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CHAPTER 1
INTRODUCTION

A. Background

Except for the simplest casés, accurate solutions of molecular wave
functions require the evaluation of many difficult multi-dimensional,
multi-center integrals. A considerable amount of worklm7 has been done
in evaluating such integrals over Slater orbitals using sophisticated
and ingenious analytical techniques. These techniques include the use
of spherical, ellipsoidal, and bipolar coordinate systems, the expansion
of atomic orbitals on one center in terms of functions on another, and
the application of transform convolution theorems. Often the resulting
"closed" expressions are long sums of terms containing auxiliary func-
tions or infinite series which ultimately must be evaluated numerically
or by means of recurrence relations,.

Some researcherss—12 have chosen to use Gaussian orbitals which
lead to integrals that are relatively easy to evaluate analytically, -
even when many centers are  involved. The disadvantage is that a much
more extensive set of Gaussian orbitals is required to attain the same
precision of the wave function as that attained by using a set of Slater
orbitals. Using these orbitals, cusps and talls of the wave function
are difficult to reproduce which in turn leads to less accurate eﬁpecta—

tion values of observables. Calculations in which large sets of Gaussian

orbitals are used in order to obtain high accuracy involve sophisgticated



studies in data handling.,

Integral evaluation can be avOidéd altogether, except for overlap
integralsg, by the use of semiempirical approximations. Sets of such
approximations are the basis of the HUCkel13 scheme and the "PPP Method"
developed by Pariser, Parrl4,and Poplé15 for use on m-bonded electronié
systems; and the scheme developed by Pohl, Rein,and'Appell6—19 for use
on o-bonded electronic systems. Semiempirical approximations to the
integrals become imperative when studying large systems such as organic
moleculeslB’zo.

Another'approach2l which has been used to evaluate molecular inte-
grals is to perform the simple integrations, or in the case of two-elec-
tron integrals, tlie integration over the coordinates of one electron
analyticallyzz,'and then perform the remaining integrations numerically
by means of Gaussian quadrature.

This study is concerned with the evaluation of atomic and molecular
integrals by a purely numerical means. Relatively few investigators
have ‘used this approach. Fros't23 in 1942 used a purely numerical method
in which the variance of the local energy ﬁ¢/w from the average of the
local energy was minimized. The points at which the local energy was
evaluated were selected arbitrarily and hence the method was completely
independent of the concept of integration. 1In later studies24 however,
the points and corresponding weights were chosen to be the same as those
indicated by numerical integration rules.

Boys and Rajagopal have performed SCF calculations using purely

numerical methods. The systems considered ranged from H2, with which

exploratory calculations were made, to NC + H2,25 NH3,26 OH3+27, and
28

C2H4' The only analytical operations that were performed resolved



multi-centered distributions into a sum of single-center distributions.
Numerical integration was performed around each centér using Riemann sums.
for the radial integrations and Gauss-Legendre quadratures for the angu-
lar integrations. Special devices were introduced to handle the l/r12
singularity which appeared in the electron-electron repulsion integrals,
In a later calculationz,9 involving the LiH system, the resolution of
multi-centered distributions into single-center distributions was still
carried out,. but -a form of Diophantine integration was used and, because
of the. nature of the correlated wave function employed, no special de-

vices were necessary. to handle the l/r1 singularity.

2
Conroyso_40 has used a purely numerical integration method of the
Monte Carlo32 and_‘Diophantine39 type to evaluate atomic and molecular
integrals. There are several unique ideas employed in his work. The
wave function is“constructed31 so that the kinetic energy operator
operating upon it produces terms which cancel, in an additive manner,

the nuclear attraction terms. A correlation function34’36

is included
in multi-electron wave functions which allow the electron-electron re-
pulsion terms to be canceled in the same manner as the nuclear attrac-
tion terms. The variational principle was not used in Conroy's work

sihce the errors occurring in the approximate integrals tended to con-
tribute to the lowering of the energy e, rather than canceling, "with

the result that the e obtained may be very seriously in error"33. How-

ever, it was.found that meaningful results could be obtained using the

approximate integrals when the energy variance,

Vo= s Gy - B ar ) P ar

was minimized with respect to the adjustable parameters of the trial



wave function.

Since the calculation of the expectation value of the square of the
Hamiltonian was required when minimizing the energy variance, little
additional effort was necessary to implement lower bound formulas which

3,38

require such expectation values, Conroy3 developed and applied a
technique using upper and lower bounds equations to predict a refined
value of the energy by extrapolation to U2 = 0 from the calculated wave

functions,
B. This Work

This work also involves purely numerical integration of the Diophan-
tine type, but the integrals are evaluated to such precision that the
variational principle can be applied with confidence. The precision is
attained by using a unique importance sampling of points technique which
not only selects points from important regions of space but also removes
the singularities originally appearing in.the integrals.

Explicitly correlated wave functions constructed of Slater orbitals
multiplied by interelectronic . coordinates are employed. The total wave
function is a linear combination of such products after they have been
prbperly éntisymmetrized. A combined configuration interaction - explic-
itly correlated wave function of this type is used in this thesis to test
the numerical method by calculating the ground state energies of the

lithium atom and the linear symmetric H, activated complex; both 3-

3
electron systems. To make the calculations as meaningful as possible,
a complete set of fully projected spin functions is employed,

The lithium calculation is performed principally as a test of tech-

niques and programs since direct comparisons can be made with the work



of Larsson4l. To show the flexibility of the wave function employed,
additional confiéurations which.siﬂ:ulﬁaneously incltiﬂe all possible in-
terelectronic coordinate terms are added to the Li atom wave function.
Such a calculation has never before been made on a system with more than
two electrons.

The H3 calculation is considered to be an excellent test of the
usefulness of the techniques developed during the study since explicitly
correlated orbitals over three centers are inVolve’d.. Previous barrier.

» 2 'z"'Hia »ZAHQ

attained "chemical. accuracy".of 1 Kcal/mole. It .was hoped: that the-

height calculations on the H + H + H reagtion have never

adding of explicit correlation terms through interelectronic coordinates

would give some insight into the poor energy convergence problém.



CHAPTER II
THEORY
A. Schrddinger Equation

The solution of the time dependent Schrddinger equation,

. rp Y
Hy = ih-—, [1]

subject to initial and boundary conditions, is a wave function W(?,c,t)
which contains all the information describing the state of the physical
system at time ¢.

If the Hamiltonian H does not explicitly depend upon the time, the

energy F is a constant of the motion and ¥ has the form

N _ —iEit/h
¥(r,o,t) = I wi(r,d)e4 . [2]
1
The function wi(;,c) depends upon the coordinates of configuration and
spin space but not upon the time and is a solution to the Schrddinger

time independent wave equation

Hy, = E.y. [3]

The description of the electronic structure of atoms and molecules re-
quires the solutions of this equation, The Hamiltonian ﬁ, in the molecu-

lar case, has the form



N N n ¢ N
H = i[-% v o5 ——ZJ + .z, L , [4]
7 1 Y r’L.Y 1<g 1’1:.

where the N electrons are indexed by the letters 7 and j, and the =
nucleil are indexed by the Greek letter Y, Atomic units have been chosen
such that 4 = m,=e= 1., The linear operator —%Viz corresponds to the
kinetic energy of electron 7, ZY is the charge on nucleus Y, ZY/riy is
the potential energy of interaction due to electron % and nucleus Y, and
l/rij,is the potential energy of interaction due to electrons 7 and J.
The Hamiltonian is non-relativistic in form; spin-orbital inter-
action and various other terms have been omitted. Also employed is the
Born-Oppenheimer approximation which assumes fhe motion of the nuclei to
be negligible compared to that of the electrons and therefore allows the

separation of the two motions. Thus the nuclear coordinates appear only

as parameters in the electronic Hamiltonian.
B. Variational Method of Solution

Due to the terms r;; in the many-electron wave equation ﬁw = Fy, a
direct solution is impossible. However, there exist .techniques for
solving the equation which theoretically will converge to the correct
solution to any desired degree of accuracy. The technique that "is used
most frequently, and the one used in this thesis, is the variational
method42. It is based on the theorem that if ¢ is a trial wave function

satisfying the correéct boundary conditions, then.the normalized expecta-

tion value of the Hamiltonian operator,

<H>¢

s o* He dr [ [ o* o dr, [5]



is always greater than or equal to the lowest eigenvalue of the Hamil-
tonian. The trial wave function normally conﬁains several parameters s
which can be adjusted to give a minimum for the above energy integral.
The procedure yields the closest value to the true energy subject only
to the limitations of the functional form of &,

The way in which this theorem is used in this work is a form of the
method of linear combinations: the true wave function Y for the system
under consideration is approximated by the trial function ¢ which is

written as a linear combination of well chosen functions:

v * & = £ C A . [6]

The expansion functions An are linearly independent and possess all of
the symmetry of the true wave function V.

When the Variational Principle is applied using ¢ as the trial wave
function with adjustable parametgrs Cn’ a system of linear equations is

obtained:
(H - E3) € = 0. [7]
The elements of the matrices H and % are defined by

H = [ A*H A dr, S = [ A% dr, [8]
nm n m nm n m

and the elements of the column vector € are the coefficients Cn' Since
only ground states are discussed here, the energy E appearing in the.
above secular equation is assumed to be that of the lowest eigenvalue,

and the vector € the corresponding eigenvector,



C. Construction of Expansion Functions

1.’ General Structure.

The purpose of this section is to discuss the construction of the

configurations An used in the expansion of the trial wave function

¢ = A ., [9]

For now the discussion will be confined to three-electron systems in
general and later to the lithium atom and linear symmetric H3 molecule.
specifically,

The total wave function and each expansion term is a function of the
coordinates of .each electron. These coordinates consist of three posi-
tion coordinates and one spinvcoordinate for each electron making ¢ a
nine-dimensional function of position coordinates and a three~dimensional
function of spin coordinates,

More explicitly, the general structure of an expansion function is

chosen to be

. A j' k!
b, = Alo, (1) ¢j(2) 9, (3) 1y, rh Ty 6q(1,2,3)]. [10]

The subscript n now represents the set of indices (Z, j, k, Z', J', k',
q). The functions ¢i(t) = ¢i(;£) are one-electron symmetry orbitals in-
volving only the position coordinates of electron ¢. Only those products
of symmetry orbitals ¢i(l) ¢j(2) ¢k(3) that yield a term An having the
symmetry of the ground state are allowed. The interelectronic distances
IR '

- ..
i rj - ril “ are inserted directly into. the wave equation to re-

duce correlation error. The presence of these terms allows the use of
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the phrase "explicitly correlated wavefunction" for describing Eq. [10].
The-iast term 6q(l,2,3)'is a 3-electron spin function which is an eigen-
function of the operators 52 and Sz corresponding to the square of the
total and z-component of the spin angular momentum respectively. The

operator 4 is the antisymmetry operator,

>
[}

L5 (-1)P B, [11]
/3T p

where the sum is over all 3! possible permutations P of the electronic
coordinates and p is the parity of the corresponding permutation. Note.
that the function An can be written as a linear combination of detér-
minants only if Z’, j', and k' are all zero, since only then can deter-

minants be formed having as thelr elements one-electron spin functions,

2. Significance of Correlation Terms

The correlation energy is usually defined after Lb'wdin43 to be the
difference between the energy calculated by means of the Restricted
Hartree-Fock procedure and the lowest eigenvalue of the nonrelativistic

Hamiltonian:

Eoork = Pur ~ PExacr ° [22]

The Hartree-Fock model assumes that each electron moves in an effective
potential created by the nuclei and the averaged field of the other
electrons. There is no provision made for the dynamical correlation
among the individual motions of the electrons due to the instantaneous
Coulomb repulsions.

One of the most enlightening ways of considering spatial electron
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correlation is by associating it with the cylindrical coordinates p,8, 2.
"In-out'" correlation can be associated with the radial coordinate p;
that is, electron motion is correlated in such a way that when one
electron is close to ‘an internuclear axis, the otlers tend to be farther
out radially. Angular correlation, associated with the coordinate 6,
can be described as the tendency of electrons to stay on the opposite
sides of an axial plane, The third type, "left-right" correlation,
describes the tendency of electrons to avoid each other by staying at
opposite ends of the molecule.

The first of these correlation effects can be . described mathemati-
cally by assigning to different electrons occupying the same shell dif-
ferent orbitals which differ only in the radial parts. Angular correla-
tion can be degcribed by using as orbitals basis functions having strong
"~ angular dependencies. The "left-right" correlation can be taken into
consideration by building molecular orbitals which have a large ampli-
tude in one region of the molecule and a small amplitude in all other:
regions. An excellent example of a study describing electron correla-
tion as has been done here i1s that of the H2 molecule by McLean, Weiss,
and Yoshimine44.

It is clear that a trial wave function built of configurations,
each emphasizing a certain type of correlation, would be useful in ac-
counting for a large percentage of the total electron correlation
energy. However, the convergence becomes very slow after the first few

45,46

. 47 .
terms , even if a transformation to natural orbitals is made in an

. . 48
attempt to obtain the maximum convergence rate .
V.., V..
. . , > T g O8]
The introduction of interelectronic coordinates |ri - rjl =rij

directly into the trial wave function accounts for all types of elec-
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tronic correlation simultaneously. One way of observing the effect of
rij,terms on the correlation is by noting that the amplitude of a wave
function containing these terms becomes large when rij is large and be~
comes small as electrons 7 and j approach one another, Hylleraas49 was
the first to employ internuclear coordinates and did so in calculations
involving the helium atom, Convergence was significantly faster than
had been attaineéd in the past by using configuration interaction. Cal-
culations using explicitly correlated wave functions have since been
performed on lithium4l’50, berylliumslfsg, and the hydrogen molecule53.

Two iess obvious reasons have been noted for the superiority of
explicitly correlated wave functions. The first is that such wave func-
tions are much better suited for describing the cusp54 at rij = 0, The
term "cusp" is used to describe the discontinuity of the first deriva-
tive of the wave function with respect. to rij at rij = 0. The "local
energy" expression ﬁw/w for an exact wave function Yy is constant and
equal to the total energy of the system at every point in coordinate
space. The analogous expression for a trial wave function ¢ will not in
general be constant and, in fact, may possess singularities at rij =0
due to the electron-electron repulsion terms in H. The presence of rij
terms in the trial wave function tends to cancel those in the Hamiltonian
and thus reduce the fluctuation of ﬁ@/@.

The other reason for the superiority of explicitly correlated wave
functions was noted by Coulson and Nielsonss. They made a quantitative

study of the "Coulomb hole" defined as the region in space in which the

two electron density function,

*
dri, = / Vexact YExacr 971 9790 [25]
rlz-Const.

Fry ) pxact
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is less than it would be without correlation. In the case of helium
this region is spherically symmetric

-> ->

| r

ty - Tl 76000 hole *

[14]

>

The probability [f(rlz) drlz] that l¥2 -r calculated

1l £ 7oou1. hote
from an uncorrelated wave function will be greater than the.same proba-
bility calculated from the true wave function.

The striking fact here is that r is large--about the same’

Coul. hole
size as the atom--and not just the immediate region about the cusp.
Gilbert56 has continued this line of investigation by taking note of
Coulson and Neilson's discovery that ‘the correlation error in the energy

of a trial wave function is proportional to the average electron-electron

repulsion energy calculated by that wave function:

2

e
E & <>, [25]
CORR p12

The implication of Eq. [15] is that the correlation error is due mostly
to electron-electron interaction with little or no contribution coming
from electron-nucleus interaction. He then expresses the correlation
error contribution due to the differential volume element of the Coulomb

hole as

[fyp(ry) = F ()]
e L g2 HFT12 EXACT ™ 12

CORR )

drlz . [26]

The results again show that the region of space in which the true wave
function produces the greatest contribution to the correlation energy is

about the size of the atom. Further evidence that the immediate region
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about the cusp does not contribute greatly to the correlation error is

that the non-differential part of dE

CORR approaches zero as r12 ap-

proaches zero:

Un  frp®5) = Fryaer ®19)
r, 0 .
12 r12

=0 , [27]

Gilbert summarizes his study by stating that the superiority of an
explicitly correlated wave function over a configuration interaction
calculation is mainly due to the fact that the Coulomb hole has a much
simpler structure when viewed relative -to an electron than it has when

viewed relative to a fixed point.

3. Group Theoretical Considerations

Symmetry adapted expansion terms are used in the calculations be-
cause of thg significant reduction in effort that comes about. The next
few paragraphs will outline the group-theoretical consilderations that -
are necessary to .show the reasons for the reduction. An excellent group
theory text which gives a more complete description is one by Hamer-

57

mesh™ ,

Consider the operator eigenvalue problem

2P
B
I

v VL,V
Tn,t 0 An,i : [26]
where the index 7 is used to label the nv independent degenerate eigen-
functions belonging to the elgenvalue e:. The index »n labels the various:
energy levels and the associated set of degenerate eigenfunctions. All

of the degenerate eigenfunctions can be considered simultaneously if
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they are placed in an nv-dimensional column vector A;, The eigenvalue

problem becomes

& NV VLV
Ba = e 8 . [29]

After applying the operator 5R corresponding to some symmetry transfor-

mation R, one has

- VI V A v
Op BB = e 0, 8 . [20]

If # is invariant under the transformation R, then

0, H = HOp, [21]

and the eigenvalue equation becomes.
Y L S-S
HOp B) = € (0, 8) , [22]

which clearly shows that the functions (5R A; i) are also eigenfunctions
fL ]

of H belonging to the same eigenvalue e;. Since the set of functions

A; i completely spans the space of solutions of the eigenvalue problem

£

with eigenvalue a;, the eigenfunctions(aﬁ_A; 7:) must -be expressible as a
s .

linear combination of these functions. This can be stated in matrix

notation as

0. A
n

~y v
e = D (R) &h s [23]

where D is the transformation matrix and the tilde indicates that the
transpose of the matrix is to be taken.

By carrying out the above procedure for all the symmetry operations
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under which the Hamiltonian is invariant, one obtains a set of nv— di-
mensional square matrices which constitute a representation. This can

be seen by considering another transformation S belonging to the symmetry

A

group of the Hamiltonian. The corresponding operator O, acting upon the

S
basis gives
SV o VEPUNRY
Og 8, = D°(5) & . [24]
Applying the two operators in succession leads to
S SRRV PRV v ~V =V v
05 Op 8 05 D (R) B D(R) D'(5) A . [25]

But since the product of two symmetry operations is another symmetry

operation, one also has

~

&\) A\)

p 2 =V V. :
0g Op 8 Ogp B D (sR) 8 . [26]

Comparing the last two equations the desired result is obtained:

pDY(s8R) = D°(S) D'(R) . [27]

That is, the matrices transform among one another under matrix multipli-
cation in exactly the same way as the elements of tlie corresponding group
transform among one another, and hence form a representation with the
eigenfunctions A% providing the basis for the representation.

If the highest level of symmetry of the Hamiltonian is considered,
the representation will be irreducible and the many theorems of group
theory applying to such representations will be applicable. Since for
finite groups every representation is equivalent to a unitary represen-

tation, the matrices D(R) will henceforth be taken as unitary,



17

Since the symmetry of the quantum mechanical systems under investi-
gation is known, the most general expansion of the trial wave function,
Eq. [9], is one in terms of functions that transform in the same manner
as the degenerate basis functions of the various irreducible representa-
tions associated with the symmetry group of the system:

_ v v
¢ =21 E Cn,i An,i ) [28]

The index n labels the occurrence of the vth irreducible representation,
The application of the Variational Principle using Eq. [28] as the trial
wave function will result in a secular equation with matrix elements of

the form

AY 7 A M
by s | B S [29]

A

where the operator H possesses the full symmetry of the system. By
means of a group-theoretical analysis it is possible to detérmine the
conditions under which the matrix element [29] is zero and therefore
which of the terms in the sum will contribute to the state being con-
sidered.

The unitary operators of the symmetry group do not change the

scalar product, so the matrix element can be written

v ~ U _ o v SRR T
b, | B e <Og b, 5 l Op # 8, >
[30]
= <5 AV 54 AM
= <O b | # O By > -

If all of the operators of the group are considered and the terms added,

then Eq. [29] can be expressed as
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M 7 AP = L O A > 31

b, s | 2 By 5 7% O 4.1 | & 0, By 37 [31]

where g is the order of the group. It is understood that the sum is to
be replaced by an integral and appropriate density function when includ-

ing infinitesimal operators of a éontinuous group. Allowing OR to oper—

ate on the basis functions, Eq. [37] becomes

v A~ U - 1 AV ~ U vk U
b, ;L HN > 7 151 bk | H B 17 & Dy, ; (R) Dzj(R) .

[32]
According to the orthogonality relations among unitary irreducible repre-

sentations, the last sum can be written as

[33]

v¥ u - q
. . = .. § .

é Dkt(R) DZJ(R) nv 6k2 6tJ i
After inserting Eq. [33] into Eq. [32] and performing the remaining sum-

mations, the matrix element becomes

<Y .| 7Y s 4£-£ <0 | BaAY >6..8
Ny1 My J n, N, K myk T LJ wu

[34]

vV

nm 1g vp '’

which clearly indicates that unless 7 = J and p = v the matrix element

of any operator possessing the full symmetry of the Hamiltonian is zero.
Furthermore, the value H:m of the matrix element does not depend on which
degenerate basis function of the irreducible representation is used to
form the matrix element.

If only one state is of interest, then only those terms which trans-
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form in the same manner as one of the basis functions of the irreducible
representation associated with that state need be included in the trial

wave function expansion:
). [35]

Terms included which do not transform in the same manner as the state
under investigation cannot contribute to the energy of that state due
to the orthogonality conditions that cause the subsequent factoring of -
the secular -equation.

Since the lithium Hamiltonian has spatial symmetry of the 0(3)
group, its eigenfunctions are a basis for the various irreducible re-
presentations of that group and therefore may be classified by the
quantum numbers associated with the operators correésponding to the square
of the total qrbital angular momentum (22) and one component of the total
orbital angular momentum such as that along the Z axis (22). The Hamil-
tonian, Eq. [4], does not include spin operators and therefore the oper-
ators associated with the square of the total spin (32) and the com-
ponents of the total spin (éx’ éy’ éz) commute with the Hamiltonian.

VS

The total angular momentum 3 fs defined as

(e
(/)15

, [36]

]
i
+

and its sﬁuare 32 and components (jx’ J ,'jz) also commute with the

Y
. ~ I\2 A~ A~ A~ A2 A A A~
Hamiltonian. All of the operators (4, L, Lx’ Ly' Lz’ 57, Sx’ Sy’ Sz’
32, 3x’ 3y, 3z) do not mutually commute, but the subset (22, Ez’ 32, éz)

does commute and is chosen here to describe the state of the lithium

atom. This mode of description is called L-S coupling and assumes there



20

to be no interaction between total orbital and total spin angular mo-
mentum vectors. Such an approximation is usually made when working with
systems involving a small number of electrons since the spin-orbit in-
teraction is small in these systems and does not cause a coupling of
spin and angular momenta. The eigenvalues belonging to the operators

22

Lo, Ez, éz,and éz will be designéted L(r+l), ¥_, S(S+l), and MS

tively. The ground state of the lithium atom is well known to have 25

respec-

symmetry. The symbol S implies L = Q0 and the superscript is the multi=-

plicity, 25+1. It follows that S

L, ML = 0, and MS = % %, The system
is doubly degenerate with respect to the two possible values of MS’ so

MS'= }% was arbitrarily chosen for the calculation,

The linear symmatric H., complex has Dwizspatial symmetry. Its

3

eigenfunctions are a basis for the various irreducible representations
of that group and therefore may be classified by the eigenvalues of the
operators associated with the component of orbital angular momentum
along the internuclear axis (ﬁz), the reflection of the electron coordi~
nates in a plane containing the internuclear axis (av), and the inver-
sion of the electron coordinates through the center of the molecule (f).
An argument which considers the electronic spin can be made for the

linear symmetric H, complex, It is analogous to the one made for the

3

lithium atom and results in.a mode of description based on the mutually

~ A

commuting set of operators 23, 3 B I;»Sz, and 32. The eigenvalues be-~

v
longing to these operators will be designated ML’ t, g or u, S(5+l), and
MS' The symbol (~) is used when the sign of the wave function is-

changed upon reflection and the symbol (+) is used when no sign change

occurs., Likewise the symbol (u) is used when the sign of the wave func-

tion changes upon inversion, and (g) is used when there is no change.
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The lowest state of the linear symmetric H, complex is well known to

3
+
have the symmetry of the Zu irreducible representation of D,y The

symbol I implies ML = 0. The spin state for the ground state H3

is the same as that for the ground state of Li; that is, S = % and

complex -

1

MS = t %. The multiplicity is again 2 and M, = % is chosen for the cal-

S
culations. The ground state of the linear symmetric H_, molecule: is com-

3
, 2_+
pletely described by the symbols Zu.

