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CHAPTER I 

INTRODUCTION 

1. 1 Discussion 

Structural optimization can be identified as the rational process 

of structural design, as opposed to the empiricism of conventional de

sign methods. Structural optimization is one of the few fields of engi

neering in which the impact of modern computer-based techniques has 

not yet reached the level of practical problems. Intensive research 

over the past ten years has produced a multitude of approaches, some 

of which have materialized into powerful computer programs. The 

basic problems of structural design, however, have received no clear 

answer. 

No current method of structural optimization can be guaranteed 

to find the global optimum unless the problem is proved to be convex. 

This can be done only in special cases. It is known that a fully 

stressed design, one in which each element of the structure sustains a 

limiting stress under at least one of the specified load conditions, may 

not be unique and may not be optimal. On the other hand, there is no 

way to determine a priori that the optimum design will not be fully 

stressed. With these uncertainties, in both optimum design and fully 

stressed design and the considerably greater computational effort for 

optimization, it will be very difficult for optimization methods to dis

place the fast and familiar fully stressed design methods on problems 

1 



which are controlled by stress conditions alone. However, for prob

lems in which deformations or other constraints are active, the fully 

stressed approach is o'Qviously unreasonable. Nevertheless, in 

practice many designs seem to be fully stressed. 

2 

Of the two most important materials used in construction--con

crete and steel--the principle of prestressing has been used much 

more extensively in concrete structures. However, the principle of 

prestressing is not limited to concrete structures and may be applied 

equally well to steel structures, The aim of prestressing principles 

in steel structures is not to overcome tensile deficiencies of the 

material, as is done for concrete, but to build opposing stresses into 

the member to counteract the stresses caused by external forces. 

Prestressed steel structures have been used to some exten,t in Europe 

with considerable, economy in material, but comparatively little use 

has been made of them in the United States. 

This study presents a method of determining the optimum design 

for a prestressed plate girder and a prestressed composite plate 

girder of constant depth. A search of fully stressed designs is made 

to determine the optimum design for a selected criterion. The Kuhn

Tucker theorem ( 1 ), a necessary condition for optimality, is used to 

establish the relationship between the optimum design and the fully 

stressed design. 

1. 2 Survey of Structural Optimization Studies 

The present survey confines itself to the development of struc

tural optimization in the field of elastic behavior. Even in this 

reduced area. the amount of material published is so extensive as to 
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discourage a systematic classification, Here, only the most signifi

cant trends are followed, in their historical sequence, and only the 

principal contributors are mentioned. For more extensive surveys of 

the literature, reference is made to ( 2) and ( 3 ). 

The first contribution, in terms of a mathematical model solv

able by some optimization technique, came from the studies of Michell 

( 4 ). The subject of Miehe ll' s paper was to find the minimum weight or 

minimum material design of statically determinate structures sub

jected to single load situations. It was concluded that the stresses in 

the members of a determinate truss must be at their limiting values 

for the structure to have the minimum weight, Michell provided the 

basis for the development of the modem concepts of optimum design of 

structures. This concept of fully stressed design has been used 

throughout the aerospace industries for the past three decades; see, 

for example, Shanley ( 5) and Cox ( 6 ). 

In the '50's, Vinogradov (7) and Radtsig (8) consolidated the 

formulation of the minimum weight problem by associating the energy 

theorems with the classical Muller-Breslau equations. The examples 

reported are limited to one or two degrees of redundancy. Heyman ( 9) 

and others obtained slightly different results, starting with the same 

formulation of the problem. 

In the '60's, following the expansion of research in optimization, 

several techniques became available for the solution, at least in 

theory, of the structural optimization problem. Prager, Schield ( 10 ), 

and others derived the optimality criteria from classical extremum 

principles. 
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Schmit ( 11 ), introducing the concept of synthesis, clearly defined 

the structural optimization problem as a non- linear programming 

problem. At the same time, Best ( 12), Gellatly ( 13) and others deve

loped programs for optimization of complex structures, using stress 

rate convergence criteria, which are slight modifications of conven

tional design methods. With the stress rate method, the direction of 

movement in the solution space is given at each step by a vector which 

has components proportional to the amount by which each member 

area must be modified in order for the member to become fully 

stressed. The separation of the fully stressed solution from the mini

mum weight solution was detected by several authors. The quantitative 

definition of the problem, however, was given by Razani ( 14), followed 

later by Kicher ( 15 ). 

Linear programming was used for structural problems by Moses 

(16) and Cornell, Reinschmidt, and Brotchie (17), through Kelley's 

cutting plane method. Brown and Ang ( 18) employed Rossen' s gradient 

projection algorithm for weight optimization of simple plane frames. 

This approach requires a great deal of computational work. Schmit 

and Fox ( 19) used the Fiacco-Mccormic technique to convert a con

straint problem to that of an unconstrained problem. They introduced 

penalty functions to add the constraints to the objective function. The 

method of feasible directions was used by Karnes and Tocher ( 20) for 

plane stress problems, using the finite element approach. Toakley ( 21) 

considered a finite set of members extracted from the steel tables and 

adapted Gomory's first algorithm for integer programming. The num

ber of variables. according to his formulation, is the product of the 
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number of members in the structure and the number of profiles in the 

table. 

The research effort in structural optimization has sharply in

creased over the past few years. Many techniques and algorithms are 

now available for the general problem. An efficient solution procedure 

in future years will depend in part on the creation of a well defined and 

well justified link between structural optimization and structural 

design. 

The optimum design of prestressed steel structures has been 

partially solved, using simplifying assumptions, by Tochacek (22), 

Vasilev (23), Vedenikov (24) and others. A detailed study of the 

development and use of prestressed steel flexural members has been 

reported in References (22) and (25). Design of prestressed composite 

steel girders and the effect of creep and shrinkage in concrete slabs 

has been studied by Szilard ( 26 ). Hoadley ( 27) and others. 

1. 3 Approach of This Study 

A prestressed plate girder and a prestressed composite girder 

of constant cross-section and subjected to one critical inplane load are 

considered. Prestressing is induced by a tendon of high strength 

material located parallel and close to the chord of the girder which 

would be in tension under the applied loads {the stretched chord). For 

convenience, weight of the girder (steel section) is selected as the 

· c;riterion for optimization. 

A set of non-linear constraints is derived from strength and 

continuity conditions. A 11 constraints are considered to be tight 

(equality constraints) in order to obtain a fully stressed design. It is 
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shown that the maximum number of independent variables is 7 for a 

prestressed plate girder and 9 for a prestressed composite girder. 

The number of constraints is one less than the number of variables 

involved in the problem. Using geometric relations, the constraints 

are reduced to one equation with two variables in the case of a steel 

girder and two equations with three variables in the case of a compos

ite girder. The governing equations, coupled with an optimization 

condition or a side constraint, are treated numerically by a sequential 

search technique, the Golden Section search ( 28 ). The complexity of 

these equations excludes any explicit solution. 



CHAPTER II 

CROSS-SECTION PROPERTIES AND LOADS 

2. 1 General 

A plate girder is a deep flexural member employed to carry 

loads which cannot be supported economically by rolled beams. The 

use of a plate girder gives the designer the advantage of selecting com

ponent parts of convenient and economical size. Further, prestressing 

induces favorable distribution of internal stresses and thus increases 

the load bearing capacity (at yielct) by as high as 3Qah to 35% ( 25 ). For 

many practical reasons, plate girders are fabricated in different 

$hapes (Fig la - d). For optimization purposes, different profiles may 

be replaced by an idealized section, as shown in Fig le. 

Prestressed tendons may be pl<;iced below, coaxial with, or 

above the stretched chord (chord 2 ). in a simply supported girder. as 

indicated in Fig 2. The location of the tendon is indicated by the value 

of the parameter K as shown in Figs 1 and 2a. 

2.2 Cross-Section Properties 

2.2 . .1 Discussion 

Section properties of a plate girder can be evaluated by simple 

derivations employing geometrical relations, conditions for locating 

centroidal axes, and rules for determining moment of inertia and 

7 
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section moduli with respect to the horizontal centroidal axis. To sim-

plify the analysis chord (flang. e).areas are assumed to be concentrated .. 
at their respective centroids. This assumption is acceptable since the 

thickness of the plates used is usually very small compared to the 

depth of the girder. However, the concrete slab in the composite 

girder is considered to have a finite thickness. 

Where essential, the following subscripts are used: 

avg average value; 

br anchoring bracket; 

c composite section; 

s steel section; 

v prestressing; 

w . girder-web; 

0 primary sy::;tem (a statically deter
minate beam without tendon); 

1, 2 compressed and stretched chord (steel 
section) in loaded state, respectively; 

3 concrete slab. 

2.2.2 Steel Section 

All of the section properties for the idealized I-section, Fig le, 

can be expressed in terms of four parameters. The following quanti-

ties will be employed: 

A = total cross-section area of the girder; 

a = e 2/e 1 (Fig 1) = section asymmetry; 

h = depth of the girder; 

a 2 = ratio of stretched chord area to total cross-section 
area of the girder. 
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The section properties for the steel girder are given in Table I, 

using the symbols shown in Figs le and 3. 

2.2.3 Composite Section 

For evaluating the section properties for the composite section, 

the transformed composite section is used, as shown in Fig 3. These 

properties are based on the modular ratio, 

n c 

E 
= 2 E , 

c 

where E and E are the moduli of elasticity of steel and concrete, s c 
respectively. 

In this study, the superimposed load is considered as live load 

only following the procedure of Hoadley (27 ). If all of the superimposed 

load is acting permanently, the effects of creep in the concrete may be 

accounted for by increasing the modular ratio to 3nc as suggested by 

Szilard { 26 ). 

In addition to the quantities used for steel sections, the following 

definitions are required to express section properties for the trans-

formed composite section: 

where A 3 ::z transformed concrete area 

h c 
{3 = 2h • 

= A /n · c c' 

where he = thickness of the concrete slab. 

Section prc;>perties in terms of A. a, h, a-2, a-3, and (3 for the 

composite section are given in Table I. 



TABLE I 

EXPRESSIONS FQR SECTION PROPERTIES 

Section Properties 

Quantities Stee 1 Section Composite Section 2 

.( 1) (2) ( 3) 

Al= ( 1-a) a2 - 1 +a A 

Section Areas A2= a 2A A3 = a3 A 

A = 2(1! a - a2)A w 

.. W4h 
el,c (l+a3)(1+a) 

Distances to e = = h 

the Critically 1 el,s r+a W2 h 
Stressed e2,c 

.. 
(1 +a3){1 +a) 

Fibers from 
Centroidal e2 "' e = _!h_ 
Axes 2,s 1 +a w3 h 

e3,c = (i+a3)(I+a) 

Ah2 W 
1 

Moment of Ah2. c W5 
Inertia 1 = I • 1 I .. ~ w+--

s 6( 1 +al· c 6( 1 + a)2 1 1 + a3) 

Ah {W1(1+a3)+W5 

AhW1 
8i,c • 6( 1 +a) W4 } 

s .. s1 s • 6( 1 + a) Section 1 ' { w1 (1 ~;s> + Ws} Moduli s • Ah 

AhW 2,c 6(1 +a) 

S2., s .. . 1 
2,s 6(1 +a) Wl(l + a3)+ W5 Ah s • 6(1 +a) { W3 } 3,c 

1The expressions for w1 through w5 are given in Table 3. 

2The expressions for the quantities related to the steel section of the composite 
girder (when concrete is not effective) are the same as those for the steel girder, column 
(2). 

12 



CONCRETE AREA Ac 

•4· ......... •• ···~····,;: I·.· , ··. ' ·.' ..... A: .. · .. ·· ... · - .. 
... • I .• • .. • • ... : • •• • ": • •• I'. : A ••• ' 

CENTRO I DAL AXIS --
FOR COMPOSITE SECTION 

CENTROIDAL AXIS --
FOR STEEL SECTION 

• 
COMPOSITE SECTION 

8 

:rRANSFORMEO AREA A3 
+ 

J 
he e3,c 

el,C 

e h 1,,5 

ez,c 

ez',s I I (f~e,,s-ea,cl 
f=Kez,s 

TRANSFORMED 
COMPOSITE SECTION 

Figure 3. Prestressed Composite Section and its Idealization 

1--' 
w 



14 

2. 3 Loads 

One of the important features of the present approach is that only 

the shape of the bending moment diagram is required for the analysis 

and not the absolute values of the bending moment at any section. Six 

basic bending moment diagrams are illustrated in Fig 4a. 

Types of supports are of secondary importance, because the 

same bending moment diagram could correspond to a simply supported 

beam, a cantilever, a simple beam with overhangs, etc., as shown in 

Fig 4b. Each system is naturally subjected to different loads ( 29 ). 

(30). For convenience, an explanation to follow will refer to a simply 

supported beam. 

2. 4 Prestressing Tendon 

Since a girder is capable of carrying part of the load without any 

assistance of the prestressing tendon, a girder prestressed by a short 

length tendon, as illustrated in Fig 2b, placed appropriately will re

quire less material than a girder prestressed by a full length tendon. 

Often a full length tendon is preferred because of the difficulty in pro

viding anchorages between the supports and for other practical con

siderations. In this study, both the full length tendon and the short 

length tendon are investigated. 

2. 5 Increase of the Tendon Force Due to Applied Loads 

It is assumed in the analysis that the plate girder is prestressed 

in the fabricating shop in the unloaded state. The brackets for anchor

ing the tendon are assumed to be rigid. The force ( V*) in the tendon 
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produced by prestre$sing is increased due to the deformation of the 

prestressed girder under the applied loads. The increase of the 

tendon force is denoted by X. 

A simply supported steel girder with a short tendon is shown in 

Fig 5a. With no applied load, the bending moment diagram ( M ) and 
v 

the axial force diagram (N ) will be as shown in Fig .5b. When loads are 
v 

applied, the bending moment diagram due to the applied load only will 

be as shown in Fig 5c ( M ). while the bending moment diagram ( M ) 
p v 

and the axial force diagram (N ) due to the tendon force will increase 
v 

as shown in Fig 5c. 

An expression for the redundant force X is derived by making 

tl;le strain energy of the prestressed girder stationary with respect to 

X. The following expression is obtained for a steel girder prestressed 

by a short length tendon. Similar expressions for the composite 

girder may be obtained. 

The strain energy U due to both bending and axial effect is 

X2i, 
v 

+ 2E A 
v v 

where 

A = cross-section area of the tendon; 
v 

E = modulus of elasticity of the tendon; 
v 

X2i, 
v 

2E A 
s 

f = eccentricity of the tendon for a prestressed steel 
girder, Figs le and 3; 

I = moment of inertia of the steel girder; 

( 2. 1) 
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J, = total length of the girder; 

J, v = length of the tendon; 

= moment due to applied load at the general section of 
the girder; · 

s, t = lengths locating ends of the prestressing tendon, 
and other symbols have been defined previously. 
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Differentiating Eq (2. 1) with respect to the redundant force X, setting 

the result equal to zero, and reducing the terms yields 

s+..ev 

·X = 
-j- [ M0 dx 

v ··s 
( 2. 2) 

The numerator in Eq ( 2. 2) represents the average value of the bending 

mo:r.p.ent in the prestressed length of the girder due to the applied loads, 

which is denoted as MOavg' 

Define for convenience 

where 

M Omax 

M = Oavg . = 
M ' µbr 

Om ax 

MObr 
M ' Omax 

= maximum moment in the girder due to applied 
loads; 

= moment in the girder at anchoring brackets 
due to applied loads. 

( 2. 3) 

It is always possible to express µ as a function of µb for avg r 

a given bending moment diagram. Similarly, s/ ..e, t/..e, and ..e I ..e can v 

be obtained as functions of µbr .. These relationships for the six 

basic bending moment diagrams of Fig 4 are presented in Table II. 



Shape of 
Bending 

No. Moment 
Diagram 

1 D 
2 u 
3 CJ 
4 v 
5 y 
6 v 

TABLE II 

.Iv 
FORMULAS FOR µavg AND T 

Full Length Short Length Tendon Tendon 

µavg JV µavg T 

1. 0 1. 0 1. 0 

2 +µhr 1 µhr o. 75 2 - 2(2-~r) 1-.,--

2 +µhr 
J 1 - µhr 0.667 3 

1 + ~r 
1 - µ o. 5 3 hr 

0.333 
1 +µhr+ J ~r 

1 - J ~r 3 

1 + ~r 1 - µhr 
0.25 2 2 
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s t - .. -t .c 

1 .c 
2(1- f) 
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2. 6 Design Concepts 

Prestressed structures may be proportioned according to the 

Concept of Limit States or according to the Concept of Allowable 

Stresses. For either of these procedures the magnitudes of the applied 

loads (p in Fig 5) and allowable stresses are prescribed by specifica-

tions or codes. From these quantities the required tendon force V* 

is determined. These standard effects are used directly in the 

Allowable Stress Concept for proportioning the prestressed structures. 

