ESTIMABLE EFFECTS AND INTERACTIONS IN AN

 n-WAY CROSS CLASSIFICATION WITH MISSING CELLS
By

RALPH RAYMOND ,/INDSTROM,
Bachelor of Science Northern Michigan University

Marquette, Michigan
1957
Master of Science The University of Illinois

Urbana, Illinois
.1960

Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
May 1971

Thesis
1971 D
$\angle 753 \mathrm{e}$
capl 2
 MISSING CELLS

Thesis Approved:

788407

I wish to express my appreciation to Dr. David Weeks for serving as chairman of my advisory committee, for his leadership, teaching, patience and guidance in the work leading up to this thesis and its preparation. I am also grateful to Professor Leroy Folks, Director, Statistical Laboratory and Professors Ronald McNew and Irvin Ontvedt for their service on my advisory committee. Particular acknowledgement is made to the National Science Foundation for the support I received throughout my graduate study and during the preparation of this thesis and to Thad Smith for his work on the computer program included in:therpendix?

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. ESTIMABILITY OF EFFECTS AND INTERACTIONS 12
Introduction. 12
Definitions, Notation, and Preliminary Results 12
Estimation of the n Factor Interaction. 19
Sufficient Conditions for the Estimability of an α Factor Interaction. 28
Necessary and Sufficient Cbnditions for the Estimability of an $n-1$ Factor Interaction 31
Necessary and Sufficient Conditions for the Estimability of an a Factor Interaction 38
Necessary and Sufficient Conditions for the Estimability of a Simple Effect 41
III. SUMMARY AND EXTENSIONS 49
SELECTED BIBLIOGRAPHY 58
APPENDIX 59

LIST OF TABLES
Table Page
I. Cells for Three-Way Cross Classification Data 7
II. Points Corresponding to Occupied Cells in Table I 8
III. Points Corresponding to Occupied Cells. 9
IV. Graphical Representation of Occupied Cells for an Example to Illustrate Lemma 2.1 and Theorem 2.1 24
V. Graphical Representation of Occupied Cells for an
Example to Illustrate Lemma 2.1 and Theorem 2.3 34
VI. Graphical Representation of Occupied Cells for an
Example to Illustrate Theorem 2.5 43
VII, Occupied Cells for the Points of Table VI First Ignoring C and then Ignoring B 44
VIII. Occupied Cells for the Points of Table VI at the $0 \& 1$ Level of B First Ignoring C and then A. 45
IX. Graphical Representation of Occupied Cells for a
Second Example Illustrating Theorem 2.5 46
X. Graphical Representation of Occupied Ce11s for an Example Designed with Missing Cells Having ; all Effects and Interactions Estimable. 52
*XI. Graphical Representation of Table X with Points Added to Give Information on all Simple Effects and Additional Information on Interactions 54
XII. Graphical Representation of Table X with Points Deleted Due to Negligible Interactions 56

INTRODUCTION

Abstract

In a general n-way cross classification each observation is classified in n ways. The n classifications are referred to as factors and we suppose that the i-th factor has t_{i} levels, or in all $t_{1} \cdot t_{2} \ldots t_{n}$ combinations (cells) are under consideration. The investigator is usually interested in determining the effects of changing the levels of each factor and also, in many cases, the influence that various combinations of the other factors have on these effects. If the combined effect of changing the level of several factors is not the sum of the effects of the individual factors, interaction is said to exist, and any discussion of the effect of one or several of these factors must necessarily take into consideration the influence of the other factors. This, of course, complicates the analysis considerably, but if the factors are going to occur together naturally, the information thus obtained is essential. We generally hope, however, that certain of the interactions will prove to be negligible and thereby simplify our discussion.

If an equal number of observations are obtained for each and every cell, the problems of estimation and tests of hypotheses concerning various effects and interactions are quite straight forward

and well documented in many textbooks. (See for example: F. A. Graybill (6) ${ }^{1}$). In the event that the numbers of observations per cell are unequal the analysis gets a little more involved, but is still accomplished in much the same manner. However, if a number of the cells are not represented due to missing observations, no general. method of analysis has been put forth and the investigator will probably have to write a mathematical model for the observations that are present and attempt to solve the corresponding normal equations. Because of the missing observations, the system loses much of the symmetry present when at least one observation is present in each cell and consequently the solutions are considerably more difficult to obtain. Moreover, the investigator has no assurance before he attempts to find the solutions that the effects and interactions in which he is interested are estimable. The investigator may attempt to estimate the missing data or assume that all interaction effects are zero in order to simplify the problem. But no procedure can actually recover the missing data, and the arbitrary decision that there is no interaction is obviously undesirable if some alternative exists.

The purpose of this thesis is to present a relatively simple method whereby the investigator can determine beforehand, in a n-way cross classification with missing cells, which effects and interactions are estimable free of the influence of other effects and interactions. An alternative to the assumption of no interaction is discussed, and the degrees of freedom in the analysis of variance table are separated into sets associated with caonfounded and unconfounded effects and interactions.

[^0]To illustrate the failure of a conventional method of partitioning the degrees of freedom (and sum of squares) consider a 3^{3} factorial experiment where the factors are designated by A, B, and C. Suppose the only design points for which the experimenter was able to get at least one observation were $000,100,120,220,111,021,121,211$, $012,122,112,202$ where (i, j, k) indicates the i-th level of factor A, j-th level of factor B, and k-th level of factor C. Let us say that the $A B C$ interaction is known to be zero, but we wish to investigate the 2 factor interactions. We will attempt to partition the degrees of freedom by combining a series of 2×2 tables.

Ignoring C a two way table for A and B yields 4 degrees of freedom associated with the interaction of A and B.
A

A.O.V.

Source	df
Tota1	11
A	2
B	2
AB	4
Remainder	3

A similar table for A and C results in 4 degrees of freedom associated with the AC interaction.

Source	df
Total	11
A	2
C	2
AC	4
Remainder	3

Finally, a table for B and C yields 1 degree of freedom for the interaction of factors. B and C
C

A.0.V.

Source	df
Total	11
B	2
C	2
BC	1
Remainder	6

If we attempt to combine these tables into a single A.O.V. table as is possible in an experiment with no missing data, we see that there are not sufficient degrees of freedom remaining, after the A, B, and C components are considered, to have 4 degrees of freedom associated with $A B, 4$ with $A C$, and 1 with $B C$.

A.0.V.	Source	d.f.
	Total	11
	A	2
	C	2
	AB	2
	BC	$?$
	$?$	

The reason for this is that these three interaction effects $A B$, $A C$ and $B C$ are confounded with each other. This occurs because due to the missing cells, it is impossible to measure the failure of the simple effects of factor A to be the same at different levels of B without changing levels of C. Thus the failure of the simple effects of A to be the same at different levels of B is confounded with the failure of the simple effects of A to be the same at different levels of C, or the $A B$ interaction is confounded with $A C$. Likewise; $A B$ is confounded with $B C$.

Some work has been done by GThomass (5) and Williams (4) on estimatibility of main effects for the n-way cross classification model without interaction, $Y=X \beta+e$, where Y is a $M \times 1$ vector of $\underset{n}{\text { observations, } X}$ is a $M \times \sum_{i=1}^{t_{i}}$ matrix of ones and zeros, β is a $\sum_{i=1}^{n} t_{i} \times 1$ vector of unknown parameters $\beta_{i j}, i=1,2, \ldots, n$, $j=1,2, \ldots, t_{i}$, and e is an $M \times 1$ vector of errors. This design is defined to be connected if $\beta_{i j}-\beta_{i k}$ is estimable for all $i=1,2, \ldots, n$ and for all $j, k=1,2, \ldots, t_{i}, j \neq k$. Williams defines a procedure for determining connectedness for main effects that is sufficient but not necessary. Thomas utilizes this procedure to show that if a p^{n} factorial is expressed in the form $\left(\sum_{i=1}^{k} p_{i}\right)^{n}$ then the total number of connected plans obtainable by combining all combinations of the k^{n} factorials is $\left(2^{k}-1\right)^{n}$.

To illustrate that this procedure is sufficient but not necessary it is presented as given by Williams below with two examples both connected in the sense of the definition. The first example, also from Williams, illustrates the procedure and demonstrates that it is sufficient while the second example shows it is not necessary. To
simplify the discussion two n-tuples are defined to be nearly identical if the n-tuples are equal component-wise except for one component. It is required in the procedure that the design points corresponding to occupied cells be such that the i-th component takes on all possible values $1,2, \ldots, t_{i}$ over the set of all n-tuples. Otherwise parameters associated with missing values are to be eliminated from the original model.

Procedure:

1. Construct a table of all occupied cells expressing each occupied cell as an n-tuple. If a point is repeated, list it only once.
2. Select any point from the table in (1) and find all nearly identical points for the n-tuple selected. Eliminate each point from the table as it is selected.
3. Select all nearly identical points which remain in the table for each n-tuple selected in (2). Again eliminate each point from the table as it is selected.
4. Repeat step (3) for each n-tuple selected in step (3).
5. Continue this procedure until there are no points remaining in the table or until there is no n-tuple in the table which is nearly identical to any point selected in steps (2)-(4).
6. If there are points remaining in the table after step (5) the original set of design points is not connected. The n-tuples which are nearly identical form a connécted subset and may be analyzed as a reduced set of design points where the parameters whose subscripts do not
appear in the subset obtained from step (5) may be eliminated from the original model. The remaining points may be divided into connected subsets by the above procedure so that each may be analyzed as a reduced set of design points.

Example 1.1: Consider Table I for a three-way cross classification where one or more observations are given for the cells containing X and no observations are contained in the other cells.

Step 1: All points corresponding to cells in Table I which contain observations are listed in Table II.

Step 2: Select any point in Table II, say $(1,3,4)$, and take all points which are nearly identical to $(1,3,4)$. These points are $(1,3,2),(1,3,1),(1,1,4)$ and $(2,3,4)$. Eliminate each of these points from Table II.

TABLE I
CELLS FOR THREE-WAY CROSS CLASSIFICATION DATA

T ABLE II

POINTS CORRESPONDING TO OCCUPIED CELLS IN TABLE I

$(1,1,2)$	$(1,3,1)$	$(2,2,1)$
$(1,1,3)$	$(1,3,2)$	$(2,2,3)$
$(1,1,4)$	$(1,3,4)$	$(2,2,4)$
$(1,2,1)$	$(2,1,2)$	$(2,3,1)$
$(1,2,2)$	$(2,1,4)$	$(2,3,4)$

Step 3: For each of the points selected in step 2, it is necessary to find all nearly identical points remaining in Table II. The points which are nearly identical to a particular point selected in step 2 are as follows:

Point from

| - step 2 | $\frac{(1,3,2)}{(1,3,1)}$ | $\frac{(1,1,4)}{(2,3,4)}$ | $\frac{(1,1,2)}{(2,2,4)}$ |
| :--- | :--- | :--- | :--- | :--- |
| Nearly
 identical
 points | $(1,2,2)$ | $(2,3,1)$ | $(2,1,4)$ |

Step 4: For each of the points selected in step 3, check the remaining points in Table II. The points which are nearly identical to a particular point selected in step 3 are:

Point from step $3 \quad(1,1,2) \quad(1,2,1) \quad(2,2,4)$ Nearly identical $\quad(2,1,2) \quad(2,2,1) \quad(2,2,3)$ points

Step 5: Since each point was eliminated as it was selected from Table II, there are no points remaining in Table II so the set of design points is connected. The vector
of unknown parameters is $\beta^{\prime}=\left(\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}\right.$, $\left.\beta_{23}, \beta_{31}, \beta_{32}, \beta_{33}, \beta_{34}\right)$. The set of points may now be analyzed as a three-way classification with $t_{1}=2, t_{2}=3$ and $t_{3}=4$.

If Table II had points remaining one could apply steps $2-5$ to the remaining points and obtain other connected subsets which could be analyzed as reduced designs. It should be noted that the points obtained first would also correspond to a reduced design and could be analyzed as such.

Example 1.2: Using the same model with no interaction say, that the points corresponding to occupied cells were the following subset of Table II of example 1.1:

TABLE IIF
POINTS CORRESPONDING TO OCCUPIED CELLS

$(1,2,1)$	$(1,1,3)$
$(2,3,1)$	$(2,2,3)$
$(2,1,2)$	$(1,3,4)$
$(1,2,2)$	$(2,2,4)$

The points $(2,3,1),(1,1,3),(2,1,2)$ and $(1,3,4)$ in Table III are not nearly identical to any other point of the set, so according to Williams' procedure the design is not connected. Continuing with the procedure given by Williams, only two connected subsets can be found and they are $\{(1,2,1),(1,2,2)\}$ and $\{(2,2,3),(2,2,4)\}$. Williams
then suggests we analyze each of these sets as a reduced set of design points eliminating all other parameters from the original model. Thus according to his procedure the only estimable differences are $\beta_{31}-\beta_{32}$ and $\beta_{33}-\beta_{34}$.

However, if we designate the observation corresponding to the design point (i, j, k) by $x_{i j k}$, then using the observations associated with the design points of Table III we get:

$$
\begin{aligned}
& E\left(x_{121}-x_{231}+x_{134}-x_{224}\right)=2\left(\beta_{11}-\beta_{12}\right) \\
& E\left(x_{121}-x_{231}+x_{224}-x_{134}\right)=2\left(\beta_{22}-\beta_{23}\right) \\
& E\left(x_{122}-x_{113}+x_{223}-x_{212}\right)=2\left(\beta_{22}-\beta_{21}\right) \\
& E\left(x_{121}-x_{231}+x_{224}-x_{134}-x_{122}+x_{113}-x_{223}+x_{212}\right)=\beta_{21}-\beta_{23} \\
& E\left(x_{121}-x_{122}\right)=\beta_{31}-\beta_{32} \\
& E\left(x_{223}-x_{224}\right)=\beta_{33}-\beta_{34} \\
& E\left(x_{113}+x_{223}-x_{122}-x_{212}\right)=2\left(\beta_{33}-\beta_{32}\right) \\
& E\left(x_{121}+x_{231}-x_{224}-x_{134}\right)=2\left(\beta_{31}-\beta_{34}\right) \\
& E\left(x_{223}+x_{212}-x_{224}-x_{224}-x_{113}+x_{122}\right)=2\left(\beta_{32}-\beta_{34}\right) \\
& E\left(x_{113}+x_{223}-x_{121}-x_{212}-x_{121}+x_{122}\right)=2\left(\beta_{33}-\beta_{31}\right)
\end{aligned}
$$

Thus all differences $\beta_{i j}-\beta_{i k}$ for $i=1,2,3$ and $j, k=1,2, \ldots, t_{i}$ $j \neq k$ are estimable; the design is connected and may be analyzed as a three-way classification with $t_{1}=2, t_{2}=3$ and $t_{3}=4$. In other examples, such as a $\frac{1}{2}$ replication of a 2^{3}. factorial experiment, no two design points are nearly identical and yet, of course, all differences are estimable and the design is connected in the absence of interaction.

This thesis presents a procedure for determining not only which simple effects are estimable, but also which interactions are estimable in a general n-way cross classification design with interaction
and missing cells. The criteria of the procedure are necessary and sufficient for estimability and can be modified for use in situations where certain of the interactions are known to be zero. The procedure gives easily obtainable estimates of the estimable effects and interactions, although in general they do not make use of all the observations and hence may not be the best estimates available. The estimated variances of these estimates are readily obtainable, as well as a partitioning of the degrees of freedom associated with each effect and interaction in an alysis of variance table into confounded and unconfounded sets.

