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CHAPTER I
INTRODUCTION

This study consists of theoretical investigations on the vapor-
liquid equilibrium ratio and the enthalpy of hydrocarbon mixtures con-
taining none or some of the non-hydrocarbon gases such as hydrogen,
nitrogen, carbon dioxide and hydrogen sulfide.

The accurate prediction of these quantities is of paramount impor-
tance in quantitative treatment of a great many physical and chemical
proceSses including distillation, absorption and extraction. - The
nature of equilibrium between phases may also be an important factor in
many other problems such as mixed phase flow, condensing or boiling
- heat transfer, and chemical reactions involving coexisting phases.

Because of the great importance of phase equilibria in practical
engineering problems, numerous experimental and theoretical studies
have been conducted on that subject over the past several decades.
Consequently a vast amount of experimental data has been accumulated
and a number of useful correlation methods have been developed.

The vapor-liquid equilibrium ratio which is generally referred to
as a K-value, depends on many variables such as temperature, pressure,
composition, and the chemical nature of substances involved. The
rigorous functional relationship of the K-value to these variables has
not been established and may take another decade or longer for the

complete development. However, for practical purposes, one can formulate



an empirical or semi-theoretical relationship among those variables
using the large accumulation of experimental data and related thermody-
namics. The advanced computing techniques provide another factor to
facilitate the development of a more sophisticated correlation. In
fact, many such studies have been made in recent years. But they are
still limited either by their range of applicability or their accuracy.

In addition, a companion enthalpy prediction method that is con-
sistent with the K-value correlation would be not only of theoretical
importance but also convenient for process design calculations. There-
fore, this investigation was undertaken to develop a set of K-value and
enthalpy correlations that are accurate and generalized for hydrocarbon
~mixtures.

The K-value can be expressed as a combination of vapor phase fugac-
ity coefficient ¢i’ pure liquid fugqpity coefficient Vi and activity

coefficient Y; @s follows.

K, = — (1-1)

An equation of state was developed to calculate the fugacity co-
efficients and enthalpies of the vapor phase. Two different expressions
were derived for pure liquid fugacity coefficients, one for the real
liquid state and the other for the hypethetical liquid state. A new
expression for the activity coefficient was formulated by combining the
modified Scatchard-Hildebrand equation with athermal terms and fitting
the resulting expression to experimental K-values to obtain the numeri-
cal constants. The temperature derivatives of vy and \ expressions

provide the tools for predicting liquid enthalpies.



These correlations can be used in designing separation or heat
transfer equipment which process coexisting vapor and liguid phases.

In Chapters II and III the theory of phase equilibrium and previous
investigations are discussed respectively. In subsequent chapters equa-
tions of state, fugacity coefficients, activity coefficients, and en-
thalpies are discussed and a set of new equations are developed for K-

value and enthalpy correlations.



CHAPTER II
THEORY OF PHASE EQUILIBRIA
- The Criteria of Phase Equilibrium

-Phase equilibrium is a special form of equilibrium that exists
between coexisting phases. ”Equilibrium" implies a state in which there
is no spontaneous change in a system. Such a condition can result only
when all potentials that tend to promote change are absent or exactly
balanced against similar opposing potentials.

In order for a system to be at equilibrium, every possible change
that might take place to an infinitesimal extent must be reversible.
This necessity immediatelyvleads to the following thermodynamic criter-
ion of equilibrium: "For any change that takes place, the total entro-
py change in any isolated system shall be zero at equilibrium".

Applying this criterion to vapor-liquid phase equilibria gives

TV =" | (2-1)
p/ = pt (2-2)
/]iv =,/,7iL (1=1,2, ... N) (2-3)

Hence the phase equilibrium can be characterized by the equalities
of pressure, temperature and the chemical potentials of each component
in all phases. The derivation of these criteria is shown in- Appendix A.

The chemical potential, however, is an awkward mathematical



quantity for application to engineering problems. Thus, it is conve-

nient to transform the quantity into fugacity as defined by Lewis (108).

4l = dG; =RT d(1n ) @ constant T (2-4)
F,
where lim — =1
P~0 "Pyi

From Equations 2-3 and 2-4, one can show that
£ =7, (2-5)

At present there is no rigorous method to evaluate both fugacities
in Equation 2-5 which would result in the unique solution for the phase
compositions., A perfect equation of state, if such an equation can be
devised, would be the tool to handle thié problem. - Equation 2-5, how-
ever, provides the principal basis relating XK-values with various ther-
modynamic functions that can be calculaﬁed from experimentally accessi-

ble quantities such as P-V-T and composition data.
K-Value Relationships With Thermodynamic Functions

- The K-value of a component is defined as the ratic of the mole
fraction of that component in the vapor phase to its mole fraction in
-the coexisting liquid phase.

Introduction of Equation 2-5 into the definition of K-value gives

2L
Y. _ (fi /xi)

R g T (2-6)
R N CAY

"Converting the denominator into the familiar fugacity cocefficient,



2~V .
¢i'= ) /Pyi, gives

_ (fi/xi)

i ¢i

K L (2-7)
- P
This is the K-value relationship that Benedict et al. (18) used in de-
veloping the Polyco K-charts.

By. introducing vapor pressure into the numerator of Equation 2-7
Edmister and Ruby (64) obtained the following equation which. the authors

used for the modification of Kellogg K~charts.

AL, s S
_ (fi/pi xi) P

e (2-8)

- K
The apparent liquid fugacity coefficients that appear in numerators of
- Equations 2-~7 and 2-8 can not be easily predicted by thermodynamic
methods. This limits the application of these correlations.
Ehrett, Weber and Hoffman (68) introduced two standard state fugac-

ities into Equation 2-6 to obtain

(#2/9L% ) £OL
R R M B

T ey o (2-9)
This equation has two distinct disadvantages, one being the awkwardness
of predicting the vapor phase activity coefficient, the other being the
hypothetical states assoclated with the standard state fugacities. - The

hypothetical states are encountered for both liguid and vapor mixtures.
Assuming that the liquid partial molal volume is equal to the molal

~volume of pure component, Black (21, 22) derived a more sophisticated



expression for K-values.

Gl x) of

K, = = 1 17 (2-10)
i
A P
¢ /P
where ‘93'_ = ——S—}—S— exp l:_RL le_' dP]
T

Equation 2-10 is not completely rigorous, however.
A similar but thermodynamically rigorous K-value relationship was

proposed by Prausnitz, Edmister, and Chao (145).

Vi Ya
gk =11

i @.

1

(2-11)

This equation has been most frequently used, since all the three qﬁan—
tities in the right-hand side of the equation are easily obtainable from
either experimental data or appropriate correlation methods. This ex-
pression, however, has an inherent drawback, that it can not be applied
to the supercritical components without the assumption of hypothetical
states.

In an attempt to eliminate the hypothetical state. problem, Praus-
nitz and his co-workers (144) chose the Henry's constant as the standard
state fugacity for the supercritical components. Besides, the authors
evaluated all the liquid thermodynamic properties at zero pressure and
system temperature to make the properties independent of pressure.

Thus, the pressure effect is solely reflected by the Poynting correc-~
tion. Their proposed K-value relationship for condensable components

is given by



(o) oL(o) P
Yy fy 1| =L
K. = —— exp|=1| Vj dP
i 4. P RT
L [e]

The counterpart for non-condensable gases is

#(0) 4(0) P
= Vi i 1| =L
K, = exp|— | V., dP
1 @. P RT L
i
o

The superscript (o) indicates that the corresponding properties are
evaluated at zero pressure, while the asterisk * implies that the activ-
ity coefficient is normalized by.the unsymmetrit convention.

Among the many thermodynamic functions related to K-value, the
vapor phase fugacity coefficient, the liquid phase activity coefficient
and the standard state fugacity merit speciél discussion and this dis-

cussion appears in the following chapters.



CHAPTER IIT
PREVIOUS INVESTIGATIONS

Since the fugacity concept was introduced into the phase equili-
brium criteria, many K-value correlations have been developed. based on
this concept. Perhaps the first significant work of ‘this kind may be
the graphical correlation prepared at Massachusetts Institute of Tech-
nology in the early 1930's. Because of the complex nature of K-values,
most of earlier correlations were prepared in chart form with various
Simplified assumptions, some of which were quite limiting and resulted
in.inadequate correlations. Independent from the fugacity concept, a
different correlation which was based on convergence pressure concept
was developed in the early 1950's and used as widely as the fugacity-

based K-value correlation until the present.
Fugacity Based K-Value Correlations

The MIT X-Charte and Michigan K-Charts

MIT K-charts were prepared from the fugacity coefficient corre-
lations developed by Lewis and Kay (109) and Newton (131) and some of
the solubility data of light gases. The necessary input information
for this correlation were the vapor pressure, the critical pressure and
temperature of components involved, in addition to system pressure and
temperature. Thus, this correlation did not account for the composition

effects, nor adequately describe the influence of the chemical nature
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of the constituents. Such inadequacies were recognized early. The

Michigan K-charts (33) were developed in a manner similar to MIT charts.

Polyco and DePriester K-Charts

Benedict et al. (18) prepared the Polyco K-charts using the fugaci-
ty values calculated from their equation of state. This correlation
included the composition effects in a simplified manner. As the compo-
sition variable, the authors selected molal average boiling point of the
phase in question. This was admitted to be a compromise between accura-
cy and practicality. With this simplification, several series of fugac-
ity calculations were made for a number of selected hydrocarbon systems.
In their calculations the authors assumed that the balance of the mix-
ture other than the component of interest could be treated as a single
hypothetical component. The resulting binary system fugacity coeffi-
cients were correlated as a function of temperature, pressure and the
molal average boiling point of the phase in question.

The original Polyco K-charts were replotted and published by the
M. W. Kellogg Co. in 1950. A few years later, DePriester (58) improved
the Kellogg K-charts by (a) condensing the original 144 charts to 24
charts (b) facilitating the pressure interpolations and (c) providing

better accuracy in some ranges.

Edmister-Ruby Correlation

Using the values of fugacity coefficients from the original Polyco
K-charts and the vapor pressure data from A.P.I. Research Project Li
(5), Edmister and Ruby (64) developed separate correlations for vapor

and liquid phase fugacity coefficients as functions of reduced
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temperature, reduced pressure, and boiling point ratio. The authors
again introduced an intermediate parameter & to make the fugacity co-
efficients as functions of reduced pressure and é?only, where G is a
separate function of reduced temperature and boiling point ratio. ' Thus,
the authors were able to reduce the 276 original Polyco charts to six
charts which can be directly used in calculating K-values via Equation
2-8. The necessary information for this correlation are the critical
properties and vapor pressure of the component of interest and the nor-

mal boiling points of all components in the mixture.

Black-Derr—Papadopoulos Correlation

Black et al. (25) developed a comprehensive K-value correlation
method: by summarizing the material contained in a series of papers pre-
sented by Black (21, 22, 23, 24).

The Black=Derr-Papadopoulos correlation which uses Equation 2-10
as the key equation is not intended for generalization. Instead, it
treats the problems case by case, thus making it possible to extehd its
application to various systems including polar component systems.

The authors recommended the use of the modified van der Waals
equation (21) and the Redlich-Kwong equation of state for the calcula-
tion of vapor phase fugacity coefficients, with greater emphasis on the
-former equation. For the liquid activity coefficient the authors re-
commended a modified van Laar equation (22) which contains a .set of
adjustable constants that can be determined from experimental data.

In addition, the method requires determining the liquid partial molal
volume and the pure fugacity coefficient of supercritical components

also from experimental data. Thus, this correlation can be applied to
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a system only when some experimental data for the same or similar system
are available. However, the flexibility of this correlation is a valua-

ble feature that assures a diversified utility of the correlation.

Prausnitz-FEdmister-Chao Correlation

This correlation is worth special mention because of its great
influence on the later development of similar correlations. - Prausnitz,
Edmister and Chao (145) proposed the well-known K-value relationship
given by Equation 2-11. The authors calculated the vapor phase fugacity
coefficient and the liquid phase activity coefficient via Redlich-Kwong
equation (166) and Scatchard-Hildebrand equation (86), respectively.

The pure liquid fugacity coefficients for real compenents.were obtained
from the correlations prepared by Lydersen, Greenkorn and Hougen (112),
and those for hypotheticél components were obtained by fitting Equation
2-11 to the solubility data of a gas in at least two solvents having
~different chemical nature. The values of v. and solubility parameter
for supercritical components were simultaneously optimized by regression
analyses. They used Watson's (200) expression for the hypothetical
liquid volume necessary for Scatchard-Hildebrand equation. - This corre-

lation places more emphasis on the K-values of light components.

Chao-Seader Correlation

. Chao-Seader correlation uses the same equations as were employed
by Prausnitz, Edmister and Chao (1&5) except for the expression of pure
liquid fugacity coefficient, for which Chao and Seader developed a gen-
eralized algebraic equation. The generalization as well as the inclu-

sion of hydrogen and cyclic compounds is the prominent feature that
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makes the Chac-Seader correlation one of the most widely accepted
- K-value prediction methods in petroleum industry.today.

Chao and Seader (41) obtained the solubility parameters of light
components by regression analyses using the solubility data of the com-
‘ponents in different solvents and calculated the hypothetical pure
-liquid fugacity coefficient via Equation 2-11. For the liquid fugacity
coefficient of heavier components experimental equilibrium data were
processed according to Equation 2-11. The Vi values obtained in this
manner together with the tabulated values of Curl and Pitzer (57) were
used in formulating the expression of Vi in terms of reduced temperature,
reduced. pressure and acentric factor. This correlation has been exten-
ded and modified by Grayson and Streed (77) and by Cavett (39).

Several similar correlations were attempted by different investi-
gators, but from a generalization standpoint they were less successful
than Chao-Seader method. For instance, Chang et al. (40) used Wilson's
(205) modified Redlich-Kwong equation of state for the calculation of
¢i and employed Chao-Seader expressions for V- *The authors developed
an activity coefficient model based on Miller-Gugenheim theory and the
interchange energy concept given by Ashworth and Everett, but the ex~
pression was not generalized.

In a similar study, using the modified Redlich-Kwong equation of
Barner et al. (12). instead of Wilson's, Avasthi and Kobayashi (8) fur-
ther refined the activity coefficient model. -However, the model still
retained the interchange energy parameters which are characteristic of
each binary pair and which must be determined from experimental equilib-
rium data.

Adler et al. (1) employed the Redlich—Kwong equation, the Benedict-



14

Webb-Rubin equation of state, and the Margules four suffix equation for
the evaluations of ¢i,,vi, and vy; respectively. ' This correlation also
requires a set of characteristic constants that must be determined from

.experimental data.

Prausnitz-Fckert-Orye-0'Connell Correlation

This correlation starts with Equation 2-12 which .the authors for-
mulated (144). Vapor phase fugacity coefficients are calculated from
virial equation of state using two different second virial coefficient
expressions, one for non-polar, the other for polar substances. The
original Wilson equation and its simplified version are used for the
activity coefficients of subcritical and supercritical components,
respectively. For the reference fugacity, the zero pressure fugacity
correlation of Lyckman et al. (110) is employed for condensable compo-
nents and the Henry's constant is used for non-condensable gases.
Accordingly,  two differently nermalized yi‘s are used, i.e., one- is
symmetrically normalized, the other is normalized by the unsymmetric
convention. - The merits and demerits of these are discussed in Chapter
- VII.

Since all the liquid phase properties are corrected to zero pres-
sure values, only the liquid partial molal volume is expected to account
for the,preséure effects. As the authors admitted, the correlation of
the partial meolal volume is not accurate enough to handle the pressure
effects adequately. This weakness together with the use of virial
equation of state restricts this correlation to low pressure systems.
Furthermore, this correlation can hardly be used for general purpose

because of the Henry's constant which can not be easily generalized.
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viChueh-Prausnitz'Correlation

ThisfcérrelatiQﬁ‘ié'Bésicélly the same aé,that of Prausnitz et al.
(1A4> éxcept for the equafions chosen for the correlation. - Chueh and
‘Prausnitz presentéd a series of papers dealing with high pressure vapor-
liguid equilibria (hé, L7, 48, 49) and summarized the concept in a
single monograph (143).

The authors chose the Redlich-Kwong equation of state for the cal-
culations of vapor phase fugacity coefficient and of ligquid. partial molal
volume. They redetermined the Redlich-Kwong equation of state constants
for the individual components ignoring the critical point requirements.
In addition,‘they;introduced new mixing rules for the mixture applica-
tions. For the evaluation of activity coefficient Chueh and Prausnitz
developed a dilated van Laar model which has proven particularly useful
for supercritical components. ﬁdwever, the model contains a set of
characteristic constants for each binary pair. These constants plus the
Henry's constants prevent the correlation from being generalized. The
authors studied the critical region in some detail and developed a
supplemental correlation method for the particular region, but the prac-
tical application of the method appears to be tedious. Besides the
authors assigned a different temperature limit to each different sub-
stance. Accordingly their correlation can be applied only to the common
temperature range of all the components involved in the system of inter-
est. Another weakness of this correlation is the calculation of the
liquid partial molal volume from a simple equation of state using the

constants determined from the volumetric data of saturated pure liquids.

Direct Use of Eguation of State
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Until recently, no intensive effort was made to calculate K-values
directly from equations of state. This inactivity is mainly ascribed
to the poor performance of available equations of state in dense phases,
and to the imperfection of mixing rules which have a strong influence
over the partial quantity that 1s calculated from an equation of state.

The equation of state method has, however, a distinct advantage in
that it requires no assumptions whatsoever and exhibits a reliability
in the critical region where most of the preceeding correlations fail
to work.

The study of the utility of equations of state in-K-value prediec-
tion is generally centered on (a) the modification of mixing rules,

(b) the refinement of temperature functionality, and (c¢) the adjustment
on the equation of state constants of pure component.

The simplest way of using equations of state for K-value prediction
is to calculate the fugacities of both phases without any modifications
or corrections as Schiller and Canjar (183) did. But this method in
general does not yield a reliable result.

Stotler and Benedict (191) applied the Benedict-Webb-Rubin equation
of state to the vapor-liquid equilibria of nitrogen-methane mixture by
modifying the mixing rule on L Although not clearly stated, the
authors implicitly introduced the so called "binary interaction coeffi-
cient" into the mixing rule.

A similar study was made by Wilson (205) with the simpler Redlich-
Kwong equation of state as modified by himself. But Wilson's approach
shows a greater promise than that of Stotler and Benedict, because it
uses a generalized equation of state. Recently, Zudkevitch et al. (217)

also studied the application of R-K equation of state to the K-value
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predictions. The authors determined the equation constants using satu-
rated liquid P-V-T data and saturation fugacity data. The use of binary
interaction coefficients are not different from Wilson's method.

Other interesting studies in this field include the works by Wolfe
(210) and by Starling (187). Wolfe applied Benedict-Webb-Rubin equation
to. the natural gas phase equilibria with no modifications. On the other
hand, Starling used the same equation of state for the K-values of con-
densate reservoir fluids, determining the B-W-R equation constants of
heavier components from the experimental equilibrium data so that the
equation will reproduce the K-values with sufficient accuracy.

More recently, Kaufman (93) employed a generalized Benedict-Webb-
Rubin equation (193) to predict the K~values of systems consisting of
some olefins. The author readjusted the generalized constants specifi-
cally for the olefin homolog, and assigned a temperature function to
C, for each component to satisfy the fugacity identity of coexisting
phases., But the latter procedure made the original purpose of using
the generalized equation of state meaningless.

A more rigorous study was performed by Klekers (101) who used a
different generalized B-W-R equation of state (65) for the K-values of
multicomponent. hydrocarbon systems. Klekers optimized the generalized
B-W-R constants B, and Cj from binary experimental data, and made C, a
function of temperature. The recommended mixing rule for the constant
B, is the linear square root model having a-bilnary interaction coeffi-
clent.

Recently, Orye (138) presented a comprehensive study on the utility
of B-W-R equation of state for the K-value prediction of hydrocarbon

systems including some non-hydrocarbon gases. The technique used is
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not drastically different from previous studies by others (101, 205).

Convergence Pressure Based K-Value Correlations

The convergence pressure concept is based on an observed critical
phenomenon of a binary mixture, i.e., the K-value of each component
converges to unity at the critical pressure of the mixture having a
critical temperature equal to the system temperature. |

For binary system, when the system temperature is between the
critical temperatures of both components, the convergence pressure has
a unique relation to the phase compositions for a given mixture. Thus,
the convergence pressure can be effectively used as a composition.
correlating parameter. However, the idea becomes totally invalid when
it is applied to multicomponent mixtures. All the experimental and
theoretical evidence prove the invalidity, that is, the convergence
pressure of a multicomponent system has no one-to-~one relation to the
phase cempositions, nor can it describe the chemical nature of compo~-
nents involved. This is evidenced by the fact that all the convergence
pressure-based K-value correlations are generally limited to aliphatic
hydrocarbons of which the chemical nature is similar. - Due to the lack
of theoretical background, the convergence pressure correlation for a
multicomponent system should be entirely based on empiricism, which is
a serious disadvantage of the K-value correlation. based on this corre-
lating parameter. A good review of the convergence pressure concept
and its application to the K-value correlation is given by Edmister (62),

The use of convergence pressure for a K-value correlation was first
proposed by Katz and Brown (92) in 1933. After this pioneering study,

many investigators including Katz and Hachmuth (91), White and Brown
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- (202), and Hadden (78) worked along this line until the years 1949
through 1953 when several notable convergence pressure~based K-value
correlations were presented by Rzasa et al. (175), Organick and Brown
(137), Winn (208), and Hadden (79) successively. These correlations
are particularly worth mentioning because they formed the bases for the
well-known NGPSA K-charts and Hadden-Grayson nomographic correlation.

Using the critical data on binary and complex hydrocarbon mixtures,
Rzasa et al. (175) devised a chart form correlation for estimating the
convergence pressures of complex hydrocarbon systems. The correlating
variables are the system temperature and the product of the molecular
weight and the specific gravity of heptanes-plus fraction. Using this
convergence pressure correlation, the authors also developed a K-value
correlation for normal hydrocarbons ranging from methane through n-
decane. The K~value correlation is a function of pressure, temperature,
and convergence pressure for the individual components.

Organick and Brown (137) developed a correlation by which the con-
vergence pressures of complex hydrocarbon systems can be predicted from
.system pressure, the molal average boiling point of vapor phase, and
the weight average molecular weight of liquid phase. - This correlation
was prepared from the critical and equilibrium data of binary hydro-
carbon mixtures containing methane as one of the components. However,
.it can be applied to any multicomponent mixtures with proper corrections,
Since this convergence pressure correlation includes composition effects,
a trial and error procedure is required to compute the phase composi-
tions as well as the convergence pressure. The authors claimed that
the correlation could be extended to systems containing small amounts

of inert gases, and other non-paraffinic hydrocarbons.
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Winn (208) developed a K-value correlation in nomographic form.
This correlation uses Hadden's method (79) for the estimation of con-
vergence pressures, and is applicable for temperatures from 40 to 800° F
and pressures from 10 to 5,000 psia for the systems containing light
hydrocarbons, narrow cut petroleum .fractions, and certain non-hydrocar-
bons. ' This correlation is relatively compact and easy to use.

Hadden (79) demonstrated that the convergence pressure of ternaries
or more complex systems is a function of the operating temperature and
of the liquid-phase composition excluding the concentration of the
-lightest component. In addition, the author introduced the concept of
quasi-convergence pressure for the vapor liquid equilibria at temper-
atures below the critical temperature of the lightest component and
showed its validity for binary systems. 'This convergence pressure cor-
relation is being used in many K-value correlations.

In parallel with.the investigations discussed above; Lenoir and
his co-workers <105, 106, 107, 127) developed a different K-value corre-
lation based on the convergence pressure. The final correlation was
prepared by Cajander, Hipkin and Lenoir (36) in nomographic form. The
nomograms use an intermediate parameter KlO which is the K-value of the
component in gquestion at the system temperature and 10 psia and at 5,000
psia convergence pressure, thus making the K-value a function of the
K10, the system pressure, and the convergence pressure. The~KlO values
are given in a series of 12 graphs for 58 pure hydrocarbons and 10
petroleum fractions. The convergence pressures are calculated from
the charts presented by Lenoir and White (105).

Based on the earlier work of Hadden (79) and Winn (208), Hadden

and Grayson (80) developed a correlation which uses only two primary
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working charts to relate K-value with the component identity, temper-
ature, pressure and convergence pressure. Ten other figures are
provided for determining the convergence pressure. This correlation. is
applicable for temperatures from -260° F to 800° F and pressures up to
10,000 psia for the systems covered by Winn (208). The A.P.I. Technical
Data Book (32) recommends this K-value correlation for desk use.

The most recent development in convergence pressure correlations
is the NGPSA K-charts (129). This correlation is an improved version
of earlier charts which were originally prepared by Fluor Corporation
from the data compiled by G. G. Brown and Fluor. The new K-charts cover
pressures from 10 to 10,000 psia and temperatures from -300° F to 500° F
for 12 aliphatic hydrocarbons ranging from methane to n-decane as well
as for nitrogen, carbon dioxide and hydrogen sulfide. Each of the 69
charts is a logarithmic graph of K-value versus pressure with a family
of constant temperature curves at a given values of convergence pres-
sure. The available convergence pressures in this correlation are 800,
11,000, 2,000, 4,000 and 10,000 psia. The new NGPSA K-charts, Hadden-
Grayson correlation and the correlation of Cajander et al. are partic-
ularly useful for high pressure range where the fugacity-based corre-

lations are inaccurate.



CHAPTER IV
EQUATION OF STATE

An equation of state not only provides a means of storing a large
amount of P-V-T data, but also facilitates the derivations of various
thermodynamic functions for many fluids. - The importance of an accurate
equation of state is reflected by the appearance of more than a hundred
such equations in literature. In spite of the presence of such a large
number of equations of state, none of them has been proven completely

satisfactory.
Reviews on Previews Equations of State

The earliest equation of state may be the ideal gas law which

.results from Boyle's and Charles' laws.
PV = RT (4-1)

This equation does not adequately describe the volumetric behavior
of real gases except at infinite attenuation. Hence a great many
attempts have been made in the past century to develop an equation of
state for the real fluids.

Van der Waals equation was the first equation of state that was

capable of expressing the continuity from gaseous to liquid states.
2 -
(P - a/T°) (V -~ b) =RT (4-2)

Though inaccurate, this equation deserves special mention because
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of its enormous contribution to the corresponding states principle and
te the later development of similar equations of state.

The constant "a" is assumed to account for the attractive force
between molecules and the constant "b", known as co-volume, is consi-
dered to reflect the volume of molecules. These two constants can be
determined from the critical point requirements as shown by the author,

i.e.,

[-QE] =[:QE§} =0 @ critical point (L-3)
oV ip oV ]y

The equation of state constants requiring only two of the three
critical properties for the complete definitions, are usually expressed
by the critical pressure and critical temperature, since the properties
are more reliable than the critical volume,

Several investigators including Clausius, Berthelot, Dieterici,
Wohl, and Redlich and Kwong, improved the van der Waals equation of
state mainly by modifying the pressure correction term a/V2. - Among the
many modified versions, the Redlich-Kwong equation (166) is believed to

be the most successful modification.

Nl

RT a/T

V-b V(V+D) (4-4)

P:

This equation was formulated using the assumption that the constant
"p" is 0.26 times of critical volume. - Despite the doubtful scundness
of this assumption, the resultant equation has been shown to be the
best two constant equation of state.  The evaluation of the Redlich-

Kwong equation is shown in Table I along with those of other equations



2L

of state.

Wilson (205) modified the Redlich-Kwong equation of state by making
the constant alt a. function of reduced temperature and of the constant
"b". Wilson introduced a binary interaction coefficient into the mixing
rule of "a" to improve mixture properties. Robinson and Jacoby (173)
studied.the temperature dependencies of the constants "a" and '"b" an@set}~
both constants as linear functions of temperature, and reported a number
of binary interaction coefficients to be used for the mixing rule of
”aﬂ. A more rigorous modification was performed by Barner et al. (12),
.who modified.the temperature dependency of R-K equation of state to im-
prove-;its prediction of second virial coefficient below the critical
temperature. Acentric factor was introduced to account for the compo-

nent identities.

RT (a7 + ¢/1°)
V-b o V(V+ D)

P= (4=5)

‘Barlier in 1927, Beattie and Bridgeman (14) proposed a five con-
stant equation of state which had no resemblance to the van der Waals

equation of state.

PV = RT [v +B (1 - — ] (1-—=)-40 —,-—) (4-6)
VT3

-This equation is perhaps the first satisfactory equation of state for
the quantitative discription of the real gas behavior. Owing to its
acceptable accuracy for the gaseous region, the Beattie-Bridgeman

equation of state was the most widely used equation until. the more
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sophisticated Benedict-Webb-Rubin equation of state appeared.in 1940.
Benedict and his co-workers (16),developed an eight constant
equation of state based on their empirical '"work content" expression

which was in part based on the Beattie-Bridgeman equation of state.

P = RVT +:(B,RT - A, - CO/T2)/V2;-1- (YRT - a)/v°

c .

T=v°

T a1 + == (1 + y/V?) exp(=y/T?) (4-7)

In a series of papers Benedict et al. (17, 18) presented various
thermodynamic functions derived from the equation of state and also
proposed the mixing rules and the technique to evaluate the constants.
Although many later investigations have extended its utility to many
substances other than those light hydrocarbons originally intended,
this equation still finds limited applications. Moreover, this com-
plex equation. inherently suffers from the unavoidable trial and error
solution for density.

“Many efforts have been made to generalize the Benedict-Webb-Rubin
equation of state. Relatively successful generalizations were accom—
plished by Su and Viswanath (193) and by Edmister et al. (65). . Su and
Viswanath used the critical temperature and pressure as the correlating
parameters, but Edmister et al. used an additional parameter, the
- Pitzer's acentric factor, to. improve the accuracy of the equation.

Another interesting work in this field is the work of Hirshfelder
et al. (87). The authors developed a generalized set of equations of
state based on the critical temperature, critical pressure, critical

compressibility factor, and the Riedel's third parameter. - Three reduced
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form equations were proposed, one for each of three regions of P-V-T ‘
diagram. - These equations are fairly complicated.

Recently, Martin (114) proposed a more complicated, but reportedly
more satisfactory equation of state by complementing his previous equa-
tion of state (115). Because of the limited information on the con-
stants and the mixing rules, this equation has not attracted very great
attention.

All the foregoing egquations of state are empirical or at best semi-
theoretical, but they are in closed form, which is of great advantage
for practical application.