In the case of Limit States Concept the design effects are obtained by 

modifying the standard effects by appropriate factors (load factors, 

prestress accuracy factors, homogeneity factors, working condition 

factors, etc. ). In this study, the soWtion of the problem is developed 

in such a way that either of the concepts could be used. However, the 

derivations presented herein are based on the Limit States Concept. 

2.6.1 Design Effects for Limit States Concept 

The modified standard load mentioned above will produce a 

moment diagram in the girder such as shown in Figs 4 and 5. From 

these diagrams the maximum bending moment M0 may be deter-max 

mined. The tendon force V* is modified by prestress accuracy 

factors (31) in order to produce the maximum possible stress condi-

tion when prestress effects and applied load effects are combined. For 

example, when no load is applied, in order to produce maximum com-

pressive stress in chord 2, a prestress force of magnitude n V* is 
vu 

used (where n is a prestress accuracy factor greater than 1. 0). At vu 

the same locq.tion, when the design load is applied, the maximum 
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tensile stress in chord 2 is determined from the combination of M0 ·. max 

and a prestress force equal to nv.t V* (where nv.t is a prestress 

accuracy factor less than 1. 0) and the redundant force X obtained from 

Eq 2. 2. 

2.6.2 Design Stress 

The maximum permissible stress in the girder is specified by 

code values. In order to simplify the derivations, the stresses at 

each ~oint in the girder are expressed in terms of a reference stress 

(R 2) of chord 2. The stresses at other points in the girder are ex-

pressed in terms of R 2 by 

where 

R2 
+ 

R2 R2 P2R2 Rl p1R2 = = = ' 

R 
pc 

R + 
pvR2 = -R = 

c n 2 v c 

R 2 + = tensile design stress in chord 2, 

R 2 = compressive design stress in chord 2, 

R 1 = compressive design stress in chord 1, 

R = compressive design stress for concrete slab, c 

R + = tensile design stress for the tendon, 
v 

P 1• P2• Pc' Pv are proportionality factors, and 

n = modular ratio for steel and concrete. 
c 

( 2. 4) 



2. 7 Stability and Other Design Consideratio~s 

The present study does not consider in depth such problems as 

constructional details of the prestressed girder; suitable materials 

and their characteristics; introducing, measuring and losses of pre-

stressing; checks for buckling and deformations; etc. For details of 

methods of treating these effects see Refs (22), (29). and (31). 

However, a brief discussion of flange and web buckling as well as 

control of deflection is presented below. 

Chord 1 under full load and chord 2 ·in the unloaded state, in a 
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simple beam are compressed. Chord 1 is frequently supported against 

the loss of stability by cross-beams. horizontal bracing trusses. slabs, 

etc. The stress in chord 1 can be controlled by selecting appropriate 

value of p1 s 1. O. Buckling of chord 2 could be prevented by measures 

similar to those mentioned for chord 1 and by arranging the diaphragms 

connecting the tendon to chord 2 (Fig 2). If the holes in the diaphragms 

are only slightly larger than the diameter of the tendon, the effective 

length of the compressed chord is approximately equal to the distances 

between the diaphragms (Fig 2). 

Detailed investigations of web stability, which depends, among 

other things. on the arrangement of the stiffeners could considerably 

complicate obtaining an optimum design. Web buckling can be con-

trolled by selection of an appropriate value of the ratio of the depth of 

the girder to the web thickness. This ratio is called the web slender-

ness parameter and is given by 

h 
A = 5 • 
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where 

cS = thickness of the web plate. 

This parameter commonly varies between 100 and 200 for steel 

( 29 }. Higher values correspond to a web stiffened by both vertical 

and horizontal stiffeners in most highly stressed regions. An appro

priate choice of A also helps to control shear stresses and deflection. 



CHAPTER III 

FORMULATION OF THE SOLUTION 

3. 1 General 

In this study linear elastic behavior of materials and small 

deformation theory are considered. It is assumed that a plate girder 

is prestressed in the unloaded state. There are various methods by 

which prestressing may be accomplished. However, the basic concept 

is to tension one or more prestressing tendons, parallel and close to 

the stretched girder chord, to the desired stress level by jacking 

against the beam and then to fasten them, at each end of the beam for 

a full length tendon or at the intermediate projecting brackets for a 

short length tendon, by means of appropriate anchoring devices (32). 

For the composite girder, the shop-fabricated prestressed 

steel plate girders are nrst erected and then the concrete slab is 

placed. It is assumed that the forms for placing the concrete are 

supported by the steel girder, so that the steel section alone carries 

the weight of the concrete and forms. Any additional dead load as 

well as live load that may appear after the slab cures is carried by 

the composite action of the steel girder and the slab. Shear connectors 

are assumed to transmit horizontal shear between the slab and steel 

section. 

In the idealized cross-section, Fig le, one straight tendon near 

chord 2, a.nd parallel to it, is assumed. Its position can be described 

24 
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by the parameter It as indicated in Figs 1, 2, and 3, where 

( 3. 1) 

3. 2 Selected Parameters 

Certain parameters encountered in the analysis and design of the 

prestressed girders must be selected a priori by the designer. The 

values selected are governed by the intended use of the design, by the 

character of the constructional arrangements. loading and materials, 

by the required accuracy of prestressing. etc. 

The following sections list and define the parameters which are 

assumed to have been selected by the designer. 

3.2.1 Steel Girder 

The selected parameters are: 

R = 2 

n = v 

reference design stress; 

ratios of the design stresses defined py 
Eq(2.4); 

modular ratio for steel and prestressing ten
don where nv = E 8 /Ev and Ev is the modulus 
of elasticity for the tendon; 

nvu• nv.t = prestress accuracy factors; 

~ = tendon location parameter; 

h = depth of the girder .1 

lA lternatively either A or 6 could be selected. 



3.2.2 Composite Girders 
; 

In addition to the parameters selected for the steel girder, the 

following parameters are required; 

where 

and 

pc = ratio of the design stresses for concrete; 

n = modular ratio for steel and concrete; 
c 

f3 = one-half of the ratio of depth of the slab and 
the steel section; 

11 = ratio of the maximum bending moments; 

M = 
Oma~,c 

M = Omax,s 

Tl = M /M Omax, c Omax, s 

maximum moment carried by the composite 
section; 

maximum moment carried by the steel 
section. 

3. 3 Unknown Quantities 

A 11 other quantities needed for the design and, possibly, for 
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checking the deflections or stability of the girder may be expressed in 

terms of selected parameters, the maximum bending moments and the 

quantities listed in Sec 2. 2, as follows: 

3.3.1 Steel Section 

A = a M0 /hR 2 , max A = a A, 
v v 

A = a1 A, 
1 V* = f3 M /h v Omax ' 

A2 ::: a2A, x = f3x MOmax/h' 

A = a A, w w ( 3. 2) 
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where a, a 1, a 2, a • a • {3 • ~ are proportionality factors. Relative 
w v v x 

tendon length J,v/ J, and relative distances s IL, ti J,, locating the ends 

of the tendon, are expressed as functions of µbr as shown in Table II. 

3.3.2 Composite Section 

A = a MOmax s/hR2, A = a A, 
• v v 

Al = a 1 A, V* = {3 M /h 
v Omax, s ' 

A2 = a 2A, x = f3x. s MOmax, s /h, s 

A3 = a3 A, x = ~ M /h c x c Omax s ' • • 
A = a A, ( 3. 3) w w 

where 

x = increase in the tendon force due to loads carried 
s by steel section, 

x = increase in the tendon force due to loads carried c by composite section, 

and a3, ~ • ~ are proportionality factors. Relative tendon 
X, S X, C 

length J, I J, for the composite section may be expressed as a function 
v 

of the ratio µbr. 8 where 

where 

µ - M /M br,s - Obr,s Omax,s 

MObr, s = moment at the location of the anchoring brackets 
due to loads carried by steel section. This re
lationship will be derived later. 

3. 4 Approach 

( 3. 4) 

Fully stressed designs of statically indeterminate structures 

are governed only by strength and continuity conditions, which are 

expressed as equality constraints. The optimum result (e.g .• the 
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minimum weight) is obtained by a search of all fully stressed designs. 

Other conditions such as deflections, buckling, shear, etc., need not 

be considered in the fully stressed design if they are properly con

trolled by the selected parameters. These conditions need not be 

satisfied as equality constraints in the fully stressed design and can be 

checked independently later on. 

The variables expressed by Eqs (3. 2) and (3. 3) can be defined in 

any manner, so long as they are truly independent. For convenience, 

the following variables will be used: 

area of the steel section 

area of the tendon 

asymmetry of the steel 
section 

increment in tendon force 

force due to prestressing 
. in the tendon 

chord 2 parameter 

concrete slab parameter 

ratios of the moments 

Steel 
Girder 

A 

A v 

a 

x 

V* 

Composite 
G.irder 

A 

A v 

a 

V* 

It is shown subsequently that the maximum number of indepen

dent variables is 7 for a prestressed plate girder and 9 for a pre-

stressed composite girder. The number of constraints (which are 

considered as equality constraints for the optimum design) are found 

to be one less than the number of variables involved in the problem. 

To obtain a unique optimum design, the optimization (e.g., minimiza-



tion of the weight) is executed with respect to the 11extra11 variable. 

For convenience, a2 is considered to be the extra variable. 
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In certain situations, a side constraint defining the bound on a 

variable, or bounds on certain mathematical combinations of design 

variables, become active. For instance, parameters defining the 

chord areas, a2 in the case of prestressed steel girder, and a1 (func

tion of a and a 2) in the case of prestressed composite girder, are 

generally rather small quantities. In the free optimum design (without 

any side constraints), these quantities may attain values smaller than 

the construction or buckling aspects permit. In this case, the extra 

variable is obtained from the side constraint instead of the optimization 

condition. 

Several optimization techniques have been investigated to solve 

the problem. However, only that one described subsequently was 

found to be feasible. Its principal idea is to reduce the number of the 

equations involved by eliminating some variables and to replace 

numerous equations, in that way, by one or two governing equations. 

For the prestressed steel girder (with a short tendon), six equa

tions are reduced to a single governing equation in terms of variables 

a and a 2. Similarly, for the prestressed composite girder (with a 

short tendon), eight equations are replaced by two governing equations 

in terms of variables a, a2' and a3• These one or two equations (with 

two or three variables), coupled with an optimization condition (or a 

side constraint), are then treated numerically, because their com

plexity excludes an explicit solution. 
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3. 5 Derivation of the Governing Equations for a Prestressed 
Steel Girder 2 · 

Stress distributions for various loading stages at a maximum 

moment section are shown in Fig 6a. The most highly stressed fibers, 

f1, f 2, •.• , are indicated in Fig 7, for a symmetrical load. The 

following derivations are valid for symmetrical or unsymmetrical 

load. 

3.5.1 Tendon of Full Length Lv= J, 

The stresses in the most highly stressed fibers may be expressed 

as follows: 

Compression in chord 1 at maximum moment section, fibers f 1, 

under the full load (Fig 7a) is 

nvt V* + X 
A 

(nvJ, V* + X) f 
-----..,.,--- + 

s1 
( 3. 5) 

Tension in chord 2 at maximum moment section, fibers f 2, under 

the full load (Fig 7a) is 

nv.t V* + X 
A ( 3. 6) 

Compression in chord 2 at support section, fibers f 3, under the 

full load (Fig 7a) is 

n V* + X (n V* + X)f 
vu A + vu S = P 2R 2. 

2 
( 3. 7) 

2The governing equations and expressions for the design para
meters for accurate prestressing are furnished in Appendix A. 
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Stress in the tendon, fibers f4 , under the full load (Fig 7a} is 

n V* +X vu 
A 

v 
(3.8) 

By substituting Eq ( 2. 3} in Eq ( 2. 2), the increment of the tendon force 

X is obtained 

( 3. 9) 

Substituting section properties, Table I, in Eqs ( 3. 5) and ( 3. 6 ), yields 

nv.t V* + X _ cl-p1 a'\ 
A - - R2 l+a ;· 

Eq (3. 10) substituted in Eq (3. 6), yields 

M 2 
A = . Omax 6a l+ a 

hR 2 W 1 1 + a - Y 2 (1-p1 a) · 

Expressions for w 1 and Y 2 are given in Table III. Substituting 

Eq (3.11) in Eq (3. 7), one obtains 

n V* + X = MOmax 6ap2(1+a)2 
vu h y 2 wl {l +a - y 2 ( 1-pl a& .. 

Substitution of Eq (3. 11) in Eq (3. 10), gives 

n V* + X =- MOmax 6a( 1-pl a) ( l+a)2 
v.t h W 1 ( 1 + a ){l + a - Y2 ( l-p1 a>} · 

From Eqs (3. 12) and (3. 13), it follows that 

(3.10)' 

(3.11) 

(3. 12) 

(3. 13) 

( 3. 14) 



w .. 
1 2{a 2 (1+a)2 - 1+2a} 

w2. a+a3(l+a){l+/3) 

W3 • 1 + /3(1+.a) (2+a3) 

W4" 1 - a3 13 {l+'a) 

w 5 • 6a3{t+/3(1+ a)}2 

ws .. s{a3 {1+/3+a/3)+ aS {l+a3)} 

Y • W1 (1+a3) + W5 

fil.!.:!:..!l ( a 'II W 2 ) 
yl • (f+ll2l w;+ -y-

2 
Y2 • (1 + ;q11) 

2 
Ys • -a _ 6a IC{l+as) W2 w 6 

3 w +--1 y 

y • ill.:!:.& 6'11W4{l+ a) 
4 w1 + Y 

WW 
Y5 • 1 - __L_2 y 

61\(l+a)W3 
y6 • y 

6atc (l+ a3) W4 W6 
Y7 • - a3 + W1 - -y-

'llW1W2 
y 8 • ----;:y-

TABLEllI 

LIST OF PRINCIPAL EXPRESSIONS 

Z • (nvu -nvt) 
1 (l+.P2) 

P2 yl Y3 
Z2 "' y- - y y {Pc yl - Y6) 

2 2 5 

C Pc Y3) z • p 1-- -
3 2 Pz Y5 

z • 
4 

z • 
5 

Y4 +(l+p2) Y1Y.i . 
Y3 

sac----vay 7 
1-"'W( -~ 

y 

(Pi+~) 
1 _sac _ Y2 Y7 

Wl Y3 

Y3Y5 yl . 
z 6 • yy- + y {l+p 2) 

2 5 2 

( 1 pcY3 .P2<nvu-nvt~ z. -w-+~-
7 · "'2 Y2 "'s Y 2 nvu 

·· ( ·Wi y6 'Y.i . 
Zs • W, - SBIC) ( yS - y 4) 

/'. wl )r. PcY7) (nvu-nvt> P2 
Zg • \..W1 - 681C ~1 - -y;- + nvu Yi 

D • :h (also refer to Eq (3,37)) 
Omax 

2 2 . . 
H1 • 6a IC z1z3 + W1Ziz3 + W1cz1Y2 

. ZlpcY2{l+a3) 
H2 • nvu- Z1Z3 + Y5 

2 2 
H3 • 6a IC Z2 + wlz2 + W1Y1• 

{p yl - Y6)(1+a3) 
H • c - Z2 4 Y5 

H 5 • 6 "'avg, 8 (1 +a) al 

wl {z4Y2 Y5 + (1+p2 )Yl Y5 + Y3 Ys} 
H6 '" 6a(l+aJ{Y5{i+Y2Z5)+PcYJ 

w1 zs - Zs 
87 • 6aU+ al (~) 

He • Y5(l+Y2Z5)+ pcY3 

H9 • Z4 Y2 Y5 + {l+ P2lY1 Y5 + Y3 y6 

H10 • Z5~l+p2) Y1Ys + Y3Yv}- Z4{Y5+pcY3) 

i:.:> 
~ 



X=-
M Omax 

h 

2 6a( l+a) 

Substituting Eqs ( 3. 11) and ( 3. 12) in Eq ( 3. 8 }, one obtains 

A cpv) A= () • Y2 · 
v 2 

Eq (3. 16} substituted in Eq (3. 9) leads to 

where c = p n • 
v v 

M 
X::: Omax 

h 

µ (l+a) 
avg 
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(3.15) 

(3. 16) 

(3.17) 

Equating Eqs ( 3. 15} and ( 3. 17 }, one obtains the gov~r:ning equation in 

::: 0 . 

Expressions for the design quantities a, a1, ... , f3v' ... , are 

accumulated in Table IV. 

3.5.2 Tendon of Short Length J, < J, 
v 

( 3. 18) 

The constraints for the critically stressed fibers, f 1, f 2, and f 5 

(Fig 7b), are expressed by Eqs (3. 5), (3. 6), and (3. 8}, respectively. 

The expression for X is given by Eq (3. 8). 

