AB INITIO CALCULATIONS ON THE LITHIUM AND
H_{3} SYSTEMS USING EXPLICITLY CORRELATED WAVE FUNCTIONS AND QUASIRANDOM

INTEGRATION TECHNIQUES

By
DANIEL JAMES MICKISH, Bachelor of Science Central State University Edmond, Oklahoma 1966

```
Submitted to the Faculty of the Graduate College of the Oklahoma State University
\(A B\) INITIO CALCULATIONS ON THE LITHIUM AND
\(\mathrm{H}_{3}\) SYSTEMS USING EXPLICITLY CORRELATED WAVE FUNCTIONS AND QUASIRANDOM INTEGRATION TECHNIQUES

Thesis Approved:


\section*{ACKNOWLEDGEMENTS}

I wish to express my gratitude to Dr. H. A. Pohl, who kindly allowed me to pursue a relatively independent path of research, but who was constantly willing to give useful advice. Thanks are also given to the members of my committee, the members of the Quantum Theoretical Research Group, and fellow graduate students for many enlightening discussions and suggestions.

For fellowship support I am grateful to the National Science Foundation (1966-1969).

The use of the Oklahoma State University computing facilities was generously supported by the University. To the staff of the Computer Center I am indebted for much assistance.

I also thank Mrs. Janet Sallee for her typing excellence and advice. Most of all, I wish to thank my wife, Charlotte, for her continual patience and encouragement throughout my graduate study.

\section*{TABLE OF CONTENTS}
Chapter Page
I. INTRODUCTION ..... 1
A. Background ..... 1
B. This Work ..... 4
II. THEORY ..... 6
A. Schrödinger Equation ..... 6
B. Variational Method of Solution ..... 7
C. Construction of Expansion Functions ..... 9
1. General Structure. ..... 9
2. Significance of Correlation Terms ..... 10
3. Group Theoretical Considerations ..... 14
4. Explicit Structure of Expansion Functions. ..... 21
5. Construction of Spin Eigenfunctions, ..... 34
III. EVALUATION OF MATRIX ELEMENTS ..... 38
A. Integration Over Spin. ..... 38
B. Spatial Integration ..... 42
1. Inclusion of the \(r_{i, j}{ }^{-1}\) and \(r_{i \gamma}{ }^{-1}\) Singularities in the Point Selection Density Function. ..... 42
2. Diophantine Numerical Integration. ..... 60
IV. CALCULATIONS ..... 66
A. Choice of Parameters ..... 66
B. Numerical Results ..... 69
C. Discussion ..... 88
V. CONCLUSION ..... 97
REFERENCES ..... 9.8
 ..... 105
APPENDIX B. ACTION OF THE KINETIC ENERGY OPERATOR ON THE GENERAL PRODUCT WAVE FUNCTION ..... 109
APPENDIX C. NORMALIZATION OF DENSITY FUNCTION \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\) ..... 112
APPENDIX D. PROGRAM LISTINGS AND DESCRIPTIONS. ..... 115
Table Page
I. One-Electron Atomic Orbitals and Expansion Terms Used in the 12-Term Lithium Atom Calculation . . . . . . . . . . . 28
II. One-Electron Symmetry Orbitals and Expansion Terms Used in the 21 -Term Linear Symmetric \(H_{3}\) Calculation ..... 30
III. Open Diophantine Integration Parameters. ..... 64
IV, One-Electron Symmetry Orbitals and Expansion Terms Used in the 4-Term Full CI (1s) Linear Symetric \(H_{3}\) Calculation . . . 68
V. Results of Lithium Calculation for the Parameters and Various Numbers of Expansion Terms Given in Table I ..... 76
VI. Results of the Full CI (1s) Calculation on the \(\mathrm{H}_{3}\) Activated Complex for the Parameters Given in Table IV . . . . . . . 81
VII. Results of the \(H_{3}\) Activated complex Calculation for the Parameters and Various Numbers of Expansion Terms Given in Table II. . . . . . . . . . . . . . . . . . . . 84
VIII. Results of 21-Term Explicitly Correlated Wave Function Calculations on the Linear Symmetric \(\mathrm{H}_{3}\) System with Different Internuclear Distances ..... 86
IX. Total Energies and Force Constants of the \(H_{3}\) Activated Complex ..... 95
X. Sample Input Data for \(\mathrm{H}_{3}\) Program ..... 134

\section*{LIST OF FIGURES}
Figure Page
1. Spherical Coordinate System Used for Lithium Atom
Calculation ..... 292. Spherical Coordinate Systems Centered on the Three Nucleifor the Linear Symmetric \(H_{3}\) Calculation31
3. Distribution of Points in \(\overrightarrow{\mathbf{x}}\)-Space with Density Function\(\rho=1 / r\)48
4. Confocal-Elliptical Coordinates Used to Obtain Density
Function for Electron 2 ..... 535. Average Normalized Variance as a Function of IntegrationPoint Distribution Parameters \(s_{1}\) and \(\varepsilon_{2}\) for the LithiumAtom Calculation 。. . . . . . . . . . . . . . . . . . 71
6. Average Normalized Variance as a Function of theIntegration Point Distribution Parameter \(s=s_{1}=s_{2}\)for the \(\mathrm{H}_{3}\) Calculation . . . . . . . . . . . . . . . . . 72
7. Convergence Properties of Lithium Atom Energies with
Respect to Expansion Terms 1-9 of Table I ..... 75
8. Convergence Properties of Lithium Atom Energies withRespect to Expansion Terms 7-9 of Table I When TheyImmediately Follow Terms 1-377
9. Comparison of Convergence Properties of Lithium AtomEnergies with Respect to Expansion Term 1 of Table IWhen Monte Carlo and Open Diophantine Integration
Techniques Are Used ..... 78
10. Convergence Properties of the \(\mathrm{H}_{3}\) Activated Complex Energy with Respect to the Full CI(ls) Wave Function ..... 80
11. Convergence Properties of \(\mathrm{H}_{3}\) Activated Complex Energies with Respect to Expansion Terms 1-5 of Table II ..... 82
12. Convergence Properties of \(\mathrm{H}_{3}\) Activated Complex Energies with Respect to Expansion Terms 4-14 of Table II ..... 83
13. Convergence Properties of Linear Symmetric \(H_{3}\) Energies with Respect to 21-Term Explicitly Correlated Wave Functions

Figure
Describing Different Internuclear Distances . . . . . . . . . 85
14. Convergence Properties of the Force Constant Associated with the "Symmetric Stretching Vibration" at the Saddle Point of the \(\mathrm{H}_{3}\) Energy Surface . . . . . . . . . . . . . . . . . . 87

\section*{CHAPTER I}

\section*{INTRODUCTION}

\section*{A. Background}

Except for the simplest cases, accurate solutions of molecular wave functions require the evaluation of many difficult multi-dimensional, multi-center integrals. A considerable amount of work \({ }^{1-7}\) has been done in evaluating such integrals over Slater orbitals using sophisticated and ingenious analytical techniques. These techniques include the use of spherical, ellipsoidal, and bipolar coordinate systems, the expansion of atomic orbitals on one center in terms of functions on another, and the application of transform convolution theorems. Often the resulting "closed" expressions are long sums of terms containing auxiliary functions or infinite series which ultimately must be evaluated numerically or by means of recurrence relations.

Some researchers \({ }^{8-12}\) have chosen to use Gaussian orbitals which lead to integrals that are relatively easy to evaluate analytically, even when many centers are involved. The disadvantage is that a much more extensive set of Gaussian orbitals is required to attain the same precision of the wave function as that attained by using a set of slater orbitals. Using these orbitals, cusps and tails of the wave function are difficult to reproduce which in turn leads to less accurate expectation values of observables. Calculations in which large sets of Gaussian orbitals are used in order to obtain high accuracy involve sophisticated
studies in data handling.
Integral evaluation can be avoided altogether, except for overlap integrals; by the use of semiempirical approximations. Sets of such approximations are the basis of the Huckel \({ }^{13}\) scheme and the "PPP Method" developed by Pariser, Parr \({ }^{14}\), and Pople \({ }^{15}\) for use on \(\pi\)-bonded electronic systems; and the scheme developed by Pohl, Rein, and Appe1 \({ }^{16-19}\) for use on \(\sigma\)-bonded electronic systems. Semiempirical approximations to the integrals become imperative when studying large systems such as organic molecules \({ }^{13,20}\).

Another approach \({ }^{21}\) which has been used to evaluate molecular integrals is to perform the simple integrations, or in the case of two-electron integrals, the integration over the coordinates of one electron analytically \({ }^{22}\), and then perform the remaining integrations numerically by means of Gaussian quadrature.

This study is concerned with the evaluation of atomic and molecular integrals by a purely numerical means. Relatively few investigators have used this approach. Frost \({ }^{23}\) in 1942 used a purely numerical method in which the variance of the local energy \(\hat{H} \psi / \psi\) from the average of the local energy was minimized. The points at which the local energy was evaluated were selected arbitrarily and hence the method was completely independent of the concept of integration. In later studies \({ }^{24}\) however, the points and corresponding weights were chosen to be the same as those indicated by numerical integration rules.

Boys and Rajagopal have performed SCF calculations using purely numerical methods. The systems considered ranged from \(\mathrm{H}_{2}\), with which exploratory calculations were made, to \(\mathrm{NC}+\mathrm{H}_{2},{ }^{25} \mathrm{NH}_{3},{ }^{26} \mathrm{OH}_{3}+^{27}\), and \(\mathrm{C}_{2} \mathrm{H}_{4} \cdot 2\) The only analytical operations that were performed resolved
multi-centered distributions into a sum of single-center distributions. Numerical integration was performed around each center using Riemann sums for the radial integrations and Gauss-Legendre quadratures for the angular integrations. Special devices were introduced to handle the \(1 / r_{12}\) singularity which appeared in the electron-electron repulsion integrals. In a later calculation \({ }^{29}\) involving the LiH system, the resolution of multi-centered distributions into single-center distributions was still carried out, but a form of Diophantine integration was used and, because of the nature of the correlated wave function employed, no special devices were necessary to handle the \(1 / r_{12}\) singularity.

Conroy \({ }^{30-40}\) has used a purely numerical integration method of the Monte Carlo \({ }^{32}\) and Diophantine \({ }^{39}\) type to evaluate atomic and molecular integrals. There are several unique ideas employed in his work. The wave function is constructed \({ }^{31}\) so that the kinetic energy operator operating upon it produces terms which cancel; in an additive manner, the nuclear attraction terms. A correlation function 34,36 is included in multi-electron wave functions which allow the electron-electron repulsion terms to be canceled in the same manner as the nuclear attraction terms. The variational principle was not used in Conroy's work since the errors occurring in the approximate integrals tended to contribute to the lowering of the energy \(\varepsilon\), rather than canceling, "with the result that the \(\varepsilon\) obtained may be very seriously in error" \({ }^{33}\). However, it was found that meaningful results could be obtained using the approximate integrals when the energy variance,
\[
U^{2}=\int(\hat{H} \psi-E \psi)^{2} d \tau / \int \psi^{2} d \tau
\]
was minimized with respect to the adjustable parameters of the trial
wave function.
Since the calculation of the expectation value of the square of the Hamiltonian was required when minimizing the energy variance, little additional effort was necessary to implement lower bound formulas which require such expectation values. Conroy \({ }^{33,38}\) developed and app1ied a technique using upper and lower bounds equations to predict a refined value of the energy by extrapolation to \(U^{2}=0\) from the calculated wave functions.

\section*{B. This Work}

This work also involves purely numerical integration of the Diophantine type, buit the integrals are evaluated to such precision that the variational principle can be applied with confidence. The precision is attained by using a unique importance sampling of points technique which not only selects points from important regions of space but also removes the singularities originally appearing in the integrals.

Explicitly correlated wave functions constructed of Slater orbitals multiplied by interelectronic.coordinates are employed. The total wave function is a linear combination of such products after they have been properly antisymmetrized. A combined configuration interaction - explicitly correlated wave function of this type is used in this thesis to test the numerical method by calculating the ground state energies of the lithium atom and the linear symmetric \(\mathrm{H}_{3}\) activated complex; both 3electron systems. To make the calculations as meaningful as possible, a complete set of fully projected spin functions is employed.

The lithium calculation is performed principally as a test of techniques and programs since direct comparisons can be made with the work
of \(\mathrm{Larsson}{ }^{41}\). To show the flexibility of the wave function employed, additional configurations which sithultaneously include all possible interelectronic coordinate terms are added to the Li atom wave function. Such a calculation has never before been made on a system with more than two electrons.

The \(H_{3}\) calculation is considered to be an excellent test of the usefulness of the techniques developed during the study since explicitly correlated orbitals over three centers are involved. Previous barrier height calculations on the \(\mathrm{H}+\mathrm{H}_{2} \not \underset{\&}{ } \mathrm{H}_{3} \neq \mathrm{H}_{2}+\mathrm{H}\) reaction have never attained "chemical accuracy" of \(1 \mathrm{Kcal} / \mathrm{mole}\). It was hoped that the adding of explicit correlation terms through interelectronic coordinates would give some insight into the poor energy convergence problem.

\section*{CHAPTER II}

THEORY

\section*{A. Schrödinger Equation}

The solution of the time dependent Schrödinger equation,
\[
\begin{equation*}
\hat{H} \psi=i \hbar \frac{\partial \Psi}{\partial t} \tag{1}
\end{equation*}
\]
subject to initial and boundary conditions, is a wave function \(\Psi(\vec{r}, \sigma, t)\) which contains all the information describing the state of the physical system at time \(t\).

If the Hamiltonian \(\hat{H}\) does not explicitly depend upon the time, the energy \(E\) is a constant of the motion and \(\Psi\) has the form
\[
\begin{equation*}
\Psi(\vec{r}, \sigma, t)=\sum_{i} \psi_{i}(\vec{r}, \sigma) e^{-i E_{i} t / h} \tag{2}
\end{equation*}
\]

The function \(\psi_{i}(\vec{r}, \sigma)\) depends upon the coordinates of configuration and spin space but not upon the time and is a solution to the Schrödinger time independent wave equation
\[
\begin{equation*}
\hat{H}_{i}=E_{i} \psi_{i} \tag{3}
\end{equation*}
\]

The description of the electronic structure of atoms and molecules requires the solutions of this equation. The Hamiltonian \(\hat{H}\), in the molecular case, has the form
\[
\begin{equation*}
\hat{H}=\sum_{i}^{N}\left[-\frac{1}{2} \nabla_{i}^{2}-\sum_{\gamma}^{n} \frac{z_{\gamma}}{r_{i \gamma}}\right]+\sum_{i<j}^{N} \frac{1}{r_{i j}}, \tag{4}
\end{equation*}
\]
where the \(N\) electrons are indexed by the letters \(i\) and \(j\), and the \(n\) nuclei are indexed by the Greek letter \(\gamma\). Atomic unfts have been chosen such that \(h=m_{e}=e=1\). The linear operator \(-\frac{1}{2} \nabla_{i}{ }^{2}\) corresponds to the kinetic energy of electron \(i, Z_{\gamma}\) is the charge on nucleus \(\gamma, z_{\gamma} / r_{i \gamma}\) is the potential energy of interaction due to electron \(i\) and nucleus \(\gamma\), and \(1 / r_{i j}\) is the potential energy of interaction due to electrons \(i\) and \(j\). The Hamiltonian is non-relativistic in form; spin-orbital interaction and various other terms have been omitted. Also employed is the Born-Oppenheimer approximation which assumes the motion of the nuclei to be negligible compared to that of the electrons and therefore allows the separation of the two motions. Thus the nuclear coordinates appear only as parameters in the electronic Hamiltonian.

\section*{B. Variational Method of Solution}

Due to the terms \(r_{i j}^{-1}\) in the many-electron wave equation \(\hat{H} \psi=E \psi\), a direct solution is impossible. However, there exist techniques for solving the equation which theoretically will converge to the correct solution to any desired degree of accuracy. The technique that is used most frequently, and the one used in this thesis, is the variational method \({ }^{42}\). It is based on the theorem that if \(\Phi\) is a trial wave function satisfying the correct boundary conditions, then the normalized expectation value of the Hamiltonian operator,
\[
\begin{equation*}
\langle H\rangle_{\Phi}=\int \Phi^{*} H \Phi d \tau / \int \Phi^{*} \Phi d \tau \tag{5}
\end{equation*}
\]
is always greater than or equal to the lowest eigenvalue of the Hamiltonian. The trial wave function normally contains several parameters. which can be adjusted to give a minimum for the above energy integral. The procedure yields the closest value to the true energy subject only to the limitations of the functional form of \(\Phi\).

The way in which this theorem is used in this work is a form of the method of linear combinations: the true wave function \(\psi\) for the system under consideration is approximated by the trial function \(\Phi\) which is written as a Iinear combination of well chosen functions:
\[
\begin{equation*}
\psi \approx \Phi=\sum_{n} C_{n} \Delta_{n} . \tag{6}
\end{equation*}
\]

The expansion functions \(\Delta_{n}\) are linearly independent and possess all of the symmetry of the true wave function \(\psi\).

When the Variational Principle is applied using \(\Phi\) as the trial wave function with adjustable parameters \(C_{n}\), a system of linear equations is obtained:
\[
\begin{equation*}
(H 1-E S) \mathbb{C}=0 . \tag{7}
\end{equation*}
\]

The elements of the matrices \(\mathbf{H}\) and \(\mathbf{S}\) are defined by
\[
\begin{equation*}
H_{n m}=\int \Delta_{n}^{*} \hat{H} \Delta_{m} d \tau, \quad S_{n m}=\int \Delta_{n}^{*} \Delta_{m} d \tau \tag{8}
\end{equation*}
\]
and the elements of the column vector \(\mathbb{C}\) are the coefficients \(C_{n}\). Since only ground states are discussed here, the energy \(E\) appearing in the above secular equation is assumed to be that of the lowest eigenvalue, and the vector \(\mathbb{C}\) the corresponding eigenvector.

\section*{C. Construction of Expansion Functions}

\section*{1. General Structure.}

The purpose of this section is to discuss the construction of the configurations \(\Delta_{n}\) used in the expansion of the trial wave function
\[
\begin{equation*}
\Phi=\sum_{n}^{\Sigma} C_{n} \Delta_{n} . \tag{9}
\end{equation*}
\]

For now the discussion will be confined to three-electron systems in general and later to the lithium atom and linear symmetric \(H_{3}\) molecule specifically.

The total wave function and each expansion term is a function of the coordinates of each electron. These coordinates consist of three position coordinates and one spin coordinate for each electron making \(\Phi\) a nine-dimensional function of position coordinates and a three-dimensional function of spin coordinates.

More explicitly, the general structure of an expansion function is chosen to be
\[
\begin{equation*}
\Delta_{n}=\hat{A}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{q}(1,2,3)\right] . \tag{10}
\end{equation*}
\]

The subscript \(n\) now represents the set of indices \(\left(i, j, k, i^{\prime}, j^{\prime}, k^{\prime}\right.\), \(q)\). The functions \(\phi_{i}(t) \equiv \phi_{i}\left(\vec{r}_{t}\right)\) are one-electron symmetry orbitals involving only the position coordinates of electron \(t\) : Only those products of symmetry orbitals \(\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\) that yield a term \(\Delta_{n}\) having the symmetry of the ground state are allowed. The interelectronic distances \(r_{i j}^{{ }_{i j}} \equiv\left|\vec{r}_{j}-\vec{r}_{i}\right|^{\nu}{ }_{i j}\) are inserted directly into the wave equation to reduce correlation error. The presence of these terms allows the use of
the phrase "explicitly correlated wavefunction" for describing Eq. [10]. The Iast term \(\theta_{q}(1,2,3)\) is a 3 -electron spin function which is an eigenfunction of the operators \(S^{2}\) and \(S_{z}\) corresponding to the square of the total and \(z\)-component of the spin angular momentum respectively. The operator \(\hat{A}\) is the antisymmetry operator,
\[
\begin{equation*}
\hat{A}=\frac{1}{\sqrt{3!}} \sum_{\hat{P}}(-1)^{p} \hat{P}, \tag{11}
\end{equation*}
\]
where the sum is over all 3! possible permutations \(\hat{P}\) of the electronic coordinates and \(p\) is the parity of the corresponding permutation. Note that the function \(\Delta_{n}\) can be written as a linear combination of determinants only if \(i^{\prime}, j^{\prime}\), and \(k^{\prime}\) are all zero, since only then can determinants be formed taving as their elements one-electron spin functions.

\section*{2. Significance of Correlation Terms}

The correlation energy is usually defined after Löwdin \({ }^{43}\) to be the difference between the energy calculated by means of the Restricted Hartree-Fock procedure and the lowest eigenvalue of the nonrelativistic Hamiltonian:
\[
\begin{equation*}
E_{\mathrm{CORR}}=E_{\mathrm{HF}}-E_{\mathrm{EXACT}} . \tag{12}
\end{equation*}
\]

The Hartree-Fock model assumes that each electron moves in an effective potential created by the nuclei and the averaged field of the other electrons. There is no provision made for the dynamical correlation among the individual motions of the electrons due to the instantaneous Coulomb repulsions.

One of the most enlightening ways of considering spatial electron
correlation is by associating it with the cylindrical coordinates \(\rho, \theta, z\). "In-out" correlation can be associated with the radial coordinate \(\rho\); that is, electron motion is correlated in such a way that when one electron is close to an internuclear axis, the others tend to be farther out radially. Angular correlation, associated with the coordinate \(\theta\), can be described as the tendency of electrons to stay on the opposite sides of an axial plane, The third type, "left-right" correlation, describes the tendency of electrons to avoid each other by staying at opposite ends of the molecule.

The first of these correlation effects can be described mathematically by assigning to different electrons occupying the same shell different orbitals which differ only in the radial parts. Angular correlation can be described by using as orbitals basis functions having strong angular dependencies. The "left-right" correlation can be taken into consideration by building molecular orbitals which have a large amplitude in one region of the molecule and a small amplitude in all other regions. An excellent example of a study describing electron correlation as has been done here is that of the \(H_{2}\) molecule by McLean, Weiss, and Yoshimine \({ }^{44}\).

It is clear that a trial wave function built of configurations, each emphasizing a certain type of correlation, would be useful in accounting for a large percentage of the total electron correlation energy. However, the convergence becomes very slow after the first few terms \({ }^{45,46}\), even if a transformation to natural orbitals \({ }^{47}\) is made in an attempt to obtain the maximum convergence rate \({ }^{48}\).

The introduction of interelectronic coordinates \(\left|\vec{r}_{i}-\vec{r}_{j}\right|^{\nu}{ }_{i j}=r_{i j}{ }^{\nu}{ }_{i j}\) directly into the trial wave function accounts for all types of elec-
tronic correlation simultaneously. One way of observing the effect of \(r_{i j}\) terms on the correlation is by noting that the amplitude of a wave function containing these terms becomes large when \(r_{i j}\) is large and becomes small as electrons \(i\) and \(j\) approach one another. Hylleraas \({ }^{49}\) was the first to employ internuclear coordinates and did so in calculations involving the helium atom. Convergence was significantly faster than had been attained in the past by using configuration interaction. Calculations using explicitly correlated wave functions have since been performed on lithium \({ }^{41,50}\), beryllium 51,52 , and the hydrogen molecule \({ }^{53}\).

Two less obvious reasons have been noted for the superiority of explicitly correlated wave functions. The first is that such wave functions are much better suited for describing the cusp 54 at \(r_{i j}=0\). The term "cusp" is used to describe the discontinuity of the first derivative of the wave function with respect to \(r_{i j}\) at \(r_{i j}=0\). The "local energy" expression \(\hat{H} \psi / \psi\) for an exact wave function \(\psi\) is constant and equal to the total energy of the system at every point in coordinate space. The analogous expression for a trial wave function \(\Phi\) will not in general be constant and, in fact, may possess singularities at \(r_{i j}=0\) due to the electron-electron repulsion terms in \(\hat{H}\). The presence of \(r_{i j}\) terms in the trial wave function tends to cancel those in the Hamiltonian and thus reduce the fluctuation of \(\hat{H} \Phi / \Phi\).

The other reason for the superiority of explicitly correlated wave functions was noted by Coulson and Nielson \({ }^{55}\). They made a quantitative study of the "Coulomb hole" defined as the region in space in which the two electron density function,
\[
f\left(r_{12}\right)_{\mathrm{EXACT}}{ }^{d r_{12}}=\int_{r_{12} \text { Const. }}^{\int} \psi_{\mathrm{EXACT}}^{*} \psi_{\mathrm{EXACT}} d \tau_{1} d \tau_{2},
\]
is less than it would be without correlation. In the case of helium this region is spherically symmetric
\[
\begin{equation*}
\left|\vec{r}_{2}-\vec{r}_{1}\right| \leq r_{\text {Coul. hole }} \tag{14}
\end{equation*}
\]

The probability \(\left[f\left(r_{12}\right) d r_{12}\right]\) that \(\left|\vec{r}_{2}-\vec{r}_{1}\right| \leq r_{\text {Coul. hole }}\) calculated from an uncorrelated wave function will be greater than the same probability calculated from the true wave function.

The striking fact here is that \(r_{\text {Coul. hole }}\) is large--about the same size as the atom-and not just the immediate region about the cusp. Gilbert \({ }^{56}\) has continued this line of investigation by taking note of Coulson and Neilson's discovery that the correlation error in the energy of a trial wave function is proportional to the average electron-electron repulsion energy calculated by that wave function:
\[
\begin{equation*}
E_{\mathrm{CORR}} \propto<\frac{e^{2}}{r_{12}} \tag{15}
\end{equation*}
\]

The implication of Eq. [15] is that the correlation error is due mostly to electron-electron interaction with little or no contribution coming from electron-nucleus interaction. He then expresses the correlation error contribution due to the differential volume element of the Coulomb hole as
\[
\begin{equation*}
d E_{\mathrm{CORR}}=e^{2} \frac{\left[f_{\mathrm{HF}}\left(r_{12}\right)-f_{\mathrm{EXACT}}\left(r_{12}\right)\right]}{r_{12}} d r_{12} . \tag{16}
\end{equation*}
\]

The results again show that the region of space in which the true wave function produces the greatest contribution to the correlation energy is about the size of the atom. Further evidence that the immediate region
about the cusp does not contribute greatly to the correlation error is that the non-differential part of \(d E_{C O R R}\) approaches zero as \(r_{12}\) approaches zero:
\[
\begin{equation*}
\lim _{12} \frac{f_{\mathrm{HF}}\left(r_{12}\right)-f_{\mathrm{EXACT}}\left(r_{12}\right)}{r_{12}}=0 \tag{17}
\end{equation*}
\]

Gilbert summarizes his study by stating that the superiority of an explicitly correlated wave function over a configuration interaction calculation is mainly due to the fact that the Coulomb hole has a much simpler structure when viewed relative to an electron than it has when viewed relative to a fixed point.

\section*{3. Group Theoretical Considerations}

Symmetry adapted expansion terms are used in the calculations because of the significant reduction in effort that comes about. The next few paragraphs will outline the group-theoretical considerations that are necessary to show the reasons for the reduction. An excellent group theory text which gives a more complete description is one by Hamermesh \({ }^{57}\).

Consider the operator eigenvalue problem
\[
\begin{equation*}
\hat{H} \cdot \Delta_{n, i}^{\nu}=\varepsilon_{n}^{\nu} \Delta_{n, i}^{\nu} \tag{18}
\end{equation*}
\]
where the index \(i\) is used to label the \(n_{\nu}\) independent degenerate eigenfunctions belonging to the eigenvalue \(\varepsilon_{n}^{\nu}\). The index \(n\) labels the various energy levels and the associated set of degenerate eigenfunctions. All of the degenerate eigenfunctions can be considered simultaneously if
they are placed in an \(n_{\nu}\)-dimensional column vector \(\Delta_{n}^{\nu}\), The eigenvalue problem becomes
\[
\begin{equation*}
\hat{H} \cdot \Delta_{n}^{\nu}=\varepsilon^{\nu} \Delta_{n}^{\nu} . \tag{19}
\end{equation*}
\]

After applying the operator \(\hat{O}_{R}\) corresponding to some symmetry transformation \(R\), one has
\[
\begin{equation*}
\hat{o}_{R} \hat{H} \Delta_{n}^{\nu}=\varepsilon_{n}^{\nu} \hat{o}_{R} \Delta_{n}^{\nu} . \tag{20}
\end{equation*}
\]

If \(\hat{H}\) is invariant under the transformation \(R\), then
\[
\begin{equation*}
\hat{O}_{R} \hat{H}=\hat{H} \hat{O}_{R} \tag{21}
\end{equation*}
\]
and the eigenvalue equation becomes
\[
\begin{equation*}