In contrast to those equations of state mentioned above, the virial
equation of state has a theoretical meaning in the view of statistical

mechanics, but has the form of an infinite power series of density,

which is not convenient for practical usage.
- 2 3 .
P = RT(1/V + B/V* -+ C/V° -+ ...) - (4-8)

This equation, however, is worth reviewing, because all the fore-
going equations bear a formal resemblance to it when expanded into
infinite series, nevertheless the numerical values obtained for the
coefficients will not correspond to the true virial coefficients.

The virial equations, originally suggested by Onnes (136) as early
as 1901, can be derived by the methods of statistical mechanics, from
which the virial coefficients take on physical significance as reflec-
ting the molecular interactions of particular numbers of molecules.

Another infinite series eqguation of state is the orthogonal poly-
nomial form proposed by Ping and Sage (140). This equation uses nor-

malized independent variables (density and temperature) for the
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Tchebichef and the Gram polynomials. The authors proposed two forms,
namely, the Tchebichef-Gram form and the Tchebichef-Tchebichef form,
depending on the polynomials used for the density and the temperature.
This equation, however, was not widely accepted due to the peculiarity
of such polynomials.

The evaluations of a certain number of well-known equations of

state were given by Shah and Thodos (185) and by Martin (114).
Development of a New Equation of State

This new equation of state has been specifically designed for the
vapor phase with three main objectives: (a) analytical solvability, (b)
generality, (c) capability of representing fugacity coefficients and
ehthalpies with accuracy. None of the avéilable equaﬁions éf state
pbssesses.the three characteristics altogether. These three capabili-
ties are highly desired in K-value correlation in which (a) the solution
of an equation of state is involved in a loop of trial and error calcu-
lations (b) many different components require similar mathematical or
thermodynamic treatments (c) accurate fugacity coefficients are needed
over wide range of conditions.

Among various models tested, the following equation was chosen
over the others.

RT a + c

P=(V-b) "YW -b) V(U -1b)(V T b) (4-9)

The most frequently used critical point requirements as given by Equa-
tion 4-3 were ignored in favor of the improved capability of represen-—
ting the second virial coefficients, the vapor pressure, and the volu-

metric behavior around critical region. The accurate representation of
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enthalpy is closely related to the ability of describing the second
virial coefficient as shown below. From the virial equation truncated

after the second term one can show that

(4-10)

The accurate values of g% can hardly be obtained without having a well-
behaving temperature function of second virial coefficient.
The three parameters a, b, and ¢ in Equation 4-9 were converted

to dimensionless forms by writing the equation in a reduced form.

T 1 1
PI‘= ‘I‘ T T |a |+|(| rc(l T
(Vr -b) Vr(Vr -b) V. V., -Db ) V., T b )
(4-11)
1
where = VPC/Riq
1
b = ch/RTc | (4-12)
a' = aPc/R2T§ ' : (L-13)
¢ = cPi/RBTz (4-14)

In view of the temperature functionality of second virial coefficient,

a' was assigned by the following temperature function.

1 ! ! ! ! 5
= -— + —
a a; - aT, a3/Tr +'ah/Tr (4-15)
The temperature dependence of ¢’ was arbitrarily determined to improve
the overall representation of P-V-T data, especially the data around
critical region.

c =c'/T%--t-c'/T2 (4-16)
1 r 2 r
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The constant b' was assumed independent of temperature.

1 !

The constants al: a2: a3, ahz b, 01: and cz‘were determined by
performing simultaneous curve fits to the P-V-T and fugacity data of
Canjar and Manning (37) and to the second virial coefficient data of
McGlashan and Potter (119). These constants were first obtained with
the restriction of the critical point requirements. But the restriction
was removed later because applying the critical point requirements
results in a universal critical compressibility factor of 1/3 as shown
in Appendix B. All the constants but b' were nearly linear with acen-
tric factor. Therefore, by forcing every constant to be a linear func-
tion of acentric factor, the regression analysis was repeated to obtain
the best set of constants.

Baer's non-linear regression program (10) was partly revised and

used in this analysis. This program minimizes the sum of squares of

normalized dependent variables.

' 2 2 2
v f B
_ calc calc calc _ _
SS..E ‘_/__..1 +w1§ f____l +W2§ 5 1 (4-17)
expl expl expl

The weighing factors relavent to the fugacity and the second virial co-
efficient were given by 0.5 each, since the uncertainty incorporated
with those data are generally larger than that of P-V-T data. ' The
value of b' determined in this way was about 0.12. But the mixture
applications of this equation indicated that b' should be smaller than
0.1 to avoid instability near the mixture critical points. Therefore,
.the regression analysis was repeated with b' restricted to the value
less than 0.1. This restriction resulted in a slight loss of accuracy
for pure components. Another restriction imposed on the determination

of the constants was that each constant must be greater than zero for
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any value of @ between zero and unity so that no difficulties would be

encountered when mixing rules are applied to these constants.

The upper

limit w.= 1.0 was arbitrarily set, but 1s sufficiently high to. include

most of the substances of interest.

It is also suggested that zero

value of @ be assigned to the substances whose w is less than zero. The

finally obtained constants are as follows.

b = 0.0982

a; = 0.25913 - 0.031314 w
= 0.0249 1 0.15369 w
ag = 0.2015 + 0.21642 v
aA = 0.042 w

= 0.059904 (1 - w)

= 0.018126 + 0.091944 w

(4-18)
(4-19)

- (4=20)

(4-21)
(4-22)
(4-23)
(4-24)

Combining Equations 4-13 through 4-16 with Equations 4-18 through

L-2), yields the follewing expressions of the three parameters that are

involved in Equation 4=9.

where

'RTC

= . , 5
.a =a, - a2T + a3/T +'aA/T

1

o
i

3 2
Cl/T + c2/T

2 2

L ET
1 P
C

(0.25913 - 0.031314 w)

2
_ R TC
a, 5
c

(0.0249-+ 0.15369 w)

(4=25)

(4=26)

(L4=27)

(4-28)

(4-29)
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RZTS
ag = —p— (0.2015 + 0.21642 w) (4=~30)
(e}
it ( ) (4-31)
a, = 0.042 @ 4-31
L TP,
p373-5
(e}
°p = =7 0.059%0k (1 - w) - (4-32)
C
R3T )
c, = - (0.018126 -+ 0.091044 w) (4-33)

C

- Equation 4~9 and Equations 4-25 through 4-33 constitute the pro-
posed equation of state for vapor phases. The derivations of various
thermodynamic functions from this equation of state are given in

Appendix C.
- Mixing Rules

Due. to the complexity caused by composition effects, an equation
of state is customarily derived for pure substances and then applied
to mixtures employing appropriate mixing rules. Such mixing rules are
usually determined arbitrarily.

Gillespie (73), and Beattie and Ikehara (15) studied the mixing
rules for equations of state mostly by analyzing the second virial
coefficients of mixtures. The second virial coefficient for a gaseous

-mixture of N constituents is given exactly by
N

N
B==§E: ZZ: Vs yj Bij (4-34)

i=1 3=1

If Bij = (Bi,+ Bj)/2;Equation 4=3L is reduced to a.linear mixing rule
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N
B = i
> ¥, B (4-35)
i=1
. 1 '
“If Bij = (BiBj)z, Equation 4-34 is simplified to a square root mixing
rule
N . _%_ 2
i=1 :

Beattie and Tkehara suggested that the square foot mixing rule
be used for the constants such as "a" in Equation 4~9 if the linear
mixing rule is used for "b".

For lack of knowledge in three body interaction, the mixing rules
for the third virial coefficient have not been extensively studied. If
C represents the third virial coefficient for a gaseous solution of N

constituents, it is given by

N N
=> 2 > ¥y C 13k (4-37)

N
=1 =1 x=1

It is interesting to note that Equation 4-37 is reduced to the same form
i 1 1

as Equation 4-34 if cijk = [(Cicj)2'+ (CiCk)§ T (CjCk)z]/B, and to the

form of Equation 4-35 if Cijk = (Cy + Cj +C,)/3. Equation 4-37 is also

simplified to the following expression when Cij (C C Ck)l/3 is

assumed.
N 3 3
c =[Z g cil/j] (4-38)
i=1

Benedict et al. (17) used this mixing rule for some of the constants of
their equation of state. After all, the mixing rules given by Equations

L=35, L4=36 and 4-38 are special forms of Equation 4-37.
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Based on the suggestions of Beattie and ITkehara, and of Redlich
and Kwong, and of Benedict et al., the following mixing rules are re-

commended when-Equation 4-9 is used for the mixture property evalua-

tions.
-_N 172 .
a;[Z Vi agi] » (3=1,2,3, 4 - (4-39)
=1
N
b =Z Y5 bi (-/—;—/-LO)
i=1
N )
_ /312 . _
Cj _[Zl Vs Cji] , (3=1,2) (L=41)
l: 3

. These mixing rules, however, are not completely adequate for the
evaluations of partial properties including the fugacity coefficients of
a componént in a mixture particularly when the component of interest is
diluted. Thus, a modified set of mixing rules are recommended for the
calculation of fugacity coefficients. The modifications are given in

Chapter V.
- BEvaluations

The proposed equation of state has been evaluated and compared with
four other equations of state in the capability of representing the den-
sities and second virial coefficients. 'The evaluations for the fugacity
coefficlents and the isothermal enthalpy.differences are given in Chap-
ters V and IX.

Table I presents the average absolute percent deviations of the
five equations of state in predicting the densities of 13 pure sub-
stances in the vapor phase. These evaluations were made‘against the

‘tabulated data of Canjar and Manning (37). The‘compressibility factors



TABLE I

COMPARISON OF PURE COMPONENT DENSITIES
FROM FIVE EQUATIONS OF STATE

“Average Absolute % Deviations of

Conditions Densities from Canjar and Manning Data (37)
~ Number T. P - Redlich ~ Barnér  Benedict  Edmister  Equation
of . max. —Kwong et al. et al. et al.

Substance  Points °F PSIA  _(166) (12) (16) (65) L=9
Nitrogen 63 =320 5,000 0.955 0.915 - 0.904 0.739
Carbon Dioxide 68 - 65 3,000 0.848 0.783 0.772 0.772 0.805
Methane 115 =250 5,000 0.606 0.589 0.384 1.145 0.225
Acetylene 51 =113 1,400 2.341 1.650 - 1.449 1.278
Ethene 78 =155 3,500 1.102 0.814 0.422 0.666 0.562
Ethane 71 -128 3,500 0.933 0.435 0.394 0.386 0.298
Propene 86 - 54 3,500 1.475 1.003 0.420 0.672 0.501
Propane 81 - 43 3,500 1.378 0.537 0.327 0.415 0.263
i-Butene 5L 32 1,000 1.144 0.837 0.481 0.481 0.448
i-Butane 81 11 3,500 2.250 1.438 0.276 1.011 0.741
n-Butane 75 40 3,500 1.585 0.676 0.434 0.401 0.411
n-Pentane 76 97 3,500 2.050 0.832 0.562 0.350 0.336
n-Hexane 55 160 600 2.987 1.635 1.550 1.510 1.059

ki3
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of six hydrocarbon binary mixtures are compared in Table II (153, 156,
157, 158, 163, 179).

From Tables I and II, one can see that Equation 4~9 1s more accu-
rate than any other generalized equations of state and as accurate as
the Benedict~Webb-Rubin equation of state. ' The accuracy of the proposed
equation of state is further verified by the high performance of derived
thermodynamic functions as will be shown in the following chapters.

In Table III the second virial coefficlents calculated from six
different expressions are compared with experimental values of McGlashan
and Potter (119). The six expressions include the second virial coeffi-
cient expressions derived from Equation 4-9, Redlich-Kwong (166),
Benedict et al. (16), and Martin (143) equations of state, and the
expressions of McGlashan and Potter (119) and Gurl and Pitzer (56).

The second virial coefficient expression derived from the proposed

equation of state is

~RT

B=_C [(0.1231 - 0.25913/T,, - 0-2015/Tr2)

P

+w (0.15269 + o.03131A/Tr,- O.216A/T;2- 0.0AZ/Tf’)]
(4-42)
The derivation of .this equation is given in-Appendix C.

-The agreement of Equation 4—-42 with experimental values is. satis-
factory in that it is derived from an equation of state. - It is inter-
esting to note that the values obtained from Equation 4-42 generally
lie between. the corresponding values of McGlashan and Potter, and Curl

and Pitzer expressions.



TABLE- IT

COMPARISON OF Z VALUES FROM FOUR GENERALIZED -EQUATIONS OF STATE WITH

EXPERIMENTAL DATA FOR SIX HYDROCARBON BINARY MIXTURES

System
Methane:Propane
Methane-n-Pentane
Methane-n-Decane
Ethane-n-Pentane
Ethane-n~-Decane

Propane~n~Decane

Overall Average ‘Absolute Percent Deviations of 112 Points :

Conditioéé» _ _ A&éfégé'Absoluﬁe Pefceﬁt Deviétiéhs 'h
Number Toin Poax Redlich = Barner  ‘Edmister = '
Refer- of ) ) -Kwong et al. et al. Equation
ence - Points °F__ PSIA (166) (12) (65) 4=9
163 21 L0 1,300 2.287 3.404 2.096 1.869
179 26 160 2,338 1.525 2.466 1.136 0.939
157 18 100 5,000 2.269 3.883 1.320 1.513
153 15 100 800 6.124 6.560 5.499 4.209
156 16 160 1,500 2.061 5.151 3.629 2.166
158 16 160 600 1.183 2.086 1.681 1.30
2.431 3.747 2.364 1.871

3



TABLE IIT

COMPARISON OF SECOND VIRIAL COEFFICIENTS FROM
SIX EQUATIONS WITH EXPERIMENTAL VALUES

Percent Deviations of Second Virial Coefficients
Temp. Experimental Redlich Benedict McGlashan  Pitzer

: B cmﬁ/g—mol -Kwong Martin et al. Equation -Potter =Curl
Substance °K (119) (166) (113) (16) L=42 (119) (142)
Propane 295.4 -399.0 ~7.157 27.,482 6.885 2.243 -0.912 2537

337.8 -299.0 -2.501 10377 4.110 2.568 -0.515 2.520
3T -229.0 3457 0.255 L.527 5.177 2.470 L.514
412.9 -182.0 " 9,585 -5.768 6.319 8.397 6.354 6.998
n-Butane 296.4 -720.0 -16.231 L0.051 L.84L7 1.684 0.603 2.531
337.8 -533.0 -9.688 21, .885 3.814 2.349 0.574 3177
377.9 -410.0 -3.824 13.114 3.666 3.940 1.824 4.316
L13.4 -322.0 3.874 7.638 6.88L 8.481 6.395 8.180
n-Pentane 298.2 -1194.0 -26.457 40.566 10.201 -0.036 0.339 1.154
339.0 -863.0 -18.087 30.282 9.454 0.989 0.360 2.465
378.9 -652.0 -10.610 20.943 8.922 3.266 =517 L.570
413.6 -517.0 -3.542 15.002 9.759 6.695 L.653 7.493
n-Hexane 313.5 -1676.0 -33.935 31.320 1.201 =3.573 -2.274 -2.056
354.0 -1194.0 =21, .400 26.429 3.092 -1.282 -1.160 0.620
387.2 -913.0 -15.234 2L 471 6.605 3793 2.800 5.741
413.1 =771.0 -10.362 19.804 6.589 5423 3.745 7.150
n-Heptane 349.4 -1819.0 -28.807 32.496 -2.809 3.810 5.670 6.149
368.5 -1560.0 -24.107 30.905 -1.530 5.000 6.218 7.550
389.1 -1325.0 -18.551 29.877 0.487 T.k5S 7.926 10.143
L13.7 -1108.0 -12.366 27.829 2.337 10.248 9.84L7 12.899
Average Absolute Percent Deviations 14.139 22.975 5.202 L.319 3.318 5.138

LE



CHAPTER V

VAPOR PHASE FUGACITY COEFFICIENT

The vapor phase fugacity coefficient is one of the three major
. thermodynamic functions that are used in the present K-value correlation,
The fugacity coefficient of a component is defined as the ratio
of the fugacity of that component in actual vapor to the fugacity that
would exist in ideal gas state, thus indicating the component's depar-
ture from ideal gas behavior.

AV
g, = ;—;— (5-1)
i
- The fugacity of a component in a phase is rigorously related to the
volumetric properties of that phase. The functional relationship can
be derived from.basic thermodynamic laws. At constant composition and
temperature

Gy _
(a =7, (5-2)
.y .

Combining Eguation 5-2 with 2-4 gives

(alnfi)
oP T

V.
= = -
o (5-3)

>

a
Integrating Eguation 5-3 from zero pressure where fi = Pyi to system

pressure gives the following expression.
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== | @ -y (5-4)

For pure component "i'" for which ¥y = 1.0 and Vi = Vi,‘Equation 5-4
becomes
P
f.
1n E;.=‘é% (v; - %g) dp (5-5)

Equation 5-4 is useful for evaluating the fugacity coefficient from
the measurements of pressure and partial molal volume taken at constant
composition and temperature. However, such experimental data are gen-
erally tedious and time consuming to obtain. - Thus, one customarily
uses an equation of state in representing the P-V-T composition data
necessary. for the calculation of the fugacity coefficient.

Since most equations of state are of the pressure-explicit form,
it is more convenient to express Equation 5-4. in a volume integral form.

Beattie (13) derived such an expression starting with the Helmholz free

energy relationship to obtain

co
In #; =2 [(ZE U dVy - 1n Z (5-6)
RT) ['&ny T,V ,n, Vg
Vy v

‘From this expression and any pressure-explicit equation of state, one
can derive the fugacity coefficient as a function of pressure, temper-
ature and composition. But the derived function generally does not
yield accurate values of the thermodynamic property, mainly because
of the arbitrariness of the mixing rules associated with the equation

of state used. The empirical nature of the equation of state may be
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another source of error. Nevertheless, this is apparently the best
method available at present.

The Benedict-Webb-Rubin equation of state and the Redlich-Kwong
equation of state have been most widely used for this purpose. ' The
virial equation of state truncated after the second term.is also fre-
quently used for low and moderate pressure ranges. In this investiga-
tion the equation of state derived in Chapter IV is used, because it has
many advantages which are shown in the related chapter. - The fugacity

coefficient expression derived from Equation 4-9 is

‘Ai - aB
In @, =B(Z-1) -1nZ+ (W - 1) 1n(1 - —)
0.5C. — cB. 2
- (——=———) In(1 - %) (5-7)
RT b v
where B, = bi/b - (5-8)

b=
I

N
N 2Eal all)% - (a2 o4 )2T + ag (Z v le BJ)/T
=1

1oy 205
%ﬂ_Zl T3 ﬁij 2,3/ (5-9)
J= N

Q
l

i 3[cl(cli/cl)l/3/T%

oL/ ZZ 75 7 Bs ilens o0/ } (5-10)

=1 k=1

The derivation of. these expressions is given in Appendix C and the
interaction coefficientscfij,/gij, and 6Ejk are given by Equations 5-14

- through 5-16.
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- The accurate evaluation of the fugacity coefficient expfeésion‘is
practically impossible, because the fugacity coefficient can not be
measured experimentally. ‘One way of evaluating such a. thermodynamic
property expression is to compare the fugacity coefficients calculated
from the expression with the values obtained from the direct integration
of experimental P-V-T data of pure components. ' Table IV shows such
evaluation results of five different fugacity coefficient expressions,
as referenced. The evaluations were made against the fugacity coeffi-
cient data compiled by Canjar and Manning (37).

The accurate prediction of pure component fugacity coefficient,
however, is not necessarily the indication that the fugacity coefficient
expression would also be satisfactory for the fugacity coefficient of a
component in a mixture. This statement is especially true for the com-
ponentbthat is diluted in the mixture. 'Itbié mainly due to the striking
effect of the mixing rules on the caloulated fugacity coefficients of
minor components.

In Table V the component fugacity coefficients that are calculated
from four different equations of state are given. The‘tablevshows that
the calculated fugacity coefficients of light components are not sen-
sitive to the expressions, nor to the mixing rules, whereas those of
heavy components are highly dependent on both the expressions and the
mixing rules. The effect of mixing rules on the heavy component fugaci-
ty coefficient is demonstrated in the last two columns of this. table.

As is evident from Table V, care must be exercised in formulating
the mixing rules to be used for the calculation of partial properties
including the fugacity coefficient. - In the past the great concern in

mixing rules has been focused on the capablility of representing the



TABLE IV

COMPARISON OF PURE COMPONENT FUGACITY COEFFICIENTS
FROM FIVE EQUATIONS OF STATE

Average Absolute % Deviations of Fugaéify«

Conditions o Coefficients from Canjar and Manning Data (37)
Number Thin P ... . Redlich Barner Benedict  Edmister  Equation
of ) ’ -Kwong et al. et al. et al.
Substance ~  Points °F PSIA (166) (12) (16) (65) c-13
Saturated o
Methane 13 =250 527 0.616 0.575 0.189 2.637 0.393
Ethane 12 -100 632 1.189 0.347 0.421 2.796 0.287
- Propane 13 - 20 525 1.112 0.229 0.915 1.262 0.284
n-Butane 12 40 437 1.476 0.376 0.469 0.430 0.553
n-Pentane 14 100 393 1.814 0.365 0.982 1.425 0.265
Overall Average Absolute Percent Deviations: 1.248 0.379 0.606 1.719 0.353
Superheated ,
-Methane 10 -200 3,000 0.920 0.829 0. 744 1.816 0.191
Ethane 11 0 3,000 1.246 0.349 0.677 0.680 0.262
Propane 11 100 2,000 1.499 0.665 0.308 0.679 0.324
n-Butane 11 180 1,000 0.914 1.311 0.241 0.609 0.305
n-Pentane 10 240 700 1.179 0.93 0.563 1.268 0.600

Overall Average Absolute Percent Deviations:ll.léﬁ 0.776 O.5i2 ' 1.063 0.335 ”

Zh



TABLE V

COMPONENT FUGACITY COEFFICIENTS CALCULATED
FROM FOUR EQUATIONS OF STATE

- - .5'

Fugacity Coefficients of light Components

Redlich Benedict Edmister Equation 5-7

Temp. Pressure y of Light -Kwong et al. et al. Mixing Rules

System OF PSIA Component (166) (12) (65) Original Modified

Ho-Cyclohexane 100 500 0.9921 1.021 —_ 1.023 1.027 1.027
(26) 2,000 0.9969 1.087 - 1.103 1.733 1.113
4,000 0.9973 1.186 - 1.231 1.242 1.242
280 500 0.8582 1.030 - 1.036 1.038 1.038
2,000 0.9503 1.075 - 1.091 1.099 1.098
4,000 0.9651 15150 - 1.189 1.198 1.197
Methane-n-Heptane 160 1,000 0.9804 0.935 0.937 0.934 0.942 0.942
(162) 2,000 0.9705 0.889 0.892 0.887 0.901 0.901
340 200 0.5047 1.066 1.082 1.093 1.090 1.090
1,000 0.8260 1.021 1.029 1.030 1.038 1.037
2,000 0.8041 1.058 1.080 1.081 1.097 1.090
Ethane-n-Decane 220 100 0.9817 0.975 - 0.976 0.976 0.976
(74) 500 0.9934 0.878 - 0.882 0.883 0.883
1,000 0.9919 0.767 - Q.TTY 0.776 0.776
400 200 0.8362 0.985 - 0.992 0.992 0.993
600 0.9118 0.940 - 0.950 0.952 0.952
1,600 0.8389 0.897 - 0.944 0.950 0.965

el



TABLE V (Continued)

" "Fugacity Coefficients ef Heavy Components

Redlich ~ Benedict =~ Edmister _- Equation 5-<7
Temp. Pressure y of Heavy —Kwong et al. et al. __ Mixing Rules
System °F  _PSIA _ Component = _(166) _(12)  _ (65)  Original Modified
H2-Cyclohexane 100 500 0.0079 0.960 - 0.98L 0.971 0.915
(26) 2,000 0.0031 0.950 - 1.090 1.011 0.820
» 1,000 0.0027 1.042 — 1.370 1.157 0.813
280 500 0.1418 0.860 - 0.8L6 0.8L7 0.832
2,000 0.0497 0.893 — 0.941 0.914 0.8L46
1,000 0.0349 1.003 - 1.164 . 1.066 0.931
Methane-n-Heptane 160 1,000 0.0196 0.376 0.403 0.417 0.350 0.353
(162) 2,000 0.0295 0.154 0.163 0.175 0.120 0.129
3.0 200 0.4953 0.761 O0.7L7 0.730 0.724 -0.724
1,000 0.1740 0.472 O0.48L 0.479 0.438 0443
2,000 0.1959 0.2L7 0.251 0.250 0.206 0.220
Ethane-n-Decane 220 100 0.0183 0.826 - 0.816 - 0.795 0.814
(74) 500 0.0066 0.376 - 0.370 0.319  0.360
‘ 1,000 0.0081 0.121 - 0.118 0.082 0.105
LOO 200 10.1638 0.764 - 0.754 0.725 0.736
600 0.0882 0.500 - 0.518 0.456 0.481
1,600 0.1611 0.129 - 0.116 0.081 0.082

O e oy o ot o e S

7
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mixture properties, not the partial properties.. Consequently a good
formulation of mixing rules must be preceded by an extensive study on
the capability of mixing rules of predicting the partial properties as
well as the mixture properties. This kind of study, however, requires
a considerable amount of time and efforts. Thus, in this investigation
attentions were paid solely to the mixture volume and the fugacity co-
efficient of heavy component. It should be noted that the pure liquid
fugacity coefficient is a real state property and the activity coeffi-
cient is close to unity for the heavy component in a binary mixture.
Therefore, only the fugacity coefficient can be arbitrarily adjusted,
when Equation 2-11 1s applied to the heavy component; This fact to-
gether with the high sensitivity of heavy component fugacity coefficient
to mixing rules leads to the modification of the mixing rules.

The heavy component fugacity coefficients calculated via Eguation
5=7 generally indicated that the quantities should be corrected at low
temperatures and near the critical region to satisfy Equation 2-11.
Therefore, the mixing rules for the constants a3 and a, were modified
for the correction of the fugacity coefficients at low temperatures,
and the mixing rule for c, was modified for the adjustment of the

property around the critical region. The modifications are as follows.

N N 1
Z Zyl Y = O(lJ(ajl 3.]) (5—11)
i=1 j=1
N N 1 \
3, = EZ: Z;;yl ; 13( L1 4J) (5-12)
i=1 =1 .
N N N
bt 1/3
2 >j 22 35 V5 0B 38 o5 ) (5-13)
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As these constants are associated with energy terms, the interaction

coefficients were expressed in terms of critical temperatures as follows.

iam
of 2(TCi TC.)2 1
i3 " ———L‘T T (5-14)

R I S < -
Py = == (5-15)

(5-16)

The exponents ml, m, m3 were determined by regression analysis. The
detailed description of this analysis is given in Chapter VIII, but the

values of the constants are given in this chapter (Table VI).

TABLE VI

CONSTANTS FOR VAPOR PHASE INTERACTION COEFFICIENTS
IN EQUATIONS 5-14, 5-15, AND 5-16

1 2 3
Hydrogen Binaries -1 -8 -3
Nitrogen Binaries o) -5 -2
Methane Binaries o) =5 -2

Others 2 7 '5




CHAPTER VI
LIQUID FUGACITY COEFFICIENTS OF PURE COMPONENT

The fugacity of a pure liquid is frequently used in defining the
activity coefficient expressing the departure from ideal solutions.

But a satisfactory analytical correlation for this thermodynamic pro-
perty has not been developed except for a few tabular correlations.

The Chao-Seader (41) correlation is in equation form but this expression
does not represent the actual values of the fugacity coefficient, espe-
cially at temperatures lower than T, = 0.8, below which the correlation
is good only for the corresponding Chao-Seader K-value correlation.

Since this chapter discusses the pure component properties only,
the subscripts indicating the component identity are omitted throughout
the chapter.

Lydersen et al.(112) calculated the fugacity coefficient from their
generalized compressibility factor and tabulated the values as a func-
tion of T,, P, and Z, over a range of Ty, = 0.5 to 1 and P, = 0.0l to 30.

Curl and Pitzer (56) constructed similar tabulations using w as
the third parameter over the conditions of Tr = 0.8 to 1.0 and Pr = 0.1

to 9. The authors presented the following expression for wv.
log v = log vO + w log v (6-1)

Recently Chao et al. (43) calculated v values using low vapor

pressure data (194) over the conditions of T, = 0.35 to 0.75 and P_10.

L7
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and presented two generalized tabular correlations, w being the third

parameter of one and Zc the third parameter of the other.
Real Iiquid Fugacity Coefficient of'Pure Component

The objective of the work described. in.this section is to develop
a generalized analytical equation for the fugacity coefficient of pure
- liquid hydrocarbons, as the correlation is to be used in a computer
algorithm for the prediction of vapoer-liquid K-values. ' The performance
requirements of this equation are: ., (a) agreement with v values calcu-
lated from>P—V—? gata over wide range of conditions and (b) satisfactory
. representation of the isothermal enthalpy differences obtained from the
temperature derivatives of 1n v.
This fugacity coefficient equation i1s limited to "real" liquids
and is not intended for "hypothetical" liquids, thus fixing T, = 1.0 as -
the upper temperature limit. - The lower temperature limit is set at:
Ty = 0.4 below which sufficiently accurate input data are not available.
Also T, = 0.4 seems to represent a satisfactory lower limit for a gen-
eral purpose correlation, excluding cryogenic conditions.
Values of fugacities, for use in developing the desired empirical
equation, were obtained from following thermodynamic relationship.
P o
In £ =1n vs+1n.ps+$ vl gp (6-2).

pS

Since fugacities are identical for coexisting equilibrium vapor and
liquid, the values of v® for the saturated vapor can. be used as those -

of saturated liquid.

Values of vs, v° and ps for methane through n-pentane were taken



49

from the tabulations of Canjar and Manning (37) for the temperature
range of T, = 0.6 to 1.0. As the tabulations contain no data at sub-
atmespheric conditions, the vapor pressure and. liquid volume data in
the range of T, = 0.4 to 0.6 were obtained from other sources (5, 11,
125, 189, 194).  The v® values in this low temperature range were calcu-
lated from the equation of state derived in Chapter IV. The latter is
justified by the fact that (a) the variation of v° is between 0.97
and 1.0, and (b) the equation of state has a satisfactory performance
at this. low vapor pressure condition.

