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CHAPTER I
INTRODUCTION

In a general n-way cross classification each observation is
classified in n ways. The n classifications are referred to as
factors and we suppose that the i-th factor has ti levels, or .in all
t1 -’té N Y combinations (cells) are under consideration. The
ihvéstiggtor is usually interested in determining the effects of
chahging the levels of each factor and also, in many cases, the’
influence that various combinations of the other factors have on these
effects. - If the combined effect of changing the level of several
factors is not the sum of the effects of the individual factors, in-
teractioﬁ is said to exist, ‘and any discussion of the effect of one
or several of these factors must necessarily take into consideration
the influence of the other factors. This, of course, complicates the
analysis considerably, but if the factors are going to occur together'
naturally, the-iﬁformation thus obtained is essential. We generally
hope, however, that certain of the interactions will prove to be
negligible and thereby simplifybour discussion.

If an equal number of observations are obtained for each and
every cell, the problems of estimation and tests of hypotheses con-

cerning various effects and interactions are quite straight forward



and well documented in many textbooks. (See for example: F. A. -
Graybill (6)1). In the event that the numbers of observations per
cell are unequal the analysis gets a little more involved, but is
still accomplished in much the same manner. However, if a number of
the cells are not represented due to missing observations, no general.
method of analysis has been put forth and the investigator will
probably have to write a mathematical model for the observations that
are present and attempt to solve ‘the corresponding normal equations.
Because of the missing observations, the system loses much of the
symmetry present when at least one observation is present in each cell
and consequently the solutions are considerably more difficult to
obtain. Moreover, the investigator has no assurance before he attempts
to find the solutions that the effects and interactions in which he

is interested are estimable. The investigator may attempt to estimate
the missing data or assume that all interaction effects are zero in
order to simplify the problem. But no procedure can actually recover
the missing ‘data, and the arbitrary decision that there is no inter-
action is obviously undesirable if some alternative exists. -

The purpose of this thesis is to present a relatively simple
method whereby the investigator can determine beforehand, in a n-way
cross classification with missing.cells, which effects and interactions
are estimable free of the influence of other effects and interactions.
An -alternative to the assumption of no interaction is discussed, and
the degrees of freedom in the analysis of variance table are separated
into sets associated with c¢onfourded and uriconféunded effects and

interactions.

1N6tp:- refers to Selected Bibliography.



To illustrate'thé"féilufe of a conventional method of partitioning
the degrees of freedom (and sum of squares) consider a 33 factorial
experiment where the factors are designated by A, B, and C. Suppose
the only design points for which thé ekperimenter was able to get at
least one.observation were =000, 100, 120, 220, 111, 021, 121, 211,
012,'1ég,"112, 202 where (i, j, k) indicates the i-th level of
factor A ,-j~th level of factor B ; and k-th level of factor C .
Let us say that the ABC interaction is known to be zero, but we wish
to iﬁvéstigate the 2 factor interactions. We will attempt to parti-
tion the degrees of freedom by cémbining'a series of 2 x 2 tables.

Ignoring C a two way table for A and B yields 4 degrees

of freedom associated with the interaction of A and B .

B
0 1 2 A.0.V. _ Source df
Q' X ; X X Total 11
A I} XX XX XX A 2
2 x 1x lx | , B 2
AB : 4
Remainder 3

A similar table for A and C results in 4 degrees of freedom

associated with the - AC interaction.



C R A.0.V. ,Sourcev .. df

0. 1 . 2. Total | u

ol x .| x | x - A :' 2

A 1xx XX”;S,xx  “ C 1 2
21 x 1x | x | ac I
Remainder .3

Finally, a table for B and C yields 1 degree of freedom for

the interaction of factbrs. B and C

C A.0.V. - Source . A df |
0. 12 | Total 111
o] X XX | B b2

B 1l - ﬁ‘ XX XX, : C . 2
2 ’xx XX . B BC , 1
‘Remainder 4  . 6

If we attempt to combine these tables into a single A.0.V. table
as is possible in an experiment with no missing data, we see that
there are not sufficient degrees of freedom remaining, after the A, B,
and C components are considered, to have 4 degrees of freedom associ-

ated with AB, 4 with AC , and 1 with BC

A.0.V. Source . d.f.

Total 1
A
B
C
AB
| AC.
~ BC.

Y RN N




The reason for this is that these three interaction effects AB, -
AC and BC are confounded with each other. This occurs because due to
the missing-célls, it is impossible to measure the failure of the
simple effects of factor A to be the same at different levels of
B without changing levels of C . Thus the,failuré-ofvtheusimple'
effects of A to be the same at different levels of B is confounded
with the failure of the simple effects of A to be the same at .
different levels of - C , or the AB interaction is cénfOunded with
AC . Likewise, AB 1is confounded with BC .

Some work has been done by Ghheray (5) and Williams (4) on
estimatibility of main effects for the n-way cross classification

model without interaction, Y =_XB+é-,,where Y is - a- Mxl vector of

n .
observations, - X is a M x I ti matrix of ones and zeros, B is
a I ti x 1 vector of unknown parameters Bij , 1i=1,2,...,n ,
i=1
J=l,2,.;.,ti , and e 1is an Mx1 vector of errors. This design is

defined to be connected if Bij_sik is ‘estimable for all i=1,2,...,n
and for all j,k=1,2,.;.;ti , j#k . Williams defines a procedure for

determining connectedness for main effects that is sufficient but

not necessary. .Thomas utilizes this procedure to show that if
k ' ,

a p" factorial is expressed in the form ( I vpi)n then the ‘total
i=1

number of connected plans obtainable by combining all combinations of
the ~k? factorials is - (Zk;l)n .

To illustrate that this procedure‘is’sufficient but not necessary
it is presented as given by Williams below with two examples both
connected in the sense of the definition. The first example, -also
from Williams, illustrates the procedure and demonstrates that it is -

sufficient whilenthe'sécondvexample shows it is not necessary. To



simplify -the discussion two n—tubles'are-defined to be nearly identical
if the”n-tupléS‘are equal component-wise except for one component.
It is required in the procedure that the-design points corresponding
to occupied cells be -such that the-i—th‘cohponent takes on all possible
values 1,2,.:.,ti over the set of all n-tuples. Otherwise parameters
associated with missing values are to be eliminated from the original
model.

Procedure:

1. Construct a table of all occupied cells expressihgieach
occupiedbcell as an n-tuple. If a point is repeated,
list it only. once.

2. Select any point from the table in (1) and find all.
nearly identical points for the n-tuple selected. -
Eliminate each point from the table as it is selected.

3. Select all nearly identical points which remain in. the
table for each n-tuple selected in (2). Again eliminate
each point from the table as it is selected.

4. Repeat step (3) for each n—tuple selected in step (3). -

5. Continue this procedure until there ‘are no points
remaining in the table or until there is no n-tuple in
the table which is nearly identical to any point selec-
ted in steps (2)-(4).

6. If thefe'are'points-remaining-in the table -after step
(5)1the‘ofigina1 setbof'design'points is not connected. -
The n-tuples which are nearly identical form a connécted
subset and may be analyzed as a reduced_sét"of»design

points'where'therparameters whose subscripts do not



appear in the subset obtained from‘step (5) may be
eliminated from the original model. The remaining
points may be divided into connected subsets by the
above procedure so that each may be analyzed as a
reduced set of deSign‘points.
Example 1.1: Consider Table I for a three-way cross classification
where one or more observations are given for the cells containing X
and no observations are contained in the other cells.
Step 1: All points corresponding to cells in Table I which
contain observations are listed in Table II.

Step 2: Select any point in Table II, say (1,3,4), and take
all points which are nearly identical to (1,3,4).
These points are (1,3,2), (1,3,1), (1,1,4) and (2,3,4).

Eliminate each of these points from Table II.

TABLE I

CELLS FOR THREE-WAY CROSS CLASSIFICATION DATA

First Second’ Third
Classification Classification Classification
: ‘ 1 2 3 4

' 1 X X X

1 22 X X ]
: 3 X 0 X X
1 X . - X
2 2 X X X
3 X ‘ X




TABLE II

POINTS CORRESPONDING TO OCCUPIED CELLS IN TABLE I

(1,152) (1,3,1) (2,2,1)
(1,1,3) (1,3,2) (2,2,3)
(1,1;4} (1,3,4) (2,2,4)
(1,2,1) (2,1,2) (2,3,1)
(1,2,2) (2,1,4) (2,3,4)

Step 3: For each of the points selected in step 2, it is necessary
to find all nearly identical poiﬁté-remaining in Table
II. The points which'aré.nearly identical to a parti- -

cular point selected in step 2 are.as follows:

Point from L R L o
Nearly  (1,1,2) (1,2,1)  (1,1,3)  (2,2,4)
identical v . ‘
points (1,2,2) (2,3,1) (2,1,4)

Step 4: For each of'the'pbintsrselected in step ‘3, .check the
remaining -points in Table II. The points which are -
nearly-idehticdl to a particular pdint‘seieéted in
step 3 are:

POint_frbm

step 3 . (1,1,2) (1,2,1) (2,2,4)
Nearly i

identical (2,1,2) (2,2,1) (2,2,3)
points

Step 5: Since each point was eliminated as it was selected
from Table II, there are no points»remaining4in Table -

IIvso-the~sef,of design points is connected. The vector



of unknown parameters is B' = (811,‘81? 810 Bogs
8535 B31, B32s. Bz3s. 834). The setwof-pointS»méy now
be/ahalyZed as a three-way classification with.

=‘25.t

t =3 and t3 ?“4 .

1 2
If Table II had points remaining one could apply steps 2-5 to
the5rémainingdpoints and obtain other connected subsets which ‘could
be'analyzéd'as'reduced designs. It should be noted that‘thefpéintsr
obtained first would also correspbnd to a reduced design and could be
analyzed as such..
Example 1.2: Uéihgftheusamevmodel with no interaction say, -that

the points corresponding to occupied cells were ‘the following subset

of Table II of exémple 1.1:

TABLE IIT

POINTS CORRESPONDING TO OCCUPIED CELLS

(1,2,;1) (1,1,3)
(2,3,1) (2,2,3)
(2,1,2) (1,3,4) -
(1,2,2) (2,2,4)

The points (2,3,1), (1,1,3), *(2,1,2) and (1,3,4) in Table IIT are not
nearly identical to any other point of-the‘set, o) acéording'to
Williams' procedure the design is not connected. Continuing with ‘the .
procedure given by Williams, only two connected subsets can be found

and they are {(1,2,1), (1,2,2)} and {(2,2,3), (2,2,4)}". Williams .
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then suggests we analyze each of these sets as a reduced set of

design points eliminating all other parameters from the original model.

Thus according to his procedure the only estimable differences are

However, if we designate the observation corresponding to the

deSign point- (i,j,k) by Xijk then using -the observations associated

with the design points of Table'III-we-get:

. Bl?'
- 629‘

E(x)99

E(x121

E(xy

E(xy21
E(Xg21

E(xyy3

E(x)y3

E(xy5,

E(xy,3

E(x113

Thus all differences

+

X231 * X134
Xp31 *+ X024 -
X113 * X323
X231 * X324
X122) = B3
X224) = B33
X223 - X122
X931 = X224
X312 T %224
X223 ~ *121

Bij

X224¥2(8,
x134)2(85,
X212)72(85;
X134 - X122
832

B34

x212)72 (833

X134)=2(B3
X304 7 *113
X212 - X121

- B2

Xj13 =~ X223 * %X315) = By

- 837

- Bzq)

+ X129)=2(B32 - B3g)

* X122)=2(B33 - B3)

i=1,2,3 and j,k=1,2,...,t.

..j#k are estimable; the design is connected and may be analyzed .as

a three-way classification with t

other examples, such as a

1

2

1

=2’t

2=3 and tz=4. In

replication of a 23 . factorial experi-

ment, no two design points are nearly identical and yet, of course,

all differences are estimable and the design is .connected in the

absence .of interaction.

This thesis presents a procedure for determining not only which

simple effects are estimable, but also which interactions are esti-

mable in a general n-way cross classification design with interaction

B3

1
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-and missing cells. . The criteria of the procedure are necessary and
-.sufficient for estimability and can be modified for use in situations

. where certain of the interactions are known .to be .zero. - The procedure
. gives easily obtainable -estimates of the estimable effects- and inter-
actions, although in general they do not make use of all the observa-
-tions and hence may not be the best estimates available. The estimated
-variances of these-estimates are readily obtainable, as - well as a

- partitioning of the degrees of freedom associated with each effect

and interaction in-an-analysis of variance: table .inte .confounded .and

~unconfounded- sets.



- CHAPTER IT
. ESTIMABILITY OF EFFECTS AND INTERACTIONS
- Intreduction

- Throughout this chapter we will be considering an n-way .cross-
-classification design with interaction where, either by design or
circumstance, a number of the cells have nc observations. . It -will be
_understood that if there are no observations for some level of a
-, factor, that level will be deleted from the original model. . Similarly
if there are no observations for any level of some factor the factor
. will be eliminated from the model.  While it is usually not practical
. to .consider designs for very large values of n , the treatment in

- -this chapter will be entirely  general.
- Definitions, Notation, 'and Preliminary Results

. To facilitate the ensuing discussion, a brief description .of the
--notation and definitions ‘to be used 'is presented first.  The n

. factors .of the cross-classification design will-be designated by
~-integers i=1,2,...,n -‘and-: a; will denote a level of factor i ,

- ay =.0,1,...,ti—1 . Eachocombination.of:1evels.of’factorsviS’then
'~associated'with.an;natup1e~(a1,,az, .L.,,an),ftalled a design point
representing level -.a; ‘of factor one,.ap; of facter two, etc, Whenever
...convenient the- n-ccomponent.vector-(al,..;,an)'will.be-designated

-by--a{n) . -We-will-let X be the set of all observations obtained
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and Dx be the corresponding set of ‘distinct points for .all observa-

tions 'in- X . We can define a .relation on ,Dx as follows:
~Definition 2.1:: For all points: a(n) =-(a1,,a2, .m.;'an) s
- b(n) =-(b1, b2, ey bn)"ln Dx » a(n) Ri b(n) .if and only if

-Aajfbj.for.j#i,.'-We will say that- the two points are Ri . (read
"'related in class 1i''), whenever this definition is satisfied,
~ The above definition is similar to Williams' definition of "nearly
identical' discussed in the first chapter, but in .addition allows a
. point 'to be related to itself, ‘and also specifies in which .component
~two points differ when they are .equal component-wise except for one
- .component.
It is easily- seen that this relation :is an .equivalence relation

:and thus- partitions 'the set of design- points: D into disjoint subsets

x
. each .containing either a single-point,or.pointsathat’differaonly:in
the ith coordinate. . To distinguish among the equivalence classes we
- will let - Ri(al’ '”"ai-l"*"ai+l"'“’an) be ‘the class of ppoints
‘that are ‘Ri‘.and,for which the jth coordinate 'is ‘aj s J=1,2,...,1i-1,
i+l,...,n .
. For example, in the subset: D=((000},(001),(002),(010),(020),
(021), (110),(112)) of the design points .of a- 33 factorial arrangement

. of ‘treatment .combinations, we have:

Rz (00%)=( (000) ;(001), (002} )
R, (01*)=( -(010) )
Ry (02%)=( (020, (021) )

Rg(L1%)=( (110, (112) )
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‘Similarly we .could partition D  into disjoint subsets wusing

.-either: R_ . or R, .
1 2

-“The interaction, in the model assumed, of the factors . il,iz.,...ik

--which is 'associated with the levels ag 5 ey 35
1 K
Cby w(ick); o a(i(k))) = u(il,_iz, cey ik ;,ail, ?féu .,.,‘gii. and the

. effect of level ai..of:the.ith.factor‘ywill be u(i;ai) . An observa-

. will be designated

tion associated with the design point . a(n) will be denoted by

~and © x(i(k); a(k)) =vx(i1; i e ik;.al"aZ’ .m.;_ak) will

xa(n) 2’
représent.the,mean.of all observations at level ‘ai..of‘factor il s

. level a, of factor ziz,...,x.level .ak‘,of factor ik .