Compression in chord 2 at any section in the prestressed length, 

fibers r3, in the unloaded state (Fig 7b) is 



TABLE IV 

EXPRESSIONS FOR SIZING PARAMETERS FOR A PRESTRESSED STEEL GIRDER 
FORMULATED AS FUNCTIONS OF a AND a 2 

a 

Tendon of Full Length 

2 6a{l+a) 
WttT+a.-.:-y 2 ( r::- p 1 a)J 

al 
· 1 - a 

,. a2 - I+a 

a " w 

av 

{3v 

f3 .. 
x 

1 
2 <1 +a - a2) 

nvp2 

"iY2 

6af + a)2 P2 1 - P1 a 
(nvu - nvt>W1l +a - Y2Cl-: P1a>J Cy2 + 1 +a ) 

µaviz(l +a) 
WI----- y2 

ac +-(1 +c-) 
6att P2 

Governing Equation (3, 181 

a 

al 

aw 

a 
v 

.. 

Tendon of Short Length 

2 6a(l +a) 
wl p +a - Y2(1 --p18.JJ 

1 - a 
,. a2 - I+a 

l 
" 2 ( 1 +a - a 2) 

nv(p 1a - 1) 

c(l +a) 

2 6ap 2 (1 +a) 

f3v "w1Y2 {l+a-Y2(1-p1a>} 

(3 " x 
µaviz(l +a) 

wl f, Cl+ al 1 
alC +sac ll -c(l - P1a>J 

"'br • 
l+a 

1 +-a;. Y 2(1 - p 1a) 

Governing Equation (3, 22) 

"' O') 
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n V* 
vu + 
A 

n V*f vu (3.19) 

Tension in chord 2 at the anchorage-location-section, fibers f4, in the 

non-prestressed length under the full load (Fig 7b) is 

( 3. 20) 

Derivations in this case are similar to those in Sec ( 3. 5. 1 ), except 

that the value of µ g is now a function of u. (Tab le II) instead of a av · or 

constant value as for a full length tendon. The quantity µbr is deter-

mined from Eq (3. 20). Substituting the expression for A, the same 

as Eq (3.11), for S2 (Table I) in Eq (3. 20), yields 

The governing equation in terms of a and a2 would read 

6a( l+a)2 ( l-pl a) + n.vJ, . ~} 
W 1 {1 + a - Y 2 (1- p1 a >3 { ( 1 +a) nvu Y 2 

= 0 

Expressions for design parameters are furnished in Table IV. 

3. 6 Derivation of the Governing Equations for a Prestressed 
Composite Girder 4 

(3. 21) 

(3.22) 

Stress distributions for various loading stages at a maximum 

moment section are shown in Fig 6b. Critically stressed fibers f 1, 

4The governing equations and expressions for the design para
meters for accurate prestressing are presented in Appendix A. 



f 2, ••• , are indicated in Fig 7, for a symmetrical load. For the 

composite girder this study is restricted to symmetrical load only, 
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because of the complexity of a general case. Expressions W 1, W 2, 

... Y, Y l' ... z 1, z 2, ••• H 1, H 2, ... are explained in Table III. 

3.6.1 Tendon of Full Length t = t v 

The stresses in the most highly stressed fibers may be expressed 

as follows: 

Compression in chord 1 at maximum moment section, fibers f 1, 

under the tota 1 load (Fig 7 c) is 

n V*+ X X 
vt . · s + c 

A A(l+a3) 

(n n V* + X ) f 
VXJ S 

s 1, s 

X ( e 2 - e 2 + f) 
c c s + 

s 1, c 

M Omax, s 
s 

1, s 

+ 
M 

Omax, c = R 
S . pl 2 . 

1, c 
( 3. 23) 

Tension in chord 2 at maximum moment section, fibers f 2, under 

the total load (Fig 7c) is 

n V* +X 
vt s 

A 

x 
c (n V* + X )f 

VJ, S 
s 2, s 

M 

A(l+a3) 

X(e 2 -e 2 +f) 
c c s + 

s 
Omax, s 
s 2, c 2, s 

+ 
M Omax, c 

S = R2. 
2, c 

( 3. 24) 

In Eq ( 3. 25) it is assumed that the concrete at the support section will 

not crack because the tension due to the force X is small. Therec 

fore, the assumption of the transformed section is still valid. 
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Compression in chord 2 at the support section, fibers. f 3, under 

the total load (Fig 7 c) is 

n V* + X X (n V* + X ) f 
VU S+ C +VU S 

A A (l+a3 ) s2, s 

~(e 2 -e 2 +f) 
+ c c s = R 

S P2 2 ' 
2, c 

(3.25) 

Compression in the outer concrete, fibers f 4 , at maximum 

moment section under the total load (Fig 7c) is 

X · X ( e - e + f) M 
c _ c c2 . s2 + Oma:x, c 

-A-(-l+_a_3_) s3 s3 = pcR2. 
, c , c 

(3. 26) 

Tension in the tendon, fibers f 5, under the total load (Fig 7c) is 

n V*+X +X 
vu A s c = pvR2. ( 3, 27) 

v 

Increment of the tendon force due to loads carried by the steel 

section is 

x = s S e . EA ' 
f + 2,s 2,s (i + s . ) 

f A E A 
v v 

( 3, 28) 

Increment of the tendon force due to loads supported by the com-

posite section is 

where 

M Oavg,s 
µavg, s = M ' 

Omax, s 

(3. 29) 

M Oavg,c 
µavg, c = M ' ( 3. 30) 

Omax, c 



and 

s+.e.v 

M . = _J_ l M dx = average moment in the pre-
Oavg. s .e.v s O, 8 stressed length of the steel 

section. 

s+.e. 
1 I .v M = - M dx = average moment in the pre-

Oavg, c .e.v s o. c stressed length of the compo-
site section. 

Eqs ( 3. 24) and ( 3. 25) yield 

M 
A _ ' Omax, s y z y ( V*) 

- hR 2 1 - 1 2 R 2 • 

Eqs (3. 27) and (3. 31) substituted in Eq (3. 25) yield 
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(3.31) 

XY M 
c 3 + p R A y = p y Omax,s + P2Y2Z1V*. (3. 32) 

( 1 +a3) v 2 v 2 2 1 h 

Substituting Eq (3. 31) in Eq (3. 26) leads to 

M 1 +a Z Y ( 1 +a ) p V* 
X = · Omax,s (p y -Y >(-2)+ 1 2 . 3 c ( 3. 33 ) 

c h c 1 6 Y5 · . Y 5 

Substitution of Eq (3. 33) in Eq (3. 32) yields 

M 
A = 1 c . Omax. s Z + V'* z Z :"\. 

v pvR 2 h 2 1 3J 

From Eqs (3. 31) and (3. 34), it follows that 

A Yl+DZ1Y2 
-- = p Av v z 2 + D z 1 z 3 • 

where 

V*h o- ----
- Momax. s 

( 3. 34) 

(3.35) 

Substituting Eqs (3. 28), (3. 31), (3. 33). (3. 34). and (3. 35) in Eq (3. 27), 

results in a quadratic equation for D. 
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The valid root of this equation (with the positive sign of the radical) is 

obtained as 

+ ~(H2H3 + H 1H4 + H 5z1z3)2 ;.... 4H1H2(B3H4 + H5Z 2)}. (3. 37) 

Substituting Eqs (3. 27), (3. 31), (3. 33), and (3. 34) in Eq (3. 23) yields 

the first governing equation, 

( 3. 38) 

Simultaneous solution of Eqs ( 3. 29) and ( 3. 33) results in the second 

governing equation 

(3. 39) 

Where 

µ 
11 = 1' avg, c 

avg µavg,s 
( 3. 40) 

Numerical values of µ and µ for six basic bending mo-avg, s avg,c 

ment diagrams can be obtained from Table II (read µavg,s or µavg,c 

as needed for µ in this table). avg 



In the above two governing equations, (3. 38) and (3. 39), the 

expression .D is given by Eq ( 3. 37 ). Expressions for the design 

parameters are furnished in Table V. 

3.6.2 Tendon of Short Length tv < t 

Constraints for the critically stressed fibers, f 1, f 2, f4, f 5 

(Fig 7d), are described by Eqs (3. 23), (3. 24), (3. 26), and (3. 27), 

42 

respectively. Expressions for redundant tendon forces X 8 and Xe are 

given by Eqs ( 3. 28) and ( 3. 29), respectively. 

Compression in chord 2 at any section in the prestressed length, 

fibers f 3, under unloaded state (Fig 7d) is 

n V* 
vu + 

A 

n V*f vu 
S = p2R2. 

2,s 
(3.41) 

Tension in chord 2 at the anchorage-location in the non-pre-

stressed length, fibers f 6, under the full load (Fig 7d) is 

M M 
Obr, s + Obr, c = R s s 2. 

2, s 2, c 
( 3. 42) 

Because of the linearity of Eq (3.41) in V*, it is possible to obtain V* 

as a function of M0 /h without developing a quadratic equation max, s 

in D, as in the previous case. The following two governing equations 

are developed by similar manipulations, but without using Eq (3. 42). 

(3.43) 



TABLE V 

EXPRESSIONS FOR SIZING PARAMETERS FOR A PRESTRESSED COMPOSITE GIRDER 
FORMULATED AS FUNCTIONS OF a, a 2 AND a 3 . 

Tendon of Full Length 

a "' Y 1 + DZ1 Y 2 

1- a 
al = a2 - 1 +a 

a_ __ .. 2(-1 - a"\ w l+a 2) 

a • v 

nv(Z2 + D z1 Z 3) 

C(Y1 + oz1 Y2) 

13v = D (refer to Eq (3. 37)) 

13x, s = 
"'avg, 8 ( 1 + a) 

w1 Y 1 + D Z1Y2} 
Ka+ 6aK {l+C z 2 +DZ, Z.,· 

/3 = (pc Y1 - Y6)(1+a3) + {l+a3)DZ1Y2Pc 

x, c Y 5 Y 5 

Governing Eqs (3.3S) and (3.39) 

a = 

Tendon of Short Length 

Z5 - Zs 

Z7 + Z9 

1-a 
al = a2 - 1 +a 

a = 2(-1-.· -a "\ w l+a 2) 

a = v 
nv(Z7 Zs + Zs Z9) 

zs - zs 

P2 . zs - Zs 
13v = nvu Y 2 (z7 + Z9) 

"'avg, 8 (1+ a) 
/3x, s = w .. ---~zs-Zs> 

aK + sai {i+. (Z7Zs + Z5Z9)} 

(1 +a3) { z 6 - Zs 
/3 • p -Y x, c Y5 c ( Z'7 + Z0 J 6} 

Refer to Table VI for µb • r,s 

Governing Eqs (3.43) and (3.44). 

~ 
c..:i 
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and 

'flavgµavg,s(l+a) =-O. 

:!__ { ( 1 +a3)(z6 - z8 )} 
(3.44) 

+w 1 +'zz +zz 
6 7 8 6 9 

Expressions for the design parameters are furnished in Table V. The 

parameter '1 needed in Eq (3. 44) is obtained·by the use of avg 

Eq (3. 42), Manipulations similar to those involved in obtaining 

Eq (3. 31) leads to an expression for A. Substituting the expression 

for A into the expressions for s2 and s2 (Table I) in Eq (3. 42) 
• s , c 

yields 

µb + µb Ya - H,., = 0. r,s r,c t 
( 3. 45) 

Since the quantities µb and µb depend upon the shape of the r,s r,c . 

bending moment diagrams, Eq '3. 45) must be solved for individual 

cases. The loads supported by the steel section usually are the self-

weight of the girder and the concrete slab. They can be considered as 

uniformly distributed over the entire span. Thus, from Table II, 

and 

1 
µ =-(2+µ ) 

avg, s 3 br, s · ( 3. 4 7) 

For the loads carried by the composite section, 

1, 

t v = a function of (µb ) . r,c ( 3. 48) 

By equating the right sides of Eqs ( 3. 46) and ( 3. 48) for the relative 

tendon length t / t, the quantity µb is obtained as a function of v r,c 

µbr, s' Similarly, µp.vg, c can be expressed as a function of µbr, s· 



45 

Substituting µbr, 8 in Eq (3. 45) for µbr, c, a quadratic or linear 

equation for µbr s results (see Table VI). The solution of the latter , 
equation is used to express other needed quantities, such as 'lavg' 

J, /J,, etc. The expressions for µb (solution of Eq (3. 45)) and the v r,s 

ex:pressions for µ g c and µb as functions of µb are pre-av , r, c r, s 

s ented in Tab le VI. 

3. 7 Objective Functions 

It has been mentioned in Sec ( 3. 2) that any one of three quantities, 

depth h, slenderness A. = h/ 6, or thickness of the web 6, can be 

freely selected. To simplify most of the aforementioned expressions, 

they have been formulated in terms of the depth h. However, if the 

depth h is selected, the optimization condition leads to zero web area, 

A = 0, since there is no constraint of any kind on the quantity 6. 
w 

Thus, a side constraint on a must be introduced. To remove the w 

necessity of any side constraint on a from the optimum design, the 
w 

objective functions can be expressed in terms of either ").. or 6 in-

stead of h, since h does not appear in the governing equations. Here, 

web-slenderness ratio >.. is employed. The depth h can be expressed 

in terms of A using Eq ( 3. 2) for A and the following equations: 

). = h/6; a A= ho; w 

~~ 
~~ 

(3. 49) 

( 3. 50) 

For the composite girder, Momax is replaced by MOmax, s in 

Eq ( 3. 50), 

In composite construction, a concrete slab of certain specified 

dimensions (based on spacing of girders, loads, constructional regards, 



TABLE VI 

EXPRESSIONS FOR u. 8 "h AND µ g · or, , r, c av , c 

Bending3 
"hr, s ="hr, s~ .. a2,a3) Moment "'hr,c 

No. Diagram 

1 I I 01- Y8) 1. 0 

2 \__/ 2Y8 ~Y8 2 + 2Y8 - H7 + t-(2Y8 +2Y82 -H.U 2 Q - J1 -"'hr, s) 

3 CJ. (;~8) "'hr,s 

4 v i { y 8~ y 8 2 + 4 y 8 - 4 H7 + 4 - y 8 2 - 2 y 8 + 2 H7} 1-Jl-µ hr,s 

5 v 1 2 {2y 8 ~ 1-H7 + H7 y 8 + H7 ( 1-y 8) - 2 y 8} (1- J 1 - "hr, s)2 
(l-Y8} ·. 

6 v 2 y 8~ y 8 2 + y 8 - H7 + 1 - (2 y 8 2 + y 8 - H7) 1-2Jl-"'h r, s 

aSolve Eq (3.45) for any other case of loading. 

"avg, c 

1. 0 

2 -
5-4 "h s r, 

4J 1-"h r, s 

i(2 +"hr, s) 

1-.!J1-µ 2 hr,s 

.!(4 - " - 3 J 1 - "h ) 3 hr,s r,s 

1 - ~ 1 - "hr, s 

~ 
en 
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etc,) is provided in most cases, regardless of the section properties 

of the steel girder. Therefore, contribution of the concrete slab is 

ignored in the objective functions. Substituting h, Eq ( 3. 50 ), in the 

expression for area A, Eq (3. 2), gives 

A=~ 3 

Three types of objective functions are considered. 

3.7.1 Minimum Volume or Weight 

The volume of the steel girder and tendon is given by 

Volume = AL + A J, . 
vv 

Substituting Eq ( 3. 51) in Eq ( 3. 52) yields 

Volume = ~ (!+av :v) 3 

(3.51) 

(3.52) 

( 3. 53) 

Since J,, Momax' R 2, and A are given or selected quantities, the 

objective function for this case, to be minimized, is 

( 3. 54) 

Where Ow is identified with that of minimum weight if the unit 

weights of both materials are equal, which is at least approximately 

true. 

3. 7 .2 Minimum Price of the Consumed Material 

The objective function for this case, to be minimized, is derived 

from Eq ( 3. 54) and reads 
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(3. 55) 

Here, pvs is the ratio of prices per unit volume of materials used in 

the tendon to that used in the girder, 

3. 7 .3 Maximum Load Bearing Capacity of the Girder 

The objective function represents the load bearing capacity (ex-

pressed, e.g., by M0 ) of the girder for a given volume of max 

material (for the steel section), assuming that the material necessary 

for the tendon is provided. 

, (to be minimized). ( 3. 56) 

If the volume of the tendon is neglected in the objective functions, 

all three objective functions considered, Eqs ( 3. 54), ( 3. 55 )~ ( 3. 56 ), 

become identical. 



4. 1 General 

CHAPTER IV 

OPTIMUM DESIGN - MINIMUM WEIGHT 

VERSUS FULLY STRESSED 

The concept of fully stressed design can be applied to many basic 

structural problems. However. attempts to extend the concept to 

problems involving multiple load conditions and external or side con

straints have led to complications and even erroneous results. There

fore. the equivalence between fully stressed design and minimum 

weight design should be examined rigorously. There are many cases 

where the equivalence of the two designs can be argued from a physical 

stand point. 