In evaluating the Poynting effect, i.e., the last term in Equation
6-2, the Chueh and Prausnitz (49) correlation of liguid molal volume

was used.
vh = [1 + 9/3(P ] L/ (6-3)

where
1
/3= Zo(1 - 0.89 w?) exp(6.9547 - 76.2853 T,

+191.306 T2 - 203.5472 T2+ 82.7631 T ) (6-4)

- The frequently made assumption that VL is independent of pressure is
not satisfactory at temperatures above Tr = 0.7.
Integrating Equation 6-3 with respect to pressure between the vapor

pressure and system pressure gives

) P S 8/9
& Ve = 8RTﬁ { 9,6(P } -1 (6-5)

pS
- When the bracketed term is expanded into an infinite series, Equation

6-5 becomes
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S S
1 L PV s - PVP 5.2
— | VdP = (p_ -P - P_ - P )+ ... - (6-6
RT S "RT T r ) 2RT ( r r ) ( )

The first term of the right-hand side of Equation 6-6 is identical to
the term that would result when the liquid volume is assumed incompress-—
ible. Since the effects of third and higher terms were negligible, the

series was truncated after the second term and rearranged to give

f 2
In = = Fj + F,P, + F4P] (6=7)
c
S8
vV
where Fi = 1n v° * 1n P;;— Eﬁf—(; +‘€;P;;) _ (6-8)
PV .
2= %3 (HﬁPr ) (6-9)
: s
rP'V/9
c
F, = - -
3 2RT (6-10)

As vs, p°, and V° are all functions of temperature and independent of
pressure, Fl’ F2, and F3 are also functions of temperature only.- More
convenient ﬂemperature functions than Equations 6-8, 6-9, and 6-10 were
desired. An empirical form for these functions can be deduced from a
fugacity~enthalpy relationship. The isobaric temperature derivative

of In f. is related to the isothermal enthalpy difference by

2ln f
o7

)P = (K° - H)/RT? (6-11)

Integrating Equation 6~11 at constant pressure, combining with
H =// pdT, and Cpr= bl +-b2T'+'b3T2 and expressing the temperature in

reduced form gives the following expression.
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f
1n == B, *+ B,/T, * By In T, + BT, + BeT
¢

2
r

(6~12)

This form is more convenient than Equations 6-8, 6-9, and 6~10 for the
temperature effects. It also has semi-~theoretical justification, as
shown above. Thus, an empirical equation of this form after being fit-
ted to derived fugacities should also fit enthalpy difference values.

F, and F, were recasted by fitting Equation 6-12 to the values
obtained from Equations 6~-8 and 6-9, and F3 was approximated by a single
constant function of temperature.

- The constants obtained in this manner were all nearly linear with
the acentric factor. Therefore, all the constants were forced to be
linear functions of w and readjusted by fitting the resulting equation
to the values of f/PC obtained from Equations 6-2 and 6-5. In this
fitting operation a Ti term was added to improve the enthalpy prediction
near the critical region. This prediction is made via Equation 6-11.
The deviation function which is multiplied by w was simplified to a more

convenient form without loss of accuracy. The final equation is

Inv =4y +Ay/T, + Ay In T, + 4,72+ a,7
6 3.2
+ (Aé/Tr-+ Ap In T, + AT, )»Pr-+A9Tr P - 1n P,

To [(1 = T (A + Ayy/T,) o AP /T + AT Prz:,

(6-13)
where A, = 6.32873 A, = -8.45167
A3 = -6.90287 A4 = 1,87895
A5 = —Q.33AA8 A6»= -0.018706
A, = -0.286517 Ag = 0.28940

Ag = -0.002584 A1g™ 870150
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-11.201 = . Ayp = -0.050LL

0.002255

-
|

Evaluations

Values’qf v from Equation 6-12 ére compared with other values in
Figures 1 through 5. Figures 1, 2, and 3 shéw.the v values of methane,
népentane, and n—deqane over the conditions of Tr = 0;6 to 1.0 and Pr =
0.1 to 10, while Figures 4 and 5 aré_for propane and n-decane at T, =
0.4 and 0.5. On these Figures the solid curves are from Equation 6-12
and the dashed iines are from the Chao-Seader (41) equation. Other
v values ‘shown on thése ploté are the values of Curl and Pitier (56),
Chao et al. (43) and also some values of v that were calculated for
probané at Tr = 0.4 and 0.5 via Equations 6—2band 6-5, using the vapor
pressure data of'Ticknef and lossing (19A) and the liquid volume data
from A.P.T. Research Pfdject Ll (5). |

As can be seen on Figures 1, 2, and 3, the proposed equation agrees
very well with the tabular values of Curl and Pitzer (56). Agreement
»betﬁeen thé proposed eqﬁation and the Chao ét al. (43) correlation
valﬁes is only féir.at the lower temperatures despite the fact that
the same experimental data were used in both studies. An average dif- .
férence of about five percents was obsefved. In order to ascertain the
possible Sources of the difference, the fugacity coefficiénts of propane
were calculated at Tr = 0.4 and 0.5 using the éame method as was used
by Chao et al. In Table VII these'valuesvare compared with the values
obtained from the present calculation method, and alsé with the valueé
| predicted via the Chao et al. and the present correlations. .

As shown in the table, the v values from Equation 6-13 agree with
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TABLE VII

COMPARISON OF LIQUID FUGACITY COEFFICIENTS
FOR PROPANE AT IOW TEMPERATURES

~Conditions v Values
T, P, Chao et al. (43) This Work
Calqulated Predicted Calculated Predicted
0.4 0.5 0.109 x 107 0.105 x 1073 0.109 x 1073 0.108 x 1073
1.0 0.610 x 1074 0.540 x 107% 0.610 x 1074 0.607 x 107*
3.0 0,320 x 1074 0.299 x 1074 ' 0.319 x 1074 0.318 x 1074
5.0 0.303 x 1074 0.254 x 107% 0.300 x 1074 0.300 x 1074
0.5 0.5 0.380 x 1072 0.381 x 1072 0.381 x 1077 0.378 x 1072
1.0 0.209 x 107° 0.210 x 1072 0.210 x 1072 0.208 x 1077
3.0 0.102 x 1072 0.106 x 107 0.102 x 107% 0.102 x 1072
5.0 0.901 x 10~ 0.946 x 107 0.895 x 1072 0.89 x 1072
10.0 0.118 x 107 0.125 x 1072 0.113 x 1077 0.115 x 107

89
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:the values calculated from experimental vapor pressure data, whereas the
Chao et al. correlation values do not agree. A similar comparison was
made for n-pentane, for which the Chao et al. correlation agreed with
the data-~based v values as well as did the present correlation.

The evaluation of isotherﬁal enthalpy difference equation derived

from Equation 6-13 is given in Chapter IX.
Hypothetical Liquid Fugacity Coefficient of Pure Component

This hypothetical propertywas devised to extend the K-value rela-
tionship of Equation 2-11 to the gaseous components dissolved in a
liquid. The introduction of such a hypothetical property automatically
requires. that the reference state fugacity for the relevant activity
coefficient should be also hypothetical, which contradicts the original
idea of employing a "reference state''. However, from a practical view-
point, the use of a hypothetical reference state fugacity is as conve-
nient as the use of a real state reference fugacity, providing the
hypothetical property is properly determined.

Being devoid of any theoretical and physical meaning, the hypothe-
tical ligquid fugacity coefficient of pure component must be empirically
determined using such a relationship as Egquation 2-11 as was done in
this. investigation. But the hypothetical v values of a component must
be the same for given pressure and temperature regardless of the sol-
vents in which the component is dissolved. ' Therefore, Equation 6-13,
the v expression.that satisfies such a requirement for the real liquid
was retained as the model for expressing v of the hypothetical liquids
with minor changes in the high power temperature terms. - These changes

were made to reduce the temperature sensitivity of the model at elevated
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temperatures. The numerical constants A9 through Al3 were kept un-

changed.
Inv =8 +By/T, + B 1In T, +BI2+BIJ+
v 1.7 By/Ty T By r Lt 5lp

| L2 o
(B6/Tr + B7 ln T, + BT ) P, + A9TrPr -1n P,

to [(1- T (80 7 Ayy/Ty) * A P/T + ATy B
. (6-14)

This equation was fitted to the calculated v values to determine
the constants B1 through BB' The fitting procedure is described in
detail in Chapter VIII. But the numerical values of the constants are
given here (table VIII) for the sake of convenience. In the curve
fitting operations, Equation 6+~14 was forced to give the same values as
does Equation 6-~13 at Tr = 1.6, the junction point of the two v expres-
sions. The mathematical continuity of the two equations at thé Junction
point was disregarded in favor of improved K-value prediétions. This
continuiﬁy, however, is’important for the isothermal enthalpy difference
that can be obtained by differentiating the ln v expression with respect
to temperature. - As shown in'Figure 6 the two v expressions are fairly

continuous at T, = 1.0 for hydrocarbons.



61

TABLE VIII

CONSTANTS FOR FUGACITY COEFFICIENT OF HYPOTHETICAL
LIQUID, EQUATION 6-14

N

o\

-3

Ethene and
Carbon Hydrogen Heavier
Hydrogen Nitrogen ' Dioxide Sulfide Methane - Hydrocarbons
1.45610 9.82866 25.2166 lh;5790 h.LéOiB | 7.é3426>
8.6397? —11.2767Q -24.6427 -18.6046 ~3.6427) -9.54010
Q.éOhél -3.65750 —25.5662 -22.7804 2.24320 ~7.92000
. =0.00375 O.;8236 0.27361 3.77412 -1.40489 -1.43018

0.0 0.0 1.10841  ~0.17797 0.31421 ~0.30278
0.09453  =0.13227 1.15963 -0.08928 -0.06910 0.22371
0.00491 0.0 7.81163 0.39462 0.95059 0.36252
0.0 -0.00715 -1.69703 0.01698  -0.12945 -0.05302
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CHAPTER VIT

LIQUID PHASE ACTIVITY COEFFICIENTS ‘

The activity coefficient was invented to relate the liquid fugacity
of a component at some condition of pressure and composition to its
liquid fugacity at some other "reference!' condition where its numerical
value can be accurately estimated. So the activity coefficient is not
completely defined unless the standard state fugacity is clearly
specified. Conventionally, the activity coefficient has been defined
in such a way that it accounts for the departure of a real solution from
ideal solution behavior, i.e., the departure from the Lewis-Randall rule,

Symbolically,

gy == (7-1)

where fi is the fugacity of pure component i at system temperature and
pressure. - Equation 7-1 is. very convenient for the component that actu-
ally exists as a liquid at system pressure and temperature. However,
the expression. loses its physical meaning for a component that can not
exist as a liquid at system conditions, since the standard state‘fugaci—
ty would be hypothetical at these conditions. This ambiguity necessi-
tates the second definition of activity coefficient which describes the

deviation from Henry's law, 1.e.,

v, = == (7-2)

AR



6L

where H;,. is Henry's constant for component i in pure solvent r.

Equation 7-2 is not only meaningful but alsc convenient for the
supercritical component in a pure solvent if the Henry's constant is
available. - However, for the selute dissolved in a mixed solvent,
special care must be exercised in selecting the Henry's constant, since
the constant depends on the nature of solvent as well as on temperature.
This inconvenience plus the limited data on Henryfs constants makes
Equation. 7-2 much less attractive than it appears to be.

The activity coefficient as defined by Equation 7-1 is said to be
symmetrically normalized, because it approaches unity as X goes. to
unity for all real components. On the other hand, its counterpart as
defined by Equation 7-2 is termed unsymmetrically normalized, since it
approaches unity as.x; goes to zero for the supercritical component
dissolved. in:pure solvents. The latter normalization can also be used
for a noncondensable gas dissolved in a solvent mixture if the Henry's
constant is properly selected. For this purpose Prausnitz et al. (144)
proposed to define the reference fugacity of a supercritical component
as.the Henry's constant of that component in a pure reference. solvent
which is a constituent of the solvent mixture.

Notwithstanding the disadvantage of hypothetical state assumption,
the activity coefficient as defined by Equation 7-1 has been used much
more in practical engineering problems than has the unsymmetrical model,
Equation 7-2, and it is also used in the present K-value correlation.
Therefore, further discussion will be devoted only to Eguation 7-1.

As is obvious from the derivation, Equations 5-4 and 5-5 are not
restricted to any particular phase. Thus the equations can be equally

applicable to liquid phase. Subtracting Equatibn 5=5 from Equation 5-4
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and replacing s with X

Iy, =g | (T - Ve (7-3)
()

This equation shows the rigorous relationship of activity coefficient
to the P-V-T composition data, but it is seldom used due to the lack of
methods for accurately representing the volumetric data of dense phases.
Therefore, the activity coefficlent is customarily derived from its
relationship with partial excess Gibbs free energy.

Integrating Equation 2-4 at constant temperature and composition

from P° to the system pressure P gives

A

- T
G. - Gio = RT 1n —= (7-4)

1 Xj_PO

For pure component i, Equation 7-4 becomes

G, - G =RT In = g (7-5)
Subtracting Equation 7~5 from 7-4 gives

= =0 0y =

(G = 6;) - (6°-0¢°) =RT Iny, (7-6)

Integrating Equation 2-4 at constant temperature and P° from the pure

component state to the state of composition X, gives
=0 o _ -
Gi - Gi- RT 1In X (7=7)

Combining Equation 7-6 with Equation 7-7 gives

Gi - Gi -RT Inxy = RT 1In Yi (7-8)
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Applying Equation 7-5 to an ideal solution for which y; = 1, one obtains

_ Ld
(G; - G;) " =RD lnx; (7-9)

Subtracting Equation 7-9 from 7-8 gives

. _ id _ =E
(G; -G) - (G; =G) " =G =RTIny (7-10)
: _1{9,.E
or In vy. = == |=Z(nG i} , (7-11)
i RT&”& P,T,n.

J

-Various activity coefficient expressions have been. derived from-Equation

7-11 using appropriate models for excess Gibbs free energy.
Activity Coefficient Models

A general model for excess Gibbs free energy was developed statis-
tically by Wohl (209) in terms of composition x;, and effective volume

Vi'of individual components.

N N N N N N
& E E E Tt ZZ Tt 1
G/RT :[ 'V.]{ Q'Q'a- "‘-‘_ Q’@‘@ (= :+°°]
=1 XV i=1 j=1 17°J.1J = = %;% Fi®j%k%ijk

(7-12)

where 6, =

From a three-suffix equation of the form of Equation 7-12 the commonly
encountered van Laar, Porter, and Margules equations can be derived
(88), even though the activity coefficient equations had already been
derived before the GE,model was proposed.

Another open series model for GE was proposed. by Redlich and- Kister

(165).  This model is a series of compositions at constant pressure and
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temperature. - For a binary system,

¢%/rr X1X2[% + C(xy = x5) + D(x; - x2)2~+ ...] (7-13)

Iny, = xéz[?v— Clhxy ~ 3).+ D(x, - 1)(6x, = 5).+ 0,0]
(7-14)

In order to apply Equation 7-13 or 7-14 to a liquid phase at equilibriumﬁ
Chao and Hougen (42) modified the model by eliminating the constant
temperature restriction. Eguation 7-14 is reduced to Porter's equations
when B# 0, C=D = ... =0, and to Margules' equations if B # 0, C # O,'
but D = ....= 0. Van Ness (198) expressed the reciprocal of the left-
hand side of Equation 7-13 as a power series of composition to obtain
a van laar type equation from the expression.

Flory (71) and Huggins (89) independently derived an expression
for the entropy of mixing in an athermal solution using the concept of
a quasicrystalline lattice as the model for a liquid. Theﬂnegative of
this expression multiplied by the absolute temperature T is identical

to the excess Gibbs free energy for athermal solutions.

6%/RT s % In ok (7-15)
= e = x. 1ln — -15
BE= YO
= = - =2 -
ln.yi 1n tindiey + 1 (7-16)
i i
*3 Y4
where 3, = ———
@ o PN y
Z x.V.,
=1 J J

In consideration of the nonrandomness in liquid mixtures, Wilson

(206) proposed an expression for local composition.
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}-CH: ;iJ- exp ( >\ji - >\ii)’/RT (N, = ) (7-17)
R o

Expressing the volume fraction in terms of the local composition and
substituting the local volume fraction for @i in Equations 7-15 and 7-16,

Wilson obtained the following equations.

GE/RT = - % x5 ln[% Xj/\ij} (7-18)
i=1 =1
N N :
Iny, =1- 1{% xj/\ij] - le $j Z\ji (7-19)
e 6l
where i = )L_L/ 4:_]: Xinj]

Dy 2% exp|( s - >\ij)/m]

Orye and Prausnitz (138) demonstrated that the Wilson equation is useful
in representing equilibrium data for a wide variety of liquid mixtures.
Heil and Prausnitz (84) extended Wilson equation to nonathermal

mixtures by adding heat effect terms to obtain

GE/RT = - EN X, ln[ s x. [\, J + *_ZN f EN x.\N.. T. (7-20)
==t U= J ) o =TrtE)oy oA

Iny, =1 - lr{LN.x./\..] -SN f/\ +E—i §N x. N\, . T
+%§ T —§§N AN T ) - (7-21)

where Tji = (,>\’i - >\..)/RT
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Based on Scott'!s two liquid theory and on a nonrandomness in. liguid
mixtures, Renon and Prausnitz (167) derived a different equation in
terms of local compositiens. This equation is essentially the same as
the nonathermal part of the Heil-Prausnitz eguation except. that an

additional parameter Q&j (= a%i) is introduced and Vi = Vj is assumed.
E N gj N
G /RT = 1Z=1 i gl x5 855 Ty - (7-22)

&

Iny, = — - SR
YT ; EOJRE A H
id
N g §j N
+ E . g . @T. - == E X g . 7'.] (7-23)
= JSiJ Ui x5 (= k ki k]
where .. =exp(- .. T../RT)
. g5; = oxp(= ofy; T/

The authors claimed that their NRTL (nonrandom, two-liquid) equation
can be applied to strongly nonideal mixtures as well as to partially
miscible liquids.

The equations of Wilson, Heil and Prausnitz, and Renon. and
Prausnitz all require determining two parameters per binary pair from
experimental data. The NRTL eguation requires another constant Q&j
which is characteristic to each system under consideration.

Scatchard (181) and Hildebrand (85) independently proposed. a
regular solution model, which appears to be more suitable for hydro-
carbon mixtures if appropriate modifications are made. The general

form of Scatchard-Hildebrand equation is given by
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5 N N
= Z Y8 Ay (7-2L)
i=l j=1
L
Ve [N N N
A L5 -
Iy =57 [jgi % A3 & E;% 25 % J%] (7-25)

where Aij is related. to the cohesive energy density by

Ajy = Cyy ¥ Cy5 = 2044 (7-26)

Originally Cij was assumed to be the gecmetric mean of Cig and—ij.
- In this case a simpler short-cut derivation of the activity coefficient
is possible. The derivation is given in Appendix D.

As shown by Hildebrand and Scott (86) the geometric mean assumption
is valid only if the lonization potentials and the collision diameters
of the unlike molecules are equal. Hildebrand and Scott suggested using
a correction factor to the geometric mean. Eckert and Prausnitz (61)
proposed the following relationship to account for the deviation of Cij

from geometric mean of C,. and C.
ii J

=

= (l - k. )(C C..) (7_27)

Cs 5 137 Vi1 Vi3
Even with the correction to geometric mean, Equation 7-25 is not
fully capable of describing the thermal and athermal parts of the activ-
1ty coefficient altogether. In this regard, Weimer and Prausnitz (201),
Chung and Zander (44), and recently Robinson and Chao (172) added the
Flory-Huggins equation to Equation 7-25 to take the molecular size
differences into account. From a theoretical view-point the addition

of the two equations is not justified, for the equations are based on
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mutually exclusive assumptions. However, the combined form is generally
more capable of representing wide variety of solutions, if the expres-
sion contains one or more adjustable parameters. Chang et al. (40)
and Avasthi and Kobayashi (8) also proposed to express the activity
coefficient as a sum of thermal and athermal contributions in a study
of phase equilibria.

A1l of these facts imply that any activity coefficient model is
applicable to any type of solution regardless of the assumptions made
for the derivation, if the expression can satisfactorily describe the

actual behavior of the solution.
" Present Model for Activity Coefficient

By analogy to the models of Wohl and Margules, the excess Gibbs

free energy has been formulated in this work as follows

N N NN
Z kgx X Gt D > 85 8y Jk} (7-28)

-The first term on the right-hand side of the equation is identical to
Wohl's two—suffix tefm and the second term is the same as Margules two-
suffix term. The third term was added to make the model more flexible.
This term is similar to the second term except for the replacement Qf
mole fractions with volume fractions. Applying Equation 7-11 to

Equation 7-28 results in



- (7-29)
 The derivation is given in Appendix E.

The Bij.in the above equation was set equal to~Aij/RT to make the
first bracketed term identical to Scatchard—Hildebranq equation which
has been frequently used for hydrocarbon solutions. The‘Aij is given by
Equation 7-26. Combining Equation 7-26 with Equation 7%27,and replacing

C;; with the square of the solubility parameter 6; gives

_ 2
Ay = (61 - 6507 T2k5 8; 64 (7-30)
N 2 )

- For the generalization of Equation 7-31 the binary interaction

coefficient kij was expressed in terms of solubility parameters.

2

. . 1 1
2(éi»5j)2 | | 2(§i-éj)2 f |

As kij'is associated with the thermal part of activity coefficient, g

was assumed to be a function of temperature. A linear temperature

function was chosen over the other models tested.

-

a=q Fay(Ty To,) - (7-33)
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Combining Equations 7-30, 7-31, and 7-32 gives

5 = Ll(s. - 5% +a +a (. 1 )(s, 6.7 (5% 52)°
15 AT 0 T 0 TR T LM i 3 8507 (857~ 6

(7-34)

Since the first bracketed term in Equation 7-29 was used to reflect

the thermal effect, the other terms were made to represent the athermal
effect on the activity coefficient. This was accomplished by defining

S

C. . and Dij as follows.

1
L L L L
s V. + V. Q Vi1 Vsl L
Ciy= b oy ——h - 1) =aq ()%= (=D (7-35)
2(vE vh3z v vk
i’ 3 i
Similarly N 2 v? P
Dij = qLL(_L) - (_L) (7-36)
v 5

In the formulation of Equations 7-35 and 7-36 it was tacitly
assumed that the ligquid molal volume could effectively represent the
molecular size. Eguations 7-29, and 7-33 through 7-35 constitute the
proposed activity cocefficient expression for the present K-value corre-
lation. The constants qy through q, were determined. by regression anal-
ysis which was carried out by using the K-values of various binary hy-
drocarbon systems. The regression procedures are given in Chapter VIII.
Table IX contains five sets of such constants. The top priority is
glven to the constants for hydrogen, then to those for nitrogen and so
on. For example, for the pair of hydrogen-benzene the constants for
hydrogen should be used in preference to those for aromatics, and for
the pair of propane-cyclohexane, the constants for cyclo-paraffins
should be used. The characteristic constants used in this correlation

are listed in Table X.

\



TABLE IX

CONSTANTS FOR INTERACTION RELATIONS IN
ACTIVITY COEFFICIENT EQUATION

Constant Hydrogen Nitrogen Aromatics Cycloparaffins General

a, -2.4063 19.8416 ~3.229) ~3.229) ~2.0000

a, -0.3291 ~19.9182 3.2943 5.0836 8.6762

a, -0.9746 ~4.0250 ~3.4483 ~3.4483 ~4,.0000

e G L 8051 20.6178 42.6910 42.6910 -1.3333

/e



CHARACTERISTIC CONSTANTS FOR PURE COMPONENTS

TABLE X

75

Critical Critical Acentric Solubility Liquid
Compound Temperature Pressure Factor Parameter Molal_ Volume
g PSIA " 5 vl
(cal./ml)2 ml/g.-mole
Paraffins
Methane 343.9 673.1 0.013 5.66 6L4.0
Ethane 550.0 709.8 0.105 6.03 75.0
Propane 666.0 617.4 0.152 6.40 88.0
i-Butane T34.7 529.1 0.192 6.73 105.5
n~-Butane 765.3 550.7 0.201 6.73 101.4
i-Pentane 829.8 483.5 0.206 7.02 117.4
n-Pentane 845.6 4L89.5 0,252 7.02 116.1
neo-Pentane 780.8 L6L .0 0.195 7.02 123.3
n-Hexane 914.2 LL0.0 0.290 7.27 131.6
n-Heptane 972.3 396.8 0.352 7.43 147.5
n-Octane 1024.3 362.1 0.399 7.55 163.5
n-Nonane 1073.0 332.1 O.444 7.65 179.6
n-Decane 1114.7 304.2 0.487 7.72 196.0
n-Undecane 1153.7 282.2 0.501 7.79 212.2
n-Dodecane 1187.7 261.6 0.539 7.8L 228.6
n-Tridecane 1220.7 2,9.8 0.582 7.89 241, .9
n-Tetradecane 1250.7 235.1 0.617 7.92 261.3
n-Pentadecane 1277.7 220.0 0.649 7.96 277.8
n-Hexadecane 1303.0 206.0 0.675 7.99 204.1
n-Heptadecane 1328.0 191.1 0.687 8.03 310.4
Qlefins
Ethene 509.5 Th2.2 0.089 6.02 73.0
Propene 657.2 667.2 0.143 6.43 84.0
1-Butene 755.3 583.4 0.203 6.76 95.3
cis~2-Butene 78L.0 602.5 0.273 6.76 91.2
trans-2-Butene 771.6 602.5 0.234 6.76 93.8
i-Butene 752.2 579.8 0.201 6.76 95.4
-1,3-Butadiene 765.7 628.0 0.203 6.94 88.0
1-Pentene 853.0 586 .4 0.218 7.05 110.4
- 1-Hexene 920.0 L71.7 0.246 7.40 125.8
Naphthenes
Cyclopentane 921.2 654.7 0.205 8.11 9L .7
Methylcyclopentane  959.0 54L9.0 0.235 7.85 113.1
Cyclohexane §995.3 591.5 0.203 8.20 108.7
Methylcyclohexane . 1030.2 504 .4 0.242 7.83 128.3



TABLE X (Continued)

76

Critical Critical Acentric Solubility. ILiquid-
Compound Temperature Pressure Factor Parameter - Molal Volume
°R PSIA W 5 1 vl
(cal./ml)* ml/g.-mole

Aromatics
- Benzene 1012.7 714.2 0.215 9.16 89.4
Toluene 1069.2 590.0 0.252 8.92 106.8
o-Xylene 1138.0 529.9 0.298 8.99 121.2
m-Xylene 1114.6 510.0 0.316 8.82 123.5
p~Xylene 1112.8 500.0 0.307 8.77 124.0
Ethylbenzene 1115.8 539.9 0.317 8.79 123.1
Non-hydrocarbon Gases
Hydrogen 59.8 188.1 0.0 3.25 31.0
Nitrogen 227.3 492.9 0.040 3.30 33.0
Carbon Dioxide 5L7.7 1070.0 0.225 5.98 62.3
Hydrogen Sulfide 672.5 1306.5 0.106 6.03 57.1




CHAPTER VIII
NEW K-VALUE CORRELATION

This chapter describes the techniques for obtaining the generalized
binary interaction coefficients that appear in the expressions of activ-
ity and fugacity coefficients, and for determining the pure liquid fu-
gacity coefficients of hypothetical liguids.

In order to avoid the possible confusion in distinguishing the
interaction coefficients in the activity coefficient expression from
those in the fugacity coefficient expression, the former coefficients
will be called liquid-phase interaction coefficients, and the latter
will be termed as vapor-phase interaction coefficients.

From a theoretical view-point, it is logical to calculate the ac-
tivity coefficient of a heavy component in a binary system via Equation
2~11, because the equation is completely rigorous for such. a component.
But it is also commonly known that the activity coefficient is much
more sensitive to the light component than to the heavy component,
whereas the fugacity coefficient has much greater effect on the heavy
component than on the light component. Due to the insensitivity of
activity coefficient to the heavy components, the liquid-phase inter-
action coefficients determined solely from heavy component. K~data
may not describe the activity coefficients of light components adequate-
ly. Therefore, the liquid-phase interaction ccefficients must be

determined in such a way that the coefficients satisfy the activity

r
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coefficients of both light and heavy components equally. This require-

ment can be satisfied by fitting the activity ceoefficients of both com-

ponents and,the_vi‘s of light compenents simultaneously. ' Prior to this

least square fitting; the vapor-phase interaction coefficients should be
properly determined, however.

Fortunately, the determination of the vapor-phase interaction co-
efficients is relatively easy because of the favorable characteristics
of the relevant equation of state constants, i.e., constants 235 85
and ¢y are all insignificant for the light components of which the w
values are small and the critical temperatures are low, but they are
significant for the heavy components of which the w values are large
and the critical temperatures are high. These characteristics of the
constants are exactly what is desired for the adjustment of fugacity
coefficients. In other words, it is desirable to correct the fugacity
coefficients of the heavy components at low temperatures and around the

critical region without affecting those of the light components.

Correlation Procedures
Y

- Experimental equilibrium data were selected from.available binary
systems over a wide range of conditions. The systems as well as the
range of conditions studied are given in Tables XI through XVI.

Equation 2-11 is the key equation used in this correlation. Re-
arranging the equation gives

_ y; 9

X. .
1 vl

(8-1)

Yi

The experimental equilibrium K-data for the heavy components of

paraffin and olefin binary systems excluding methane-binaries were first
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processed according to Equation 8-~1 to compute the activity coefficients
of the components. Since the heavy components in binary liquid mixtures
always exist as liquids at system conditions, the real liquid Vv, expres-
sion derived in Chapter VI was used for the calculation of vy in Equa-
tion 8-1. The ¢i values were calculated via Equaion 5-7 by setting the
constants my, My, and my equal to zero for the first approximation.

This is equivalent to using the mixing rules given by Equations. 4-39
through 4-41.

FEquation 7-28 along with Equations 7~33, 7-34, and 7-35 was then
fitted to the calculated activity coefficients to obtain the numerical
constants 3 through 9, appearing in the expressions. In this work the
solubility parameters and the liquid molal volumes given by Chao and
Seader were retained except for those values of ethylene, ethane, pro-
pylene, and propane, for which Chao and Seader determined the parameters
arbitrarily. These hypothetical thermodynamic properties were redeter-
mined in such a way that they would give the best possible fit of Equa-
tion 7-28 to the calculated activity coefficients.

Using Equation 7-28 together with the newly obtained values of q
through 9, » the ¢i’s of heavy components were. back-calculated via Equa-
tion 8-1. Then the constants m;, Mo, and g that appear in the vapor-
phase interaction coefficient expressions were determined by fitting the
fugacity coefficient equation to the calculated values of ¢i" Next the
activity coefficients of both light and heavy components and the pure
liquid fugacity coefficient of light components were simultaneously
regressed to obtain improved values of qy through 9, in the activity

coefficient expression and B, through B8 in the hypothetical V; equa-

1
tion. Using the newly obtained values of ql through qu, the ¢i's of
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heavy components were again back~calculated to obtain improved values of
constants my, m,, and m3 by least square fitting. - This procedure was
repeated until all the constants converge to unchanging values. In
-effect, only a few iterations were sufficient to obtain the convergence.