. Using the notation dbove, an n-way cross classification model
- with interaction :and one observation per treatment .combination may
- be written:

n

X, = I3 wEK5aGM)) + e
“Em) k=0 i(K)eS “a(n)

where the second summation is understood to be u when k=0 , S 1is
- the set .of all vectors: i(k) where" ij' is ‘taken from: .1,2,...,n

ith - i <i, <1, ... <1 ' v : ,
with 1I i, i, i and the errors 1e§ﬁn) are uncorrelated

~and all have the same mean O and variance o2 .

. For example with N=3 the model would be:

~‘xai§1,2,ag = wir u(lia )+ u(2say) + ul3saq)
-+ u(1,2589,a,) + u(l,3;35,a3) + u(2,338;,a5)

o+ u(1,2,3;a;,a ,aS} te, 4
2 212%,1%;



15

The above notation is 'somewhat non-standard, but is ‘adopted to
. permit a .completely general discussion .of an n-way classification.
. However, since 'the :examples .of this thesis involve only small values
.of - n , standard notation will be used in all examples. . Thus the

' model corresponding 'to ‘the :case above for . Y=3 will be:

1Jk gISLR +B +fk+(u3)1j+(af) k+(BT)Jk (aBT) Jk ik
i=l,2,000,t 1 .,}=l,2,..;,t2 i.k=‘1‘,.2,..,.,t3
- 'The 'unknown .constants g Gy Bj’ and _Tk ‘are called the mean

"and.additive‘treatment.constantSarespectively,‘,(as)ij ;-Cuflik and
(Bfljk ‘are called 2‘factor'interaction.terms:and.,(asf)ijk'.iszthe
3 factor interaction .term. . The sets .of parameters 0. ’.le and Fk
~'will be associated with factors denoted by - ‘A, B and ' C . respectively.

. The .concept of ‘interaction will be generalized by defining a

- .component .of ‘interaction as in Mann(3).

.-Definition :2.2: Any linear form
oo x(ifk)salk))

-. a(k) a(k)

. which is mnot identically zero will be termed a component .of ‘the

"interaction-between‘the'factors'_il,i

2,.m;,ik'.if: I % = 0 . for
a

wa(k),
i=1,2,...,k -and for all cchoices 'al,..r,aigl,gi+1;r};,ak .

- It is easily seen, and will be demonstrated :in Theorem 2.1, that
- if all . o . factor interaction effects are .zero for a > k , then the
.'expected wvalue of a linear form satisfying Definition 2.2 is a
.-linear .combination
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Thus.:the failure .of a component of ‘interaction ‘to be zero 'is a measure

. of ‘interaction of factors il’ 12’ ...,»ik,.overzthe,levels
a. cs e . . for which " & is not zero :in : nent.
:all”alé , alk or which a(k) s not .zero :in the .camponent

‘Since a main effect or interaction is always .confounded with

: higher'order'interéctions,‘throughout'this thesis, ‘to avoid repeated
..reference .to this situation, higher order interactions will be con-
- 'sidered to be zero whenever 'the estimability of a particular main

. effect or interaction is being discussed.

- Definition 2.3: The interaction .effect .of factors il’iz"“"ik' will

be called partially estimable .if there exists a component of inter-
action for the factors.

- If there is at least one observation per cell ‘and we .consider ‘the
. set of "true" cell means of the .conceptual population .of yields for
eachcell,:then:there~are:.E..(ti;-l) 'liﬁéarly:independent‘functions
..of ‘the "'true" cell means[fi;i:cénébe»usedzto.measure a'k factor
~interaction . The above definition requiwes that at least :one of
these functions be estimable. ' Throughout the remainder .of this

‘thesis, a partially .estimable interaction will be referred to simply

as estimable.

- Definition :2.4: If the interaction effect of classes il,,iz,...',ik
is partially estimable, 'the associated set of design points will be
referred to as a partially connected set with respect to this k
_-factor interaction. ‘As in definition 2.3, ‘the word partially will be
dropped throughout the remainder of ‘this ‘thesis.

Let us now consider ‘the problem of determining whether or not a

. particular main effect 'or ‘interaction is estimable. - We begin by

considering a few preliminary results necessary to establish a criterion
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. for the estimability .of the highest order interaction :in an n-way

cross classification design.

. Lemma 2.1 : If there exists a,nonempty:subset.‘Dx::oftthe,design
.points such ‘that for each:. a(n)  in. Dx.'there:is a}:gﬁn)i:ini_Dx:vsuch
.“that - aifbi and . a(n) Ri.Pﬁn) for each i=1,2,...,n , then there

. is a,nonempty:subset',Dx, of ‘Dx such that for each:a(n) in. Dyt
~and ‘each . i=1,2,...,n: there is exactly one . b(n) in: Dx.,.such

. that .ai#bi and . a(n) R; b(n)

. Proof: . For a fixed 1 , say without loss .of generality  .i=1 ,- R1

. determines a partition .of Dx . 'The hypothesis 'states ‘that all .of

. the subsets .of this partition contain at .least two design points and

- some ‘may. .contain ‘more than ‘two. ' By selecting a .combination of any two
design points from each subset of this partition we can construct a

‘.subset'.Dxﬂi)gﬁDx.:such.that for each: a(n) - in ,DxCl)"there:is

~exactly one . b(n) in'.Dx(1) such'thatt_‘al'#b1 :and:.éﬁn)tRi b(n)

~ We ‘can now partition: DxCl),‘using' R, ‘and 'in ‘the 'same manner select

. from each subset of this partition .of - Dx(l) a combination .of

..exactly,two.design.points,‘thus:forming a subset - D! such

X (,2)9 DX('-l)
1

- that for each: a{n) ~in: D . there 'is ‘exactly one " b(n) 'in pl
- x(2) x(2)

such ‘that a_#b, ‘and: a(n) R2 b(n) . Of course if any subset of

2772

- 'the partition of : Dx(l) by - R_contains :only one point then that

2

. point will not be found in D1(2) . Elimination .of such a point,
x(

however, will produce a set of points for which some point is not R1

to ‘exactly one different point. We therefore must partition fDi(Z)

~ by . R, .again and eliminate all points that occur alone .in some

1

. subset .of ‘the partition.  Denote ‘this subset of = D1 by D2
- x(2) - x(2)



18

We now must partition Diczj-by%Rz'again,and eliminate:those points
that occur again -‘thus forming a,set';Diﬁzj .. Continue ‘this process
‘ PN | - pi+l - e , f'J4-~ . , .
, unt11‘4Dx62) . QXCZI 'DxCZ)' (say) .: Then:for all. a(n) in Dx(2)

there exists exactly one: b(n) " in: DxCZ) .suchzthat"ai#bi':and
.a(n) Ri b(n) . for i=1,2 . We mow continue with the ‘above procedure

‘:using‘,R3,R4,;n.,Rn:'until:we:obtain a.set‘:Dxc ).,that,remains

n
‘invariant upon partitioning by RI,RZ,.L;,Rn and ‘eliminating all

. points ‘'that occur alone 'in :some 'subset of some partition. : Thus ‘Dx(n)
- 'has 'the property that each: Ri=1;2,.,.,n.'partitionS‘it,intO'disjoint
. subsets each containing exactly two points. .If we can obtain a

~ nonempty set - D . by ‘this 'process ‘then ‘the .lemma 'is ‘established,

x(n)

'since by the construction of D . ‘there exists exactly ‘one . b(n)

x(n)
~in ,Dan) such ‘that .ai#bi'zand, gﬁn),Rf.gﬁn)'.i=1,2,.,;,n . . Suppose
'then'that'the.Iemma:iszfalse,zthat.iS':Dx(n) = @ for all :Dx(n)

constructed 'in ‘the manner described :abave.  We have for all sets

' DXCI)’-DXCZ)’ ...;:Dxcn):.constructedtaSiabove

. _Dx (n) EDX (n—l) C e EDX (l)e ‘Dx
..and hence

D

YDy myeYPxm-1¢ -+ Mxc1)s Px

- ‘where kJDx(l):.refers:to:the:union:over:all.subsets.of:,Dx:xthat:can
- ‘be .constructed .as :above ‘taking ‘two points ‘at a ‘time from each of ‘the
:.subsets;of'the'partitiOn:of'_Dx' by Ry ,t}Dxcz)"iszthe:uniontover
-all subsets that -can be :constructed as :above from 'some set ‘in
UDch} ,'etc.'zLet':gﬁn)':be a point ‘in »Dx"and:supposezzgﬁn):Iis

not ‘in :some * Dy 1y~ in UDxCl) . - Then there is not a . b(n) in. Dy
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.-such ‘that . a(n) - RI b (n). ;:but:this:contr.adicts.:the.defim’;tion,oszx .

_:Thus;,gxn)aniiimplieSx.a.ﬁn)a:U -and hence lJDX( = Dy .

X (1) 1)
.-S8imilarly.by ‘induction we can ‘establish that uUD_,., = D, for
ox(i) X

- i=1,2,...,n ."NOW'lf‘.DXan =g 'for'all',Dx(

,n)"then t)Dan)=ﬂ;Dx

~‘which contradicts the definition of - Dy . Thus there exists a
"nonempty‘,Dan)"and'the Iemma is ‘established with = D,, ='Dan) .
- ‘We note ‘that for each 1=1,2,...,n ,‘,Ri"iS‘now a permutation
- of the set of design points*_DX,' of Lemma 2.1 which assigns to each
point of * Dy+ -the unique point of Dy, that differs only 'in the
~-ith coordinate.
- We will use the usual notation "o" for composition of functions

- ‘to denote one mapping followed by another.

- Definition '2.5:  ‘We will say b(m) ‘is accessible from -a(n)  if

'-gﬁn)ARil O‘Rié 0 .. o-Ri' b(n) 'for'some choice of - 11,12,..;,ik

~out of - '1,2,3,...,n . ‘Since each',Ri“iS'an equivalence relation,

- if - b(n) ‘is -accessible ‘from  a(n) ' ‘then  a(n)  is 'also accessible

from  b(n) - and we will say that a(n) -and b(n) communicate.
‘Communication is also an equivalence relation and therefore will

partition a set of design points Into disjoint classes of ‘communicating

- points.
-‘Estimation of the n-Factor '‘Interaction

- Theorem 2.1:  In an n-way cross-classification with interaction and

- ‘missing cells, the n factor interaction effect 'is ‘estimable if ‘and only
if ‘there exists a non-empty subset ' D, ' of the design points such ‘that
for ‘each - a(n) " "in- DX"there'exists a b(n) in- Dx"such'that'_ai';é_bi

"and"gﬁn);RE‘gﬁn)’ for 'each 'i=1,2,...,n .



"~ ‘Proof:  If there exists a'nonempty'subset',DX of ‘the design points

* such ‘that for 'each - a(n) " in- DX' there is a - b(n) in DX such ‘that

: ai%bi and"gﬁn)_Ri b(m) for i=1,2,...,n , then by Lemma 2.1 there

- is a subset Dy of Dy such that for each a(n) in Dx' and each
i=1,2,...,n there is exactly one b(n) in Dx' such ‘that - ai#bi‘ and
a(n) Ri b(n) . We can then partition ng'by the equivalénge relation
of com?unication into communicating classes. Let a*(n)  be any fixed
point in Dyr and let C be the set of points of“Dx,"that

- communicate with a*(n)

We now define a linear contrast of ‘the ‘observations corresponding

to points in C by letting Zgﬁn) =+] - if a(n) 'in C communicates

with - a*(n) -through an even number df‘ﬁermutations*,Ri SRy 5By
1 2 2r
‘and let Qa(n) = -1 if a(m) in C communicates with  a*(n) through
-'an ‘'odd number of permutations R. ,R. ,...,R, Thus if - '‘a(n) R;
1 1 1 —_ 1
1 72 2r+1
“b(n) then Zgﬁn) = ﬂghﬁn). and hencev i Zgﬁn) =0 for i=1,2,...,n

i

'and‘all'choices'_al,...,ai_I,a an . To make this a ‘linear

i+l1’"°

function of ‘all ‘the -observations simply let - Za(n)=0' if ~ a(n) ‘is not

-in- C . Then:

" EZ L.y X,
agm & Tam N |
=% ... 4y I u(ile)sali@))
a; a gﬂn) =01, ,...,n .
n
n_l
= I "I “L G E L T ocE(ECa)salife)))
~a=0" 1,2;;.;,n—1'_ai La; Ay a. aln)” = -
1 1o Ta+l'n

Lam)" (1(a)sali_(a))) i -+I Lam)



- 21

Il gy w(dm);alim))
a a -

1 n
=Ll Loy W(EM)alim)))
'al ‘an -
'since 2. e 2. 'Ziﬁn) = 0
ay i

a+l n

~‘Thus by Definition 2.3 the ‘interaction of factors 1,2,...,n ‘is

- estimable.

- ‘To 'prove ‘that the conditions of the ‘theorem are sufficient,

- 'suppose ‘there does not.exist a subset DX of ‘the design points

: satisfying‘the‘condition'that‘fdr‘every;'gﬁn)er , ‘and for ‘each

- i=1,2,...,n , 'there exists“gﬁn)éDx"such'that'Agﬁn)‘Ri b(n) . Then
for every subset Dx of ‘the design‘points there is some  a*(n) = in
Dx- such ‘that for some - i=1,2,...,n , say i=k , there is no b(n)

in Dx with a*(n) Rk b*(n) . Thus for any linear form

z

A () am) *am)

the expected value will involve at the very least
' u(l,z,..;,k-l,k+1,..;,n;ai,.,.,oi,akﬁl,a§+1;;;e,aﬁ)

Thus, there can be no linear unbiased estimate for an n -factor;inter—
-action, 'and hence, by Definition 2.3 the n factor ‘interaction is

" not ‘estimable.

