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Solutions of molecular mixtures have been treated as solutions
of the const1tuent groups~of the component molecules. Based pn the
concept of group 1nteract10n contr1but10ns, models were develOped
The models were then used for representatlon ‘'of excess thermodynamlc
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quasm-lattlce theory'was also tested for its: ab111ty to represent
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CHAPTER I
INTRODUCTION

One of the important applications of thermodynamics is in the
area of development.and design of processes for the recovéry and
purification of organic compounds, Since the need for accurate
descriptions of the thefmodynamic properties of solutions’in this
area is ffequently great and the systems are complex, description of
the thermodynaﬁic properties of solutidns relies primarily upon direct
experimental measureménts. However, experimeﬁt§l measurement§ are
frequently diffiéult, tedious, and costly: These factors provide
inceﬁtive to develop means tovcalculate the thermodynamic properties
of solutions by reducing and generalizing the limited experimental
data at hand., Toward thié end, many soﬁnd theories, thermodynamic
relations, and empirical relations have been developed for making
such calculations. |

In the past, theories and relations were developed in terms of -
component molecules, and molecular theories have been used to predict
thermodynamic properties of solutions, Interactions among molecules
have been visualized as the source of thermodynamic interaction, and
thermodynamic properties are characterized by molecular interactions
in solutions.

Recently, there has been new interest in solutions of groups;

that is, breaking down a molecule into constituent groups ard



considering interactions among the groups; Suitable cdmbinations of
the interactions among the groups can bevused to characterize the
solution properties. Models which conéider;solutions to be made up:
of the constituent groups of the molecules in the soluﬁion rather than
being made up of the molecules themselves have certain a@vantagess

1. Relatively few interaction parameters are fequired,

2, Mixture properties are related to the pure fluid properties°

3. Extension to multicomponent mixﬁﬁfes is easily facilitated,

L Predictions are'possible on mixtures for which ho data are

available;

Specifically, a large number of molecular solutions can be madevup
of a very few groups. By knowing the nature of interactions among
these groups, a large nuﬁber 6f solutions m&y be characterized, How-
ever, for molecular ﬁheories,linformation on.interactions between the
molecuiar pairs is‘néeded, and each new molecule brought into the
solution requires new information on interactions between that molecule
and every other molecule in the solu.tibns° Thdég group solution
-theory faéilitates a considérable reduction of the information re-
quired to characterize solutions, For exémpleg there is a large
number of binary'mixtﬁrés of n@pafaffins and n-alcohols. If they are
characterized thermodynémically by characterizing the interactions
between molecular pairs, then a number of charactefistic parameters
for each binary mixture would be necessary. If group solutién theory

is used, only three groups, which have six different types of inter-

action (CHy~CHy, OH-CH,, CH;-CH,, CH,-OH, CH,-OH, and OH-~OH), need

be considered. In this way,:six types of interactions might charac-

terize a large number of alcohol-paraffin mixturess Thus; the



meaéurement of the thermodynamic properties of a single alcohol-
paraffin binary system could, in principle, be used to estimate the
thermodynamic properties for any alcohoi—pafaffin,system, Complicated
multicomponent mixturés become amenable to calculations as they are
reduced to systems containing only a few groups.

*In dealing with mixtures of molecules in terms of their
copstituent groups, account must be taken of the interactions of the
various éroups in solutions, the restrictions imposed upon these
interactions by the organization of the groups into molecules, énd the
organization of the molecules in the solution. Detailed theories of
mixtures take these effects into account in terms of some models.