CHAPTER II

ESTIMABILITY OF EFFECTS AND INTERACTIONS

Introduction

Throughout this chapter we will be considering an n-way crossclassification design with interaction where, either by design or circumstance, a number of the cells have no observations. It will be understood that if there are no observations for some level of a factar, that level will be deleted from the original model. Similarly if there are no observations for any level of some factor the factor will be eliminated from the model. While it is usually not practical to consider designs for very large values of n, the treatment in this chapter will be entirely general.

Definitions, Notation, and Preliminary Results

To facilitate the ensuing discussion, a brief description of the notation and definitions to be used is presented first. The n factors of the cross-classification design willbe designated by integers $i=1,2, \ldots, n$ and a_{i} will denote a level of factor i, $a_{i}=0,1, \ldots, t_{i}-1 \ldots$ Each combination of levels of factors is then associated with an n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, called a design point representing level a_{1} of factor one, a_{2} of factor two, etc. Whenever convenient the n component vector $\left(a_{1}, \ldots, a_{n}\right)$ will be designated by $a^{(n)}$. We will let X be the set of all observations obtained
and D_{x} be the corresponding set of distinct points for all observations in : X . We can define a relation on D_{x} as follows: Definition 2.1: For all points $a(n)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, $\underline{b}(n)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in $D_{x}, \underline{a}(n) R_{i} \underline{b}(n)$ if and only if $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}$ for $\mathrm{j} \neq 1$. We will say that the two points are R_{i}, (read "'related in class $i ")$, whenever this definition is satisfied,

The above definition is similar to Williams' definition of "nearly identical" discussed in the first chapter, but in addition allows a point to be related to itself, and also specifies in which component two points differ when they are equal component-wise except for one component.

It is easily seen that this relation is an equivalence relation and thus partitions the set of design points: D_{x} into disjoint subsets each containing either a single point or points that differ only in the ith coordinate. To distinguish among the equivalence classes we will let $R_{i}\left(a_{1}, \ldots, a_{i-1}, *, a_{i+1}, \ldots, a_{n}\right)$ be the class of points that are R_{i} and for which the j th coordinate is $a_{j}, j=1,2, \ldots, i-1$, $i+1, \ldots, n$.

For example, in the subset $D=((000),(001),(002),(010),(020)$, (021), (110), (112)) of the design points of a 3^{3}. factorial arrangement of treatment combinations, we have:

$$
\begin{aligned}
& R_{3}\left(00^{*}\right)=((000),(001),(002)) \\
& R_{3}\left(01^{*}\right)=((010)) \\
& R_{3}\left(02^{*}\right)=((020),(021)) \\
& R_{3}\left(11^{*}\right)=((110),(112))
\end{aligned}
$$

Similarly we could partition D into disjoint subsets using either R_{1} or R_{2}.

The interaction, in the model assumed, of the factors $i_{1}, i_{2}, \ldots i_{k}$ which is associated with the levels $a_{i_{1}}, \ldots, a_{i_{k}}$, will be designated by $\mu(\underline{i}(k) ; \underline{a}(k))=\mu\left(i_{1}, i_{2}, \ldots, i_{k} ; a_{i_{1}}, a_{i_{2}} ; \ldots, a_{i}\right)$ and the effect of level a_{i} of the i th factor will be $\mu\left(i ; a_{i}\right)$. An observation associated with the design point $\underline{a}(n)$ will be denoted by $x_{a(n)}$ and $\bar{x}(\underline{i}(k) ; \underline{a}(k))=\bar{x}\left(i_{1} ; i_{2}, \ldots, i_{k} ; a_{1}, a_{2}, \ldots, a_{k}\right)$ will represent the mean of all observations at level a_{1} of factor i_{1}, level a_{2} of factor i_{2}, \ldots, level a_{k} of factor i_{k}. Using the notation above, an n-way cross classification model with interaction and one observation per treatment combination may be written:

$$
\begin{array}{r}
x_{\underline{a}(n)}=\sum_{k=0}^{n} \sum_{\underline{i}(k) \cdot \varepsilon S} \mu(\underline{i}(k) ; \underline{a}(i(k)))+e_{a(n)} \\
a_{i}=0,1, \ldots, t_{i}-1
\end{array}
$$

where the second summation is understood to be μ when $k=0, S$ is the set of all vectors $\underline{i}(k)$ where i_{j} is taken from $1,2, \ldots, n$ with $i_{1}<i_{2}<i_{3} \ldots<i_{k}$, and the errors $e_{a(n)}$ are uncorrelated and all have the same mean 0 and variance σ^{2}.

For example with $N=3$ the model would be:

$$
\begin{aligned}
x_{a_{1}} a_{2}, a_{3}= & +\mu\left(1 ; a_{1}\right)+\mu\left(2 ; a_{2}\right)+\mu\left(3 ; a_{3}\right) \\
& +\mu\left(1,2 ; a_{1}, a_{2}\right)+\mu\left(1,3 ; a_{1}, a_{3}\right)+\mu\left(2,3 ; a_{2}, a_{3}\right) \\
& +\mu\left(1,2,3 ; a_{1}, a_{2}, a_{3}\right)+e_{a_{1}}, a_{2}, a_{3}
\end{aligned}
$$

The above notation is somewhat non-standard, but is adopted to permit a completely general discussion of an n-way classification. However, since the examples of this thesis involve only small values of : n, standard notation will be used in all examples. Thus the model corresponding to the case above for $\mathrm{n}=3$ will be:

$$
\begin{aligned}
& y_{i j k}=\mu^{+} \alpha_{i}+\beta_{j}+T_{k}+(\alpha \beta)_{i j j}+(\alpha P)_{i k}+(\beta \Gamma)_{j k}+(\alpha \beta \Gamma)_{i j j k}+e_{i j k} \\
& i=1,2, \ldots, t_{1} \quad j=1,2, \ldots, t_{2} \quad: k=1,2, \ldots, t_{3}
\end{aligned}
$$

The unknown constants $\mu \quad \alpha_{i}, \beta_{j}$, and Γ_{k} are called the mean and additive treatment constants respectively, $(\alpha \beta)_{i j},(\alpha \Gamma)_{i k}$ and $\left(\beta{ }^{\prime}\right)_{\mathrm{jk}}$ are called 2 factor interaction terms and $\left(\alpha \beta{ }^{\top}\right)_{i j k}$ is the 3 factor interaction term. The sets of parameters α_{i}, β_{j} and Γ_{k} will be associated with factors denoted by A, B and C respectively.

The concept of interaction will be generalized by defining a component of interaction as in Mann(3).

Definition 2.2: Any linear form

$$
\underset{\underline{a}(k) \quad \underline{a}(k) x(\underline{i}(k) ; \underline{a}(k))}{x}
$$

which is not identically zero will be termed a component of the interaction between the factors $\dot{i}_{1}, \dot{i}_{2}, \ldots, i_{k}$ if: $\sum_{a_{i}} \ell_{a}(k)=0$ for $i=1,2, \ldots, k$ and for all choices $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k}$.

It is easily seen, and will be demonstrated in Theorem 2.1 , that if all: α factor interaction effects are zero for $\alpha>k$, then the expected value of a linear form satisfying Definition 2.2 is a linear combination

Thus the failure of a component of interaction to be zero is a measure of interaction of factors $i_{1}, i_{2}, \ldots, i_{k}$ over the levels $a_{i_{1}}, a_{i}, \ldots, a_{i_{k}}$, for which $\ell_{\underline{a}}(k)$ is not zero in the component. Since a main effect or interaction is always confounded with higher order interactions, throughout this thesis, to avaid repeated reference to this situation, higher order interactions will be considered to be zero whenever the estimability of a particular main effect or interaction is being discussed.

Definition 2.3: The interaction effect of factors $i_{1}, i_{2}, \ldots, i_{k}$ will be called partially estimable if there exists a component of interaction for the factors.

If there is at least one observation per cell and we consider the set of "true" cell means of the conceptual population of yields for k
each cell, then there are $\prod_{j=1}\left(t_{i}{ }_{\mathbf{j}}-1\right)$ linearly independent functions of the "true" cell means that can be used to measure a ' k factor interaction. The above definition requires that at least one of these functions be estimable. Throughout the remainder of this thesis, a partially estimable interaction will be referred to simply as estimable.

Definition 2.4: If the interaction effect of classes $i_{1}, i_{2}, \ldots, i_{k}$ is partially estimable, the associated set of design points will be referred to as a partially connected set with respect to this k factor interaction. As in definition 2.3 , the word partially will be dropped throughout the remainder of this thesis.

Let us now consider the problem of determining whether or not a particular main effect or interaction is estimable. We begin by considering a few preliminary results necessary to establish a criterion
for the estimability of the highest order interaction in an n-way cross classification design.

Lemma 2.1: If there exists a nonempty subset D_{x}. of the design points such that for each $\underline{a}(n)$ in D_{x} there is $a \quad \underline{b}(n)$ in D_{x} such that $a_{i} \neq b=b_{i}$ and $\underline{a}(n) \quad R_{i} \underline{b}(n)$ for each $i=1,2, \ldots, n$, then there is a nonempty subset: D_{x}, of D_{x} such that for each: $a(n)$ in D_{x} !, and each $i=1,2, \ldots, n$ there is exactly one $\underline{b}(n)$ in: D_{x}, such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \underline{b}(n)$.
Proof: For a fixed i, say without loss of generality $i=1, R_{1}$ determines a partition of D_{x}. The hypothesis states that all of the subsets of this partition contain at least two design points and some may contain more than two. : By selecting a combination of any two design points from each subset of this partition we can construct a subset $D_{x}(1) \subseteq D_{x}$ such that for each $\underline{a}(n)$ in $D_{x(1)}$ there is exactly one $\underline{b}(n)$ in $D_{x(1)}$ such that $a_{1} \neq b_{1}$ and $\underline{a}(n) R_{1} \underline{b}(n)$. We can now partition $D_{x(1)}$ using R_{2} and in the same manner select from each subset of this partition of $D_{x(1)}$ a combination of
 that for each $\underset{a}{a}(n)$ in $D_{x(2)}^{1}$ there is exactly one $b(n)$ in $D_{x(2)}^{1}$ such that $a_{2} \neq b_{2}$ and $\underset{a}{ }(n) R_{2} \underline{b}(n)$. Of course if any subset of the partition of: $D_{x(1)}$ by R_{2} contains only one point then that point will not be found in $D_{x(2)}^{1}$. Elimination of such a point, however, will produce a set of points for which some point is not R_{1} to exactly one different point. We therefore must partition $D_{x}^{1}(2)$ by : R_{1} again and eliminate all points that occur alone in some subset of the partition. Denote this subset of $\mathrm{D}_{\mathrm{x}(2)}^{1}$ by $\mathrm{D}_{\mathrm{x}(2)}^{2}$.

We now must partition $D_{x(2)}^{2}$ by R_{2} again and eliminate those points that occur again thus forming a set ${\underset{X}{x}}_{\mathrm{D}}^{3}(2)$. Continue this process until $D_{x(2)}^{i}=D_{x(2)}^{i+1}=D_{x(2)}:($ say $) .:$ Then for all: $a(n)$ in $D_{x(2)}$ there exists exactly one $\underline{b}(n)$ in $D_{x(2)}$ such that $a_{i} \neq b_{i}$ and $a(n) R_{i} b(n)$ for $i=1,2$. We now continue with the above procedure using $R_{3}, R_{4}, \ldots, R_{n}$ until we obtain a set $D_{x(n)}$ that remains invariant upon partitioning by $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{n}}$ and eliminating all points that occur alone in some subset of some partition. Thus $D_{x(n)}$ has the property that each $R_{i}=1,2, \ldots, n$ partitions it into disjoint subsets each containing exactly two points. If we can obtain a nonempty set $D_{x(n)}$ by this process then the lemma is established, since by the construction of $D_{x(n)}$ there exists exactly one $\underline{b}(n)$ in $D_{x(n)}$ such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} b(n) \quad i=1,2, \ldots, n$. Suppose then that the lemma is false, that is $D_{X(n)}=\emptyset$: for all $D_{X(n)}$ constructed in the manner described above. We have for all sets $D_{x(1)}, D_{x(2)}, \ldots, D_{x(n)}$ constructed as above

$$
D_{x(n)} \subseteq D_{x(n-1)} \subseteq \cdots \subseteq D_{x(1)} \subseteq D_{x}
$$

and hence

$$
U D_{x(n)} \subseteq \cup D_{x(n-1)} \subseteq \cdots \subseteq \cup D_{x(1)} \subseteq D_{x}
$$

where $U D_{x(1)}$ refers to the union over all subsets of D_{x} that can be constructed as above taking two points at a time from each of the subsets of the partition of D_{x} by $R_{1}, U D_{x(2)}$ is the union over all subsets that can be constructed as above from some set in $U D_{x(1)}$, etc. Let $\underline{a}(n)$ be a point in D_{x} and suppose $\underline{a}(n)$ is not in some $D_{x(1)}$ in $U D_{x(1)}$. Then there is not $a: b(n)$ in D_{x}
such that $: ~ a(n): R_{1} \underline{b}(n)$, but this contradicts the definition of : D_{x}. Thus: $\underline{a}^{(n)} \varepsilon D_{x}$ implies a $(n) \varepsilon U D_{x(1)}$ and hence $U D_{x(1)}=D_{x}$. Similarly ..by induction we can establish that $U D_{X(i)}=D_{x}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. Now if $\cdot D_{x(n)}=\emptyset$ for all $D_{x(n)}$ then $U D_{x(n)}=\emptyset=D_{x}$ which contradicts the definition of D_{x}. Thus there exists a nonempty $D_{x(n)}$ and the lemma is established with D_{x}, $=D_{x(n)}$. We note that for each $i=1,2, \ldots, n, R_{i}$ is now a permutation of the set of design points ' D_{x}, of Lemma 2.1 which assigns to each point of ' D_{x}, the unique point of ' D_{x}, that differs only in the ith coordinate.

We will use the usual notation " 0 " for composition of functions to denote one mapping followed by another.

Definition 2.5: We will say $\underline{\underline{b}}(\mathrm{n})$ is accessible from $\underline{a}(\mathrm{n})$ if a $(n) R_{i_{1}} \circ R_{i_{2}} \circ \ldots \circ R_{i_{k}} \underline{b}(n)$ for some choice of $i_{1}, i_{2}, \ldots, i_{k}$ out of $1,2,3, \ldots, n$. Since each R_{i} is an equivalence relation, if $\underline{b}(n)$ is accessible from $\underline{a}(n)$ then $\underline{a}(n)$ is also accessible from $\underline{b}(n)$ and we will say that $\underline{a}(n)$ and $\underline{b}(n)$ communicate.

Communication is also an equivalence relation and therefore will partition a set of design points into disjoint classes of communicating points.

Estimation of the n -Factor Interaction

Theorem 2.1: In an n-way cross-classification with interaction and missing cells, the n factor interaction effect is estimable if and only if there exists a non-empty subset D_{x} of the design points such that for each $\underline{a}(n)$ in D_{x} there exists $a \cdot b(n)$ in D_{x} such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \cdot \underline{b}(n)$ for each $i=1,2, \ldots, n$.

