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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem. The premis is that the electromag-

netic radiation from a thunderstorm contains a pattern which can be re-
lated to meteorological phenomena of the storm. This is the basic pat-
tern recognition problem. However, before a pattern recognition scheme
can be effected, the initial problem is to determine what measurements
will constitute the patterns to be classified. The specific problem
considered here is what measurements are to be selected from the elec-
tromagnetic fields generated by thunderstorms for use in future pattern
recognition studies designed to identify storm phenomena.

Ignoring very slow changes in the field, lightning discharges may
be considered as the major contributor to the electromagnetic field.
Also, it has been suggested that the type of discharge changes with the
state of development of the storm (11). Thus if the electromagnetic
field produced by the model of various types of discharges is observed,
parameters in the field waveforms which are related to say storm sever-
ity may be selected by varying parameters within the discharge model

and observing changes in the field.

1.2 Existing Solutions. Models for portions of the discharge

process involved in lightning discharges exist in the literature. A
recent text by Uman (19) contains numerous references and serves as an

excellent review. Hill (9) has presented a model for computing the



received spectrum resulting from the return stroke portion of a cloud-
to-ground discharge. Dennis and Pierce (7) have considered the effect
of varying various parameters in the return stroke. Arnold and Pierce
(1) have obtained the spectrum of the received field produced by the
leader process and by the junction process. Hill (8) has combined the
leader process and the return stroke and computed the resulting spec-
trum,

Each of the above models is valid only for far field conditions.
Also the geometry of each model consists of a strictly vertical channel
connected with the ground plane. In addition to these limitations the
observation point must be located on.the ground plane.

In the present project it was desired to consider the radiation at
distances as close as 10 Km from the discharges. Also the radiation at
altitudes above the ground plane was desired to determine what signal
would be received on a horizontal antenna and its relation to the verti-
cal component of signal. The frequency range of interest was 3 to 300
KHz.

Thus the existing models are inadequate for this project. First,
far field conditions are not guaranteed at these distances. Second,
the field removed from the ground plane was desired in order that a
horizontal component of the field would exist. Also it was thought that
variation of the channel geometry would be effective in producing sig-

nificant changes in the received field.

1.3 Present Contribution. A computer model has been developed to

compute the Fourier transform of the electromagnetic field received from
a general lightning discharge. The discharge is represented by a con-

figuration of oscillating electric dipoles placed end to end, and the



resulting field is assumed to be that due to the superposition of all
dipoles in the configuration and their images.

The field resulting from one electric dipole and the procedure for
computing the Fourier transform of the field resulting from a configura-
tion of dipoles are discussed in Chapter II. For the present project
the time waveforms representing the narrow-band, half-wave linear de-
tected received electromagnetic. fields were available for the center
frequencies 10, 50, 100, 150, 200, and 250 KHz. The method of approxi-
mating these time waveforms is also discussed in this chapter.

The general geometry of the discharges to be modeled, the current
waveforms allowed, and the movement of these waveforms through the geom-
etry are discussed in Chapter III. Also the procedures employed by the
programs to compute the Fourier transform and the detected waveforms of
the resulting fields are discussed.

In Chapter IV computations obtained from the model developed in
this work are compared with those obtained from other models in the
literature. The comparison includes only the return stroke. and the
leader process. Incorporation of the streamer process into the model
and the results of the narrow-band, half-wave linear detected field
calculations are also discussed.

Situations not possible with other models are considered in Chapter
V in an attempt to determine how these variations change the received
field. Included in . this chapter are the results obtained for the ob-
servation point located near the discharge and removed from the ground

plane and the results for inclined channels.



CHAPTER II

DEVELOPMENT OF THE MODEL

2.1 Introduction. The initial assumption in this work is that

the electromagnetic field generated by a lightning discharge may be ap-
proximated by the superposition of the fields produced by the appropri-
ate configuration of oscillating electric dipoles. Granting this as-
sumption this chapter develops the mathematics required to calculate
the Fourier transform of the field and the narrow-band, half-wave,

linear detected field.

2.2 Field Calculations. The electric dipole may be represented

by a positive time varying charge, Q(t), separated from an equal but
opposite polarity charge -Q(t), by a distance AL along the unit vector
(25 m, n) (see Figure 1). Mathematically, the dipole may be expressed

by the polarization vector
{

P(t) =Q(t) AL 2 , (2.2.1)

5.8
where a is the unit vector (&, m, n).



+Q(t)

(2, m, n)

-Q(t)

Figure 1., Dipole Representation.

The field distribution will be calculated by determining the Hertz
vector at the observation point (x, y, 2z). The Hertz vector resulting

from the above polarization vector.located at the point (x', y', z') is

given by

2 1 3 1,

M(x, y, 2, t) = == [ P(x', y', 2", t - D) $dx', y', 2') (2.2.2)
1/2

where r is the distance [(x - x')2 + (y. - y')2 + (z - z')2] and v is
the propagation velocity of the wave. In these calculations, AL will

be chosen such that the Hertz vector may be approximated as

= . 1 = p o
I(x, y, 2z, t) & == P(t - 2 , (2.2.3)
or
= . 1 T -
I(x, y, 2, t) 2 —Q(t - ) AL a . (2.2.4)
The field conditions are given in terms of the Hertz vector by the
equations
\ 22
2 K 3¢
E=V({V * 1) - ue - s (2.2.5)
3t

and



= ue VX — . (2.2.6)

Assuming the dipole is time harmonic, the above two equations become

JEN - 2=
E=V({V 1) + uew'I (2.2.7)
and
- . —
B = jwue VXI . (2.2.8)

In determining the field conditions from the equations for E and
'ﬁ the calculations are not limited to the far field, Kraus (13) states
that the boundary between the near and far fields for a dipole antenna
may be taken to be at a radius R = 2L2/A, where L is the length of the
antenna and X is the wavelength of the radiation frequency. If the
model were required to represent a cloud to ground discharge one mile
in height, a sample R may be calculated using the frequencies of 10 KH
and 250 KH, which are the extremes of the narrow band recordings. These
frequencies yield R = 0.43 miles for 10 KH and R = 10.7 miles for 250
KH. Thus, at the higher frequencies far field conditions are not guar-
anteed at distances less than 10 miles, and the calculations must in-
clude all components of the field.

To account for the boundary conditions at the earth's surface,
image theory is assumed to hold. Under this assumption, the effect of
the earth's surface may be represented by the original dipole's image.
This consists of a dipole identical to the original dipole located a
distance of 2h directly below the original dipole with orientation
(-2, -m, n). Here it is assumed that the original dipole was located at
a height h above the earth's surface. Reflections between the earth's

surface and the ionosphere will be neglected. Thus, the problem of



calculating the radiation from an electric dipole.located a height h
above the earth's surface will be approximated by calculating the radi-
ation from the original dipole and its image in free space (see Figure

2).

(x, y5 2)

Figure 2. Dipole, Image, and Observation Point

For the present calculation, the dipole will be located at the
point (0, 0, h) and its image at. (0, O, -h); the observer is at (x, y,

z). The Hertz vector at the observation point is given by

A Y Q Q S . Q; Q A . Q
(ﬁ%% T=2 8 (-2} 42 m{t-=2}+2 ni=t+=23 , (2.2.9)
X rl rz rl I‘z Z rl r2

- -
where a, ay, and a  are unit vectors in the x, y, and z directions,
respectively; (&, m, n) and (-2, -m, n) are the direction cosines for

the dipole and image, respectively;



1
T, = [+ ¥+ (2 - PP ,
L
r,= X eyt e 2wt
I‘l I‘l
Ql = Q(t = V_-) = QO exp {jm(t - V_)} 3
and
1'2 I‘2
Q, = Qt - 7 = Q) exp {ju(t - 79}

Q1 and Q2 indicate the time harmonic assumption Q(t) = Q0 exp (juwt).
The above Hertz vector has been converted to spherical coordinates

and the field calculated from the equations for ﬁ‘and‘ﬁ. These results

are given in Appendix A in terms of their spherical components Er’ Ee,

- - Y - -
a, + E.a, and B = Brar + B.,a, +

Be, and B 0 FCA 0%

-— -t
where E = E a + E
rr 6

E¢, Br’ o
B A
a,.
¢ ¢
Appendix A also presents transformation equations so that the
fields produced by various dipoles may be expressed with respect to a
common coordinate system.
-
In this work only E, the electric intensity vector, will be uti-

R
lized. The components of E may be partitioned according to the follow-

ing form:

E. = (ERIX + ER2X) + j (ERLY + ER2Y) (2.2.10)
Ey, = (EOIX + E02X) + j (EBLY + E62Y) (2.2.11)
E, = (E¢1X + E¢2X) + j (E6lY + E¢2Y) , (2.2.12)

where the indices 1 and 2 indicate the contribution due to the dipole

and the image, respectively; X and Y denote the real and imaginary



parts. With the following substitutions,

DRLM

% cos¢ + m sing

RMH r - h cos®

RPH =1r + h cos8

RNMH

T n cosé - h n + DRIM r sin6

RNPH

rncost + hn - DRIM r siné .

the partitioned components of the electric intensity may be written as:

ALQ1 ewz
ERIX = —> M2 [sin® DRLM + n cos6]
4me rl
1 . w, 2
* = [- sin6 DRLM - n cosf - (V) RMH RNMH] (2.2.13)
T
1
1
1
ALQ1> 1 w .
ER1Y = ZEE—'{;E'(V) [- sin® DRLM - n cos6]
1 (2.2.14)
. -17 &) [3 RMH RNMH])
T
1
ALQ1 ewz
EOIX = g {¥EL_ Tcos6 DRIM - n siné]
TE Ty

+ ls- [- cosé DRIM + n siné - (%)2 h sin® RNMH]  (2.2.15)
Tr
1

. _1_§ [3 h sin RNMH]}
T



E61Y

E¢1X

E¢lY

ER2X

ER2Y

E02X

E02Y

ALQy 3 .
o {—2- ('v—) [- cos® DRIM + n sme]
T
1
1 w .
= () [3h sind RNMH] }
T
1
ALQ 2
1 HEW 1 .
T {[- T+ ——3—] [ sind - m cosd]}
1 T
1
ALQ
1 ;1 w .
e {-—2- (;,—) [2 sin¢ - m cosd]}
T
1
ALQ, 2
2 qhew [- sin6é DRIM + n cos6]
4me r2

lg [siné DRIM - n cosé - (§92 RPH RNPH]
r
2

lg [3 RPH RNPH]}

— Plf (%J [siné DRLM - n cos9]
2

1 w
=7 (&) [3 RPH RNPH]}
T3

ALQ2~{uew2
4me T

[- cos6 DRLM - n siné]
2

lg [cos6 DRIM + n sinf + (%JZ h sin® RNPH]

)

lg-[- 3 h sin® RNPH]}

T2
ALQ

2 .1 ® .
T {;7 (;9 [cos® DRLM + n sin6]

2
1 ) .
—Z'(Vo [-3 h sin6 RNPH]}
2

10

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

(2.2.22)
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ALQ, 2
E$2X = ————- [E—E— - ——J [2 sin - m cos¢]} (2.2.23)
2 2
ALQZ- 1 0 .
E$2Y = Z;E—-{;i-(va (-2 sin¢ + m cos¢)} . (2.2.24)
2

Throughout this section notation such as Q1 or ER1X has been used
for compactness without.any explicit mention of the variables involved.
Before proceeding to the next section the variables of the functions of
Equations 2.2.13 through 2.2.24 should be considered,

ER1X will be used as an example for this set of equations. First
note, from Equation 2.2.13, ERlX/Q1 is a function of frequency (w), the
dipole orientation parameters (%, m, n), the dipole length (AL), and
the variables relating the dipole position to that of the observation
point. Thus for a specified dipole length, orientation, and position
ERlX/Q1 may be considered as a function of frequency Hrlx(w). That is,
ERIX = @ H ; ().

Also recall that Q1 = Q(t - rl/v). For the time harmonic assump-
tion, which was introduced to obtain ERlX, Q(t) = Q0 exp (jwt) or
Q1 =,Q0 exp {ju(t - rl/v)}. Thus

T

ERIX = Q, {exp jw(t - Vla}Hrlx(w)

For fixed frequency w = w,, ER1X is-a function of time and may be

O,

written as

r
ERIX(t) =Q(t) {exp (- ju, 43 M (ug) (2.2.25)
or
1
ERIX(t) = Q(t - o) H_ (w) . (2.2.26)
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In the following section it will be illustrated that Hrlx(w) may
be considered a system function for an input of Q(t - rl/v). Similarly,
exp (- jw rl/v) Hrlx(w) may be considered as a system function for an

input of Q(t); however, Hrlx(w) was chosen for notational convenience.

-
2.3 Fourier Transform of E. Consider a system characterized by

the system function H(w). An input f(t) produces an output response

g(t) given by (14).
g(t) = %;-fw Glw) eI*Tdw , (2.3.1)
where
G(w) = H(w) F(w) . (2.3.2)

F(w) and G(w) are the Fourier transforms of f£(t) and g(t), respectively.
If the input f(t) is time harmonic with angular frequency Wy that is

jw.t

£(t) =Qy e :
the F(w) becomes
Fw) = 21 Q, 8(0 - up) .
and
80 = [ HW) Gy ¢ % 5(u - uy) a

(2.3.3)

1

H(wy) £(t)

-—
This is exactly the procedure used to obtain the components of E. That
is the Hertz vector, and thus the magnitude of the dipole moment, was.

assumed time harmonic and the output time response was derived. Thus
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according to Equation 2.3.3 if the Qi terms are deleted each of the ex-
pressions ER1X through E¢2Y may be considered as system functions of
the form H(w) relating the retarded dipole charge to the corresponding
component of the electric intensity. These system functions will be
denoted by Hrlx(w)”"’H¢2y(w)'

The Fourier transform of the components of the electric intensity
due to an electric dipole with specified length, orientation, and posi-
tion with respect to the observation point may be calculated from equa-
tions of the form 2.3.2. Let Grl(w), Gel(w), and G¢1(w) be the spheri-

cal components resulting from the original dipole.

) ='{Hr1x(w) + jHrly(w)} Fi(®) (2.3.4)
Gy () ='{Helx(w) + jHely(w)} Fy ) (2.3.5)
G¢1(w) ='{H¢1x(w) + jH¢1y(w)} F () (2.3.6)

where Fl(w) is the Fourier transform of the retarded charge

Q, = Q(t - fl%
1 v

The contributions due to the image are obtained similarly by replacing

1 with 2 in the above expressions. Fz(w) is the transform of

Q, = Q(t - r,/v).

Let the subscripts ki denote the ith dipole for k = 1 and its
image for k = 2., Assuming superposition is valid, the field components

produced by a configuration of n dipoles and the associated images are

n 2 n 2

G.(v) = izl kzl Gy (@) = 151 kzl H g (@) By (@) (2.3.7)
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n 2 n 2
Gy (w) = 151 k§1 Gopy (@) = izl kzl Hyp i (0) Fpy (@) (2.3.8)
n 2 n 2
Gy () = izl kzl Gypes (@) = izl kzl Hypes () Fies (@) (2.3.9)
where
Hogi (@) = Hypgy (@) + JH 5, ()

Hogs (@) = Hopiy () + JHgy s (w)
s () = Hog (0 + S ()

Equations 2.3.7 through 2.3.9 may be expressed in the vector form

n 2

Sw =} J B, F,© (2.3.10)
i21 kel ki ki ’ T
for
ﬁkl(w) 2; Hrki(w) + ag Hek (w) + a¢ H¢k (w)

Equation 2.3.10 summarizes the procedure, in this work, to calcu-
late the Fourier transform of the electric intensity produced by a con-
figuration of n dipoles and the associated images. This procedure is
illustrated in Figure 3.

One additional note should be made. If the transform of f£(t) is

F(w), the transform of £(t - 1) is F(w) exp (-jwt). Thus

13
Fli(w) Fi(w) exp (—jw —V—)

and

Ty
Fi(w) exp (-ju —;—9 s

Fai (0

where Fi(w) is the transform of Qi(t), the charge for the ith dipole
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and image. This indicates the equivalence of Equations 2.2.25 and

2.2.26.

a(w)

AN
Figure 3. The Relation of F(w), H(w), and étw)

2.4 The Detected Field. The procedure for determination of the

narrow-band, half-wave linear detected field is developed in this sec-
tion. The development is presented in scalar form.

Consider the system of Figure 4. G(w) denotes a scalar component
of E(m) discussed in the previous section; HB(w) is the system function
of a band-pass filter with bandwidth B about a center frequency Wes
HD(w) represents a half-wave linear detector; HL(w) represents a low-

pass filter. X(w), Y(w), and Z(w) are the corresponding outputs with
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inverse transforms x(t), y(t), and z(t), respectively.

G(w) —m Xyl 1) O B @) —P Z(w)

Figure 4. Detection System

HB(w) is assumed to be nonzero only in the frequency interval

w, - B/2 §_|w| Su.t B8/2. Thus X(w) is easily obtained from

X (w)

Hy (w) 6(w) s u, - 8/2 < |u| 2w, +8/2
(2.4.1)

=0 , otherwise

Since the half-wave linear detector is a nonlinear device, it is
necessary to transform X(w) into x(t) and proceed with the development
in the time domain. Thus HD(w) is avoided.

An inverse Fourier transform algorithm (4) may be used to compute
x(t) from X(w). Bendat and Piersol (3) indicate the number of discrete
samples of X(w) required to describe x(t) is 2BT, where B is the highest
frequency present in X(w) and the time function is assumed to exist
from 0 to T seconds. The band-limited, time-limited assumption is not
theoretically possible but may be closely approximated.

The maximum B required for this work is 250.5 KH; a maximum T of 1
second should be sufficient to represent most discharges. Thus
2BT = .5001 x 106 samples are required. The Fourier transform algo-

rithm, in addition to other storage requirements, requires a matrix to
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store the 2BT samples of X(w). Since X(w) is complex, on the order of
106 samples must be stored for the 2BT requirement alone. This number
is prohibitive and must be reduced.

The 2BT requirement was deduced from the requirement that X(w) be
sampled at Nyquist co-interval points 2n/T apart on the frequency scale

from -21B to 2wB. Thus the number of samples required was given by

S

mB

n = = 2BT

H“§I

In an attempt to use the fact that X(w) represents a real bandpass
time signal to reduce the 2BT requirement, a very fortunate situation

arises. In general x(t) is
x(t) = é—wj X(w) exp (jut) duw . (2.4.2)

Since x(t) is real and X(w) is nonzero only for w_ - 8/2 < ol Sw, o+
B/2, (14),

0 +-g-
/ X(w) exp (jwt) dw} . (2.4.3)

w -
o

x(t) = Re {=

s

e

Making the change of variables n = w - w. o+ B/2,

] L[ X(n+u, -5 exp (nt) dn} . (2.4.4)

N ™

x(t) = Re {exp[j(wc -

O™

The integral in Equation 2.4.4 is the inverse transform of X(w) shifted
from the interval [wc - B/2, w, ¥ B/2] to the interval [0, B]. That is
X(n + w, - B/2) is required from 0 to B on the frequency scale. Sam-

pling X(n + W, - B/2) at Nyquist co-interval points 27/T apart requires

BT/2m samples, where B/2r < 1 KHz for applications of this work. Thus
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the inverse transform indicated in Equation 2.4.4 can be effected by
the Fourier transform algorithm,

In general this inverse will be a complex function of time
£1(t) + JE,(t).

B
£(0) + 350 =T X sy - P ew Gy dn . 24.5)

Equation 2.4.4 may now be written as

x(t) = £,(t) cos(u, - —g—)t - £,(t) sin(o, - %)t . (2.4.6)

Consider the function v(t) cos{wt + ¢(t)) which may be exapnded into
v(t) cos(ut + ¢(t)) = v(t) cos ¢(t) cos wt - v(t) sin ¢(t) sin wt.