\hat{H}\left(\hat{o}_{R} \Delta_{n}^{\nu}\right)=\varepsilon_{n}^{\nu}\left(\hat{o}_{R} \Delta_{n}^{\nu}\right), \tag{22}
\end{equation*}
\]
which clearly shows that the functions \(\left(\hat{O}_{R} \Delta_{n, i}^{\nu}\right)\) are also eigenfunctions of \(\hat{H}\) belonging to the same eigenvalue \(\varepsilon_{n}^{\nu}\). Since the set of functions \(\Delta_{n, i}^{\nu}\) completely spans the space of solutions of the eigenvalue problem with eigenvalue \(\varepsilon_{n}^{\nu}\), the eigenfunctions ( \(\hat{O}_{R} \Delta_{n, i}^{\nu}\) ) must be expressible as a linear combination of these functions. This can be stated in matrix notation as
\[
\begin{equation*}
\hat{o}_{R} \Delta_{n}^{\nu}=\tilde{\mathbb{D}}^{\nu}(R) \Delta_{n}^{\nu} \tag{23}
\end{equation*}
\]
where \(\mathbb{D}\) is the transformation matrix and the tilde indicates that the transpose of the matrix is to be taken.

By carrying out the above procedure for all the symmetry operations
under which the Hamiltonian is invariant, one obtains a set of \(n_{\nu}-d i-\) mensional square matrices which constitute a representation. This can be seen by considering another transformation \(S\) belonging to the symmetry group of the Hamiltonian. The corresponding operator \(\hat{O}_{S}\) acting upon the basis gives
\[
\begin{equation*}
\hat{O}_{S} \Delta_{n}^{\nu}=\tilde{D}^{\nu}(S) \Delta_{n}^{\nu} \tag{24}
\end{equation*}
\]

Applying the two operators in succession leads to
\[
\begin{equation*}
\hat{O}_{S} \hat{O}_{R} \Delta_{n}^{\nu}=\hat{O}_{S} \tilde{\mathbf{D}}^{\nu}(R) \Delta_{n}^{\nu}=\tilde{D}^{\nu}(R) \tilde{\mathbb{D}}^{\nu}(S) \Delta_{n}^{\nu} \tag{25}
\end{equation*}
\]

But since the product of two symmetry operations is another symmetry operation, one also has
\[
\begin{equation*}
\hat{O}_{S} \hat{O}_{R} \Delta_{n}^{\nu}=\hat{O}_{S R} \Delta_{n}^{\nu}=\tilde{D}^{\nu}(S R) \Delta_{n}^{\nu} \tag{26}
\end{equation*}
\]

Comparing the last two equations the desired result is obtained:
\[
\begin{equation*}
\mathbb{D}^{\nu}(S R)=\mathbb{D}^{\nu}(S) \mathbb{D}^{\nu}(R) \tag{27}
\end{equation*}
\]

That is, the matrices transform among one another under matrix multiplication in exactly the same way as the elements of the corresponding group transform among one another, and hence form a representation with the eigenfunctions \(\Delta_{n}^{\nu}\) providing the basis for the representation.

If the highest level of symmetry of the Hamiltonian is considered, the representation will be irreducible and the many theorems of group theory applying to such representations will be applicable. Since for finite groups every representation is equivalent to a unitary representation, the matrices \(\mathbb{D}(R)\) will henceforth be taken as unitary.

Since the symmetry of the quantum mechanical systems under investigation is known, the most general expansion of the trial wave function, Eq. [9], is one in terms of functions that transform in the same maniner as the degenerate basis functions of the various irreducible representations associated with the symmetry group of the system:
\[
\begin{equation*}
\Phi=\sum_{n} \sum_{V} \sum_{i} C_{n, i}^{\nu} \Delta_{n, i}^{\nu} \tag{28}
\end{equation*}
\]

The index \(n\) labels the occurrence of the \(v t h\) irreducible representation. The application of the Variational Principle using Eq. [28] as the trial wave function will result in a secular equation with matrix elements of the form
\[
\begin{equation*}
\left\langle\Delta_{n, i}^{v}\right| \hat{H} \Delta_{m, j}^{\mu}> \tag{29}
\end{equation*}
\]
where the operator \(\hat{H}\) possesses the full symmetry of the system. By means of a group-theoretical analysis it is possible to determine the conditions under which the matrix element [29] is zero and therefore which of the terms in the sum will contribute to the state being considered.

The unitary operators of the symmetry group do not change the scalar product, so the matrix element can be written
\[
\begin{align*}
\left\langle\Delta_{n, i}^{\nu} \mid \hat{H} \Delta_{m, j}^{\mu}\right\rangle & =\left\langle\hat{O}_{R} \Delta_{n, i}^{\nu} \mid \hat{O}_{R} \hat{H} \Delta_{m, j}^{\mu}\right\rangle  \tag{30}\\
& =\left\langle\hat{O}_{R} \Delta_{n, i}^{\nu}\right| \hat{H} \hat{O}_{R} \Delta_{m, j}^{\mu}>
\end{align*}
\]

If all of the operators of the group are considered and the terms added, then Eq. [29] can be expressed as
\[
\begin{equation*}
\left\langle\Delta_{n, i}^{\nu} \mid \hat{H} \Delta_{m, j}^{\mu}\right\rangle=\frac{1}{g} \sum_{R}\left\langle\hat{O}_{R} \Delta_{n, i}^{\nu}\right| \hat{H} \hat{O}_{R} \Delta_{m, j}^{\mu}> \tag{31}
\end{equation*}
\]
where \(g\) is the order of the group. It is understood that the sum is to be replaced by an integral and appropriate density function when including infinitesimal operators of a continuous group. Allowing \(\hat{O}_{R}\) to operate on the basis functions, Eq. [3I] becomes
\[
\left\langle\Delta_{n, i}^{\nu} \mid \hat{H} \Delta_{m, j}^{\mu}\right\rangle=\frac{1}{g} k_{,}^{\Sigma} \sum_{\eta}\left\langle\Delta_{n, k}^{\nu}\right| \hat{H} \Delta_{m, Z}^{\mu} \sum_{R} D_{k i}^{\nu^{*}}(R) D_{\eta, j}^{\mu}(R)
\]

According to the orthogonality relations among unitary irreducible representations, the last sum can be written as
\[
\begin{equation*}
\sum_{R} D_{k i}^{v^{*}}(R) D_{Z_{j}}^{\mu}(R)=\frac{q}{n}_{v} \delta_{k l} \delta_{i j} \delta_{v \mu} \tag{33}
\end{equation*}
\]

After inserting Eq. [33] into Eq. [32] and performing the remaining summations, the matrix element becomes
\[
\begin{align*}
\left\langle\Delta_{n, i}^{\nu}\right| \hat{H} \Delta_{m, j}^{\mu}> & =\frac{1}{n_{v}} \sum_{k}\left\langle\Delta_{n, k}^{\nu}\right| \hat{H} \Delta_{m, k}^{\mu} \delta_{i j} \delta_{\nu \mu}  \tag{34}\\
& =H_{n m}^{\nu} \delta_{i j} \delta_{\nu \mu}
\end{align*}
\]
which clearly indicates that unless \(i=j\) and \(\mu=\nu\) the matrix element of any operator possessing the full symmetry of the Hamiltonian is zero. Furthermore, the value \(H_{n m}^{\nu}\) of the matrix element does not depend on which degenerate basis function of the irreducible representation is used to form the matrix element.

If only one state is of interest, then only those terms which trans-
form in the same manner as one of the basis functions of the irreducible representation associated with that state need be included in the trial wave function expansion:
\[
\begin{equation*}
\Phi_{i}^{\nu}=\sum_{n} C_{n}\left(\Delta_{n, i}^{\nu}\right) \tag{35}
\end{equation*}
\]

Terms included which do not transform in the same manner as the state under investigation cannot contribute to the energy of that state due to the orthogonality conditions that cause the subsequent factoring of the secular equation.

Since the lithium Hamiltonian has spatial symmetry of the \(O(3)\) group, its eigenfunctions are a basis for the various irreducible representations of that group and therefore may be classified by the quantum numbers associated with the operators corresponding to the square of the total orbital angular momentum ( \(\hat{L}^{2}\) ) and one component of the total orbital angular momentum such as that along the \(Z\) axis ( \(\hat{L}_{\mathscr{Z}}\) ). The Hamiltonian, Eq. [4], does not include spin operators and therefore the operators associated with the square of the total \(\operatorname{spin}\left(\hat{S}^{2}\right)\) and the components of the total \(\operatorname{spin}\left(\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right)\) commute with the Hamiltonian. The total angular momentum \(\hat{J}\) is defined as
\[
\begin{equation*}
\hat{\vec{J}}=\hat{\vec{L}}+\hat{\vec{S}}, \tag{36}
\end{equation*}
\]
and its square \(\hat{J}^{2}\) and components ( \(\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}\) ) also commute with the Hamiltonian. All of the operators \(\left(\hat{H}, \hat{L}^{2}, \hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right.\), \(\hat{J}^{2}, \hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}\) ) do not mutually commute, but the subset ( \(\hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{z}\) ) does commute and is chosen here to describe the state of the lithium atom. This mode of description is called \(L-S\) coupling and assumes there
to be no interaction between total orbital and total spin angular momentum vectors. Such an approximation is usually made when working with systems involving a small number of electrons since the spin-orbit interaction is small in these systems and does not cause a coupling of spin and angular momenta. The eigenvalues belonging to the operators \(\hat{L}^{2}, \hat{L}_{z^{1}} \hat{S}^{2}\), and \(\hat{S}_{z}\) will be designated \(L(L+1), M_{L}, S(S+1)\), and \(M_{S}\) respectively. The ground state of the lithium atom is well known to have \({ }^{2} S\) symmetry. The symbol \(S\) implies \(L=0\) and the superscript is the multiplicity, \(2 S+1\). It follows that \(S=\frac{1}{2}, M_{L}=0\), and \(M_{S}= \pm \frac{1}{2}\). The system is doubly degenerate with respect to the two possible values of \(M_{S}\), so \(M_{S}=\frac{1}{2}\) was arbitrarily chosen for the calculation.

The linear symmetric \(H_{3}\) complex has \(D_{\infty h}\) spatial symmetry. Its eigenfunctions are a basis for the various irreducible representations of that group and therefore may be classified by the eigenvalues of the operators associated with the component of orbital angular momentum along the internuclear axis ( \(\hat{L}_{z}\) ), the reflection of the electron coordinates in a plane containing the internuclear axis ( \(\hat{\sigma}_{\nu}\) ), and the inversion of the electron coordinates through the center of the molecule ( \(\hat{I}\) ). An argument which considers the electronic spin can be made for the linear symmetric \(H_{3}\) complex. It is analogous to the one made for the lithium atom and results in a mode of description based on the mutually commuting set of operators \(\hat{L}_{z}, \hat{\sigma}_{v}, \hat{I}, \hat{S}^{2}\), and \(\hat{S}_{z}\). The eigenvalues belonging to these operators will be designated \(M_{L^{\prime}} \pm, g\) or \(u, S(S+1)\), and \(M_{S}\). The symbol ( - ) is used when the sign of the wave function is changed upon reflection and the symbol ( + ) is used when no sign change occurs. Likewise the symbol \((u)\) is used when the sign of the wave function changes upon inversion, and ( \(g\) ) is used when there is no change.

The lowest state of the linear symmetric \(H_{3}\) complex is well known to have the symmetry of the \(\Sigma_{U}^{+}\)irreducible representation of \(D_{\infty} h^{\text {. }}\) The symbol \(\Sigma\) implies \(M_{L}=0\). The spin state for the ground state \(H_{3}\) complex is the same as that for the ground state of Li; that is, \(S=\frac{1}{2}\) and \(M_{S}= \pm \frac{1}{2}\). The multiplicity is again 2 and \(M_{S}=\frac{1}{2}\) is chosen for the calculations. The ground state of the linear symmetric \(H_{3}\) molecule is completely described by the symbols \({ }^{2} \Sigma_{u}^{+}\).

\section*{4. Explicit Structure of Expansion Functions}

The one-electron orbitals \(\phi\) which are used to build the expansion functions described at the beginning of this chapter,
\[
\begin{equation*}
\Delta_{n}=\hat{A}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{q}(1,2,3)\right] \tag{10}
\end{equation*}
\]
are either analytical Slater orbitals in the case of Li or a linear combination of such orbitals in the case of \(\mathrm{H}_{3}\). Slater orbitals are defined as
\[
\begin{equation*}
x_{n \ell m}(t)=\frac{(2 \zeta)^{n+\frac{1}{2}}}{(2 n!)^{1 / 2}} r_{t}^{n-1} e^{-\zeta r_{t}} Y_{\ell, m}\left(\theta_{\left.t, \phi_{t}\right)}\right. \tag{37}
\end{equation*}
\]
where the \(Y_{l, m}\) are the normalized spherical harmonics. These functions are convenient to use since they have relatively simple radial dependence and are eigenfunctions of \(\hat{L}_{t}^{2}\) and \(\hat{L}_{z_{t}}\), the operators corresponding to the square of the orbital angular momentum and the \(z\)-component of the orbit ta 1 angular momentum respectively of electron \(t\).

The one-electron symmetry orbitals are classified according to an irreducible representation of the appropriate symmetry group in the same way as the total wave functions. However, lower case Latin letters
\(s, p, d_{;}\)etc., are used to identify the orbital angular momentùm quantum number of orbitals belonging to the \(O(3)\) rotation group and lower case Greek letters \(\sigma, \pi, \delta\), etc., are used to identify the \(z\)-component of the orbital angular momentum of the orbitals belonging to the \(D_{\infty}\) group. A principle quantum number \(n\), labeling the occurrence of an irreducible representation, is also necessary and will be indicated by an integer preceding the symbols describing the symmetry of the one-electron atomic orbitals: A similar notation is also necessary for labeling the \(D_{\infty} h\) one-electron molecular orbitals but is done by using the principle quantum number of the atomic orbitals making up the symmetry orbital and simultaneously using an integer superscript equal to the number of atomic orbitals used to build the particular symmetry orbital.

The symmetry properties of the expansion terms \(\Delta_{n}\) considered in this work are completely independent of the explicit correlation portion \(\left({ }_{i<j}^{N} r_{i j}{ }^{V_{i j}}\right.\) ). An equivalent statement is that the commutator of the explicit correlation portion of the configurations and any operator \(\hat{Q}\) associated with the \(O\) (3) rotation group or the \(D_{\infty h}\) group is zero. That is, the operator \(\hat{Q}\) has no effect on the product \(\left({ }_{i}^{N} N_{j} r_{i j}{ }^{\nu}{ }_{i j}\right)\) and therefore

Proofs for the cases \(\hat{Q}=\hat{L}^{2}\) and \(\hat{Q}=L_{z}\) are given in Appendix A. The other cases of interest are \(\hat{Q}=\sigma_{v}\) and \(\hat{Q}=\hat{I}\). In the first case the application of the operator \(\sigma_{v}\) is equivalent to changing the sigf of the \(x\) components of the position vector \(\vec{r}=x \vec{l} x+y \vec{l} y+z \vec{\jmath} z\) for every electron, assuming that the plane of reflection contains the \(x\) and \(z\) axes.

In the second case, \(\hat{Q}=\hat{I}\), all components of the position vectors of all electrons are reversed in sign where the point of inversion is taken to be the origin of the coordinate system used to define the vectors \(\vec{r}\). Hence, it is now easy to observe that the general term in the explicit correlation product.
\[
\begin{equation*}
r_{i j}{ }^{v}=\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}\right]^{\nu} i j / 2 \tag{39}
\end{equation*}
\]
is unaltered by these symmetry operations. If a component of the position vector of one electron changes sign, the corresponding component of the position vector of all other electrons must simultaneously change sign. Since only the squares of the differences in components are considered, there will be no net change after application of the symmetry operators. For example, if there is a change in sign of the \(x\)-components of all the electronic coordinates, then the term \(\left[x_{i}-x_{j}\right]^{2}\) becomes
\[
\begin{equation*}
\left[\left(-x_{i}\right)-\left(-x_{j}\right)\right]^{2}=(-1)^{2}\left[x_{i}-x_{j}\right]^{2}=\left[x_{i}-x_{j}\right]^{2} \tag{40}
\end{equation*}
\]
with no net change in itself or in the term \(r_{i j}{ }_{i j}\) containing it. Since the antisymmetrizer \(\hat{A}\) and the explicit correlation term \(\left({ }_{i<j}^{N} r_{i j}{ }^{\nu_{i j}}\right.\) ) commute with all of the spatial and spin operators that have been considered, the remaining product of one-electron orbitals,
\[
\begin{equation*}
\phi_{i}(1) \phi_{j}(2) \phi_{k}(3), \tag{41}
\end{equation*}
\]
completely determines the spatial symmetry, and the spin function,
\[
\begin{equation*}
\theta_{q}(1,2,3), \tag{42}
\end{equation*}
\]
completely determines the spin symmetry of the expansion term \(\Delta_{n}\).
Only atomic orbitals \(X_{n \ell m}\) with \(\ell=m=0\) (s-type atomic orbitals) are considered in this work. It was decided that the use of Slater orbitals having angular dependence was unnecessary due to the inclusion of explicit correlation terms in the trial wave function. If only s-type atomic orbitals are used to build the expansion term, then the possible spatial symmetry properties that the expansion term may possess are \(s\)-type states \(\left(L=0, M_{L}=0\right)\) for the atomic case, and \(\Sigma^{+}\left(M_{L}=0\right.\), \(\sigma_{v} \rightarrow+\) ) in the linear symmetric molecule case. The proof that \(M_{L}=0\) in both cases follows from the definition of the operator \(\hat{L}_{\mathcal{Z}}\),
\[
\begin{equation*}
\hat{L}_{z}=\sum_{t}^{N} \hat{L}_{z}, \tag{43}
\end{equation*}
\]
and
\[
\begin{equation*}
\hat{L}_{z}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right]=\left(\sum_{t=1}^{3} m_{\ell}\right)\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right] \tag{44}
\end{equation*}
\]
since
\[
\begin{equation*}
\hat{L}_{z_{t}} \phi(t)=m_{\ell} \phi(t) \tag{45}
\end{equation*}
\]

If the orbitals \(\phi(t)\) are constructed of only s-type orbitals, then by definition \(m_{\ell}=0\) and
\[
\begin{equation*}
M_{L}=\sum m_{\ell}=0 \tag{46}
\end{equation*}
\]

The proof that \(L=0\) is constructed most easily by first expressing the operator \(\hat{L}^{2}\) in terms of the raising and lowering operators \(\hat{L}_{+}\)and \(\hat{L}_{-}\),
\[
\begin{equation*}
\hat{L}^{2}=\hat{L}_{+} \hat{L}_{-}-\hat{L}_{z}+\hat{L}_{z}^{2} \tag{47}
\end{equation*}
\]

All of these operators can be expressed in terms of one-electron operators:
\[
\begin{equation*}
\hat{L}_{z}^{2}=\left(\sum_{t}^{N} L_{z_{t}}\right)^{2}={ }_{t, \sum}^{N} L_{z_{t}} L_{z_{u}} \tag{48}
\end{equation*}
\]
and
\[
\begin{equation*}
\hat{L}_{+}=\sum_{t}^{N} L_{+}, \quad \hat{L}_{-}=\sum_{t}^{N} \hat{L}_{-t} \tag{49}
\end{equation*}
\]
where
\[
\begin{equation*}
\hat{L}_{t}=L_{x_{t}}+i L_{y_{t}}, \quad L_{-t}=L_{x_{t}}-i L_{y_{t}} \tag{50}
\end{equation*}
\]

The effect of \(\hat{L}_{t_{t}}\) and \(\hat{L}_{-}\)on an atomic orbital \(X_{n \ell m}\) is to increase or decrease respectively the azimuthal quantum number \(m\) :
\[
\begin{align*}
& \hat{L}_{+} x_{n \ell m}=N_{+} x_{n \ell(m+1)} \text { if }(m<\ell)  \tag{51}\\
& \hat{L}_{-} x_{n \ell m}=N_{-} x_{n \ell(m-1)} \text { if }(m>-\ell),
\end{align*}
\]
and
\[
\begin{align*}
& \hat{L}_{+} X_{n \ell \ell}=0 \quad \text { if } \quad(m=\ell),  \tag{52}\\
& \hat{L}_{-} X_{n \ell(-\ell)}=0 \quad \text { if } \quad(m=-\ell),
\end{align*}
\]
where \(N_{+}\)and \(N_{-}\)are appropriate constants which preserve normalization. The zero results in Eq. [52] come about when the allowed range of \(m\),
\[
\begin{equation*}
-\ell \leq m \leq \ell, \tag{53}
\end{equation*}
\]
would otherwise be exceeded.

The result of the operation \(\hat{L}^{2}\) on the product of one-electron orbitals,
\[
\begin{equation*}
\hat{L}^{2}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right]=0 \tag{54}
\end{equation*}
\]
can now be shown by considering three steps corresponding to the three terms in Eq. [47]. According to Eq. [52], the operation \(\hat{L}_{\text {_ }}\) immediately produces a zero result since the orbitals \(\phi(k)\) are assumed to be constructed of \(s\)-type atomic orbitals with \(\ell=m=0\). The second and third steps likewise give a zero result since
\[
\begin{equation*}
\hat{L}_{z}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right]=0 \tag{55}
\end{equation*}
\]
by Eqs. [44] and [46]. Since all three terms of the expansion of \(\hat{L}\) produce a zero result, Eq. [54] holds.

The \(N\)-electron reflection operator \(\sigma_{v}\) can be written in terms of one-electron operators \(\sigma_{v_{t}}\) :
\[
\begin{equation*}
\sigma_{v}={ }_{t=1}^{N} \sigma_{v_{t}} \tag{56}
\end{equation*}
\]

Thus, applying \(\sigma_{v}\) causes all electron coordinates to be reflected simultaneously in an arbitrarily chosen plane containing the internuclear axis. Since \(s\)-type orbitals are spherically symmetric, any reflection in a plane containing the center of the orbital will have no effect on the orbital. A similar statement holds for a linear combination of s-type orbitals whose centers lie on an axis and for a reflection plane that contains that axis. The conclusion is that an \(N\)-electron reflection operator applied to a product of \(N\) one-electron orbitals constructed of \(s\)-type orbitals produces no change. In the present case of a 3-electron

Iinear symmetric molecule, one has
\[
\begin{equation*}
\sigma_{v}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right]=+1\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3)\right] . \tag{57}
\end{equation*}
\]

The remaining spatial symmetry property that must be considered is that of inversion in the case of the linear symmetric molecule. Before this is done, it is necessary to examine the symmetry properties of the individual one-electron orbitals. Tables I and II show the explicit functional form of the one-electron atomic orbitals used in the lithium calculation and the one-electron symmetry orbitals used in the linear symmetric \(H_{3}\) calculation. As previously stated, the orbitals are constructed from s-type Slater atomic orbitals. All of the orbitals used in the lithium atom case are centered on the nucleus at the origin of the coordinate system (see Fig. 1).

The symmetry orbitals used in the linear symmetric \(H_{3}\) case are constructed of linear combinations of atomic orbitals centered on the various nuclei of the molecule. These one-electron molecular orbitals are called symmetry orbitals since they possess the symmetry of one of the irreducible representations of the group \(D_{\infty} h\). They are labeled accordingly, as discussed earlier in this section. The subscripts \(a, b\), and c on the atomic orbitals making up the symmetry orbitals refer to the corresponding nuclei as indicated in Fig. 2.

As indicated, all of the symmetry orbitals are of \(n s \sigma^{+}\)symmetry. The particular linear combinations chosen are the simplest possible leading to a linearly independent set possessing the symmetry of the point group of the molecule and they are therefore referred to as primitive symmetry orbitals. The superscript enclosed in parentheses refers to the number of atomic orbitals used in constructing the symmetry

TABLE I
ONE-ELECTRON ATOMIC ORBITALS AND EXPANSION TERMS USED IN THE 12-TERM LITHIUM ATOM CALCULATION
\begin{tabular}{|c|c|c|c|c|}
\hline & Atomic Orbitals & Exponents & Integration Parameters & \\
\hline & \[
\begin{aligned}
& \phi_{1}=1 s \\
& \phi_{2}=2 s \\
& \phi_{3}=3 s \\
& \phi_{4}=2 s^{\prime}
\end{aligned}
\] & \[
\zeta_{1 s}=\zeta_{2 s}=\zeta_{3 s}=2.76
\]
\[
\zeta_{2 s^{\prime}}=0.65 .
\] & \[
\begin{aligned}
& s_{1}=3.0 \\
& s_{2}=0.3
\end{aligned}
\] & \\
\hline & & \(S\) Expansion Terms & & \\
\hline & Atomic & ital & ij Exponent & \\
\hline \(\Delta_{n}\) & \(\phi_{i}\) & \(\phi_{k} \quad r_{12}^{i^{\prime}}\) & \[
\overline{r_{13}^{j^{\prime}}}
\] & \[
\overline{r_{23}^{k^{\prime}}}
\] \\
\hline 1 & 11 & 40 & 0 & 0 \\
\hline 2* & 12 & 40 & 0 & 0 \\
\hline 3 & 22 & 40 & 0 & 0 \\
\hline 4* & 1 3 & 40 & 0 & 0 \\
\hline 5 & \(1 \quad 1\) & 41 & 0 & 0 \\
\hline 6 & \(1 \quad 1\) & 42 & 0 & 0 \\
\hline 7 & \(1 \quad 1\) & 42 & 1 & 1 \\
\hline 8* & 12 & 41 & 1 & 1 \\
\hline 9 & 22 & 42 & 1 & 1 \\
\hline
\end{tabular}


Figure 1. Spherical Coordinate System Used for Lithium Atom Calculation

ONE-ELECTRON PRIMITIVE SYMMETRY ORBITALS AND EXPANSION
TERMS USED IN THE 21-TERM LINEAR SYMMETRIC
\[
\mathrm{H}_{3} \text { CALCULATION }\left(R_{\mathrm{ab}}=R_{\mathrm{bc}}=1.7924 \text { a.u. }\right)
\]



Figure 2. Spherical Coordinate Systems Centered on the Three Nuclei for the Linear Symmetric \(\mathrm{H}_{3}\) Calculation
orbital and serves to identify uniquely, along with the principle quantum number \(n\), symmetry orbitals belonging to the same irreducible representation.

The symmetry with respect to inversion through the molecular midpoint of the symmetry orbitals is specified by the subscript \(g\) or \(u\). The orbital \(\phi_{1}=1 s_{b}\) transforms into itself under inversion with no change and so has \(g\)-type symmetry. The orbital \(\phi_{2}=1 s_{a}+1 s_{c}\) also transforms into itself since the \(1 s\) atomic orbitals on centers a and \(c\) are simply interchanged. The orbitals \(\phi_{3}=1 s_{a}-1 s_{c}\) and \(\phi_{4}=2 s_{a}-2 s_{c}\) transform into themselves under inversion except for a sign change and therefore both have \(u\)-type symmetry.

The inversion property of an expansion term can now be determined from the symmetry orbitals used to construct it. The inversion operator written in terms of one-electron operators is
\[
\begin{equation*}
\hat{I}={\underset{t}{\underline{E}}{ }_{1}^{N} \hat{I}_{t^{\prime}}, ~}_{\text {, }} \tag{58}
\end{equation*}
\]
and so the eigenvalue of the operator \(\hat{I}\) is just the product of the eigenvalues of the \(N\) operators \(\hat{I}_{t}\). For the 3-electron problem considered here, there are only two ways of obtaining an expansion term with the \(u\)-type symmetry of the \({ }^{2} \Sigma_{U}^{+}\)ground state desired. One way is by taking a product of two \(g\)-type symmetry orbitals and a \(\dot{u}\)-type symmetry orbital:
\[
\begin{equation*}
\hat{I}\left[\phi_{i g}(1) \phi_{j g}(2) \phi_{k u}(3)\right]=-1\left[\phi_{i g}(1) \phi_{j g}(2) \phi_{k u}(3)\right], \tag{59}
\end{equation*}
\]
or another way is by taking a product of three u-type symmetry orbitals:
\[
\begin{equation*}
\hat{I}\left[\phi_{i u}{ }^{(1)} \phi_{j u}(2) \phi_{k u}(3)\right]=-1\left[\phi_{i u}(1) \phi_{j u}(2) \phi_{k u}(3)\right] . \tag{60}
\end{equation*}
\]

A subscript \(u\) or \(g\) has been added to the symbol for a general symmetry orbital \(\phi(t)\) to indicate the inversion symmetry.

Expansion terms can now be constructed for lithium and linear symmetric \(H_{3}\) using the corresponding one-electron orbitals given in Tables I and II. Any product of three orbitals with the general explicit correlation terms ( \(r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}}\) ) is allowed, subject only to the restrictions that the resulting expansion term satisfies the symmetry conditions of the true wave function and that it is not related to another possible expansion term by a simple permutation of electronic coordinates. The first condition guarantees that no effort will be lost by including expansion terms which do not transform according to the irreducible representation of the ground state wave function. The second condition assures linear independence of each term with all others. In the work presented here the configurations are systematically constructed by requiring the indices \(i, j\), and \(k\) of \(\Delta_{n}\) to conform to the inequalities
\[
i \leq j \leq k \quad i, j, k=1,2,3 \ldots \quad i^{\prime}, j^{\prime}, k^{\prime}=0,1,2 \ldots, \quad[61]
\]
and then rejecting those terms with improper symmetry, or if one of the equalities in condition [61] holds, those terms which are linearly dependent with a term occurring earlier in the sequence.

Additional terms which did not include \(\phi_{4}=2 s\), were rejected in the lithium case in order to allow direct comparison with Larsson's \({ }^{41}\) work. Also, after the fifth term the systematic addition of terms was suspended in favor of adding appropriately chosen ones as discussed later. In the \(\mathrm{H}_{3}\) case, the systematic addition of terms was suspended only for the addition of the last one. The total number of terms considered in each case was dictated by the computer time available.

\section*{5. Construction of Spin Eigenfunctions}

The ground states of both the lithium atom and the linear symmetric \(\mathrm{H}_{3}\) complex are doublets \(\left(S=\frac{1}{2}\right)\). The \(z\)-component of the total spin has arbitrarily been chosen as \(+\frac{1}{2}\) from the two possibilities \(M_{S}= \pm \frac{1}{2}\). There exist two 3-electron spin eigenfunctions with these properties. Construction of these spin eigenfunctions by either the genealogical construction method \({ }^{4}\) or by the projection operator method \({ }^{58}\) yields the same orthonormal eigenfunctions
\[
\begin{equation*}
G_{1}(1,2,3)=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2) \alpha(3)-\beta(1) \alpha(2) \alpha(3)], \tag{62}
\end{equation*}
\]
\[
G_{2}(1,2,3)=\frac{1}{\sqrt{6}}[\alpha(1) \beta(2) \alpha(3)+\beta(1) \alpha(2) \alpha(3)-2 \alpha(1) \alpha(2) \beta(3)]
\]
where the functions \(\alpha(t)\) and \(\beta(t)\) are one-electron spin eigenfunctions of the operators \(\hat{S}_{t}{ }^{2}\) and \(\hat{S}_{z_{t}}\) such that
\[
\begin{align*}
\hat{S}_{t}^{2} \alpha(t) & =\frac{1}{2}\left(\frac{1}{2}+1\right) \alpha(t), \quad \hat{S}_{z_{t}} \alpha(t)=1 / 2 \alpha(t) \\
\hat{S}_{t}^{2} \beta(t) & =\frac{1}{2}\left(\frac{1}{2}+1\right) \beta(t), \quad \hat{S}_{z_{t}} \beta(t)=-\frac{1}{2} \beta(t)  \tag{63}\\
<\alpha(t) \mid \alpha(t)> & =1, \quad<\beta(t)|\beta(t)>=1, \quad<\alpha(t)| \beta(t)>=0 .
\end{align*}
\]

The spin functions \(G_{1}\) and \(G_{2}\) are not used in this work, but instead special linear combinations of these functions are used:
\[
\begin{align*}
& \theta_{1}(1,2,3)=C_{11} G_{1}+C_{12} G_{2},  \tag{64}\\
& \theta_{2}(1,2,3)=C_{21} G_{1}+C_{22} G_{2} .
\end{align*}
\]

