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CHAPTER I 

INTRODUCTION 

In a general n-way cross classification each observation is 

classified in n ways. The n classifications are referred to as 

factors and we ·suppose that the i-th factor has . t. levels, or in all 
1 

t 1 · t 2 •.. tn combinations (cells) are under consideration. The 

investi~~tor is usually interested in determining the effects of 

changin~ the levels of each factor and also, ·in many cases, the · 

influence that various combinations of the other factors have on thes-e 

effects. · If .the combined effect of changing the level of several 

factors i,s not the ·sum of the ·effects or the individual factors, in-
' 

teraction is. said to exist, and any discussion of the effect of one 

or several of these factors must necessarily ·take into conside.ration 

the influence of the other factors. This, of course, complicates the. 

analysis considerably, but if the factors are going to occur to·gether 

naturally, the -information thus obtained is essential. We generally 

hope, however, that certain of the interactions will prove to be 

negligible and thereby simpUfy our discussion. 

If an equal number of observations are obtained for each arid 

every cell, the problems of estimation and tests of hypotheses con-

cerning various effects and interactions are quite straight forward 



and well documented in many textbooks. (See for example: F. A. 

Graybill (6)1). In the event that the numbers of observations per 

cell are unequal the analysis gets a little more involved, but is 

2 

still accomplished in much the same manner. However, if a number of 

the cells are not represented due to missing observations, no general. 

method of analysis has been put forth and the investigator will 

probably have to write a mathematical model for the observations that 

are present and attempt to solve the corresponding normal equations. 

Because of the missing observations, the system loses much of the 

symmetry present when at least one observation is present in each cell 

and consequently the solutions are considerably more difficult to 

obtain. Moreover, the investigator has no assurance before he attempts 

to find the -solutions that the effects and interactions in which he 

is interested are estimable. The investigator may attempt to estimate 

the missing data or assume that all interaction effects are zero in 

order to simplify the problem. But no procedure can actually recover 

the missing data, and the arbitrary decision that there is no inter

action is obviously undesirable if some alternative exists. 

The purpose of this thesis is to present a relatively simple 

method whereby the investigator can determine beforehand, in a n-way 

cross classification with missing cells, which effects and interactions 

are estimable free of the influence of other effects and interactions.. 

An alternative to the assumption of no interaction is discussed, and 

the degrees of freedom in the analysis of variance table are separated 

into sets associated with confounded and u:riconfdunded effects and 

interactions. 

!Note: refers to Selected Bibliography. 
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To illustrate the failure of a conventional method of partitioning 

the -degrees of freedom (and sum of squares) consider a 33 factorial 

experiment where the factors are designated by A, B, and C. Suppose 

the only design points for which the experimenter was able to get at 

least one observation were 000, 100, 120, -220, lll, 021, 121, 2ll, 

012, 12\Z, ll2, 202 where (i, j, k) indicates the i-th level of 

factor A , j-th level of factor B and k-th level of factor C 

Let us say that the ABC interaction is known to be zero, but we wish 

to investigate the 2 factor interactions. We will attempt to parti

tion the degrees of freedom by combining a series of 2 x 2 tables. 

Ignoring C a two way table for A and B yields 4 degrees 

of freedom associated with the interaction of A and B 

0 

0 x 

A 1 xx 

2 ,X 

B 

1 

x 

xx 

x 

2 

x 

xx 

x 

A.O.V. Source df 

Total 11 

A 2 

B 2 

AB 4 

Remainder 3 

A similar table for A and C results in 4 degrees of freedom 

associated with the AC interaction. 



c A.O.V. Source df 

0 1 2 . Total 11 

0 x x X. A 2 

A 1 xx XX .. xx c 2 
·. 

. ' 
2. x x x AC 4 

Remainder 3 

Finally, a table for B and C yields 1 degree .of freedom for 

the interaction of factors B and C 

c A.O.V. Source df 

' 
1 2 Total 11 

. 
0 xx. xx B 2 

B .1 xx xx c 2 

2 xx xx BC 1 

Remainder ! 6 .... 

If we attempt to combine these tables into a single A.O.V. table 

as is possible in an experiment with no missing data, we see that 

there are not sufficient degrees of freedom remaining, after the A, B, 

and C components are considered, .to have 4 degrees of freedom associ-

ated with AB, 4 with AC , and 1 with BC 

A.O.V. Source d.f. 

Total 11 
A 2 
B 2 
c 2 

AB 4 
AC ? 
BC ? 
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The reason for this is that these three inter.action effects AB, 

AC and BC are confounded with each other. This occU.rs because due to 

the missing cells, it is impossible to measure the failure Of .. the · 

simple effects of factor A to be the same at different levels of 

B without changing levels of C Thus the failure of the simple 

effects of A to be the same at different levels of B is confounded 

with the failure of the simple effects of A to be the same at 

different levels of · C , or the AB interaction is confounded with 

AC . Likewise, AB is confounded with BC . 

Some work has been done by Glilt©rii2C$'" (S) and Williams (4) on 

estimatibility of main effects for the n-way cross classification 

model without interaction, Y = X(3+e , where · Y . is a Mxl vector of 

observations, 
n 

a L: 
i=l 

t. x 1 
1 

n 
x is a M x L: 

i=l 
t. 

1 
matrix of ones and zeros, (3 

vector of unknown parameters (3 •• , i=l,2, ... ,n, 
1) 

is 

j=l,2,.;. ,t. , ·and e is an Mxl vector of errors. This design is 
. 1 

defined to be connected if (3 ° ij-µik 

and for all j ,k=l,2, ... ,ti , jr!k . 

is estimable for all i=l, 2, ... ,.n 

Williams defines a procedure .for· 

determining connectedness for main effects that is ·sufficient but 

not necessary. . Thomas utilizes this procedure to show that if 
k 

a pn factorial is expressed in the form ( L: p.)n then: the total 
. 1 1 1= . 

number of connected plans obtainable by combining·all combinations of 

the . kil factorials is c2k-1)n . 

To illustrate that this procedure is sufficient but not n~cessary 

it is presented as given by Williams below with two examples both 

connected in the sense of the definition. The first example, also 

from Williams, illustrates the procedure and demonstrates that it is 

sufficient while the second example shows it is not necessary. To 
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simplify the discussion two n-tuples are defined to be nearly identical 

if the n-tuples are equal component-wise except for orie component. 

It is required in the procedure that the- design points corresponding 

to occupied cells be such that the i-th component takes .on all possible 

values 1,2,.:.,ti over the set of all n-tuples. Otherwise parameters 

associated with missing values are to be eliminated from the original 

model. 

Procedure: 

1. Construct a table of all occupied cells expressing each 

occupied cell as an n-tuple. If a point is repeated, 

list it .only one~. 

2. Select any point from the table in (1) and find all. 

nearly identical points for the n-tuple selected. -

Eliminate each point from the table as it is selected. 

3. Select all nearly identical points which remain in the 

table for each n-tuple selected in (2). Again eliminate 

each point from the table as it is selected. 

4. Repeat step (3) for each n-tuple selected in step (3). 

5. Continue this procedure until there are no points 

remaining in the table or until there is no n-tuple in 

the table which is nearly identical to any point selec

ted in steps (2)~(4). 

6. If there are points remaining in the table after step 

(5) the -original set of design points is not connected. 

The n-tuples which are nearly identical form a connected 

subset and may be analyzed as a reduced set of design 

points where the parameters whose subscripts do not -
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appear in the subset obtained from step (5) may be 

eliminated from the original model. The remaining 

points may be.divided into connected subsets 'by the· 

above-procedure so that each may be analyzed as a 

reduced set of design points. 

Example 1.1: Consider Table I for a three..:way cross classification 

where one or more observations are ·given for the cells containing X 

and no observatiOns are contained in the.other cells. 

Step 1: All points corresponding to cells in Table I which 

contain observations are listed in Table II. 

Step 2: Select any point in Table II, say (1,3,4), and take 

all points which are nearly identical to (f,3,4). 

These points are (1,3,2), (1,3,1), (l,l,4) and (2,3,4). 

Eliminate each of these points. from Table II. 

TABLE I 

CELLS-FOR THREE-WAY CROSS CLASSIFICATION DATA 

First Second' Third 
Class:i,fication. Cla~sificat:i,on Classification 

.. .. 1 2 3 4 . 
1 .. x x x 

1 '.:2 x x 
3 -x x x 

', 

1 x .... x .. 
2 2 .. ·X x x . . 

3 ·X x 
-· .. -· .. .'. . .. 
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TABLE II 

POINTS CORRESPONDING TO OCCUPIED CELLS IN TABLE I 

(1,1·,2) (1,3;1) (2,2,1) 

(l,1,3) (1,3,2) (2,2,3) 

(1, 1, 4} (1,3,4) (2,2,4). 

(1,2;1}. (2' l ~-2) (2,3,1) 

(1,2,2} (2,1,4) (2,3,4) 

Step 3: For each of the points selected in step 2, it is necessary 

to -find all nearly identical points remaining in Table 

II. The points which are. nearly identical to a parti-

cular point selected in step 2 are as follows: 

Point fr gm 
_.·step. 2 (1,3,2) (1,3,1) (1,1,4) (2' 3,.4 )- . 

Nearly (1,1,2) (1,2,1) (1,1,3) (2,2,4) 
identical 

points (l,2,2) (2,3,1) (2,1,4) 

Step 4: For each of the ·points selected in step 3, check the 

remaining points in Table II. The points which are 

nearly-identical to a particular point selected in 

step 3 are: 

Point from 
step3 

Nearly 
identical 

points 

(1, 1,.2} 

(2,1,2) 

.(1,2,~1) (2,2,4) 

cz,2,1) (2,2,3} 

Step 5: Since each point was eliminated as it was selected 

from Table II, there are no points remaining in Table · 

II so the set of design points is connected. The vector 



of unknown parameters is S' = (Sll' ·s12, BzL• ·S 22 ' 

S;Zj, S31, S32, s33 , s34). The set of points may now 

be analyzed as a three_;way classification with· 

t 1. = 2 · t · = -3 and t 3 = · 4 . ' . 2 

If Table II had points remaining one could apply steps 2-5 to 

the remaining points and obtain other connected subsets which·could 

be analyzed as reduced designs. It should be noted that the points 

obtained first would also correspond to a reduced design and could be 

analyzed as sucli. 

Example 1.2: Using:the same model with no interaction say, that 

the points corresponding to occupied cells were the following subset 

of Table II of example 1.1: 

TABLE IIJ 

POINTS CORRESPONDING TO OCCUPIED CELLS 

(1,2;1) (1,1,3) 

(2,3,1) (2,2;3) 

(2-,l,2) (1,3,4} 

(1,2;2) (2,2;4) 

The points (2,3,1), (1,1,3), (2,1,2) and (l,3,4) in Tabie III are not 

nearly identical to any other point of the· set, so according to 

Williams' procedure the design is not connected. Continuing with the 

procedure given by Williams, only two connected subsets can be found 

and they are \(1,2,1}, (1,2;2)} and {(2,2,3), (2,2,4)} . Williams 

9 
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then suggests we analyze each of these sets -as a reduced set of 

design points eliminating all other parameters from the original model. · 

Thus according to hfs·procedure the only estimable differences are 

However, if we designate the observation corresponding to the 

design point· (i,j ,k} by xijk , then using the observations as·sociated 

with the design points of Table· III we get: 

E Cx121 - x231 + x134 - x224}"' 2 Call - S12J 

E (x121 - x231 + x.!>.24 .- x134)=2 CS22. - S2y 

E Cx122 - xil3 + ·x223 - X212J=Z (S22 - . S21) 

E (X12i - x231 + X224 - X134 - X122 + ·xil3 - X223 + ·x212) = 821-823 

E(X121 - Xi22l = ·831 - S32 

E(x223 - X224) = S33 - S34 

E(xll3 + X223 - Xl22 - X212)= 2 ( S33 - S3~ 

E(xl21 + x23i - X224 - X134)= 2 C831 - S34) 

E(x223 + x~l2 - x224 - x224 - xir3 + X122)=2(S32 - S34) 

. E(x113 + X223 - Xl21 - X212 - Xl21 + X122)=2(S33 - S31) 

Thus all differences- S· · - S·k .1J 1 for i=l,2,3 and j ,k=l,2, ... ,ti 

j;i!k are estimable; the design is connected and may be analyzed .as 

a thre~-way .classification with t 1 = 2 , tz = 3 and t 3 = 4 . In 

other examples, such as a .!. replication .of a 23 . factorial e.xperi-
2 

ment, no two des.ign points are near.ly identical and yet, .of course, 

all differences are estimable and the design is connected in the 

absence .of interaction. 

This thesis presents a procedure .. for determining not only which 

simple .effects are estimable, but also which interactions are esti-

mable in a .general .n-way cross classification des.ign with interaction 
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·and missing .cells. The criteria of the procedure are .necessary and 

... s.ufficient .for .estimability and .can .be .modified· .for .use in situations 

. whe.re .certain .of the interactions are known .to be .zero.·· The procedure 

giv.es easily obtainable .estimates .. of the .estimable .effects and inter-

. ·actions, although· in· general they .do· .not make· .use .. of all the observa-

. tions and hence· may· .not· be the best· estimates· available. ·The estim~ted 

· variances. of these· estimates are .readily obtainable; as well as a 

partitioning of the· .degrees .of freedom associated with each .effect 

and interaction in an analysis of variance table.into .confounded and 

uncanfounded· .sets. 

• 



CHAPTER II 

·. ESTIMABILITY OF EFFECTS AND INTERACTIONS 

. · Introduction 

Throughout this chapter .we will .be .considering an .n'"'way .cross

classification .design with .interaction where,. either by .des.ign .or 

circumstance, a number of the cells. have .no observations ... It will .be 

. unders.tood that if there are no observations .for some level .of a 

factor,. that .level will .be deleted from the original model. Similarly 

if there are no observations .for any level .of some factor the factor 

will .be eliminated from the model. While it is usually not practical 

to consider.designs for very large values .of n , the treatment in 

·this chaptex will .be entirely general . 

. Definitions, Notation, and Preliminary .Results 

. .To facilitate the ensuing discussion, a brief description .of the 

notation and definitions .to .be used is presented first. T.he n 

factors .of the cross-classification design will.be designated .by 

integers · .i=l ,2, ... ,n and· ai will denote a level .of factor i 

ai = 0, 1, ... ,.ti-1 . Each combination .of levels of factors· is then 

· · associated with an n-'tuple (al' a2 , .... , ~)vct::alled a design point 

~p;r.esenting lev·e,l ·. a1 ·of fac•tor one, az of fact0r two,. .etc, Whenever 

.convenient the n .component vector (a1 , ... ,an) will .be designated 

. by .!(n) . We will let X be the set .of all observations obtained 



and D be the cor.responding .set .of distinct points. for .all o.bserva
x 

tio.ns in X ·We can define a.relation on D as f o.llows : x 

• .Definition 2 .J.: For all points . a(n} = (a1 , a 2 , ... , an} , 

in D . , a (n} R.. b (n) 
x - 1 -

if and only .if 

a.=b ... for. j~i . We will say that the two points are R1. , (read 
. J ' J 

"related in class i"), whenever this definition is satisfied, 

13 

The above definition is similar .to Williams', definition .of "near.ly 

identical" discussed in the first chapter, but in .addition allows a 

.point .to .be related to itself, and also. .specifies in which .component 

two points differ w:hen they are .equal .component-'wise except .for one 

component. 