It 'should be noted ‘that ‘if Theorem 2.1 were applied to a problem

- of ‘estimation, only a portion of'the*observationS'and one observation
'pér design point would be -employed in the estimator. The following

. corallary considers the more general case.
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Corollary 2.1 : If there exists a set of design points D,

satisfying
“the conditions of Theorem 2.1, perhaps with repeated‘observatiOHS'on
each design point, ‘then there exists an independent component of
‘interaction, utilizing all of the observations on each design point

of the component, for each independent communicating class of design
points constructed from _Dx"aS'in the proof of Theorem 2.1.

~'Proof: Lemma 2,1 assures us that thé set Dx has a subset'Dx, in
1

which each point is Ri to exactly one other point for..i=1,2,...,n ,.

* We can ‘then partition'_Dx,"into disjoint communicating classes Ci
1
and define a linear contrast on each C; as in the proof of Theorem

2.1 with the modification ‘that instead of letting ¢ =+ 1 we

a(n)
will let Qa(n) = *1 if there are m observations on the design
A m

point a(n). In effect we are replacing observations on the same

treatment combination by the mean i{iﬁn);gﬁn)) of these observations.
m
- . . , , .
Now i zgﬁn) +1 so if we denote this sum by igﬁn) then as in
Theorem 2.1 we have:

E( I
a(n)
_§_(x)sCi

fagm¥am)) =

E( I &', X(i();a(m)) =
a(n) afagmi=" =

gfk)sci

z ! i(n);a(n
Loy F G0s2m)
' i(;) sCi
Now we can select a point pﬁn)an such that"gﬁn)éci for any

i . We may then repeat the argument of Lemma 2.1 starting with 'b(n)

and another point Ri to it, and thus obtain another set Dys having
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the same properties as - Dy . ‘This 'is always possible 'since we are
free to select ‘the first pair of points, after which succeeding
points must be selected so as to produce a set satisfying the require-
- ment ‘that each point 'is ' R; * 'to ‘exactly one different point of the
~set for 1i=1,2,...,n . ‘Having gotten D, we may now proceed to
- define a contrast of ‘the associated observations 'in exactly the same
- manner ‘as ‘was ‘done for  .Dyr .  We may continue with this procedure
1
~until all points of'.Dx' have appeared in'some"Dx! . All contrasts
- obtained will be'linearly'independent'since'each'iivolveS'at'least
‘one-design point that is involved in mno other constrast.  'Of course,
12

. for 'any ‘constrast ' L (say), the quantity ~'is ‘then

»z_zg‘.a
Pl tSX . n factor

a component of the sum of squares for the

“‘interaction, in'thevanalysiswof'variance;’with er-degree‘of'freedom.

© The number of degrees of freedom for ‘the n fadfof%interaction

(unconfounded) will be equal ‘to the number of linearly independent

- communicating sets of ‘design points that can be obtained by ‘the process
-above ‘and ‘the mean square for this interaction will be the total of
“the sums of squares of the contrasts ‘divided by ‘the degrees of

freedom ‘if the contrasts 'are ‘orthogonal.

- 'The following example illustrates the construction procedures
~'discussed 'in ‘the ‘statements -and proofs of Lemma 2.1 and Theorem 2.1.
Suppose we had a  4x4x3 design and ‘at least one observation was
available for each of the design points:

000 010.°°001 021 ""012 - 022 "032. °110. "120. 131 - 112 122

200 220 201 - 221 - 242 - 330 - 340 331 341 322 332 342

430 - 431 411 440 441 402 432 442 320 130
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TABLE IV

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE
© TO ‘ILLUSTRATE LEMMA 2,1 AND THEOREM 2.1

| 012}022 | 032
‘1001 021 [ N A
Lol B! oo 1]2]1p2
00 1010 | At T 151 | e |
I - e 1343
170 | 120 1304+—1— —2fl i X
- T 1o v |322 332-{342 -
0 T 331 - 341 —=— ——
ld 201 3 | | 452 |42
320 | 3 40 —
;3,(‘ : ——— B | =
RIS I S L —
§’— ‘A

--It is ‘obvious from the figure above that there exists a set of
'pointsyD)d , ‘such that each point‘in‘,Dx, ‘has;exactly'one'other‘point
cin D, thatviS‘,Ri"to itfin‘each of ‘the ‘three mutually orthogonal
- directions (see ‘traced path).  In addition, all of the points in Dx'

- communicate with each other. To find this set by a sorting procedure

- we first partition the set of design'pointS'by‘_Rl, Ry, and Ry .



1 2 3

000 200 000 . 010 .° 000 001
- 010 110 110 "> 120 130 010 012

120 220 320 200 - 220 o 021 - 022

130 - 330 430 320 330 340 032

340 - 440 430 440 110 112

001 - 201 001 - 021 130 131
411 131 200 201
- 021 221 201 221 220 221

131 331 431 331 341 242

341 441 411 431 441 320 322

402 012 022 - 032 330 331 332
012 112 112 122 340 341 342
022 122 322 242 ) 402

032 332 432 322 332 342 ill‘

242 342 442 402 432 442 430 431 432

440 441 442

Next, all points that are alone in some set of some partition
are eliminated in all partitions. These points (singly underlined
above) are 411, 131, 402, 032 and 242. As a result some new points
are now left alone in some set of a partition. These points (In
this example only one point 130 doubly underlined above) are now
similiarly eliminated from all partitions. ' This process 'is continued
until no set in any partition contains a ‘single point. ‘The resulting
- set of points 'is ‘the set D, referred to in the hypothesis of Lemma
- 2.1 ‘and Theorem 2.1.  If ‘this set is empty, then by Theorem 2.1 the

‘three factor interaction 'is not ‘estimable. - The 'set of points
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' DX for this example is ‘listed below partitioned by Rl’ RZ’ and Rz

R R, R,

- 000 200 000 010 000 001

010 110 110 120 010 012

120 220 égg 200 - 220 ‘021 - 022

330 - 430 320 330 - 340 110 112
340 440 430 440 120 122
‘001 - 201 001 021 200 201

‘Oél 221 201 221 220 - 221
331 431 331 341 330 331 332
341 441 431 441 340 341 342
012 112 012 022 - 430 431 ;EE
022 122 322 112 122 440 441 ;;2
332 432 322 332 342 520 322 —
12 442 B

432 442

We now begin to eliminate all points except two from every set
containing more than two points. As a result of the elimination of
a point other points which would then be left alone in some set of
some partition would ‘also be eliminated. = For example the elimination
of 320 (singly underlined above) necessitates the elimination of ‘322
(doubly underlined). Elimination of 332 (singly underlined) results
in the elimination of 342 and 432 (doubly underlined) which in turn
result ‘in ‘the elimination of 442 ttriply underlined). - The remaining
points (partitioned below) ‘are now such ‘that ‘each set 'in the partitions

by'_R1; R2, andR3 contains exactly two points (each point is Ri
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to exactly one other point 1i=1,2,3). This is the set of points va,

referred to in Lemma 2.1 and Theorem 2.1.

1 2 3

- 000 200 - 000 - 010 000 001

-010 ‘110 110 - 120 010 --012
120 220 200 - 220 021 - 022
001 201 001 - 021 ‘110 - 112
021 221 -201 221 © 200 201
012 112 012 --022 220 221
022 122 112 - 122 - 120 122
0 4% 30 340 330 331
340 440 430 - 440 340 341
331 431 331 341 430 431
341 441 431 441 440 441

We now.note that certain points of the remaining set communicate

with each other (e.g. 000 Rlo R,® R, 221) while others do not (e.g.

3

000 does not communicate with 330).  We then partition this set ‘into

-disjoint communicating subclasses;

- L = (000 010 110 120 200 220 001 -021  -201 220
- 012 022 112 '122) and
M = (330 340 430 440 ‘331 341 431 441)

We can also get different communicating sets;

"N

1}

{330 340 430 440 332 342 432 442)

0 (331 341 431 441 332 342 432 442)

by eliminating a different -choice in the process of getting a set of
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points Dx' such ‘that each point 'in 'Dx' is Ri , 1=1,2,3 to
exactly one other point of Dx' . But 0= MUN)-(MNN)} so O is
not independent of sets M and N . Sets L, M and N however are
independent of each other and by the contrast defined in Theorem 2.1
-yield three independent estimates of three factor interaction. In
addition the squares of these. contrasts with the appropriate divisors
will account for 3 degrees of freedom for the ABC interaction in an

analysis of variance table.

Sufficient Cenditions for the Estimability

of an o Factor Interaction

Theorem 2,2: In an n-way cross classification of cells, if a model
~-is ‘assumed 'in which all higher order interaction effects involving

factors i

l,...,i

o are zero, the o factor interaction of factors

il,..,,ia' is estimable if for some combination a¥ ;....,a* (fixed)
a¥l 1n
of the .levels of factors id+1,...,in there 'exists a subset',Dx*

of the design points such that for each 2i (n) in Dyw ,

a. =g % e =a¥ ' and there is a bi D such that

in
b i
o+l o+l n Tn _1n)

ai#bi and aiﬁn) Ri biﬂn) for i=1,2,...,a .

x*

‘Proof: Since we can rearrange the order of factors, let us assume,

without loss of generality, that -i1""’ia are the first factors
N

4

1,2,...,a . If we ignore for the moment the factors a+l,...,n ,

then we know by Theorem 2.1 that the interaction of factors 1,2,...,a
can be estimated free of the lower order effects and interactions of
these factors if and only if there exists a subset Dy, of the design

points such that for each a(n) in Dx and each 1=1,2,...,0 there

isa b(n) in D_ such that ai;eb;i"and a(m) R, bMm) . We



29

established in Lemma 2.1 that if such a setjDx existed we could
find a'subset',Dx,"such'that for each - a(n) 'in Dx' there 'is
"exactly'one"hﬁn)"in'_Dx,' such ‘that for  i=1,2,...,0 , "'ai#bi and
a(n) Ri b(n) , and that Dx' could be partitioned into disjoint
communicating subsets Ci . On each Ci we were able to define a
contrast ‘that gave us an estimate of the interaction of factors
~1,2,...,a free of all main effects and lower order interactions
' of‘these'factors.

‘In such a contrast 'if ‘the coordinates - ay41se 8, are the 'same
for all design points involved, then the expected value of this.
- contrast will not involve any main effects and ‘interactions of
factors - o+l,...,n , since by definition i gafn) =0, for i=1,2,...,n
- For ‘any interaction effect of a'combinatidniof k < o factors out
of 1,2,...,a ,’sayAil,..;,ik s, with a combination of  p < a-k  factors
out of  a+l,...,n , say'Aik+1,..;,ik+p » the expected value of our
‘Iinear combination yields the following for this interaction effect:

»af  ,a¥ )

k+1 “k+p

NN M@ S D | yeedsl 38: , ... ,a.
g 2(my-" 1 k+1 kep*®i, Tk
n

It
[ng]
[ng]
=
|
)
&

Lo u(@,, .1 3@ ,...,a%¥ [&
Eﬁn) 1 k+p 1l lk+;} .

1 Tkep Clkepel *n

s'ince at least one of the factors 1,2,...,a 'is among" .,1

lk+p+1”'
and the sum of the coefficients over this factor is zero by the
definition of our contrast.

The following example illustrates Theorem 2.2.

Suppose we have observations for the points 1001, 1000, 1002,

--1101, 1100, 1011, 1111, 1112, 0010, 0012, 0110, 0002, 0102 in a
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a 23x3 layout and designate the four factors by A, B, C and D .
Let the sets of parameters be a Bj > Ty and 62 with i=0,1 ,
j=0,1 , k=0 , and 2=0,1,2 . Applying Theorem 2.1 for the ABCD inter-
action we find that the sorting procedure eliminates 'all points, so
ABCD is not estimable.

Applying Theorem 2.2 for the ABC interaction and sorting at
- ‘the 0 level of D we get 1000,1100,0010,0110 . This set cannot be
- connected since at least 8 points are needed. For ABC at the 1 level
- of D we get ‘1001, 1101, 1011, 1111 .  Again this set is not connected
" 'since we need 8 points.
For ABC at the 2 level of D we get 1002, 1112, 0012, 0002,
© 0102 and again this set 'is not connected.
Similarly for ABD for fixed levels of C , no sets have 8 points
~and for ACD for fixed B no sets have 8 points. Thus none of ABC,
‘ABD, or ACD are estimable.

- For the 0 level of A sorting for BCD yields a set with less than
- 8 points and for ‘the 1 level of D. we get 1001, 1000, 1002, 1101,
1100, ‘1011, 1111, 1112 but there 'is no connected set sorting on B, C
and D. Thus no 3 factor interaction is estimable.

- ‘Using ‘the notation 'XYij  to ‘indicate the set of points at ‘level
i of factor X and level  j of factor Y , we apply Theorem 2.2

-and get ‘the following sets:

~'For ‘AC ~'For ‘AC : For‘ACO1 ‘For "‘AC

10 11 00
1001 1011 --0010 --0002
1000 © 1111 -0012 0102
©+1002 - 1112 0110
- 1101

--1100



Ignoring - AC for AclO we find -that 01,00,11,10 are connected so

-'BD - 'is ‘estimable. " In faCt"Xlooifxloodfxlloifxlloo ‘estimates

'860143500A3511+3510 free of 'all other effects and interactions ‘in

- the absence of 3 and 4 factor interactions.

For'AD11 "For'ADlo For'AD12 For ADgg ~ For ADO2 - 'For ‘AD

01
1001 1000 1002 --0010 --0002 " no ‘points
1101 ~-1100 1112 ‘0110 0012
--1011 0102
-1111

- Ignoring AD 'for"ADll the points listed ‘above are connected S@ - 'BC

‘is ‘estimable.

‘1001 0102 1011 1111
1000 1101 0010 1112
1002 ~+1100 0012 - 0110
0002

- ‘None -of the 'above 'sets ‘are connected.
~‘For - BD 'and - AB- and CD similarly we get no connected sets.
- 'The breakdown of the degrees of freedom 'in ‘the analysis of

- variance could be 'as ‘follows:

A0V A 1
- B 1
- C 1
D 2
-"BC 1
-'BD 1

- Confounded - 5

-'Interactions

- Tot. -~ n-=1=12

* Necessary ‘and Sufficient Conditions for the

-'Estimability of ‘an n-1 Factor Interaction

- 'The problem of finding estimable ‘components ‘of ‘interaction would

31
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" be considerably simplified if ‘the conditions for ‘estimability of an
o factor interaction stated ‘in ‘the previous theorem were necessary
--as well as sufficient. Unfortunaéely‘this-iS'not'the'case as ‘the
following example ‘illustrates,
- ‘Suppose that observations were available on the eight design
points - 0001, 0101, ‘1000, 1100, 0010, 0110, 1011 and ‘1111 of a 2
factorial experiment with factors A,B,C and D each at "two levels.
Obviously the 4 factor:.interaction is not ‘estimable ‘and ‘it ‘is easily
verified that the 3 factor interactions are confounded with one
another. Consider then, the estimability of 2 factor interactions 'in
- the absence of higher order interactions.
The expected value of
r%“(X0001*x;160+xoolo*xll11‘%0101=X1000‘x011o‘x1011)
is a800+a811—a601+a810 so the AB interaction is estimable and yet
the conditions of Theoref 2.2 are not satisfied for this two factor
interaction. Thus the conditions of the theorem are sufficient but
" not necessary.
- A careful ‘'look at this example will reveal that it was constructed
* by forming a connected set on AB ‘at the 0 level of C  ‘and the same
‘connected set-on AB at the 1 level of C and then switching the levels
of D so that AB will be connected at the 0 level of D ‘and also

at the 1 level but not for a constant level of CD.