Proof: If there exists a nonempty subset D_{x} of the design points such that for each $\underline{a}(n)$ in D_{x} there is $a \underline{b}(n)$ in D_{x} such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \underline{b}(n)$ for $i=1,2, \ldots, n$, then by Lemma 2.1 there is a subset D_{x}, of D_{x} such that for each $G(n)$ in D_{x}, and each $i=1,2, \ldots, n$ there is exactly one $\underline{b}(n)$ in D_{x}, such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \underline{b}(n)$. We can then partition D_{x}; by the equivalence relation of communication into communicating classes. Let $\mathrm{a}^{\star}(\mathrm{n})$ be any fixed point in D_{X}, and let C be the set of points of D_{X}, that communicate with $\mathrm{a}^{*}(\mathrm{n})$.

We now define a linear contrast of the observations corresponding to points in C by letting $\ell_{\underline{a}(n)}=+1$ if $\underline{a}(n)$ in C communicates with $a^{*}(n)$ through an even number of permutations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{2 r}}$ and let $k_{a(n)}=-1$ if $\underline{a}(n)$ in C communicates with $a^{*}(n)$ through an odd number of permutations $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{2 r+1}}$. Thus if $a_{n}(n) R_{i}$ $\underline{b}(n)$ then $\ell_{\underline{a}}(n)=-l_{\underline{b}}(n)$ and hence $\Sigma \ell_{\underline{a}(n)}=0$ for $i=1,2, \ldots, n$ and all choices $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}{ }_{i}$. To make this a linear function of all the observations simply let ${ }_{\ell}(n)=0$ if $\underline{a}(n)$ is not in C . Then:

$$
\begin{aligned}
& \text { n-1 }
\end{aligned}
$$

$$
\begin{aligned}
& +\Sigma \ldots \Sigma \Sigma_{\underline{a}(n)}+\underline{\mu}(\underline{i}(n) ; \underline{a}(\underline{i}(n)))
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{a_{1}} \ldots a_{n} \ell_{\underline{a}(n)} \mu(\underline{i}(n) ; \underline{a}(i(n))) \\
& =\sum_{a_{1} \quad a_{n}} \quad \ell_{\underline{a}(n)} \mu(\underline{i}(n) ; \underline{a}(i(n))) \\
& \text { since } \\
& \begin{array}{lll}
\sum_{i_{\alpha+1}} & \ldots & \sum_{n} \\
a_{i n}
\end{array} \quad \ell(n)=0
\end{aligned}
$$

Thus by Definition 2,3 the interaction of factors $1,2, \ldots, n$ is estimable.

To prove that the conditions of the theorem are sufficient, suppose there does not exist a subset D_{x} of the design points satisfying the condition that for every. $-(n) \varepsilon D_{x}$, and for each $i=1,2, \ldots, n$; there exists $\underline{b}(n) E D_{x}$ such that $\underline{a}(n) R_{i} \underline{b}(n)$. Then for every subset D_{x} of the design points there is some $\underline{a}^{*}(n)$ in D_{x} such that for some $i=1,2, \ldots, n$, say $i=\underline{k}$, there is no $\underline{b}(n)$ in D_{x} with $\underline{a}^{*}(n) R_{k} \underline{b}^{*}(n)$. Thus for any linear form

$$
\sum_{\underline{a}(n)} \quad \underline{l}_{a}(n) \quad x_{\underline{a}(n)}
$$

the expected value will involve at the very least

$$
\mu\left(1,2, \ldots, k-1, k+1, \ldots, n ; a_{1}^{*}, \ldots, \ldots, a_{k}^{*}-1, a_{k+1}^{*}, \ldots, a_{n}^{*}\right)
$$

Thus, there can be no linear unbiased estimate for an n factor interaction, and hence; by Definition 2.3 the n factor interaction is not estimable.

It should be noted that if Theorem 2.1 were applied to a problem of estimation, only a portion of the observations and one observation per design point would be employed in the estimator. The following corallary considers the more general case.

Corollary 2.1 : If there exists a set of design points D_{X} satisfying the conditions of Theorem 2.1, perhaps with repeated observations on each design point, then there exists an independent component of interaction, utilizing all of the observations on each design point of the component, for each independent communicating class of design points constructed from D_{x} as in the proof of Theorem 2.1. Proof: Lemma 2,1 assures us that the set D_{x} has a subset $D_{x_{1}}$ in which each point is R_{i} to exactly one other point for $i=1,2, \ldots, n$.. We can then partition $D_{x_{1}^{\prime}}$ into disjoint communicating classes C_{i} and define a linear contrast on each C_{i} as in the proof of Theorem 2.1 with the modification that instead of letting $\ell_{\underline{a}(n)}= \pm 1$ we will let $\underline{l}_{\underline{a}(n)}=\frac{+1}{m}$ if there are m observations on the design point $a(n)$. In effect we are replacing observations on the same treatment combination by the mean $\bar{x}(\underline{i}(n) ; \underline{a}(n))$ of these observations. m Now $\sum_{1} \ell_{\underline{a}(n)}= \pm 1$ so if we denote this sum by ${\underset{\chi}{\underline{a}}}_{\prime}(n)$ then as in Theorem 2.1 we have:

$$
\begin{aligned}
& E\left(\underset{\underset{a}{x}(n)}{\sum} \quad{ }^{\underline{a}(n)} X_{\underline{a}(n)}\right)= \\
& \underline{a}(\bar{x}) \varepsilon \mathrm{C}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\underline{a}\left(\bar{x}(n) \varepsilon C_{i}\right.}{ } \quad{ }^{\ell \prime}(n)^{\mu(\underline{i}(n) ; \underline{a}(n))}
\end{aligned}
$$

Now we can select a point $\underline{b}(n) \varepsilon D_{x}$ such that $\underline{b}(n) \notin C_{i}$ for any i. We may then repeat the argument of Lemma 2.1 starting with $\underline{b}(n)$ and another point R_{i} to it, and thus obtain another set $D_{x_{2}^{\prime}}$ having
the same properties as $D_{X_{1}^{\prime}}$. This is always possible since we are free to select the first pair of points, after which succeeding points must be selected so as to produce a set satisfying the requirement that each point is R_{i} to exactly one different point of the set for $i=1,2, \ldots, n$. Having gotten $D_{x_{2}^{\prime}}$ we may now proceed to define a contrast of the associated observations in exactly the same manner as was done for D_{x} ' . We may continue with this procedure until all points of D_{x} have appeared in some • $\mathrm{D}_{\mathrm{x}}{ }_{i}$. All contrasts obtained will be linearly independent since each involves at least one design point that is involved in no other constrast. Of course, for any constrast L (say); the quantity $\frac{L^{2}}{\sum \ell^{2}}, \ldots, a_{x}$ is then a component of the sum of squares for the ${ }^{1} \cdots, a_{x} \cdot n$ factor interaction, in the analysis of variance, with one degree of freedom. The number of degrees of freedom for the n factor interaction (unconfounded) will be equal to the number of linearly independent communicating sets of design points that can be obtained by the process above and the mean square for this interaction will be the total of the sums of squares of the contrasts divided by the degrees of freedom if the contrasts are orthogonal.

The following example illustrates the construction procedures discussed in the statements and proofs of Lemma 2.1 and Theorem 2.1. Suppose we had a $4 \times 4 \times 3$ design and at least one observation was available for each of the design points:

000	010	$\cdots 001$	021	012	022	${f8279d517-eb82-4763-b428-bca188eca696} 110$		120	131	112	
200	220	201	221	242	330	340	331	341	322	332	342
430	431	411	440	441	402	432	442	320	130		

TABLE IV
GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE TO ILLUSTRATE LEMM 2.1 AND THEOREM 2.1

It is obvious from the figure above that there exists a set of points $D_{x^{\prime}}$, such that each point in D_{x}, has exactly one other point in D_{x}, that is R_{i} to it in each of the three mutually orthogonal directions (see traced path). In addition, all of the points in D_{x} ' communicate with each other. To find this set by a sorting procedure we first partition the set of design points by R_{1}, R_{2}, and R_{3}. ,

R_{1}			R_{2}				R_{3}	
000	200		000	010		000	001	
010	110		110	120	130	010	012	
120	220	320	200	220		021	022	
130	330	430	320	330	340	$\underline{032}$		
340	440		430	440		110	112	
001	201		001	021		130	$\underline{131}$	
411			131			200	201	
021	221		201	221		220	221	
131	331	431	331	341		$\underline{242}$		
341	441		411	431	441	320	322	
402			012	022	$\underline{032}$	330	331	. 332
012	112		112	122		340	341	342
022	122	322	242	\cdots		402		
$\underline{032}$	332	432	322	332	342	411		
$\underline{242}$	342	442	$\underline{402}$	432	442	430	431	432
						440	441	442

Next, all points that are alone in some set of some partition are eliminated in all partitions. These points (singly underlined above) are $411,131,402,032$ and 242 . As a result some new points are now left alone in some set of a partition. These points (In this example only one point 130 doubly underlined above) are now similiarly eliminated from all partitions. This process is continued until no set in any partition contains a single point. The resulting set of points is the set D_{x} referred to in the hypothesis of Lemma 2.1 and Theorem 2.1. If this set is empty, then by Theorem 2.1 the three factor interaction is not estimable. The set of points

We now begin to eliminate all points except two from every set containing more than two points. As a result of the elimination of a point other points which would then be left alone in some set of some partition would also be eliminated. For example the elimination of 320 (singly underlined above) necessitates the elimination of 322 (doubly underlined). Elimination of 332 (singly underlined) results in the elimination of 342 and 432 (doubly underlined) which in turn result in the elimination of 442 (triply underlined). The remaining points (partitioned below) are now such that each set in the partitions by R_{1}, R_{2}, and R_{3} contains exactly two points (each point is R_{i}
to exactly one other point $i=1,2,3)$. This is the set of points $D_{x}{ }^{\prime}$, referred to in Lemma 2.1 and Theorem 2.1.

	R_{1}	R_{2}		R_{3}	
000	200	000	010	000	001
010	110	110	120	010	012
120	220	200	220	021	022
001	201	001	021	110	112
021	221	201	221	200	201
012	112	012	022	220	221
022	122	112	122	120	122
330	430	330	340	330	331
340	440	430	440	340	341
331	431	331	341	430	431
341	441	431	441	440	441

We now note that certain points of the remaining set communicate with each other (e.g. $000 \mathrm{R}_{1}^{\circ} \mathrm{R}_{2}{ }^{\circ} \mathrm{R}_{3}$ 221) while others do not (e.g. 000 does not communicate with 330). We then partition this set into disjoint communicating subclasses;

$$
\begin{aligned}
\mathrm{L} & =\left(\begin{array}{llllllllll}
000 & 010 & 110 & 120 & 200 & 220 & 001 & 021 & 201 & 220 \\
& 012 & 022 & 112 & 122
\end{array}\right) \text { and } \\
M & =\left(\begin{array}{llllllll}
330 & 340 & 430 & 440 & 331 & 341 & 431 & 441
\end{array}\right)
\end{aligned}
$$

We can also get different communicating sets;

$$
\begin{aligned}
& \mathrm{N}=\left(\begin{array}{llllllll}
330 & 340 & 430 & 440 & 332 & 342 & 432 & 442
\end{array}\right) \\
& 0=\left(\begin{array}{llllllll}
331 & 341 & 431 & 441 & 332 & 342 & 432 & 442
\end{array}\right)
\end{aligned}
$$

by eliminating a different choice in the process of getting a set of
points D_{x}, such that each point in D_{x}, is $R_{i}, i=1,2,3$ to exactly one other point of D_{x}, But $0=(M \cup N)-(M \cap N)$ so 0 is not independent of sets M and N. Sets L, M and N however are independent of each other and by the contrast defined in Theorem 2.1 yield three independent estimates of three factor interaction. In addition the squares of these contrasts with the appropriate divisors will account for 3 degrees of freedom for the $A B C$ interaction in an analysis of variance table.

Sufficient Conditions for the Estimability
 of an a Factor Interaction

Theorem 2.2: In an n-way cross classification of cells, if a model is assumed in which all higher order interaction effects involving factors $i_{1}, \ldots, i_{\alpha}$ are zero, the α factor interaction of factors $i_{1}, \ldots, i_{\alpha}$ is estimable if for some combination $a_{i_{\alpha \neq 1}^{*}}^{\ldots} \ldots, a_{i_{n}^{*}}^{*}$ (fixed) of the levels of factors $i_{\alpha+1}, \ldots, i_{n}$ there exists a subset $D_{x^{*}}$ of the design points such that for each $a_{\underline{\mathbf{i}}}(n)$ in $D_{x^{*}}$, $a_{i_{\alpha+1}}=a_{i+1}^{*}, \ldots, a_{i_{n}}=a_{i_{n}}^{*}$ and there is a $b_{\underline{i}(n)}$ in $D_{x^{*}}$ such that $a_{i} \neq b_{i}$ and $a_{\underline{i}(n)} R_{i} b_{\underline{i}(n)}$ for $i=1,2, \ldots, \alpha$. Proof: Since we can rearrange the order of factors, let us assume, without loss of generality, that $i_{1}, \ldots, i_{\alpha}$ are the first factors $1,2, \ldots, \alpha$. If we ignore for the moment the factors $\alpha+1, \ldots, n$,
then we know by Theorem 2.1 that the interaction of factors $1,2, \ldots, \alpha$ can be estimated free of the lower order effects and interactions of these factors if and only if there exists a subset D_{x} of the design points such that for each $\underline{a}(n)$ in D_{x} and each $i=1,2, \ldots, \alpha$ there is $a \underline{b}(n)$ in D_{x} such that $a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \underline{b}(n)$. We
established in Lemma 2.1 that if such a set D_{x} existed we could find a subset D_{x}, such that for each $\underline{a}(n)$ in D_{x}, there is exactly one $\underline{b}(n)$ in D_{x}, such that for $i=1,2, \ldots, \alpha, \cdots a_{i} \neq b_{i}$ and $\underline{a}(n) R_{i} \underline{b}(n)$, and that D_{x}, could be partitioned into disjoint communicating subsets C_{i}. On each C_{i} we were able to define a contrast that gave us an estimate of the interaction of factors $1,2, \ldots, \alpha$ free of all main effects and lower order interactions of these factors,

In such a contrast if the coordinates $a_{\alpha+1}, \ldots, a_{n}$ are the same for all design points involved, then the expected value of this, contrast will not involve any main effects and interactions of factors $\alpha+1, \ldots, n$, since by definition $\sum \ell_{a(n)}=0$, for $i=1,2, \ldots, n$ For any interaction effect of a combination $\left.\frac{a_{i}}{} \frac{\mathrm{a}}{\mathrm{a}} \mathrm{k}\right)<\alpha$ factors out of $1,2, \ldots, \alpha$, say i_{1}, \ldots, i_{k}, with a combination of $p \leq \alpha-k$ factors out of $\alpha+1, \ldots, n$, say i_{k+1}, \ldots, i_{k+p}, the expected value of our linear combination yields the following for this interaction effect:

$$
\begin{aligned}
& =0
\end{aligned}
$$

since at least one of the factors $1,2, \ldots, \alpha$ is among i_{k+p+1}, \ldots, i_{n} and the sum of the coefficients over this factor is zero by the definition of our contrast.
The following example illustrates Theorem 2.2.
Suppose we have observations for the points $1001,1000,1002$, 1101, 1100, 1011, 1111, 1112, 0010, 0012, 0110, 0002, 0102 in a
a $2^{3} \times 3$ layout and designate the four factors by A, B, C and D. Let the sets of parameters be $\alpha_{i} ; \beta_{j}, \Gamma_{k}$ and δ_{ℓ} with $i=0,1$, $j=0,1, k=0$, and $\ell=0,1,2$. Applying Theorem 2.1 for the ABCD interaction we find that the sorting procedure eliminates all points, so $A B C D$ is not estimable.

