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CHAPTER I 

INTRODUCTION1 

Auxins are a major hormonal component of plant development. In 

many instances the site of auxin synthesis is distal from the site at 

which auxin exerts its influence, so that the translocation properties 

of auxin constitute a major factor in the regulation of plant develop-

mental processes. Likewise, the herbicidal activity of systemic herbi-

cides such as the phenoxy compounds is highly correlated with the ease 

with which the compound moves from the point of application to the site 

of highest herbicidal activity. 

The strong basipetal polarity of transport of auxins and auxin-like 

compounds in isolated segments of stems, petioles and coleoptiles is 

well documented in the literature. It is generally conceded, however, 

that in isolated segments the vascular tissues are rendered inactive 

and polar auxin movement is predominantly through parenchymatous tissue. 

Acropetal transport is generally considered to be of little physiologi-

cal significance or non-existent. 

Since the phytotoxicity of any systemic herbicide depends upon its 

1The followin~ abbreviations are used: 2,4-D (2,4-dichlorophenoxy­
acetic acid); IAA t indole-3-acetic acid); NAA ~aprthaleneacetic acid); 
PCIB (p-chlorophenoxyisobutyric acid); 2,4,5-T (2,4,5-trichlorophenoxy­
acetic acid); TIBA (2,3,5-triiodobenzoic acid). 
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movement from the point of application to the area in which the chemical 

produces its highest herbicidal activity, it is important to study the 

processes which regulate the translocation patte:rns of the auxin-like 

herbicides. Studies have consistently shown that small changes in the 

molecular structure of the herbicide result in marked changes in the 

mobility and polarity of translocation or the molecule. Recently it 

has been noted that using mixtures of two auxin-like herbicides enhanced 

their effectiveness as herbicides, suggesting that properties inherent 

in one herbicide may enhance the mobility of the other herbicide. 

The present study was designed to explore the kinetics of translo­

cation of auxins utilizing intact bean seedlings. 



CHAPTER II 

REv!EW OF LITERATURE 

Auxin Translocation in Plants 

Early plant physiologists discussed auxin movement primarily in 

terms of its characteristic basipetal polar transport (Went and Thimann, 

1937). Experiments involving both intact plants and plant parts demon­

strated that IAA moved in the plant via three separate mechanisms: 

1) both endogenous and externally applied IAA underwent basipetal polar 

transport in isolated stem segments; 2) auxin applied in the nutrient 

medium moved upward in the transpiration stream and; 3) translocation 

of auxin applie~ to decapitated plants moved downward via the phloem 

(Skoog, 1938). 

Later more attention was given to the auxin-like phenoxy herbicides. 

Day ( 1952) carried out a rather thorough series of experiments involving 

the velocity and direction of movement of 2,4-D applied to the primary 

leaf of bean. Work involving foliar applications, such as this, tended 

to support the hypothesis that these growth regulators moved with the 

stream of assimilates (Rice, 1948; Rohrbaugh and Rice, 1949; Hay and 

Thimann, 1956). However, the meristimatic regions of the stem apex and 

the young leaf primordia appeared to be the primary sites of auxin bio­

synthesis, while fully expanded leaves exported little or no auxin 

(Scott and Briggs, 1960). Consequently translocation patterns of foli­

arly applied herbicides did not necessarily. refiect the distribution 



mechanisms for growth regulators in the plant. In general, growth 

regulators applied to roots or shoots of intact plants appeared to move 

in both the phloem and xylem (Skoog, 1958; Little and Blackman, 1963). 

The extent of interacticn between xylem and phloem in regulating the 

movements of auxins in plants is not well understood. 
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Recently, two papers have elucidated several details involving the 

pattern and mechanism of auxin translocation. Eschrich ( 1968) quantita­

tively followed the distribution ·of label in Vicia faba following the 

application of IAA-2-14c to fully expanded primary leaves. He rec·overed 

14c-labeled compounds fran the stem,· roots and young expanding leaves, 

but not from mature leaves. ·This- suggested that both acropetal and 

basipetal movement of label from the treated leaf occurred. Morris, 

et al. , ( 1969) followed the movement of 14c-labeled IAA which had been 

applied to the apical bud of intact dwarf pea seedlings. The label of 

IAA was traced through the stem and roots where it was readily converted 

to indoleacetyl aspartate and indole-3-aldehyde. The indole-3-aldehyde 

appeared to be readily transported in both stems and· roots while the 

IAAsp represented ah immobilized fonn of the auxin. It is not clear 

from these studies whether retranslocation of IAA or its metabolites 

occurred in these plants. 

Factors Affecting Auxin Translocation 

Auxin Concentration 

The movement of auxins through isolated stem segments and coleop­

tile sections is proportional to IAA concentration in the donor block 

over a limited range. (Goldsmith and Thimann, 1962; Gillespie and 

Thimann, 1963; Scott and Jacobs, 1963). However, the ratio of the 



amount in receivers to the amount in the donors steadily decreased with 

increasing dosage. A logarithmic plot of the radioactivity received 

as a percentage of the net loss from the· donor shows a linear decrease 

in transport with an increase in ·concentration (McCready and Jacobs, 

1963). There is relatively little· information concerning the effect 

or concentration on translocation of auxins in intact plants. In one 

such study, as amount or 2,4-D or 2,4,5-T applied to the leaves 

increased from 1 ·t;o 20 pgrams/plant tne time taken to initiate curve­

ture of the stems decreased (Little and Blaclanan, 1963). This seems to 

suggest only that the amount···or auxin required to initiate bending or 

the stems reaches the stems·more rapidly at the higher concentrations. 

Steam Girdling 

Regardless or the site ot·applicationof exogenous auxins the 

question or whether movement is via the xylem or the phloem remains. 

Fran the distribution patterns determined by autoradiographic studies 

Crafts and Yamaguchi (1958) concluded that the auxins 2,4-D and 2,4,5-T 

moved out or the treated leaves via the phloem and movement occurred 

almost exclusively in the phloem. A number or workers have concluded 

that the movement or auxin-like herbicides out or the leaves is depen­

dent upon the translocation of assimilates (Mitchell and Brown, 1946; 

Rohrbaugh and Rice, 1949; Jaworski, et al., 1955) and Little and Black­

man ( 1963) have shown that ringing the petiole before treatment with 

2,4-D completely inhibited initiation of stem bending suggesting that 

movement was via the phloem in the assimilate stream. 

Skoog ( 1938) applied auxin to tanato plants above a steam girdle 

on the stem and noted that auxin collected in the stem directly above 

5 



the girdle. However IAA applied to the culture solution in which the 

plants were growing moved upward and moved freely through the killed 

portion of the stem. This suggested to Skoog that downward movement 

was via the phloem while upward movement was in the xylem. 

Antiauxins 
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Antiauxins, as a general rule, are auxin-like molecules without the 

typical auxin properties of polar basipetal transport in isolated seg­

ments and without pronounced promotional effect on growth of' isolated 

stem and coleoptile tissue. Furthermore,- antiauxins such as TIBA are 

known to inhibit both the transport ·of IAA (Zwar and Rijven, 1956) and 

the growth promoting activities of' auxins (de la Fuente and Leopold, 

1970). 

It has been noted that TIBA affects the uptake differently from 

export of' IAA in coleoptile sections (Christie and Leopold, 1965a). By 

increasing the concentration ·of' IAA; the effect of' TIBA ·on IAA entry 

into the cell could be overcome• High concentrations of' IAA did not 

overccme the inhibition of' exp·ort of IAA by TIBA. Christie and Leopold 

( 1965b) consider TIBA to be a "sulf'hydryl poison" and that TIBA may 

modify secondary structural i'eatures related to the export of' IAA such 

as some constituent of' the cell membrane. 

Hagar and Schmidt ( 1968)· not-ed the production· of an oxidation pro­

duct of' IAA upon illumination· ·of com coleoptile segments. They were 

further able to identify the· compound as 3-methylene oxindole ( 3-M) • 

This compound inhibited the export of' IAA from t·he cells as well as the 

phototropic response to unilateral light source. This suggests a regu­

latory role for naturally occurring antiauxins. 



Infonnaticn regarding the effects of antiauxins on natural auxin 

responses in intact plants is sparse. Mullins (1970) showed that TIBA 

at concentrations which inhibit polar auxin transport in stem segments 

augment the !AA-effect on import· of 1lic-labeled photosynt'hates into the 

inteniodes of decapitated bean seedlings. 