But even for.mixtgfes of simple molecules, the effects are so com-
plicated that completely satisfactory models haVe yet to be develoﬁéd°
It is the burpose of this study to develop theories based on
constituént‘gfoup cbntributibn in liquid mixtures for calculating the

excess thermodynamic properties of polar mixtures,

Previous development of theories and correlatiohs for liquid
solutions containing polar substances was,hampered.by a lack of
experimental data° 'Receni contributions by Van Ness and co-workers
(h83 56, 57) are notable for their systematic measurement of heat of
mixing of alcohol-n-paraffin mixture systems. Their data“on binary
mixtures of‘alcohols and paraffins are used in the development and

testing of the present theories;



CHAPTER II
REVIEW OF EARLIFR GROUP CONTRIBUTION THEORIES

Because of the attractive advantages of group solution theory,
investigations of solutions of groups have been of interest since the
pioneering work of Langmuir (36). As a result, there exists consid-
erable literature on the subject (1A)g This chapter makes no'pre-
tehse of encompassing all previous contributions. However, a
selected fraction of these contributions are presented to illustrate
the present'statué of group solution theory as it applies to this

study,
A, ngggpig Model

The mosﬁusignificant eariy description of simple mixtures in
terms éf groups was given by Langmuir (36) in 1925, He proﬁosed ﬁhat
cértain characteristics-of solutions could be expreééed in tefﬁs of
the constituent groups or radicals on the molecules in thé solutiona
Hevsuggested that interaction forées among molecules were dependent
on the exposed surface area of the groups in the molecules aﬁd that
the force.field around a group or radical is largely independent of
the nature of the rest of the molecule, This forms the so-calléd.
"principle of independent surfacebaetion." As a first approximation,
Langmuir neglected any local orientation and segregation of molecules

in a liquid and considered instead the various interfacial energies



he might expect for a folecule in a liquid mixture, By summing these
interfacial energies of the pairs of groups in contact, weighted
accordlng to surface fractlon in a binary mlxtureg he derlved ex-
pressions for the partial pressures of the components. He dealt
explicitly*bﬁly*With molecules of the kind R-X in which a nonpolar R
group is:eonsidered a single group and X is a polar group., He applied
this theory prims;ily to two-phase relations, such as surface tension,
film adsorption and vapor pressures, |

He indicated that the model could fit experimental data for
binary systems with moderate deviations. Reasenable mutual solu-
biiity predictions could be made for a few systems with large devia-

tions from Raoult's law,

Coeffici

Group contribution theory‘hasfbeen exteﬁsively'developed to
“deseribe‘the activity coefficient of a solute at infinite dilution
in a solvent,  The infinite dilution activity coefficient is directly
related to’the parameters‘in seminempifieal expressions for excess
free_énergy. ”Iﬁ fact, the two terminal activity coefficients in a
binary system‘suffice to determine both equation pafameters in any
gtwo—parameter excess free energy expression,

The work of Butler, et al., (8, 9) is s second early work whieh is
basicsily a group approach., They considered the infinitely dilute
solutipn of a series of solutes in a given solvent as the simpiest
case for study instead 5} the more conventional study of concentration
effects w1th1n a single system of componenﬁs. They systematically

measured Henry!s law constants for a wide range of solutes within a



given family, Through these they observed a simple‘}elation between
sdlute carbon number and its activiﬁy coefficient, They noted that
the partial molal excess free energies of solution increase by rouéhly
constant increments through the homologdus series. They also indi-
cated that this roughly constant incremenﬁ depends upon the nature of
the polar group.

Pierotti and co-workers (41, 42) have made a more extensive,
systematic study of homologous serieéo They ex?erimentally measured
activify coefficients at high dilution for homologous series of‘solm
utes in fixed soivent and fixed soluﬁe in homologous series of sol-
vents and inspected the dependence of the limiting activity coeffi-
cient upon the carbon numbers of‘soiute and éolvénta

If a mono-functional molecule of the type RX, where R stands for
an alkyl grdup and X the hfﬁnctibnél" éroup which might be OH, CHOS
or COOH (X might also stand for a nohlear group such as phenyl or
naphthyl éroup).is considered; and when a Rkablecule is in solution
at infinite dilution in a solvent of R'X’ molecules; £he RX mole-
cules are completely surroﬁnded by RiX! mo.leculés° The significant
contributién to the interaction energy involving RX molecuies are
visualized to be as shown in Figure 1. If it is assumed that 1nyi°
( ='EiE/RT) of RX in R!X! is made up of group interaction contributions
and these confributioné do not mutually interact, then this concept

may be expressed by

oy O =L T 4TI 4T+ I +1 (2-1)

b f

where yio is the activity coefficient of RX at infinite dilution in

RiX!, and I's are the interaction contributions as shown in Figure 1.