It is. easily s.een that this relation .is an .equivalence .relation 

.and thus partitions the .set .of .des.ign .points · Dx · · into dis.joint subsets 

each .containing either a single point .or. .points .that differ .only .in 

the ith .coordinate. To distinguish among the .equivalence class.es .we 

will let· Ri(a1 , ... ,ai-l' *, ai+l•····~) be the class .of .points 

that are · Ri and .for which the jth .coordinate .is aj ,. J=l, 2, ... ,i-1, 

i+l, ..... ,n 

For example, in the subset D= ( (000), (001},. (002},. (010), (020), 

(021}, (110), (112)} of the design .points. .of a · 33 . factorial arrangement 

.. of treatment combinations, we have: 

R3 (00*.}= ( (000);(001).;(002} ) 

R3 (0l*.)=( (010) ) 

R3 (02*}=( (020}, (021} ) 

R3 (11*)=( (110}, (112) ) 
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Similarly we could partition D · into disjoint s.ubsets .us.ing 

either · R1 . or R2 . 

. The interaction, in the .model assumed, .. of the factors. i 1,i2, .•.. ik 

· which .is as.sociated with the levels a. , .... , ai . will .be designated 
l.1 . k 

· .by µ(!_(k) ;. ~(i (k))). = µ (i1, i 2 , ... , i~ ; ai
1

, a121,' .... , ai~ . and .the 

.. effect .of 1eve 1 ai .. of ·the ith .factor ·~·will be µ (i; ai) . An observa-

tion as.sociated with th~ design point . ~(n) will be .denoted .by 

xa(n) and·. x(!_(k) ;. ~(k)). = x(il' i2' ... ' ik; al' a2, .... ' ak) will 

represent the mean .of all observations at level .~ .of factor i 1 , 

level a2 .of factor i 2, ••• , level .~ .of factor· ik . 

Using the .notation above, an n-way cross classification model 

with interaction and one observation .per treatment combination may 

be written: 

n 
. x . = 

·. ~Cn) 
E E 

.k=O ·. l:_(k).e:S 
µ(.!_(k);~(i(k})) + e 

· ~Cn) 

a. = .0 ,.1, ... , t; -1 
1 . 1 

where the .second .summation is understood .to be · µ when .k=O. , S · is 

the .set .of all .vectors . .!_(k) where i. 
J 

is taken from 1,2, ... ,n 

with· i 1. < .i2 < i 3 ... < ik , and the errors e are uncorrelated 
·. ~(n) 

. and all have the same mean 0 and variance cr2 

For example with .N=3 the model would be: 

+ µ(l,2;a 1 ,a2) + µ(l,3;a 1,a3) + µ(2,3;a 2,a3) 

+ µ(1,2,3;a 1,a2,a3). +. e a a 
al~ 21··'3 



The above notation is somewhat non-'standard, but is adopted to 

permit a .completely .general discussion .of an h-'way .classification. 

However, since the examples. of this thesis involve only small values 

.of·. n , standard notation will be used in all examples. · Thus the 

model corresponding to the case above for. h=3 · will be: 

Y · ·k = .µ+a. .. +f3 .+J'k+ (a.S}iJ·+ (a.:PJ ··k· .+.(Sf} .. k+ (a.srJ · .. k+e · · k .LJ 1 . J · · 1 J .1J .1] 

.i=l,2, ... ,tl . .j=l,.2, .... ,t2 ·.k=.l,2, .... ,t3 

· The unknown constants µ . a.1 , 13 j , and 

and additive treatment .constants res.pectively, 

fk are called themean 

. (a.S}. .. , (a.:I'}. k and 
.1J 1 

(13f).j k are called 2 factor interaction terms and . (a.Sf}.ij k · 

3 factor interaction term .. The .sets .of paramete.rs a.i , .sj 

is the 

and pk 

15 

will be associated with factors denoted .by · A, B · and· C . respectively. 

· The concept .of interaction will be generalized .by .defining a 

component of interaction as in Mann(3) . 

.Definition .2 .2: Any ·linear form 

l: Q, x{l:_(k).;~(k)) 
~(k) . ~(k) 

which .is not identically zero will be .termed a component .of the 

· interaction between the. factors · i 1 ,.i2 , ... ,ik · .if·. l: · Q, = 0 . for 
a. ; ' . .e_(~} 

. 1 
.i=l,2, ... ,k and for all choices a1 , ... ,ai-·l,ai+l'''''ak. 

It is easily seen, and will be demonstrated .in Theorem 2.1, that 

.if all a. . factor interaction effects are zero for a. > k then the 

expected value .of a linear .form satisfying D.efinition 2. 2 is a 

linear combination 

. l: Q, µ (l:_(k} ;~(k)) 
~(k) . '~(k) 
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Thus the failure .of a component of interaction to be zero is a measure 

.. of interaction .of factors i 1 , i 2 , ... , ik . over the levels 

· a.. , a1. , .•.. , 
. ~l 2 

a. . for which · ,Q,_ (k) 
1-k ~-

is not .zero in the component. 

Since a 'main .effect or interaction is always confounded with 

higher order interactions, throughout this thesis, to avoid repeated 

.. reference to this situation, higher order interactions will be .con-

· sidered .to be zero whenever the estimability .of a particular main 

. ~ffect or interaction is being discussed . 

.Definition 2. 3: The interaction .effect .of factors i 1 , i 2 , ... , ik . will 

be called partially estimable .if there exists a component .of inter-

action for the factors . 

. If there is at least one observation .per cell and we consider the 

set of "truen .cell means .of the .conceptual population .of yields for 
k 

each cell, then there are II (t. -1) linearly independent functions 
.j=l lj 

. of the "true" .cell means that can be used to .measure a' k factor 

interaction . The above .definition .requi~es'.that at least one .of 

these functions be estimable. · Throughout the remainder of this 

thesis, a partially .estimable interaction will be .referred .to simply 

as .estimable . 

.Definition 2 .4: .If the interaction .effect .of classes · i 1 , i 2 , ... , ik 

is. partially estimable, the associated set of design .points will be 

.referred to as a partially connected set with respect to this k 

factor interaction. As in definition 2. 3, the word partially will be 

dropped throughout the remainder .of this. thesis. 

Let us now: consider the problem .of determining whether or not a 

particular main .effect or interaction is estimable. We .begin .by 

.considering a few: preliminary results necessary to establish a criterion 
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for the estimability. .of the highest order interaction in an n..:way 

cross classification design. 

· .. Lemma .2 •. 1 : · .If there exists a .nonempty subset . Dx of the .design 

.points .such that .for each . ~(n) in Dx there .is a . E:_(n) · in ·. Dx . such 

that . a.ib. and . ~(n) R. b (n) for each .i=l, 2, ... ,n , then there 
l l l -

is a nonempty subset· Dx' of Dx such that for each. ~(n) in. Dx!, 

and each . i= 1, 2, ... , n . there is exactly one . E:_ (n) 

that a.ib. and .. _a(n}. R1· .. _b(n) . 
l ·. l 

·in D , , such 
x 

.Proof: For a fixed i , say without loss. of generality .i=l , R1 

determines a partition .of D 
x 

The .hypothesis states that all .of 

the subsets .of this partition contain at .least two .design .points and 

some may .contain more than .two. · .. By. selecting a combination .of any two 

.des.ign points from each subs.et of this partition we can construct a 

.subset· Dx{i)~Dx. such that for each. ~(n) in Dx(l) the.re is 

exactly one . ~(n) in Dx(l) such that a1~b 1 and·. ~{n} R1 ~(n) 

.We can .now partition Dx(l) . using · R2 and in the same manner. select 

from each subset .of this partition .of· Dx(l) a .combination .of 

.exactly two .design points, thus .forming a .subset · o1 c. D ( ) 
x(2f x 1 

that .for each : ~(n) in o 1 there is exactly one .b (n) in 
x(2) 

such 

ol 
x(2) 

.such that alb 2 and . ~(n) R2 E:_(n) . .Of .course .if any subset .of 

the partition .of · D ( ) x 1 .by R2 contains only one .point then that 

point will not .be found in ol 
x(2) 

Elimination .of such a point, 

however, will pr.oduce a set .of points for which some point is .not R1 

to exactly one different point. .We therefore must partition o1 ( ) .x 2 

· .by·. R1 .again and eliminate all points that occur alone in .some 

subset .of the partition. Denote this subset .of ol 
x(.2) 

b ·02 .y 
x (2) 



2 
:We now must partition Dx(Zj by .. R2 again and eliminate.: those points 

that occur again thus forming a set · n3 ... '.Continue ·this ·.process 
: x(2} 

• I,;' ;i 

until ·. Di . - ·. i+l 
Dx(2) (s.ay) Then .,for :al L ~(n) in Dx(2) - Dx(2} = 

· x(2) 

there exists exactly: one. !?_(n) ·in· Dx(2) such that· a.fb. · and . 1. 1 

.. a(n) R. b(n) for i=l,2 . We now continue with the above pro.cedure 
- 1-

using .R3,R4, •.• ,Rn . until we obtain a .set · D ( ) that remains ·. x n 

invariant upon partitioning by R1 ,R2 , ... ,~ and eliminating all 
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points that occur alone .in some subset .of some partition. Thus D · x(n) 

has ·the property that each·. Ri =1,2, ... ,n . partitions it into disjoint 

subsets each .containing exactly two .points. · .If we can obtain a 

· .nonempty set · Dx(n) · .by this process then the .lemma ·is .established, 

since by the constructi.on .of Dx (n) · the.re exists. exactly: one . Q_(n) 

· in· Dx(n) such that aifbi · and. ~(n) \· Q_(n) · .i=l,2, .. . ,n . Suppose. 

then that the lemma .is. .false, that is · Dx (n} =. 0 ·. for all Dx (n) 

constructed in the manner described above. · .We have for all sets 

Dx(l), Dx(Z), ... , .Dx(n) constructed as above 

0x(n) ~ 0x(n-'l) s · · · ~ 0x(l) s Dx 

and hence 

where U Dx(l) . refers .to the union over all subsets .of·. Dx · that can 

· be .constructed .as above taking two points .at a time from ·each .of the 

·. subsets. .of the partition .of· Dx · .by· R1 , UDx(Z) · is the union over 

· .all sub.s.etk that .can .be .constructed .as above from some set in 

UDx(l} , etc. · .Let · ~(n) · be a .point in Dx · and suppose·. ~(n) is 

.not in .some· Dx(l) in UDx(.l) . Then there is not a·. Q_(n) · in· Dx 
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such that . ~(n) R1 _!::(n} , but this contradicts the definition .of· Dx . 

Thus . a"(n}EDx implies ~ (n) E .Upx(.l) and hence UD_x(l)' = Dx 

Similarly .. by induction we can establish that V~x (l) = Dx for 

i= l, 2, ... , n . Now if · Dx (n) = 0 for all Ox (n) then UDx (n) =0=Dx 

which contradicts the definition of · Dx . Thus there exists a 

nonempty D:x(n) · and the lemma is established with Dx, = Dx(n) 

We note that for each i=l,2, ... ,n , R. is now a ·permutation . l 

of the set of design points· Ox' of Lemma 2.1 which assigns to each 

point of· Dx' the unique point of· Dx' that differs only in the 

· ith coordinate. 

We will use the usual notation 11 0 11 for composition of functions 

to denote one mapping followed by another. 

~(i!1~11,~2,,~§..:.. We will say· £.(n) ·is acce.5sible from· ~(n) if 

out of 

o R. . l 
2 

o .. ; o Ri · b(n) 
k-

1,2,3, ... ,n. Since each 

for some choice of· i 1,i2, ... ,ik 

R. 
l 

is an equivalence relation, 

if _!::(n) is accessible from ~(n) then ~(n) is also accessible 

from _!::(n) and we will say that ~(n) and · _!::(n) communicate. 

Communication is also an equivalence relation and therefore will 

partition a set of design points into disjoint classes of communicating 

points. 

Estimation of the n-'Factor Interaction 

·Theorem 2 .1: · In an n-'way cross..:.classification with interaction and 

missing cells; the n factor interaction effect is ·estimable if and only 

if ·there exists a non-'empty subset· Dx of the design points such that 

for each ~(n) · in · Dx there exists a· _!::(n) in · Dx · such ·that · a/bi 

··and· ~(n} Ri _!::(n) for each i=l,2, ... ,n. 



·Proof: · If ·there exists a ·nonempty ·subset · .Dx of the design points 

such ·that for each· a(n) · in · Dx there is a · £.(n) in Dx such that 

a/bi and· ~(n} Ri b(n) for i=l,2, ... ,n then by temma 2.1 there 

is a subset .Dxr of Dx such that for ·each ~(n) in D x' and each 
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i=l, 2, ... ,n there is exactly one · £.(n) in DX, such that· a.ib. · and 
1 . 1 

~(n) R. b(n) .. We can then partition D · by the equiva~ence relation 
1 - x' 

C?f communication into co:rmnunicating classes. Let a* (n) be any ·fixed 

point in Dx' and let C be the set of points of· Ox' that 

communicate with a*(n) 

We now define a linear contrast of ·the observations corresponding 

to points in C by letting R,~(n) = ·++ · if ~(n) in C communicates 

· with a* (n) ·through ·an ·even number o"f' permutations · .Ri · ;R{ , ... ,Ri 
1 2 2r. 

·and let J/,a(n) = -1 if ~(n) in C communicates with· a*(n) through 

an odd ·number of permutations .R. ,R. , ... ,R. 
1 1 1 2 1 2r+l 

Thus if· ~(n} Ri 

E_(n) · then ,Q,~(n) = ..,a,b (n) and hence E !a(n) = 0 for i=l,2, ... ,n 
a. -

·and all choices· .a1 , ... ,.a1 .. 1·,a. 1 , ... ,a 1 To make this a ·linear 
- · 1+ n 

function of all the ·observations ·simply let · .fl -O · if _a(n) i.s ·not ~(n)-

in · C Then: 

E' E !~(n) X!(n) 
~(n) ·n 

= E ••• E R. (h) E · E µ(!_(<:};~(:i;(a})) 
a1 an !i · c;t=O l, , ... ,n 

n-1 
= E E E' ••• E . E E~ ,Q,a(n)µ(i(o:J;::Ci(o:})) 
· o:=O · 1;2, ... ,n-1 · ai .ai .ai ai -

· 1 · a · a+l n 

= 

+ E ••• E · JI, . ·· .;.:µ (i (n};a(i (n})) 
. a ~(n) - --

.al · n 

Ik.l ·~ 
E 

o:=O 1,2, ... ,n-'lai 
1 

••• E 
a. 

1 
0: 

R.a(n)µ(.!_(o:J;·~(i_(o:}}}E .•. E. i_a(n) 
- .a1· · a. . 1 

· o:+ 1 n 



'; 

= I: .•• I: R, . µ (!_(n) ;~ (i (n))) 
.al a 

. !_(n) 
·n 

since I: I: R,!_(n) = 0 
a. a· . 1 1 

a+l n 

·Thus by Definition 2. 3 the interaction of factors 1, 2, ... , n · is 

estimable. 

· To prove that ·the conditions of the theorem are sufficient, 

suppose ·there doe.s not exist a .subset D of the design points 
x 

satisfying the condition that for every a(n}e::D , and for each .- x 

i=l,2, ... ,n, there exists £.(n)a-1\ such that· !_(n}.Ri .Q_(n). Then 

for every subset Dx of the design points there is some· !.*(n) in 

Ox such that for some· i=l,2, ... ,n, say i=~, there is no E_(n) 

in Dx with ~*(n) Rk £.*(n) . Thus for any linear form 

I: :v.,~(n) x~(n) 
~(n) 

the expected ·value will involve at the very least 
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Thus, there can be no linear unbiased estimate for an n factor :inter-

action, and hence, by Definition 2. 3 the n factor interaction is 

not estimable. 