Auxin-Auxin Interactions 

7 

The study of auxin-auxin interactions has thus far been primarily 

concenied with the effects of other auxin-like molecules on the polar 

transport of !AA and growth in coleoptile and stem segments (Niedergang­

Kamien and Leopold, 1959). These workers noted that the extent of 

inhi'!:>iticn of !AA transport in sunflower stem segments varied with the 

number of substituted chlorines, on the phenoxy ring and their position. 

Further studies showed that these, substituted chlorophenoxyacetic acids 

had little effect en the uptake· or !AA by the segments but markedly 

inhibited the export or IAA from the basal end of the segments. As 

was discussed earlier, much the same situation is described for the 

anti-auxin TIBA (Christie and Leopold, 1965a). 

Evans and Hokanson ( 1969) observed that some of the auxins which 

inhibit IAA transport (e.g. 2,4-D and NAA) also are themselves exported 

from coleoptile tissue more slowly than !AA. A study of the auxin 

activities of a series of substituted benzoic acids and their ef'f'ect on 

polar auxin transport led Keitt and Baker ( 1966) to the cmclusion that 

the auxins with highest growth promotive activity were the least inhibi­

tory to !AA transport and that'the'·l!lost effective inhibitors of IAA 

transport were the least growth promotive. 

2, 4-D is one of the auxin·s which inhibits the transport of IAA. 
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Hertel's group (Hertel and Flory, 1968; Rayle, et al., 1969) reported 

that IAA enhanced the basipetal transport ·of 2,4-D in corn coleoptiles 

several fold. Thus we see a situation in which there is an interaction 

between two structurally related molecules which, depending on the mole­

cule, may be promotive or inhibitory to transport. 

Auxin and Assimilate Interactions 

Sugar translocation and auxin translocation appear to interact in 

several ways. It was pointed out earlier that the translocation of 

foliarly applied auxins and auxin-like herbicides fran the leaf depends 

upon the active export of photosynthetic assimilate from the leaf 

(Mitchel and Brown, 1946; Rohrbaugh and Rice, 1949; Jaworski, et al., 

1955). 

Besides the widely recognized effects of source-sink relationships 

on the translocation of organic materials (Wardlaw, 1968), it has been 

suggested that there is also a hormone-directed translocation of assimi-, 

lates in plants (Went, 1939). Booth, et al. (1962) showed that replace-

ment of the apex of decapitated pea seedlings with IAA stimulated the 

movement of 14c-photosynthate to the site of auxin application within 

6 to 11 hours. Davies and Wareing ( 1965) noted that the application of 

IAA to the decapitated stems of peas enhanced the accumulation of 32p 

to the auxin-treated portion of the stem in 6 to 12 hours. TIBA applied 

to the surface of the stem midway between the IAA source and the 32i>­
treated leaf considerably reduced the translocation of 32i>. 

Crafts and Yamaguchi (1958) and Khan and Sagar (1969) considered 

the role of auxins applied to developing shoots and fruits to be the 

establishment or the enhancement of metabolic sinks which in turn stim-



ulates the movenent of .nutrients into the sinks. 

Hew, et al.,(1967) have conducted experiments with durations as 

short as one hour in which they showed that IAA applied to the tip of 

decapitated soybean seedlings enhanced the basipetal translocation of 

photosynthate in the stem. This seems irreconcilable with the ·hypoth­

esis that IAA enhances movement of assimilate toward the site of IAA 

treatment unless it is considered in the light of vascular anatomy of 

9 

bean assuming that the stem anatomy of soybean is similar to Phaseolus .. 

Doutt (1932) and Mullins (1970a) pointed out that all vascular bundles 

that originate from the primary·leaf node descend the stem to anasto-

mose with ascending vascular bundles at the base of the stem. Mullins 

( 1970a) noted that the pulse of 1lic-photosynthate applied to the pri-

mary leaf descended the stem ··from the primary leaf to the base of the 

stem and then ascended the stem into the first trifoliolate leaf. 

Lepp and Peel (1970) reported that IAA increased sucrose loading 

into the sieve elements of isolated segments of willow bark. IAA also 

enhanced the polar transport of sucrose in isolated segments of willow 

bark (Lepp and Peel, 1971a) suggesting a direct effect of IAA on assim­

ilate movement localized in the stem. Hew, et al.,(1967) found that 

when IAA-1lic was applied to the decapitated soybean seedlings the label 

remained almost exclusively in the stem, further suggesting that auxins. 

exert a regulatory influence on the vascular system within the stem. 

Protein Synthesis and Auxin Translocation 

Auxins promote elongation and fresh weight increases in isolated 

stem and coleoptile tissue suggesting that they are accompanied by ,2-! 

!lQIQ protein synthesis. IAA and 2,4.;..D promote the increase in fresh 
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weight of tissue and the 14c-glycine incorporation into protein in 

excised pea stem segments (Fang and Yu, 1965). Chloramphenicol, an 

inhibitor of protein synthesis, has been shown to inhibit the cell 

expansion induced by IAA and the synthetic auxins NAA and 2, 4-D in pea 

stem sections, oat coleoptiles and artichoke tuber sections (Nooden and 

Thima.nn, 1965). The same concentrations of chloramphenicol which 

inhibited auxin-induced growth also inhibited the incorporation of 14c­

leucine into both soluble and insoluble protein fractions. 

Abeles ( 1966) noted that the 2, 4-D and IAA stimulation of ethylene 

production could be blocked by a number of inhibitors of RNA and 

protein synthesis. Abeles concluded that de ·!!Q!,Q protein synthesis 

was necessary for ethylene biogenesis. 

There is considerable controversy in the literature as to whether 

IAA is effective at the translational or the transcriptional level in 

protein synthesis. It seems well established that auxins modify the 

metabolism of nucleic acids, particularly RNA (Basler and Nakazawa, 

1961; Key and Shannon, 1964). Fites, et al.,(1969) reported that m-RNA 

levels in etiolated soybean tissue were enhanced by 2,4-D. At high 

concentrations of 2, 4-D m-RNA synthesis was inhibited. From experiments 

on the timing of auxin responses in etiolated pea seedlings, Warner and 

Leopold (1969) concluded that the latent periods for IAA .induction of 

elongation were exceptionally shortin comparison to the nucleic acid 

half-life in higher plants suggesting that the initial response to auxin 

was at a site other than nucleic acid metabolism. Nelson and Reinhold 

(1969) have studied the effects of protein and nucleic acid synthesis 

inhibitors on auxin-induced elongation of sunflower hypocotyl segments. 

They noted a 45-60 minute lag in the inhibition of auxin-induced growth 
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in the presence of the RNA synthesis inhibitors 8-azaguanine or 

actinornycin D, whereas no lag could be detected in the depression of 

auxin-induced growth by cycloheximide. Thus it appears that although 

RNA levels are modified by auxins and increases in RNA levels are coin­

cident with continued auxin-induced growth, the involvement of auxins 

with protein synthesis appears to precede that of auxins with nucleic 

acid metabolism. 

The non-covalent bonding of auxins with proteins has been suggested 

a number of times (Niedergang-Kamein and Leopold, 1959; Hagar and 

Schmidt, l 968b; Hertal and Flory, 1968) • Osborne ( 1968) suggested that 

polar transport of auxins in plants might be associated with a specific 

protein carrier like the ones demonstrated in bacterial and animal 

systems. She suggested that the binding of the auxin to the carrier 

molecule was a prerequisite to transport across the cell membrane. 

Further studies (Osborne and Mullins, 1969) led her to modify her model 

to one which had two sites; one specific for auxin and one specific for 

ethylene. Filling one site mutually excluded filling of the other site. 

When ethylene occupied its site the binding and subsequent transport of 

auxin was blocked. Thus IAA modifies protein synthesis and is capable 

of non-covalent binding at highly stereo-specific sites. From this it 

seems reasonable to suggest that auxin may induce the synthesis of its 

own carrier molecule since very short pretreatments (20 min.) enhance 

the transport of IAA in coleoptile tissue (Rayle, et al., 196~. 



CHAP!'ER III 

METHODS AND MATERIAIS 

Source of Plants 

Bush bean ( Phaseolus vulgaris L. cv. stringless GreenPod) seeds 

were germinated in perlite m-oistened with Hoagland' s nutrient solution 

(Hoagland and Amon, 1950) for 5 days at 29 C under continuous fluores­

cent light of 500 rt-c. The seedlings were then ·transplanted to 500 ml. 

amber jars containing 400 ml ·of cne-half strength Hoagland.'s nutrient 

solution, placed in a cootrolled environment chamber, and the roots 

provided with aeraticn. The··plants were grown for an additional 3 days 

at 33 C day temperature, 29 C night temperature and relative humidity 

ranging from 20 to 3~. The plants· were provided with a 14-hour photo­

period with light intensities· of about 2100 ft-c of cool-white fluores­

cent and incandescent light. 