The properties imposed on \(\theta_{1}\) and \(\theta_{2}\) are that they be orthonormal and that the permutation of electron spin coordinates 1 and 2 on \(\operatorname{spin}\) function \(\theta_{1}\) produces \(\theta_{2}\). This can be written symbolically as
\[
\begin{equation*}
\hat{P}_{12}^{\sigma}{ }_{1}(1,2,3)=\theta_{2}(1,2,3), \tag{65}
\end{equation*}
\]
where the superscript \(\sigma\) indicates that the permutation operator \(\hat{P}\) acts only on spin coordinates. The transformation from spin functions \(G_{1}\) and \(G_{2}\) to \(\theta_{1}\) and \(\theta_{2}\) can be thought of as a rigid rotation in spin space which maintains the orthonormality of the functions but positions them in such a way that Eq. [65] holds. Imposing these conditions requires the coefficients in Eq. [64] to be
\[
C_{11}=C_{12}=C_{22}=1 / \sqrt{2}
\]
\[
c_{21}=-1 / \sqrt{2} .
\]

The spin functions \(\theta_{1}\) and \(\theta_{2}\) become
\(\theta_{1}(1,2,3)=\left(\frac{1}{2 \sqrt{3}}+\frac{1}{2}\right) \alpha(1) \beta(2) \alpha(3)+\left(\frac{1}{2 \sqrt{3}}-\frac{1}{2}\right) \beta(1) \alpha(2) \alpha(3)-\frac{1}{\sqrt{3}} \alpha(1) \alpha(2) \beta(3)\),
\[
\theta_{2}(1,2,3)=\left(\frac{1}{2 \sqrt{3}}-\frac{1}{2}\right) \alpha(1) \beta(2) \alpha(3)+\left(\frac{1}{2 \sqrt{3}}+\frac{1}{2}\right) \beta(1) \alpha(2) \alpha(2)-\frac{1}{\sqrt{3}} \alpha(1) \alpha(2) \beta(3) .
\]

These are the spin functions employed by Gianinetti, et, al. \({ }^{59}\) in their calculation involving the linear symmetric \(H_{3}\) complex.

The reason for using spin eigenfunctions with the permutation symmetry of Eq. [65] is that only one spin function need be explicilty
considered. The other spin function is included by violating the rule that no configuration be considered that differs from any other expansion term only by a permutation of coordinates in the spatial part. Such a violation would in general produce a function which is 1inearly dependent with all other expansion terms:
\[
\begin{equation*}
\hat{A} \hat{P}^{v}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{q}(1,2,3)\right]=\sum_{n} C_{n} \Delta_{n}, \tag{68}
\end{equation*}
\]
where \(\hat{P}^{V}\) is some permutation operator which acts only on the spatial part of the wave function. If \(\hat{P}^{V}\) is chosen to be the permutation operator \(\hat{P}_{12}^{v}\) that interchanges the spatial coordinates of electrons 1 and 2 , then because of the way the spin functions have been constructed, Eq. [68] becomes
\[
\hat{A} \hat{P}_{12}^{v}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{1}(1,2,3)\right]=-\Delta_{i j k} i^{\prime} j^{\prime} k \prime q=2
\]
\[
\begin{equation*}
\Delta_{j i k} i^{\prime} k^{\prime} j^{\prime} q=1=-\Delta_{i j k} i^{\prime} j^{\prime} k^{\prime} q=2^{\prime} \tag{69}
\end{equation*}
\]

These equations indicate that expansion terms containing spin function \(\theta_{2}\) can be constructed in two ways; either explicitly as indicated on the right side of the equations, or by interchanging the electronic coordinates 1 and 2 in the spatial part of the configuration but retaining spin : function \(\theta_{1}\) as indicated on the left side of the equations.

In order to show that Eq. [69] holds, it is necessary to use the relations
\[
[\hat{P}, \hat{A}]=0, \quad \hat{P} \hat{A}=(-1)^{p} \hat{A}
\]
where \(\hat{P}\) is an arbitrary permutation operator which can be written as a
product of a spatial permutation \(\hat{P}^{V}\) and a spin permutation \(\hat{P}^{\sigma}\) :
\[
\hat{P}=\hat{P}^{v} \hat{P}^{\sigma} .
\]

Combining the two previous equations, one obtains the relation
\[
\hat{A} \hat{P}^{V}=(-1)^{p} \hat{A}\left(\hat{P}^{\sigma}\right)^{-1} .
\]

If \(\hat{P}\) is chosen to be \(\hat{P}_{12}\), then this relation becomes
\[
\hat{A} \hat{P}_{12}^{V}=-\hat{A} \hat{P}_{12}^{\sigma},
\]
since \(p=1\) and \(\left(\hat{P}_{12}^{\sigma}\right)^{-1}=\hat{P}_{12}^{\sigma}\). Using this operator relation on the general product wave function
\[
\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{q}(1,2,3),
\]
one obtains Eq. [69].
In some cases expansion terms differing only in the spin function \({ }^{\theta}{ }_{q}\) are linearly dependent and therefore are not considered. By examining Eq. [69], this is seen to occur when \(i=j\) and \(k^{\prime}=j^{\prime}\). In this case the expansion terms differ only in sign.

\section*{CHAPTER III}

\section*{EVALUATION OF MATRIX ELEMENTS}

\section*{A. Integration Over Spin}

To. solve the time independent Schrödinger wave equation by the method of linear combinations, the evaluation of matrix elements of the Hamiltonian operator and the unity operator appearing in Eq. [7] is required. The symbols \(H\) and \(S\) respectively are used to represent these matrices with components
\[
H_{n m}=\int \Delta_{n}^{*} \hat{H} \Delta_{m} d v d \sigma \equiv<\Delta_{n}\left|\hat{H} \cdot \Delta_{m}\right\rangle
\]
and
\[
S_{n m}=\int \Delta_{n}^{*} \Delta_{m} d v d \sigma \equiv<\Delta_{n}\left|\Delta_{m}\right\rangle
\]

The symbols \(\Delta_{n}\) and \(\Delta_{m}\) represent general \(N\)-electron expansion terms, and the integration is over both space and spin.

The following discussion indicates the steps taken to "integrate" over the spin coordinates leaving only the spacial integration to be performed by numerical methods.

The general 3-electron expansion term considered in this work is given by Eq. [10],
\[
\begin{equation*}
\Delta_{n}=\hat{A}\left[\phi_{i}(1) \phi_{j}(2) \phi_{k}(3) r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \theta_{q=1}(1,2,3)\right] \tag{71}
\end{equation*}
\]
except, as explained in the last section, \(q\) can always be taken as if
the proper permutation of spatial coordinates is carried out. It is assumed here that any such permutations have been completed for the term under consideration. The following notation is introduced in order to keep the algebraic equations relatively simple. Only the subscripts are retained when writing the spatial part of an expansion term:
\[
\Delta_{n}=\hat{A}\left[\begin{array}{llllll}
i & j & k & i^{\prime} & j^{\prime} & k^{\prime}  \tag{72}\\
\theta_{1}
\end{array}\right],
\]
where now the order of the indices is important and corresponds to the electronic coordinates as indicated by Eq. [71]. The spin eigenfunction \(\theta_{1}\) given by Eq. [67] is expressed briefly as
\[
\begin{equation*}
\theta_{1}=d_{1} \alpha \beta \alpha+d_{2} \beta \alpha \alpha+d_{3} \alpha \alpha \beta . \tag{73}
\end{equation*}
\]

Again the sequence of symbols is important, and the constants \(d_{i}\) are
\[
\begin{equation*}
d_{1}=\frac{1}{2 \sqrt{3}}+\frac{1}{2} ; \quad d_{2}=\frac{1}{2 \sqrt{3}}-\frac{1}{2}, \quad d_{3}=-\frac{1}{\sqrt{3}} . \tag{74}
\end{equation*}
\]

When the antisymmetrizer acts on the product wave function as in Eq. [72], new spatial products with permuted indices appear and are denoted by the following symbols:
\[
\begin{align*}
& \Delta_{n}^{1}=i j k i^{\prime} j^{\prime} k^{\prime}, \\
& \Delta_{n}^{2}=k j i k^{\prime} j^{\prime} i^{\prime}, \\
& \Delta_{n}^{3}=k i j j^{\prime} k^{\prime} i^{\prime},  \tag{75}\\
& \Delta_{n}^{4}=j i k i^{\prime} k^{\prime} j^{\prime}, \\
& \Delta_{n}^{5}=j k i k^{\prime} i^{\prime} j^{\prime}, \\
& \Delta_{n}^{6}=i k j j^{\prime} i^{\prime} k^{\prime} .
\end{align*}
\]

Using these symbols and the definition of the antisymmetrizer given by Eq. [11], Eq. [72] can be written as
\[
\begin{aligned}
\Delta_{n}=\hat{A}\left[\Delta_{n}^{1} \theta_{1}\right]=\frac{1}{\sqrt{3!}} & \left\{\left[d_{1}\left(\Delta_{n}^{1}-\Delta_{n}^{2}\right)+d_{2}\left(\Delta_{n}^{3}-\Delta_{n}^{4}\right)+d_{3}\left(\Delta_{n}^{5}-\Delta_{n}^{6}\right)\right] \alpha \beta \alpha\right. \\
& +\left[d_{1}\left(\Delta_{n}^{5}-\Delta_{n}^{4}\right)+d_{2}\left(\Delta_{n}^{1}-\Delta_{n}^{6}\right)+d_{3}\left(\Delta_{n}^{3}-\Delta_{n}^{2}\right)\right] \beta \alpha \alpha \\
& \left.+\left[d_{1}\left(\Delta_{n}^{3}-\Delta_{n}^{6}\right)+d_{2}\left(\Delta_{n}^{5}-\Delta_{n}^{2}\right)+d_{3}\left(\Delta_{n}^{1}-\Delta_{n}^{4}\right)\right] \alpha \alpha \beta\right\}
\end{aligned}
\]

The usual technique followed in reducing the matrix element
\[
\begin{equation*}
o_{n m}=\left\langle\Delta_{n} \mid \hat{O} \Delta_{m}\right\rangle=\left\langle\hat{A} \Delta_{n}^{1} \theta_{1} \mid \hat{O} \hat{A} \Delta_{m}^{1} \theta_{1}\right\rangle \tag{77}
\end{equation*}
\]
of an operator \(\hat{O}\) totally symmetric with respect to interchange of electronic coordinates is to eliminate one of the antisymmetrizers by making use of the following properties associated with it:
\[
\begin{equation*}
\hat{A}^{\dagger}=\hat{A}, \quad[\hat{A}, \hat{O}]=0, \quad \hat{A} \hat{A}=\sqrt{N!} \hat{A} \tag{78}
\end{equation*}
\]

The dagger is used to indicate the hermitian conjugate. However, in this study it was discovered that a greater precision was attained when performing the numerical integration over the spatial coordinates if both antisymmetrizers were retained. After the substitution of Eq. [76], and the analogous equation for \(\Delta_{m}\), into Eq. [77] and the "integration" over spin is carried out, it is seen that all cross terms involve different products of one-electron spin functions and so drop out due to the spin function orthogonality relation given by Eq. [63]. The spin portion of the direct terms "integrate" to unity leading to the following expression for the matrix element:
\[
\begin{align*}
& 0_{n m}=\left\langle\Delta_{n} \mid \hat{O} \Delta_{m}\right\rangle= \\
& \frac{1}{3!} \delta\left\{\left[d_{1}\left(\Delta_{n}^{1}-\Delta_{n}^{2}\right)+d_{2}\left(\Delta_{n}^{3}-\Delta_{n}^{4}\right)+d_{3}\left(\Delta_{n}^{5}-\Delta_{n}^{6}\right)\right]^{*}\right. \\
& \times \hat{o}\left[d_{1}\left(\Delta_{m}^{1}-\Delta_{m}^{2}\right)+d_{2}\left(\Delta_{m}^{3}-\Delta_{m}^{4}\right)+d_{3}\left(\Delta_{m}^{5}-\Delta_{m}^{6}\right)\right] \\
& \quad+\left[d_{1}\left(\Delta_{n}^{5}-\Delta_{n}^{4}\right)+d_{2}\left(\Delta_{n}^{1}-\Delta_{n}^{6}\right)+d_{3}\left(\Delta_{n}^{3}-\Delta_{n}^{2}\right)\right]^{*}  \tag{79}\\
& \quad \times \hat{o}\left[d_{1}\left(\Delta_{m}^{5}-\Delta_{m}^{4}\right)+d_{2}\left(\Delta_{m}^{1}-\Delta_{m}^{6}\right)+d_{3}\left(\Delta_{m}^{3}-\Delta_{m}^{2}\right)\right] \\
& \quad+\left[d_{1}\left(\Delta_{n}^{3}-\Delta_{n}^{6}\right)+d_{2}\left(\Delta_{n}^{5}-\Delta_{n}^{2}\right)+d_{3}\left(\Delta_{n}^{1}-\Delta_{n}^{4}\right)\right]^{*} \\
& \left.\quad \times \hat{o}\left[d_{1}\left(\Delta_{m}^{3}-\Delta_{m}^{6}\right)+d_{2}\left(\Delta_{m}^{5}-\Delta_{m}^{2}\right)+d_{3}\left(\Delta_{m}^{1}-\Delta_{m}^{4}\right)\right]\right\} d v
\end{align*}
\]

It should be noted that this matrix element is over complete 3electron expansion terms and therefore involves an integral over 9 dimensions.

All operators \(\hat{O}\), except one, that will appear in Eq. [79] are simple scalar functions representing either the unit operator or the electron -nucleus and electron-electron interaction potentials. The operator which is not a simple scalar function is the kinetic energy operator
\[
\begin{equation*}
\hat{o} \rightarrow \hat{T}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right) . \tag{80}
\end{equation*}
\]

The action of this operator on the spatial product \(\Delta_{n}{ }^{1}\) is considered in Appendix B. The result for any other product \(\Delta_{n}^{i}\) can be obtained by permuting the indices of the equations appearing in Appendix \(B\).

Additional accuracy is obtained when performing numerical integration of the kinetic energy integrals if they are symmetrized by using the self-adjoint property of the kinetic energy operator:
\[
\begin{align*}
T_{n m} & =\frac{1}{2}\left[\left\langle\Delta_{n} \mid \hat{T} \Delta_{m}\right\rangle+\left\langle\hat{T} \Delta_{n} \mid \Delta_{m}\right\rangle\right] \\
& =\frac{1}{2} \int\left[\Delta_{n}^{*}\left(\hat{T} \Delta_{m}\right)+\left(\hat{T} \Delta_{n}\right)^{*} \Delta_{m}\right] d v d \sigma \tag{81}
\end{align*}
\]

The potential energy matrices are automatically hermitian by symmetry and the kinetic energy matrix is hermitian by Eq. [81]. The hermiticity of these matrix elements is independent of the numerical integration procedure and the corresponding accuracy.

\section*{B. Spatial Integration}
1. Inclusion of the \(r_{i j}^{-1}\) and \(r_{i \gamma}^{-1}\) Singularities in the Density Function

The most troublesome problem in the use of numerical integration techniques for the direct evaluation of the Hamiltonian matrix elements of an atomic or molecular system is the presence of the \(r_{i j}^{-1}\) singularity. Numerous techniques have been developed to handle the problem, but all appear to have limitations. Examples include the moving of the singularity to the surface of the sampling volume \({ }^{60}\) and the additive cancellation of the singularity by means of the kinetic energy term acting on an explicitly correlated wave function. Moving the singularity to a surface produces only a slight improvement and additive cancellation places a significant restriction on the flexibility of a conventional basis set \({ }^{61}\), or requires an unconventional basis set and a non-variational approach to the solutions such as those used by Conroy \({ }^{31}\) or Boys and Handy \({ }^{62-65,29}\). One other attempt to solve the singularity problem was that made by Boys and Rajagopal \({ }^{25}\). By an argument using approximating Gaussian functions for the electronic distributions, they found that
the singularity could be removed by replacing the \(r_{i j}^{-1}\) terms by
\[
\begin{equation*}
r_{i j}^{-1} \rightarrow\left[r_{i j}^{3}+U_{i}^{\frac{1}{2}} U_{j}^{\frac{1}{2} / 3}\right]^{-1 / 3}, \tag{82}
\end{equation*}
\]
where \(U_{i}\) represents the product of the weight \(w_{i}\) and the non-differential part of the volume element \(d v_{i}\) associated with a numerical integration point for the \(i\) th electron. Although this approach is applicable to the problems considered in this work, the use of expression [82] and similar devices consistently gave poorer results than if the singularity was simply ignored. Possibly the differences in success are due to the numerical integration technique that was used; Boys and Rajagopal used a Gaussian quadrature when applying expression [82], but a Diophantine type of numerical integration is used here.

The method used in this work to remove the singularity does not in any way restrict the flexibility of the basis set and involves no approximations to the integrals other than that resulting from using a finite number of integration points. Sobol \({ }^{66}\) calls it the inclusion of the singularity in the probability density function. By means of this method it is possible to simultaneously remove the \(r_{i j}^{-1}\) and \(r_{i \gamma}^{-1}\) singur larities from the integrand,

The method can be expressed formally by considering a general \(n\) dimensional integral:
\[
\begin{equation*}
I=\int_{\vec{x}_{0}}^{\vec{x}_{1}} f[\vec{x}] \mathrm{d} \vec{x} \tag{83}
\end{equation*}
\]

A transformation of variables from \(\vec{x}\) to \(\overline{\hat{\lambda}}\) may be performed with the Jacobian
\[
J=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial n_{1}} & \frac{\partial x_{2}}{\partial n_{1}} & \cdots & \frac{\partial x_{n}}{\partial n_{1}} \\
\frac{\partial x_{1}}{\partial n_{2}} & \frac{\partial x_{2}}{\partial n_{2}} & \cdots & \frac{\partial x_{n}}{\partial n_{2}} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\frac{\partial x_{1}}{\partial n_{n}} & \frac{\partial x_{2}}{\partial n_{n}} & \cdots & \frac{\partial x_{n}}{\partial n_{n}}
\end{array}\right|,
\]
so that Eq. [83] becomes
or
\[
\begin{align*}
I & =\int_{\vec{\eta}=(0,0, \ldots 1)}^{\vec{n}=(1,1, \ldots 0)} f[\vec{x}(\vec{n})] J d \vec{n},  \tag{84}\\
I & =\underset{\vec{\eta}=(\vec{n}=(0,0, \ldots 0)}{\int_{\vec{n}}=(1,1, \ldots 1)} \frac{f[\vec{x}(\vec{\eta})]}{\rho[\vec{x}(\vec{n})]} d \vec{\eta}, \tag{85}
\end{align*}
\]
where \(\rho \equiv J^{-1}\) is the function describing the density of points in \(\vec{x}\)-space that results from a mapping of a uniform distribution of points from the \(\vec{n}\)-space unit hypercube
\[
\begin{equation*}
0 \leq \eta_{i} \leq 1 \tag{86}
\end{equation*}
\]

The numerical approximation to the integral can now be written in general as
\[
\begin{equation*}
I \approx I^{\prime}=\sum_{2} w^{i} \frac{f\left[\vec{x}\left(\overrightarrow{\eta^{i}}\right)\right]}{\rho\left[\vec{x}\left(\vec{\eta}^{i}\right)\right]}, \quad \sum_{i} w^{i}=1 \tag{87}
\end{equation*}
\]
where the \(w^{i}\) are weights depending on the integration scheme and \(\vec{\eta}^{i}\) is the \(i\) th \(n\)-dimensional integration point: Integration points are now selected in \(\vec{\eta}\)-space, the corresponding veotor \(\vec{x}\) is determined by the transformation equations, and the transformed integrand and weights are computed and summed.

Usually the transformation is chosen so that \(\rho\) will have a form as close as possible to \(I^{-1} f\), where \(I\) is the value of the integral. This approach is called importance sampling since if \(\rho \propto f\), the density of points will be greatest in the "most important regions of space"; i.e., where \(f\) is largest. The approach is also known as minimization of variance since, as \(\rho\) approaches \(I^{-1} f\) in functional form, the variance of the transformed integrand from the value of the integral \(I\),
\[
\begin{equation*}
\sigma^{2}=\int\left(\frac{f}{\rho}-I\right)^{2} d \vec{n} \approx \sum_{i} w^{i}\left(\frac{f^{i}}{\rho^{2}}\right)-\left(\sum_{i}^{2} w^{i} \frac{f^{i}}{\rho^{i}}\right)^{2} \tag{88}
\end{equation*}
\]
approaches zero. The concept is especially applicable to Monte Carlo numerical integration because the error in the integral approximation using random integration points is proportional to the square root of the variance.

If indeed it is possible to find a transformation such that \(\rho=I^{-1} f\), which requires even more effort than simply finding \(I_{\text {, }}\) then by Eq. [87], it can be seen that any integration rule that integrates a constant exactly will give the exact value for the integral.

It is most important to note that if the integrand \(f[\vec{x}]\) in Eq. [83] exhibits singular behavior, then the transformed integrand \(f[\vec{x}(\vec{n})] /\) \(\rho[\vec{x}(\vec{\eta})]\) in \(E q\). [85] can be made to exhibit no singular behavior if the transformation is chosen so that \(\rho\) will contain a singularity of the
same nature as the one present in \(f\). The singularity in the transformed integrand will then be removed through cancellation.

The above procedure can be carried out without the knowledge of the transformation equations between the coordinates \(\overrightarrow{\mathbf{x}}\) and \(\vec{n}\) by choosing the integration points directly in \(\vec{x}\)-space according to the distribution \(\rho[\vec{x}]\) instead of mapping a uniform distribution of points in \(\vec{n}\)-space onto \(\vec{x}\)-space. Or, as suggested by Ellis \({ }^{67}\) and followed extensively in this work, several uniform distributions may be mapped onto \(\vec{x}\)-space in such a way that a set of points in \(\vec{x}\)-space is constructed according to the desired density function. In this way it is possible to construct distributions of points that "track" the atoms of a molecule or complex. The corresponding single transformation from \(\vec{\eta}\)-space to \(\vec{x}\)-space having the desired composite density function may be very complicated and expressible only after the composite density function is written in terms of products of series, each involving a single independent variable \({ }^{32}\). Once the points in \(\vec{x}\)-space are determined according to some distribution \(\rho\), then Eq, [87] must be used to evaluate the integral of the function \(f\) with those points.

Including the singularity in the density function for the evaluation of quantum mechanical integrals was first done by Cowdrey and Reeves \({ }^{68}\) to remove the nuclear attraction term \(r_{i \gamma}^{-1}\). In this work a general sampling procedure is presented for the first time which will remove a singularity over a manifold, such as the electron-electron singularity \(r_{i j}^{-1}\).

Before describing in detail the point selection technique used in this work, a simple example will be presented which shows clearly the relationships among the transformation, the Jacobian, and the density
function. Consider the integral over all 2-dimensional space of some function \(f\) :
\[
\begin{equation*}
I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{89}
\end{equation*}
\]

A transformation can be made to polar coordinates
\[
\begin{align*}
& \eta_{1} \equiv r=\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}  \tag{90}\\
& \eta_{2} \equiv \theta=\tan ^{-1}\left(x_{2} / x_{1}\right),
\end{align*}
\]
with the Jacobian
\[
\begin{equation*}
J=r . \tag{91}
\end{equation*}
\]

The integral written in terms of the new coordinates is
\[
\begin{equation*}
I={ }_{\theta=0}^{2 \pi} \int_{r}^{\infty} \mathscr{L}_{0} \frac{f\left[x_{1}(r, \theta), x_{2}(r, \theta)\right]}{\frac{1}{r}} d r d \theta, \tag{92}
\end{equation*}
\]
where
\[
\begin{align*}
& x_{1}(r, \theta)=r \cos \theta  \tag{93}\\
& x_{2}(r, \theta)=r \sin \theta .
\end{align*}
\]

Additional independent transformations on the coordinates \(r\) and \(\theta\) can be performed to normalize the range of integration to the interval 0,1 so that Eq. [92] will correspond exactly to Eq. [85]. Neglecting the normalization of the range of integration, the density function is
\[
\begin{equation*}
\rho=\frac{1}{r} \tag{94}
\end{equation*}
\]


Figure 3. Distribution of Points in \(\vec{x}\)-Space With Density Function \(\rho=1 / r\)

The density of points in \(\vec{x}\)-space will vary as \(\frac{1}{p}\) if the points are mapped from a uniform distribution in \(\vec{n}\)-space. \([(r, \theta)\)-space]. The most straight forward way of selecting points uniformly in ( \(r, \theta\) )-space is to choose the points using equal intervals of \(r\) and \(\theta\). This has been done for a few points and the results mapped onto the \(x_{1}-x_{2}\) plane in Fig. 3. By inspection it is easily seen that the points do vary in density according to. Eq. [94]. Using these points, the integral in Eq. [89] may be approximated by
\[
\begin{equation*}
I \approx I^{\prime}=\sum_{i} \frac{w^{i} f\left[x_{1}\left(r^{i}, \theta^{i}\right), x_{2}\left(r^{i}, \theta^{i}\right)\right]}{\frac{1}{r^{i}}} \tag{95}
\end{equation*}
\]
where the \(w^{i}\) depend on the numerical integration rule that is used. Finally, if \(f\) contains a singularity of the form \(\frac{1}{r}\), then the singularity will be canceled by the density function.

In order to show the specialization of the importance sampling technique used in this work to remove a singularity over a manifold, a relatively simple case of a one-center, two-electron integral will first be considered:
\[
\begin{equation*}
I=\int_{\text {ail space }}^{\mathcal{\delta}} e^{-\zeta r^{r} 1} \frac{1}{r_{12}} e^{-\zeta_{2}^{r} 2} d v_{1} d v_{2} \tag{96}
\end{equation*}
\]

The object of the transformations that follow is to select integration points with a density not only proportional to \(\frac{1}{r_{12}}\) but also proportional to functions which simulate \(e^{-\zeta 1^{r} 1}\) and \(e^{-\zeta} 2^{r} 2^{r}\).

After transformation of the coordinates of electron 1 from rectangular to spherical coordinates, Eq. [96] becomes
\[
\begin{equation*}
I=\iint \frac{e^{-\zeta_{1} r_{1}}}{\frac{1}{r_{1}^{2} \sin \theta_{1}}} d r_{1} d \theta_{1} d \phi_{1} \frac{e^{-\zeta_{2} r_{2}}}{r_{12}} d v_{2} \tag{97}
\end{equation*}
\]
where
\(0 \leq r_{1}<\infty\),
\(0 \leq \theta \leq \pi\), \(\mathrm{o} \leq \phi_{1} \leq 2 \pi\).

An additional transformation is made on the coordinates of electron 1 in order to normalize the range of integration to a unit hypercube and simultaneously simplify the density function to the desired form: a function proportional to an exponential function which is taken as
\(e^{-s_{1} r_{1}}\). The transformations from the coordinates \(\left(r_{1}, \theta_{1}, \phi_{1}\right)\) to \(\left(n_{1}, \eta_{2}, n_{3}\right)\) are
\[
\begin{array}{ll}
\eta_{1}=1-e^{-s_{1} r_{1}}\left(s_{1} r_{1}+1\right) & 0 \leq \eta_{1} \leq 1 \\
\eta_{2}=\frac{1}{2}\left(1-\cos \theta_{1}\right) & 0 \leq \eta_{2} \leq 1 . \\
\eta_{3}=\phi_{1} / 2 \pi & 0 \leq \eta_{3} \leq 1
\end{array}
\]

The Jacobian of the transformation is diagonal:
\[
\begin{align*}
J^{-1} & =\frac{d \eta_{1}}{d r_{1}} \frac{d \eta_{2}}{d \theta_{1}} \frac{d \eta_{3}}{d \phi_{1}}  \tag{99}\\
& =\left(s_{1}^{2} r_{1} e^{-s_{1} r_{1}}\right)\left(\frac{1}{2} \sin \theta_{1}\right)\left(\frac{1}{2 \pi}\right)
\end{align*}
\]

After the transformation, Eq. [97] becomes
\[
\begin{equation*}
I=\iint \frac{e^{-\zeta_{1} r_{1}}}{\frac{s_{1}^{2}}{4 \pi} \frac{e^{-s_{1} r_{1}}}{r_{1}}} d \eta_{1} d \eta_{2} d \eta_{3} \frac{e^{-\zeta_{2} r_{2}}}{r_{12}} d v_{2} \tag{100}
\end{equation*}
\]

The final distribution function for electron 1 ,
\[
\begin{equation*}
\rho \rightarrow D_{1}\left(r_{1}\right)=\frac{s_{1}^{2}}{4 \pi} \frac{e^{-s_{1} r_{1}}}{r_{1}} \tag{101}
\end{equation*}
\]
differs from the desired density function by the factor \(r_{1}{ }^{-1}\). Another transformation for \(\eta_{1}\), instead of the one given by Eq. [98], could have been considered which would have eliminated the \(r_{1}^{-1}\) factor. It is allowed to remain in this example since it is present in the density function used to make the actual calculations performed during the course of this study. The presence of the \(r_{1}{ }^{-1}\) factor guarantees the cancellation of the nuclear attraction singularity appearing in the Hamiltonian matrix elements.

When an integration point \(\left(\eta_{1}, \eta_{2}, \eta_{3}\right)\) is selected from a uniform distribution in the 3 -dimensional unit cube, the corresponding coordinates \(\left(r_{1}, \theta_{1}, \phi_{1}\right)\) can be determined by inverting Eq. [98]:
\[
\begin{align*}
r_{1} & =r_{1}\left(n_{1}\right) \\
\cos \theta_{1} & =1-2 n_{2}  \tag{102}\\
\phi_{1} & =2 \pi n_{3}
\end{align*}
\]

The transformation equation for \(r_{1}\) has been written symbolically since it can only be performed numerically. To do the inversion numerically,
an iterative, second order Newton-Raphson method \({ }^{69}\) is used:
\[
\begin{gathered}
r_{1}^{(n+1)}=r_{1}^{(n)}+h^{(n)}, \\
h^{(n)}=\left[\frac{s_{1}^{2} r_{1}^{(n)}}{s_{1} r_{1}^{(n)}+1-\exp \left[s_{1} r_{1}^{(n)}\right]\left(1-\eta_{1}\right)}+\frac{1-s_{1} r_{1}^{(n)}}{2 r_{1}^{(n)}}\right]^{-1},
\end{gathered}
\]
where the superscripts in parentheses represent the iteration number. The method is very fast, acquiring 12 significant figures in about four iterations.

A technique will now be presented which selects the integration points of electron 2 according to a distribution function proportional to \(r_{12}^{-1}\) and \(\frac{e^{-s_{2} r_{2}}}{r_{2}}\). The general approach is an extension of that suggested by Sobol \({ }^{70}\).

It is clear that any selection technique for electron 2 with a density function proportional to \(r_{12}^{-1}\) must depend on the position of electron 1. The dependence of the density function of electron 2 on the distances \(r_{12}\) and \(r_{2}\) can most easily be incorporated by taking a confocal-elliptical coordinate system for electron 2 with one focus at the nucleus and the other focus at the position of electron 1 generated through Eqs. [102]. The coordinates are defined as usua1,
\[
\begin{equation*}
1 \leq \lambda_{2} \leq \infty \quad-1 \leq \mu_{2} \leq 1 \quad 0 \leq \phi_{2}^{\prime} \leq 2 \pi, \tag{104}
\end{equation*}
\]
where these coordinates may be expressed in terms of interparticle coordinates indicated in Fig. 4:


Figure 4. Confocal-Elliptical Coordinates Used to Obtain Density Function for Electron 2 of the Form \(D_{2}\left(\vec{r}_{1}, \vec{r}_{2}\right) \propto \frac{1}{r_{2} r_{12}}\) \(\frac{e^{s_{2} r_{2}}}{r_{2}}\) for a Specific \(\overrightarrow{\mathrm{r}}_{1}\)
\[
\begin{equation*}
\lambda_{2}=\left(r_{2}+r_{12}\right) / r_{1} \quad \mu_{2}=\left(r_{2}-r_{12}\right) / r_{1}, \tag{105}
\end{equation*}
\]
and \(\phi_{2}^{\prime}\) is the angle of rotation about the vector \(\vec{r}_{1}\) which is now considered to be fixed. The volume element written in terms of the interparticle coordinates is
\[
\begin{equation*}
d v_{2}=\frac{r_{1}^{3}}{8}\left(\lambda_{2}^{2}-\mu_{2}^{2}\right) d \lambda_{2} d \mu_{2} d \phi_{2}^{\prime}=\frac{r_{1} r_{2} r_{12}}{2} d \lambda_{2} d \mu_{2} d \phi_{2}^{\prime} \tag{106}
\end{equation*}
\]

With this transformation, Eq. [100] becomes

The transformation is sufficient to cancel the \(r_{12}\) singularity; however, an additional transformation is necessary to normalize the range of integration to a unit cube and make the final distribution of points for electron 2 proportional to an exponential function ( \(e^{-s} 2^{r} 2\) ). This can be accomplished by the transformations
\[
\begin{align*}
& \eta_{4}=1-\exp \left[s_{2} r_{1}\left(\lambda_{2}-1\right) / 2\right] \\
& \eta_{5}=\left(e^{s_{2} r_{1} / 2}-e^{-s_{2} r_{1} \mu_{2} / 2}\right) /\left(e^{s_{2} r_{1} / 2}-e^{-s_{2} r_{1} / 2}\right)  \tag{108}\\
& \eta_{6}=\phi_{2}^{\prime} / 2 \pi .
\end{align*}
\]

The Jacobian of the transformation is diagonal:
\[
\begin{aligned}
& J^{-1}=\frac{d n_{4}}{d \lambda_{2}} \frac{d \eta_{5}}{d \mu_{2}} \frac{d \eta_{6}}{d \phi_{2}^{\prime}} \\