· It should be noted that if Theorem 2 .1 were applied to a problem 

of estimation, only a portion of the observations and one observation 

per design point would be employed in the estimator. The following 

corallart considers the more general case. 

. . 



Corollary 2.1 : If there exists a set of design points· Dx satisfying 

· the conditions of Theorem 2 .1, perhaps with repeated ·observations on 

each design point; then there exists an independent component of 

interaction, utilizing all of the observations on each design point 

of the component, for each independent communicati'll~ class of design 

points constructed from D 
x as in the proof of The1:»rem 2. 1 . 

Lemma 2,1 assures us that the set D has a subset D , in x x1 

which each point is R. 
J. 

to exactly one other point for.· · i=l; 2,.,. ,n , . 

We can then partition· Dx' · into disjoint communicating classes 
1 

c. 
1 

and define a linear contrast on each Ci as in the proof of Theorem 

2.1 with the modification that instead of letting ~!.(n} = + 1 we 

will let Sl = +l if there are m observations on the design 
~:,(n) m 

point a(n). In effect we are replacing observations on the same 

treatment combination by the mean x(i:_(n};~(n)) of these observations. 
m 

Now ~ ~~(n) = +l so if we denote this sum by J/,~(n) then as in 

Theorem 2.1 we have: 

E( E Sl X ) = 
a(n) ~(n) ~(n) 

a (x) e:C. 
- 1 

E( E Sl~(x)X(i:_(n);~(n)) = 
a(n) 

a(x)e:C. 
- 1 

E Sl~(n)µ(i:_(n);~(n)) 
a(n) -

a(x) e:C. 
- 1 

Now we can select a point .!2_(n)e:Dx such that · b (n) ¢c. 
- 1 

for any 

i We may then repeat the argument of Lemma 2.1 starting with .!2_(n) 

and another point R. 
1 

to it, and thus obtain another set Dx' having 
2 



the same properties as · D.{ . · This is always possible since we are 

free to select the first pair of points, after which succeeding 
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points must be selected so as to produce a set ·satisfying the require-

ment that each point is · Ri to exactly one different point of the 

set for i=l,2, ... ,n Having gotten · Dx, we may now proceed to 
2 

define a contrast of the associated observations in exactly the same 

· manner as was done for · Dx 1 • · We may continue with thi.s procedure 
1 

· until all points of· Dx · have appeared in some · Dx, All contrasts 
i 

obtained will be linearly independent since each involves at least 

one design point that is involved in no other constrast. · Of course, 
. 2 
L 

for any constrast · L ·(say), the quantity is then 

a component of the sum of squares for the 
l:t2 
: a1:··•ax · n factor 

· interaction, in the analysis of variance, with one degree of freedom. 

The number of.degrees of freedom. for then facfo~·interaction 

(unconfounded} will be equal to the number of linearly independent 

communicating sets of design points that can be obtained by the process 

above and the mean square for this interaction will be the total of 

· the sums of squares of the contrasts divided by the degrees of 

freedom if the contrasts are orthogonal. 

The following example illustrates the construction procedures 

discussed in the statements and proofs of ~emma 2.1 and rheorem 2.1. 

Suppose we had a· 4x4x3 design and at least one observation was 

available for each of the design points: 

000 010~ . '001 . 021 '012 022 ,032 ~110. ,120 131 ll2 122 

200 220 201 221 242 330 . ·340 331 341 322 332 342 

430 431 4ll 440 441 402 432 442 320 130 
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TABLE IV 

GRAPHICA~ RpPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE 
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· .·Jt ·is ·obvious from ·the ·figure ·above that there exists a set of 
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-

J4~ -
..:ix.:.· 

~42 

~2 

·points · D . · such that each point ·in · D . . ~ ' . . x' ·has ~exactly ·one ·other ·point 

in D · that.-is · R. · ·to ·it ·in ·each of ·the ·three mutually orthogonal x' · 1 . · · 

directions ·(see ·traced ·path).· In ·addition· all of the ·points in· D . • . . x' 

·communicate ·with each other. · To find this set by a ·sorting procedure 

· we ·first partition ·the set of design ·points by · R1, R2, and R3 . 

I 



000 200 000 

010 110 110 

120 220 320 200 

130 330 430 320 

340 440 430 

001 201 001 

. 411 131 

021 221 201 

131 331 431 331 

341 441 411 

120 130 

220 

330 340 

440 

021 

221 

341 

431 441 

000 

010 

021 

032 

110 

130 
~ .....__ 

200 

220 

242 

320 

012 

022 

112 

131 

201 

221 

322 

402 012 022 032 330 331 '332 

012 112 112 122 340 341 342 

022 122 322 242 402 

032 332 432 322 332 342 411 . 

242 342 442 402 432 442 430 431 432 

440 441 442 

Next, all points that are alone in some set of some partition 

are eliminated in all partitions. These points (singly underlined 

above) are 411, 131, 402, 032 and 242. As a result some new points 

are now left alone in some set of a partition. These points (In 

this example only one point 130 doubly underlined above) are now 

simHiarly eliminated from all partitions. This process is continued 

until no set in any partition contains a single point. · The resultipg 

set of points is the set Dx referred to in the hypothesis of Lemma 

2.1 and Theorem 2.1. If this set is empty, then by Theorem 2.1 the 

three factor interaction is not estimable. The set of points 
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D for this example is listed below partitioned by Rl' R2, and R3 . 
x 

Rl R2 R 
3 

000 200 000 010 000 001 

010 llO llO 120 010 012 

120 220 320 200 220 021 022 

330 430 320 330 340 llO ll2 

340 440 430 440 120 122 

001 201 001 021 200 201 

021 221 201 221 220 221 

331 431 331 341 330 331 332 

341 441 431 441 340 341 342 

012 ll2 012 022 430 431 432 

022 122 322 ll2 122 440 441 442 

332 432 322 332 342 320 322 -
342 442 432 442 

We now begin to eliminate all points except two from every set 

containing more than two points. As a result of the elimination of 

a point other points which would then be left alone in some set of 

some partition would also be eliminated. For example the elimination 

of 320 (singly underlined above} necessitates the elimination of 322 

(doubly underlined). Elimination of 332 (singly underlined) results 

in the elimination of 342 and 432 (doubly underlined) which in turn 

result in the elimination of 442 (triply underlined). The remaining 

points (partitioned below} are now such that each set in the partitions 

contains exactly two points (each point is R. 
1 
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to exactly one other point i=l,2,3). This is the set of points D I ' x 

ref erred to in Lemma 2.1 and Theorem 2.1. 

Rl R2 R3 

000 . ·200 000 010 . 000 . 001 

010 llO llO 120 . 010 012 

120 220 200 220 . 021 . ·022 

001 201 . ·001 . 021 llO 112 

021 221 201 ·221 200 ·201 

012 112 . 012 . ·022 220 221 

. 022 122 ll2 122 120 122 
-----------------------------------------------------------------------
330 430 330 340 330 331 

340 440 430 440 340 341 

331 431 331 341 430 431 

341 441 431 441 440 441 

We now..;note that certain points of the remaining set communicate 

with each other (e.g. 000 R1° R2° R3 221) while others do not (e.g. 

000 does not communicate with 330). ·We then partition this set into 

disJoint communicating subclasses; 

L = · (000 010 · llO 120 200 220 · 001 · ·021 · ·201 220 

012 ·022 112 122} and 

M = (330 340 430 440 · 331 · 341 · 431 441) 

We can also get ·different communicating sets; 

N = (330 340 ·430 440 332 342 432 · 442) 

0 = (331 341 431 441 332 342 432 . 442) 

by eliminating a different ·choice in the process of getting a set of 



points Dx' such that each point in - Dx, - is Ri , i=l,2,3 to 

exactly one other point of Dx' But 0 = (MUN)- (M.rJ N) so 0 is 

not independent of sets - M and N • Sets L, M and N however ·are 

independent of each other and by the contrast defined in Theorem 2.1 

·yield three independent estimates of three factor interaction. In 

addition the squares of these, contrasts with the appropriate divisors 

will account for 3 degrees of freedom for·the ABC ·interaction in an 

analysis of variance table. 

Sufficient Conditions for the Estimability 

of an a Factor Interaction 

Theorem 2.2: In an n-way cross classification of cells, if a model 

- is assumed in which all higher order interaction effects involving 

factors i 1 , ... ,ia are zero, the a factor interaction of factors 

i 1 , •. 1 ,ia - is estimable if for some combination - at ) •.. ; ,a.-~ -(fixed) 
a;:;.,1 1 n 

of the ___ 1 eve ls of factors - ia+l • ... ,in there ·exists a subset - Ox* 

of the design points such that for·each 

ai =~/ , ... , ai =a~ - and there ·is a 
a+l a+l n 1 n 

a.~Jn) 

bi_(n) 

ai#bi and ai_(n) Ri bi_(n) for i=l,2, ... ,a. 

in 

Proof: Since we can rearrange the order of factors, 

without loss of generality, that il, ... ,ia are the 

1,2, ... ,a . If we ignore for the moment the factors 

Dx* such that 

let us ·assume, 

first factors 
.. ~· 

ci+l, ... ,n , 
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then we know by Theorem 2_ .1 that the interaction of factors 1, 2, ... , a 

can be estimated free of the lower order effects and interactions of 

these factors if and only if there exists a subset Dx of the design 

points such that for each !!;_(n) in DX and each i=l,2, ... ,a there 

is a b (n) in Dx such that a/bi arid !!;_(n) Ri £_(n) We 



established in Lemma._ 2 .1 that if such a set · D existed we could 
x 

·find a subset · D · such ·that for each· ·_a(n) · ·in ' x t Dx' there is 

· ·exactly ·one · ~_(n) ··in· D I such that for i=l,2, ... ,a , •· a.~b. 
x 1 1 

~(n) R. b (n) , and that D 
x' 

could be partitioned into disjoint 
]. .... 

communicating subsets c. . On each c. we were able to define 
1 1 

contrast ·that ·gave us an estimate of the interaction of factors 

1,2, ... ,a free of all main effects and lower ·order ·interactions 

of these factors. 

and 

a 

In such a contrast if ·the coordinates· aa+l•····~ ·are the same 

for all design points involved, then the expected value of this, 

contrast ·will not involve any main effects and ·interactions of 
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factors · a+l, .. .- ,n , since by definition E R. 
a(n) a ..... 

= 0, for· i=l,2, .. ;,n 

For ·any interaction effect ·of a·combination1 of k <a factors ·out 

of 1,2, ... ,a, say.i1, .. .-,.ik, with a combination of· p :s: a-k ·factors 

out of a+l, .•. ,n , say· .ik+l' •.. ·,ik+p , ·the expected ·value of our 

linear ·combination yields ·the following for this interaction effect: 

= 

= 

· E ••• Et ( ';.. ,J.l(i , ... ,ik,ik+l' ... ,ik+p;a. , ..• ,ai ,ai ,at ) 
a a ~ n_, · 1 1 1 k k+l k+p 
. 1 . n 

{E 
a. 
11 

0 

R. 1 
~(nlJ 

since at least one of the factors 1,2, ... ,a is among· ik+p+l' ... ,in 

and the sum of the coefficients over this factor ·is zero by the 

definition of our contrast. 

The following example illustrates Theorem 2.2. 

· Suppose we have ·observations for the points 1001, 1000; ·1002, 

· 1101; 1100; 1011; 1111, 1112; 0010; 0012; 0110, 0002, 0102 ·in a 



a 23x3 layout and designate the four factors ·by A, B, C and D 

Let the sets of parameters be ai , Sj , rk and cSQ, with i=O,l, 

j=O,l , k=O , and Q.=0,1,2 . Applying Theorem 2.1 for the ABCD int~r-

action we find that the sorting procedure eliminates all points, so 

ABCD is not estimable. 

Applying Theorem 2. 2 for the ABC interaction and sorting at 

the 0 level of D we get 1000, 1100, 0010, OllO . This set cannot be 

connected since at least 8 points are needed. For ABC at the 1 level 
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of D we get 1001, 1101, 1011, 1111 . Again this set is not connected 

since we need 8 points. 

For ABC at the 2 level of n1 we get 1002, 1112, 0012, 0002, 

0102 and again this set is not connected. 

Similarly for ABO for fixed levels of C , no sets have 8 points 

and for ACD for fixed B no sets have 8 points. Thus none of ABC, 

· ABO, or ACD are estimable. 

For the 0 level of A sorting for BCD yields a set WLth less than 

8 points and for the 1 level of D. we get 1001, 1000, 1002, 1101, 

llOO, 1011, llll, 1112 but there is no connected set sorting on B, C 

and D. · Thus no 3 factor interaction is estimable. 

Using the notation XY.. to indicate the set of ·points at level 
1]. 

i · of factor · X and level j of factor · Y , we apply Theorem 2. 2 

and get the following sets: 

For AC 10 

1001 
1000 

. 1002 
1101 
1100 

For AC 11 

1011 
1111 
1112 

For AC 01 

0010 
0012 

. 0110 

For Ac00 

0002 
0102 



Ignoring· AC for AC 10 we·find·that 01,00;ll,10 are connected so 

BD is estimable. In fact · x1001 -:x:1000""'.:X:uoi+XllOO estimates 

0 8 -' 0 8 -' 0 8 + 0 8 free of all other effects and interactions in 
µ 01 µ 00 µ 11 µ 10 

the absence of 3 and 4 factor interactions. 

For A.Oll · For AD . ·10 For AD12 For ADoo For AD02 For AD01 

1001 . 1000 1002 0010 0002 · no ·points 
llOl 
lOll 
llll 

Ignoring AD 

is ·estimable. 

For BC00 

1001 
1000 
1002 
0002 

llOO 

for· AD ll 

BC10 

0102 
1101 

. 1100 

lll2 0110 0012 
0102 

the points listed above are connected g~ BC 

BCOl BCll 

. lOll llll 

. 0010 lll2 
0012 OllO 

· None of the ·above sets are connected. 

· For · BD and· AB · and CD similarly we get no connected sets. 

·The breakdown of the degrees of freedom·in the analysis of 

· variance could be ·as ·follows: 

AOV A 1 
B 1 
c 1 
D 2 
BC 1 
BD 1 

Confounded · 5 
· Interactions 

Tot. n-'1=12 

Necessary ·and Sufficient Conditions for the 

Estimability of an n-1 Factor ·Interaction 

· ·The problem of finding estimable components of interaction would 

31 



be considerably simplified ·if ·the conditions for ·estimability of an 

a factor interaction stated ·in ·the previous theorem were necessary 

· as well as sufficient. Unfortunately this is not the case as ·the 

following example illustrates. 

Suppose that observations were available on the eight design 

points 0001; 0101, 1000, 1100, ·OOlO,· 0110, 1011 and 1111 of a· 24 

factorial experiment with factors A,B,C and D each at·two levels. 

Obviously the 4 factor~·interaction is not ·estimable and it ·is easily 

verified that the 3 factor interactions are confounded with one 

another. Consider then, ·the estimability of 2 factor interactions in 

the absence of higher order interactions. 