Approximately 12 hours·prior to treatment the plants were trans­

ferred to fresh cne-fourt.h stTength Hoaglandb ·nutrient solution and 

returned to the growth chamber. Thus at the time of treatment the 

plants were generally 10 days old. 

Method of Treatment 

The plants were treated by·injecting the ·compound being studied 

into the pith area of the stem with a 1 pt syringe. The cotyledcns were 

removed and the syringe needle was inserted at the cotyledonary node 
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and forced down the center of the stem to about one centimeter below the 

cotyledonary node where the treatment solution was deposited. 

Method of Assay 

The plants were harvested after the designated treatment time and 

separated into growing points, primary leaves including petioles, stems 

and roots (see Figure 1) • The plant parts were quickly frozen at -/.I) C 

and freeze-dried. The dried plant parts were then weighed and homogen­

ized in 10 milliliters of 9;%- ethanol in a Virtis high-speed hornogen-

izer. 

Small portions of the homogenat,es were,pipetted into counting vials 

containing scintillation cocktail consisting of xylene:dioxane:ethanol 

(5:5:3,v/v/v) containing OOg; naphthalene and 5g 2,5-diphenyloxazole 

(PPO) per liter. These samples were assayed for radioactivity using 

liquid scintillation techniques. Background values were corrected for 

quenching through the use of standard quench curves for external stan­

dards. All computations and statistical analyses were pe-rfonned using 

an IBM 360, model 65 comput·er and··programs prepared by the author. 

The nutrient solution ·in which the treated plants were growing 

were monitored by taking 5 milliliter samples at designated time inter­

vals. The samples were assayed ·for radioactivity again using liquid 

scintillation techniques. 

14c-Labeled Auxins 

The experiments represented by Figures 2 and 3 utilized 2, 4-D-1-14c 

(sp. act. 31.6 rrCi/mM) and 2,4,5-T-1-14c (sp. act. 30.0 mCi/mM) as the 

labeled molecule. All other experiments conducted in this study uti~ 



Figure 1. 

~GROWING POINT 

Line drawing of 10-day-old bean seedling showing 
points of dissection. 4/5 scale. 

14 
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lized 2,4,5-T-1-14c (sp. act. 12.0 mCi/mM), 2,4-D-1-14c (sp. act. 28.4 

mCi/mM) and IAA-1-14c ( sp. act. 57 .O mCi/mM). Radiochemical purity was 

detennined by ascending paper strip chromatography with a solvent com­

posed of n-butanol:acetcne:water (5:3:3,v/v/v). The chromatograms were 

assayed in a Picker strip-chromatograph scanner. Purity always exceeded 

9'J'/o. The unlabeled 2, 4-D and 2, 4, 5-T were purified by repeated recrys­

tallization, first from hot-benzene and final recrystallization from 

boiling 5CJ1, ethanol. Unlabeled IAA was purified by recrystallization 

from 3afo ethanol. 

Generally, 1 pg of labeled compound was injected into each plant 

in the experiment. In those experiments in which the total amount of 

compound injected in the plants exceeded 1 pg, the difference was made 

up by the addition of unlabeled compound to the injection mixture. For 

instance, if the treatment was 10 yg of 2,4,5-T, 1 pg of 2,4,5-T-1-14c 
plus 9 pg of unlabeled 2,4,5-T were injected per plant. In those 

instances in which the total amount of compound was less than 1 pg, the 

injection solution consisted solely of labeled material. In tenns of 

auxin activity, 1 µg of 2,4-D or 2,4,5-T generally promoted growth and 

increases in dry weight whereas levels of 3 pg or more became increas­

ingly growth inhibitory and caused strong epinastic responses. 

In the experiments in which the influence of other compounds 

(specifically PCIB and cycl-oheximide) on the translocation of 2, 4, 5-T 

was detennined, these compounds were injected into the plant simultane­

ously with 2,4,5-T in 1 pl of 9'J'/o ethanol. 

14c- and 3if-labeled Sugars 

In the experiments designed to detennine the effect of 2, 4, 5-T on 



translocation of sugars injected into the stem al·ong with 2, 4, 5-T, 

1.46 x 10-lO moles of sucrose-14c(UL) {sp. act. 360.0 mCi/mM), 

6 -10 ~- / .82 x 10 moles of D-glucose-3--H(n) (sp. act. 1100.0 mCi mM) and 

3 pg of unlabeled 2,4,5-T were injected into the stem in 1 pl of OOfo 

ethanol. Radioactivity which accumulated in the plant parts was 

measured by use of Packard Tri-Carb 3220 Liquid Scintillation Detector 

calibrated for simultaneous dual-label detection. External standard 

values were recorded for eachsarnpJ:e in the third channel and these 

values were used to correct the 14c and 3H counts/minute for quenching 

from a standard curve. 

Steam Girdling 
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Steam girdles were applied to plants in three locations on the 

stem (1. 2 cm below the cotyledcnary node; 2. 1 cm above the cotyle­

donary node; .3. 1 cm above -the primary leaf node) ·by applying steam to 

a short segment of the stem for about 15 seconds duration using a de­

vice made for the purpose (Figure 2). This apparatus consisted of a 

piece of tygon tubing approximately 611 long. A small cork stopper was 

placed in one end of the tubing and near this a 4 mm hole was bored in 

the tubing perpendicular to its longitudinal axis. A slit was made on 

one side of the tubing into the hole so that the hole in the tubing 

could be opened up and wrapped aramd the stem. This procedure killed 

about a 1 cm portion of the stem. The killed portions of the stem 

shriveled very rapidly and became incapable of supportingithe upper 
I 

portion of the stem. A ring support made of pipe cleaners, the lower 

end of which was attached to the nutrient solution bottles were com-

structed to support the upper portion of the plant after girdling. 



Preliminary experiments indicated that the leaves remained turgid and 

maintained a nonnal appearance for at least 2-3 days after the stems 

were girdled suggesting that transpirational flow remained adequate 

after the girdling process. 

Figure 2. Apparatus used to apply a steam girdle to various points 
on the stem of bean seedlings. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Time-Course Studies 

Effect of Time-of-Day on Treatment Response 

The influence of environmental factors on the translocation of 

growth regulators is widely recognized (cf. Little and Blackman, 1963). 

Although the effects of all environmental factors are not well documen­

ted, several workers have shown that moisture stress severely retards 

the movement of auxin-like herbicides out of treated leaves (Basler, 

et al., 1961; Merkle and Davis, 1967; Davis, et al., 1968b). A study 

of the absorption and translocation of 2,4,5-T in blackjack oak sug­

gested that translocation of 2, 4, 5-T from a treated leaf paralleled 

trends in foliar respiration rate throughout the growing season but 

appeared to be independent of soil moisture levels (Dalrymple and Bask, 

1963). Low relative humidities caused marked increases in the acropetal 

movement of 2, 4, 5-T injected into the stems ·of bean seedlings and 

decreased the amount of 2, 4, 5-T moving to the roots (Basler, et al., 

1970). High relative humidities reversed these trends. Thus it is 

important that the conditions under which translocation experiments are 

performed are well defined and ·prec·isely controlled. 

One variable which it seemed important to c·ontrol was the time of 

day when the treatment was a'dlninistered. In other words, it was recog-



nized that the physiological status, (which fluctuates with diurnal 

changes in the environment) was likely to produce changes in the re­

sponse of the plant to the treatment. In order to test this, a pre­

liminary experiment was devised in which identical treatments were 

administered to sets of 10 plants at 4 hour intervals over a 24-hour 

period. It appears that there was strong basipetal translocation of 

19 

2, 4, 5-T-14c (Figure 3) between 12 noon and 4 AM, but little movement of 

label in the acropetal direction. While at the 4 AM, S AM and to a 

lesser extent the 12 noon treatment times acropetal translocation was 

stronger with somewhat less basipetal movement. Little and Blackman 

( 1963) noted that movement of- 2, 4-D from a treated leaf was maximum 

during the morning and decreased as the day progressed. Therefore, 

treatment times in all subsequent experiments between 9 AM and 11 AM 

was selected. 