Here, the equivalence between both approaches is proved for a 

steel girder prestressed by a fuU length tendon. The problems of a 

steel girder prestressed by a short length tendon and composite girders 

prestressed by full length and short length tendons are considerably 

more complex. However, these problems are basically similar to that 

of a steel girder with a full length tendon. The proof is based on the 

Kuhn-Tucker theorem, an extension of the classical Lagrangian 

approach to account for inequality constraints, Reference ( 1 ). 
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4, 2 The Kuhn-Tucker Theorem 

In the optimization problem, 

minimize f(x), 

subject to g.(x) ~ O; i = 1, ... m 
1 

and x > 0, 

with the Lagrangian function 

m 

F(x,µ) = f(x) + \ µ. g.(x), l 1 1 

i= 1 

the conditions 

of (x) + m agi (x) 
a \' µ. a :::: 0; j = 1, ... ' n; x. L i x. 

J i= 1 J 

µ.g.(x) = 0, i=l, ... ,m; 
1 1 

µ. 7 0 
1 

are necessary for x to be a local minimum. 1 

In the above e)S'pressions 

f (x) = objective function, 

g. (x) ::: i-th constraint, 
1 

m = number of constraints, 

n = number of independent variables, 

x = a vector of independent variables, 

µ. 
1 

= i-th Lagrange multiplier used to incorporate the 
effects of a constraint on the minimization of 
the objective function. 
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( 4. 1) 

( 4. 2) 

( 4. 3) 

(4.4) 

( 4. 5) 

1In addition, th,e Kuhn-Tucker Constraint Qualification must be 
satisfied. In practice, we generally assume that this rather complex 
condition is s·atisfied without checking, ( 1). 
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The solution of Eq ( 4. 3) will yield expressions for the Lagrange 

multipliers µ. in terms of the independent variables x .. 
. l J 

Two important inferences, which provide the key to the establish-

ment of relations between the minimum weight design and the fully 

stressed design, can be drawn from the Kuhn-Tucker necessary condi-

tions for minimization: 

1. If the i-th Lagrange multiplier is nonzero, it can be seen 

from Eq (4. 4) that the i-th constraint is satisfied as the equality con-

straint, g. (x) = 0. 
l 

2. The relation, Eq ( 4. 5 ), shows that the Lagrange multipliers 

are non-negative. 

4. 3 Example - Prestressed Steel Girder 

4.3.1 Objective Function and Constraints 

A plate girder prestressed by a tendon of full length is consid .... 

ered. To simplify the derivation, the prestress accuracy factors are 

assumed to be equal to unity. As explained in Sec ( 3. 7 ). the depth of 

the girder h can be expressed by the web-slenderness A.; h = ~)..aw A. 

A 11 of the required section properties (Table II) can be expressed in 

terms of A, a, aw, and X. Here, instead of chord 2 parameter a2 , 

the web parameter a is used to simplify the required differentiation w 

of the section properties. The necessary section properties are: 

( 4. 6) 
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where 

In this case the independent variables (x) are A, a, a , T and A , w v 

where 

T = V* + X = the total force in the tendon under the full 
load condition. 

The weight of the girder is proportional to the sum of the cross-

section areas of the girder and the tendon. Therefore, the objective 

function 

f (x) = A + A • v ( 4. 7) 

The constraints are obtained from Sec (3. 5. 1) and expressed as inequal-

ities: 

T Tf M 
gl(x) + Om ax 

- P1R2 s: 0' = A - s1 s1 
( 4. 8) 

T Tf M 
g2(x) + Omax - R s: 0 =-A 

82 82 2 J 
( 4. 9) 

g3(x) 
T +D P2R2 s: 0 J = A 82 

(4.10) 

g4(x) 
T 

pvR2 s: 0 • = A (4. 11) 
v 

4.3.2 The Lagrange Multiplier Matrix 

The necessary condition expressed by Eq ( 4. 3) can be written in 

the matrix form (known as the Lagrange multiplier matrix): 
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ag1 ag2 ag3 ag4 ar 
aA aA aA aA - aA 

µ1 

ag1 ag2 ag3 ag4 af 
aa aa aa aa 

µ2 
oa 

og1 og2 ag3 og4 of ( 4. 12) aa oa Qa aa = - aa 
w w w w µ3 w 

og1 ag2 ogs ag4 af 
aT aT oT oT - oT 

µ4 

ag1 ag2 ags ag4 of 
aA aA aA aA - aA 

v v v v v 

Expressions for the coefficients of the Lagrange multiplier 

matrix are presented in Table VII. These coefficients are very com-

plex, but only their signs are required to determine whether the 

Lagrange multipliers are, or are not, non-zero. These signs are ob-

tainable by either detailed observation of the expressions or by intui-

tion. For example, the first coefficient, ag1 I 'OA, represents the rate 

of change of stress in chord 1 under the full load with respect to the 

cross-section area A. Since the stress decreases with the increase 

in area A, keeping other variables constant, the sign of the coefficient 

must be negative. Similar arguments may be applied to other coeffi-

cients and can be verified by detailed study. 

Let P and N represent positive and negative signs of the coeffi-

cients, respectively; let subscripts j and i at P and N indicate the 

location of the distinct coefficients in the matrix (j-th row and i-th 

column). The Lagrange multiplier matrix, Eq (4. 12), in terms of the 

signs of coefficients reads: 



~ " 0 
~ 

a 
8A 

a 
aa 

a 
aaw 

a 
BT 

a 
8Av 

TABLE VII 

COEFFICIENTS IN THE LAGRANGE MULTIPLIER MATRIX 

gl g2 g3 

M 2 M 
- ..'.!.. (1 + 6a 21C) _ T(1 _6tCa)_! Omax T (l + 6a IC)- ! 0 max 

~ W1 2 S1A ~ w1 . 2 s~ A2 Wl 

T 12.ka{3a - aw( l+a)} 

! 61Caw(l-a2) _ 6 Momax{6-aw(l+a)2} 
-x w12 + 

T 121Ca{3a-aw(l+a)} 
A 2 

Aa A3 w2 
· 6 Momax{sa2 - aw(l+a)2} 

A w2 w1 w 1 1 

).kA3 w1 

2 ! 6a2icp+a)2 '!: 6K'ap+a) - -A w1 A W2 
1 _ ! 6a21C(l + a)2 

Momax ?.awA M ).a A3 u } A W2 

{!; -(l+a)2} O°iax w 2a -(l+a)2 
1 

4S12(1+a) 4S1 a(l+a) w 

!{1- 6h} 
2 2 

_ .!(l + 6a IC) .! (l + 6a IC) 
A w1 A w1 A. w1 

0 0 0 

g4 

0 

0 

0 

1 

Av 

T 
--2 

Av 

01 
i.i::.. 
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Nll N12 · N13 0 -1 
µ1 

N21 p22 p23 0 0 
µ2 

P31 p32 N33 0 = 0 ( 4. 13) 
µ3 

N41 N42 P43 p44 0 
µ4 

0 0 0 N55 -1 

From the 5th row of the matrix, 

(4. 14) 

From the 1st row, 

(4. 15) 

To satisfy the above condition, Eq ( 4. 15 ), at least one of the Lagrange 

multipliers must be non-zero; because of relation, Eq ( 4. 5), they can-

not be negative. Therefore, at least 

µ 1 or µ 2 or µ 3 > 0. (4. 16) 

From the 2nd row, 

Therefore, 

(4.17) 

Using a similar argument, the 3rd row reveals 

µ3 > 0. ( 4. 18) 

Similar simple arguments are not available to prove that µ 2 is non

zero. However, it can be shown that µ 2 is non-zero as follows. 

Assume µ 2 = O; then, from Eq ( 4. 12) 

ag1 /aa 

ag1 I aaw = (4.19) 
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Substitution of the required expressions in Eq ( 4. 19) from Table VII, 

yields 

6M 
6tca (1-a2) - Omax W 

w T~.>.a A 1 
w 

6a-2.cr ( 1 +a) 
w 

a( l+a) 
( 4, 20) 

The left side of Eq (4. 20) is a function of the web-slenderness }.. 

(a selected parameter) and other quantities, while the right side is a 

function of the section asymmetry a and web parameter a only. It 
w 

can be shown that the relative proportion of the cross-section (in other 

words a and a ) based on flexural strength considerations does not 
w 

depend on the web slenderness ')..... This fact is substantiated by the 

governing Eq ( 3. 18 ), which is a function of section asymmetry a and 

web parameter a and not a function of ')... Hence, Eq ( 4 .. 20) is not 
w 

true in general, which proves that µ 2 is non-zero. Thus, all of the 

Lagrange multipliers have been proved to be non-zero, and hence, in 

this case, the minimum weight design is a fully stressed design. 



CHAPTER V 

COMPUTER SOLUTION AND EXAMPLES 

5. 1 General 

The governing equations developed in Chapter III are solved 

using a sequential search technique, the Golden Section search ( 28 ). 

The same search procedure is employed to optimize the objective 

function with respect to the "extra" variable. Calculations were made 

on the Oklahoma State University IBM Model 360/65 Computer. The 

flow charts of the computer programs for a prestressed plate girder 

and a prestressed composite girder are presented in Figs 8 and 9, 

respectively. The listing of the programs is given in Appendix B. To 

cover all aspects of the computation in the present study, the explana

tions which follow deal with the more involved problem of a prestressed 

composite girder. 

5, 2 Solution of the Equations by the Search Technique 

An equation of the form G ::: 0\ can be solved by minimizing the 

absolute value !GI with respect to the involved variable (since mini

mum \GI is equal to zero). The minimization can be performed by a 

single variable search technique. The search procedure used is based 

on the elimination technique which by "bold moves 11 shrinks the region 

in which the minimum must lie. For a set of two simultaneous 

equations, successive use of the single variable search technique was 
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START 

READ MATERIAL PROPERTIES, 
PRESTRE SS ACCURACY FACTORS, STOP 
TENDON LOCATION PARAMETER. 

rr:r ;;~~:MIT;~ -:~~~~~;-;RITE -n 
11 c:x 1 · DESIGN RESULTS 1 I 
I I :i: I CALL GOLD 1 PARAMETERS I I 
LL_L____ ------- ___ _jJ 

YES IT-r--- ------- ---11 
11 ~ I SELECT a AGST 11 
11 0 I IS OBJ 1·1 -' MINIMUM . 

~ g L--~== M~~--No _______ _lJ 

~=-r~~~~IMI~~~---- :----11 
11 I- I CALCULATE 11 
11 ffi I CALL GOLD 2 OBJ 1 I 
ll.!.L ____ -- ---- ___ jJ 

YES rr-,---- ------ ---~ 

I I N I SELECT a. AGST 11 I 191 IS IGI 1 I 
1 I o I CALL MERIT 2 NO MINIMUM 11 

LL~---- ----- ___ _JJ 
~~r---- ----- ----11 
11 ~I CALCULATE IGI 11 
LL~ I ________________ jJ 

AGST = ACCORDING TO GOLDEN SECTION TECHNIQUE 

OBJ = OBJECTIVE FUNCTION 

G = GOVERNING EQUATION 

Figure 8. Computer Flow Chart for Prestressed Steel 
Girder 
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START 

READ MATERIAL PROPERTIES, 
PRESTRESS ACCURACY FACTORS, 
TENDON LOCATION PARAMETER. 

CALL GOLD 1 

CALCULATE a 

11 
11 
11 ___ Jj 

ri~ T~AL~LATE1~:ND ~~~ONE :;:-n 
L.J~J__2'1M~ AN~SE~EAC~EQUAL_2'~~- _.lJ 

CALL GOLD. 2 

AGST = ACCORDING TO GOLDEN SECTION TECHNIQUE 

OBJ = OBJECTIVE FUNCTION 

G = GOVERNING EQUATION 

STOP 

Figure 9. Computer Flow Chart for Prestressed Composite 
Girder 
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found very effective and is used in lieu of the multivariable search 

procedures (e.g., gradient method, grid search, etc.) ( 28 ). 

There are two governing equations and one optimization 
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condition involving three independent variables, section asymmetry a, 

chord 2 parameter a 2 and concrete slab parameter a 3. These are of 

the form 

( 5. 1) 

( 5. 2) 

( 5. 3) 

Eqs (5. 1) and (5. 2) can be solved simultaneously to obtain a pair 

of roots (a,a 3) for a selected value of a 2. A set of values of chord 2 

parameter a 2 are selected by the elimination technique, and for every 

value of a 2 and the corresponding values of a and a 3 satisfying 

Eqs (5. 1) and (5. 2), the objective function is evaluated and compared 

to obtain its minimum value. 

A set of values of section asymmetry a within given limits is 

determined by the elimination technique. For selected values of a 

and a 2, the roots (a 3)1 and (a 3)2 of Eqs (5. 1) and (5. 2) .. respectively, 

are obtained. The absolute difference of the roots' (a 3 )1 - (a 3 )2 j 
is minimized (the minimum being zero) with respect to section asym

metry a keeping chord 2 parameter a 2 constant. Thus a pair of 

values of section asymmetry a and concrete slab parameter 

a 3[;.: (a 3)1 ~ (a 3)2] is determined for a selected value of chord 2 

parameter a 2. 

After the minimum value of the objective function is determined, 

chord 1 parameter a 1, is calculated. If a 1 violates the side constraint 
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(the minimum bound). the minimization of the objective function with 

respect to a 2 is ignored and a 1 is assumed equal to its minimum bound. 

The procedure is repeated to obtain the corresponding values of section 

asymmetry a and concrete slab parameter a 3• 

Invariably all of the search techniques (except an exhaustive 

search) require the function to be unimodal (having only one valley in 

the interval to be explored). The functions encountered in the problems 

of the present study were investigated in the entire range of the para-

meters and found to be unimodal. A typical solution of the governing 

equations is depicted in Fig 10. 

5. 3 Illustrative Examples 

5.3.1 Prestressed Steel Girder 

Consider the design of a simply supported plate girder, 

prestressed by a short tendon, subjected to an unsymmetrical load 

as shown in Fig l la. 

tv s t 
Quantities µavg• t , J," and-;; are obtained as function of the 

parameter µbr' as explained in Sec ( 2. 5 ): 

5 7 2 2 
µavg = ( 5 - 4 µ ) ( 2 - 5 µbr ), 

br 

R, 4 v = 1 - 5 µbr ' J, 

s = 31 
J, 10' µbr • 

t 1 = 2 µbr · R, 

The following materials are assumed (31): carbon steel 

ASTM A 36 for the girder; R 2 = 29 ksi; Es = 30, 000 ksi; a wire-rope 
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Figure 10·. A Typical Solution of the Governing Equations 
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Figure 11. Design of a Prestressed Steel Girder 
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with parallel straight wires (zinc-coated, with standard ultimate 

tensile stress 220 ksi): R = 141. 5 ksi, E = 29, 000 ksi; hence,, v v 

e: = 5. 05 :! 5. Furthermore, IC = 1.1; p 1 = p 2 = 1. O; nvi, = O. 9,, 

n = 1. 1, are assumed. 
vu 

A computer program (Appendix B) can be used to find the 

coefficients for the design quantities, given by Eq ( 3. 2). The resulting 

coefficients are: 

a = 2. 116, a 1 = o. 361, a 2 = O. 076, 

a =- 0~564,, a = o. 067. w v a = 1. 796, 

{3v = 0.443, 
i,v 

= o. 642, 
i, µbr = 0.447, 

s = o. 134, t = o. 223, 
i, i, 

For the design load P = 150 kip and span i, = 60', the design bending 

moment M0 = 40, 500 kip-in. The self weight of the girder is max 

neglected in the preliminary design. 

For A = 115, Eq (3. 50) yields h = 57 11 • Other necessary 

design quantities are obtained from Eq ( 3. 2) as 

A = 51. 4 in. 2, Al = 18.7 . 2 in. , 

A2 = 3 .. 95 in, 2, A = 28.75 in. 2, 
w 

A = 3.48in.2, v~~ = 312 kips, 
v 

R'v = 38.6ft, s :: 8. 0 ft, 

t = 13. 4 ft. 

A possible cross-section is pictured in Fig llc. The computer 

time required for this problem was approximately 1~ seconds on the 

IBM 360/65. 
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5. 3. 2 Prestressed Composite Girder 

In this example the design of a composite plate girder prestressed 

by a short length tendon and subjected to a concentrated superimposed 

load at mid-span is considered, Fig 12a. 

Required expressions for various parameters are available in 

Tables V and VI. In addition to the material properties and some 

parameters used in the previous example, Sec ( 5.3.1 ), other quantities 

assumed are: modular ration = 10. 0, concrete design stress = c 

2. 32 ksi; hence p = O. 8; bending moment ratio 1l = 4. 0, and c 

concrete thickness parameter {3 = O. 05. 