The expected value of 
1 

:7 CX0001•Xi1oo•Xoo1o•X1111~~0101~x1000-xo110-x1011l 

is as00+as 11 -aB01~as 10 so the AB interaction is estimable and yet 

the conditions of Theo~efif 2.2 are not satisfied for this two factor 

interaction. Thus the conditions of the theorem are sufficient but 

not necessary. 
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A careful look at this example will reveal that it was constructed 

by forming a connected set on AB at the 0 level of C · and the same 

connected$et·on AB at the 1 level of C and then switching the levels 

of D · so that AB will be connected at the 0 level of D and also 

at the 1 level but not for a constant level of CD. 

at 0 level of C at 1 level of C 
A B c D A· B c D 
0 0 0 1 0 0 1 0 
0 1 0 1 0 1 1 0 
1 0 0 0 1 0 1 1 
1 1 0 0 1 1 1 1 



at 0 ·level of D at l level of D 
~if c D A B c D 
0 0 1 0 0 0 0 1 
0 1 1 0 (j) 1 0 1 
1 0 0 0 1 0 1 1 
1 1 0 0 1 1 1 1 

This construction could not have been carried out without two factors 

to switch around as we did. This result is the content of the next 

theorem which merely states that the conditions are necessary as well 

as sufficient for the estimability of a· n-1 factor interaction. 

The more general and complex case for any a factor interaction is 

considered in Theorem 2. 4. 

Theorem 2.3: In an n-way cross classification of cells, if a model 

is assumed in which the n factor interaction is zero, then the 

interaction of any n-1 factors without loss of generality say 

classes 1,2, ... ,n-1, is estimable if and only if there exists a 

subset D of the design points satisfying: 
x 

1. For each ~(n) in D we have a =a* (fixed). x n n 

2. For each ~(n) in D , there exists E_(n) in x 

D such that ~(n) Ri E_(n) with a.fb. for 
x 1 1 

i=l,2, ... ,n-1. 
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Proof: If conditions (1) and (2) are satisfied for some set D then x 

by Theorem 2. 2 the interaction of factors 1, 2, ... ,n-1 is estimable. 

If the interaction of factors 1, 2, ... ,n-1 · is estimable then 

ignoring an for the moment we know by Theorem 2.1 that condition 

(2) must be satisfied for i=l,2, ... ,n-1 or else the interaction of 

factors 1,2, ... ,n-l would be confounded with some main effect or 

lower order interaction of these factors. Thus there must exist a 

subset· Dx' of the design points satisfying condition (2). Let 



a~(n) be an element of D 1 x and suppose for some i=l, .•. ,n-1 and 

each £.(n) in Dx' such that £.(n} Ri ~ *(n) with a/bi , we have 

b ;i!a* . Then there can be no component of interaction of factors 
n n 

1,2, ... ,n-l whose expected value does not involve µ(1,2, ... ,i-l, 
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;+l n· a* a* a* a*) But thi's i's a contradiction since 
.J.. ' ••• ' ' l , ... , . l' . l , .. , . i- 1+ n 

the interaction of factors l,2, ... ,n-l was assumed to be estimable. 

Thus for each i=l,2, ... ,n-1 there exists £.(n) in Dx' , 

such that b =a* and b (n} R. a* (n) with a*1. ;i!b. . Since the above 
n n - i- 1 

argument holds for any ~(n) and a =a* fixed, we have established 
n n 

the existence of a set If s..D! 1 satisfying conditions (1) and (2) 
x x 

of the theorem. Hence these conditions are necessary ·as well as 

· sufficient and ·the theorem is proved. 

The following example illustrates Theorem 2.3. Suppose we 

had ·observations for the design points pictured and listed below: 

0 

l 

AJ . 2 

3 

('\ 

000 
"-

200 
x 

TABLE V 

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXA~1PLE 

TO ILLUSTRATE LEMMA.:'2; 1 AJ.m THEOREM 2. 3 

1 

110 
x 

310 
x 

B 

') 

'. -

120 
x 

' 

32Q 

c 
0 

x 

'it 
001 

-

-

~30 
x 

031 
x 

x x 

321. 331 
x x 

oh 032 .. -· .. .. 
102 112 
x x 

202 212 222 232 
x x x x 

312 
x 



·Points 000 . ·001 . 031 
·121 131 . 102 
232 . 310 . 320 

022 · 032 · llO 120 101 · 111 
112 200 . 221 231 202 . ·222 
330 321 331 312 212 
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all points drop out sorting for ABC so the 3 factor interaction is not 

estimable. · For· AB at c0 we get the set 

(1) 110, 120, 310, 320 satisfying Theoreilll 2. 3 since 11, 

· ·12, 31, and 32 · are connected. (Note: The contrast 

. X 110-X l20+X 320-X 3l0 estimates · ~B.1i-a 812+®.e3z-aS31) · 

· For· AB at c1 we get the sets 

.. (1) 001 031 . 101 131 which is connected ·according to Theorem 2.3 

. (2) 121 131. 221 . 231 which is connected ·according to Theorem 2.3 

. . (3) . 221 231 . 321 . ·331. which is connected according to Theorem 2.3 

· For· AB· at C · we 
2 

get 

(1) 022. ·032. 222. 232. which is connected according to ·Theorem 2.3 

·(2) 102 202. Zff 2 .:11.2 which is connected ·according to Theorem 2.3 

All of the 6 sets above are independent when we ignore · C , so 

we have 6 linearly independent estimates of· AB· interaction. 

For AC at s0 

(1) 000 200 . 001 ·101 102 202 

For AC at s1 

. (1) 110 310 112 312 

For AC at S2 

(1) 120 320 121 321 

For AC at ~ 

(1) 031 231 032 . 232 

· All of the 4 above sets are ·connected and ·independent ignoring 

B · so we have 4 linearly independent estimates of AC· interaction. 
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For· BC· at· A . 
. 0 no set exists. 

For· BC· ·at· Al 

(1) 110 120. 111 121 

(2) 101. 111 102 112 

For BC at A2 

(1) 221. 231 222. 232 

For BC at A3 

(1) 321 331 320 330 

All of the 4 sets are connected ·and·independent ·ignoring· A· ·so 

we have 4 linearly independent ·estimates of· BC· ·interaction. 

The ·breakdown of the degrees ·of ·freedom ·in·the ·analysis of 

· ·variance could be as follows: 

· AOV ··Source d.f. 

A 3 
B 3 
c 2 

AB 6 
AC 4 
BC 4 

Confounded 
·Interactions 3 

·Total-'mean -~~ 

· ·Corollary 2; 3: · If ·the interaction of ·factors · 1, 2, .. .- , a. · ·is estimable 

·according ·to ·either of Theorems 2 .1, 2. 2 ·or 2. 3 ·then ·any ·lower ·order 

·interaction ·of ·any subset ·of·these factors ·is ·also estimable. 

· ·Proof: · ·Without ·loss of ·generality ·when considering the ·interaction 

of ·any a. ·factors ·we ·will consider ·the ·first· a.. If we ·let a.=n, 

· then Theorem 2. 2 ·is ·satisfied ·vacuously ·by Theorem. 2 .1 and if.·we ·let 

a.=n-1 · ·then ·the conditions of Theorem 2. 3 ·imply Theorem 2 ;2. · Thus 



for all values of· a· the conditions of Theorem 2. 2 are satisfied if 

an interaction is estimable according to either of Theorems 2.1, 2.2, 

or 2. 3. · Hence there exists a set of ·points · D · connected in the x* 
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·sense of Theorem 2.1 over factors· 1,2, ... ,a for some fixed combination 

·a* a* ' 'i ' ... ' i 
a+l n 

of the other factors. Consider ·then the interaction 

of factors 1,2, ... ,a-l . For any point in Dx* let a* · be the level a 

of factor a and let Dy* be the set of points in Dx* for which 

a =a* . a a Now since for each 

such that a.;i!b. 
l . l 

and 

certainly for each ai_(n) in D * y 

in Dx* there is a bi_(n) in 

i=l,2, ... ,a 

there is a· l:>i_(n) in 

· Then 

D · such 
y* 

· that· ai(n) Ri bi_(n) , a/bi i=l,2, ... ,a-1 . Thus the points of 

D are connected over factors 1,2, ... ,a-l for some fixed combina-
y* 

tions of the other factor and by Theorem 2.2 the a-1 · factor inter-

action is estimable. By induction it thus follows that all inter-

actions of any subset of the factors 1,2, ... ,a are estimable. 

Cor~llary 2 .4: If the · k factor interaction of factors · i 1 , ... , ik 

is estimable then, for any level of any other factor · i. j;i!~, ... ,k 
J 

involved in the estimate; there must exist a connected set of points 

constant. 

for which the level of factor · i. · remains . J 

· Proof: The conditions stated in this corollary were proven to be 

necessary for estimability in the proof of Theorem 2.3 for· k=n-1 

and· i.=n . J 

However, the proof there did not depend on how many factors were 

involved in the interaction or which factor remained constant, arid in 

no way necessitated the involvement of any·other factors. Hence the 

same argument can be used to establish this corollary. 
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· Necessary and Sufficient Conditions for the Estimability 

of an a. Factor Interaction 

Theorem 2 .4·:.: · In an n-'way classification, if a model is assumed in 

· which all higher order interaction effects are zero, then the a. factor 

interaction of factors 1,2, ... ,a. < n ·is estimable if and only if 

· we can find a subset of design points · C ~ D satisfying ·the following 
·x 

conditions: 

(1) If we ignore the coordinates a.+l, ... ,n then the 

points of C are connected in the sense of Theorem 

2.1 over factors 1,2, ... ,a. 

(2) The linear combination over the points of C described 

in temma 2.2 is such that if· !_*(a.)= (a~ ... ai) is 
11 a. 

any combination of a. coordinates of · !_(n) except 

a1 •. a2, .. ;,aa.· and c Cat· ...• ~r) is the set of all points 
a. 

in c having a. = a~ , ... ,ai = a.* then 
11 11 a. 1 a. 

E 
!_(n) E C (!,*(a.)) 

·~ = 0 !_(n) 

Proof: Condition (1) is necessary by the argument of Theorem 2.1 

and if condition· (2) is not fulfilled then 

for all combinations a .... a. (except a1, ... ,aN) and the 
11 1a. v. 

interaction of factors · 1, 2, ... ,a. is confounded with another· a. 

factor interaction. · Thus if either one of the conditions (1) or (2) 
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is not satisfied ·then the · a factor interaction effect of factors 

1,2, ... ,a ·is not estimable. Hence the conditions are necessary. 

That the conditions ·(l) and ·(2) are sufficient is also easily 

seen since we have already shown in Demma. 2 .1 that if condition (1) 

is satisfied there exists a linear combination of the observations 

that estimates the a factor interaction effect of factors 1,2, ... ,a 

free of lower order interaction effects and main effects of these 

factors. Ignoring factors a+l, ... ,n, conditions (1) and (2) assure 

us that the expected value of this linear combination will not involve 

any other a factor interaction effects. Also since the sum of the 

coefficients is 0 ·over all coefficients associated with design points 

having a coordinates identical, for all possible combinations of 

a out of 1,2, ... ,n except 1,2, ... ,a then on each of these sets 

all combinations of k < a coordinates will also be constant and 

consequently an equivalent statement to (2} holds for· k < a . Thus: 

E[E fl ( ). x ( )] = E fl ( )µ(a;a(a)) 
~(n) ~n ~n a(n) ~n --

and by our definition the a factor interaction of factors 1,2, ... ,a 

is estimable. 

The following example illustrates Theorem 2.4: Suppose we had 

observations for the design points 0000, 0101, 1000, 1101; 0011, 

0110, 1011, and 1110 The contrasts for each interaction as defined 

in the proof of Theorem 2.1 are listed below: 
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· ·oooo · 0101 ·1000 .. 1101 OOll OllO lOll lllO 

+l -1 -1 +l -1 +l +l -1 ABC 
+l +l -1 -1 -1 -1 +l +l ABO 
+l -1 -1 +l +l -1 -1 +l ACD 
no connected set BCD 
·+l -1 -1 +l +l -1 -1 +l AB 
+l -1 +l -1 +l -1 +l -1 CD 
+l +l -1 -1 -1 -1 +l +l AC 
+l -1 -1 +l -1 +l +l -1 AD 
+l -1 +l -1 -1 +l -1 +l AD 
+l +l +l +l -1 -1 -1 -1 BD 

Obviously the set of points is not connected for ABCD since at least 

24 are needed. Applying Theorem 2.3 we see that the set is connected 

for ABC but not for a fixed level of D. Thus 

J 

E (Xoooo-Xo101-X1000/Xuo1-Xoou +XOllO+X1011-XlllO) 

= aBfooo~aBfoio-aBf1oo+aBf116~aBfoo1+aBfo11+aBf101-aBf110 

+ 2a800+2a811-2a801 -2a810 

so ABC is confounded with AD. Similarly ABO is connected but not for 

fixed C and is confounded with AC. Likewise ACD ·is connected but 

not for fixed B and is confounded with AB, and there is no connected 

set for BCD. 

If all higher order interactions are.,zero; 

Checking for AB we find a connected set on AB satisfying Theorem 

2.4. This is evident since the set (00, 01, 10, 11) is connected 

over constant levels of C (O & l} and· D(O & 1). Thus 

Similarly checking for AC and ·AD we find them estimable. However 

checking BC, BD and CD we find connected sets that do not satisfy 

condition (2) of Theorem 2.4. · Then for example a contrast on BC yields 



. E (J·oooo+1-1ooo+X OllO+XlllO-X 0101-X llOl-X 0011 --:X~1oi1) 

= 2csr00+sr 11 ~sr 16~ar01 )+2a800+2q6 10 ·2q80 1~2aa 11 

+ 2s606+2aa 16 ~2aa 11 ~2B80 i+2r806+2r8 16 -2~801 -2ra 11 

So BC is confounded with ·other 2 ·factor interactions.· Likewise BD 

··and CD are confounded. · The degrees of freedom for ·the analysis of 

variance could be partitioned·as follows: 

AOV ·Source . d.f. 
A 1 
B 1 
c 1 

AB 1 
AC 1 
AD 1 

· ·Confounded 1 
Total•mean 7 
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Suppose that our n-way cross classification design ·is found·(or 

·assumed) to be ·free of ·all interaction. We then ·know that all main 

effects are estimable ·if ·and only if all ·differences · ii,(i ,ai}-µ (i ;bi) 

·are estimable· ai, bi=a0 , ... ,at.-l' a/bi, i=l,2, .. :,n· (there again 
. 1 

we drop all parameters ·from ·the model ·if all observations for ·the 

··corresponding factors are missing.) 

· ·The following theorem ·gives ·us necessary and sufficient conditions 

for the estimability of a·difference ·µ(i·a.)·~µ(i·b.)· · a. 4 b .. Thus ,. l. .. l. ' . l.r. l. 

· the theorem provides us with a means of determining ·exactly which main 

effects will be estimable and which ·will not. 