72 Hour Translocation Studies 

A study of the translocation of 2, 4-D and 2, 4, 5-T applied to 

mature leaves of wild and cultivated cucumber plants showed that for 

these two plants 2, 4-D entered the plant rather rapidly and was freely 

mobile throughout the first 24 hours after which very little movement 

of labeled 2,4-D occurred (Slife, et al., 1962). They also noted that 

2, 4, 5-T moved into the plant ·rather slowly as compared to 2, 4-D but 

remained mobile in the plant for up to eight days. When 2, 4-D and 

2,4,5-T were injected into thestems of bean seedlings, both herbicides 

appeared to move quite rapidly both acropetally and basipetally during 

the first 24 hours (Figures 4 and 5). 

Slife, et al.,(1962) suggested that the difference in translocation 
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patterns of 2,4-D and 2,4,5-T during the first 24 hours after treatment 

was due to the fact that 2,4,5-T penetrated the leaf surface slower than 

2, 4-D. The similarity of translocation pat terns when 2, 4-D and 2, 4, 5-T 

are injected into the stems (Figures 4 and 5) seems to supp·ort this view 

even though the relative amounts of the two herbicides that accumulated 

in the various plant parts we·re· sumewhat different. There was little 

or no accumulation of label in any of the plant organs beyond 24 hours 

with the exception of the levels in the growing points at the 2.0 )lg 

2,4,5-T treatment level. There was a striking effect of concentration 

on acropetal movement of 2,4,5-T but not 2,4-D t·o the growing points. 

There was a 10-f old increase ·in accumulation of label in the growing 

points with a 2.5-fold increase in concentration of 2,4,5-T. Translo­

cation to the primary leaves was more nearly proportional to concentra­

tion although the pattern of accumulation was somewhat similar to 

accumulation in the growing points. There was a rapid loss of label 

from the roots after 24 hours which in part may have been responsible 

for the continued accumulation in the nutrient solution. The higher 

accumulation of 2,4-D in the roots at 24 hours as compared to 2,4,5-T 

was also observed by Slife, et al, (1962). A greater affinity of roots 

for 2,4-D than 2,4,5-T also is implied by the fact that slightly more 

2,4,5-T than 2,4-D accumulated in the nutrient solution at both the 

0.75 pg and 2.0 yg levels. 

It should be noted at this point that the data for 2, 4...;.D and 2,4, 5-

T were plotted on the same graphs for purpose of comparison only. The 

experiment for the data on 2, 4-U was run several days after the experi­

ment using 2,4,5-T so that they are separated b7time·~ Therefore they· 

are not directly comparable statistically. However, experiments con-
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ducted subsequent to these confinned that while the absolute amounts of 

translocation varied with time the patterns of movement of label were 

very similar from one experiment to the next. 

24 Hour Translocation Studies 

When basipetal translocati·on of 2,4,5-T was monitored at frequent 

intervals over a 24-hour treatment period (Figure 6) the label was 

accumulated in the roots for the first 12 hours after which levels in 

the roots remained static at the l )1€: treatment level or actually 

showed some loss as at the 3 pg level. Accumulation in the nutrient 

solution continued at a nearly linear rate throughout the latter three­

f ourths of the 24-hour treatment period. This suggests that the roots 

were saturated after 12 hours of treatment and that any translocation 

into the roots after this was equalled by exudation of label into the 

nutrient solution. 

Acropetal movement of 2, 4, 5-T to the growing points and primary 

leaves is represented in Figure 7 • Approximately one-fourth of the 

2,4,5-T in the 3 pg treatment level moved acropetally and two-thirds of 

that was recovered from the growing points. A similarly substantial 

acropetal translocation also was observed in studies of the movement of 

foliarly applied auxins by Eschrich (1968) and Agbakoba and Goodin 

( 1970). In the present studies, net ac·curnulati·on in the growing 'Points 

had ceased sometime prior to the 6 hour..;harvest time. Although the 

pattern of accumulation in the growing point was very similar in the 1 

pg and 3 pg treatments, there was roughly a 20-fold increase in label 

present in the growing point at the 3 pg level as c·ompared to the 1 pg 

level. This represents a marked enhancement of acropetal translocation. 
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The loss of label frcm the primary leaves after the lapse of more than 

6 hours after treatment was particularly prcnomced at the 3 )18 treat­

ment level. This provides at least a partial explanation as to why so 

little label was recovered fran the primary leaves after 24 hours in 

Figure 4. This loss of label might have been due to decarboxylation and 

subsequent loss of the 14c or possibly to export of 2, 4, 5-T from the 

leaf to other plant parts. 

6 Hour Translocation Studies 

In order to approximate initial velocities ·of translocation it 

became apparent that sampling during the first 6 hours after treatment 

was necessary. These studies showed that translocation of· 2, 4, 5-T to 

the roots and nutrient solution (Figure 8) at the 3 ·pg treatment level 

appeared to proceed in two phases. Accumulation in the roots was near 

maximal, or reached saturation levels, at 2 hours at which time exuda­

tion into the nutrient solution camnenced. At the 1 pg treatment level, 

however, translocation to the roots·,proeeedect··at a l·ow rate in a linear· 

fashion throughout the 6-hour treatment period. Consequently saturation 

did not occur and loss of label into the nutrient solution remained 

minimal. 

Acropetal translocation ··is illustrated in Figure 9. As in Figure 

7, approximately one-fourth of the 3 pg of 2, 4, 5-T injected into the 

plant was recovered in the growing points and primary leaves. Accumula­

tion of 2,4,5-T in the growing points occurred in two distinct phases 

with a 2-hour period of little or no net accumulation interpolated 

between the two translocation phases. In subsequent experiments in 

which plants were harvested at 1,2,4 and 6 hours, no such biphasic 
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curve was noticed. As in previous experiments the translocation pat• 

terns for the 1 pg and 3 pg treatment levels were very similar, but more 

than 10 times as much 2,4,5-T accumulated in the growing points of 

plants treated with 3 yg 2,4,5-T. 

Translocation to the primary leaves proceeded linearly and roughly 

proportional to the amount of 2, 4, 5-T injected into the plant during the 

first 2 hours only, after which no net accumulation occurred. 

It is clear from Figures B and 9 and also from F'igures 6 and 7 

that translocation of 2, 4, 5-T · was primarily acropetal for the first 6 

hours after which acropetal translocation ceased and subsequent trans-

location was basipetal. It will be noticed in Figure 9 also that 

accumulation in the primary leaves ceased as early as 2 hours after 

treatment while translocation beyond the primary leaves and into the 

growing points continued as long as 6-hours past the initiation of 

treatment. One speculation is that there is a formation of a metabol­

ite( s) of 2, 4, 5-T, the transl·ocation of which would be strictly basi­

petal. In this connection, Veen ( 1966) has shown that when 14c-labeled 

NAA is applied to Coleus explants within 6 hours almost all of the par­

ent compound has been metabolized. In Coleus the primary metabolites 

of NAA are NAA-aspartic acid and a glucoside of NAA. However there is 

no evidence to suggest that 2,4,5-T is rapidly metabolized in bean 

seedlings, although the formation of at least 10 metabolites of 2,4-D 

has been shown to occur in is·::;lated bean stem segments (Bach, 1961). 

It is possible to estimate the translocation rates of 2,4,5-T by 

extrapolation of the linear portion of the curv~ to the time baseline. 

For a cI'iticism of the methods used in detennining translocation rate 

see McCready ( 1966). In studies of transport through stem segments of 
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bean the veloc~ty of basipetal movement has been reported to range from 

1 mm/hr for 2,4-D to 6 mm/hr· ·for IAA (Mccready and Jacobs, 1963). The 

velocity of translocation of auxins applied to leaves ranges from 10-

12 cm/hr for 2,4-D and 2,4,5-T to 20-24 cm/hr for IAA (Little and Black­

man, 1963). Day ( 1952) has even reported values ranging from 10-100 

cm/hr for 2,4-D. However, the improved techniques make the values of 

Little and Blackman (1963) more reliable. This author was able to 

determine velocities ranging .. fran 13.;..15 cm/hr for basipetal transloca­

tion to the roots and translocation to the growing point averaged about 

·12 cm/hr. 14c-Labeled 2,4,5-T appeared in the;prima.ry leaves very 

quickly after treatment. 