For the methane-binaries, a different set of constants were deter-
mined. by using the same techniques as were used for ethylene and heavier
hydrocarbon binaries except the part of activity coefficients. In re-
gressing the methane-binary data the solubility parameter and the liquid
molal volume of methane were optimized retaining the numerical values of
g, through q, that had been obtained from the analysis of ethylene and
heavier binary mixture data. The same procedure was followed for the
binary mixtures containing carbon dioxide or hydrogen sulfide as one of
the components.

The binaries of hydrogen, and of nitrogen were separatelydorreiated
in a similar manner as the aliphatic hydrocarbon systems. But in this
instance the solubility parameters and the liquid molal volumes of the
light gases were also optimized.

In view of the highly non-ideal behaviors of cyclo-paraffins and
aromatic compounds in.the liquid phase, the binaries of these compounds
were also separately correlated. But the correlation procedure was re-
latively simple. In this case, only the constants a, through‘qlJr were
optimized keeping all the other constants unchanged. All the numerical
constants determined in this manner are given in Table VI, VIII, and
IX.

In all regression analyses Baer's non-linear regression deck (10)
was used with. proper modifications whenever necessary. The computer

programs are given in Appendix F.
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Evaluations

The present K-value correlation was evaluated in. two different
ways, and compared with other K-value correlations.

The first evaluation method is to calculate the K-values via Equa-
tion 2-11 using experimental composition data over a wide variety of
systems comprising a total of 4290 K-values. The NGPA (128) version of
the Chao-Seader method was also evaluated and compared, because it is
the only other correlation that is applicable to all the systems of in-
terest. The average absolute percent deviations of calculated K-values
from experimental values are shown in Tables XI through XIX. The
maximum deviations are also included in the tables. The average abso-
lute percent deviations of K-values for individual components are summa-
rized in Table XX. Another comparison of these two prediction methods
with observed data. is shown on Figure 7 in which calculated K-values are
plotted along with oEserved values for the 200° F multicomponent data of
Yarborough and Vogel (210).

The second evaluation method is to predict the saturation pressure
and vapor compositions with known values of bubble point temperature
and liquid compositions. This method is evidently more convincing than
the first method, but requires much longer computing time due to the
lengthy trial and error calculations. Thus, it was applied only to a
few selected systems to support the first evaluation method. The re-
sults of this evaluation are given in Tables XXI and-XXIII. In this
evaluation the Chueh and Prausnitz correlation (143) was also included.
As can be seen from the tables, thé three correlations are all suffi-
ciently accurate for the light coﬁponent K-values, but they are consid-

erably different in the capability of predicting heavy component



TABLE XT

COMPARISON OF CALGUIATED K-VALUES WITH OBSERVED DATA
FOR BINARIES OF METHANE

Average Absolute %

Number Conditions Deviations from Observed K-Values
Refer- of Temperature Pressure _Solute v Solvent
Solute Solvent ~ _ence  Points OF - PSIA This Work NGPA(128) This Work NGPA(128)
‘Methane  Ethane 27 20 -160 to 4O 100 to 800 7.00 16.36 7.38 8.26
Ethane 148 8 -100 to 50 200 to 600 3.28 15.48 7.77 9.66
Propane 157 52 LO to 160 100 to 1300 7.09 21.22 3.71 5.40
n-Butane 177 31 : LO to 250 200 to 1835 9.19 13.06 3.36 L.73
n-Pentane 178 217 100 to 280 100 to 2000 2.9, 9.22 5.15 L .99
n-Hexane 147 21 100 to 340 500 to 2500 2.70 6.33 6.23 9.81
n-Hexane 186 29 - 167 to 302 147 to 1470 1.99 L.33 6.95 8.01
n-Heptane 162 L2 LO to L60 - 200 to 2750 6.10 5.78 5.31 10.12
n-Octane 102 13 212 to 302 147 to 1029 3.23 7.49 9.06 16.25
n-Decane 156 21 220 to 460 100 to LOOO 6.67 5.35 9.32 19.90
Cyclopentane 51 14 150 100 to 3000 L .28 7.83 1.90 6.76
-Cyclohexane 151 28 70 to 340 200 to 3000 5.40 12.90 9.16 13,31
Toluene 69 L 150 100 to 3000 3.47 1.33 16.72 23.07
Overall Average Absolute Percent Deviations of 311 Data Points : 5.4 - 10.70 6.0L 9.32
Maximum Percent Deviations : 2L .42 51.62 37.71 -96.78
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TABLE XII

COMPARISON OF CALCUILATED K-VALUES WITH OBSERVED DATA
FOR BINARIES OF ETHENE AND ETHANE

Average Absolute %

Number Conditions Deviations from Observed K=Values
Refer- of Temperature Pressure Solute Solvent
Solute Selvent ence  Points °F PSIA This Work NGPA(128) This Work NGPA(128)
Ethene  Ethane 82 27 -100 to 0 ‘36 to 371 5.50 7.97 3.01 6.00
Propene 83 13 -22 to 59 50 to 450 5.29 5.82 2.50 6.26
n-Heptane 96 30 50 to ASQ 100 to 1000 3.38 2L.34 L .28 6.14
Ethane Propene 120 16 10 to 160 100 to 7700 L. L8 5.27 3.80 7.39
Propane 117 22 50 to 180 100 to 700 2.04 7.28 2.75 5.56
n-Butane 123 12 150 to 250 500 to 800 2.72 7.62 2.69 7.35
n-Butane Ol 8 0 to 150 100 to 400 3.00 3.58 0.37 3.65
n-Pentane 151 L8 LO to 280 50 to 900 2.17 5.94 L .59 7.49
n-Heptane 122 31 150 to 350 L50 to 1150 2.16 7oLy 3.11 L.75
n-Decane 163 31 220 to 460 100 to 1600 2.86 22.74 6.28 13.03
Cyclohexane 98 27 100 to 500 100 to 1300 8.12 8.95 7.11 TR
Benzene 99 17 122 to 482 300 to 1000 6.55 21,.53 3.86 4.09
Overall Average Absolute Percent Deviations of 282 Data Points : 3.84 11.58 L.15 7.26
Maximum Percent Deviations : ~3L.24 -116.50 -37.00 -39.21
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TABLE XTIT

COMPARISON OF CALCUILATED K-VALUES WITH OBSERVED DATA FOR
BINARTES OF MISCELLANEOUS HYDROCARBONS

Average Absolute %

Number Conditions Deviations From Observed K<Valies
Refer- of Temperature  Pressure ~ Solute- . . Solvent
Solute Solvent =~ _ence  Points °F PSIA This Work NGPA(128) This Work NGPA(128)
- Propene Propane 159 22 10 to 190 L9 to 587 1.96 L .29 0.55 3.21
Propane 81 9 83 to 160 158 to L2L 1.70 f 3048 0.81 3.22
1-Butene 76 12 LO to 250 30 to 550 1.31 L.55 2.35 6.60
i-Butane L 14 108 to 256 200 to 600 3.34 © BL2 5.15 L.L3
Propane i~-Butene 180 11 119 to 198 200 to 500 6.40 5.28 | 2.80 L.52
n-Butane 97 2L 194 to 248 300 to 590 2.49 3.09 2.05 L.16
i-Pentane 195 19 32 to 338 15 to 515 2.39 - 4.35 5.10 2.67
n-Pentane 97 23 194 to 356 300 to 650 2.98 - 5.28 3.74 8.80
n-Pentane 174 31 160 to 340 60 to 650 5.42 3.60 2.38 L.10
n-Decane 155 26 280 to 460 50 to 1000 3.30 11.12 3.62 12.68
Bengzene 75 22 100 to 400 20 to 700 5.66 13.39 7.63 10.83
1-Butene n-Butane 177 12 100 to 280 53 to 499 1.05 3.82 1.30 3.34
n-Butane n-Hexane L5 21 195 to L12 147 to L26 1.61 L .60 3.57 7.09
n-Heptane 124 10 200 to LOO 65 to 480 2.10 L.79 3.68 5.22
n=Heptane 95 14 200 to 44O 100 to LOO 1.40 5.49 - 2.28 34.16
n-Decane 153 28 220 to 460 50 to 714 2.11 3.2 5.62 12.74
n-Pentane n-Heptane 55 7 310 to 488 147 to LLL 7.29 6.4 2.92 6.76
n-Hexane Toluene 126 9 80 to 215 3 to 15 L.67 2.41 3.35 8.98
Overall Average Absolute Percent Deviations of 314 Data Points : 3.13 5.45 L .56 7.73
Maximum Percent Deviations :- -23.23 52.23 53.62 68.38
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TABLE XTIV

COMPARISON OF CALCULATED K-VALUES WITH OBSERVED DATA
FOR HYDROGEN BINARIES

Average Absolute %

Number ' Conditions Deviations From Observed K-Values
Refer- of Temperature Pressure ___Solute __Solvent
Solute Solvent ence  Points °F PSIA This Work - NGPA(128) This Work NGPA(128)
- Hydrogen - LEthene 204 22 -175 to 0 500 to 8000 8.29 19.45 7.4 18.59
Ethane 204 20 =150 to 50 500 to 8000 9.35 15.55 2.11 13.77
Propene 204 19 -100 to 75 500 to 8000 13.70 10.97 4.38 12.21
Propane 204 18 -50 to 75 500 to 8000 8.42 6.20 3.95 14.72
Propane 35 16 LO to 160 500 to 5000 9.29 8.58 3.01 5.35
i-Butane 57 9 100 to 200 500 to 3000 5.66 5.12 14.04 17.61
n-Butane 130 8 10 to 75 350 to 4000 5.30 5.81 7.14 9.73
n-Butane 7 4 75 to 240 326 to 1376 10.57 13.41 9.37 11.12
n-Hexane 132 22 4O to 340 500 to 4000 8.57 8.73 8.89 7.50
n-Octane 52 17 392 to 500 180 to 1818 6.46 10.66 3.10 2.51
Cyclohexane 195 12 150 to 250 500 to 9999 6.57 19.07 L.91 31.73
Cyclohexane 20 30 100 to 280 500 to 6000 11.40 13.75 5.60 13.29
Benzene 195 18 150 to 320 200 to 9999 9.18 16.09 3.81 20.00
Benzene 52 22 320 to 500 304 to 2230 L.4L3 12.36 1.47 2.90
Overall Average Absolute Percent Deviations of 237 Data Points: 8.68 13.75 5.11 13.29
Maximum Percent Deviations: L3.60 70.65 -23.56 -98.05
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TABLE XV

COMPARISCON OF CALCULATED K-VALUES WITH OBSERVED DATA
FOR NITROGEN BINARIES

Average Absolute %

Number Conditions Deviations From Observed K-Values
Refer- of Temperature Pressure Solute Solvent
Solute Solvent ence  Points OF PSIA This Work NGPA(128) This Work NGPA(128)
Nitrogen - Methane 31 3 ~181 to -145 500 7.50 347.3 1.37 17.33
Methane 50 29 =240 to =150 50 to 600 L.17 398.3 1.05 15.24
Methane 26 5 =220 to =140 100 to 500 3.58 385.9 0.93 15.00
Ethane 60 22 -200 to 40 100 to 950 6.83 109.6 7.48 LO.67
n-Butane 169 11 100 to 280 236 to 1800 16.11 L5.2 3.69 27.4L0
n-Hexane 147 16 100 to 340 150 to 2000 13.35 24 .1 11.30 106.78
n-Heptane 3 6 90 to 260 1020 to 2111 6.89 25.3 29.L3 251.57
n-Heptane 30 L 77 to 239 1483 8.25 29.8 L2.16 148.75
n-Decane 9 6 220 to 280 80 to 150 L5.73 25.0 30.82 L29.23
Overall Average Absolute Percent Deviations of 102 Data Points: 10.31 178.8 9.31 79.93

Maximum Percent Deviations: -50.15 637.5 -57.15 881.31
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TABLE XVI

COMPARISON. OF CALCULATED K-VALUES WITH OBSERVED DATA FOR
BINARTES OF HYDROGEN SULFIDE AND CARBON DIOXIDE

Average Absolute %

Number Conditions Deviations From Observed K-Values
Refer- of Temperature Pressure Solute _ _ Solvent
Solute Solvent ence  Points OF PSIA _  This Work NGPA(128) < This Work NGPA(128)
H2S Propene L5 8 22 to 59 LI to 235 9.20 8.81 6.10 8.18
Propane 100 8 80 to 190 200 to 600 16.90 23.68 0.88 2.22
Propane N 6 124 to 197 400 to 600 12.32 17.89 3.43 2.19
n-Butane 170 35 100 to 250 75 to 1100 L.76 6.06 L .36 6.30
n-Pentane 161 16 4O to 340 20 to 1000 6.4L0 5.13 7.61 8.14
n-Decane 164, 8 280 to 340 200 to 1400 6.39 6.51 5.38 7..8
Average Absolute Percent Deviations of 81 Data Points for H2S: 7.0 8.81 L.86 6.26
GO, Propene 83 22 ~22 to 140 50 to 700 7.29 11.71 2.90 5.29
Propane L 5 -40 to 32 50 to 300 8.58 11.35 5.4 7.28
- Propane 160 58 4O to 160 100 to 900 6.11 8.85 5.32 6.69
Propane 146 9 50 to 175 500 to 8CC 6.08 6.31 11.57 5.35
n-Butane 146 7 50 to 250 600 to 800 L .83 15.79 5.07 5.86
n-Butane L5 9 52 to 268 600 to 800 5.20 16.29 3.65 7.95
n-Butane 134 Ll 100 to 280 60 to 1000 5.58 10.75 3.93 2.38
n-Pentane 146 11 100 to 350 600 to 1000 23.82 29.10 13.08 15.75
n-Decane 153 38 280 to L60 200 to 2500 6.39 .15.96 8.18 18.05
Average Absolute Percent Deviations of 203 Data Points for CO2: 7.11 12.59 5.91 7.88

Maximum Percent Deviations: -45.39 66.39 L1.54 =45.49
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TABLE XVII

COMPARISON OF CALCULATED K-VALUES WITH OBSERVED DATA
FOR METHANE TERNARIES

Conditions Observed K-Values __Percent Deviations From Observed K-Values

Temp. Press. X e K Component 1 Component 2 Componernit3

of PSIA 1 2 3 This Work NGPA(128) This Work NGPA(128) This Work NGPA(128)
Methane(1)~Propane(2)-n-Butane(3), (168) : : '

100 1000 2.174 0.437 0.224 -1.86 14.48 -5.57 -5.23 =7.43 —=7.30

100 1573 1.520 0.523 0.378 3.37 28.00 -3.97 -4 .97 ~-15.87 =20.34

100 972 2.472 0.445 0.228 -3.26 12.97 -1.71 -2.71 -5.17 -7.28

100 1390 1.573 0.606 0.373 3.72 28.08 ~-10.61 -12.76 =6.54 -12.79
Average Absolute % Deviations of 23 Points: L4.43 18.38 6.32 7.26 8.43 11.19
Methane(1)-Propane(2)-n-Pentane(3), (38, 59)

100 1000 2.806 0.403 0.084 -5.16 3.94 -3.42 -2.71 =1.87 0.59

100 1500 1.858 0.458 0.148 -3.14 14.13 -6.88 -5.57 ~-5.72 -11.09

220 1000 3.030 0.792 0.294 =-1.49 10.06 2.04 -2.13 -1.91 ~-2.,60

220 1500 1.858 0.792 0.411 .3.81 20.53 =3.16 -10.63 =7.13 =11.00
Average Absolute % Deviations of 28 Points: 4.08 11.87 2.52 3.51 6.37 11.15
Methane(1)-Propane(2)-n-Decane(3), (203)

100 1000 2.791 0.448 0.006 -7.76 3.26 -2.,23 -3.16 -28.52 =4/ .90

100 3000 1.637 0.472 0.022 -12.75 1.82 5.41 6.15 1.20 -87.52

L60 1000 2.729 1.515 0.308 0.29 10.65 -1.40 =28.74 -5.25 -10.45
L60 2000 1.780 1.079 0.313 —21.92 -6.39 -0.96 =57.95 -14.41 -22,27
Average Absolute % Deviations of 40 Points: 8.98 6.71 L1 19.74 15.15 34.71
Methane(1)-n-Butane(2)-n-Decane(3), (149, 158)

160 2000 2.180 0.271 0.015 -6.03 -1.73 6.19 11.50 -21.22 -51.77

160 2500 1.372 0.514 0.139 -8.68 L .46 -5.26 ~-10.12 17.94 =94 .60
Average Absolute % Deviations of 27 Points: 6.15 3.65 9.84 11.68 16.37 37.80
Overall Ave.Abs. % Deviations of 118 Points: 6.29 9.50 5.58 11.68 12,04 2L.L0
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TABLE XVIII

COMPARISCON OF CALCULATED K-VALUES WITH OBSERVED DATA

p FOR ETHANE TERNARIES
Conditions Observed K-Values Percent Deviations From Observed K-Values
Temp. * Press. X Component 1 Component 2 Component 3
Op % PSIA el 2 B This Work NGPA(128) This Work NGPA(128) This Work NGPA(128)
Ethane(l)-n—Butane(2)—n—Pentane(3);(1211 : -
200 525 1.972 0.578 0.351 -5.,26 3.98 0.54 -2.21 s =9,70
200 625 1.680 0.573 0.359 -3.65 3.55 -0.91 -3.97 -3.07 -9.22
200 8L8 1.189 0.771 0.617 0.91 L .85 -6.29 -13.36 =547 -19.58
250 658  1.765  0.761  0.514 ~0.45 8.91 -2.17 ~L .49 -2.97 “=7.90
250 826 1.273 0.835 0.730 1.67 7.29 0.24 -, .89 -5.22 =15.15
250 L2 1.456 0.780 0.639 1.16 9.56 0.47 -3.32 -7.82 ~15.34
300 598 1.905 0.955 0.675 1.81 20.02 -0.54, -0.85 2.76 =1.80
300 632 1.750 0.941 0.700 3.64 20.42 -0.28 -1.05 0.55 =L Ll
300 572 2.06L 0.969 0.678 =0.26 18.4LL ~-0.65 =0.70 1.31 =2.70
Average Absolute % Deviations of 75 Points: 3.58 9.23 2.58 L .10 3.4 7.52

Ethane(1)-n-Butane(2)-n-Heptane(3),(124)

150 615 1.560 0.394 0.047 -3.21 -3.00 -8.69 -9.50 11.60 5.73
150 819 1.222 0.451 0.126 -2.41 -2.04L -4.39 =7.95 -0.71 -23.35
150 799 1.215 0.457 0.139 -2.87 -1.26 -0.04 -5.25 7.52 ~-22.0L
200 1045 1.215 0.599 0.272 -1.72 -5.48 3.59 -1.85 8.01 -21.89
200 75L6 1.540 0.516 0.124 -0.83 0.69 0.28 -1.26 -1.90 -12.07
200 867 1.375 0.571 0.194 -3.67 -3.41 0.37 -2.69 5.81 -16.02
250 765 1.756 0.663 0.173 =-0.47 0.68 0.66 =-1.24 3.53 ~2.8.
250 1024 1.295 0.745 0.395 -1.36 - ~=5.22 2.29 =3.29 6,57 -19.36
Average Absolute % Deviations of 54 Points: 2.59 L.27 2.79 3.05 5.04 11.06
Overall Ave.Abs. % Deviations of 129 Points: 3.17 7.15 2.67 3.66 L.11 9.00

Maximum Percent Deviations : 23.38 53.85 38.04 37.68 -12.03 -28.68
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TABLE XIX

COMPARISON OF CALCULATED K-VALUES WITH OBSERVED DATA
FOR NITROGEN TERNARIES

Conditions Number Average Absolute % Deviations from Observed K-Values
Temperature Pressure of Component 1 Component 2 Component 3
OF PSIA Points  This Work  NGPA(128) This Work  NGPA(128) This Work  NGPA(128)

Nitrogen(1l)-Methane(2)~Ethane(3), (54) : :
-200 to 100 500 to 1000 5 10.58 160.68 17.06 15.36 8.08 13.27
Nitrogen(1l)-Methane(2)-n=Butane(3), (170) ‘

100 to 280 500 to 2000 58 19.99 70.35 7.88 17.58 5.35 5.90
Nitrogen(1l)-Methane(2)-n-Pentane(3), (28) - :

77 to 185 522 to 1965 10 35.82 47.83 L.13 7.56 18.37 18.04
Nitrogen(1)~Methane(2)-n-Hexane(3), (29) '

77 to 185 532 to 2464 9 29.23 89.09 5.36 5.01 15.17 22.03
Nitrogen(1)-Methane(2)-n-Heptane(3), (30)

77 to 185 532 to 2468 9 27.14 73.26 5.97 2.59 27.29 33.83
Nitrogen(1)-Ethane(2)-n-Butane(3), (103) i

100 to 280 500 to 2000 72 21.07 76.10 7.26 8.62 8.96 9.71
Overall Ave. Abs. % dev. of 163 Pts : 22.05 75.47 7.41 11.44 9.75 10.82
Maximum Percent Deviations : 82.18 228.90 -46.81 Liy L2 =77 .24 -71.83

06
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TABLE XX

COMPARISON OF CALCULATED K-VALUES WITH OBSERVED
DATA FOR INDIVIDUAL COMPONENTS

Number Average Absolute % Deviations
of From Observed K-Values
Component Points This Work NGPA(128)
Methane 557 5.67 11.25
Ethene 92 L.12 15.54
Ethane 513 L.32 9.73
" Propene 135 3.04 6.4
Propane L72 3.97 5.42
1-Butene 2L 1.70 5.21
i-Butene 11 2.79 L.52
i-Butane 23 8.63 9.59
n-Butane 587 L.L8 6.4
i-Pentane 19 5.10 2.67
n-Pentane 276 5.27 7.71
n-Hexane 127 7.58 21.11
n-Heptane 207 6.76 19.14
n-Octane 30 5,68 8,16
n-Decane 228 9.90 31.73
Cyclopentane 14 1.90 6.76
Cyclohexane 97 6.96 15.70
Benzene 79 L.23 9,26
Toluene 13 7.46 13.32
Hydrogen 237 8.64 13.75
Nitrogen 265 17.53 115.24
Carbon Dioxide 203 7.11 12.59
Hydrogen Sulfide 81 7.4l 8.81

Overall 4,290 6.33 17.75




5 .
Y[ c LEGEND S
3 ® . EXPERTMENTAL DATA OF 1
- - YARBOROUGH AND VOGEL(210)

’r THIS CORRELATION |

- — — —— NGPA(128) CORRELATION
' 4 o i
03 :

oo 7 :

M 6 -

= s |

;- -

¥ o3 g

2 i
oL e
S N
8 ER
5 -
. 1
3 -
; o

23 45675000
PRESSURE, PSIA

Figure 7. Comparison of K-Values for
a Multicomponent System
at 200° F

92



TABLE XXT

COMPARISON OF K-VALUES PREDICTED VIA THREE CORRELATIONS WITH
EXPERIMENTAL DATA (122) ON ETHANE-n-HEPTANE SYSTEM

% Deviations in % Deviations in % Deviations in
Conditions Saturation Pressure Ethane K-Values n-Heptane K-Values
Prausnitz Chao- This Prausnitz Chao- This Prausnitz Chao~- This
Temp. Press. ~Chueh Seader Work ~Chueh oeader Work —Chueh Seader Work
Op PSIA (143) (41) (143) (41) (143) (41)
200 L50 7.199 7.491 5.195 -0.420 -0.085 0.028 9.431 1.953 ~0.592
550 5.499 L.275 3.054 -0.512 -0.090 ~-0.022 12.294 2.286 0.630
650 3.044 0.670 0.459 -0.589 0.002 -0.032 14.506 0.007 0.785
750 1.160 ~2.257 -1.359 -0.719 0.170 -0.044 17.731 ~4.085 1.084
850 -0.363 =L 794 -2.556 -0.828 0.552 0.037 19.363 °  -=12.733 -0.837
950 =0.927 -6.873 -2.789 -1.081 1.218 0.158 22.785 -25.590 -3.326
250 L50 1/,.543 15.744 8.896 -0.360 0.413 0.551 3.622 =L 146 -5.536
650 8.865 L.259 2.880 -1.229 0.003 0.064 14.687 -0.009 -0.767
750 7.321 | -0.004 1.176 -1.737 0.155 -0.062 21.421 -1..865 0.763
850 6.073 -3.957 -0.282 -2.330 0.663 -0.021 28.252 -7.982 0.268
950 5.384 -7.739 -1.599 -3.725 1.476 0.088 L2.836 -16.922 -0.971
1050 9.8L46 -10.976 -2.046 -10.717 2.593 -0.074 114.185 -27.573 0.799
300 L50 12.538 - 19.449 7.791 -1.024 0.379 0.268 5.346 -2.009 -1.394
550 10.227 12.608 5. 444 =1.457 -0.103 0.088 8.500 0.545 -0.492
650 8.017 6..368 3.237 -1.996 -0.206 ~0.116 12.534 1.289 0.732
750 8,124 2.076 3.195 -2.719 0.188 ~0.232 17.740 -1.229 1.518
850 8,147 -2.245 2.88, -3.638 1.342 -0.045 23.251 -8.578 0.297
Ave. Abs. % Dev.: 5.131 6.779 L .228 2.209 1.207 2.108 19.280 8.191 7.880%

(31 Points)

#* Two data points having the deviations larger than 150 % caused this large average value. The two data
points are outside the recommended correlation limits, i. e., the pressures arehigher than 0.85 of
mixture critical pressures.
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TABLE XXIT
COMPARISON OF K-VALUES PREDICTED VIA THREE CORRELATIONS WITH
EXPERIMENTAL DATA(S7) ON PROPANE-n-PENTANE SYSTEM

% Deviations in % Deviations in % Deviations in

Conditions Saturation Pressure Propane K-Values n-Pentane K-Values
Prausnitz Chao- This Prausnitz Chao- This Prausnitz Chao- This
Temp. Press. -Chueh Seader Work -Chueh Seader  Work —Chueh Seader  Work
OF PSIA (143) (41) (143) (41) (143) (41)
212 300 0.275 -3.085 -4.983  -1.054 -0.574  -2.503 3.626 2.008 8.614
400 2.234 -0.804 -3.547 0.139 1.119 -0.158 -0.823 -6.569 0.934
500 4.810 0.756 -2.119 -0.252 1.155 0.397 2.782 ~12.648 -l .366
600 - 1.759 -0.513 —_ 0.740 0.527 - -22.289 -15.865
2,8 300 3.298 1.298 -1.653 L .160 L .826 1.013 -5.705 -6.611 -1.382
LOO 1.143 =0.574 -4 .200 0.550 2.016 -0.484 1.013 - .80 1.158
500 1.755 0.384 -3.212 -0.407 2.112 0.379 1.478 -7.626 -1.371
600 - 2.652 0.259 - 2.907 1.438 —_ =15.044  =7.470
650 —_ L.332 4 .039 - L.723 1.958 - -26.583 -11.043
302 300 3.158 3.104 1.024 -0.178 19.120 3.256 0.047 -5.061 =2.441
400 L 2L2 2.456 -0.908 6.004 8.356 2.533 -/ 004 -5.566 -1.689
500 L .062 1.727 -1.120 -0.389 7.820 3442 0.403 -8.074 -=3.559
600 - 0.977 0.650 - 8.839 1.372 —_— -12.044 -1.870
650 - 7.230 14.172 - 15.543 5.496 — =-23.42,  -8.289
Ave. Abs. % Dev.: 2.417 2.093 2.874 1.451 L.150 2.360 12.904 9.702 L4740

(23 Points)
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TABLE XXIIT

COMPARISON OF K~VALUES PREDICTED VIA TWO CORRELATIONS WITH-
EXPERIMENTAL DATA (153) ON PROPANE-n-DECANE SYSTEM

% Deviations in % Deviations in % Deviations in
Conditions Saturation Pressure Propane K-Values n-Decane K-Values
Chao- This Chao- This Chao- This
Temp. Press. Seader Work Seader Work Seader Work
°F PSIA (41) (41) (41)
280 100 16.713 12.614 1.176 0.765 -18.475 -11.932
200 11.878 9.269 0.548 0.368 -15.093 -10.176
L0OO 3.339 2.356 0.339 0.170 -13.968 ~7.034
800 -5.237 -1.625 2.046 0.710 -59.934 -20.797
340 100 17.489 6.919 3.555 1.389 -19.650 -7.652
200 12.766 L.677 1.472 0.702 -15.388 -7.332
400 3.256 0.580 0.757 0.473 -12.419 =7.770
800 =9.545 -2.,209 2.474 0.914 -40.065 ~14.84L0
L0OO 100 13.586 0.455 8.497 1.206 -16.833 -2.375
200 12.247 0.401 2.939 0.534 -12.899 -2.332
400 2.361 -0.577 1.116 0.54L4 -8.383 -4 .088
1000 -16.654 11.781 12.177 -5.504 -66.677 30.144
L60 150 10.671 -2.682 11.226 0.907 -13.255 -1.067
200 11.481 -1.621 6.356 0.368 -11.450 -0.648
400 1.962 - =1.927 1.843 0.631 -6.533 -2.231
800 -15.789 0.788 7.132 1.905 -30.520 ~-8.140
Ave. Abs. % Dev.: 9.64,8 3.908 - 3.290 0.982 19.855 8.067

(26 Points)
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K-values and saturation pressures. The computer program for the calcu-
lation equilibrium pressure and vapor composition from liguid composi-

tion and temperature data is given in Appendix G.

Discussions

A, The.Accu;acy of Experimental Equilibrium"Dataﬁ ~The use of
accurate experimental data is one of the most important parts of the
present K-value correlation, because the final determination of all the
interaction coefficients is entirely based on the experimental equili-
brium data. Therefore care must be exercised in selecting the best
guality of experimental data. Unfortunately no perfect method is avail-
able to test the accuracy of such data. Even if such a.method exists,
it is . practically impessible to apply the method to the vast amount of
data that are to be used in the correlation. In this regard, some
arbitrary criteria were set up for the selection of reliable experimen-
tal data. First, every data point that contains mole fractions less
than 0.01 was removed. Iiterature survey indicated that the expected
experimental error in composition data ranges from 0.0005 to 0.005 mole
fraction. - This amounts to five to 50 percent error for a composition
data of 0.01 mele fraction.

Secondly, the data points that failed to exhibit "self-consistancy"
were eliminated. The smoothness and appearance of the isothermal and
isobaric K-curves were the criteria in this test. TFor example, the
190° T isothermal K-curve of n-pentane in a propane-n-pentane mixture
(174) did not show the tendency of having a minimum value at high pres-
sures, even near at the mixture critical point. Such a minimum value

usually occurs in the pressure range from 0.8 to 0.95 of mixture critical
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pressure. Discarding these isothermal data points seems to be justified
by more recent data of others (97).