4, Explicit Structure of Expansion Functions

The one-electron orbitals ¢ which are used to build the expansion

functions described at the beginning of this chapter,

_ ~ 7:! jl kl ,
by = Ao 1) 052 0, (3) rp, ¥yq 7y 6,(1:2,9)1], [10]
are either analytical Slater orbitals in the case of Li or a linear com-

bination of such orbitals in the case of H Slater orbitals are de-

3l
fined as
ntks -Tr
- L2n) T on-l t
(2n!)
where the Y are the normalized spherical harmonics. These functions

Lym

are convenient to use since.they have. relatively simple radial dependence.

and are eigenfunctions of L and 22 , the operators corresponding to the

t
t 4
square of the orbital angular momentum and the z-component of the orbithl -
angular momentum respectively of electron t.

The one-electron symmetry orbitals are classified according to an

irreducible representation of the appropriate symmetry group in the same .

way as the total wave functions, However, lower case Latin. letters
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8,p,d, etc., are used to identify the orbital angular momentum quantum
number of orbitals belonging to the 0(3) rotation group and lower case
Greek letters o, m, 8, etc., are used to identify the =z~component of the
orbital angular momentum of the orbitals belonging to the Dw;zgroup. A
principle quantum number zn, labeling the occurrence of an irreducible
representation, is also necessary and will be indicatéd by an integer
preceding the symbols describing the symmetry of thie one-electron atomic
orbitals. A similar notation is also necessary for labeling the D,y
one~electron molecular orbitals but is done by using the principle quan-
tum number of the atomic orbitals making up the symmetry orbital and
simultaneously using an integer superscript equal to the number of atomic
orbitals used to build the particular symmetry orbital.

The symmetry properties of the expansion terms An considered in
this work are completely independent of the explicit correlation portion

V..
(igj rij- 7"7). An equivalent statement is that the commutator of the

explicit 'correlation portion of the configurations and any operator @

associated with the 0(3) rotation group or the Dy, group is zero. That

- N ! N \)..\ ‘
is, the operator ¢-has no effect on the product (igj rij 7"7) and there-.
fore

n N \)7:.

[Qa 'Z:T<TJ ri:j J] =0 . [58]

~ ~

Proofs for the cases § = L2 and é = Lz are given in Appendix A. The

other cases of interest are é = cv and @ = 7. 1In the first case the

application of the operator o, is equivalent to changing the sigfi of the
- > > >

x components of the position vector r = x]x + y]y»+ z]z for every elec-

tron, assuming that the plane of reflection contains the & and 2 axes.
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In the second case, é‘z f, all components of the position vectors of all
electrons are reversed in sign where the point of inversion is taken to
be the origin of the coordinate system used to define the vectors .
Hence, it is now easy to observe that the general term in the explicit

correlation product.

S~ R ST S L (z.-z.)zjvijlz [39]
1 - ] (] ()
is unaltered by these symmetry operations. If a component of the posi-
tion vector of one electron changes sign, the corresponding component of
the position vector of all other electrons must simultaneously change
sign. Since only the squares of the differences in components are con-
sldered, there will be no net.change after application of the symmetry
operators. For example, if there is a change in sign of the Z-components

of all the electronic coordinates, then the term [xi-xj]z becomes

[(_x’l:) - (-xj)]z = (‘1)2 [x,l:'xg:lz = [x,l/_xj:lz’ [40]

Ve
1d

with no net change in itself or in the term rij containing it.

Since the antisymmetrizer A and the explicit correlation term

N \Y
C.m

e rij 7"7) commute with all of the spatial and spin operators that

have been considered, the remaining product of one-electron orbitals,

0,(1) 4:(2) ¢,(3), [41]

completely determines the spatial symmetry, and the spin function,

1,2,3),
eq( ) [42]
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completely determines the spin symmetry of the expansion term An'

Only atomic orbitadls anm with £ =m = 0 (s-type atomic¢ orbitals)
are considered in this work. It was decided that the use of Slater
orbitals having angular dependence was unnecessary due to the inclusion
of explicit correlation terms in the trial wave function. If only s-type
atomic orbitals are used to-build the expansion term, then the possible
spatial symmetry properties that the expansion térm may possess are
s-type states (L =0, Mi = 0) for the atomic case, and Z+ QUL = 0,
cv -+ +) in the linear symmetric molecule case. The proof that’ML = 0
in both cases follows from the definition of the operator ﬁz’

I =Z§ﬁ 5 [43]

2 Zt

and

. 3
Ly [, 0, 6,1 = (L) m“t) [0, @) 6.2 o, (D] [44]
since

L oert) = m, ¢(t). [25]
zt lt

If the orbitals ¢(t) are constructed of only s~type orbitals, then by

definition m = 0 and
Y

M. = Im = 0, [46]

The proof that L = O is constructed most easily by first expressing

the opefétor 22 in terms of the raising énd lowering operators ﬁ+ and L >
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I° = I - I o+ I- [47]

All of these operators can be expressed in terms of one-electron opera-

tors:
~ N N
% - L IR N L, [44]
2 t &, tau "2, 3
t t
and
~ N A N A
L, = L, L = IL , [49]
t +- t T+
where
I, =L + 4L , L[ =1L ~4%iL . [50]
*e Ly Ye "t Ly Ye
The effect of L and ﬁ on an atomic orbital X is to increase
Tt "¢ nim
or decrease respectively the azimuthal quantum number m:
A‘ = x
L+ xnzm N+ n& (m+1) if (m<),
[51]
L_ xnlm = N xnz(m-l) £ (m>-0),
and
L X . =0 1f  (m=1)
 nilk ( ’
[52]
L_ an(_z) 0 if  (m=-2),

where N+ and N_ are appropriate constants which preserve normalization,

The zero results in Eq. [52] come about when the allowed range of m,

-2 <ms %, [53]

would otherwise be exceeded.
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The result of the operation ﬁz on the product of one-electron orbi-

tals,

£2 L8, 6,(2) 4, (0] =0, [54]

can now be shown by considering three steps corresponding to the three
terms in Eq. [47]. According to Eq. [52], the operation 2_ immediately
produces a zero result since the orbitals ¢ (k) are assumed to be con-
structed of s-type atomic orbitals with £ =m = 0. The second and third

steps likewise give a zero result since

B, Lo, 6,2 ¢, (] =0 [55]

by Egs. E44] and [46]. Since all three terms of the expansion of L pro-
duce a zero result, Eq. [54] holds.

The N-electron reflection operator cv can be written in terms of
one-electron operators g,

t

. . [56]

Thus, applying o, causes all electron coordinates to be reflected simul-
taneously in an arbitrarily chosen plane containing the internuclear
axis, Since s-type orbitals are spherically symmetric, any reflection in
a plane containing the center of the orbital will have no effect on the
orbital. A similar statement holds for a linear combination of g-type
orbitdls whose centers lie on an axis and for a reflection plane that
contains that axis. The conclusion is that an N-electron reflection

operator applied to a product of N one-electron orbitals constructed of

s-type orbitals produces no change. In the present case of a 3-electron
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linear symmetric molecule, one has
o, Lo;(1) 6,2 ¢, (] = +1 [4,Q) 4.:(2) ¢ (D). [57]

The remaining spatial symmetry property that must be considered is.
that .of inversion in the case of the linear symmetric molecule. Before
this is done, it is necessary to examine the symmetry properties of the
individual one-electron orbitals. Tables I and II show the explicit
functional form of the one~electron atomic orbitals used in the lithium
calculation and the one-electron symmetry orbitals used in.the linear
symmetric'H3 calculation. As previously stated, the orbitals are con-
structed from s-type Slater atomic orbitals. All of the orbitals used
in the lithlum atom case are centered on the nucleus at the origin of
the coordinate system (see Fig. 1).

The symmetry orbitals used in the linear symmetrid H_, case are con~-.

3
structed of linear combinations of atomic.orbitals centered on the var-
ious nuclel of the molecule., These one-electron molecular orbitals are

~called symmetry orbitals since they possess the symmetry of one of the
irreducible representations of the group th. They are labeled accord-
ingly, as discussed earlier in this section. The subscripts a, b, and
c on the atomic orbitalé making up the symmetry orbitals refer to the

corresponding nuclei as indicdted in Fig., 2.

As indicated, all of the symmetry orbitals are of nsc+ symmetry.

The particular linear combinations chosen are the simplest possible
leading to a linearly independent set possessing the symmetry of the
point group of the molecule and they are therefore referred to as primi-
tive symmetry orbitals. The superscript enclosed in parentheses refers

to the number of atomic orbitals used in constructing the symmetry
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ONE~ELECTRON ATOMIC ORBITALS AND EXPANSION TERMS

USED IN THE 12-TERM LITHIUM ATOM CALCULATION

Atomic Orbitals Exponents Integration
' Parameters
=
¢1 = ls
s, = 3.0
= 23 . = = = l
\ 16 T P2 T t3g = 2476
‘ &, = 0.3
¢3 = 3s
9, = 28’ Lygt = 0.65 -
S Expansion Terms
‘Atomic Orbital r .. Exponent
2d_
?:’ j' k'
A b b % S y) 13 23
1 1 1 4 0 0 0
2% 1 2 4 0 0 0
3 2 2 4 0 0 0
4% 1 3 4 0 0 0
5 1 1 4 1 0 0
6 1 1 4 2 0 0
7 1 1 4 2 1 1
8% 1 2 4 1 1 1
9 2 2 4 2 1 1

*
Two spin functions are possible.
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TABLE II

ONE-ELECTRON PRIMITIVE SYMMETRY ORBITALS AND EXPANSION

TERMS USED IN THE 21~TERM LINEAR SYMMETRIC

H, CALCULATION (Rab =R

3 b

= 1,7924 a.u,)
c

30

SymmétryVOrbitalé

Exponents

ot s

Integration
Parameters

[

1

1s

=2

sc+(l) = 1s

——

1.2796

#
i

sc+(2) = 1ls + la g
g a c 1sc

H2)

[l

+(2) _ -
59, B 2Sa 2Sc CZsc

1.1303

1.0663

ZZ Expansion Terms

Symmetry Orbital

7 Exponent

. o, ¢k rt

2 J

11%*

13%
14

FRRONRRHEREENDR R
FPRREFNNNNNRRRODND R
WhrhrPLLLLWLWLWLWPPLWW

HOFOFRROOFROROOOO

FHOROORRORFROOOOO

HOOOOHOOOOOOOO

*

Two spin functions are possible.
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orbital and serves to identify uniqyely, along with the principle quan-
tum number #, symmetry orbitals belbnging to the same irreducible repre-
sentation,

The symmetry with respect to inversion through tle molecular mid-
point of the symmetry orbitals is specified by the subscript g or u,

The orbital ¢l = lg, transforms into itself under inversion with no

b
change and so has g-type symmetry, The orbital ¢2 = 1sa +'lsC also
transforms into itself since the le atomic orbitals on centers a and c
are simply interchanged. Thevorbitals.q)3 = 1sa - lsC and ¢4 =,ZSa —,28C
transform into themselves under inversion except for a sign change and
therefore both have u-type symmetry.

The inversion property of an expansion term can now be determined

from the symmetry orbitals used to construct it. The inversion operator

written in terms of one-electron operators is:

~ N ~

I = 2 I, [58]

and so the eigenvalue of the operator T is just the product of the eigen-

values of the N operators T For the 3-~electron problem considered here,

t.
there are only two ways of obtaining an expansion term with the u-type

éymmetry of . the 22: ground state desired. One way is by taking a product

of two g-type symmetry orbitals and a i~type symmetry orbital:
L Loy, () 0, (2) 6y, (D] = -1 Lo (1) 0, (2) ¢, D], [59]
or another way is by taking a product of three u-type symmetry. orbitals:

I Lo, 64,2 ¢, (3] = -1 [6,, (1) ¢, (@) ¢, D] [60]
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A subscript u or g has been added to the symbol for a general symmetry
orbital ¢ (%) to indicate the inversion symmetry.
Expansion terms can now be constructed for lithium and linear sym-

metric H3 using the corresponding one-electron orbitals. given in Tables

I and II. Any product of three orbitals with the general explicit cor-=

!

o o
12 ris r§3) is allowed, subject only to the restrictions

that the resulting expansion term satisfies the symmetry conditions of

relation terms (»

the true wave function and that it is not ‘related to another possible
expansion term by a simple permutation of electronic coordinates. The
first condition guarantees that no effort 'will be lost by including
expansion terms which do not transform according to the irreducible re-
presentation of the ground state wave function. The second condition
assures linear independence of each term with all others. In the work
presented here the configurations are systematically constructed by re-

quiring the indices %, J, and k of An to conform to the inequalities
i1sds<k Z,4, k=1,2,3 ... <i', 4" k'"=0,1,2 ..., [61]

and then rejecting those terms with improper symmetry, or if one of the
equalities in condition [67] holds, those terms which are linearly de-
pendent with a term occurring earlier in the sequence.

Additional terms which did not include‘cp4 = 28’ were .rejected in
the lithium case in order to allow direct comparison with Larsson's
work. Also, after the fifth term the systematic addition of terms was
suspended in favor of adding appropriately chosen ones as discussed
later, 1In the H3 case, the systematic addition of terms was suspended

only for the addition of the last one. The total number of terms con-

sidered in each case was dictated by the computer time available,
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5. Construction of Spin Eigenfunctions

The ground states of both the lithium atom and the linear symmetric

H3 complex are doublets (S = %), The z-component of the total spin has

arbitrarily been chosen as +s from the two possibilities M_, = !, There

S

exist two 3-electron spin eigenfunctions with these properties. Con-
struction of these spin eigenfunctions by either the genealogical con-
struction method4 or by the projection operator method58 yields the same.

orthonormal eigenfunctions

1

G,(1,2,3) =
1 vz

[a(1)8(2)a(3) - B(L)a(2)a(3)],
[62]

G2(1,2,3) = [a(1)8(2)a(3) + B(1)a(2)a(3) - 20(1)a(2)8(3)],

L
/6

where the functions d(f) and B(f) are one-electron spin eigenfunctions of

A

the operators S 2 and éz such that

¢ ¢
éi a(t) =40 + 1) a(®), 5, a(t) = Hal(t)
Zt_
§8() =5+ 1) 8B, 5 8() = % B [65]

t
<o (t) |a(t)> =1, <B(&)|B()> =1, <a(t)|B(t)> =0,

The spin functions G, and G, are not used in this work, but instead

1 2

special linear combinations of these functions are useds

]

Cll Gl * 012 GZ’

8,(1,2,3)
[64]

62(1,2,3) = 021 Gl + 022 G2.
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The properties imposed on § and'e2 are that they be orthonormal and that

1
the permutation of electron spin coordinates 1 and 2 on spin function 61

produces 6 This can be written symbolically as

2.
~g _
P, 8:(1,2,3) = 6,(1,2,3), [65]

where the superscript o indicates that the permutation operator P acts

only on spin coordinates. The transformation from spin functions Gl and

G, to 8, and 6, can be thought of as a rigid rotation in spin space which

2 1 2
maintains the orthonormality of the functions but positions them in such
a way that Eq. [65] holds. Imposing these conditions requires the

coefficients in Eq. [64] to be

c = C = C = 1/V/2

[66]

The spin functions el and 62 become

o (1,2,=C1 + DaE@a(®) + o= P L@@ el

2/3 2/3 3

[67]

5,(1,2,0=2 - Dae@e() + o+ D eWe@a@)- L a®a@s.
2/3 2/3 V3

These are the spin functions employed by Gilaninetti, et, al.59 in their
calculation involving the linear symmetric H3 complex.
The reason for using spin eigenfunctions with the permutation

symmetry of -Eq. [65] 1s that only one spin function need be explicilty
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considered, The other spin function is included by violating the rule
that no configuration be considered that differs from any other expan-
sion term only by a permutation of coordinates in .the spatial part.
Such a violation would in general produce a function which is linearly
dependent with all other expansion terms:

A BTo, () 65(2) 0,3 27, vl 7).

12 P13 723 G201 =5 ¢ 8, [68]

where PY is some permutation operator which acts only on the spatial
part of the wave function. 1If ?u is chosen to be the permutation opera-
tor ﬁzz that ‘interchanges the spatial coordinates of electrons 1 and 2,
then because of tlie way the spin functions have been constructed, Eq.

[68] becomes

k
A P12[¢ ¢ ¢ (2) ¢k(3) 1’12 13 23 l(l 2 3)] ijk 15k g=2

[69]

Bisk k13t g=1 T T Bigx 115kt g=2

These equations indicate that expansion terms containing spin function
62 can be constructed in two ways; either explicitly as .indicated on the
right side of the equations, or by interchanging the electronic coordin-
ates 1 and 2 in the spatial part of the configuration but retaining spin
~function el as Indicated on the left side of the equationms.

In order to show that Eq. [69] holds, it is necessary to use the

relations
[B, 1=0, P4 = (-1)P 4,

where P is an arbitrary permutation operator -which can be written as a
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product of a spatial permutation i and a spin permutation 2

Combining the two previous equations, one obtains the relation

i’ = (1P 7T

If ﬁ is chosen to be ﬁ12’ then this relation becomes

A AV ~ Ag
APy = AP,
since p = 1 and (?iz)-l = ﬁiz. Using this operator relation on the

general product wave function
3y pi! ! K
¢, (1) ¢j(2) ¢, (3) vy, ¥4 754 eq(1,2,3),
one obtains Eq, [69].
In some cases expansion terms differing only in the spin function.
eq are linearly dependent and therefore are not considered., By examin-
ing Eq. [69], this is seen to occur when 7 = J and k¥’ = j’. 1In this

case the expansion terms differ only in sign.



CHAPTER III
EVALUATION OF MATRIX ELEMENTS
A, Integration Over Spin

To. solve the time independent Schrddinger wave equation by the
method of linear combinations, the.evaluation of matrix elements of the
Hamiltonian operator and the unity operator appearing in Eq. [7] is re~
quired. The symbols B and $ respectively are used to represent these

matrices with components

H = [0*HA dvdo=<bh |Ba>
nm n " Tm n'™ “m
and [70]
s =qu*Ac.ivdo=<A|A>
nm nom T otm'm

The symbols An and Am represent general N-electron expansion terms,
and the. integration is over both space and spin.

The following discussion indicates the steps taken to "integrate"
over the spin coordinates leaving only the spacial integration to be
performed by numerical methods.

| The general 3-electron expansion term considered in this work is
given by Eq. [10],
| ~ 'Z:" j' k'
b, = AL, (L) ¢;(2) ¢, (3) vy, 73758, (1,2,3)], [71]

except, as explained in the last section, g can always be taken as 1 if

38
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the proper permutation of spatial coordinates is carried out. It is-
assumed here that any such permutations have been .completed for the term
under consideration. The following notation is.introduced in order to
keep the algebraic equations relatively simple. Only the subscripts are

retained when writing the spatial part of an expansion term:
A, = ALi Gk G R 8,1, [72]

where now the order of the indices is Important and corresponds to the
electronic coordinates as indicated by Eq. [7Z]. The spin eigenfunction

el given by Eq. [67] 1s expressed briefly as

el = dl aBa + d2 Boo + d3 acB . [73]

Again the sequence of symbols is important, and the-constants.di are

|-

1 11 s
+ = d: = ~ - =, d = = = [74]
2 2 2/3 2 3 /3

3

When the antisymmetrizer acts on the product wave function as in
Eq. [72], new spatial products with permuted indices appear and are de-

noted by the following symbols:

An = 1 Jkg"k',
2 _ IR NN R
An = kjgi1k"gri'y
A3 ATREISTINNY
., = kig gk, [75]
A'4— ik it k! A
a = J1 2 J s
A5 ATy
6 _ . . ey ey o1y
A = 4 kjggrit k'
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Using these symbols and the definition of the antisymmetrizer given by
Eq. [ll], Eq. [72] can be written as

_ Al _ 1 1,2 3_ 4 5 .6
p, =A[A 8] = o td (o, = a) +d (a7 -8 + da@a - 4] aga

5 4 1_ .6 32
Hd (a0 = a) +dy (8 =40+ dy(a - 8] oo

3 6 5 2 1 4
+[dl(An - An) + dz(An - An) + d3(An - An)] aaBl.

[76]

The usual technique followed in reducing the matrix element’

A s 01 s 1
Onm = <An]0 a> = <4 An ello A Am §1> [77]

A

of an operator O totally symmetric with respect to interchange of elec-
tronic coordinates is to eliminate one of the antisymmetrizers by making

use of the following properties associated with it:
At o= 4, [4,0] =0, A4 = /W71, [78]

The dagger is used to indicate the hermitian conjugate. However, in this
study it was.discovered that a greater precision was attained when per-
forming the numerical integration over the spatial coordinates if both
antisymmetrizers were retained. A}ter the substitution of Eq. [76], and
the analogous equation for Am? into Eq. [77] and the "integration" over
spin 1s carried out, it is seen that all cross terms involve different
products of one-electron spin. functions and so drop out due to the spin
function orthogonality relation given by Eq. [63]. The spin portion of
the direct terms "integrate" to unity leading to the following expression

for the matrix element:
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0 = <A |0A> =

nm n m

1 1 2 3 4 5 6, 1%
377 {[dl(An -8 +d, (8 - A0) +dg(a, - An)]

A 1 2 3 4 5 6
X O[dl(Am Am) + dz(Am - Am) + ds(Am - Am)]

5 4 1 6 3 2
+ [d @ - +d, 8 - a0 +d(a - 0)] [79]

N 5 4 1 6 3 2
X O[dl(Am a) + dz(Am - Am) + dS(Am‘- Am)]

3 6 5 2 1 b %
+ [dl(An An) + dz(An - An) + d3(An - An)]

2 3 6 5 2 1 4
x Old, (o =8y +dy(a = A) +dg(a - a)])dv .

It should be noted that this matrix element is over complete 3-
electron expansion terms and therefore involves an integral over 9 di-
mensions.

All operatorS'a,'except one, that will appear in Eq. [79] are simple
scalar functions representing either the unit operator or the electron
-nucleus and electron-electron interaction potentials. The operator
which is not a simple scalar function is the kinetic energy operator

2 - 2 2 2
01T = 4V~ +V,"+ V). [80]
The action of this operator on the spatial product Anl is considered in
Appendix B, The result for any other product A; can be obtained by per~
muting the indices of the equations appearing in Appendix B,
Additional accuracy is obtained when performing numerical integra-

tion of the kinetic energy integrals if they are symmetrized by using

the self-adjoint property of the kinetic energy operator:
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Tom = 15[<An|T > + <T -An|Am>]

[81]

* 5 5 *
=3 f [An(T Am) + (T -An) Am] av do .