A computer program (Appendix B) is used to find the coefficients 

for the design quantities given by Eq ( 3. 3 ). The resulting coefficients 

are: 

a = 5. 508, 

a = O. 749, 
w 

= o. 628, 

a 1 = 0.036, 

Cl!3 = o. 950, 

a = 0. 697, 

a 2 = 0.215, 

a = 0.120, v 

{3 = 1. 938. 
v 

For the design load (superimposed) P = 280 kips, and span J, = 

60 ft, the design moments M 0 = 50, 400 kip-in and M 0 m~. c m~, s 

12,600kip-in, for ·A.= 120, Eq_(3 .. 50)yieldsh = 60in, hence 

h = 6. 0 in. Other needed design quantities are obtained from c 

Eq ( 3. 3) as 

A = 40. 0 in.2 , Al = 1. 44 . 2 
in. ' 

A2 = 8.56 in. 2 A = 30. 0 in. 2 
w ' 

A = 4. 8 in .2 , A3 = 38. 0 in .2 , 
v 
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A = 380 in.~. c 

J.'v 
t = 37. 7 ft. 

V* = 406 kips, 

A possible profile is depicted in Fig 12c. 

The proposed design should be checked for deflections, shear 
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and stability and to verify the assumed moment ratio Tl· The computer 

time required for this problem was approximately 45 seconds on the 

IBM 360/65. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

• 
6.1 Summary 

A method has been developed for the optimum design of a 

prestressed plate girder and a prestressed composite girder of a 

constant cross-section, subjected to one critical inplane load. Pre

stressing is induced by a tendon of a high-strength material located -

parallel to the stretched chord of thE'.. girder. The tendon may be of 

full length or of short length (the former being equal to and the latter 

being shorter than the girder span). Strength ~onditions are considered 

as equality constraints, wbich lead to fully stressed designs. Govern

ing equations, which replace continuity and strength conditions, have 

been derived for a general distribution of load along the span in the 

case of a prestressed steel girder and :(or any symmetrical load in the 

case of a prestressed composite girder. The optimum design is 

obtained by a search of the fully stressed designs. 

A brief historical sketch of structural optimization with related 

discussions is presented in Chapter I. Chapter II deals with cross

section properties, design stresses, load conditions and increment of 

the tendon force. Governing equations for a prestressed steel girder 

and a prestressed composite girder are developed and expressions for 

the objective functions are derived in Chapter III. The relationship 

_between a fully stressed design and the minimum weight design is 
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established by the use of Kuhn-Tucker necessary conditions in Chapter 

IV. Computational aspects of the problem and two illustrative examples 

are treated in Chapter V. 

Governing equations and various needed expressions for the case 

of accurate prestressing are accumulated in Appendix A. Computer 

programs are furnished in Appendix B. Some representative cases 

regarding various material properties, tendon locations, and bending 

moment ratios for a uniformly distributed load and a concentrated load 

at mid-span have been considered and the results are presented in 

Appendix C. 

6. 2 Conclusions 

A fully stressed design obtained by an iterative procedure based 

on stress rate convergence criteria (12) and (13) has severe difficul

ties with convergence and there does not exist an explicit optimization 

condition. These shortcomings have been eliminated in the present 

approach. It has been shown for the problems of this study that an 

optimum design is a fully stressed design, within a certain practical 

range of the parameters involved. The suggested procedure is inex

pensive in application. The trial-and-error methods of proportioning 

are entirely eliminated. If the technological means can be developed 

for reducing the fabrication cost, the use of optimization techniques 

in the design of prestressed girders may be promising. 

The foUowing observations are based on the numerical results 

presented in Tables X through :XVII, Appendix C. 

For a prestressed steel girder: 
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1. Girders with short length tendons are about ~ to 3% lighter 

than those with full length tendons. 

2. The smallest part of the section is chord 2 {less than 12% 

of the total area A). 

3. About 50% of the material used is needed for the web of the 

girder. 

For a prestressed composite girder: 

1. The reduction in weight of the steel section, for the use of 

the short length tendon instead of the full length tendon, varies from 

s% to 12%. 

2. The smallest part of the section is chord 1 (less than s% of 

the total area A). 

3. More than 60% of all steel utilized is needed in the web of 

the girder. This distribution of the material is reasonable because 

the steel chords 1 and 2 are partially replaced by the concrete slab 

and prestressing tendon, respectively. 

4. The steel section is lighter for a low strength concrete slab 

compared to that for a high strength concrete s1ab, but a larger 

concrete area is needed in the former case. 

6. 3 Suggestions for Further Work 

During this study, map.y interesting topics were noted which 

could merit further investigations. Some suggestions are: 

1. Study multiple loading conditions by selecting appropriate 

constraints from each case of loading and derive the governing 

equations. 



2. Solve the same problem by a non-linear programming 

approach and compare the computation time. 

3. Study a varying cross-section expressed as a function of 

loading. 
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4. Extend the approach to the elasto-plastic and plastic range 

of the materials. 

5. Develop the optimization methods for girders with different 

tendon layouts, for large span trusses, prestressed concrete beams, 

etc. 

6. Investigate the optimum design of statically indeterminate 

structures prestressed either by prestressing tendons, by the enforced 

deformation of redundant restrains or by combinations of the two. 
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APPENDIX A 

EXPRESSIONS FOR SIZING PARAMETERS 

AND GOVERNING EQUATIONS FOR 

ACCURATE PRESTRESSING 

(n = n = 1.0) vu v£ 
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a 

"'1 

a w 

"'v 

f3v 

f3x 

= 

= 

= 

TABLE VIII 

EXPRESSIONS FOR SIZING PARAMETERS FOR A PRESTRESSED STEEL GIRDER 
FORMULATED AS FUNCTIONS OF a AND a 2 

Tendon of Full Length Tendon of Short Length 

-
2 

a = 6a(l +a} 
w 1e +a-Y2 c1 - p 1a>} 

6a(l .+a} 
W l { 1 + P2) 

1 - a 1 - a 
"'2 - 1 +a al = a2 - T+a 

1 
a = 2 <1+a-a2) w 

1 
2<1+a - "'2> 

nvp2 nv{p 1 a - 1) 
= a £(1·+ a) v = tY2 

2 

f3 v 
6ap 2{ 1 +a) 

= w 1Y 2 (.1 +a - Y 2{1 - p 1a)} 

6~p 2 {1 +a) µ (1 +a) 
= - avg 

W1Y 2 (1 + p 2) Wl y2 
alC + -6 - { 1 + c -) 

aK P2 
µ { 1 +a) 

B· = avg 
x 

+ wl [1 - e:(l +a)] 
arc 6aK 1 - p a 

1 

µ ( 1 + a) 
avg 

= 
Wl y2 

ate +-6 -(1 + t-) 
ate P 2 

-J 
m 



TABLE IX 

EXPRESSIONS FOR SIZING PARAMETERS FOR PRESTRESSED COMPOSITE GIRDER 
FORMULA TED AS FUNCTIONS OF a, a2 AND a 3 

Tendon of Full Length 

a = y 
1 

1-a 
al = a2 - l+a 

aw = 2 (1!a - a2 J 
nv z2 

a "' --v CY1 

(l+a3)(Y1p - Y6) 
(3 = z - c 
v 2 Y5 

f3x, s = 
µave., 9 (1 +a) 

w1 Y1) 
alC + 6atc: (1 + a Z2 

f3x, c 
- (l+a3)CY1pc-Y6) 

- Y5 

µavg, 9 (1 +a) 

~-;-:~:Kl Q +£ ~) 

a = 
Hg 

Ha 

Tend on of Short Length 

1-a 
al = a2 - l+a 

a = 2(-1 -a'\ w l+a 2) 

a 
v 

n HlO v_ 
= - H t: g 

P2 Hg 
/3v = Y2 Ha 

µavJ?. 8 ( 1 +a) 
f3x,s = 

W Hg) 1 l+c-atc + 6alC ( HlO 

/3x,c 
(1 + a3) . ·. Hg} 

= {z4y2 + (l+p2)Yl -(l+Y2Z5)H8 

-.J 
-.J 



GOVERNING EQUATIONS 

A. 1 Prestressed Steel Girder 

A.1. 1 Tendon of the Full Length .C = i v 

A. 1. 2 Tendon of Short Length .l.v < £ 

6a{Y2 (1 - p 1a) + p 2 (1 +a)} 

Wl Y2 ft+ a. - y 2 (1- P1 a) r + 

A. 2 Pres tressed Composite Girder 

A. 2. 1 Tendon of the Full Length 

6 f; Y7 
z2 0 -;l) + Y 5 (Ylp c - y 6) + Y4 - P1 yl = O 

(A. 1) . 

(A. 2) 

(A. 3) 

(A. 4) 

(A. 5) 

(A. 6) 

In expressions for µbr,s' Table VI, replace H7 by H6 for accurate prestressing. 
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COMPUTER PROGRAMS 
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c . 
c 
c ... CPTtMUM DESIGN OF A PRE STRESSED PLATE GIRDER 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
·C 
c 
c 
.C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C· 
c 
c 
c 
c 

c 

.OKUHOMA STATE 'UNIVERSITY CHAMPA LAL MEHTA 

GENERAL COMMENTS 

THE PROGRAM HAS BEEN WRITTEN TO GIVE THE OPTIMUM.VALUES OF THE 
DESIGN PARAMETERS FOR A PRESTRESSED STEEL GIRDER 

ONE DATA CARD.IS REQLIRED 

DESCRIPTION OF PARAflETERS 

R2 
RAWl 
RAW2 
RAWV 
ENV 

· EPS 
RKA 
ASH 
AVG,6R 
RN\JU 
RNVL 
ALP 
AL Pl 
ALP2 
ALPW 
ALPV 
BV 
BX 
RLEN 
OBJW 
Dl 
.02 
03 .. 06. 
D4 
OS 

~DESIGN STRESS FOR CHORD 2 CTENSIONI 
~ DESIGN. STRESS FOR CHORD 1 CCOMP.J I R2 
~ DESIGN STRESS FOR CHORD 2 CCO~P.t I R2 
= DESIGN STRESS FOR TENDON CTENSIONt /R2 
= RATIO OF ELASTICIT~ MODULI • ECSt/ECVI 
• RAhV * ENV • CEPSILCNI 
* TENDCN LOCATION PARAMETER 
= SECTICN ASYMMETRY 
• COEFFICIENTS AT BENDING MOMENTS 
"' UPPER VHUE CF PRESTRESS ACCURACY FACTOR 
•LOWER VALUE OF·PRESTRESS ACCURACY FACTOR 
:s COEFFICIENT FOR CROSS-SECTION AREA 
• CHGRD 1 PARAMETER 
= CHORD 2 PARAMETER 
= WEB PARi!lflETER 
= TEND~N ARE~ Pi!IRAMETER 
= COEFFICIENT FOR PRESTRESSING ~ORCE 
=.COEFFICIENT FOR REDUNDANT FORCE IN THE TENQON X 
= COEFFICIE~T FOR LENGTH OF THE TENCON 
• OBJECTIV.E FUNCTION FOR WEIGHT OF THE GIRDER 
= LO~ER BCLND ON ALP2 
= UPPER BOUND ON ALP2 
= FRACTIC~AL REDUCTION OF INTERVAL OF UNCERTAINTY 
= LOhER BCUND CN ASM 
• UPPER BCLND ON ASH 

SUBROUTINES «EQUIREC 

le GOLDl, 2. MERITlt 3. GOLD2t 4. MERIT2 

COMMON /BLOKl/ RAhltRAW2,ENV,EPS,RKA,ASM 
COflMON /BLOK2/ BRtAVG,ALP2tALPw,w1,v2,RNVU,RNVL 
CCMMON /BLOK3/ G . . 

1 fCR~AT C7Fl0e5t 
2 F~RMAT c1H1,16x,•DATA usEo•,111 
3 F.ORMAT Cl6X, 1 RAW1 1 ,6X, 1 RAw2•,1x, 1 ENV 1 ,1x,•eps•,1• 
4 FOR~AT 110Xt4Fl0.5) 
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c 

c 

5 FOR~AT (17Xr 1 RKA'r6X, 1 RNVU 1 r6~~'RNVL 1 1 /I 
6 FORMAT 11ox.~F10.s1 
1 FORMAT C//tl6Xr 1 0PTIMUH CESIGN PARAMETERS•,/) 
8 FORMAT (//rl6Xr1ReSIOUE LEFT AFT~R ITTERATION•,11 

11 FORMAT llrl7Xr 1 ALP 116Xr'ALP1 1 r6Xr 1 ALP2 1r6Xr 1ALPW 1,6X, 1ALPV 1, 
17Xr'ASM1 rll 

12 FORMAT (10X,6Fl0e51 
13 FORMAT (/,15X, 1 BETAV 1r5X1 1 BETAX 1 16X, 1 RLEN 1 ,7X, 1S/L 117X,•T/L 1 , 

l6X, 1 0BJW 1 ,/I 
15 ~ORMAT ll3Xr'G ~ •,F1c.S,////) 

READ C5,ll RAWl,RAW2,ENV,EPSrRKA,RNVU,RNVL 
WRITE (6,21 
WRITE ( 6,3 I 
WRITE (6,41 RAWlrRAW21ENV,EPS 
lo.RITE (6,51 
WRITE (6,6) RKA,RNVU,RNVL 
WRITE l 6, 71 
Dl -= 0;.04 
02 = o.1s 
03 = 0.001 
CAll GOLDl co1,02,03,a1,s21 
ALP = 6.•ASM*(l.+ASMl**2•/lWl*lle+ASM+V2*lRAWl*ASM-l.lll 
ALPl = ASM/ll.+ASMl-ALPw/2. 
BV = 6e•ASM*RAW2*lle+ASMl**2e/lRNVU*Wl*V2*ll.+ASM+V2*CRAWl 

l *ASM-1.111 
ALPV = ENV*lBV*CRNVU-RNVLl+ALP*lRAWl*ASM-lel/lASM+lell/lALP*EPSI 
BX = AVG*lle+ASMl/lASM*RKA+Wl/l6.*ASM*RKAl*lle+ALP•EPS/ 

1 lBV*IRNVU-RNVLl+ALP*lRAWl*ASM-l.l/lASH+l.1111 

C FOLLOWING 3 CARDS SHOLD BE CHANGED FOR DIFFERE~T LOADS 
c 

c 

RLEN = 1.-0.B*BR 
RSL = O. 3*BR 
RTL -= 0.5•BR 

OBJW = (ALP**2./ALPwl**0•33333*ll.+ALPV*RLENI 
. WRITE (6,11 I 

WRITE (6,121 ALP,ALP1,ALP2,ALPW,ALPV,ASM 
WRITE l6tl31 
WRITE .(6,121 BV,BX,RLE~tRSL,RTL,OeJW 
WRITE (6,81 
WRITE l6tl51 G 
STOP 
END 
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c 
c 
c 
c 

SUBROµTINE GOLDl IXL1lCR~f,YSMALL1XSMALL) 

SUBROUTINE GOLDl SELECTS THE VALUE OF .X CALP2t AND CALLS 
SUBROUTINE ME~ Ill TD. CALCULATE Y IOBJECTI VE FUNCTIONI 

XLEfT"" XL 
XRIGHT • XR 

13 SPAN ~ XR - XL 
DELTA • ABSCSP~Nt 

14 ~1 • XL + -0.381966*DELTA 
X2 • XL + Oe618034*DELTA 
CALL MERITl ·1x1,v1t 
CALL MfRITl IX2~Y2t 

9 IFCABSIXL - XRt - ABSCF•SPANtt4,4,8 
8 DEL TA • 0,.6lS034*0El U 

1F cv2~v11 1,10,2 
1 XL • Xl 

Xl • X2 
Yl • Y2 
X2 ~ XL + 0•618034*DELTA 
CALL HERIJl cx2,v2t 
GO TO 9 

2 XR • X2 
Y2 "' Yl 
X2 • Xl 
Xl ~ XL + Oe38l966•DELTA 
CALl MERITl·IXleYlt 
GO TO 9 

4 1Fc~2 - v1ts,s,6 
.5 Y SMALL=Y 2 

XSMALL=X2 
GO TO 7 

6 YSflALL0:.Yl 
XSflALL=Xl 
GO TO 7 

10 XL = Xl 
XR "'. X2 
DEL TA = XR - XL 
GO TO 14 

7 RETURN 
END 

· SLBROUTI~E MERiil IALP22 1 CBJl 
c 
C SUBROUTINE MERiil CALLS SUBROUTINE GOLD2 TO DETERMINE THE 
C VALUE OF ASH ANO CALCUlATES~BJECTIVE FUNCTION 
c 

COMl'ON /BLOKl/ RAkl,Rllw2,ElllVeEPS,RKAeASM 
CCMMGN /BLOK2/ eR,AVGtALP21ALPw,w1,v2,Rl\IVU,RNVL 
COMMON /BLOK3/ G . 
ALP2 "' ALP22 
o4 ... 1.c 
C:5 ... 4.0 
D6 "' 0,001 
CALL GCLD2 ID4,D5,06,e3,84t 
G = 83 
ASM i: 84 
ALP c 6••ASM•11. tASM t 02. /C WI* Cle +ASM+Y 2* I RAWl*ASM-1 • t t t 
BV Ii: 6.•AS~•~AW2•1l.+ASMt••2./IRNVU•w1•v2•11.+ASM+v2•IRAWl 

l •ASM-1.tll 
ALPV = ENV•CBV*CRNVU-RNVLt+ALP*IRAwl•ASM-1.t/IASM+l.tt/IALP*EPSt 

c 
C FOLLOWING CARD SHOULC BE CHANGED FOR DIFFERENT BENDING MOMENT 
C DIAGRAMS 
c 

c 

c 

RLEN a 1.-0.S*BR 

OBJ = CALP*•2./ALP~l••0.33333*1le+ALPV*RLENt 

RETURN 
END 
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c 
c 
c 
c 
c 

c 

Sl:l&R'OtlTt"Nt: Gtlttrz tl<l ,·ittt, f t'Y'S1'All, XS'MM:L'l 

SUBROUTINE GOL02 SELECTS THE VALUE OF X CASMI ANO CALLS 
SUBRl)UTlNE MERH2 TC CALCULATE Y CRESIDUE OF THE GOVERNING 
EQUATION I 

XL EFT I,. .XL 
XRIGHJ • XR 

13 SPAN ~ XR ~ XL 
DELTA• ABStSPANI 

14.~l • XL + 0.381966*DELTA 
X2 • XL + 0.618034*DELTA 
CALL MERIT2 ~Xl;YU 
CALL MERIT2 1x2,v21 

·~ lFIABSIXL - XRI - ABSCF•SPANll4,4,8 
8 DELTA• Oe6l8034•DELTA 

IF CY2-Yll 1,10,2 
l XL • Xl 

Xl a X2 
Yl • Y2 
XZ • XL + 0.618034*DELTA 
CALL MERIT2 cx2,v21 
GO TO 9. 