The third criterion was rather subjective; for instance, in cases
where two sets of data were available on the same system and they did
not agree within a few percent, one set of data was arbitrarily selected
based on the analytical techniques used and on the claim df the experi-
menters. For example, the data of Reamer and Sage (151) were chosen
over the data of Clark (51) for methane-cyclohexane system, and the data
of Roberts and Mcketta (169) were selected over the data of Akers et al.
(2) for nitrogen-n-butane system. When more than two sets of data were
available, the set or sets that were in poor agreement with the other
sets were discarded. The propylene-propane system 1s such an example.

B. Generalized Correlation Versus Specific Correlation, A1l the

available K-value correlations may be classified into two categories,
one comprising the correlations that require only pure component proper-
ties, and the other including the correlations that require not only the
pure component properties but also the specific interaction coefficients
as the input information. The Chao-Seader and the present correlations
are in the former category, which is frequently called 'generalized
correlations'. The Robinson-Chao (172) and the Chueh-Prausnitz (143)
correlations fall in the latter category, which may;be called "specific
correlations?”.

This classification is more or less arbitrary and consequently
ambiguous. For example, even though both the Robinson-Chao, and the
Chueh-Prausnitz correlations require specific interaction coefficient(s),
the former uses a generalized expression for‘vi, while the latter uses

specific 2] expression for individual components. However, the above
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classification is convenient for the present discussion.

In general the merits of generalized correlation constitute the
demerits of specific correlation and vice versa. As a result of genera-
lization, the generalized correlation usually suffers from the accuracy
which the specific correlation enjoys. On the other hand, the "speci-
fic" correlation can be applied only to those systems for which the
specific constants are known, whereas the "generalized" correlation can-
be applied to any system for which the necessary pure compenent proper-
ties are available. But both the accuracy and the applicability to wide
variety of substances are required for process designs. One of the ways
to satisfy both of the requirements may be the combination of the two
correlations by providing the generalized correlation with specific
interaction coefficients whenever available. The present correlation is
especially suitable to this purpose. A few examples are illustrated
below.

The first case studied is the determination of the specific binary
,interactidn coefficients involved in the activity coefficient expression,
This modification gives satisfactory results for the systems of which
the constituents are not drastically different. The next case investi-
gated is the determination of the specific interaction coefficients
appearing in both activity coefficient and fugacity coefficient expres-
sions. This method substantially improves the-K-value prediction for
the systems of which the constituents exhibit significant differences
in physical properties and in sizes.

Three binary systems of methane-n;butane, ethane-n~-heptane, and
hydrogen-cyclohexane were selected for the first case study. - Introduc-

tion of two specific interaction coefficients into the activity
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coefficient expression resulted in a remarkable reduction in the maximum
deviations. For example, the maximum deviation of methane-n-butane
system was reduced from 19.3% to 10.3%, while that of ethane~heptane
system was reduced from 12% to 8%. The overall accuracy was also im-
proved from 6.2% to 4% for the methane-butane binary. But a slight im-
provement was gained for the ethane-heptane system for which.the gener-
alized correlation was already sufficiently accurate. Figure 8 shows
the results of hydrogen-cyclohexane system. Only one isotherm is shown
to avoid overcrowding. However, similar behavior was observed for

other isotherms.

As the second case study, the binary systems of methane-n-decane,
methane-cyclohexane, and nitrogen-n-hexane were selected because the
generalized correlation. is not satisfactory for these mixtures. ' The
results are shown in Figure 9 through 11 along with the reéults from the
NGPA version of Chao-Seader correlation. The specific interaction co-
efficients are given in the figures. The K-values used in Figures 8
through 11 were calculated via Equation 2-11 using experimental composi-
tion data.

The procedure to determine the specific interaction coefficients is
the same as the one used for generalized correlation. But all the hypo-

thetical % expressions were kept unchanged in this regression analysis.
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CHAPTER IX
TSOTHERMAL ENTHALPY DIFFERENCES FOR VAPORS AND LIQUIDS

A knowledge of enthalpies is necessary for accurate designs of
thermal processes. In spite of their great demand in.both quantity and
quality, reliable experimental data on this property are not abundant.
This is especially true for mixtures.  The number of mixtures which. have
been investigated is infinitesimal relative to the number of systems
of interest. Therefore, the development of a reliable enthalpy predic-
tion method is essential. In effect a number of such enthalpy predic-
tion methods have been developed. However, none of them are completely

satisfactory.
Methods of Prediction

- Basically, two approaches are possible for the calculation of
enthalpies, one being from statistical mechanics, the other being from
macroscopic thermodynamic data. Although the former approach is:theo-
retically sound, it is still of no practical use except for a few gases
having simple molecules. Thus, the methods based on macroscopic ther-
modynamic data are exclusively reviewed in this section.

Most of the predictive methods in common use require a knowledge
of ideal gas state enthalpy, since the prediction methods give the
departure from the ideal gas state enthalpy at the same temperature.

A.P.I. Research Project 44 (5) tabulates the values of many hydrocarbons

104
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including some simple gases. A.P.I. Technical Data Book (196) stores
the data in eguation form which 1s more compact and convenient for
computer use.

For the sake of reviewing convenience, all available metheds are
arbitrarily classified into three categories:
(a)  methods based on P-V-T data or on equation of state.
(b) methods based on corresponding states principle.

(c) enthalpies from fugacity relationships.

Methods‘Based on P-V-T Data or on'Equations of State

.Enthalpy has a rigorous relationship with volumetric data of pure

components or of mixtures. At constant temperature

P *
o _ _ Qy 1y
H - H [V T(aT)P] dp | (9-1)

9]

From Equation 9-1 it is obvious that enthalpy can be calculated if
pertinent P-V-T data and ideal gas state enthalpies are available.
However, accurate values of the temperature derivatives of volume are
not easily obtainable by either graphical or numerical methods.  In
general some method of curve fitting is applied, which leads to the use
of equation of state. Since most equations of state are of a pressure~
explicit form, it is convenient tc transform Equation 9-1 into a volume

integral form.

v
Ho- 1o = [’I‘(g—g) - P:\ dv-+ PV - RT (9=2)

co
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The Benedict-Webb-Rubin equation of state is most frequently used for
this purpose.

The mixture enthalpies calculated from an equation state are more
sensitive to the mixing rules and to temperature than the volumetric
data are. This fact implies that the equation of state constants deter-
mined from P-V-T data are not necessarily good for enthalpy calculations.
From this viewpoint, Starling (188) applied a multiproperty analysis to
determine the constants for the Benedict-Webb-Rubin equation or a modi-
fication of it. Unfortunately, the accurate thermodynamic data from
which the equation of state constants can be determined are not always
available for many substances of interest. In such cases generalized
equations of state may be used. The Redlich-Kwong(166), the Hirshfelder-
Buehler-McGee-Sutton (87), or the Martin-Hou (115) equations of state
can be used for this purpose. Wilson (207) improved the temperature
dependence of the Redlich-Kwong equation for the calculation of enthal-
pies. But the generalized equations of state are already based on the

principle of corresponding states in one way or the other.

Methods Based on Corresponding States Principles

The principle of corresponding states provides the way of general-
izing the expressions of many thermodynamic properties. Good reviews
on this principle are given by Stiel (191) and by Leland and Chappelear
(104).

The earlier two parameter principle was first utilized in describ-
ing P-V-T behavior of gases, but immediately extended to enthalpy cor-
relations. Among the earliest correlations of this type are those of

Cope et al. (53) and of Edmister (63).
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Later Lydersen et al. (112) introduced the critical compressibility
factor into the principle, thus initiating a three parameter correspond-
ing states theorem. At about same time Pitzer et al. (141) devised
another third parameter which is termed as acentric factor to describe
the deviation from simple fluids.

The enthalpy correlation of Lydersen et al. has the form

= +D(z, - 0.27) (9-3)
c ¢ Jz=0.27

where the bracketed term and D are presented as generalized functions
in tabular form by the authors. The applicable range of conditions are
Pr<; 30 .and 0.5 Trs; 15. Yen and Alexander (214) revised these func-
tions in equation and graphical form and extended the upper temperature
limit to T, = 30. A recent modification by Yen (2i3) applies for Prs;
100 and 0.L<C T,<{60. Stevens and Thodos (190) fitted the saturation
data of Lydersen et al. to analytical equation and applied to mixtures
using pseudocritical properties.
The correlation of Curl and Pitzer (56) is given by

HO-H__HO—-H(O)ﬁL g -5
- W
RT_ RT_ RT_

(9-L)

The first bracketed term represents the enthalpy difference of simple
fluids, and the second term reflects the deviation from simple fluid
condition. Both terms are tabulated as generalized functions of reduced
pressure and temperature. The tables cover the range of pressures up

to P, = 9, and temperatures from.Tr =0.8 to 4. Yarborough'(109) modi-

r

fied this correlation by using high pressure enthalpy data together with

'P-V-T data.



108

A similar correlation using two reference substances was proposed

by Yesavage (215).

where W, =1 - W2

This correlation is suitable when the values of two reference substances

are available.

Enthalp;es From Fugacities

The isothermal partial enthalpy difference of component i is re-

lated to its fugacity as follows.

T 91n f.
i i _
RT T{ o7 }P « (9-6)
For pure componentbi
A\H. d1ln f.
i i
5 = - T[—éﬁr_—Jp (9-7)

Whén an eqguation of state is used, Equation 9-7 results in an identical
expression to that derived from Eguation 9-2.

Edmister, Thompson, and Yarborough (67) eémployed Equation 9~6
together with the Redlich-Kwong equation of state for the calculation of
partial enthalpy of a component in a mixture. In general partial
enthalpy is very sensitive to mixing rules used, while mixture enthalpy
- 1s much less sensitive.

Another utility of Equation 9-6 or 9-7 was demonstrated by Erbar

et al. (70). The authors separated Equation 9-6 in such a way that the
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saturated liquid enthalpy can be calculated from a K-value correlation

involving.vi and vj .

91ln f. 21n v. 21n v,
i _ i . i (9-8)
9T Jp.x 8T |p 9T Jp,x

Multiplying Equation 9-8 by -RT2 gives the partial melal enthalpy of
component i in a mixture. The accuracy of enthalpy values calculated
from Equation 9-8 entirely depends on the exactness of the temperature

dependence of v, and 75
Present Correlation

In this work the equations derived for the K-value correlation are
also intended to be used for the prediction of enthalpies. This corre-
lation method not only assures the internal consistency of both corre-
lations but also facilitates the calculations of process designs.

The most probable way to achieve this goal is to use an eguation
of state for vapor phase enthalpy, and to estimate liquid phase enthalpy
from the temperature derivatives of pure liquid fugacity coefficient

and activity coefficient.

Vapor Phase Enthalpy

_Encouragingly enough, the soundness of equation of state approach
for the prediction of vapor phase enthalpies is strongly supported by
many previous evaluation studies on enthalpy prediction methods. - Amer-
ican Petroleum Institute (196), Sehgal et al. (184), Yesavage et al.
(216), and Yesavage (215) conducted the most extensive comparison stud-
ies of such methods. The comparison results show that equations of

state, especially the Benedict-Webb-Rubin equation is, in general, one
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of the best means to estimate the vapor phase enthalpies. This fact led
to the development of a new equation of state that is capable of predic-
ting both enthalpy and fugacity coefficient with accuracy. The detailed
derivation of the new equation of state is shown in Chapter IV. - The
isothermal enthalpy difference expression derived from the equation of

state is given by

H-H _ 1 5 b
—_ /12 /T%) 1n ( Ef) (9-9)
- 1.5¢4/T2 + 3¢,/T°) 1n (1 - 9-9
20°RT L < &

The derivation of this enthalpy equation is given in Appendix G, while
its evaluation is shown in Tables XXIV and XXV. -As shown in the tables,
Equation 9-9 is as capable as the Benedict-Webb-Rubin equation of re-

presenting enthalpy data. of pure components and mixtures.

Ligquid Phase fnthalpy

The liquid enthalpies are calculated using the relationships of

- Equations 9-6 and 9-8. The first term on the right-hand side of Equa-
tion 9-8 is evaluated from Equation 7-13 for real liquids and from Equa-
tion 7-14 for hypothetical liquids. For pure component i in a real

liquid state

ZLH

= = Ay/T,. - Ay - 2AZ+ - 6A

T 64 (A6/T - A, - 24,7 )Pr

5°r 7 8°r

3

2 | 352
Z RS w(A Ty + Apy/T+ AP /T = 34377 PS)  (9-10)

For pure component i in a hypothetical liquid state

AH ,
—»B2/T By - 2BZ+ - 435T + (B6/T By - 2138Tr2~)Pr -
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2 2 .
AT P +-w(AloTr.i-All/Tr+-A12Pr/Tr - AT PT) (9-11)

9°r 13
The evaluation of Eguation 9-10 is given in Table XXVI along with the
‘results of some other correlations by Stevens and Thodos (190), by Yen
and Alexander (213, 214), and by Erbar et al. (70).

The partial excess enthalpy term is derived from the activity

coefficient expression, Equation 7-28.

B3 S
—y 3% 3%

H oln s N dB. . N N dB. .
i 1 L 1 1 : 1]
—-=-T[ J = TV, [} 3. -=> > 8.3 ]

RT 3T Jp,x TS 9 daT  28mfe 9 K dT

(9-12)
dB*- 1 1 1 2
ij_ 1 2 3 /.3 3

where i ET[EGi 5j) +qq (8 5j) (8, 3 ) (9-13)

Combining Equations 9-10 through 8-14 gives the following isothermal

enthalpy difference for a liquid mixture.

N (aH AR
AH LN [ RIT} (9-14)

Equation 9-14 was tested against the experimental data of Mather
(116) and Yesavage (215). The results are given in Table XXVII with
the results of a similar correlation by Erbar et al. (70). The enthalpy
expression of Erbar et al. is not exactly the same relationship as
Equation 9-8, because the authors modified the expression after making
differentiations. Even with the modification this expression is not
as satisfactory as the equation in this work. When applying Equation
9-11 to methane, the constants. for general hydrocarbons are recommended

for use.



TABLE XXIV

COMPARISON OF ISOTHERMAL ENTHALPY DIFFERENCES OF PURE COMPONENTS
IN THE VAPOR PHASE VIA FIVE EQUATIONS OF STATE

Conditions
Number Tmin. Pmax.
of

Substance Points OF PSIA

Saturated
Methane 13 =250 5217
Ethane 12 -100 632
Propane 13 =20 525
n-Butane 12 4LO L37
n-Pentane i 100 393

Overall Average Absolute

Superheated

Methane 10
Ethane 11
Propane 11
n-Butane 11
n-Pentane 10

Overall Average Absolute Deviations, Btu/1b

Deviations, Btu/lb

=200
0

190 -,

180
240

3,000
3,000
2,000
1,000

700

Average Absolute Deviations of Isothermal Enthalpy
Differences From Canjar and Manning Data (37), Btu/lb

Redlich Barner Benedict Edmister

-Kwong et al. et al. et al. Fguation
(166) (12) (16) (65) 9-9
2.4.99 2.309 0.188 1.858 1.795
L.632 1.054 0.073 0.718 1.312
L.013 0.421 1.420 0.586 0.556
5,63& 1.691 1.827 1.669 2.289
1.915 2.930 3.655 2.600 1.813
3.666 1.710 1.595 1.513 1.549
1.252 1.299 0.221 1.262 0.717
1.792 1.458 0.809 0.519 0.984
1.720 1.215 0.930 0.468 0.581
2.912 2.103 1.699 1.782 1.510
1.628 1.982 3.372 2.222 1.747
2.0L6 1.520 1.411 1.259 1.145

AN



TABLE XXV

COMPARISON OF MIXTURE ISOTHERMAL ENTHALPY DIFFERENCES IN THE VAPOR PHASE
FROM FIVE EQUATIONS OF STATE WITH EXPERIMENTAL DATA

Average Absolute Deviations of Isothermal Enthalpy
Differences From Experimental Data, Btu/lb

Number Conditions Redlich Barner  Benedict  Edmister
Mol Fraction of Temperature Pressure —-Kwong et al. et al. et al. Equation
of Methane Points °F PSTA (166) (12) (16) (65) _9-9
Nitrogen-Methane (116), Saturated
0.434 7 =225 to =152 100 to 700 1.243 1.056 0.680 1.519 1.101
Nitrogen-Methane (116), Superheated : :
0.434 19 -150 to 200 500 to 1500 0.385 0.440 1.027 1.301 0.861
Methane-Propane (116,215), Saturated S
0.000 14 =44 to 204 15 to 600 5.735 0.791 1.425 2.362 0.962
0.234 8 36 to 178 100 to 800 5.907 1.562 1.109 2.113 1.435
0.494 10 50 to 114 200 to 1300 6.058 2.853 0.758 3.115 1.480
0.720 10 =25 to bl 100 to 1300 L .858 L .159 1.265 2.990 1.466
0.883 11 -63 to L 100 to 1100 3.389 3.689 1.337 2.845 1.716
0.948 7 -92 to 42 100 to 900 1.202 1.421 2.229 1.368 0.372
Methane-Propane (116,215), Superheated
0.000 12 300 to 500 500 to 2000 2.959 2.695 0.737 0.359 1.454
0.234 12 200 to 300 500 to 2000 5.069 1.703 0.720 1.686 1.839
0.494 16 150 to 300 500 to 2000 L.551 3.761 1.134 2.814 0.871
0.720 16 100 to 300 500 to 2000 2.495 3.223 0.434 1.649 0.470
0.883 16 50 to 300 500 to 2000 1.287 2.361 0.383 1.268 0.186
0.948 17 50 to 300 200 to 2000 0.691 1.067 0.510 0.809 0.741
Overall Average Abs. Deviations of 175 Points, Btu/1b : 3.085 2.174 0.840 1.813 1.009

AN



TABLE XXVI

COMPARISON OF PURE COMPONENT ISOTHERMAL ENTHALPY DIFFERENCES
IN THE LIQUID PHASE FROM FOUR PREDICTION METHODS

Ave. Abs. Deviations of Isothermal Enthalpy

Conditions Differences From ILiterature Data, Btu/lb
Number Temperature Pressure Stevens Yen- Erbar -
Refer- of -Thodos  Alexander et al. Equation
Substance ence Points OF PSIA _(190) (213,214) (70) 9-10
Saturated
Methane 37 6 =240 to =130 32 to 527 6.721 7475 3.906 2.342
Methane 90 10 -200 to -120 115 to 631 9.486 9.975 2.637 3.512
Ethane 37 12 ~100 to 80 32 to 633 2.085 7.967 L.759 1.460
Propane 37 12 -20 to 190 25 to 555 3.381 3.282 3.475 0.751
Propane 215 13 -4 to 201 15 to 588 3.475 3.426 5.990 1.885
n-Butane 37 12 LO to 280 18 to 437 3.279 8.431 3.588 2.170
i-Butane 37 14 0 to 260 12 to 461 6.275 14.328 3.678 2.0L46
n-Pentane 37 13 100 to 360 16 to 392 3.812 10.753 L.972 1.940
n-Pentane 34 15 100 to 380 16 to L65 5.319 12.220 5.076 1.979
Overall Average Absolute Deviations of 107 Data Points, in Btu/lb:5°318 10.517 L .46l 2.155
Subcooled
Methane 90 29 -260 to -120 100 to 2000 - - 6.156 1.641
Propane 215 52 -120 to 180 100 to 2000 —_ - 2.953 1.656
n-Pentane 37 27 100 to 360 500 to 2000 - — 2.868 2,229
n-Pentane 34 28 100 to 340 500 to 2000 - —_ 2.193 1.41
Overall Average Absolute’Deviations of 136 Data Points, in Btu/1b: 3.918 1.820

11T



TABLE XXVII

COMPARISON OF MIXTURE ISOTHERMAL ENTHALPY DIFFERENCES IN THE LIQUID PHASE
FROM TWO PREDICTION METHODS WITH EXPERIMENTAL DATA

Average -Absolute Deviations of
Isothermal Enthalpy Differences

Number Conditions From Experimental Data, Btu/lb
Mol Fraction of Temperature Pressure Erbar Eguations 9-10
of Methane Points °F PSIA et al.(70) Through 9-14
Methane-Propane, saturated (116, 215)
0.000 13 -4l to 201 15 to 588 6.051 1.882
0.234 8 =144 to 102 ’ 100 to 800 L.241 1.732
0.494 10 -180 to 51 100 to 1200 5.762 3.902
0.720 13 =202 to -l 100 to 1300 8.675 3.683
0.883 11 =209 to -49 100 to 1100 10.861 6.235
0.94,8 9 -208 to -84 100 to 900 11.240 7.617
Overall Average Absolute Deviations of 64 Data Points, in Btu/1b: 7.869 L .099
Methane-Propane, subcooled (116, 215)
0.000 29 -120 to 180 100 to 2000 2.500 1.783
0.234 19 -250 to 100 500 to 2000 12.251 ' L.305
0.49L 15 =250 to 0 500 to 2000 11.071 L.116
0.720 20 -250 to 0 500 to 2000 8.74L 3.269
0.883 17 -250 to =50 500 to 2000 7.072 2.4L57
0.948 15 -250 to -100 500 to 2000 . 6.651 2.786
Overall Average Absolute Deviations of 115 Data Points, in Btu/lb: 7.532 2.993

qT1T



CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

Based on the investigations conducted in this work the following

are concluded and recommended.

(1)

(2)

(3)

(4)

(5)

Conclusions

The proposed equation of state and the thermodynamic expressions
derived from the equation are sufficiently accurate in representing
the vapor phase P-V-T data and other thermoedynamic properties of
pure compenents and mixtures.

The equation of state mixing rules given by Egquations 4-39 through
L-41 are satisfactory for the calculations of mixture properties,
but they are not as satisfactory for the partial properties inclu-
ding the fugacity coefficient of a component in a mixture.

The modified mixing rules containing a set of interaction coeffici~
ents substantially improve the prediction of heavy component fugac-
ity coefficients, subsequently increasing the accuracy of K-value
prediction for the components.

The newly obtained pure liquid fugacity coefficient expression
shows a high performance in the temperature range of Tr = 0.55 to
1.0. It can be also applied at lower temperatures down to .=
0.4 with slightly reduced accuracy. |

The temperature derivatives of In v, is found to be an excellent



(6)

(7)

(8)

(9)

(1)
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tool for predicting the isothermal enthalpy difference of pure
liquids.
The mixture liquid enthalpies can be predicted via Equation 8-6
satisfacterily.
The proposed activity coefficient model is flexible enough to des-
cribe the nonideality of many liquid mixtures.
The present K-value correlation may not hold beyond the range of
conditions specified below.
a. For hydrocarbons

Temperature: down to 0.55 reduced temperature.

Pressure: up to 0.85 of the critical pressure of the system.

b. For light gases

Temperature: down to -200° F.

‘Pressure: up to 10,000 1b./sqg. in. abs.

Concentration: up to about 20 mole percent of gases in the

liguid.

The present generalized K-value correlation is more accurate than
the Chao-Seader correlation, and applicable to a wider variety of
mixtures than are the correlations of Chueh and Prausnitz, and of
Robinson and Chao. A further improvement can be obtained in the
prediction of K-values by using specific rather than generalized

interaction coefficients.
Recommendations

An extensive study on mixing rules is necessary for-an improved
prediction of K~values. This study should be . made in parallel

with a modification of Equation 4-9.



(2)

(3)

(4)

(5)

(6)
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- An improved temperature dependence of activity coefficient may be

obtained from heat of mixing data. This approach assures more
accurate predictions of liquid enthalpies via Equation 9-14.

More accurate experimental data on cyclo-paraffin and aromatic com-
pound mixtures are required. Remarkable disagreements are observed
for these mixtures. This.is also true for nitrogen systems.
Therefore, it is recommended that accurate experimental determina-
tions be repeated for these systems to discriminate between right
and wrong data.

Specific binary interaction coefficients should be determined for
each binary system for which accurate experimental equilibrium data
are available. These specific interaction coefficients would
result in more accurate K-value predictions.

The need for a separate K-value correlation for low temperature
systems. is suggested. In this case, the v, expressions for both
real and hypothetical liquids should be redetermined. At the same
time, the mixing rules for vapor phase fugacity coefficient should
be also changed.

An improved K-value correlation may be obtalned by modifying Equa-
tion 4-~9 or by developing a new equation of state, so that the
vapor and liquid fugacities can be calculated directly. The nec-
essary constants should be determined from experimental P-V-T data
of both pure components and mixtures by applying a certain prede-

termined set of mixing rules.
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NOMENCLATURE
parameters in the van der Waals and the Redlich~Kwong
equations of state

parameters in Benedict-Webb-Rubin equation of state
and in Equation 4-9

parameters in Equation 4-9

parameters in Equation 4-9

parameter functions for Equation 5~7

constants in Equation 7-13

parameter in the Scatchard-Hildebrand equation

constants in Benedict-Webb-Rubin and in the Beattie-
Bridgeman equations of state

second virial coefficient

constants in the Redlich-Kister equation
binary interaction coefficients in Egquation 7-29
constants in Egquation 7-14

third virial coefficient

cohesive energy density

molal internal energy

fugacity

component fugacity in a mixture
parameter in Renon-Prausnitz equation
molal Gibbs free energy

partial molal Gibbs free energy

molal enthalpy
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partial molal enthalpy

binary interaction coefficient in the modified
Scatchard-Hildebrand equation

vapor-liguid equilibrium.ratio

constants for the generalized interaction coefficilents
in Equations 5-14, 5-15, and 5-16

number of phases

number of moles

total number of components
vapor pressure

system pressure

constants for the generalized interaction coefficients
in Equation 7-29

gas constant

molal entropy

sum of square

absolute temperature

molal volume

partial molal volume

parameters in Yesavage enthalpy equation
liquid composition

vapor composition

compressibility factor
Greek Symbols

parameter in Heil-Prausnitz equation
constants in Benedict-Webb-Rubin equation of state

interaction coefficients in Equations 5-11, 5-12, and

5-13
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liquid compressibility
activity coefficient
solubility parameter
difference in property

parameters in the Wilson, Heil~Prausnitz, and Renon-
Prausnitz equations

chemical potential of a component in a mixture
pure liquid fugacity coefficient

vapor phase fugacity coefficient

volume fraction

summation

acentric factor

Subscripts

critical point property
calculated

experimental

components

interaction relationship
mixture

reduced condition

total

Superscripts

excess property
ideal solution
liquid phase

mixing property
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saturation condition
vapor phase
reference state

zero pressure state



APPENDIX A
DERIVATION OF PHASE EQUILIBRIUM CRITERIA

Applying the entropy criterion of equilibrium to a closed system

involving M phases and N components gives

Mo
> ast® =0 (A-1)
k=1 E,V,n

‘FExpressing it in more explicit mathematical form

M ‘ 1
> s =0 or ast™ - _ > as ) (A-2)
k=1 k=1
K
M M .
> i =0 or aE™ = > dE(k)_ (A-3)
k=1 =1
km
M | M
> dV(k) =0 or dV(m) == dV(k) (A-4)
k=1 k=
ki
1 M
> dn(k) =0 or dn(m) =_> dnl(k) (1 =1, , N)
k=1 k=1

(A-5)

where m denotes an arbitrary phase. From the definition of internal

energy

N _
dE = TdS - PAV + » M dns (4-6)
i=1 ‘

Applying Bquation A-6 to every phase and combining the expression for

134
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phase m with Equations A-2 through A-5 and summing up gives

1 X
) dE —-E:: (@) - g - E:: ™ - p ™)
k=1 =1
N M _(
+-§:: > ouﬁk) —4u§m) )dn§k) =0 (A=7)
1=l k=1
All the dS(k), dV(k), and dn( ) (i =1, ..., N) are independent, since

the dependent terms of a phase (phase m) have been eliminated. - Thus,
from the theorem of linear independency all the term in Equation A-7
must be identically zero in order for the equation to be generally

valid, i.e.

B g = 1, ..., M) or (1) =2 _ O.T(M) (A-8)
Similarly
0 —p(® o () (4-9)
—(1) 17(2) = ...A7§M) (1=1, ..., N) (A-10)
_ For vapor-liquid phase equilibrium

1 =t (A-11)

pl = pl (A-12)
A=Y 1 =1,2, ..., m (A-13)



APPENDIX B

CRITICAL POINT REQUIREMENTS FOR.PROPOSED

EQUATION OF STATE

Rewriting Equation 4=9 in more convenient form for differentiation

gives

1 1 c
b m@T -yl -yT b)J - (B

Differentiating Equation B-1 with respect to volume at constant temper-

ature gives

{’C)P)___ll_c_c_}
\SV T V—b?(a ‘V,+b) 'v(vv+b)2 F (3-2)

The second derivative is

Fpy 1 [_ 2oy 2c
(aVZ)T V-blL W vrh V(U T b)*
2c opP
————— - —_— : B-
s - @ (53)

At critical point

ap\ _ (&P _
(a—v)Ti(a—v'é)T ° (54)

Applying Equation B-4 to Equations B-2 and B-3 gives

1 c C
~—(a - )+ 5 - P, =0 (B-5)
v V.t Db V (V-+ b)

c c
| 1 o c + c + c =0 (B=6)

124
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Combining Equations B-5 and B-6 gives
c = Pd(VC;+-b)3 (3;7)

Combining Equations B-5 and B-7 gives
a =PV (2v, + b) t PC(VC + b)'2 - (B-8)

Writing Equation B-1 for critical point and combining with Equations B-7

and B-8 results in

1
= ZC = _3_ (B_g)

Defining b' = Pcb/RT,, a' = Pca/(RTC)Z, and ¢' = Pcc/(RTC)3, and using

Z, = 1/3 permits to rewrite Equations B-7 and B-8 as follows.

¢ = (b +1/3)° (B-10)

1 12

a' =< +1v' +1/3) - (B-11)

The constant b can take on any values without violating the equalities

given by Equation B-i.