~at 0 level of C at 1 level of C
A B C D A-B C D

0 0 0 1 00 1 0

0 1 0 1 0 1 1 0

1 0 0 O 1 0 1 1

1 1 0 O 1 1 1 1
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ﬁ

t ‘0 lIevel of D at I lIevel of D
"A"B C D A B COD
0 01 O 0 0 0 1
0 1 1 O 0 1 0 1
1 00 O 1 0 1 1
1 1 0 O 1 1 1 1

This construction could not have been carried out without two factors
to 'switch around as we did. This result is the content 'of the next
theorem which merely states that the conditions are mecessary as well
-as sufficient for the estimability of a n-1 factor interaction.
The more general 'and complex case for any o factor interaction is
considered in Theorem2.4.
Theorem 2.3: In an n-way cross classification of cells, if a model
- is -assumed in which the n - factor interaction is zero,then the
interaction of any n-1 factors without loss of generality say
classes 1,2,...,n-1, is estimable if and only if there exists a
subset Dx of the design points safisfying:

1. For each a(n) in Dx we have an=a; (fixed).

2. For each a(n) in Dx , there exists b(n} in

Dx such that a(n) R; b(n) with ai#bi for
i=1,2,...,n-1.

Proof: If conditions (1) and (2) are satisfied for some set DX' then
* by Theorem 2.2 the ‘interaction of factors 1,2,...,n-1 1is estimable,
--If the ‘interaction of factors 1,2,...,n-1  is estimable ‘then
“‘ignoring a, for the moment we know by Theorem 2.1 that condition
(2) must be satisfied for i=1,2,...,n-1 or else the interaction of
~factors 1,2,...,n-1- would be confounded with some main effect or
‘lTower ‘order interaction of these ‘factors. Thus there must exist a

: subset',Dx, ‘of the design points satisfying condition (2). - Let
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a*(n) be an element of Dx' and suppose for some i=1,...,n-1 and
each b(n) in Dx' such that b(n) Ri a*n) with ai#bi , we have
bn#a; . Then there can be no component of interaction of factors
1,2,...,n-1 whose expected value does not involve u(1,2,...,i-1,

i+l,...,n; a ,a{il,a?

1+1,..,a;). But this is a contradiction since

ﬁ,...
"~ ‘the interéction of factors 1,2,...,n-1 was assumed to be estimable.
Thus for each 1i=1,2,...,n-1" there exists b(n) in Dx' ,
such that bn:a;"and b(n) Ri a*(n) with a{#bi . Since the above
argument holds for any a(n) and an=a; fixed, we have established

satisfying conditions (1) and (2)

‘the existence of a set Hfs”D%!
X~ X

‘-of ‘the theorem. Hence these conditions are necessary ‘as well as
~sufficient and ‘the theorem 'is proved.
- The following example illustrates Theorem 2.3. Suppose we

‘had ‘observations for ‘the design points pictured and listed below:

TABLE V

- GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE
-~ TO ILLUSTRATE :LEMMA 2.1 AND THEOREM 2.3

B
0 12 3 03 !
0{-000 -Ogl :' xl OiZ 022
“—3% : TOT 7TIT JI211131 102|112
-1 110 {120 CX X X X X X ‘
' X | X, 221231 202|212 |222)232
200 X | X X x‘ X X
2 x ~ R
32311331 312
3 310 {320 B30 _ X | X X
T x I x, 1x L.
C C C
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~‘Points - 000 001 031 022 032 110 120 101 111
‘121 131 102 112 200 221 231 202 222
232310 320 330 321 331 312 212
all points drop out sorting for ABC so the 3 factor interaction is not
estimable. - For ‘AB -at ‘CO' we get the set
- (1) 110, ‘120, 310, 320 satisfying Theorem 2.3 since ' ‘11,
12,31, 'and ‘32 - are connected. ' (Note: The contrast
‘Xllo‘xi20+x320~x$i0 estimates ' 0By ;-aBjj*wBz,-0B31) .
'For AB at _C1 we get the sets
~€1) 001 031 101 ‘131 which is connected according to Theorem
©(2) 121 131 221 231 which is connected according to Theorem
©+(3) - 221231 - 321 -331 - which is ‘connected according to Theorem
- ‘For  ‘AB - at C2"we'get
(1) 022 032 222 232 which is connected according to Theorem
“(2) - 102 202 212 <112 which is connected ‘according to Theorem
A1l of the 6 sets above 'are independent when - we ignore C , so
- we have 6 linearly independent estimates of - AB interaction.
- For ‘AC -at BO
(1) 000 200001 101 -102 202
- 'For ‘AC -at Bl
(1) 110 310 112 312
For AC at 82
(1) 120 320 121 321
For AC at 65
{1) 031 231 032 232
~‘All of the 4 above sets are connected and independent ignoring

" B 'so we ‘have 4 linearly independent estimates 'of " ‘AC -interaction.

2

2.

2

2

2

.3

3

.3

.3

.3
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For - BC- at"AO' no set exists.

~For - BC"at'_A1

(1) 110 120 111 ‘121

(2) ‘101 111 102 112
For BC at A

(1) 221 231 222 232
For BC  at A3

(1) 321 331 320 330

A1l of the 4 sets are connected 'and ‘independent ‘ignoring - A~ ‘so
- 'we have 4 linearly independent 'estimates of - BC ' ‘interaction.

The breakdown of the degrees of freedom 'in ‘the ‘analysis of

- variance could be ‘as follows:

-AQV - ‘Source d.f.

A
B
- C
‘AB
AC
BC
- -Confounded
- ‘Interactions

RS e N S RS R

(3]

- Total-mean - 25

* Corollary 2.3:  If the interaction of factors '1,2,...,a 'is estimable

~raccording to ‘either of Theorems 2.1, 2.2 or 2.3 then any lower order
“Interaction of 'any subset of these factors is ‘also estimable.
~Proof: - ‘Without ‘loss of generality when considering the ‘interaction
of ‘any  a factors we will consider the first o . If we 'let a=n ,
“then Theorem 2.2 is satisfied vacuously by Theorem-2.1 and if we 'let

~a=n-1 " then the conditions ‘of Theorem 2.3 'imply Theorem 2.2. - Thus
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- for ‘all values of o the conditions of Theorem 2.2 are satisfied if

an ‘interaction is ‘estimable ‘according to either of Theorems 2.1, 2.2,

or 2.3. ‘Hence there exists a set of'points"DX*"connected‘in'the
~-sense of Theorem 2.1 over factors  1,2,...,0 ‘for some fixed combination
‘ya; ,...,a; of the other factors. <Consider ‘then the interaction

a+l n

- of factors 1,2,...,a-1 .  For any point in 'Dx*' let 'a&' be the level
of factor o ‘and let 'Dy* be the set of points in- Dy« for which

. aﬁ:a& .~ Now since for each aiﬁn) in Dx* there is a ,biﬁn) in

"Dx* such that ‘ai#bi and %i(n)..Ri biﬁn)

certainly for each aiﬁn) in Dy* there ‘is a',biﬁn)' in Dy*"such

i=1,2,...,0 . ‘Then

"that',ai(n) Ri biﬁn) R ai#bi i=1,2,...,a-1 . Thus the points of

.'DY* are connected over factors 1,2,...,a~1 for some fixed combina-
-tions of the other factor and by ‘Theorem 2.2 the «a-1 factor inter-
‘-action ‘is ‘estimable. By‘indﬁction it thus follows that all inter-
-ractions of any subset of the factors 1,2,...,0 are estimable.

- Corollary 2.4: If the k- factor'interaction-of‘factors',il,...,ik
is estimable then, for -any level of any other'factor'_ij"j#i,...,k
“‘involved in the estimate, ‘there must exist a connected set of points
i

- over factors 1 for which the'level’of'factor',ij"remains

1’ k

constant.
- Proof: ‘The conditions stated in this corollary were proven 'to be
necessary for estimability in the proof of Theorem 2.3 for - k=n-1
'and‘vij=n .

- However, the proof there did not depend on how many factors were
‘involved 'in the interaction or which factor remained constant, and in
no way necessitated the ‘involvement of -any other factors. - Hence the

- 'same argument can be used to establish ‘this corollary.



~'Necessary and Sufficient Conditions for the Estimability

- of 'an - o ‘Factor Interaction

- Theorem 2.4< 'In an n-way classification, if a model ‘is assumed ‘in
- -which -all ‘higher order interaction effects are zero, then the a factor
“‘interaction of factors 1,2,...,0 < n ‘is ‘estimable ‘if ‘and only if
~we can find a subset of design points  C g_Dx satisfying ‘the following
‘conditions;:
- (1) - If we ignore the coordinates a+l,...,n then the
- points of C ‘are connected 'in the sense of Theorem
- 2.1 over factors 1,2,...,0 .
‘(2) - The ‘linear combination over the points of C described
in Lemma 2.2 is such that if a*(a) = (a; ...al ) is

© any combination of o coordinates of - gﬁi) ‘except

: al,az,..;,aa"and C(aij..};a{*) is the set of '‘all points
[0 ]

1 : 1 = g% . = A \
in C  having a; at ,...,a4 ag then

1 1 o o

L A =
a(m) e Ca*(a)) 2()
Proof: Condition- (1) is necessary by the argument of Theorem 2.1
--and ‘if condition (2) is not fulfilled then

' TE : .za(n)u(i_(a)';g(i(a)))' # 0
—a(n) =

for all combinations - a; ... ai (except E ERRRFLN ) and the
1 o
interaction of factors 1,2,...,0 ‘is -confounded with another  a

factor ‘interaction. - Thus. if -either ‘one 'of the conditions (1) or (2)
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is ‘not satisfied ‘then the  a factor interaction effect of factors
1,2,...,0 '1s not estimable, - ‘Hence the conditions are necessary.

- That ‘the conditions (1) and (2} are sufficient is also easily

~ seen since we have already shown in Iemma 2.1 that if condition (1)
~-is 'satisfied there exists a linear combination of the observatiomns
‘that estimates the a factor interaction effect of factors 1,2,...,a
free of lower order interaction effects and main effects of these
factors. Ignoring factors a+l,...,n , conditions (1) and (2} assure
us ‘that the expected value of ‘this ‘linear combination will not involve
- any other o factor interaction effects.  Also since the sum of the
coefficients 'is 0 ‘over ‘all coefficients associated with design points

- having o coordinates identical, for all possible combinations of

a out of 1,2,...,n except 1,2,...,a then on each of these sets

- all combinations of  k < o coordinates will also be constant.and

- consequently ‘an equivalent statement to (2) holds for k < a . Thus:

E‘g_%n) . ,xi(n)] ;iﬁn)zﬂn)u(g_;g(a})
and by our definition the o factor interaction of factors 1,2,...,a
'is ‘estimable.

The following example illustrates Theorem 2.4: ‘Suppose we had
observations for ‘the design points 0000, 0101, 1000, 1101, 0011,

‘0110, 1011, and 1110 . The contrasts for each interaction as defined

~in ‘the proof of Theorem 2.1 are listed below:
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~-0000- - 0101 - -1000---°1101 - 0011} - QL10 - -1011 - 1110

+1 -1 -1 +1 -1 +1 +1 -1 ABC
+1 o+l -1 -1 -1 -1 +1 +1 ABD
+1 -1 -1 +1 +1 -1 -1 +1 ACD
“no connected set - BCD
+1 -1 -1 +1 +1 -1 -1 +1 AB
+1 -1 +1 -1 +1 -1 +1 -1 CD
+1 +1 -1 -1 -1 -1 +1 +1 AC
+1 -1 -1 +1 -1 +1 +1 -1 AD
+1 -1 +1 -1 -1 +1 -1 +1 AD
+1 +1 +1 +1 -1 -1 -1 -1 BD

Obviously the set of points is not connected for ABCD since at least
24 are needed. Applying Theorem 2.3 we see that the set 'is connected

for ‘ABC but not for a fixed level of D.  Thus

E( X

l‘ . 3 . .
%0000 X01017%1000%*1101 %0011 * %0110 %1011 %1110
= aBTggg=BF010-*BF 100 #BT 118 g1 * 8T g1 BT 01-08T 1

+ 208,+208  ~2080) 20810’

~'so ABC is confounded with AD. Similarly ABD is connected but not for
‘fixed C and 'is confounded with AC.  Likewise ACD ‘is connected but
not for fixed B and is confounded with AB, ‘and there ‘is no connected
- set for BCD.

If all higher order interactions are.zero;

Checking for AB we find a connected set on AB satisfying Theorem
2.4. This is evident since the set (00, 01, ‘10, 11) 'is connected

‘over constant levels of C (0 & 1) and D(0 & 1). Thus

CE(XG000 %0101~ *1000* ¥ 1101+ %0011 X01107*1011* ¥1 1107 =2 (@B + a8y 1 =By =48y ()

- Similarly checking for AC and ‘AD we find ‘them estimable. ' However
- checking BC, BD and CD we find connected 'sets that do not satisfy

condition (2) of Theorem 2.4. ‘Then for ‘example a contrast on BC yields
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E& 1000 F1000% 0110%* 1110 % 0101 * 1101 % 0011 F 1011

= 2(BLyg*Bl ) =BT 9By )+ 208+ 208, 52208y =2ad; )

* 2880+2801 =280 [ <2881 #2080+ 2T 810-208 200

80 ‘BC -is ‘confounded with -other 2 factor interactions. ‘Likewise BD
~-and ‘CD 'are confounded. - The degrees of freedom for ‘the ‘analysis of

-variance could be partitioned ‘as follows:

AQV - ‘Source
A
- B
- C
AC
“AD
- -Confounded
" ‘Total-mean

e
Hh

N ]
.

- -Suppose ‘that our n-way cross classification design ‘is found - (or
-rassumed) ‘to be free of -all interaction. We ‘then know that-all main
--effects -are -estimable 'if ‘and -only if~a11'differencesvrﬁ(i,ai)au(i;bi)

"are‘estimable‘,ai ;,bi;a "ai%bi ;, i=1,2,...,n (there again

00 % 1
~we drop ‘all parameters from ‘the model 'if 'all observations for ‘the
-'corresponding factors ‘are missing.)

-The following theorem ‘gives us necessary -and sufficient conditions
- for ‘the estimability of a'difference"u(i;ai)au(i;bi) 5'ai#bi .~ Thus
“‘the ‘theorem provides 'us with a means of determining exactly which main

‘effects will be ‘estimable and which will not.