The potential energy matrices are automatically hermitian by
symmetry and the kinetic energy matrix is hermitian by Eq. [81]. The
hermiticity of these matrix elements is independent of the numerical

integration procedure and the corresponding accuracy.
B. Spatial Integration

Singularities in the Density Function

1. Inclusion of the rT% and rTl
1d 1Y

The most troublesome problem in the use of numerical integration
techniques. for the direct evaluation of the Hamiltonian matrix elements
of an atomic or molecular system is the presence of the r;; singularity.
Numerous techniques have been developed to handle the problem, but all
appear.to have limitations. Examples include the moving of the singu-
larity to the surface of the sampling volume60 and the additive cancel-
lation of the singularity by means of the kinetic energy.term acting on.
an explicitly correlated wave function. Moving the singularity to a
surface produces only a slight improvement and additive cancellation
places a significant restriction on the flexibility of -a conventional
basis set6l, or requires an unconventional basis set and a non-varia-
tional.approach to the solutions such as those used by Conroy31 or Boys
and Handy62-65’29. One other attempt to solve the singularity problem
was that made by Boys and Rajagopalzs. By an argument using approximat-

ing Gaussian functions for the electronic distributions, they found that
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the singularity could be removed by replacing the r;; terms by

r;;ﬂ» [rgj + U::! U?/3]-1/3, [82]

where Ui represents the product of the weight wi.and the non-differential
part of the volume element’dvi associated with a numerical integration
point for the Zth electron. Although this approach is applicable to the
problems considered in this work, the use of expression [82] and similar
devices consistently gave poorer results than 1f the singularity was
simply ignored. Possibly the differences in success are due to the.
numerical integration technique that was used; Boys and Rajagopal used

a Gaussian quadrature when applying expression [82], but ‘a Diophantine
type of numerical integration is used here,

The method used in this work to remove the singularity does not in
any way restrict the flexibility of the basis set-and .involves no ap-
proximations to the integrals other than that resulting from using a.
finite number of integration points. Sobol66 calls it the inclusion of
the singularity in the probability density function. By means of this

method it is possible to simultaneously remove the r;; and rTl singu-

1Y
larities from the integrand,
The method can be expressed formally by considering a general n-

dimensional integral:"

;"1 |
I = fak %] a% . [83]
0

A transformation of variables from X to 3 may be performed with the

Jacobian
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Bnl Bnl Bnl
i N P
an an an
J = . . . ,
e i)
Bnn Bnn Bnn
so that Eq. [83] becomes
- =(1,1,...1) _
I fﬁ_.__;(o’o’.'.o) f[i(ﬁ)] J dﬁ ] ) [84]
-5
or r = AL fEG] o [85]

ﬁ“(oyoai--O) p[i(ﬁ)]

where p = J-l is the funetion describing the density of points in %-space’
that results from a mapping of a uniform distribution of points from the

ﬁ;épace unit hypercube

0<n, <1, . [86]

The numerical approximation to the integral can now be written in

general. as

. oL .
I = I' = 3u° fifﬁﬂ;ll. 5w o= 1, [87]
7 z
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where the wi are weights depending on the integrdtion scheme and ;i is
the ith n-dimensional integration pbint; Integration points are now
selected in ;4space, the corresponding vector x is determined by the .
transformation equations, and the transformed integrand and weights are
computed and summed.,

Usually the transforﬁation is chosen so that p will have a form as
close as possible to I—lf, where I is the value of the integral. This
approach is called importance sampling since if p « f,the density of
points will be greatest in the "most important regions of space" ; i.e.,
where f is largest. The approach is also known as minimization of
variance since, as p approaches I-lf in functional form, the variance of

the transformed integrand from the value of the integral T,

. . 2 .2
. ol . pl
2 = sd-nta - 3o -t Ly, [88]
] 1 o 7 ot

approaches zero. The concept is especially applicable to Monte Carlo
numerical integration because the error in the integral approximation
using random integration points 1s proportional to the square root of
the variance.

If indeed it is possible to find a transformation such that p==lrlj3
which requires even more effort than simply finding I, then by Eq. [87],
it can be seen that ‘any integration rule that integrates a constant
exactly will give the exact value for the integral, -

It is most important to mote that if the integrand f[%] in Eq. [83]
exhibits singular behavior, then the transformed integrand fLZ(R)]/
o[X(R)] in Eq. [85] can be made to exhibit no singular behavior if the

transformation is chosen so that p will contain a singularity of the
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same nature as the one present in f. The singularity in the transformed
integrand will then be removed through cancellation.

The above procedure can be carried out without the knowledge of the
transformation equations between the coordinates X and ; by choosing the
integration points directly in.;—sphce according to the distribution
p[X] instead of mapping a uniform distribution of pointS'in.;—SPace onto
§—space. Or, as suggested by Ellis67 and followed extensively in this
work, several uniform distributions may be mapped onto ;espace in such.
a way that a set of points in ;ﬁspace is constructed according to the-
desired density function. In this way it is possible to construct dis-
tributions of points that "track" the atoms of a molecule or complex.
The corresponding single transformation from ;—space to ;-space having
the desired composite density function may be very complicated and ex-
pressible only after the composite density function is written in terms
- of products of series, each involving a single independent variablesz.
Once the points in ;—space are determined according to some distribu-
tion p, then Eq, [87] must be used to evaluate the integral of the func-
tion f with those points,

Including the singularity in the density function for the evalua-
tion of quantum mechanical integrals was first done by Cowdrey and'

-1
Reeve568 to remove the nuclear attraction term ri In this work a

Yl
general sampling procedure is presented for the first time which will
remove a singularity over a manifold, such as the electron—-electron
-1
ingul s
singularity ria_
Before describing in detail the point selection technique used in

this work, a simple example will be presented which shows clearly the

relationships among the transformation, the Jacobian, and the density
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function. Consider the integral over all 2-dimensional space of some

function f:
I o= [ 1 Fsm,) dey dz, . [85]

A transformation can be made to polar coordinates

_ 2 2.3
npEr= (xl + L, )
[90]
- -1
n, 6 = tan (leml),
with the Jacobian
J = r., [91]
The integral written in terms of the new coordinates is
2T f[xl(l"..e), xz(r,e)] 3
r
where.
xl(r,e) = pr cos 6
L93]

,xz(r,e) =p sgin 0 .

Additional independent transformations on the coordinates r and 6 can
be performed to normalize the range of integration to the interval 0, 1
so that Eq. [92] will correspond exactly to Eq. [85]. Neglecting the

normalization of the range of integration, the density function is

p = 3,1,- [94]



Figure 3. Distribution of Points in ;—Space With Density Function

p

1/r

8%
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The density of points in z—space will vary as %-if the points are mapped
from a. uniform distribution in ;—space.[(r,e)-space]. The most straight
forward way of selecting points uniformly in (r,8)-space is to choose
the points using equal intervals of r and 6, This has been done for a
few points and the results mapped onto the T, - x, plane in Fig, 3. By
inspection it 1s easily seen that the points do vary in density accord-
ing to Eq. [94]. Using these points, the integral in Eq. [89] may be
approximated by . |
o f[x-l(ri,ei)', xz(ri,ai)]
I =TI = E . T ~ [95]

r7/

where the wi depend on the numerical integration rule.that is used.
Finally, if f contains a singularity of the form %3 then the gingularity
will be canceled by the density function.

In order to show the specialization of the importdnce: sampling
technique used in this work to remove a singularity over a manifold, a
relatively simple case of a one-center, two-electron integral will first
be considered:

B S - I [96]

'{1 e @ 1%
all space T

I =

The object of the transformations that follow is to select integration

points with a density not only proportional to ;l—-but also proportional
—;lrl —;zr 12
to functions which simulate. e and e .

After transformation of the coordinates of electron 1 from rectang-

ular to spherical coordinates, Eq. [96] becomes
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e"§1P1 St |
I = ff-————I————-drl del d¢1 —— v, [97]
5 12
rl sin ©
where
o< rl < oo, o6 <, o< ¢1 < 2w,

An additional transformation is made on the coordinates of electron 1
in order to normalize the range of integration to a unit hypercube and’
simultaneously simplify the density function to the desired form: a

function proportional . to an exponential function which is taken as

-8,r
e 1 1. The transformations from the coordinates (rl, 91’ ¢1) to
(hy> nys ng) are
-s.r
11
Ny l1-¢e (slr1 + 1) 0 < ny <1
n, = l-(l - cos 8.) 0sn,s1, [98]
2 2 1 2
ng = $,/2m | 0Osngsl
The Jacobian of the transformation is diagonal:
L dny dn, dng
drl del d¢l
[99]
-8.r
_ L2 171, 1 1
= (sl r e ) (2 sin el)(zﬂ) .

After.the transformation, Eq. [97] becomes.
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e_clrl e'czrz
I=/Jf ; 'Sifi dnl dn2 dn3 ——;I;—'dvz . [200]
8. e
1
4 ry

312 e—slrl
oDyl = e [101]
differs from the desired density function by the factor r "". Another

1
transformation for nys instead of the one given by Eq. [98], could have

1

allowed to remain in this .example since it is present in the density

been considered which would have eliminated the r factor. It is

function used to make the actual calculations performed during the

1.

cancellation of the nuclear attraction singularity appearing in the

course of this study. The presence of the » factor guarantees the
Hamiltonian matrix elements.

When an integration point (nl, Nys n3) is selected from a uniform
distribution in the 3-dimensional unit cube, the corresponding coordin-

ates (ri, ) can be determined by inverting Eq. [98]:

cos 8, = 1-2n, [702]
¢l = 21rn3 .

The transformation equation for r. has been written symbolically since

1

it can only be performed numerically., To do the inversion numerically,
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an . iterative, second order Newton-Raphson method69 is used:

rl(n+1) = rl(n) + h(n), [203]
2. (n) (n)
O R f171 L LTan ]”?
e.r. ™ 41 = exple.n. M - (n) ’
1M1 pleyr, 77 1A - ny) ry

where the superscripts in parentheses represent the iteration. number.
The method is very fast, acquiring 12 significant figures in about four
iterations,

A technique ‘will now be presented which selects the integration
points of electron 2 according to a distribution function proportiomal to

-8,

2°2
rlé and EL;;—-—. The general approach is an extension of that suggested
2

by Sobol70.

It is clear‘that any selection technique for electron 2 with a

12

electron 1. The dependence of the density function of electron 2 on -

density function proportional to r., must depend on the position of

the distances 1, and rz can most easily be imcorporated by taking a°
confocal-elliptical coordinate system for electron 2 with one focus at

the nucleus and the other focus at the position of electron 1 generated

through Egs. [102]. The coordinates are defined as usual,

1A, s -1 <y, <1 0 < ¢é < 2m, [104]

where these coordinates may be expressed in terms of interparticle

coordinates indicated in Fig. 4:
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A, = (r2 + rlz)/rl uy = (r2 - rlz)/rl, [205]

and ¢5 is the angle of rotation about the vector T which is now con-

1
- gidered to be fixed. The volume element written in terms of the inter-

particle coordindtes is

3
r r, r.r
R | 22 . 172712 .
dvy = =5 (A, -uy )dxzdu2d¢é ——5—==dx, du, dé). [206]

With this transformation, Eq. [100] becomes

“1M1 “Ea"2
I=/f 2 =) dny dn, dng F=—5—dx, du, d¢) . [207]
fl_ e rir,
4w ry

The transformation is,éufficient to cancel the P9 singularity; however,
an additional transformation is necessary to normalize the range of in-
tegration to a unit cube and make the final distribution of points for
electron. 2 proportional to an exponential function (e-szrz). This can

be accomplished by the transformations

n, = 1- exp[ezrl(A2 - 1)/2]

s.r. /2 -8 .r. u./2 s.r. /2 -s.r. /2
ng = G 38 I 2 L P & L i [206]
ng = ¢é/2n,

The  Jacobian of the trangformation is diagonal:
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J_l. ) dh4 dns dn6.
—

8971
{—E*— exp(szrllz) exp[-sz(rz + rlz)lz]}

[109]
8,7y ‘exp[-sz(rz - rlz)lz]

* 3 expls,r;/2) - efz(—§221/2)

X (=)

r 2 8 2 s, r
1 1 ¢ 2 .. 2 2)

=

With the inclusion of this final transformation, Eq. [107] becomes

e"lrl e"zrz
r=i , —er 5 aor_ 9Ny dny dng dn, dng dng .
5¥1 r 8 2"2
8 e : 1 2 e
A [l-ex (-e,r )] bn »
br T meXPA=8.Ty 2

[210]

The density function for electron 2, as a result of transformations

[105] and [108], is

2 -8.r
rl 8 22

1—exp(—32r

] (2 —y L, [111]
l) 4 r, r12

by (z,,T,) = [

The term in square brackets does not introduce or remove a singularity
since

1im T ! ] -1

— : =, [122]
r,>0 l-exp(-szrl) 8,

Once the integration point (n4, ns, n6) has been selected from a
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uniform distribution, the corresponding spherical coordinates (rz, 62,
¢2) can be obtained by means of three steps, First, Eq. [108] must be

inverted giving

2
A, = 1 - — 1n(1 - n,)
8,71 4

1n[1 - n (1 - e Z1y4 [113]

Using these coordinates, Eq. [105] can be inverted giving
r -il-(l + u,)
2 2 2 2

[114]
cos eé =[@Q - quz)/(lz + uz)],

where eé is the angle between the vectors ;1 and ;2. The last step re-

quires the use of simple geometry. Making use of the projections indi-

cated in Fig. 4 ‘and the line segment

P = r, sin 98! , [115],

the spherical coordinates 62 and ¢2 are found to be

= ! - - ' ]
cos 62 cos 62 cos el sin 62 sin 6, cos ¢2
[126]
in 6! sin ¢!
-1 8in %y 2
¢, = ¢, + tan ( Y T T ) .
2 1 cos 62 sin 61 + sin 62 cos ¢2 cos 61

The extended range of the inverse tangent function,
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-1 < tan L (y/z) <, [117]

has been assumed in Eq. [7176] which requires consideration of the signs
of the numerator and denominator of the argument7l.

It is easy to show that the density functions Dl’ D2, and D12 =
DlD2 are all properly normalized., That is, the following integrdals over

all space are equal to unity:

i) Di(rl) dvl =1,
s 02(¥1,¥2) dv, =1 for any T, . [118]

> > > >
/ Dl(rl) Dz(rl,rz) dvldv2 = f DlZ(rl’rZ) dvldvz =1,

The expansion of r5 in terms of the associated Legendre polynomials is
required for proof in all but the first integral of Eqs. [118] (see
Appendix C).

In order to construct a single density function suitable for use
in all of the integral approximations, the preceding operations are
symmetrized by alternately selecting the points for electrons 1 and 2

according to density functions Dl and D2 respectively, then selecting

the points for electron 2 according to density function D, followed by

1

selection of points for electron 1 from D The final form of the

2-

numerical integration approximation rule [87] can be written as.

> 1 > 1
; £y o550
[Dl(rl ) Dz(r1 »T, ) + Dl(r2 ) Dz-(r2 »T )]
. —3 :

since, by the discussion above, the term in square brackets is the func-
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tion describing the density of integration points in~;-space. If f con~

tains the r-lvsingularity as in Eq. [96], then it will not appear in Eq,

12

[719] since the density function D, contains the same singularity and

2
causes a cancellation. And if f contains exponentials of (—rl) and
(—rz) then, due to the fact that Dl and D2 also contain similar exponen-
tials, the variance given by Eq. [88], will be low, and relatively
higher accuracy is expectéd by using the distribution indicated in Eq.

[119] than by simply using a uniform distribution in ;vspace.

The above technique will now be exténded to a system of many elec-
trons moving about many centers. Again, for clarity, a specific example
is considered: three arbitrarily positioned nuclei and three eleatrons.
The procedure requires the use of the density functions Dl(riY) and

> > .. .
DZ(riY’er) defined by Ews. [701] and [17171] for all electrons % and J,

and for all centers Y. Using these functions, a completely symmetric
point selection density function is,constfuqted by ‘including all possi-~.
ble permutations of electrons %, j, and k, and the centérs Y, Y', and

" . =g >
Y" when sampling first from Dl(riY)’ then DZ(tiY"er') and finally from
Dl(rkY")' The composite distribution is independent of the particular

sequence (Dl, D Dl) of individual density functions and can be written

2,

S
r

A -+
" 1’53. P Dy(r.y) Dy(yyes Tiy0) Dylrg ), [120]

The factor (162)“l is necessary for normalization of the density func-

tion

I D(ts T,, T,) dvy dv, dvg =1, [121]
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since there are'3 X 3 X 3 X 3! .= 162 terms in the sum. The operator
P permutes electronic coordinates and the sum over the permutations in-
cludes all 3! terms. Appendix C establishes the normalization of any
term in the expansion [7120] and thus verifiedé Eq, [121].

If a new. symbol Dé is defined which allows the factoring of the

r7L term from D ,
1d 2

-

> - —i

'Dé(—{.iY” ¥ij) DZ(riY" erv) r’l:j’ [122]

and the three centers are explicitly designated by a, b, and ¢, then

Eq. [120] can be written

> > > _ _l_ 2 . £
D(ry»15,T4) = 1¢3 g P A[D (z, ) + D (7)) + Dy (2 )]

-5

(ri’b,r ) + D} »<r )] [123]

[
[D (r. ) +. D! e Tie

ia’ ga 2
x [0 ) + Dy (7)) + D@, )]

-1 -1 -1
x [z ri 113 715 713 7p3 -

It is easily seen that the density function D(;l, ?2, ¥3) cancels the
singularities due to electron-electron potential energy terms since

these terms can be written

r r +r r +r P .

Pl + Pl + 1 _ “13 " 23 . 1§ 23 :ngylSH. [124]
12 13 23 12 13 " 23

An analogous argument can be constructed to show the-cancellation of the

nuclear attraction singularities.

The spacial integration of all matrix elements, Eq. [79], appearing
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in the H3 calculations is performed using the distribution of points

D(;l, ;2, ¥3) described by Eq. [120] or Eq. [123]. The adjustable para-.
meters 8, and 8, that appear in the density functions D1 and D2 are con-
strained to be equal and are determined so that the estimate of the
variance, given by Eq. [88], is a minimum.

In the lithium case a density function is used that is completely
analogous to Eq., [720] but which spans only a single centér. The para-
meters 81 and 8y

>

achieve minimum variance, The use of the density function D(;l, ;2, r3)

however, were adjusted independently in order to

in the evaluation of integrals not possessing rtl

-1
ﬁY,and rij singularities

resulted in a convergence rate not significantly slower than the rate
which occurred when a density function analogous tolD(gl, ¥2, ¥3), but

not possessing these singularitlies, was used.

2.  Diophantine Numerical Irdtegration

The Diophantine numerical integration method formulated by Richt-
72 73 . 39 :

myer =~ and Haselgrove ~ and exténded by Conroy ~ was used to evaluate
the 9-dimensional integrals in this work. In one case the Monté Carlo
integration technique was used for comparison purposes. Only a brief
outline of the methods will be presented heére; a more thorough treatment
can be found in the original papers or in the texts by Hammersley and
Handscomb74, and by Davis and Rabinowitz75

The general form of the integral to be evaluated is

-
r=s 8% o ; mh) dn, [125]
p(n) P

where the region of integratian is over a d-dimensional unit hypercube
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0 <n.s1 Jd=1,2,3, ... d." [126]
The integral is approximated in the simplest Diophantine method by

N

N . . >
L9 FGY = 3 (2L 3D, [227]

o
I®1I'=_ 3

where the aj are constants and the brackets [ ] indicate that an appro-
priate integer is to be subtracted from the argument so that the result
lies within the interval -, %. The aj are chosen here to be a set of
irrational numbers that are linearly independent over the rational

numbers o:j; that is,

N >
L, X&. 0., F0 unless x =0. 128
J=l g JA# ® L2261

When irrational numbers are used, the technique is called open Diophan-
tine integration since the corresponding gset of integration points-

|2[ (n-%)5]| never repeats. The method is called closed Diophantine
integration when rational aj (l1inearly independent over the integers)
are used since the set of integration points will then repeat when the
number of points exceeds the common denominator of the aj. Whether the
aj are taken to be rational or irrational numbers, it can be shown that
the integration points generated in Eq. [727] are uniformly distributed
within the unit hypercube.

The open form of Diophantine integration was used in this work
gsince the number of points need not be predetermined. If the closed
Diophantine integration had been used and convergence was unsatisfactory
for the number of points chosen, then a new vector o would had to have
been selected with a common denominator equal to the number of points

desired, and the integration repeated.



62

The analysis of the error associated with the approximation [227]
to‘the integral I is somewhat detailed and therefore only. the conclusions
will be stated here, If the Fourier coefficients in the d-dimensional

expansion of the integrand,

N 2 > >
F(n)unz ):a(nl, ...,nd)emnn, , [z29]

1 "4

satisfy the inequality

Ia(nl, cens nd)l <M, Inlnz nd_lht : [130]

for t > 1, for some M,, and with zero factors on the right removed, then

t

the error 1s of "order N-l":
Error(|I - I'|) = O(N_l). [732]

The meaning of the last equation is that as ¥ -+ =, then I -+ I’ at the
same rate as N_l + 0. The inequality [130], with ¢t = 1, may be applied
to bounded functions F{;) with a finite number of discontinuities within
the unit hypercube; with ¢ = 2, it may be applied to bounded continuous
functions with discontinuities in their first partial derivatives; with
t = 3, to functions with continuous first derivatives but discontinuous
second derivatives; and so on. The term '"Diophantine' is used for
describing the method since the theory of Diophantine approximation is
used in proving that Eq. [131] follows from inequélity-[lSO].

The integrals considered in this thesis easily satisfy the inequal-
ity [230] since the singularities have been removed from the integrands -
by an appropriate choice of tﬁe point selection density function,

Therefore the integrands are at least bounded and continuous.
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If the integral [125] is approximated by

i_1
=X [132]

>
R S | F w
I=I' = y.5 (n"),
where. the components of the vector ;1 are selected at random from a uni-
form distribution on the interval O, 1, then the technique is called
Monte Carlo integration. Provided the integrand is bounded, the error

&

éssociated with this method is of order N 2 and proportional to the
square root of the variance 02 defined by Eq. [88}.

The superiority of the Diophantine integration over the Monte Carlo
integration is clear, with a convergence. of O(N-l) opposed to O(N—%);
but the superiority of closed Diophantine integration over the open type
is not as apparent76. Because of these facts and the relative ease of
application, the open form of Diophantine integration was used in this
work,

The set of irrational o used here 1is not the "optimal set" capable
of best integrating some '"worst possible function'" defined by the be-
havior of its Fourier coefficients. Such a set has never been deter-
mined for nine dimensions and would require an extensive amount of com-
puter time. The set of aj actually used in the integrations is made up
of square roots of prime numbers., The prime numbers were selected so
that the first integration point\ﬁl has its components$ approximately
evenly distributed on the interval 0 ,1. Shown in Table III are the

prime numbers Pj such that aj = PVPj , and the corresponding components

n; of the first integration point:

1 = - =
nj = |2[(m %)aj]l m=1., [133]
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OPEN DIOPHANTINE INTEGRATION PARAMETERS

P o = fP; TI;:F |2[(1-—*§)aj]|
101 10,049... 0.049;..
97 9.848... 0.151...
3 1.732... 0.267...
13 3.605... 0.39%,..
157 12,529... 0.529...
29 5.385... 0.614..,
127 11.269... 0.730...
47 6.855... 0.855...
167 12.922,.. 0.922...
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Relatively good results are expected with the use of the aj givén in
Table III because of the lemma, proved by Haselgrove73, that for most’
sets of numbers aj, the error is not substantially worse than that which
would occur using an optimal set.

The pseudo-random numbers that‘are used for the Monte Carlo com-

parison were generated using the IBM~supplied subroutine RANDU77 which

has been converted for double-precision arithmetic.