Thus x(t) may be presented in the form
x{(t) = v(t) cos[wct + ¢ (t)] , (2.4.7)

where
1
v(t) = {fi(t) . fé(t)}2

£.(t)
Bt -1 72
$(t) = - = + tan

2 fl(t)

Davenport and Root (6) have derived the response of a half-wave
linear detector followed by an ideal low-pass filter for a narrow-band

input of the form x(t) = v(t) cos[wct + ¢(t)] to be

a v(t)

- s (2.4.8)

z(t) =
where a is the scale factor of y(t) = a x(t), x(t) > 0. Thus
1
2(t) = 2 {ff(t) + fg(t)}z : (2.4.9)
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Equation 2.4.9 is the major results of this section. That is, if
the ideal approximation to HL(w) is acceptable, the narrow-band, half-
wave linear detected field may be obtained by multiplying G(w) by HB(w)
over the frequency interval w, - B/2 <w :_wc + 8/2 to obtain X(w),
taking the inverse transform of X(w + w, - B/2) over the frequency in-
terval 0 < w < B to obtain fl(t) + jfz(t), and introducing these func-
tions into Equation 2.4.9 to obtain z(t).

If the ideal approximation to HL(m) is not acceptable, z(t) of
Equation 2.4.9 may be transformed, multiplied by the HL(w) desired, and
the resulting product transformed to obtain a time function z(t) which

does not involve the ideal low-pass filter assumption.



CHAPTER III

GENERAL DISCHARGE AND IMPLEMENTATION

3.1 Introduction. In Chapter II the field equations were devel-

oped for one oscillating electric dipole and its image in free space.
These equations were interpreted as system functions relating the dipole.
charge to the components of the electric field. The procedure for ob-
taining'a(w), the Fourier transform of the received field due to a con-.
figuration of n dipoles, from these system functions was outlined. With
é{w) available it was shown mathematically how z(t), the narrow-band
half-wave linear detected field, could be obtained.

Fortran IV programs have been developed to computelﬁ(w) and z(t).
This chapter will discuss the general form of discharge modeled, what:
inputs are required for the programs to construct the discharge geome-
try, and how the current waveforms are to be specified. With this in-
formation the procedure used by the programs to calculate'é(w) and z(t)

will be discussed.

3.2 General Form of Discharge. The general geometry of the dis-

charge model, illustrated in Figure 5, consists of L. straight segments

0
connecting the points (XO, YO, ZO) and,(Xb, Yb, Zb) with Nb branching
segments extending outward from (Xb, Yb’ Zb). Each of these segments,

L=1,...,L, + Nb’ consists of N(L) oscillating electric dipoles of

0
length AL(L) placed end to end through the length of the segment. The

direction cosines for each dipole within a segment is (&2(L), m(L), n(L))

m
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corresponding to the orientation of that segment.

(Xgs Yo» Zg)

Figure 5. General Discharge Geometry

If the point (XO, YO’ ZO) is specified to be a point on the earth's

surface, Z, = 0, one may consider the segments from (XO, Y., 0) to

0 0’
X,, Y., Z.) to approximate the main channel of a cloud-to-ground dis-
b’ b’ “b PP

charge and the branching segments to represent streamers feeding the
main channel. Also intracloud discharges may be modeled by allowing

(X ZO) to be above the earth's surface. However, this requires

0> Yo’

knowledge of the current waveforms existing in such discharges. Since
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these waveforms are not available at present (19) for intracloud dis-
charges, the discussion will be limited to cloud-to-ground discharges
where the processes involved are better understood.

Three separate currents are allowed in the model. At time Ty 2
time-varying current IL(t) is allowed to progress down the main channel
from (Xb, Yb’ Zb) to (XO, YO, ZO) with a velocity VL(t). At a later

time T., a return current IR(t) is allowed to move up the channel from

OR
(XO, YO’ ZO) to (Xb, Yb’ Zb) with a velocity VR(t). Still later in
time, TOS’ a - third current IS(t) moves from (Xb, Yb’ Zb) towards the
branch tips with a velocity VS(t). These three currents are to approx- .
imate the stepped or dart leader, the return stroke, and the streamer
process,‘respectively. Any one of these may be deleted from the model
by specifying the corresponding current to be zero. The only require-

ment on the current waveforms is that analytical expressions for the

Fourier transforms of the waveforms be available.

3.3 Specification of Geometry and Velocities. In constructing a

particular discharge the two programs require the specification of two
points in space: (XO, YO, ZO), the tip of the main channel, and (Xa,
Ya, Za), the position where the field is to be determined. Z equal to
zero corresponds to the earth's surface. With the number of segments
in the main channel, LO, and the number of branches, Nb’ decided the
geometry of the discharge is then established by specifying the direc-
tion cosines, (2(L), m(L), n(L)), and the length, determined by the
product N(L)AL(L), of each segment. N(L) is the number of dipoles in
the Lth segment, and AL(L) is the length common to all dipoles within

that segment.

The velocities determining the propagation of the current waveforms
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through the geometry are assumed to have the exponential forms

VL(t) = VLO exp[-GL(t - TOL)]U(t - TOL) ,
VR(t) = VRO exp[-GR(t - TOR)]U(t - TOR) s
Vs(t) = VSO exp[-GS(t - TOS)]U(t - TOS) s

where U is the unit step function. These velocities are specified

ro’ Cr

50° GS and TOS for the streamer

through the parameters V GL and TOL for the leader current, V

Lo’
and TOR for the return current and V
current.

A word of caution about choosing values for VO and G in the above
expressions is in order. The maximum distance attainable by a velocity
of the above exponential form is VO/G. Thus VLO/GL and VRO/GR must be
chosen larger than the length of the main channel, and VSO/GS must be
larger than the longest branching segment.

The value of zero is allowable for G to obtain a constant velocity
in any of the above expressions. Also if a current is to be excluded
from the model, computation time will be saved by specifying the cor-
responding velocity to be zero.

A time delay term is built into the leader velocity which allows
the current to pause for DELAY seconds before each dipole that is a
multiple of a specified integer, NDSP, before proceeding through the
next dipole with the velocity existing before the delay. The length of
the delay is selected from a normal distribution by specifying the de-
sired mean and standard deviation. Also an odd integer IX must be

specified to initialize the random selection.

The input data required by both programs are identical. The
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variables discussed above are listed below with associated format and

the order in which they are required by the programs.

Xgs Ygs Zgs Lgs N (3E14.5, 1X, I3, 1X, I1)

0’ 0’ b
N(L), 2(L), m(L), n(L), L(L) (13,4E14.5), for L = 1,...,LO + Nb
Xa’ Ya’ Za (3E14.5)
VSO’ GS’ VLO’ GL’ VRO’ GR (4E14.5/2E14.5)

Tos» Tors Tors IX (3E14.5, 19)

3.4 Specification of Current Waveforms. The procedure used to

A
calculate G(w), the Fourier transform of the received field due to a
configuration of n dipoles, is summarized by Equation 2.3.10.

n 2

.9 -2
Gw) = ) ) H ;@) F, @) . (2.3.10)
i=1 k=1 ‘

The subscripts ki denote the ith

dipole for k = 1 and its image for
k=2, ﬁki(w) represents the system functions derived in Chapter II.
Fki(w) denotes the Fourier transform of the retarded dipole charge

Qki(t - rki/v)° It was shown in Section 2.3 that

T,.
Fi, (@) = F, (0) exp (-ju =) , (3.4.1)
and
. Ty
FZi(w) = Fi(w) exp (-jw —;70 s (3.4.2)

where Fi(w) is the transform of Qi(t). This results from an equal
charge assumed on the dipole and its image. Thus to obtain the Fki(w)

required by Equation 2.3.10 it is necessary to determine Fi(w), the
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transform of the charge waveform on each dipole in the configuration.

Up to now only currents have been specified in the segments. How-
ever if a length is to be approximated by an electric dipole, the equa-
tion of continuity requires the following relation for the dipole charge

and the current flowing through that length.

3Q; (1)
5e— = 13 () ’

or

t
Q; (t) = / I (t") dt!

-0

Fi(w) is given by (14)

Fo(w) = I () [76(w) + ;-u;] :

where §(w) is the delta function, and Ii(w) is the transform

o

I (w) = f I, (t) exp (-jut) dt

-00

In this work the d.c. terms, w = 0, will not be considered. With

this understanding Fi(w) may be expressed by
1 G :
R, (w) =_35-{w I,(t) exp (-jwt) dt . (3.4.3)

Before expressions for Fi(w) can be obtained from the integral
3.4.3 it is necessary to discuss the times involved. The convention
adopted in this work is that a dipole in the configuration is considered
"on" and conducting with the current flowing through that segment only
when the corresponding velocity has progressed through the length ap-
proximated by that dipole. These times are calculated within the pro-

grams from the velocity expressions and stored in columns six and seven
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of a matrix D(i, j).
Let dipoles in the main channel have i subscripts from 1 teo Nn and
those in the branches have i subscripts from Nn + 1 to Nd’ where Nn de-

notes the number of dipoles in the main channel and N, is the total.

d
number of dipoles in the configuration. With this notation D(i, 6) for

th

is= 1,,..,Nn is the time the i~ dipole is considered conducting with

the leader current I, (t); D(i, 7) for i = 1,...,N_ is the time the i‘h
dipole is considered conducting with the return current IR(t); and

D(i, 6) for i = Nn + 1,...,Nd is the similar time for the streamer cur-
rent Is(t).

The "off" times or the times at which the currents are .assumed to
cease flowing in the length approximated by the ith dipole are denoted
as Tl,i’ T2,i and T3,i for the leader, return and streamer currents,
respectively. A large degree of flexibility is allowed in selecting
these "off" times. For example a reasonable choice for Tl,i would be
Tl,i = D(i, 7). That:is, the leader current is assumed to stop flowing
and bereplaced by the return current when the return velocity reaches
that -length represented by the dipole. A value of D(Nn, 6) plus some .

time delay could be chosen for T Thus -the return current is assumed

2,i°
to cease flowing some time delay after the return velocity reaches the
top of the main channel. The only point to be made here is that the

"off" times are denoted by the parameters T and T3 3 and are

1,i* T2,i
to be selected in conjunction with the current waveforms.

Thus with the six parameters for the conducting times the current
waveforms for each dipole in the configuration can be expressed in one

of two forms. For dipoles in the main channel the current corresponding

to the i™ dipole is
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I (1) = IL(t){U[t - D(i, 6)] - U[t - T, .1}

1,i
(3.4.4)
* W[t - DE, D] - Ul - T, .1}, 11N

The current corresponding to dipoles in the branching segments is

I,(t) = IS(t){U[t - D(i, 6)] - U[t - Ts’i]}, N +1<i<N (3.4.5)

n d -

Substituting the above current equations into Equation 3.4.3 yields

1
Fiw) = = {J I (t) exp (-jut) dt
7 D@, 6)
T (3.4.6)
2,i
+ f I(t) exp (-jut) dt}, 1<i <N
D(i, 7) - n
for dipoles in the main channel and
| s
Fi(w) = =] Ig(t) exp (-jut) dt, N +1<i <Ny (3.4.7)
I D, 6)

for dipoles in the branching segments.

In summary to obtain the expressions for Fki(w) required by Equa-
tion 2.3.10 it is necessary to decide on the current waveforms to be
used and the associated "off" times for these currents. These "off"
times may be constants, functions of D(i, 6) or D(i, 7), or even infin-
ity if the time delays of the current waveforms are chosen properly.
With the above specified only two analytical expressions for,Fi(w),are
required for all elements in the configuration. These are obtained
from Equation 3.4.6 for elements in the main channel and Equation 3.4.7
for elements in the branching segments., For elements in the main chan-

nel the programs require an analytical expression derived from the
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integral 3.4.6 of the form

Fi) = Filw, D, 6), D(i, 7), Ty 4,7, .1, 14 <N

that is a function of angular frequency and the four time parameters.
To represent elements in the branches an analytical expression of the

form

Fi(w) = Fi[w, D(i, 6), TS,i]’ N +1<i<N

n d

derived from the integral 3.4.7 is required. With these two analytical
expressions the programs substitute the proper parameters for the dipole
under consideration to obtain Fi(w), utilize Equations 3.4.1 and 3.4.2

to obtain Fki(w), and introduce the Fki(w) into the summation 2,3.10.

3.5 étw) Program. This section is not intended as a detailed dis-

cussion of a computer program. It is included to given an understanding
of the actual procedure employed in calculating the Fourier transform
of the radiated field. With this discussion and the corresponding For-
tran program listed in Appendix B one should be able to assess the pro-
cedure used in the computations.

The indicies on the dipoles are as follows. The index i = 1 cor-

responds to the dipole. touching the point (XO, Y., Z The index in-

0’ 0)‘
creases to i = Nn for the dipole in the main channel touching the
branching point. The dipole with index i = Nn + 1 touches the branching
point and is in the first branch specified by the input data. The last

dipole, i = N,, is the dipole in the last specified branch furthest

d
removed from the branching point.
With the input data discussed in Section 3.3 the program first

calculates the center of each dipole in the configuration. The
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rectangular coordinates of these centers are stored in D(i, 1), D(i, 2)
and D(i, 3), i = 1,...,Nd. These values are used to calculate Ty and

Ty the distance from the observation point to the dipole center and
image center, respectively. These values are stored in D(i, 4) and
D(i, 5), i = 1,...,Nd.
Next the program calculates the 'on" times for the streamer, lead-
er, and return currents. Before discussing the particulars associated

with each current, the general procedure will be discussed. The general

velocity expression for the three currents is
V(t) = VO exp[-G(t - To)]U(t - TO)

Let Tn, the "on" time for the nth dipole, be expressed by the time the
velocity moves through the segments represented by the first n - 1 di-
poles plus the time required to travel the length, dn’ corresponding to

the nth dipole. That is

Tn = Tn-l + AT s
where
nil
T =T, + AT,
n-1 0 521 |

The expressions for ATn are determined from the above relations and the

integral expression

V(t) dt

o,
o]
n
—He— -

n-1

For zero values of G this results in

AT =
n

s
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For G not equal to zero the expression is

\
_ 1 . 00
ATn =G ln{m} s

where

Voo = Vo exp[-G(T__; - T)]

With the above expression for ATn the program calculates the stream-
er current "on'" times for dipoles in the branches starting each branch

at the common time TOS‘ These values are stored in D(i, 6), i = Nn + 1,

"Nd' Specifying N, , the number of branches, equal to zero will omit

b’

these calculations.

If VLO is specified nonzero, the times at which dipoles in the

main channel are considered conducting with the leader current are com-

puted. Calculations start at time T, with the-Nnth dipole and progress

OL
down the main channel. These computed values are stored in the first
Nn rows of D(i, 6).

For a nonzero value of VRO the "on" times for the return current

are computed beginning with the first dipole at time T. 6 and progress

OR
up the main channel. These values are retained in D(i, 7), 1 = 1,...,
N_.
n

E{m) is calculated at the discrete frequencies 1 through 10 KHz in
1 KHz steps, 15 through 100 KHz in 5 KHz steps and 110 through 250 KHz
in 10 KHz steps. These values were chosen to give good representation
on semi-log plots from 1 to 250 KHz with only forty-three frequencies
required. Denoting these frequencies by fj’ the calculation of the

first value of'E(w) is begun by setting wj = 2ﬂfj. Utilizing D(i, 1)

through D(i, 5) the system functions contained in Equations 2.2.13
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through 2.2.24 are evaluated for the first dipole and its image.

As mentioned in Chapter II, these system functions were derived
with respect to a spherical coordinate system with origin directly be-
neath the dipole center on the earth's surface, [D(i, 1), D(i, 2), 0].
In order to sum the contributions from all dipoles in the configuration
a common set of coordinates is required. The point (XO, YO’ 0) is
-chosen as origin for this reference coordinate system. The system func-
tions evaluated above are then transformed to the spherical components
of the common coordinate system.

These system functions could be used to compute é(w) in the form
Grﬁ; + Geﬁg + G¢ﬁ;. However in this work only the horizontal and verti-
cal components are retained. The convention adopted is to let the hori-
zontal component correspond to the ¢ - component and the vertical con-
sist of the r - and 6 - components projected on the vertical axis. With
this notation the system functions for the horizontal and vertical com-
ponents are calculated.

The analytical expressions for Fi(w) which contain D(i, 6) and
D(i, 7) as parameters are evaluated at wj for the dipole under consider-
ation. Fli(wj) and FZi(wj) are obtained by multiplying Fi(wj) by
exp[—jwj D(i, 4)/v] and exp[—jwj D(i, 5)/v], respectively. Fli(wj) and
F2i(wj) are multiplied by the appropriate system functions to obtain
the contribution from this dipole to the horizontal and vertical com-
ponents of ﬁtwj).

The program then returns to the point the first dipole was select-
ed, selects the next dipole, and performs the same ¢alculations leading
to the contribution from that dipole.and image. This procedure is re-

peated until the contributions from all dipoles have been summed to
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-
obtain the horizontal and vertical components of G(wj). The magnitude
and phase of the horizontal and vertical components of'a(wj) and the
frequency fj are printed out. The program then selects the next fre-

quency and repeats the above procedure for the remaining frequencies.

3.6 z(t) Program. This program was developed to calculate the

horizontal and vertical components of the narrow-band, half-wave linear
detected fields for 1 KHz bandwidths about each of the six center fre-
quencies 10, 50, 150, 200 and 250 KHz. The procedure employed is sum-

marized by Equations 2.4.1, 2.4.5 and 2.4.9.

X = H@) 6@) e - 8/2 < o] <u_ +8/2
(2.4.1)
=0 , otherwise
£ £ (1) = = ? X g int) d 2.4.5
l(t) + ] z(t) = ;—O (n + w, - Eﬂ exp (jnt) dn (2.4.5)
1
2(t) = % {fi(t) - fg(t)}z . (2.4.9)

That is, to compute z(t), a narrow-band, half-wave linear detected com-
ponent of the field, it is necessary to multiply the component of @(m)

by the system function of the desired band-pass filter and compute the

magnitude of the inverse transform of that product shifted on the fre-

quency axis.

This program is essentially an extension of the'é(w) program. The
horizontal and vertical components of é{w), Gh(m) and Gv(w), are com-
puted in exactly the same manner as in the previous program. The only
difference is in the values choééh for the sample frequencies wj. Rather

Y
than calculating G(w) for frequencies across the band from 1 to 250 KHz,
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the frequencies are chosen only in the 1 KHz bands about the six center
frequencies.

The first center frequency, fc’ is selected and Gh(wj) and Gv(wj)
are computed for fj = fc - 500 Hz with a spacing of 1000/256 Hz. This
spacing allows .256 samples over the band considered and permits a time
representation of z(t) for 0 < t < .256 seconds in accordance with the
Fourier transform algorithm. -

As Gh(wj) and Gv(wj) are calculated, Xh(wj) and Xv(wj) are formed
by multiplying by the assumed HB(wj)’ which for simplicity was chosen
to be unity over the 1 KHz band and zero elsewhere. The real and imag-
inary parts of Xh(wj) and Xv(wj) are stored in the four rows of the
matrix XK(k, j), k=1,...,4 and j = 1,...,256.

If £(t) is a time function with Fourier transform F(w) for -b < w
< b and zero elsewhere, then f(t) is given by the inversion integral

1 b .

f(t) = EE-{b F(w) exp (jwt) dw
The algorithm's approximation to this integral requires samples of F(w)
in the following order. For N even, the first N/2 equally spaced sam-
ples represent F(w) for 0 < w < b; the remaining N/2 samples represent
F(w) for -b < w < 0. Equation 2.4.5 can then be modified to this form
by allowing the first 256 samples to be the calculated samples of X(wj),
fc - 500 Hz f.fj < fc + 500 Hz, and the remaining 256 samples to be
zero.,

These samples are accepted by the algorithm in the array names.
DATA (1,J) and DATA (2,J) representing the real and imaginary parts of
F(w). These arrays are transformed in place, within the accuracy of

the algorithm, to give the real and imaginary parts of £(t). The
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procedure used by the program is then to define the arrays as

DATA (1,J) = XK (1,37) s J=Jd=1,...,256
=0 R J = 257,...,2560
and
DATA (2,j) = XX (2,]) s J=J=1,...,256
=0 s J = 257,...,2560

The additional padding with zeros is introduced to obtain better time
resolution. The algorithm's subroutine is then called and the magnitude
(2/7T) |DATA (1,J) + j DATA (2,J)| calculated for J = 1,...,2560. The
factor 2 is required because of the difference in the inversion integral
defining f(t) and Equation 2.4.5. The factor 1/T, T = .256 seconds, is
required by the algorithm. With the 1/m factor these values represent

z(tJ) for the horizontal component at sample values t. = (J - 1)(10-4)

J

seconds. These values of z(tJ) and t. are printed out for J = 1,...,

J

512 corresponding to 0 < t < 51.1 msec,

The vertical component is calculated by redefining the array DATA

as
DATA (1,J) = XK (3,3) s J=J=1,...,256
=0 s J = 257,...,2560
and
DATA (2,J) = XK (4,3) s J=Jd=1,...,256

=0 s J = 257,...,2560
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The same procedure is followed to compute the vertical component of
z(tJ). After these values are printed, the program returns to select

the next center frequency and repeats the procedure beginning with

calculation of Gh(wj) and Gv(mj) about the new center frequency.