& =\left\{\frac{s_{2} r_{1}}{2} \exp \left(s_{2} r_{1} / 2\right) \exp \left[-s_{2}\left(r_{2}+r_{12}\right) / 2\right]\right\} \\
& \times\left(\frac{s_{2} r_{1}}{2} \frac{\exp \left[-s_{2}\left(r_{2}-r_{12}\right) / 2\right]}{\exp \left(s_{2}^{r} 1_{1}^{l / 2)}-\exp \left(-s_{2}^{\left.r_{1} / 2\right)}\right.\right.}\right. \\
& \\
& \times\left(\frac{1}{2 \pi}\right) \\
& =\left[\frac{r_{1}^{2}}{1-\exp \left(-s_{2}^{r_{1}}\right)}\right]\left(\frac{s_{2}^{2}}{8 \pi} e^{-s s_{2}^{r}}\right)
\end{aligned}
\]

With the inclusion of this final transformation, Eq. [107] becomes

The density function for electron 2, as a result of transformations [105] and [108], is
\[
\begin{equation*}
\mathcal{B}_{2}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left[\frac{r_{1}}{1-\exp \left(-s_{2} r_{1}\right)}\right]\left(\frac{s_{2}^{2}}{4 \pi} \frac{e^{-s_{2} r_{2}}}{r_{2}} \frac{1}{r_{12}} .\right. \tag{111}
\end{equation*}
\]

The term in square brackets does not introduce or remove a singularity since
\[
\begin{equation*}
\lim _{r_{1}+0}\left[\frac{r_{1}}{1-\exp \left(-s_{2} r_{1}\right)}\right]=\frac{1}{s_{2}} . \tag{112}
\end{equation*}
\]

Once the integration point \(\left(n_{4}, n_{5}, n_{6}\right)\) has been selected from a
uniform distribution, the corresponding spherical coordinates ( \(r_{2}, \theta_{2}\), \(\phi_{2}\) ) can be obtained by means of three steps. First, Eq. [108] must be inverted giving
\[
\begin{align*}
& \lambda_{2}=1-\frac{2}{s_{2} r_{1}} \ln \left(1-n_{4}\right) \\
& \mu_{2}=-1-\frac{2}{s_{2} r_{1}} \ln \left[1-n_{5}\left(1-e^{-s_{2} r_{1}}\right)\right]  \tag{113}\\
& \phi_{2}=2 \pi n_{6} .
\end{align*}
\]

Using these coordinates, Eq. [105] can be inverted giving
\[
\begin{align*}
& r_{2}=\frac{r_{1}}{2}\left(\lambda_{2}+\mu_{2}\right)  \tag{114}\\
& \cos \theta_{2}^{\prime}=\left[\left(1-\lambda_{2} \mu_{2}\right) /\left(\lambda_{2}+\mu_{2}\right)\right],
\end{align*}
\]
where \(\theta_{2}^{\prime}\) is the angle between the vectors \(\vec{r}_{1}\) and \(\vec{r}_{2}\). The last step requires the use of simple geometry. Making use of the projections indicated in Fig. 4 and the line segment
\[
\begin{equation*}
P=r_{2} \sin \theta_{2}^{\prime}, \tag{115}
\end{equation*}
\]
the spherical coordinates \(\theta_{2}\) and \(\phi_{2}\) are found to be
\[
\left.\begin{array}{l}
\cos \theta_{2}=\cos \theta_{2}^{\prime} \cos \theta_{1}-\sin \theta_{2}^{\prime} \sin \theta_{1} \cos \phi_{2}^{\prime}  \tag{116}\\
\phi_{2}=\phi_{1}+\tan ^{-1}\left(\frac{\sin \theta_{2}^{\prime} \sin \phi_{2}^{\prime}}{\cos \theta_{2}^{\prime}} \sin \theta_{1}+\sin \theta_{2}^{\prime} \cos \phi_{2}^{\prime} \cos \theta_{1}\right.
\end{array}\right) .
\]

The extended range of the inverse tangent function,
\[
\begin{equation*}
-\pi \leq \tan ^{-1}(y / x) \leq \pi \tag{117}
\end{equation*}
\]
has been assumed in Eq. [116] which requires consideration of the signs of the numerator and denominator of the argument \({ }^{71}\).

It is easy to show that the density functions \(D_{1}, D_{2}\), and \(D_{12}=\) \(D_{1} D_{2}\) are all properly normalized. That is, the following integrals over all space are equal to unity:
\[
\begin{align*}
& \int D_{1}\left(r_{1}\right) d v_{1}=1, \\
& \int D_{2}\left(\vec{r}_{1}, \vec{r}_{2}\right) d v_{2}=1 \quad \text { for any } \vec{r}_{1},  \tag{118}\\
& \int D_{1}\left(r_{1}\right) D_{2}\left(\vec{r}_{1}, \vec{r}_{2}\right) d v_{1} d v_{2}=\int D_{12}\left(\vec{r}_{1}, \vec{r}_{2}\right) d v_{1} d v_{2}=1 .
\end{align*}
\]

The expansion of \(r_{12}^{-1}\) in terms of the associated \(L\) egendre polynomials is required for proof in all but the first integral of Eqs, [118] (see Appendix C).

In order to construct a single density function suitable for use in all of the integral approximations, the preceding operations are symmetrized by alternately selecting the points for electrons 1 and 2 according to density functions \(D_{1}\) and \(D_{2}\) respectively, then selecting the points for electron 2 according to density function \(D_{1}\) followed by selection of points for electron 1 from \(D_{2}\). The final form of the numerical integration approximation rule [87] can be written as
\[
\begin{equation*}
I \approx I^{\prime}=\sum_{i} w^{i} \frac{f\left(\vec{r}_{1}^{i}, \vec{r}_{2}^{i}\right)}{\left[\frac{D_{1}\left(r_{1}{ }^{i}\right) D_{2}\left(\vec{r}_{1}^{i}, \vec{r}_{2}^{i}\right)+D_{1}\left(r_{2}^{i}\right) D_{2}\left(\vec{r}_{2}^{i}, \vec{r}_{1}^{i}\right)}{2}\right]} \tag{119}
\end{equation*}
\]
since, by the discussion above, the term in square brackets is the func-
tion describing the density of integration points in \(\overrightarrow{\mathbf{x}}\)-space. If \(f\) contains the \(r_{12}^{-1}\) singularity as in Eq. [96], then it will not appear in Eq. [119] since the density function \(D_{2}\) contains the same singularity and causes a cancellation. And if \(f\) contains exponentials of \(\left(-r_{1}\right)\) and \(\left(-r_{2}\right)\) then, due to the fact that \(D_{1}\) and \(D_{2}\) also contain similar exponentials, the variance given by Eq. [88], will be low, and relatively higher accuracy is expected by using the distribution indicated in Eq. [119] than by simply using a uniform distribution in \(\vec{x}-s p a c e\).

The above technique will now be extended to a system of many electrons moving about many centers. Again, for clarity, a specific example is considered: three arbitrarily positioned nuclei and three eleatrons. The procedure requires the use of the density functions \(D_{1}\left(r_{i \gamma}\right)\) and \(D_{2}\left(\vec{r}_{i \gamma}, \vec{r}_{j \gamma}\right)\) defined by Eys. [101] and [111] for all electrons \(i\) and \(j\); and for all centers \(\gamma\). Using these functions, a completely symmetric point selection density function is constructed by including all possible permutations of electrons \(i, j\), and \(k\), and the centers \(\gamma, \gamma^{\prime}\), and \(\gamma^{\prime \prime}\) when sampling first from \(D_{1}\left(r_{i \gamma}\right)\), then \(D_{2}\left(\vec{r}_{i \gamma}, \vec{r}_{j \gamma},\right)\) and finally from \(D_{1}\left(r_{k \gamma^{\prime \prime}}\right)\). The composite distribution is independent of the particular sequence \(\left(D_{1}, D_{2}, D_{1}\right)\) of individual density functions and can be written
\[
D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\frac{1}{162} \sum_{\gamma} \sum_{\gamma^{\prime}} \sum_{\gamma^{\prime \prime}} \sum_{\hat{P}} \hat{P} D_{1}\left(r_{i \gamma}\right) D_{2}\left(\vec{r}_{i \gamma^{\prime}}, \vec{r}_{j \gamma^{\prime}}\right) D_{1}\left(r_{k \gamma^{\prime \prime}}\right) . \quad \text { [120] }
\]

The factor (162) \({ }^{-1}\) is necessary for normalization of the density function
\[
\begin{equation*}
\int D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) d v_{1} d v_{2} d v_{3}=1 \tag{121}
\end{equation*}
\]
since there are \(3 \times 3 \times 3 \times 3!=162\) terms in the sum. The operator \(\hat{P}\) permutes electronic coordinates and the sum over the permutations includes all 3! terms. Appendix C establishes the normalization of any term in the expansion [120] and thus verifiee Eq. [121].

If a new symbol \(D_{2}^{\prime}\) is defined which allows the factoring of the \(r_{i j}^{-1}\) term from \(D_{2}\),
\[
\begin{equation*}
\cdot D_{2}^{\prime}\left(\vec{r}_{i \gamma^{\prime}}, \vec{r}_{j \gamma^{\prime}}\right)=D_{2}\left(\vec{r}_{i \gamma^{\prime}}, \overrightarrow{\mathrm{r}}_{j \gamma^{\prime}}\right) r_{i j}^{-1}, \tag{122}
\end{equation*}
\]
and the three centers are explicitly designated by \(a, b\), and \(c\), then Eq. [120] can be written
\[
\begin{align*}
& D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\frac{1}{162} \sum_{P} \hat{P}\left\{\left[D_{1}\left(r_{i \mathrm{a}}\right)+D_{1}\left(r_{i \mathrm{~b}}\right)+D_{1}\left(\ddot{p}_{i \mathrm{c}}\right)\right]\right. \\
& \times\left[D_{2}^{\prime}\left(\vec{r}_{i \mathrm{a}}, \vec{r}_{j \mathrm{a}}\right)+D_{2}^{\prime}\left(\vec{r}_{i \mathrm{~b}}, \overrightarrow{\mathrm{r}}_{j \mathrm{~b}}\right)+D_{2}^{\prime}\left(\vec{r}_{i \mathrm{c}}, \overrightarrow{\mathrm{r}}_{j \mathrm{c}}\right)\right]  \tag{123}\\
& \times\left[D_{1}\left(r_{k \mathrm{a}}\right)+D_{1}\left(r_{k \mathrm{~b}}\right)+D_{1}\left(r_{k \mathrm{c}}\right)\right] \\
& \left.\times\left[r_{i k} r_{j k}\right]\right\} r_{12}^{-1} r_{13}^{-1} r_{23}^{-1} .
\end{align*}
\]

It is easily seen that the density function \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\) cancels the singularities due to electron-electron potential energy terms since these terms can be written
\[
\begin{equation*}
\frac{1}{r_{12}}+\frac{1}{r_{13}}+\frac{1}{r_{23}}=\frac{r_{13} r_{23}+r_{12} r_{23}+r_{12} r_{13}}{r_{12} r_{13} r_{23}} . \tag{124}
\end{equation*}
\]

An analogous argument can be constructed to show the cancellation of the nuclear attraction singularities.

The spacial integration of all matrix elements, Eq. [79], appearing

In the \(H_{3}\) calculations is performed using the distribution of points \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\) described by Eq. [120] or Eq. [123]. The adjustable parameters \(s_{1}\) and \(s_{2}\) that appear in the density functions \(D_{1}\) and \(D_{2}\) are constrained to be equal and are determined so that the estimate of the variance, given by Eq. [88], is a minimum.

In the lithium case a density function is used that is completely analogous to Eq, [120] but which spans only a single center. The parameters \(s_{1}\) and \(s_{2}\), however, were adjusted independently in order to achieve minimum variance. The use of the density function \(D \overrightarrow{(r}_{1}, \vec{r}_{2}, \vec{r}_{3}\) ) in the evaluation of integrals not possessing \(r_{i \gamma}^{-1}\) and \(r_{i j}^{-1}\) singularities resulted in a convergence rate not significantly slower than the rate which occurred when a density function analogous to \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\), but not possessing these singularities, was used.

\section*{2. Diophantine Numerical Integration}

The Diophantine numerical integration method formulated by Richtmyer \({ }^{72}\) and Haselgrove \({ }^{73}\) and extended by Conroy \({ }^{39}\) was used to evaluate the 9-dimensional integrals in this work. In one case the Monte Carlo integration technique was used for comparison purposes. Only a brief outline of the methods will be presented here; a more thorough treatment can be found in the original papers or in the texts by Hammersley and Handscomb \({ }^{74}\), and by Davis and Rabinowitz \({ }^{75}\).

The general form of the integral to be evaluated is
\[
\begin{equation*}
I=\int \frac{f(\vec{n})}{\rho(\vec{n})} \overrightarrow{d \vec{n}}=\int F(\vec{n}) \overrightarrow{d \vec{n}}, \tag{125}
\end{equation*}
\]
where the region of integration is over a \(d\)-dimensional unit hypercube
\[
\begin{equation*}
0 \leq \eta_{j} \leq 1 \quad j=1,2,3, \ldots d . \tag{126}
\end{equation*}
\]

The integral is approximated in the simplest Diophantine method by
\[
\begin{equation*}
I \approx I^{\prime}={ }_{i=1}^{N} w^{i} F\left(\vec{\eta}^{i}\right)=\frac{1}{N}{ }_{m^{\stackrel{\Sigma}{=}} 1}^{N} F\left(\left|2\left[\left(m-\frac{\beta_{1}}{2}\right) \vec{\alpha}\right]\right|\right), \tag{127}
\end{equation*}
\]
where the \(\alpha_{j}\) are constants and the brackets [ ] indicate that an appropriate integer is to be subtracted from the argument so that the result lies within the interval \(-\frac{1}{2}, \frac{1}{2}\). The \(\alpha_{j}\) are chosen here to be a set of irrational numbers that are linearly independent over the rational numbers \(x_{j}\); that is,
\[
\begin{equation*}
{ }_{j=1}^{N} x_{j} \alpha_{j} \neq 0 \quad \text { unless } \vec{x}=0 \tag{128}
\end{equation*}
\]

When irrational numbers are used, the technique is called open Diophantine integration since the corresponding set of integration points \(\left|2\left[\left(m-\frac{1}{2}\right)_{\alpha}^{\alpha}\right]\right|\) never repeats. The method is called closed Diophantine integration when rational \(\alpha_{j}\) (1inearly independent over the integers) are used since the set of integration points will then repeat when the number of points exceeds the common denominator of the \(\alpha_{j}\). Whether the \(\alpha_{j}\) are taken to be rational or irrational numbers, it can be shown that the integration points generated in Eq. [127] are uniformly distributed within the unit hypercube.

The open form of Diophantine integration was used in this work since the number of points need not be predetermined. If the closed Diophantine integration had been used and convergence was unsatisfactory for the number of points chosen, then a new vector \(\vec{\alpha}\) would had to have been selected with a common denominator equal to the number of points desired, and the integration repeated.

The analysis of the error associated with the approximation [127] to the integral \(I\) is somewhat detailed and therefore only the conclusions will be stated here. If the Fourier coefficients in the \(d\)-dimensional expansion of the integrand,
\[
\begin{equation*}
F(\vec{n})=\sum_{n_{1}} \ldots n_{d}^{\Sigma} a\left(n_{1}, \ldots, n_{d}\right) e^{2 \pi i \vec{n} \cdot \vec{n}} \tag{129}
\end{equation*}
\]
satisfy the inequality
\[
\begin{equation*}
\left|a\left(n_{1}, \ldots, n_{d}\right)\right| \leq M_{t}\left|n_{1} n_{2} \ldots n_{d}\right|^{-t} \tag{130}
\end{equation*}
\]
for \(t>1\), for some \(M_{t}\), and with zero factors on the right removed, then the error is of "order \(N^{-1 /}\) :
\[
\begin{equation*}
\operatorname{Error}\left(\left|I-I^{\prime}\right|\right)=O\left(N^{-1}\right) \tag{131}
\end{equation*}
\]

The meaning of the last equation is that as \(N \rightarrow \infty\), then \(I \rightarrow I^{\prime}\) at the same rate as \(N^{-1} \rightarrow 0\). The inequality \([130]\), with \(t=1\), may be applied to bounded functions \(F(\vec{n})\) with a finite number of discontinuities within the unit hypercube; with \(t=2\), it may be applied to bounded continuous functions with discontinuities in their first partial derivatives; with \(t=3\), to functions with continuous first derivatives but discontinuous second derivatives; and so on. The term 'Diophantine' is used for describing the method since the theory of Diophantine approximation is used in proving that Eq. [131] follows from inequality [130].

The integrals considered in this thesis easily satisfy the inequality \([130]\) since the singularities have been removed from the integrands by an appropriate choice of the point selection density function. Therefore the integrands are at least bounded and continuous.

If the integral [125] is approximated by
\[
\begin{equation*}
I \approx I^{\prime}=\frac{1}{N}{ }_{i=1}^{N} F\left(\vec{n}^{i}\right), w^{i}=\frac{1}{N} \tag{132}
\end{equation*}
\]
where the components of the vector \(\vec{\eta}_{\eta}^{i}\) are selected at random from a unlform distribution on the interval 0,1 , then the technique is called Monte Carlo integration. Provided the integrand is bounded, the error associated with this method is of order \(N^{-\frac{1}{2}}\) and proportional to the square root of the variance \(\sigma^{2}\) defined by Eq. [88].

The superiority of the Diophantine integration over the Monte Carlo integration is clear, with a convergence of \(O\left(N^{-1}\right)\) opposed to \(O\left(N^{-\frac{1}{2}}\right)\); but the superiority of closed Diophantine integration over the open type is not as apparent \({ }^{76}\). Because of these facts and the relative ease of application, the open form of Diophantine integration was used in this work.

The set of irrational \(\alpha_{j}\) used here is not the "optimal set" capable of best integrating some "worst possible function" defined by the behavior of its Fourier coefficients. Such a set has never been determined for nine dimensions and would require an extensive amount of computer time. The set of \(\alpha_{j}\) actually used in the integrations is made up of square roots of prime numbers. The prime numbers were selected so that the first integration point \(\vec{n}^{1}\) has its components approximately evenly distributed on the interval 0,1. Shown in Table III are the prime numbers \(P_{j}\) such that \(\alpha_{j}=\sqrt{P_{j}}\), and the corresponding components \(n_{j}^{1}\) of the first integration point:
\[
\begin{equation*}
n_{j}^{1}=\left|2\left[\left(m-\frac{1}{2}\right) \alpha_{j}\right]\right| m=1 . \tag{133}
\end{equation*}
\]

TABLE III

OPEN DIOPHANTINE INTEGRATION PARAMETERS
\begin{tabular}{lrrl}
\hline\(j\) & \(P_{j}\) & \(\alpha_{j}=\sqrt{P_{j}}\) & \(\eta_{j}^{1}=\left|2\left[\left(1-\frac{1}{2}\right) \alpha_{j}\right]\right|\) \\
\hline 1 & 101 & \(10.049 \ldots\) & \(0.049 \ldots\) \\
2 & 97 & \(9.848 \ldots\) & \(0.151 \ldots\) \\
3 & 3 & \(1.732 \ldots\) & \(0.267 \ldots\) \\
4 & 13 & \(3.605 \ldots\) & \(0.394 \ldots\) \\
5 & 157 & \(12.529 \ldots\) & \(0.529 \ldots\) \\
7 & 29 & 127 & \(6.385 \ldots\) \\
8 & 167 & \(12.922 \ldots\) & \(0.614 \ldots\) \\
9 & & & \(0.730 \ldots\) \\
\hline
\end{tabular}

Relatively good results are expected with the use of the \(\alpha_{j}\) given in Table III because of the lemma, proved by Haselgrove \({ }^{73}\), that for most sets of numbers \(\alpha_{j}\), the error is not substantially worse than that which would occur using an optimal set.

The pseudo-random numbers that are used for the Monte Carlo comparison were generated using the IBM-supplied subroutine RANDU \({ }^{77}\) which has been converted for double-precision arithmetic.

Once the integrals are evaluated, the matrix eigenvalue problems are solved using the QCEP-supplied computer subroutines CEIG and NESBET \({ }^{78}\) that have been slightly modified for use on IBM/360 computers. The main program used for the linear symmetric \(H_{3}\) calculations and all subroutines are listed in Appendix D. The main program for the lithium calculation is very similar to the \(H_{3}\) main program; the only differences are that it allows two integration parameters \(s_{1}\) and \(s_{2}\), and it is specialized to a single center. Double-precision arithmetic was used throughout all programs and subprograms.

\section*{CHAPTER IV}

\section*{CALCULATIONS}

\section*{A. Choice of Parameters}

The choice of parameters used in the calculations on the lithium atom and the linear symmetric \(H_{3}\) complex is heavily dependent on the previous large scale calculations made on these systems. The purpose in so choosing the parameters in this way was not only to use the best parameters without resorting to the variation of non-1inear parameters, but to be able to allow direct comparison with these earlier studies.

For the lithium atom case, the orbital exponents and the first six expansion terms are the same as those used by Larsson \({ }^{41}\) in his study (see Table I). The first expansion term approximates most closely the ground state with two electrons in a \(1 s\) inner shell and one electron in a \(2 s\) outer shell. Expansion terms 2 through 4 can be considered as excited state contributions of the same symmetry as the ground state. Expansion terms indicated with an asterisk are actually two terms, each with a different spin function and expansion coefficient.

The fifth and sixth expansion functions are the first to include explicit correlation factors. It is expected that these terms would contribute significantly to the lowering of the energy since the correlation factors \(r_{12}\) and \(r_{12}^{2}\) will cause the two electrons occupying the same orbital to avoid each other. The remaining three expansion terms are added in order to investigate the importance of terms simultaneously
containing more than one \(r_{i j}\) factor. These terms simultaneously contain all possible \(r_{i j}\) factors with a power of 2 if the factor involves electrons within the same orbital and a power of 1 if they do not. The capability of including expansion terms which simultaneously contain all possible \(r_{i j}\) factors is evidence of the nearly complete generality of the approach used in this study.

Although identically the same parameters are used for the first six expansion terms in this study and Larsson's study of the lithium atom, the spin basis functions are not the same. Both studies do, however, use the complete set of spin eigenfunctions; thus a direct comparison of results is possible, which provides a means of checking the accuracy of the computer programs.

Of the three recent and extensive \(a b\) initio calculations on the linear symmetric \(H_{3}\) activated complex by Shavitt, et. al.; \({ }^{46}\) Riera and Linnett \({ }^{79}\); and Gianinetti, et. al.; \({ }^{59}\) the work of Gianinetti, et. al. is relied on most heavily for the selection of parameters in this work. The principle reason for this choice was that they made use of \(2 s\) atomic orbitals which are usually used in trial wave functions involving explicitly correlated expansion terms. Another reason for the choice was the inclusion in their work of a small scale full configuration interaction calculation which allows a simple means of checking the computer programs when multiple centers are involved.

Presented in Table IV are the parameters used in the full configuration interaction calculation performed for testing purposes. The parameters are identical to those used by Gianinetti, et. al. for the same calculation. The phrase "full configuration interaction" applies when all possible linearly independent molecular orbitals formed from a given

TABLE IV

ONE-ELECTRON SYMMETRY ORBITALS AND EXPANSION TERMS USED

IN THE 4-TERM FULL CI (1s) LINEAR SYMMETRIC \(H_{3}\)
CALCULATION \(\left(R_{\mathrm{ab}}=R_{\mathrm{bc}}=1.9100\right)\)

\(\Sigma_{u}^{+}\)Expansion Terms
\begin{tabular}{lllllll}
\hline & \multicolumn{3}{c}{ Symmetry Orbitals } & \multicolumn{2}{c}{\(r_{i j}\) Exponent } \\
\cline { 2 - 7 }\(\Delta_{n}\) & \(\phi_{i}\) & \(\phi_{j}\) & \(\phi_{k}\) & \(r_{12}^{i^{\prime}}\) & \(r_{13}^{j^{\prime}}\) & \(r_{23}^{k^{\prime}}\) \\
\hline 1 & 1 & 1 & 3 & 0 & 0 & 0 \\
\(2 *\) & 1 & 2 & 3 & 0 & 0 & 0 \\
3 & 2 & 2 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
basis are used to construct all possible linearly independent expansion terms which do not include explicit correlation factors. In this case the given basis is a ls atomic orbital on each of the three centers.

The parameters used in the linear symmetric \(H_{3}\) activated complex calculation involving explicit correlation terms is given in Table II. The \(1 s\) and \(2 s\) atomic orbital exponents and internuclear distance are the same as those used by Gianinetti, et. al. in their most extensive calculation, a 200 term full configuration interaction calculation using 1 s, \(2 s, 2 p_{x}, 2 p_{y}\), and \(2 p_{z}\) atomic orbitals on each center as a basis. The expansion terms \(1-3\) are the terms that contributed most to the 200 term wave function as indicated by the corresponding expansion coefficients. Expansion terms 5-13* are of the same form as the terms 1-3 except that they contain a single \(r_{i j}^{1}\) correlation factor included in all possible ways. Although the results from the lithium atom calculation show that the contribution due to an expansion term containing multiple correlation factors is very slight, one such term (term 14) was included in the linear symmetric \(H_{3}\) calculation.

Two more linear symmetric \(H_{3}\) calculations were performed which were in every way identical to the calculation just described except that the internuclear distance was changed to \(R_{\mathrm{ab}}=R_{\mathrm{bc}}=1.7650 \mathrm{a} \cdot \mathrm{u}\). and 1.8198 a.u. The purpose of these calculations was to determine the force constant associated with the "symmetric stretching vibration" at the saddle point.

\section*{B. Numerical Results}

Since each of the 162 distributions making up the 3-center composite distribution given by Eq. [120] must be sampled the same number of times,
the total number of integration points must be a multiple of 162 . The progress of the calculations presented here was monitored at the end of each cycle defined as the processing of \(13 \times 162=2106\) 9-dimensional integration points. The same 2106 -point cycle was retained for the lithium calculations. Since the l-center composite density function in the lithium case contains only 6 terms, each term is sampled 2106/6 = 351 times during each cyc1e.

The elements of eight matrices were tabulated at the end of each cycle. These included the kinetic energy, electron-nucleus interaction, electron-electron interaction, overlap, and the normalized variances, \(\sigma^{2} / I^{2}\), of each of these elements.

As stated earlier, the integration parameters \(s_{1}\) and \(s_{2}\) contained in the density functions \(D_{1}\) and \(D_{2}\) are chosen so that the average normalized variance of all the matrix elements is a minimum. Figure 5 shows this average as a function of \(s_{1}\) and \(s_{2}\) for the lithium case involving only terms \(1-3\) of Table. I when 2106 points are used to evaluate the integrals. If the two parameters are constrained to be equal, then the minimum average \(\left\langle\sigma^{2} / I^{2}\right\rangle_{\text {av }}\) is equal to 3.30 when \(s_{1}=s_{2}=1.05\). However, if there are no constraints places on the parameters, then the minimum average variance drops to 1.28 at \(s_{1}=3.0\) and \(s_{2}=0.3\). Even though the integrals may be far from convergence, the change in the variance with respect to \(s_{1}\) and \(s_{2}\) is much greater than the change in the variance with respect to the number of integration points. For example, if \(s_{1}=3.0\) and \(s_{2}=0.3\), the average normalized variance changes from 1.2792 when only 2106 points are used to. 1.2848 when 208,494 points are used.

In the linear symmetric \(\mathrm{H}_{3}\) case a minimum normalized average var-


Figure 5. Average Normalized Variance as a Function of Integration Point Distribution Parameters \(s_{1}, s_{2}\) for the Lithium Atom Calculation Involving Only Terms 1-3 of Table I and 2106 Integration Points. The Filled Circle Indicates the Approximate Minimum.


Figure 6. Average Normalized Variance as a Function of the Integration Point Distribution Parameter \(s=s_{1}=s_{2}\) for the Full CI (1s) \(\mathrm{H}_{3}\) Calculation and 6318 Integration Points
iance of 1.27 was attained when using 6318 points even with the constraint that \(s_{1}=s_{2}\); therefore it was deemed unnecessary to vary each parameter independently. Figure 6 shows \(\left\langle\sigma^{2} / I^{2}\right\rangle\) av as a function of \(s=s_{1}=s_{2}\) with a minimum occurring at \(s=1.54\).

The calculated energies of the lithium atom are presented in Figure 7 for every step in the extension of the trial wave function. That is, the matrix eigenvalue problem \(\left(H^{\prime}-E S\right) C=0\) is transformed to ( \(H^{\prime \prime}-E \mathbb{1}\) ) \(G^{\prime}=0\) and the eigenvalues and eigenvectors are determined each time an expansion term is added to the trial wave function. In this way there is no contribution to the energy due to the expansion terms that are added later. The energies are plotted against the number of integration points so that the convergence properties of the wave function can be observed both with respect to the number of expansion terms and with respect to the number of integration points. The full length horizontal lines represent the analytical solution to the matrix eigenvalue problems for each step. The first analytical energy was calculated independently using standard integral formulas and the remaining analytical energies were taken from Larsson's study \({ }^{41}\). Since the calculations corresponding to the last three energies \(E_{1-7}, E_{1-8^{*}}\), and \(E_{1-9}\) have not been carried out using analytical techniques, no exact energy values are available. The horizontal line labeled \(E\) (ACCEPTED) is the energy value calculated from experiments after subtracting contributions due to relativistic and finite nuclear mass effects \({ }^{80}\). This energy was determined by the use of a semi-empirical scheme, based on conventional perturbation theory, by accurately extrapolating the total electronic energy and ionization potentials as a function of the nuclear charge.

The analytical, accepted, and final numerical energies are tabu-
lated in Table \(V\) along with the potential and kinetic energy ratios ( \(P E / K E\) ), the eigenvector of the final numerically calculated wave function \(\Phi^{1-9}\), and the overlap of each term of \(\Phi^{1-9}:\left\langle\Phi^{1-9}\right| C_{n}^{1-9} \Delta_{n}\). A1though only three-four figures are significant when describing the final lithium atom energies calculated in this work, seven are presented to show the relative improvement in the energy with the addition of each expansion term.

Figure 8 shows the contributions to the energy of expansion terms \(7,8^{*}\), and 9 when added to the non-explicitly correlated trial wave function consisting only of terms 1-3. The analytical and numerical results for terms 1-3 are reproduced from Figure 7.

The results of a Monte Cario calculation on the lithium atom using a trial wave function of only term 1 is shown in Figure 9 (upper curve) along with the corresponding results obtained with the open Diophantine calculation (lower curve). The analytical energy and Diophantine results for term 1 are reproduced from Figure 7.