R<—X

R"‘—T:—’X'

Figure 1. Group Interaction Between Two Mono-
Functional Molecules

Pierotti, et al. (413 4L2) empirically developed expressions for
the Ifs in terms: bf'the carbon numbers of solute and solvent based on
their experimental results and re-expressed fquation (2-1) as a

function of the carbon numbers.

0 R 2 :x
1og voy = Cl.+ c, P + c,3/nR + CA(nR - nR,) + Cg o + Gy /op, (2-2)

where np, Np, = number of carbon atoms in hydrocarbon radicals R and
R', respectively.
Cl = coefficient which depends on nature of solute and solvent

functional groups, X.and X',

Q
fi

5 coefficient which depends only on nature of solvent function-
al group, X',

03 = coefficient which depends only on solute functional group, X.



Ch = coefficient independent of both X and X' depends on temp-
erature, which was taken from the results of study of par-
affin mixtures by Bronsted and Koefied (7).
C5 = coefficient which depends only on natur¢ of solute function-
al group, X.
C6 = coefficient which essentially depends only on nature of the
solvent functional group, X'.
Numerical values of C's are given for a large number of homologous
seriés including acids, primary, secondary,rand tertiary‘alcohols,
aldehydes, ketones, acetals, ethers, nitriles, esters, water, hydro-
carbons, etc, In spite of its coverage of an extremely broad range
of limiting activity coefficients, this empirical correlation agrees
~ quite well with the experimental data. For 44 sets of systems (350

individual cases), the overall average deviation in yo about 8%.

C, Qgggi—Lgttige-Theogg

Langmuir (36) indicated that two phase relations of a solution
such as vapor pressurésAwould be strongly influenced by the preferéne
tial orientation of the molecules at phase interfaces, In 5ddition3
increasing experimental evidence showed that the liquid staﬁe has many
features, such as a large number of first neighbors and local order, '
in common with crystals., For this reason, several in?eéﬁigators (2,
3, 10, 11, 18, 24, 25, 26, 53, 54) have attempted, based on t.h.e theory
of liquid soluﬁions on a lattice mgdel, té acéount for such orienta-
tion effects by applying statistics to a quasi~lattice arrangement of
the molecules, in which a moiecule.is free to rotate about a fixed

lattice point and different groups are subjected to contact with



surrounding molecules.

Guggenheim (24, 25, 26) credited Chang (10, 11) with being the
first to propose this theor& based on the idea that the change on
mixing of all relevant thermodynamic properties may be exprésééd in
terms of the lattice partition function, The enefgies which appéar in
this partition function are those of the groups at rest in their equi-
1ibrium positions in the lattice. The evaluation of the combiné—
tarial-factor for polymer solutions by Flory (18) and Huggins (32)
was a major success of this model,

Barker (Z,J 3) extended Guggenheim's theory to allow one molécu.le;
to have different kinds of segments. Barker's results are in terms of
grand paftiﬁion functions;' Basically; the quasi-lattice théofy con- |
siders each ﬁblébule in solution to be composed of given numbers of
segments:placed on a well—defined lattice. ‘Each type of segment
possesses a‘specified number .of contact points where it may interact
with adjaéent»éegments. Thé interaction energyb;f the solution is the
sum of contributions from interactidns‘between pairs of adjacent sites.
Barker and his associates (4, 5) have successfully spplied such a
model to.ééﬁeral systems.inﬁolVihg aéégéiated”iiQuidso This theory
has also been shown to apply well to paraffinnéromatic (34), alcohol-
axv'omatic: (2, 21, 22) s élcohbl;-ester (53), and alcohol-n~paraffin (35)

systems,

D, Corresponding States Theory of r-mers

)

Prigogine (43) developed, based on his average potential model
(AA), a‘corresponding states theory of r-mers which is basically a

group approach., The average potential model which was developed based
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on statistical mechanics with average interaction energy for a pair of
moleculésvéombines the basic ideas underlying the theory of conformal
solutions with thbse of the cell model of solutions.