CHAPTER 1V

MODEL COMPARISON

4.1 Introduction. In this chapter the procedure described in

Chapter III is employed to calculate the magnitude of the Fourier trans-
form of the received field due to a return stroke, a stepped leader
process, and a combination stepped leader and return stroke. These
spectra are compared with those obtained from other models existing in
the literature.

The incorporation of streamer processes into the modei is consid-
ered, and the results of the narrow-band, half-wave linear detected

field calculations are discussed.

4.2 Return Stroke. It is assumed (9,19) prior to the return

stroke, t < T the leader process has deposited a uniform distribution

OR’
of negative charge along the channel length between the cloud and the
ground. The original source of this negative charge was the lower por-
tion of the cloud. The function of the return stroke is to transport

or partially transport this distributed negative charge to ground. This
distribution is symbolized with five electric dipoles in Figure 6, where
the QL terms denote the static charge on the dipoles due to the pre-
ceding leader process, and the qi(t) denote the time varying charge re-
sulting from the return stroke current. Specifying the qi(t) terms to

be zero for t < T =1,2,...,5, Figure 6 indicates a net static

OR? 1

charge -QL per unit length down the channel with the lower portion of

ZA
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the cloud reflecting the absence of this distributed charge.

Cloud
— +5Q + qg(t) } *5Q + qg(t)
Sth Dipole <
— -q, + q,(t) - qg(t)]
+4Q, + q,(t)
'4QL = q4(t)
*3Q + q5(t)
+2Q; + q,(t)
“QL + [q]_(t) - qzct)]
*1Q + g, (1)
ISt Dipole
—1QL - Cll(t) } 'QL * [0 - q.]_(t)]
Ground

Figure 6. Dipole Approximation of Channel
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In the notation of the preceding chapter, at time t = T,, a posi-

OR

tive current IR(t) is assumed to progress up the channel from the first

dipole to the fifth. D(i, 7) denotes the time the ith dipole is con-

sidered conducting with IR(t), and T2 i is the "off" time. The charge
3

on . the ith dipole is

Q; () = i Q + q;(t) , (4.2.1)

where
t .
q; (t) = [ Ip(e){U[t' - D(i, D] - U[t' - T, .1} dt' . (4.2.2)

- 00

Note for a current progressing up the channel

Tog < P(1, 7) <D(2, 7) < **+ < D(5, 7)

Assuming T infinite for .all i and recalling that IR(t) > 0 yields

2,i
q; () > q,(t) > «-+ > qg(t)

That is, each of the quantitites [qi(t) - qi+l(t)] is greater than or.
equal to zero, and the effect of the return stroke modeled with a series
of dipoles in this fashion reduces the negative charge distributed along
the channel by the leader process and transports this charge to ground
as required.

The widely accepted model of Bruce and Golde (5) for the current.

of a return stroke at the ground is
i(t) = Io[exp (- at) - exp (- Bt)] R (4.2.3)

where typical values for the first return stroke of a discharge are

I,=3X 10* amp., o = 2 X 10* sec™?, and g = 2 X 10° sec™}. The
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accompanying expression for the velocity determining the upward movement

of the current is

V(t) =V, exp (- vt) , (4.2.4)
with typical values for a first return stroke of V0 = 8 X 107 m/sec and
vy =3X 104 sec—l. VO and y correspond to VRO and GR’ respectively, in

the expression

VR(t) = VRO exp[—GR(t - TOR)]U(t - TOR)

used to calculate the values of D(i, 7).
The Bruce and Golde current model is incorporated.into the dipole

model of the return stroke as

L (t) = Ib{exp[—a(t - T - exp[-8(t - T p)1}U(t - T, (4.2.5)

The Fourier transform of Qi(t) given in Equation 4.2.1 denoted by

F.(v) is
= 3 1
Fi(w) =1 QLZﬂG(w) + Ii(w)[nﬁ(w) + EBJ s (4.2.6)
where Ii(w) is the transform of

IR(t){U[t -Db@E, 7N} -Ult-T, .11

2,1

If all T2 ; are equal, the above expression requires continuity of cur-
L]

rent in all dipoles with index less than or equal to i for values of
time greater than or equal to D(i, 7).

Ignoring the d.c. terms and allowing T to be infinite, Fi(w)

2,i

required by the programs is

1
Fl(w) = 'j_w' Il(w) s
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or

I, exp{u[TOR—D(i, 7)1} ) exp{B[TOR-D(i, 7]

Fi(w) = exp[-jwD(i, 7)] To R 2+ 30
(4.2.7)
Using the typical values for a first return stroke,
I,=3X 10% amp o =2x 10% sec? B =2X 10° sec”’
V.. =8X 107 m/sec G, = 3X 104 secTt T., = 0 sec
RO R ' OR )

Equation 4.2.7 was introduced into the ﬁ(m) program, and the vertical
component of the field was computed for a vertical discharge extending
from the earth's surface to a height of 1 Km. These results are shown
in Figures 7 through 11 for the observation point located 100 Km from
the channel on the ground plane. In this chapter and the next only the
Fourier spectrum, that is the amplitude of the Fourier transform, will
be presented.

In Figure 7 the 1 Km channel length is approximated by one thousand
dipoles with 1 M lengths; in Figure 8 one hundred dipoles with 10 M
lengths are used for the approximations; Figure 9 results from ten di-
poles with lengths of 100 M; Figure 10 results from five dipoles with
lengths of 200 M; Figure 11 results from two dipoles 500 M long.

The point to be made from a comparison of these curves is that the
accuracy of the model is not improved at the expense of utilizing di-
poles shorter than 10 M to approximate the discharge length for the
frequency range considered.

Hill (9) indicates the spectrum for a first return stroke should
be a smooth curve with a maximum of fifty to sixty pvolt sec/M occurring

approximately at 5 KHz. It was noted that the procedure employed by
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Hill in computing the transform of the field allowed the channel length
to extend to the length permitted by the velocity expression VR(t) in
an infinite ‘amount of time. For the values of VRO and GR assumed here
the maximum channel length achieved is determined by VRO/GR = 2 2/3 Kn.

Figure 12 was obtained from an identical set of parameters as dis-
cussed previously, with the number of 10 M dipoles changed from one
hundred to two hundred sixty-six to approximate the 2 2/3 Km channel
length. This graph is very similar to that given by Hill's model in
magnitude and position of the maximum value for the same current and
velocity parameters.

It is concluded that the minor peaks which occur in the first five
graphs of this chapter are a result of terminating the channel length
before the current has decayed sufficiently. That is, for a channel
length of 1 Km the time required for the return stroke current to prog-
ress through this length is 15.7 usec. One may think of the return
current waveform time decay as being govefned by a. This represents an
effective time constant of 50 usec. Thus 15.7 psec is less than one-
third of the decay time constant, and the return stroke current is of
appreciable magnitude at this time.

The shifting of the maximum values from 10 KHz to 5 KHz.as the
channel height was increased from 1 Km to 2 2/3 Km is a very interesting

situation which will be discussed in the next chapter.

4.3 Stepped Leader. Although the programs developed in this work

are capable of implementing a variety of models for the stepped or dart
leader processes, only one model which is readily adaptable to the pro-
grams will be discussed.

First, it is assumed at time T,, a leader pulse with current

OL
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waveform ILP(t - TOL)U(t -_TOL) advances down the channel from the cloud

base toward the ground governed by the velocity expression

VL(t) = VLO exp[-GL(t - TOL)]U(t - TOL)

As in the case of the return stroke, continuity of current is assumed
in all dipoles through which the velocity expression has allowed the
current pulse to pass. The current pulse continues toward ground until
it reaches the first dipole that has an-index i which is a multiple of
a specified integer, NDSP. Rather than proceeding through this dipole,
the advance of the current is allowed to.pause for DELAY seconds while
this current pulse decays.  The present programs are capable.of select-
ing the values of DELAY from a normal distribution by specifying the
mean, the standard deviation, and an odd integer IX to initialize the
random selection. . |

Following this delay a second current waveform, identical in form
to the first pulse, is assumed to exist in all dipoles through which
the first pulse has passed while the tip of this pulse continues toward
ground in accordance with the velocity expression VL(t) existing before
the delay. When this second current pulse reaches the second dipole
that is a multiple of NDSP, another delay is randomly selected to allow
this current waveform to decay. This procedure is repeated until the
final pulse has reached the ground.

As an examﬁle, consider a channel length approximated by NN 10 M
dipoles, .If:the delays are chosen to occur every 50 M, NDSP is chosen

as 5. Note that T, < D(NN, 6)'5_-1- < D(1, 6) for the leadeprrocess.

OL
That is, the leader is initiated at time TOL; at some later time the

dipole furthest removed from the ground is considered conducting, and
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the final dipole to conduct is that touching the ground. For compact-
ness, let Ti denote D(i, 6), Dk denote .the kth delay proceeding down
the channel, IJ = (i+NDSP-1)/NDSP in integer arithmetic, and NWD =
(IJ)(NDSP). 1IJ will have the value 1 for 1 < i < NDSP, 2 for NDSP < i
< 2 NDSP, etc. The total number of delays along the channel is given
by NT = NN/NDSP in integer arithmetic. Assuming each current pulse has
the form ILP(t) the current required for each dipole in the configura--

tion Ii(t) may be represented by the following expressions:

(NT+1-1J) (NT+1-1J)
L(t) = I plt-(Typ + k§1 D) JU[t-(T; + k§1 D,)], 1 < i < NDSP
(4.3.1)
and
(NT+1-1J) (NT+1-1J)
I(t) = Iplt-(Tgp * kgl D) 1Uft-(T,; + ) D)1
(NWDENDSP) (NTEI-Q) (NTEI-Z)
+ I, [t-(T. + D, )JU[t-(T, + D)1,
jeg(NDsp) B ) k=1 K ] ko1 K
2=1,2,... (4.3.2)

for NDSP < i < (NN/NDSP) (NDSP). For (NN/NDSP)(NDSP) < i < NN the above

expression is correct if TN is replaced by T

WD NN®

At first glance the above expressions are far from enlightening.
Consider NN = 266 as a specific example with NDSP ='5 as before. The
total number of delays along the channel is NT = 266/5 = 53. These de-
lays occur just before the dipoles with indices i = 265,260,...,10,5
are considered conducting. Since NWD = 5 and (NT+1-1J) = 53 for 1 <i
< 5, the first expression states the current in the first five dipoles,
1 <1i<5, is a current pulse ILP(t) which is shifted in time to begin

in the fifth dipole at the time required for the velocity expression to

reach this dipole plus all the delays encountered along the channel.
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Each of the remaining dipoles, 1 < i < 4, conduct with this same current
in such a manner as to maintain. continuity of current with the dipoles
above them.

For 6 < i < 10, NWD.= 10, (NT+1-1J) = 52, and (NWD-NDSP) = 5. Thus
the first term in the expression for Ii(t) is

52 52 .
I plt-(Tyy + kgl D, ) JUlt-(T, + kzlsz)] s
which is similar to the expression obtained for the first five dipoles.
In this case only fifty-two delays exist in the channel above the tenth
dipole. The sum in the expression for Ii(t) is
5 (54-2) (54-2)
g ILP[t—(Tj + kzl Dk)]U[t-(Tj + kzl D,)]
Since £ = 1 is the only value allowed for %, the sum becomes
53 >53 :
I plt-(Tc + kzl Dk)]U[t—(Ts + kZi D, )] ,
which is exactly the current in the fifth dipole, or the current re-
quired in.all dipoles above the fifth to maintain its assumed current
waveform,

Similar current waveforms are obtained from the Ii(t) expressions
for larger values of i. That is, one term is obtained for the assumed
current pulse in that segment of the channel plus a sum of other terms
to allow that segment to support. the current flow in the segments below.

If the current pulses, ILP(t), are negative current pulses flowing
down the channel, it is obvious that a negative charge is deposited-
along each 50 M length of the channel given by the integral of ILP(t)
as required of the leader process.

The model of the leader process chosen to be presented here is
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essentially the same as that discussed above. That is, a 2 2/3 Km
channel is approximated by two hundred sixty-six dipoles with 10 M
lengths and delays occurring every 50 M or five dipoles along the chan-
nel. Since the points at which the delays occur were arbitrarily chosen
with respect to the ground rather than the cloud base, the first delay
occurs after the first 10 M of the channel has been overtaken by the
velocity expression. The succeeding delays then occur at multiples of
50 M from the point of this first delay. To simplify the computations
the velocity expression was deleted in this model. That is, the current
pulse for a particular 50 M segment was assumed to exist on all dipoles
within that segment simultaneously after the appropriate number of de-
lays rather than starting at the upper dipole in this segment and pro-
gressing downward.

The waveform assumed for the current pulses is that suggested by

Steptoe (17),

ILP(t) = Io[exp (- at) - exp (- Bt)] s

where I, = 2 X 10° amp, a = 2 X 10 sec_l, and 8 = 2 X 10° sec™t. It

is noted by Arnold and Pierce (1) that typical delays are of the order
of 50 usec, and that this form of pulse is significantly different from
zero after the delay, and thus the above expression is not a particu-
larly good model. They suggest that the current pulse produces a pulse

in the measured electric field of the form
E(t) = K[h3t exp(- hot?) + hit exp(- hit?)]

This expression was deduced émpirically by Pierce (15), with h1 = 3.5X

5 -1 -1 12

10° sec ", h, = 1.2 X 105 sec , and K = 2.7 X 10 ~“ volt secz/m at

2
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100 Km from the channel. Uman and McLain (20) have considered the re-
lations between this field, the required leader currents, and the cur-
rent propagation velocity.

The results of this model are shown in Figure 13 for all delays
having the same value of 50 usec, which Uman (19) refers to as a repre-
sentative time between steps. The observation point is. located at -
100 Km from the channel on the ground plane. Here. it is noted that the
peaks occur at the fundamental frequency 1/50 usec_l'or 20 KHz and its
harmonics. Note these peaks dominate the spectrum when the delay term
is assumed &eterministic.

Schonland (16) suggests that the delays are random with a mean of
50 usec and a standard deviation of approximately 23 psec., The field
resulting from the above model was calculated drawing the delays from a,
normal distribution with mean 50 usec and standard deviation 23 usec,.
Figure 14 is the average of thirty-six of these computed spectra. That
is, IX, the parameter initializing the random selection, was set equal
to 1, the required fifty-three delays were selected by means of the sub-
routine GAUSS (see Appendix B), and the Fourier transform of the field
was computed. This procedure was repeated for IX = 3,5,...,71, and the
amplitudes of the resulting Fourier transforms were averaged.

Drawing the delays from such a normal distribution admits the pos-
sibility of negative delays which did in fact occur in the calculations
leading to Figure 14. The physical significance of these possible neg-
ative delays is not fully understood. To avoid this problem thirty-six
waveforms were calculated for the same . values of IX as before with the
constraint that all negative delays would be rejected and the program

returned to the subroutine for the selection of another delay. The
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average of the amplitudes of these waveforms is presented in Figure 15.

Arnold and Pierce (1) have calculated what they term the mean amp-
litude spectrum of the received field at 100 Km resulting from a series
of sixty-four current pulses suggested by Steptoe, assuming a length of
100 M was energized by the current pulses. The time between pulses was
assumed to be described by the same normal distribution. Their result,
although presented on logarithmic scales, does not appear too different
in shape than would Figures 14 and 15 on similar scales. The maximum
value occurs at 20 KHz as it does in both Figures 14 and 15. However,
the amplitude at this maximum is approximately 2.4 pvolt sec/M where
Figures 14 and 15 indicate approximately 33 pvolt sec/M.

It is believed that this discrepancy in magnitude can be explained
in terms of the differences in.the two models of the stepped leader pro-
cess. First Arnold and Pierce obtain an expression which states the
mean amplitude spectrum is proportional to the square root of the number.
of pulses. Their calculations assumed sixty-four pulses while those of
Figures 14 and 15 involved fifty-three. This implies, all other things
being equal, that their results should be 10 per cent larger in magni-
tude than those obtained here. However, the main difference is in the
length of channel each pulse is assumed to exist. Their model allows
each pulse to occur only in the same 100 M segment. The present model
allows the first pulse to occur in the upper 10 M of the channel, the
second in the upper 60 M, the third in the upper 110 M, ..., and the
last in the total 2.66 Km channel length. In the notation of Chapter II
the magnitude of the received field is increased proportional to the
effective dipole length. Or in the notation of Arnold and Pierce the

magnitude of the received field is proportional to the second time
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derivative of the dipole moment which they give as 200 dI/dtf The 200
results from an assumed separation of 100 M on the dipole approximating
the segment and its image. In either event it is obvious that the mag-
nitude obtained here should be considerably larger than those of Arnold
and Pierce.

As an interesting point, Arnold and Pierce note, that:the magnitude
experimentally obtained by Steptoe was actually an order of magnitude.
larger than their calculations, However, they mention that Steptoe's
experimental conditions implied a bias toward stronger signals, and
thus his observed results were for the strongest leader disturbances

only rather. than .an average behavior.

4.4 Stepped Leader and Return Stroke. As stated previously, the

effect of the leader process is to distribute a net negative :charge

along the main channel by means .of a negative current progressing down
the channel from the cloud to the ground. The return stroke.which fol-
lows at some later time transports or partially transports this net

negative charge to ground by a positive current flow progressing up the
channel. This combined effect has been modeled by combining the models
of the leader process and return stroke discussed in .the preceding two
sections. That is, the current existing in the,ith dipole was.assumed

of the form

I (t) = IL(t){U[t—D(i,6)]—U[t-Tl’i]}+IR(t){U[t-D(i,?)]—U[t—Tz,i]} ,

1<i _<_Nn' (3.4.4)

in accordance with Section 3.4 with the understanding that IL(t) denotes
that portion of the total leader current existing in the segment of the

channel approximated by the ith dipole.
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The Fourier transform of the charge on the ith dipole, Fi(w),
chosen for the calculations of this section is the sum of that given.by
Equation 4.2.7 for the return stroke plus 1/jw times the Fourier trans-
form of the appropriate terms of Equation 4.3.2 for the contribution
from the leader process. This procedure is in agreement with Equation
3.4.6.

Note the above implies that the Fourier transforms of the dipole
charge have been summed assuming contributions from the leader process
and the return stroke result from nonnegative currents. This may be
explained by recalling that the positive reference on the dipoles was .
assumed along the positive coordinate axes which for vertical dis-
charges, as being considered here, correspond to the positive z-axis.
Now the leader process is to remove negative charge from the cloud and
transport. this charge down the channel. With the above notation this
corresponds to a positive current flowing from the.lower charge to the
upper charge on each dipole. That is, for each dipole the lower.charge
becomes more negative and the upper charge becomes more positive indi-
cating a transport of negative charge downwaxrd.

Similarly, the return stroke is to remove negative charge from the
channel and transport this charge to ground. This is also accomplished
by a positive current flowing from the lower charge to the upper on
each dipole. Thus the effective current . .for the leader process and the
return stroke is of the same sign.