The calculated energies for the linear symmetric \(H_{3}\) test case, a full CI (1s), are presented in Figure 10. The value of the analytic energy, indicated by the horizontal line, is that given in the work by Gianinetti, et. a1. \({ }^{59}\) The values for the analytic and final numerical energy are given in Table VI along with the final numerical value for the potential and kinetic energy ratios ( \(P E / K E\) ) ,

Because of the large range of energies and the small energy differences, two figures are required to display the results of the linear symmetric \(\mathrm{H}_{3}\) calculation described by the parameters in Table II. Figures 11 and 12 present the energies of the \(H_{3}\) complex for every step in the extension of the basis as a function of the number of integration


Figure 7. Convergence Properties of Lithium Atom Energies With Respect to Expansion Terms.1-9 of Table I

TABLE V
RESULTS OF LITHIUM CALCULATION FOR THE PARAMETERS AND VARIOUS NUMBERS OF
EXPANSION TERMS GIVEN IN TABLE I. THE TOTAL NUMBER OF INTEGRATION
POINTS IS 208,494. THE ENERGIES ARE PLOTTED IN FIG. 7.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\Phi_{\Phi}{ }^{\text {N }}\) & \(\Delta_{n}\) & \[
\begin{gathered}
E^{N}(\text { a.u. ) } \\
(\text { Ref. } 41)^{a}
\end{gathered}
\] & \[
\begin{gathered}
{E^{N}}^{\mathrm{N}} \text { (a.u.) } \\
(\text { This Work) }
\end{gathered}
\] & \((P E / K E)^{\mathrm{N}}\) & \multicolumn{2}{|l|}{\[
C_{n}^{1-9^{c}}
\]} & \({ }^{<\Phi^{1-9}}\left|C_{n}^{1-9} \Delta_{n}\right\rangle^{\text {d }}\) \\
\hline 1 & 114000 & -7.412461 & -7.413264 & 二1.947 & 0.650 & & 0.861 \\
\hline 1, 2* & 124 000* & -7.417823 & -7.418650 & -1.998 & -0.0966, & -0.0807 & -0.0723, -0.0568 \\
\hline 1-3 & 224000 & -7.430033 & -7.430632 & -1.996 & -0.163 & & -0.0640 \\
\hline 1-4* & 134 000* & -7.444700 & -7.445210 & -2.001 & 0.126, & 0.119 & 0.0726, 0.0572 \\
\hline 1-5 & 114100 & -7.472382 & -7.472356 & -2.001 & 0.233 & & 0.250 \\
\hline 1-6 & 114200 & -7.473999 & -7.474415 & -1.999 & -0.0485 & & -0.0524 \\
\hline 1-7 & 114211 & - & -7.474425 & -1.999 & -0.000728 & & -0.0153 \\
\hline 1-8* & 124 111* & - & -7.474592 & -1.999 & 0.000769, & 0.000596 & \(0.00103,0.00784\) \\
\hline 1-9 & 224211 & - & -7.474626 & -1.999 & 0.000156 & & 0.00168 \\
\hline 1-m & & -7.478069 & & & & & \\
\hline
\end{tabular}
* Expansion terms with both possible spin functions have been added.
\(a_{\text {Energies }}\) are from Larsson's work except for \(E^{1}\) which was calculated independently and \(E^{1-\infty}=E\) (accepted) which is from Ref. 80.
balthough only three-four figures are significant, seven figures are included to show the relative improvement in the energy with the addition of each expansion term.
\(c_{\text {Expansion coefficients }}\) for the trial wave function containing all of the expansion terms listed in the second column.
\(d_{\text {The }}\) overlap of each expansion term of the complete wave function with the complete wave function.


Figure 8. Convergence Properties of Lithium Atom Energies With Respect to Expansion Terms 7-9 of Table I When They Immediately Follow Terms 1-3


Figure 9. Comparison of Convergence Properties of Lithium Atom Energies With Respect to Expansion Term 1 of Table I When Monte Carlo and Open Diophantine Integration Techniques are Used
points. For ease of comparison the energies \(E_{1-4}\) and \(E_{1-5}\) are plotted on both figures. The range of the estimated exact energy of the \(H_{3}\) system at the top of the barrier is taken to be \(7-11 \mathrm{Kcal} / \mathrm{mole}\) above the energy of the \(\mathrm{H}_{2}+\mathrm{H}\) system. The zero point of the scale on the right is taken at \(9.8 \mathrm{Kcal} / \mathrm{mole}^{81}\) above the energy of the \(\mathrm{H}_{2}+\mathrm{H}\) system, the most recent estimate to date for the \(\mathrm{H}_{3}\) complex at the top of the barrier.

The final numerical energies for the linear symmetric \(H_{3}\) complex are tabulated in Table VII along with the most recent exact estimate, the potential and kinetic energy ratio, the eigenvector of the final numerical calculated wave function \(\Phi^{1-14}\), and the overlap of each term of \(\Phi^{1-14}\) with \(\Phi^{1-14}:\left\langle\Phi^{1-14} \mid C_{n}^{1-14} \Delta_{n}\right\rangle\). Although only four figures are significant when describing the final \(H_{3}\) complex energies calculated in this work, seven are presented to show the relative improvement in the energy with the addition of each expansion term.

Figure 13 shows the convergence properties of the energies of the three 21 -term linear symmetric \(H_{3}\) calculations with parameters that differed only in the internuclear distance. The final energies and potential to kinetic energy ratios are listed in Table VIII. These three energies, along with the corresponding internuclear distances, were used to find the force constant \(k\) associated with the "symmetric stretching vibration" at the saddle point. For infinitesimal displacements, this force constant is defined by the equation \(E-E_{0}=\frac{1}{2} k\left(R-R_{0}\right)^{2}\), where \(E_{0}\) and \(R_{0}\) are the energy and internuclear distance at the saddle point and \(R=R_{\mathrm{ab}}=R_{\mathrm{bc}}\). The calculated value of \(K_{j}\) at the end of each integration cycle is plotted in Figure 14.

The computer time required to obtain the lithium atom results pre-


Figure 10. Convergence Properties of the \(\mathrm{H}_{3}\) Activated Complex Energy With Respect to the Full CI(1s) Wave Function

\section*{TABLE VI}

RESULTS OF THE FULL CI (1s) CALCULATION ON THE \(H_{3}\) ACTIVATED COMPLEX FOR THE PARAMETERS GIVEN IN TABLE IV. THE TOTAL NUMBER OF INTEGRATION POINTS IS 86,346. THE ENERGIES ARE PLOTTED IN FIG. 10 .
\begin{tabular}{lccc}
\hline\(\Phi^{\mathrm{N}}\) & \begin{tabular}{c}
\(E^{\mathrm{N}}\) (a.u.) \\
(Ref. 59)
\end{tabular} & \begin{tabular}{c}
\(E^{\mathrm{N}}\) (a.u.) \\
(This Work)
\end{tabular} & \((P E / K E)^{\mathrm{N}}\) \\
\hline \hline \(1-3\) & -1.6106 & -1.6107 & -2.005 \\
\hline
\end{tabular}


Figure 11. Convergence Properties of \(\mathrm{H}_{3}\) Activated Complex Energies With Respect to Expansion Terms 1-5 of Table II


Figure 12. Convergence Properties of \(\mathrm{H}_{3}\) Activated Complex Energies With Respect to Expansion Terms 4-14 of Table II

RESULTS OF THE \(H_{3}\) ACTIVATED COMPLEX CALCULATION FOR THE PARAMETERS AND VARIOUS NUMBERS
OF EXPANSION TERMS GIVEN IN TABLE II. THE TOTAL NUMBER OF INTEGRATION POINTS IS 86,346. THE ENERGIES ARE PLOTTED IN FIGURES 11 AND 12.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Phi^{N}\) & \(\Delta_{n}\) & \[
\begin{gathered}
E^{N}(\text { a.u. }) \\
\text { (This Work) }^{a, b}
\end{gathered}
\] & \((P E / K E)^{\mathrm{N}}\) & \[
C_{n}^{1-14^{c}}
\] & \(<\Phi^{1-14} \mid C_{n}^{1-14}\) & \[
4^{4} \Delta_{n}>
\] \\
\hline 1 & 113000 & -1.182417 & -1.488 & -0.00985 & -0.0102 & \\
\hline 1,2* & 123 000* & -1.591908 & -1.845 & 0.0585, 0.209 & 0.0901, 0 & 0.371 \\
\hline 1-3 & 223000 & -1.605270 & -1.888 & 0.0822 & 0.208 & \\
\hline 1-4 & 114000 & -1.613066 & -1.938 & 0.00301 & 0.00219 & \\
\hline 1-5 & 113100 & -1.621626 & -1.974 & 0.0403 & 0.0873 & \\
\hline 1-6* & 113 010* & -1.623268 & -1.978 & 0.0304, -0.0266 & 0.104, -0. & 0.0740 \\
\hline 1-7* & 123 100*. & -1,623553 & -1.977 & -0.00420, 0.0196 & -0.0159, 0 & 0.0865 \\
\hline 1-8* & 123 010* & -1.627838 & -2.012 & 0.0242, 0.0385 & 0.123, 0 & 0.181 \\
\hline 1-9* & 123 001* & -1.634601 & -2.028 & 0.0171, -0.0305 & 0.0742, -0 & -0.226 \\
\hline 1-10 & 223100 & -1.634757 & -2.028 & -0.00103 & -0.00718 & \\
\hline 1-11* & 223 010* & -1.635524 & -2.027 & -0.0105, 0.00944 & -0.110, 0 & 0.0651 \\
\hline 1-12 & 114100 & -1.636335 & -2.037 & 0.0496 & 0.0754 & \\
\hline 1-13* & 114 010* & -1.636534 & -2.036 & -0.0138, 0.0224 & -0.0375, 0.0 & 0.0514 \\
\hline 1-14 & 113111 & -1.636646 & -2.036 & -0.00178 & -0.0382 & \\
\hline 1-m & & -1.65884 & & & & \\
\hline
\end{tabular}


Figure 13. Convergence Properties of Linear Symmetric \(H_{3}\) Energies With Respect to 21-Term Explicitly Correlated Wave Functions Describing Different Internuclear Dis-

\section*{TABLE VIII}

RESULTS OF 21-TERM EXPLICITLY CORRELATED WAVE FUNCTION CALCULATIONS ON THE LINEAR SYMMETRIC \(\mathrm{H}_{3}\) SYSTEM WITH DIFFERENT INTERNUCLEAR DISTANCES. THE TOTAL NUMBER OF INTEGRATION POINTS IS 86,346. THE ENERGIES ARE PLOTTED IN FIG. 13.
\begin{tabular}{ccc}
\hline\(R=R_{\mathrm{ab}}=R_{\mathrm{bc}}(\mathrm{a} . \mathrm{u})\). & \(E(\mathrm{a} . \mathrm{u})\). & \((P E / K E)\) \\
1.7650 & -1.636006 & -2.031 \\
1.7924 & -1.636646 & -2.036 \\
1.8198 & -1.636997 & -2.041 \\
\hline
\end{tabular}


Figure 14. Conyergence Properties of the Force Constant Associated With the "Symmetric Stretching Vibration" at the Saddle Point of the \(\mathrm{H}_{3}\) Energy Surface
sented in Figure 7 and Table \(V\) is about 4.5 hr . and that required to obtain the linear symmetric \(H_{3}\) results presented in Figures 11 and 12 and Table VII is about 3.5 hr . using the IBM \(360 / 65\). The time varies approximately linearly with the number of expansion terms in the trial wave function.

\section*{C. Discussion}

The integration point distribution functions \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\) given by Eq. [120] for the \(H_{3}\) case and the analogous distribution function involving only one center for the lithium case appear to have been well chosen when the average normalized variance \(\left\langle\sigma^{2} / I^{2}\right\rangle\) av is considered. When the parameters \(s_{1}=3.0\) and \(s_{2}=0.3\) (determined as shown in Figure 5 by minimizing the variance \(\left\langle\sigma^{2} / I^{2}\right\rangle_{\text {av }}\) using only terms \(1-3\) of the lithfum trial wave function) are used in the calculation involving all of the terms listed in Table \(I\), the variance \(\left\langle\sigma^{2} / I^{2}\right\rangle_{a v}\) is found to be equal to 1.91. And when the parameters \(s=s_{1}=s_{2}=1.54\) (determined as shown in Figure 6 by minimizing the variance \(\left\langle\sigma^{2} / I^{2}\right\rangle\) av using only the \(H_{3}\) full CI (1s) wave function of Table IV) are used in the calculation involving all of the terms listed in Table II, the variance \(\left\langle\sigma^{2} / I^{2}\right\rangle_{\mathrm{av}}\) is found to be 1.67. These values for the normalized variance are very good considering that the smallest value Cowdrey and Reeves \({ }^{68}\) obtained was 2.56 for a 3-dimensional 2-center integral using an integration point density function specially constructed for that integral. The convergence rate of the energies failed to be as rapid as the inverse of the number of points \(N^{-1}\) as predicted by the error analysis associated with open Diophantine integration. However, the rate of convergence was somewhat faster than \(N^{-\frac{1}{2}}\) in the lithium case and signifi-
cantly faster than \(N^{-\frac{1}{2}}\) in the \(H_{3}\) case. The correctness of the stated convergence rates can be verified by considering the most ill-conditioned case; the lithium atom calculation involving only the first expansion term. The greatest deviation of the energy \(E^{1}\) from the exact value beyond 150,000 integration points is \(E^{1}=7.411008\) when \(N=168,480\). The inequality
\[
\begin{equation*}
\frac{1}{N}<\left|\frac{E_{\text {analytic }}^{1}-E^{1}}{E_{\text {analytic }}^{1}}\right|<\frac{1}{N^{\frac{1}{2}}} \tag{134}
\end{equation*}
\]
indeed holds with the substitution of \(E_{\text {analytic }}^{1}\) from Table \(V\) as seen by the resulting numerical values,
\[
\begin{equation*}
0.000006<0.000196<0.002436 \tag{135}
\end{equation*}
\]
and thus verifies the above statements.
The complexity of the calculation appears to have an effect on the rate of convergence. The presence of both antisymmetrizers in Eq. [77], the use of symmetry orbitals in the \(\mathrm{H}_{3}\) case as opposed to atomic orbitals in the lithium case, and the use of a large number of expansion terms all contribute to the complexity of the calculations and also result in an increase in the rate of convergence of the energies. Indeed, 200,000 nine-dimensional integration points were required in the lithium calculations to achieve the same accuracy ( \(1 \mathrm{Kcal} / \mathrm{mole}\) ) as obtained using 80,000 integration points in the \(H_{3}\) calculations.

The results of the Monte Carlo calculation on the lithium atom using only term 1 of Table \(I\) is presented in Figure 9. A1though the rate of convergence is slightly more rapid than \(N^{-\frac{1}{2}}\) predicted by the associated error analysis, it is clearly slower than the rate of convergence of the
analogous calculation using open Diophantine integration.
As shown in Figure 7, the lithium atom energies plotted for each step in the extension of the trial wave function converges to the analytical energy to within 1 Kcal/mole, but only after 200,000 ninedimensional integration points have been used to evaluate the integrals.

The expansion terms 7-9 defined in Table I which simultaneously contain all possible interelectronic distances are found to contribute little to the reduction in the energy of the lithium atom. Referring to Table \(V\), it can be seen that the contribution to the energy of these terms is about 0.0002 a.u. or \(0.13 \mathrm{Kcal} / \mathrm{mole}\). The contribution of these terms to the total wave function, as measured by the amount of overlap with the total wave function (1isted in the last column of Table V), is seen to be the smallest of all the terms making up the wave function. Even when these terms are added to a trial wave function containing only terms 1-3 with no explicit correlation, their contribution is still relatively small as can be seen in Figure 8. The reduction in energy is not as great as that which originally resulted when the uncorrelated term 4* of Table I was added.

The ratio of potential and kinetic energies, referred to as ( \(P E / K E\) ) in Table V , is consistently close to -2.0 which indicates, according to the virial theorem, that the atomic orbital exponents are nearly optimum even for this relatively small basis.

Before discussing the linear symmetric \(H_{3}\) results, an example of a rather recent study will be described which was made in order to determine the barrier height of the reaction
\[
\mathrm{H}+\mathrm{H}_{2} \nLeftarrow \mathrm{H}_{3} \neq \mathrm{H}_{2}+\mathrm{H} .
\]

The barrier height is defined as the energy difference between the \(\mathrm{H}_{3}\) activated complex and the reactants \(\mathrm{H}+\mathrm{H}_{2}\),
\[
\begin{equation*}
E_{b}=E\left(\mathrm{H}_{3}^{\dagger}\right)-E\left(\mathrm{H}+\mathrm{H}_{2}\right), \tag{137}
\end{equation*}
\]
and is the lowest relative translational energy at which reaction can occur. The "activated complex" is the name given to the intermediate state when it possesses maximum energy with respect to the reaction path and minimum energy with respect to motions at right angles to the reaction path, and is usually designated by the symbol 中.

The experimental study described here was made by LeRoy, Ridley, and Quickert \({ }^{82}\) who used the spin states of the hydrogen nuclei to trace the progress of the chemical reaction. The term 'para-hydrogen' is used to describe the \(H_{2}\) molecule when the spins of the nuclei are antiparalle1; the term 'ortho-hydrogen' is used when the spins are parallel. Equation [137] can be written as
\[
\begin{equation*}
\mathrm{H}+\mathrm{p}-\mathrm{H}_{2}=\mathrm{o}-\mathrm{H}_{2}+\mathrm{H} \tag{138}
\end{equation*}
\]
to indicate the reaction describing the conversion of para-hydrogen to ortho-hydrogen. The rate of the above reaction is found to be directly proportional to the concentrations of the reactants:
\[
\begin{equation*}
\text { Rate }=k[\mathrm{H}]\left[\mathrm{p}-\mathrm{H}_{2}\right], \tag{139}
\end{equation*}
\]
where \(\mathcal{K}\) is the proportionality constant called the rate constant. The hydrogen atom concentration was found experimentally be measuring the temperature rise (increase in resistance) brought about by H-atom combination on a current-carrying wire. The para- and ortho-hydrogen
molecule concentrations were determined by measuring the area under the peaks produced by a gas chromatograph which had recieved injection samples from the reaction vessel.

The rate constant \(k\) was determined experimentally by means of the equation
\[
\begin{equation*}
\ln \frac{\left[\mathrm{p}-\mathrm{H}_{2}\right]_{0}}{\left[\mathrm{p}-\mathrm{H}_{2}\right]_{x_{0}}}=\frac{k}{f} \int_{0}^{x_{0}}[\mathrm{H}] d x \tag{140}
\end{equation*}
\]

The positions 0 and \(x_{0}\) refer to the ends of the chromatograph column and \(f\) is the linear flow rate of the carrier gas. The ratio on the left is related to the areas \(A\) under the chromatograph peaks by the equation
\[
\begin{equation*}
\frac{\left[\mathrm{p}-\mathrm{H}_{2}\right]_{0}}{\left[\mathrm{p}-\mathrm{H}_{2}\right]_{x_{0}}}=\left(A_{\mathrm{p}-\mathrm{H}_{2}} / A_{\mathrm{He}}\right)_{0} /\left(A_{\mathrm{p}-\mathrm{H}_{2}} / A_{\mathrm{He}}\right)_{x_{0}} \tag{141}
\end{equation*}
\]
where helium is used as the carrier gas.
The experimental rate constants \(k(T)\), determined at various temperatures and multiplied by \(4 / 3\) to convert from experimental net rates to theoretical rates, were then used in an absolute transition-state theory analysis to find the barrier height \(E_{b}\). According to this theory, the rate constant can be expressed-as
\[
\begin{equation*}
k(T)=\frac{\mathrm{k} T}{\hbar} \frac{Q_{\mathrm{Q}_{3}}}{Q_{\mathrm{p}-\mathrm{H}_{2}} Q_{\mathrm{H}}} e^{-E_{b} / R T} \tag{142}
\end{equation*}
\]
where \(Q_{\mathrm{p}-\mathrm{H}_{2}}\) and \(Q_{\mathrm{H}}\) are the complete partition functions for the reagents and \(Q_{H_{3}}\) is the analogous partition function for the complex except for the contribution from motion along the reaction coordinate. After the
appropriate substitutions are made for the partition functions and tunneling is considered, Eq. [142] can be written as
\[
\begin{equation*}
k(T)=A \frac{\Omega(T) \Gamma\left(T, \nu_{a} E_{b}\right)}{T^{\frac{1}{2}}} e^{-E_{0} / R T} \tag{143}
\end{equation*}
\]
where A is a constant, \(\Omega(T)\) is the harmonic oscillator partition function ratio, \(\Gamma\left(T, v_{a}, E_{b}\right)\) is a tunneling factor, and \(E_{0}\) is the energy difference between complex and reagents measured from the zero-point-energy levels. By iterating \(E_{0}\) and the parameters in \(\Gamma\), the best least squares fit of Eq. [143] to the experimental \(k(T)\) was obtained with a resulting value for \(E_{b}\) of \(9.2 \mathrm{Kcal} / \mathrm{mole}\). This value is approximately the average of the 7-11 Kcal/mole range of energies usually obtained by experiment.

Shavitt \({ }^{81}\) has recently made a careful study of the experimental data in light of results obtained from an extensive CI calculation \({ }^{46}\). He found that best agreement with the experimental data resulted when the theoretical energy surface was scaled down to a point where the barrier height is \(9.8 \mathrm{Kcal} / \mathrm{mole}\), corresponding to a total energy of the \(\mathrm{H}_{3}\) activated complex of -1.65884 a.u.

The results of the full CI (1s) preliminary test calculation on the \(\mathrm{H}_{3}\) activated complex presented in Figure 10 and Table VI are good evidence of the correctness of the computer programs when three centers are involved. The convergence of the calculated energy to the analytically obtained energy is well within 1 Kcal/mole using 80,000 integration points., The ratio of the potential energy to kinetic energy is near -2.0 which indicates, according to the virial theorem, that the atomic orbital exponents and internuclear distance are nearly optimum for describing the \(\mathrm{H}_{3}\) system while in the quasi-equilibrium-activated com-
plex state.
As shown in Figures 11 and 12 and tabulated in Table VII, the energies for the \(H_{3}\) activated complex fall far short of the estimated exact energy range. However, the energy from the 21-term explicitly correlated calculation used here was superior to the energies of the 27-term CI calculation of Michels and Harris \({ }^{83}\), the 34 -term CI calculation of Shavitt, et. al. \({ }^{46}\), and the 100 -term.CI calculation of Gianinetti, et. al. \({ }^{59}\) The energies of these calculations as well as those from superior CI calculations are presented in Table IX. The atomic orbital basis functions used in these various calculations are also indicated.

The trend that appears among the energies calculated here and those calculated by CI methods is that explicitly correlated wave functions require about \(1 / 3\) as many terms as do \(C I\) wave functions for attaining equivalent accuracy in the energy. This can be seen by noting the closeness of the energies of \(\Phi^{1-8 *}\) of Table VII containing 12 terms and the first two CI calculations of Table IX containing 34 and 27 terms. Likewise, the energy of \(\Phi^{1-14}\) containing 21 terms is near the energy of the 62-term CI calculation. It appears that a 100- to 200-term explicitly correlated wave function (equivalent to a 300 - to 600 -term \(C I\) wave function) would be capable of describing the true energy of the \(\mathrm{H}_{3}\) complex to within \(1 \mathrm{Kcal} / \mathrm{mole}\). It is important to note that because of the complexity of such a wave function, the number of integration points required for convergence of the integrals would be substantially reduced from the 80,000 points used here.

Terms that simultaneously contain all possible interelectronic coordinates such as term 14 of Table II appear to contribute more to the \(\mathrm{H}_{3}\)

TABLE IX

TOTAL ENERGIES AND FORCE CONSTANTS OF THE \(H_{3}\) ACTIVATED COMPLEX
\begin{tabular}{|c|c|c|c|c|}
\hline Reference & Basis \({ }^{\text {a }}\) & Numb of Te & \[
E(\mathrm{a}, \mathrm{u} .)
\] & K (a.u.) \\
\hline 83 & 1s, \(2 p_{z}\) & 27 & -1.6302 & 10.0 \\
\hline 46 & 1s, \(1 s^{\prime}\) & 34 & -1.6305 & 0.30 \\
\hline 59 & 1s, \(2 s, 2 p_{z}\) & 100 & -1.6343 & - \\
\hline This Work & Correlated & 21 & \(-1.6366\) & 0.385 \\
\hline 79 & 1s, \(2 p_{x, y, z}\) & 62 & -1.6387 & 0.296 \\
\hline 59 & \(1 s, 2 s, 2 p_{x, y, z}\) & 200 & -1.6473 & ------ \\
\hline 46 & 1s, 1s, \(2 p_{x, y, z}\) & 200 & -1.6521 & 0.31 \\
\hline 81 & & \(\infty\) & -1.6588 & \\
\hline
\end{tabular}
wave function than to the lithium wave function. As can be seen by examining the overlap of each term with the total wave function, term 14 contributes more to the wave function than the same term with no explicit correlation factor (term 1), but less than term 5 containing only the factor \(r_{12}\).

The ratio of the potential energy to the kinetic energy is seen in Table VII to deviate more from -2.0 for the 21 -term \(H_{3}\) calculation than in the other calculations reported here. The deviation indicates that either the atomic orbital exponents or the internuclear distance (or both) are not optimum for describing the \(\mathrm{H}_{3}\) activated complex using the expansion terms in Table II.

The convergence properties shown in Figure 13, of the linear symmetric \(\mathrm{H}_{3}\) energies associated with different internuclear distances indicate that convergence is not necessary in order to determine the optimum internuclear distance since the energies are well separated and do bot cross prior to convergence.

The convergence properties of the "symmetric stretching vibration" force constant are shown in Figure 14. Although convergence has not been achieved, the value of \(K\) is approximately 0.385 a.u. This is somewhat larger than 0.30 a.u. usually obtained using CI wave functions as indicated in Table IX. The cause of this difference is probably due to the use of non-optimum atomic orbital exponents. This is indicated since the potential to kinetic energy ratio ( \(P E / K E\) ) diverges from -2.0 as the Internuclear distances \(R=R_{\mathrm{ab}}=R_{\mathrm{bc}}\) approaches the optimum value (see Table VIII):

\section*{CHAPTER V}

\section*{CONCLUSION}

Trial wave functions containing explicit correlation due to the presence of interelectronic distance coordinates \(r_{i j}\) are used to make calculations on the \({ }^{2} S\) ground state of the lithium atom and the linear symmetric \({ }^{2} \Sigma_{u}^{+}\)state of the activated \(H_{3}\) complex. A type of quasirandom integration--open Diophantine integration--is used to evaluate the 9dimensional Hamiltonian matrix elements. A technique is developed which removes the \(r_{i j}^{-1}\) singularities over a manifold by including the singularities in the integration point density function.

The rate of convergence of the variationally found energies was found to be more rapid than \(N^{-\frac{1}{2}}\), where \(N\) is the number of integration points, but not as rapid as \(N^{-1}\) which is usually associated with open Diophantine integration. The convergence rate was found to increase as the complexity of the calculation increased.

When expansion terms simultaneously containing all possible interelectronic distances were added to the trial wave function for the lithium atom, the reduction in energy was relatively small; indicating that there is little or no advantage in being able to include this type of term in the calculation,

A 21-term explicitly correlated trial wave function used in the \(\mathrm{H}_{3}\) calculation resulted in a barrier height of 0.0378 ; a.u. for the \(\mathrm{H}_{2}+\mathrm{H} \neq \mathrm{H}+\mathrm{H}_{2}\) exchange reaction which was superior to an earlier \(100-\)
term configuration interaction (CI) calculation, but inferior to the 200-term CI calculations that have been reported. It appears that a 100- to 200-term explicitly correlated wave function (equivalent to a 300- to 600-term CI wave function) would be capable of describing the true energy of the \(H_{3}\) complex to within \(1 \mathrm{Kcal} / \mathrm{mole}\). Because of the complexity of such a wave function, the required number of integration points should be significantly less than the 80,000 points needed for the 21 -term wave function considered in this study.

There are three significant features associated with the approach used to solve atomic and molecular problems in this thesis. The first is that a minimum amount of computer storage is required since only two hermitian matrices, which are calculated directly, must be stored. These are the Hamiltonian and overlap matrices over the many-electron expansion terms of the trial wave function. Another feature is that the computation time increases only slightly faster than the number of expansion terms since it is unnecessary to reduce the matrix elements to one- and two-electron integrals over atomic orbitals. The third feature, due to the purely numerical methods used to evaluate the integrals, is that any reasonable type of basis functions may be used such as the new integral.transform functions of Somorgai \({ }^{84}\). Likewise any reasonable type of potentials may be considered such as those that appear in nuclear physics.

\section*{REFERENCES}
1. Roothaan, C. C. J., "A Study of Two-Center Integrals Useful in Ca1culations on Molecular Structure. I', J. Chem. Phys., 19, 1445 (1951).
2. Rudenberg, K., "A Study of Two-Center Integrals Useful in Calculations on Molecular Structure. II. The Two-Center Exchange Integrals", J. Chem. Phys., 19, 1459 (1951).
3. Rudenberg, K., Roothaan, C. C. J., and Jaunzemis, W., "Study of Two-Center Integrals Useful in Calculations on Molecular Structure. III. A Unified Treatment of the Hybrid, Coulomb, and "One=Electron Integrals", J. Chem. Phys., 24, 201 (1956).
4. Kotani, A. A., Ishiguro, E., and Kimura, T., Table of Molecular Integrals, Maruzen Company, Ltd., Tokyo, Japan, 1955.
5. Barnett, M. P., "The Evaluation of Molecular Integrals by the Zeta Function Expansion", Methods in Computational Physics, B. J. Adler, S. Fernbach, and M. Rotenberg, eds., Vol. 2, p. 95, Academic. Press, New York (1963).
6. Harris, F. E., and Michels, H. H., "The Evaluation of Molecular Integrals for Slater-Type Orbitals", Advan. Chem. Phys., 13, 205 (1967).
7. Christoffersen, R. E., and Ruedenberg, K., "Hybrid Integrals over Slater-Type Atomic Orbitals, J. Chem. Phys., 49, 4285 (1968).
8. Boys, S. F., "Electronic Wave Functions I, A General Method of Calculation for the Stationary States of Any Molecular System", Proc. Roy. Soc. (Iondon), Ser. A. 200, 542 (1950).
9. Boys, S. F., "The Integral Formulae for the Variational Solution of the Molecular Many-Electron Wave Equation in Terms of Gaussian Functions With Direct Electronic Correlation", Proc. Roy. Soc. (London), Ser. A. 258, 402 (1960).
10. Schwartz, M. E., and Schaad, L. J., "Ab initio Studies of Small Molecules Using 1s Gaussian Basis Functions. I. Exploratory Calculations", J. Chem. Phys. 46, 4112 (1967). Also see Ph.D. dissertation, Vanderbilt University, 1966.
11. Schwartz, M. E., and Schaad, L. J., "Ab initio Studies of Small Molecules Using 1s Gaussian Basis Functions. II. \(\mathrm{H}_{3}{ }^{+\prime \prime}\), J. Chem. Phys. 48, 5325 (1967).
12. Schwartz, M. E., and Schaad, L. J., "Ab initio Studies of Small Molecules Using ls Gaussian Basis Functions. III. LCGTO SCF MO Wavefunctions of the Three- and Four-Electron Systems \(\mathrm{He}_{2}{ }^{+}\), \(\mathrm{He}_{2}\), and Linear \(\mathrm{H}_{3}, \mathrm{H}_{4}{ }^{+}, \mathrm{H}_{4}{ }^{\prime \prime}, \mathrm{J}\). Chem. Phys. 48, 4709 (1968).