2 XR • X2 
Y2 • Yl 
X2 "' Xl 
Xl c XL + 0.381966*DELTA 
CALL MERIT2 cx1.v11 
GO TO 9 

4 IFIY2 - Yll~,5,& 
5 YSMALl,.Y2 . 

XSP1All•X2 
GC TO 7 

6 YSMALL•Yl 
XSllALL,.Xl 
GO TO 7 I 

10 XL • Xl 
XR • X2 
DELTA• XR - XL 
GO TO 14 

7 RETURN 
END 

SUBROUTINE HERIT2 CASHH,GI 

C SUB.ROUTINE HERiT2 CALCULATES RESIDUE OF THE GOVERNING EQUATION 
c 

c 

CQflP'CN /BLOKl/ RAhl,RAh2,ENV,EPS,RKA,ASH 
COMMON /BLOK2/ BR,AVG1ALP21ALPw,w1,v2,RNVU,RNVL 
ASfl • ASM114 
AL~W • 2.•llo/Cle+AS114~-ALP2J 
Wl = 2e*l2e*ASH-le+ALP2*Cl.+ASMl**2•) 
Y2 • lo+6.•RKA•AS~*•2./Wl 
BR • lASH+l.l/IASM+l.+Y2•CRAWl•ASH-loll 

C FOLLOWING CARO SHOULC BE CHANGED FOR DIFFERENT BENDING MOMENT 
C DIAGRAMS 
c 
c 

.c 

ALP • 6o*ASM*ll.+ASfll**2•/CWl*Cl.+ASM+Y2•CRAWl*ASM-lolll 
BV s 6.•ASM•RAW2•Cl.+ASHl••2.1cRNVU•w1•v2•c1.+ASM+Y2•CRAWl 

l *ASH-~olll 

C EVALUATE RESIDUE OF GOVERNING EQUATION, G 
c 

G • ALP*IRAWl*ASM-lol/CASH+l.l-RNVL*BV-AVG*Cl.+ASMl/CASM*RKA 
1 +Wl/l6o•ASM*RKAt*llo+ALP*EPS/CBV*CRNVU-RNVLl+ALP• 
2 IRAWl*ASM-lelFCASM~l.1111 

G. • ~BSCGI . 
RETURN 
END 

83 



84 

DATA USED 

Rhl RAW2 ENV EPS 

l.COOOC 1.00000 1.03400 5.00000 
RKA RNVU RNVL 

lelOOOC l;. lOCCO Oe90COO 

OPTIMLM CE SIGN PARAMETERS 

ALP AL Pl ALP2 ALPW ALPV ASH 

2.11579 0.36058 o.01sa4 c.56365 0.06756 le 79l:45 

BET AV BET AX RLEN S/L T/L OBJW 

c.44zc;1 0.20415 0.64223 0.134ll: 0.22360 2.oa111 

RESIDUE UFT AFTER ITTERATIC~ 

G .. 0.00019 



c c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c -
c 
c 
c 
c 
c 

OPTIMUM DESIGN Of PRESTRESSED COMPOSITE GIRDER 

CKLAHCMA STATE UNIVERSITY CHAMPA LAL ME~TA 

GENERAL COMMENTS 

THIS PROGRAM HAS BEEN WRITTEN TO GIVE THE OPTIMUM VALUES OF THE 
DESIGN PARAMETERS FOR A PRESTRESSED COMPOSITE GIRDER 

ThC DATA CARDS ARE ~ECUIRED 

DESCRIPTION OF PARA~ETERS 

R2 
RAwl 
RAw2 
RAWV 
RAhC 

• DESIGN STRESS FOR 
m DESIGN STRESS FOR 
• DESIGN STRESS FOR 
s DESIGN STRESS FOR 
• DESIGN STRESS FOR 

STEEL AREAi /R2 

CHORD 2 CTENSIONI 
CHORD 1 CCO~P.) I R2 
CHCRD 2 &COMP.I I R2 
TENDON CTENSJONI /R2 
CONCRETE SLAB lTRANSFORHED 

ENV • RATIO CF ELASTICITY MODULI • ECSl/ECVI 
EPS = RAhV • ENV a CEPSILONI 
RKA • TENCCN LCCATICN PARAMETER 
ASM • SECTICN ASYMMETRY 

INTO 
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B = THICKNESS OF CONCRETE SLAB/l2•DEPTH OF STEEL SECTIONI 
RAT V RATIO CF ~AXl~UM MOMENTS 
BRS,AVGS.AVGC = COEFFICIE~TS AT BENDING MOMENTS 
RNVU = UPPER VALUE OF PRESTRESS ACCURACY FACTOR 
RNVL = LOWER VALLE CF PRESTRESS ACCURACY FACTOR 
ALP • COEFFICIENT FOR CROSS-SECTION AREA 
ALPl • CHCRO l FARAMETER 
ALP2 = CHORD 2 PARAMETER 
ALPW • WEB PARA~ETER 
ALP3 = CONCRETE SLAB PARAMETER 
ALPV = TENDCN AREA PARAMETER 
ALPPl s LCWER BCU~O CN ALPl 
BV = COEFFICIENT FOR PRESTRESSING FORCE 
BXS,BXC = COEFFICIENTS FOR REDUNDANT FORCES IN THE TENDON, 

XCSI ANC XtCI, RESPECTIVELY 
RLEN = COEFFICIENT FCR LENGTH OF THE TENOON 
OBJW =OBJECTIVE FUNCTION FOR WEIGHT Of THE GIRDER 
Dl • LOhER BCUND CN ALP2 
02 = UPPER BCLNO ON ALP2 
D3=06=09 • FRACTIONAL REDUCTION OF INTERVAL OF UNCERTAINTY 
D4 = LOhER BCUND CN ASH 
O~ = UPPER BCUND CN ASH 
D7 = LOhER BCUNC CN ALP3 
DB = UPPER BCLNC ON ALP3 

SUBROUTINES REQUIRED 

le GOLOl, 2. HERITl, 3. GOLD2, 4. MERIT2r 5. GOLD3, 6e MERIT3 



.CCMflON /BLOKl/ RAWl1RAW21RAWC1ENV1EPS1RKA181RAT,RNVU,RNVL 
COMMON /8LOK2/ 8RS1AVGS,ASfl,AlPl1ALP2,ALPW1ALP31,ALP321IFS 1KK 
CC~MON /BLOK4/ w1,v,v1,v2,v3,y4,y5,v6.Y7,Y8 
COMMON /BLOK5/ o,z1.z2.z3,z4,z5,z6,z7,Z8,Z9,H8,H9,H10 
COMMON /BLOK6/ Gl,G2 
COMMON /BLOK7/ ALP33 

c ' 
1 FOR~AT (5F10.51 
3 FORMAT (lHl116X, 1 DATA lSEC•,//I 
4 FORMAT (l6X,•RAWl'16X1'RAW2 1 16X1 1 RAWC•,1x,•eNv•,1x,•eps•,/) 
5 FORflAT llOX,SFl0.51 
6 FORMAT (l7X, 1 RKA•,9x,•a• ,1x, 1 RAT'16X,•RNVU'16X, 1 RNVL',/I 
8 FORMAT (//,l6Xe'OPTIMUM DESIGN PARAHETERS 1,/I 

11 FORflAT (/,17X1 1 ALP•,6X, 1 ALP1 1 16X, 1 ALP2 1,6X, 1ALPW 1 ,6X, 1 ALP3 1 , 

l6X, 1 ALPV 1 ,/I 
12 FCRf11'11T UOX,6Fl0.5) 
13 FORMAT c1,11x, 1 ASM•,5x, 1 BETAV•,4x, 1 BETAXS•,4x, 1 BETAXC'16X, 

l 1 RLEN 1,6X1 1 0BJW'1/) 
15 FORflAT (//,16X, 1 RESICUE LEFT AFTER ITTERATION 1 ,/) 
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16 FORMAT u3x,,•G1 = • ,F10.s,3x,•G2 .. • ,F10.s,3x,•ALP33 .. • ,F10.s,111 
c 

c 

ALPPl = C.02 
KK z l 
READ (5,1) RAW1,RAW21RAWC1ENV1EPS 
READ (5,1) RKA,B,RAT,RNVU,RNVL 
WRITE C 6, 3) 

\\RITE (6141 
WRITE 16,5) RA\\l,RA\\21RAWC,ENV1EPS 
WRITE (6,6) 
wRITE (6 151 RKA1B1RAl1RNVU1RNVL 
WRITE ( 6, 8) 

01 = o.os 
02 = 0.30 
03 = 0.001 
CALL GOLOl (Ol,D2,c3,e1,e2t 

C DETERMINE l'ILPl ANC CCMPARE WITH ITS LOWER BOUND 
c 

c 

AL Pl = ASM/C 1. +ASM'l-ALPW/2. 
IF CALPl-ALPPll 21122122 

21 ALPl = ALPPl 
KK = 2 
Dlt -= O. 5 
05 = 1.0 
06 = 0.001 
CALL GOLD2 (Dlt1051D61B3,B41 

22 CCNTINUE 
ALP z CZ6-Z81/lZ7+Z91 
ALP2 = l./Cl.+ASHl-ALPh/2. 
ALP3 = CALP3l+ALP321/2. 
ALPV z ENV/EPS•CZ7*Z8+Z6*Z91/CZ6-Z81 
BV s RAW2/CRNVU*Y2t•CZ6-Z8)/(Z7+Z91 
BXS ~ AVGS•ll.+ASM)/(ASM•RKA+Wl/C6.•ASH*RKAl*Cl.+EPS*CZ6-Z8t/ 

l CZ7*Z8+Z6•Z911) 
BXC = (l.+ALP31/V5•CRAWC*IZ6-Z81/(Z7+Z9)-Y61 

C FOLLOWING CARO SHOULD BE CHANGED FOR DIFFERENT BENDING MOMENT 
c 



c 

c 
c 
c 
c 

RLEN a Cl.-BRSt••0.5 

OBJW a CALP**Ze/ALPwJ••0.33333•11.+ALPV*RLENI 
._RITE C 6,lU 
WRITE 16,12) ALPtALPl,ALPZtALPW,ALP3,ALPV 
WRITE (6,131 
kRITE (6,lZt ASM,BV,f)S,BXC,RLEN,CBJW 
WR IT E C 6 , 151 
.. RITE 16,161 Gl,GZ,ALF33 
STOP 
ENO 