APPENDIX C

THERMODYNAMIC FUNCTIONS DERIVED FROM

PROPOSED EQUATION OF STATE

(1) Second Virial Coefficient Expression

Rewriting the proposed equation of state, Equation 4-9, in terms of

Z gives
-V a c
7 = - + (C_l)
V-b RT(V-Db) RT(V-Db)(V+1b)
Expanding Equation C-1 into infinite series gives
a 2 ab ~-c¢ 2
Z =1 + - — ) -t - V T oo =
(b = D/V+ (0% = )/ | (c-2)
Thus, the second virial coefficient is
B=b - &
RT
- From Equations 4-25, 4-26, 4-28 through 4-31, one obtains
RT
B = _15'.2 [(0.1231 - 0.25913/T - 0.2015/T.%)
c
+w (0.15269 + o.031314/Tr - O.216L;/Tr2 - O.OL;2/TI_6 )]
(C-3)

(2) Isothermal Enthalpy Difference

Starting with Equations 9-2 and 4-9
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v

H-H = [T(S%)V - P}dV-+1PV - BT (9-2)
) |

< RT a c

0e (V-1)  V( -0b) i V(V - B)(V + b) - (4-9)

where a=a -aT+ a3/T 'r'abr/T5

0. 2
CI/T 5-+'02/T

o
]

- Differentiating Egquation 4-9 with respect to temperature at constant

volume gives

Gy - B =T ag/T° + 52,/T°
2T’V (V - b) V(V - b)
0.5¢;/TH2 + 2¢,/13
- (C-4)
V(V - b)(V + b)
oP apt 2a3/T + 6a4/T5
&) -P= .
aT’v V(V - b)
- 1.501/10+5 + 3c,/1° (C-5)
V(V - b)(V + Db)
Combining Equations C-4 and C-5 with Equation 9-2 gives
H - B° =AH
=PV - RT + ﬁg(alh+ 22,/ +,6a4/T5),1n (1 - %%)
1 0.5 , o /2 b2 |
- 555(1.501/T T 3e,/T7) ln.[l - (77) ] (C-=6)

(3)  Fugacity Coefficient
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Starting with Equations 5-6 and 4-9

Vt
1 RT P
1n @, =& [v_ - (89—,, ]dvt -1n7Z (5-6)
t ni T)Vt,nJ
0o
where Vt = nV = total volume
nj = Ny Doy ooy 45 Nyogs -y
_ DT (n°a) + () (c-7)
(vt - nb) vt(vt - nb) vt(vt - nb)(vt + nb)

Combining Equation C-7 with Equations 4-39 through 4~41 and 5-11 through
5-13 and differentiating P with respect to n. at constant T,‘Vt, and
ny gives
2
RT nRTb. n ab.

() = + L - .
n; T,Vy,ns (V- mb)  (V, - nb)* U (V, - nb)?

nA. ZnAcbb.
_ i - i
V.V, - mb) VRV - mb)2(V + nb)?
“tM 't t
2
n Cl
* \ (c-8)
vt(vt - nb) (vt + nb)
where
1 1 1 N . 1
Al = 2[(8.1 all)z - (3.2 8.21)2T \‘f"agi( E - Yj djl agj)/T
J=
r N 1 5
2 2
+ ahi(% Vs /%i aAj)/T J (c-9)

C, =3[c§/3 /3 /T +
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N N
1/3 . /3 , 2
Coy Zi: > ¥s yk;éﬁjk(cgj ca) /T (C-10)
J=1 k=1
Combining Equations 5-6 and C-8 and integrating gives
v nRTb: A Vi = nb
Ing. = =|RT 1n (—2—) + 2+ 2 an (22—
+ RT Vo -nb (Vg -nb) b Vi
1 1 V., - nb
+ n”a bl - - 5% 1n (L ,%
L nb(Vt - nb) n<b v,

1 1 Vo= n2b2
*2n"p(VS - n*p%)  2n™p v

Cy V{2 - n?p° Ve
- g 1n (——VE-—) -~ 1In Z (C-l‘l)

t o

- Rearranging and simplifying gives

A. - a B: b
= i S (1 - =
In ¢i.— Bi(Z -1) -1InZ + ( 1) 1n (1 V)

RTb
0.5C; - ¢ B 2

- (=) 1n (1 - b_2 (C-12)
RTb vV

where B, = b; /b
- For pure component for which A.=2a, C = 3¢, B =1, and C{==K3==59== 1

f.

i a b
—=)=7~1=1n2Z + (= -1) 1n (1 -~ —

ln'(P) Z n (RTb » ) 1n ( V) |

- —— In (1 - E;) (c-13)
2RTD v

(4) Partial Volume

Differentiating Equation C-7 with respect to n; with P, T, and Dy
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constant using the mixing rules given by Equations 4-39 through 4-41

gives
9P ~ RT n RT = A;
<§r"p T, (V. —nb) 2(V3 = By) - V‘($ - nb)
ni stally t n (thnb) tt‘n
+ n Rv - nb)V; + Vi (Vs - b ﬂ
VR, - by 20T SRR S
t 't
2 .
+ o
vt(vt - nb) (V, -+ nb)
3 _ _
T2 el LA
v (V= nb)*(Vy + nb)<
TV (27,7, - 2nbbi)] =0 (C-14)
_ avy
where v; = (5HE)P,T,nj’ and A; and C; are given by Equations C-9 and

C-~10.
Collecting terms multiplied by Vi, using nV = V; and Equation 4L-9, and

rearranging gives

A. C.
(P - ____fL__E)bi,+.RT i +—§z§__igj
— : . : +
v v(V * b) ! (C-15)
b_2 . c(2V + b)

7 TR((T+ b)2

- (5) ‘Partial Enthalpy

By definition

H =2 =AH + n2- -
AHy ‘ani(nAkH)P,T,n‘ AH +-naniQSH) (C-16)

3 P,T,nj
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where AH is given by Equatlon C-6.

If the mixing rules given by Equatlons 4=39 through 4-41 are used,

aAH = o, DbTh 5 b
(9n1)P,T,nJ =P(V; - V) - —?—(al,+ 2a3/T- + 6ah/T ) In (1 - 7)
+ i [al all)2-+‘2(a ) /T + 6(a 21 )2/T5] In (1 - =

Loy 2ay/m 60, /1R b - o)/ - )

+ ° ;bjbi(ljcl/T% +'302/T2) 1n [1 - (%)2]
3 ©11,1/3 4 c01,1/3 2] b2
- 5.10_2{1.50 (c—ll-) /T‘°“ + 3¢ (.;;1-) JT7| In {1 ~ (-\f-)
- %(1.501/T% + 302/T2)(Y§= b - bi)/(V2 - v°) (C-17)

Rearranging Equation C-17 and combining it with Equation C-16 gives

I o= 1 b ERY- 3313
AR, =OH + T In (1 - -\7-) [2&11(2.;) .+ L’aB(E;) /T

a,. 1 5 b. 5
+ 12ah(éi)2/fr -(1+ _;L')(al + 2a3/T‘+ 6ah/T )]
+ =5 In (1 - —) [ cl<%1f)1/3/T% + 90, (220) /3 /12

2b< 2

2b. 1
- (1 + Tl)<l'5 cl/T% + 302/T2)]

1 z 2 = ,
- m(1.5 cl/T§-+ 302/T )] + P‘(Vi - V) (C-18)



APPENDIX D
SCATCHARD-HILDEBRAND EQUATION

From the definition of cohesive energy density

E = L[s- 5 C VL VL
~E _LJ;L% JkXJXk j 'k

byl ]

Assuming Cax = (Cj )~ gives

L N 1 2
-E =7 E c= @.]
m m A= J 7 J

=

M

E =E - B=Y x, 0. vE- vl cEs.]°
B 2 M BT % O Yy Tl O

For regular solution

EM = gB
Applying Equation 7-11 to Equations D-4 and D~5 results in

(nG")

- 1
ln.yi. P,T,n

RT

2
T ony "3
N
_ 1 L
2ot e, o7

J=l

1LL

(D-1)

(D-2)

(D-3)

(D-4)

(D-5)
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"\[J..
N
Al H
> =
- -
V, [=
- |
e N_\/_ I
(k
e,
(&)

(D-6)



APPENDIX E

ACTIVITY COEFFICIENT EXPRESSION

Expressiong Equation 5-33 as total excess Gibbs free energy gives

n j=]_ =
N N
n : I I, -3¢
T ——— . . . —
= P §'=1 ; ny V5 my Vi Dy (E-1)
E n, V, J

| N N N
2o E _ 1|l oL % L L
Sy PO /R0 p 0 = S T Ty By T e Vi B ™ Y
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N N N
- « _ 1 *
BAPILTEPEE DI W
=1 =L %=
T | = 8. D, = (= - = 8. 8 D
N N N
a0 1 A
D % Cl.-= > Y x x o’:} (E-2)
[j=1 SR 2 g e R K



APPENDIX F

COMPUTER PROGRAMS USED FOR DEVELOPING

- THE PRESENT. K-VALUE CORRELATION

(1)  Main Program for Heavy Component Activity Coefficients

DIMENSION AX3(7) ¢AX4(T)4CX2(T)4BICITsT)4TIC(T+7+7)19SQA3(T747),
1SQA4{T,7)4yCUBC(T4747)

EMBEDD ING PRCGRAM FOR GAUSS E

DIMENSION B(24)y 2(12,400)y MM(12)+DEL(T) HTITLE(20),ACT(7)oVLI(T)
DIMENSICN CCL64) yPCUT) o TCUT)oZCUTIoWM(T) oWl T)oTBUT)4CALT)oSK(T),
LGL(T ) oSBUTIoAL(T) o A2(T) o A3(T)eCLUT)oC2(TI o XE(T)ZYE(T)oTRIT) JA4(T),
2YOUXET) o FUT) 9ZSUT) o FOP(T) yAFOPLT) oBX(T) o AX(T)CX(T7)PHILT) JAPHI(T)
3sSVLIT) oPSIT)IsPRUT)ySFOP(T)4QFC(T7),QACT(T)

COMMON NUMyB,sZ,LLM

COMMON /COMA/ MM

COMMON /COMB/ J4J

. g ’
O VO HWN

FORMAT(2CA4)

FORMAT (1216)

FORMAT (BF1044)
FORMAT(13F10.3)
FORMAT(124F842)
FORMAT (40X 44F10,3)
FORMAT(20A4,T6S9413)

READ (5,2) (MM{Jd)yd=1,12)

NSET=MM(2)
JJ=MM(3)
READ(5,

LML =

LLM=
L=1
NUN=1

1

21 CONTINUE
READ(S»L)(TITLE(]I) yI=1,20)
WRITE(6,1) (TITLE(I),I=1,20)

NC=2

3) (B(J)yJd=1,24)

DO 12 I=1,NC

READ{543) PCUI)oTCIL)o2C(T)yWMLT)yWL1),TB(LI),VL(TI),DEL(I)
RTC = 10.7315*TC(1)

CP = RTC/PCLI)

ca(r)

12 CONTIN

ce

(I U I I T ]

UE

*RTC

CP*0,0982
CPP*(0425913-0,031314*W(I))
CPP¥(0,0249+0.15369%W(I1))/T
CPP%(0+2015+0,21642%W( 1) )*T
CPPx0,042¥ (1 )*TC([)**5
CP*CPP* CoC59904*(1.0-w(I))*SQRT(TCLI))
CP#CPP#{0,01812640,091544*W(I))I*TC(I)*TCLI)

e
cary

19 DO 23 N=NUN,40O

1.
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READ(5,9) TEMP,PyXE{1),YE(1)
IF{P.LE.0.,0) GO TO 24

XE(2) = 1.,0-XE(1l)

YE(2) = 1.0-YE(1l)

T = TEMP+459,7

RT = 10,7315*Y
8S = 0.0

AS1 = 0.0
AS2 = 0.0
AS3 = 0.0
AS4 = 0.0
CS1 = 0.0
€S2 = 0.0

D0 17 I=14NC
FUI) = YE(I)
AX3(1) = 0.0
AX4(1) = 0,0
Cx2(I) = 0.0
CONT INUE

KA = 2

KB = 7

KC = 5

DD 14 I=1,NC
YOX(I) = YEC(ID/XE(])
BS = BS+F(I1)%SB(I)

AS]1 = ASL#F(I)*SQRT(AL(I))
AS2 = ASZ+F(1)*SQRT(A2(1))}
CS1 = CS1+F(I)*C1l(I)*%*,33333333

DO 14 M=14NC

SQA3(IsM) = SQRTUAI(I)*A3(M)})

SQA4(L1+M) = SQRT(A4(I)*A4(M))

BIC(I4M) = 2.,0%SQRTITCILI*TCIMII/ZLTCLIIATC(M))

AS3 = AS3+F(I)*F(M)*BIC{I,M)**KA*SQA3(],M)

AS4 = AS4+F(I)*F(MI*BIC(I4M)**KB*SQAL(],M)

AX3(I) = AX3(I)+F(MI*BIC(I M) **KA*SQA3(I+M)

AXGUI) = AX4(I)+F(M)*BIC(I,M)**KB*SQA4(14M)

DO 14 K=1,NC

CUBC(I yMyK) = (C241)*C2(M)*C2(K))**,3333333333
TICUTIsMeK)I=3o*(TCUII*TC(M)*TC(K) )*%,3333333333/(TC(II+TC(M)+TC(K))
CS2 = CS2+F(I)*F(MI*¥F(K)*TIC(IyMyK)**KC*CUBC(IyMyK)
CX2(I) = CX2(I)+F(M)*F(K)*.TIC{IsMyK)#*KC*CUBC(I4MiK)
CONTINUE

T/77C(I)
P/PCLI)

= TROI)Y*TR(I)
TR3 = TR2*TRI(I)

TPR = TR3*PR(I)*PR(])

Fl = 6.32873-8445167/TR(I1)~6.90287*ALOG(TR(I))}+1.87895%TR2~4.334478
1%TR3%¥TR3-(,0187C6/TR([)-0,18940%TR2+0.28652*%ALOGITR{I)))*PR(I)
2-0,0025839%TPR-ALOG(PR(1))

F2 = (1.0-TR(I))*(8,7015 -11.,201 /TR{I1))}-0.05044 /TRII)*PR(I1)+
10.002255%TPR

AFOP(I) = FL¥F2*W(I)

FUP(I) = EXP(AFOP(I))

-
x
-
—
-

[[]

AS1l = AS1¥ASl
AS2 = AS2%AS2
CS1 = CS1#%*3

AS = AS1-AS2%T+AS3/T#+AS4/T*%5
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24

25

15

16

20
30

CS = CS1/SQRT(T)+CS2/(T*T)

CALL RKEQN(AS,BS,CSyRTyPV,L)

117 = P*V/RT :

BOV = BS/V

BX(I) Se(I)/8BS

CAX(I) SART(ASYI*AL(I))—-SQRT(AS2*%A2(I))*T+AX3(I)/T+AXG(])/TH%5

cxXtI) CS1I*(CL(I)/CS1)%%,3333333/SQRT(T)I+CX2(1)/(T*T)

APHI(I) = ((2.*AX{(I1)/BS—RT~AS*BX(I1)/BS)*ALOG(1.~BOV)I+(CS*BX(I)-
11e5%CX(I))/7(BS*BS)*ALOG(1.~BOV*BOV) )/RT+BX{I)*(22-1.)-ALOG(22Z)

PHI(I)=EXPLAPHI(I]))

ACT(I) = YOX(1)*PHI(I)/FOP(I])
214N} = VLI(1)
Z(2yN) = DEL(1)
Z(3,N) = XE(1)
Zl44,N) = 1.0
Z(5:N) = ACT(2)
Z{64N) = vVL(2)
Z(T,N) = DEL(2)
Z(8yN) = XE(2)
Z(94N) = T
Z{10,N) = TC(1)
Z(11eN) = P
(124N} = TC(2)
NUM = N
CONTINUE
CONTINUE

NUN = NUM+1 |
IF(TEMPJ LE«.-1000.0) GO TO 25
GO TO 21
CONTINUE

MM(1) = NUM

GO TO 16
CONTINUE

READ(5,2) (MM(J),Jd=1,12)
NSET = MM(2)

JJ = MM(3)

MM{1) = NUM

READ(5,3) (B(J)yJ=1,8)
CONTINUE

CONTINUE

CALL GAUSS

LLM  =LLM+#1 .
IF(LLM«LToLML) GO TO 15
IF (MM(8)-2) 30,20,30
MM(8)=1

MM(11)=MM(11)=-1

MM(8) = 1

IF (MM(11)) 11411,21

END

SUBROUTINE YCOMP
DIMENSION B(24)+Z(12,400),CY(400),WAC(400)

COMMON NUM,ByZ,LLM
COMMON /COMC/ CY

DO 1 N=1,NUM

RL = Z(6oNI*Z(ByN)/(Z(1,NI*Z(3N))+¢140
R2 = R1/(R1=1.C)

DELZ = Z{T4N)-12(24N)
SQD2 = SQRT(Z(2,N))
SQD7T = SQRT{(Z(T,N))

150
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BACD = 1045
BIZX ==1+25¢BACO*Z{9sN)/SQRTIZ(104N)*Z(12,N))
BCD = BZX *SQD2*SQD7*(SQD2~-SQD7) **2+CELZ*DELZ
BCE = 8(2) :
VM = Z(1yNI*Z(3,N)+2(6,N)*2(8,N)
SQVR = SQRT(Z(1,N)/2(64N))
BIC = (SQVR-1,0/SQVR)**2
TFUN = B(1) ' ;
BCY = BCE*BIC*Z(1,N)*2(64N)/(VM*VM)*Z(3,N)*{1e+Z(ByN)-2.0/R2)
BCX = TFUN*Z(3,N)*2(3,N)*BIC+BCY
VL2 = BCD*Z(64N)/711410389%2(9yN]} *R1*R]1)+BCX
CY(N) = EXP(VL2)/2(5,4N)
1 CONTINUE
RETURN
END
SUBROUTINE ANSWER{NyYC,RTIOy2)
DIMENSION 2(12,400)
YC = YC*Z(54N)
WRITE(693) NoZU(GyN)gZ{LLeN)oZ(29N)yZ(TyN)o2Z{34N)sZ(B4N),2Z(124N),
LZ{54N) s YCoRTIOLZ(10,4N)
9 FORMAT(IS5y9F10s447X92F10.4)
RETURN
END
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(2) Main Program for Hypothetical Liquid Fugacity Coefficients
of Light Components in Ethene and Heavier Hydrocarbon
Systems

DIMENSION AX3(7,1AX4(7)‘CXZ(7)!BIC(7!7)QIIC(71707)'SQA3(717,|
1SQA4(T 7)o CUBCIT47.7)

DIMENSION B(24) 4 1(121400)' MM(12)9DEL(T) +TITLE(20),ACT(7),VL(T)
DIMENSION CCU64) sPCUT)oTCUTIoZCUT) yWMIT)oW(T) o TBUTICALT) 4SKIT),
LRACT) oSBUT) o ALUT) A2(T )9 A3(T7)9CLUT)sC2(TIoXECT)yYE(T)oTRIT) yAGIT),
2YOX(7"F(7)115(7)9FOP(7,.AFOP(7}'BX(7)'AX(1)QCX(7,0PHI(7)0APHI(7)

3oSVLITI o PSUTIsPRUT) ¢SFOP(T) sQFC(T) s QACTLT)yZX(44400)
COMMON NUM,B8,2
COMMON /COMA/ MM
COMMON /COMB/ JJ
COMMON /BIL/LLM,2X
FORMAT (20A4)
FORMAT (121]6) .
FORMAT(8F10.4)
FORMAT(13F10,3)
FORMAT(I2,F8.2) .
FORMAT{40X+4F10,3)
FORMAT(20A4,T65,413)
READ (5,2) (MM(J)yJd=1,12)
NSET=MM(2)
JJ=MN(3)
READ(S5, 3) (B(J'OJ'1124’
LML = 2
LLM= O
L =1

" NUN=1

CONT INUE

READ(54s1 )M TITLE(Y) 4I=1,20)

WRITE(641) (TITLE(I).I*I.ZO)

NC=2

DO 12 I=1,NC

READ{543) DMM

READ{(5,3) PC(I)'TC(l).ZC(I)oHN(Il.H(l)oTB(I)oVL‘I)vDEL(l)
RTC = 10.7315%TC(})

CP = RTC/PC(I)

~ CPP = CP*RTC

12
19

SB(I) = CP*0,0982

AL(I) = CPP*(0,25913~0,031314%W(1))

A2(1) = CPP*(0.0249+0.15369%W(1))/TC(])

A3(I) = CPP*(0.201540,21642%W (L) I%TC(I)

A4(I) = CPP¥O,042%NW{1)*TCL [ )*%5

CL(I) = CP*CPP* 0,C59904%(1,0-W(I))*SQRT(TCI(I))
"C2U1) = CP*CPP*{0.,018126+0,091944%W{]))*TC(L)*TC(1)
CONTINUE : ’

DO 23 N=NUNy400

READ{S5,9) TEMPsPoXE{Ll),YE(L)

IFIP.LE.0.0) GO TO 24

XE{2) = 1,0-XE(])

YE(2) = 1.0-YE(l)

T = TEMP+459,7

RT = 10,7315%T

 BS = 0.0

ASI = 0.0
AS2 = 0,0
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DO 1

oy W00

FUI) = :
VLM = VLM + XE(L)*VL(I)
CONTINUE

DO 14 [=1,NC

YOX(I) = YE(I)/XE(I)
T/TCLL )
P/PC(I)

BS = BS+F(I)*SB(I)

-
=
-
—
-~

nn

AS1 = ASL+F{I)*SQRT{AL(I)})
AS2 = AS2+F{I[)*SQRT{A2(1))
CS1 = CS1+F(I)*C1l(1)**,33333333

FYLII) = XECI)*VL(I)/VLM
DO 14 M=1,NC
SQA3(I,M) = SQRT(A3(I)*A3(M))

SQA4{I,M) = SQRT{A4(1)*A4(M))

BIC(I,M) = 2,0%SQRT(TC(I)*TC(M))/(TCLI)+TC(M))

AS3 = AS3+F(I)*F(M)*BIC(I,M)%**KA%SQA3(I,M)

AS4 = AS4+F(I)*F(MI*BIC(I,M)*¥KB*SQA4(I,M)

AX3(I) = AX3(I)+F(MIXBIC(I M) *EKARSGAZ (M)

AX4(I) = AX4(I)¢F(M)*BIC(I M) %%KB*SQAAL I, M)

DO 14 K=1,NC

CUBC(I,MyK) = (C2(I)%C2(M)*C2(K))**,3333333333

TIC(I s MyK)=3 4% (TCUIIRTC(M)®TC(K) )%*%,3333333333/(TC(I)+TC(M)+TC(K))
CS2 = CS2+F(I)*F{M)*F (K)¥TIC(L,MsK)**KC*CURC(I4MsK)

CX2(1) = CX2(I)+F(MI*F{K)FTIC(TMyK)**KCXCUBC (I 4MyK)

CONTINUE

SQD1 = SQRT(DEL(1)) ‘

$SQD2 = SQRT(DEL{2))

AINT1=(=1.25+10,5 #SQRT(TR(L)*TR(2)) ) *SQD1*SQD2*( SQD 1~SQD2) **2

1+(DEL(1)-DEL (2)) %2
SQVR = SQRT(VL(2)/VL(1))

VRATIO = (SQVR=1.0/SQVR)#%2

AINT2 = =0, 1*VRATIO
AINT3 =-,38%VRATIO
1 =1
K=2 : ,
ACT(I) = EXP(VL(I)®AINTI*FVL(K)*FVL(K)/{1,1039%T)+AINT2%XE(K)*

101 0+XE(T) =2 O%FVL(T))RVLIT DRVL (K)/ (VLMEVLM) +AINT3%XE (K ) *XE(K) )

AS1 = AS1%*AS1
AS2 = AS2%AS2
CS1 = CS1%*3

AS = AS1-AS2*T+AS3/T+AS4/T*%5
CS = CS1/SQRT(TI+CS2/(T*T)
CALL RKEQN(ASyBS»CSsRT4P,V,ylL)
Bx{I) = SB(I)/BS

17 = P%V/RT

BOV = BS/V



25

15

20
30

1

AX(I) = SQRT{ASLI*AL(I))=~SQRT(AS2*A2(I))#T+AX3(I)/T+AX4(1)/T**5

CX(I) = CS1*(CL(I)/CS1)**.3333333/SQRT(TI+CX2(I)/(T*T)

APHI(I) = ((2#AX{1)/BS-RT-AS*BX(1)/BS)*ALOG(1.~-BOV)+(CS*BX(])-
11.5%CX(1))/(BS*BS)*ALOG(1.-BOV*BOV) ) /RT+BX(1)*(Z22~1+)-ALOG(22Z)

PHI(I)=EXP(APHI(I))

FOP(I) = YOX(I)*PHI(I)/ZACT (Y !
Z(1,N) = TR(1)

Z(2,N) = PR(1)

Z(3,N) = W(l)

Zt4)N)' ="1.0

2(5,N)"5 FOP(1)
2(7;57“%frenp
zta,q "sp

(9, N1" = XE(1)
;;1@,&)‘= YE(1)

CONTINgt
CONTINUE
NUN = NUM+1 o
IF(TEMP.LE.~1000.0) GO TO 25
GO TO 21
CONT INUE
MM(1) = NUM
CGNT INUE
CALL GAUSS
LLM  =LLM¢1
IF(LLM.LT.LML) GO TO 15
IF (MM(8)=~2) 30,20,30
MM(8)=1
MM(L11)=MM(11)-1
MM(8) = 1
IF (MM(11)) 11,11,21
END
SUBROUTINE YCGMP

DIMENSION B(24),2{12,400),CY(400)

COMMUN NUMyByoZyLLM
COMMON /C0OMC/ CY
FORMAT(16,8F10.5)
N=1,NUM

Z(1,yN)

21%Z21

12%71

212 = Z1%Z(24yN)*%*Z(2,4N)
BBCC = 7.92

~N
-
oW ou o

F1 = 8(1)- 8(2)/ZI—BBCC*ALOG(ZI)*8(4)*12-(6(1)-8(2)*8(4)*0 57847)
1%723-(B(5)/Z1+B(3)*ALOG(ZL)-(0.17069+B(5))*Z2)%2(24N)-.002584%

2212-ALOG(Z(2,N))

F2 = (1e0-21)%(8,7015-114201/21)-0405044/21%Z(2yN)+.,002255%212
CYIN) = EXP(FL+F2%Z(34N))/Z(54N)

CONTINUE
RE TURN
END
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(3) Main Program for Activity Coefficients and Hypothetical

Liquid Fugacity Qoefficients of Methane, 002,

EMBEDDING PROGRAM FOR GAUSS

HS, H

DIMENSION AX3(7I'AX4(7I,CX2(7)cBIC(7n7ltTIC(7,7'7).SQA3(7'7)-

1SQA4(T47)yCUBCH(T47,T)

DIMENSION B(24)y Z(124400)y MM(12),DEL(T7) oTITLE(20)4ACT(T),VL(T)
DIMENSION CC(64) oPCUT)9yTCAT)2C(T)yWMIT)yW(T)oTBUT)4CALT) SK(T),
LGLUT7)oSBUT) s AL(T)9A2(T)5A3(T)oCLUT) ¢C2(T)+XE(T) o YELT)oTRIT) 4A4(T),
2YDX(T)9FUT)o2ZSHT)oFOP(T)4AFUP(T) o BXUT) o AX(T)4CXUT)4PHI(T) JAPHI(T)

3.SVL(7)vPS(7)nPR(7)1SF0P(7)nQFC(7)vQACT(7)vFVL(7'
COMMON NUM,ByZeLLM

COMMCN /COMA/ MM

COMMON /COMB/ JJ

FORMAT (20A4)

FORMAT (1216)

FORMAT(8F1044)

FORMAT (13F10,3)

FORMAT(I2,F842)

FORMAT (40X :4F10.3)

FORMAT (20A4+T69,413)

READ (5,2) (MM(J),J=1,12)

NSET=MM(2)

JJ=MM(3)

READ(5, 3) (B(J’vJ‘1'24)

LML = 2

LML = ]

LLM= 0

L=1

NUN=1

CONTINUE

READ(541) (TITLE(I),I=1,20)

WRITE(641) (TITLE(I),I=1,20)

NC=2 )

DO 12 I=1,NC

READ(5,43) PC(I':TC(I)'ZC(l)vNH(l)-H(l)vTB(l):VL(l)'DEL(l)
RTC = 10473L5*TC(])

CP = RTC/PCLI)

CPP = CP*RTC

SB(I) = CP*0,0982

AL(]) = CPP*(0425913-0,031314%W(1]))
A2(1) = CPP*(04024940,15369%W(1))/TC(I)
AB(I) = CPP*(0.,2015+0,21642%W(1))*TC(])
A4 (1) = CPP*0,042*%W(I)*TC([)*%*5
CL(I) = CP*CPP* Q0.059904%{1.0~-W(I))*SQRT(TC(I))
C2(I) = CP*CPP*(Qe01B812640,091944%W (1)) *TC(I)*TC(I)
CONTINUE
PO 23 N=NUN,400
READ(5+9) TEMP,P¢XE(1),YE(L)
XE(2) = 1.0-XE(1)
YE(2) = 1.0-YE(1}
IF(P.LE.O.0) GO TO 24
T = TEMP+459,7
RT = 10,7315%T
BS = 0.0
ASl = 0.0
AS2 = 0.0

2}

and N

2
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P/PC(I)

TCL TCL+XE(L}*TC(I)
18 CONTINUE

KA 0

KB -5

KC =2

DD 14 I=1,NC

YOX(I) = YE(I}/XE(I)

BS = BS+F(I1)*S8(1I)

AS1 = AS1+F(I)}*SQRT(AL(]))
AS2 = AS2+F(I)*SQRT(A2(1})
CS1 = CS1+F{1)*C1(1}#%%,33333333

D0 14 M=1,NC

SQA3(I,M) = SQRTU(A3(I)*A3(M))

SQA4(I M) = SQRT(AG(I)*®A4(M))

BIC(IIyM) = 24,0#SQRT(TC(II®TC(M))I/(TCLI)+TC(M))

AS3 = ASB+F (1) *F(M)*BIC([,M)%%xKAXSQAZ(I,M)

AS4 = AS4+F(I)*F(M)%BIC(I M)*2KB%SCA4(I4M)

AX3(I) = AX3(I)+F(M)XBIC(I4M)*xKAXSQA3(I M)

AX4(1) = AXG(I)+F(M)*BIC(I M) *%KB*SQA4(],M)

DO 14 K=1,yNC i

CUBC(IsMyK) = (C2(I)*C2(M)*C2(K) }*%,2333333333

TICCTI yMeK)=3 4= (TCII)*TC(MI*TC(K))#*%,3333333333/(TC(I)+TC(M)}+TC(K))

CS2 = CS2+F(I)V*F(M)AF(K)RTIC(I4MyK) *¥2KC*CUBC(I4MyK)

CX2(I) = CX2(II+F(M)%F(K)RTIC(I¢MeK)*2KCEXCUBC{ T4 MyK)
14 CONTINUE

DO 16 I=1,NC

IF(TR(I)eGT&ls0) GO TO 33

TR2 = TRII)*TR{I)
TR3 = TR2%*TR(I)
TPR = TR3*PR(IDI*PR(I)