The magnitude of the Fourier transform of the received field re-
sulting from a combination of a stepped leader identical to that of
Section 4.3 and a return stroke identical to that of Section 4.2 was

calculated for a channel height of 2.66 Km at a distance of 100 Km from
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the channel on the ground. TOL’ the initiation time for the leader
process, was.assumed to be zero. Tor? the initiation time for the re-
turn stroke, was.calculated within the program to be the time the leader
current reached the ground. As before, the values of the delays were
selected from a normal distribution with a mean of 50 usec and a stand-
ard deviation of 23 usec. These results are presented in Figure 16 for
an average of twelve waveforms. The twelve values of IX assumed for
these computations were 1,3,5,...,23. The corresponding average magni-
tude resulting from the stepped leader alone is given in Figure 17.
Comparing these results with those.of Figure 12 which represent
the return sfroke alone .one may conclude that for frequencies lower than
15 KHz the process assumed for the stepped leader does not appreciably
affect .the average spectrum. At frequencies greater than 15 KHz the
average spectrum resulting from the combination is somewhat larger than
that of the return stroke alone. This is due to the energy of the
leader process in. this range of frequencies. These results are as to
be expected. Hosever, the results are for average values, and one
should be cautioned that if a particular event were to be.considered as
.in observing actual storm data, the effect of the leader process may
drastically affect the spectrum as Figure 13 indicates for the extreme

case of all delays having identical values.

4.5 Streamer Process. In order to more. completely represent the

effect of a discharge to ground one should include some process by which
charge can be transported from regions within the cloud to the upper tip
of the main channel. Horner (10,11) and Uman (19) give references on

the processes occurring between return strokes in a discharge. One pro-

cess that has been described consists of so-called junction streamers
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extending from the upper tip of the main channel towards concentrations
of charge in other parts of the cloud. When these streamers connect
with these accumulations of charge a current pulse (K pulse) is experi-
enced resulting from transportation of this charge to the. channel tip.

No calculations have been made for this process in the present
work. However, the computer models are capable of accepting such a
process if one has a specific process in mind.

The possibilities are too numerous to list. However, the following
brief example- should suffice in indicating how one may incorporate such
a process into the discharge model.

As a general example, the process might be approximated by a cur-
rent waveform, representing the junction streamer, progressing from the.
upper tip of the main channel along a specified branch in accordance

with the velocity expression

Vg(t) = Vg exp[-Gg(t - To)TU(t - Tg)

This current is allowed to advance along the branch until it reaches a
point on the branch which is to represent an accumulation of charge.
When ‘this point is reached the K pulse resulting from this accumulation
of charge may be modeled by superimposing an additional current on all
dipoles between the channel tip and this point. This process may be
repeated for the current progressing along the branch toward the next
accumulation of charge. Such a process may be incorporated into the
programs with no more difficulty than that of the leader process des-
cribed in Section 4.3.

Also if the times between the K pulses are desired to be random,

the same subroutine used for the delays in the leader process may be
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used. With the desired mean and standard deviation corresponding to
the K pulses specified, sample values would be drawn from this normal
distribution., Kitagawa and Brook (12) indicate a mean of 8.5 msec and

a standard deviation of 6 msec is appropriate for K pulses.

4.6 The Detected Field. Recall the procedure for calculating the

time functions.representing the narrow-band, half-wave linear detected
field described in Sections 2.4 and 3.6. First the Fourier transform.
of the received waveform was passed through an ideal band-pass filter
with bandwidth B about a selected center frequency w, . It was then.
shown mathematically that the time function representing the half-wave
linear detection of this narrow band signal was proportional to the
magnitude of the inverse Fourier transform of this narrow band signal
shifted in the frequency domain from the interval [wc-B/Z,wc+8/2] to
the interval [0, R].

Figures 18, 19, and 20 are the time waveforms obtained from an,
identical return stroke as presented in Figure 12 for center frequencies
of 10, 50, and 100 KHz, respectively. The bandwidths about .each center
frequency were chosen as 1 KHz.

These curves appear to have a modified (sin at)/t variation which
has been shifted on the time axis. This is a direct result of .the ideal
band-pass assumption. That is, the frequency function has been multi-
plied by a pulse of width 27 X 103 radians/sec which requires the cor-
responding time function to be convolved with (sin 7 X 103t)/'nt° In
fact one can see from the minimums of these plots that the variation is
actually of the predicted form (sin m X 103t)/t corresponding to the
1 KHz .bandwidth.

It is observed that the first maximum occurs at approximately
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0.33 msec rather than the origin. This corresponds to the propagation
time required for radiation to.reach the.antenna. In these calculations

the return stroke was initialized at time t = T =.0 sec. Thus the

OR
antenna situated 100 Km from the channel would measure no response-until
t = TOR + 105/3 X 108 or 0.33 msec.

The values of the time response existing before t = 0.33 msec is
again .a problem associated with the ideal band-pass process. That is,
the. (sin 7 X lost)/t exists for -« < t < », Or -in other words, the
dual assumption of a finite bandwidth and a finite time interval is not
theoretically possible (2).

These problems may be slightly alleviated with the assumpfion of a.
more realistic band-pass filter which the program will readily accept.
However, the problem of the infinite time'record'will remain.since one-
can only handle a finite number of samples.

Common problems in.the algorithm utilized to invert.the narrow-band
frequency function may be found in reference (4). One that is apparent
here is time resolution. In Section 3,6 it was mentioned.that 256 sam-
ple values obtained from the frequency function over.the 1 KHz bandwidth
and 2,304 = (2,560 - 256) zeros were introduced into the algorithm to
yield an.output time function that should be accurate over the time in-
terval 0 < t < 256 msec with a spacing of 0.1 msec. In the situation.
modeled here the return.stroke should essentially be zero after a dura-
tion of at most. 10 time constants or 0.5-msec. Thus with the present
time domain spacing only five values are to represent.the process we
desire to observef\ Padding with additional zeros, say (25,6000 - 256)

will reduce the time increments to 0.01 msec at the obvious expense of

computer storage and cost.
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Although the spacing of samples in the frequency domain was set at
103/256 Hz in the present program to hopefully result in time represen-
tation valid to 256/103 sec, this sampling rate could be reduced if
shorter time intervals are to be considered. For example, a sample
spacing of 103/64 Hz in the frequency domain should result in a time
representation valid to 64/103 sec. With the addition of only (6,400 -
64) zeros the time increments are 0.0l msec.

It is implied that obtaining N equally spaced samples over .the
1 KHz bandwidth will result in the associated time function which is

valid for 0 < t < N msec. Personally the author would place a safety

factor of 1/5 on this upper. limit.

4.7 Summary. The results of the return stroke. are in excellent

agreement with those. produced by other models.

The spectra obtained from the modeled leader process is reasonable
with others if adjustment is made for the effective channel length.
However, the randomness of the delays necessitates averaging.

The return stroke may be.combined with a leader process with pre-
dictable results.

Although no calculations for a streamer process have been pre-
sented, the programs will readily accept reasonable models for this
process.

The present program calculating the narrow-band, half-wave linear.
detected waveforms gives predictable results for the assumptions made.
However, if these time waveforms are to determine anything about the re-
ceived~wavef6rms from some assumed process for a comparison with meas-
ured data, more realistic assumptions must be made for the narrow-band

filter.



CHAPTER V
PARAMETER SELECTION

5.1 Introduction. Although the computer model developed in this

work is somewhat involved and capable of representing a multiplicity of
processes or combination of processes, the original intent was not to
develop an elaborate model of a lightning discharge in order to deter-
mine more about the mechanisms involved in the discharge process.
Rather, the purpose here was to develop a model which would be capable
of yielding some information relating parameters in the electromagnetic
radiation from thunderstorms to parameters within the storm. However,
in the development it was not known how accurate a description of the
processes would be required to yield such information. Thus, the pres-
ent model evolved.

Many hazards may be encountered when attempting to relate the re-
ceived electromagnetic data to the parameters of the discharge via a
model as developed here. For example, distances are not known accu-
rately, modes of propagation not included in the model exist, etc. One
of the most fundamental problems is the fact that the received field is
not unique to a particular source. Also problems in comparison exist
as a result of the randomness inherent in actual discharges.

In developing this model allowances have been made for the intro-
duction of many processes and random effects if meaningful assumptions

or hypotheses for the processes are available. However, the author

AQ
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still has many questions on the processes and believes that trying to.
specify certain parameters too accurately while others just as critical
to the results are unknown would not be optimum procedure.

The following is proposed. The return stroke calculations appear
to be quite acceptable. Realizing this is far from the.actual dis-
charge, and also that.this portion of the discharge changes . from stroke
to stroke not to mention flashes, use the return stroke waveforms as
test signals, not to infer about the absolute signals that:.might be re-
ceived from various discharges, but to infer what.changes in the re-
ceived signals could be expected for a very restricted set of changes

in the discharge. .

5.2 Effect of Channel Length. At the end of Section 4.2 it was.

noted that the spectra of Figures 8 and 12 resulted from an.identical
set of parameters on the modeled return stroke. except for the assumed
channel height. Figure 8 represented a channel height of 1 Km and had:
the maximum value of its spectrum at 10 KHz. Figure 12 represented the

maximum channel height allowable by the velocity expression
VR(t) ='VRO exp[-GR(t - TOR)]U(t - TOR). s

or VRO/GR =.,2,66 Km. However, in the latter case a smooth curve with a
maximum at 5 KHz was.obtained for the spectrum.

The possibilities are that the higher frequency content of the.1 Km
channel over the 2.66 Km channel results from the termination of the.
channel before the current has decayed sufficiently, or the channel:
height may also influence the frequency content.. The termination of
the channel will definitely influence the frequency content as evidenced

by the local maximums at the higher frequencies of Figure 8.
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To determine if channel height is also involved, the following

calculations were performed. A return stroke current of the form

3

I.(t) = {3 X 10*[exp(-2 X 10%)-exp(-2 X 10°1)+2.5 X 10° exp(-10°1) Ju()

was assumed, where.t = (t - T This is the same current assumed for

OR)'
the return.strokes of Figures 7 through 12 with the addition of the last:
term. Since the effect of channel height was to be determined, GR was

_ 7
RO = 8 X 10" m/sec., Thus the VRO/GR

restriction on channel height was removed.

equated to zero yielding VR(t) =V

The results presented in Figures 21 through 26 represent the cal-
culated field, assuming the dipoles are 10 M in length, at 100 Km from
the channel on the ground for channel heights of 1.0, 1.5, 2.0, 2.5,
4,0, 5.0, and 9.99 Km, respectively.

The maximums of the spectra occur at approximately 11, 10, 8, 7.2,
5.8, 5, and 3.3 KHz, respectively. That is, increasing the channel
height while holding constant all other parameters shifts the maximum
of.the spectrum to lower values of frequency.

Also note that the local maximums in Figure 27 are less pronounced
than in the six previous graphs. The time required for the current to
reach this height is approximately 125 usec. Thus if 50 usec is an.
effective decay time constant for the current waveform, this.current
has begun to decay significantly when the channel growth is terminated.
Figure 26 which represents a channel height . of 5 Km corresponding to a
required time of 62.5 usec or slightly over one time constént when the
channel is terminated indicates the local maximums are quite pronounced

as is.to be expected.

e
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5.3 Effect of Channel Orientation (Far Field). In this section,

and the one following, the current on the channel and its propagation
velocity are fixed and only the.geometry.of the channel is varied. 1In
particular, the current form assumed is identical to that.of the return

stroke modeled to obtain Figure 12. That is,

IR(t) = Io{exp[-a(t - TOR) - exp[-B(t - TOR)]}U(t - TOR) (4.2.5)

with
VR(t) = VRo exp[-GR(t - TOR)]U(t - TOR) s
where
I,=3X 10% amp, o= 2 X 10% sec”t, 8 =2 X 10° sec
V. =8X 107 m/sec G, =3X 104 sec™1 T.., = 0.0 sec
RO g R » OR °

The length of the channel, approximated by dipoles of length 10 M, is
assumed to be the maximum. length allowable for the velocity expression
with these parameters, 2.66 Km.

Seven channel orientations are considered. In each case the ini-

tial point of the channel, (XO, Y ZO), has been adjusted such that

0’

the X,Y-coordinates of the channel midpoint is centered over the origin.
Also four heights are considered for the initial points on each orien-

tation. These heights are Z, = 0, 3, 5, and 7 Km for the orientations

0

with any vertical component and Z_ = 1, 3, 5, and 7 Km for the hori-

0
zontal orientations.
The observation point for the following figures is located 100 Km

from the discharge on the ground plane or (Xa, Ya’ Za) = (0, 100 Km, 0)

in accordance with Section 3.3.
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Figure 28 represents the received field for a vertical channel
with direction cosines (0, 0, 1). The solid curve corresponds to ZO =
0 which is the same situation modeled in Figure 12. The dashed curve
represents . the received field for an identical discharge with the ini-

tial point of the channel elevated to Z, = 7 Km,. Calculations were per-

0
formed with Z, = 3 and 5 Km, These graphs were not plotted since they

0

were essentially the same as those presented with values lying between
the two curves.

Figures 29, 30, and 31 represent channels inclined thirty degrees,
from the vertical. The direction cosines for these figures are (0, .5,
.866), (-.5, 0, .866), and (0, -.5, .866), respectively. That is, the
original vertical channel is first inclined toward the observer, then
rotated -a positive ninety degrees, and finally rotated an additional
ninety degrees. Again the solid curves represent the values obtained
for Z, = 0, the dashed curves represent the values obtained for Z_ =

0 0
7 Km, and the values obtained for Z, = 3 and 5 Km fall between the two

0
curves presented on each figure.

Figures 32, 33, and 34 represent horizontal channels. The direc-
tion cosines for these three figures are (0, 1, 0), (0, -1, 0), and
(-1, 0, 0), respectively. In each figure the curves obtained for Z0 =
1, 3, 5, and 7 Km are indicated.

Comparing Figures 28 through 31 there appears to be no significant
difference existing between the four figures. From this, one may. con-
clude that the observed field is relatively insensitivie to the channel
orientation for small, less than thirty degrees, deviations from the

vertical. Also, a comparison of the curves on each figure implies that

the received field does not vary significantly as a fixed channel length
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with predominantly vertical orientation is translated along the vertical

or Z-axis for the values considered here, 0 < Z, < 7 Km. This lends

0
support for those making the assumption of approximating the field pro-
duced from a current distribution on several different elements of the
same length along the channel by the superposition of the currents on
the same segment (1).

The curves of Figures 32 and 33 represent horizontal channel
lengths in the same plane as the observation point, the Y,Z-plane. A-
gain these results are not significantly different from the results of
the preceding figures if the magnitudes are adjusted for the reduced
channel length projected on the vertical antenna at the observation
point.

Figure 34 represents a horizontal channel length parallel to the
X-axis or perpendicular to and symmetric with respect to the Y,Z-plane.
If all dipoles along the channel were assumed identical, the computed
vertical component of the field should be identically zero. However,
the assumption of the current progressing along the channel length re-
quires different dipole moments on each. Although the resulting magni-
tude is small compared to Figures 32 and 33, the result is considered
significant. That-is, the general shape is the same as the horizontal
discharges represented by Figures 32 and 33; however, the position of
the maximum values have shifted from 5 KHz.to 10 KHz. Or in other
words, strictly horizontal discharges will produce vertical components
of the field when measured in the far field on the ground. And the
frequency content will be a function of the angle of observation pro-
jected on the ground plane.

Before proceeding to the next section, recall that for these
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calculations the observation point was located at a distance of 100 Km

from the channel on the ground, (Xa, Ya, Za) =- (0, 100 Km, 0).

5.4 Effect of Channel Orientation (Near Field). The discharge

processes and geometries modeled in this section are identical to those
discussed in the previous section. Only the observation point has been

changed from (Xa, Y , Za) = (0, 100 Km, 0) to (0, 10 Km, 5 Km). For a

a
vertical discharge connecting with the ground, this corresponds to an
observation point positioned 10 Km from the base of the discharge and
elevated to an altitude of 5 Km. As before, the vertical antenna is
parallel with the Z-axis and the horizontal antenna is parallel with
the X-axis.

Figures 35, 36, and 39 represent channels with direction cosines
(o, 0, 1), (0, .5, .866), and (0, -.5, .866), respectively. These three
figures correspond to the discharges modeled in Figures 28, 29, and 31,
respectively. Figures 37 and 38 represent the vertical and horizontal
components of the received fields from the discharges modeled in Figure:
30 with direction cosines.(-.5, 0, .866).

The first obvious difference between the curves of this section
and the preceding ones is the large increase in magnitude as the fre-
quency approaches the lower values. This difference is explained by
noting that the distance from the channel to the observation point is
considerably less than a wavelength, A, at these frequencies. Although
the dependence of the electric field upon frequency, w, and distance to
the observation point, r, is masked in the equations of Chapter II, the
electric field produced by one oscillating electric dipole (18) is pro-
2

portional to the weighted sum of three terms l/rs, w/vrz, and wz/v T,

where v is the velocity of propagation. Near the dipole, r considerably
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less than A/6, the l/r3 and l/r2 terms begin to dominate the field. For
fixed r, as the frequency is reduced further, the l/r3 term becomes even
more dominant. The Fourier transform of the charge on the ith dipole

was assumed to be of the form
F.(w) = I,(w) [vé(w) + L ]
i i jw ?

where Ii(w) is the Fourier transform of the current waveform on that
dipole. This results in a transform of the field produced by each di-
pole which tends toward Ii(w)/jw° For the current waveforms considered
here the transforms Ii(w) approach constant values as w decreases. Thus
the 1/w variation at the lower frequencies results. This problem is a
direct result of‘fhe assumption that a charge remains on each dipole for
an infinite length of time and is then removed or partially removed at
some finite time. For example consider the unit step function U(t)
which is analogous to the charge waveforms assumed. The Fourier trans-
form is mé(w) + 1/jw. However, the unit pulse of duration 2T has the
transform (2 sinwT)/w which is well behaved as w approaches zero. This
unit pulse is analogous to a charge that is placed on the dipole at

some finite time and removed at some later (finite) time. Also note
that the maximum value of (2 sinwT)/w depends on the duration T.

It is possible that in actual measurements the atmosphere may
attenuate these lower frequency components. Horner (11) discusses the
attenuation of atmospherics around 3 KHz. However, his discussion is
limited to far field conditions, and the attenuation is considered re-
sulting from waveguide modes of propagation. Extrapolation of this
attenuation déta to apply to the results of this section may be quite

hazardous, due to the distances involved. In any event. the calculated
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values are as to be expected for the means of propagation and the cur-
rent waveforms assumed in the model.

Disregarding the frequencies below 4 KHz for the present and com-
paring Figures .28 and 35 which represent the vertical channels, it is
noted the peaks in the spectra have been translated to higher. frequen-
cies in the near field. That is, a discharge which produces a peak in
the spectrum at 5 KHz when measured at 100 Km on:the ground will have
considerably different frequency content when measured in the near field
off the ground plane.

Also the far field calculations on the channels with vertical com-
ponents of orientation yielded no appreciable difference in the spectra
as the channel was elevated. However, the near field calculations indi-
cate marked differences as evidenced by Figures 35 through 39. In addi-
tion to these differences the orientation modeled in Figure 30, direc-
tion cosines (-.5, 0, .866), allows a horizontal component of the field.
Figure 37 represents the vertical component of this field when measured
at"(Xa, Ya, Za) = (0, 10 Km, 5 Km). Figure 38 represents the corres-
ponding horizontal component. The peaks of the horizontal components
are located roughly at 20 KHz with magnitudes approximately one-fourth
those of the vertical. Also note that the channel touching the ground,
Z0 = 0, is considerably less than the others around 20 KHz. Thus dis-
charges inclined slightly, thirty degrees, from the vertical and ele-
vated above the ground plane produce significant horizontal components
of field. Also the maximum of the spectrum of the horizontal field
occurs at a significantly greater frequency than that of the vertical.

field. That is, it appears that the higher frequency content for cloud

discharges may not be a function of the process alone but rather how
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they are observed.

Figures 40 and 41 represent the horizontal discharges with orienta-
tions (0, 1, 0) and (0, -1, 0) corresponding to Figures 32 and 33, re-
spectively. Figures 42 and 43 are the vertical and horizontal compo-
nents of the field for the horizontal discharges with orientation (-1,
0, 0) corresponding to Figure 34.