~Necessary ‘and ‘Sufficient Conditions for the

- ‘Estimability of a Simple Effect

- ‘Theorem 2.5: ' 'In an n-way cross classification if a model is assumed
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- with no ‘interaction. let

L=
it

.{Eﬁn)lgﬁn)er'and‘ak=a}

i
I

b "{Eﬁ“)iéﬁn)er'and.ak=b}

- where a ‘and - b are chosen from' 0,1,2,... ,agb .. ‘Then the

S
difference - u(k;a)-u(k;b) - is estimable 'if -and 'only if ‘there exists

- -constant coefficients & . . ‘for-all a(n)eD UD, such that
a(n) - a b

. = . [} - - - o0
z jz’a(n) ‘ a,zb‘-iﬁn) c (say) an@ z ‘Zﬂﬁn) 0 for i#k

.ak—a ,ai

‘Proof: - The proof ‘is ‘quite obvious since under the conditions of ‘the

" ‘theorem
. . n .
= elulsa ot B wlhal g
i

!

*c(ulk;ay-u(k;b))

“‘Hence  * %—Z-{.i fzgﬁn)'xa(n)b'isvan unbiased estimate of - u(k;a)y-u(k;b).

_‘aE n -
"Conversely-lf} a;_ai&a(nj =,Cl'fand ‘a;_biza(nj =_c2"then

. k'— - : K had)
T c
: 2 D . e » , . . .
‘ a;=a B ;_'"Zgﬁn) N b ‘Za(n) C, = SO-we need only consider the case
. k .“1 R k —
-~ where I % .y ==L & . ..
v"'_ak:a E(n) : ‘ak'=b ?’_(n)

'LIf'for~all‘sets1of;constant'coefficients 2L & ==L K
a,=a a(n) a=b ca(n)

“'we ‘have I - laif 0 for -some¢. j = which 'is -the ‘ith coordinate of a
“aln \

a;=]
~point in- D_V D Cn)"]'will'involve“u(i;j)

b"then' E[E R X
“a, " a

1 m ”
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and hence the differencé u(k;a)-u{k;b) 1is confounded with wu({i;j).

* As an example of Theorem 2.5, suppose a model with ro interdction is
assumed with 2 levels of a factor A , 3 levels of a factor B and

4 levels of a factor C and we had observations for the design points

010, 120, O11, 101, 002, 112, 023, and 113.

TABLE VI

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE
‘ "~ TO ILLUSTRATE THEOREM 2,5 ‘

023}

X
113
X
C
' 3
- 1002
X {
12
X
C.’
011 2
X
B 1101
01 2 X
C
-0 | 910 1
- X
1 320
i ih'd
- C
‘0

‘Examining the simple effect 0570y we find that there are 4 points
at the 0 level of A and 4 points at the 1 level, a 1:1 ratio. Checking

~ levels ‘of B ignoring C (see Table VII on next page);we. find B0 represented



' once ‘at each of the levels of A , Bl,’represented'twice at each level
- ‘and 82’-represented'once'at'each level, ‘all 'in ‘the 'same 1:1 ratio

‘as the number of points of A

0 to points- A1

TABLE VII

OCCUPIED CELLS FOR THE POINTS OF TABLE VI
FIRST IGNORING C AND THEN IGNORING B

C
B
0 1 2 otz s
0 X X iX X
A 0 XX A
XX ix 1 Lx! x lx X_|
Fiéure 1 Figure™2

A check of levels of C 1ignoring B (figure 2 ‘above) reveals each
level of + C represented once ‘at each level of A , the same  1:1

--ratio. - Hence an unbiased estimate of -ao-al"iS'found'by taking ' 1/4

- of ‘the contrast ‘that ‘assigns 1 as a coefficient to those points at
‘the 0 level of Aand -1 to those at the 1 level.

For the simple effect ‘BO_B we find 2 points ‘101 and 002 at

1
the 0 level of B and 4 points 010, 011, 112, and 113 at the 1 level.

Ignoring levels of C  we find A0 represented 1:2 and A represented

1:2 in the same ratio ‘as- BO:Bl' (see figure 1 below). Ignoring A

we find C0 and C3 represented at the 1 level of B but not at the

0 level. (See Table VIII).



45

- ‘TABLE VITI

OCCUPIED CELLS FOR THE POINTS OF TABLE VI ‘AT THE 0 § 1 LEVEL
OF B FIRST IGNORING C AND THEN A

"B
* B -0 1
0 1 o 1.
0t x XX 0 1 X
A -1 1x ]x
-1 X | xX c s x Tx
- Figure 1
3 11X
- Figure 2

- ‘The points ‘010 'and ‘113 must therefore be eliminated. - The remaining
-set ‘of points ‘has 2 -points ‘at the 0 level of B and 2 -at the 1 level.

- The 0.-and 1 levels of A are now represented once each at the 0 and 1
--levels -of B -as ‘are ‘the 1 -and 2'1éve15‘of‘C."ThuS‘.Bdfsl"iS‘estimated
by - 1/2 of ‘the contrast ‘assigning 1's ‘to the points 'at ‘the 0 level
-of B-and -1's ‘to points ‘at ‘the 1 level.

A similar analysis for the remaining simple effects yields the

“-contrasts ‘given ‘in ‘the table below.

©-010 120 “'01L ‘10T --002 112 -°023 113 ' Effects Estimated

RS ERREE | +1 -1 +1 -17 o+ -1 4 AD)
0 0 -1 41 +1 -1 0 0 ~2(Bgfal)

o+l -1 0 0 o o -1 1 3(B-B)

4l o+l .0 .0 0 0 -1 -1 g(CdfCS)
-0 0 o+l o+l -1 -1 0 0 2(C{-C)
+1 0 -1 0 0 0 0 0 (Cp-C})
-1 -+l +] -1 +1 -1 -1 +1 Rrror

+1 +1 +1 +1 +1 +1 +1 +1 Mean

‘The ‘above contrasts account for all of ‘the degrees of freedom as

‘summarized ‘in ‘the table below:



46

e g

AQV Source - d.f.
A 1
B 2
Ch 3
- Error 1
- Tot. Mean 7

If a model with interaction is assumed then, of course, the
"difference§ u(kja)-u(k;b) are not estimable free of the interaction
effects. If, due to numerous missing observations, only minimal
information can be obtained about the interactions,then, as throughout
this chapter, we attempt to obtain as many unconfounded estimates as

- the data permits.

For an example, utilizing Theorem 2.5'wheré a model with inter-

- action is assumed, suppose we had obsgrvations for the points 000,

020, 011, 021, 002, 012, 110, 101, 122.

TABLE 'IX

GRAPHICAL ‘REPRESENTATION OF OCCUPIEb'CELLS FOR A
SECOND EXAMPLE ILLUSTRATING THEOREM 2.5

ooﬂt 012 ]

I Ey

-~ : 122
X

_ - - l
PO RRT
~ el
-~ i Al
. B - ~ lx’Ul‘/ /-"
_ ~ .l L = !
. 0100097 1020
110
X
C



Examining the 'simple effectv,aofal'-wevfind the following situation:

~ The contrast for a,-d, 'involves 6 points at level 0 (for

1
‘,AO)‘and 3 points at ‘level 1 (for Al), a ratio of 2:1.

Checking levels of B (0,1,-and'2)'represented'at'the 0;1evel

of A we find these same levels represented ‘at the 1 level

of A and in exactly the same ratios 2:1 as the number'ofvv
points at - Ab' to points at A; .
Checking levels of C represented in.each set we find a

“'similar 2:1 ratio at each level of C. ‘The simple effect

ao-al"iS'thuS'estimated by taking 1/6 of the contrast ‘that

'assigns +1 ‘to points ‘at the 0 level of A and -2 to points at

“'the 1. level. ‘The contrast is:giVen in ‘the table below.

Using ‘the criterion of Theorem.2.2rwe'fiﬁd'BC-is‘estimable,'the
“estimate being 'XOOO'XOO2*X021’XOI1*X012’X020 . Now selecting 'two

- points in ‘the BC contrast which are related, for example 000 and 002

~we find the difference X)55-Xjp; estimates TIy-T'; . ‘Similarly

J&)OO"’&JOZ ‘estimates To-5 » XOOZ,"XOIZ ‘estimates BO—,BI ‘and

47

' X000<X020 estimateS‘,B~f82 . Thus, since BC is estimable by Theorem

0

2.2, we are assured by Corrollary 2.3 ‘that all Simple effects of B and

- C over the ‘levels "involved 'in the BC estimate will also be estimable.

- ‘These ‘estimates ‘can of course be improved upon by involving all of

'the available points as was done in ‘the case of the estimate of
0g=O] above. - The contrasts for ‘all estimates ‘are given ‘in the

~following ‘table:



000

002

020
021
011
012
101
110
122

The breakdown of degrees of freedom is given below:

48

action
+1 +1 +1 +1 +1 +1
+1 +1 +1 0 -1 -1
+1 0 -1 +1 +1 -1
+1 -0 -1 -1 0 +1
+1 -1 0 -1 0 ~1
+1 -1 0 0 -1 +1
-2 +1 +1 -1 0 0
-2 -1 0 +1 +1 0
-2 0 -1 0 -1 .0

A
B
C

BC interaction
- Confounded

Tot.

Mean

QO = NN



CHAPTER 'II1I
SUMMARY AND "EXTENSIONS

‘In 'this thesis, procedures were presented to determine which
~main effects and interactions are estimable 'in a general n-way ‘cross

- classification 'in which ‘all observations are missing for any number

of cells. Initially a definition of estimability under these circum-
stances was ‘essential and in Chapter II such a definition was
‘developed. - Briefly, ‘an interaction of a set of factors, or the main
‘effect of a factor, was defined to be estimable if there existed a
‘linear combination of ‘the cell means in which at least one observation
- 'was ‘taken ‘that estimated a linear functioniof the interaction effects
(or main effects) of these factors free-of'all-other main and inter-
‘action effects. In all cases the interaction is confounded with higher
order interactions. So, to avoid repeated reference to the presence
of ‘these effects, higher order interactions were considered negligible
when the discussion centered around a particular interaction.

A condition of connectedness among ‘the factors ‘involved in. the
“‘interaction, which is both necessary and sufficient for estimability
~-of the ‘interaction was developed. It was found that this condition
~is all ‘that ‘is needed to determine whether or not the highest order
“‘interaction is estimable ‘and ‘if ‘it is, then 'all interactions. and
simple effects over- the factors and levels involved were also found to

-be estimable. A simple algorithm was presented for determining

49
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whether or not this interaction 'is estimable, how many linearly
- independent: estimates exist, what they are and -exactly what they
estimate.

- A computer program, written for the IBM 1130 computer, which checks
for estimability of the highest order interaction ‘is presented in the
- Appendix.  As a problem for further study, this computer program could
- be improved upon and expanded to-determine ‘the number of independent
- estimates that exist, and to check lower order ‘interactions for
estimability in the absence of higher order interactions.

With regard to the problem of estimability of lower order inter-
actions, it was found that the connectedness criterion must still be
satisfied over the factors ‘involved but that an additional problem of
confounding with interactions ‘involving other factors was now present.
It was established that if the interaction is to be estimable then

when these other factors are -considered one at a time, the connected-
" ness property must be satisfied on fhe'factors of the ‘interaction
~over a set of design points ‘in which ‘the single factor maintains a
~constant level.  ‘Also. if ‘the connectedness property holds over a set
- of points 'in which all other factors simultaneously maintain a
constant level, then the interaction is always estimable.

In the special case of '‘an n-1 factor ‘interaction there is only
one- other factor not involved in the interaction, so these two
conditions together proved to be necessary and sufficient, and we had
- a simple check for estimability of ‘the interaction of n-1 factors by
applying the algorithm developed for n factors on these n-1 factors

over a constant. level of the remaining factor.
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"NeceSSary‘and'sufficient conditions for ‘the ‘estimability of any
interaction were presented ‘and although guidelines for an algorithm
~to determine ‘estimability were suggested in the examples, no such
~ralgorithm was determined. A simple algorithm for this case which
- 'could be easily programmed for computer use would be a useful -extension
of the work of this thesis.

~‘Another problem suggested by the work presented here is a study
~of the number of possible configurations with a given number of cells
"missing'and'what'proportion5’of'the§e configurations permit estimation
~of various ‘interactions.-

- While the primary concern of ‘the previous chapter was with problems
~of estimability of main effects 'and interactions, applications to the
~design of experiments are evident. Similar to situations 'in response
ssurface investigations, or ‘as with fractional replication, we may
~-intentionally only ‘study a portion of the entire set of treatment
‘combinations. - Utilizing the techniques of ‘the previous chapter,
~however, the experimenter now has almost complete freedom to choose
which main effects ‘and interactions he wishes to investigate and how
~much information he wants on each. The single restriction being that,
~he must select points that form connected sets, ‘as defined in Chapter
*II, ‘in order to get unconfounded estimates.
- These techniques can best be explained by considering several
-examples. In order to.-be able to illustrate the problems graphically,
. let us consider a three dimensional situation.  ‘Suppose we had a
~-factor A at 5 levels, a factor B at 4 -levels, and a factor C at 3

levels.
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If we wished to estimate the ABC interaction, and consequently
‘all other main effects and interactions, with a minimal number of
points we could run an experiment using the -connected set .gf points

- 000, 100, 010, 110, 001, 101, Oll and 1l1l.