Necessary and ·Sufficient Conditions for the 

· Estimability of a Simple Effect 

· ·Theorem 2. 5: · In an n-way cross classification if a model is asswned 



with no interaction let 

Da - {!.(nJl!.Cn}e:Dx ·and ~=a} 

· D = ·{a(n}ia(n)e:D and a =b} 
b - - x ·k 

· ·where · a and · b are chosen from · 0, 1, 2, .•. , tk-l , a#b . Then the 

difference µ(k;a)-µ(k;b) is estimable if and·only if ·there exists 

·constant coefficients fl · for all· a(n)e:D VD · such ·that · a(n) - · a · b 

·E fl · = -E fl = c ·(say)· and E fl . = 0 for ·i#k · ·_a (n) · a (n) · !_(n) 
.ak~a a ·=b - a . k . i 

Proof: The proof ·is quite ·obvious since under ·the conditions of ·the 

· ·theorem 

E(E ... E .fla(n) x (n)} = ±c(µ(k;a}-µ(k;b)J+ E · E fl_a(n) µ(i;ai) 
· a · a - !. ·.i4 k a. 1 ·n r 1 

= ±c(µ(k;a}-'µ(k;b)J+ E · µ(i;a)E fl 
· . ·_a(n) · .i#k a 

. i 

= ±c(µ (k;·a}-µ (k;b)) 
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· Hence· ± !_. E .;.~·fl () x c ··a n · ·_a(n) 
is an unbiased ·estimate of· µ (k;·a}-'µ (k;b). 

a.. . a . 
. t n -

· Conversely if · E fl · = c · •and E fl · = c · then 
· ·a(n) · 1 · ·_a(n) · 2 

E 
· a ·=a 
·k 

c 
J 

.ak_:;:a · - · ak=b 

fl . 
. !.(n) = -E fl *' -:c2 · so we need only consider the ·case 

· ·_a(n) 
ak=b 

· ·where E fl · = '- E fl 
} a ·=a. ·!_(n) . !.(n) • 
. k .. ak=b 

· _If for all sets of constant coefficients ~ E fl 
· a =a · .~Jn) 
·k 

··we have E · fl -:} 0 fo;t' ·som~ .: j 
a:=J· . !.(n) 
. 1 

which ·is ·the ith ·coordinate of a 

· ·point in · .Dall .Db ·then · E [E ... E fl ( --· x ( J will involve µ (i;J') 
a · !. n) · '!. ·n) 

al n 
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and hence the difference µ(k;a)-µ(k;b) is confounded with µ(i;j). 

' As an example of Theorem 2.5, suppose a mode! with rto·interactic>n is 

assumed with 2 levels of a factor A , 3 levels of a factor B and 

4 levels of a factor C and we had observations for the design points 

010, 120, Oll, 101, 002, 112, 023, and l13. 

TABLE VI 

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE 
· to ILLUSTRATE THEOREM 2, 5 

002 
x. -, 

I 

B 
0 1 2 

. c 
. -0 

12 
x 

C' 
2 

-· 

ffifj 
c 

3 

Examining the simple effect a0-a1 we find that there are 4 points 

at the 0 level of A and 4 points at the 1 level, a l;l ratio. Checking 

levels of B ignoring C ·(see Table VII on next page)pv·e. find B0 represented 
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once ·at each of ·the levels of A , B1, ·represented ·twice at ·each ·level 

and · 82 · represented ·once ·at ·each level; all in, ·the same l: l ratio 

· ·as the number of points ·of · A0 · to points · A1 

8 
0 1 2 

TABLE VII 

OCCUPIED CELLS FOR THE POINTS OF TABLE VI 
FIRST IGNORING C AND THEN IGNORING 8 

e 
,.' 3 

0 t8ill 
0 x 

A A 
1 1 x 

' Figure 1 Figure·"2 

A check of levels of C ignoring · B (figure 2 ·above) reveals each 

level of C. represented·once·at ·each level of A; the ·same 1:1 

-ratio. Hence an·unbiased estimate of .a, -a. ·is found by taking· 1/4 0 - 1 

of ·the contrast ·that assigns las a coefficient to those ·points ·at 

the 0 level of A and -1 to those·at ·the l level. 

For the simple effect s0-a1 we find 2 points ·101 and ·002 at 

the 0 level of 8 and 4 points 010; 011, 112, and 113 at ·the l level. 

Ignoring levels of C we find A0 represented 1:2 ·and .A1 · represented 

1: 2 in the same ratio as - 8Q: 81 · (see· 'figure 1 below). · Ignoring A 

we find c0 and c3 represented at the 1 level of 8 but not at the 

0 level. (See Table VIII). 
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TABLE VITI 

OCCUPIED CELLS FOR THE POINTS OF TABLE VI AT THE 0 & l ·LEVEL 
OF B·FIRST IGNORING C AND THEN A 

B 
' B 0 1 

a··~ 0 

1 
1 . x ' xx c 

2 · Figure 1 

x 
'' 

x x 

x x 

3 x 

The ·points ·010 ·and ·113 must therefore be eliminated. · The remaining 

set of ·points has 2 ·points ·at the 0 ·level of Band 2 ·at ·the 1 level. 

· The O and l levels of A are now represented once each ·at the 0 ·and 1 
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· ·levels of B as are ·the l ·and 2 levels of C. ·Thus .BJ-:1\ · is estimated 

by· 1/2 of the contrast assigning l's to t~e points at ·the 0 level 

of B ·and -1 's to points at the l level. 

A similar analysis for the remaining simple effects yields the 

· contrasts given in the table below. 

'·010' . ·120' 011.' ·101 ' 002 '·112 023 ' 113 Effects ·Estimated 
~· -1 +l -1 +l -1. ' +! -1 4(A ·-A ) 

0 0 -1 +l +l -1 0 0 ?CBO~B 1 ) 
' +l -1 0 0 0 0 -1 +l 2 (BO-Bl) 

+l +l ~O 0 0 ·o .,.1 ·-1 ~(Cl-C2) 
_Q 0 ' +l . +l -1 -1 0 0 2 (CO -:C3) 
+l 0 -1 0 0 0 0 0 (Cl-C2) 

0' 1 
-1 +l +l -1 +l -1 -1 +l prror 
+l +l +l +l +l +l +l +l Mean 

·The above contrasts account for all of ·the degrees of freedom ·as 

summarized in ·the·table below: 
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j 
\ 

AOV Source d.f. 
A 1 
B 2 
·C~ 3 

Error 1 
Tot. Mean 7 

If a model with interaction is assumed then, of course, the 

differences µ(k}a)-µ(k;b) are not estimable free of the interaction 

effects. If, due to numerous missing observations, only111inimal 

information can be obtained about the interactions,then, as throughout 

this chapter, we attempt to obtain as many unconfounded estimates as 

the data permits. 

For an example, utilizing Theorem 2.5 where a model with inter-

action is assumed, suppose we had observations for the points 000, 

020, 011, 021; 002; 012, 110, 101, 122. 

TABLE ·IX 

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR A 
SECOND EXA,MPLE ILLUSTRATING THEOREM 2.5 

B 
0 1 

2 

122 
x 



Examining the ·simple effect. .a0-:a1 · we.·find the following situation: 

·The contrast for· a0 "'.a.1 · involves 6 points at level 0 ·(for 

A0) and 3 points at ·level .1 (for A1), a ratio ·of 2:1. 

Checking levels of B (O, 1, ·and ·2) represented ·at ·the ·o; level 

of A ·we ·find·these same·levels represented·at ·the 1 ·level 

of A·and in exactly.the same ratios 2:1 as the number ·of 

points ·at · A.Q · to points at ·~Ai . 
Checking levels of C represented·in each set we find a 

· ·similar 2: l ·ratio at each level of C. · ·The simple effect 

a0-a1 · ·is ·thus estimated by taldng 1/6 of the contrast ·that 

· ·assigns .+l ·to points ·at ·the 0 ·level of A and -2 to points at 

· the l· level. The ·contrast is ·given in the table ·b~l'ow. 

Using ·the ·c~iterion ·of Theorem. 2. 2 ·we ·find BC is ·estimable, ·the 

· ·estimate being Xo0<tXoo2+x021..,Xoi::i:+x012-:X020 . · Now selecting two 

points in ·the BC ·contr1:1-st ·which are related, for example ·ooo and ·002 

·we find the ·difference .:JU 20 -Xo21 estimates .r0-r1 . · -Similarly 

· Xaoo·-:Xaoz estimates r0--:r2 , Xoo 2_..,Xoia estimates s0-:s1 and 
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Thus, since BC is estimable by fheorem 

2. 2, we are ·assured by Corrollary 2. 3 ·that all simple effects of B ·and· 

C over the levels ·involved ·in the BC estimate will also be estimable. 

· ·These estimates ·can- ·of course be ·improved ·upon ·by ·involving all of 

· ·the available points as was done in ·the case of the estimate of 

· a0-:a1 , above. The contrasts for all ·estimates are given in ·the 

· ·following table: 
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6 Ca.0-a.1) 3(S0-s1) 3(S0-S_z) 3(r0""'.r 1) 3(r0-r2) Mc inter-
action 

000 +l +l +l +l +l +l 
002 +l +-1 +l 0 -1 -1 
020 +l 0 -1 +l +l -1 
021 +l ~o -1 -1 0 +l 
011 +l -1 0 -1 0 -1 
012 +l -1 0 0 -1 +l 
101 -2 +l +l -1 0 0 
110 -2 -1 0 +l +l 0 
122 -2 0 -1 0 -1 0 

The breakdown of degrees of freedom is given below: 

A 1 
B 2 
c 2 
BC interaction 1 
Confounded 2 
Tot. Mean 8 



CHAPTER ·III 

SUWvlA.RY AND EXTENSIONS 

In this thesis, procedures were presented to determine which 

· main effects and interactions are estimable in a general n-way cross 

classification in which all observations are missing for any number 

of. cells. Initially a definition of estimability under these circum

stances was essential and in Chapter II such a definition was 

developed. Briefly, ·an interaction of a set of factors, or the main 

·effect of a factor, was defined.to be estimable if there existed a 

linear combination of the. cell means in which at least one observation 

was taken that estimated a·linear functioniof the interaction effects 

(or main effects} of these factors free. of all other main and ·inter

action effects. In all cases the ·interaction is confounded with higher 

order interactions. So, to avoid repeated reference to the presence 

of these effects, higher order interactions were considered negligible 

when the discussion centered around a particular interaction. 

A condition of connectedness among the factors involved in the 

interaction, which is both necessary and sufficient for estimability 

of the interaction was developed. It was found that this condition 

is all that is needed to determine whether or not the highe$t order 

· interaction is estimable and if it is, then all interactions and 

simple effects over.the factors and levels involved were also found to 

be estimable. A simple algorithm was presented for determining 
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· whether or not :tnis interaction ·is estimable; how many linearly 

independent. es~imates exist, :.what they are and·exactly what they 

estimate. 

so 

A computer program, written for the ·IBM 1130 computer, which·checks 

for estimability of the highest order interaction·is presented in the 

Appendix. As a problem for further study; this computer program could 

be improved upon and expanded·to.determine ·the number of independent 

estimates ·that ·exist, and to check lower order interactions for 

estimability in the ·absence of higher order interactions. 

With regard to the problem of estimability of lower order inter

actions, it was found that ·the connectedness criterion must ·still be 

satisfied.over the factors ·involved but that an additional problem of 

confounding ·with interactions ·involving other factors was now present. 

··It was established that if the interaction ·is to be estimable then 

·when these other factors are -considered one at a time; ·the connected

ness property must be satisfied ·on the factors of the ·interaction 

over a set of ·design points in·which ·the single factor·maintains a 

·constant level. Also if ·the connectedness property·holds over a set 

of points ·in ·which all other factors simultaneously maintain a 

constant level; then the interaction is always estimable. 

In the ·special case of an n-1 factor.interaction there is only 

one other factor not ·involved in·the interaction, so these two 

conditions together·proved to.be necessary·and·sufficient; and we had 

a simple check for ·estimability of ·the interaction of n-1 factors by 

applying the algorithm developed for n factors on these n-1 factors 

over a constant level of the remaining factor. 



· Necessary·and sufficient conditions for ·the estimability·of any 

interaction were presented ·and although guidelines for an algorithm 

· to determine estimabilitywere suggested in the·examples, no such 

algorithm was determined. A simple algorithm ·for ·this case which 
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· could be ·easily programmed for computer use ·would ·be a useful extension 

of the work of this thesis. 

· Another problem suggested by the work presented ·here is a ·study 

. of the number- ·of possible ·configurations with a given number of. cells 

· missing and what proportions of ·these configurations permit ·estimation 

· of various ·interactions. 

· ·While the primary concern ·of ·the previous chapter was with problems 

· of. estimability of main effects and ·interactions, applications to the 

· design of experiments are evident. Similar to situations in response 

'.-Surrac-e ·investigations, or ·as ·with fractional. replication, we may 

· intentionally ·only ·study a ·portion of the entire set of treatment 

combinations. Utilizing ·the techniques of the previous ·chapter, 

· however, the experimenter now has almost complete freedom ·to choose 

· ·which main- effects and interactions he ·wishes to investigate and how 

· much information. he wants on each. The single restriction being ·that, 

he must select points that form connected ·sets; ·as defined. ·in ·Chapter 

II, in order to get unconfounded. ·estimates. 

·These techniques can best be explained by considering ·several 

examples. In order to be able to illustrate the problems graphically, 

let us consider a three dimensional situation. Suppose we had a 

factor A·at 5 levels, a factor B ·at 4·levels, and a factor Cat 3 

· levels. 



If we .wbhed to estimate the ABC interaction, and consequently 

all other main effects and interactions., with a minimal number of 

· points we could ·run an experiment using the ·conne·c::t~d set -<ff:po:i:nts 

000, 100, 010, 110, 001, ·101, 011 and 111. 
' 

TABLE X 

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FORAN EXAMPLE 
DESIGNED WITH MISSING CELLS HAVING ALL EFFECTS 

AND INTERACTIONS ESTIMABLE 
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All interactions and main effects are then estimable, but of 

course, only over the 0 and 1 levels of each factor. · Thus the simple 

effects a0 ~a 1 , s0-s1 and r 0-r1 are the only ones estimable. A 

breakdown of the degrees of ·freedom for linearly independent estimates 

would be as follows: 

AOV Source d.f. 
A 1 
B 1 
c 1 

AB 1 
AC 1 
BC 1 

ABC 1 

The estimates and quantities being estimated are: 

Xooo-Xo10-X1oo+X11o~Xoo1+XOll+X101-X111 estimating 

asr000 -asr010-asr100+asr110-asroo1+asr011+asr101 -asr110 

l/Z(Xooo-Xo10-XlOO+X11o+Xoo1-Xo11-X101+X111J estimating 

aSoo~as10-aS01+aS11 

l/ZCXooo+Xo10-X1oo~x110-Xoo1~Xo11+X101+X111J estimating 

aroo-af10-aro1-ar11 

l/Z (XOOO-XOlO+X100-Xno-Xoo1 ""lu11 ""XlOl +Xlll) estimating 

sroo-sr10-sro1+sr11 

l/4 CXooo+XOlO-XlOO-XllO+XOOl+XOll-XlOl-Xlll) estimating 

l/4(Xooo-Xo1o+X100-X11o+XOOl~Xo11+XlOl-Xlll) estimating 

.so-S1 

l/4(XOOO+Xo~o+X1oo+XllO-~OOl-X~11~X101-X111) estimating 

ro-r1 , 
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If we desired more information on all interactions and estimates of 

all other simple effects, we could add the connected set of points 

220, 230, 420, 430, 321, 421, 331, 431, 222, 322, 232 and 332 to 

provide a second estimate of ABC interaction, two additional estimates 

of AB and BC interaction, one additional estimate of AC interaction 

and one each of the simple effects a2 ~a3 , a2-a4 , s 2 ~e3 and r0-r3 . 

Connecting these two sets by adding the points 210 and 120 would 

provide estimates of a 1 ~a2 and· s 1 ~e 2 as well as an additional 

estimate of AB interaction. The remaining degrees of freedom 

unaccounted for would consist of confounded interactions and main 

effects. 