13. Streitwieser, Jr., A., Molecular Orbital Theory for Organic Chemists, John Wiley, New York (1961).
14. Pariser, R., and Parr, R. G., "Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules: I, II.", J. Chem. Phys. 21, 466, 767 (1953).
15. Pople, J. Ao, "Electron Interaction in Unsaturated Hydrocarbons" Trans. Faraday Soc., 49, 1375 (1953).
16. Poh1, H. A., Rein, R., and Appel, K., "Simplified SCF Method for Sigma-Bonded Systems. I. Physical Properties of Hydrogen Halides", J. Chem. Physics, 41, 3385 (1964).
17. Harris, F。E., and Pohl, H. A。, "Split-Shell Molecular Orbitals for Sigma-Bonded Systems: Hydrogen Halides", J. Chem. Phys., 42, 3648 (1965).
18. Poh1, H. Ao, and Raff, L. M., "Simplified SCF Calculations for Sigma-Bonded Systems. II. The Interhalogens", Int. J. Quant. Chem., 1, 577 (1967).
19. Mickish, D. J., and Pohl, H. A., "Simplified SCF Calculations for Sigma-Bonded Systems: Extension to Hydrogen Bonding", Sigma Molecular Orbital Theory, ed. O. Sinanoğlu and K. Wiberg, Yale University Press, New Haven, Connecticut (1970), p. 105.
20. Rein, R., and Harris, F. E., "Studies of Hydrogen-Bonded Systems I. The Electronic Structure and the Double Well Potential of the \(\mathrm{N}-\mathrm{H} \cdot{ }^{\circ} \mathrm{N}\) Hydrogen Bond of the Guanine-Cytosine Base Pair", J. Chem. Phys., 41, 3393 (1964).
21. Goodisman, Jo, "Numerical Calculation of \(\mathrm{H}_{2}{ }^{+}\)and \(\mathrm{H}_{2}\) Wavefunctions", J. Chem. Phys., 41, 3889 (1964).
22. Magnusson, E. A., and Zauli, C., "Evaluation of Molecular Integrals by a Numerical Method", Proc. Phys. Soc. (London), 78, 53 (1961).
23. Frost, A. A., "The Approximate Solution of Schrödinger Equations by a Least Squares Method", J. Chem. Phys. 10, 240 (1942).
24. Gimarc, B. M., and Frost, A. Ao, "Energy of the Lithium Atom by the Least-Squares Local Energy Method", J. Chem. Phys., 39, 1698 (1963).
25. Boys, S. F., and Rajagopal, P., "Quantum Calculations Which Are Accumulative in Accuracy, Unrestricted in Expansion Functions, and Economical in Computation", Adv. Quant. Chem., 2, 1 (1965).
26. Rajagopa1, P., "Convergent S. C. F。Wave Function and Properties of the Ammonia Molecule", Z, Naturforschg. 20a, 1557 (1965).
27. Rajagopa1, P., "S.C.F. Study of the \(\mathrm{OH}_{3}{ }^{+}\)Ion", Z. Naturforschg., 21a, 1211 (1966).
28. Rajagopal, P., "Ethylene Wave Functions in the S.C.F. Approximatior", Z. Naturforschg., 22a, 295 (1967).
29. Boys, S. F., and Handy, N. C., "A First Solution, for LiH, of a Molecular Transcorrelated Wave Equation by Means of Restricted Numerical Integration", Proc. Roy. Soc. A., 311, 309 (1969).
30. Conroy, H., "Potential Energy Surfaces for the \(\mathrm{H}_{3}{ }^{+}\)Molecule-Ion", J. Chem. Phys., 40, 603 (1964).
31. Conroy, H., "Molecular Schrödinger Equation. I. One-Electron Solutions", J. Chem. Phys., 41, 1327 (1964).
32. Conroy, H., "Molecular Schrödinger Equation. II. Monte Carlo Evaluation of Integrals", J. Chem. Phys., 41, 1331 (1964).
33. Conroy, H., "Molecular Schrödinger Equation. III, Calculation of Ground-State Energies by Extrapolation", J. Chem. Phys., 41, 1336 (1964).
34. Conroy, H., "Molecular Schrödinger Equation. IV. Results for Oneand Two-Electron Systems", J. Chem. Phys., 41, 1341 (1964).
35. Conroy, H., "Energy Surface for the Linear \(H_{3}\) System ", J. Chem. Phys., 42, 4047 (1965).
36. Conroy, H., "Molecular Schrödinger Equation. V. A Correlated Polyelectronic Wavefunction", J. Chem. Phys., 47, 912 (1967).
37. Conroy, \(H_{0}\), and Bruner, \(\mathrm{B}_{\mathrm{o}} \mathrm{L}_{0}\), "Molecular Schrödinger Equation. VI. Results for \(\mathrm{H}_{3}\) and Other Simple Systems", J. Chem. Phys., 47, 921 (1967).
38. Conroy, H., "Molecular Schrödinger Equation. VII. Properties of the Energy Variance Function: The Estimation of Energy Eigenvalues", J. Chem. Phys., 47, 930 (1967).
39. Conroy, H., "Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals", J. Chem. Phys., 47, 5307 (1967)。
40. Conroy, H., and Malli, G., "Molecular Schrödinger Equation. IX. Square and Rectangular States of \(\mathrm{H}_{4}\) and the Molecular Ions \(\mathrm{H}_{4}{ }^{3+}\) and \(\mathrm{H}_{4}{ }^{2+1}\), J. Chem. Phys., 50 , 5049 (1969).
41. Larsson, S., "Calculations on the \({ }^{2}\) S Ground State of the Lithium Atom Using Wave Functions of Hylleraas Type", Physical Review, 169, 49 (1968).
42. Eckart, C., "The Theory and Calculation of Screening Constants", Phys. Rev., 36, 878 (1930); Hylleraas, E. A., and Undheim, B., "Numerische Berechnung der 2 S-Terme von Ortho- und Par-Helium", Z. Physik, 65, 759 (1930).
43. Löwdin, \(\mathrm{P}_{0}\) O., "Correlation in Quantum Mechanics. I.", Advances in Chemical Physics, Vol. II, Prigogine, I., edit., Interscience Publishers, Inc., New York (1959).
44. McLean, A. D., Weiss, A., and Yoshimine, M., "Configuration Interaction in the Hydrogen Molecule-The Ground State", Revs. Mod. Phys., 32, 211 (1960).
45. Weiss, A. W., "Configuration Interaction in Simple Atomic Systems", Phys. Rev., 122, 1826 (1961).
46. Shavitt, I., et. al., "Potential-Energy Surface for \(\mathrm{H}_{3}\) ", J. Chem. Phys., 48, 2700 (1968).
47. Löwdin, P. O., "Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural SpinOrbitals, and Convergence Problems in the Method of Configurational Interaction", Phys. Rev., 97, 1474 (1955).
48. Gimarc, B. M., Cooney, W. A., and Parr, R. G., "Range of Electron Correlation in the Helium Atom", J. Chem. Phys., 42, 21 (1965).
49. Hylleraas, E., "Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-helium", Z. Physik, 54, 347 (1929).
50. James, H. M., and Coolidge, A. S., "On the Ground State of Lithium", Phys. Rev., 49, 688 (1936).
51. Gentner, R. F., and Burke, E. A., "Calculation of the \({ }^{1}\) S State of the Beryllium Atom in Hylleraas Coordinates", Phys. Rev., 176, 63 (1968).
52. Sims, J., "A Combined Configuration Interaction-Hylleraas Type Wave Function Study of the Ground State of the Beryllium Atom", Ph.D. Thesis, Dept. Chemical Physics, Indiana Univ., Bloomington, Indiana (1969).
53. Kolos, W., and Roothaan, C. C. J., "Correlated Orbitals for the Ground State of the Hydrogen Molecule", Revs. Mod. Phys., 32, 205 (1960).
54. Roothaan, C. C. J., and Weiss, A. W., "Correlated Orbitals for the Ground State of Helium Like Systems", Revs. Mod. Phys., 32, 194 (1960).
55. Coulson, C. A., and Neilson, A. H., "Electron Correlation in the Ground State of Helium", Proc. Phys. Soc., 78, 831, (1961).
56. Gilbert, T. L., "Interpretation of the Rapid Convergence of Correlated Wave Functions", Revs. Mod. Phys., 35, 491 (1963).
57. Hamermesh, M., Group Theory and its Application to Physical Problems, Addison-Wesley Pub. Co., Inc., Reading, Massachusetts (1962).
58. Löwdin. P. O., "Angular Momentum Wavefunctions Constructed by Projection Operators", Rev. Mod. Phys., 36, 966 (1964).
59. Gianinetti, E., et. al., "Configuration Interaction Study of \(H_{2}\) and \(H_{3}\) Systems", Intern. J. Quant, Chem., 3, 45 (1969).
60. Goodisman, J., "Numerical Calculation of \(\mathrm{H}_{2}\) and Hell \({ }^{+}\)Wavefunctions", J. Chem. Phys., 43, 3037 (1965).
61. Goodisman, J, and Secrest, D., "Use of Numerical Integration in the Computation of the Expectation Value of \(\hat{H}^{2}\) with Applications to \(\mathrm{H}_{2}{ }^{\prime \prime}\), J. Chem. Phys., 45, 1515 (1966).
62. Boys, S. F., "Some Bilinear Convergence Characteristics of the Solutions of Dissymmetric Secular Equations", Proc. Roy. Soc. A., 309, 195 (1969).
63. Boys, S. F., and Handy, N. C., "A Condition to Remove the Indeterminancy in Interelectronic Correlation Functions", Proc. Roy. Soc. A., 309, 209 (1969).
64. Boys, S. F., and Handy, N. C., "The Determination of Energies and Wavefunctions with Full Electronic Correlation", Proc. Roy. Soc. A., 310, 43 (1969).
65. Boys, S. F., and Handy, N. C., "A Calculation for the Energies and Wavefunctions for States of Neon with Full Electronic Correlation Accuracy", Proc. Roy. Soc. A., 310, 63 (1969).
66. Sobol, I. M., "Computation of Definite Integrals", Chapter II, The Monte Carlo Method, Yu. A. Shreider, ed., p. 115, Pergamon Press, Oxford (1966).
67. Ellis, D. E., "Application of Diophantine Integration to HartreeFock and Configuration Interaction Calculations", Int. J. Quant. Chem., II S, 35 (1968).
68. Cowdrey, D. R., and Reeves, C. M., "An Application of the Monte Carlo Method to the Evaluation of Some Molecular Integrals", Computer J., 6, 277 (1963).
69. Salvadori, M. Go, and Baron, M. L., Numerical Methods in Engineering, p. 6, Prentice-Hall, Inc., Englewood Cliffs, N. J., (1961),
70. Sobol, I. M., Ref. 66, p, 116.
71. IBM System/360 Operating System, FORTRAN IV Library--Mathematical and Service Subprograms, Form GC28-0589, Subroutine DATAN2, IBM Corporation, New York (1969).

72．Richtmeyer，R．D．，＂On the Evaluation of Definite Integrals and a Quasi－Monte Carlo Method Based on Properties of Algebraic Numbers＂，Report LA－1342，Los Alamos Scientific Laboratory， Los Alamos，N．M．（1952）．

73．Haselgrove，C．B．，＂A Method for Numerical Integration＂，Math． Comp．，15， 323 （1961）．

74．Hammersley，J。M．，and Handscomb，D．C．，Monte Carlo Methods， Methuen \＆Co．，Ltd．London（1964）．

75．Davis，P。Jo，and Rabinowitz，P．，Numerical Integration，Blaisdell Publishing Co．，Waltham，Mass．（1967）．

76．Lyness，J。No，and Gabriel，J。R。，＂Comment on a New Method for the Evaluation of Multidimensional Integrals＂，J。Chem。Phys．50， 565 （1969）．

77．IBM System／360 Scientific Subroutine Package，Programer＇s Manual， Form H20－0205，Subroutine RANDU，IBM Corporation，New York （1966）．

78．Michels，H．H．，VanDine，C．P．，and Elliott，P．，＂CEIG－Eigenvalues and Eigenvectors for（ \(H\) l \(-\lambda S\) ） \(\mathbb{C}=0^{\prime \prime}\) ，Quantum Chemistry Program Exchange，No．97，Department of Chemistry，Indiana University， Bloomington，Indiana；Michels，H．H．，and Elliott，P．，＂Eigen－ values and Eigenvectors of Large Matrices＂，ibid．，No． 93.

79．Riera，A．，and Linnett，J．W．，＂Ab initio Calculations on the \(\mathrm{H}_{3}\) Activated Complex＂，Theoret．chim．Acta（Ber1．），15， 181 （1969）．

80．Scherr，C．W．，Silverman，J．N．，and Matsen，F．A．，＂Perturbation Energy Coefficients and Ionization Potentials of the Ground State of Three－to Ten－Electron Isoelectronic Atomic Series．＂， Phys．Rev．，127． 830 （1962）．

81．Shavitt，I．，＂Correlation of Experimental Rate Constants of the Hydrogen Exchange Reactions with a Theoretical H3 Potential Surface，Using Transition－State Theory＂，Jo Chem．Physo，49， 4048 （1968）．

82．Le Roy，D．J．，Ridley，B．A．，and Quickert，K．A．，＂Kinetics of the Four Basic Thermal Three－Centre Exchange Reactions of the Hydrogen Isotopes＂，Discussions Faraday Soc．，44， 92 （1967）．

83．Michels，H．H．，and Harris，F．E．，＂Configuration－Interaction Study of the Linear \(H_{3}\) System＂，J．Chem．Phys．，48， 2371 （1968）．

84．Somarja1，R．L．，＂Integral Transform Functions．A New Class of Approximate Wave Functions＂，Chem．Phys．Letters，2， 399 （1968）．

\section*{APPENDIX A}

THE COMMUTATORS \(\left[\hat{L}_{z}, i_{i<j} r_{i j}{ }^{\nu}{ }_{i j}\right]\) AND
\[
\left[\hat{L}^{2}, i_{j j} r_{i j}{ }^{\nu_{i j}}\right]
\]

In this appendix a proof is presented that shows that the commutation relations
\[
\begin{equation*}
\left[\hat{L}_{z},{ }_{i=j}^{N} r_{i j}{ }^{V_{i j}}\right]=0 \text { and }\left[\hat{L}^{2},{ }_{i \frac{\pi}{\pi} j}^{N} r_{i j}{ }^{\nu_{i j}}\right]=0, \tag{A,1}
\end{equation*}
\]
hold for any number of electrons. By definition the total angular momentum operator \(\hat{\mathbb{L}}\) is the sum of the one-electron angular momentum operators of all. \(N\) electrons:
\[
\begin{equation*}
\hat{\overrightarrow{\mathrm{L}}}={ }_{t=1}^{N} \hat{\overrightarrow{\mathrm{~L}}}_{t} . \tag{A.2}
\end{equation*}
\]

The \(z\)-component of \(\hat{\vec{L}}\) is
\[
\begin{equation*}
\hat{L}_{z}=\sum_{t} \hat{L}_{z_{t}}, \tag{A,3}
\end{equation*}
\]
with analogous relations for \(\hat{L}_{x}\) and \(\hat{L}_{y}\). The square of the total angular momentum operator is
\[
\begin{align*}
\hat{L}^{2} & =\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} \\
& =\left(\sum_{t} \hat{L}_{x_{t}}\right)^{2}+\left(\sum_{t} \hat{L}_{y_{t}}\right)^{2}+\left(\sum_{t} \hat{L}_{z_{t}}\right)^{2} . \tag{A.4}
\end{align*}
\]

The proof begins with the use of the commutation relation,
\[
\begin{equation*}
\left[\hat{L}_{z_{t}}, F\right] G=G \hat{L}_{z_{t}} F \tag{A.5}
\end{equation*}
\]
where \(F\) and \(G\) can be any function and the operator \(\hat{L}_{x_{t}}\) in Cartesian coordinates is
\[
\begin{equation*}
\hat{L}_{z_{t}}=\frac{1}{i}\left(x_{t} \frac{\partial}{\partial y_{t}}-y_{t} \frac{\partial}{\partial x_{t}}\right) \tag{A.6}
\end{equation*}
\]

Again, analogous relations hold for the operators \(\hat{L}_{x_{t}}\) and \(\hat{L}_{y_{t}}\). Taking \(F=i_{i j} r_{i j}{ }^{\nu_{i j}}\) and \(G\) to be the remaining portion of a product wave function, it will first be shown that
\[
\begin{equation*}
\sum_{t}\left[\hat{L}_{z_{t}}, F\right] G=\left[\hat{L}_{z}, F\right] G=0 . \tag{A.7}
\end{equation*}
\]

It is convenient to factor from \(F\) parts which depend on the coordinate \(r_{t}:\)
\[
F=F_{i, j \neq t} F_{t}=F_{i, j \neq t}{\underset{i=t-1}{=1} r_{i t}}_{v_{i t}}^{\underset{j=t+1}{N} r_{t j}}{ }_{t j}^{v^{\prime}} \text {. } \quad[\mathrm{A}, 8]
\]

The two product terms in Eq. [A.8] will be referred to as \(F_{t 1}\) and \(F_{t 2}\), respectively allowing \(F\) to be written as the product
\[
\begin{equation*}
F=F_{i, j \neq t} F_{t 1} F_{t 2} . \tag{A.9}
\end{equation*}
\]

Using this notation, the commutator involving \(\hat{L}_{z_{t}}\) is
\[
\begin{align*}
{\left[\hat{L}_{z_{t}}, F\right] G=} & G \hat{L}_{z_{t}} F \\
= & \frac{1}{i} F_{i, j \neq t} G\left[x_{t}\left(F_{t 1} \frac{\partial F_{t 2}}{\partial y_{t}}+\frac{\partial F_{t 1}}{\partial y_{t}} F_{t 2}\right)\right.  \tag{A.10}\\
& \left.-y_{t}\left(F_{t 1} \frac{\partial F_{t 2}}{\partial x_{t}}+\frac{\partial F_{t 1}}{\partial x_{t}} F_{t 2}\right)\right]
\end{align*}
\]

The required partial derivatives of \(F_{t 1}\) and \(F_{t 2}\) are found to be
\[
\begin{align*}
& \frac{\partial F_{t 1}}{\partial x_{t}}=F_{t 1}{ }_{u=1}^{t-1} v_{u t} r_{u t}{ }^{v_{u t}-3}\left(x_{t}-x_{u}\right) \\
& \frac{\partial F_{t 1}}{\partial y_{t}}=F_{t 1}{ }_{u=1}^{t-1} v_{u t} r_{u t} v_{u t-3}\left(y_{t}-y_{u}\right) \\
& \frac{\partial F_{t 2}}{\partial x_{t}}=F_{t 2} \sum_{u=t+1}^{N} v_{t u} r_{t u} v_{t u-3}\left(x_{t}-x_{u}\right)  \tag{A.11}\\
& \frac{\partial F_{t 2}}{\partial y_{t}}=F_{t 2} \sum_{u=t+1}^{N} v_{t u} r_{t u} v_{t u}-3\left(y_{t}-y_{u}\right)
\end{align*}
\]

After substitution of these derivatives into the expression for the commutator and summing over all electrons, the result is
\(\sum_{t}\left[\hat{L}_{z_{t}}, F\right] G=\left[\hat{L}_{z}, F\right] G\)
[A.12]


Rewriting the second sum so that it has the same structure as the first sum, one has
\[
\begin{equation*}
-\sum_{t=1}^{N}{\underset{u}{E}=1}_{t-1}^{v_{u t}} r_{u t} v_{u t-3}\left(y_{u} x_{t}-y_{t} x_{u}\right) \tag{A.13}
\end{equation*}
\]

By interchanging subscript names in the second sum and noticing that both sums are over all possible subscripts, the two sums are seen to cancel giving
\[
\begin{equation*}
\left[\hat{L}_{z}, F\right] G=0, \tag{A.14}
\end{equation*}
\]
which concludes the first part of the proof. By the use of the definition of a commutator, the commutator involving \(\hat{L}_{z}{ }^{2}\) can be written in terms of commutators involving \(\hat{L}_{z}\) :
\[
\begin{equation*}
\left[\hat{L}_{z}^{2}, F\right] G=\hat{L}_{z}\left[\hat{L}_{z}, F\right] G+\left[\hat{L}_{z}, F\right] \hat{L}_{z} G \tag{A.15}
\end{equation*}
\]

The first term on the right is clearly zero from the discussion above and the second term is also seen to be zero if a new. function \(G^{\prime}=\hat{L}_{z}{ }^{G}\). is used in the place of \(G\). The arguments above can be repeated with the angular momentum components \(\hat{L}_{x}\) and \(\hat{L}_{y}\) leading to analogous relationships, The commutator involving the square of the total angular momentum operator can now be written
\[
\begin{equation*}
\left[\hat{\bar{I}}^{2}, F\right] G=\left[\hat{L}_{x}{ }^{2}, F\right] G+\left[\hat{L}_{y}^{2}, F\right] G+\left[\hat{L}_{z}{ }^{2}, F\right] G=0 \tag{A.16}
\end{equation*}
\]
and is zero since the commutator involving each component is zero.

\section*{APPENDIX B}

\section*{ACTION OF THE KINETIC ENERGY OPERATOR ON THE GENERAL PRODUCT WAVE FUNCTION}

The explicit evaluation of the kinetic energy operator acting on a general product wave function of the type used in this study is carried out in this appendix. Using the notation of Chapter III, Section \(A\), the term under consideration can be written symbolically as:
\[
\begin{align*}
\mathrm{T} & =-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)\left(i j k i^{\prime} j^{\prime} k^{\prime}\right)  \tag{B,I}\\
& =-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)(i j k g)
\end{align*}
\]
where, for simplicity, the symbol \(g\) is used for the explicit correlation product:
\[
\begin{equation*}
g=r_{12}^{i^{\prime}} r_{13}^{j^{\prime}} r_{23}^{k^{\prime}} \equiv i^{\prime} j^{\prime} k^{\prime} \tag{B.2}
\end{equation*}
\]

According to the theorems of vector calculus, Eq. [B.1] can be expanded as follows:
\[
\begin{align*}
\mathrm{T}= & -\frac{1}{2}\left\{\left[\left(\nabla_{1}{ }^{2} i\right) j k+i\left(\nabla_{2}{ }^{2} j\right) k+i j\left(\nabla_{3}{ }^{2} k\right)\right] g\right. \\
& +2\left[\left(\vec{\nabla}_{1} i \cdot \vec{\nabla}_{1} g\right) j k+i\left(\vec{\nabla}_{2} j \cdot \vec{\nabla}_{2} g\right) k+i j\left(\vec{\nabla}_{3} k \cdot \vec{\nabla}_{3} g\right)\right]  \tag{B.3}\\
& \left.+i j k\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right) g\right\} .
\end{align*}
\]

The orbitals \(i, j\), and \(k\) are assumed to be Slater s-type atomic orbitals (defined by Eq. [37] with \(l=m=0\) ) or a linear combination of such orbitals. The gradient of a Slater s-type atomic orbital is easily found to be
\[
\begin{equation*}
\vec{\nabla}_{t} x_{n 00}(t)=\vec{\nabla}_{t}\left(N r_{t}^{n-1} e^{-\zeta r} t\right)=\left(\frac{n-1}{r_{t}^{2}}-\frac{\zeta}{r_{t}} \vec{r}_{t} x_{n 00}(t)\right. \tag{B.4}
\end{equation*}
\]
and the Laplacian is found to be
\[
\begin{equation*}
\nabla_{t}^{2} x_{n 00}(t)=\left(\zeta^{2}-2 \zeta n / r_{t}+n(n-1) / r_{t}^{2}\right) x_{n 00}(t) \tag{B,5}
\end{equation*}
\]
- The remaining terms in Eq. [B.3] involve the gradient and Laplacian of the function \(g\). These are easily determined by again applying the theorems of vector calculus and are found to be:
\[
\begin{align*}
& \vec{\nabla}_{1} g=\left[\left(\vec{\nabla}_{1} r_{12}^{i^{\prime}}\right) r_{13}^{j^{\prime}}+r_{12}^{i^{\prime}}\left(\vec{\nabla}_{1} r_{13}^{j^{\prime}}\right)\right] r_{23}^{k^{\prime}}, \\
& \vec{\nabla}_{2} g=\left[-\left(\vec{\nabla}_{1} r_{12}^{i^{\prime}}\right) r_{23}^{k^{\prime}}+r_{12}^{i^{\prime}}\left(\vec{\nabla}_{2} r_{23}^{k^{\prime}}\right)\right] r_{13}^{j^{\prime}} \\
& \vec{\nabla}_{3} g=\left[-\left(\vec{\nabla}_{1} r_{13}^{r^{\prime}}\right) r_{23}^{k^{\prime}}-r_{13}^{j^{\prime}}\left(\vec{\nabla}_{2} r_{23}^{k^{\prime}}\right)\right] r_{12}^{k^{\prime}}, \\
& \nabla_{1}{ }^{2} g=\left[\left(\nabla_{1}{ }^{2} r_{12}^{i^{\prime}}\right) r_{13}^{j^{\prime}}+2\left(\vec{\nabla}_{1} r_{12}^{i^{\prime}}\right) \cdot\left(\vec{\nabla}_{1} r_{13}^{j^{\prime}}\right)+r_{12}^{i^{\prime}}\left(\nabla_{1}{ }^{2} r_{13}^{j^{\prime}}\right)\right] r_{23}^{k^{\prime}},  \tag{B.6}\\
& \nabla_{2}{ }^{2} g=\left[\left(\nabla_{1}{ }^{2} r_{12}^{i^{\prime}}\right) r_{23}^{k^{\prime}}-2\left(\vec{\nabla}_{1} r_{12}^{i \prime}\right) \cdot\left(\vec{\nabla}_{2} r_{23}^{k^{\prime}}\right)+r_{12}^{i^{\prime}}\left(\nabla_{2}{ }^{2} r_{23}^{k^{\prime}}\right)\right] r_{13}^{j^{\prime}}, \\
& \nabla_{3}{ }^{2} g=\left[\left(\nabla_{k}{ }^{2} r_{13}^{i^{\prime}}\right) r_{23}^{k^{\prime}}+2\left(\vec{\nabla}_{1} r_{13}^{j^{\prime}}\right) \cdot\left(\vec{\nabla}_{2} r_{23}^{k^{\prime}}\right)+r_{13}^{j^{\prime}}\left(\nabla_{2}{ }^{2} r_{23}^{k^{\prime}}\right)\right] r_{12}^{i^{\prime}},
\end{align*}
\]

The gradient and Laplacian of the general interelectronic term \(r_{i j}{ }_{i j}\) remain to be determined. These are most easily calculated using rec-
tangular coordinates and are given by
\[
\begin{equation*}
\vec{\nabla}_{i} r_{i j}{ }^{\nu_{i j}}=-\vec{\nabla}_{j} r_{i j}{ }^{\nu_{i j}}=\nu_{i j}\left(\vec{r}_{i}-\vec{r}_{j}\right) r_{i j}{ }^{\nu_{i j}-2}, \tag{B,7}
\end{equation*}
\]
and
\[
\nabla_{i}{ }^{2}{ }_{i j}{ }^{v_{i j}}=\nabla_{j}{ }^{2} r_{i j}{ }^{v_{i j}}=v_{i j}\left(v_{i, j}+1\right) r_{i j}{ }^{v_{i j-2}} \quad[B .8]
\]

Equation [B.7] shows that the gradients with respect to the coordinates of electrons \(i\) and \(j\) of the term \(r_{i j}{ }^{\nu_{i j}}\) differ only in sign. This is the source of the negative signs appearing in Eq. [B.6], since a change of sign is made when some of the individual terms are rewritten so that the gradient is always with respect to the \(i\) th electron's coordinates of the \(r_{i j}{ }^{\nu}{ }_{i j}\) term.

\section*{APPENDIX C}
\[
\text { NORMALIZATION OF DENSITY FUNCTION } D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)
\]

In this appendix the normalization of the general 3-center, 3-electron point selection density function \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\), given by Eq. [120], is established. Thus, it is to be shown that
\[
\begin{equation*}
\int D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) d v_{1} d v_{2} d v_{3}=1 \tag{c.1}
\end{equation*}
\]

Factoring a term of the density function into three separate density functions as indicated by Eq. [120], the general term of the normalizaw. tion integral becomes
\[
\begin{equation*}
I=\int D_{1}\left(r_{1 \gamma^{\prime}}\right) D_{2}\left(\vec{r}_{1 \gamma^{\prime}}, \vec{r}_{2 \gamma^{\prime}}\right) D_{1}\left(r_{3 \gamma^{\prime \prime}}\right) d v_{1} d v_{2} d v_{3} . \tag{C.2}
\end{equation*}
\]

The integration over the coordinates of electron 3 can be performed independently. It is easily shown that the density function \(D_{1}\) is norma1ized:
\[
D_{1}\left(r_{3 \gamma^{\prime \prime}}\right) d v_{3}=1
\]

The normalization integral term can now be written
\[
I=\int D_{1}\left(r_{1 \gamma}\right) D_{2}\left(\vec{r}_{1 \gamma}, \vec{r}_{2 \gamma}\right) d v_{1} d v_{2},
\]
and explicitly
\[
\begin{equation*}
I=\delta \frac{s_{1}^{2}}{4 \pi} \frac{e^{-s_{1} r_{1} \gamma}}{r_{1 \gamma}} \frac{r_{2 \gamma^{\prime}}}{1-\exp \left(s_{2} r_{2 \gamma^{\prime}}\right)} \frac{s_{2}^{2}}{4 \pi}\left(\rho \frac{e^{-s_{2} r_{2 \gamma^{\prime}}}}{r_{2 \gamma^{\prime}}} \frac{1}{r_{12}} d v_{2}\right) d v_{1} . \tag{C,3}
\end{equation*}
\]

The integral
\[
\begin{equation*}
K\left(\vec{r}_{1 \gamma}\right)=\int \frac{e^{-s_{2} r_{2 \gamma^{\prime}}}}{r_{2 \gamma^{\prime}}} \frac{1}{r_{12}} d v_{2} \tag{C.4}
\end{equation*}
\]
over the coordinates of electron 2 will be considered first. The interelectronic distance \(r_{12}\) is conveniently defined in terms of vectors originating from center \(\gamma^{\prime}\) :
\[
\begin{equation*}
r_{12}=\left|\vec{r}_{1 \gamma},-\vec{r}_{2 \gamma^{\prime}}\right| . \tag{C.5}
\end{equation*}
\]

The term \(r_{12}\) can be expanded in terms of the associated \(L\) engendre polynomials
\(\frac{1}{r_{12}}={ }_{k} \sum_{=0}^{\infty} \underset{m=-k}{\stackrel{k}{\Sigma}} \frac{(k-|m|)!}{(k+|m|)!} \frac{r_{<}^{k}}{r>}{ }_{r+1}^{k+1} P_{k}^{|m|}\left(\cos \theta_{1}\right) P_{k}^{|m|}\left(\cos \theta_{2}\right) e^{i m\left(\phi_{1}-\phi_{2}\right)}\),
where \(r_{1}, \theta_{1}, \phi_{1}\) and \(r_{2}, \theta_{2}, \phi_{2}\) are the spherical coordinates of the vectors \(\overrightarrow{\mathrm{r}}_{1 \gamma}\), and \(\overrightarrow{\mathrm{r}}_{2 \gamma}\), respectively, and \(r_{>}, r_{<}\)are the larger and smaller of the quantities \(r_{1}\) and \(r_{2}\). Since the remaining portion of the integrand in Eq. [C.4] is independent of angles, and
\[
\begin{align*}
& \int_{0}^{2 \pi} e^{i m \phi} d \phi=2 \pi \delta_{m 0} \\
& \int_{0}^{\pi} P_{\mathcal{K}}^{0}(\cos \theta) \sin \theta d \theta=2 \delta_{k 0^{\circ}} \tag{C.7}
\end{align*}
\]
the substitution of the expansion for \(r_{12}^{-1}\) into Eq. [C.4] and subsequent
integration over angles yields
\[
\begin{aligned}
K & =4 \pi\left(\frac{1}{r_{1 \gamma^{\prime}}}{ }_{\rho_{1 \gamma^{\prime}}}^{r_{0}} r_{2 \gamma^{\prime}} e^{-s} 2^{r_{2 \gamma^{\prime}}} d r_{2 \gamma^{\prime}}+\int_{r_{1 \gamma^{\prime}}}^{\infty} e^{-s_{2} r_{2 \gamma^{\prime}}} d r_{2 \gamma^{\prime}}\right) \\
& =\frac{4 \pi}{s_{2}^{2} r_{1 \gamma^{\prime}}}\left(1-e^{-8} 2_{2}^{r_{1 \gamma^{\prime}}}\right) .
\end{aligned}
\]

Inserting this expression for \(K\) into the normalization integral [C.3], the result is simply
\[
\begin{equation*}
I=\int \frac{s_{1}^{2}}{4 \pi} \frac{e^{-s_{1} r_{1 \gamma}}}{r_{1 \gamma}} d v_{1}=\int D_{1}\left(r_{1 \gamma}\right) d v_{1}=1 \tag{0.9}
\end{equation*}
\]
since the density function \(D_{1}\) is normalized.
The normalization of a general term of the point selection density function \(D\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)\) has been established and is completely independent of the location of the various centers. Since there are 162 terms, the factor (162) \({ }^{-1}\) is required to normalize the complete density function, and Eq. [120] follows.

APPENDIX D

PROGRAM LISTINGS AND DESCRIPTIONS

The computer programs (main and subroutines) used to make the \(H_{3}\) calculations are listed in this appendix. The function of each routine is described in detail. Sample input and output are also given.

MAIN The main program supervises input and output, generates the integration points, calculates the integrals, and supervised the solution of the eigenvalue: problem. All arrays are singly subscripted except those used as input to the routines acquired from the Quantum Chemistry Program Exchange. The equations and appendices referred to in the programs are those appearing in this thesis. The description of the input deck follows:
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Columns \\
\hline & I/O Card & \\
\hline DTAIL & (Logical) TRUE--all matrices are printed, FALSE--Hamiltonian matrix is printed & 10-14 \\
\hline \multirow[t]{2}{*}{PINCH} & (Logical) TRUE--reproduce parameter cards and write matrices, eigenvector, and energy in 1P4D20.12 format using FORTRAN logical output file 7. & 50-54 \\
\hline & Expansion Term Cards & \\
\hline CDNO & (Integer) Expansion term number \(\leq 26: \Delta_{n}\) & 1-3 \\
\hline \multirow[t]{2}{*}{SOINDX} & (Integer) Symmetry orbital indices \(\leq 4: \phi_{i}\) & 11-20 \\
\hline & \[
\phi_{j}
\] & 21-30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \(\phi_{\mathcal{K}}\) & 31-40 \\
\hline EEXP & \[
\begin{aligned}
& \text { (Integer) Interelectronic distance exponent } \\
& \leq 2: r_{12}^{i^{\prime}} \\
& r^{\prime \prime} \\
& r^{\prime \prime} \\
& k_{23}^{\prime}
\end{aligned}
\] & \(51-55\)
\(56-60\)
\(61-65\) \\
\hline & Separation Card & \\
\hline \multirow[t]{2}{*}{999} & Indicates end of expansion terms & 1-3 \\
\hline & Atomic Orbital Exponents & \\
\hline J & (Integer) Sequence number \(\leq 3\) & 1-3 \\
\hline FILIL & (Alphabetic) Description or label & 4-8 \\
\hline ZZ & (Real) Exponent & 21-30 \\
\hline & Separation Card & \\
\hline \multirow[t]{2}{*}{\[
\grave{999}
\]} & Indicates end of exponents & 1-3 \\
\hline & Integration Parameters & \\
\hline SETN 9 & ```
(Integer) Closed Diophantine integration point
set \leq 7
``` & 5-6 \\
\hline IEND & (Integer) Number of last cycle to be processed & 13-14 \\
\hline PTSELT & (Integer) Point selection technique 1--closed Diophantine integration 2--Monte Carlo integration 3--open Diophantine integration & 17-18 \\
\hline SCHEME & \begin{tabular}{l}
(Integer) Integration point distribution 1--single distribution (Eq. [120]) used for all integrals \\
2--Eq. [120] used for \(r_{i j}^{-1}\) integrals; same distribution, but with \(D_{2}\) replaced by \(D_{1}\), used for all other integrals
\end{tabular} & 19-20 \\
\hline RAIDS & (Real) Rejects points that lie closer than this distance from a nucleus & 21-30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NOPTS9 & \begin{tabular}{l}
(Integer) Number of integration points (\(N\)) \\
NOPTS9 \(<0 \rightarrow N=\mid\) NOPTS9 \(\mid\) \\
NOPTS9 \(=0 \rightarrow N=\) smallest multiple of 162 greater than the number of points implied by the closed Diophantine integration set requested \\
NOPTS9 \(>0 \rightarrow N=\) smallest multiple of 162 greater than NOPTS9
\end{tabular} & 41-45 \\
\hline IBEGIN & (Integer) Number of first cycle to be processed, may be omitted if IBEGIN \(=1\) is desired. If IBEGIN \(\neq 1\), then data from last cycle must follow next card (see I/O card 'PUNCH' parameter). & 52-53 \\
\hline R12IDS & (Real) Refects points that lie closer than this distance from another electron & 61-70 \\
\hline ROOTS & ```
(Integer) Number of eigenvalues desired (N)
 ROOTS = O T N = 5
 ROOTS \geq5->N=5
 Otherwise N= ROOTS
``` & 77-78 \\
\hline NROUT & ```
(Integer) Eigenvalue routine desired
    NROUT = 1 }->\mathrm{ GIVENS (Listed here as dummy)
    NROUT = 2 -> NESBET
``` & 79-80 \\
\hline & Internuclear Distance and Distribution Function Parameter & \\
\hline RR23 & (Real) Internuclear separation & 1-10 \\
\hline SSS & (Real) Distribution function parameter \(s=s_{1}=s_{2}\) & 11-20 \\
\hline
\end{tabular}