The corresponding states theory of r-mers assumes that the number
>of degrees of freedom of a molecule may be divided into the internal
deéréeé.of‘freedom, which are controlled almost entirely by the va=
lencé fdrces of the molecuie and are only slightly influenced by the
ﬁoleéuiar éhvironment, and the external degrees of freedom, which are
unaffected by the valence forces and are depen&ent on the environment
of the molecule,‘ The number of external degrees of freedom alone
enters into the configurational partition function and gives rise to
structure—dependent'contributions to the excess functions,

This théory considers all of the molecules to be composed of
groups or segments which may be thought of as point centers. Two
moleculeS‘interact when one or more groups of one molecule interact
with ‘one or more groups of the second molecﬁle.g Pairwise additivity
is assumed and hence the total potential energy of the liquid is
given by summing the pairwisevinteractions over all two-group inter-
actions in the system,

| In this model the molecules are imagined to be arranged on a
quasi-crystalline lattice withieach group correSponding to a lattice
point, and the cell method is applied in a straightforward manner to
obtain the partition functidn°

This theory permits correlation of- the thermodynaﬁic properties
of'pbijmers and demonstration of how their size and structure deter-
mines £hese thermodynamic properties. Howe?ers the theory is re-

stricted to systems where all segments of a molecular chain are
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identical.

Hermsen and Prausnitz (27, 28) extended the theory to the case
where the segments of a molecule chain may be‘primafy, secondary, or
tertiarj? or may have double bonds., They permitted the cell partition
fﬁnction to be a function of both reduced volume and reduced tempera-
ture.v At the same time they included (in a semi-empirical manner)
the effect of lattice irregularities on the configurational energy.
The modified theory gives a satisfactory fit of the configurational
prépef£ies of 35 hydrocarbons ranging from Cl to 020 from the triple

point to slightly above the normal boiling point.
Group Interactd Mode

‘»Redligh, Derr, and Pierotti (45) dgveloped’a gfoup interaction
model whiéh calculates the heats of mixing of liquid solutions as the
sum of contribqtions from pairs.of‘interacting groups. Tﬂe contri-
bution ofAeécH péir of groups is assumed to be independent of the
natufe of the molecules involved and dependent on the group concentra-
tion, "group éross section” -characteristic of each kind of group and
interaction energy chafacteristic of each group pair.

This model has been tested by Papadopoulos and Derr (40) on-
binaryvsolutions of‘hjdrocarbons with a deviation within the experi-
mental errors inthe limiting heat data. Specially noteworthy
féatures of the model includes

- 1. The energy of interaction of molecules is considered to be

the sum of contribﬁtions due to contacts betweeﬁ groupé
(or radicals) in the‘molecules. The contribution of each

contact is dependent on the two groups in question but is
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independent of other groups either on the same molecule or on

other molecules in the mixture,

4

2., The relative frequency of interaction améng groups is'aSsumgd
to depend‘oﬁ’thé‘cfoss,section of the groups. Empiricai |
rules are established to relaterliquid molal volume of hydro~
carbons to group volumes, The cross secﬁion of a group is

then related to the 2/3 power of its group volume.,
F. Solution of Groups Model

Wilson and Deal (59) have proposed a solution of groups model
which describes the partial excess free energy as the sum.¢f struc-

tural contributions and group contributions as

G

log v; = log yis + log v; (2-3)

The first term on the right hand side of Equation (2-3) is a
structﬁrai_contribution due to structure of the molecule as a whple.
The second term on the right hahd side of the equation is é grdup _
Qontributioh dﬁe to the interaction of the functional groups. |

The structufal contribution or the size contribution,. which
repreéents the only distﬁnction between enviromments of the same
group conStituﬁion and diffefent molecular constitutions, is eval-
uated‘by.ahFlorthuggins relation expressed in terms of the number of

groups in the respective molecules of the mixture:.

znt . ‘ > nt
s _ v ovi _ v vi _
log Yy = log SR + 0.4343 (1.0 =3 7ol ) (?}4)