Once the integrals are evaluated, the matrix eigenvalue problems

are solved using the QCEP-supplied computer subroutines CEIG and NESBET78

that have been slightly modified for use on IBM/360 computérs, The main

program used for the linear symmetric H3 calculations and all subroutines

are listed in Appendix D, The main program for the lithium calculation

is very similar to the H_, main program; the only differences are that it

3

allows two integration parameters s, and Sys and it is specialized to

1

a single center. Double-precision arithmetic was used throughout all

programs and subprograms.



CHAPTER IV
CALCULATIONS
A. Choice of Parameters

The choice of parameters used in the calculations on the lithium

atom and the linear symmetric H, complex is heavily dependent on the pre-

3
vious large scale calculations made on these systems. The purpose in so
choosing the parameters in this way was not only to use the best para-
meters without resorting to the variation of non-linear parameters, but
to be able -to allow direct comparison with these earlier studies.

For the lithium atom case, the orbital exponents and the first six:
expansion terms are the same as those used by Larsson41 in his Study
(see Table I). ‘The first expansion term approximates most closely the
ground state with two electrons in a 1ls inner shell and one electron in
a 2s outer shell. Expansion terms 2 through 4 can be considered as ex-
cited state contributions of the same symmetry as the ground state. Ex-
pansion terms indicated with an asterisk are actually two terms, each
with a different spin function and expansion coefficient.

- The fifth and sixth expansion functions are the first to include
explicit correlation factors. It is expected that these terms woq;d
contribute significantly to the lowering of the energy since the corre-
lation factors rlZ and riz will cause the two electrons occupying the:
same orbital to avoid each other. The remaining three expansion terms

are added in order to investigate the importance of térms simultaneously

Lc
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containing more than one rij factor. These terms simultaneously contain
all possible Pij factors with a power of 2 if the factor.involVés elec~
trons within the same orbital and a power of 1 if they do not. The
capability of including expansion terms which simultaneously contain all
possible Pij factors is evidence of the nearly complete generality of -
the approach used in this study.

Although identically the same parameters are used for the first six:
expansion terms in this study and Larsson's study of the lithium atom,
the spin basis functions are not the same. Both studies do, however, use
the complete set.of spin eigenfunctions; thus a direct .comparison of re-
sults is possible, which provides a means of checking the accuracy of the
computer programs,

Of the three recent and extensive ab initio calculations on the

linear symmetric H, activated complex by Shavitt, et. al.;46 Riera and

3
Linnett79; and Gianinetti, et.-al.;59 the work of Gianinetti, et. al. is
relied on most heavily for the selection of parameters in this work.
The principle reason for this choice was that they made use of 25 atomic
orbitals which are usually used in trial wave functions involving ex-
plicitly correlated expansion terms. Another reason for the choice was
the inclusion in their work of a small scale full configuration interac-
tion calculation which allows a simple .means of checking the computer
programs when multiple centers are involved.

Presented in Table IV are the parameters used in the full configu-
ration interaction calculation performed for testing purposes. The. para-
meters are identical to those used by Gianinetti, et. al. for the same

calculation. The phrase "full configuration interaction” applies when all

possible linearly independent molecular orbitals formed from a given
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TABLE IV
ONE~-ELECTRON SYMMETRY ORBITALS AND EXPANSION TERMS USED

IN THE 4-TERM FULL CI (ls) LINEAR SYMMETRIC H

3
CALCULATION (R , =R, = 1.,9100)
ab bc
Symmetry Orbigéls Exponents - Integration
Parameters
+(1) ‘ . '
¢, = lso = 1s <l ., =1.20 -
1 g b lsb
¢, = lso +(2) ls + 1s b s, =8, = 1,54
2 a c: 1 2
L1 = Cl‘ = 1,06
+(2) fa ' S
$, = lso ls + 1ls
3 g a c
S + .
= Zu Expansion Terms
éymmetry Orbitals rij Exponent
. - S 7: [ j ’ k ]
A b & % 12 13 23
1 1 1 3 0 0 0
2% 1 2 3 0 0 0
3 2 2 3 0 0 0
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basis are used to construct all possible linearly independent "expansion
terms which do not include explicit correlation factors. In this case
the given basis is a ls atomic orbital on each of the three centers.

The parameters used in the linear symmetric H3 activated complex
calculation involving explicit correlation terms is given in Table II.
The 1ls and 2s atomic orbital exponents and internuclear distance are the
same as those used by Gianinetti, et. al. in their most extensive calcu-
lation, a 200 term full configuration interaction calculation using 1s,
23,'2px, Zpy, and 2pz atomic orbitals on each center as a basis. The
expansion terms 1-3 are the terms that contributed most to thg 200 term
wave function as indicated by the corresponding expansion coefficients.
Expansion terms 5-13* are of the same form as the terms 1-3 except that
they contain a single rij correlation factor included in all possible
ways. Although the results from the lithium atom calculation show that
the contribution due to an expansion term containing multiple correla-
tion factors is very slight, one such termu(term‘l4)‘was included in
the linear symmetric H3 calculation.

Two more linear symmetric H,_, calculations were performed which were

3
in every way identical to the calculation just described except that the
internuclear distance was changed to Rab = Rbc = 1.7650 a.u. and 1.8198
a.u. The purpose of these calculations was to determine the force con-
stant ‘associated with the "symmetric stretching vibration" at the saddle

point.
B. Numerical Results

Since each of the 162 distributions making up the 3-center composite

distribution given by Eq. [720] must be sampled the same number of times,
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the total number of integration points must be a multiple of 162, The
progress of the calculations presented here was monitored at the end of
each cycle defined as the processing of 13 X 162 = 2106 9-dimensional
integration points. The same 2106-point cycle was retained for the
lithium calculations. Since the l-center composite density function in
the lithium case contains only 6 terms, each term is sampled 2106/6 =
351 times during each cycle,

| The elements of eight matrices were tabulated at the end of each
cycle, These included the kinetic energy, electron-nucleus interaction,
electron~electron interaction, overlap, and the normalized variances,
02/I2, of each of these elements.

Aé stated earlier,lthe integration parameters &; and 32 contained
in the density functions Dl and D2 are chosen so that the average.
normalized variance of all the matrix elements is a minimum. Figure 5
shows this average as a function of 81 and 8y for the lithium case in-
volving only terms 1-3 of Table.I when 2106 points are used to evaluate
the integrals. If the two parameters are constrained to be equal, then
the minimum average <02/I2>av is equal to 3.30 when 8,78, % 1.05.
However, if there are no constraints places on. the parameters, then the
minimum.average variance drops to 1.28 at 8, = 3.0 and-s2 = 0.3, Even.
though the integrals may be far from convergence, the change in the
variance with respect .to 81 and 8, is much greater than the change in
the variance with respect to the number of integration points. For ex-
ample, if 8§ = 3.0 and 8y = 0.3, the average normalized variance changes
from 1.2792 when only 2106 points are used to 1,2848 when 208,494 points
are used.

In the linear symmetric H, case a minimum normalized.average var-

3
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iance of 1.27 was attained when using 6318 points even.with the con-

straint that s, = 83 therefore it was deemed unnecessary to vary each

1

parameter -independently. Figure 6 shows <02/I2>aV ag a function of

179 with a minimum occurring at s = 1,54,

The calculated energies of the lithium atom are presented in Figure

8 =8

7 for every step in the extension of the trial wave function., That is,
the matrix eigenvalue problem (H ~ E$)€ = O is transformed to (H' - EL)
€' = 0 and the eigenvalues and eigenvectors are determined each time an.
expansion term is added to the trial wave function. In this way. there
is no contribution to the energy due to the expansion terms that are
added later. The energies are plotted against the number of integration
points so that the convergence properties of the wave function can be
observed both with respect to the number of expansion terms and with re~
spect to the number of integration points. The full length horizontal
lines represent the analyticallsolution to the matrix eigenvalue problems
for each stép. The first amalytical energy was calculated indebendently
using standard integral formulas and the remaining analytical energies
were taken from Larsson's study41.- Since the calculations corresponding
and E have not been carried

1-7* B1_g*s 1-9

out using analytical techniques, no exact energy values are available.

to the last three energies E

The horizontal line labeled E(ACCEPTED) is the emergy value calculated
from experiments after subtracting contributions due to relativistic and
finite nuclear mass effectsao. This energy was determined by the use of
a semi~empirical scheme, based on conventional perturbation theory, by.
accurately extrapolating the total electroni¢ energy and ionization
potentials as a function of the nuclear charge.

The analytical, accepted, and final numerical energies are tabu-
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lated in Table V along with the potential and kinetic energy ratios
(PH/KE), the eigeﬁVectdr of the final numerically calculated wave func-
tion ¢l—9, and the overlap of each term of o170, <¢l—9102_9An}. Al-
though only three-four figures are significant when describing the final
lithium atom energies calculated in this work, seven are presented to
show the relative improﬁement in the energy with the addition of each
expansion term.

Figure 8 shows the contributions to the energy of expansion terms
7, 8%, and 9 when added to the non-explicitly correlated trial wave
function consisting only of terms 1-3. The analytical and numerical
results for terms 1-3 are reproduced from ﬁigure 7.

The results of a Monte Carlo calculation on the -lithium atom using
a trial wave function of only term 1 is shown in Figure 9 (upper curve)
along with the corresponding results obtained with the open Diophantine-
calculation (lower curve). The analytical energy and Diophantine re-
sults for term 1 are reproduced from Figure 7,

The calculated energies for the linear symmetric H, test case, a

3
full CI (1s), are presented in Figure 10. The value of the analytic:

energy, indicated by the horizontal line, is that given in the work by

Gianinetti, et. al.59 The values for the analytic and final numerical

energy are given in Table VI along with the final numerical value for
the potential and kinetic energy ratios (PE/XE),

Because of the large range of energies and the small energy differ-
ences, two figures are required to display the results of the linear

symmetric H, calculation described by the parameters in Table II, -

3

Figures 11 and 12 present the energies of the H, complex for every step

3

in the extension of the basis as a function of the number of integration
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TABLE V
RESULTS OF LITHIUM CALCULATION FOR THE PARAMETERS AND VARIOUS NUMBERS OF

EXPANSION TERMS GIVEN IN TABLE I. THE TOTAL NUMBER OF INTEGRATION
POINTS IS 208,494, THE ENERGIES ARE PLOTTED IN FIG. 7.

N E'N (a.u.) j B (a.u.)

0 5 (e (PE/KE)N c? <ot i? g 59
(Ref. 41) (This Work) -
1 114 000 -7.412461 -7.413264 =1.,947 0.650 0.861
1,2% 124 000%* -7.417823 -7.418650 -1.998 -0.0966, -0.0807 -0.0723, -0.0568
1-3 224 000 -7.430033 -7.430632 -1.996 -0.163 -0.0640
1-4% 134 000* -7.444700 -7.445210 -2.001 0.126, 0.119 0.0726, 0.0572
1-5 114 100 -7.472382 -7.472356 -2.001 0.233 0.250
1-6 114 200 ~-7.473999 -7.474415 -1,999 -0.0485 ~-0.0524
1-7 114 211 _— -7.474425 -1.999 -0.000728 " -0,0153
1-8% 124 111%* —_— -7.474592 - -1.999 0.000769, 0.000596  0.00163;°0.00784
1-9 224 211 —_—— -7.474626 -1.999 0.000156 0.00168 -
1o ~7.478069
*

Expansion terms with both possible spin functions have been added.

aEnergies are from Larsson's work except for El which was calculated independently and El_w = E (accept-
ed) which is from Ref. 80.

bAlthough only three-four figures are significant, seven figures are included to show the relative im-
provement in the energy with the addition of each expansion term.

cExpansion coefficients for the trial wave function containing all of the expansion terms listed in the
second column.

dThe overlap of each expansion term of the complete wave function with the complete wave function.

9L



(R.U.)

TOTAL ENERGY

-7.4100
-7.4200
-7.4300
-7.4400
-7.4?00
—7;4690
-7.4700

-7.4800

|

I 4110

s 4 5
E (ARCCEPTED) = -7.478069 R.Us : 41 0

8] - .50 100 ‘150 200

SAMPLING POINTS (K] K = 1053

Figure 8. Convergence Properties of Lithium Atom Energies With
Respect to Expansion Terms 7-9 of Table I When
They Immediately Follow Terms 1-3.

(KCAL/MOLE)

TOTAL ENERGY - E (RCCEPTED)

LL



(R.U.)

TOTAL ENERGT

-7.3800
—7.3900
-7.4000
-7.14100
-7.4200

-7.4300

-7.4400

SAMPLING POINTS (K) K = 1053

Figure 9., Comparison of Convergence Properties of Lithium Atom Energies

With Respect to Expansion Term 1 of Table I When Monte
Carlo and Open Diophantine Integration Techniques are Used

(KCAL/MOLE)

- 41 20
I 1 1%

MONTE CARLO 1 10

1 5

| {1 0

i OPEN DIOPHANTINE 1 -°

_ 1-10

| 4{-15

o Sh‘ 160 léO v200’

8L



79

points., For edse of comparison the energiles E1-4 and'E'l_5 are plotted

on both figures. The range of the estimated exact energy of the H3

system at the top of the barrier is taken to be 7-11 Kcal/mole above

the energy of the H, + H system. The zero point of the scdle on the

2

right is taken at.9.8 Kcal/moles,l above the energy of the H2 + H system,

the most recent estimate to date for ‘the H3 complex at the top of.the

barrier.

The.final numerical energies for the linear symmetric H, complex

3

are tabulated in Table VII along with the.most recent ‘exact estimate,

the potential -:and kinetic -energy ratio, the eigenvector.of the final

numerical calculated wave function ¢1-14, and the overlap of each term
of,91—14vwith Ql_lé: <Ql—l4|0i—l4'An?. Although only four figures are

significant when describing the final H, complex energies calculated

3
in this work, seven are presented.to show the relative improvement in
the energy with the addition of each expansion térm.

Figure 13 'shows the convefgence properties of the energies of the

three 21-term linear symmetric H, calculations with parameters that

3
differed only in the internuclear distance. The final energies and
potential to kinetic energy ratios are listed in Table VIII. These three
energies, along with the corresponding internuclear distances, were used
to find the force constant k associated with the "symmetric stretching
vibration" at the sadd1e poiﬁt. For infinitesimal displacements, this-
force constant is.defined by the equatigh E - Eo = Mk(R - Ro)z; where
Eé 4and Ro are the(energy:and internuclear distagge at the saddle point

b

and R =. Rab =, Rbc' The calculated value ofﬁ%at the end of each’

integration cycle is plotted in Figure 14.

The computer time required to obtain the lithium atom results pre-
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TABLE VI

RESULTS OF THE FULL CI (1s) CALCULATION ON THE H3 ACTIVATED COMPLEX

FOR THE PARAMETERS GIVEN IN TABLE IV. THE TOTAL NUMBER OF INTE-

GRATION POINTS IS 86,346. THE ENERGIES ARE PLOTTED IN FIG. 10.

N 2 (a.u.) B (el (pE/KE)N
(Ref. 59) (This Work)

1-3 -1.6106 -1.,6107 -2.005
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TABLE VII

RESULTS OF THE H, ACTIVATED COMPLEX CALCULATION FOR THE PARAMETERS AND VARIOUS NUMBERS

3

OF EXPANSION TERMS GIVEN IN TABLE II.

POINTS IS 86,346.

THE ENERGIES ARE PLOTTED IN FIGURES 11 AND 12.

THE TOTAL NUMBER OF INTEGRATION

*,b,c, and

d

See corresponding footnotes in Table V.

c d
o~ N o @) e/ i1 ol lpglle
(This Work) ‘
1 113 000 -1.182417 -1.488 -0.00985 -0.0102
1,2% 123 000* -1.591908 -1.845 0.0585, 0.209 0.0901, 0.371
1-3 223 000 -1.605270 -1.888 0.0822 0.208
124 114 000 -1.613066 -1.938 0.00301 0.00219
1-5 113 100 -1.621626 -1.974 0.0403 0.0873
1-6%* 113 010%* -1,623268 -1.978 0.0304, -0.0266 0.104, -0.0740
1-7% 123 100* - -1,623553 -1.977 -0.00420, 0.0196 -0.0159, 0.0865
1-8% 123 010%* -1.627838 -2.,012 0.0242, 0.0385 0.123, 0.181
1-9% 123 001* -1.634601 -2,028 0.0171, -0.0305 0.0742, -0.226
1-10 223 100 -1.634757 -2.028 -0,00103 ~-0.00718
1-11% 223 010%* -1.635524 -2,027 -0.0105, 0.00944 -0.110, 0.0651
1-12- 114 100 -1.636335 -2.037 0.0496 0.0754
1-13% 114 o10%* -1.636534 -2,036 -0.0138, 0.0224 -0.0375, 0,0514
1-14 113 111 -1.636646 -2.,036 -0.00178 -0.0382
1w ~-1.65884
’ aEl—m corresponds to the estimate of the exact energy given in Ref., 81.

8
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TABLE VIII
RESULTS OF 21-TERM EXPLICITLY CORRELATED WAVE FUNCTION CALCULA-
TION$ ON THE LINEAR SYMMETRIC H3 SYSTEM WITH DIFFERENT INTER-
NUCLEAR DISTANCES. THE TOTAL NUMBER OF INTEGRATION POINTS

IS 86,346, THE ENERGIES ARE PLOTTED IN FIG. 13.

R = Rab = Rbc (a.u.) E (a.u.) (PE/KE)
1.7650 ~1.636006 -2.031
1.7924 -1.636646 -2,036

1.8198 ~-1.636997 -2.041

86
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sented in Figure 7 and Table V is about 4.5 hr. and that required to

obtain the linear symmetric H, results presented in Figyres 11 and 12

3
and Table VII is about 3.5 hr. using the IBM 360/65. The time varies
approximately linearly with the number of expansion terms in the trial

wave function.
C. Discussion

The integration point distribution functions D(;i’;Z’;B) given by

Eq. [7120] for the H, case and the analogous distribution function in-

3
volving only one center for the lithium case appear to have been well
chosen when the average normalized variance <02/I2>av is considered.

When the parameters s, = 3,0 and &, = 0.3 (determined as shown in Figure

1
5 by minimig?ng the_variance.<02/I2>-av using only terms 1-3 of the lith-
ium trial wave function) are used in the calculation involving all of
the terms listed in Tablé I, the variance <c-2/I2>av 1s found to be equal.
to 1.91. And when the parameters g = 8§, =8, = 1.54 (determined as.
shown in Figure 6 by minimizing the variance <02/I2>av using only the
H3 full CI (1s) wave function of Table IV) are used in the calculation
involving all of the terms listed in Table II, the variance <02/I2>av
is found to be 1l.67. These values for the normalized variance are very
good considering that the smallest value Cowdrey and Reeves68 obtained
was 2.56 for a 3-dimensional 2-center integral using an integration
point density function specially constructed for that integral.

The convergence rate of the energies failed to be as rapid as the
inverse of the number of points N*l as predicted by the error analysis
associated with open Diophantine integration. However, the rate of con-

5

vergence was somewhat faster than N 2 in the lithium case and signifi-
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1
cantly faster than N % in the H3 case. The correctness of the stated
convergence rates can be verified by considering the most ill-conditioned
cagse; the lithium atom calculation involving only the first expansion

term. The greatést deviation of the energy El'from the exact value be-

yond 150,000 integration points is El = 7.411008 when N = 168,480. The

inequality
1 _ ol
g < | 2halytic < -%; [134]
Eanalytic N
indeed holds with the substitution of El ., from Table V as seen by
analytic
the resulting numerical values,
0.000006 < 0.000196 < 0.002436, [135]

and thus verifies the above statements.
The complexity of the calculation appears to have an effect on the
rate of convergence. The presence of both antisymmetrizers in Eq. [77],

the use of symmetry orbitals in the H_, case as opposed to atemic orbi-~

3
tals in the lithium case, and the use of a. large number of expansion
terms all contribute to the complexity of the calculations and also re-
sult ‘in an increase in the rate of convergence of the energies. Indeed,
200,000 nine-dimensional. integration points were required in the lithium
calculations to achieve the same accuracy (1 Kcal/mole) as obtained using
80,000 integration points in the H3 calculations.

The results of the Monte Carlo calculation on the lithium atom using
only term 1 of Table I is presented in Figure 9. Although the rate of

1
convergence is slightly more rapid than ¥V 2 predicted by the associated

error analysis, it is clearly slower than the rate of convergence of the
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analogous calculation using open Diophantine integration.

As shown in Figure 7, the lithium atom energies plotted for each-
step in the extension of the trial wave func;ion convéerges to the
analytical energy.to within 1 KCal/mole;fbut:onlyvafter 200,000 nine-
dimensional integration points have been used to evaluate the integrals.

The expansion terms 7-9 defined in Table I which simultaneously
contain all possible interelectronic distances are found to contribute
little to the reduction in the energy of the lithium atom. - Referring
to Table V, it can be seen that the.contribution to the energy of these
terms is about 0.0002 a.u. or 0.13 Kcal/mole. The contribution of these .
terms to the total wave.function, as measured by tlie amount of overlap
with the total wave function (listed in the last column of Table V), is
seen .to be the smallest of all the terms making up the wave function. .
~ Even when these terms are added to a trial wave function containing only
terms 1-3 with no explicit correlation, their contribution is still:
relatively small as can.be seen in Figure 8. The reduction in energy
is not as great .as that which originally resulted when the uncorrelated
term 4% of Table I was added.

The ratio of potential and kinetic energies, referred to as (PE/KE)
in Table V, 'is consistently close to -2.0 which indicates, according to
the virial theorem, that the atomic orbital exponents are nearly optimum
even for this relatively small basis.

Before discussing the linear.symmetric H, results, an example of a

3

rather recent study.will1be described which was made in order to deter-

’ -

e

mine the barrier height of the reaction

-

> >
H+H, 2 Hy 2 H) +H, ' [13-6‘]
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The barrier height 1s defined as the energy difference between the H3

activated complex and the reactants H + H2,
E, = E(H*) - E(H + H,) [237]
b 3 27°

and 1s the lowest relative translational energy at which reaction can
occur. The "activated complex" is the name given to the intermediate
state when it possesses maximum.energy with respect to the reaction
path and minimum. energy with respect to motions at right angles to the
reaction path, and is usually designated by the symbol #.

The experimental study described here was made by LeRoy, Ridley,
and Quickert82 who used the spin states of the hydrogen nuclei to trace
the progress of the chemical reaction. The term 'para-hydrogen' is
used to describe the H2 molecule when the spins of the nuclei are anti-

parallel; the term 'ortho-hydrogen' is used when the spins are parallel.

Equation [137] can be written as

H + p-H, = o-H, + H [138]

to indicate the reaction describing the conversion of para-hydrogen to
ortho~-hydrogen.  The rate of the above reaction is found to be directly

proportional to the concentrations of the reactants:

Rate = k[H][p—Hz], [139]

where kX is the proportionality constant called the rate constant. The
hydrogen atom concentration was found experimentally be measuring the
temperature rise (increase in resistance) brought about by H-atom com-

bination on a current-carrying wire. The para- and ortho-hydrogen
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molecule concentrations were determined by measuring the drea under the
peaks produced by a gas chromatograph which had recieved injection
samples from the reaction vessel.

The rate constant k was determined experimentally by means of the

equation
[p-H,]
ln__p___Z__O_ = ]E. 0 [H] de- [140]
[p-8,] i |
0

The positions 0 and &, refer to the ends of the chromatograph column

0
and f is. the linear flow rate of the carrier gas. The ratio on the left

is related to the areas 4 under the chromatograph peaks by the equation

[o-8,1,

T 4 /A )/(A 1 Pre’,. [141]
[p—Hz]xo p-H

He’ 0 2 He Zg

where helium is used as the carrier gas.