Fl = 6032873-8,45167/TR(1)=6.90287*ALCG{TR(I)})+1,87895%TR2~
10.33448%TR(I)*%6-(0.018706/TR(1)-0.1894%TR2 +0428652%ALOG(TR(I)))*
2PR(I)-0.0025839*TPR—ALOG(PRI(I)})

F2 = (1e=TR(I})#*(B47015-114201/TR(I))-0405044/TR(L)*PR{I)+
10.002255%TPR

60 TO 32

33 TR2 = TRUI)*TR(I)

TPR = TRUI)*PRUL)I*PR(I)

F1l = 74854 -9.9813/TR(I1)-8.92%ALOG(TRII)}+2,1568%TR2-0.60796*TR2
1*TR(I)+(0419839/TR(I1)+0.22483%ALOG(TR(I))-0.0277%TR2)*PR (1)
2-0,002584%TPR-ALOG(PR{I1})

F2 = (1e=TR{I))*(847C15~114201/TR(I})~Ce05044/TRII)*PRII)+
10.002255*TPR

32 CONTINUE
AFOP(I) = F1+F2%W(I)
FOP(I) = EXP(AFOP(I))
16 CONTINUE
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ASl = AS1#*ASl
AS2 = AS2#AS2
CS1 = CS1l#*%3

AS = AS1=AS2%T+AS3/T+AS4/T*%5
CS = CS1/SQRT(TI+CS2/(T#T)
CALL RKEQN(AS,BSyCSsRT4PyV,yL)
DO 17 I=1,NC
1l = P*V/RT
BOV = BS/vV
BX(I) = SB(I)}/BS
AX(I) = SQRT(ASL*¥AL(I))-SQRTUAS2*A2(I))=2T+AX3(I)/T+AX4(1)}/T%%5
CX(I) = CS1*(CL{I)}/CSL)*%,3333333/SCRT(T)I+CX2(I)/7(T*T)
APHI(I) = ((2.%AX(1)/BS~RT-AS*BX(1)/BS)*ALOG(1.~-BOV)I+(CS*BX(])~
11e5*%CX(I))/7(BS*BS}*ALOG( 1.~BOV*BOV)I)/RT+BX{I)*(ZZ~1s)~ALOG(2Z)
PHI(I)=EXP(APHI(I))
ACT(I) = YOX(I)*PHIC(I)
17 CONTINUE

Z(1,N) = VL(1)
Z{24N) = TRI(1)
Z{(34N) = XE(1)
ZU44N) = 1.0
Z(54N) = ACT(1)
(64N} = VL(2)
Z(74N) = DEL{(2)
Z(8yN} = XE(2)
Z(94N} = T
Z(104N) = ACT(2)
Z{11sN} = PR{(1)
Z(12,N} = TR(2)
IX(LlyN) = W(l)
IX(24N) = FOP(2)
IX{3+N} = T/TCL
22 NUM =

23 CONTINUE

24 CONTINUE
NUN = NUM+1
IF(TEMPJ.LE«-1000.0) GO TO 25
GO T0 21

25 CONTINUE
MMI1) = NUM
DG 31 N=1,NUM
NMM = N+hUM

ZE1aNMM) = Z(69N)
Z(2,NMM) = Z(124N)
Z(3,NMM) = 2(84N)
Zi4yNMM) = Z{44N)
Z{S¢yNMM) = Z{(10,N)
Z(6yNMM) = Z(14N)
Z{TNMM)Y = Z(7,4N)
Z(B8yNMM) = Z(3,N)
ZI9yNMM) = Z{9,N)
ZL10,NMM) = ZX(34N)
Z(11 NMM)} = Z(11,N)
Z(124NMM) = Z(2,yN)
IX(2,NMM) = ZX(24N)}

31 CONTINUE
NUM = 2%NUM
) MM(1) = NUM
15 CONTINUE
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CALL GAUSS
LLM  =LLM+]
IF(LLM,LT.LML) GO TO 15
IF (MM(8B)-2) 30,20,30
MM(8)=1
MM(11)=MM(11}-1
MM(8) = 1
IF (MM{11)) 11,11,21
END
SUBROUTINE YCCMP
DIMENSION B(24)42(12+4400)4CY(400)4ZX(4+400)
COMMON. NUM,B,2
COMMON /COMC/ CY
COMMON /BIL/LLV,ZX
FORMAT(I5410F12.6)
DO 1 N=1,NUM
IF(N.LE<.(NUM/2)) GC TO 14
Z{69yN) = 64.0

IF(LLM.EQel) Z{64N) = 62.0
GO TO 15

Z(1lyN) = 6440

IF(LLMeEQsl) Z(1yN) = 62.0

CUONTINUE

Rl = Z(6sNIXZ(8yN)/(Z(1yN)%Z(3,N))+1.0
R2 = R1/(R1-1.0)
IF{B(9)eLTo5.58) B(S)
IF(B(9) 6T 5.65) BI(9)
BH = B(9)

DELZ = Z(7,N)-BH

SQDZ = SQRT(BH)

SQDT = SQRT(Z(74N})
BZX = =~1e25+10.5 #SQRT(Z(24NI*Z(12,N})

BCD = BZX%*SQD2*SQD7T*(SQD2-SQD7)*»*2+40ELZ*DELZ
VM = Z{1yNI*Z(3,N)+2(6,N)*Z(8,N)
SQVR = SQRT(Z(64N)/Z(1yN))

BIC = (SQVR~140/SQVR}*%2

BCX = —BIC*Z(8,N)*( 0,10 *Z(1,N)*Z(64N)/{(VMEVM)}%(1e+2(34N)=-2./R1)
1+.38%2(ByN))

ACT = EXP(BCD*Z(1yN)/(1+410389%Z(94N)*R2%R2)+BCX)
IFINSLE.(NUM/2})GO TO 11

ANU = ZX(24N)

GO TO 12

CONTINUE

1 = 7(24N) o

12 = 721%11

13 = 712%11

212 = Z1*Z(114N)*Z(11,4N)

212 = 0.0

FI = BU1)+B(2)/21+B(3)*ALOG(Z1)+B(4)}*72+B(5)*23+(B(6)/71+B(T7}*
1ALOG(Z1)+B(8)%22)*Z(11,N)=-0s002584%Z212-ALCG(Z{114N)}

F2 = (le0~-21)%(8.7015-11.201/21)-Ce05C44/21%Z{114N)+.,002255%712
ANU= EXP(FL+F2%ZX(1,N))

CONTINUE

CY(N) = ACT*ANU/Z(5,N}

CONTINUE

RETURN

END

5.58
5.65

o
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(L} Main Program for Activity Coefficients of Cyclic Compounds

DIMENSION AX3{7)¢AX4(T)CX2(T)9BICIT 4T ,TICIT747)sSQA3(T47),
1SQA4(T¢T7)+CUBC(T+T,47) .
OIMENSION B(24)y Z2(12,400), HH(IZ’.DEL(7) sTITLE(20)4ACT(T)oVL(T)
DIMENSION CC(64) sPCUThyTCUTIoZCLT)oWMIT) oW(T),TBLT) ,CA(T)+SKIT)
1GLCT)oSBUT) s ALUT D)o A2(T D) oA LTI 4CLIT) oC2U T4 XEATISYE(T)oTRIT) 4A4(T),
2YOX(T) o FUTY 4 ZS(T)oFOPLT) JAFOP(T) yBXUT) yAX(T)9CXUT) 4PHI(T)4APHI(T)
315VL‘7)|PS(7)'PR(7) SFOP(T)4QFC(T), QACT(7)QZV(5'400,1IDN(7)
COMMON NUMsB,yZ
COMMON /COMA/ MM
COMMON /c0MB/ Jd
COMMON/BIL/LLM 2V
FORMAT (20A4)
FORMAT (1216)
FORMAT(TF10.4,F8s3,412) -
FORMAT(13F10,3)
FORMAT(12;3F842)
FORMAT{(8F10,3)
FORMAT (40X 14F10.3)
FORMAT(20A%,T69,413)
READ (552) (MM{J}sd=1,412)
NSET=MM(2)
JJ=MM(3)
READ(5y 8) (BlJ)sd=1ly24)
READ{5+8) (CCUM),M=1,56)
LML = )
LiM= 0
L=1
NUN=1
CONTINUE
READ(5,1) (TITLE(J) d=1,20)
WRITE(641) (TITLE(J)d=1,20)
READ(5+6) NC
DO 12 I=1yNC
READ(543) SVL(I),CALI)
READ{S+3) PCUI), TC([)'ZC(I)'HM(I)lN(l)tTB(l'nVL(I’yDEL(I) IONCT)
RTC = 10. 7315*TC(I)
CP = RTC/PCLI)
CPP = CP*RTC .
SB(I) = CP*0,0982
AL(I) = CPP%¥(0425913-0.031314%W(1))
A2{1) = CPP*(0,0249¢0.15369*W(]))/TC(I)
A3LI) CPP*¥(042015+0,21642%W (1) )*TCLT)
A4ll) CPP*0,042%W{T)*TC(])*%5
C1(I) CPACPP* 0.059904%(1,0~W(IDIA*SQRT(TC(]))
c2¢I1) CP*CPP*(0,018126+0.,091944*U(I))*TCL{[)*TC(I)
CONTINUE
DO 23 N=NUN,400
READ(5,9) TEMPvP!XE(l)tYE(l)
IF(P.LE.O0.0) GO TO 24
XE{2) = 1.0-XE(1l)
YE(2) = 1.0-YE(1l)
= TEMP+459,7
RT = 10,7315*T
BS = 0.0

R oW
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38

42

39

14
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ASl
AS2
AS3
AS4
Csl1
Cs2
0O 18

YOX(I1)
AX3(I)
AX4(1)}
cxatrn)
FLL) =
TR(I)

PR(T)

CONTINUE

DO 14 I=1,NC

BS = BS+F(I)*SB(I)

AS1 = AS1+F{1)*SQRT(AL(I))

AS2 = ASZ2+F(I)*SQRT(AZ2(IMN)

€CS1 = CS1+F(I1)%C1(1)%%,33333333
DO 14 M=1,NC

I T
~0c0o0O0O0O0O0

< i Wit No o o 0 @

it
- M

~O0O0OQOO0O0

" IF({IDN(I)eEQe2.0R.ICN(M)+EQe2) GO TO 42

IFCIDN(I).EQe3.0R.IDN(M).EQ.3) GO TO 38

IF(IDN( 1) eEGe1 +ORe ICN(M) 4EQ.1) GO TO 38

KA = 2

KB = 7

GO TO 39

CONTINUE

KA = 0

K8 = -5

GO TO 39

CONT INUE

KA = -1

KB = -8

CONTINUE

SQA3(L,M) = SQRT(A3(I)*A3(M))

SQA4(T M) = SQRT(A4(1)*AG(M))

BICUI M) = 2,0%SQRT{TCIIIXTCI(M) )/ (TCII)+TCIM))
AS3 = AS3+F(L)*F(M)*BIC(I,M)%*KA*SQA3(I,M)

AS4 = AS4+F(I)*F(M)*BIC(I,M)#%KB*SQA4(I M)
AX3(1) = AX3(L)4F(M)*BIC(I,M)**KA*SQA3(1,M)
AX4(1) = AX4(I}+F(M)*BIC(I,M)**KB*SQA4(I,N)

DO 14 K=1,NC

KC = 5 S
IFCIDN(T)oEQel sORSIDN(M) 4 EQe140RIDN(K) 4 EQa1) KC
IF(IDN(1)+EQe2 «OR. IDN(M) 4EQe2+.0ReIDN(K) 4 EQs2) KC
CUBC(IyMyK) = (C201)*C2(M)#C2(K))**¥,3333333333
TIC(I MeK)=3o#(TCCID*TC(MI*TC(K) ) #%,3333333333/(TC(I)+TCAMI+TC(K))
CS2 = CS2+F(I)AF(M)*F(K)*TIC(I14MyK)##KCHCUBC(14MsK)

CX2(1) = CX2(I)+F(MI*F(K)®TIC(I4MyK)##KCECUBC( L4 MpK )

CONTINUE

DO 16 I=1,NC

IF(IDN(I)+GEW1 sAND. IDN(I).LT44) GO TO 26

IF(TRITI}.GT.1.0) GO TO 26

-2
-3

i

TR2 = TRIII*TR(I)
TR3 = TR2*TR({I) :
TPR = TR3*PR{II*PR(I)

F1l = 6432873-8.45167/TR{1)-6490287*ALOG({TR(I))I+1.87895%TR2~
10.33448*TR(1)*%6—-{0.018706/TR{I)-0.1894%TR2 +0,28652*%ALOG(TR(I))}*
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2PR{I1)-0.0025839%TPR~-ALOG(PR(I))
F2 = (Le=TR(I}}*(B847015-114201/TR{I))=005044/TR{I)*PR(I )+
10,002255*TPR

GO 710 27
26 M = 9
IFCIDN(I).EQel) M = 17
IFUIDN(T)eEQe2) M = 25
IFCIDN(T1).EQe3) M = 33
IFCIDON(I)eEQe4) M = 41
IFCIDN(I)<EQe5) M = 49
}

TRZ2 = TRUI)*TR(]
TR3 = TR2*TR(I)
TPRT = TR{I}*PR{I}*PR(I}
IFUION(I)eGEel s ANDSIDN(I}eLTo4) TPRT = 040
F1 = CCUMI4+CCAM+L)/TRUIDI+CCIM+2}*ALCGITRII)I+CCUM+3)*TR2+CC(M#+4) *
L1TR3+{CCIM+5)/TRETI)I+CC(M+6)} *ALOGITRITIII+CC(M+TI*TR2)*%PR(1)-4002584
2*TPRT—=ALOG(PR(I))
F2 = (1e=TR(I})*(B4T7015~114201/TR(I))-0,05044/TR(I)*PR(]1)+
10.002255%TPRT
27 AFOP(I) = FL+F2*W(I)
FOP(I) = EXP(AFOP(I))
16 CONTINUE

AS1 = AS1%AS1

AS2 = AS2%AS2

CS1 = CS1%%3

AS = AS1-AS2*T+AS3/T+AS4/T%%5
CS = CS1/SQRT(T)+CS2/(T*T)

CALL RKEQN(AS+BS»CSsRT4PyV,4L)

DO 17 I=1,NC

17 = P*V/RT

BOV = BS/V

BX(I) SB(I)/8BS . . '

AX(I) SQRT(ASL1*AL(I))-SQRT(AS2*A2{ 1} )*T+AX3(1)/T+AX4(1)/T%%5
CX(1) CS1*{CL{I)/CS1)*%,3333333/SQRT(THI+CX2(1}/(T%T)

APHI(I) = ((24*AX(I)}/BS-RT—-AS*BX(1)/BS)*ALOG(1.-80OV)+(CS*kBX(]I)=~
115%CX(I))/(BS#BS)*ALOG( 1.~-BOV*BOV) }/RT+BX(1)1%(Z2Z-1.)-ALOG(Z22)
PHI(I)=EXP(APHI(I))

ACT(I) = YOX(I}*PHRI(I)/FOP(I)

17 CONTINUE

Z(14N} = vL(1)
Z(2,N) = DEL(1)
Z{3,N) = XE(1l)
(44N} = 1.0
Z{54N) = ACT(1}
Z{6,4N) = vL(2)
Z(T,N) = TR(1)
Z(8,N) = XE(2)
(94N} = T
Z{10,4N) = DEL(2)
Z(114N}) = P

Z(124N) = TR{2)
ZV(14N) = ACT(2)
22 NUM = N
23 CONTINUE
24 COUNTINUE
NUN = NUM+1
IF(TEMP.LE.~1000.0) GO TO 25
. G0 TO 21
25 CONTINUE
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20
30

1

MM{1) = NUM

NUN = NUM

DO 31 N=1,NUN

NMM = N+NUM
ZU1NMM) = Z(64N)
Z(2yNMM) = Z(10,4N)
Z(3,NMM) = Z(84N)
ZL4,NMM) = Z(4,4N)
Z(S5¢NMM) = ZV(1,N)
ZL6yNMM) = Z(14N)
ZEToNMM) = Z(124N)
Z{8yNMM) = Z(3,4N)
Z{9:NMM) = Z{(9,4N)

Z(10,NMM) = Z(24yN)
ZA1l1l,NMM) = Z(11,N)
ZU12,NMM) = Z(T,4N)
CONTINUE

NUM = NUM+NUN

MM{1) = NUM
CONTINUE

CALL GAUSS

LLM  =LLM+]

IF(LLM.LT.LML) GO TO 15
IF (MM(8)-2) 30,420,430

MM(8)=1
MM(1l1)=MM(11l)-1
MM(8) = 1

IF (MMUL1L)) 11,11,21

END
SUBROUTINE YCOMP

ODIMENSION B(24)42(12,400),CY(400),42V

COMMON NUM,B,2
COMMON/BIL/LLM,2V

COMMUN /COMC/ CY
FORMAT(I5,11F10,3)
DO 1 N=1,NUM

SQD7 = SQRT(Z(10,N})

SQD2 = SQRT{Z(24N))
DELZ=Z(104N)~Z(24N)
BZX = B(l)+ B(2)

R2 = R1/(R1-1.0)
VM =
VR = Z(64N)/Z{1yN)

BIC = (l.0-SQRT(VR)})**4/VR

*SQRTUZ(TyN)I®Z(12,4N))
BCD = BZX¥SQD2*SQD7*(SQD2-SQD7)**2+DELZ*DELZ
RL = ZU6yNI*Z{ByN)/(Z{L1eNI*Z(34N))¢t1.O

ZOLyNI*ZU34N)+Z(64N)*2(8B,N)

162

BCX = BIC*Z(BsNI*{~14a3333%2Z(1N)*Z(64N)/{VMEVM}*(1.,0+Z(34N)-2./R1

1)-B(3)%Z2(ByN})
ACT = EXP(BCD¥Z(1,N)/(1.10389%Z(94N)*R2¥R2)+BCX}

CY(N) = ACT/Z(5,N)
CONTINUE

RETURN

END
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(5) OCommon Subprograms for All the Foregoing Main Programs

SUBROUTINE GAUSS

DIMENSION Al
211244001} ,DE

20421)4B124)4BMINI20),BSTT(20), CIZO{I)'X(ZOoI)'
L{20)4E(20) +MM(12)+RCRDI100), CY(400),FP(20,400}

COMMON NUM,B,Z

COMMON /COMA/ MM
COMMON /COMB/ JJ
COMMON /COMC/ CY
COMMON /7COMD/ FP

COMMON /COME
EQUIVALENCE (
SECTION 0.
8(1)-B(20)

B{21) = TOL

/ AsCoM
Ay X)

ICENTIFICATION OF CCNTROL VARIABLES
PARAMETERS TO BE DETERMINED
ERANCE

B(22) = CONTRCL FOR DIFFERENT YCOMPS

B{23) = SCAL

E FACTOR FOR B(J) VECTORe USUALLY UNITY.

MM{1) = NUMBER OF DATA POINTS
MM(2) = INDEX CF DEPENDENT VARIABLE

MM(3)
MM(4) = LIMI
MM(5) IS USE
READING OF T
MM(6) = -1
MML6) =
MM(6 ) =
MM(T))
MM(T)
MM(8)
MM{8)
MM(8)
MM(8)
MM(9)
MM(9)
MM({10) = -1
MM(10) = 0
MM{10) = 1

W
~N OO

SI

[ T I ]

NUMBER OF PARAMETERS

T ON NUMBER OF ITERATIONS

D BY THE EMBEDDING PROGRAM, WHEN NEGATIVE IT SKIPS
HE Z(J+K)

GIVES INTERMECIATE RESULTS AT EACH ITERATION

GIVES NO INTERMEDIATE RESULTS

GIVES INTERMEDIATE RESULTS AT FIRST ITERATION ONLY
GIVES STRAIGHT GAUSS

GIVES PARABOLIC GAUSS (RECOMMENDED) )

UPON RETURN MEANS OVERFLOW OR SINGULARITY OF MATRIX
UPON RETURN MEANS THAT ITERATION LIMIT IS EXCEEDED
GIVES THE BACK SOLUTION AT THE QUTSET OF THE PROGRAM
GNALS THAT CONVERGENCE HAS CCCURRED

2
1 RECORDS INPUT DATA ON TAPE 6
0 BYPASSES THIS RECOURDING

RECORDS THE MATRICES AT EACH ITERATION
BYPASSES RECORDING OF MATRICES
RECORDS THE MATRICES AT FIRST ITERATION ONLY

MM({11)) = NUMBER OF PROBLEMS TO BE FED THE EMBEDDING PROGRAM
MM(12) WHEN NEGATIVE NULLIFIES ALL PROGRAM

IT 1S SUGGESTED THAT B(20) BE USED TO GIVE THE FUNCTION CHOICE

IN YCOMP, WHEN THERE ARE MULTIPLE FUNCTIONS TO BE TESTED.
NUM=MM(1) >

NSET = MM(2)

JJ = MM(3)
LIMT=MM{4)

NULL = MM(12)

MM(12) = MM(12) + 1

IDNT=MM(12)
TZRO=1,
SCL1=0.2

SCL2=1.5

SCL3=1., »
TOLl = B(21)
XNRM=0,0
NSPN=0

MRKP=0

GAUS0030
GAUS0040
GAUSO0050

GAUS0061
GAUS0062
GAUS0063
GAUS0064
GAUS0065
GAUS0070
GAUSO100
GAUSO0120
GAUS0130
GAUSO0140
GAUSO0150
GAUSO170
GAUSO0180
GAUSO0190
GAUS0200
GAUSO210
GAUS0220
GAUS0240
GAUS0250
GAUS0260
GAUS0280
GAUS0290
GAUSO31l0
GAUS0320
GAUSO0330
GAUSO0340
GAUS0360
GAUSO0370

" GAUS0390

GAUS0400
GAUSO0410
GAUS0430
GAUS0440
GAUSO0470
GAUS0480
GAUS0490
GAUSO0500
GAUS0510

GAUS0530
GAUS0540
GAUS0550
GAUS0570
GAUS0580
GAUS0590
GAUS0600
GAUS0610
GAUS0620

GAUS0640



© -~

11
12

13
14
15
16

17

18

KKPA=-1
NDN=0

NN = 0
NNRA=QO
NPA=]}
NT20=-1
SMSQ=0.0

T = 0,0

X3 = 3,0
X1 =0.0
Yl = 0,0

X2 = 2,0

Y2 = 2,0

Y3 = 3,0 .
IF (LIMT-100) 2447447
IF (TOLL1) 420,420,1
D0 4 J=1,JJ

BMIN(J) = B(J4)
BSTT(J)=B(N)
XNRM=XNRM+B( J) **2

" DELLJ) = 0.,05*ABS (B(J))

IF (DELUJ)) 4,344

DEL{J) = 0.05

CONTINUE

WRITE (6,5)

FORMAT (51H1 GAUSSIAN PARAMETER SUBROUTINE
WRITE (64412) (MM(L)y L=1¢l2)
WRITE (6,108) (BlJ)y J = 1424)
IF (MM(9)) 400464400

IF (MM(8) — 1) 7,80,7

IF (B(23)) 8,8,430
JPRA=~1
MP A=-1

T = 0.0

MM(8) = 2

WRITE(6459)

DO 9 J=lyJJ
BSTT(J)=B(J)

SQLA=SMSQ
§MS5Q=0.0
NTZO=NT20+1

NN = NN+1

IF (NN ~ LIMT) 12,12,11

MM(8) = -2

GO TO 80

CALL YCOMP

DO 17 N= 1,NUM

YC = CY(N)

DELY = Z{NSET,N) - YC
SMSQ=SMSQ+DELY**2

IF (NULL) 17,13,13

IF (MM(6)) 14,417,414

IF IN-1) 16415416

WRITE (65410)

WRITE (6,18) NeVYCyZ(NSETsN}4DELY
MRKP=1

CONT INUE
RCRDINNYI=SMSQ .

FORMAT (1644E18.7)
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GAUSO0650
GAUS0660
GAUS0670
GAUS0680
GAUS0690
GAUSO0700
GAUSO710
GAUS0720
GAUSO0730

GAUS0740
GAUSO0750
GAUSOT760
GAUSO0780
GAUSO0790
GAUS0810
GAUS0820
GAUS0830
GAUS0840
GAUSO0850
GAUSO0860
GAUS08T70
GAUS0880
GAUS0900
GAUS0910
GAUS0930
GAUS 0940
GAUS0960
GAUS0980
GAUS 1000
GAUS1010
GAUS1020
GAUS1030
GAUS1040
GAUS1050
GAUS1060
GAUS1070
GAUS1090
GAUS1100
GAUS1110
GAUS1120
GAUS1130
GAUS1150
GAUS1160
GAUS1180
GAUS118l
GAUS1190
GAUS1200
GAUS1210
GAUS1220
GAUS1230
GAUS1240
GAUS1250
GAUS1260
GAUS1270
GAUS1280
GAUS1290
GAUS1300
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, GAUS1310
19 IF (NN = 1) 20,22,30 GAUS1330
20 IF(SMSQ-SQMI) 21,21,27 GAUS1360
21 NDNal GAUS1370
22 SQMI=SMSC GAUS1380

D0 24 J=1,44 - GAUS1390
24 BMIN(J) = B(J) GAUS1400
25 IF(MPA) 301,200,38 GAUS1410
27 IFINDN) 28,28,29 GAUS1430
28 NDN=-1 GAUS1440
29 IF(MPA) 301,200,36 GAUS1450
30 IF (MM(6)) 32,32,31 GAUS1470
31 MM(6) = O . GAUS1480
32 IF (MM(10)) 20,20,33 ' \ GAUS1490
33 MM(10) = 0 _ : ¢ GAUS1500

, GO TO 20 ‘ GAUS1510

36 TZRO=TZRO*SCL1 GAUS1530
NT20=-1 GAUS1540

38 DO 39 Jel,JdJ ‘GAUS1560
B(J) = BMIN(J) GAUS1570

39 BSTT(J)=BMIN(J) GAUS1580
Y1 = SQMI GAUS1600

X1 = 0.0 GAUS1610
JPRA=~] GAUS1620
MPA=~1 GAUS1630

G0 TO 301 GAUS1640

40 SUM2 = SUM1 GAUS1660
SUM1 = SMSQ GAUS1670
NNRA=0 GAUS1680

IF (SUML - SUM2) 19445,19 GAUS1690

45 TZRO=SCL1*TZRO GAUS1710
NDN=0 GAUS1720

T = 0,0 GAUS1730

GO TO 8 GAUS1740

47 LIMT=99 GAUS1760
" 60 TO 2 GAUS1770
49 T = ~0¢5%({X1*X1=X2%X2)*(Y1-Y3)~{X1#X1~X3%X3)*{Y1~-Y2))/ GAUS1800

X ((X1=X3) ¥(Y1=Y2)=(X1=-X2) *( Y1~Y3)) GAUS1810
MPA=1 GALS1830
JPRA=-1 GAUS1840
NNRA=-1 GAUS1850
NDN=0 GAUS1860

GO TO 366 - GAUS1870
53 WRITE (6454) GAUS1890
84 FORMAT (24HO OVER-UNDERFLOW 1) GAUS1900
MM(B) = ~1 GAUS1910
MM(10) = -] GAUS1920
GO TO 301 GAUS1930

56 WRITE (6457) , GAUS1960

57 FORMAT (24HO MATRIX IS SINGULAR /1) GAUS1970
MM(B) = -1 GAUS1980
MM{10) = =1 GAUS1990
GO TO 301 GAUS2000

59 FORMAT (114HOCYCLE SUM OF SQUARES *knkkkgkkkkkpkkkkrkkkkkGAUS2020

Xkkkkkgdkhkkkkkak PARAMETERS ¥k kkkkkkkkkkhkhkhhkkkkhkhkkkixkkikg//) GAUS 2030

58 FORMAT (I6y F18+59 5E1846/ (E424644E1846)) GAUS2040

60 DO 66 J=l,44 - GAUS2090

BTST=B(J)-BSTT (J)=DEL(J) GAUS2100
IF(BTST) 63,63,62 GAUS2110
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62 B(J) = BSTTLJ)I+DEL(J) GAUS2120

63 CONTINUE GAUS2130

BTST=B{J)-BSTT{JI+DEL(J) GAUS2140

IF(BTST) 65,6566 ’ GAUS2150

65 B(J) = BSTT(J)I-DEL(JS) GAUS2160

66 CONTINUE GAUS2170

MPA=-1 GAUS2190

67 DO 69 J=1,J4J . GAUS2200

69 BSTT(J)=BLd) : GAUS2210

60 TO 10 GAUS2220

80 IF (NULL) 1000,82,82 GAUS2260

82 AV = 0.0 GAUS2270

AV1l = 0.0 GAUS2280

AV2 = 0,0 ‘ GAUS2290

YMAX = 0.0 , : GAUS2300

IMAX = 0.0 GAUS2310

1IMX=0,0 GAUS2320

‘ DO 81 J=1,44 GAUS 2330

81 B(J) = BMIN(J) " GAUS2340

N =1 GAUS2350

DO 90 J=1,4J GAUS2360

90 WRITE (6491) JiBLJ) : , GAUS2370

91 FORMAT (4H B 12, El4.5) GAUS2380

WRITE (64100) GAUS2390

92 WRITE (6,93) GAUS2410

93 FORMAT (82HONUMBER Y CBSERVED Y CALCULATED GAUS2420

X DELTA Y PCT DEVIATION ///) GAUS2430

94 CALL YCOMP GAUS2450

98 YC = CY(N) GAUS2451

DELY = YC = Z(NSET,4N) GAUS2460

RTI0=100,*(DELY/Z(NSET,N)) GAUO 4 O

ABRT=ABS(RTI0) GAUS2480

AV = AV + DELY GAUS2490

AVl = AVl + RTIO GAUS2500

AV2 = AV2 # ABRT ‘ . GAUS2510
CALL ANSWERIN,YCsRTIOyZ)

ABVA=ABS(DELY) GAUS2540

IF (YMAX = ABVA) 96,96497 GAUS2550

96 YMAX = ABVA GAUS2560

YYMX=DELY GAUS2570

MARK = N GAUS2580

97 IF(ZMAX-ABRT)} S71,971,972 GAUS2590

971 ZMAX = ABRT GAUS2600

1ZMX=RTIO GAUS2610

MRKL=N : GAUS2620

972 . N = N+l GAUS2630

IF(N-NUM) 98498499 GAUS2640

99 D = NUM . GAUS2660

AV = AV/D ' GAUS2670

AVl = AV1/D GAUS2680

AV2 = AV2/D GAUS2690

RMSQ=SQRT(SMSQ/D) GAUS2700

WRITE (64100) GAUS2710

100 FORMAT(11BHO® kkkbkkkkkuk kkkk kk ek ki hRbrhkhbikphk ks iohkkkakkakexGAUS 2720
X Rk ok ok Rk kbR Rk Rk Rk Rk Rk kR kR R Rk //GAUS 2730