Effect of Auxin Concentration on Translocatian 

Accumulation of 2, 4, 5-T in the ·roots 5 hours after treatment was 

initiated increased linearly with increases of 2,4,5-T concentration 

injected (Figure 10). This suggests tha,t the basipetal translocation 

of 2,4,5-T was not inhibited at relatively high auxin levels in bean 

seedlings as is polar basipetal transport :i,.n stem segments {ct Mccready 

and Jacobs, 1963). Exudation of 2,4, 5-T mto the nutrient solution 

increased very rapidly · as amomt of 2, 4, 5-T applied increased at low 

2,4, 5-T levels •. At levels above 5 ~· movement of label into the 

nutrient solution proceeded in· a more linear manner• Earlier, it was 

noted that there was an apparent threshold effect on the exudation of 

2,4, 5-T into the nutrient solution (see ·Figure S). These data also 

suggest sane sort of relationship between 2, 4, 5-T c·oncentration in the 

roots and movement of label int·o the nutrient solution at treatment 

concentrations up to 5 )l8• 
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Acropetal translocation ·to the··growing ·point (Figure llA) also 

increased in a geometrical fa-shion very rapidly as the amount of 2, 4, 5-T 

injected was increased up to 5 pg/plant. At treatment levels higher 

than 5 pg/plant there was an essentially linear relationship between 

amount applied and translocation to the growing p·oint. The relationship 

between the amount of 2, 4, 5-T applied and amount translocated to the 

growing points is illustrat·ed in Figure 11B in which the ratio .. of 

2,4, 5-T translocated to 2,4, 5-T applied is plotted against injection 

concentration. The ratio increased very rapidly up to 5 J8 treatment 

level and then leveled off at the ·higher treatment concentrations. 

To be considered an auxin re·sp·onse this stimulation of acropetal 

movement must ·be a generali"2:ed phenomenon ·c·orrunon to all auxins and not 

a response unique to 2, 4, 5-T• In Fi·gure 12 it is apparent that a geO-

metric increase in acropetal translocation was induced by 2,4..:.n and 

IAA as well as 2,4,5-T. However, higher treatment levels of 2,4-D and 

IAA are necessary to induce the geometric ·response. 

The geometric increases· ·in acropetal .. movement with increases in 

treatment levels argues against stri:ctly diffusi·onal ·processes involved 

in acropetal movement. There ·are at· least two hypotheses presently in 

the literature which might help explain this type of response. Veen 

( 1966) has suggested the occurrence of an inducible auxin-conjugating 

enzyme. He has shown that the ·induction ·of this enzyme is not only 

time-dependent but also concentratiun.-dependent (Veen, 1967). It is 

possible, theref9re, that th-e· preS"ence· of"·high ·concentrati:un.s 0of auxin 

promotes the formation of a··mffusible· metatrolite of the auxin, or an 

acropetally mobile metabolite ·or auxin. ·This would explain very nicely 

the marked enhancement of transl·ocation of 2, 4, 5-T to the growing 
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points at the 3 )l8 treatment level in Figure 7. However, if the induc­

tion of the enzyme were time-dependent, the 1 pg treatment should have 

induced a response by the end of the 21.r hour treatment period. 

Another possible explanation was provided by Hertel and Flory 

(1968). They suggest the operation of monovalent interactions with a 

protein moiety possibly at the plasmalemma. This system would rely on 

cooperativity in membranes and in auxin molecules. In other words, 

auxins binding non-covalently to the transport site (protein) would 

lead to an increased number of auxin binding sites. Filling of these 

sites would lead to excretion or secretion of auxin. This hypothesis 

could easily be expanded to include binding to effect a growth response, 

induce or activate an auxin-conjugating enzyme or directional loading 

into xylem or phloem. 

Effect of Steam Girdling on 2,4,5-T Translocation 

The relatively slow translocation velocities for 2,4,5-T mentioned 

earlier suggested that movement both basipetally and acropetally occurs 

via the phloem. Translocation velocities in the range of 10-50 cm/hr 

are often considered to be indicative -of movement in the phloem (cf. 

review by Zimmerman, 1960). In order to determine the extent of move­

ment of 2,4,5-T in the xylem and the phloem the stems of the bean 

seedlings were girdled in one of three places·; 1) a girdle covering 

about a 1 cm segment of the stem was placed 3 cm below the cotyledonary 

node which is about 2 cm below the site o-f injection; 2) a girdle was· 

placed about 1 cm above the ·c·otyled·onary n·ode or midway between the 

primary leaf node and the cotyledonary node; or 3) a girdle was placed 

between the primary leaf node and the young expanding first trifoliolate 
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leaf. 

The results illustrated in Figure 13 suggest that translocation to 

the growing point was increased 2-or 3-fold over controls when the stem 

was girdled below the cotyledonary node. Translocation to the primary 

leaves was increased only slightly (3 pg/plant) or not at all (1 yg/ 

plant). Translocation to the roots was almost canpletely inhibited by 

a girdle placed between them and the site of injection. 'When the stem 

was girdled above the cotyledonary node translocation to the growing 

points was again enhanced 2-or 3-fold. Movement of label to the primary 

leaves was also significantly increased. Surprisingly, once again 

translocation to the roots was completely inhibited. This suggests 

that basipetal translocation from the point of injection is dependent 

upon the flow of assimilates in the phloem. Steam girdling above the 

primary leaves almost completely inhibited the accumulation of 2,4,5-T 

in the young growing points, but had little or no effect on transloca­

tion to the primary leaves or flow of label basipetally to the roots. 

This overall pattern suggests that translocation of 2,4,5-T from the 

site of injection to the primary leaves was via the xylem while trans­

location beyond the primary leaves into the growing points was appar­

ently via the phloem. This is inexplicable in tenns of what is known 

of the vascular anatomy of Phaseolus vulgaris seedlings (Doutt, 1932; 

and Mullins, 1970). Both of these authors indicate that all vascular 

bundles originating at the primary leaf descend the stem and that 

connections to the trifoliolate leaves are by anastomoses at the base 

of the stem. The present data suggest the ready exchange of 2,4,5-T 

between the xylem and phloem at some site in the vicinity of the primary 

leaf node. 
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Effect of Antiauxin on 2,4,5-T Translocation 

Recently, the effects of the antiauxin p-chlorophenoxyisobutyric 

acid (PCIB) on basipetal transport of IAA and growth in corn coleoptile 

segments have been characterized (Hertel, et al., 1969). These workers 

showed that PCIB inhibited auxin transport just as it inhibited auxin­

induced growth. They suggested that the parallel action on these two 

processes indicated that auxin transport was linked closely to or iden-

tical with auxin-effects on growth. 

The experiments illustrated in Figures 14 and 15 were designed to 

test the influence of PCIB on the translocation of stem-injected 2,4,5-T 

in bean seedlings. 10-9 moles PCIB/plant is equivalent on a molar basis 

to 1 .pg 2,4,5-T/plant so that concentrations of PCIB applied to the 

plants were in the same concentration range as the 2,4,5-T applications. 

Since PCIB is known to inhibit the basipetal polar transport of auxin 

in isolated stem segments, the inhibition of basipetal translocation in 

intact plants might also be expected. However, accumulation of 2,4,5-T 

in the roots was not inhibited by a range of 10-lO to 10-S moles PCIB/ 

plant (Figure 14). At the higher concentrations of PCIB the movement 

of 2,4,5-T into the nutrient solution was enhanced slightly. At the 

1 pg 2,4,5-T/plant level, however, the response to increasing concentra­

tions of PCIB was not statistically significant while at the 3pg 

2,4, 5-T treatment level there were significant differences in treatment 

response. 

Acropetal translocation was more sensitive to PCIB than basipetal 

translocation. Movement to the growing points was enhanced by the 

highest concentrations of PCIB, particularly at the 3 pg 2, 4, 5-T/plant 

treatment level (Figure 15). There also was a significant enhancement 
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of accumulation of 2, 4, 5-T in the primary leaves by PCIB. 

These pattezns of PCIB influence on translocation do not corres­

pond to the effects of antiauxins on auxin transport in isolated stem 

segments. At this point it seems appropriate to make a distinction 

between auxin tra.nslocation which occurs in intact plants in which the 

xylem and phloem are fully functional, and auxin transport in isolated 

segments of stems or coleoptiles. Sieve tubes are notori.ously sensitive 

to perturbations of any kind and it is questionable that the phloem is 

fully active in segments in which the phloem elements have been severed 

at both ends. Also all transpirational movement in the xylem would be 

inteITUpted:in isolated segments of stems and coleoptiles. The polar 

basipetal movement (transport} ·of auxins in stem and coleoptile segments 

occurs predominantly in parenchymatous tissue whereas the movement of 

auxins in intact plants is primarily vascular in nature (translocation) 

as the results of the present study have indicated. Therefore, compar­

isons between transport and translocation are exceedingly risky. 