The experimental rate constants k(T), determined at various tempera-
tures and multiplied by 4/3 to convert from experimental net rates to
theoretical rates, were them used in.an absolute transition-state theory

analysis .to find the barrier height Eb; According to. this theory, the

S et Eelen e T

rate constant can'be expressed—as

“of  -E /RT
k() = —EQ—J——e [ [142]
H
2 “

whererp_H and.QH are the complete partition functions for the reagents
2.

and'QH+ is the analogous partition function for the complex except for
3

the contribution from motion along the reaction coordinate. After the
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appropriate substitutions are made for the partition functions and
tunneling is considered, Eq. [742] can be written as
T) T(Tyv,E,) ~E /BT

kK(T) = A T% — e : [243]

where A is a constant, Q(T) is the harmonic oscillator partition function .
ratio, P(T,va,Eb) is a tunneling ﬁadtor, and Eo is the energy difference.
between complex and reagents méééﬁgéd‘fraﬁ‘the zeroquiqtéenergy levels.
By iterating Eo and‘the parameters in T, the best least équares fit of
Eq. [143] to tﬁe experimental %(7) was obtained with a resulting value
for Eb‘of 9.2 Kcal/mole. This value is approximately the average of the
7-11 i&él/mole range of energies usually obtained by experiment.

Shavitt81 has recently made a careful study of the experimental data
in light of results obtained from an extensive CI’calculation46. He
found that best agreement with the experimental data resulted whén the
theoretical energy surface was scaled down to a point where the barrier
héiéﬁt is 9.8 Kgal/mole, corresponding to a total energy of the Ha
activated complex of -1.65884 a.u, |

The results of the full CI (1s) preliminary test calculation on the
H3 activated complex presented in Figure 10 and Table VI are.gooé.evi—
dence of the vorrectness of the computer programs when three centers are:
involved. The convergence of the calculated energy to the analytically
obtained energy is well within 1 Kcal/mole using 80,000 integration
points, ' The ratio of the potential energy to kinetic energy is near
-2,0 which indicates, according to the virial theorem, that the atomic

orbital exponents and internuclear distance are nearly optimum for

describing the H3 system while in the quasi-equilibrium--activated com-
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plex state.
As shown in Figures 11 and 12 and tabulated in Table VII, the

energies for the H, activated complex fall far short of the estimated

3
exact energy range. However, the energy from the 2l-term explicitly
correlated calculation used here was superior to the energies of the
27-term CI calculation of Michels and HarrisS3, the 34-term CI calcula-
tion of Shavitt, et. al.46, and the 100-term.CI calculation of
Gianinetti, et. al.s9 The energies of these calculations as well as
those from superior CI calculations are presented in Table IX. The

4 atomic orbital basis functions used in these various calculations are
also indicated.

The trend that appears among the energies calculated here and those
calculated by CI methods is that.explicitly correlated wave functions
require about 1/3 as many terms as do CI wave functions for attaining
equivalent accuracy in the energy. This can be seen by noting the
closeness of the energies of ¢1_8* of Table VII containing 12 terms and
the first two CI calcdiations of Table IX containing 34 and 27 terms.
Likewise, the energy of Q;-l4 containing 21 terms is near the energy of
the 62-term CI calculation., It appears that a 100- to 200-term explic-
itly correlated wave function (equivalent to a 300- to 600-term CI wave
function) would be capable of describing the true energy of the H3 com-
plex to within 1 Kcal/mole. It is important to note that because of the
complexity.of such a wave function, the number of integration points re-=
quired for convergence of the integrals would be substantially reduced
from the 80,000 points used here.

Terms that simultaneously contain all possible interelectronic co-

ordinates such as term 14 of Table II appear to contribute more to the H3_



TOTAL ENERGIES AND FORCE CONSTANTS OF THE H

TABLE IX

3

ACTIVATED COMPLEX

Referenée Basisg: - ' Number;_ﬁE (a.u.) K (a.u.)
of Terms oo
83 ls, 2p, ' 27 -1.6302 10.0
46 ls, 1ls' 34 -1.6305 0.30
59 ls, 28, 2p, 100 -1.6343  —————-
This Work Correlated 21 -1.6366 0.385
79 ls, ?'px,y,z 62 -1,6387 0.296
59 ls, 25, 2p, . 200 -1.6473 ————e-
46 1s, 18, 2p 200 -1,6521 0.31
LyYsR
81 o

-1.6588
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wave function than to the lithium wave function. As can be seen by
examining the overlap of ;ach term with the total wave function, term

14 contributes more to the wave function than the same term with no ex-
plicit correlation factor (term 1), but less than term 5 containing only
the factor r12'

The ratio of the potential energy to the kinetic energy is seen in-
Table VII to deviate more from -2.,0 for the 21—term,H3 calculation than
in the other calculations reported here. The deviation indicates that
either the atomic orbital exponents or the internuclear distance (or

both) are not optimum for describing the H, activated complex using the

3
expansion terms in Table II.
The convergence properties shown in Figure 13, of the linear

symmetric H_, energies associated with different internuclear distances

3
indicate that convergence is not necessary in. order to determine the
optimum internuclear distance since the energies are well separated
and do;mot.cross-prior to convergence.

The convergence properties of the "symmetric stretching vibration" ’:
force constant are shown in Figure 14, Although convergence has not
been achieved, the value of X 1s approximately 0.385 a,u. This is some-
what larger than 0.30 a.u. usually obtained using CI wave functions as
indicated in Table IX. The cause of this difference 1s probably due to
the use of non-optimum atomic orbital exponents. This is indicated since
the potential to kinetic energy ratio (PE/KE) diverges from -2.0 as the

internuclear distances R = Rab = Rbc approaches the optimum value (see

Table VIII)=



CHAPTER V
CONCLUSION

Trial wave functions containing explicit correlation due to the.
presence of interelectronic distance coordinates rij‘are'used to make.
calculations, on the 2S ground state of the lithium atom and ﬁhe linear
symmetric 22: state of the ,activated'H3 complex. A type of quasirandom
integration--open Diophantine integration--is used to evaluate the 9-
dimensional Hamiltonian matrix elements. A technique is developed which
removes the-r;;'singularities over a manifold by including the singular-
ities in .the integration poiﬁt density function.

The rate of convergence of the variationally found energies was
found to be more rapid than Nf%; where N is the number of integration
points, but not as rapid as N—l‘which is usually associated with open- 
Diophantine integration. The. convergence rate was found te increase as
the complexity of -the calcuiation,increased.

When'expénsion terms simultaneously containing all poéSible'inter-,
electronic ‘distances were added.to'the trial wave function for the.
lithium atom, the reduction in energy was relatively small, indicating
that there is little or no advantage in being able to .inc¢lude this type
of term in'the calculationm,

A 21-term explicitly correlated trial wave function used in the¢H3,
calculation resulted in a barrier height of 0.0378 a.u, for the

H, + HTH+H

2 exchange reaction which was superior to an earlier 100-

2

a7
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term configuration interaction (CI) calculation, but inferior to the
200-term CI calculations that have been reported. It -appears that a
100- to 200-term explicitly correlated wave function (equivalent to a-
300~ to 600-term CI wave function) would be capable of desc¢ribing the
true energy of .the H3 complex to within 1 Kcal/mole. Because of the
complexity of such a wave function, the required number of integration
points should be significantly less than the 80,000 points needed for
the 2l-term.wave function considered in this study.

There are three significant features associated with the approach
used to solve atomic and molecular problems in this thesis. The first
is that a minimum amount of computer storage is required since only two
hermitian matrices, which are calculated directly, must be stored,
Thése are.the Hamiltonian and overlap matrices over the many-electron.
expansion terms of the trial wave. function. Another feature is that the
computation time increases only slightly faster than the number of ex-
pansion terms since it is unnecessary to reduce the matrix elements to
one- and two-electron integrals over atomic orbitals, The éhird feature,
due to the purely numerical methods used to evaluate the integrals, is
that any reasonable type of basis functions may be used such as the new
integral transform functions of Somorga184. Likewise any reasonablé
type of potentials may be considered such as those that ‘appear .in nuclear

physics,
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APPENDIX A

. . . V..
‘ . | id
THE COMMUTATORS [sz $55 Ty ] AND

V..
[22 T, P 7]
> i< Tid

In this appendix a proof is presented that shows that the commuta-
tion relations

i Vi s2 W Vigi
[Lz’ iEj rij ] =0 and [L°, igj rij ]=o0, [4.1]

hold for any number of electrons. By definition the total angular mo-

~

mentum operator T is the sum of the one-electron angular momentum opera-

tors of all N electrons:

~ N ~

L = 2 L . [4.2]
The z-component of T is

i = LI

L, z th, [4.23]

with analogous relations for fx and Ey' The square of the total angular

momentum operator is

P2t ?ei 2412
x Yy 2 _
22 .2 2 [4.4]
=L )+ (L ) +(
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The proof begins with the use of the commutation relation,

[ﬁz JFle =6 iz . [4.5]
t t

where F and G can be any function and the operator Lx in Cartesian co-

t
ordinates is
A 1 3 )
L ==(@, -y, =) - [4.6]
2, 1 tayt taxt
Again, analogous. relations hold for the operators fx and fy . Taking
t t

v, ,
F= igj rij “ and ¢ to be the remaining portion of a product wave

function, it will first be shown that

E[th, Flé = [Lz, Fl ¢ = 0. [4.7]

It i1s convenient to factor from F parts which depend on the coordinate

r .

t
‘ v V.
i=t-1 it N td
= = . : . , T R : R
F= B ote Te = Bigm L1 Tit gl Ty e [4.8]
The two product terms in Eq. L4.8] will be referred to as Ftl and th,
respectively allowing F to be written as the product
F = Fi“#t Fip Fip o [4.9]

Using this notation, the commutator involving Lz is
t
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~ A

[th,F]AG =G th F
%-Ekaj#t ¢la, (7, a§:2 + a::i F,,) [4.10]
" ¥y ?Ziz * azil Fyp)ds
“t t
The required partial derivatives of Ftl and th are found to be
aiﬁi ! Z'-E'i Vut Tut e (@, -z)
igsi = :éi Vut Tyt e @, - v,
éi:i = Fu u-g+1 Viy Ptuvfu_B(xt - xu) [4.11]
ngi- = P u=g+l Viu ”tuvtu—3(yt -y

After substitution of these derivatives into the expression for the com-

mutator and summing over all electrons, the result is

E[th,F] G = [Lz,EﬂG
[4.12]
1 N y vtu‘
-1 ) | ( -
= Fu it © Fra Fup Lily yckin Vi Tou G, =, - ¥, =)
N t-1 V-3
t i B Vur Fut (yt xu"yuxt)]'

t
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Rewriting the second sum so that it has tlie same.structure as the first
sum, one has

N t-1 vut"B

= 51 21 Vur Tur W, 5 = Yy @) - [4.13]

By interchanging subscript names in the second sum and noticing that

both sums are over all possible subscripts, the two sums are.seen to

cancel giving

[f,z,F] ¢ =o, [4.14]

which concludes the first part of the proof. By the use of the defin-
ition of a commutator, the commutator involving izz can be written in

terms of commutators involving 23:
~ 2 ~ A S A
[Lz e L, [Lz,F] G + [Lz,F] L, G . [4.15]

The first term on the right is clearly zero from the discussion above
and the second term is also seen to be zero if a new function G' = ﬁgl
is used in the place of G, The argumeénts above can be repeated with the
angular'momentumhgompoﬁénts Ex andffy leading to analogous relation-

ships¢» The commutator involving the .square of the.total angular momentum

operator .can .now.-be written

(22,716 = £, F1 6 + [£,%,F1 ¢ + [£,%,F] ¢ =0 [4.16]

and is zero since the commutator involving each component is zero,
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ACTION OF THE KINETIC ENERGY OPERATOR ON- THE

GENERAL: PRODUCT WAVE FUNCTION

The explicit evaluation of the kinetic energy operator acting on a.
general product wave function of the type used in this study 1s. carried
out in this appendix, Using the notation of Chapter III, Section A, the

term under consideration can be written symbolically as:

2

o v32)(i F ki 4R

T = -;E(Vlz + v
| [B.1]

= -lﬁ(vlz + 7.2

2,,. .

where, for simplicity, the symbol g is used for the explicit correlation

product:

T gt R .y sy
g P, ¥iq Tyy = LT G K [B.2]
According to the theorems of vector calculus, Eq. [B.I] can be expanded -

as follows:
o 2., . coo 2., c e 2
T = -%{[(V,70) J R+ 2(9,%) k+1 ;7 K)]g

+z[(‘v’li-'v’lg)j k+ i @,5 W,k + 4 j(‘v’3k-$3g)] [B.3]

.. 2 2 2
+L g k (Vl + V2 f V3 gl .
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The orbitals 7, J, and X are assumed to be Slater g-type atomic orbitals
(defined by Eq. [37] with & = m = o) or a linear combination of such
orbitals, The gradient of a Slater s—type atomic orbital is easily found .

to be

—CZ’
% -5y T ox (¢), [B.4]

3 (Nr 7 T+ "noo

NIH

t nOO

3

and the Laplacian is found to be

2

5 %00 = (t t) . [B.5]

v 2 _ 2z n/rt + n(n—l)/rtz) X

nOO(

The remaining terms in Eq. [B.3] involve the gradient and Laplacian
of the function g. These are easily determined by again applying the

theorems of vector calculus and are found to be:

> _ J !

g =1 (31 P19) P13 T T (vlrl3)] r23’

> it k' it

Vg = [~V r],) vy + 2], (Vzrza)] !

- 'I k' j' I

Vyg = [- (Vl 13 = T3 (V2r23)] r12’

V.2, = [(v Zri') rj +2(V.r° ) . (V.r ) + r )] r [B.s]
19 1 ¥127 *13 1712 1 13 12 1 13 23’ y
2 _ i

Vy g = [(V 12) r23 Z(Vlrlz) Wyr 23) + 7l (Vz 23)] r13’
2 J! g ]

vy = [ 13) ”23 + 20 ) - @y 23) +rhy (7, 23) ”12

V..,
The gradient and Laplacian of the general interelectronic term rij A

remain. to be determined. These are most easily calculated using rec-
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tangular coordinates and are given by

Voo V.. \).._2
> ij __3 ij _ > > 1
virij erij Vij<ri rj) rij s [B.7]
and
V.., V.. \).._2
V.zr.. Y o= V.Zr.. Woo oy, v..+ D)., Y [.8]
11 e g 1g 1 .

Equation [B.7] shows that the gradients with respect to the coor-
dinates of electrons 7 and J of the term rijvij differ only in sign.
This is the source of the negative signs appearing in Eq. [B.8], since.
a change of sign 1s made when some of the.individual terms are rewritten
so that the gradient is always with respect to the ith electron's coor-

V, .,
dinates of the rij tg,term.



APPENDIX C

'NORMALIZATION OF DENSITY FUNCTION D(?l, ?2, ?3)

In this appendix the normalization of the general 3-center, 3-elec-
tron point selection density function D(;l, ?2, ¥3), given by Eq. [120],

is established. Thus, it is to be shown that

> -> >
/ D(ry, T, r3) dvl dv2 dv3 =1 [c.1]
Factoring a term of the density function into three separate density

functions as indicated by Eq. [720], the general term of the normaliza=.

tion integral becomes
IT= D () D.(tr o) D.(roy) dv. dv. dv [c.2]
=0 Py Pol Ty reToyr) Yy gyl AUy AU, dU4 .

The integration over the coordinates of electron 3 can be performed in-

dependently. It -is easily shown that the density function Dl,is normal-.

ized:

Dl(r3Y") dv3 =.1,

The normalization integral term can now be written

> > N
I =JDy(r;y) Dylryyis Tyyr) dog dvy,

and explicitly.
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8.2 ~8171y o, 8 2 8oyt
_ 1 ¢ 2Y 2 e 1
T=7- P 1 - exp(s, ,y) 4T ¢/ r dv2)dvl'
1Y 2 "2y 2Y"! 12
[c. 3]
The integral
-8, P
272y
KGE ) = 1 E——— [c.4]
2Y! 12

over the coordinates of electron 2 will be considered first. The inter-

electronic distance r., is conveniently defined in terms of vectors

12

originating from center ¥':

- -
r =

12 ]rlY' T Ty

. [c. 5]

The term ri, can be expanded in terms of the associated L engendre poly-

nomials

k
r P Ll |m] im(o,=9,)
] p>k+l Pk .(cos 61) Pk (cos 62) e 1727,

1 » k (k-|m])

—= L z
1y k=0 m=-k (k+lm|)

[c.6]

where r and Tys 8 are the spherical coordinates of the

)

y respectively, and r_, r_ are the larger and

1* 90 %

¢ -> d -
vectors r,., and 1,

smaller of the quantities rq and rz. Since the remaining portion of the

integrand in Eq. [C.4] 1s independent of angles, and

2m  _imé _
fo e dé = 27 5m0
[c.7]
fg Pko (cos 8) sin 9 d8 = 25k0.

17 into Eq. [c.4] and subsequent’

the substitution of the expansion for »r
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integration over angles yields

r -8.r -38.r
_ 1 T1ve 272v! ° 272y
K= 4w(;1;' fo Poyr € erY' + r{Y' e erY,)
[c.8]
- b a- e—?ZrlY')
2, .
83 T1yr

Inserting this expression for K into the normalization integral [C.3],

the result is simply

8 e_slrlY
, dvl = [ D (r..) dvl =1, [c.9]

4 r 171y

1Y

since the density function D1 is normalized.

The normalization of a general term of the point selection density
function D(;l’ ;2, ¥3) has been established and is completely independent'
of the location of the various centers. Since there are 162 terms, the

factor (162)-'l is required to normalize the complete density function,

and Eq. [720] follows.



APPENDIX D
PROGRAM LISTINGS AND DESCRIPTIONS

The computer programs (main and subroutines) used to make the H3
calculations are listed in this appendix, The function of each routine

is described in detail. Sample input and output are also given.

MAIN The main program supervises input and output, generates the
integration points, calculates the integrals, and supervised the solution
of the eigenvalue: problem. All arrays are singly subscripted except’
those used as input to tﬁe routines acquired from the Quantum Chemistry
Program Exchange. The equations and appendices referred to in the
programs are those appearing in this thesis. The description of the

input deck follows:

Parameter Description Columns
I/0 Card
DTAIL - (Logical) TRUE--all matrices are printed, 10-14

FALSE--Hamiltonian matrix is printed

PUNCH (Logical) TRUE--reproduce parameter cards and 50-54
write matrices, eigenvector, and energy in
1P4D20.12 format using FORTRAN logical output

file 7.
Expansion Term Cards
CDNO (Integer) Expansion term number < 26: An 1-3
SOINDX (Integer) Symmetry orbital indices < 4: ¢i 11-20
) 21-30

J



EEXP

999

FILL

zZZ

999

SETN9
IEND

PTSELT

SCHEME

RAIDS

%%

(Integer) Interelectronic distance exponent’

7/!
< 2:»

Separation Card

Indicateés end of expansion terms

Atomic Orbital Exponents
(Integer) Sequence number < 3
(Alphabetic) Description or label

(Real) Exponent

Separation Card

Indicates end of exponents
Integration Parameters

(Integer) Closed Diophantine integration point
set g 7

(Integer) Number of last cycle to be processed

(Integer) Point selection technique
1--closed Diophantine integration
2--Monte Carlo integration
3--open Diophantine integration

(Integer) Integration point distribution
1--single distribution (Eq. [7120]) used
for all integrals
2--Eq. [120] used for rz} integrals; same
distribution, but with D, replaced by
Dl’ used for all other integrals

(Real) Rejects points that lie closer than
this distance from a nucleus

116

31-40

51-55
56-60

61-65

1-3

1-3
4-8

21-30

1-3

5-6

13-14

17-18

19-20

21-30
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NOPTS9 (Integer) Number of integration points () 41-45
NOPTS9 < O ~ N = |NOPTSY|
NOPTS9 = O ~ N = smallest multiple of 162
greater than the number of
points implied by the closed
Diophantine integration set
requested
NOPTS9 > 0 »~ N = smallest multiple of 162
greater than NOPTS9

IBEGIN (Integer) Number of first cycle to be pro- 52-53
cessed, may be omitted if IBEGIN = 1 is de-
sired. If IBEGIN # 1, then data from last
cycle must follow next card (see I/0 card
'PUNCH' parameter).

R12IDS (Real) Rejects points that lie closer than this 61-70
distance from another electron

ROOTS (Integer) Number of eigenvalues desired (V) 77-78
ROOTS =0+ N = 5
ROOTS 2 5+ N =5
Otherwise N = ROOTS

NROUT (Integer) Eigenvalue routine desired 79-80
NROUT = 1 ~ GIVENS (Listed here as dummy)
NROUT = 2 -+ NESBET

Internuclear Distance and
Distribution Function Parameter

RR23 (Real) Internuclear separation 1-10
Sss (Real) Distribution function parameter 11-20

8‘=Sl=62

LAPSI This subroutine calculates the numerical value of

2

2
T = -lg(vl + v2

+VD GG kAR
as indicated in Appendix B.

DRANDU This subroutine is a double precision version of RANDU dis-

tributed by IBM77.

CEIG This subroutine, slightly modified for use on the IBM/360, was
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obtained from the QCPE78. It transforms the original eilgenvalue problem

from the form (H - ES)C = 0 to the form (H' - EI)C' = 0.

NESBET This routine is also from the QCPE78, and is slightly modi-

fied from the original version for use on the IBM/360. It solves the

eigenvalue problem after transformation by CEIG.

GIVENS This routine is a dummy form of the subroutine by the same

name available from the QCPE.

DTRMNT This routine calculates the determinant of a matrix and is

used to check the relation det|H - ES| = 0.

OUT1l This routine writes out a linear array using an alphabetic

literal to label the elements,

OUT2 This routine writes out a two-dimensional array using an alpha-
betic literal to label the elements. The number of rows and columns to
be written can be specified and whether the matrix is to be written in

transpose form.

OUT281  This routine i1s similar to OUT2 except that it handles two-
dimensional matrices that have been stored using a single subscript. The:

matrix may be stored by rows or columns.

ELAPSE This assembler language routine determines the time that has
elapsed since it was last called. It is distributed by the Oklahoma

State University Computer Center.

Sample input data to the programs is given in Table X. The result-

ing output immediately follows the program listings. The meaning of the



symbols used in the output

GG

ss

KEKE

.NUCNUC-

119

ig indicated in the following list:

-1 -1
<b, vy + 73

-1
+ rzslAm>
<AnlAm>

2

2 2, 1,.
<An[—5(v1.+ vy + VA >

3
/3
1

< MW
i

The suffix 'V' applied to the above symbols indicate the normalized var-—

iances of these integrals, 02/I2 (see Eq. [88]). Additional symbols have

the meanings: .

AVE

COET

CCH

CCKE

CCV

VRATIO

OVRMAX

OVER

CCs

HESC

Average of varlances

GG + NUCNUC + nucleus—-nucleus
repulsion energy

KEKE + GG + NUCNUC or <An|ﬁAm>
Eigenvectors Ci

Eigenvalues

<¢|He> = £ % C. C. (HH)..
4 17 1

<¢|Te> =z 2 C

: c. (KEKE)i.
i 4 J J

Vo> =330, C. (V).
. 1 g 1g

1-J
CCV/CCKE
Maximum of the <®[CnAn>
<e|C A >
nn

<ole> =33 C, C. (8S).,
s . 1 g 1J
1

(1 - E%)C
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DET  -- det|H - ES|

ETOTAL -- Eigenvalue + nucleus-nucleus
repulsion energy.



0S/360 FORTRAN H

OPTIONS — NAME=

IMPLICIT REAL®BIA-HyL,0-211} .