TABLE X

GRAPHICAL REPRESENTATION OF OCCUPIED CELLS FOR AN EXAMPLE
DESIGNED WITH MISSING CELLS HAVING ALL EFFECTS
AND INTERACTIONS ESTIMABLE

C
2
, “ bo1 101! ]
| Va Ii_—{?l {
/ﬁ
et |
/ /A //' !
/s S
Aoy .
//’/ /7,// // i N
V74 C
o L 2 ¥ 4 1
000”1001 1 !
X147 ’
019 1}(@’ 1
, B
-,
C



All interactions and main effects are then estimable, but of
~-course, only over the 0 and 1 levels of each factor. 'Thus the simple
effectS'_aofal > Bo=By -and Foffl ‘are the only ones estimable. " A

"~ breakdown of the degrees of freedom for ‘linearly independent estimates
would be 'as follows:

- AOV Source d.f.
A

" B

C

‘AB

AC

BC

ABC

o Sl I ey sy e

- The estimates and quantities being estimated are:

X000 X0107X100**1107X001*¥011*X 10111y estimating

0BTyq0-BT )10~ *BL100+@BT 108001 +aB 011 *+0BT 151 -0BT g

- 1/2(X0007%0107 %100 110" X001 X011 X101*¥111) estimating
%B00-%B107%8p1 "By
1/2(Xg00*X016-¥100"X110 X001 X011*X101+X111) estimating
uFOO—uflo—qFOI-afll
1/2(Xg00%010** 100 %110 X001 %0117 % 101*%111)  estimating
BT00~Bl107BTo1*RT 1
1/4 X000 X0107%1007%110" %001 %011 X1017X111) estimating

.0«0'7@1

1/4(XOOO"X010+XIOO‘X110*X001fX011+X101'X111) estimating
Bp=P1

- 1/4Xp00*X010"X100%%110 X001 *911-X101-¥117)  estimating

,Fofrl'

*,
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If we desired more information on all interactions and estimates of
all other simple effects, we could add the connected set of points
220, 230, 420, 430, 321, 421, 331, 431, 222, 322, 232 and 332 to
provide a second estimate of ABC interaction, two additional estimates
of AB and BC interaction, one additional estimate of AC interaction
and one each of the simple effects az-'a3 , Ay=Oy s BZ—B3 ‘and ,ro-r3 .
Connegting these two sets by adding the points 210 ‘and 120 would
provide estimates of aj-a, ‘and- 81182 as well as ‘an additional
estimate of AB 'interaction. The remaining degrees of freedom

unaccounted for would consist of confounded interactions ‘and main

effects.
TABLE XI
GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS ADDED
- TO GIVE INFORMATION ON ALL SIMPLE'EFFECTS AND
ADDITIONAL INFORMATION ON INTERACTIONS
. - -1.222 1 322
. .
BF sulis
001 | 101 | 1 // pZ 1
—47}F F / C
. A . = 5
01177 111 RV
/‘//’/;i-“L -~ 1
7 A P 7, :
S P R _ -~ SZP;ﬂﬁ
A7 - A d AT
0 1 2 % & | ,""//,SﬁTMl
_ P < 7 x~;,i
0 0004160 |~ T} { P - *
R o o Sl 8 : - A e
1 [ojoh Zl0 1 T T A
1-¥-t=% Z & 7 ’,'/
5 130 1230~ 20
B X-— ¥ =t - :
e i
3 2300 )4
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The estimates and. quantities being estimated in -addition to those of

the previous set are:

X2207%2307% 420" * 430 X321 %4218 3317431 %2207 X 505%X 932X 55, eSTimating

GBFZZO—(1BF230"(1811420*‘(1Bl—'430"a6r321+a8r421+GBF331‘QBP431—GBF222+GBI'322

OBl el

X110+X220—X210-X120 estimating q611+a822-a821—a812
X321—X421—X331+X431 estimating vqssz—a842+a843—a833

X222—X322—X232+X332 estimating "“322‘“832'“823+“833

i | i ) ] ) o
5 (X520"%230 %420 X430 "X 521 %421 X331 X431 X222+ X 322+ X 332Xy 5 05t Lmating

afzo—aP4O+aF41—aF +aF32-qF

31 22

X322—X321+X331—X322 estimating BF22—BP21+BF31~BF32
X220-X230—X222+X232 estimating BF20—8F30-8F22+BP32
. (X220+X230—X420-X430) estimating &2—a4
(X110'X220’X210+X120) estimating ap-=o,
(X222-X322+X232—X332) estimating ap-ag

(X110-X220*X210-X120) estimating 81-82

OV tof =t = bl N2

(X2207%230*%420"%430** 321X 421X 3317 %4 317X 20" 5,5, X 2327 % 532
estimating - 82583
1 ‘ _ . .

5 (X220+X230fX222fX232) estimating -Tj-T,

If we felt that the ABC. and BC interactions were negligible and
did not desire additional information on them,. but wanted estimates
of all simple effects and more information on AB and AC we could use
the original set of points, and add-all the points of the second

set except 230, 430, 331, 431, and 332.



TABLE XII

GRAPHICAL REPRESENTATION OF TABLE X WITH POINTS
DELETED DUE ‘TO NEGLIGIBLE INTERACTIONS

222 §22
22 |
001|101 Pt
//)f- /‘f ’/ ,r/
-~ .
_ 11 |111 L =
A - T /i./ ¢,
~ 320 L
RIS S Sa BRI P
00100 |- 27 |- ol TETT 12
¥—|-- ~L _ /://
h10 1110 - _—
10130 L 270 1 - c,
" a0 ™
3
C
0

- The breakdown of degrees of freedom for.linearly independent esti-

“mates would now be:

- d.f.
A
- B
C
- AB
AC
BC
‘ABC
Confounded

H = NN DNDWS
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- ‘The estimates and quantities being estimated, in addition ‘to those
of ‘the original set are now. as follows:

X110"%9207 %2107 X120 eStimating  aByy+aB,,-af,, -8,

.X220—X420eX321+X421<X222+X322 esfimating qPZO—ar4o+ar41—aP31+aP32-aP22
Xzzofx420-estimating % =0y
1/2(X110-X220—X210+X120)»estimating.alfaz
%2207%322
X1107%220™ 2107 120
X2225X232~‘estimating ‘Béfss

-estimating Qy-0ig

‘estimating BlfBZ

X220—X222 'estimating PO—PZ

‘Obviously many other. designs are possible depending on ‘which
‘‘interactions or main effects are of interest and how much information
"+i1s.desired on each.  ‘The previous examples are only illustrative
~-of the possible applications. of the techniques investigated ‘in‘this

“thesis to the design of experiments.
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DEFINITION

‘DIM

GI

- POINT

PI

IN

60

‘OF "SYMBOLS ‘USED "IN THE FOLLOWING COMPUTER PROGRAM

- number of dimensions

‘group ‘index, temporary

contains coordinates for 1 point, temporary

-point. index, temporary

used. by free-format input. - contains card in A2 format,

-which refers to the location of data to be inputed into

BASE

- GNUM
_CPPRD

- CORG

CERG(L) =
FAULT

FL
GLIM
“GPS
GPS(L) =
MEM

-GRPL

the program.

-used. for calculating subscript, temporary

- ..contains group of numbers for points.in POINT. . Index

= "don't care!" dimension

contains coordinate restrictions imposed on. set. - Index
=..dimension -- 10000 = no restriction.

-contains the coordinate values for each- group.

CORG (group number x- number of dimensions + DIM -..10000

- =.don't care

~list of groups containing only 1 point;. which are used

to start deletion process.

-index- of- last entry. in. FAULT
-number of groups defined

- This contains groups that each point belongs to

GPS(point number x number of.djmensions + DIM)

-contains 1ist of points for each group.

contains- index of MEM containing list. of. points. for

-each group.  Index = group number

‘TMASK
TV

- CARAN

- coordinate restrictions of set to be traced
- trace value

-CPRAN(1,J) - coordinate base dimension.of J

. CPRAN(2,J) - coordinate limit dimension  of J
-CPRAN(3,J) - coordinate  increase- dimension of J

-PTDEL

The stak of points. currently. deleted in attempt to find

-minimal. subset



STACK

CANCL

CLIM
- WPRK

TRACE

CHAIN

- NP
- IS

IRET

- NgSuU
-NFAIL
-NTRY

- NCAN

in LIND1 contains points to delete, and in LIND2 contains

- groups  which. were closed.

-1list of coordinate restrictions. of successful sets.  The
-coordinate restrictions. for another.set may not have. any
-previous one for a subset.

-index of last entry in CANCL.

~in- LIND1 number of groups still open.

. set to |TV| when  CAPRD matches TMASK.

-printer device. number

-contains index. of next point. in equivalence. chain.
-Negative index indicated head. of chain.

--number of points defined
-generally index of STACK

-used to indicate where to branch after completing a
- common: routine

-~ index. of subsets
-number- of failures for a level
-number- of trys for a level

.number. cancelled. for a level

61



- 62

*ONE WORD -INTEGERS

NN U BN

- SUBROUTINE LINDO

INTEGER GI,POINT(8),PI, IN(41),BASE,GNUM(8)
INTEGER DIM,COORD (8) ,CORG( 600),FAULT(100),FL,GLIM,GPS{ 600)

INTEGER GRPL(301) ,KD,MEM( 600) ,TMASK(8) ,TV

INTEGER CORAN(3,8),PD,PTDEL(10 ),STACK{100),CANCL(-.600) ,DIML(8)

- INTEGER CLIM,WORK,HI,GI, .- TRACE,Z,STO,CHAIN(100) ..

COMMON -DIM,.COORD ,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP ,TMASK,TV .

'COMMON CORAN,PD,PTDEL,STACK, IS ,IRET,CANCL,DIML,CLIM,WORK,HI,LGM .

COMMON. .LEVEL,TRACE,NOSU, . GI,Z,NFAIL,NTRY,NCAN,STQ,LSTO,CHAIN
LCORG=LENTH.-OF - .CORG, .. LFAUL=LENGTH OF FAULT.
- LGPS=LENGTH. OF - GPS, - --LMEM=LENGTH. OF MEM

LCORG=800 .

LFAUL=100

- LGPS=800

LMEM=7Q0 : S
Z IS THE. PRINTER DEVICE. NUMBER. ..
WIDTH OF 120. CHARS. HAS -BEEN- ASSUMED.

..Z=3 . -

~11

IF(IRET)1,1,11

WRITE(Z,510).STO
READ  DIMENSION OF POINTS

IN(41)=81

CALL FIN(IN,A)

-DIM=A

EXIT. IF-DIM...LT. 1

. IF (DIM)51,51,102

51

WRITE(Z,530)

. CALL. EXIT

102

-141

140

142

- 10

KD=DIM§1

_ READ TRACE MASK
CALL FIN(IN,A)
TV=A .
WRITE (Z,500)DIM, TV

IF(TV)142,142,141

DO- 140 I=1,DIM

CALL FIN(IN,A)
TMASK(I)=A
WRITE(Z,519) (TMASK(I),I=1,DIM)

- READ- COORDINATE RANGE
DO 10 I=1,DIM

DO 10 J=1,3
CALL FIN(IN,A)

CORAN(J,I)=A

WRITE(Z,550) (I, (CORAN(J,I),J=1,3),I=1,DIM)

WRITE(Z,520)
GLIM=0 '

. CORG (1)=10000

-NP=0 .

50

READ A POINT
DO 2, I=1,DIM
CALL FIN(IN,A)

- K=A

- IF(K§10000})2,4,2



..59.

- 30
.26,
. 25.

20

40

45

35

- 80

81

. 54.

-~ 55

POINT(I)=K

PUT POINT. IN GROUPS

PI=NP*DIM
. NP=NP&1

. DO 59 I=1,DIM

GNUM(I)=0

DO 20 GI=1,GLIM .
BASE=(GI-1)*DIM

DO 25 J=1,DIM

. L=BASE&J ‘

- IF (CORG (L) §10000) 30,26, 30

- IF (CORG (L) ~-POINT (J)) 20,25, 20
KJ=J

GONTINUE
- -POINT BELONGS--IN--GROUP. GI

. L=PI§KJ
. GPS(L)=GRPL(GI)
- GNUM(KJ)=GI

. GRPL(GI)=L
CONTINUE

*CREATE NEW..GROUPS. IF. NEEDED

.- DO--35-I=1,DIM .
- IF (GNUM(I))35,40,35

-MAKE- NEW GROUP. FOR. -DIMENSION I

-DO-.45- J=1,DIM

- L=GLIM*DIM&J
CORG (L)=POINT (J)
- L=GLIM*DIM&I

CORG (L)=-10000

. L=PI§I

. GPS(L)=0

.. GLIM=GLIM§1

- GNUM(I)=GLIM
GRPL(GLIM)=L

IF (GLIM-300)35, 35,60

CONTINUE
 WRITE(Z,532)NP, (POINT(I),GNUM(I),I=1,DIM)
IF(PI-DIM-LGPS)50,5,5

-~ DETECT- END--OF .LIST..CODE

- IF(I-1)7,8,7

- *AT END OF. POINT.

 WRITE(Z,502)NP,GLIM
- IF(TV)80,81,80
WRITE(Z,503)

- ..SET- UP ARRAYS GRPL,GPS,MEM,AND FAULT
FL=0

. K=1
.DO.52 GI=1,GLIM
. J=GRPL(GI)

- KS=K

K=K§1 .
IF(J)53,53,55

MEM (K)=(J-1)/DIM§1

M=GPS (J)

- 63
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. GPS(J)=GI
L J=M
- IF (K-LMEM) 54, 70, 70

70

53.
- L=M-KS .

SUBSCRIPT FOR. MEM..IS. TOO LARGE.
WRITE(Z,506)
CALL EXIT

" STORE. LENGTH. OF - GROUP
M=K-1

- MEM(KS) =L

82

83

63

_STORE POINTER TO POINT LIST. FOR GROUP GI
GRPL(GI)=KS

IF(TV)82,83,82

WRITE (Z,533)GI, (MEM(J),j=KS,M)
TEST FOR FAULT

IF(L-1)52,63,52

- RECORD. FAULT
FL=FL&1l
FAULT (FL)=GI

- IF(FL-LFAUL)52,61,61
.52.

CONTINUE
MAKE. DUMMY GROUP- ENTRY. AFTER. LAST. GROUP
GRPL(GLIM§1)=K
LIST FAULTS

- IF(FL)57,57,58

57

58

65

- 62

WRITE(Z,534)

GO TO 65

WRITE(Z,535) (FAULT(I),I=1,FL). .
INITIALIZE COORD,DIML,LEVEL,CLIM,CANCL

DO 62 I=1,DIM

- DIML(I)=0
COORD (I)=-10000

CONTINUE

- LEVEL=0
. CLIM=0
. CANCL(1)=-10001

- STO=0

IRET=1
RETURN . .
WRITE(Z,506)

CALL. EXIT
WRITE(Z,507)

- CALL- EXIT .

.60

WRITE(Z,536)

. CALL. EXIT . ..

61

510

530

-500
-+ 519
- 550

520

532

WRITE(Z,537)

- CALL-EXIT

FORMAT (' OEND- OF RUN FOR- THIS DATA. SET '120,' STACK. OVERFLOWS!')

FORMAT ('OEND-OF - JOB..")

FORMAT (' IDIMENSION='13,5X, '"TRACE VALUE='112)

FORMAT (.. TRACE. MASK'/ (10110))

FORMAT (' OCOORDINATE VALUES'/'... . .DIM - BASE . .LIMIT....INCR'/(417))

FORMAT (1.OPOINT'5X, 'COORDINATES AND (GROUPS) /1X)

FORMAT(I5,'.'8(I7.'  ('14,')'))



502
503
533

534

535
506
507
536
537

//
//

65

FORMAT ('0***END OF LIST'16,' POINTS AND'16,' GROUPS ARE DEFINED.')
FORMAT ('OLIST OF GROUPS'")

FORMAT ('OGROUP ('14,')'15,' POINTS'/(1X,2016))
FORMAT ('ONO FAULTS. ')
FORMAT ('OLIST OF FAULTS BY GROUP NUMBERS'/(1X,2016) )
FORMAT ( 'OERROR -- DATA. EXCEEDS STORAGE CAPACITY')

FORMAT ('OERROR -- END OF LIST CODE WAS NOT AT A POINT BOUNDARY')

FORMAT ("OERROR -- LIST OF GROUPS EXCEEDS CAPACITY')
FORMAT ('CERROR -- LIST OF FAULTS EXCEEDS  CAPACITY')

END
FOR
DUP

- *STORE
*ONE WORD INTEGERS

SUBROUTINE LINDI1

INTEGER PI,BI,OBUF(10),GI,SGI

@] oNeNeNe! @]

oNeNe!