0 

TABLE XI 

GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS ADDED 
TO GIVE INFORMATION ON A.LL SIMPLE EFFECTS AND 

ADDITIONAL INFORMATION: ON INTERACTIONS 

0 

/ 
/, 
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The estimates and quantities being estimated in addition to those of 

the previous set are: 

I 

aBr220-aBr230-aBr42o+~Br430-aSr321+~Sr421+aSr331-aSr431-aSr222+aSr322 

+ asr232.-asr332 

x 110+x 220 -x210~x120 estimating as 11+as22 -as21 -as12 

X321-X421-X33l+X431 estimating aS.32-aB42+aS43-aB33 

x222-x322-x232+x 332 estimating . as22 -as32-as 23+as 33 
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1 . . 
2 (X220+X230-X420-X430-X32l+X421-X33l+X431-X222+X322+X332-X232estimating 

ar20-ar4o+ar41-ar3l+ar32-ar22 

X322-X321+X331-X322 estimating Sf22-Sr21+SI'31-Sr32 

x220-x230-x222+x 232 estimating sr20 -sr 30-sr 22+sr 32 
1 
2 (X22o+X230-X420-X430) estimating a2-a4 
1 
2 (X110-X22o~X21o+X120) estimating a1-a2 
1 
2 CX222-X322+X232-X332) estimating ara3 
1 
2 (X110-X22o+X210-X120) 

; 

estimating SrB? 
1 
6 (X220-X23o+X42o~X43o+X321+X421-X331-X431+X222+X322-X232-X332) 

estimating s 2 ~s 3 
1 
2 cx 220+x 230~x 222 ~x232 ) estimating r 0-r2 

If we felt that the ABC and BC interactions were negligible and 

did not desire additional information on them, but wanted estimates 

of all simple effects and more information on AB and AC we could use 

the original set of points, and add all ·the points of the second 

set except 230, 430, 331, 431, and 332. 



0 1 

TABLE XII 

GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS 
JJELETED DUE TO NEGLIGIBLE INTERACTIONS 

1 
/ 

' B· 

3 

co 

/ cl 

·c . 2 

The breakdown of degrees of freedom for_linearly independent esti-

mates would now be: 

d.f. 
A 4 
B 3 
c 2 

AB 2 
AC 2 
BC 1 

ABC 1 
Confounded 1 
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The estimates and quantities being estimated, in addition to those 

of the original set are now as follows: 

X +X -X -X est~mating . 110 . 220 . 210 120 

X220-X42o~x32l+X42l~X222+X322 estimating ar20-ar40+ar41-ar3l+ar32-ar22 

x220 ~x420 estimating a2-a4 

l/2(X110-x220-x210+x120) estimating a1-a2 

x222 ~x 322 estimating .a2-a3 

x11o~x22ci+X21o~x120 estimating B1-B2 

x222-x232 estimating Bi-s3 

x220 ~x 222 estimating r 0-r 2 

Obviously ·many other designs are possible depending on ·which 

interactions or·main effects are of interest ·and how much information 

· ·is desired on each. The previous examples ·are only illustrative 

of the possible applications of the techniques investigated in ·this 

· thesis to the design of experiments. 
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APPENDIX 



DEFINITION OF SYMBOLS USED IN THE FOLLOWING COMPUTER PROGRAM 

DIM 

GI 

POINT 

PI 

IN 

number of dimensions 

group ·index,. temporary 

contains coordinates for 1 point, temporary 

. point index,. temporary 

used by free-format input.·. contains card inA2 format, 
. which refers. to the location of. data to be inputed into 

the program. 

BASE .used for calculating subscript,. temporary 

. GNUM · . .contains group of. numbers for. points. in POINT .. Index 
= "don't care" dimension 

.C00RD contains coordinate restrictions imposed on set .. Index 
= dimension - 10000 ~ no. restriction . 

. C0RG contains the coordinate values. for each group. 

C0RG(L) = CORG(group number xnumber of dimensions+ DIM - 10000 
=·don't care 

FAULT 

FL 

GLIM 

GPS 

. GPS (L) = 

MEM 

.GRPL 

TMASK 

TV 

·C0RAN 

· PTDEL 

· list of groups containing only l point;. which are used 
to start deletion process . 

. index of last entry in FAULT 

number of groups defined 

This contains groups that each point belongs to 

GPS(pointnumber xnumber of-d$mensions +DIM) 

. contains list of points for each group. 

contains index of.MEM containing list of points for 
each group. Index = group number 

coordinate restrictions.of. set to be traced 

trace value 

· C0RAN{l,J) - coordinate base dimension. of J 
. C0RAN(2 ,J) - coordinate limit dimension of J 
·C0RAN{3,J) - coordinate increase dimension of J 

The stak of.points currently deleted in attempt to find 
. minimal subset 
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STACK 

CANCL 

CLIM 

· W0RK 

·TRACE 

z 

CHAIN 

·NP 

··IS 

IRET 

· N0SU 

· NFAIL 

· NTRY 

· NCAN 

in LINDl contains . .points to delete·, and· in LIND2 contains 
. groups which. were. closed . 

. list of coordinate. restrictions of, successful. sets ... The 

. coordinate· restrictions. for another. set may.not have. any 
.. previous. one for a subset. 

· ·index of last· entry. in CANCL. 

.. in LINDl·number.of. groups still open. 

· set to I TV I· when· C00RD matches TMASK. 

. ·printer device.number 

.. contains index of .. next .point .. in equivalence. chain. 
·.Negative index. indicated· head. of. chain . 

. . number. of points.defined 

.. generally index. of. STACK 

.used.to indicate where. to.branch· after· completing a 

. common routine 

·· index. ·of. subsets 

. ·number of failures. for a. level 

.number of trys for a level 

.number cancelled. for a. level 
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*ONE WORD INTEGERS 
··SUBROUTINE· LINDO 

INTEGER :GI,POINT(8hPl, . IN{41) ,BASE.,GNUM(8) 
l INTEGER DIM,COORD (8) ,CQRG( 60Q},FAULT(l00},FL,GLIM,.GPS{ 600) 
2··INTEGER GRPL(301) ,KD,MEM(. 600}/I'MASK(8},TV 
3 INTEGER CORAN(3,8),PD,PTDEL{l0 },STAC.K{lOO) ,GANCL(.600) ,DIML{8) 
4. INTEGER CLIM,.WORK,HI,GI, . · TRACE,.Z,STO,CHAIN{lOO) .. · .. 
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5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,,NP,TMASK,TV. 
6 'coMMON CORAN,PD,PTDEL,STACK, IS,,IRET,CANCL,DIML,.CLIM,,WORK,,HI,LGM . 
7 COMMON LEVEL,,TRACE,NOSU, ··· GI,Z,NFAIL,NTRY,NCAN,:ST!),LSTO,CHAIN 

C LCORG=LENTH OF· CORG, · · LFAUL:;:;LENGTH OF· FAULT. 
c .. LG PS= LENGTH OF. Grs' . LMEM=LENGTH OF MEM 

. LCORG::; 800 . 
LFAUL::;lOO 

. LGPS=800 
LMEM=700 

C Z IS THE PRINTER DEVICE ,NUMBER .. 
· C WIDTH OF 120 CHARS. HAS BEEN· ASSUMED. 

·· Z=3 
. IF (IRET) 1, 1,11 

11 WRITE{Z,510}STO 
· C READ DIMENSION. OF POINTS 

1 IN(41)=81 
CALL. FIN (IN ,A) 
DIM=A 

C ·EXIT IF DIM .LT. 1 
. IF(DIM)51,51,102 

. 51 WRITE(Z,530) 
.·.·CALL· EXIT 

· · 102 KD=DIM&l . 
C ·· READ TRACE MASK 

CALL FIN{IN,A) 
TV=A 
WRITE(Z,500}DI.M,TV 

· IF(TV)l42,142,.141 
· 141 DO 140 I=l,DIM 

···CALL FIN(IN,A) 
140 TMASK(IJ=A 

. WRITE(Z, 519}{TMASK{I},I=l·,DIM) 
C . READ COORDINATE RANGE 
.. 142 no 10 I=l,DIM 

DO 10 J=l, 3 
· CALL FIN{ IN ,A) 

· · 10 CORAN{J.,I)=A 
. WRITE{Z:. 550} (I, (CORAN(J:. I},J=l, 3}, I=l ,DIM) 
WRITE(Z,520) 
GLIM=O 

· CORG(l)=lOOOO 
·· NP=O. 

C READ A POINT 
· 50 DO 2, · I:l ,DIM 

CALL· FIN(IN,A) 
. K:A 
. IF(K&l0000)2,4,2 



2 . POINT (I) =K 
C PUT POINT IN GROUPS 

PI=NP*DIM 
.. NP=NP&l 

· DO 59 I=l ,.DIM 
· 59. · GNUM(I)=O 

DO 20 GI=l ,GLIM . 
· BASE=.(GI-1) :*DIM 
. DO 2 5 J = 1 , DIM 

. L=BASE&J 
.. IF(CORG(L)&l0000)30.,26,30 

30 . IF (CORG (L) -POINT {J}) 20., 25, 20 
. 26 KJ=J 

.. 25 CONTINUE 
C POINT BELONGS· IN GROUP GI 

· · L=PI&KJ 
GPS(L) =GRPL(GI) 

.. GNUM(KJ}=GI 
GRPL(GI)=L 

· 20 CONTINUE 
C · '#CREATE NEW .GROUPS IF NEEDED 

· DO 35 I=l ,DIM , 
. IF{GNUM(I))35.,40,35 

C . MAKE NEW GROUP· FOR DIMENSION I 
· 40 DO 45 J=l.,DIM 

. L=GLIM*DIM&J 
. 45 CORG (L}:fOINT(J) 

L=GLIMirDIM&I 
· CORG{L) =-10000 
· L=PI&I 
.GPS{L)=O 
· GLIM=GLIM&l 
. GNUM{I) =GLIM 

.. GRPL (GLIM}.=L 
. IF(GLIM~300)35~35~60 

35 CONTINUE . 
·. WRITE(Z, 532}NP., (P.QINT{I} ,GNUM (I}., I=l ,DIM) 

IF{PI-DIM-LGPS}50.,5,5 
C ·DETECT.END.OF LIST.CODE 

4 · IF(I-1}7,8,7 
C :*AT END OF POINT 

8 . WRJ:,1:,E{Z, 502)NP.,GLIM 
.. IF{TV) 80.,.81., 80 

· · 80 · WRITE{Z,503}. 
C .. SET· UP ARRAYS GRPL.,GPS,MEM,AND FAULT 

.. 81· FL=O 
. · K=l 
'·D0·52 ~I=l.,GLIM 
.. J=GRPL{GI) 

KS=K 
·· 54. · K=K&l .. 

. IF{J)53,53,55 
· 55 MEM(K}=(J-1)/DIM&l 

. M=GPS{J) 

' 63 



. GPS(J)=GI 
J:=M 

· · IF(K-LMEM)54, 70, 70 
C SUBSCRIPT FOR MEM IS TOO LARGE. 

· 70 WRITE(Z, 506) 
CALL EXIT 

C STORE LENGTH OF GROUP 
· 53 M=K-1 

· L=M-KS 
MEM(KS)=L 

C · STORE POINTER TO POINT LIST FOR GROUP GI 
GRPL(GI)=KS 

. IF (TV}82, 83, 82 
82 WRITE(Z,.533)GI, (MEM(J) ,j=KS,M) 

C TEST FOR FAULT 
~3 IF(L-1}52,63,52 

C RECORD FAULT 
63 FL=FL&l 

FAULT(FL)=GI 
· · IF(FL-LFAUL)52,61,61 

52 CONTINUE 
C MAKE DUMMY GROUP ENTRY.AFTER LAST GROUP 

GRPL(GLIM&l) =K 
C LIST FAULTS 

·. IF(FL}57,57,58 
57 WRITE(Z,534) 

GO TO 65 
58 WRITE(Z,535)(FAULT(I),I::;l,FL). 

C INITIALIZE COORD,DIML,LEVEL,CLIM,CANCL 
65 DO 62 I=l,DIM 

DIML (I)=O 
COORD(I)=-10000 

62 CONTINUE 
LEVEL=O 
CLIM=O 

. CANCL (1) =-10001 
· STO=O 

IRET=l 
RETURN. 

5 WRITE(Z,506) 
CALL EXIT 

7 WRITE (Z,507) 
. CALL EXIT 

60 WRITE (Z,.536) 
CALL EXIT . 

61 WRITE(Z,537) 
CALL EXIT 

510 FORMAT{' OEND OF RUN FOR THIS DATA SET.' I20, '.STACK OVERFLOWS') 
530. FORMAT('.OEND OF JOB.'} 
500 FORMAT( I !DIMENSION::; I I3,5X, 'TRACE VALUE= I 12) 
519 FORMAT(' . TRACE MASK 'J(lOilO)) 

. 550 FORMAT('OCOORDINATE VALUES'/'. DIM· BASE LIMIT INCR'/(417)) 
520 .FORMAT(IOPOINT I 5X,. 'COORDINATES AND {GROUPS) I /lX) 
532 FORMAT(I5,'.'8(I7.'· ('I4,')')) 

64 



65 

502 FORMAT('O***END OF LIST'l6,' POINTS AND'l6,' GROUPS ARE DEFINED.') 
503 FORMAT (I OLIST OF G IDUPS I) 
533 FORMAT('OGR)UP ('14, ') '15, I POINTS'/(lX,2016)) 
534 FORMAT('ONO FAULTS.') 
535 FORMAT('OLIST OF FAULTS BY GR0UP NUMBERS'/(lX,2016) ) 
506 FORMAT('OERROR -- DATA EXCEEDS STORAGE CAPACITY') 
507 FORMAT('OERROR END OF LIST CODE WAS NOT AT A POINT BOUNDARY') 
536 FORMAT('OERROR LIST OF GROUPS EXCEEDS CAPACITY') 
537 FORMAT('OERROR -- LIST OF FAULTS EXCEEDS CAPACITY') 

END 
//FOR 
// DUP 

· LINlOOOO 

*STORE WS UA LINDO LIN10010 
LIN10020 
LIN10030 

*ONE WORD INTEGERS 

c 

c 
c 
c 
c 

c 

c 
c 
c 

c 

c 

SUBROUTINE LINDI 
INTEGER PI,BI,OBUF(lO),GI,SGI 

1 INTEGER DIM,COORD(8),CORG( 600),FAULT(lOO),FL,GLIM,GPS( 600) 
2 INTEGER GRPL(301),KD,MEM( 600),TMASK(8),TV 
3 INTEGER CORAN(3,8),PD,PTDEL(l0 ),STACK(lOO),CANCL( 600),DIML(8) 
4 INTEGER CLIM,WORK,HI,GI, TRACE,Z,STO,CHAIN(lOO) 
5 COMMON DP1, COORD, CORG, FAULT, FL ,GLIM ,GPS ,GRPL, KD ,ME~1,NP, T~1ASK, TV 

LIN10080 
6 COMMON CORAN, PD, PTDEL, STACK, IS, IRET ,CANCL ,DP1L ,CLP1, WORK,HI, LG~1 

LIN10090 
7 COMlvfON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN 

134 

160 

158 
103 

104 

101 

EQUIVALENCE {WORK,NWORK) · LIN10105 
LIS=LENGTH OF STACK-1, AT LEAST LFAUL&l/3*LMPT . LIN10110 

LIS=lOO LIN10120 
IRET=l ENTRY FROM LINSO. · BEGIN LIN10130 
IRET=2 -- CANCEL PROCESS · LIN10140 
IRET=3 -- TRACE PRINT RETURN LIN10150 
IRET=4 -- NEXT RESTRICTION LIN10160 

GO TO (1,167,110,902),IRET LIN10170 
THIS SECTION SEARCHES OVER THE POINTS TO FIND A CONSISTENT 
SET. LIN10180 
THIS SUBSECTION WILL ELIMINATE ALL POINTS NOT IN THE LIN10190 
SUBSET DEFINED. LIN10200 
SET TRACE IF REQUESTED ON THIS SUBSET LIN10210 
TRACE=O LIN10220 
NTRY=NTRY&l LIN10230 
IF(IV)104,101,160 LIN10240 
DO 103 I=l,DIM LIN10250 
IF (TMASK(I) &10001) 158, 103, 158 LIN10260 
IF (TMASK(I) -COORD (I)) 101, 103, 101 LIN10270 
CONTINUE LIN10280 

TRACE IS REQUESTED FOR THIS SUBSET. LIN10290 
TRACE=IABS(TV) LIN10300 
WRITE(Z,523) LIN10310 
WRITE(Z,511) (I,COORD(I) ,I=l,DIM) LIN10320 

CHECK FOR CANCELLATION OF SUBSET · · LIN10330 . 
DO 150 I=l,CLIM,DIM LIN10340. 
DO 151 J=l,DIM LIN10350 
K=I&J-1 LIN10360 
IF (CANCL (K}&lOOOO) 152, 151, 152 LIN10370 



152 IF{CANCL{K)-COORD{J)}150,151,150 
·· 151 CONTINUE 

-NCAN:::;NCAN&l 
IF{TRACE)124,124,154 

154WRITE(Z,518) 
. WRITE{Z,51l}(J ,CANCL.{J) ,J=I,K) 

·.·GO TO 124 
150 CONTINUE 

C · SUBSET NOT CANCELLED 
· PD=O 

IS:::;O, 
167WORK:::;0 

. LSTO=O 
LGI:::;O 

C -MASK QFFGROUPS NOT-INSET 
DO .9 GI=l ,GLIM 
DO 106 IDIM=l,DIM 

. IF{COORD{IDIM}&l0000}107, 106, 107 
107 J=LGI&IDIM . 