2,4-D/2,4,5-T Interactions in Translocation 

It has been pointed out several times in the literature that the 

transport of one auxin may be modified by the presence of a second type 

of auxin (Niedergang-Kamein and Leopold, 1959; Keitt and Baker, 1966; 

Rayle, et al., 1969). It was also pointed out earlier in this study 

that high concentrations of auxins appeared to stimulate their own 

acropetal translocation (Figures 7 and 9). Thus it was of interest to 

determine the effect of 2,4-D on 2,4,5-T translocation in intact plants 

and vice versa. 

The interactions of 2,4-D and 2,4,5-T in translocation are 
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expressed in Table I which shows the amounts (innanograms) of labeled 

auxins accumulated in the various plant parts and nutrient solution. 

These data do not reflect total amounts of auxin or unlabeled auxin 

which might accompany the movement of labeled auxin and be recovered in 

each plant part. The experiments showed that high concentrations of 

2,4-D are not as effective in prcmoting acropetal auxin translocation 

as 2,4,5-T. When 0.75 pg 2,4-D-1-14c was applied in the stems of the 

plants, 10 nanograms of 2,4-D-1-14c were recovered from the growing 

points. When 0.75 pg 2,4-D-1-14c + 1.25 pg unlabeled 2,4-D were in­

jected in the stems, 11 ng 2,4-D-1-14c were recovered from the growing 

point. Thus although there was a 2.67-fold increase in total auxin 

injected into the stem there was no net increase of 2,4-D-1-14c accumu-

lation in the growing point. The accumulation of labeled compound in 

the roots was essentially unchanged by the addition of unlabeled 2,4-D 

to the treatment, but the exudation into the nutrient solution was 

curtailed. When 1.25 pg 2,4,5-T (unlabeled) was added to the 0.75 pg 

2,4-D-1-14c injection, accumulation of label in the growing point was 

stimulated 3-f old. Accumulation in the roots remained unchanged from 

the 2, 4-D-1-14c treatment while again the exudation into the nutrient 

solution was reduced by the addition of 2,4,5-T. 

When a 0.75 ~g 2,4,5-T-1-14c treatment was administered, transloca­

tion to the growing points was quite low as compared to the 0.75 pg 

2,4-D treatment. Accumulation of label in the roots was relatively un-

changed from the 0.75 p.g 2,4-D treatment, however; exudation into the 

nutrient solution was ccnsiderably greater for the 2,4, 5-T-1-14c. The 

addition of 1.25 pg of unlabeled 2,4,5-T enhanced acropetal movement to 

the growing points sane 10-fold just as unlabeled 2,4,5-T also enhanced 



TABLE I 

1't-LABELED .AUXIN ACCUMULATED Il'jl PLANT PARTS AND NUTRIENT SOWTION 
413 HOURS AFTER INJECTION OF 't-LABELED AND UNLABELED 2, 4-D AND 

2,4,5-T INTO !1Ilf~TEM OF BEAN SEEDLINGS. EXPRESSED AS 
NANOGRAMS OF -,;-LABELED MATERIAL ONLY. THE UNLAB-

EIBD AUXIN IS Nar ACCOUNTED FOR. 

0.75 µg 2,4-D-1-1't 

0.75 M 2,4~D-1~.L\: + 1.25 µg 2,4-D 

0.75 µg __ 2_J4-D-1-C + 1.25 pg 2,4, 5-T 
14 0.75 pg 2,4.5-T-1- C 
I4 0.75 ug 2.k.5-T-1- C + 1.2S lli? 2 

0.75 µg 2,4,5-T-1-1't + 1.25 pg 2,4-D 

Growing 
Points 

PrimaI"J 
Leaves Stems Roots 

+· I + 200.0 - 18.8 45.0 - 4.9 
.... + .. I + 
257.7 - 54.7 I 52.5 - 6.7 

+ ' + 
261.8 - 33.7 I 47.9 - 5.6 

Nutrient 
Solution 

+ 386.1 - 30.2 
+ 283.8 - 50. 5 
+. 

271.8 ..:. 61.2 
+ 60.3 - 93.1 
+ 

oJ - 68.8 
+ 

390. 5 - 79.3 

f: 
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accumulation of 2,4-D-1-14c in the growing points. Accumulation in the 

roots, however, was decreased nearly 3-fold. Exudation into the nutri-

ent solution was also inhibited, although not as much as accumulation 

in the roots. The addition of 1.25 pg 2,4-D to the 0.75 )18 2,4,5-T-1-

14c resulted in acropetal translocation to the growing point that was 

not significantly different from that of the 0.75 pg 2,4,5-T-1-14c 

treatment. The 1.25 Jg of 2,4-D increased the translocation to the 

roots as compared to the 1.25 p.g 2, 4, 5-T treatment while exudation into 

the nutrient solution was only slightly higher than the 1.25 pg 2,4, 5-T 

treatment. 

Thus there were auxin-auxin interactions in intact plant systems 

just as there are in transport systems of stem and coleoptile segments. 

However, in intact plants acropetal translocation appeared to be more 

sensitive to molecular differences of the auxin molecule, although the 

accumulation of 2,4,5-T in roots and nutrient solution also showed 

considerabl:l sensitivity to molecular structure. This type of response 

also has been reported by Davis, et al., (1968a) who showed an inter-

action between foliarly applied 2,4,5-T and Picloram on uptake and 

translocation in mesquite seedlings. As the ratio of 2, 4, 5-T:Picloram 

increased, the uptake and translocation of Picloram also increased. 

Conversely, when the ratio of Picloram:2,4,5-T was increased the trans-

location of 2, 4, 5-T was depressed. These data support the "coopera._ 
I 

tivity" concept of Hertel and Flory (1968), namely, that binding of one 

auxin molecule alters the binding affinity for auxins at other sites. 

It also suggests the existence of a system for auxin transport or trans-

location in which one or more sites are catalytic and others are 

allosteric or regulatory in nature. A system such as this would explain 



the data of Hagar and Schmidt ( 1968a) who reported that an oxidation 

product of IAA inhibited the transport of IAA and growth responses to 

IAA. A number of oxidation products of IAA are f orrned during illumina­

tion but only methyleneoxindol (3-M) was active in inhibition of trans­

port and auxin-induced elongation growth. They also noted that 3-M 

inhibits the active excretion of IAA from coleoptile tissue (Hagar and 

Schmidt, 1968b). Furthennore, 3-M or TIBA inhibits the export of NAA-

14c. They have suggested on the basis of these data that this repre-

senisan auxin excreting system in the border layers of the cell cyto-

plasm, possibly the cell membrane. 

Several workers have suggested the operation of sane component of 

the cell membrane in auxin responses (Hertel and Flory, 1968; Rayle, 

et al., 1969; Burstrom, et al., 1970). Veen (1966) has provided micro­

autoradiographic evidence that NAA-1-14c is preferentially localized at 

the cell membrane. Lepp and Peel (197lb) have reported that in bark 

strips of willow there is polar movement of IAA only when the isolated 

segments of willow are oriented in the vertical position with the mor-

phological base downward. Furthermore, the conversion of IAA to IAA­

aspartate occurred only when the segment is oriented vertically. The 

compound, morphactin (methyl-2-chloro-9-hydroxyflourene-(9)-carboxylic 

acid) which inhibits geo- and phototropism in plants has been shown by 

Parups ( 1970) to inhibit the transport of IAA in com coleoptiles. He 

also noted that in this tissue the starch grains become immobile and 

were evenly distributed: in the cytoplasm after treatment with morphac­

tin. Thus there are many data indicating that the plasmalemma may play 

a very important role in the transport of auxin molecules and possibly 

in the translocation of auxin as well. 
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2,4,5-T Effects on Sugar Translocation 

Went(1939) has suggested that metabolic sinks such as apical 

meristems and rapidly maturing fruits maintain the dormancy of lateral 

buds by directing the flow of metabolites to the active growth centers. 

Both the loading of sugars into the sieve elements (Lepp and Peel, 1970) 

and the polar transport of sugars (Lepp and Peel, 1971a) was enhanced by 

IAA treatment in willow stem segments suggesting that IAA has a direct 

effect on assimilate translocation. If this is true, 2,4,5-T injected 

into the stem of bean seedlings along with isotopically labeled sugars 

should alter the distribution pattern of the sugars as compared to 

treatment without 2, 4, 5-T. The movement of auxin-like pheno:xyacetic 

acids from treated leaves is considered to be via the assimilate stream 

(Mitchell and Brown, 1946; Rohrbaugh and Rice, 1949; Little and Black­

man, 1963). We have noted that small increases in the amount of auxin 

injected into the stem of bean seedlings markedly enhanced the acro­

petal translocation of the auxin (Figures 7 and 9). If the movement of 

auxin is via the assimilate stream, then the translocation of sugars 

should also be enhanced. 