LAPSI This subroutine calculates the numerical value of
\[
T=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)\left(i j k i^{\prime} j^{\prime} k^{\prime}\right)
\]
as indicated in Appendix B.

DRANDU This subroutine is a double precision version of RANDU distributed by IBM \(^{77}\).

CEIG This subroutine, slightly modified for use on the IBM/360, was
obtained from the \(Q C P E^{78}\). It transforms the original eigenvalue problem from the form \((H-E S) C=0\) to the form \(\left(H^{\prime}-E \mathbb{1}\right) C^{\prime}=0\).

NESBET This routine is also from the QCPE \({ }^{78}\), and is slightly modifled from the original version for use on the IBM/360. It solves the eigenvalue problem after transformation by CEIG.

GIVENS This routine is a dummy form of the subroutine by the same name available from the QCPE.

DTRMNT This routine calculates the determinant of a matrix and is used to check the relation det \(|H-E \mathbb{S}|=0\).

OUT1 This routine writes out a linear array using an alphabetic literal to label the elements.

OUT2 This routine writes out a two-dimensional array using an alphabetic literal to label the elements. The number of rows and columns to be written can be specified and whether the matrix is to be written in transpose form.

OUT2S1 This routine is similar to OUT2 except that it handles twodimensional matrices that have been stored using a single subscript. The matrix may be stored by rows or columns.

ELAPSE This assembler language routine determines the time that has elapsed since it was last called. It is distributed by the Oklahoma State University Computer Center。

Sample input data to the programs is given in Table X. The resultIng output immediately follows the program listings. The meaning of the
symbols used in the output is indicated in the following list:
\[
\begin{aligned}
& \text { GG } \left.\quad-<\Delta_{n}\left|r_{12}^{-1}+r_{13}^{-1}+r_{23}^{-1}\right| \Delta_{m}\right\rangle \\
& \text { SS } \quad-\quad<\Delta_{n}\left|\Delta_{m}\right\rangle \\
& \text { KEKE } \left.\quad-\quad<\Delta_{n} \left\lvert\,-\frac{r_{2}}{(} \nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right.\right)\left|\Delta_{m}\right\rangle \\
& \text { NUCNUC }--<\Delta_{n}\left|\sum_{i}^{3} \sum_{\gamma}^{3} r_{i \gamma}\right| \Delta_{m}>
\end{aligned}
\]

The suffix ' \(V\) ' applied to the above symbols indicate the normalized varlances of these integrals, \(\sigma^{2} / I^{2}\) (see Eq。[88]). Additional symbols have the meanings:
\[
\begin{aligned}
& \text { AVE -- Average of variances } \\
& \text { VV } \quad-\quad \mathrm{GG}+\mathrm{NUCNUC}+\text { nucleus-nucleus } \\
& \text { repulsion energy } \\
& \text { HH } \quad-\mathrm{KEKE}+\mathrm{GG}+\mathrm{NUCNUC} \text { or }\left\langle\Delta_{n} \mid \hat{H} \Delta_{m}\right\rangle \\
& \text { COET -- Eigenvectors } C_{i} \\
& \text { E -- Eigenvalues } \\
& \mathrm{CCH} \quad-\quad\langle\Phi \mid \hat{H} \Phi\rangle=\sum_{i} \sum_{j} C_{i} C_{j} \text { (HH) }{ }_{i j} \\
& \text { CCKE -- <Ф| } \hat{T} \Phi\rangle=\sum_{i} \sum_{j} C_{i} C_{j} \text { (KEKE) }_{i j} \\
& \mathrm{CCV} \quad-\quad\langle\Phi \mid \hat{V} \Phi\rangle=\sum_{i, j} C_{i} C_{j}(\mathrm{VV})_{i j} \\
& \text { VRATIO -- CCV/CCKE } \\
& \text { OVRMAX -- Maximum of the }\left\langle\Phi \mid C_{n} \Delta_{n}\right\rangle \\
& \text { OVER }--\langle\Phi| C_{n} \Delta_{n}> \\
& \operatorname{CCS}--\langle\Phi \mid \Phi\rangle=\sum_{i, j} C_{i} C_{j}{ }^{(S S)_{i j}} \\
& \text { HESC -- (H - ES }) \text { C }
\end{aligned}
\]

DET \(\quad-\operatorname{det}|H-E S|\)
ETOTAL -- Eigenvalue + nucleus-nucleus repulsion energy.

OS/360 FORTRAN H
OPTIONS - NAME MAIN, OPT=02, LINECNT \(=60\), SDURCE, EBCDIC, NOLIST, NODECK IMPLICIT REAL*BAA-H,L,O-21
DIMENSICN A9(63), OVER(27,27), SUMR(3), A9SAVE(9), AA919) \(\times \times(9), 222(10)\),SS1 \(3781, G G(378), \mathrm{VV}(378)\), HH1 3781,HMAT 378\(),\) SHAT1 378), COET \((29,29)\), VEC (29,5),
E(27),CCKE(27), CCV(27),CCH(27), CCS(0378), E(27),CCKEL271,CCV(27),CCH(27),CCS103781,OVRMAX127)
VRATIO(27),HESC(27),DET(27),ETOTAL(27),HES(27,27), XXXX(3),YYYY(3),2Z2Z(3),ROC101,OT1(3), DT2(3), DT3(3)

REAL*B KEKE(378),NUCNUC(378),HU,LAMBDA,KBRA1,KBRA2,KBRA3, LAMBMU,NUCNUVI 378),KEKEVI 378, NDA1, NCAG,KETI(27), KET2(27),KET \(3(27), K E B R A 127), K E B R A 2(27), K E B R A 3(27)\), KET1JJ, KET2JJ, KET 3JJ, NDAS
REAL* 4 TIM
INTEGER CONOI27),SOINDX(B1),SETNG,ROOTS,P917,91,L,LP,TSUB,
\(\frac{1}{2}\) SUB,TIMEV,ROWSH,TIM9D,EEXP(81), SEQIX3,SEQINX,ELSEQIIB),
DIMENSICN M9(7), KPP (29)
LOGICAL NDTAIL, DTAIL, NPUNCH, PUNCH,LLINIT
COMMON /KEGRUP/SO(45),LSO(45), DSOX(45), DSOY(45),0SOZ(45), DR12X(4), DR13x(4), DR23x(4),R12E(4), LR12(4), DR12Y(4), DR13Y(4), DR23Y(4),R13E(4),LR13(4), DR122(4), DR132(4), DR232(4), R23E(4),LR23(4) MAXSO, MAXSO2, HALF
 ZCCKE/: CCKE"/,2CCV/: CCV'/,ZVRAT/:VRATIO'/,
2HESC/: HESC"/,2DET/: DET:/,ZETOT/PETOTAL'/
ZCCS/' CCS'/,ZOVER/9 OVER'\%
ZOVMAX/'OVRMAX•/,2SS/9 SS:/,2NUCNV/' NUCNUV:/, CONSTANTS FOR CONROY'S CLOSED DIOPHANTINE INTEGRATION CCCCCC

OATA M9/ \(20,3722,6044,9644,15014,20018,300261\),
9/ \(1,119,43,457,823,1003,1639\),
3, 437, 179,1677, 2443, 3029, 4821,
4; 773,1421,1723, 3215, 4043, 6443,
5, 937,1479,2173, 4039, 5035, 8015,
6,1219,1589,2423, 4827, 6031, 9671, ,
\(7,1503,2189,2489,5671,7067,11249\),
\(7,1503,2189,2489\),
\(8,1697,2191,3431\),
\(9485,8137,11249\),
8,
\(8,1697,2191,3431\),
\(9,1747,2783,3719,7277\),
8135,12989,
9071,14531/,
CCCCCC ELECTRON PERHUTATIONS in EQ. (120)
DATA ELSEQ/ \(1,2,3\),

\section*{\(1,2,3\),
\(1,3,2 ;\)
\(2,1,3\), \\ \(2.1,3\),
\(2.3,1\), \\ \(3,1,2 ;\)
\(3,2,1 /\)}

CLCCCC STARTING VALUES FIR EQ. (103)

CCCCCC ZZNDRINNIC ORBITAL NORMALIZATICN -EQ. (37)
CCCCCC OPEN OIOPHANTINE INTEGRATIDN CONSTANTS GIVEN IN TABLE III AA9(1)=DSQRT(101.00+0)

AA9(2)=DSORT(97.00+0)
\(A A 9(3)=D \operatorname{SRRT}(3.00+0)\)
\(A A 9(4)=D S O R T(13.0 D+C)\)
\(A A(5)=D S O R T(157.0 D+0)\)
\(A A 9(5)=D S Q R T(157.00+0)\)
\(A A 9(6)=D S S R T(29.0 D+0)\) \(A A 9(7)=0 S Q R T(127.00+0\) \(A A 9(B)=D \operatorname{SaRT}(47.0 D+0)\) AA9 (9) \(=\) DSQRTI \(167 \cdot 00+0\) MAXSO=15
MAXSO2
MAXCON \(=27\)
MXCON2=MAXCO
C. MAXSS=MAXCON* \(\quad\) MAXCCN +1\() / 2\)

MAXSS \(=378\)
MAXEXP \(=10\)
AXEXP \(=10\)
NOCNT \(R=3\)
PI=3.141592653589793
RTPII=1.0D+O/OSORTIPI
TKOPI \(=2.00+0 * P I\)
RT32 \(=0 \operatorname{DRT}(3.00+01 / 2.00+0\)
\(R T 3 I=1,00+0 / 05 Q R T(3.00+0)\)
\(S I X T H=1,00+0 / 6,00+0\)
SIXTH \(=1.00+0 / 6.00+0\)
HALF \(=1.00+0 / 2.0 D+0\)
NODENS 162
cccccc

\(02=H A L F\)
\(03=0.00+0-R T 31\)
REAO 5,9091
OTAIL, PUNCH
REAO(5,909) DTAIL
NDTAIL = \({ }^{\text {NOT. DTAIL }}\)
NPUNCH=- MOT. PUNCH
924 WRITEL6,9241 DTAIL, PUACH
FORMAT: DETAIL \(=\cdot\), L1, 20XPPUNCH \(=1\), L1
\(0037 \quad I=1 ; 7\)
\(1 S U B=(1-1) *\)
\(00 \quad 37 \mathrm{~J}=1.9\)
(A) (1SUB + J)=DFLOAT(P9(I, J))/OFLOAT(M9(I))
***)

CONFIGURATION INPUI
\(0030 \mathrm{~J}=1, \mathrm{MAXCON}\)
REAO(5,900, END=9000) CDNO(J), (SOINDX\{JSUB+11, \(1=1,31\),
FORMAT(\(13,7 x, 3110, T 51,315, T 1,10\) EXB \()\), \(1=1,3\), ABUFF
IF (PUNCH) WRITEI7,927) ABUFF
FORMAT(10a8)
IF (CDNDDA.EG.999) GO TO 32
30 CONTINUE
NOSS=NNK*(NNN+1)/2
WRITE(6,901) (J, \({ }^{(1)}\)
(EEXP \(((J-1) * 3+1), 1=1,31, j=1\), NAN \()\)

```

        1 T89,'R12',T102,'R13',T115,'R23',
        NOELEC=3
            IF (SOINOX(3).EE.O) NCELEC=2
            WRITEI6,9251 NOELEC 
    EXPONENTS
    906 FORMATI/*1',T16,'EXPONENT(S)',T37,'VALUE'/1
C READ INITIAL OREITAL EXPONENTS
OO 33 I=1,998
905 FORMAT(13,AB,T21,-4PD10.4,T1,10A8)
IF (PUNCH) WRITE(7, S27) ABUFF
IF (PUNCH) WRITE(7, G27)
22Z(J)=22*1.00-4
33 WRITE(6,908) I,J,FILL,2ZZ(J)
908 FORMATI: , 15,T16,12,AB,T33,1PD12.5
34 CONTINUE
221=222(1)
l
223=222(3)
2224=0.00+0-222
223M=0.00+0-223
TGZ21N=2000+0*221
TOL2ZN=2.0D+0*2L2
T0223N=4:00*0*
2222=222*222
2232=223*223
XNOR1=RTPII*ZZNOR(1,221)
XNOR2=RTP 11*22NOR(1,222)
C SET NUMBERS
1
904 FORMAT(4)12,6\times12,2\times212,T21,010.0,T41,15,T52,I2,
1 TF T61,010.0,T77,212;1,10AB)
IF IP
READ(5,902) RR23,SSS,ABUFF
902 FORMATI-4PD10.4,-2PO10.2,T1,10A81
IF (PUNCH) WRITE{7,927) ABUFF
RR23=RR23*1.OD-
SSS=SSS*1.0D-2
TORR23=2.0D+0*RR23
SSSM=0.00+0-SSS
S24PI=SSS*SSS/14.00+0
WRITE(6,903) RR23,5SS
903 FORMAT(/'O',T7,'R23',T29,:SSS',
cccccc
/'I,IPDI2.5,T24,012.5)
LLINIT=TRUE.
l I=0
1.I=I+1

```

60 TO 136
ROCII=R
IF (1.1T.10) GO TO 1 IF IMIT=.FALSE. IF INOPTS9) 26,27,28
NOPTS \(9=0-\) NOPTS9
26 KOPTS9 29
27 MOPTS9=(M91SETN9:/2/NODENS+1) *NODENS GO TO 29 MOPTS9=(NOPTSG/NDOENS +1) \# NODENS
CALL ELAPSE(TM90)

 9-D INTEGRATION OVER CONF IGURATIONS
cccccc
EOS. (B.71 AND (B.B)
LR12(1) \(=0.00+0\)
LR12(3) \(=6.00+0\)
LR13(1) \(=0.000\)
LR13(3) \(=6.00+0\)
LR23(1) \(=0.00+0\)
LR23(3) \(=6.00+0\)
DR12x(1) \(=0.00+0\)
DR13x(1) \(=0.00+0\)
DR23x(1:1) \(=0.00+0\)
DR12Y(1) \(=0.00+0\)
DR13Y(1)
DR13Y(1) \(=0.00+0\)
DRR2Y(1) \(=0.00+0\)
DR122(1) \(=0.00+0\)
DR132(1) \(=0.00+0\)
DR232(1) \(=0.00+0\)
R12E 11\()=1.00+0\)
R13E
R1)
R23E(1) \(=1.00+0\)
REJI=0
REJG=0
TSUR=1SETN9-1)*9
ccccce
IF (IBEGIN.LE.1) GO TO 89
IREPTX \(=1 B E G I N-1\)
NXT \(=1 R E P T X * H O P T S S\)
READ (5,2006) (\(66(1), 1=1\), NOSS)
READ (S.2006) (SS(I), I=1,NOSS)
READ(5,2006) (NUCNUC(i),I=1,NOSS)
READ(5,2006) (G6V(1), I=1, NOSS)
READ(5,2006) (SSV(I),
READ (5,2006) (KEKEV(I), \(1=1 ;\) NOSS)
\(\operatorname{READ}(5,2006)\) (NUCNUV(I), \(1=1\), NOSS)
REAC(5,2006 (COET(1.1) \& \(1=1\), NNN \()\)
MDAL \(=1.000+0\) JOFLOAT(NXT)
NDAS=NDA1
MDAG=NDAL
GO TO 25

\(S S V(1)=0.00+0\)

KEKEV(1) \(=0.00+0\)
NUCNUV (I)=0.0D+0
GGVII \(=0.00+0\)

90
GG(I)=0.0D+0
IREPTX \(X=0\)
I \(X=65549\)
NXT \(=0\)
60 IREPTX=IREPTX+1
WRITE \((6,912)\) NOPTSO, IEND, IREPTX,NTPTS, PTSELT, SCHEME, RAIDS, RI2IDS
912

 5X'TOTAL OF:, IT, P POINTS'/
5X'H1,I2, P PLINT SELECTION TECHNIQUE'.
5XI2,
 4 BXIHINIMUM R DISPLACEMENT SCHEMPDIO.3;
 5 BXPMINIMUM RL2 DISPLACEMENT \(=+010.3\);
 \(\mathrm{NX}=0\)
SE
N
N
 SEOINX \(=1\)
INTGND \(=1\)

 NC1 \(2=1\)
 \(72 \begin{aligned} & \text { NC } \\ & N X=N X+1 \\ & N X T\end{aligned}\)
 \(\mathrm{NXT}=\mathrm{NXT}+1\)
 AXTANXT+1
IF (PTSELT-2) \(48,50,52\)
CCCCCC GENERATE CONROY POINTS -- CLOSED DIOPHANTINE INTEGRATION
 \(48 \mathrm{XM}=\mathrm{DFLOAT}(\mathrm{NX})-\mathrm{D} .5 \mathrm{D}+0\)
 D0 \(49 J=1,9\)
\(x x x x M * A 91 T\)
 \(X X X=X M=A 9\) (\(T\) SUB \(+J\))
 IF \((x X X, G T .00 .50+0) \quad x \times x=x \times x-1,00+0\)

cccccc \({ }^{\text {GO to } 151}\) generate pseudo random numbers

50 DO \(51 \mathrm{~J}=1,9\)
CALL DRANDU(IX,IY,YFL)
\(1 X=1 Y\)
\(X X(J)=Y\)
\(51 \begin{aligned} & X X(J)=Y F L \\ & G O \\ & \text { TO } 151\end{aligned}\)
CCCCCC \({ }^{\text {GO TO }}\) GENERATE OPEN DIOPHANTINE INTEGRATION POINTS -- EQ. 1271
52 XH=DFLOAT(NXT)-C. \(5 D+0\)
00
\(x \times X=X M=1,9\)
\(\underset{\text { IF }}{x \times x \times x \times-D F L O A T(I D I N T(x x x))}\)
If \((x x x-G T=0.50+0) \quad x \times x=x \times x-1.00+0\)
\(x x(J)=2.00 \div 0 * D A B S(x x))\)
```

CCCCCC SELECT CENTER AND ELECTRON FOR EO. (120)
IF INTGO=2, REPLACE INTEGRATION POINT GENERATED BY D2 WITH
point generated by dl and uSE tO INTEGrate REMIIMING
MNTEGRALS (ALL INTEGRALS EXCEPT ELECT.-ELECT.
CCCCCC
cccccc
ccccc,
CCCCCC INTGO=2 POSSI BLE ONLY IF SCHEME=
151 IF IINTGNO.EO.2) GO TO 57 (O-- NOT USED IN THESIS
SEQIX3=3*SEGINX

```

ELNTHE

GO TO 42
57 ELNTHE 2
\(M C=W C 2\)
ELN=ELSEQ(SEQ \(1 \times 3-1)\)
GO TO 42
58 ELMTH=3
ELN=ELSEQ(SEQ1×31
60

\(\times 14 \times 3=\times X \times X(1)-X X X X(3)\)
\(X 24 \times 3=X X X X(2)-X X X X(3)\)
X2
Y
YIMY 3 -YYYY(1)-YYYY(3)
Y2MY3=YYYY(2)-YYYY(3)
21M22=2222(1)-2222(2)
\(211423=2222(1)-2222(3)\)
\(22 M 23=2222(2)-2222(3)\)
R122"(x1M2 \() * * 2+(Y 1 M Y 2) * * 2+(21 H 22) * * 2\)
R132=(X1Mx3)**2+(Y1MY3)**2+(21M23)**2
R23 \(2=(\times 2 \mathrm{NX3}) * * 2+(\mathrm{Y} 2 \mathrm{MY} 3) * * 2+(22 \mathrm{NZ3}) * * 2\)
\(R 12=0 \operatorname{SORT}(R 122)\)
\(R 13=D S O R T(R 132)\)
R13=DSQRT(R132)
R23=0SQRT(R232)
IF (R12.GT.R12IDS.AND.R13.GT.RI2IDS.AND.R23.GT.R12IDS) GO TO 93

IF (INT GNO.EQ.2) GO 10 157,110,4×A6,3110)
IF (INTGNO.EE.2) GO TO 157
60 TO 154
93 R12E(2)=R12
\(R 12 E(3)=R 122\)
\(R 13(2)=R 13\)
\(R 13 E\{2\}=R 13\)
\(R 13 E(3)=R 132\)
R23E(2)=R23
R23E
CCCCCC IF IINTGNO.EQ-21 GO TO 152
TEMP=162.00+0
(1)(DT2(1)*DA12) +DT3(1)*DB(2)*DT4(1)*DC(2)
+DT \(2(2) * D A(1)+D T 3(2) * D B(1)+0 T 4(2) * D C(1)) * D T 1(3) * R 13\)
\(\quad+D T 2(2) * D A(1)+D T 3(2) * O B(1)+D T 4(2) * D C(1)) * D T 1(3) * R 13\)
\(+(0 T 2(1) * D A(3)+D T 31) * D B(3)+D T 4(1) * D(3)\)
\(+D T 2(3) * D A(1)+D T 3(3) * D B(1)+0 T 4(3))\) OC \((1)) * D T 1(2) * R 12) * R 23\)

\(+(D T 2(2) * D A(3)+D T 3(2) * D B(3)+D T 4(2) * D C(3)\)
\(+D T 2(3) * D A(2)+O T 3(3) * D B(2)+D T 4(3) * D C(2)) * D T 1(1) * R 12 * R 13)\)

SRINDT=((R13+R12)*R2
DTT=R12*R13*R23*TEAP
DTTER12*R1
GO TO 159
CCCCCC DENSITY FUNCTION EQ. (120) HITH D2 REPLACED BY DI
CCCCCC ONLY REFERRED TO IN THES IS. NOT USED
152 DTT=27.OD+O/CDT1(1)*DT1(2)*DT1(3))
152 DTT=27.OD+0/(DT1(1)*0T1(2)*DT1(3))
OT=DTS(1)*DTS(2)*DT513)*DTT
IF ISCHEAE.NE.1.AND.INTGNO.EQ. 1) GO TO 153
SRIDT=(1SUMR(1)*DT5(2)+DTS(1)*SUMR(2))*DTS(3)

PS15=SOM1*SON2*SOL3*R12NP*R13LP*R23MP
SI 6*SOL1*SON2*SCA3*R12HP*R13LP*R23NP
KET \(1(J J)=01 *(P S I 1-P S I 2)+D 2 *(P S I 3-P S 14)+D 3 *(P S I 5-P S 16)\)

IF (SCHEME.NE. I.AMD.IMTGNO.EO.1) GO TO 134
ccccce
SEE APP ENDIX B
APSII \(\mathcal{L} A P S I\left(L, M_{1} N_{1} L P, K P, N P\right)\)

APSI \(3=L A P S I\left(N_{1} L, N_{1} A P_{P}, N P P L P\right)\)
LAPSIS=LAPSI(\(\left.M_{0} N_{0} L, A P, L P, M P\right)\)
LAPSIGOLAPSI(L; \(K, M, M P, L P ; N P)\)
KECRAI \(J J)=01 *(L A P S I 1-L A P S I 21+D 2 *(L A P S I 3-L A P S I 4)\)
\(\mathbf{1}^{1}\) KEDA2
1 . 1
 134 COATIMUE

001351101 , NAM
BRAI=KETIII
BRAZ \(=\) KETZII
BRA3-KET3(11)
IF (SCHEMEONE, A:ANO.INTGNO.EQ. 1) © 0 TO 149 KBRAZ=KEBRAZ(III)

149
I \(N D E X=J J=1 J J-11 / 2+11\)
KET1JJ=KETI(JJ)
KET 2JJJKET2(JJ)
KETJJJEKET3(JJ)
cecece
ERMP=(BRA)*KET \(1 J J\) +BRA 2 *KET2JJ+BRA \(3 * K E T 3 J J) * S I X T H\)
SK J=TEMPEDT

IF (INTGMO-ME I) GO TO 150
BEK J=TEMP \(=5 R 1\) HOT
GG(IMDEX)=GG(IMDEX) + BEKJ
GGY(INDEX)=GGY(IMDEX)+BEK M*BEKJ
IF ISCHEME.ME . 1 : GO TO 140
150 BKEKJIM (KERA1*

KEKEVIIMOEXI=KEK
BRIKJTTEMP SRIDT
WUCHUC (INDEX) ONUCHUC I IMOEX \()+\) BRIKJ
MUCMYY INDERI = MUCDUVS IMDEXI + BRIKJ*BRIKJ
148 CONTINUE
135 CONTINUE
I NTGMO \(=\) INTGAD +1
IF (IMTGMO.LE.SCHERE) GO TO 151

INTGNO=1
ccccce
FF (NX.GE.NOPTS9) GO TO 145

IF (NC3.LE. NOCNTR) GO TO 72
NC \(3=1\)
NC \(2=\mathrm{NC}\)
IF (NCZ.LE.NOCNTR) GO TO 72
NC2 \(2=1\)
NC \(2=1\)
(F (NCI.LE. NOCNTR) GO TO 72
NCI=1
IF (SEQINK.LE.6) GO TO 72
SEQINX 1
GO TO 72
145 IF (SCHEME.EQ.1) REJLRREJG
NDAI \(=1.00+0 / D F L O A T I N X T-R E J I)\)
NDAS \(=\) NDAI
IF (SCHEME.EQ. 2) NDAS=1.00 O/OFLOAT(2*NXT-REJI-REJG)
NDAG \(=1.00+0 /\) DFL OAT
IF (NTT-REJG)

- ',I5.'RIJFC

AGGV \(=0.000\)
ASSV
AKEKEV
\(=0 D+0\)
O
ANUCNV \(=0.00+0\)
cccccc
DO 137 EQS. \(1=1\), NOSS
GG(1)=GG(1)*NOAG
GGV(I) \(=\) DSQRT(GGV(I) 1 NDAG/GG(1)**2-1. OD+0)
AGGV=AGGV+GGV(I)
\(S S(1)=S S(1) * N O A S\)
SSVII)=OSQRTISSVIII*NOAS/SS(1)**2-1.00+0)
ASSV=ASSV+SSV(I)
KEKEIII=KEKERII*NOAI
AKEKEV=AKEKEV +KEKEV(I)
NUCNUC (I)=NUCNUC (I) \(\ddagger\) NDAI
NUCNUV(I)=DSQRT (NUCNUV(I)*NDA1/ MUCNUC(I)**2-1.0D+0)
137 ANUCNV =ANUCNV+NUCNUVIII
RNOSS \(1=1.00+0\) OFLOA (NOSS)
AGGV=AGGV*RNOSSI
ASSVIASSV*RNOSSI
AKEKEV=AKEKEV*RNOSSI
ANUCNV \(=A N U C N V\) *RNOSSI
IF (NPUNCH) GO TO 138
WRITE(7,2006) (GG(I),I=1,NOSS)
WRITE(7,2006) (SSS11:I=1,NOSS)
HRITE (7,2006) (NUCNUC (I), I=1, NOSS)
WRITE (7,2006) (GGV(II,I=1, NOSS)
HRITE(7,2006) (SSV(I),
WRITE (7,2006) (SSV(I);I=1,NOSS)
WRITE (7,2006) (KEKEV(I),I=1,NDSS)
WRITE(7,2006) (KEKEVIII;I=1;NOSS)

138 COntinue
IF (NDTAIL) \(\mathbf{~ C O}\) TO 139
CALL OUTRSI (GG,NNM, TRUE..IGG)
CALL OUT2SIISS.NNN..TRUE.,ZZSS
CALL OUTZS1 (KEKE, NNN , ©TRUE. , ZKEKE)
CALL OUT2SINUCNUC, ANM. -TRUE. IMHCNU:
WiTE (6,926) AGGV
CALL OUT2S1 (SSV, NHN, . TRUE \(\quad\) ZSSVI
HRITE 669261 ASSV
CALL OUT2S1(KEREV, NAN , . TRUE., IKEKEV)
CALL DUT2SI INUCMUV,
WRITE (6;926) ANUCNV
ASUNV \(=(A G G V+A S S V+A K E K E V+A M C N Y)=0.250+0\)
2hITE(6,926) A SUMV
(x'ave =', 1PDIT.101
CALL ELAPSE(TIM9D)
TIM9DS \(=\) FLOAT (TIMPD)/ \(1000.0 / 60.0\)
919 WRITEイ6,9191 TIM90S ***
 EIGEN-VALUES, -VECTGRS ANC CHECKING
DD \(62 I=1\), NaSS
V(I) \(=-\) NUC MUC \((1)+G G I I)\)
HM(I)=KEKE (I) +VV(I)
CALL OUT2SI (VYONNN. .TRUE..ZVV
CALL OUT2S1 (1 H + NAN. . TRUE. 2HH
CML OUT2SIISS.NNH..TRUE.EZS
DO \(76 I=1\), MOS

DD \(83 \quad I=1\); HXCON 2
KPP (1) \(=0\)

83
EC(\(1, L\)) \(=0.00+0\)

IF (NROUT.EG. 2) ROOT \(S=5\)
MRITE (6,917) ROOTS, MROUT
917

GALL CEIG (NHN, ROOT S, HXCON2, HHAT, SMAT, E, COET, VEC, KPP, NROUT
CALL OUTI (E,ROOTS,ZE), ROOTS, MXCON2,NNN, -TRUE, ,ZCOET)
IF (PUNCH) WRITE(7,2006) (COET (1,1),I=1,NNN)
IF (PUNCH) HRITE(7,2007) E(1), IX
2006 FORMAT 1 P4020.12:
IF (NOELECC-3) 122,123,123
122 IF (NEPELEC-3) 122
122 REPMUL \(=\) HAL
GO TO 125
123 REPMUC \(=5.00+0 *\) HALF/RR23
\(125 \mathrm{KLSUP}=0\)
DO \(77 \quad t=1\), ROOTS
CCKE(L) \(C \subset O=0 D+0\)
CCHIL \(=0.0 D+0\)
DC \(77 \mathrm{~K}=1, \mathrm{~L}\)
KLSUB=KLSUA +1
7 CCS(KLSUB) \(=0.00+0\)
DJSUB=0
OO \(78 \mathrm{~J}=1\), NN
\(00781=1\), J
IJSUB=IJSUB+1
CICJ=COET(I,L)*COET(J,L)
CCKEILI-CCKEILI+CIC J\#KEKEIJS
CCVIL) \(=C C V(L)+C I C J * V V(I J S U B I\)