1 INTEGER DIM,COORD(8),CORG( 600),FAULT(100),FL,GLIM,GPS( 600)
2 INTEGER GRPL(301),KD,MEM( 600),TMASK(8),TV
3 INTEGER CORAN(3,8),PD,PTDEL(10 ),STACK(100),CANCL( 600),DIML(8)
4 INTEGER CLIM,WORK,HI,GI, TRACE,Z,STO,CHAIN(100)
5 COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL, KD ,MEM,NP, TMASK, TV
LIN10080
6 COMMON CORAN,PD,PTDEL,STACK,IS,IRET,CANCL,DIML,CLIM,WORK,HI, LGM
LIN10090
7 COMMON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
EQUIVALENCE (WORK,NWORK) LIN10105
LIS=LENGTH OF STACK-1, AT LEAST LFAUL§1/3*LMPT LIN10110
LIS=100 LIN10120
IRET=1 -- ENTRY FROM LINSO... BEGIN LIN10130
IRET=2 -- CANCEL. PROCESS - LIN10140
IRET=3 -- TRACE PRINT RETURN LIN10150
IRET=4 -- NEXT RESTRICTION - LIN10160
GO TO (1,167,110,902),IRET LIN10170
THIS SECTION SEARCHES. OVER THE. POINTS. TO FIND A CONSISTENT
SET. LIN10180
'THIS SUBSECTION WILL ELIMINATE ALL POINTS NOT IN THE LIN10190
SUBSET DEFINED. . LIN10200
SET TRACE IF REQUESTED ON THIS SUBSET LIN10210
134 TRACE=0 LIN10220
NTRY=NTRY§1 LIN10230
IF(IV)104,101,160 LIN10240
160 DO 103 I=1,DIM LIN10250
IF (TMASK (1)§10001)158,103,158 LIN10260
158 IF(TMASK(I)-COORD(I))101,103,101 LIN10270
103 CONTINUE LIN10280
TRACE IS REQUESTED FOR THIS. SUBSET. LIN10290
104 TRACE=IABS(TV) LIN10300
WRITE(Z,523) LIN10310
WRITE(Z,511) (I,COORD(I),I=1,DIM) LIN10320
CHECK FOR. CANCELLATION OF SUBSET - LIN10330 .
101 DO 150 I=1,CLIM,DIM LIN10340 .
DO 151 J=1,DIM LIN10350
K=I§J-1 LIN10360
IF (CANCL (K)§10000) 152,151,152 LIN10370

WS UA LINDO

- LIN10000

LIN10010
LIN10020
LIN10030



152
- 151

154
WRITE(Z,511) (J,CANCL(J),J=1I,K)
.GO-TO 124

150

167

106

IF (CANCL (K) -COORD(J) )150,151,150
CONTINUE

NCAN=NCAN§1

TF (TRACE) 124,124,154
WRITE(Z,518)

CONTINUE
- SUBSET NOT CANCELLED
PD=0
1S=0
WORK=0

- LSTO=0
-LGI=0

. MASK. OFF GROUPS. NOT. IN SET
DO..9 GI=1,GLIM
DO 106 IDIM=1,DIM

- IF (COORD (IDIM)§&10000) 107,106,107
107
- IF (COORD(DIM)-CORG(J))109,106,109

J=LGI&IDIM

GONTINUE
GROUP- IS INCLUDED -IN. SUBSET

- J=IABS(GRPL(GI))

GRPL(GI)=J
MEM (J)=IABS(GRPL(GI§1))-J-1
WORK=WORK& 1

- GO-.TO 9.

109

113
115

114

166
- 18=15§1

165
-NDEL=0

-111

 GROUP..IN NOT INCLUDED IN. SUBSET
GRPL(GI)=-IABS(GRPL(GI))

- LGI=LGI&DIM .

CANCEL IF NO:-.GROUPS ARE INCLUDED

. IF (WORK) 113,113,114

IF (TRACE)121,121,115
WRITE(Z,508)
'PLACE FAULT POINTS IN POINTS-TO-DELETE. STACK
DO 165 I=1,FL
M=FAULT (I)
IF (GRPL(M)) 165,165,166
J=GRPL (M)

STACK (IS)=MEM(J&1)
CONTINUE

PRINT. REMAINING GROUPS- IF- TRACE .GT. 1-AND- PD=0

. IF(PD)110,112,110
112

IF (TRACE-1)110,110,111
WRITE(Z,510)WORK
IRET=3

- RETURN .

110

210

THIS. SECTION. ELIMINATES REMAINING SINGULAR POINTS.

BRANCH. TO. 26. IF SUCCESS (STACK. EMPTY) .
BI=0
NDEL=0 .
IF(IS)26,26,119

66

LIN10380
LIN10390
LIN10410
LIN10420

-LIN10430

LIN10440
LIN10450
LIN10460

- LIN10470

LIN10480
LIN10490

- LIN10500
~LIN10510

LIN10520

- LIN10530

LIN10540

‘LIN10550

LIN10560
LIN10570
LIN10580
LIN10590

- LIN10&0O
- LIN10610

LIN10620

-~ LIN10630
- LIN10640
- LIN10650

LIN10660

- LIN10670

LIN10680
LIN10690
LIN10700 .
LIN10710

- LIN10720
- LIN10730

LIN10740

-~ LIN10750

LIN10760

- LIN10770

LIN10780

- LIN10790
LINL10800
~LIN10810
- LIN10820 .

LIN10830 .

- LIN10840

LIN10850 -

-~ LIN10860

-~ LIN10870
- LIN10880 .

- LIN10890
- LIN1008O .

LIN10930
LIN10940



119.
19

20

22

21

10

11

12

13-
-IF(IS-LIS)16,17,18

- 15

17
- STACK(IS)=PI
LSTO=1

16 -
31
,14
-201

- 200

-UNSTACK. POINT TO DELETE
PI=STACK(IS).
IF(TRACE-2)21,21,20

" PRINT "DELETION IF TRACE. .GT. 2
BI=BIg§l

- OBUF(BI)=PI
IF(BI-10)21,22,22

WRITE (Z, 539 )OBUF

-BI=0
- I18=1S-1

J=(PI-1)*DIM

. SGI=0

DELETE. POINT. FROM EACH. GROUP. IT. IS IN

DO 14 IDIM=1,DIM
- J=Jg1

GI=GPS(J)
“SKIP.TO-14 IF GROUP. IS. EMPTY.

- IF(GRPL{GI))14,14,10

.. DELETE. POINT PI FROM GROUP.GI.
K=GRPL(GI)

- . SEARCH FOR POINT IN.- GROUP
M=MEM (K) -1

L=Mg&K .

DO 11 I=K,L
IF(MEM(I§1) PI)11,12,11
CONTINUE _

POINT WAS NOT FOUND IN- GROUP

-M=Mg1

CONSIDER DELTED-IF~STACKrFULL

IF(IS-LIS)13,13,14

REMOVE. POINT FROM GROUP.
MEM(I&1)=MEM(L§1)

 MEM(L§1)=PI
MEM (K).=M

TEST FOR 1 REMAINING POINT.
IF (M=1)51,15,14

- STACK PI AND SET.- STACK OVERFLOW SWITCH
IS=18&1

PI=MEM(K§1)

- SGI=GI
-GO TO 19

--STACK REMAININGzPOINTMAND-CLOSE~GROUP.
15=18&1

- STACK(IS)=MEM(K&1)
-GRPL{(GI)=-GRPL(GI)
. NDEL=NDEL&1

CONTINUE

-IF(8GI)200,200,201

NDEL=NDEL&IL.. . .
GRPL(SGI)=-GRPL(SGI)

. IF (NDEL-WORK) 210,172,172

67

-LIN10950

LIN10960
LIN10970
LIN10980

- LIN10990

- LINI1000

LIN11010

-~ LIN11020
~LIN11030

LIN11040
LIN11050
LIN11060
LIN11070
LIN11080
LIN11090
LINI1100
LIN11110
LIN11120
LIN11130
LIN11140
LIN11150
LIN11160
LIN11170
LIN11180
LIN11190

- LIN11200

LIN11210

-LIN11220

LIN11230
LIN11240

-LINI1250

- LINL1260

-LIN11270

LIN1I1280
LIN11290 .
LIN11300
LIN11310

LIN11320

‘LINL11330

LIN11340

~-LIN11350

LIN11360
LIN11370
LIN11380

- LIN11390

LIN11400

~LIN11410

-~ LIN11420
---LIN11430
- LIN11440
-~ LIN11450
- LIN11460
- LIN11470
-LIN11480



172

- 171
173
174

120
122

121
...902

124

133
170

~169. .

127

125

140

132 -

-161.

IF(TRACE).120,120,174

IF (K-CORAN(2, IDIM)) 127,127,125

- COORD (IDIM)=K
I=I-1

IF(I)133,133,134

- I=1§1.

DO 128..16=1,LEVEL
. . IF(DIML(IG)-DIM§IG-1)129,128,128
128

-WRITE(Z, 514)LEVEL NTRY ,NCAN, NFAIL NGO

»IF(LEVEL<DIM)161,131,131

-WRITE(Z,515)LEVEL

-~ NTRY=0

-~ NFAIL=0

.- NCAN=0 .. .
-IF(LEVEL)134, 134 181

- *FATLURE
ALL POINTS WERE DELETED.
STO=STO&LSTO

IF(BI)173,173,171

WRITE(Z,539) (OBUF (I),I=1,BI)

WRITE(Z,.551)
RETURN. IF THIS WAS-AN.ATTEMPT AT A SUBSET.OF A...
CONSISTENT SET
IF(PD)121,121,122
IRET=4
RETURN .
CHALK. IT.UP.
NFAIL=NFAIL§1
IF (LEVEL)132,132,124
' THIS SECTION GENERATES RESTRICTIONS PLACED. ON. THE. SET
I=1 .
IDIM=DIML (I)
K=COORD (IDIM)
INCREMENT. COORDINATE. FOR DIMENSION ON. LEVEL I
TEST- FOR. RESET MARKER
IF (K§10000)170,169,170
K=K§CORAN (3, IDIM) .

RESET MARKER FOUND. SET TO FIRST COORDINATE VALUE. ..
K=CORAN (L, IDIM) -
NEXT .COORDINATE VALUE. WAS. FOUND -

-GO-TO 134 WHEN ALL COORDINATES ARE FIXED

HIGHEST :COORDINATE H & BEEN . USED.
RESET- DIMENSION -IDIM.
COORD (IDIM)=-10000

IF(I-LEVEL)133,133,140
COORDINATES FOR ALL DIMENSIONS HAVE REACHED MAXIMUM
VALUE = .
INCREMENT A DIMENSION

CONTINUE.... . .
ALL DIMENSIONS ARE MAXIMUM. FOR. THIS. LEVEL
NGO=NTRY-NFAIL ..

- TEST..FOR: END- OF - RUN.

- INCREMENT - LEVEL
LEVEL=LEVEL&L ... .

- 68

-~ LIN11490
--.LINI1500
~LINI1510

LINI1520

---LIN11530
- LIN11540

LIN11550

- LINT1560

- LIN11570

LIN11580
LIN11590

-~ LIN11600
-- LIN11610
-~ LIN11620

LIN11630

-LIN11640

LIN11650

- LIN11660
~LIN11670

LIN11680

~ LIN11690
~ LIN11700
LIN11710

LIN11720
LIN11730
LIN11740

~-LIN11750

LIN11760

-~ LIN11770
-+ LIN11780
-~ LINLL790
-+ LIN11800
~-LIN11810

LIN11820

‘LIN11830

‘LIN11840

- LIN11850
- LIN11860
- LIN11870
- LIN11880
- -LIN11890
. LIN11900
- LIN11910
- LIN11920
- LIN11930
- LIN11940
- LIN11950
. LIN11960
. LIN11970
- LIN11980
- LIN11990

~LIN12000



181

129

130

.26
- 27

28

-131

- 508
510

511
514

523
539
551

-//-FOR
- *ONEWORD - INTEGERS .

an

@ NP

NO U R BN

156

IG=LEVEL
_RESET. DIMENSIONS FOR LEV
K=DIML (IG)

--DO--130 I=1,IG
-L=IG-1

DIML(L&1)=K&I .

-NOW- SET- VALUES. FOR. THESE

GO TO 124
A. CONSTSTANT. SUBSET HAS.
IF (BI)28,28,27
WRITE (Z,539) (OBUE(I),I=1,B
IRET=2
RETURN
END OF - RUN

- IRET=1

RETURN

-FORMAT(’;NO GROUPS~MEET CO

FORMAT (' .LIST OF'16 '. GROU
RESTRICTIONS')

FORMAT (1X,8(I5,')="I5))
FORMAT (' OEND- OF TESTS. ON. L
GENERATED'I10,.' SETS CANC

. I110,' SETS. CONSISTENT'/ .1
515
518

FORMAT('l***LEVEL'IS)
FORMAT (.. THIS .SUBSET .CANCE
FOLLOWING RESTRICTIONS'}).

FORMAT ('OCOORDINATE. RESTRI

FORMAT (' *POINTS . DELETED .*1

- FORMAT (' .FAILURE. ALL- POIN
- END

- SUBROUTINE LIND2

.INTEGER A, B.
- INTEGER- OBUF(ZO) PI.

INTEGER - .DIM,COORD(8) ,CORG (-
INTEGER. GRPL(301) ,KD,MEM(-

-~ INTEGER..CORAN{(3,8),PD,PTDE
- INTEGER. CLIM,WORK,HI GI

- COMMON DIM,.COORD, CORG FAULT FL, GLIM GPS,GRPL, KD, MEM,NP;TMASK,TV
COMMON .CORAN,.PD,PTDEL,STACK, 1S, IRET,CANCL,DIML,CLIM,WORK HI ,LGM
-GL,Z,NFAIL,NTRY ,NCAN,STO,LSTO, CHAIN

- LMPT=LENGTH. OF  MPT--AND- PTDEL.

COMMON..LEVEL, TRACE ,NOSU.. .
- LCANC=LENGTH. OF - CANCL.

LCANC=800

LMPT=10 . .
- IRET=2 --- CONSISTENT SET
~IRET=3 .-~  TRACE- PRINT

G0-TO. (2,2,100) , IRET

*A. CONSISTENT. SET- HAS. BE
~PRINT. CONSISTENT SET . .

WRITE(Z,501) (I,COORD(I),I=
. IF (CLIM-DIM-LCANC) 156,156,

DO 155 I=1,DIM

69

---LIN12010
ELS = 1 TO- IG - LIN12020
--LIN12030
- LIN12040
-~ LIN12050
- LIN12060
‘DIMENSIONS -~ LIN12070
- LIN12080

‘BEEN -FOUND - LIN12090

- LIN12100
1) - LIN12110
- LIN12120
~ LIN12130
LIN12140

- LIN12150 .