To test this possibility bean seedlings were treated by s:mml­

taneously injecting 0.146 nanomoles of sucrose-14c(UL) and 0.722 nano­

moles of D-glucose-3-3ii(n) into the stem. In the treatments so indica­

ted 3 fg of unlabeled 2,4,5-T was injected along with the two labeled 

sugars. 

The movement of sucrose-14c and glucose-3-4I to the growing point 

is illustrated in Figure 16A. The peak times for both sucrose and 

glucose were delayed by ab rut 2 hours by the addition of 2, 4, 5-T to the 

labeled sugars in the injection mixture. Although the total amount of 
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glucose-label tra.nslocated to the growing points was much less than that 

of sucrose-label, the patterns of translocation of both sugars were 

quite similar. Movement to the growing point of stem-injected sugars 

is not enhanced by 2,4,5-T and thus the previously noted 2,4,5-T trans-

location response is not a generalized mobilization of nutrients in the 

stem with a concomitant movement of 2,4,5-T but rather is specific for 

auxin molecules. 

The pattern of accumulation in the primary leaves (Figure 16B)wa.s 

somewhat different from that in the growing points although the peak 

times in both plant parts were similar and similarly affected by the 

addition of 2, 4, 5-T. Whereas ~ of the sucrose applied moved 

to the growing points, only 1% of the total glucose applied moved to 

the growing points while essentially the same ·amounts of sucrose and 

glucose moved into the primary leaves both in the presence and in the 

absence of 2, 4, 5-T. This may suggest that both sugars reached the pri­

mary leaves via the same pathway (possibly the xylem) while transloca­

tion to the growing points seemed to show a preferential selectivity 

for sucrose. 2,4,5-T apparently delayed the disappearance of 1~ and 

.'.1I from both the primary leaves and the growing points, possibly by 

enhancing the incorporation of the label into a more stable metabolic 

pool. 

The amount of basipetal movement of 1~ · and .'.1I to the roots was 

very small even when compared to growing points and primary leaves 

(Figure 17A) • As in the growing points there seemed to be a preference 

for sucrose in basipetal translocationof label to the roots. 2,4,5-T 

appeared to cause a slight ,increase in the accumulation of label in the 

roots. Analysis of the nutrient solutions in which the plants were 
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growing indicated that there was essentially no accumulation of label 

in the nutrient solution during the ccnrse of the treatment. 

Only 10-1~ of the label applied can be accounted for in the 

growing points, primary leaves, and roots. However, 5CJ1, of the 1lic of 

sucrose and 7afo of the ~ of glucose disappeared from the stem by 2 

hours after treatment (Figure 17B). 2,4,5-T slightly enhanced the 

disappearance of 1lic and ~ from the stem. If the total of 14c and ~ 

recovered from all plant parts is plotted against time (Figure 18) it 

is clear that the label disappeared from the plant very rapidly. The 

pattern of disappearance of label from the total of all plant parts 
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very closely paralleled the pattern of disappearance of label from the 

stem suggesting that a considerable portion of the label is lost due to 

metabolic activities of the stem, probably as 1lico2 and 4f2o evolution •. 

This patte:r;n might be expected on the basis of several papers showing 

that respiration in the stem is quite high (Coulson and Peel, 1968; 

Whittle, 1970). It is interesting to speculate that this rapid loss of 

label in the stem may help explain the log front so often observed in 

translocation studies. This view has been suggested by Whittle (1970) 

on the basis of her work on the translocation of 1lic in Helianthus 

seedlings. She showed that 14c from leaf assimilates accumulated very 

quickly in the alcohol insoluble fractions in the stem during transloca­

tion. In the present experiment the loss of label appears to be due to 

respiration which might reflect a wound reaction brought about by the 

injection of sugars. 

Thus, although auxins modify their own acropetal transport it is 

clear that any effect on sugar transport is minimal. The effect of 

2,4, 5-T on sugars injected into the stem seems to be on the incorpora-
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tion or accumulation of label in the more stable metabolic pools and to 

some extent on disappearance of label from the plant. 

Effect of Cycloheximide on 2,4,5-T Translocation 

Protein synthesis has been shown by different workers to accompany 

the elongation responses to IAA treatment in isolated plant tissue (Key, 

1964; Nooden and Thimann, 1965; Fang and Yu, 1965). Protein and nucleic 

acid synthesis inhibitors have been shown to inhibit both the incorpora­

tion of 14c-labeled amino acids into proteins and the auxin-induced 

elongation of isolated segments (Nooden and Thimann, 1965; Abeles, 

1966). Cycloheximide is a potent inhibitor of protein synthesis (Ellis 

and McDonald, 1970; Viau and Davis, 1970) which has been shown to mark-

edly reduce the auxin-induced elongation responses in etiolated pea 

stem segments (Barkley and Evans, 1970). Sudi (1964) reported that IAA 

and other active auxins will induce the·enzyme which conjugates IAA with 

aspartate in pea stem tissue• Cycloheximide inhibits the conjugation 

of IAA with aspartic acid and markedly increases the free (mei;.hanol 

soluble) IAA in pea stem tissue (Kang, et al., 1971). 

The present series of experiments was conducted to determine the 

influence of a protein inhibitor, cycloheximide, on the translocation 

patte:rns of 2,4,5-T in intact bean seedlings. Cycloheximide (5pg/plant) 

severely depressed basipetal translocation of 2,4,5-T applied at a rate 

of 3 pg/plant (Figure 19). The amounts of 2,4, 5-T accumulated in both 

the roots and nutrient solutions were markedly inhibited by cyclohexi-

mide and the effect is already obvious just one hour after treatment. 

The effect of cycloheximide on acropetal translocation is illustra­

ted in Figure 20. The influence of cycloheximide on accumulation of 
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2,4,5-T in the growing points follows much the same pattern as accumu­

lation of 2,4,5-T in the roots. Cycloheximide is strongly inhibitory 

to accumulation in the growing points and its effects are present at 1 

hour after treatment. Surprisingly, cycloheximide enhanced the accumu­

lation of 2,4,5-T in the primary leaves drastically and maintained 

2, 4, 5-T movement into the leaves 2 hours longer than the control treat.;... 

ment. The effects of cycloheximide on translocation did not becane 

distinct until 2 hours after treatment began. Thus while translocation 

of 2,4,5-T to the roots, nutrient solution and growing points are mark­

edly inhibited by cycloheximide, translocation to the primary leaves 

was increased some .3-fold. The results of the steam girdling experi­

ments which were discussed earlier suggested that translocation to the 

roots and to the growing point were predominently via the phloem while 

translocation to the primary leaves was via the xylem. This suggests 

that auxin translocation through the phloem is dependent on protein 

synthesis. The increase in translocation to the primary leaves in the 

presence of cycloheximide might possibly have been due to the increased 

levels of auxin available for translocation in the xylem in the absence 

of protein synthesis. 

Cycloheximide has been shown to stimulate respiration in red beet 

storage tissue disks at concentrations that nonnally inhibit protein 

synthesis {Ellis and McDonald, 1970). For this reason the response of 

2, 4, 5-T translocation to a series of cycloheximide concentrations was 

tested (Figure 21). A 5(Jfo inhibition of translocation of 2, 4, 5-T 

( 15 y.g/plant) to the growing points was achieved at rates as low as 

O. 5 )lg cycloheximide/plant (Figure 21A) while 2.0 pg cycl.oheximide/ 

plant resulted in a 2-fold increase in translocation to the primary 
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leaves (Figure 21B). The pattern of inhibition of accumulation of 

2,4,5-T in epicotyls was very similar to the pattern of accumulation in 

the growing point suggesting that in these two tissues the effects of 

cycloheximide were very similar. Eschrich ( 1968) has observed that 

insoluble forms of IAA accumulate in the stem· of Vicia !!E!• Extraction 

from the stem and hydrolysis in HCl yielded IAA and aspartic acid 

suggesting that the immobile residue of IAA in stems is IAA-aspartate. 

Kang ( 1971) noted that the fonnation of IAA-aspartate was markedly 

inhibited by cycloheximide also suggesting that accumulation in the 

epicotyls was due to the c cnjugation of IAA and aspartate in the stem. 