SUBROUTINE GOLOl CXL,XR,F,YSMALL,XSMALLI 

SLBROUTINE GOLCl SELECTS T~E VALUE Of X CALP21 ANO CALLS 
SUBROUTINE MERITl TC CALCULATE Y (OBJECTIVE FUNCTIONI 

XLEFT = XL 
XRIGHT = XR 

13 SPA~ = XR - XL 
DELTA= ABSCSPA~) 

14 Xl = XL + 0.381966*DELTA 
X2 = X~ + Oe6l8034•0ELTA 
CALL MERITlCXl,Yll 
CALL MERIT1CX2,Y21 

9 IFCABSCXL - XRI - ABSCF•SPANll4,4,8 
B DELTA = Ce6l8034*DELTA 

IF CY2-Yll 1110,2 
l XL = Xl 

Xl = X2 
vi = vz 
X2 ; XL.+ 0.618034*DELTA 
CALL MEPIT1CX2,Y21 
GO TO 9 

2 XR = X2 
Y2 = Yl 
X2 = Xl 
Xl = XL + 0.381966*DELTA 
CALL MEPITllXl,Yll 
GO TO 9 

4 IFCY2 - Yl)5,5,6 
5 YSMALL=V2 

XSMALL=X2 
GC TO 7 

6 VSMALL=Yl 
XSMALL=Xl 
GC TO 7 

10 XL = Xl 
XR = X2 
DELTA= XR - XL 
GO TO 14 

7 RETURN 
END 
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c 
c 
c 
c 

c 
c 
c 
c 
c 

SUBROUTINE MEIUTi CALP221DBJ) 

~~~~~u~~N!sM"!:~T~AL~~t~~E~u~:~~g~~EG~~~~TrnNOETERMINE THE 

COMMON /Bt.OKl/ Ohl1RAW21RAWCrENVrEPS1RKA~B1RAT1RNVU1RNVL 
COMMON /8LOK2/ BRSrAVGSrASM1ALPl,ALP2rALPW1ALP311ALP32rIFS,KK 
CO~MCN /BLOK4/ Wl1Y1Yl1Y2,Y31Y4,Y51Y6,Y71Y8-
C.OMMON. /BLOK5/ 0 I Z11Z2 ,z3 1Z4 'Z51Z6IZ71Z8IZ9,H81H91HlO 

.COMMON 1BLOK71 ALP33 . 
ALP2 '"'· ALP22 
04 .. o. 5 

· os • i.o 
06 a OeOOl 
CALL GOLD2 104105,D6rB3rB4) . 
ALP33 "" 83 
ALP3 • lALP3l+AlP32t/2e 
ALP • IZ6-l81/ll7+Z91 
ALPV = ENV/EPS•1z1•za+Z6•Z9)/ll6~Z8) 
Rt.EN.• lle-SRSl••O.$ . 
OBJ = IALP**2e/AlPhl**0•33333*1l••At.PV*RlENI 

. RETURN 
E"'O· 

SUBROUTif\E GDLD2 IXLrXR1FrYSMAllrXSMALLI 

SUBROUTlhE GOLC2 SELECTS VALUE OF X USM) ANO CALLS 
SUBR~UTINE MERIT2 TO CALCULATE Y IDIFFERENCE OF ROOTS OF 
GOllERNlf\G EQUAT ICNS I 

XI.EFT = XL 
XRlGHT a XR 

13 SPAN = XR - XL 
DELTA=' ABSISPANI 

14 Xl = XL + Oe381966*DELTA 
X2 = ~L + Oe618034•DELTA 
CALL MERIT2 IXl1Yll . 
CALL ~ER112 tx2,v21 

9 tFlABStXL - XRI - ABSIF*SPANJl4r4r8 
8 OElTA = 0.618034*DELIA . 

IF lV2-V11 111012 
1 XL = Xl 

Xl *' X2 
.Y l • V 2 
X2 = XL + 0.618034*DELTA 
CALL MERIT2 1x2,v21 
GC TO 9 

2 XR = X2 
Y2 = Vl 
X2 = ·x1 
Xl = XL + Oe381966*DELTA 
CALL ~ERIT2 lXlrYll 
GO TO 9 

4 IFIY2 - YlJ5,5,6 
5. VS~All•V2 

XSMAll•X2 
.GO TO. 1 · 

6 YSMALL=Vl 
XSMAU.=Xl 
GC TO 1 

10 XL = Xl 
XR = X2 
DELTA = XR "" XL 
GO TO 14 

7 RETURN 
END 
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SUOROUTl~E MERIT2 IAS~~tALP331 
c 
C SUBROUTINE MERIT2 CALLS SUBROUTINE GOLC3 TO DETERMINE VALUE 
C OF ALP3 ANO CALCULATES DIFFERENCE OF ROOTS OF THE TWO GOVERNING 
C EQUATICNS. IF SIDE CCNSTRAINT ON ALPl IS ACTIVE IKK'• 21t 
C CALCULATES ALP2. 
c 

c 

CCM~ON /BLOK2/ BRS,A~GS,ASM,ALPl,ALP2,ALPW,ALP31,ALP32tlFS,KK 
CCM~GN /6LOK6/ Gl,G2 
ASM•ASMM 
GO TO 170,801, KK 

80 ALP2 • ALPl+Cl.-ASMl/llo+ASMI 
70 CONTINUE 

DO 40 IFS• lt2 
C7 • 0.01 
08 • 1.5 
D9 • o.oc1 
CALL GCLD3 ID7,De,c~.e5,B61 
GO TO 15C,6CI, IFS 

50 ALP31 • ll6 
Gl • B5 
GO TO 40 

60 ALP32 • 66 
G2 • 85 

40 CCNTINUE 
ALP33•ABS IALP31-ALP321. 
RETURN 
END 

S~BROUTINE GOLD3 IXL,XR,F,VSMALL,XSMALLI 

C SUBROUTINE GOLD3 ESTABLISHES FEASIBLE LCWER Ll~IT IXLEFTI 
C ANO UPPER LIMIT IXRIG~TI CN ALP3 (WHICH GIVES REAL POSITIVE 
C VALUE OF ORS IN SLBRCLTINE MERIT31 •. SELECTS VALUE CF X 
c IALP31 AND CALLS sue~oUTINE MERIT3 TO CALCULATE y !RESIDUE 
C OF THE GOVERNl~G ECLATICNSI 
c 

COM~CN /llLOK2/ eRS,AV(S,AS~,ALPl,ALP2,ALPW,ALP3l,ALP32,IFS,KK 
COMMON /BLCK3/ XLEFT,XRIGHT,JIM,KKK 
IF llFS .EQ. 21 GO TO 3 
JIM • l 
Xl • XL 
X2 • XR 
KKK• l 
CALL MERIT3 1x1,v11 
KKK • 2 
CALL MERIT3 1x2,v21 
JIM• 2 

3 XL • XLEFT 
XR • XRIGtH 

11 SPAN = XR-XL 
DELTA= ABSISPA~I 

14 Xl •XL+ Oo3BlS6b*DELTA 
xz • XL • o.cl8C34*DELTA 
CALL MERIT3 1x1,v11 
CALL MERIT3 1x2.v21 

9 IFIAllSIXL - XRI - ADSIF•SPANI 1414tll 
8 DELTA• 0.618034*DELTA 

IF IY2-Yll 1110,2 
XL • Xl 
Xl • X2 
Yl • Y2 
X2 • XL + Oo6l8034*DELTA 
CALL MERIT] 1x2,v21 
GO TO 9 

2 XR " X2 
Y2 • Yl 
X2 • Xl 
Xl • XL + 0.31ll9b6•DELTA 
CALL MERIT3 1x1,v11 
GO TO 9 

4 IFIY2 - Yll5,5t6 
5 YS~All•V2 

XS~t.LL=X2 

GC TO 7 
b YS~ALL•Yl 

X5MALL•Xl 
GC TO 1 

10 XL . XI 
XR • X2 
DELTA = XR 
GO TO 14 

7 RETURN 
E~D 

- XL 
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c 
c 
c 

c 
c 
c 
c 

c 

c 

100 

SUBROUTINE MERIT3 CALPP,Gl 

SUB'ROLTlNE MERIT3 CALCULATES RESIDUES OF GOVERNING EQUATIONS. 

COMMON /BLOKl/ RAkltRAW2tRAWC,ENV,EPS,RKA,8,RATtRNVUtRNVL 
COMMON /Bl0K2/ BRS,AVGS,ASM,ALPltALP2tALPW,ALP31,ALP32 9 1FS,KK 
COMMON /BLOK3/ XLEFT,>cRIGHT,JlM,KKK 
CCMMON /BLOK4/ w1,v,y1,v2,v3,y4,y5,y&,v1,ye 
COMMON /BLOKS/ o,z1.z2,Z3,Z4,Z5,Zb,z7,ZS,z9,H8tH9,HlO 
ALP3 "" ALPP 
OOH .. O.l 
NFL "" l 
NFC = l 
ALPk : 2e*ll./ll.+AS~l-ALP2) 
CONTINUE 
Wl s 2.•12.•ASM-l.+ALP2*ll.+ASM>**2•> 
W2 s ASM+ALP3*11.+B)*ll.+ASMI 
W3 .. l.+B*l2e+ALP31*11.+ASMI 
k4 = l.~ALP3*B*ll.+ASMI 
W5 : 6e*ALP3*(1.+B*lle+ASMll**2• 
W6 = &.*lALP3*11.+S+ASM•Bl+ASM*RKA*ll.+ALP311 
Y "" Wl*ll.+ALP3)+W5 
Yl s 6.•11.+ASMt/lle+RAW21*1ASM/Wl+RAT•W2/YI 
Y2 "" 1.+6~*R~A*ASM**2e/Wl 
Y3 = -ALP3-lle+ALP31*6••RKA*ASM**2•/kl+W2*W6/Y 
v~ .. 6.•11.+ASMl/Wl+6.•w4•RAT•11.+ASMl/Y 
V5 s l.•W3*W6/Y 
V6 "" 6.•W3•RAT*ll.+ASMl/Y 
Vl : -ALP3+6.*ASM*RKA*ll.+ALP31/Wl-W4*W6/Y 
VB = RAT*Wl*W2/IASM*Y) 
Zl • lR~VU-RNVLl/lle+RAW2) 
Z2 = RAW2*Yl/V2-Y3*1RAWC*Yl-Vb)/IY2*Y51 
Z3 ""RAW2*(1.-RAWC*Y3/IRAW2*Y511 
Z4 "" (Y4+ ( l .+RAW2 I *Y l*Y7/V3 I/ l 1.-6. •ASM*RKA/Wl-Y2*Y7 /Y3 I 
Z5 = lRAWl+Y7/Y31/ll.-6.•ASM*RKA/Wl-Y2*Y7/Y31 
lb z Y3*Y6/(Y2*V5)+Yl•lt.+RAW21/Y2 
Z7 = 1.1v2+RAwC•Y3/IY2*Y51-RAW2*lRNVU-RNVL)/(RNVU•Y2) 
ZS ~ IWl/IW1~6.•ASM*RKAll*lY6*Y7/Y5-V4) 
Z9 = (kl/tWl-6.*AS~*RKAll*lRAWl-RAWC•Y7/Y51 

1 +lRN~U-RN~Ll*RAh2/IRNVU*Y2) 
H7 = Wl/C6.•ASM*lle+#\SHl)*IZ6-Z81/IZ7+Z91 
HB = Y5*ll.+Z5*V21+RAWC*Y3 
H~ = Z4*Y2*Y5+11.+RAW2l*Yl*Y5+Y3*Y6 
HlO. "' ZS* I (l • + RAW2) *Y l*Y 5+Y3*Y6 I ... Z4* IY5+RAWC*Y3) 
H . = H7 

FOLLOW I NG CARC SH.OUUJ BE CHANGED FOR DIFFERENT BENDING MOMENT. 
0 I A GRAMS 

lf lhH2 .LT. 0.01 GC TC 25 

C FOLLOWING CARD SHOULC BE CHANGED FOR DIFFERENT BENDING MOMENT 
C DIAGRAMS 
c 

c 
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·If IBRS oLEo loO oA:t.IOo O«S oGEo OoOl GO TO 26 

c 

25 FJ • loO 
NFC • 2 
IF INFL oEQo 21 ODEL • OOEL/2o 
IF IDDEL olT~ OoOOll GC TO 65 
GO TC .27 

26 GO 10 128,521,JIM 
28 IF INFC oEQo 11 GO TO 56 

NFL •2 
F J •"".lo 
DDEL • DDEL/20 
IF IODEL .LT. OoOOll GO TO 56 

27 GO TO 145,551,KKK 
45 ALP3 • ALP3 + DOEL•FJ 

GO TO 100 
55 ALP3 • ALP3 - DDEL•FJ 

GG TO 100 
65 ALP3 • ALP3 + Oo002 
56 GO TO 153,541,KKK 
53 Xlffl z AL P3 

RETURN 
54 XRIGl1T • ALP3 

RETURN 
52 CCNTINUE 

AVGS ·• I 2o•RRS l/3o 

C FOLLOWING CARO SHOULD BE CHANGED FOR DIFFERENT BENDING ~OMENT 
C DIAGRAMS 
c 

c 

c 

AVGC • lo-I lo-BRSIUCo5/Zo 

RATAV • RAT•AVGC/A~GS 
GO TO 110,201, IFS 

10 CONTINUE 

C EVALUAT ICN OF RES ICUE OF TH FIRST GOVERNING EQllATION Gl 
c 

Gl z · I l 1*LH +l 6*l9-I lt-lB I• I RAWZ/Y Z+RAWC • 11, +ALP3 l/Y51 I II Z7+Z9 I 
1 +1lo+ALP3l*Y6/Y5-AVGS*ll.+ASMl/l~SM•RKA+Wl/l6o•ASM*RKAI• 
2 ll~•tPS*IZ6-Z81/IZ7*l8~l6*l9lll 

G z ABSCGll 
llETURN 

20 CONTINUE 
c 
C EVALUATION OF RESIOlE OF T~E SECCND GOVERNl~G ECUATION GZ 
c 

G2 : RAWC/Y5* I Z6-ZB I II l7+ Z9 l-Y6/Y5-RA.TAV•AV(!S•l lo +A SM I II W6/6~ 
1 +Y/Wb*l lo +EPS*l lo+ALP31*1 Z6-l8 l /ll7H8tZ6•Z91 I I 

G • ABSIG2l 
RETLRN 
E:NO 

CATA USED 

RAWI RAW2 RAWC E~V EPS 

loCOOOO 1.ccroc o.eoooo l.C'3400 5.00000 
RKA l1 RAT RNVU RNVL 

lolCOOC CoC5COO 4.CCCOC lolOOCO 0.90000 

CJPTIMUM DE: SIGN PARAMETEllS 

UP Al Pl ALP2 ALPW ALP3 ALPV 

5.!>07~8 OoC'3615 0.21482 o. 74902 Co95019 0012054 

ASM BET AV llETAXS BETAXC RLEN CBJW 

0.69683 lo S384 7 C.29581 c.59146 0.62707 3.69410 

RESllJUE: LE:FT AFTER ITTERATICN 

Gl ~ c.00024 GZ " c.ccc11 ALP33 • 0.01503 
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APPENDIX C 

CHARACTERISTIC QUANTITIES FOR PRE

STRESSED STEEL GIRDERS (TABLES X 

THROUGH XIII) AND COMPOSITE 

GIRDERS (TABLES XIV 

THROUGB XVII) 
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~ pl 

0.7 
0.8 

o. 9 o. 9 
1. 0 

0.7 
0.8 

1. 0 0.9 
1.0 

0.7 
0.8 

1. 1 o~ 9 
1. 0 

TABLEX 

CHARACTERISTIC QUANTITIES FOR A PLATE GIRD_EJl. PREST_R_~ED B..Y A FllLL LENGTH~N. 
- SUBJECTED TOA UNIFORMLY DlS'.I'RIBUTED J..PAQ THROUGHOU'l' THE SPAN 

Assumed Parameters: p 2 = 1. o. nv _ = 1. o. c = 5. o. nvu _= 1. 1, nv.t- = O~ 9 

a ql "2 _aw "v a Bv B-x 

3. 009.9 0.4449 0.0460 0.5090 0.0443 2. 3268 o. 4912 0.1252 
2. 7832 0.3986 ·0.0573 0.5542 -o. 0487 2.0368 o. 5020 0.1270 
2. 5501 0.3701 o. 0780 0.5518 0.0534 1. 8252 0.5006 0.1276 
2.3933 0.3387 0.0940 0.5674 o. 0575 1. 6479 0.5100 o. i288 

2. 9725 0.4305 o. 0452 o. 5242 o. 0415 2. 2536 0.4431 o. 1271 
2. 7029 0.3947 0.0643 0.5410 0.0461 1. 9867 0.4479 0.1285 
2.4688 0.3695 0.0880 o. 5424 0.0508 1. '7836 0.4506 0.1293 
2.3586 o. 3283 0.0969 0.5749 0.0542 1. 6027 - 0.4631 0.1316 

2.8881 o. 4287 o. 0527 0.5186 0.0395 2.2054 0.4041 0.1279 
- 2. 6342 0.3917 o. 0710 0.5373 0.0439 1. 9436 0.4056 0.1296 

2.4753 0.3508 0.0834 0.5658 0.0476 - 1. 7304 0.4170 o. 1320 
2. 2943 o. 3276 0.1054 o. 56-69 0.0517 l. 5712 0.4160 0.1331 

- 0 -
w 

2. '1266 
2. 5415 
2.3971 
2. 2854 

2.6702 
2. 4911 
2.3535 
2.2464 

·2. 6240 
2. 4491 
2. 3176 
2. 2105 -

c:o 
c.:> 



IC. P1 

0.7 
o. 8 

0.9 0.9 
1. 0 

0.7 
0.8 

1. 0 0.9 
1. 0 

o.7 
0.8 

1. 1 0.9 
1. 0 

TABLE XI 

CHARACTERISTIC QUANTITIES FOR A PLATE GffiDER, PRESTRESSED BY A FULL LENGTH TENDON, 
SUBJECTED TO A CONCENTRATED LOAD AT MID-SPAN 

Assumed Parameters: p 2 = 1. o. n = 1. 0, c = 5. 0, n = 1. 1, n J, = O. 9 
v vu v 

I a al a2 a a a f3v f3x w v 

3.0002 0.4471 0.0491 0.5038 0.0447 2.3224 0.5254 0.0938 
2.8042 o. 3942 0.0554 0.5504 0.0486 2.0253 0.5348 0.0955 
2.5539 0.3698 0.0794 0.5508 0.0536 1.8186 0.5370 o. 0958 
2.3668 o. 3452 0.1002 o. 5546 o. 0580 1. 6487 0.5349 0.0961 

2. 9794 0.4297 0.0461 0.5242 0.0416 2.2448 0.4788 0.0954 
2. 7011 0.3953 0.0662 0.5384 0.0463 1. 9809 0.4796 0,0963 
2.4596 o. 3721 0.0915 0.5363 0.0512 1. 7800 0.4821 0.0968 
2.3476 0.3310 0.1002 o.5687 0.0545 1. 6000 0.4900 0.0985 

2.8896 0.4264 0.0522 o. 5213 0.0396 2.1955 o. 4328 0.0960 
2.6321 0.3925 0.0732 0.5342 0.0441 1. 9379 0.4378 0.0972 
2.4362 0.3603 0.0920 o. 5476 0.0483 1.7334 0.4431 0.0984 
2.2932 o. 3285 0.1077 0.5637 0.0520 1. 5662 0.4490 o. 0998 

0 w 

2. 73l0 
2.5445 
2.4014 
2.2870 

2.6748 
2.4945 
2.3574 
2. 2481 

2.6265 
2.4531 
2.3198 
2. 2145 

co 
,jl. 



TABLE XII 

CHARACTERISTIC QUANTITIES FOR A PLATE GIRDER, PRESTRESSED BY A SHORT LENGTH TENDON, 
SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD THROUGHOUT THE SPAN 

Assumed Parameters: p2 = 1. 0, nv = 1. 0, c = 5. 0, nvu = 1. 1, nvt'" O. 9 

IC pl I a al a2 a a tv a (3v w v T 