First, assume there does exist an attenuation of the spectra at
the lower frequencies, say around 3 KHz. One may see from Figures 40,
41, and 42 that the frequency of the maximums in the vertical spectra
may -be determined by the form of this attenuation superimposed on the
spectra, the orientation, and the .elevation of the discharge rather
than the discharge process alone. Also note that it.is possible for
these maximums in the vertical spectra to occur at frequencies as high

as 20 KHz for the cases of Z_ =1 and .3 Km in Figures 40 and 41 and as

0
high as 30 KHz for the cases of Z. =1 and 3 Km in Figure 42. 1In each.

0
of -these cases recall that the process is the same, and only the height
above ground and the direction of the discharge is being changed.

Of these three horizontal discharges, only the one with direction
cosines (-1, 0, 0) will produce a component of the horizontal field due
to the assumed direction on the horizontal antenna. This horizontal
component is shown.in Figure 43. Again, as in Figure 38, the horizontal
component of the field exhibits maximums significantly larger than that
obtained from the.identical discharge if it were strictly vertical. 1In

particular, the cases for Z, = 1, 3 and .5 Km have maximums at 30, 25,

0
and 20 KHz, respectively.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

A computer program has been.developed to compute the Fourier trans- .
form of the electric field produced by various models of lightning dis-
charges. This program produces results in agreement with other models
existing in.the literature when equal assumptions are made on the pro-
cesses to be modeled. In addition, the computations of the present pro-
gram are not limited to far field conditions, and the observation point
may.be located at any position desired either on or above the ground
plane. A multiplicity of discharges may be incorporated into the pro-
gram by simply specifying the geometry desired, the Fourier transform
of the assumed current waveforms, and the manner in which these current
waveforms are.to progress through the.geometry.

This program has been extended to calculate the time functions
approximating the narrow-band, half-wave linear detected fields produced
by the same discharge models the. first program is capable of implement-
ing, The results of this program are in agreement with the assumptions
made for the detection system. However, if this program is to be uti-
lized for the.comparison of computed time waveforms with measured data,
more realistic assumptions must be made for the band-pass filters in-
volved.

The intent of this work was not to develep an elaborate model of a

lightning discharge for the purpose of determining more about the
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mechanisms involved in the discharge process. Rather, the purpose was
to develop a model which would be capable of yielding some information
relating parameters in the electromagnetic radiation received from
thunderstorms to possible parameters within the storm.

With this in mind, the Bruce and Golde current model for a return
stroke was chosen as a test signal and the Fourier transform of the re-
sulting field was calculated varying only the channel geometry and the
point of observation.

Calculations were performed to indicate that the position of the
maximum of the spectrum resulting from a cloud-to-ground discharge is
related to the discharge length if all other considerations are constant.

It was found that a vertical discharge to ground which produces a
peak in the received spectrum at.5 KHz when.observed at 100 Km on the
ground plane is capable of producing a peak at 10 KHz measured at the.
same .observation point if the discharge is elevated above the ground
plane and tilted to a horizontal position.

Discharges which produce no significant differences when measured
in the far field were seen to be quite different when measured near the
discharge. This is especially true of the horizontal discharges modeled.

One of the major conclusions drawn from the computations is that
the predicted difference in the frequency content between cloud-to-
ground and intra cloud discharges is not entirely a function of the dif-
ferences in the processes. Rather the inclination of the discharges
and the angle from which they are observed significantly enter into the
resulting spectra.

From these results it appears that the location of the peaks in

the spectra is a significant parameter to consider in pattern
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recognition. Realizing that the received field is not unique.to a par-
ticular discharge and that randomness is inherént in. actual discharges
indicates that the positions of the maximums alone are not sufficient.
However, it is suggested that consideration of .the peaks of the hori-
zontal and vertical data simultaneously will remove some uncertainties.
Before definite conclusions can be drawn. from the calculated spec-
tra, the actual attenuation must.be investigated. Also to obtain well
behaved spectra for near field calculations, it is necessary that each
dipole charge be nonzero.only over a finite time interval. The effect

of this "duration" of charge should be investigated.
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APPENDIX A

DERIVATION OF THE FIELD EQUATIONS -

A.1 Introduction. Consider an oscillating electric dipole located

at (0, 0, h) in free space with direction cosines (%, m, n) and its
image located at (0, 0, -h) with orientation (-£, -m, n). Assume the

resulting Hertz vector may be approximated by (see Sections 2.1 and 2.2):

9 Q Q 9 L Y 9 .
Tx, v, 2) = grg (o - g2 8 + (G- pma + G-+Ina)
1 2 2 1 2

- - - N . . .
where ays ay, and a, are unit vectors .in the X, Y, and Z directions,

respectively; Q(t)AL is the magnitude of the dipole moment;

1
ry = {x2 + y2 + (z -‘h)z}2 ,
1
rz = {x2 +,y2 + (z + h)z}2 s
Ty » T
Ql = Q(t = T) = QO €Xp {jw(t - -V_.)} s
and
T, , r,
Q, = QCt - 59 = Q exp ju(t - $I)

The field components resulting from this assumed Hertz vector are cal-

culated  at the observation point (x, y, z) in spherical coordinates.

TN



108

(x, ¥, z)

Figure 2. Dipole, Image, and Observation Point

A.2 Electric Intensity. The Hertz vector is converted to spheri-

cal coordinates

o

m.(r, 8, ¢, t)
ﬂe(r, 9, q), t)'

'ﬂ¢(r, 8, ¢, t)

-— —
where ©m = m._a_ +
T
results in
AL M1
T~ 47me {(?_ -
1
AL 1
o = Zre {(;I -

by the equations

1T alE 7
sin® cos¢ sinb siné  cos® ﬂx(x, Y, Z2, t)
= | cos6 cos¢ cosb sing -sinf 'ﬂy(x, Ys Z, t) ,
-sing cos¢ 0 ﬂz(x, Yy, z, t)
J L Jb _|

- - - -
T,.a, +T,a, =T a + T .a +.m.a This transformation
876 ) X X yy z '
=)} (% cos¢ + m sin¢) siné + (=—+ =—=)n cos8} (A.2.1)
T L T

2 QG
—) (& cos¢ + m sin¢g) cos® - (— + —)n sinb} (A.2.2)
2 1 02



where

and,

AL

4me

=
(]

g
n
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G G »
{(Err- Era(~2 sing + m cos¢d)} ,  (A.2.3)
1

2

1

(rz + h2 -2rh cose)2

1

(x> + h% + 2t h cos®)?

The electric intensity is given.by-

Consider the term V

N
Ve

Using the relations

and

for i = 1,2 with

-
cTg

2
E =

iven

2 2
V(V.* m) - uew'm . (A.2.4)

] . '
——————-55-(ﬂe sinb) +.

in spherical coordinates by

1 3
T sinb 5$'(ﬂ¢)
(A.2.5)
cosb 1. )
("g) * Tsing ("e) * T sind 5$'(ﬂ¢)

Q e 1, %%
)= 55 - 7 (A.2.6)
1 1 Tr.
1
Q w1 0%
(;;0 = Qi {T.V - ;5} 55 (A.2.7)
i
or
1 - h cosé
— = ES - cos (A.2.8)
: 1
or
ar2 _r+ 2 cos6 (A.2.9)

2
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ar .
1 _r.h siné
Yol = (A.2.10)
1
ar .
2 _ 1T h sing ‘
S s (A.2.11)
2.
the - above equation results in
2 AL | . . juQp Q JuQ, Q
Voem s {[n h-r sinf (% cosd + m smcb)][r2v + ;3-- ;5;— - ;gﬂ
1 1 2 2
juQ;  Qp  JwQ, Q,
- n 1T cosd [r2 + ;3 + r2 + ;Eﬂ} . (A.2.12)
1 1 2 2
(.Y
The expression for V(V * m) is
...\_.;3 L= _;la uA 4_]____3_ L™
VOV e m) =asr (VM rag 2y (Vo) o+ 3 T sino 00 v -m
(A.2.13)

Noting that

) 2 .
3 »{JNQi s Qi} O Q  IswQ; %, o,
ar 2 3 22 3 4 or
T. T. v T, vV T. T
1 1 1 1 1
2 .

3 _{Jle . Ql} _ w Qi ] j3uQ,  3Q Brl
96 2 3 272 3 4 ° 36
T, T vr vV T, T
1 1 1 1 1

for i = 1,2, and using the expressions for ari/ar and ari/ae given by
Equations A.2.8 through A.2.11, V(V - #3 is obtained and added to —uewz#

in accordance with A.2.4 to obtain the electric intensity. The spher-
- -t - -
of E=Ea + E.a, +E a may be ex-
TT )

, and E 0 ch

ical components Er’ E

o ¢

pressed in the following form:
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Tl
!

AL . . . 2
ol {sin8 (% cos¢ + m 51n¢)[-Q1,2(2,3;-2,-3) + UEW Q1,2(1;'1)

+

2
n cose[-Q1,2(2,3;2,3) + UEW Ql’z(l;l)]

+

Ql(3,4,5)(r.- h cos8)[r n cosé - hn +.r sin6 (L cos¢ + m sing)]

+

Q2(3,4;5)(r +.h cos@)[r n cosé + hn - r sin6(% cosd +.m sing)]} ,

(A.2.14)

=2
H

AL . _ 2 _
ZFE-{cose(l cosd + m 51n¢)[-Q1,2(2,3,—2,—3) + UEW Ql,z(l"l)

+

n sino[Q) ,(2,3:2,3) - uew’ Q ,(1;1)]

h sinéfh n - r sin®(% cos¢ + m sin¢)][Q1(3,4,5) + Q2(3,4,5)]

+

h n r sind cosB[Q1(3,4,5) - Q2(3,4,5)]} s

(A.2.15)

AL
¢~ 4me

[es]
1

{(2 sin$ - m cos¢)[Q1,2(2,3;-2,—3) - usw2 Ql,z(l;-l)]} s
(A.2.16)

where,

(A.2.17)

i=1,2 (A.2.18)

n
]
A
<lE
e
N
o
+
.
(T}
r~
<le
et
|
+
o
-

Q; (3,4,5)

o

Q,

~
2

Q, Q
R 2
1 1

Q (2,35
2 r2

|+

+ —= . (A.2.19)

In addition to these calculations, the following has been performed
as a check on these results. A Hertz vector was defined for the origi-
nal-dipole.in terms of a spherical coordinate system which had the di-
pole at its origin, and the field conditions were calculated. The same.
was performed for the image dipole and its coordinate system. The two
fields‘were,superimposed and converted.to the coordinate system used in

the first calculations, and the results were found to agree with those
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given above.

The field components may be partitioned according to the-form.

E_ = (ERIX + ER2X) + j(ERLY + ER2Y)
B, = (E61X + E62X) + j(EOLY + E62Y)
E, = (E$1X + E2X) + j(E41Y + E¢2Y) ,

where the indices 1 and 2 indicate the-contribution due to the dipole
and the image, respectively; X and Y denote the real and imaginary

parts. With the following substitutions the partitioned

DRLM

]
P

cos¢ + m sing

RMH h cos8§

n
2]
1

RPH =.r + h cos®

RNMH cos8 - h n + DRIM r sin®

n
H
o}

RNPH = r n cos8 + h n - DRIM r sin8

components of the electric intensity may be written as:

ALQ1 ew2
ERIX = {YEX _ [siné DRIM + n cos8]
4re Ty
1 . w, 2 1
= [-sin® DRIM -~ n cos6 - (VD RMH RNMH] + —g-[S RMH -RNMH] }
1 1
(A.2.20)
ALQ1- 1 w 1l w
ER1Y = —— {~5 (=) [-sin6 DRIM - n cos8] + — (=) [3 RMH RNMH]} s
47e r2 v r4 v
1 1 (A.2.21)
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ALQl- uewz
EQIX = 7—= { T [cos® DRLM - n siné]
+ lg [-cos6 DRLM + n:.sinf - (%92 h sin6® RNMH] + lg-[s h sin6 RNMH]}
51 5
(A.2.22)
ALG, 1 . 1w .
E6LY = {—2- (7) [-cos6 DRIM + .n siné] t =7 (V) [3 h sin® RNMH]} ,
1 1
‘ (A.2.23)
ALle ew2 1
E$1X = o—= {[- EED 4 Z][% sind - m cosd]} ,  (A.2.24)
TE 3 A
1 T
1
ALQI 1 L w .
E¢1lY = o= {;5-(;9 [2 sind - m cosd]} , (A.2.25)
1
ALQ2 ewz
ER2X = g {EEL_ [-sin® DRIM + n.cos6]
me 1‘2
1 . w, 2. 1
=3 [sin® DRIM - n cosé - (;ﬂ RPH RNPH] + —g-[s RPH RNPH]} s
2 2
(A.2.26)
ER2Y = -A—L-%‘{-l—— ) [sin6 DRIM - n cos6] + <= (&) [3 RPH RNPH]}
" e 2 vV ' Y ‘
2 2
: ‘ (A.2.27)
ALQ, .2
E02X = —= {EE2. [-cos® DRIM - n.sihé]
4re T,
+ lg [cos6 DRIM + n sin6 + (%92 h sin6 RNPH] +:1§-[—3 h siné RNPH]}
T, T '
(A.2.28)
ALQZ- 1 w 1 w
EO2Y = g—= = (V)J [cosd DRIM + n sind] + =¢ () [-3 h sind RNPH]}
T, r,
(A.2.29)
ALQ 2
_ 2 [ rHEW 1. .
E¢p2X = ZFE—'{[_§—_ - 3][9, sing - m cos¢]} ,  (A.2.30)
2 T
2
ALQZ‘ 1 w
E¢2Y = Z}Ej-{;z-(va(-l sing + m-cos¢)} . (A.2.31)

2



114

A.3 Transformation Equations. Equations A.2.20 through A.2,31

express the electric intensity resulting from the assumed Hertz vector
with reference to a particular spherical coordinate system. The origin.
of this system.is considered to be on the ground plane directly beneath
the dipole. Superposition of the approximated fields from various.di-
poles requires the components to be expressed with reference to a-
common coordinate .system,

Consider the origin of the initial coordinate system located at

the‘point‘(xo, Yor %g) = (xe, Yer 0) in the reference system (XO, YO,

0

Z - The observation point (x, y, z) is located at (xo, Yoo zo) = (x +

O)'

Xgo Y * Yoo z). For this:translation of coordinate systems the trans-

. = = -~ -~
formation of the vector A =Aa,. + Aja, + Aa into the vector

670 ¢ ¢

is given by

A=A a A 2 A 2
= A a + a. + A, a
T™s o % %% % %

Aro = Ar{(51n6 cos¢) 51n60 cos¢0 + (sinb sing) 51n60 51n¢0v
+ (cos8) co§60} + Ae{(cose cos¢),51n60 cps¢0
+ (cos® sing) 51n60 51n¢0 - (sin®) coseo} +AA¢{-(51n¢) 51n60 51n¢0
+ (cos9) 51n60 51n¢0} >
(A.3.1)
Aeo = Ar{(51n6 cos9) cose0 cos¢>0 + (sinb sin¢) coseo 51n¢0
- (cos9) sineo} + Ae{(cose cos9) coseovcoscb0
+ (cos® sing) cose0 51n¢0 + (sin®é) 51n90} + A¢{(-51n¢) coseO cos¢0
+ (cos¢) coseO 51n¢0}, R
(A.3.2)
and
A¢0 = Ar{-(51n9 cos¢)'31n¢0 + (sinb sin¢) coscbO + Ae{-(cose cos¢) 51n¢0

+

(cos® sing) cos¢0} + A¢{(sin¢) sin¢0 + (cos¢),cos¢0} R (A.3.3)
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where

o
cosf = P cose0 R
1

T
singé = {1 - (?QDZ cos

(ro s;ne0 51n¢o f y.)

sing = lﬁ s
(™ - r, cos 8 )2
0 0
) (ro 51n60 cos¢0,- xé)
cos¢ = T
2 2 2, .2
(= - Ty cos eo)

A.4 Magnetic Induction{_ The magnetic induction vector will not

be used in this work. However, its calculation is simple with the par-
tials in Section A.2 available and will be given for reference.

The magnetic.induction vector is given by

EEN . Y
B = juwue.Vxmw , (A.4.1)
where
vi; —'2' {cqse ﬂ¢_+ 1-3(1re>) ] 1 a(ne)
T T sinf r 08 r sin® 3¢
L2 ; 1 3(ﬂr) ] 1w¢ ) a(n¢) +'; lne ) S(WG) ) l.B(ﬂr)
® "r sin® 93¢ T ar $ T or r 06

Utilizing the partials given by Equatiens A.2.6 through A.2.11, the

BN a
a. + B,a, are

0 $¢

- .Y
spherical components Br? Be, and B, of B = Brar + Be

¢

_ AL . . . )
B, = 7= (Juu) H siné (2 sing - m cos9) Q; ,(2,3;2,3)  (A.4.2)

. AL . . . h
Be = ZF (JNU) ("'Q' Sln¢ + m‘coscb) [1‘ Q1,2(2,5,-2,-3) -h cosé Q1,2(2:3,2:3)]
(A.4.3)
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B¢ = %% (jwp){Ql’z(Z,S;z;S)[r n sind + h(2 cos¢ +m sing)]

- Q1 2(2,3;-2,-3) r cosd (& cosd + m sing)} . (A.4.4)

A.5 Magnetic Dipoles. As in the electric dipole calculations,

the field due to a magnetic dipole above the earth's surface may be cal-
culated by considering the actual dipole and .its image radiating in

free space. Thus, according to the principle of complementary solu-
tions, the field expressions for the magnetic dipoles may be obtained

from those of the electric dipole by the relations

T=-- /L 3 A.5.1
= - /e s (A.5.1)
and

B = vie E ) (A.5.2)

There is only one additional .point to note.. For an electric dipole
with orientation (le, M s né), the image will have orientation (-1e,
-Mg s ne), but for a magnetic dipple,with.orientation (lm, mos nm), its
image, due to an assumed infinite conducting plane, will have orienta-
tion (1m, mos —nm)° Thus, in the above expressions replace 1 by -1,

m by -m, and n by -n when these are associated with the r, terms.:

2



APPENDIX B
-
G(w) PROGRAM

Two- versions of the program to compute the vertical and horizontal -
components of éﬁw) are listed in this appendix. The first is the stand-
ard program (Table I). The cards between the comment card CALCULATION
OF FOURIER COEF. FOR INPUT TIME FUNCTIONS and 50 CONTINUE.are the cards
required to compute the Fourier transform of the return stroke current
indicated by Equation 4.2.7.

The second program.(Table II) listed is essentially the same as
the first. This version of the program was used to compute the averaged.
magnitude of the Fourier transform resulting frpm the combination
stepped leader and return stroke discussed in Section 4.4 with twelve
data sets. The modifications included are the following. The four
cards following 17 CONTINUE and the card. 32 CONTINUE have been added to
bypass the calculations invelving the stepped leader velocity and thus
let its progress be determined solely by .the random delays. Also the
card TOR=D(1,6) has been added 'in.the calculation of the return stroke
on time calculations so that the return stroke will begin when the
stepped leader touches the ground as opposed to some fixed TOR specified
by the input data. The cards between CALCULATION OF FOURIER COEF. FOR
INPUT TIME FUNCTIONS and 50 CONTINUE have been modified to account for
the addition of the leader current.