CALL OUTIICCH, ROOTS, ZCCHI
CALL OUTIICCV,ROOTS,ZCCV)
DO \(103 \mathrm{~L}=1\), ROOTS
103 VRATIO(L) \(=\) CCV (L)/CCKEIL) CALL OUTIIVRATIO, ROCTS, zVRAT DO 128 LF 1 , ROOTS
128 OVER(J,L) \(=0.0 \mathrm{O}\)
DO 133 L=l,RONTS
\(00130 \mathrm{~J}=1\), NN

SSIJ=SS(JSUB+1)
60 TO 127
129 SSIJ=SS(1*(I-1)/2+J)
127 OVER(J,L)=OVERIJ,Li+COET(I,L)*SSIJ
30 OVER(J,L)=COET(J,L)*OVER(J,L)
IF (NNN.LE. 1) GO TO 132
OO \(131 \mathrm{~J}=2\), NNN
IF (DABS(OVER(J,L)). GT. ovmax) OVMAX=DABS(OVER(J,L))
131 CONTINUE
132 oVrmax (L) = ovmax
CALL OUT1loVrmax, root s, zovmax)
CALL OUTZ COVER, MXCOA, ROOTS,MXCON,NNN,.TRUE, ZZOVERI
KLSUB=0
Do 79 L=1, ROOTS
DO \(79 \mathrm{Km1}, \mathrm{~L}\)
DO \(79 \mathrm{Jx1}\), NNN
JSUB \(=\mathrm{J} *(\mathrm{~J}-1) / 2\)
COETJL \(=\operatorname{CDET}(\mathrm{J}, \mathrm{L})\)
IF (J.LT.I) GO TO 10
SSIJxS (JSUB +1)
GO TO 79
101 SSIJ=SS(l*(1-1)/2+J)

79 CCS(KLSUB) \(=\) CCS (KLSUB) + COET(I,K)*COETJL*SSI CALL OUT2SIICCS;ROOTS., TRUE.,ZZCS
IJ SUB \(=0\)
DO 104 J 1 , NNN
OO \(1041=1\), J
IJ SUB=I JSUB+1
04 HES(I,J)=HH(IJSUB)-E(L)*SS(IJSUB)
(DO \(1021=1\), N N N
HESC(1\()=0.00+0\)
DO \(102 \quad J=1\), NNM
102
RRITE(6,916) (+HESII, J) \#COET(J.L)
916 FORMAT O'ORESUBSTITUIION
CALL OUT1 (HESC, NNN, ZFESC:
DETIL \(=\) DTRMNT (HES, MAXCON, NNN
100 C
COLT LUGE CIS COET, ROOTS, ZOET)
WRITE(6,910) REPNUC

DO BO \(L=1\),ROOTS
80 ETOTALIL)=EIL)+REPNUC
CALL OUTITETGTAL, ROOT S, ZETOT
CALL ELAPSEIT IMEV)
20 Forkatio', f7. 2 ; M
ORS, AND FOR CHECKING \({ }^{\circ}\))
TIMTS=TIH9DS+TIMEVS
WRITE 6,923) TIMTS
23 FORMATI/MOR,F7.2, E MINUTES REQUIRED FOR CALCULATION: IF IREPTX. GE.IEMD) GL TO 1999 IF TPTSELT. AE. 11 GO 1025
SAVEAA (TSUB+1)

A9(TSUB+9)=SAVE
25 DO 161 I=1; MOSS
GGV(I) \(=(G G V(I) * * 2+1.00+0) * G G(1) * * 2 / \mathrm{MDAG}\)
GG(I)=GG(I)/NDAG
5 S(I) \(=(S S V(I) * * 2+1.00+0) * 5 S(1) * * 2\) /NOAS
KEKEV(I) \(=(K E K E V(1) * * 2+1,00+0) * K E K E(I) * * 2 /\) MOA KEKEII=KEKEC1//RDA

Go 10160
*************** ***| CALCULATE COOROINATES AND EYALUATE ORBITALS

MC=I I NDICATES CENTER A, HC=2 INDICATES CENTER B,
THE \(Z\) AND AXES OF THDIC ATES CENTER CCORINATE SYS
ANDES OF THE CCORDINATE SYSFEMS CENTERED ON \(A, B\), ANO \(C ;\)
ARE ALL ORIENTED IN THE SAME DIRECTION.
```

    42 ELNH=ELN-1
        ROWSH=ELNI*MAXSO
        SUB=3*ELN-2
        IF {ELNTH.EQ.2.AND.IATGNO.EQ.1] GO TO 200
    ETA=XX(SUB)
    CCCCCC EQ. (103)
136 R=RO(10.0D+0*ETA+1.00*0)
DO 146 J=1,20
SSSR=SSS*R
EPSR=DEXPISSSR
F {DABS(0.1* OD+0-(1.0D+0-ETA)*EXPSR
ELTRABSOENOM).LT.1.0D-401 DENOM=1.00-40
M OELTR=1,00
IF (DABS(ETA-11.00+0-{SSSR+1.00+0)/EXPSRI).LT.1.00-14) GO TO 147
146 CONTINUE
146 CONTINUE (LLINITIGO TO 3
CCCCC EQ EQ. (102)
MU=xX(SUB+1)
COST=1,OD+O-2.OD+O+MU
HI=THOPI +XX{SUB+2
200 IF (NC-2)
201 RI=RA
COSTI=1A/RA
GO TO 2
202 RI=RB
COSTI=2B/R8
203 RI=RC
COSTI=2C/RC
204 SINTI=DSORT(1) OD+O-COSTI*COSTII
ZETA=xx(SUB)
PHIP=THOP{\#XX (SUB+2)
CPHIP=DCOS(PHIP
SPHIPPDSIN(PHIP)
SRI2M=SSSM*RI/2.OD+O
CCCCC
AMEDA=1.00+0+DLOG(1.00+0-IETA\/SRI2M
MU=CLOG(1.00+0-(1.0D+0-0EXP(2.00+0*SR12M))*XII/SRI2M-1.00+0
LAMBMU=L LHSDA+M
cccecc
R=LAMEMLIRI/2)
=LANBML*RI/2.OC+O
COSTP=(1.ODD+O+LAMBDA*MUY/LAMBMU
CC EC. (116)
COST*COSTP*COSTI-SINTP*SINTITCPHIP
PHIIPHI\&DATANZ ISINTP*SPHIP,COSTP*SINTI+SINTP*CPHIP*COSTI)
41 RSINT=R*DSQRT(1.0D+O-COST*COST)
Z=R*GOST
2=R*GOST
TEMP1=R2+RR232
CCCCCC TEMP1=R2+RR232 CALCULATE COORDINATES \#ITH RESPECT TO ALL OTHER CENTERS
cecccc
TEMP2=TORR23*Z
If (NC-2) 141,142,143
141 RA=A

```
 \(R A 2=R 2\)
\(Z A=2\)
 \(2 B=2-R R 23\)
\(C=2-T O P R 23\)
 RB2=TEMP1-TEMP2
 \(R B=D S O R T(R B 2)\)
 RC 2=4. 00 +0*RR232+R2-2.00+0*TEMP2
 \(R C=D S\) QRT (\(R C 21\)
142
GO TO
RBRR
RER
144
 RBMR
RE2
 2AC2+RR23
 \(2 \theta=2\)
 \(20=2\)
\(Z C=2-R R 23\)
 AR=TEMP14TEMPZ
 RAMDSORTIRA2)
 RC2=TEMP1-TEMP
 RC=OSQRTIRC21
 143
 \(43 \mathrm{RC}=\mathrm{R}\)
 RC 2eR2
 RC2 \(2=2\) R2
\(2 A\)
 \(2 A=2+10 R R 23\)
\(28=2+R R 23\)
 \(2 \mathrm{C}=2\)
 R \(=2=4.00+0\) *RR \(232+R 2+2.00+0 * T E M P 2 ~\)
 RA DOSCRT (RAZ)
 RB2=TEMPI + TEMPI

 If (DTAILI WRITE(6,1015) RA,RB,RC, NX, 2NUCNU,NC, SUW,INTEND
 if IINTGNO.EODI: GO TO 140
 157 AEJLDREJL+1
cecec calculate compoments of intsoration point dinsity flwction
47 EgMRA=DEXP(sssm*RA)
 EsMRA=DEXP(SssM\&RA)
 ESMRC=DEXP(SSSHPRC)

OTI (ELN) =TEMP
IF (INTGMO.EO.2) CO TO 154

ACELW) \(\operatorname{ESMRAP}\)
CB(ELM)=ESMAAP
156
\(\mathrm{C}_{1} \mathrm{E}(\mathrm{L})=\mathrm{ESmp}\)
56 DTS(ELN) ERARAEAC

reasimTeDS IMPHI!
XXXX(ELH)=K
YYY(EANIOY
cectec
Eg. (37) AND TABLE 11

AOIA \(=\) XNORL*DEXP\{ \(221 M * R A\)

AO2A \(=\times N Q R 3 * R A * D E X P(223 M * R A)\)
\(\triangle D 2 C=X N O R 3 * R C * D E X P(223 M * R C)\)
SO(ROWSW+1)=AOIB
SO(ROWS
SO(ROWSH+3)=AO1A \(A O 2 C\)
SO(ROHS \(H+4)=A 02 A-A O 2 C\)
IF ISCHEMEONE
RAI \(=1.00+0 / R A\)
\(R B I=1.00+0 / R B\)
cccccc
21 EO. (8.4)
DAOIAX=x*21RA
DAO1AZ=2A*Z1RA1
22RB1 \(=222 \mathrm{M} * \mathrm{RBI}\) I*AD1B

\(0 \mathrm{DODBY}=\mathrm{Y} * 22 \mathrm{RBI}\)
21RC1=211 \(\# *\) RCI*AOIC
DAGICX \(=x * 21\) RC1
DAO1CY \(=\mathrm{Y} *\) LIRC1
DAO1C2=2C*21RCl
RA12=RAI \(\quad\) RAI
RC12=RCI
\(23 R A 2=(R A 12-223 * R A I) * A O 2 A ~\)
DAO2AX \(=x\) \# \(23 R A 2\)
\(0 A 02 A Y=Y+13 R A 2\)
DAO2A \(2=2 A * 23 R A 2\)
\(23 R C 2=(R C 12-Z 23 * R C I) * A 02 C\)
DAOZ \(x=x=23 R C 2\)
DAOZC \(X=X * 23 R C\)
DA02C2=2C*23RC2
cccccc
(A)
\(A O 1 C=(2212-T 0222\) N \(N\) RRI 1\() * A 01 \mathrm{~A}\)
LAO2A \(=(2232-4.00+0 * 223 * R A I+2.00+0 * R A 12) * A 02 A\)

INDEX \(=\) ROWSH +1
SOX
INOEX
ODAOI
SSOY(INDEX)=0AO1B
DSOZ(INDEX) \(=\) DAOL
SO (INDEX \()=\) LAOL
NDEX \(=\) ROWSW +2
DSEX(INDEX)=DAOIAX+EAOICX
DSOY(INDEX) \(=\) DAOIAY + DAOICY
DSOZ (INDEX) \(=0 \mathrm{DAO1}\) h \(2+\) CAO
LSO (INDEX) \(=\mathrm{LAOL} A+\) LACIC
I NOEX \(=\) ROWS \(\mathrm{H}+3\)
OSOX(INDEX)=0AOIAX-CMOICX
SOY(INDEX)=0AOIAY-CAOICY
SOZ(INDEX)=DAO1AZ-CAC1
SOIINDEX)=(AO1A-LACIC
I \(N D E X=\) ROWS \(\mathrm{H}+4\)

DSOX(INDEX) =DAO2AX-CAC2CX DSOY(\(\operatorname{NOEX}\)) =DAO2AY-CAD2CY DSO2(INDEX)=DAC2AL-CAC2CZ
LSOI INDEX) \(=\) LAO2A-LAC2C 155 IF (ELNEX) \(=\) LAO2A-LAC:2C 155 IF (ELNTH-2) 57.58.6C 9000 STOP
cccecc
 IMPLICIT REAL B(A-H, L, O-2)
 CDMMON /KEGRUP/SO(45),LSO(45), OSOX(45),0SOY(45),OSOZ(45),
 DR12X(4), DR13X(4), OR23X(4), R12E(4),LR12(4),
 DR12Y(4), DR13Y(4) DR23Y(4) RR13E(4); (R13(4);
 OR122(4); DR132(4):DR23Z(4),R23E(4), LR23(4),
 R12IP=R12E(IP+1)
 13JP=R13E(JP +1\()\)
 R \(23 K P=R 23 E(K P+1)\)
 SOI=SOCI)

 SOK=SO\{MAXSO2+K)

 R \(121 X=0 R 12 \times(1 P+1)\)
 DR \(121 Y=D R 12 Y(1 P+1)\)
 DR1212=DR122(IP+1
 OR13JY=0R13Y(JP+1)
 RR13JI=DR13Z(JP+1
 \(D R 23 * X=D R 23 \times(K P+1)\)
 DR23KY=DR23Y(KP+I)
 R23KZ=DR232(KP+1)
 OSOIX=DSOX(I)
 sair \(=0\) Soyif
 DSOIL=DSO2(1
 INOEX= HAXSO +J
 ISCJX=DSOX(INDEX)
 SOJY \(=\) DSOY(INDEX)
 DSOJZ=DSOZ(INDEX)
 NDEX=MAXSO2+K
 DSOK \(X=\) DSOXI INDEX
 DSOKY=DSOY (INDEX)

 + R12 1 P \(\ddagger\) R13JP \(\#\) LR23 (\(K P+1\))
 \(+(D R 121 X * D R 13 j x+D R 121 Y * D R 13 J Y+D R 1212 * D R 13 J 2) * R 23 \times P\)
\(-(O R 121 X * D R 23 K X+\) PR121Y*DR23KY+DR1212*DR23K2)*R134P

 R23K P SOJ* SOK
\(\begin{aligned} \text { LAPSI } & =0 . D+0-\{L A P S I+(\{D S O J X * D R 23 K X+0 S O J Y * D R 23 K Y+D S O J 2 * D R 23 K Z) * R 12 I P\end{aligned}\)
 *R13JP*SO1*SCK
 -((DSSOKX*DR23K \(x+D S O K Y * D R 23 K Y+D S O K Z * 0 R 23 K Z) * R 13 J P\)

 *R12IP*SOI*SOJ
 HALF*((LSO(1)*SOJ+SOI*LSO(MAXSO+J)) \#SOK
 + SOI * SOS*LSC(MAXSO2+K) 1 *R12IP*R13JPFR23KP)
 RETURN
END

\section*{OS/360 FORTRAN H}

OPTIONS - NAME MAIN,OPT=02, LINECNT=60, SOURCE, EBCDIC, MOLIST, NODECK SUURDUTINE DRANDU[IX XIY_YFLD]
\(1 Y=1 x * 65539\)
IF (IY.GE.0) GOTO 6
IY \(Y\) IY \(+2147483647+1\)

YFL=YFL*0.46566128730773930-9
RE TURN
END

OS \(/ 360\) FORTRAN H
OPTIONS - NAME MAIN,OPT=02, LINECNT=60; SOURCE, EBCDIC, NOLIST, NODECK
 SUBRQUT INE CEIG (N,N1,NA,HMAI,SHAT, E, COET,VEC,KP,NROUT)
SUBRDUTINE SOLVES SECULAR EQuaticns of form (h-LS)X=0, where \(L\)
 IS A SCALAR. THIS ROUTINE BEGINS BY TRI ANGULARIZATION OF S
FOLLOUED BY SINGLE DIAGONALIZATION. CMAT GHICH CAN OCCUPY THE
 SAME LOCATION AS THE ORIGINAL OVERLAP MATRIX, SMAT) * CMAT TRANS-
 POSE = SMAT. THE TRANSFORHED HMAT IS STORED BACK OVER THE ORIGINAL
 HMAT BEFORE THE DIAGCNALIZATION ROUTINE GIVENS IS CALLED ANB THUS
 DESTROYS THE ORIGINAL HAMILTONIAN MATRIX. THE PARAMETERS ARE...
 N SIzE of matrix being diagonalized
 NI NUMBER OF-ROOTS WANTED. FORTRAN DIMENS TON OF THE MATRIX IN THE CALLING PROGRAM.
 HMAT HAMILTONIAN MATRIX - INPGT
 SMAT OVERLAP MATRIX - INPUT
 EIGENVALUE - OUTPUT
 VEC TEMPORARY STORAGE
 KP TEMPORARY STORAGE
 DIMENSION E(1), HAAT(1), SMAT(1), VEC (NN,5), COET(NN, WNN), KP(1)
 \(0030 \quad 1=1, N\)
\(K P(1)=(I *(I-1)) / 2\)
COET(1,1) = DSQRT(SMATII)
CMATII) \(=1.01 \operatorname{COET}(1,1)\)
 SMAT(1) = 1.0) COET(1,1)
 CHAT HAS BEEN REPLACED HERE BY SMAT BECAUSE FORTRAN RULES SPECIFY
 THAT A VARIABLE APPEARING IN THE CALLING SEQUENCE CANNOT BE EQUI-
 ARE SAVED ON COMMENT CARDS SO THAT THE USER CAN FOLLOM THE LOGIC
 MORE READILY*
IFiN-1) \(2 ; 2 ; 3\)
 \(1 \mathrm{CO}=11\)
\(\mathrm{DO} 10 \mathrm{~J}=2, \mathrm{~N}\)
 10 COET(2,J) \(=\operatorname{SMATIII}\) (IICOET(1,1)
 SOMM \(11=0,0^{2, N}\)
 III=KP(I)+I
 IM1 \(=1-1\)
IPI \(=1+1\)
 DO \(12 K=1\), IMI
 \(12 \operatorname{SUM}=\operatorname{SUM}+\operatorname{COET}(K, 1) * * 2\)
 COETIIII = DSORT(SMATIIII) - SUM)
 CMATIIII) \(=1.0 /\) COET(II, I)
 SMATIIII \(=1.0 /\) COETII;
 IF (IPI-N) \(6,6,4\)
DO \(13 \mathrm{~J}=1 \mathrm{PI}, \mathrm{N}\)
 SUM \(=0.0\)
 14 DOM \(^{14}=\mathrm{K}=1,1 \mathrm{MI}\)
 II = KP(\({ }^{\text {COET }}\) (K,I)*COET(K,J)

\(C 15\)
15
\(11 P=11+1\) DO \(15 K=11 P_{1}\)
SUM = SUM + COETIII,KK) COETII, CMAT(KJW)
CMAT(IJI) \(=-\) SUM/ COETIIPIII
SMATIJW) \(=-\) SUM/ COETIIPII)
SMATI 11 II
II
COM
16
COET(L,J1) \(=\) COET(L,dI) + hMATSIIII * SMAT(KJI)
CONT INUE

c
c HMAT (KKK) \(=0.0\) for the same reason that smat replaces cmat.
HMAT REPLACES
DO \(44 \quad \mathrm{L=1,I1}\)
\(L 11=\mathrm{KP}(11)\)
MKKK \()=W(K K K)+\) CMAT(LII)*COET \((L, J 1)\)
HMAT(KKKI \(=\) HMAT(KKK) + SMAT(LII)*COET(L,JJ)
GO TO (E4,65) , NROUT
64 CALL GIVENS (\(N\), \(N 1\), NA, HMAT, VEC, E PCOET
60 TO 66
65 CALL NESBET (\(\mathrm{N}, \mathrm{N} 1\), NH, HMAT, KP, E, COET I
66 N1ABS \(=1\) ABS (N1)
DO \(601=1, N\)
\(\mathrm{VEC}(1,1)=0\).
\(0060 J J=1, N\)
\(1 J J=I+K P(J J)\)
C 60
50
61

\(\begin{array}{ll}\text { OCC } 5011 \\ \text { O } & =V E C(1,1)\end{array}\)
COET(I,J) = VEC(I,1)
CONTINUE
RETUR
END
CCEIG

OS/360 FORTRAN H

OPTIONS - NAME MAIN,OPT \(=02\), LINECNT \(=60\), SOURCE, EBCDIC, NOL IST, NODECX SUBROUTINE NESBET (\(N\), NROOTX,NN,H,KP, E,CI
DIMENSION H(1), KP(1), E(1),C(NN,NN)
TOL \(=1.0\) D 14
\(30 \mathrm{KP}(\mathrm{I})=(I *(I-1)) / 2\)
NRCOTX \(=1\)
\(C A=2.00+0\)
CTEST \(=0.09990+0\)
DO \(5 \quad I=1, N\)
\(5 \mathrm{C}(1.1)=0.0 \mathrm{D}\)
\(48 \mathrm{E}(1)=10.00+0\)
\(00 \mathrm{So} \mathrm{J}=1, \mathrm{~N}\) JJJ=J+KP(J)
IF(E1) \(\mathrm{E}(1)-H(J J J) / 50,50,52\)
(JJJ)
\(52 \mathrm{E}(1)=\mathrm{H}(\mathrm{JJJ})\)
JS=J
CONTINUE
JJS=JS+KP(JS)
\(C(J S, 1)=1.00+0\)
IF (N-1) \(143,43,55\)
JS \(2=0\)
\(55 \mathrm{~J} 22=0\)
\(0070 \mathrm{~J}=1, \mathrm{~N}\)
(FJJOEQ.JS) CO то 70
IF(EIL) - LT. Hi
71 J12=JS+KP(J)
IFIHIJ12I.EQ. O. OD+01 GO TO 70
JS2
GO JO
70 CONTINUE
72 IF (JS2.EO.O) GO TO 73
H12 \(\mathrm{H}(\mathrm{Jl2})\)
E(1)
H(
\(E(1)=H(J J S)-D A B S(H 12)\)
\(C(J S 2,1)=D S I G N(1, D+0,-H 12)\)
73 continue
8 CMAX \(=0.00+0\)
DO 3 J=1,N
IF(J-JS) \(9,3,9\)
SIG=-E(1) 10 C(J.
JJJ=J+KP(J)
DO \(4 \mathrm{I}=1, \mathrm{~N}\)
IFIL-JII, 1,2
2 IJJ=J+KP(
GO TD 4
4 SIG=SIG+H(IJJ)*C(I,1)
21 DELC=SIG/IE(1)-H(JJJ)
\(7 \mathrm{DELD=(C(J,1)+C(J,1)+CELC)*DELC}\) \(D E L D=(C 1 J\)
\(D=0.00+0\)
\(006 \mathrm{~K}=1, \mathrm{~N}\)

\(24 \mathrm{C}(\mathrm{J}, 1)=\mathrm{C}(\mathrm{J}, 1)+\mathrm{DELC}\)
CMAX=DMAXI(CMAX,OABSIDELC))
\(23 \mathrm{E}\{1\}=\mathrm{E}\{1\}+\mathrm{DELE}\)
26. IF(DABS (OELC)-CA) 3,3,

3 CONTINUE
\(C A=C A / 2 \cdot 00+0\)
31 IFICMAX-CTESTI13,13,8
13 CTEST \(=.010+0 * C T E S T\)
\(E 1=0 . D+0\)
\(0=0.0+0\)
00
36
\(\mathrm{KI}=1, \mathrm{~N}\)
\(D=0+C(K I, 1) * * 2\)
DO \(36 \mathrm{KJ=KI}\), N
KKK=KI
TERH=C(KI,1) \(\# C(X J, 1) * H(K K K)\)
IF(KI-KJ)35,34,35
El=E1+TERT
GO TO 36
35 E1=E1 + TERM + TERM
36 CONTINUE
IF (CMAX-TOL)59,59,8
BRAF \(=H\) (JJS)-E(I)
\(0060 \mathrm{I}=1\), N

\(61 \mathrm{KI}=1+\mathrm{KP}\) (JS
GO TO 63
62 KIEJS+KP(I)
63 BRAFN=BRAFN+H(KI)
60 CONTINUE
E(1)=E(1)+BRAFN/O
\(32 \begin{gathered}0 * D S Q R T(D) \\ \text { DO } 16 ~ \\ =1\end{gathered}\)
\(16 C(1 ; 1)=C(1,11 / 0\)
43 RE TURN

0S/360 FORTRAN H
OPT IONS - NAAE \(=\) MAIN, OPT \(=02\), LI INECNT \(=60\), SQURCE, ESCOIC WOLIST, HODECK [TUBROUTINE GIVENS (NX,NROOTX,NJX,A,B,RODT,VECTI]

DIMENS ION B(NX, 5 , A A 1), ROOT(NROOTX), VECT(NJX, NROOTX)
EQUIVALENCE (TEMP,ITEMP), ITM,ITM)
RETURN
ENO

OS/360 FORTRAN H
OPTIONS - NAME \(=\) MAIM, OPT \(=02, L\) INECNT \(=60\), SOURCE, EAEDIC, MOL \(1 S T\), MOOECX FUUNCTION DTRMNT(A,HA,N)
IMPLICIT REAL*B \((A-H, C-Z)\)
DIMENSION A(MN, NN)
DTRTM T=AC(1,1)
IF (N.EQ. 11 RETURN
\(N 1=N-1\)
DO \(\mathrm{e} \quad \mathrm{L}=1\), N1
AI \(\max =\mathrm{DABS}(A(L, L))\)
MaXROUNL
DO \(1 \quad I=L, N\)

If tDABS(A(I,J)). LE.AIJMAX) 60 TO 1
AI JMAX=DABS (A(I,J)
MaXROK=I
1 Maxcoled
IF (MAXCOL.EO.L) GE TO 3
DO \(2 I=L, N\)
SAVE=A!I,L
2 A(I,LI=A(I,MAXCOL)
2 OTR MWT=DTMMT*(-1.OC*O)
3 IF (HAXROWAEQ.L) 60 TO 5
\(004 J=\mathrm{L}, \mathrm{N}\)
SAVE=A(L, J)
A(L,J) \(=A(\) MAXROW, J)
A(MAXROW, J) \(=S A V E\)
DTRHNT \(=D T R M N \neq(-1 . O D+0)\)
\(5 L 1=L+1\)
DO 6 I \(=21, N\)
RATIO=A(I,L)/A(L,L)

6 CONTINUE
B

RETURN
END

\section*{QS/360 FORTRAN H}
 SUBPRUTIME COTI \(X X X X X X X_{2} H_{1} 2 Z Z 21\).
OIMENSION XXXXXX(N)
HRITE(6.1)
(FORMAT(IHO)
MA1TE(6;2) (2222, J, K×××XKX(J), J=1, M)
2 FORHATIIP4 \(1 \times A G, 1 \mathrm{HC}, 12,3 \mathrm{HI}=\mathrm{D} 20.13 \mathrm{H})\) RETURN
EMO:

\section*{OS/360 FORTRAM H}

 LOEGCAL TRANS

 1 Formatil/l
 tmax \(=\) max
 BO \(3 \quad 1=1\), manax
 IF (MAX.EQ.0) Amax=

 2 WRITE (6,4) (\(2222,1, d\), KXXXXXX(I,d), J=1, JMAX)

 RETD
 OS/360 FORTRAN H
OPTIONS - NAME \(=\) MAIN, OPT \(=02, L I M E C N T=60\); SOVRCE, EBCDIC, MOLIST, MODECK
 \(\frac{\text { SUBROUTTINE OUTRSI(A, } N_{7} U P, 2!}{\text { IMPLICIT REAL* } * 8(A-H ; D-Z)}\)
 LOGICAL UP
DIMERSION A(1)
 DIMEMSION A(1)
5 FORMAT(1)
 IF (ANOT.UP) GO TO 3
 \(001 \mathrm{~J}=1, \mathrm{~N}\)
 JSUB=J*(J-1) 2
1 WRITE(6,2) (\(2,1, J, A(J S U B+1), I=1, J)=0,10)\)
RETURN
3 MMI \(=\mathrm{MH}-\mathrm{I}\)
 004 JJl OHWI
 JP \(1=\mathrm{J}+1\)
 JSUB=MAXAL-NMJ*(NMJ+1)/2-J
4 URITE \((6,2)(2,1, J, A(J S U B+1), I=J P 1, N)\)
 RETUR
END

TABLE X
SAMPLE INPUT DATA FOR \(H_{3}\) PROGRAM

Column Number
11111111112222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{TRUE} & \multicolumn{6}{|c|}{FAL SE} \\
\hline 1 & & 1 & 1 & 3 & 0 & 0 & 0 & \\
\hline 2 & & 1 & 2 & 3 & 1 & 0 & 0 & \\
\hline 3 & & 1 & 1 & 3 & 1 & 1 & 1 & \\
\hline \multicolumn{9}{|l|}{999} \\
\hline 1 & & & 1.1303 & & & & & \\
\hline 2 & & & 1.2796 & & & & & \\
\hline 3 & & & 1.0663 & & & & & \\
\hline \multicolumn{9}{|l|}{999} \\
\hline & 1 & \[
31
\] & \(1.00 \mathrm{D}-03\) & 2000 & & & \(1.00 \mathrm{D}-03\) & 12 \\
\hline 1.7924 & & 1.540 & & & & & & \\
\hline
\end{tabular}

792300 SSS

1.08 minutes required for 9-D integration
```

vV( 1, 1) =-8.10585194050 00

* vu 1, 2) =-8018585194050 00
vvi 2, 2) =1.1861520716002
HHT 1, 11 =-4.2604026928D 00
HHI 1, 2)=-1.1383236628D 01
HH(1, 3) =-6.8388041770D 01
HH(2,2) =-6.78440518320 01
HH1 3, 3) =-1.71682132120 03

```
```

    SS( 1, 1) = 1.04657861390 00
    SS(1; 2)=3.67648621900000
        SS(2, 2) = 2.66923378210 01
        SSt 3, 3) = 6.28525178160 02
    fino 1 root(s) using routine 2
COET( 1, 1) = 2.64718952890-01
COET(2, 1) = 5.7408200098D-02
COET1 3, 11 = 2.03912971780-02
E(1) =-2.8689520193725000
CCHE 11 =-2.86995201937250 00
CCKE( 1) = 1.55783652960400 00
cCv( 1) =-3.03201259770630 00
VRATIOC 11 =-1.94629452278430 00
Ovgmax( 1) =4.72921788275640-01
OVERC 1, 11 = 2.93117901310-01 OVERI 2,11 = 2.33960310420-01 OVERC 3,11=4.72921788280-01
CCS(1, 1) = 1.0000c000000 00
Resubstitution of eigen value and vector i
HESC( 11 =-1.3E777978C78140-16 HESC( 2) =-5.55111512312580-17 HESCI 3) = 3.33066907347550-15
DET( 1) = 2.7430588483730D-13
NUCLEAR REPULSION ENERGY = 1.39477800 00
ETOTALI 11 =-1.4741740680223000
0.00 minutes required for finding eigen values + vectors, wid for checking
1.09 minutes required for calculation

```

\author{
vitia \({ }^{3}\) \\ Daniel James Mickish \\ Candidate for the Degree of \\ Doctor of Philosophy
}

Thesis: AB INITIO CALCULATIONS ON THE LITHIUM AND H3 SYSTEMS USING EXPLICITLY CORRELATED WAVE FUNCTIONS AND QUASIRANDOM INTEGRATION TECHNIQUES

Major Field: Physics
Biographical:
Personal Data: Born in Geneva, Nebraska, July 11, 1944, the son of Albert and Mildred Mickish.

Education: Graduated from Senior High School, Edmond, Oklahoma, in May 1962; received the Bachelor of Science degree with a major in mathematics and physics from Central State University, Edmond, Oklahoma, in May, 1966; awarded National Science Foundation Traineeship, 1966-1969; attended the University of Uppsala, Sweden, Summer of 1968; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1971.

Professional Experience: Programmer, Central State University, 1962-1966; Instructor, Central State University Mathematics Department, 1966; Operations Supervisor, Oklahoma State University Computer Center, Summer 1966; Graduate Teaching Assistant, Oklahoma State University Physics Department, 1969-1971.

Professional Organizations: American Institute of Physics Student Section, Sigma Pi Sigma National Physics Honor Society, Sigma Xi Honorary Research Society.

Publications: "Simplified Self Consistent Field Calculations for Sigma-Bonded Systems III: Extension to Hydrogen Bonding", with H. A. Poh1, SIGMA MOLECULAR ORBITAL THEORY, ed. by 0 . Sinanogiu and \(K\). Wiberg.```