Applying Theorem 2.2 for the ABC interaction and sorting at the 0 level of D we get $1000,1100,0010,0110$. This set cannot be connected since at least 8 points are needed. For ABC at the 1 level of D we get $1001,1101,1011,1111$. Again this set is not connected since we need 8 points.

For $A B C$ at the 2 level of D we get $1002,1112,0012,0002$, 0102 and again this set is not connected.

Similarly for ABD for fixed levels of C , no sets have 8 points and for $A C D$ for fixed B no sets have 8 points. Thus none of $A B C$, ABD, or ACD are estimable.

For the 0 level of A sorting for BCD yields a set with less than 8 points and for the 1 level of D. we get $1001,1000,1002,1101$, 1100 , 1011, 1111, 1112 but there is no connected set sorting on B, C and D. Thus no 3 factor interaction is estimable.

Using the notation $X Y_{i j}$, to indicate the set of points at level i of factor X and level j of factor Y, we apply Theorem 2.2 and get the following sets:

For AC_{10}	For ${ }^{\mathrm{AC}} \mathbf{1 1}_{11}$	For AC_{01}	For ${ }^{\cdot \mathrm{AC}_{00}}$
1001	1011	0010	0002
1000	1111	0012	0102
1002	1112	0110	
1101			
1100			

Ignoring $A C$ for $A C_{10}$ we find that $01,00,11,10$ are connected so $B D$ is estimable. In fact $X_{1001}{ }^{-X_{1000}}{ }^{-X_{1101}}+X_{1100}$ estimates ${ }^{\beta} \delta_{01}-\beta \delta_{00}-\beta \delta_{11}+B \delta_{10}$ free of all other effects and interactions in the absence of 3 and 4 factor interactions.

For AD_{11}	For AD_{10}	For $\cdot \mathrm{AD}_{12}$	For $\cdot \mathrm{AD}_{00}$	For AD_{02}	For AD_{01}
1001	1000	1002	0010	0002	no points
1101	1100	1112	0110	0012	
1011				0102	

Ignoring $A D$ for $A D_{11}$ the points listed above are connected so BC is estimable.

For BC_{00}
1001
$1000 \quad 110$
1002 1100 0012 0110
0002
None of the above sets are connected.
For $B D$ and $A B$ and $C D$ similarly we get no connected sets.
The breakdown of the degrees of freedom in the analysis of variance could be as follows:

AOV	A	1
	B	1
	C	1
	D	2
	BC	1
	BD	1
Confounded	5	
Interactions		
Tot.	$\mathrm{n}-1=12$	

Necessary and Sufficient Conditions for the Estimability of an n-1 Factor Interaction

The problem of finding estimable components of interaction would
be considerably simplified if the conditions for estimability of an
a factor interaction stated in the previous theorem were necessary as well as sufficient. Unfortunately this is not the case as the following example fllustrates.

Suppose that observations were available on the eight design points $0001 ; 0101,1000,1100 ; 0010 ; 0110,1011$ and 1111 of a 2^{4} factorial experiment with factors A, B, C and D each at two levels. Obviously the 4 factor interaction is not estimable and it is easily verified that the 3 factor interactions are confounded with one another. Consider then, the estimability of 2 factor interactions in the absence of higher order interactions.

The expected value of
$\frac{1}{2} \cdot\left(X_{0001}+X_{1100}+X_{0010}+X_{1111}-X_{0101}-X_{1000}-X_{0110}-X_{1011}\right)$ is ${ }^{\alpha \beta}{ }_{00}{ }^{+\alpha \beta_{11}}{ }^{-\alpha \beta_{01}}{ }^{+\alpha \beta}{ }_{10}$ so the $A B$ interaction is estimable and yet the conditions of Theorenf 2.2 are not satisfied for this two factor interaction. Thus the conditions of the theorem are sufficient but not necessary.

A careful look at this example will reveal that it was constructed by forming a connected set on $A B$ at the 0 level of C and the same connected set on $A B$ at the 1 level of C and then switching the levels of D so that $A B$ will be connected at the 0 level of D and also at the 1 level but not for a constant level of $C D$.

at						0	level of C
A	B	C	D				
0	0	0	1				
0	1	0	1				
1	0	0	0				
1	1	0	0				

at				
	level of C			
A	B	C	D	
0	0	1	0	
0	1	1	0	
1	0	1	1	
1	1	1	1	

at 0 level of D				at 1 level of D				
A	B	C	D	A	B	C	D	
0	0	1	0	0	0	0	1	
0	1	1	0	0	1	0	1	
1	0	0	0	1	0	1	1	
1	1	0	0	1	1	1	1	

This construction could not have been carried out without two factors to switch around as we did. This result is the content of the next theorem which merely states that the conditions are necessary as well as sufficient for the estimability of a n-1 factor interaction. The more general and complex case for any α factor interaction is considered in Theorem2.4.

Theorem 2.3: In an n-way cross classification of cells, if a model is assumed in which the n factor interaction is zero, then the interaction of any $n-1$ factors without loss of generality say classes $1,2, \ldots, n-1$, is estimable if and only if there exists a subset D_{x} of the design points satisfying:

1. For each $a_{(n)}$ in D_{x} we have $a_{n}=a_{n}^{*}$ (fixed).
2. For each $\underset{a}{ }(n)$ in D_{x}, there exists $\underline{b}(n)$ in D_{x} such that $\underset{i}{ }(n) R_{i} \underline{b}(n)$ with $a_{i} \neq b_{i}$ for

$$
i=1,2, \ldots, n-1
$$

Proof: If conditions (1) and (2) are satisfied for some set D_{x} then by Theorem 2.2 the interaction of factors $1,2, \ldots, n-1$ is estimable.

If the interaction of factors $1,2, \ldots, n-1$ is estimable then ignoring a_{n} for the moment we know by Theorem 2.1 that condition (2) must be satisfied for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ or else the interaction of factors $1,2, \ldots, n-1$ would be confounded with some main effect or lower order interaction of these factors. Thus there must exist a subset D_{x}, of the design points satisfying condition (2). Let
$a^{*}(n)$ be an element of D_{x}, and suppose for some $i=1, \ldots, n-1$ and each $\underline{b}(n)$ in D_{x}, such that $\underline{b}(n) R_{i} \underline{a} *(n)$ with $a_{i} \neq b_{i}$, we have $\mathrm{b}_{\mathrm{n}} \neq \mathrm{a}_{\mathrm{n}}^{*}$. Then there can be no component of interaction of factors $1,2, \ldots, n-1$ whose expected value does not involve $\mu(1,2, \ldots, i-1$, $\left.i+1, \ldots, n ; a_{1}^{*}, \ldots, a_{i-1}^{*}, a_{i+1}^{*}, \ldots, a_{n}^{*}\right)$. But this is a contradiction since the interaction of factors $1,2, \ldots, n-1$ was assumed to be estimable.

Thus for each $i=1,2, \ldots, n-1$ there exists $\underline{b}(n)$ in D_{x}, such that $b_{n}=a_{n}^{*}$ and $\underline{b}(n) R_{i} \underline{a}^{*}(n)$ with $a_{i}^{*} \neq b_{i}$. Since the above argument holds for any $\underline{a}(n)$ and $a_{n}=a_{n}^{*}$ fixed, we have established the existence of a set $D_{X} \subseteq D_{x}^{\prime}$, satisfying conditions (1) and (2) of the theorem. Hence these conditions are necessary as well as sufficient and the theorem is proved.

The following example illustrates Theorem 2.3. Suppose we had observations for the design points pictured and listed below:

TABLE V
GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE TO ILLUSTRATE LEMMA⒉1. AND THEOREM 2.3

$\begin{array}{cccccccccc}\text { Points } & 000 & 001 & 031 & 022 & 032 & 110 & 120 & 101 & 111 \\ & 121 & 131 & 102 & 112 & 200 & 221 & 231 & 202 & 222 \\ & 232 & 310 & 320 & 330 & 321 & 331 & 312 & 212 & \end{array}$
all points drop out sorting for $A B C$ so the 3 factor interaction is not
estimable. For $A B$ at C_{0} we get the set
(1) 110,$120 ; 310,320$ satisfying Theorem 2.3 since 11 ,

12,31 , and 32 are connected. (Note: The contrast

For $A B$ at C_{1} we get the sets
(1) $001 \cdots 31 \cdots 101 \cdots 131$ which is connected according to Theorem 2.3
(2) $121 \quad 131 \cdot 221 \cdot 231$ which is connected according to Theorem 2.3
(3) $221 \cdot 231 \cdot 321 \cdot 331$ which is connected according to Theorem 2.3

For $A B$ at C_{2} we get
(1) $022 \cdot 032 \cdot 222 \cdot 232$ which is connected according to Theorem 2.3
(2) 102 202 212 112 which is connected according to Theorem 2.3

All of the 6 sets above are independent when we ignore C, so
we have 6 linearly independent estimates of AB interaction.
For $A C$ at β_{0}
(1) $000 \cdot 200 \cdot 001 \cdot 101 \quad 102 \quad 202$

For AC at β_{1}
(1) $110 \quad 310 \quad 112 \quad 312$

For $A C$ at β_{2}
(1) $120 \quad 320 \quad 121 \quad 321$

For $A C$ at β_{3}.
(1) $031 \quad 231 \quad 032 \quad 232$

All of the 4 above sets are connected and independent ignoring B so we have 4 linearly independent estimates of AC interaction.

For $B C$ at A_{0} no set exists.
For $B C$ at A_{1}
(1) $110 \quad 120 \quad 111 \quad 121$
(2) $101 \quad 111 \quad 102112$

For $B C$ at A_{2}
(1) $221 \cdot 231 \cdot 222 \quad 232$

For $B C$ at A_{3}
(1) $\begin{array}{llll}321 & 331 & 320 & 330\end{array}$

All of the 4 sets are connected and independent ignoring A so we have 4 linearly independent estimates of BC interaction.

The breakdown of the degrees of freedom in the analysis of variance could be as follows:

AOV	Source
	d.f.
A	3
B	3
C	2
AB	6
AC	4
BC	4
	Confounded
Interactions	3
	Total-mean
	25

Corollary 2.3: If the interaction of factors $1,2, \ldots, \alpha$ is estimable according to either of Theorems $2.1,2.2$ or 2.3 then any lower order interaction of any subset of these factors is also estimable.

Proof: Without loss of generality when considering the interaction of any α factors we will consider the first α. If we let $\alpha=n$, then Theorem 2.2 is satisfied vacuously by Theorem 2.1 and if we let $\alpha=n-1$ then the conditions of Theorem 2.3 imply Theorem 2.2 . Thus
for all values of α the conditions of Theorem 2.2 are satisfied if an interaction is estimable according to either of Theorems 2.1, 2.2, or 2.3. Hence there exists a set of points $D_{X_{*}}$ connected in the sense of Theorem 2.1 over factors $1,2, \ldots, \alpha$ for some fixed combination $a_{i_{\alpha+1}^{*}}^{*}, \ldots, a_{i_{n}}^{*}$ of the other factors. Consider then the interaction of factors $1,2, \ldots, \alpha-1$. For any point in $D_{x^{*}}$ let a_{α}^{*} be the level of factor α and let $D_{y^{*}}$ be the set of points in $D_{x^{*}}$ for which $a_{\alpha}=a_{\alpha}^{*}$. Now since for each $a_{i}(n)$ in $D_{x^{*}}$ there is a $b_{\underline{i}(n)}$ in $D_{x^{*}}$ such that $a_{i} \neq b_{i}$ and $a_{\underline{i}(n)} R_{i} b_{\underline{i}(n)} \quad i=1,2, \ldots, \alpha \ldots$ Then certainly for each $a_{\underline{i}(n)}$ in $D_{y^{*}}$ there is a $\underline{b}_{\underline{i}(n)}$ in $D_{y^{*}}$ such that $a_{\underline{i}(n)} R_{i} b_{\underline{i}(n)}, a_{i} \neq b_{i} \quad i=1,2, \ldots, \alpha-1$. Thus the points of $D_{y^{*}}$ are connected over factors $1,2, \ldots, \alpha-1$ for some fixed combinations of the other factor and by Theorem 2.2 the $\alpha-1$ factor interaction is estimable. By induction it thus follows that all interactions of any subset of the factors $1,2, \ldots, \alpha$ are estimable. Corollary 2.4: If the k factor interaction of factors i_{1}, \ldots, i_{k} is estimable then, for any level of any other factor $i_{j} \cdot j \neq i, \ldots, k$ involved in the estimate, there must exist a connected set of points over factors i_{1}, \ldots, i_{k} for which the level of factor i_{j} remains constant.

Proof: The conditions stated in this corollary were proven to be necessary for estimability in the proof of Theorem 2.3 for $k=n-1$ and $\mathrm{i}_{\mathrm{j}}=\mathrm{n}$.

However, the proof there did not depend on how many factors were involved in the interaction or which factor remained constant, and in no way necessitated the involvement of any other factors. Hence the same argument can be used to establish this corollary.

Necessary and Sufficient Conditions for the Estimability of an α Factor Interaction

Theorem 2.4 $=$ In an n-way classification; if a model is assumed in which all higher order interaction effects are zero, then the α factor interaction of factors $1,2, \ldots, \alpha<n$ is estimable if and only if we can find a subset of design points $C £_{D_{x}}$ satisfying the following conditions:
(1) If we ignore the coordinates $\alpha+1, \ldots, n$ then the points of C are connected in the sense of Theorem 2.1 over factors $1,2, \ldots, \alpha$.
(2) The linear combination over the points of C described in Lemma 2.2 is such that if $\underline{a}^{*}(\alpha)=\left(a_{i_{1}^{*}}^{*} \ldots a_{i}^{*}\right)$ is any combination of α coordinates of $\underline{a}(n)$ except $a_{1}, a_{2}, \ldots, a_{\alpha}$ and $C\left(a_{i}^{*}, \ldots, a_{\alpha}^{*}{ }_{\alpha}^{*}\right)$ is the set of all points in C having $a_{i_{1}}=a_{i_{1}}^{*}, \ldots, a_{i_{\alpha}}=a_{i_{\alpha}}^{*}$ then

$$
\underline{a}^{\underline{a}}(n) \stackrel{\Sigma}{\varepsilon}\left(\underline{a}^{*}(\alpha)\right) \quad l(n)=0
$$

Proof: Condition (1) is necessary by the argument of Theorem 2.1 and if condition (2) is not fulfilled then

$$
\underset{\underline{a}(n)}{\Sigma} \quad l_{\underline{a}}(n)^{\mu(\underline{i}(\alpha) ; \underline{a}(i(\alpha)))} \neq 0
$$

for all combinations $a_{i_{1}} \ldots a_{i_{\alpha}}$ (except $a_{1}, \ldots, a_{\alpha}$) and the interaction of factors $1,2, \ldots, \alpha$ is confounded with another α factor interaction. Thus if either one of the conditions (1) or (2)
is not satisfied then the α factor interaction effect of factors $1,2, \ldots, \alpha$ is not estimable. Hence the conditions are necessary.