The matrix DD has been added to store the magnitudes of the Fourier
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transforms so that they will be .available for averaging after the

twelve data sets have been considered.
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TABLE I

-
G(w) PROGRAM WITH RETURN STROKE

/7/0GM2 JOB (10174,440-38-2220,008,50),*GUY MARNEY',MSGLEVEL=]1,CLASS=A
// EXEC FORTGCLG,REGION.GO=110K '
J//FORT.SYSIN DD *
DIMENSION D{1000+s7)4NS{30)4DRL{30),DRM(30)DRN(30),DEL{30)4XK{%,25
16) ¢4DATA{2,2560)4N(1) yWORK(2,256)
D0 999 I11=1,5 .
READ(5,101) X0,Y0,20,L04NB
101 FORMAT(3E14.5,1Xe13,1X,11)
LONB=LO+NB
DO 201 I=1,LONB
201,READ(S'IOZ)NS(l).DRL(I).DRM(I)'DRN(I)'DEL(ID
NN=0
Do 1 I=1,L0
NN=NN+NS(I}
1 CONTINUE
102 FORMAT{13,4E14.5)
READ(5,103) XA,YA,ZA
103 FORMAT(3El4.5)
READ(S5,104)VSGS,VL,GLs VRyGR
104 FORMAT(4E14,5/2E14.5)
READ{5,105)TOS,TOL,TOR, IX
105 FORMAT(3E14.5,19)
WRITE(6,107)
107 FORMAT(SX,'XO'.IZX.'YO'.IZXp'ZO'.9X,'L0'.1X.'NB'.4x.'XA'.12x.'YA'
112X, %ZAY)
WRITE(64108)X09sY0yZ04LONByXAsYA,ZA
108 FORMAT(3E14.591Xs13,1Xs11,3E14.5)
WRITE(6,109)
109 FORHAT(SX"VS"IZXp'GS'912Xp'VL'leXp'GL'-IZX,'VR‘,IZX"GR')
WRITE(6,4110)VS,GSyVLGL s VRyGR
110 FORMAT (6E14.5)
WRITE{6,111)
111 FORMAT{S5Xs*TOS* 412X 'TOL? ;12X TOR® 412X,¢IX"*)
WRITE(6,105)TOSTOL,TOR, IX
WRITE(6,112)
112 FORMAT('NS(I)'.QX"DRL(I"yBXQ‘DR"(!)"SXQ'DRNQI)'.8X,'DEL(I)’)
115 FORMAT({3X,13,4E14.5)
DO 204 I1=1,LONB
204 WRITE(65115INS{1),DRLCI),DRM(1),DRN{T1),DEL(I])
WRITE(6,4113) '
113 FORMAT(1HL,6Xs0G¥ 513X, T*,9X,%J%)

CALCULATION OF DIPOLE CENTERS

aco

1=1
DO 10 L=1,LONB
NK=NS (L)
DO 10 M=1,NK
IF (L.LE.LO) GO TO 2
GO TO 6

2 IF (M.EQ.1) GO 7D 3
GO TO 8

3 IF (L.EQ.1) GO TO 4
X=D{I1-1,1)+{DEL{L-1)*DRLIL~ ll+DEL(L)*DRL(L))/2 9
Y=D{I-1,2)+(DEL{L—-1)*DRMIL~1}+DELIL)*DRM(L})/2,0
2=D{1-1,3)+{DEL (L~ 1)*0RN(L—1)0DEL(L)*DRN(L))/2,0
GO TO 9

4 X=XO+(DEL(1)}*DRL(1})/2.0
Y=YO+(DEL{1)*DRM(1})/2.0
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TABLE I (Continued)

Z=Z0+{DEL(1)*DRN(L)) /2.0

GO T0 9

IF (M.EQ:l1) GO TO 7

GO TO 8

X=D{NNy L) +{DEL (LO)*DRL(LO)+DEL(L)}*DRLIL}) /2.0
Y=D(NN,2)+(DELILO)*DRM{LO)+DEL (L)*DRM{L)})/2.0
Z=D(NNy3)+(DEL{LO)*DRN{LO)+DELI{L)*DRNI(L))/2.0
GO TO 9 *
X=D{I-1,1)+DEL(L)*DRLIL)
Y=D(1-1,2)+DEL{L)*DRMIL)

Z=D{1-1,3)+DEL{L }*DRN(L)

CONTINUE

D(I,1)=X

D(1+2})}=Y

D(I43)=2

I=1+1

CONTINUE

CALCULATION OF R(DIPOLE) AND R{IMAGE) "

ND=0

DO 11 I=1,LONB

ND=ND+NS (1)

CONTINUE

DO 12 I=1,ND o
DIT,4)=SQRT{IDII,1)-XA)**2+(D{1,2)-YA)**¥2+{D(1,3)-ZA)*%2)
D(1,5)=SQRTL(D(I,1)=XA)*#2+(D(1,2)-YA)*#24(D(143)+2A) #%2)
CONT INUE

STREAMER TONI(S)
IF (NB.EQ.O) GO TO 17

18=1
IF (GS.EQ.0.0) IS=2

- I=NN+1

LO1=L0+1

DO 16 L=LO01,LONB
NK=NS{L)

T=T0S

DO 16 M=1,NK

GO TO (13414),I1S
VO=VS*EXP(~GS*{T~-TO0S))
DT=(1.0/GS)*ALOGIVO/(VO-GS*DEL(L)})
GO YO 15

OT=DEL(L)/VS

T=T+DT

D(1,6)=T

I=1+1

CONTINUE

STEPPED LEADER TON(S)

CONTINUE

IF (VL.EQ.0.0) GO TO 22
IL=1

IF (GL.EQ.0.0) IL=2
I=NN

T=TOL

DO 21 L=1,4L0
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27

TABLE I (Continued)

LL=(LO+1)-L
NK=NS{LL)

DO 21 M=1,NK

GO TO (18419),IL
TAU=T-TOL
VO=VL*EXP (-GL*TAU)

DT=(1.0/GL)*ALOG(VO/IVO-GL*DEL(LL)))

GO 10 20
DT=DEL{LL)/VL
D{I1,6)=T+DT
T=T+DT

I1=1-1

CONTINUE

NDS P=5
DELA=0.0

I=NN

DO 30 KK=1,NN
1J=1/NDSP
1J4=(I-1)/NDSP
DELAY=0.0

IF {143.LT,1J) GO TO 28
G0 T0 29
$=2.,30000E~-05
AM=5,00000E-05

CALL GAUSS{IX,SyAM,DELAY])
If (DELAY.LT.0.0) GO TO 28

WRITE{6,888)DELAY
FORMAT(E14.5)
CONTINUE
DELA=DELA+DELAY
D{I,6)=D{1,6)4DELA
I=1-1

CONTINUE

RETURN STROKE TON(S)

IF (VR.EQ.0.0) GO TO 27
I=1

T=TOR

IR=1

IF (GR.EQ.0.0) IR=2

DO 26 L=1,L0

NK=NS(L)

DO 26 M=1,NK

GO TO (23,24),1IR
VO=VR*EXP {-GR*{ T-TOR})

DT=({1.0/GR)*ALOGIVO/{VO-GR*DEL{(L)})

GO TO 25
DT=DEL{L)/VR
T=T+0T
D(I,7)=T
I=1+1

CONT INUE
CONTINUE

SET FO=(10-.5)KH FOR J=1,{50-.5)KH FOR J=2,{100~-.5)KH FOR J=3,
{150-.51KH FOR J=4.|200-.5)KH FOR J=5,(250-.5}KH FOR J=6,.

DO 99 J=1,6

121
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41
42
43
44
45

46
47

TABLE I (Continued)

GO TO (41,42443944945946)4J
FO=9.5E+03

GO TO 47

FO=4.95E+04

GO TO 47

FO0=9,95E+04

GO TO &7

FO=1.495E+05

GO TO 47

FO=1.995E+05

GO TO 47

FO=2.495€E+05

CONTINUE

NF=256

DELF=1000.0/256.0

DO 57 K=1,NF
W=(2.0%3.14159265358979323846)#% (FO+(K—1) *DELF)

CALCULATION OF FIELD COMPONENTS

V=2.998E+08

C1={1.0)/((0.7958€E+06)*%{0.1129E+12))

C2=(4.0)%(3.1416)%(8,854E-12)

FX=0.0

FY=0.0

GHX=0,0

GHY=0,0

GVX=0.0

GVY=0.0

1=1

DO 50 L=1,LONB

NK=NS{L)

DO 50 M=1,NK

R=SQRT({D(I,1)-XA)**2+(Dl1,2)-YA)*%22+(ZA)*%2)

COSTH=ZA/R

SINTH=SQRT(1.0-(COSTH)*%2)

COSPH=(XA-D{1,1))/{R*SINTH}

SINPH={YA-D(1,2)}/(R*SINTH)

DRLM=( (DRL (L) )*COSPH)+((DRM{L )} *SINPH)

RMH=R-(D(1 ,3)*COSTH)

RPH=R*(D(1.3)*CDSTH)

RNMH={ R*DRN{L)*COSTH)}-(D( 1,3 ) #DRN{L ) }+{R*SINTH*DRLM)

RNPH=(R*DRN(L)*COSTH)}+{D(I ,3)¥DRN(L) )-(R*SINTH*DRLM)

A=DEL(L)/C2

ERIX=A*{ (C1*{W**x2) &« (SINTH*DRLM+DRN(L)*COSTH) /D(1,4))+((~-SINTH*DRLM
1-DRN{L)*COSTH-{ {W/V)*%2 ) *RMH*RNMH) /(D (1 94) *%3)) +{ (3 . 0&RMH*RNMH)/ (D
2(1,4)%%5)))

ETHIX=A%{ (C1* (W*%2) % {COSTH*DRLM-DRN (L) *SINTH)}/D(I,4) )+l (- COSTH*DRL
IM+ORNIL ) =SINTH=C({W/V)*%2)%D(] 3}k SINTH*RNMH) 7 (D(1,4)%%3 )} )+((3,.0%D(
2153 )%SINTH*RNMH) 7 (D{ 1,4 )%%5)))

EPHIX=AX(( (- Cl*(H**Z)/D(lv4))*(1.0/(0(104)**3),’*(DRL(L)*SINPH-DRH
1{L)*COSPH))

ERLY=A*(({W/V)*¥(-SINTH*DRLM-DRN(L)*COSTH)/{D{I,4)%%2) }+({W/V)*{3.0
L*RMH*RNMH) /{D(1,4)%%4)))

ETHLY=A%({ (W/V)*{-COSTH*DRLM+DRNIL )} *SINTH) 7{D(I+4)*%2) )+ (W/V)*(3,
10%D(1,3)%SINTH*RNMH)}/ (D(],4)*%4)))

EPH1Y=A%((W/V)*{DRL(L)*SINPH-DRM{L}*COSPH) /(D(],4)%**2)}

FR2X=A%{ (CL¥(W*%2 ) ¥ (~SINTH*DRLM+DRN(L)*COSTH) /D(1,5))+( ( SINTH*DRLM
1-DRN(L) *COSTH=( (W/V) %%2 ) kRPH¥RNPH)/{D( 15 5)*%3) ) +{{3.0*RPH*RNPH) /(D

122
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TABLE I (Continued)

2(145)1%%5)))

ETH2X=A*{ (C1*(W*¥*2)*(~COSTH*DRLM-DRN(L)*SINTH)/D{(1,5) }+{{COSTH*DRL
IM+DRNIL Y*¥SINTH#( (W/V)¥%2)3%D (1, 3)*SINTH*RNPH) 7(D(I,5)%%3) ) +((~3,0*D
201 43)*SINTH*RNPH)}/ (D(I,5)%%5)))

EPH2X=A*{ ((CL*(W¥*x2)/D(1¢5))={1.0/(DII,5)%¥3)))*({DRLILI*SINPH-DRM(
1L)*COSPH))

ER2Y=A*(((W/V)* (SINTH*DRLM—~DRNIL)}*COSTHI/Z(D(1,5)%*%2) ) +((W/V)*{3,0%
LRPH*RNPH) /{D(1,5)%%4)))

ETH2Y=A*{ ({W/V)* (COSTH*DRLM+DRN{L ) *SINTH)/(D{1,5)%%2) )+ ((W/V)%(~3,
10%D(143)*SINTHXRNPH)/{D(1,5)%%4))) )

EPH2Y=A%{(W/V)*(—DRL (L) *SINPH+ORMIL) *COSPH) /(D([,5)1%*2))

VYHE COMMON COORDINATE SYSTEM (XO0,Y0,20) IS

X0=X0

Y0=Y0

20=0.0

RO=SQRT { {XO-XA) *¥2+{YO-YA)*42+(ZA)**2)
COSTHO=(ZA)/(RO)
SINTHO=SQRT(1,.0-{COSTHO)*%2)

COSPHO= (XA-X0)/ (RO*S INTHO)
SINPHO=(YA-Y0) /(RO*SINTHO)

TRANSFORMATION COEFFICIENTS

TRR=(SINTH*COSPH)*SINTHO®COSPHO+ ([ SINTH*SINPH)*SINTHO*SINPHO+(COSTH
1)*COSTHO
TTR=(COSTH*COSPH) *SINTHO*COSPHO+ (COSTH*S INPH)*SINTHO*SINPHO-(SINTH
1)*COSTHO

TPR==(SINPH)*SINTHO*COSPHO+ (COSPH)*S INTHO*SINPHO
TRT={SINTH*COSPH) *COSTHO*COSPHO+( SINTH*S INPH)*COSTHO* SINPHO-{COSTH
1)*SINTHO :
TTT=(COSTH*COSPH) *COSTHO*COSPHO+ (COSTH*S INPH)*COSTHO*SINPHO+(SINTH
1)*SINTHO v
TPT=~{SINPH)*COSTHO*COS PHO+ {COSPH) *COSTHO*S INPHO
TRP=-(SINTH*COSPH)}*SINPHO+(SINTH*SINPH)*COSPHO
TTP=—(COSTH*COSPH)*S INPHO+ (COSTH*SINPH)*COSPHO
TPP=(SINPH)*SINPHO+(COSPH)*COSPHD

TRANSFORMATION EQUATIONS

ERLXT=({ERLX)*{TRR)+(ETHIX)*(YTRI+{EPHLX) *(TPR}
ETIXT=(ERIX )R (TRT I+ {ETHLIX)*(TTTI+{EPHLX) *{(TPT)
EPLXT={ERLIX)*(TRP}+(ETHLX)*(TTP)+{EPHLX)*{TPP)
ERLIYT=(ERLIY)*{TRR)+(ETHLY}*{TTRI+(EPHLY)*(TPR)
ETLIYT={ERLIY)I*(TRT}H{ETHLY}*(TTT)+(EPHLY) *(TPT)
EPLYT=(ERLY)*(TRPI+(ETHLY)*(TTP)+{EPHLY)*(TPP)
ER2XT={ER2X)*¥{TRR)+(ETH2X )} *¥{TTR)}+{EPH2X) *(TPR)
EY2XT=(ER2X)* (TRT) + (ETH2X ) * (TTT ) +{EPH2X ) *{TPT)
EP2XT=(ER2X)I*(TRPI+(ETH2X)*(TTP)+{EPH2X) *(TPP)
ER2YT=(ER2Y)*(TRRI+{ETH2Y)I*{TTR} +(EPH2Y) *¥{ TPR)
ET2YT=(ER2Y)*(TRT)+(ETH2Y)*(TTT)+(EPH2Y) *{TPT)
EP2YT=(ER2Y)*{TRP)I+(ETHZ2Y)*(TTP)+(EPH2Y)*(TPP}

CALCULATION OF EH (REAL AND IMAG.) AND EV (REAL AND IMAG.)
EHLX=EPL1XT

EH1Y=EP1YT
EH2X=EP2XT
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TABLE ‘I (Continued)

EH2Y=EP2YT

EVIX=(ERLXT)*{COSTHO)-{ETIXT)*(SINTHO)
EV1V={ERLYT)*{(COSTHO)-{ETL1YT)*(SINTHO)
EV2X=(ER2XT)*(COSTHO)-(ET2XT)*{ SINTHO)
EV2Y=(ER2YT }*¥{COSTHO)-{ET2YT )} *(SINTHO)

CALCULATION OF FOURIER COEF, FO INPUT TIME FUNCTIONS

IF (L.LE.LO) GO TO 48

FX=0.0

FY=0.0

G0 TO 49

CONT INUE

AL=2,00000E+04

BE=2,00000E+05

GA=1,00000E+03

CURO0=3.,0C000E+04

CUR1=0.0

T1=D(I,T7)

AT1=-AL*T1

BT1=—-BE*T]

GT1=-GA*T1

WT1=W%T1

ST1=SIN(WT1)

CT1=COS(WT1)
CW={CURO*{(1.0/BEY*EXP{BT1)~(1.0/ALI*EXP{AT1))/W)-CURL*(1.0/GA)*EX
1PIGTL)/W

AW=(1.0/7{AL**2+W*%2]))
‘BW=(1.0/(BE**¥2+Wk%*2))

GW=1(1.0/ (GA**2+W*%x2))
FAX=CURO*EXP(AT1)*AW
FBX=~CURO*EXP{BT1)*BW
FGX=CURL*EXP{GT1) *GW
FAY==({W/AL)*EXP(AT1)*AW*CURO
FBY={W/BEY*EXP(BT1)*BW*CUROD
"FGY=—(W/GAY*EXP(GT1 ) *GW*CUR]
FABX=FAX+FBX+FGX

FABY=~CW+FAY+FBY+FGY

FX=FABX*CT1+FABY*S5T1]
FY=-FABX*ST1+FABY*CT]

CONTINUE .
FLX=FX*COSI{WD{1,4)/V)+FYXSIN(W*D(1,4}/V}
F2X=FX*COS{W*D(1,5)1/V)+FY*SINI{W*D{1,5)/V}
F1lY==FX*SIN{W*D(1,4)/VI+FY¥COS{W*D(1,4)/V)
F2Y==FX%SIN{W*D(1,5) /V)+FY*COSIW*D(I,5)/V)

GHX=GHX+(F1X*EHLX-F1Y*EHLY ) +{ F2X*EH2X~F2Y*EH2Y)
GHY=GHY+(FLXXEHLY+FLY¥EHLX) +{F2X*EH2Y+F2Y*EH2X)
GVX=GVX+(FLX*EVIX-FLY*EVLY)+{F2X¥EV2X-F2Y*EV2Y)
GVY=GVY+(FLX*EVIY+FLYXEVLX)+(F2X*¥EV2Y+F2Y*EV2X)
I=1T+1

CONT INUE

SET MAGNITUDE AND PHASE OF BAND-PASS FILTER

Hl=1.0
H1PH=0.0

CALCULATION OF FILTER QUTPUT
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TABLE -1 (Continued)

HX=H1#COS{HLPH)
HY=H1*SIN{H1PH)
XHX=GHX ¥ HX~GHY *HY
XHY=GHX*HY+GHY#*HX
XV X=GVX*HX~GVY*HY
XVY=GVX*HY+GVY *HX
XK({1,K)=XHX
XK{2,K)=XHY
XK{34K)=XVX

XK {4, K)=XVY

CONT INUE

DO 58 L=1,256

DATA(L L)=XK(1,L)
DATA{2,L)=XK(2,L)

CONT INUE

DO 59 [=257,2560
DATA(1,1)=0.0
DATA(2,1}=0.0

CONTINUE

N(1)}=2560

CALL FOURT(DATAsNsl,y+1,+1,W0RK,256)
DO 60 I=1,512
T=(I-1)*{,0001)
EH=SQRT((DATA(L,1)%%2)+({DATA(2, [)*%2))
EH=EH/(3.1416%,128)
WRITE(54250)EH,T,J
FORMAT{2E14.5,13)

D0 61 L=1,256
DATALLl,L)=XK{3,L)}
DATA{2,L)=XK{4,L)}

CONT INUE

DD 62 1=257,42560
DATA(1,1)=0.0
DATA(2,1)=0,0

CONTINUE

N(1)=2560

CALL FOURT(DATA;Nsl,+1l,+1,WORK,256)
DO 63 I=1,512
T={1-1)%(.0001)

EV=SQRY({ (DATA{1l,1)**2)}+{DATAL{2,1)%*%2))
EV=EV/(3.1416%,128)
WRITE(69250)EV,T,J
CONTINUE

CONTINUE

CALL EXIT

END

SUBROUTINE GAUSS(IX,S;AM,V)
A=0,0

DO 80 I=1,12

CALL RANDUILIX,1IY,Y)

IX=1vY

A=A+Y

V={A-6.0)%S+AM

RETURN

END

SUBROUTINE RANDU(IX,1Y,YFL)

125
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TABLE I (Continued)

1Y=]1%X*65539
IF(IY)85,86,86
85 I1Y=1Y+2147483647+1
86 YFL=1Y
YFL=YFL*.,4656613E-9
RETURN
END
//GD.SYSIN DD *
/7
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TABLE II