IF {COO RD {DIM) -CORG {J}) 109, 106, 109 
106 CONTINUE 

C GROUP IS INCLUDED IN SUBSET 
· J=IABS{GRPL{GI)) 
GRPL(GI):::;J 
MEM{J)=IABS{GRPL{GI&l) )-J-1 
WORK::WORK&l 

.. ·GO TO 9 
C . GRO.UP IN .NOT INCLUDED IN- SUBSET 

109 .GRPL{GI) =-IABS{G.RPL{GI)) 
9 LG.I=LGI&DIM .. 

C CANCEL· IF NO GROUPS ARE INCLUDED 
. IF (WORK}l13,.113, 114 

· · 113 IF{TRACE) 121,.121, 115 
115 WRITE(Z,508) 

C . PLACE FAULT POINTS IN POINTS-TO-DELETE STACK 
114 DO 165 I=l,FL 

-M=FAULT(I). 
IF {GRPL(M)}165, 165-, 166 

166-J=GRPL(M) 
· IS=IS&l 

·· STACK{IS}=MEM{J&l) 
165-CONTINUE 

· NDEL=O 
C . PRINT- REMAINING GROUPS. IF TRACE .GT-. 1 AND PD=O 

.. IF{PD)ll0,112,110 
. ·· 112·.IF(TRACE-1}110,110, 111 

111 WRITE(Z,510)WORK 
IRET=3 

·.RETURN. 
C ·THIS-SECTION .ELIMINATES REMAINING· SINGULAR POINTS. 
C BRANCH TO 26 IF SUCCESS {STACK EMPTY). 

· 110 BI=O . 
NDEL=O, 

210 IF(IS)26,26,119 
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LIN10380 
LIN10390 
LIN10410 
LIN10420 

· LIN10430 
LIN10440 

· LIN10450 
LIN10460 

· ·· LIN10470 
· LIN10480 

LIN10490 
· LIN10500 

· LIN10510 
LIN10520 

· LIN10530 
LIN10540 
LIN10550 

· L.INl0560 
LIN10570 
LIN10580 
qN10590 

· LINlOOOO 
\ 

· · LINl0610 
LIN10620 

· ·LIN10630 
· · LIN10640 

· LIN10650 
· ·· LIN10660 . 

· LIN106'70 
· LINl0680 
· LIN10690 

LIN10700 . 
LIN107.10 

· · LIN10720 
· · LIN10730 

LIN10740 
· LIN10750 

LINl0760 
· · LIN10770 

LIN10780 . 
· ·· LIN10790 

LIN10800 
· LIN10810 
-LIN10820 

LIN10830 . 
· LIN10840 
· LIN10850 

· · LIN10860 
LIN10870 

· ·· LIN10880 . 
· · LIN10890 
· ·· LIN10080 . 

LIN10930 
· LIN10940 



C UNSTACK POINT TO DELETE 
119 PI=STACK(IS} 

19 IF(TRACE-2)21,21S-20 
C - PRINT .. DELETION IF TRACE . GT. 2 

20 BI=BI&l 
OBUF(BI)=PI 
IF(BI-10)21,22~22 

22 WRITE(Z,539)DBUF 
BI=.0 

21 · IS=IS-1 
J={PI,,l)*DIM 

. SGI=O 
C DELETE POINT FROM EACH GROUP IT IS IN 

DO 14 IDIM=l,DIM 
. J=J&l 
GI=GPS{J) 

C ·SKIP TO 14 IF GROUP IS EMPTY. 
. IF{GRPL{GI)).14, 14, 10 

C DELETE POINT PI FROM GROUP GI. 
10 K=GRPL{GI) 

C . SEARCH FOR POINT IN GROUP 
M=MEM(K)-1 
L=M&K. 
DO 11 I=K,L 
IF (MEM(I&l)_PI) 11, 12, 11 

11 CONTINUE 
C POINT WAS NOT FOUND IN GROUP 

M=M&l 
C CONSIDERDELTED IF· STACK FULL 

IF(IS~LIS)l3,13,14 
C REMOVE·. POINT FROM GROUP. 

12 MEM(I&l)=MEM{L&l) 
MEM(L&l)=PI 
MEM(K)=M 

C TEST FOR l REMAINING POINT. 
13 IF{M .. J)fbl,15,14 
15 IF(IS-LIS)16,17,18 

C STACK PI AND SET STACK OVERFLOW SWITCH 
17 IS=IS&l 

STACK (IS) =PI 
LSTO=l 

18 PI=MEM(K&l) 
· SGI=GI 

·.GO TO 19 
C STACK REMAINING POINT AND CLOSE GROUP. 

16 IS=IS&l 
STACK (IS) =MEM{K&l) 

31 GRPL{GI)=-GRPL(GI) 
NDEL=NDEL&l 

· · 14 CONTINUE 
IF{SGI)200,200~201 

201 NDEL=NDEL&l 
GRPL(SGI)=-GRPL(SGI} 

200 IF(NDEL-WORK)210,172,172 
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LIN10950 
LIN10960 
LIN10970 
LIN10980 
LIN10990 
LINllOOO 
LIN11010 
LIN11020 
LIN11030 
LIN11040 
LIN11050 
LIN11060 
LIN11070 
LIN11080 
LIN11090 
LINlllOO 
LINllllO 
LIN11120 
LIN11130 
LIN11140 
LIN11150 
LIN11160 
LINlll 70 
LIN11180 
LIN11190 
LIN11200 
LINll210 
LIN11220 
LIN11230 
LIN11240 
LIN11250 
LIN11260 
LIN11270 
LIN11280 
LIN11290 
LIN11300 
LIN11310 
LIN11320 
LIN11330 
LIN11340 
LIN11350 
LIN11360 
LIN11370 
LIN11380 
LIN11390 

· LIN11400 
LIN11410 

· · LIN11420 
LIN11430 
LIN11440 
LIN11450 

· · LIN11460 
LIN11470 

· LIN11480 



c 
c 

· i<FAILURE 
· ALL POINTS WERE DELETED. 

172 .STO=STO&LSTO 
IF{BI}l73~173~171 
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· · LIN11490 
·· LIN11500 

LIN11510 
· LIN11520 

· 171 WRITE{Z)539}(0BUF{I},I=l,BI) · LIN11530 
LIN11540 
LIN11550 
LINTl.560 

· · 173 IF {TRACE).120., 120, 174 
174 WRITE{Z~551) 

c RETURN ,IF THIS WAS· AN ATTEMPT AT A SUBSET· OF A::. 
CONSISTENT SET 

120 IF (PD) 121, 121, 122 · LIN11570 
. 122 IRET=4 · · LIN11580 

RETURN . LIN11590 
c CHALK .IT .UP. · LIN11600 

121 NFAI.L::NFAIL&l · · LIN11610 
·. 902 IF{LEVEL}l3.2,132,124. · LIN11620 
c 

c 
c 

· · THIS SECTION GENERATES RESTRICTIONS PLACED ON THE SETLIN11630 
124 . I=l . LIN11640 

· 133 IDIM=.DIML{I} · .LIN11650 
K=COORD{IOIM) · .LIN11660 

. INCREMENT. COORDINATE"FOR DIMENSION ON LEVEL I · · LIN11670 
TEST .. FOR· RESET MARKER · .·· LIN11680 

· IF(K&l0000}170.,169.,170 ·· LTN11690 
. ·· 170 · K=K&CORAN{3,IDIM} . · ·· LIN11700 

. IF{K-.CORAN{2.,I.QIM}}l.27·,127,125 ··· LIN11710 
C RESET MARKER .FOUND·.· BET TO FIRST COORDINATE· VALUE. · :LINll720 
.. 169 · K=CORAN{L,.IDIM}. . LINll730 
C ·. NEXT .COORDINATE VALUE· WAS FOUND LIN11740 

c 

c 
c 

c 

127 COORD{IDIM}=K LIN11750 
· I=I-1 LIN11760 

GO TO 134 WHEN ALL COORDINATES ARE FIXED · LIN11770 
. ·IF{I)l33,133~134 LIN11780 

HIGHEST :COORDINATE H JS. BEEN· USED. · LIN11790 
RESET DIMENSION IDIM. · LIN11800 . 

. 125·. COORD{IDIM}=-10000 · ·· LIN11810 
· · I=I&l. LIN11820 

IF{I-LEVEL).133~133.,140 LIN11830 
COORDINATES FOR ALL DIMENSIONS HAVE'. ·REACHED MAXIMUM · LIN11840 
VALUE .. 

c . . INCREMENT A D !MENS ION 
· · 140 DO 128 .IG=.l,LEVEL 

· ·· LIN11850 
· ·LIN11860 

.. IF{DIML{IG)-DIM&IG-1)129~128~128 
· 128 CONTINUE .... 

C ALL DIMENSIONS ARE MAXIMUM FOR THIS LEVEL 

c 

c 

132 · NGO=NTRY..,NFAIL . . . 
· . WRITE(Z, 514) LEVEL.,NTRY .,NCAN .,NFAIL.,NGO 

.. TEST. $OR END· OF· RUN. 
.. IF (LEVEL,,,DIM) 161., 131, 131 

·INCREMENT.LEVEL 
161· . LEVEL:::;:;LEVEL&l ... 

1 WRITE(Z,515}LEVEL 
. NTRY::;O 
· NFAIL=O 

· · NCAN=O .. 
.. IF(LEVEL)l34.,134,181 

LIN11870 
· ·· LIN11880 
· ·LINH890 
· ·· LIN11900 
· · LIN11910 
· LIN11920 
· .· · LIN11930 
· · LIN11940 
· ·· LIN11950 
· ·· LIN11960 

LIN11970 
·. LIN11980 

· LIN11990 
· LINI2000 



c 

c 

c 

c 

181 IG=LEVEL 
. RESET ,DIMENSIONS ·FOR LEVELS = 1 TO IG 

· 129 K=DIML(IG) 
· ·DO 130 I=l, IG 
· · L=IG.,,I 

130 DIML{L&l}=K&I 
. NOW SET VALUES FOR THESE DIMENSIONS 

GO TO 124 
A· CONSISTANT:SUBSET HAS. ·BEEN FOUND 

· 26 IF{BI)28y~8y27 
27 WRITE(Z,539) (OBUF{I) ,I=l,BI) 

· · 28 IRET=2 
RETURN 

END.OF.RUN 
· · 131 · IRET=l 

RETURN. 
· 508 ·FORMAT(-' ·.NO ,GROUPS.MEET COORDINATE .. RESTRICTIQNS'.) 
. 510 FORMAT(' • LIST .OF 1 16 1 · GROUPS MEETING COORDI~ATE 

RESTRICTIONS! .. } 
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· LIN12010 
· ·· LIN12020 

· LIN12030 
·· LIN12040 

LIN12050 
·· LIN12060 

· LIN12070 
·· LIN12080 

· LIN12090 
· ·· LIN12100 
··· LIN12110 

· LIN12120 
· ·· LIN12130 

· LIN12140 
· · LIN12150 .. 
· · LIN12160 
· .. LIN12170 
· · LIN12180 

511· FORMAT{lX,8{I5:.·')=·'I5}) LIN12190 
514 · FORMAT('OEND .. OF TESTS .ON. LEVEL..'I3,,/I8,' .,SETS. · LIN12200. 

GENERATED I IlO,. I. SETS .CANCELLED I 110, I. SETS FAILED I LIN12210 . 
llO,' SE'J'S.CONSISTENT'/ .121('1<')) LIN12220 

. 515 . FORMAT(' .. 1*1<*LEVEVI3) · ·· LIN12230 
· 518 FORMAT(' .THIS :SUBSET ,CANCELLED· ·BY THE. SUBSET ·WITH THE LIN12240 

·. FOLLOWING RESTRICTIONS'} ·· LIN12250 . 
. . 523 ·· FORMAT('OCOORDINATE. RESTRICTIONS') · ·· LIN12260 

539 · FORMAT('.*POINTS· DELETED .nOI6) · ·· LIN12270 
551 ·FORMAT(.' .FAILURE·. ALL· POINTS· DELETED'/lHO) . LIN12280. 

·· END · LIN12290 

·//.FOR 
1<0NEWORD INTEGERS . 

·.SUBROUTINE .LIND2 
· INTEGER .. A, B ... 
· INTEGER .. OBUF(20),.PI 

1 · . INTEGER .. DIM,COORD(8),CORG (·· 600},FAULT{lOO} ,FL.,GLIM,·GPS { · ·600) 
2 .·· INTEGER .GRPL(301},KD.,MEM(.·600},.TMASK(8},TV . 
3 · INTEGER. GORAN{3·,.8),PD,PTDEL(l0 },STACK{lOO}:,CANGL( 600} ,DIML{8) 

· 4 ... INTEGER CLIM,WORK.,HI,.GI,.·;· TRACE.,.Z,.STO.,.CHAINClOO) 
5 . COMMON DIM,.COORD,.CORG,FAULT.,.FL.,GLIM.,GPS,.GRPL,rKD,MEM,.NP.,,.TMASK·,:rv 
6 COMMON .. CORAN,.PD.,PTDEL,STACK,IS,IRET,CANCL.,,DIML,.CLIM·,WORK,HI.,.LGM 
7 COMMON. LEV:EL,TRACE,NOSU ... GI,Z,NFAIL,NTRY,NCAN,STO.,LSTO.,CHAIN 

C . LCANC=LENGTff OF· CANCL. · · LMPT=LENGTH OF·MPT· AND PTDEL. 
· · LCANC::;800 

LMPT=lO . 
C · IRET=2 -- CONSISTENT SET 
C . IRET=3 .~-·TRACE· PRINT 

.. GO TO (2,,2.,.100), IRET 
C *A CONSISTENT·SETHAS· BEEN FOUND 
C · PRINT· CONSISTENT SET ... 