That the conditions (1) and (2) are sufficient is also easily seen since we have already shown in Lemma 2.1 that if condition (1) is satisfied there exists a linear combination of the observations that estimates the α factor interaction effect of factors $1,2, \ldots, \alpha$ free of lower order interaction effects and main effects of these factors. Ignoring factors $\alpha+1, \ldots, n$, conditions (1) and (2) assure us that the expected value of this linear combination will not involve any other α factor interaction effects. Also since the sum of the coefficients is 0 over all coefficients associated with design points having α coordinates identical, for all possible combinations of α out of $1,2, \ldots, n$ except $1,2, \ldots, \alpha$ then on each of these sets all combinations of $k<\alpha$ coordinates will also be constant and consequently an equivalent statement to (2) holds for $k<\alpha$. Thus:

$$
E\left[\sum_{\underline{a}(n)}^{\varepsilon} \ell_{\underline{a}(n)} x_{\underline{a}(n)}\right]=\sum_{\underline{a}(n)} \quad \ell{ }_{a}(n)^{\mu(\underline{\alpha} ; \underline{a}(\alpha))}
$$

and by our definition the α factor interaction of factors $1,2, \ldots, \alpha$ is estimable.

The following example illustrates Theorem 2.4: Suppose we had observations for the design points $0000,0101,1000,1101,0011$, 0110, 1011, and 1110. The contrasts for each interaction as defined in the proof of Theorem 2.1 are listed below:

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0000 | 0101 | 1000 | 1101 | 0011 | 0110 | 1011 | 1110 | |
| +1 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | ABC |
| +1 | +1 | -1 | -1 | -1 | -1 | +1 | +1 | ABD |
| +1 | -1 | -1 | +1 | +1 | -1 | -1 | +1 | ACD |
| no connected set | | | | | | | BCD | |
| +1 | -1 | -1 | +1 | +1 | -1 | -1 | +1 | AB |
| +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | CD |
| +1 | +1 | -1 | -1 | -1 | -1 | +1 | +1 | AC |
| +1 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | AD |
| +1 | -1 | +1 | -1 | -1 | +1 | -1 | +1 | AD |
| +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | BD |

Obviously the set of points is not connected for $A B C D$ since at least 2^{4} are needed. Applying Theorem 2.3 we see that the set is connected for ABC but not for a fixed level of D. Thus

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{X}_{0000}-\mathrm{X}_{0101} \mathrm{X}_{1000^{+}} \mathrm{X}_{1101}-\mathrm{X}_{0011}+\mathrm{X}_{0110}+\mathrm{X}_{1011}-\mathrm{X}_{1110}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2 \alpha \delta_{00}{ }^{+2 \alpha \delta_{11}}{ }^{-2 \alpha \delta_{01}-2 \alpha \delta_{10}}
\end{aligned}
$$

so $A B C$ is confounded with AD. Similarly $A B D$ is connected but not for fixed C and is confounded with AC. Likewise ACD is connected but not for fixed B and is confounded with $A B$, and there is no connected set for BCD.

If all higher order interactions are zero;
Checking for $A B$ we find a connected set on $A B$ satisfying Theorem 2.4. This is evident since the set $(00,01,10,11)$ is connected over constant levels of $C(0 \& 1)$ and $D(0 \& 1)$. Thus
$E\left(X_{0000}-X_{0101}-X_{1000}+X_{1101}+X_{0011}-X_{0110^{-}}-X_{1011}+X_{1110}\right)=2\left(\alpha \beta_{00}+\alpha \beta_{11}-\alpha \beta_{01}-\alpha \beta_{10}\right)$

Similarly checking for AC and AD we find them estimable. However checking $B C, B D$ and $C D$ we find connected sets that do not satisfy condition (2) of Theorem 2.4. Then for example a contrast on BC yields

$$
\begin{aligned}
& =2\left(\beta \Gamma_{00}+\beta \Gamma_{11}-\beta \Gamma_{10}-\beta \Gamma_{01}\right)+2 \alpha \delta_{00}+2 \alpha \delta_{10} 0^{-2 \alpha \delta_{01}} 01^{-2 \alpha \delta_{1}} 11 \\
& +2 \beta \delta_{00^{+}}{ }^{+2 \beta} \delta_{10}-2 \beta \delta_{11}-2 \beta \delta_{01}+2 \Gamma \delta_{00^{+}}+2 \Gamma \delta_{10^{-2 \Gamma} \delta_{01}-2 \Gamma \delta_{11}}
\end{aligned}
$$

So BC is confounded with other 2 factor interactions. Likewise BD and CD are confounded. The degrees of freedom for the analysis of variance could be partitioned as follows:

AOV

Source	d.f.
A	1
B	1
C	1
AB	1
$A C$	1
AD	1
Confounded	1
Total-mean	7

Suppose that our n-way cross classification design is found (or assumed) to be free of all interaction. We then know that all main effects are estimable if and only if all differences $\mu\left(i, a_{i}\right)-\mu\left(i ; b_{i}\right)$ are estimable $a_{i} ; b_{i}=a_{0}, \ldots, a_{t_{i}-1}, a_{i} \neq b_{i} ; i=1,2, \ldots, n$ (there again we drop all parameters from the model if all observations for the corresponding factors are missing.)

The following theorem gives us necessary and sufficient conditions for the estimability of a difference $\mu\left(i ; a_{i}\right)-\mu\left(i ; b_{i}\right), a_{i} \neq b_{i} \cdot T h u s$ the theorem provides us with a means of determining exactly which main effects will be estimable and which will not.

> Necessary and Sufficient Conditions for the Estimability of a Simple Effect

Theorem 2.5: In an n-way cross classification if a model is assumed
with no interaction let

$$
\begin{aligned}
& D_{a}=\left\{\underline{a}(n) \mid \underline{a}(n) \varepsilon D_{x} \text { and } a_{k}=a\right\} \\
& D_{b}=\left\{\underline{a}(n) \mid \underline{a}(n) \varepsilon D_{x} \text { and } a_{k}=b\right\}
\end{aligned}
$$

where a and b are chosen from $0,1,2, \ldots, t_{k-1}, a \neq b$. Then the difference $\mu(k ; a)-\mu(k ; b)$ is estimable if and only if there exists constant coefficients $\ell_{\underline{e}(n)}$ for all $\underset{a}{a}(n) \in D_{a} \cup_{b} D_{b}$ such that

Proof: The proof is quite obvious since under the conditions of the theorem

$$
\begin{aligned}
& = \pm c(\mu(k ; a)-\mu(k ; b))+\underset{i \neq k}{\sum_{i}} \mu(i ; a) \Sigma a_{i}^{\ell} \underset{a}{e}(n) \\
& = \pm c(\mu(k ; a)-\mu(k ; b))
\end{aligned}
$$

Hence $\pm \frac{1}{c} \sum_{a_{1}} \ldots \sum_{n} \ell_{\underline{a}(n)} \underline{a}_{a(n)}$ is an unbiased estimate of $\mu(k ; a)-\mu(k ; b)$.

$a_{k}=a-\frac{c_{2}}{c_{1}} \quad \ell_{\underline{a}(n)}=-\sum_{a_{k}}=\ell_{\underline{a}(n)}=-c_{2}$ so we need only consider the case

we have $\sum_{a_{i}=j} \underbrace{\neq 0}_{\underline{a}(n)}$ for some: j which is the ith coordinate of a

and hence the difference $\mu(k ; a)-\mu(k ; b)$ is confounded with $\mu(i ; j)$. (As an example of Theorem 2.5, suppose a model with no interaction is assumed with 2 levels of a factor $A, 3$ levels of a factor B and 4 levels of a factor C and we had observations for the design points 010, $120,011,101,002,112,023$, and 113.

TABLE VI

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE TO ILLUSTRATE THEOREM 2.5

Examining the simple effect $\alpha_{0}{ }^{-\alpha_{1}}$ we find that there are 4 points at the 0 level of A and 4 points at the 1 level, a $1: 1$ ratio. Checking levels of B ignoring C (see TTable VII on next page) we find B_{0} represented
once at each of the levels of A, B_{1}, represented twice at each level and B_{2} represented once at each level, all in the same $1: 1$ ratio as the number of points of A_{0} to points A_{1}.

TABLE VII
OCCUPIED CELLS FOR THE POINTS OF TABLE VI FIRST IGNORING C AND THEN IGNORING B

Figure 1

Figure ${ }^{2}$

A check of levels of C ignoring B (figure 2 above) reveals each level of C represented once at each level of A, the same $1: 1$ ratio. Hence an unbiased estimate of $\alpha_{0} \alpha_{1}$ is found by taking $1 / 4$ of the contrast that assigns 1 as a coefficient to those points at the 0 level of A and -1 to those at the 1 level.

For the simple effect $\beta_{0}-\beta_{1}$ we find 2 points 101 and 002 at the 0 level of B and 4 points $010 ; 011,112$, and 113 at the 1 level. Ignoring levels of C we find A_{0} represented $1: 2$ and A_{1} represented 1:2 in the same ratio as $B_{Q}: B_{1}$ (see figure 1 below). Ignoring A we find C_{0} and C_{3} represented at the 1 level of B but not at the 0 level. (See Table VIII).

TABLE VIII

OCCUPIED CELLS FOR THE POINTS OF TABLE VI AT THE $0 \& 1$ LEVEL OF B FIRST IGNORING C AND THEN A
A

C

The points 010 and 113 must therefore be eliminated. The remaining set of points has 2 points at the 0 level of B and 2 at the 1 level. The 0 and 1 levels of A are now represented once each at the 0 and 1 levels of B as are the I and 2 levels of C. Thus $\beta_{0}-\beta_{1}$ is estimated by $1 / 2$ of the contrast assigning 1 's to the points at the 0 level of B and -l's to points at the 1 level.

A similar analysis for the remaining simple effects yields the contrasts given in the table below.

010	120	011	101	002	112	023	113	Effects Estimated
+1	-1	+1	-1	+1	-1	+1	-1	$4(\mathrm{~A}-\mathrm{A})$
0	0	-1	+1	+1	-1	0	0	$2\left(\mathrm{~B}_{0}^{0}-\mathrm{B}_{1}\right)$
+1	-1	0	0	0	0	-1	+1	$2\left(\mathrm{~B}_{1}^{-}-\mathrm{B}_{2}\right)$
+1	+1	-0	0	0	0	-1	-1	$2\left(\mathrm{C}_{0}-\mathrm{C}_{3}^{2}\right)$
0	0	+1	+1	-1	-1	0	0	$2\left(\mathrm{C}_{1}^{-} \mathrm{C}_{2}^{3}\right)$
+1	0	-1	0	0	0	0	0	$\left(\mathrm{C}_{0}-\mathrm{C}_{1}\right)$
-1	+1	+1	-1	+1	-1	-1	+1	Mrror
+1	+1	+1	+1	+1	+1	+1	+1	Mean

The above contrasts account for all of the degrees of freedom as summarized in the table below:

AOV

Source	d.f.
A	1
B	2
C.	3
Error	1
Tot. Mean	7

If a model with interaction is assumed then, of course, the differences $\mu(k ; a)-\mu(k ; b)$ are not estimable free of the interaction effects. If, due to numerous missing observations, only minimal information can be obtained about the interactions, then, as throughout this chapter, we attempt to obtain as many unconfounded estimates as the data permits.

For an example, utilizing Theorem 2.5 where a model with interaction is assumed, suppose we had observations for the points 000 , 020; 011, 021, 002; 012, 110, 101, 122.

TABLE IX
GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR A SECOND EXAMPLE ILLUSTRATING THEOREM 2.5

A

Examining the simple effect $\alpha_{0}-\alpha_{1}$ we find the following situation: The contrast for $\alpha_{0}-\alpha_{1}$ involves 6 points at level 0 (for A_{0}) and 3 points at level 1 (for A_{1}), a ratio of $2: 1$. Checking levels of $B(0,1$, and 2) represented at the $0: 1$ evel of A we find these same levels represented at the 1 level of A and in exactly the same ratios $2: 1$ as the number of points at A_{0} to points at A_{1}. Checking levels of C represented in each set we find a similar 2:1 ratio at each level of C. The simple effect $\alpha_{0}-\alpha_{1}$ is thus estimated by taking $1 / 6$ of the contrast that assigns +1 to points at the 0 level of A and -2 to points at the 1 level. The contrast is given in the table below. Using the criterion of Theorem 2.2 we find $B C$ is estimable, the estimate being $X_{000}{ }^{-X_{002}}{ }^{+X_{021}}{ }^{-X_{011}}+X_{012}-X_{020}$. Now selecting two points in the $B C$ contrast which are related, for example 000 and 002 we find the difference $X_{020}-X_{021}$. estimates $\Gamma_{0}-\Gamma_{1}$. Similarly $X_{000}-X_{002}$ estimates $\Gamma_{0}-\Gamma_{2}, X_{002}-X_{012}$ estimates $\beta_{0}-\beta_{1}$ and $X_{000}{ }^{-X_{020}}$ estimates $\beta_{0}-\beta_{2}$. Thus, since $B C$ is estimable by theorem 2.2, we are assured by Corrollary 2.3 that all simple effects of B and C over the levels involved in the $B C$ estimate will also be estimable. These estimates can of course be improved upon by involving all of the available points as was done in the case of the estimate of $\alpha_{0}-\alpha_{1}$, above. The contrasts for all estimates are given in the following table:

	$6\left(\alpha_{0}-\alpha_{1}\right)$	$3\left(\beta_{0}-\beta_{1}\right)$	$3\left(\beta_{0}-\beta_{2}\right)$	$3\left(\Gamma_{0}-\Gamma_{1}\right)$	$3\left(\Gamma_{0}-\Gamma_{2}\right)$	BC inter-
000	-1	+1	+1	+1	+1	+1
002	+1	+1	+1	0	-1	-1
020	+1	0	-1	+1	+1	-1
021	+1	-0	-1	-1	0	+1
011	+1	-1	0	-1	0	-1
012	+1	-1	0	0	-1	+1
101	-2	+1	+1	-1	0	0
110	-2	-1	0	+1	+1	0
122	-2	0	-1	0	-1	-1

The breakdown of degrees of freedom is given below:

A	1
B	2
C	2
BC interaction	1
Confounded	2
Tot. Mean	8

CHAPTER III

SUMMARY AND EXTENSIONS

In this thesis, procedures were presented to determine which main effects and interactions are estimable in a general n-way cross classification in which all observations are missing for any number of cells. Initially a definition of estimability under these circumstances was essential and in Chapter II such a definition was developed. Briefly, an interaction of a set of factors, or the main effect of a factor, was defined to be estimable if there existed a linear combination of the cell means in which at least one observation was taken that estimated a linear function of the interaction effects (or main effects) of these factors free of all other main and interaction effects. In all cases the interaction is confounded with higher order interactions. So, to avoid repeated reference to the presence of these effects, higher order interactions were considered negligible when the discussion centered around a particular interaction.