E‘T(w) PROGRAM WITH STEPPED LEADER-AND RETURN STROKE

//0GM1 JOB (10174,440-38-2220,010410)4°GUY MARNEY' ,MSGLEVEL=1,CLASS=A
// EXEC FORTGCLGyREGION.GD=80K
//FORT.SYSIN DD *

SO0

101

201

1
102

103
104
105
107

108
109
110
111
112
115
204

113
114

DIMENSION D(1000,7)4N(30),DRL{30),DRM{30) ,DRN{30),DEL(30)
DO 999 I11=1,12

READ(55101)X04Y0,20,L0,NB

FORMAT (3E14.5,1X,13,1X,11)

LONB=LO+NB

DO 201 I=1,LONB
READ(5,102)N{T)¢DRL (1) DRM{ 1) 4DRN{I),DEL(T)

NN=0

DO 1 I=1,L0

NN=NN+N{I)

CONTINUE

FORMAT(13,4E14.5)

READ(54103)XAsYA,ZA

FORMAT(3E14.5)

READ(54104)VS,GS,VLGLyVR,GR

FORMAT (4E14.5/2E14,5)

READ(5,105) TOS, TOL s TOR, IX

FORMAT (3E14.5,19)

WRITE(6,4107)

FORMATUSXy " X0% y12Xs*YO! g12X4*20° 99X 9" LO® ¢ 1X s *NB? 44X, * XA® y 12X, *YAY,
112X, *ZA*)

WRITE(6,108)X0,Y0,20,L0,NByXA,YA,ZA
FORMAT(3E14.5,1X,13,1X,11,3E14.5)

WRITE(6,109)

FORMAT (5Xy*VS® 412X, "GS® 412X, *VL® 412X ¢ *GL®y 12X *VR" y 12X, *GR*)
WRITE(65110)VS,GSsVLGL,VR,GR

FORMAT (6E14.5)

WRITE(6,111)

FORMAT [5Xy *TOS® ¢ 12Xy *TOL "y 12Xs *TOR® 312Xy *IX*)
WRITE(64105)T0S,TOLsTORyIX

WRITE(6,112)
FDRMAT(SX.'N(l)-.4x.-oRL¢|)-.ex.-DRM(l)-.ax.'DRN(l)'.ex.'DEL(l|°)
FORMAT(3X+13,4E14.5)

DO 204 I=1,LONB )
WRITE(65115)N(T)4DRLEEY,DRM{T),DRNLT),DELCT)

WRITE(6,113)

FORMAT (LH1 45Xy *GH® y 12Xy *GHP * y 11Xy *GV* 3 12X¢ *GVP? y16X,* F* )
FORMAT (5E14.5)

CALCULATION OF DIPOLE CENTERS

I=1

DO 10 L=1,LONB

NK=N(L}

DO 10 M=1,NK

If (L.LE.LO) GO TO 2

GO YO 6

IF {M.EQ.)1) GO TO 3

GO 70 8

IF {L.EQ.1) GO TO 4
X=D{I-1s1)+{DEL{L—-1)*DRLIL~1L)+DEL(L)I*DRL(L)}/2.0
Y=D(I-1,2)+{DEL(L-1)*DRM{L-1)+DEL(L¥*DRM{L))}/2.0
Z=D(I-143)+(DELIL-1)*DRN(L-1)+DELIL)*DRN{L))/2.0
GO TD 9

X=X0+(DEL (1 )*DRL(L)}}/2.0

=YO+{DEL(1)*DRM{1)}/2.0
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TABLE II (Continued)

I=20+(DEL{1)*DRN(1)}/2.0

GO T0 9

IF (M.EQ.1) GO TO 7

GO Y0 8

X=D{NNy 1) +{DEL(LO)*DRL{LO}+DEL(L)*DRLIL))/2.0
Y=D{NN¢2)+(DEL{LO)*DRM(LO)+DEL(L)*DRM(L))}/2.0
Z=D{(NNy3)+(DEL(LO)*DRN{LO)+DEL(L)*DRN(L))/2.0
GO 1O 9

X=D{I-1,1)+DEL(L)*DRL(L])
Y=D(I-1,2)+DEL(L)*DRM(L)
I=D(1-1,3)+DEL(L)*DRN(L)

CONTINUE

D(Iy1)=X

D{I,2)=Y

DI 3}=2

I=1+1

CONTINUE

CALCULATION OF R(DIPDLE) AND R{IMAGE)"

ND=0 .
DO 11 I=1,LONB
ND=ND+NI(T)
CONTINUE

DO 12 I=1,ND

DII+4)=SQRT(ID{I+1)-XA)#%24(D{1,2)-YA)I*%2+(D(1,3)-ZA)%%2)
DOISI=SQRT((D(I41)=XA)*%2+(D(1,2)-YA)*%2+{D(1,43)+2A)*%%2)

CONTINUE

STREAMER TON(S) |

IF (NB.EQ.0O) GO TO 17
I1s=1

IF (GS.EQ.0.0) IS=2
I=NN+1

LO1=L0+1

DO 16 L=L01,LONB
NK=N{L}

T=T0S

DO 16 M=1,NK

GO TD (13,14),1S
VO=VS*EXP{-GS*(T-T0S))
DT=(1.0/GS)*ALOG(VO/(VO-GS*DEL(L}))
GO TO 15

DT=DEL(L)/VS

T=T+DT

Di1,6)=T

I=1+1

CONTINUE

STEPPED LEADER TON(S)

CONTINUE

IF (VL.EQ.0.0) GO TO 22
IL=]

IF (GL.EQ.0.0) IL=2
[=NN

T=TOL
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TABLE ‘II (Continued)

D0 21 L=1,L0
LL=(LO+1) -t

NK=N{LL)

DO 21 M=1,NK

GO TO (18,19),IL
TAU=T-TOL ‘
VO=VL*EXP(~GL*TAU)
DT=(1.0/GL)*ALOG(VO/(VO-GL*DELILL)))
GO TO 20

DT=DEL(LL)/VL
DI1,6)=T+DT

T=T+DT

1=1-1

CONTINUE

NDSP=5

DELA=0.0

I=NN

DO 30 KK=1,NN

1J=1/NDSP
1JJ={1I-1)/NDSP
DELAY=0.0

IF {IJJ.LT.1J) GO TO 28
G0 TO 29

$=2.30000E-05
AM=5,00000E-05

CALL GAUSS(IXsSyAM,DELAY)
IF (DELAY.LT.0.0) GO TO 28
WRITE(6,888)DELAY
FORMAT(E14.5)

CONTINUE
DELA=DELA+DELAY
D(1+6)=D(1,6)+DELA
I=1-1

CONTINUE

RETURN STROKE TON(S)

IF (VR.EQ.0.0) GO TO 27
1=1

T=TOR

IR=1

IF (GR,EQ.0.0) [R=2

DO 26 L=1,L0

NK=N{L)

DO 26 M=1,NK

GO TO (23,24),1IR
VO=VR*EXP(-GR* (T-TOR))
DT=(1.0/GR)*ALOG{VO/(VO-GR*DEL(L)))
GO TO 25

DT=DEL (L) /VR

T=T+DT

DIT,7)=T

I=1+1

CONT INUE

CONT INUE

SET FREQUENCY FOR FIELD CALCULATIONS, W=ANGULAR FREQUENCY

DO 66 J=1,43
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TABLE II (Continued)

IF (J.GT.10) GO TO 70
W=(6283.2)%(J)

GO TO 72

If (J.GT7.28) GO TO 71
W={6283.2)%{5%J-40)
GO TO 72
W={6283,2)*(10%J~-180)
CONTINUE s
F=W/(6.2832}

CALCULATION OF FIELD COMPONENTS

V=2.998€+08

Cl=(1.0)/({0.7958E+06)%(0.1129E+12))

C2={4.,0)%({3.1416)*(B.854E-12)

FX=0.0

FY=0.0

GHX=0.0

GHY=0.0

GVX=0.0

GVY=0.0

1=}

DO 50 L=1,LONB

NK=N{L)

DO 50 M=1,NK

R=SQRT((D{Ios1)-XAVI*¥2+(D(Is2)-YA)*%24(ZA)*%2)}

COSTH=ZA/R

SINTH=SQRT(1.0-({COSTH} **2)

COSPH=(XA-D{1,1) )/{R¥SINTH)

SINPH={YA-D{1,2))/(R*SINTH)

DRLM=({DRL{L) ) *COSPH}+{{DRMI{L))*SINPH)

RMH=R-(D{1,3)*%COSTH)

RPH=R+(D{1,3)}%*COSTH)

RNMH=(R¥DRNIL) *COSTH)-{D(T1,3)*DRN(L) }+{R*SINTH*DRLM) .

RNPH=(R¥DRN{L)*COSTH) +{D(1,3)*DRN{L ) )—(R*S INTH*DRLM)

A=DEL(L)}/C2

ERIX=A%( {CLl*(W*¥2)%(SINTH*ORLM+DRN{L)*COSTH]} /D( 1 ,44) }+{ (~SINTH*DRLM
1-DRN{L)*COSTH-{ (W/V)*%2 ) *RMH*RNMH }/ (D (14 4)*%3 ) } +{ (3, 0%RMH*RNMH) / (D
201 44)%%5)) )

ETHLIX=AX((C1*(W*¥2 ) ¥ (COSTH*ORLM-DRN{(L)*SINTH)/D( 144} ) #({~COSTH*DRL
IMEDRNAL) *SINTH={ (W/V)*%2)¥D{ [ 43 ) *SINTH*RNMH)/ (D{1,4)%*3))+{{3.0%D!
21, 3)*SINTH*RNMH) /(D(1,4)%%5)))

EPHIX=A*{{ (~CL¥{W**¥2)/D(1+4))+(L.0/(D{Ty4)*%3)) )% {DRLIL)*SINPH-DRM
1{L)=COSPH))

ERLY=A*{{ (W/V}*{~SINTH*DRLM-DRN{L)*COSTH) /7(D(T,4)**2) )+ {(W/V)*(3,0
1*RMH®RNMH) 7 (DI ,4)%%4)))

ETHLY=A%({ {W/V)*(-COSTH*DRLM+DRN(L)*SINTH)/(D(1,4)%*%2))+({W/V)*(3,
10%D(1,3)%SINTHXRNMH) /(D(I,4)%%4)))

EPHLIY=A%{{W/V)*(DRLIL)*SINPH~DRMIL)*COSPH)/(D(1,4)*%2))

ER2X=A®{ (CL*(W&k2 ) (~SINTH*DRLM+DRN(L)*COSTH) /D(1+5)} )+ { (SINTH*DRLM

1-DRNIL)*COSTH=({W/ V) *¥2 ) *RPH*RNPH) /(D(1,5)%*«3) }+{ (3., O*RPH*RNPHl/(D
2{145)%%5)})

ETH2X=A%({(C1*(WH%2) *(—COSTH*DRLM—DRNIL)*SINTH)/D(1,5) )+ (COSTH*DRL
IM#DRN(L ) *SINTH#{{W/VI*X2)}*D{ [43)*SINTH*RNPH) /(D 1,5)%*3))+{(-3.0%D
2{T 43 ) *SINTH*RNPH) /ID(1,5)%%5)))

EPH2X=A*( ({C1*{W**2)/D(1,5))-(1. O/(D(115)**3)!)*(DRL(L)*SINPH-DRH(
1L)*COSPH))

ER2Y= A*(((NIV)*(SlNTH*DRLM—DRN(L)*CUSTH)/(D(lg5)**2)i*((H/V’*(3 o*
1RPH*RNPH)/(D(1,5)%%*4)})
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ETH2Y=AX{ ({W/V) *(COSTH*DRLM+DRN{L}*SINTH) /(DU ,5)%%2) ) +((W/V)*(-3,

10*%D(143)«SINTH*RNPH)/(DII,5)%%4)))

EPH2Y=A*({W/V)*(-DRLIL}*SINPH+DRM{L)*COSPH)/(D(1,5)1%%2))

THE COMMON COORDINATE SYSTEM (X0,Y0,20) IS

X0=X0

YO=Y0

20=0.0

RO=SQRT ((XO-XA) *¥%2+{YO-YA I ¥*2+(ZA ) %%2)
COSTHO=(ZA)/ (RO)
SINTHO=SQRT(1.0-{COSTHO) **2)
COSPHO={XA-X0)/ (RO*SINTHO)
SINPHO={YA-YD)/ {RO*SINTHO}

TRANSFORMATION COEFFICIENTS

TRR=(SINTH*COSPH)*SINTHO*COSPHO*(SINfH*SINPH)*SlNTHO*SINPHO*(COSTHh

1)*COSTHO

TTR=(COSTH®COSPH)*SINTHO*COSPHO+ (COSTH*S INPH)*SINTHO*SINPHO-( SINTH

1)1*COSTHO

TPR=={SINPH) %S INTHO*COSPHO+{COSPH}*SINTHO*SINPHO

TRT={SINTH*COSPH)*COSTHO*COSPHO+ (SINTH*S INPH)}*COSTHO*SINPHO-(COSTH

1)*SINTHO

TIT=(COSTH*COSPH}*COSTHO*COSPHO+(COSTH*S INPH)*COSTHO*SINPHO+(SINTH

1)*SINTHO

TPT==(SINPH)*COSTHO*COSPHO+{COSPH)*COSTHO*SINPHO

TRP=—(SINTH*COSPH) %S INPHO+ (S INTH*S INPH) *COSPHO
TTP=—{COSTH#COSPH)*SINPHO+ (COSTH*SINPH)*COSPHO
TPP=(SINPH) *SINPHO+(COSPH)*COSPHO

TRANSFORMATION EQUATIONS

ERIXT=(ERIX)*{TRRI+(ETHIX}*{TTR)+(EPHLIX)*{TPR}
ETIXT={ERIX)*(TRT}I+{ETHIX)*{TTT)+{EPHIX)*{TPT)
EPLXT=(ERIX}*{TRP)+{ETHIX}*(TTP)+(EPHIX)*(TPP)
ER1IYT=(ERLY)%*{TRRI+{ETHLY)*(TTRY+(EPHLY) *(TPR)
ETLYT={ERLIY)*{TRTI+(ETHLY)}*{TTT)+(EPHLY)*(TPT)
EPLYT={ERLY)*(TRP)+(ETHLY)*(TTP)+{EPHLIY}*{TPP)
ER2XT={ER2X)*(TRR)I+ (ETH2X)} *(TTR} +{EPH2X) *(TPR)
ET2XT=(ER2X)* (TRT )+ (ETH2X)*(TTT)+{EPH2X) *(TPT)
EP2XT={ER2X)*(TRP)+{ETH2X)*{TYTP}+(EPH2X) *{TPP)
ER2YT=(ER2Y)*{TRR)Y+{ETH2Y)*{ TTRI+(EPHZ2Y) *(TPR)
ET2YT=(ER2YIX{TRT ) +{ETH2Y)*{TTT)+{EPH2Y) *(TPT)
EP2YT=(ER2Y)*{TRPI+{ETH2Y}&{TTP)+ (EPH2Y} *(TPP)

CALCULATION OF EH (REAL AND IMAG.) AND EV (REAL AND IMAG.)

EHIX=EPLXT
EHLY=EPLYT
EH2X=EP2XT
EH2Y=EP2YT
EVIX={ERIXT)*{COSTHO}-(ETIXT)*{SINTHO)
EVLY=(ERLYT}*{(COSTHO)-(ET1YT}%*(SINTHO)
EV2X=(ER2XT)*{COSTHO)-( ET2XT ) *#{ S INTHO)
EV2Y={ER2YT)* (COSTHO)-{ET2YT}*(S INTHO)

CALCULATION OF FOURIER COEF. FOR INPUT TIME FUNCTIONS
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TABLE II (Continued)

IF (L.LE.LO) GO TO 48
FX=0.,0

FY=0,0

GO TO 49

CONTINUE
AL=2.00000E+04
BE=2.00000E+05
GA=1.00000E+03
CURD0=3.00000E+04

CUR1=0.0
T1=D{(1,7)
AT1==AL%T1
BT1=-BE*T]
GT1=-GA*T}
WT1=W%T1

ST1=SINIWT1)
CT1=COS{(WT1)

132

CW=(CURO*{(1.0/BE)*EXP(BT1)-(1. O/AL)*EXP(AT1))/WI-CURL*{1. O/GA) *EX

1P{GTL) /™

AW={ 1.0/ (ALX%2+W%%2))
BW={1.0/{BEXX24+W%¥2))
GW=(1.0/(GA%%2+Wk%x2))

FAX=CURO*EXP({ATL1)*AW

FBX=~CURO*EXP(BT1)*BuW
FGX=CUR1*EXP{GT1)*GW
FAY=={W/AL)*EXP (AT]1 ) *AW%CUROD
FBY=(W/BE)}*EXP{BT1)*BW*CUROD
FGY—-(N/GA)*FXP(GTI)*GN*CUR[
FABX=FAX+FBX+FGX

FABY=—CW+FAY+FBY+FGY

FX=FABX*CT1+FABY*ST1

FY=-FABX%STL+FABY*(T]

CONTINUE
FIX=FX*COSIWAD(144)}/V)+FYXSINIWXD(1,4)/V]})
F2X=FX*COS{WkD(I145)/V)I+FYXSIN(W*D(],5)/V)
F1lY=—FX*SINIWAD(L144}/V)+FYXCOSIN*D(1,4)/V)
F2Y=~FX*SIN{W*D(1,45)/V)+FY*COS{W*D{I,5)/V)

GHX=GHX+(F1X*EH1X-F1Y*EHLY) +{F2X*EHZX~-F2Y*EH2Y)
GHY=GHY+(FLX¥EHLY+F1Y¥*EHLIX) +(F2X*¥EH2Y+F2Y¥EH2X)
GVX=GVX+{FLIXEEVLIX-FLY*EVIV)+{F2X*EV2X~-F2YXEV2Y)
GVY=GVY+{FIX*EVIY+F1Y*EVIX) + (F2X*EV2Y+F2Y*EV2X)

I=1+1

CONTINUE
GH=SQRT{ (GHX¥%2 ) +{GHY*%*2}}
GV=SQRT{{GVX*%2)+{GVY*%2))
IF {GHX) 52,51,52
GHPH=1.5708

GO TO 53
GHPH=ATAN(GHY/GHX)
CONTINUE

IF (GVX) 55,54,55
GVPH=1.5708

GO 7O 56
GVPH=ATAN(GVY/GVX)
CONTINUE

C3=180.0/3. 1416
GHP={C3}*(GHPH)
GVP=(C3)*(GVPH)
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TABLE II (Continued)

WRITE(6,114)GHGHP GV ,GVP,F
CONTINUE

CALL EXIT

END

SUBROUT INE GAUSS(IXySyAM,V)
A=0.0

DO 80 I=1,12

CALL RANDULIXyIY,Y)

IX=1Y

A=A+Y

V={A-6.0}*S+AM

RETURN

END ‘
SUBROUT INE RANDULIX,1Y,YFL)
1Y=1X*¥65539

IF({1Y)85,86,86
1Y=1Y+2147483647+1

YFL=1Y

YFL=YFL*,4656613E-9

RETURN

END

//GO.SYSIN DD *

//
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APPENDIX C
z(t) PROGRAM WITH RETURN STROKE

The program used to calculate the narrow-band, half-wavé linear
detected field is listed in Table III. The cards between.the comment -
card CALCULATION OF FOURIER COEF. EOR INPUT TIME FUNCTIONS and
50 CONTINUE are the cards required to compute the Fourier transform of-

the return stroke current indicated by Equation 4.2.7.