- LIN12160
ORDINATE. RESTRICTIONS"') --:LIN12170
PS MEETING COORDINATE - LIN12180

LIN12190
EVEL'I3,/18,' SETIS .. - --LIN12200

ELLED'I10,' SETS FAILED' - LIN12210 .
21('*1)) LIN12220 .

-+ LIN12230
LLED. BY THE. -SUBSET WITH THE. LIN12240
LIN12250
CTIONS'") ~-LIN12260
016} .. - LIN12270

TS DELETED'/1HO) --LIN12280 .

~-LIN12290

600)., FAULT (100) ,FL,GLIM, GPS 600)
600), TMASK (8) , TV
L(10-),STACK(100),CANCL(- 600),DIML(8)
- TRACE, Z,STO,CHAIN (100) _

EN FOUND

1,DIM)
157

"



70

CLIM=CLIME1 .
~ 155 CANCL (CLIM)=COORD (I)
. DO 90 I=1,NP
"ADD THIS SET TO- CANCEL BUFFER.
: 90-CHAIN(I) 0
- IRET=1
.GO-TO 3
55 NOSU=1
NG=GLIM
. PD=0
18=1
' SEARCH FOR GROUPS CONTAINING ONLY TWO. POINTS
_FOR. EACH. ONE- FOUND, DEFINE THE. TWO. POINTS. TO. BE- EQUIVALANT.
DO 5 GI=1,GLIM
. K=GRPL(GI)
IF(K)8,8,6
- IF (MEM(K)-2)21,21,5
- NG=NG-1
5. CONTINUE
- IF(TRACE-1)94,94,83
83.D0 84 'K=1,NP
. PI=-CHAIN(K)
. IF(PI)84,84,85
. 85 WRITE(Z,585)PI
585. FORMAT (! OCHAIN'13)
. .CALL- LINDS(PI)
- 84. CONTINUE
94 IF(NG)80,80,81 ,
INITIALIZE. TO. NO. DELETIONS
81. PTDEL(1)=0
. HI=1
"HUNT FOR. CHAIN 1. GREATER THAN K
31 1S=IS&1
- STACK(IS)=-PD
73. K=PTDEL (HI)
- 1L=10000
. PI=0
10 PI=PIgl
 IF(PI-NP)11,11,12
11 PD=-CHAIN(PI)
- IF(PD)10,9,9
. CHECK FOR PD. .GT. K. AND-PD..LT. L
. 9. IF((PD-K)*(PD-L))13,10,10
-13. L=PD
'GO-TO- 10
' SEARCH. FOR NEXT. CHAIN IS. FINISHED. GO.TO 15.IF K IS.HIGHEST. CHAIN
12 IF(L-10000)14,115,115
' DELETE. CHAIN. PD
14 PD=L
 WRITE(Z,506)PD
.. PTDEL(HI)=PD
. PTDEL(HI§1)=PD
.. PI=PD
IRET=2

oo O\



29

17

18

-19

510
.20 .

<21

23

30

. 28.

.32,

37
34.

. PI IS A POINT. EQUIVALANT. TO. PD.. DELETE. IT.
- J=(PI-1)*DIM *

- *DELETE. POINT. PI

--DO-16- IDIM=1,DIM
-J=J§1

GI=GPS(J)

- K=GRPL(GI)
IF(K)16,16,17

- SEARCH. FOR: POINT PI. IN GROUP.GI

M=MEM(K) -1
.. L=M§K .

DO 18 I=K,L
IF(MEM(I&1)-PI1)18,19,18
. CONTINUE
GO TO 20

PUT. POINT. AT . END- OF LIST  AND.  DECR. LENGTH

MEM(I§1)=MEM(L§1)
. MEM(L§1)=PI
MEM(K).=M
1S=1S§&2

STACK(IS-1)=0

. STACK(IS)=GI
WRITE(Z,510)GI.
FORMAT(' GROUP'I4,'. DELETED')

IF (M-2)21,21,16
TWO. POINTS. REMAINING
A=MEM (K§1)

- B=MEM (K§2) .

CALL- LIND4(A,JA, IA)
CALL. LIND4(B,JB, IB)

- IF(IA-1B)40,54,40
- 40
.22,

IF(IA-PD)23,22,23
IF(IB-PD)74,53,54

IF(IB-PD)54,24,54
.24 .
.27,
16

IF (IA-PD)74,53,54
IF(NG)28,28,16
CONTINUE

. PI=CHAIN(PI)
IF(PI)30,30,29

- ALL- POINTS IN»CHAIN<PD HAVE‘BEEN«DELETED

-HI=HIg&1

GO TO- 31
.- NO GROUPS .LEFT..  TEST- FOR- NON-EMPTY. SET

- K=TABS (GRPL(GI))

.. AsMEM(K§1)

. CALL LIND4(A,I,J)
IF(J-PD)32,74,32 .

- -MINIMAL- CONSISTENT. SET

WRITE(Z,502)NOSU
- NOSU=NOSU§1

- K=0
1IF(J) 33, 33,34

K=K§&1

- OBUF (K)=J

71



33
39

.15,
74
572

WRITE(3,505) (STACK(I),I=1,IS)

72

42

117

114.

116
45

44

43

- IF(K-20) 35,36, 36
.. K=0

WRITE(Z,505)0BUF

J=CHAIN(J)

--GO- TO. 37
115.

HI=HI-1
IF(HI)59,59,15

IF (K) 74,74, 39

WRITE(Z,505) (OBUF(I),I=1,K)

-GO-TO 74

- UNDO EQUIVALANCES CAUSED. BY. DELETION. OF CHAIN. PD.
. PD=-STACK(IS)

WRITE(Z,572)PD .

FORMAT (' .UNDO.- DELETION'I3)

IS=IS-1

GI=STACK(IS)
IF(G1)73,73,42

K=GRPL (GI)

IS=IS-1.
IF(K)117,117,114
K=-K

NG=NG§1

GRPL(GI)=K

IF (STACK(IS))72,72,116
LC=IABS (GRPL(GI§1))-K

- L=MEM(K)

TF(1-2)45,45,72
M=K&LE&1

CALL LIND4(MEM(M),IA,IB)

IF (IB-PD)43,44,43
L=L§1

-IF(L-LC)45,43,43

MEM (K) =L

A=MEM (K§1)
B=MEM(K&2) .

CALL LIND4(A,JA,IA)

'CALL LIND4(B,JB,IB)

47, .
CHAIN(A)=CHAIN(B)

113

- 49

111
GO TO 113
IF(J-1)50,51,50

112

.- 50
48,
.- ILO=KJ
-GO- TO 49

IF(IA-1B)72,47,72
I=CHAIN(A)

CHAIN(B)=I
J=1

-L0=1

KJ=J

- J=CHAIN(J)

IF(J)111,111,112
I=CHAIN(A)

IF(J-10)48,49,49
LO=J

72



51

- 581.

80
.59

54

76

52
77

82

53

- 70

71
61

63
-60

104
66

-100

102

-103

101

CHAIN(ILO)=-LO

-WRITE(3,581)A,B,IA,LO

FORMAT (' UNEQ'2I4,5X,'CHAINS'214)
GO TO 72
ALL. EQUIVANENCES UNDONE

WRITE(Z,503)
WRITE(Z,500)

GOTO RESTRICTION. GENERATOR ROUTINE

- IRET=4

. ROUTINE. TO- SET A=B
GRPL(GI)=-GRPL(GI)

-NG=NG-1

IF (IA-IB)52,53,76

CHAIN(JA)=IA
GO TO 77
CHAIN(JB)=IB
- I=CHAIN(A)

CHAIN(A)=CHAIN(B)
CHAIN(B)=1
STACK(IS-1)=1

IF(TRACE-1)53,53,82
WRITE(Z,507)B,A,IB,IA

GO TO. (5,27),IRET .

*PRINT. REMAINING. POINTS.
_FIND. A FREE DIMENSION
. (NONSTANDARD. USE. OF. IS)

'DO.70. IS=1,DIM .
- IF (COORD(IS)&10000)70,71,70

CONTINUE
CHECK EACH. PT. FOR- INCLUSION IN. GROUP. FOR DIMENSION. IS
J=0
DO 60 PI=1,NP
IF (LIND3(PI))60,60,61
"POINT. NOT DELETED. - ADD TO OUTPUT. BUFFER.

J=J§1
- OBUF (J) =PI
CHAIN(PI)=-PI.

IF (J-20)60,63,63

WRITE(Z,505)0BUF

- J=0

CONTINUE

1IF(J)55,55,66.
WRITE(Z,505) (OBUF (I),I=],J)

GO-TO: 55
- LIST ACTIVE- GROUPS
J=0

-DO- 101 GI=1,GLIM

IF(GRPL(GI))101,101,102
J=J§1

OBUF (J)=GI

IF (J-20)101,103,103
WRITE (Z,505)OBUF

J=0

CONTINUE
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- RETURN

157.

78

WRITE(Z, 300)

-CALL- EXIT

WRITE(Z,301)

-CALL- EXIT

300
- 301-
.. 500
- 501-

502
503
- 505.
506
- 507

~// DUP

* STORE .

// EOR
* . ONE.

vsiC_J\mh-wr\)r—a-

FORMAT ('ERROR. -- LENGTH. OF CANCEL BUFEFER. EXCEEDED. ')

FORMAT ('OERROR -~ LENGTH. OF- PTDEL:- EXCEEDED. ") .

FORMAT (! OEND- OF CONSISTENT. SET. AND SUBSETS'/60('-'))

FORMAT (! 0*****CONSISTENT. SET FOUND WITH. FOLLOWING. RESTRICTIONS'/
.1X,8(I5,')="'I5))

FORMAT ('OSUBSET'13,5X, 'LIST OF POINTS')

FORMAT ('OONLY. SUBSET IS. SET ITSELF.')

FORMAT (1X, 2016)

FORMAT (' .CHAIN'I4,'. DELETED')

FORMAT ('POINT'I4,' IS EQUIV.TO POINT'I4,5X,'CHAIN'I4," JOINED TO
*CHAIN'I4)

END

WS UA- LIND2

WORD- INTEGERS
FUNCTION LIND3 (PI)

- INTEGER-.P1

INTEGER. DIM,COORD (8) ,CORG.( 600),FAULT(100),FL,GLIM,GPS (- 600)

- INTEGER .GRPL(301) ,KD,MEM(- 600) , TMASK(8).,TV .

INTEGER. CORAN(3,8) ,PD,PTDEL(10  ),STACK(100), CANCL( 600) ,DIML(8)

. INTEGER: CLIM, WORK,HI ,GI,... TRACE,Z,STO,CHAIN(100) .
VCOMMON:DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP,TMASKyTV

COMMON  CORAN, PD, PTDEL, STACK, IS, IRET,CANCL,DIML,CLIM, WORK, HI, LGM

. COMMON- LEVEL, TRACE,NOSU, - GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN

K=(PI-1)*DIM§IS
K=GPS(K)
FIND. INDEX. OF. POINT IN GROUP K

- K=GRPL(K).

IF(K)1,1,2
GROUP. EMPTY

- LIND3=0

RETURN
L=MEM(K) §K~1
DO 3 K=K,L

- IF (MEM(K§1)-PI)3,4,3

CONTINUE .
-NOT IN- GROUP
GO-TO 1

- LIND3=K

- RETURN

--// DUP
- *STORE

- END

WS UA. LIND3

-END

//FOR

*ONE- WORD- INTEGERS
- SUBROUTINE. .LIND4(A,B,C)
- INTEGER A, B,C



NOU B

-//DUP

- 75

- INTEGER DIM,COORD(8) ,CORG(- 600) ,FAULT(100),FL,GLIM,GPS{. 600)
INTEGER. GRPL(301),KD,MEM(. 600) ,TMASK(8).,TV .

- INTEGER- CORAN(3,8),PD,PTDEL(10- ),STACK(100),CANCL( 600),DIML(8)
- INTEGER- CLIM,WORK,HI ,GI,  TRACE,Z,STO,CHAIN{100)

- COMMON- .DIM,COORD, CORG,FAULT,FL,GLIM,GPS,GRPL,KD,MEM,NP, TMASK, TV .
- COMMON - .CORAN, PD,PTDEL, STACK, IS, IRET,CANCL,DIML,CLIM,WORK,HI , LGM
COMMON- LEVEL,TRACE,NOSU, - GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
TA=A

- B=TIA ,

TA=CHAIN(IA)

-IF(IA)2,2,1

C=-TA

- RETURN

END

-*STORE - WS- - UA LIND4

//FOR

*ONE- WORD- INTEGERS

NOUT B G

3
500

//DUP

SUBROUTINE. LINDS (PI)

-INTEGER PI,0BUF{20)

INTEGER. DIM, COORD(8),CORG (- 600) ,FAULT(100) ,FL,GLIM,GPS{(- 600)
 INTEGER- GRPL{301),KD,MEM(. 600) ,TMASK(8),TV

- INTEGER- CORAN (3, 8),PD,PTDEL(10- ), STACK{100) ,CANCL{ 600) ,DIML(8)
INTEGER CLIM,WORK,HI,GI, . TRACE,Z,STO,CHAIN(100) .

COMMON DIM,COORD,CORG,FAULT,FL,GLIM,GPS,GRPL, KD,MEM,NP, TMASK, TV .
.COMMON. CORAN, PD,PTDEL,STACK, IS, IRET,CANCL,DIML,CLIM, WORK,HI,LGM
. COMMON LEVEL,TRACE,NOSU, GI,Z,NFAIL,NTRY,NCAN,STO,LSTO,CHAIN
J=0

J=Jg§1

- OBUF(J)=PI

IF(J-20)1,1,2

WRITE(Z,500)OBUF

J=0

- PI=CHAIN(PI)

IF(PI)3,3,4

WRITE(Z,500) (OBUE(I),I=1,J)

RETURN

FORMAT (2016)

END

*STORE WS -UA LINDS

//FOR

*NAME

LINDS

- *ONE- WORD- INTEGERS :
- *TOCS (CARD, 1132 PRINTER)

*LIST

NG RGN

SYMBOL. TABLE .
- INTEGER. DIM,COORD (8) ,CORG (. 600),FAULT(100),FL,GLIM,GPS (. 600)
INTEGER GRPL(301),KD,MEM(. 600), TMASK(8) , TV
INTEGER CORAN (3,8) , PD, PTDEL(10 ),STACK(100) ,CANCL( 600),DIML(8)
INTEGER CLIM,WORK,HI,GI, TRACE,Z,STO,CHAIN(100) . .
_COMMON DIM,COORD, CORG, FAULT, FL,GLIM,GPS,GRPL, KD ,MEM,NP , TMASK, TV _
COMMON CORAN, PD, PTDEL, STACK,, IS, IRET ,CANCL, DIML, CLIM, WORK, HT , LGM

COMMON. LEVEL, TRACE,NOSU, - GI,Z ,NFAIL,NTRY,NCAN,STO, LSTO, CHAIN
IRET=0



1 CALL. LINDO
2 CALL LIND1
IF(IRET-1)1,1,3
3 CALL .LIND2
IF (IRET-1)1,1,2
// DUP
* STORE WS UA LINDS
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