A condition of connectedness among the factors involved in the interaction, which is both necessary and sufficient for estimability of the interaction was developed. It was found that this condition is all that is needed to determine whether or not the highest order interaction is estimable and if it is, then all interactions and simple effects over the factors and levels involved were also found to be estimable. A simple algorithm was presented for determining
whether or not this interaction is estimable, how many linearly independent estimates exist, what they are and exactly what they estimate.

A computer program, written for the IBM 1130 computer, which checks for estimability of the highest order interaction is presented in the Appendix. As a problem for further study; this computer program could be improved upon and expanded to determine the number of independent estimates that exist, and to check lower order interactions for estimability in the absence of higher order interactions.

With regard to the problem of estimability of lower order interactions, it was found that the connectedness criterion must still be satisfied over the factors involved but that an additional problem of confounding with interactions involving other factors was now present. It was established that if the interaction is to be estimable then when these other factors are considered one at a time, the connectedness property must be satisfied on the factors of the interaction over a set of design points in which the single factor maintains a constant level. Also if the connectedness property holds over a set of points in which all other factors simultaneously maintain a constant level, then the interaction is always estimable.

In the special case of an $n-1$ factor interaction there is only one other factor not involved in the interaction, so these two conditions together proved to be necessary and sufficient, and we had a simple check for estimability of the interaction of $n-1$ factors by applying the algorithm developed for n factors on these $\mathrm{n}-1$ factors over a constant level of the remaining factor.

Necessary and sufficient conditions for the estimability of any interaction were presented and although guidelines for an algorithm to determine estimability were suggested in the examples, no such algorithm was determined. A simple algorithm for this case which could be easily programmed for computer use would be a useful extension of the work of this thesis.

Another problem suggested by the work presented here is a study of the number of possible configurations with a given number of cells missing and what proportions of these configurations permit estimation of various interactions.

While the primary concern of the previous chapter was with problems of estimability of main effects and interactions, applications to the design of experiments are evident. Similar to situations in response surface investigations, or as with fractional replication, we may intentionally only study a portion of the entire set of treatment combinations. Utilizing the techniques of the previous chapter, however, the experimenter now has almost complete freedom to choose which main effects and interactions he wishes to investigate and how much information he wants on each. The single restriction being that, he must select points that form connected sets; as defined in Chapter II, in order to get unconfounded estimates.

These techniques can best be explained by considering several examples. In order to be able to illustrate the problems graphically, let us consider a three dimensional situation. Suppose we had a factor A at 5 levels, a factor B at 4 levels, and a factor C at 3 levels.

If we wished to estimate the ABC interaction, and consequently all other main effects and interactions, with a minimal number of points we could run an experiment using the connected set of points $000,100,010,110,001,101,011$ and 111.

TABLE X
GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE designed with missing cells having all effects AND INTERACTIONS ESTIMABLE

All interactions and main effects are then estimable, but of course, only over the 0 and 1 levels of each factor. Thus the simple effects $\alpha_{0}-\alpha_{1}, \beta_{0}^{-\beta_{1}}$ and $\Gamma_{0}-\Gamma_{1}$ are the only ones estimable. A breakdown of the degrees of freedom for linearly independent estimates would be as follows:

AOV	Source	d.f.
	A	1
	B	1
	C	1
	AB	1
	AC	1
	BC	1
	ABC	1

The estimates and quantities being estimated are:

$$
\mathrm{X}_{000}{ }^{-\mathrm{X}_{010^{-}} \mathrm{X}_{100^{+}} \mathrm{X}_{110^{-}}-\mathrm{X}_{001}+\mathrm{X}_{011}+\mathrm{X}_{101}-\mathrm{X}_{111} \text { estimating }}
$$

$$
1 / 2\left(X_{000}-\mathrm{X}_{010^{-}} \mathrm{X}_{100^{+}} \mathrm{X}_{110^{+}}+\mathrm{X}_{001}-\mathrm{X}_{011}-\mathrm{X}_{101}+\mathrm{X}_{111}\right) \text { estimating }
$$

$$
\alpha \beta_{00^{-\alpha \beta}}^{10^{-\alpha \beta_{01}}}+\alpha \beta_{11}
$$

$1 / 2\left(\mathrm{X}_{000}+\mathrm{X}_{010^{-}} \mathrm{X}_{100^{-}} \mathrm{X}_{110^{-\mathrm{X}}}^{001} \mathrm{X}_{011^{+}} \mathrm{X}_{101}+\mathrm{X}_{111}\right)$ estimating

$1 / 2\left(\mathrm{X}_{000^{-}} \mathrm{X}_{010}+\mathrm{X}_{100^{-}} \mathrm{X}_{110^{-}} \mathrm{X}_{001}-\mathrm{X}_{011}-\mathrm{X}_{101}+\mathrm{X}_{111}\right)$ estimating $\beta \Gamma_{00}-\beta \Gamma_{10}-\beta \Gamma_{01}+\beta \Gamma_{11}$

$\alpha_{0}-\alpha_{1}$
$1 / 4\left(\mathrm{X}_{000}-\mathrm{X}_{010}+\mathrm{X}_{100}-\mathrm{X}_{110}+\mathrm{X}_{001}-\mathrm{X}_{011}+\mathrm{X}_{101}-\mathrm{X}_{111}\right) \quad$ estimating $\beta_{0}^{-\beta_{1}}$
$1 / 4\left(\mathrm{X}_{000}+\mathrm{X}_{010^{+}}+\mathrm{X}_{100}+\mathrm{X}_{110^{-}} \mathrm{X}_{001}-\mathrm{X}_{011}-\mathrm{X}_{101}-\mathrm{X}_{111}\right)$ estimating $\Gamma_{0}-\Gamma_{1}$

If we desired more information on all interactions and estimates of all other simple effects, we could add the connected set of points $220,230,420,430,321,421,331,431,222,322,232$ and 332 to provide a second estimate of $A B C$ interaction, two additional estimates of $A B$ and $B C$ interaction, one additional estimate of $A C$ interaction and one each of the simple effects $\alpha_{2}^{-\alpha \alpha_{3}}, \alpha_{2}-\alpha_{4}, \beta_{2}-\beta_{3}$ and $\Gamma_{0}-\Gamma_{3}$. Connecting these two sets by adding the points 210 and 120 would provide estimates of $\alpha_{1}-\alpha_{2}$ and $\beta_{1}-\beta_{2}$ as well as an additional estimate of $A B$ interaction. The remaining degrees of freedom unaccounted for would consist of confounded interactions and main effects.

TABLE XI
GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS ADDED
TO GIVE INFORMATION ON ALL SIMPLE EFFECTS AND ADDITIONAL INFORMATION ON INTERACTIONS

The estimates and quantities being estimated in addition to those of the previous set are:

$$
\begin{aligned}
& +\alpha \beta \Gamma_{232}-\alpha \beta \Gamma_{332} \\
& X_{110}+X_{220}-X_{210^{-X}} X_{120} \text { estimating } \alpha_{11}+\alpha \beta_{22}-\alpha \beta_{21}-\alpha \beta_{12} \\
& X_{321}{ }^{-X_{421}}{ }^{-X_{331}}+X_{431} \text { estimating } \alpha \beta_{32}-\alpha \beta_{42}+\alpha \beta_{43}-\alpha \beta_{33}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(X_{220}+X_{230}-X_{420^{-}} \mathrm{X}_{430^{-X}} 321^{+X_{421}}-X_{331}+X_{431}-X_{222}+X_{322}+X_{332}-X_{232}\right. \text { estimating } \\
& \alpha \Gamma_{20^{-\alpha \Gamma}}^{40^{+\alpha \Gamma_{41}}}{ }^{-\alpha \Gamma_{31}+\alpha \Gamma_{32}-\alpha \Gamma_{22}} \\
& X_{322}-X_{321}+X_{331}-X_{322} \text { estimating } \beta \Gamma_{22}-\beta \Gamma_{21}+\beta \Gamma_{31}-\beta \Gamma_{32} \\
& X_{220}-X_{230}-X_{222}+X_{232} \text { estimating } \beta \Gamma_{20^{-\beta \Gamma}}{ }_{30^{-\beta \Gamma_{22}}}+\beta \Gamma_{32} \\
& \frac{1}{2}\left(\mathrm{X}_{220}+\mathrm{X}_{230}-\mathrm{X}_{420}-\mathrm{X}_{430}\right) \text { estimating } \quad \alpha_{2} \alpha_{4} \\
& \frac{1}{2}\left(X_{110^{-}} \mathrm{X}_{220}-\mathrm{X}_{210^{+}} \mathrm{X}_{120}\right) \text { estimating } \alpha_{1}-\alpha_{2} \\
& \frac{1}{2}\left(X_{222}-X_{322}+X_{232}-X_{332}\right) \text { estimating } \alpha_{2}-\alpha_{3} \\
& \frac{1}{2}\left(X_{110}-X_{220}+X_{210}-X_{120}\right) \text { estimating } \stackrel{\beta}{\beta}_{1}-\beta_{2} \\
& \frac{1}{6}\left(X_{220}-X_{230}+X_{420}-X_{430}+X_{321}+X_{421}-X_{331}-X_{431}+X_{222}+X_{322}-X_{232}-X_{332}\right) \\
& \text { estimating } \beta_{2}-\beta_{3} \\
& \frac{1}{2}\left(X_{220}+X_{230}-X_{222^{-X_{232}}}\right) \text { estimating } \cdot \Gamma_{0}-\Gamma_{2} \\
& \text { If we felt that the } A B C \text { and } B C \text { interactions were negligible and } \\
& \text { did not desire additional information on them; but wanted estimates } \\
& \text { of all simple effects and more information on } A B \text { and } A C \text { we could use } \\
& \text { the original set of points; and add all the points of the second } \\
& \text { set except } 230,430,331,431 \text {, and } 332 \text {. }
\end{aligned}
$$

TABLE XII
GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS DELETED DUE TO NEGLIGIBLE INTERACTIONS

The breakdown of degrees of freedom for.linearly independent estimates would now be:

	d.f.
A	4
B	3
C	2
$A B$	2
$A C$	2
BC	1
ABC	1
Confounded	1

The estimates and quantities being estimated, in addition to those of the original set are now as follows:

$$
\begin{aligned}
& X_{110^{+}} \cdot X_{220}{ }^{-X} 210^{-X}{ }_{120} \text { estimating } \alpha_{11^{+\alpha \beta}}{ }_{22^{-\alpha \beta}}{ }_{21}{ }^{-\alpha \beta_{12}} \\
& X_{220}-X_{420}-X_{321}+X_{421}-X_{222}+X_{322} \text { estimating } \alpha \Gamma_{20}-\alpha \Gamma_{40}+\alpha \Gamma_{41}-\alpha \Gamma_{31}+\alpha \Gamma_{32}-\alpha \Gamma_{22} \\
& X_{220}-X_{420} \text { estimating } \alpha_{2}-\alpha_{4} \\
& 1 / 2\left(X_{110^{-}} \mathrm{X}_{220^{-}} \mathrm{X}_{210^{+}} \mathrm{X}_{120}\right) \text { estimating } \alpha_{1}-\alpha_{2} \\
& \mathrm{X}_{222}-\mathrm{X}_{322} \text { estimating } \alpha_{2}-\alpha_{3} \\
& X_{110^{-}}-X_{220}+X_{210}-X_{120} \text { estimating } \beta_{1}-\beta_{2} \\
& X_{222}-X_{232} \text { estimating } \beta_{2}-\beta_{3} \\
& X_{220}-X_{222} \text { estimating } \Gamma_{0}-\Gamma_{2}
\end{aligned}
$$

Obviously many other designs are possible depending on which interactions or main effects are of interest and how much information is desired on each. The previous examples are only illustrative of the possible applications of the techniques investigated in this thesis to the design of experiments.

SELECTED BIBLIOGRAPHY

(1) Cochran; W. G., and Cox, G. Experimental Designs. New York; John Wiley and Sons 1957.
(2) Kempthorne, 0. The Design and Analysis of Experiments. New York: John Wiley and Sons, 1952.
(3) Mann, H. B. Analysis and Design of Experiments. New York: Dover Publications, Inc., 1949 .
(4) Williams, D: R. "A New Approach to Factorial Experimentation" (Unpub. Ph.D. Dissertation, Oklahoma State University, 1963).
(5) Thomas, H, L, "Partitioned Factorials" (Unpub, Ph.D. Dissertation, Oklahoma State University, 1964).
(6) GrayБill, F. A. An Introduction to Linear Statistical Models, Vo1. 1, New York: McGraw Hili Book Company, Inc, 1961.