DIMENSICGN A9(63),0VER(2T 2271, SUMRI3}+A9SAVE(9},AA9(9),

XX(9),22Z2(10}),SS( 378},GG{ 378),vVv{ 378),

HHt 378),HMAT{ 378),SHAT{( 378)'CUET(29'29)'VEC(29'5)'
E(27) +CCKEL27 §+CCV (2734 CCHI2T),CCS103783,OVRMAX(27)
VRATIO(27) 4HESC(27) 4DET(27) sETOTAL(27),HES(27,27},
XXXX(33,YYYY(3},2222(3),R0(10},DT1(3},0T2(33,0T3(3},
DT4(3)0T5(31,5Sv{ 378B}+GGV( 378)+CA{3),08(3),0C(3},
ABUFF (10}

REAL®*8 KEKE( 37B)yNUCNUC( 378} +MUsLAMBDA KBRAL+KBRA2¢KBRA3,
LAMBMU,NUCNUV( 378) KEKEV{ 378} ,NDAL yNCAGSKET1(27),
KET2(27)+KET3(27),KEBRALL27} yKEBRA2{ 27} ,KEBRA3127),
KET1J4J+KET2JJ+KET3JJ,NDAS

REAL#®4 TIMSDS, TlNEVS'TlHTS

REAL*4 FLOAT

INTEGER CONO{27),SOINDX(B1)»SETN9, ROOTS,P9(7+49},L,LP,TSUB,

1 SUB+TIMEV,ROWSWTIMOD,EEXP(8L) s SEQIX3,SEQINX,ELSEQ(LB ),

2 ELNy ELNTHoELN1yREJGyREJ1s SCHEME yPTSELT

DIMENSICN MS(7),KPP(29)
LOGICAL NDTAILyDTAIL 9 NPUNCH,PUNCHsLLINIT
COMMON /KEGRUP/SO(45),LS0(45}),DS0X(451,DS0Y(45),D0S02(451,

~owmrwie

WN -

2 DR12X(%)} yDR13X{4) sDR23X(4) s R12E(4)LR12(4},

3 DR12Y(4} 4DR13Y(4)sDR23Y(4) ¢R13EL4}+LR13(4),

4 DR12Z(4}4DR13Z(4),DR232(4),R23E(4},LR23(4},

5 MAXSO »MAXSO2 y HALF

DATA ZNUCNU/*NUCNUC*/,ZKEKE/* KEKE'/421GG/* GGt/ IVV/® vVt /,

2 THH/® HHY /4 ZICOET/*° COET'/+2E/* E*/+ICCH/? CCH'/»

3 ZCCKE/' CCKE'/42CCV/" CCVY/,ZVRAT/YVRATIO '/,

4 ZHESC/* HESC*/,1DET/* DET*/, ZETOT/*ETOTALY/,

5 ZCCS/* CCS*/,Z0VER/* OVER'/,

6 ZOVHAX/SOVRMAX®/,25S5/° SS*/¢INUCNV/ *NUCNUV? /,

7 LKEKEV/' KEKEV'/+2GGV/* GGV* /s 1SSV/® Ssvt/
cceecc CCNSTANTS FOR CONRGY'S CLOSED DIOPHANTINE INTEGRATION
ccecce —— ONLY REFERRED TO —— NOT USED IN THESIS

DATA M9/ 20 4372216044 +9644+915014, 20018430026/,
P9/ 1, 119, 43, 457, 823, 1003, 1639,
2y 339, 87, 509, 1633, 2047, 3207,
3, 437, 17941677, 2443, 3029, 4821,
4y 7739142141723, 3215, 4043, 6443,
Sy 937,1479,2173, 4039, 5035, B015,
6,1219,1589,2423, 4827, 6031, 9671,
741503,2189,2489, 5671, 7067,11249,
8+1697,2191,3431, 6485, 8135,12989,
991747,2783,3719, 7277, 9071,14531/
ELECTRON PERMUTATIONS IN EQ. (120}

OATA ELSEQ/ 14243,
1+3452
24143,
24341,
3¢142s
342417

STARTING VALUES FOR EQe (103}
DATA RO/ 3¢6D-1+6+80~119¢60—1+1+204041450¢0,
1 10 8D¢0,2¢20%0+2470¢0+3.40+044.70¢0/
cccecce ATOMIC ORBITAL NORMALIZATICN -— EQ. (37}
ZINOR{NN,ZZ}=DSQRT(ZZ**(2%NN+1}}

OOVDD~NOVN S WN

ccece

[ RV IR VN VR

ccecc

ceeeee OPEN DIOPHANTINE INTEGRATIDN CONSTANTS GIVEN IN TABLE III

AA9(1)}=DSQRT{101.00+0}

[MATN} 0PT=02, L INECNT=60 , SOURCE, EBCOIC , NOL IS T4 NODECK

AA9(2)=DSQRT(97.00¢0}
AA9(3)=DSQRT(3,0D¢0)
AA9(4)=DSQRT(13.0D+C)
AA9(5)=DSQRT(157.00¢0}
AA9(6)=DSQRT(29.,0D¢0)
AAS(7)=DSQRT{127.CD+0)
AA9(B)=DSQRT (47.0D+0)
AA9(9)=DSQRT(167.00+0}
MAXSO=15

MAXS02=2%MAXSO

MAXCON=27
MXCON2=MAXCON+2
MAXSS=MAXCON® {MAXCCN®1}/2
MAXSS=378

MAXEXP=10

NOCNTR=3
PI=3,141592£53589792
RYPII=140D¢0/DSQRTIPI}
THOP[=2,0D¢0%P]
RT32=DSQRT(3,00¢0)/2.00¢0
RT31I=1.,0D040/DSQRT(3.00+0)
SIXTH=1,0D¢0/6.00+0
HALF=1.00¢0/2.0D+0
NODENS=162

cccece EQe (73}

D1=HALF&(RT31+¢1,00+0)
02=HALF*{(RT3I-1.00+0)
D3=0.00+0-RT31
REAO(5+909) DTAIL«PUNCH
NDTAIL=eNOToDTAIL
NPUNCH= 4NOT o PUNCH
909 FORMAT(9XsL5:T50,L5}
WRITE(6+924) DTAIL+PUNCH
924 FORMAT (' DETAIL = ",L1,20X*PUNCH = *,L1)
CONVERT INTEGRATICN POINT SETS FROM INTEGER TO DOUBLE PRECISION

[
1999 DO 37 I=1,7

[a¥aXsNa Nyl

ISUB=(I-1)%9
D0 37 J=1,9
37 A9(ISUB+J)=DFLOAT(PS(I,3))/DFLOAT(MI(I))}

CONFIGURATION INPUT

00 30 J=1,MAXCON
JSuUB=(J-11*3
REAO{5+ 900, END=9000) CONO(J) o (SOINDX{JSUB+1),1=1,3),
1 (EEXP(JSUB*I)s1x143),ABUFF
S00 FURNAT(l3'71'3110'T51o315'T1o10Al) .
IF (PUNCH} HR!TE(7.927) ABUFF
927 FORMAT{104A8)
If (COND(J}eEQe999) GO TO 32
30 CONTIMNE
32 NNN=J-1
NOSS=NNN®{NNN¢1) /2
WRITE(6,901) (J'CDNE(JI'(SOINDX((J-I)‘JQ!).ltln3)-
1 (EEXP((J=1)%341),1=1,3) 4 =1,NNN)

901 FORMAT ('1 CDeNOo"yT20, *CONFo®+T449*S0.1"+T579950.2°¢T70,°S063"

" TCT



905

33
908
34

904

902

1 T89,"R12*,T102, *R13%,T115,'R23",

2 /0" "¢154T20413411%3113,5X3113))
NOELEC=3
IF {SOINDOX{3)+EQe0} NGELEC=2

WRITE{65925) NOELEC

FORMAT{®0*y124* ELECTRON SYSTENM')
EXPONENTS

WRITE(6,906)

FORMAT (/*1°,T16s*EXPONENT{S) 'y T3T,*VALUE*/)
READ INITIAL ORBITAL EXPONENTS

00 33 [=1,998

READ(5¢905) J+FILLy1Z,ABUFF
FORMAT{I34A8yT21,-4PD10s4+T1,10A8}
IF (PUNCH) WRITE(7,527) ABUFF
IF {J.EQe999) GO TO 34
LZ2(J)=2171%1.00-4

WRITE(6,908) I¢J,FILL+222(3)
FORMAT(® *415,T165124A8,T3341PD12,5)
CONTINUE
111=111(1)

212=21212}
123=112(3}

111M=0,00+0-2121

IZ2M=0,0D+0-222

123NM=0.00+0-1223

TOZZ1N=2.0D+0%Z71
TOZZI2N=2.00+0%222
TOZ23N=4.,0D+0%223 _
217122221%111 :
1722=222%112
1232=113%113
XNOR1=RTPI1#*ZINOR{1,221}
XNOR2=RTP I I*ZINDR{ 1, 222}
XNOR3=Z ZNOR(24Z23)/CSQRT (3,00+0*P 1}
SET NUMBERS -
READ(5,904) SETN9,IEND,PTSELT,SCHEME,RAIDS:NOPTS9, IBEGIN,

1 R1210S4ROOTSy NROUT y ABUFF
FORMAT(4X12+6X12+2%X212+T214D1040+T41,15,752,12,

1 T61¢D10.0:T77,212,T1,10A8)
IF (PUNCH) WRITE(T+927) ABUFF
R23
READ(5,902) RR23,55S+ABUFF

FORMAT{—4PD10s4v—2P010s 24 T1,10A8}
IF {PUNCH} MRITE{7,927) ABUFF
RR23=RR23%],0D-4
S5S=555%1,0D-2
RR232=RR23*RR23
TORR23=2, 0D+0*RR23
SSSM=0,0D+0-5SS .
S24PI=SSS*SSS/ (4. 00+0*P1)
WRITE(6,903) RR23,5SS

903 FORMAT{(/'0%yT7T,"R23°+T29,°555*,

cecece

1 /% "y1PD12.54T24,012.5)

REFINE STARTING VALUES FOR EQ.
LLINIT=,TRUE,
1=0

1103)

1 I=f+#l

ETA=(DFLOAT {]~1)+HALF)*1,0D~-1 .

26
27

28
29

cccce

ceceecc

89

60 TO 136

ROLI)=R

IF (1.LT+10) GO TO 1
LLINIT=oFALSE.

IF {NOPTS9) 26427,28
NOPTS9=0—-NOPTSS

G0 TO 29 .
NOPTS9=(MI{SETNS)}/2/NODENS+1) *NODENS
60 TO 29
NOPTS9=(NOPTSS/NODENS+1 } *NODENS
CALL ELAPSELTINOD)

*&

%

%R
9~D INTEGRATION OVER CONF IGURAT IONS

bt t

EQSe (B.7} AND (B.8)
LR12(1)=0.0D¢0
LR12{3)=6.0D¢2
LR13(1)=0.0D+0
LR13{3)=6,0D+0
LR23(1)=0,0D+0
LR23(3)=6,00¢0
DR12X{1)=0.00+0
DR13X(1)1=0.0D+0
DR23X{1}=0.0D+0
DR12Y(11=0.0D0+0
DR13Y(1 )=0.0D+0
DR23Y(1}=0,00+0
DR12Z(1}=0.00+0
DR13Z(1)=0.00+0
DR232{1)=0.0D+0
R12E(11=1.00¢0
R13E(11=1,0D+0
R23E(1)=1.00+0
REJ1=0
REJG=0
TSUB={SETNI-11%9
IF (IBEGIN.LE.l) 60O TO 89

RESTART PROGRAM WITH CYCLE IBEGIN IF IBEGIN «6T. 1
IREPTX=]BEGIN-1
NXT=IREPTX*NOPTSS
READ(5,2006) (G6{1),I=1,NOSS)
READ(542006) (SS{1},I=1yNOSS)
READ(5,2006) (KEKE(I)I=1,NOSS}
READ{5, 2006} (RUCKUC{1),I=1,NOSS}
READ{5,2006) (66VII),I=1,NOSS)
READ(5,2006) (SSV{I),1=1,NOSS}
READ(5,2006) (KEKEV(I}yI=1,NOSS)
READ(5,2006) (NUCNUVEI)+I=1,NOSS)
REAC{592006) (COET{I+1)eI=14NNN)
READ(5,2007) E{1),IX
MDALl=]1,00+0/DFLOATINXT}
NDAS=NDAl
NDAG=NDAL
GO To 25
DO 90 I=1,NOSS
SSYL1)=0.00+0

4N



KEKEVII }=0.00¢0
" NUCNUV(1}=0.,0D¢0
GGVII)=0,00+0
$S{11=0.00¢0
KEKEUI)=0.00+0
NUCNUC{I}=0.,0D+0
90 GG(1)=0,0D+0
IREPTX=0
IX=¢5549
NXT=0
160 IREPTX=IREPTX+1
NTPTS=1REPTX*NOPTS9
WRITE(6,912) NOPTS9¢ IENDs IREPTXoNTPTS,PTSEL T, SCHEME,RAIDS,R12IDS
912 FORMAT('1*y16¢* 9-D POLNTS*,14,* TIMES®,5X*CYCLE #*,12,
SX*TOTAL OF*4174* POINTSY/
SX'#%412,% PCINT SELECTION TECHNIQUE®,
5X12¢* DISTRIBUTION SCHEME(S)*'/
4 BX'MINIMUM R DISPLACEMENT =",1PD10.3,
5 B8X*MINIMUM R12 DISPLACEMENT =*,010.3)
NX=0
SEQINX=1
INTGNO=1
NC1=1
NC2=1
NC3=1
T2 NX=NX+1
AXT=NXT¢1
IF (PTSELT-2) 48,50,%52
cccece GENERATE CONROY POINTS —- CLOSED DIOPHANTLINE INTEGRATIONM
48 XM=DFLOATINX}~0.5D+0
DO 49 J=1.9
XXX=XM*AI(TSUB+J)
XX X=XXX-DF LOATU{LDINT{XXX)}}
IF (XXXeGTo0s50+0) XXX=XXX-140D¢0
49 XX{J)=2.00+0%«DABS (XXX}
GO0 TO 151
ccecce GENERATE PSEUDO RANDGM NUMBERS
50 DO 51 J=1,9
CALL DRANDULIXsIY,YFL)
IX=1Y
51 XX{J)=YFL
GO0 TO 151
ccecce GENERATE OPEN DIOPHANTINE INTEGRATION POINTS -~ EQ. £127)
52 XM=DFLOAT(NXT}-Cs5D+0
00 S3 J=1,9
XXX=XM*xAA9 {J)
XXX=XXX~DFLOAT(IDINT(XXX})
If {XXXeGT40s5D040) XXK=XXX-1,00¢0
53 XX{J}=2.0D+0%DABS{XXX)

WA

cceecce SELECT CENTER AND ELECTRON FOR EQ. (120}
cccccc IF INTGO=2, REPLACE INTEGRATION POINT GENERATED BY D2 WITH
ccecce POINT GENERATED BY D1 AND USE TO INTEGRATE REMAINING
ccecce INTEGRALS {ALL INTEGRALS EXCEPT ELECT.-ELECT.
ceecece REPULSICN REMAIN)
cccece INTGO=2 POSSIBLE ONLY 1F SCHEME=2
cecece —= ONLY REFERRED TO -- NOT USED IN THESIS

151 IF (INTGNO.EQ.2) GO TO S7

SEQEX3=3%SECINX .

1015 FORMAT (®* NOTE *41P3020410,110,4XA6,3110}

ELNTH=1
NC=NC1
ELN=ELSEQ(SEQIX3-2)
GO TO 42

57 ELNTH=2
NC=NC2
ELN=ELSEQ{SEQIXx3-1}
GO TO 42

58 IF. llNTGNO-EQ-Z) GO Ta 60
ELNTH=3
NC=NC3
ELN=ELSEQ(SEQIX3)
GO TO 42

60 XLMX2=XXXX(1}=XXXX(2}
X1MX3=XXXX{ 1) =XXXX{3)
X2MX3=XXXK{2)=XXXX{3}
YLIMY2=YYYY{1}-YYYY(2)
Y1MY3=YYYY(1)-YYYY{3)
Y2MY3=YYYY(2)~YYYY(3)}
Z1M12=2222¢(1)-2222(2)
LIMI3=Z222€ 10 -2222(3})
I2M23=2222€2)~2222(3}
R122=( X1MX2}*%2¢ (YIMY2) ®% 24 (71 M7 2)*%2
R132= (X1MX3 ) *%2¢{YLHY3 } %42+{Z1M23 )62
R232=(X2MX3 ) ¥424¢ (Y2MY3 ) %2+ {I2M23 ) %42
R12=DSQRT(R122)
R13=DSQRT(R132)
R23=DSQRT(R232}
IF (R12.GToR12EDS.ANDeR134GT+R12IDS.AND.R23.GT.R121DS)} GO TO 93
IF (DTAIL) HﬂlTE(b.lOlS) R12¢yR134R23 4NX92GG+NCy INTGNO

IF (INTGNO.EQ.2) GO TO 157
140 REJG=REJG+1

60 TO 154
93 R12E(2)=R12

R12E{ 3}=R122

R13E{2)=R13

R13E(3)=R132

R23E(2)=R23

R23E{3)=R232

IF LINTGNO.EQ.2} 60 TO 152

cceece DENSITY FUNCTION EQe. (1200

TEMP=162.,00+0
Z4U(DT2(1)*DA(2) ¢DT3(11%DB{2}+DT4(1)*DC(2)
+DT2( 2} #DA(L}+DT3(2)*DB{1)+DT4(2)*DC{1)}*DTL(3) *R13
+(0OT2(1)*DA(3)+DT3{1)*DB(3)+DT4{1)*DC{3)
ODTZ(BI‘DA(l)GDTB(B)‘DB(l)foTﬁ(B"DC(l)l‘DTl(Zl'RlZI‘RZQ\
+{DT2(2)%DA{3)+DT3(2)*DB{3)+DT4(2)*DC({ 3)
ODTZ(S)‘DA(Z)ODTBI!)‘DB(Z)ODTA(B)‘DC(Z))‘DTI(I!‘R[Z‘RIBJ
SRIJDT=( (R13+R12)*R23+R12*R131*DTS(L)*DT5{2)*DT5(3) *TEMP
DTT=R12*R13*R23*TEMP
60 TO 159

CVErWN -

[ of of ol of ol SR DENSITY FUNCTION EQe. (120) WITH D2 REPLACED BY D1
ccecce ==~ ONLY REFERRED TO IN THESIS, NOT USED

152 DTT=27,0D+0/(DTL(1)*DT1{2)*DT1(3))

159 OT=DTS5(L)*DT5{2)*DT5(3)4DTT
IF (SCHEME«NE+1+AND. INTGNG.EQ.1) GO TO 153
SRIDT=( (SUMR(1)*DT5(2)¢DT5(1)*SUMRI2) )}*DT5(3)

(XA



1 +DT5(1)*DT5(2)*#SUMR(3) ) *DTT

R121=1,0D+0/R12
R13i=1,00+0/R13
R23I=1.00+0/R23

cceece EQ. (B.8)

ccecc

153

ccecc

LR1202}=2,0040%R121
LR13(2)=2,00+0%R131[
LR23(2}=2,0D+0%*R23]

C EQ. (B.7)
DR12X (2} =X1MX2*R121
DR12X (3)=2,0D+0*X1MX2
DR13X{2)=X1MX3*R13}
DR13X(3)=2,0D+0%X1MX3
DR23X {2} =X2MX3*R23]
DR23X{3)=2,0D+0*X2NX3
DR12Y{2)=Y1MY2#R12I
DR12Y{3)=2,00+0*Y1NY2
DR13Y{2)=Y1MY3*R]13]
DR13Y(3)=2,00+0%Y1INY3
DR23Y{2)=Y2KY3%R231
DR23Y(3)=2,00+0%Y2MY2
DR12Z{2)=11K12¢R]121
DR12Z(3)=2,00+0%2Z1N22
DR13Z(2)=21MZ23*R131
DR13Z2(3)=2,0040%2]1M23
OR232(2)=72M23%R231
DR232(3)=2.,0D+0*22M23
D0 134 JJ=1,NNN
JJsuB=(JJ=1)%*3
L=SOINDX{JJSUB+1)
LP=EEXP(JISUB+L)
M=SOINDX{JJSUB+2)
MP=EEXP({JJSUB¢2)
N=SOINDX(JJSUB+3)
NP=EEXP(JJISUB+3)
SOL1=S0{1)
SOL2xSO{MAXSO+L)
SOL3=S0{MAXSO2+L)
SQM1=S0{M)
SOM2=SO(MAXSO+M)
SOM3=SO{MAXSO2¢M)
SON1=SO(N)
SON2=SO{MAXSO+N)
SON3=SO(MAXSO2+N}
R12LP=R12E(LP+1}
R12MP=R12E(MP+1}
R12NP=R12E{NP+1}
R13LP=R13EILP+1)
R13MP=R13E(MP+1)
R13NPaR13ELNP+1)
R23LP=R23E(LP+1)
R23MP=R23E(MP+1)
R23NP=R23E(NP+1}

C EQ. (75)

PSI1=SOL1*SOM2*SCN3*R12LP*R13IMP*R23INP
PSI2=SON1*SOM2* SOL3*R12NP*R 13IMP*R23LP
PS13=SONL*SOL2*SCM3*R12MP*R1INP*R23LP
PSI4=SOM1#SOL 2% SON3*R12LP*R1INP*R23INP

PSI5=SOM1*SON2¢SOL3I*R12RP*R13LP*R2INP
PSI6=SOL1*SON2¢SCM3I#R12MPHR]13LP*R23INP

ccecec EQs (76)

cccece

KETl(JJ)'Dl'(PSll-PSlZ)'Dz‘(PS|3-PS|4)003'(PSI"'SI‘.
KET26JJ)=D1#(PSI5~PSI4) ¢D2*(PSI1-PSI6)¢D3%(PSI3=PS[2)
KET3{JJ)=D1#(PSI3-PS16)¢D2+{PSIS5~PSI2)¢D3*(PSI1-PSI4)
IF (SCHEMELNE.1+.AND.INTGNO.EQe1) GO TO 134
C SEE APPENDIX B
LAPSI1=LAPSI(L My N¢LP,MP,NP)
LAPSI2=LAPSI{NyMoLsNPoMP,LP)
LAPSI3=LAPSI{NsLo Mo HPsNP,4LP)
LAPSI4&=LAPSI(MyeLoNyLP: NPy NP}
LAPSIS=LAPSI(MoeNeLoAPoLPo,MP)
LAPSI6=LAPSI{LyNeMyPP,LP,NP)
KEBRAL(JJII=DL®(LAPSIL-LAPSI2}¢D2*{LAPSI3~LAPSI4}

1 +DI*(LAPSI5-LAPS16)
KEB!A2‘JJD'Dl'(LAPSl!—LAPSlA)ODZ‘(LAPSIl-LAPSlbl
1 D3*(LAPSI3~LAPSI2)
KEBRA!(JJ)-DI'ILAPSIS-LAPSIGl'bZ'(LAPSlS-LAPSlZl
¢DI*(LAPSII-LAPSI4)
136 CONTINUE
DO 135 1l1w]l,NNN
BRAI=KET1(I1)
BRA2=KET2(I1}

149

150

148
135
154

BRAI=KEYI(11)

IF (SCHEMEJNE 1 o AND« INTGNOEQe1) GO TO 149
KBRAL=KEBRAL(11)

KBRA2=KEBRA2(11)

KBRAZ=KEBRAZ(II)

DO 148 JJI=T1,NNN

INDEX=JJ4%{JI~11/2+11

KETLJJ=KETL(JJ)

KET24J=KET2(JJ)}

KET3JJ=KET3 (JJ)

cecece EQe (791}

TEMP= (BRAY*KET1JJ+BRAOKET2JJ¢BRABSKETIII ) *SIXTH
BSKJ=TEMPSOT

SSEINDEX}=SS{INDEX) ¢BSKJ
SSY({INDEX)=SSVUINDEX)+BSKJI*BSKJ

IF (INTGNDaNE.1) &0 TQO 150 .