124
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TABLE III

z(t) PROGRAM WITH RETURN STROKE

//0GM3 JOB (10174,440-38-22204020,10),°GUY MARNEY*sMSGLEVEL=1,CLASS=A
// EXEC FORTGCLG,REGION.GO=80K
//FORTLSYSIN DD *

[aNeXg]

DIMENSION D(IOOO'T)oN(BO)pDRL(30)vDRM(30)yDRN(30).DEL(30) DD{(43,2)
DO 600 KJ=1443
DD(KJ,y1)=0.0
0DI(KJ,2)=0.0
600 CONTINUE
DO 999 T11=1,12
READ(5,101)X0,Y0,Z04LOsNB

101 FORMAT(3E14.5,1Xs13,1X,11)

LONB=LO+NB
DO 201 I=1,LONB
201 READ(5:102)N(I)QDRL(I)oDRM(l)pDRN(I):DEL(l)
NN=0
D0 1 I=1,L0
NN=NN+N{T)
1 CONTINUE
102 FORMAT(I3,4El4.5)
READ(5,103)XA,YA,ZA
103 FORMAT(3El4.5)
READ(5,104)VS,GS,VLyGL s VRyGR
104 FORMAT(4E14.5/2E14.5)
READ(5,105)TOS,TOL,TOR,1IX
105 FORMAT{3El4.5,19)
WRITE(6,107)
107 FORMATISXy X0 3 12Xe'YO? g12X 92200 49X o0 LO0% 51X, "NB? 34X, XA 312X, YAY,
112X,'ZA*)
WRITE(6+108)X04Y0,20,L0yNB¢XAyYA,ZA
108 FORMAT(3E14.5,1%Xe13,1Xe11,3E14.5)
WRITE(6,109)
109 FORMAT{SX,?VSY312Xe"GS® p12X VL g12X,'GL*,12X,*VR?,12X,GR?)
WRITE(6,110)VS,4GSyVLsGLoVR,sGR
110 FORMAT(6EL14.5)
WRITE(6,111)
111 FORMAT(SX,'TOS"912Xy*TOL® s 12Xs*TOR? o12X,*IX")
WRITE(6+105)TOSeTOLsTORLIX
WRITE(6,112)
112 FOR”AT(%X.'N([)'p4X"DRL(I)'08X"DRM(l".GX"DRN(I)'.BX"DEL(I)"
115 FORMAT{3X,13,4E14.5)
DO 204 1=1,LONB
204 WRITE(6,115)IN(1)DRL{I)DRMCI)DRN(T),DELI)
WRITE(6,113)
113 FORMAT(IH!.SX.'GH‘.lZX.'GHP',IIXy'GV"IZX,'GVP'QIbX.'F')
114 FORMAT(S5E14.5)

CALCULATION OF DIPOLE CENTERS

I=1
D0 10 L=1,LONB
NK=N{L)
00 10 M=1,NK
IF {L.LE.LO) GO TO 2
GO YO 6
2 IF (M.EQ.1l) GO TO 3
GO TO 8
3 IF {L.EQ.1) GO TO 4
X=D(I-141)+{(DEL(L-1)*DRLIL-1L}+DEL(LI*DRLI{L)I}/2.0
Y=D{I-142)+{(DELIL-1)*DRMIL-1)+DEL(L)*DRM(L}))/2.0
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TABLE III (Continued)

Z=D(I1-1,3)+(DEL{L-1)*DRN(L~-1)+DEL(L)*DRN{L))/2.0
GO T0O 9

X=X0+(DEL(1)%DRL(1))/2.0
Y=YO+(DEL (1 )*DRM(1))/2.0
Z=20+(DEL(1)*DRN(1)) /2.0

GO 10 9

IF (M.EQ.1) GO TO 7

GO TO 8
X=D{NN,1)+(DEL(LO)*DRL{LO)}+DEL(L)*DRLIL)) /2.0
Y=D(NN,2)+{DEL{LO)*DRM(LOI+DEL (L)*DRM(L))/2.0
Z=D(NN,3)+(DEL{LO)*DRN{LOY+DEL(L)*DRN{L))}/2.0
GO 70 9

X=0(I-1,1)+DEL{L)*DRLIL)
Y=D{I-1,2)+DEL(L)*DRM(L)}
ZaD(1-1,3)+DEL (L )*DRN{L)

CONTINUE

D(l’l’=x

DU1,2)=Y

Di1,3)=2

I=1+1

CONTINUE

CALCULATION OF R(DIPOLE) AND R{IMAGE)

ND=0

DO 11 I=1,LONB

ND=ND+N(1I)

CONTINUE

DO 12 I=1,4ND
DII44)=SQRTI(D{I41)-XA)*%¥2+(D{1,2)-YA)*%2+{D(1,3)-2A)%%2)
DII,5)=SQRT{(D{T41)—-XA)*%2+{D(I,2)-YA)*%x2+(D(],3)+ZA)**2)
CONTINUE

STREAMER TON{S)

IF (NB.EQ.O) GO TO 17
IS=1 )

IF (GS.EQ.0.0) IS=2
I=NN+1

LOl=LO+]1

DO 16 L=LO1,LONB
NK=N(L)

T=T0S

D0 16 M=1,NK

GO TO (13,14),IS
VO=VS*EXP(~GS*{T-T0S))
DY=(1.0/GS) *ALOG(VO/(VO-GS*DEL(L)))
GO T0 15

DT=DEL(L)}/VS

T=T+DT

0(1,6)=T

I=1+1

CONTINUE

STEPPED LEADER TON(S)

CONTINUE
DO 31 I=1,NN
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18

19

20

21
32

28

sas
29

30

anon

22

23

TABLE 'III (Continued)

D(1,+6)=0.0

CONTINUE

GO 10O 32

IF (VL.EQ.0.0) GO TO 22
IL=1

IF (GL.EQ.0.0) IL=2
I=NN

T=TOL

DO 21 L=1,L0
LL=(LO+1)-L
NK=N(LL)

DO 21 M=1,NK

GO TO (18,19),1IL
TAU=T-TOL
VO=VL*EXP{-GL*TAU)

DT={1.0/GL}*ALOG(VO/(VO-GL*DEL(LL)})

G0 TO 20

DT=DEL{LL)/VL
D(I46)=T+0DT

T=T+DT

I=1-1

CONTINUE

CONTINUE

NDSP=5

DELA=0.0

I=NN

DO 30 KK=1,NN

1J=I/NDSP
1J4J=(1-1)/NDSP
DELAY=0.0

IF (1JJ.LT. 1Y) GO TO 28
GO TO 29

$=2.30000E-05
AM=5,00000E-05

CALL GAUSS(IX,SyAM,DELAY)
IF (DELAY.LT.0.0) GO TO 28
WRITE{6,888)DELAY
FORMAT(E14.5)

CONTINUE
DELA=DELA+DELAY
D(L,6)=D(1,6)+DELA
I=1-1

CONTINUE

RETURN STROKE TON(S)

IF (VR.EQ.0.0) GO TO 27
I=1

TOR=D(1,6)

T=TOR

IR=1

IF (GR.EQ.0.0) IR=2
DO 26 L=1,L10

NK=N{L)

D0 26 M=1,NK

GO TO (23,24)41R
VO=VR*EXP(—-GR* (T-TOR})

DT=(1.0/GR)*ALOGIVO/(VO-GR*DEL(L)}}

GO TO 25

137



[eXxXal

OO0

24
25

26
27

70

71
72

138

TABLE III (Continued)

DT=DEL(L)/VR
T=T+0DT
DII,7)=T
I=1+1
CONTINUE
CONTINUE

SET FREQUENCY FOR FIELD CALCULATIONS, W=ANGULAR FREQUENCY

DO 66 J=1,43

IF (J.6T7.10) GO 7O 70
W={6283.2)%(J)

GO TO 72

IF (J.6GT.28) GO TO 71
W=(6283.2)%({5%)~40)
GO TO 72
W=16283.,2)%(10%J-180}
CONTINUE

F=W/(6.2832)

CALCULATION OF FIELD COMPONENTS

V=2.998E+08

Cl1={(1.0)/((0,7958E+06)%(0.1129E+12))

C2={4.0)%(3,1416)%(8.,854E~-12)

FX=0.0

FY=0.0

GHX=0.0

GHY=0.0

GVX=0.0

GVY=0.0

I=1

DO 50 L=1,LONB

NK=N(L)

DO 50 M=1,NK

R=SQRT((DII 1) -XA)*¥2+({D{I,2)-YA)**2+{ZA)*%2)

COSTH=ZA/R

SINTH=SQRT{1.0-{COSTH)*%*2)

COSPH={(XA-D(I1+1))/(R¥SINTH)

SINPH={YA-D{1,2))/(R*SINTH)

ODRLM={{ORL{L))*COSPH)+ {(DRM(L))*SINPH)

RMH=R-{D{[,3)*COSTH)

RPH=R+(D(1,3)*COSTH)

RNMH=(R*¥DRN{L)*COSTH)—{D(T43)*DRN(L) )+(R*SINTH*DRLM)

RNPH={R#*DRN(L)*COSTH)+(D{1,3)*DRN{L) )—{R*SINTH®ORLM)

A=DEL(L)/C2

ERLX=A%( (CL*(Wk¥*2) % ( SINTH*¥DRLM+DORN(L)*COSTH)/D(1,4) )+ ((~S INTH*DRLM
1-DRN(L)}*COSTH-( (W/V)*%2 ) *RMH*RNMH) /(D (1, 4)%%3) ) +{ (3. 0%RMH*RNMH) /(D
2(1,41%%5))) .

ETHIX=A*{ (C1¥(Wkx2) ¥ (COSTH*DRLM-DRN(L)*SINTH)/D(1,4))+{(~-COSTH*DRL
IM+ORNIL VESINTH=( (W/V)%%2)%D{ 143 ) *SINTHERNMH)} /{D(1,4)%%3} )+ ((3.,0%D(
2143 ) %SINTH*RNMH) 7 (D(1,4)%%5)))

EPHIX=AX[({~CL¥{W*%x2)/D(T1,44))4(1.0/(D{I,4)%%3)))x(DRL{L)I*SINPH-DRM
1{L)*COSPH))

ERLY=A¥%({{W/V) ¥ {~SINTH*DRLM-DRN{L)*COSTH)/Z(D(144)%%2) }+((W/V)*(3.0
1 *RMH&RNMH) 7/ (D1, 4)%%4)))

ETHLY=A%X({(W/V)*(-COSTH*DRLM+DRN{L ) *SINTH)/(D(1,4)*%2))+({W/V)*(3.,
10%D{1y3)%SINTHXRNMH)} /{D(1,4)%%4)))

EPHLY=A*{(W/V)*(DRLIL)*SINPH-DRM{L)*COSPH)/{D(1,4)%%2))
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TABLE III (Continued)

ER2X=A%((C1*(W¥k2)*{—SINTH*DRLM+DRN(L)*COSTH)/D(I 45) )+ ( (SINTH*DRLM
1-DRN{L)*COSTH-{ (W/V ) *%2 ) *RPH*RNPH)/(D(1,5)%*3))+(( 3, 0%RPH*RNPH) /(D
2(1,5)%%5)}))

ETH2X=A%{ (C1*(W¥*2) ¥ (~COSTH*DRLM-DRN{L)*SINTH) /D(1,5) )+ { (COSTH*DRL
LM&EDRN (L) *SINTH+{(W/V)*%2)%D( 143 )% SINTH®RNPH)/(D{L5)%%3))+{(-3.0%D
201 ¢3)*SINTH*RNPH)/{D(I,5)%%5))) '

EPH2X=A%{{ (C1*(W**2)/D(1¢5))-(1.0/7(D(T1,5)%%3)))*(DRLIL)*SINPH-DRM{
1L)*COSPH))

ER2Y=A*{ ({W/V)*(SINTH*DRLM-DRN{L)*COSTH) 7{D{1,5)%%2))+({W/V)*(3,0%
LRPHERNPH) /7 (D(1,5)%%4)))

ETH2Y=AX({ (W/V)*(COSTH*DRLM+DRN{L)®XSINTH)}/(D{1,5)**2) y+((W/V)*(-3,
10%D{Ly3)%SINTH*RNPH) /ID(1,5)%*4)))

EPH2Y=A¥{ (W/V)*(~=DRL (L) *SINPH+DRM{L}*COSPH)/(D(1,5)%%2))

THE COMMON COORDINATE SYSTEM (XO0,Y0,Z0) IS

X0=X0

YO=Y0

10=0.0

RO=SQRT ({ XO-XA) **2+{YO-YA)¥¥2+(ZA)*%*2)
COSTHO=(ZA)/ (RO}

SINTHO=SQRT {1.0—(COSTHO ) **2)
COSPHO={ XA-X0) /({ROXxSINTHO)
SINPHO={YA-YO) /{RO*SINTHO)

TRANSFORMATION COEFFICIENTS

TRR={SINTH¥COSPH) *SINTHOXCOSPHO+(SINTH*S INPH)}*SINTHO*SINPHO+{COSTH
1)*COSTHO

TTR={COSTH*COSPH) *SINTHO*COSPHO+{COSTH*S INPH)*SINTHO* SINPHO-(SINTH
1)1*COSTHN

TPR=={ SINPH) *S INTHO*COSPHO+ (COSPH) *SINTHO*S INPHO
TRT={SINTH*COSPH) *COSTHO*COSPHO+( SINTH#*S INPH)*COSTHO*SINPHO-({COSTH
1)*SINTHO
TTT=(COSTH*COSPH)*COSTHO*COSPHO+(COSTH*S INPH )¥COSTHO*SINPHO+ (S INTH
1)*SINTHO

TPT=-{ SINPH)*COSTHO*COSPHO+ (COSPH) *COSTHO*S INPHO
TRP=={SINTH*COSPH) *SINPHO+{ SINTH*SINPH)*COSPHO
TTP=-{COSTH*COSPH) *S INPHO+ (COSTH#*S INPH) *COSPHO

TPP=({SINPH)*SINPHO+ (COSPH)*COSPHQO

TRANSFORMATION EQUATIONS

ERIXT=(ERLX)*[TRRI+{ETHLIX)*{TTR)+(EPHLX)*{TPR)
ETIXT={ERLXIX(TRTI+{ETHLX)*(TTT)+(EPHLIX) #{TPT)
EPLXT=(ERLX)*{TRP)+(ETHLX)*(TTP)+(EPHLIX)*(TPP}
ER1VT=(ERLY)I*(TRRY+(ETHLY)¥{TTR)I+(EPHL1Y) *{TPR)
ETLYT=(ERLY)*(TRTI+{ETHLY)*(TTT)+(EPHLY}*{TPT)
EPLYT=(ERLY)*{TRP)+{ETH1Y)*(TTP)+(EPHLY)*(TPP)
ER2XT={ER2X)*(TRRI+{ETH2ZX)*{TTR) +(EPH2X)*(TPR)
ET2XT=(ER2X)*(TRT) + (ETH2X)*(TTT) + (EPH2X) *{TPT)
EP2XT=(ER2X I *(TRPI+(ETH2X)}*{TTP)+(EPH2X}*(TPP)
ER2YT=(ER2Y)*(TRR)+(ETH2Y)* (TTRI+{EPH2Y) *(TPR)
ET2YTs{ER2Y)*( TRT}I+{ETH2Y)*(TTT)+ (EPH2Y) *(TPT)
EP2YT=(ER2Y)*(TRPI+(ETH2Y)*(TTP) +{EPH2Y) *( TPP)

CALCULATION bF EH (REAL AND IMAG.) AND £V (REAL AND IMAG.)

EHLX=EPLXT
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TABLE III (Continued)

EH1Y=EP1YT
EH2X=EP2XT
EH2Y=EP2YT
EVIX={ERIXT)*{COSTHO)-(ETIXT)*{SINTHO)
EV1Y=(ERIYT)*(COSTHO)=-(ETLIYT)I*(SINTHO)
EV2X=(ERZ2XT)*[COSTHO)~(ET2XT)*{SINTHO)
EV2Y=(ER2YT)*{COSTHO}-(ET2YT)*{ SINTHO}

CALCULATION OF FOURIER COEF, FOR INPUT TIME FUNCTIONS

IF (L.LE.LO) GO TO 48
FX=0.0

FY=0.0

G0 TO 49

CONTINUE
IJ=(I+{NDSP-1)}/NDSP
1JJ=(T1+{NDSP-2))/NDSP
AL=2.00000E+04
8E=2.00000E+05
CURO=2.00000E+03
AW=1.0/1ALX%24Wk%2)
BW=1,0/(BE*%2+W%x%x2)
F1=CURD* (BW—AW)
F2=CURO*(BE*BW—AL*AW) /W
UX=0.,0

UY=0.0

IF (1JJ.LT.14) GO TO 92
GO TO 93

CONTINUE

NWD=T1J%NDSP

IF (NWD.GT.NN) NWD=NN
WD=WxD{NWD,6)
SWD=SIN{WD)

CWD=COS (WD)
UX=F1*CHD+F2%SWD
UY=F2%CWD-F1%*SWD
CONTINUE

FX=FX+UX

FY=FY+UY

CONTINUE
AL=2,00000E+04
BE=2,00000E+05
GA=1.00000E+03
CURO0=3.00000E+04
CUR1=0.0

T1=D{I,7}
AT1=AL*{D{1,7)~T1}
BTYL=BE*{D(1,7)-T1)
GT1=GA*{D{1,7)~-T1)
WT1=WxT1

ST1=SIN(WT1)
CT1=COS{wWT1)
CW={CURO*( (1. O/BE)*EXP(BTI’ (1. 0/AL)‘EXP(AT!))/H)'CURI*(I 0/GA) *EX
1P(GTLY /W
AW=({1.0/(AL*¥2+U*%2))
BW=(1.0/(BE*®2+W*%x2})})
GHU={1+0/1GA%X¥2+W*%2})
FAX=CURO*EXP{ATL ) *AW
FBX=-CURO*EXP(BT1)*BW



50

51

52

54

55
56

66
999

602
601

80

85

TABLE III (Continued)

FGX=CURI*EXP(GT1)*GW
FAY=~{W/AL)Y*EXP(AT1)*AW*CURO
FBY={W/BE)*EXP(BT1)*BW*CURO
FGY=—{W/GA)*EXP(GT1 ) *GW*CUR1
FABX=FAX+FBX+FGX

FABY=-CW+FAY+FBY+FGY

VX=FABX*CT1+FABY®ST]1

VY==FABX*STL1+FABY*(CT1

IX=FX+VX

IY=FY+VY
FIX=ZX¥COS{W¥D(1,4)/V)I+ZYXSINIW*D(I,4)/V)
F2X=ZX#*COS{WHDIT,5)/VI+ZY*SIN(WAD{T,5}/V)
F1lY=—ZX*SIN{WXD(1,4)/VI+ZY*COS(WED(I,4}/V])
F2Y==ZX*SIN(W*D(1,5)/V) +2Y*COS{W*D(1,5)/V)

GHX=GHX+ (F1X*EHIX-F1lY*EHLY ) + (F2X*EH2X-F2Y%*EH2Y)
GHY=GHY+{FIX¥EHLIY+FI1Y*EHLIX) +{F2X*EH2Y+F2V*EH2X)
GVX=GVX+(F1X*EVIX-FLlYXEV1IY)+{F2X¥EV2X-F2Y*EV2Y)
GVY=GVY+{F1IX*EVLY+FLYXEVIX) +(F2X*EV2Y+F2Y*EV2X)
I=1+1

CONTINUE

GH=SQRT{ (GHX*%2) + {GHY*%*2})
GV=SQRT{{GVX¥X2)+{GVY*%2)})

IF (GHX) 52,451,452

GHPH=1.5708

GO TO 53

GHPH=ATAN{GHY/GHX)

CONTINUE

IF (GVX) 55,54,55

GVPH=1.5708

GO TO 56

GVPH=ATANIGVY/GVX)

CONTINUE

C3=180.0/3.1416
GHP={C3 ) *{GHPH)
GVP={C3)*{(GVPH)}
DO(Js1)=DD(Jy1)+(GV/12.0)
DD(J,2)=DD{J42)+LF/12.0)
WRITE{6+114)GH,GHPyGV,GVP,F
CONTINUE

DO 601 KJ=1,43
WRITE(6,602)DD{KJs1)4DDIKI,2)
FORMAT (2E14.5)

CONTINUE

CALL EXIT

END

SUBROUTINE GAUSS{IX,S,AM,V)
A=0.0

DO 80 I=1,12

CALL RANDUUIX,1Y,Y)

IX=1y

A=A+Y

V={A~-6.0)%S+AM

RETURN

END

SUBROUTINE RANDU(IX,1Y, YFL)
1¥=[X%*65539

1IF{IY)85,86,86
IV=1Y+2147483647+1

141
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TABLE III (Continued)

86 YFL=IY :
YFL=YFL*.4656613E-9
RETURN
END

//GO.SYSIN DD *
/77
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