APPENDIX

STACK	in LIND1 contains points to delete, and in LIND2 contains groups which were closed.
CANCL	list of coordinate restrictions of successful sets... The coordinate restrictions for another set may not have any previous one for a subset.
CLIM	. index of last entry in CANCL.
WØRK	\cdots in LIND1 number of groups still open.
TRACE	\cdots set to $\|T V\|$ when CØØRD matches TMASK.
Z	printer device number
CHAIN	contains index of next point in equivalence chain. Negative index indicated head of chain.
NP	. number of points defined
IS	. generally index of STACK
IRET	used to indicate where to branch after completing a common routine
NØSU	\cdots index of subsets
NFAIL	. number of failures for a level
NTRY	. number of trys for a level
NCAN	. number cancelled for a level

```
*ONE WORD INTEGERS
            SUBROUTINE LINDO
    INTEGER GI,POINT (8),PI, : IN(41), BASE,GNUM(8)
    1. INTEGER DIM,COORD (8),CORG (600),FAULT (100),FL,GLIM,GPS(600)
    2 INTEGER GRPL (301),KD,MEM( 600),TMASK(8) ,TV
    3 INTEGER CORAN (3,8),PD,PTDEL (10 ),STACK(100),CANCL (600),DIML (8)
    4 INTEGER CLIM,WORK,HI,GI, ... TRACE,Z,STO,CHA.IN(100)
    5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP,TMASK,TV
    6 COMMON CORAN,PD,PTDEL,STACK,IS,IRET,CANCL,DIML,CLIM,WORK,HI,LGM
    7 COMMON LEVEL,TRACE,NOSU, ...GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
C LCORG=LENTH:OF CORG, LFAUL=LENGTH OF FAULT.
C ...LGPS=LENGTH OF GPS, . LMEM=LENGTH OF MEM
    LCORG=800
    LFAUL=100
    LGPS=800
    LMEM=700
C Z IS THE PRINTER DEVICE NUMBER.
C WIDTH OF 120 CHARS . HAS BEEN ASSUMED .
    Z=3
    IF (IRET) 1,1,11
        11 WRITE (Z,510)STO
C READ DIMENSION OF POINTS
    1 IN (41)=81
            CALL FIN(IN,A)
            DIM=A
C EXIT IF DIM .LT. 1
            IF (DIM) 51,51,102
        51 WRITE (Z,530)
            CALL EXIT
    102 KD=DIM&्& 1
                                    READ TRACE MASK
            CALL FIN(IN,A)
            TV=A
            WRITE(Z,500)DIM,TV
            IF (TV) 142,142,141
    141 DO 140 I=1,DIM
            CALL FIN(IN,A)
    140 TMASK(I)=A
            WRITE (Z,519) (TMASK(I),I=1,DIM)
C .... READ COORDINATE RANGE
    142 DO 10 I=1,DIM
            DO 10.J=1,3
            CALL FIN(IN,A)
        10 CORAN (J,I)=A
            WRITE (Z,550) (I , (CORAN (J,I), J=1,3), I=1,D IM)
            WRITE (Z,520)
            GLIM=0
            CORG (1)=10000
            NP=0
C READ A POINT
    50 DO 2, I=1,DIM
            CALL FIN(IN,A)
            K=A
            IF (KG10000) 2,4,2
```

```
    2. POINT (I) =K
C
C
    30\cdotsIF (CORG (L) -POINT (J)) 20,25,20
    26\cdotsKJ=J
    25. CONTINUE
        POINT BELONGS IN GROUP GI
        L=PI&KJ
        GPS(L)=GRPL(GI)
        GNUM (KJ)=GI
        GRPL(GI)=L
    20. CONTINUE
            *CREATE NEW GROUPS IF NEEDED
        DO 35 I=1,DIM
        IF (GNUM (I)) 35,40,35
C MAKE NEW GROUP FOR DIMENSION I
    40 DO 45 J=1,DIM
        L=GLIM*DIM&J
    45\cdots CORG (L) =POINT (J)
        L=GLIM*DIM& I
        CORG(L)=-10000
        L=PI&I
        GPS(L)=0
        GLIM=GLIM&&1
        GNUM(I)=GLIM
        GRPL(GLIM)=L
        IF (GLIM-300) 35,35,60
    35 CONTINUE
        WRITE(Z,532)NP, (POINT(I),GNUM(I),I=1,DIM)
        IF(PI-DIM-LGPS)50,5,5
    C . DETECT END OF LIST CODE
        4.IF (I-1)7,8,7
            *AT END OF POINT
        8.WRITE(Z,502)NP,GLIM
        IF (TV) 80,81,80
    80 WRITE (Z,503)
        SET UP ARRAYS GRPL,GPS,MEM,AND FAULT
    81. FL=0
        K=1
        DO 52 GI=1,GLIM
        J=GRPL (GI)
        KS=K
    54.K=K&1
        IF (J) 53,53,55
    55.MEM(K)=(J-1)/DIMG1
        M=GPS (J)
```

```
        GPS (J)=GI
        J=M
        IF (K-LMEM) 54, 70,70
C SUBSCRIPT FOR MEM IS TOO LARGE.
    70 WRITE (Z,506)
        CALL EXIT
C STORE LENGTH OF GROUP
    53. M=K-1
        L=M-KS
        MEM(KS)=L
C STORE POINTER TO POINT LIST. FOR GROUP GI
        GRPL(GI)=KS
        IF (TV) 82,83,82
    82 WRITE (Z,533)GI, (MEM(J),j=KS,M)
C ...TEST FOR FAULT
    83 IF (L-1)52,63,52
C RECORD FAULT
    63. FL=FL&1
    FAULT (FL)=GI
    IF (FL-LFAUL) 52,61,61
    52. CONTINUE
C MAKE DUMMY GROUP ENTRY AFTER LAST GROUP
    GRPL(GLIM& 1)=K
        LIST FAULTS
        IF (FL)57,57,58
        57. WRITE (Z,534)
    GO TO 65
    58. WRITE(Z,535) (FAULT(I), I=1,FL)
C . INITIALIZE COORD,DIML,LEVEL,CLIM,CANCL
    65 DO. 62 I=1,DIM
    DIML (I)=0
    COORD (I) =-10000
    62 CONTINUE
    LEVEL=0
    CLIM=0
    CANCL (1)=-10001
    STO=0
    IRET=1
    RETURN
    5 WRITE (Z,506)
    CALL EXIT
    7. WRITE(Z,507)
    CALL EXIT
    60 WRITE (Z,536)
    CALL EXIT
    61 WRITE (Z,537)
    CALL EXIT
    510 FORMAT ('OEND OF RUN FOR THIS DATA SET.'I20,' STACK OVERFLOWS')
    530 FORMAT ('OEND OF JOB.' )
    500 FORMAT('IDIMENSION='I3,5X,'TRACE VALUE='12)
    519 FORMAT ('.TRACE MASK!/ (10I10))
    550 FORMAT ('OCOORDINATE VALUES'/'....DIM...BASE...LIMIT ...INCR'/ (417))
    520 FORMAT ('OPOINT'5X, 'COORDINATES AND (GROUPS)'/1X)
    532 FORMAT(I5,'.'8(I7.'. ('I4,')'))
```



```
    152 IF(CANCL(K)-COORD(J))150,151,150 LIN10380
    151 CONTINUE LIN10390
        NCAN=NCANG1
        IF(TRACE)124,124,154 LIN10420
    154. WRITE (Z,518)
        WRITE (Z,511)(J,CANCL(J),J=I,K) . LIN10440
        GO TO 124 LIN10450
    150 CONTINUE
C . SUBSET NOT CANCELLED ... LIN10470
    PD=0 ... LIN10480
    IS=0 . LIN10490
    167. WORK=0 LIN10500
    LSTO=0 LIN10510
    LGI=0 LIN10520
C ..MASK OFF GROUPS NOT . IN SET ... LIN10530
    D0 9 GI=1,GLIM
    DO 106 IDIM=1,DIM
    IF (COORD (IDIM)&10000)107,106,107
    107 J=LGI&IDIM
        IF (COORD.(DIM) -CORG (J)) 109,106,109
    106 CONTINUE
C GROUP IS INCLUDED IN SUBSET
    J=IABS (GRPL(GI))
    GRPL (GI)=J
    MEM(J)=IABS (GRPL (GIG1))-J-1 . LIN10630
    WORK=WORK&1 -.. LIN10640
    G0 T0 9. ...LIN10650
C GROUP IN NOT INCLUDED IN SUBSET ... LIN10660
    109 GRPL(GI)=-IABS(GRPL(GI)) . LIN1067.0
        9. LGI=LGIEDIM ... ...LIN10680
C CANCEL IF NO GROUPS ARE INCLUDED LIN10690
    IF (WORK)113,113,114 .. LIN10700
    113 IF(TRACE) 121,121,115
    115 WRITE (Z,508)
C . PLACE FAULT POINTS IN POINTS-TO-DELETE STACK
    114 DO 165 I=1,FL
        M=FAULT (I)
        IF (GRPL(M): 165,165,166
    166.J=GRPL (M)
        IS=IS&्%1
        STACK(IS):=MEM(J&1) -... LIN10.790
    165 CONTINUE LIN10800
        NDEL=0 LIN10810
C PRINT REMAINING GROUPS IF TRACE .GT. 1 AND PD=0 LIN10820
        IF (PD) 110,112,110
        LIN10830
    112 IF(TRACE-1)110,110,111 . LIN10840
    111. WRITE (Z,510)WORK LIN10850
        IRET=3
        LIN10860
        RETURN . . LIN10870
C THIS SECTION ELIMINATES REMAINING SINGULAR POINTS . ... LIN10880
C BRANCH TO 26 IF SUCCESS (STACK EMPTY). LIN10890
    110 BI=0
LIN10080
    NDEL=0
LIN10930
    210 IF(IS)26,26,119 LIN10940
```

C 119 C $\quad 19$	UNSTACK POINT TO DELETE	LIN10950
	PI=STACK (IS)	LIN10960
	IF (TRACE-2) 21, 21, 20	LIN10970
	\therefore PRINT DELETION IF TRACE .GT. 2	LIN10980
20	$\mathrm{BI}=\mathrm{BI} \mathrm{c}_{1}$	LIN10990
	OBUF (BI) $=$ PI	LIN11000
	IF (BI-10) $21,22,22$	LIN11010
22	WRITE (Z, 539)OBUF	LIN11020
	$\mathrm{BI}=0$	LIN11030
21	IS $=15-1$	LIN11040
	$\mathrm{J}=(\mathrm{PI}-1)$ * DIM	LIN11050
	SGI=0	LIN11060
C	DELETE POINT FROM EACH GROUP IT IS IN	LIN11070
	DO 14 IDIM $=1$, DIM	LIN11080
	$\mathrm{J}=\mathrm{J}$ ¢ 1	LIN11090
	GI=GPS (J)	LIN11100
C	SKIP TO 14 IF GROUP IS EMPTY.	LIN:11110
	IF (GRPL (GI) $) 14,14,10$	LIN11120
C	DELETE POINT PI FROM GROUP GI.	LIN11130
10	$\mathrm{K}=$ GRPL (GI)	LIN11140
C	SEARCH FOR POINT IN GROUP	LIN11150
	$\mathrm{M}=\mathrm{MEM}$ (K) - 1	LIN11160
	L=M¢¢K	LIN11170
	DO 11 I=K, L	LIN11180
		LIN11190
11	CONTINUE	LIN11200
C	POINT WAS NOT FOUND IN GROUP	LIN11210
	$\mathrm{M}=\mathrm{Mg} 1$	LIN11220
C	CONSIDER DELTED IF STACK FULL	LIN11230
	IF (IS-LIS) $13,13,14$	LIN11240
C	REMOVE POINT FROM GROUP.	LIN11250
12		LIN11260
	$\mathrm{MEM}(\mathrm{L} \mathcal{E} \mathrm{I})=\mathrm{PI}$	LIN11270
	$\operatorname{MEM}(\mathrm{K})=\mathrm{M}$	LIN11280
C	TEST FOR 1 REMAINING POINT.	LIN11290
13	IF (M-1) ${ }^{\text {d }} 1,15,14$	LIN11300
15	IF (IS-LIS) $16,17,18$	LIN11310
C	STACK PI AND SET STACK OVERFLOW SWITCH	LIN11320
17	IS $=1 S$ ¢ 1	LIN11330
	STACK (IS) $=$ PI	LIN11340
	LST0=1	LIN11350
18	PI=MEM (K¢ 1)	LIN11360
	SGI=GI	LIN11370
	GO TO 19	LIN11380
C	STACK REMAINING POINT AND CLOSE GROUP .	LIN11390
16	IS=IS\&1	LIN11400
		LIN11410
31	GRPL (GI) $=-\mathrm{GRPL}$ (GI)	LIN11420
	NDEL=NDEL\&1	LIN11430
14	CONTINUE	LIN11440
	IF (SGI) 200, 200,201	LIN11450
201	NDEL=NDELE1	LIN11460
	GRPL (SGI) $=-\mathrm{GRPL}(\mathrm{SGI})$	LIN11470
200	IF (NDEL-WORK) 210, 172, 172	LIN11480

C	*FAILURE	LIN11490
C 172	ALL POINTS WERE DELETED.	LIN11500
	STO=STO\&LSTO	LIN11510
	IF (BI) $173,173,171$	LIN11520
171	WRITE ($Z, 539$) (OBUF (I) , $\mathrm{I}=1, \mathrm{BI}$)	LIN11530
173	IF (TRACE) $120,120,174$	LIN11540
174	WRITE ($Z, 551$)	LIN11550
C	RETURN IF THIS WAS AN ATTEMPT AT A SUBSET OF A CONSISTENT SET	LİNT1560
120	IF (PD) 121,121,122	LIN11570
122	IRET=4	LIN11580
	RETURN	LIN11590
C	CHALK IT UP.	LIN11600
121.	NFAIL=NFAILC 1	LIN11610
902	IF (LEVEL) $132,132,124$	LIN11620
C	THIS SECTION GENERATES RESTRICTIONS PLACED ON THE	SETLIN11630
12.4	$\mathrm{I}=1$	LIN11640
133.	IDIM=DIML (I)	LIN11650
	K=COORD (IDIM)	LIN11660
C	INCREMENT COORDINATE FOR DIMENSION ON LEVEL I	LIN11670
C	TEST FOR RESET MARKER	LIN11680
	IF (K (10000) $170,169,170$	LIN11690
- 170	$K=K ¢ C O R A N(3, I D I M) ~$	LIN11700
	IF (K-CORAN ($2, \mathrm{IDIM}$)) 127, 127,125	LIN11710
C	RESET MARKER FOUND. SET TO FIRST COORDINATE VALUE.	LIN11720
169	K=CORAN (L, IDIM)	LIN1 1730
C	NEXT COORDINATE VALUE WAS FOUND	LIN11740
127.	$\operatorname{COORD}($ IDIM $)=\mathrm{K}$	LIN11750
	$\mathrm{I}=\mathrm{I}-1$	LIN11760
C	GO TO 134 WHEN ALL COORDINATES ARE FIXED	LIN11770
	IF (I) 133, 133,134	LIN11780
C	HIGHEST COORDINATE H S BEEN USED.	LIN11790
C 125	RESET DIMENSION IDIM.	LIN11800
	COORD (IDIM) $=-10000$	LIN11810
	$\mathrm{I}=\mathrm{I} \mathrm{E}_{1}$	LIN11820
	IF (I-LEVEL) 133,133,140	LIN11830
C	COORDINATES FOR ALL DIMENSIONS HAVE REACHED MAXIMUM VALUE	M LIN11840
C	INCREMENT A DIMENSION	LIN11850
140	DO 128 IG $=1$, LEVEL	LIN11860
	IF (DIML (IG)-DIM\&्¢IG-1) $129,128,128$	LIN11870
128	CONTINUE	LIN11880
C	ALL DIMENSIONS ARE MAXIMUM FOR THIS LEVEL	LIN11890
132	NGO=NTRY-NFAIL	LIN11900
	WRITE (Z,514) LEVEL, NTRY, NCAN, NFAIL, NGO	LIN11910
C	. TEST FOR END OF RUN.	LIN11920
	IF (LEVEL-DIM) 161,131,131	- LIN11930
C	. . INCREMENT LEVEL	\therefore LIN11940
161.	LEVEL=LEVELG1.	LIN11950
1	WRITE ($Z, 515$) LEVEL	LIN11960
	NTRY=0	LIN11970
	NFAIL $=0$	LIN11980
	NCAN=0	LIN11990
	IF (LEVEL) $134,134,181$	LIN1:2000


```
CLIM=CLIM&1
    155 CANCL (CLIM) =COORD (I)
            DO 90 I=1,NP
    C ADD THIS SET TO CANCEL BUFFER.
        90. CHAIN(I)=0
            IRET=1
            GO TO 3
        55.NOSU=1
            NG=GLIM
            PD=0
            IS=1
C ... SEARCH FOR GROUPS CONTAINING ONLY TWO POINTS
C FOR EACH ONE FOUND, DEFINE THE TWO POINTS TO BE EQUIVALANT.
            DO 5.GI=1,GLIM
            K=GRPL(GI)
            IF (K) 8, 8,6
            6. IF (MEM (K)-2) 21,21,5
            8.NG=NG-1
            5. CONTINUE
                IF(TRACE-1) 94,94,83
        83.00 84 K=1,NP
            PI=-CHAIN(K)
            IF (PI) 84,84,85
        85. WRITE (Z,585)PI
    585 FORMAT ('OCHAIN'I3)
        CALL LIND5(PI)
        84 CONTINUE
        94. IF (NG) 80, 80,81
    C INITIALIZE TO NO DELETIONS
    81. PTDEL (1)=0
        HI=1
    C HUNT FOR CHAIN 1 GREATER THAN K
    31. IS=IS&्ष्1
        STACK(IS)=-PD
    73. K=PTDEL (HI)
        L=10000
        PI=0
    10. PI=PI定1
        IF (PI-NP) 11,11,12
    11. PD=-CHAIN(PI)
        IF (PD) 10,9,9
    C CHECK FOR PD .GT. K AND PD .LT. L
        9. IF((PD-K)*(PD-L)) 13,10,10
        13. L=PD
        GO TO 10
C SEARCH FOR NEXT CHAIN IS FINISHED. GO TO 15 IF K IS HIGHEST CHAIN
    12 IF(L-10000) 14,115,115
D DELETE CHAIN PD
    14. PD=L
        WRITE (Z,506)PD
        PTDEL(HI)=PD
        PTDEL(HI&I)=PD
        PI=PD
        IRET=2
```

```
C PI IS A POINT EQUIVALANT TO PD. DELETE IT.
    29. J=(PI-1)*DIM
C *DELETE POINT PI
        DO 16. IDIM=1,DIM
        J=J&1
        GI=GPS(J)
        K=GRPL(GI)
        IF (K) 16,16,17
C SEARCH FOR POINT PI IN GROUP.GI
    17. M=MEM(K)-1
        L=M&&
        DO 18 I=K,L
        IF(MEM(I&1)-PI)18,19,18
    18. CONTINUE
        GO TO 20
C PUT POINT AT END OF LIST AND DECR LENGTH
    19. MEM(IG1)=MEM(LG1)
        MEM (L&1)=PI
        MEM(K)=M
        IS=IS&2
        STACK(IS-1)=0
        STACK(IS)=GI
        WRITE(Z,510)GI
    510 FORMAT('GROUP'I4,' DELETED')
        20.IF(M-2)21, 21,16
C TWO POINTS REMAINING
    21. A=MEM(K&1)
        B=MEM(KG2)
        CALL LIND4(A,JA,IA)
        CALL LIND4(B,JB,IB)
        IF(IA-IB)40,54,40
    40. IF(IA-PD) 23,22,23
    22. IF (IB-PD) 74,53,54
    23.IF(IB-PD) 54,24,54
    24. IF(IA-PD) 74,53,54
    27. IF (NG) 28, 28,16
    16. CONTINUE
        PI=CHAIN(PI)
        IF (PI) 30, 30, 29
C ALL POINTS IN CHAIN PD HAVE BEEN DELETED
    30. HI=HI&1
        GO. T0 31
    C NO GROUPS LEFT. . TEST FOR NON-EMPTY SET
    28. K=IABS (GRPL(GI))
        A=MEM.(K&1)
        CALL LIND4(A,I,J)
        IF (J-PD) 32,74,32
    C . MINIMAL CONSISTENT SET
        32\cdotsWRITE (Z,502)NOSU
        NOSU=NOSU&1
        K=0
    37. IF (J) 33, 33, 34
    34. K=K&1
        OBUF (K)=J
```