X/) GAUS2740
WRITE (6,101) AV,AV1,AV2 GAUS2T 5D
101 FORMAT (30HO AVERAGE DEVIATION El4.5, GAUS2760

X - 20H° AVERAGE PCT DEV El4e5, GAUS2770
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X 20H AVE ABS PCT DEV El4e5) GAUS2780
WRITE (64103) YYMX,MARK GAUS2790 -

103 FORMAT {(30HO MAXIMUM DEVIATION El4.5,16) GAUS2800
WRITE (6,104) IMAX ¢4 MRK1 GAUS2810

104 FORMAT ({30HO MAXIMUM PCT DEV El445416) . GAUS2820
: WRITE (6,105) RMSQ GAUS2830
105 FORMAT (30H0 ROOT MEAN SQUARE CEVIATION El4.5) GAUS2840
107 FORMAT { 21HO AT ITERATION I3, 24Hy THE SUM OF SQUARES IS GAUS2860
X El6.7/ 22H0 FOR PARAMETER VALUES /1HO//(6E2047)) GAUS2870
108 FORMAT (5F20.5) GAUS2880
109 FORMAT (//) GAUS 2890
110 FORMAT (120y F20.8) . . GAUS2900
WRITE (6,45) GAUS 2910

IF (MM(B8) + 2) 114,111,114 GAUS2920

111 HRITE (6,112) GAUS2930
112 FURMAT (30HO EXCEEDED ITERATION LIMIT //) GAUS2940
GO TO 999 GAUS2950

114 IF (MM{8) - 1) 999,8,999 GAUS297¢C
200 IF{NDN} 201,201,202 GAUS2990
201 T = T*sSCrl GAUS3000
GO TO 203 GAUS3010

202 T = T*SCL2 GAUS3020
203 MPA=0 GAUS3030
JPRA=JPRA+]1 GAUS3040

GO TO 366 GAUS3050

301 MPA=0 GAUS3070
NDN=0 ) GAUS3080

DO 305 M=1l,JJ ) GAUS3090
CiMs1) = 040 GAUS3100

302 DO 305 N=1,44 : GAUS3110
305 A(MyN) = 0.0 GAUS3120
CALL DERIV . GAUS3170

CALL YCOMP GAUS3160

DO 313 N = 1,ANUM GAUS3210

DO 313 K = 1,J4J . 6AUS3220
CUKs1l) = C(Ky1l) + FP(K,N) * (ZINSET,N) — CY(N)) : GAUS3230

00 313 J = KyJ4J GAUS3240

313 AlKyJ) = AlKyJ) ¢ FP{KyN) * FP(J,N) GAUS3250
IFINTZ0) 318,318,317 ) GAUS3300

317 TZRO=1.0 : R GAUS3310
318 T=TZRO GAUS3320
DO 316 1=2,J4J ’ GAUS3340
II=1~-1 GAUS3350

D0 316 J=1,I11 GAUS3360

316 AllLsd) .= AlJ, 1) ) GAUS3370
IF (MM{10)}) 319,331,319 GAUS3390

319 WRITE (6,320) NN GAUS3410
320 FORMAT (19HO MATRIX, ITERATION I3} ) GAUS3420
MMPA=0 GAUS3430

322 DO 323 [=1,JJ GAUS3440
323 HRITE (64324) (A{Tyd)y J=1,44) GAUS3450
324 FORMAT (9E13.5) GAUS3460
D0 328 I=1,J4J GAUS3480

328 WRITE (6,324) C(I,1} GAUS3490
IF(MMPA) 350,331,350 GAUS3500

331 DO 340 [I=14JJ GAUS3520
DNM=ABS(A{I,1)) GAUS3530

D0 336 J=2,J4J GAUS 3540

IF{DNM~ABS{A(I,Jd))) 33543364336 GAUS3550



335
336

338
340

350
354
351
352

353
363

364
365

366
367
371

372

374
375
376

378
379
380
400
401

403
402

404
405
406

410

411
412
420

430
431

433

440
441
442
443

DNM=ABS(A{1,J))
CONTINUE.
D0 338 K=1,J4J
ALT o K)=A{T,K)/DNM%SCL3
C{I41)=C{141)/DNM*SCL3
MMPA=1
IF (MM(10)) 322,350,322
DD =140
IF (MM({8)) 999,354,354
CALL SOLvV
GO TO (35195345604 M
IF (MM{&6)) 352,363,352
WRITE (6+353) (XUdol)y J=1eJdJ)
FORMAT {13HO DELTA B(J) /(9E13.5))
YNRM=0,0
DO 364 J=1,4J
YNRM=YNRM&X(Jy1l)#*2
IF{YNRM=XNRM) 36693669365
T=0,5%SQRT( XNRM) /SQRT (YNRM)
X1 =T
D0 367 J=1l,4J
BlJ)=BSTTIJI+T*X(Js1)
DO 376 J=l4JdJ
IF (B8(J4)) 372,374,372 .
XX = ABS ((BlJ) - BSTT(J))/BLJ))
GO TO 375
XX = ABS (B(J) - BSTT{J))
IF (XX-TOLLl) 376,376,378
CUNTINUE
MM(8) = 2
GO TO 80 ‘
IF (MM{T7)) 60,379,60
IF{NDN) 10,10,380
IF{JPRA) 10,510,455
IF (NULL) 6,4C1,401
WRITE (6,100)
IF (MM{(5)) 406,403,403
WRITE (69402)
FORMAT (15H OBSERVATIONS//)
DO 404 N=]1,NUM
WRITE (6,405) Ny (Z{JsN)y J=1,12)
FORMAT (1448E14¢5/(E1845,7€E1445))
WRITE (6,5) IDNT
GO 10 6
FORMAT ( 60HO DATA Y COMP Y 08S

XRENCE )

FORMAT (16,F20.7)

FORMAT (1216)

TOLL = 0.0001

GO T0 1

IF (B(23) ~ 140) 4314848
TZR0O=B{23)

WRITE (64433) TIRO
FORMAT ( 30HO VECTOR SCALE FACTOR = B(23), E12.4//)
GO T0 8

IF (NULL) 44644414441
NSPN=NSPN¢1

IF(MRKP) 444444349444
IFINSPN=15} 445,444¢444
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GAUS3560
GAUS3570
GAUS3580
GAUS3590
GAUS3600
GAUS3620
GAUS3630
GAUS3650
GAUS3660
GAUS3670
GAUS3680
GAUS3690
GAUS3700
GAUS3710
GAUS3730
GAUS3740
GAUS3750
GAUS3770
GAUS3780
GAUS3790
GAUS3800
GAUS3810
GAUS3820
GAUS3830
GAUS3840
GAUS3850
GAUS3860
GAUS3870
GAUS3880
GAUS3890
GAUS3900
GAUS3920
GAUS3940
GAUS3960
GAUS3980
GAUS3990
GAUS3991
GAUS4000
GAUS4010
GAUS4030
GAUS4040
GAUS4050
GAUS4060
GAUS4070
DIFFEGAUS4080
GAUS4090
GAUS4100
GAUS4110
GAUS4130
GAUS4140
GAUS4160
GAUS4170
GAUS4180
GAUS4190
GAUS4200
GAUS4220
GAUS4230
GAUS4240
GAUS4250
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444 NSPN=O - GAUS4260

WRITE (6459) _ GAUS4270

445 WRITE (6,58) NNySMSQe(B(J) 9Jd=l,JJ) ‘ GAUS4280
446 X3 = X2 GAUS4290
X2 = X1 » GAUS4300

X1 = ¥ ' GAUS4310

Y3 = Y2 _ GAUS4320

Y2 = vl : GAUS4330
Y1=SMSQ : GAUS4340

IF (NNRA) 40419:40 GAUS4350

999 WRITE {(6,991) GAUS4360
DO 990 * J=1,NN v GAUS4370

990 WRITE (69405) JyRCRD(J) GAUS4380
991 FORMAT ( 28HO RECORD OF SUM OF SQUARES /7 ) GAUS4390
993 FORMAT (24HO MINIMIZING PARAMETERS 17) GAUS4400
WRITE (6,993) ) GAUS4410
WRITE (64108) (BMIN(J),y J=1,44) ' GAUS4420

1000 RETURN GAUS4450
END GAUS4460

- SUBROUTINE SOLV sSOLVO0010
DIMENSION A{20,21), C{20,1), LOC(20), CK{20) SOLV0020
COMMON /COMB/ JJ SOLV0030
COMMGN /COME/ A4CoM SOLV0040
M=1 SOLV0050

NP = Ju+ 1 ‘ SOLV0060

DO 11 I = 1,44 SOLV0070
CK(I) = 0. SGLV0080

11 ALI4NP) = C(I,1) SOLVO0Q90
DO 50 | = 1,44 SOLVO100

IP = [ + 1 sgLvollo

FIND MAX ELEMENT IN I*TH COLUMN. : SOLV0120

AMAX = 0. _ SOLVQ130

DO 2 K = 1,44 . SOLVO0140

IF (AMAX — ABS(A(KsI))) 3,2,2 SOLV0150

IS NEW MAX IN ROW PREVIOUSLY USED AS PIVOT SALVO160

3 IF (CKUK)) 4y4y2 sgoLvoL7TO
4 LOC(I) = K SOLVOol8Q
AMAX = ABS(A(K, 1)) SOLV0190

2 CONTINUE SOLV0200
IF (ABS(AMAX) «LEs1.,E-12)G0 TO 99 sOLV0210

MAX ELEMENT IN I*TH COLUMN IS A{L,I) SQLV0220

5§ L = LOC(I) S0LV0230
CKIL) = 1. SOLV0240
PERFORM ELIMINATIONs L IS PIVOT ROWs A(L,I) IS PIVOT ELEMENT, SOLV0250

DO 50 J = 1444 SOLV0260

IF (L=~J) 645046 ) saLvo261

6 F = <A(Jy1) /7 AlLyI) SOLV0262
DO 40 K = IPyNP sOLV0270

40 AlLJyK) = AlJeK) + F * A(LyK) SOLV0280
50 CONTINUE SGLV0290
D0 200 I = 1,444 SOLVO300

L = LOC(I) sOLV0310

200 AlIsl) = A{L+NP) / A(L,I) SO0LV0320
RETURN SOLV0330

99 M = 3 : SOLV0340
RETURN ‘ SOLV0350

END S0LV0360
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SUBROUTINE DERIV '
DIMENSION B(24)92(12+400)+CY(400),FP(204400),H{20),V(400)
COMMON NUM,B,y2
COMMON /COMB/ JJ
COMMON /COMC/ CY
COMMON /COMD/ FP
IF (B(22)) 2041,20
B(22) = 1.

DO 7 J = 1,JJ

* TEST = ABS(B(J))

IF (TEST = 0.001) 5,646
H(J) = 0,001

GO 10 7

H(J) = 0,0001 * TEST
CONTINUE

00 22 J = 1,J4

TEMP = B(J)

B(J) = TEMP + H(J)

CALL YCOMP

DO 21 N = 1,NUM

Y(N) = CV(N)

B{J) = TEMP = H(J)

CALL YCOMP

B(J) = TEMP

DO 22 N = 1,NUM

FP(JyN) = (Y(N) = CY(N))/(2. * H(J))
RETURN

END

SUBROUTINE RKEQN(A+B,CyRTyP4V,L)
Cl = -RT/P

C2 = (A-B*RT)/P-B*B

AB = A%B

IF(CeEQ.0.0) AB"'AB

C3 = (AB-C)/P

GG = (C2-C1*C1l/2,0)/3.0

FF = (2.0%C1%%23/27,0-C1%C2/3,0+#C3)/2.0
TEST = FF®FF+GG**3

IF(TEST) 11412,13

PHI = ~SIGN{(ARCOS{SQRT(-FF*FF/GG**3))/3,0),FF)
Q = 2,0%SQRT(~GG)

V1l = Q*COS(PHI)

V2 = Q¥COSIPHI+2,0944)

V3 = Q*COS(PHI+4,18879)

IF(L.EQs2) GO TO 14

V = AMAX1{V14V2,Vv3)

GO TO 15

V = AMIN1{V1,V2,V3)

GO TO 15

V=00

GO YO 15

AA = SQRT(TEST )=FF Y

BB = —AA-2,0%FF 5,

CAA = SIGN((ABS(AA)*¥,3333333),AA)
CBB = SIGN((ABS(BB)%**,3333333),88)
V = CAA+CBB
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DERIVO1l0
DERIVO20
DERIVO30
DERIVO040
DERIVO50
DERIVO60
DERIVOTO
DERIVO8BO
DERIVO930
DERIV100
DERIV110
DERIV120
DERIV130
DERIV140
DERIV150
DERIV160
DER1IV1T70
DERIV180
DERIV190
DER1V200
DERIV210
DER1v220
DERIV230
DERIV240
DERIV250
DERIV260
DERIV270
DERIV280
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15 v = v=C1/3.0
LI=Vee3¢C1*VEV+C2%V+(3
RETURN
END

174,



APPENDIX G

COMPUTER PROGRAM FOR BUBBLE POINT

PRESSURE CALCULATION

(1) Main Program

DIMENSION XE(10)oYE(LO),SUMYE3L),YSUNM(3L1),PY(31),0EVKIL10),YOX(10),
1EXK(L10) ¢ SUMK(L1C) 4AVGK(10)
COMMON/ALLZ NCoICN(10), WM{L0)4X(10),Y(10),T,P,RT,FOP(10),ACT{10),
1PHL(L10),TCE10) 4PCE10),WI10)
CCMMUON/NHUZ BLb&G)
FURMAT{15,10F10,4)
FORMAT(H8F1044) :
FORMAT(F10e193Xy2Fl0419F104393Xy3F104393Xy3F10a3,5X912,F844)
FOKMAT(/, 3XyYAVERAGE OF *413, ' DATA POINTS = ,2X,F10e3 423X,
1F1043,23%X,F1043)
& FORMAT{1H1)
7T FORMAT{40X,4F1C,3)
8 FORMAT(BEl4l4).
Y FURMAT(5X,*TEMP? \14X,?* PRESSURE PSIAY 420X, 'K CF CCMPONENT 1°¢,
116X, 'K UF COMPCNENT 2t/ '
27X g FV g 10Xy "EXPTLY ¢SXy?CALC 06Xy ?X DEV? 48Xy SEXPTL® 45X, *CALC? 46X,
3L OLVY, BXy'EXPTLY ySXe?CALCYy6X,*% DEV 4//)
READIS,3) (B(I),l=1,56)
TEMP = 1,0
24 CONTINUE
IF(TEMPSLY4~1111.0) GO TO 22
SUMP = (.0
SUM]1 = 0,0
SUM2 = 0,0
CALL CONSTY
WRITE(6,49)
DU 25 I=1,NC
SUMKI1) = 0.0
25 CONTINUE
OO 2C N=z1,400
READIS,7) TEMPPE,XE(L),YE(L)
IFITEMP LT 4~4%99,0) GU 1O 21
T = TEMPe4S9,7
BT = 10,7315%7
XEQ2) = 1,0-XE(1)
YEL2) = L.O0-YE(L)
DU 11 I=1ykC
Xt1) = XE(I)
EXKEL) = YECI)D/ZXECI)
11 PHILI) = 1.0
C  CALCULATICN UF ACTIVITY COEFFICIENT
CALL ACTCUF
P = 100.0
PY(L) = P

[ I RO ]
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YSUM{L) = 1,0
DO 18 M=1,30
DO 13 J=1,31
13 SUMY(J) = 0.0
CALCULATION OF LIQUIC PHASE FUGACITY COEFFICIENT OF PURE COMPONENT
CALL NHULIQ
DO 14 J=2,30
DO 15 I=1,NC
Y{I) = X(I)*FOP(I)*ACT(I)/PHI(I)
15 SUMY(J) = SUMY(J)+Y(I])
IF(ABS{SUMY(J)=SUMY(J-1)).LE.O0.5E~4) GO TC 17
DO 16 I=1,NC
Y{I) = Y(L)/SUMY (J)
16 CONTINUE
CALCULATION OF VAPCR PHASE FUGACITY COEFFICIENT
CALL FUGVAP
14 CONTINUE
17 YSUM(M) = SUMY(J)
IF{M.GT+3) GC TO 33
PY{M#+1) = PY(M)*YSUM(M)
GO TO 29
33 PY(M+1) = PY(M)-(PY(M)=PY(M~1) ) *(YSUM(M)=14)/(YSUM(M)=YSUM{M~1))
29 P = PY(M+]1)
IF{ABS(PY(M+1)~-PY(M))/PY(M+]1)-1,0E~4) 19,19,18
18 CONTINUE
19 CONTINUE
DEVP = (P-PE)/PE*100.0
DO 23 [I=1,NC
YOX(I) = Y(L)/X(I)
DEVKII) = (YOX(I)/EXK{I)=1,0)%*100,0
23 CONTINUE
WRITE(694) TEMPyPEPyDEVPy (EXK(I) oYOX{I)4DEVKIIL)I=14NC)yMyYSUM(M)
SUMP = SUMP+ABS(CEVP)
DO 26 I=1,NC
SUMK(TI) = SUMK(I)+ABS(DEVK(1))
26 CONTINUE
20 CONTINUE
21 CONTINUE
N = N-1
XN = N
AVGP = SUMP/XN
DO 27 I=1,4NC
AVGK(I) = SUMK(I)/XN
27 CONTINUE
WRITE(645) Ny AVGPy (AVGKI{I)yI=14NC)
GO T0 24
22 CONTINUE
STOP
END
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(2) Subprogram for Input Data

SUBROUTINE CONST

DIMENSION TITLE(20),BTA(10,10},B8IB(10,10)

COMMON/ALL/ NC,IDM(10), WM(10)X{10),Y(10),T+,P+RT4FOP(10),ACT(10),
1PHI(10),TC(10),PC(10),W(10)

COMMON/GAM/BAl ,RA2,VL(10),0EL(10),BINB(10,10),BINC(10,10)
COMMON/FUG/ SB(10),A1(10),A2(10),A3(10),A4(10),C1(10),C2(10)
1,81C(10,10)4B1D(10,10),TIC(10,10,+10)

FORMAT(20A4)

FORMAT(TF10.49F8.3,12)

FORMAT(512)

FORMAT(1H1)

FORMAT (5Xy 20A44/7/)

WRITE(646)

READ(541) (TITLE(I),I=1,20)

WRITE(6,T) (TITLE(I)1=1,20)

READ(5+5) NC

DO 11 I=1,NC

READ(5+2) PCUT)sTC(I)sDUMMY ¢ WM(T)oW(I)DUMMY,VL(T),DEL(I),IDN(T)
RTC = 10.7315*TC{I) ‘

CP = RTC/PC(I)

CPP = CP*RTC

SB(I) = CP*0.0982

Al1(I) = CPP*(0,25913-0.031314*W(1))

A2(1) = CPP*(0.024940.15369%W{ 1))/TC(])

A3(I) = CPP*{0,201540,21642%W (1) )*TC(1) /
A4(1) = CPP*0.042*W(I)*TC(1)*%*5 '

Ci1(I) = CP*CPP* 0,059904*(1.0-W(I))*SQRT(TC(I))

C2(1) = CP*CPP*(0.018126¢0.091944*%W(I))*TC(I)*TC(])
CONTINUE :

00 16 I=1,NC

DO 16 M=1,NC

VR = VL{I)/VLIM)

VRDIF = (1.0-SQRT(VR))**x4/VR
IFCIDN(T).EQ.2.0R. IDN{M) . EQ.2) GO TO 12
IF(IDN(T).FQ.3.0R. ION(M).EQ.3) GO TO 13
IFCIDN(I).GT.10.0R.IDN(M).GT.10}) GO TO 14
BAl = -2.0

BA2 = B8.,6762

Rl = -1.3333

BR2 = -4.0

GO TO 15

CONTINUE

BAl = 2.40633

RA2 = -0.32908

RBl = 4.80537

RR2 = -0.,97461

GO 10 1%

CONTINUE

BAl = 19,8416

BA2 = -19.9182

BBl = 20,6178

BB2 = -4,025

GD TO 15
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14 CONTINUE

15

17

18

19

16

BA]l = ~3,22G44

BAZ2 = 5,0836 .
TFUIDN(T)oCGTo13.,0R.IDN(J)GT.13) BA2 = 3,29426
BBl = 42,691 '

BB2 = -3,44826

CONTINUE

BINB(I M)=BB1*VROIF

BINC(I M) = BR2%VRODIF

BINB(N,I) = BINB(I,M)

BINC(My1) = BINC(I M)

IFCIDN{I).EQ.2.0R. IDN(M}.EQ.2) GO YO 17
IF{IDN(I).EQ.3.0R.ION(M) EQ.3) GO TO 18
IF(ION(I).EQ.1.0R. IDN{M).EQ.1) GO TO 18

KA = 2
KR = 7
GO TO 19
CONTINUE
KA = -]
KR = -8
GO T0 19
CONTINUE
KA = 0
KB = -5
CONTINUE
RIBL
BIA(I.M)

2,0%SQRTITCLII*TCIM))IZ(TCLTIN+TCIM))
BIBI**KA

BIB(I.M) BIBI**KB ‘

BIC(I,M) BIACT,MI*SQRT(A3(1)*A3(M))

BIC(I,M) = BIB(I,M)*SQRT(A4{T)*A4(M))

D0 16 K=1,NC

KC = 5 ‘
IF(IDN(I).EQel .OR4IDN(M).EQ.1<C0R.IDNIK).EQal) KC = =2
IF(IDN(I).EQe3,0R.IDN(M) .EQe3,0R.IDN(K).EQ.3) KC = -2
IF(IDN(T)EQe2.0R.IDN(M) ,EQ.2.0R. IDN(K) .EQ.2) KC = -3
TICE =(3.#(TC(I)*TCIM)*TCUK)I*%,33333333/(TCII)¢TCIM)+TCIK)) )**KC
TIC{I MyK) = TICI*(C2(1)*C2(M)*C2(K})**,33333333 ’
CONTINUE

RETURN

END

'
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(3) Subprogram for Pure Liquid Fugacity Coefficient €alculation

SUBROUTINE NHULIQ

DIMENSICN TR(10),PR(10)

COMMON/ALL/ NC,IDN(10)y WM{10)4X(10)sY(10)eT4P4RT4FOP(10)4ACT(10),
1PHI(10),TC(10)4PC(10),W(10)

COMMON/NHUZ Bl 64)

DO 11 I=14NC

TRII) = T/TC(])

PRII) = P/PCII)

TR2 = TROI)*TR(I)
TR3 = TR2*TR(I)
TR6 = TR3*TR3

PSQ = PR(I)*PRI(I)
TPR = TR3*PSQ

 IF(TR(I)eGTW1e0) GO TO 12
IFCIDNIT)eGEe3«ANDIDN(I)etEe5) GO TO 12
M=1
Fl1 = B(M)I+B(M+1)/TRIT)+B(M+2)*ALOGITR(I))+B(M+3)*TR2+B(M+4)*TRE
L+(BIMeS)/TRITI+B(M+6) *ALOGITR(L) ) +B(M+7 ) *TR2)*PRI(1)-0.002584%TPR
2=ALOG(PR(I))
F2 = (le—TRII))*(B4T7015-11.201/TR(I))-0,05044/TR(L)*PR(I)+
10.002255%TPR
GO 70 13
12 CONTINUE
TR6 = TR3
TPR = TR(I)*PSQ
M =29
IF(IDN(I).EQel) M=17
IFCIDN(I)eEQs2) M=25
IFCIDN(I)eEQe3) M=33
IFUIDN{I).EQe4) M=41
IFCIDN(I)<EQ.5) M=49
IFCIDN{I)eGEsl s ANDSIDN(I)elTo4) TPR = 0,0
F1l = BIMI+B(M*1)/TRIIDI+B(M+2)*ALOGITR(I)I+B(M+3)*TR2+B(M+4)*TR6
1+4(B(M+5) /TR ) +B(M+6)*ALAGITR{I)I+B(M+T)*TR2)*PR(I)-0.002584%TPR
2-ALAG(PR(I))
F2 = (le=TR{I))*{BsT7015-11.201/TR{I))I-0.05044/TR(I)*PR(I)+
- 10.002255%TPR :
13 CONTINUE
FOPLI) = EXP(FLl+W(I)*F2)
11 CONTINUE
RETURN
END
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(4) Subprogram for Liquid Phase Activity Coefficient
Calculation

SUBRDUTINE ACTCOF

DIMENSION VOLF(10)sTR(10), TRM1(10)sTRM2(10),TRM3(10),BINA(10,10)
COMMON/ZALL/ NC,IDN(10)y WM(LO)¢X(10),Y¥{10)sT4P,RT,FOP(10),ACT(10),
1PHI(10)4TC(10)4PC(10)4W(10) o
COMMON/GAM/BAL yEA2,VL(10),DEL(10)+BINB(10,410)yBINC(10,10)

VM = 0.0

DO 18 I=14NC

TR(EI) = T/TC(1)

DO 11 I=1,NC

TRML(T) 0.0

TRM2(T) 0.0

TRM3(1) 0.0

VM = VM+&X(T)*VL(])

"DO 11 M=1,NC

DOEL = DEL(I)-DEL (M)
SQDI = SQRT({DEL(I))
SQDJ = SQRT(DEL{M)) :

BINA{I,M)=DDEL*DDEL+(BAL+BA2*SQRT(TR{I)*TR{M)))*SQDI*SQDI*
1(SQDI-SQDJ) »*2
BINA(M,I) = BINA(I M)

CONT INUE

TRMML = 0.0
TRMMZ = 0.0
TRMM3 = 0.0

DO 16 J=1,NC _
VOLF{J} = VLIJI*X(J)/VM
DO 16 I=1,NC

TRML(I) = TRM1(1) + BINA(IL,J)*VOLF(J)
TRM2(I) = TRMZ2(I) + BINB(I,J)*VOLF(J)
TRM3(I) = TRM3(I) + BINC(I,J)%xX(J)
CONTINUE

DO 19 J=14NC

D0 19 M=JyNC

TRMMl= TRMM]1+BINA(J,M)%VOLF(J)RVOLF (M)
TRMM2= TRMM2+8 INB(J,M)})*VOLF (J)*VOLF (M)
TRMM3 = TRMM3+BINC(JyMIZEX(J)%EX(M)
CONTINUE

D0 17 I=14NC

VLVM = VL{I)/VM
ACTCI)=EXP(VLC(E)/(T*1.10389)%(TRML(I)-TRMML}+VLVMETRM2{I)-(2.%VLVM
1-10)*TRMM2+TRM3 (I }-TRMM3)

CONTINUE

RETURN

END
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(5) Subprogram for Vapor Phase Fugacity Coefficient
Calculation

SUBROUTINE FUGVAP :

DIMENSION AX3(10),AX4(1C),CX2(10)AX(10)BX(10)},CX(10)4F(L10)

COMMON/ALL/ NC,IDN(10)y WM(L0)yX(10)oY(10)sT4P,RToFOP(10),ACT(10),

1PHI{10),TC(10},PC(10),W{10)

COMMON/FUG/ SB(10)4+A1(10),A2(10),A3(10),A4(10),C1(10),C2(10)

1,BIC(10410),BI0(10,410),TIC(10410,10)

AS1

AS2

AS3’

AS4

csl

Ccs2

DO 13

FLI) =

AX3(I)

AX4L(1)

cxa{n)
13 CONTINUE

DO 11.1=1,NC

8S = BS+F(I)*SB(T)

iHouw H Hu

0
0
0
0
0
0
I

-~ 000000
(g}

H i<l ® o o o @

N
)

’
I
0
0
0

e NeoRo]

AS1 = ASL1+F(I)*SQRT(ALLI))

AS2 = AS2+F({I)*SQRT(A2(1))

CS1 = CSL+FUI)*C1(1)%%,33333333
DO 11 M=1,NC

AS3 = AS3+F(I)*F(M)*BIC(I,M)
AS4 = AS4+F{I)*F(M)*BID(I,M)

AX3(I) = AX3(I)+F(M)*BIC(I,M)
AX4(I) = AXG(I)+F(M)%BID(I,M)
DO 11 K=1,NC
€S2 = CS2+F( L) *F(M)*F{K)*TIC(I4MyK)
CX2(1) = CX2(L)+F(MI*F(K)®TIC(IsMyK)
11 CONTINUE

AS1 = AS1%*AS]
AS2 = AS2%AS2

" CS1 = CS1*%3
AS = ASL-AS2*T+AS3/T+AS4/T%%5
CS = CS1/SQRT(TI+CS2/(T%T)

c CALCULATION OF VAPOR PHASE MOLAL VOLUME
CALL CUBEQNUAS ¢BSyCSyRT4PyV)
DO 16 I=1,NC
8X{I) = SB(I)/8BS
17 = P*V/RT
BOV = BS/V
AX{I) = SQRT(AS1*AL(I))-SQRTIAS2*A2{1))*T+AX3(I)/T+AX4(1)/T*%5
CX{I) = CS1*{CL(I1)/CS1)*%,3333333/SQRTITI+CX2(1)/(T*T)
PHICI) =EXPU((2+,*AX(1)/BS—-RT-AS*BX(I)/BS)*ALOG(1.-BOV)+(CS*BX(])-
11.5%CX{I))/(BS*BSI*ALOG(1+~-BOV*BOV) ) /RT+BX(1)*(Z2Z-1.)-ALOG(ZZ))
16 CONTINUE

RETURN
END
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(6) Subprogram for Molal Volume Calculation

SUBROUTINE CUBEQN{A¢ByCyRT 4PV}
Cl = -RT/P
C2 = (A-B*RT}/P-B*8
AB = Ax*B
lF(CoEQ.0.0, AB=-AB
C3 = (AB-C)/P
GG = {C2-C1*C1/3.0)/3.0
FF = (2,0%C1%%3/27,0-C1%C2/3.,0+4C3)/2.0
TEST = FF*FF+GG*+3
IF(TEST) 11,12,13
11 PHI = -SIGN((ARCOS(SQRT{-FF*FF/GG**3))/3,0),FF)
Q = 2,0*SQRT(-GG)
Vvl = Q¥*COS(PHI)
V2 = Q*¥COS(PHI+2.0944)
V3 = Q*xCOS(PHI+4.18879)
V = AMAX1(V1,V2,V3)
GO TO 15
12 V= 0.C
GO TO 15
13 AA = SQRT(TEST)-FF
BB = ~AA-2,0%FF
CAA = SIGN((ABS{AA}*%,3333333),AA)
CBB = SIGN((ABS(BB)**,3333333),88)
V = CAA+CB8
15 v = v=C1/3.0
RETURN
END
//GO.SYSIN DD *
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