 00 

SSVI 11 .ll • l.30e55319470 00 
SSVI lt 21 • 9.37758585210-01 SSVI 2, 21 • 1034322759260 00 
SSVI lt 31 • l.555t338963D 00 SSVI 2, 31 • 1.51850998970 00 SSVl 3, 31 • 2•68,847624410 00 

KEKEVI 1, 11 • 1074377052730 00 
KEKEVI lt 21 • 1.21201317110 00 KEKEVI 2, 21 • 1.63525821450 00 
KEKEVI l• 31 • 2.02622410030 00 KEKEVI 2, 31 • 1.67706937540 ·oo KEKEV( 3, 31 • 2.83297101360 00 

NUCNUVI lt 11 • 1,32895049090 00 
NUCNUVI lt 21 • 8,46531711040-01 NUCNUV( 2, 21 • 1.2344156*050 00 
NUCNUVI lt 31 • 1.39445246190 00 NUCNUVI 2, 31 • 1.25056024830 00 NUCllOVI 3, 31 • 2.25444868610 00 

lo08 MINUTES REQUl~EO FOR 9-0 INTEGRATION 

VVI lt 11 •-8.18585194050 00 
VVI lo 21 •-1.70639087070 01 VVI 2, 21 ~1.18615207160 02 
VVI lt 31 •-1,02723527000 02 VVI 2, 31 ~3.24257904to50 02 VVI 3,_ JI •-2.57947441360 03 

HHI lo 11 •-4.26040269280 00 
HHI 1, 21 •-1.13832366280 01 HHI 2, 21 •-6.784405111320 01 
HHI 1, 31 ~6,83880417700 01 HHI 2, 31 ~2.3354129&760 OZ HHI 3• 31 --1.71682132120 03 

AVE • 1~39879494260 00 

AVE • 1.55169325040 00 

AVE • l.154551071lll 00 

AVE • 1.314e9320660 00 
AVE • 1.54923311960 00 
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SS( 1, ll = lo64t51861390 00 
SSI 1, 21 = 3067648621980 00 
SSC lo 31 • 2oZ560823<X>lD 01 

~IND 1 ROOTCSI USING ROUTINE 2 

SSI 2 0 21 • 2066923378211> 01 
SS I 2 0 31 "' 7 .. 66002917020 01 SSC 3, 31 • 6028525178160 02 

COETt lo 11 • 2064718952890-01 COETC z, 11 • 5.74HZOll0981>-02 COETI 3, 11 • 2003912971780-02 

El 11 •-2.8689520193725D 00 

CCHI 11 •-2.86895201937250 00 

CCKEI 11 • l.55183E5296840D 00 

CCVI 11 •-3o0320125917D63D 00 -;~ 

VRATIOC 11 •-1094629452278430 DO 

OVRMAX( 11 • 4.72921788215640-01 

OVERI lo 11 • 2093117901310-Dl OVERI 2o U • 2.339(.0310420-01 OVERC 3o 11 • 4072921788210-01 

ccsc lo 11 = looooocoooooD oo 

RESUBSTITUTION Of EIGEk VALUE ANO VECTOR 

HESCC 11 ~-lo3B177878CT8l"0-16 HESCC 21 -5o55lllS123U511>-17 HESCt 31 • 3.3J066907311550-t5 

DETC 11 • 207,,305884837300-13 

NUCLEAR REPULSIO~ ENERGY • 1.39,,77800 00 

ETOTALI 11 •-l .... 141740680223D 00 

0.00 MINUTES REQUIRED F!Jlt FINDING EIGEH VALUES + VECTDllSo AND FOlt CH!'CKING 

lo09 MINUTES REQUIRED FOP. CALCULATION 

...... 
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