IF (K-20) 35, 36, 36
36. WRITE ($Z, 505$) OBUF
$\mathrm{K}=0$
35. J = CHA IN (J)

GO TO 37
115 HI=HI-1
IF (HI) 59, 59, 15
$33 \mathrm{IF}(\mathrm{K}) 74,74,39$
39 WRITE ($\mathrm{Z}, 505$) (OBUF (I), $\mathrm{I}=1, \mathrm{~K})$
GO TO 74
C . UNDO EQUIVALANCES CAUSED. BY. DELETION OF CHAIN PD.
$15 \cdots \mathrm{PD}=-\operatorname{STACK}(\mathrm{IS})$
74. WRITE $(Z, 572)$ PD

572 FORMAT ('.UNDO DELETION'I3)
WRITE $(3,505)$ (STACK (I) , $\mathrm{I}=1, \mathrm{IS})$
72 IS $=$ IS -1
GI=STACK(IS)
IF (GI) 73, 73, 42
$42 \mathrm{~K}=\mathrm{GRPL}(\mathrm{GI})$
IS $=\mathrm{IS}-1$
IF (K) 117,117,114
$117 \mathrm{~K}=-\mathrm{K}$
$N G=N G \& 1$
114 GRPL (GI) $=\mathrm{K}$
IF (STACK(IS)) 72, 72, 116
116: LC=IABS (GRPL (GIG1))-K
L=MEM. K)
IF (1-2) 45, 45, 72
$45 \mathrm{M}=\mathrm{K} \xi \mathrm{E} \mathcal{G} \mathrm{I}$
CALL LIND4 (MEM(M), IA, IB)
IF (IB-PD) 43, 44, 43
$44 \mathrm{~L}=\mathrm{L} \varepsilon 1$
IF (L-LC) 45, 43, 43
43 MEM $(K)=L$
$\mathrm{A}=\mathrm{MEM}(\mathrm{K} \mathcal{G} 1)$
$B=\operatorname{MEM}(K \& 2)$
CALL LIND4 (A,JA, LA)
CALL LIND4 (B, JB, IB)
IF (IA-IB) $72,47,72$
$47 \mathrm{I}=\mathrm{CHAIN}(\mathrm{A})$
CHAIN $(\mathrm{A})=\operatorname{CHAIN}(\mathrm{B})$
CHAIN $(\mathrm{B})=\mathrm{I}$
$113 \mathrm{~J}=\mathrm{I}$
$\mathrm{LO}=\mathrm{I}$
49. $\mathrm{KJ}=\mathrm{J}$
$J=$ CHATN (J)
IF (J) 111, 111, 112
111. $\mathrm{I}=\mathrm{CHAIN}$ (A)

GO TO 113
$112 \mathrm{IF}(\mathrm{J}-\mathrm{I}) 50,51,50$
$50 \cdot \mathrm{IF}(\mathrm{J}-\mathrm{LO}) 48,49,49$
48. $\mathrm{LO}=\mathrm{J}$

ILO $=\mathrm{KJ}$
GO TO 49

```
    51. CHAIN (ILO) =-LO
        WRITE (3,581)A, B, IA, LO
    581. FORMAT ('. UNEQ' 2I4,5X, 'CHAINS' 214)
        GO TO 72
    C
    80.WRITE (Z,503)
    59 WRITE (Z,500)
GOTO RESTRICTION GENERATOR ROUTINE
    IRET=4
C . ROUTINE TO SET A=B
    54 GRPL (GI)=-GRPL(GI)
        NG=NG-1
        IF (IA-IB) 52,53,76
    76: CHAIN (JA) = IA
        GO TO 77
    52. CHAIN (JB)= IB
    77 I=CHAIN(A)
        CHAIN (A) =CHAIN (B)
        CHAIN (B)=1
        STACK(IS-1)=1
        IF (TRACE-1) 53,53,82
    82 WRITE (Z,507) B,A,IB,IA
    53.GO TO (5,27), IRET
        *PRINT. REMAINING .POINTS .
C FIND A FREE DIMENSION
C \cdots(NONSTANDARD USE OF IS)
        3. DO 7.0 IS=1,DIM
        IF (COORD (IS)&10000) 70,71,70
        70. CONTINUE
C CHECK EACH PT FOR INCLUSION IN GROUP FOR DIMENSION IS
    71. J=0
        DO. 60 PI=1,NP
        IF (LIND3(PI) )60,60,61
C OPOINT NOT DELETED.. ADD TO OUTPUT BUFFER.
    61. J=JG1
        OBUF (J)=PI
        CHAIN(PI) =--PI
        IF (J-20)60,63,63
    63.WRITE (Z,505)OBUF
        J=0
    60 CONTINUE
    104. IF (J) 55,55,66
    66 WRITE (Z,505)(OBUF(I),I=1,J)
        GO T0: 55
C LIST ACTIVE GROUPS
    100 J=0
        DO 101 GI=1,GLIM
        IF (GRPL (GI)) 101, 101,102
    102 J=J&1
        OBUF (J)=GI
        IF (J-20)101, 103,103
    103 WRITE (Z,505)OBUF
        J=0
    101 CONTINUE
```

RETURN
157 WRITE $(Z, 300)$
CALL EXIT
78. WRITE (Z, 301)

CALL EXIT
300 FORMAT (ERROR - - LENGTH OF CANCEL BUFFER EXCEEDED. ')
301 FORMAT ('OERROR - - LENGTH OF PTDEL EXCEEDED .')
500 FORMAT (!OEND OF CONSISTENT SET AND SUBSETS! / $60(!-!)$)
501 FORMAT ($10 * * * * * C O N S I S T E N T$ SET FOUND WITH FOLLOWING RESTRICTIONS '/
$.1 \mathrm{X}, 8(\mathrm{I} 5,!)=!\mathrm{I} 5)$)
502 FORMAT (!OSUBSET'I3, 5X,'LIST OF POINTS')
503 FORMAT (${ }^{\circ}$ OONLY SUBSET IS SET ITSELF. ${ }^{\circ}$)
505 FORMAT (1X, 20I6)
506 FORMAT (${ }^{\prime}$. CHAIN $^{\prime}$ I4, ' ${ }^{\prime}$ DELETED')
507 FORMAT (!POINT'I4, ' IS EQUIV TO POINT'I4, 5X, 'CHAIN'I4,'! JOINED TO *CHAIN' I4)
END
// DUP

* STORE WS UA LIND2
// FOR
* ONE WORD INTEGERS

FUNCTION LIND3 (PI)
INTEGER PI
1 INTEGER DIM, COORD (8), CORG (600), FAULT (100), FL, GLIM, GPS (600)
2 INTEGER GRPL (301), KD, MEM (600), TMASK (8), TV
3 INTEGER CORAN (3, 8), PD, PTDEL (IO), STACK (100), CANCL (600), DIML (8)
4 INTEGER CLIM, WORK,HI, GI , .. TRACE, Z, STO ,CHAIN (100)
5 COMMON: DIM, COORD,CORG, FAULT, FL, GLIM, GPS,GRPL, KD, MEM, NP, TMASK,TV
6 COMMON CORAN,PD,PTDEL, STACK, IS, IRET, CANCL,DIML, CLIM, WORK,HI, LGM
7. COMMON LEVEL,TRACE, NOSU, GI, Z, NFAIL, NTRY, NCAN, STO, LSTO, CHAIN
$K=(P I-1) * D I M G I S$
$\mathrm{K}=\mathrm{GPS}(\mathrm{K})$
C FIND INDEX OF POINT IN GROUP K
$K=G R P L(K)$
IF (K) $1, \mathrm{I}, 2$
C GROUP EMPTY
$1 \cdot \operatorname{LIND} 3=0$
RETURN
2. L=MEM (K) \&K-1

DO $3 \cdot K=K, L$
IF (MEM (KG1)-PI) 3, 4, 3
3. CONTINUE

C NOT IN GROUP
GO TO 1
4. LIND3=K

RETURN
END
// DUP
*STORE WS UA. LIND3
END
//FOR
*ONE WORD INTEGERS
SUBROUTINE . LIND4 (A, B, C)
INTEGER A, B, C

```
    1. INTEGER DIM, COORD (8) ,CORG(600),FAULT (100),FL,GLIM,GPS ( 600)
    2. INTEGER GRPL (301), KD,MEM ( 600),TMASK(8), TV
    3. INTEGER CORAN (3, 8), PD, PTDEL(10 ),STACK(100),CANCL (.600), DIML (8)
    4. INTEGER CLIM, WORK,HI,GI, TRACE,Z,STO,CHAIN(100)
    5. COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL, KD,MEM,NP, TMASK,TV
    6 COMMON CORAN,PD,PTDEL,STACK,IS,IRET,CANCL,DIML, CLIM, WORK,HI, LGM
    7. COMMON LEVEL,TRACE,NOSU, GI, Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
    IA=A
    1. B=IA
        IA=CHA.IN(IA)
        IF (IA)2,2,1
    2 C=-IA
        RETURN
        END
//DUP
*STORE WS UA LIND4
//FOR
*ONE WORD INTEGERS
            SUBROUTINE LIND5 (PI)
            INTEGER PI,OBUF'(20)
            1. INTEGER DIM, COORD (8) , CORG (. 600) , FAULT (100) ,FL,GLIM,GPS (. 600)
            2 INTEGER GRPL (301), KD,MEM (600),TMASK (8),TV
            3. INTEGER CORAN (3, 8),PD,PTDEL (10 ) ,STACK(100),CANCL ( 600),DIML (8)
            4 INTEGER CLIM, WORK,HI,GI, TRACE, Z,STO,CHAIN(100)
            5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL, KD,MEM,NP, TMASK,TV
            6.. COMMON CORAN,PD,PTDEL,STACK,IS,IRET,CANCL,DIML,CLIM,WORK,HI, LGM
            7. COMMON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
            J=0
            4 J=J&1
            OBUF (J)=PI
            IF (J-20)1,1,2
            2.WRITE (Z,500)OBUF
            J=0
            1. PI=CHAIN.(PI)
            IF (PI) 3, 3,4
            3 WRITE (Z,500) (OBUF (I),I=1,J)
            RETURN
    500 FORMAT.(20I6)
            END
//DUP
*STORE WS UA LIND5
//FOR
*NAME LINDS
*ONE WORD INTEGERS
*IOCS (CARD, 1132 PRINTER)
*LIST SYMBOL TABLE
    1. INTEGER DIM,COORD (8),CORG (. 600),FAULT (100),FL,GLIM,GPS (. 600)
    2 INTEGER GRPL (301), KD,MEM(600),TMASK(8),TV
    3. INTEGER CORAN (3,8),PD,PTDEL(10 ),STACK(1000,CANCL ( 600) ,DIML, (8)
    4 INTEGER CLIM,WORK,HI,GI, TRACE,Z,STO, CHAIN(100)
    5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP,TMASK,TV
    6 COMMON CORAN,PD,PTDEL,STACK, IS, IRET,CANCL,DIML,CLIM, WORK,HI, LGM
    7. COMMON LEVEL,TRACE,NOSU, GI, Z,NFAIL,NTRY,NCAN, STO, LSTO, CHAIN
    IRET=0
```

```
1 CALL LINDO
2. CALL LIND1 IF (IRET-1) 1,1,3
3 CALL LIND2 IF (IRET-1) 1, 1, 2
// DUP
* STORE WS UA LINDS
```

2
VITA
Ralph Raymond Lindstrom
Candidate for the Degree of
Doctor of Philosophy

Thesis: ESTIMABLE EFFECTS AND INTERACTIONS IN AN n-WAY CROSS CLASSIFICATION WITH MISSING CELLS

Major Field: Statistics
Biographical:
Personal Data: \cdots Born in Ishpeming, Michigan, March 10, 1935, the son of Turri R. and Pearl P. Lindstrom.

Education: Attended grade school in Negaunee, Michigan; graduated from Negaunee High Schoo1, Negaunee, Michigan, in 1953; received the Bachelor of Science degree from Northern Michigan University with majors in Mathematics and Industrial Arts in June 1957; received the Master of Science degree from the University of Illinois, with a major in Mathematics, in August 1960; completed the requirements for the Doctor of Philosophy degree with a major in Mathematics and Statistics in May, 1971.

Professional Experience: Employed as an Instructor, Department Máthematics, Michigan Technological University, Houghton, Michigan, 1957-1964, employed as an Assistant Professor, Department of Mathematics, Northern Michigan University, Marquette, Michigan 1966-1970.

[^0]: INote: refers to Selected Bibliography.