BEKJ=TEMPE*SRIJOT

GGCINDEX )mGGEINDEX) ¢BEKJS
GGY(INDEX) =G6Y( INDEX) ¢+BEK JBEKJ

IF (SCHEMEJ.NE.1} GO TO 148

teecee EQe. (81)

BKEKJ={KBRAJCKETLJJ+KDRA2OKET2JJ+KBRADSKETIIY
1 ¢BRAL®KEDBRALIJJ I ¢BRAZOKEBRAZ( JJ ) #BRAD®KESRAI( I}
2 *SIXTHEHALF*DT

KEKE( INDEX)»KEKE( IKDEX) +BKEKJ

KEKEY ¢ INDEX 1=K EKEV{ INDEX } ¢ OK EXJ#BKEKJ

BRIKJ=TEMP®SRIDT

NUCNUC( INDEX) sNUCNUC L INDEX ) ¢BRIKJ

NUCNUYL INDEX) sNUCHUY{ INDEX ) +BRIKJ*BRIKJS
CONTINUE

CONT INUE

CONTINUE

INTGNO=INTGNO¢1

IF (INTGNOJLE.SCHERE) GO TO 151

LZA



ccceec

145

1014

cceccce

137

INTEND=1
IF {NX.GE.NOPTS9) GO TO 145
PERMUTE CENTERS
NC3=NC3+1
IF (NC3.LE.NOCNTR) GO TO 72
NC 3=l
NC2=NC2+1
IF (NC2.LE.NOCNTR) GO TO 72
NC2=1
NC1=NC1+1
IF (NC1.LE.NOCNTR) GO TO 72
NC1=1
SECINX=SEQINX +1
IF (SEQINX.LE+6) GO TO T2
SEQINX=1
GO TO T2
IF (SCHEME.EQ.1) REJ1=REJG
NDA1=1.00+0/DFLCAT{NXT-REJ1 )}
NDAS=NDAL .
IF (SCHEME.EQe2) NDAS=1.0D+0/DFLOAT{2%NXT-REJ1-REJG)
NDAG=1.00+0/0FL CAT{NXT-REJG)
IF (DTALL) WRITE(6,1014) REJ1,NDAIL,REJG,NCAG

FORMAT('0%,15,* R POINTS REJECTED'®y5X*1-EL NORMALKZATION =*,

1PD14.7/

* 9,15,* RIJ FOINTS REJECTED?,5x*2-EL NORMALIZATION =°,

. D14.7/)
AGGV20.DD#0
ASSV=0,0D+0
AKEKEV=0.0D+0
ANUCNV=0. 0D+0

EQS. (8T) AND (88)
DO 137 [=1,MNOSS
GGA1)=GG(1)*NDAG
GGV I )=DSQRT(GGV( I 1#NDAG/GG( I ) %%2-1,0D+0)
AGGV=AGGV+BEY (1)
SSCI)=SS(I1)*NDAS
SSV(1)=DSQRT{SSV{1}1*NDAS/SS{1)*#2-1,00+0)
ASSV=ASSV4SSV(I)
KEKE( 1) =KEKE( I} *NDAL
KEKEV (I }=DSQRT (KEKEV (1) #NDAL/KEKE (1 1#42-1,00+4D)
AKEKEV=AKEKEV+KEKEV{ )
NUCNUC (I )=NUCNUC( T)#NDAL
NUCNUV( T)=DSQRT (NUCNUV { I #NDAL/NUCNUC [ 11##2-1,0D+0)
ANUCNV=ANUCNV+NUCNUVLT)
RNQSS 1=1.0D+0/DFLOAT{NOSS)
AGGV=AGGV#RNOSS I
ASSV=ASSV#RNOSSI
AKEKEV=AKEKEV #RNOSSI
ANUCNV=ANUCNV#RNOSS I
IF {NPUNCH} GO TO 138
WRITE(7,2006) {GG(I),I=1,NOSS}
WRITE(7,2006) (SS{1}e1=1,NOSS)
WRITE(7+2006) {KEKE(11,I=1,NOSS)
WRITE(7,2006) {NUCNUC{I)sI=1,NOSS)
WRITE(7,2006) (GGV{I)sI=1,HOSS)
WRITE(7,2006) (SSV(I}eI=1,NOSS)
WRITE (7,2006) (KEKEV(I}sI=1,NOSS}
WRITE{7,2006) (NUCKUVII),1=1,NOSS)

o000

138

926
139

62

16

83

917

2006
2007

122
123

CONTINUE

IF (NDTAIL) GO TO 139

CALL OUT2S1{GGyNNNyTRUE,ZG6)

CALL OUT2S1(SS+NNN¢eTRUEyZSS) -
CALL OUT2SL{KEKEyNNNyoTRUEs »ZKEKE)
CALL OUT2S1{NUCNUCsNNNy e« TRUE s ZNUCNU)
CALL OUT251{GGV yNKNe¢eTRUE«sZGGV)
WRITE(6+926) AGGY

CALL OUT2S1{SSVsyNNN»+TRUEs 2SSV}
HRITE(6+,926) ASSV

CALL OQUT2S1(KEKEV¢NNNye TRUES +ZKEKEV) .
MRITE(6+926) AKEKEV

CALL OUT2S51 {NUCNUV sNNNyo TRUEe ¢ ZNUCNV)
MRITE(6+926) ANUCNY

ASUMY=( AGGV+ASSV+AKEKEV+ANUCNY ) #0,25D+0
WRITE(6,926) ASUMY -
FORMAT(®* *,109X*AVE =*,1PD17.10}
CONTINUE .

CALL ELAPSE(TIMSD)}
TIMIDS=FLOAT(TIM9D)/1000.0/60.0
WRITE{6,919) TIM9DS
FORMAT{*D*oFT7e2+* MINUTES REQUIRED FOR 9-D INTEGRATION®)

EIGEN-VALUES, —VECTGRS ANC CHECKING

DO 62 I=1,NOSS

VY1) ==NUCNUC (1)+GGLI)

HHLT)=KEKE(T) 4VV(1)

CALL OUT2S1(VVoNNNy o TRUE@sZVV)

CALL OUT2S1(HHyNNNy o TRUEe yZHH)

CALL OUT2S1{SS+NNNs«TRUE«+25S}

L=0

DO 76 I=14NDSS

HHMAT (1 b=HH( 1)

SHAT(I)=SS({I)

DO 83 I=1,MXCON2

KPP(1)=0

DO 83 L=],5

COET{I,L)=0.0D+0

VEC{I,L)=0.,00¢0 -

IF (ROOTS.EQe 0} ROOTS=5

IF (ROOTS.GT«5) ROOTS=S

IF (NROUT.EQ.2) RCOT1S=1

WRITE (64917} ROOTS,NROUT

FORMAT (/°OFIND *,12,* ROOT{S) USING ROUTINE®, 12}
CALL CEIGUNNN,ROOT S, MXCON2 yHMAT  SMAT » E+COET ,VEC » KPP o NROUT)
CALL OUT2(COET+MXCON2+ROOTS ¢ MXCON2¢NNN, « TRUE. »ZCOET}
CALL OUTL1(E.ROOTS+ZE}

IF (PUNCH) WRITE(7,2006) (COET{1+1)¢I=1,NNN}
IF (PUNCH) WRITE(7,2007) E(1),1X

FORMAT (1P4D20.12}

FORMAT(1PD20.12,120}

IF (NDELEC-3) 122,123,123

REPNUC=HALF/RR23

60 TO 125

REPNUC=5,0D+0*HALF/RR23

YA



125

77

18

103

128

129
127
130

131
132
133

101

KL SUB=G

D0 77 L=1,R00TS
CCKE(L)=0.0D+0

CCVIL I=REPNUC

CCHI{L)=0.0D+0

DG 77 K=l,L

KLSUB=KLSUB+1
CCS{KLSUB)=0.0D+0

DO 78 L=1.,ROOTS

1JSUB=0

DO 78 J=1,NNN

00 78 I=1.4J

I4SUB=TJSUB+L
CICJ=COEV(I,L)I*COET{J,L}

IF (1eNEsJ) CICI=CICI*2,0D+0
CCKE(LY=CCKE(L)+CICJI*KEKE(IJSUB)
CCVIL)=CCVIL) +CICJI*VVIIJSUB}
CCH{L)=CCHIL)+CICJ*HF{IJSUB)
CALL OUT1(CCH,ROQTS,2CCH)
CALL DUT1(CCKE+RDOTSsZCCKE}
CALL OUTL{(CCV,RO0TS,ZCCV)
00 103 L=1,RO0TS
VRATIOQ(L)=CCV (L)/CCKE{L) -
CALL DUT1{(VRATIO,ROCTS,ZVRAT}
DO 128 L=1,R0O0TS

DO 128 J=1,NNN
OVER{J L) =0.0D+0

DO 133 L=1,RO0TS

00 130 J=1,NNN
JSUB=Jx{J-1)/2

DO 127 I=14NNN

IF (JeLTel} GO TO 129
SS1J=SS(JSUB+1}

60 TO 127
SSIJ=SSUI*{I-1)/2¢J)

OVER{JyL)=OVERLJsLISCOETLI,L)%*SSIJ |

OVER(JoL}=COET{JsL)*QVER(JyL)
OVMAX=DABS(OVER{1,L))

IF {NNN.LE.1) GO TD 132

DO 131 J=2+NNN

IF (DABS(OVER{J,sL))eGT.OVMAX) OVMAX=DABS(OVER(J,L)}

CONTINUE

OVRMAX (L) =OVHAX

CONTINUE

CALL OUT1(OVRMAX,ROOTSs ZOVMAX)

CALL OUT2{OVER¢MXCONyROOTSsMXCON yNNN+oTRUE. »ZOVER)

KL Sug=0

DO 79 L=1,RO0TS

DO 79 K=1,L
KLSUB=KLSUB+1

DG 79 J=1,NNN
JSUB=J*(J=~11/2
COETJL=COET(J,L)

DO 79 I=1.NNN

IF (JoLTeI) GO TO 101
SSIJ=SS(JSUB+I)

60 TO 79
SSTJ=SS(I*(I-1)/2+J)

[z XN aEaNaYsYa NN Nl

79

104

102

916

100

910
80

920

CCSIKLSUBY=CCSIKLSUB)+COETH l.xncoenussu
CALL omzsuccs.koms..rRuE..lCCS)
D0 100 L=1,RO0TS

1JSUB=0

DO 104 J=1,NNN ‘

D0 104 I=1,4J .
IJSUB=1JSUB+1
NES(l..l)-nu(usum-eunss(usua)
IF. tEeNEoJ) HESUJoI)=HESII,J)

DO 102 I=1,NNN

HESC(1)=0,0040

‘DO 102 J=1,NNN

HESC{I)=HESC( 1) +HESt Y, J)*COET(JoL)

WRITE(6,916) L

FORMAT(/*ORESUBSTITUTION OF EIGEN VALUE AND VECTOR *,12)

CALL QUT1 {HESC,NNN, Z+tESC) . :
DETIL)-DTRHNTlHES.HAXCUN:NNN)

CONRTINUE

CALL OUTLIDET,ROOTS,20ET)

WRITE(6,+910) REPNUC

FORMAT(//°ONUCLEAR REPULSION ENERGY ="1PD14.7)

00 B0 L=1,RO0TS

ETOTALIL)=ELL)+REPNUC

CALL OUTILETOTAL,RO0TS,ZETAT)

CALL ELAPSE(TIMEV)

TINEVS'FLDAT(Tl!EVD/lOO0.0/é0.0

WRITEC6,920) TIMEVS 1
FORMATE* 0", F742+" MEIKUTES REOUIRED FOR FINDING EIGEN VALUES + VECﬂ’

10RSy, AND FOR CHECKING®)

923

158
25

161

TINTS=TIMIDS+T IHEVS

WRITEL60923) TIMTS )
FORMAT (/0" ,F702,* MINUTES REGUIRED FOR CALCULATION®)
IF (IREPTX.GEeIEND} GG TQ 1999

IF (PTSELT.NE.1l) GO 10 25

SAVE=A9 (TSUB+1)

DO 158 J=1,8

AGLTSUB+J)=A{TSUB+J+1)

A9{FSUB+9)=SAVE

DO 161 I=1,NOSS

GEVIII= {66V #2241 ,00+0)2GG( 1 }#22/NDAG
GG{I)=6GLI)/NDAG -
ssvtn-(ssvun-zu.oooonsstnnyunu
SSEII=SSC(II/NDAS

KEKEV(I)=(KEKEV( I)%#2+1 «O0+0) *KEKE( 1) %%2/ NDAL
KEKE( I)=KEKE( 1)/NDAL

NUCNUV T J= (NUCNUV (T 145241 ,0D40 }&NUCNUC (I )#+2/NDAL
NUCNUC ¢ I ) =NUCNUC ( 1) /NDAL

60 TO 160

FY e

CALCULATE COOROINATES AND EVALUATE ORBITALS

p-g-u-.

L

CENTERS ARE IN ORDER Ay By Ce

NC=1 INDICATES CENTVER Ay NC=2 INDICATES CENYER By
AND NC=3 INDICATES CENTER Ceo

THE Z AXES OF THE CCORDINATE SYSTEMS CENTERED ON A, B' AND C,
ARE ALL ORIENTED IN THE SAME DIRECTION.
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42 ELNI=ELN-1 RA2=R2

ROWSW=ELNL*MAXSO ZA=L
SUB=3*ELN-2 . . IB=I-RR23
1F (ELNTHeEQe2+AND+INTGNOLEQ.1} GO TO 200 1C=2-TORR23
ETA=XX{5UB} RB2=TEMP1-TEMP2
cceccc EQe (103} RB=DSQRT (RB2}
136 R=RO{10.00+0*ETA+1.,00+0)} RC224,0D+0*RR2324R2-2,0D+0*TEMP2
DO 146 J=1,20 : RC=DSQRT{RC2}
SSSR=SSS*R G0 1O 144
EXPSR=DEXP{SS5R) : 142 RB=R
DENOM=SSSR+1, 0D+0=(1.0D+0-ETA} *EXPSR RB82=R2
IF {DABS{DENOM)} ,LT41+0D~40) DENOM=1,0D0-40 . ZAaZ+RR23
DELTR=] .0D+0/ (55 S*SSSR/DENCM4HALF*(1,0D+0-~SSSRI/R) 208=1
R=R+DELTR IC=Z-RR23
IF (DABS(ETA~(1.0D40-{SSSR+1,0040)/EXPSR) 1eLlTele00~14) GO TQ 147 RA2=TEMPL+TEMP2
146 CONTINUE RA=DSQRT(RA2)
147 IF (LLINIT) GO TO 3 RC2sTEMPL-TEMP2
ceecce EQ. (102} : RC=DSQRY(RC2} R
MUsXX(SUB#1) . GO TO 144
COST=1,0D+0~24 0D+ 0*MU 143 RCsR
PHI=TWOPI*XX{SUB+2} ' RC2=R2
60 TO 41 2A=2+TORR23
200 IF (NC-2) 201,202,2C3 2B8=2+RR23
201 RI=RA 2(=2
COSTI=ZA/RA RA284,0D+0*RR2I2+R242,00+0*TEMP2
GO TO 204 RA=DSQRT (RAZ)
202 RI=RB ROZ-TEMPL+TEMP2
COSTI=2B/RB RE=OSQRT(RB2)
GO TQ 204 - 144 IF (RAGT.RAIDS.ANDoRDoGToRAIDE.ANDSRCLGToRAIDS) GO TO 47
203 RI=RC IF (DTAIL) WRITE(6,1018) IA!IB.ICo“lll"l‘"”'“‘f’“.l“"ﬂm
COSTI=ZC/RC IF (INTGNO.EQel) GO TO 140
204 SINTI=DSQRT{1,00+0-COSTI*COSTI} 157 REJIsREJL¢}
ZETA=XX(SUB) GO TQ 19«
XI=XX(SuB+l} ccecce CALCULATE COMPONENTS OF INTEGRATION POINY OENBITY FUNCTION
PHIP=TWOP[*XX {SUB+2} 47 ESMRA=DEXP(SSSHORA)
CPHIP=DCOS{PHIP) ’ ESMRB=OEXP(SSSNeRB)
SPHIP=DSIN(PHIP) ’ ESMRC=OEXP{ SSSMERC)
SRI2M=SSSM*R] /2,0D+0 © KARB=RASRS
ceecce EQe 1113} ESHMRAPERBSRCHESMRA® $24P
LAMBDA=1,0040+DLOG(1.004+0-ZETA)/SRI2M ESMARBPaRAMRCHESHABT 524P]
MU=0LOG( 1.00'0‘(1-0000-D‘EXPlZoOD’O.SRIZH) rexi l/SRlZH‘loOD'O ESMRCPoRARSCESMACOS24P )
LAMBMU=L AMBDA +MU TENPoESHAAP ¢E SHREP+ ESARCP
ceeecee EQ. (114} B DTLIELN)=TENP
R=LAMBMU*R] /2,CC+0 IF (INTGNO.EQe2) GO TG 156

COSTP=(1.0D0+0+LAMBOASNU}/LAMBMU
S INTP=DSQRT (1,00+0-COSTP*COSTP)

DYZ(ELNISTEMP #RA/ (1, 00¢O~ESMARA)
OT3(ELNISTENPSRB/ (1 ,0C+0~ESHRS)

cceecc EGe (116) DTQ‘!LII-TI”‘!C/H-M'”WI
COST=COSTP*COSTI~SINTPS*SINTI®CPHIP DACELN)= ESMRAP
PHX:PHIODATANZ(SXNTP’SPHIP.CDSTP‘SINYIOSXNYP’CPHIP‘COSTIl CO(ELN)=ESMABP
41 RSINT=R*DSQRT {1.00+0-COST#CAST) DCLELN) =ESHRCP
Z=R*COST 156 DTS(ELN)=RAABIMC
R2=R*R SUMR(ELN )= (RB+RA}SRCHRARS
TEMPl=R24RR232 AR SINTEOCOEL PN] |
cceecc CALCULATE COCRDINATES WITH RESPECT TO ALL OTHER CENTERS YsASINTODS Il PHI )
ceeeee (SEE FIG, 27 XXXX{ ELN)=X
TEMP2=TORR23*Z YYVY(ELN) Y
1F (NC-2) 141,142,143 I11Z(ELN)=l8
141 RA=R ceeece EQe 137) AND TABLE 11

LTT



cccece

ceceece

AO1A=XNORL1*DE AP{ ZZLM*RA}
AC1B=XNOR2*DEXP L ZZ2M*RDB )
ADLC=XNORL*DEXP{ Z21F*RC}
AO2A=XNOR3*RA*DEXP{ZZ3M*RA}
AC2C=XNOR3*RC*DEXP(2Z3M*RC}
SO{ROWSW#1}=A01B
SOCROWSW+2)=A0LA+AQLC
SO(ROWSW+3)=A01A-ADLC
SO{ROWSW+4&) =A02A~-AD2C

IF {SCHEMEJNE21.ANDELNTHeEQe2+ANDs INTGNOL,EQs 1) GO TO 155

RAI=1,00+0/RA
RBI=1.DD+0/R8B
RCI=1.0040/RC

EQe {(Ba&)
Z1RAL1=ZZ1M*RAI*AQOL1A
DAOLAX=X*Z1RAL
DAG1AY=Y*Z]1RAl
DAOLAZ=ZA*Z1RA1
12RB1=122M*RB[*AD1B
DACLBX=X*Z2RB1
DAC1BY=Y*22RB1
DAC182=28*22RB1
Z1RC1=ZZ1M*RCI*AO1C
DAGLCX=X*Z1RC1
DAQ1CY=Y*Z]1RC1
DAOLCZ=2C#21RC1
RAI2=RAI*RAI
RCI2=RCI*RCI
13RA2=(RAI12-Z13*RA1 )*A02A
DAQ2AX=X*Z3RA2
OAO2AY=Y*Z3RA2
DAD2AZ=ZA%*13RA2
Z3RC2=(RCE2-223*RCI)*A02C
DAD2C X=X*Z3RC 2
DAG2CY=Y*Z3RC2
DAO2C2=2C*23RC2

EQe (Be8)

LACLA={2Z12-TOZ21N*RAT}*AQIA
LAO1B=(ZZ22-TOZ12N*RBI)*A01B
LAOIC=(2Z12-TOZZ1N*RC 1) *A01C
LAG2A=(71132~4.0D+0%ZZ3*RAI+2.,00¢0#RA12) *A02A
LAQ2C={Z1232-4.0D+0%Z23*%RCI+2.00+0*RC12)*A02C

INDEX=ROWSW+1

0SOX{ INOEX)=DAG1BX
DSOY(INDEX)=DAO1BY
DSOZ(INDEX)=DAOLBZ
LSC{INDEX}=LAO1B
INDEX=RONSW+2

DSCX¢ INDEX}=DAOLAX+LAOLCX
OSOYUINDEX)=DAO1AY+DAOLCY
DSOZ( INDEX }=DAOLAZ+CAO1CZ
LSOCINDEX)=LADLA+LACLC
INDEX=RONSW+3

DSOX( INDEX)=DAOLAX-CADL1CX
DSOY{ INDEX)=DAOLAY-CAOLCY
DSOZ{ INDEX}=DAD1AZ-CAC1C2Z
LSOCINDEX)=LAOLA-LACLC
INDEX=RONSW+4

155
$000

DSOX{ INDEX ) =DAO2 AX-CAQ2CX
DSOY( INDEX)=DA02AY-CAB2CY
DSOZ{ INDEX)=DAG2AZ~-CAC2CZ
LSOUINDEX)=LAD2A=LAG2C

IF (ELNTH-2} 57.,58,6C
S0P

END

8CT



057360 FORTRAN H

OPTIONS ~ NAME= MAIN,OPT=02,LINECNT=60+SOURCE,EBCDICyNOLIST,NODECK

IFUE'I']ON LAPSI( l!J!K!lPIJP!KPDI

ccececc SEE APPENDIX B

IMPLICIT REAL*8{A-H,L,0-Z}§

COMMON /KEGRUP/SO{45),LS0{45),DSOX{45),DSOY(45),0S0Z(45)
DR12X (4}, DR13X{4),DR23X(4) ,R12E(4) LR12(4),
DR12Y(4) ,OR13Y(4) ,DR23Y(4) (RIZE(4) ,LRI3 (4},
DR12Z(4)+DR13Z(4)+DR23Z(4),R23E(4),LR23{4),
MAXSCyMAX SO2 HALF

R121P=R12E(IP+1)

R13JP=R13E{JP+])

R23KP=R23E(KP+1)

seI=S0l1)

S0J=S0(MAXSO+J)

SOK=SO{MAXSO24K )

SOTJK=SOI*S0J*SOK

DR12IX=DR12X(IP+1)

DR12IY=DR12Y( IP+1)

DR121Z=DR12Z({ IP+1)

DR13JX=DR13X(JP+1)

DR13JY=CR13Y(JP+1)

DR13JZ=DR13Z{JP+1)

DR23KX=DR23X{KP+1)

DR23KY=DR23Y(KP+1)

DR23KZ=DR23Z(KP+1)

DSOIX=DSOX( I)

DSGIY=DSOY(I)

DSOIZ=DSOZ(1}

INDEX=MAXSO+J N o

DSCJIX=DSOX( INDEX)

DS0JY=DSOY{INDEX)

DS0JZ=DSO0Z( INDEX)

INDEX=MAXS02+K

DSOKX=DSDX{ INDEX)

DSOKY=DSOY { INDEX )

DSOKZ=DSOZU{INDEX) . -

LAPSI={ (LR12(IP+11*R13JP+R12IPSLR13(JP+1} ) #R23KP

+R12I P#R13JP*LR23 (KP+1)
+(DR12I X*DR13JX+DR 121 Y4DR13JY+DR121 Z#DR13JZ }#R23KP
~{DR12IX#DR23KX+DR12IYSDR23KY+DR1212#DR23K2 }*R134P

nmerwn

+((DSOIX*DR13JIX+DSOIY*DR13JY+DSOIZ#DR13JZ) *R12IP
+(DSOIX*DR121IX+DSOIY*DR121Y+DSO124DR12I2)*R13IP}
*R23KP*S0J*SOK

=(DSDJIX*DR12IX+DSOJY*DR12 [Y+DSOJZ*DR12EZ)*R23KP)
‘#R13JP*SOI*SCK
—({DSOKX*DR23K X+DSOKY*DR2IKY+DSOKZ*DR23IKZ)*R13JP
+{DSOKX*DR13JX+DSOKY*DR13JY+DSOKZ*DR13JZ)*R23KP}
*R12IP*S0I*50J -
SHALF#((LSO(1}1¢SCJ+SOISLSO(MAXSO+J) )*SOK’
+S0I#SQJI*LSCIMAXSO24K) ) #R1 21 P*R13JP*R23KP)

SOV WNE SJOWMPU N

RETURN
END

+(DR13JX®DR2IK X+DR1IJY*DR2IKY+DR1II2*DR23IKZ)*R12IP)I*SOIIK

LAPSI=04D+0-(LAPS14{(DS0OJX*OR23KX4+DSOJY*DR2IKY+DSO0IZ*DR2IKZI*R12IP

0S/360 EORTRAN H

OPTIONS — NAM
UBRDUTIN
REAL®8 YFL
1Y=[X*65539
IF {IY.GE.O0) GO TO 6
IY=[Y+214748364T+1

6 YFL=]Y
YFL=YFL*0.465661208720773930~-9
RETURN
END

D XelY

MAIN,OPT=02, L INECNT=60,SOURCE, EBCDIC,NOLIST,NODECK

6CT



05/360 FORTRAN H

OPTJONS ~ NAME= MAIN,OPT=02,LINECNT=560s SOURCE.EBCDIC,NOLIST,NODECK
‘StERQuTINE CEIG (N, N]1,NN, HMAT, SMAT, E,COET ,VEC,KP,NROUT) ] .