0.7 2.7769 0.4946 0.0406 0.4648 o. 0545. 0. 7333 2.6625 0. 5119 
0.8 2. 6077 0.4365 0.0410 0.5226 0.0592 0.7330 2.3087 0.5223 

0.9 o. 9 2.4348 0.3946 0.0497 0.5556 0.0642 0.7333 2.0527 o. 5285 
1. 0 2. 2454 0.3718 0.0695 0.5587 0.0699 0.7333 1. 8661 0.5306 

0.7 2.6830 0.4874 0.0414 0.4711 o. 0527 0.7404 2.6102 o. 4607. 
0.8 2. 5264 o. 4283 0.0409 0.5307 0.0572 0.7404 2.2643 o. 4706 .· 

1. 0 0.9 2.3635 0.3864 0.0498 0.5637 0.0620 0.7404 2.0146 0.4;778 
1. 0 2.2003 0. 3584 0.0659 0.5757 0.0673 0.7405 1. 8266 0.4821 

0.7 2.6043 o. 4798 0.0408 0.4794 0.0510 0.7474 2.5650 0. 4175 
0.8 2.4361 o. 4256 0.0438 0.5305 0.0557 0.7475 2.2350 o. 4201 

1. 1 0.9 2. 2649 0.3884 0.0559 0.5556 0.0608 0.7475 1. 9960 0.4323 
1. 0 2.1217 o. 3571 0.0697 0. 5732 0.0657 0.7476 1. 8066 o. 4377 

'Bx 

0.1940 
0.1976 
0.2000 
o. 2007 

0.1999 
0.2043 
0.2074 
0.2093 

0.2053 
0.2097 
o. 2128 
0.2157 

0 w 

2.6524 
2 .. 4542 
2.3052 
2.1887 

2. 5782 
2.3880 
2.2466 
2.1348 

2.5109 
2.3296 
2.1932 
2. 0854 

co 
CJl 



IC pl I 

0,7 
0.8 

0.9 0,9 
1. 0 

o. 7 
0.8 

1. 0 o. 9 
1. 0 

0.7 
0.8 

1. 1 0.9 
1. 0 

TABLE XIII 

CHARACTERISTIC QUANTITIES FOR A PLATE GIRD:r;R, PRESTRESSED BY A SHORT LENGTH TENDON, 
SUBJECTED TO A CONCENTRATED LOAD AT MID-SPAN 

Assumed Parameters: p2 = 1. 0, nv = 1, 0, a = 5. 0, nvu = 1. 1, nvt = O. 9 

L a f3v /3x Q al a2 -a a v 
w v T 

2,9160 0,4639 0.0403 o. 4957 0,0497 0.4980 2.4696 0.5614 o. 1070 
2. 6928 0,4171 - 0.0498 0.5330 o. 0~46 0,4980 2. 1610 0.5691 0.1084 
2. 4572 0,3910 0,0712 0.5378 0.0601 0,4980 1.9401 o. 5716 o. 1088 
2,3054 0.3587 o. 0857 o. 5557 0.0646 o. 4975 1.7512 o. 5778 0.1098 

2.8305 o. 4570 o. 0436 o. 4993 ;: 0.0475 0.5031 2,4093 0.5i19 0.1090 
2.6037 0.4136 0.0557 0,5306 o. 0524. 0.5031 2. 1144 0.5192 o. 1105 
2.4237 0,3765 0.0696 0.5540 0.0570 0,5026 1. 8861 o. 5267 0.1120 
2,2478 0.3519 0.0895 0,5586 0,0619 0,5026 1. 7118 0.5306 o. 1128 

2.7594 0.4502 0.0459 0,5039 0.0455 0,5081 2,3569 0.4703 o. 1107 
2.5585 0.4032 0,0558 0. 5411 0.0500 0,5076 2,0648 o. 4'796 o. 1128 
2,3480 0,3747 o. 0756 0,5496 0,0551 0,5082 1. 8532 0.4838 0.1139 
2. 1805 0.3501 0.0956 0.5542 0.0598 0,5083 1. 6825 0.4882 o. 1150 

ow 

2. 6428 
2. 4521 
2.3061 
2.1910 

2.5825 
2.3994 
2. 2599 
2,1484 

2.5294 
2,3539 
2. 2171 
2.1094 

CD 
0) 



TABLE XIV 

CHARACTERISTIC QUANTITIES FOR A COMPOSITE PLATE GIBDER, PRESTRESSED BY A FULL LENGTH TENDON, 
SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD THROUGHOUT THE SPAN 

Assumed Parameters: p 1 = 1. 0, p 2 = 1. 0, nv = 1. 0, c = 5. 0, 13 • 0. 05, nvu • 1. l, nvt • 0. 9 

IC Pc 'll a al a2 a a3 a a 13v 13x,s w v 

3 5.7604 0.0637 0.1984 o. 7379 0.9544 0.0853 o.7625 1. 7932 0.1518 
0.6 4 6. 2887 o. 0224 o. 2544 0.7232 1. 2264 0.0946 o. 6234 2. 1693 0.1577 

5 6.6026 0.0203 o. 3271 0.6526 1. 4701 0.1055 0.5305 2. 5472 0.1563 
0.9 

3 7. 2138 o. 0770 o. 1120 o. 8110 0.4775 o. 0716 o.9324 1.9036 o. 1521 
0.8 4 7.4730 0.0489 0.1789 0.7722 0.6809 o. 0827 0.7700 .2. 2495 0.1548 

5 7.8023 o. 0288 0.2390 0.7322 . o. 8548 0.0922 0.6526 2. 6270 0.1568 

3 5.5393 o. 0604 0.2190 0.7205 0.9877 0.0835 o. 7262 1. 6617 o. 1574 
0.6 4 6.0320 0.0218 O. 27S9 0.6983 1. 2681 0.0934 o.5897 2.0223 0.1641 

5 6.3550 0.0203 o. 3535 0.6262 1.5147 0.1044 0.5001 2.3867 0.1637 
1. 0 

3 6.8649 0.0746 0.1325 o. 7929 o. 5024 o. 0701 0.8906 1. 7240 0.1564 
0.8 4 7.1718 0.0376 0.1985 0.7640 0.7149 0.0809 o. 7228 2. 0876 0.1618 

5 7. 4737 0.0230 0.2632 0.7138 0.8913 0.0909 0.6127 2.4365 o. 1641 

3 5.3944 o. 0511 0.2328 0.7161 1. 0145 o. 0812 0.6924 1. 5507 0.1638 
0.6 4 5. 8223 0.0213 0.3023 0.6764 1. 3044 0.0922 0.5612 1.8986 0.1702 

5 6.3535 0.0201 0.3531 0.6268 1.5004 0.0998 0.5003 2.2488 o. 1707 
1. 1 

3 6.5402 0.0746 0.1540 0.7714 o. 5276 0.0691 o. 8530 1. 5920 0.1599 
0,8 4 6,9218 o. 0278 o. 2162 0.7560 0.7447 o. 0793 o. 6829 1. 9450 0.1685 

5 7.1644 0.0208 0,2884 0.6908 0,9266 0.0902 0.5778 2. 2790 0.1704 

13x,c 

o. 3317 
0.4312 
0.5262 

0.3356 
0.4599 
0.5513 

o. 3262 
0.4285 
o.5294 

0.3542 
0.4430 
o.5535 

0.3216 
0.4252 
0.5251 

0.3484 
0,4359 
0.5533 

0 w 

3.8592 
4.1544 
4.4857 

4.2900 
4.5107 
4. 7670 

3. 7834 
4.0837 
4.4290 

4.1761 
4.3972 
4.6661 

3. 7172 
4.0268 
4.4085 

4.0768 
4.3029 
4. 5831 

<:D 
-J 



TABLE XV 

CHARACTERISTIC QUANTITIES FOR A COMPOSITE PLATE GIRDER, PRESTRESSED BY A FULL LENGTH TENDON, 
SUBJECTED TO A CONCENTRATED LOAD AT MID-SPAN 

Assumed Parameters: . p1 = 1. 0, p2 = 1. 0, nv = 1. 0, c ·= 5. 0, f3 • 0. 05, nvu = 1. 1, nvt = O. 9 

It 
Pc 'I\ I a al "'2 a a3 a a f3v f3x,s w v 

3 5.6744 o.·os59 o. 2083 0.7258 0.9758 0.0864 0.7507 1.8707 o. 1507 
0.6 4 6. 2193 o. 0227 0.2630 o. 7143 1. 2475 o. 09.56 o. 6125 2.2640 0.1569 

5 6.5342 0.0210 0.3366 0.6424 1. 4929 0.1066 o. 5202 2. 6582 0.1556 
0.9 

3 7.0801 0.0788 0.1209 0.8003 0.4923 o. 0727 0.9192 1,9588 0.1513 
o. 8 4 7.4971 0.0309 0.1769 o. 7922 o. 6985 o. 0823 o. 7453 2. 3714 o. 1573 

5 7.7244 0.0254 o. 2465 o. 7281 o. 8728 0.0930 o. 6379 2.7660 0.1567 

3 5.5603 o. 0481 o. 2175 o. 7345 1. 0027 o. 0832 o. 7103 l; 7341 0.1591 
0.6 4 5. 9676 0.0206 0.2889 0,6904 1. 2928 0.0944 o. 5769 2.1269 o. 1637 

5 6. 3729 0.0211 0.3540 0.6249 1. 5184 o. 1041 0.5005 2. 5070 0.1630 
1. 0 

3 6. 7050 o. 0767 0.1444 0.7789 0.5226 o. 0716 0.8733 1. 8069 0.1554 
0.8 4 7.1309 o. 0275 0.2020 o. 7704 o. 7339 o. 0812 o. 7029 2.1852 0.1631 

5 7. 3.524 0,0216 o. 2749 o. 7035 0.9153 0,0923 o.5957 2.5596 0.1637 

3 5.3901 o. 0422 0.2345 o. 7233 1.0330 0,0813 0,6774 1. 6285 o. 1649 
0.6 4 5. 7459 o. 0211 0.3133 0.6656 1. 3328 o. 0934 o. 5477 1.9952 0.1697 

5 6.3774 o. 0201 0.3531 o. 6268 1. 5045 0.0994 0.5003 2. 3745 0.1701 
1. 1 

3 6. 4091 o. 0713 0,1641 o. 7647 o. 5511 o. 0704 0.8302 1. 6648 0.1599 
0.0 4 6. 8113 0.0254 0.2263 0,7483 0.7672 o. 0804 0.6655 2.0314 o.i684 

5 7.0260 0.0212 0.3029 0.6759 o. 9541 o. 0919 o. 5605 2.4036 0.1696 

B 
x •. c 

o. 2436 
o. 3252 
0. 4045 

0.2686 
o. 3195 
o. 3932 

o. 2462 
o. 3120 
0.3967 

o. 2557 
0.3298 
o. 4142 

0.2344 
0.3188 
0.3846 

o. 2636 
0.3367 
o. 4146 

o,, 

3.8459 
4.1449 
4. 4825 

4.2601 
4.4806 
4.7476 

3~ 7679 
4.0736 
4;4392 

4. 1411 
4. 3695 
4. 6438 

3.7030 
4.0174 
4.4177 

4.0385 
4. 2761 
4. 5641 

co 
00 



~ pc 'l I 

3 
u. 6 4 

5 
0.9 

3 
0. 8 4f 

3 
0.6 4 

5 
1. 0 

3 
0. 8 4 

3 
0.6 4 

5 
1. 1 

3 
0.8 4 

5 

TABLE XVI 

CHARACTERISTIC QUANTITIES FOR A COMPOSITE PLATE GIRDER. PRESTRESSED BY A SHORT LENGTH TENDON. 
SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD THROUGHOUT THE SPAN 

Assumed Parameters: p 1 = 1. 0, p 2 s 1. 0, nv"' !'; 0, c = 5, 0, J3 • o. 05, nvu = 1. 1, nvt • 0. 9 

a t 
v a J3v ilx,s al a2 "w a3 av 

T 

5.2040 0.0665 0. 1668 0. 7667 L 0954 o. 1078 0,7316 0,8177 1. 8762 0.2386 
5. 6262 0,0220 0.2233 0~7546 1. 4116 o. 1210 0,7321 0.6649 2.2651 0,2488 
5.8716 0. 0200 0.2960 0,6840 1. 6971 0.1361 o. 7327 0,5674 2. 6576 o. 2471 

6. 4568 o. 0776 0.0869 0.8355 0.5679 0.0907 0.7312 o. 9817 1. 9601 0.2394 
6. 7514 0.0315 o. 1439 o. 8246 o. 7998 0.1041 o. 7314 0,7979 2. 3424 o. 2487 
6.9437 0.0241 0,2120 0.7639 0.9985 0, 1179 0.7308 0.6836 2. 7408 o. 2476 

4.8918 0.0657 0. 1899 0.7444 1. 1550 0.1089 0.7369 0.7791 1. 7298 0,2500 
5.3125 0.0212 o. 2495 0.7293 1. 4803 0.1223 0.7364 0.6282 2.1092 0.2617 
5.5595 0.0200 0.3251 0.6549 1.7747 0.1379 0.7365 o. 5324 2.4938 o. 2609 

5. 9174 0. 0894 o. ll'i6 o. 7930 0.6120 0,0930 0.7367 o. 9452 J.7888 0.2459 
6. 1795 0.0483 o. 1827 o. 7691 o. 8572 0.1076 0,7360 o. 7631 2. 1633 0,2543 
6.3821 0. 0342 ci. 2498 <i.7160 1. 0680 o. 1226 o. 7371 0.6452 2. 5315 0,2581 

4,6790 0.0580 0.2060 0.7359 1. 2045 0.1088 0.7409 o. 7422 1. 6124 0.2619 
5. 0427 0,0200 0. 2731 0.7069 1. 5452 0,1238 0.7407 0.5960 1. 9756 o. 2744 
5.2877 0.0200 0.3515 0.6285 1.8486 0.1400 o. 7405 0.5020 2.3525 0,2745 

5.3370 0. 1245 o. 1613 0. 1142 0.6550 0.0974 o. 7423 0.9289 1.6431 0. 2468 
5. i48l 0.0576 0.2149 o. 7265 0.9100 o. 1103 o. 7402 o. 7281 2.0150 0.2616 
6.1117 0.0200 0.2769 o. 7031 1.1207 0.1215 o. 7362 0.5912 2. 4099 0.2699 

jjx,c 

0. 5028 
0,6589 
o. 8244 

0,5296 
0.6825 
0.8427 

o. 5080 
0.6638 
o. 8298 

0,5373 
0.6930 
0.8561 

o. 5111 
0.6687 
0.8358 

o. 5471 
o. 7006 
o. 7.826 

ow 

3.5396 
3. 7822 
4.9621 

3. 9256 
4,0992 
4.3245 

3,4347 
3,6870 
3.4808 

3. 7766 
3.9666 
4. 1934 

3.3481 
3.6038 
3.9106 

3,6636 
3. 8590 
4,0955 

co 
co 



TABLE XVII 

CHARACTERISTIC QUANTITIES FOR A COMPOSITE PLATE GIRDER, PRESTRESSED BY A SHORT LENGTH TENDON, 
SUBJECTED TO A CONCENTRATED LOAD AT MID-SPAN 

Assumed Parameters: p 1 • 1. 0, p 2 • I. 0, nv z I. 0, ~ • 5. 0, /3 • O. 05, nvu • 1. 1, .nvt • O. 9 

I( 
t 13 8x,s pc Tl " a, ·"2 a,., "3 " v a 

" T v 

3 5. 1888 0.0674 o. 1774 0 •. 7552 I. 1013 o. 1066 0.6072 0.8017 1. 9087 0.2478 
0.6 4 5.5930 0.0285 0.2389 0.7325 1.4173 0. 1199 0.5961 0.6523 2.3106 0.2573 

5 5.9062 0.0200 0.3067 0.6732 I. 6900 0.1333 0. 5862 o.5543 2. 7161 0.2584 
0.9 

3 6.4526 0.0733 0.0941 0.8326 0.5740 o. 0895 0.6039 0.9592 I. 9944 0.2502 
0.8 4 6.7947 0.0232 0.1493 0.8275 0.8027 o. 1020 0.5944 o. 7760 2. 3854 0.2622 

5 6.9094 0.0254 0.2235 0. 7511 I. 0024 o. 1171 0.5853 0.6692 2. 7819 0.2604 

3 4.8840 0.0664 0.2019 0.7317 I. 1.619 0.1075 0.6132 0. 7613 1. 7666 0.2592 
0.6 4 5. 3358 0.0200 o. 2604 0. 7Ht5 I. 4802 0. 1199 0.6015 0.6123 2. 1585 o. 2728 

5 5. 5883 0.0200 0.3368 0.6432 I. 7693 o. 1352 0.5914 0.5188 2.5513 o. 2734 
I. 0 

3 6. 1009 0.0571 0.1091 0.8339 0.6181 0.0891 0. 6115 0.9012 I. 8267 0.2637 
0. 8 4 6. 3411 0.0286 o. 1824 0.7890 0. 8543 o. 1030 0.5961 0. 7335 2.2256 0.2693 

5 6.5359 0.0200 0.2595 0.7205 I. 059.3 o. 1164 0.5830 0.6136 2.6394 0.2691 

3 4.8296 0.0320 o. 1985 0. 7965 I. 1944 0.1040 0.6210 0.7146 I. 6480 o. 2796 
0.6 4 5.0635 0.0200 0.2863 0.6937 I. 5468 0. 1213 0.6065 0.5795 2. 0286 0.2854 

5 5.3231 0.0200 0.3643 0.6157 1.8425 0.1369 0.5960 0.4877 2.414i o. 2.870 
I. 1 

3 5.5136 0.0878 o. 1518 0. 7604 0.6636 0.0931 0.6157 0.8797 I. 6872 0.2646 
0.8 4 5.5080 0.0361 o. 2148 o. 7490 0.9502 o. 1165 0.6279 0.6968 I. 9385 0.2958 

5 6. 1266 0.0200 0. 2835 0.6965 I. 1225 0. 1202 0.5941 0. 5829 2.4430 0. 2859 

/3x,c 

0.4159 
0. 5500 
0.6902 

0.43i6 
o. 5671 
o. 7088 

0.4188 
0.5505 
0.6938 

o. 4391 
0.5697 
o. 6327 

0.4152 
o. 5531 
0.6962 

o. 4463 
0.5915 
0. 7139 

·O 
w 

3. 5043 
3.1452 
4.()192 

3.8832 
4.0525 
4. 2641 

3.4050 
3.6534 
3.9398 

3.7406 
3. 9351 
4. 1639 

3.3193 
3.5761 
3.8760 

3. 6221 
3.6941 
4.0469 

~ 

0 
0 
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