It was observed during the course of this experiment that within 2 

hours after treatment strong· nastic respm.ses occurred in the stem above 

the primary leaves in the control plants, i.e., those which had no 

cycloheximide added. Bending of the stem became less pronounced as the 

amount of cycloheximide increased so that at the concentration of 4 

and 8 ~ cycloheximide/plant no bending was apparent suggesting once 

again that protein synthesis is a prerequisite of auxin-induced cell 

elongation. It is interesting in this regard to note that Little and 

Blackman ( 1963) reported that accumulations of 2,4, 5-T as small as 8 

nanograms in the stem of Phas.eolus vulgaris was sufficient to induce 

bending. In the presence of cycloheximide as much as 1500 nanograms of 

2,4,5-T accumulated in the epicotyl without inducing nastic responses 

(Figure 210). 

The response of 2,4,5-T translocation to the roots in the presence 

of cycloheximide was mixed (Figure 21D). Cycloheximide enhanced 2,4, 5-T 

translocation to the roots at· concentrations up to 1 pg cycloheximide 

per plant. At concentrations higher than this there was a gradual in-



crease in the inhibition of 2,4,5-T accumulation in the roots. It 

would appear that at high levels or 2, 4, 5-T ( 15Jl&'plant) basipetal 

translocation was not as sensitive to cycloheximide as at relatively 

low 2,4,5-T concentrations (3 pg/plant). A high concentration of 
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2, 4, 5-T ( 15 pg/plant) appeared to partially overcome the inhibition of 

basipetal translocation by cycloheximide (compare Figure 19). At 3 pg 

2, 4, 5-T/plant cycloheximide at 5 yg/plant caused a 3-fold inhibition 

of 2,4,5-T accumulation in the roots, while at 15 pg 2,4,5-T/plant S pg 

cycloxehimide resulted in only a '3CJfo decrease in translocation to the 

roots. 

Thus it is clear that accumulation·of auxin in all plant parts 

was notably sensitive to cycloheximide and presumably to protein 

synthesis. This may reflect the inhibition of the synthesis of a 

carrier molecule (Osborne and Mullins, 1969) or the inhibition of the 

synthesis of an auxin conjugating enzyme (Kang, 1971) or possibly both. 

In any event it seems clear that protein synthesis plays a vital role 

in auxin translocation in intact bean seedlings. 



CHAPI'ER V 

SUMMARY AND CONCLUSIONS 

Determinations of the translocation pattenis -or stem-injected IAA 

and the synthetic auxins 2, 4-D and 2, 4, 5-T were made in intact bean 

seedlings. It was fol.llld that the time of day at which the auxin was, 

applied was a strong determinant- or the direction or translocation or 

exogenously supplied auxin. For this reason all the experiments 

reported in this study were initiated between 9 A.M. and 11 A.M. 

The translocation of 2, 4-D and 2, 4, 5-T was remaika.bly similar 

throughout a 72-hour period with one notable exception: 2, 4, 5-T mark­

edly enhanced its own acropetal translocation to the growing point. The 

translocation of 2,4,5-T into the nutrient solution continued unimpeded 

throughout 72 hours while net accumulation of 2,4,5-T in the roots 

reached a maximum at 2 hours after treatment after which time levels in 

the roots gradually decreased. Acropetal translocation of 2,4,5-T to 

the primary leaves reached quite high levels after only 2 hours-of 

treatment after which time it very rapidly decreased to barely detect~ 

able levels. Accumulation ·or 2,4,5-T in the growing points continued 

for the first 6 hours of treatment. Levels of 2, 4, 5-T in the growing 

point remained essentially unchanged thereafter. Roughly one-fourth of 

2,4,5-T originally injected into the stem was translocated acropetally 

during the first 6 hours after treatment s-o that during this time trans­

location of 2, 4, 5-T -wa.s essentially all in the acropetal direction.~ 
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Basipetal translocation of 2,4,5-T proceeded in a linear fashion 

throughout a wide range of 2,4,5-T injection levels. Acropetal trans-

location to the growing point was markedly enhanced by increases in 

2,4,5-T treatment at low levels. 

The placement of a steam girdle either above or below the site of 

2,4,5-T injection in the stem resulted in data which suggested that all 

basipetal translocation of 2, 4, 5-T and translocation to the growing 

point was via the phloem, while translocation to the primary leaves 

occurred predominantly in the xylem. 

PCIB, an antiauxin which is a potent inhibitor of polar basipetal 

transport of auxins in isolated stem and coleoptile tissue, had no 

effect on the basipetal translocation of 2,4,5-T to the roots while it 

slightly enhanced accumulation of 2,4,5-T in the nutrient solution. 

Acropetal translocation as evidenced by the accumulation of 2,4,5-T 

in the primary leaves and growing points was increased by relatively 

high levels of PCIB. 

Not only do auxins enhaxe their own acropetal translocation to the 

growing point, but the auxins 2, 4-D and 2, 4,-5-T each modify the trans­

location of the other. 2,4,5-T markedly enhanced the accumulation of 

2, 4-D-t-14c in the growing points of bean seedlings, while 2, 4-D • 

depressed the accumulation of 2, 4, 5-T-t-14c in growing points. 

2, 4, 5-T had relatively little effect on the translocation of 

labeled sugars other than to delay the peak times of acropetal trans-

location of the sugars. 2,4,5-T also caused a slight increase in the 

disappearance of label from the plants. 

The protein synthesis iµhibitor cycloheximide strongly depressed 

the basipetal translocation of 2,4,5-T when simultaneously injected 
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with 2,4,5-T in the stem of bean seedlings. While cycloheximide stimu-

lated the movement of 2,4,5-T into the primary leaves it inhibited the 

accumulation of 2, 4, 5-T in the growing point. Cycloheximide also mark-

edly inhibited the accumulation of 2,4,5-T in the epicotyl of the 

treated plants. 

It would appear from the data presented in this study that there 

are factors within the stems of bean seedlings regulating the distribu-

tion of auxins in the plant. The fact that 2 74,5-T enhanced the acro­

petal translocation of 2,4-D while conversely 2,4-D depressed the 

acropetal movement of 2,4,5-T suggests the presence of two stereo-

specific sites, possibly one for auxins which would activate the trans-

location mechanism and one for auxin-analogs which, when filled would 

depress the translocation mechanism• 

The fact that 2,4,5-T did not stimulate the translocation of sugars 

from the stems suggests that 2, 4, 5-T treatment in :the stem did not in-

crease the rate of flow in the general assimilate stream. It is con-

ceivable that 2,4,5-T enhanced its own rate of loading into the phloem. 

For instance, both steam girdling and cycloheximide inhibited what 

appeared to be the translocation of 2, 4, 5-T in phloem. This suggests 

that there is a relationship between protein synthesis and translocation 

of auxins in the phloem. 

No attempt has been made during the course of this study to .iden­

tify the compound to which the 1lic was attached after the label was 

recovered from the plant. Information of this sort could conceivably 

help provide a better general understanding of the mechanisms involved 

in the regulation of auxin translocation in intact plants. 

Finally, it must be admitted that although there are artificial 
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components in this method of study just as there are in other methods 

of studying the regulation of auxin movements in plants, it is hoped 

that the limitations on this system are less severe than those imposed 

on other current methods and that this inf onnation will provide a better 

general understanding of mechanisms involved in auxin translocation in 

plants. 

Most of the literature pertaining to the movement of auxins in 

plants is restricted to basipetal polar transport in isolated coleop­

tile and stem segments. While translocation of auxins in intact bean 

seedlings is sensitive to many of the same stimuli as auxin transport, 

the response of auxin translocation in intact plants to these stimuli 

is often vastly different from the response of auxin transport in stem 

and coleoptile tissue. For instance acropetal movement of auxins in 

stem and coleoptile segments is considered to be diffusional in nature. 

Acropetal translocation in intact seedlings, on the other hand, occurs 

at velocities exceeding those for strictly diffusional processes. 

Acropetal translocation is also remarkably sensitive to the concentra,;_ 

tion of auxin applied, antiauxins, auxin-auxin interactions and protein 

synthesis inhibitors, as well as disruption of the phloem by girdling. 

Acropetal transport in segments is not affected by any of these factors. 

Basipetal polar transport in isolated segments is strongly inhib­

ited by antiauxins but basipetal translocation of auxins in intact 

plants is unaffected by antiauxins while acropetal translocation is 

markedly enhanced by antiauxins. The data presented ·in this study 

suggest that the patterns and mechanisms illustrated by the study of 

auxin transport do not always represent the mechanisms for auxin move­

ment which function in intact plants. 
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