IMPLICIT REAL#8(A-H,C-Z)

CCEIG c1s
c , : 15
c SUBRDUTINE SOLVES SECULAR EQUATICNS OF FORM (H-LS)X=0, WHERE L c
< IS A SCALAR, THIS ROUTINE BEGINS BY TRIANGULARIZATION OF S
c FOLLOWED BY A SINGLE DIAGONALIZATION. CMAT (WHICH CAN OCCUPY THE 16
< SAME LOCATION AS THE ORIGINAL OVERLAP MATRIX, SMAT) * CMAT TRANS- - 11
c POSE = SMAT. THE TRANSFORMED HMAT IS STORED BACK OVER THE ORIGINAL 2
c HMAT BEFORE THE DIAGCNALIZATION ROUTINE GIVENS IS CALLED AND THUS
c DESTROYS THE ORIGINAL HAMILTONIAN MATRIX. THE PARAMETERS AREses
c N SEZE OF MATRIX S8EING DIAGONALIZED -
c N1 NUMBER OF ROOTS WANTED,
c NN FORTRAN DIMENSION OF THE MATRIX IN THE CALLING PROGRAM.
c HMAT HAMILTONIAN MATRIX - INPUT 43
c SMAT OVERLAP MATRIX - INPUT
c € EIGENVALUE - QUTPUT &2
c COET EIGENVECTOR - OUTPUT : . - C 41
c VEC TEMPORARY STORAGE , v : «1
c KP - TEMPORARY STORAGE 40
DIMENSION E(1}y HWAT(1), SMAT(1), VECINNs5)s COET(NNJNN}s KPL1)
DO 30 I=1,N :
30 KP(I) = (I#(I-1))/72 - - . )
COET{1,1) =DSQRT{SMATI1}} . - e

CMAT(1) = 1.0/ COET(1l.1) -

SMAT(1} =-1.0/ COET(1,y1)

CMAT HAS BEEN REPLACED HERE BY SMAT BECAUSE FORTRAN RULES SPECIFY

THAT A VARIABLE APPEARING IN THE CALLING SEQUENCE CANNOT BE EQUI-
VALENCED TO ANOTHER VARIABLE. ALL ORIGINAL STATEMENTS USING CMAT C 44

o000 o

ARE SAVED ON COMMENT CARDS SO THAT THE USER CAN FOLLOW THE LDGIC 44
MORE READILY. ) o
IFIN-1) 24243 64
3 00 10 J = 2,N o . -
II1 = KP{J} ¢l - 65
10 COET(1,J) = SMAT(III}/COET(1,+1) 66
DO 11 I = 2,N 63
SUM = 0.0 : -
IIT=KP(I}+]
IMl = [~1
IP1 = I+¢1
DO 12 K = 1,IM1 C 60
12 SUM = SUM + COET(K,I)%%2 60
COET(EeI) «DSQRT(SMAT(III} ~ SUM) :
[ CMATUIII) = 1.0/ COET(I,1) . 50

SMAT{III) = 1.0/ CDET(I'I) 61
IFCIPI~N) 64644 :
6 . DO 13 J = IP1,N
SUM = Ce0
DO 14 K = 1,1IM1
14 SUM = SUM +COET(K,I)*COETIK,J}
II1 = KP{J} ¢I
13 CDET{I,J) =(SMAT{III) - SUM)/COETLI,I)
4 I = I-1 .
Q0. ¥ Il = 1yIMI
tam w BL - WRRKR
Suwr = Grall

1P = 1141

DO 15 K = IIPsl

KW = K ¢ KPLID

SUM = SUM ¢ COETUII,K) * CMAT(KJM)

SUM = SUM &+ COET{II,K) *-SMAT(KJW)
CMAT(IJN) = = SUNM/ COET(IE,II)}

SHATC(IJN) = = SUM/ COET(LIsiI)

Il = [1-1

CONTINUE

DO 40 Jl=1,N

D0 40 L=1,J1

COET (LyJ1)=0.0

DO 41 K=l,J1

KJ1 = K + KPLJ1)

IFAL~K) 42542443

IEE=K+KP{L)

G0 TO 41

I EI=L4KP(K)

COETAL,J41) = COETL,J1) ¢ HMAT(ITE) * CMAT(KJ1}
COET(L.J1) = COET(L,J1} '+ HMATCILI} % SHATLXKJ1)
CONT ENJE

DO 4% Jl=1.N

DO 44 [l=1,J1

KKK-= I1 + KP{J1)

NEKKK) = 0,0 ,
HMAT(KKK) = 040 .
HMAT REPLACES W FOR THE SAME REASON THAT SWAT REPLACES CMAT,
DO 44 L=1,I1.

LIl = L + KP(I1)

MUKKK) = W(KKK) + CMAT{LIL)®COET(L,J1)
HMAT(KKK) = HMAT(KKK) + SHAT(LII)'COET(L'JID
GO TO (€4,65),NROUT

CALL GIVENS €My NLsNNoKMATFVEC E(COET)

60 TO 66

CALL NESBET (NyN1oNNyHMAT4KPyEyCOET)
N1ABS=IABS(NL)

DO 61 J = 1,N1ABS

DO 60 I=l.N

VEC(I,1) = O

DO 60 JJ = I oN

I3 = 1 + KP(JJ)

VEC{I,1) = VEC(I,1) ¢CMAT(1JJII*COETEJIdsd)
VECII,1) = VEC(Is1) ¢SMATUIJJ)4COET(Idsd)
D0 50 1 = 1,N

COET(I,d) = VEC(I,1)

CONTINUE

RETURN

_END

0T



087360 FORTRAN H

OPTIONS — NAME= MAIN,OPT=02,LINECNT=60,SO0URCE,EBCOIC+NOLIST,NODECK 26 IF(DABS(DELCI-CA)3,3,8
'EUQROUTINE NESBET (NyNROOTXs NNy HoKP+EoC )| 3 CONTINUE
IMPLICIT REAL®*BLA-H,(-1) . - ) CA=CA/2.0D0¢0
DIMENSION HC1}sKPL1)+E{1) ,C{NNsNN} 31 IF{CMAX-CTEST)13,13,8
TOL=1.D-14 13 CTEST=401D+0*CTEST
DB 30 I=1,N E1=0.0¢0
30 KP({)=(1%([-1))}/2 0=0.D0¢0
NRCOTX=] DO 36 Ki=1l,N .
CA=2,00+0 D=D+C{KIs]1)e%2
CTEST=0.0999D+0 DO 36 KJ=KI,N
DO 5 I=1,N KKK=KI+KP(KJ}
5 C(Ie1)=0.0D¢0 TERM=C(KIs1)%CIKJIy 1 ) *HIKKK)
48 E(1)=10,0D+0 IF(KI=KJ}35434,35 :
DO S0 J=1.N 34 El=EL+TERM
JIJ=JeKP(J) GO TO 36
IF(E(L)-HLJJIJI) }50,50,52 35 El=El+TERM+TERNM
52 E(1)=H(JJII) 36 CONTINUE
J5=J E(1i=E1/D
50 CONTINUE IF{CHAX-TOL)59,59,8
JJIS=JSe+KP(JIS) 59 BRAFN=H{JJS)-E(1}
CtJSs1)=1,0D+0 DO 60 I=1.N
IF(N-1)43,43,55 IF{1I-JS)61,60,62
55 JS2=0 61 KI=I+KP{JS)
D0 70 J=1«N 60 TO 63
IF(J.EQ.JS)GO TO 70 62 KI=JS+KP(I) .
JJI=J+kP L) 63 BRAFN=BRAFN+H(KI)®C(I,1)
CIF(E(L) o LT H{JJJ)IGC TO TO 60 CONTINUE .
Tl J12=JS+KPLJ} : E(1)=EL 1} +BRAFN/D
IF(H{J12)+.EQ. 0. 0D+0) GO TO 70 32 D=DSQRT{(D)
Js2=J . DD 16 I=1,N
GO 70 T2 16 C{I+1)=C{1s1)1/0D
T0 CONTINUE 43 RETURN
72 IF(JS2.EQ.0) GO TC 73 END
H12=H(J12)
E(1)=H{ JJSI-DABS(H12)
C(JIS2+1)=DSIGN{1,D+0,~-H12)
T3 CONTINUE
8 CMAX=0.0D+0 -
DO 3 J=14N
1F(J-J519+3,9
9 S1G=—E(1)eClJ,1)
JII=JeKP L)
DO & I=1,N
1F(1-J)19le2
2 [JJ=J+KP(])
GO TD 4
1 [JJI=1+KP{J)
4 SIG=SIG+H(IJII*C(I,1}
1 DELC=SIG/{E(1I-H(JJJI))
7 DELD=(C(Js1)+C{J,1)+DELCI*DELC
D=0.00+0
DO 6 K=1l.N
6 DEDeCEKy1)*%2
22 DELE=SIG*CELC/(D+DELD)
24 C(Je12=C(J,1)+DELC
CMAX=DMA X1 { CMAX,DABS {DELC))
25 E{1)=EL1}+DELE

1€t



05/360. FORTRAN H

OPTIONS — NAMEs MAIN,OPT=02,LINECNT=60,SOURCE, EBLDIC +NDLIST,NODECK -~
EUBROUTINE GLYENS (NX, NROOTX, NJXy Ay BoROOT,VECT)
-IMPLICIT REAL*8(A-H,0-2}
DIMENSION BUNX, Sl'l(l).RODT(NROOTX)-VECT(NJX.NRCI)TX)
EQUIVALENCE (TEMPLITEMP), (TN, ITM)
RETURN
ENO

0S/360 FORTRAN H

OPTIONS - NAME=_ MAIN,OPT=02+LINECNT=600 SOURCE,EBLDIC , NOLIST yNODE CX
IFUET[ON DTRMNT(A ,NK,N) | ’
IMPLICIT REAL¥8 (A-H,0-2)
DIMENSION A(NNyNN)
ODTRMNT=A(1,1)
IF (N.EQel) RETURN
. DTRMNT=1,0D+0
N1=N-1
00 8 L=14N1
AIJMAX=DABS (ALL,L})
MAXROW=L
MAXCOL=L
DO 1 I=L,N
00 1 J=L,N
If (DABS(A(I'J)I-LE.AIJHAXD GD 'I'D 1
ALJMAX=DABS{ALI,4))
MAXROW=I .
MAXCOL=J
CONTINUE
IF (MXCDL.EQ.LI GO TO 3
00 2 I=L,N
SAVE=ALI,L)
AlToL)=ALTMAXCOL)
Al I MAXCOL }=SAVE
DTRMNT=DTRMNT *(~1,0C+0)
3 IF (MAXROW.EQ.L) GO TO 5
D0 4 J=L,N
SAVE=A(L,J)
AlLyJ)=ALMAXRONW y J)
AUMAXROW: J)=SAVE
DTRNNT-DTRHNT*(-I-OD'O)
5 L1l=L+1
D0 6 IsLleN
RATIO=A(IsL)/ALL,L)
DO 6 J=LlsN
A(lle‘A(l'Jl-RATlD*AN.vJ)
CONTINUE
00 7 I=1.N
7 DTRMNT=DTRMNT#ALI,1)
RETURN
END

-

~N

»

© o

rwn

'8S/360 FORTRAN H

OPTEONS - NAMEs num.un-oz.un:cnr-so.somce.ucnxc.nousnnuoecx
INPLICIT REAL®B (A-H,0-21 -
DIMENSION XXXXXX(N)
WRITE(6,1)
1 FORMAT(1HO)
WRITE(692) (ZZZZgdeXXXKKX(JDpdn] 4N}
2 FORMATULPAULXA651H( +1253H1 =4D200133)
RETURN
END -

. 9587360 FORTRAN H

OPTICNS ~ NAMEs  MAIN,GPT=02,L ENECHT=60, SOURCE; EBCDIC » NOLIST, NODECK
[SUBRQUTINE QUT2 ( XXXXXXs Ny NEAXy M RAKy rtamg;.lZzznl
IMPLICIT REAL®8 (A=FyC=2)

LOGICAL TRANS

DIMENSION XXXXXX{NsN)

. WNITE(6 1)

FORMAT( //7)

JRAX=MAX

DO 3 I=1,NMAX )

IF (MAX.EQe0) JMAX=I T

IF (JNOT.TRANS) GO 10 2

WRITE1644) uzu.J.l.xxxxxxu.u,.:-x.;mx»

60 T0 3 -
WRITE(624) (ZZZZyT9d yXXXXKKEL9d)edm1sSHAK)

CONTINUE

FORMAT(1P401XA6, "1 ¢ 12, %0 %512 °) =*401T.10) b

RETURN - oy

END - - -

-

0$/360 FORTRAN H
OP‘IIDNS — NAME= HllN’OPTHGZleNECNT%O.SOIRCE.EBCDIC'DDLIST.WDECK

lﬂPLIClT REAL#*8 (A-H,0-Z
LOGICAL UP
DIMENSION All)
HRITE(6,5) RN .
S FORMAT(/)
IF («NOT.UP) GO TO 3
DO 1 J=1,N
JSUBsJ%(J-1)/2
WRITE(6+2) (ZslyJ9AlJSUBI),I=1,J) -
FORMATULPAL® SoA697(%912+%5%¢12,°%) ="4D17.10)) °
RETURN - . .
3 MHl=N-1
MAXAL=N*(N-117/2
DO & J=1.MM1,
- JPImJ+l
NM J=N—J
JSUB=MAXAL=KMI® (KMJ+1)}/2~J
& WRITE(652) (Zo1+JsACISUBHLII=JP1yN)
RETURN
END

N
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LOC OBJECT CODE ADDR1l ADDR2 STMT SOURCE STATEMENT

000000 1 START 0
000000 47FF 000C 0000C 2- BC  15,12(15) BRANCH AROUND CONSTANTS
000004 07 3 DC X7
000005 C503C1DTE2C540 4 DC . CLT*ELAPSE °
00000C 90ES DOOC 0000C 5 STM  14+5+12(13)
600010 0540 6 BALR 440 v _ _
000012 T USING *,4 ESTABLISH 4 AS BASE REGs
000012 5851 0000 00000 8 L 5,0(1)  PLACE ADDRESS OF ARG IN REGe S
9 A TTIMER CANCEL PLACE DECREMENTD TIMER IN REG O
000016 4110 0001 00001 10+ . LA  1,1(0,0) INDICATE CANCEL
00001A O0A2E ' 11+ SVC 46 ISSUE TTIMER SVC
00001C 5830 402€E 00040 12 L 3,60 LOAD ORIGINAL VALUE OF TIMER
000020 1830 13 SR 3,0 SUBTRACT PRESENT VALUE
000022 5C20 4036 00048 14 M 2,=F*26° MULTIPLY TIMER UNITS BY 26 GIVING MICROSEC.
000026 5D20 403A 0004C 15 D 2,2F*1000° DIVIDE BY 1000 GIVING MILLISEC -
000024 5035 0000 00000 16 - ST - 3,0(5) STORE ELAPSED TIME IN ARG
17 STIMER TASK,,TUINTVL=GO START TIMER FOR NEXT CALL
00002E 4110 402E 00040 18+ LA 1,60 LOAD PARAMETER REG 1
000032 1800 19+ SR 0,0 INDICATE TASK,TUINTVL=
000034 0A2F 20+ SVC 47 ISSUE STIMER SVC
000036 9825 DOLC ooolc 21 LM 2,5,2B(13) RESTORE REGISTERS
00003A 92FF DOOC 0000C 22 MVI  12(13),X*FF* INDICATE CONTROL TO FORTRAN
00003E OTFE 23 BCR 15,14
000040 24 DS  OF
000040 TFFFFFFF 25 GO 'DC XYTFFFFFFF*  DEFINE INITIAL VALUE OF TIMER
26 END
000048 €CCO001A .2t =F126°
00004C 000003E® 28 =F*1000°
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TABLE X

SAMPFLE INPUT DATA FOR H3 PROGRAM

Column Number

11111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRUE FAL SE

1 1 1 3 0 0 0

2 1 2 3 1 0 0

3 1 1 3 1 1 1
999

1 1.1303

2 1.2796

3 1.0663
999

1 31 1.00p-03 2000 1.00p-03 12
1.7924 1.540

veT



DETAIL = T PUNCH = F
CDeNO, CONF, SOs1
1 1 1
2 2 1
3 3 1
3 ELECTRON SYSTENM
EXPONENTLS) VALUE
1 1 1.13030D 0C
2 2 1.27960D 00
3 3 1.0663CD CO
R23 sss
1792400 00 1.540000 00

S$0.2

S0.3
3

O

=0 O

»
[~ X~1N)

GET



2106 9—D POINTS
# 3 POINT SELECTION TECHNIQUE

1 TIMES

CYCLE # )
1

MENIMUM R DISPLACEMENT = 1.0000-03

0 R POINTS REJECTED
0 RIJ POINTS REJECTED

GG( 1, 1) =
GGl 1y 2) =
GGl 1, 3) =

SSt 1y 1) =
SSt 1y 2) =
SSt 1, 3) =

KEKE( 1, 1) =
KEKE( 1¢ 2} =
KEKE( 1. 3) =

NUCNUCC 14 1) =
NUCNUCL 1, 2) =
NUCNUCE 14 3) =

CTGGVL 1y, 1) =
GGV 1y 2} =
GGV{ 1y 3) =

SSV( 1,.1) =
SSv( 1, 2} =
SSVE 1, 3) =

KEKEVI 1y 1) =
KEKEV( 1y 2) =
KEKEV( 1y 3) =

NUCNUV( 1, 1) =
NUCNUVL 1, 2) =
NUCNUVE 1, 3) =

1.08 MINUTES

2.7602531504D 00
514875194400 00

2480026067470 O1 .

1. 6457861390 00
3,67€48621980 00
242560823061D 01

3.9254492477D 00
5.6806720791D 00
3,43354852280 01

105461050910 01
2422126606510 01
130726133740 02

143158269440 00
8, 81395338510-01
1.38317248800 00

130855319470 00
9.37758585210-01
1.555€3389630 00

1.7437705273D0 00
1.2120131711D 00
2402622410030 00

1.32855049090 00
8446531711040-01
1039445246190 00

REQUIRED FOR 9-0

Vvl 1s 1) =-8,1858519405D0 Q0
wi 1, 2) =-1,70639087070 01
VV{ 1. 3} =-1.02723527000 02

HH{ 1+ 1
HHU 1, 2
HH{ 1, 3

==4,2604026928D 00
=-1.1383236628D Gl
+-6.83880417700 01

GGl 2,
GGt 2,

SS{ 2.
SSt 2,

KEKE( 24
KEKE{ 29

NUCNUC( 2,
MICNUC( 2,

“GGV( 24
GGV( 24

SSVL 2,
SSV( 2,4

KEKEVL 2,
KEKEV( 2,

NUCKNUV( 2,
NUCNUV( 2,

INTEGRATION

e 2,
vy 2,

2}
3}

2)
N

2)
3)

2)
3}

2)
3)

2)
3)

2)
3%

HH{ 2,4 2)

HHU 2,

3

OTAL OF

T 2106 POINTS
DISTRIBUTION SCHEME(S)

MINIMUM R12 DISPLACEMENT = 1,0000-03

3.5448609162D
= 8416001669940

= 2466923378210
= 7.6600291702D

= 5,0771155330D
= 9,0716605892D

= 1.5406381632D
» 4,05858071650

= 1429203534870
= 142141063919D

134322759260
= 1.,5185099897D

1.6352582145D
= 1.6770693754D

= 1.2344156405D
= 1,2505602483D

==1e18615207160
=~3424257904465D

=-6eT78440518320
=-2,3354129876D

1-EL NORMALIZATION = 4,7483381D0-04"
2-EL NORMALIZATICGN = 4,74833810-04

01
ol

01
o1

01
o1

02
02

00
00

00
o0

02
02

o1
o2

664

Ss(
KEKE(
”UCNUC(

6GV(

Ssvi

KEKEV(

NUCHUV(

vl

3.

3,

3,

3y

e

3

3

3,

3

3

3)

3}

N

3

3)

3)

3)

3

-

6417097779790

6428525178160

8062653092420

319657219340

2419047729400

2460847624410

2483297108360

225444868670

#=2.5794744136D

=—1.71682132120

02

03

00

0o

03

03

AVE

AVE

AVE

.AVE

AVE

1439879494260 00

155869325040 00

1.85455107870 00

1430489320660 00
1.5492331196D0 00

9¢T



RESUBSTITUTION OF EIGEN VALUE

NUCLEAR

SSC 1, 1) = 1,64€57861390 00

SSC 1l 2) = 3,6764862198D 00
$S( 1y 3) = 2,25608230610 O1

FIND 1 ROOT(S) USING ROUTINE 2

COET( 1, 1) = 2,6471895289D0-01

E( 1

-

==~2,86895201937250 00

CCHL 1

==2,86895201937250 00

CCKEL 1) = 1.55783£5296840D 00

ceve 1

=-3,0320125977063D0 00

VRATIOLl 1) =-1,94629452278430 00

OVRMAX( 1) = 4,72921788275640-01

OVER( 1, 1) = 2,9311790131D-01

CCSt 1y 1) = 1,0000C000000 00

HESC{ 1) =-1,38777878CT814D-16

DET{ 1) = 2.7430588483730D-13

ETOTAL( 1) =-1.47417406802230 00

SSt 2, 2) = 2,66923378210 01
SS( 24 3) = 7,66002917020 O1

COET( 24 1) = 5.74882000968D-02

OVER( 2+ 1) = 2,3356031042D-01

AND VECTOR 1

HESC( 2) =~5,55111512312580~17

REPULSION ENERGY = 1.39477800 00

SSU 34 3) = 6,2852517816D 02

COET( 3, 1) = 2,03912971780-02

OVER( 3, 1) = 4,72921788280-01

T HESCU 3) = 3,33066907307550~-15

0.00- MINUTES REQUIRED FOR FINDING EIGEN VALUES ¢ VECTORS, AND FOR CHECKING

1,09 MINUTES REQUIRED FOR CALCULATION

LET
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