2 . WRITE{Z,50l}{I.,COORD(I}.,.I=l·,DIM) 
· . IF {CLIM-DIM-LCANC) 156, 156·, 157 

156· DO 155 I=lyDIM 

., 



CLIM=CLIM&l . 
155 CANCL{CLIM}=COORD{I) 

DO 90 I=l,NP 
C ADD THIS SET TO CANCEL BUFFER . 

. go CHAIN(I)=O 
IRET=l 
GO TO 3 

55 NOSU=l 
· NG=GLIM 
. PD:::O 
· IS=l 

C SEARCH FOR GROUPS CONTAINING ONLY TWO. POINTS 
C · FOR EACH ONE FOUND, DEFINE THE TWO POINTS TO BE EQlHV A.LANT. 

· DO 5 GI= l , GLIM 
.. K=GRPL{GI) 
· · IF(K)8,8,6 
6 IF{MEM(K)-2)21,21,5 
8· .NG=NG-1 
5 CONTINUE 

· J;F(TRACE-1)94,94,83 
83· DO -84 'K= 1, NP 

· PI=-CHAIN(K) 
·. IF{PI)84,84,85 

· · 85 WRITE(Z,585)PI 
585· FORMAT('OCHAIN'.13) 

.CALL LIND5{PI) 
· · 84 CONTINUE 

· 94 IF(NG)80,80,.81 
C INITIALIZE TO NO DELETIONS 

81 PTDEL(l) =0 
· HI=l 

C . HUNT FOR CHAIN l GREATER THAN K 
31 IS=IS&l 

. STACK(IS) =-PD 
73 K=PTDEL(HI) 

· L=lOOOO 
·. PI=O 

· 10 PI=PI&l 
IF(PI-NP)ll,11,12 

. 11 PD=-CHAIN(PI} 
· IF(PD)l0,9,9 

C .CHECK FOR PD .GT. KAND PD .LT. L 
9 IF((PD-K)*(PD-L))l3,10,10 

. 13 L=PD 
GOTO 10 
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C SEARCH FOR NEXT.CHAIN IS FINISHED.· GO TO 15 IF K IS HIGHEST CHAIN 
12 IF(L-10000)14,115,115 

C . DELETE CHAIN PD 
.. 14 PD=L 

WRITE (Z:. 506) PD 
.. PTDEL(HI}=PD 

.· PTDEL{HI&l)=PD 
· · PI=PD 

IRET=2 



C ·PI IS A POINT· EQU,IVAL~NT TO· PD·.· DELETE· IT. 
· 29 .J={PI-l)~DIM 

C · ·~DELETE. POINT· PI 
.. DO 16· IDIM=l,DIM 
' '.J-=J&l 

GI=GPS{J) 
· K=GRPL{GI) 

· · IF{K)l6,16,17 
C SEARCH· FOR· POINT· PI. IN GROUP GI 

· · 17 M=MEM{K)-1 
. L=M&K _ 
'no. 18 I=K,L 

- · IF{MEM{I&l)-PI) 18:.19·, 18 
· · 18 · CONTINUE -

·GO. TO 20 
C PUT.POINTAT·END.OF· LISTANDDECR· LENGTH 

- 19 . MEM(I&l)=MEM(L&l) 
. MEM{L&l)=PI 
. MEM(K).=M 

.. IS=LS&2 
STACK(IS-1)=0 

.. _ STACK{IS)=GI 
· . WRIT~(Z,.SlOJGI . 

510 'FORMAT(' GROUP I I4' I' DELETED I) 
· 20· IF(M-2}21,21,16. 

c '·TWO· POINTS· REMAINING 
- · 21 A=MEM(K&.l) 

. B=MEM{K&2} . 
· -CALL .. LIND4{A,JA, IA) 

CALL-.LIND4{B,JB,IB) 
· . IF(IA.IB).40,54,40 

· 40 . IF(IA-PD)23,22,23 
22 · IF(IB-PD}74·,53,54 
23 · IF{IB~PD).54 1 24,54 

· 24 . IF{IA-PD)74,53,54 
27 · IF {NG)28, 28, 16 

· 16 CONTINUE 
. PI=CHAINCPI) 

· · IF{PI)30, 30, 29 
C · ·ALL POINTS IN· CHAIN· PD HAVE. BEEN· DELETED 

· · 30· · HI=HI&l 
GOTO 31 

C · . NO GROUPS .LEFT.· . TEST.· FOR NON-EMPTY. SET 
. 28· . K=IABS(GRPL{GI)) 

· . A=MEM(K&.l). 
·CALL LIND4(A.,.:i;.,JJ 
· IF{J-PD~32,74·,32. 

. C .. MINIMAL .CONSISTENT. SET 
· · 32 · WRITE {Z ,'502)NOSU 

·NOSU=NOSU&l 
. K:;::O 

· 37 IF(J) 33, 33, 34 
· 34- K=K&l. 

· OBUF(K)=J 
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· IF(K..,20)35,36,36 
· · 36· WRITE{Z, 505)0BUF 

. · K=O 
· · 35 J=CHAIN{J) 

··GO· TO 37 
115 HI=HI..,1 

.IF {HI)59, 5.9, 15 
33 IF{K)74,74,39 
39 WRITE{Z,505){0BUF{I),I=l,K) 

· GO TO 74 
C ·UNDO EQUIVALANCES CAUSED· .BY DELETION OF CHAIN· PD. 

· 15· .· PD=-&TACK{IS} 
· 74 . WRITE{Z:. 572)PD • 
572 FORMAT{' .UNDO, DELETI0N'I3) 

WRITE{3,505) {STACK{!.) :..I=l:. IS) 
· 72 IS=IS-1 

Gl:;::STACK(IS) 
IF {GI) 73, 73, 42 

42 K=GRPL(GI) 
IS=IS-1. 
IF (K) 117, 117, 114 

117 K=~K 
NG=NG&l 

114 GRPL(GI)=K 
IF {STACK{ IS)) 72,72, 116 

· 116 LC:IABS{GRPL{GI&l))-K 
. L::MEM{K) 
IF(l-2)45,45, 72 

45 M=K&L&l 
· CALL LIND4{MEM{M)., IA, IB) 
IF(IB-PD)43,44,43 

· 44 L=L&l 
· · IF(L..,LC)45,43,43 

· · 43 MEM(K}=L 
. ·. A=MEM{K&l) 
· . B=MEM{K&2) . 

CALL .LIND4{A·,JA, IA). 
· ·CALL .LIND4(B,JB 1 IB) 

IF(IA-IB)72,47,72 
· 47. I::CHAIN (A) 

· CHAIN{A)=CHAIN(B) 
CHAIN(B)=I 

113 .J==I 
LO=I. 

49 KJ=J 
· .· J=CHAIN{J) 

IF{J)lll,111;112 
111 I=CHAIN(A) 

.·GOTO 113 
· 112 IF(J~I)50,Sl,50. 
·. 50 IF(J-L0)48,49,49 
· · 48 LO=J· 

.. ILO=KJ 
·GOTO 49 
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51 

.. 581 

c 
80 
59 

c 

c 
54 

76 

52 
77 

82 
53 

c 
c 
c 

3 

. 70 
c 

71 

c 
61 

63 

60 
. 104 

66 

c 
100 

102 

103 

101 

CHAIN(ILO};:-LO 
· WRITE(3,.58l)A, B, IA, LO 
FORMAT('· UNEQ' 2I4, 5X, 'CHAINS' 214) 
GO TO 72 

ALL EQUIVANENCES UNDONE 
· WRITE (Z, 503) 

WRITE (Z, 500) . 
GOTO RESTRICTION GENERATOR ROUTINE 

. IRET=4 
· · ROUTINE· TO· SET· A=B 
GRPL(GI)=-GRPL(GI) 

· NG=NG-1 
IF(IA-IB)52,53,76 

· CHAIN(JA)=IA 
·GO TO 77 
· CHAIN(JB)=IB 

I=CHAIN{A) 
CHAIN(A) =CHAIN{B) 
CHAIN{B}=l 
STACK(IS-.1)=1 
IF{TRACE-1)53,53,82 
WRITE{Z,507)B,A,IB,IA 
GO TO {5,27),IRET 

*PRINT REMAINING· POINTS. 
. FIND A FREE DIMENSION 

.. {NONSTANDARD .USE OF IS) 
DO 70 IS=l,DIM 

· IF{COORD{IS)&l0000)70,71,70 
CONTINUE 

CHECK EACH PT FOR INCLUSION IN GROUP FOR DIMENSION IS 
J=O 

· DO 60 PI=l ,NP 
IF{LIND3(PI))60,60,61 

POINT NOT DELETED.· ·ADD TO OUTPUT BUFFER. 
J=J&l 

· OBUF {J) =PI 
CHAIN{PI) =,-PI 
IF{J-20)60,63,63 

· WRITE{Z, 505)0BUF 
J=O 

·CONTINUE 
IF{J)55,55,66 
WRITE{Z,505)(0BUF{I),I=1-:.J) 

·GO TO 55 
LIST ACTIVE GROUPS 

J=O 
DO 101 GI=l,GLIM 
IF{GRPL{GI))lOl,101,102 
J=J&l 
OBUF (J}=GI 
IF(J-20)101,103,103 
WRITE{Z,505)0BUF 
J=O 
CONTINUE 
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. RETURN 
157 WRITE(Z,300) 

·CALL- EXIT 
78WRITE{Z,301) 

CALL· EXIT 
300. FORMAT{'ERROR .,..- LENGTH OF CANCEL BUFFER· EXCEEDED·.') 
301 FORMAT(' OERROR -,.. ·.LENGTH OR PTDEL EXCEEDED. r) . 

· · 500 FORMAT (WEND· OF CONSISTENT· SET AND SUBSETS ':/60 (-'. - 1 )) 
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· 501· FORMATUO~****CONSISTENT. SET FOUND WITH FOLLOWING RESTRICTIONS'/ 
· .1X,8{I5,'}='I5)) 

502 FORMAT{'OSUBSET'I3,5X,'LIST OF POINTS') 
. 503 FORMAT{1.00NLY SUBSET IS SET ITSELF··') 
· 505 FORMAT{lX, 20I6) 
. 506 FORMAT(' • CHAIN I 14, I . DELETED I) 
507 FORMAT{'POINT'I4,' IS EQUIVTQPOINT-'I4,5X,'CHAIN'I4,'' JOINED· TO 

*CHAIN' I4) 
END 

. II DUP 
* STORE . · WS UA LIND2 
II FOR 
* ONE· WORD· INTEGERS . 

· . FUNCTION LIND3 {PI) 
· · INTEGER·.PI .. 
1 INTEGER .DIM,COORD{8) ,CQRG(. 600},FAULT(lOOJ,FL·,GLIM,GPS{ 600) 
2 · INTEGER·.:GRPL(301), KD,,MEM.( hOO)l TMASK(8).,.TV 
3 INTEGER- .CORAN{3,8), PD,PTDEL{lO ) ·,STACK{lOO) ,CANCL( 600) ,DIML{8) 
4 INTEGER CLIM,WORK.,HI..,GI, ,_ TRACE,.Z,,STO,.CHAIN{lOO) 
5· COMMON .. DIM,COORD,CORG,.FAULT,:FL,GLIM,.GPS·,.GRPL-,KD,MEM,NP,TMASK,TV 

· - 6 COMMON CORAN,.PD,PTDEL·,STACK-,.IS,,IRET,.CANCL:,.DIML.,.CLIM,WORK.,HI,LGM 
. .,_ COMMON LEVEL·,.TRACE.,NOSU, · GI,Z,NFAIL·,NTRY ,NCAN,STO,LSTO,CHAIN 

. K:::.(PI-1).*DIM&IS 
· · K=GPS{K) 

C FIND· INDEX OF POINT IN GROUP K 
· - K=GRPL(K). 

IF{K)l,),2 
C · GROUP· EMPTY 

1· LIND3:::;0 
RETURN 

2· L=MEM{K}&K-1 
DO 3 K:::;K,L 
IF(MEM{K&l)-PI)3,4,3 

3 CONTINUE 
C ·NOT IN GROUP 

GO.TO 1 
4 LIND3=K 

RETURN 
END 

II DUP 
. *STORE WS UA- LIND3 

.. END 
·I/FOR 
· *ONE WORD INTEGERS . 

· SUBROUTINE·.LIND4{A, B, C) 
· · INTEGER A, B, C 
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l· INTEGER DIM,COORD{8) ,CORG{ 600},FAULT{lOO),FL,GLIM,GPS{ 600) 
2 INTEGER GRPL (301), KD,,MEM{ 600), TMASK{8}, TV 
3 INTEGER .CORAN(3,8),PD,PTDEL{l0 ),STACK{lOO) ,CANCL{ 600) ,DIML{8) 
4 INTEGER CLIM,WORK,HI ,GI, TRACE, z, STO,CHAIN{lOO) 
5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP,TMASK,TV 
6 COMMON CORAN,PD,PTDEL,STACK, IS, IRET ,CANCL,DIML,CLIM,WORK,HI,LGM 
7 COMMON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN 

IA=A 
1 · B=IA 

IA=CHAIN (IA) 
IF(IA)2,2,l 

2 C=-IA 

//DUP 

RETURN 
END 

*STORE WS UA LIND4 
//FOR 
*ONE WORD INTEGERS 

SUBROUTINE LINDS{PI) 
INTEGER PI~OBUFf~O) 

1 INTEGER DIM,COORD{8),CORG{ 600),FAULT{lOO),FL,GLIM,GPS{ 600) 
2 INTEGER GRPL{301) ,KD,MEM{ 600), TMASK(8}, TV 
3 INTEGER CORAN(3·,8) ,PD,PTDEL(lO ) ,STACK{lOO) ,CANCL( 600) ,DIML{8) 
4 INTEGER CLIM,WORK,HI,.GI, TRACE,Z,STO,CHAIN(lOO). 
5 COMMON DIM,COORD, CORG, FAULT ,FL·,GLIM,GPS ,GRPL,KD,MEM,NP, TMASK,TV 
6 COMMON CORAN, PD,PTDEL,STACK, IS, IRET,CANCL ,DIML,CLIM,.WORK,.HI,.LGM 
7 ·COMMON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN 

J=O 
4 J=J&l 

OBUF{J)=PI 
IF{J-20)1,1,2 

2 WRITE{Z,SOO)OBUF 
J=O 

1 PI:;::CHAIN{PI) 
IF{PI)3,3,4 

3 WRITE{Z,SOO){OBUF{I),I=l,J) 
RETURN 

500 FORMAT{20I6) 
END 

//DUP 
*STORE WS UA LINDS 
//FOR 
*NAME LINDS 
*ONE WORD INTEGERS 
*IOCS{CARD, 1132 PRINTER) 
*LIST SYMBOL TABLE 

1 INTEGER DIM,COORD(8) ,CORG{ 600),FAULT{lOO},FL,GLIM,GPS( 600) 
2 INTEGER .GRPL(301),KD,MEM{ 600),TMASK{8),TV 
3 INTEGER CORAN{o,8) ,PD,PTDEL{lO ) ,STACK{lOOO ,CANCL{ 600) ,DIMJ,(8) 
4 INTEGER CLIM,WORK,HI,GI, TRACE,Z,STO,CHAIN(lOO) ' 
5 COMMON .DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP,TMASK,TV 
6 COMMON CORAN ,.PD,.PTDEL, STACK, IS, IRET ,CANCL,DIML,CLIM,.WORK,HI,LGM 
7 COMMON·LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN 

IRET=O 



1 CALLLINDO 
2 CALL LINDl 

IF { IRET - 1) 1, 1, 3 
3 CALL LIND2 

IF(IRET-1)1,1,2 
II DUP 
*STORE WS UA LINDS 
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