IV v JVvIT v
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where n'vi is the number of atoms of type v in molecular component i.
The contribution from interactions of groups is the sum of the indi-
vidual contributions of each group taken as the difference between

contributions in solution and molecular standard state,

G i
= - % -
log v; =Zn; (1og I, = log P;) | (2-5)
where Fv is the activity coefficient of group v in a group solution
and F$ is that in a standard grdup solufion;" The individual group
contribution (FV) is taken as a single function of the group concen-

trations of environment for both solution and standard state:

I =F(Y Y,ooo) (2“"6)
v .

where Y!s are group concentrations in terms of fractidn.

This model, winh its assumptions that in somerway both the
enthalpic and entropic contributions to the partial molal excess free
energy are simply additive (Equation 2“5) and that the concentration
dependency of these contributions may be characterized from a base
case (Equation 2-6), is most useful. Wilson applied this model to
two fairly extreme cases, mixtures containing paraffin (CH,, GH2) and
hydroxyl (OH) groups and mixtures containing paraffin and nitrilb(CN)
groups; no distinction was made between methyl and methylene groups.
In the -OH case, he used the single hexane—methanoi binary as base to
obtain T éurvés and estimated the ethanol-heptane binary, The resulits
show satisfactory agreement with experimental data over a wide rangel
 of activity coefficient values. .- .

Recently, Scheller (50) presented a correlation of a broad range

of mixtures based on the solution of groups model. By the use of
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mixture data containing water, he has defined FOH and rbH curves over
: : 2 :
the entire range Qf CH~OH mixtures and calculated the log ys term

2
with ﬁola}:§61ﬁmés»insﬁead of the group'numbers. This correlation
represents the experimental data of eight binary systems quite satis-
factorily, | | |

There are ééveral models,‘which are basically group approaches,
that have reachéd*SOmetsuccess in representing thermodynamic proper:-
ties of sblutions, such as models by Flory (19), Hijmans (29), Irmann
(33), Mbyef:and Wagner (38).

In summary, the preceding review of the literature on group
contribution models sefves to indicate the current state of progress
in the.fiéld, vThe review demonstrates that the intuitiveiy reasonable
appfoach Qf treating mixtures in terms of their constituent groups to
estimateifhe thermodynamiq properties can be of considerable practical
usee ﬁpwgver,ithe_approaghes to handling mixtures in terms of groups
remain'ééééntially empiricai.ih_nétﬁré. Alﬁhough some more theoretical
approacheé havé beeﬁ presented, more detailed and sufficiently quanti-

tative‘theOrieé to meet technological needs are needed.,



CHAPTER ITI
THE LOCAL SURFACE GROUP CONTRIBUTION THEORY

A group contribution theory fiér liquid solutions containing
polar substances is developed in fhis chapter in a manner similar to
the group interaction theory of heat of mixing advanced by Redlich,
Derr, and Pierotti (45); in this work, however, the probability of
interaction between two groups is éonsidered to depend both‘on the
magnitude of_thé interaction energy between the groups and on the
free surface areas of the groups; Thus, the local ordering or
preferential interactioh/betweeh groups due to interaction energy
differences is considered in this study.

There is cer£ainly_ovérsimplification in the group interaction
theory of Redlich, et al.,, for no accoﬁnt is taken of some generally
recoghized féctors, such as (1) chemical effect of neighboring groups
on the energy of an interacting pair of groups, (2) effect of varia-
tion of distance of sepération,of_the groups in differént mixtures,
and (3) preferehtial interaction between groups due to either spatial
or energy conditions., The effect of these faétors can be expected to
vary depending on the mixture,

In particular, the postulate concernihg the relative frequency of
group interaction.appears to be adequate for hydrocarbon solutions in
which the interaction energies are of comparéble order of magnitude,

For these interactions, the relative frequencies might reasonably be

15
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expected to be govérned by a purely geometriéal property such as the
group cross section., However, interaction energies in solutions
containing polar substances can be of very different magnitude and
strongly attracted pairs interact preferentially. Thus, the relative
frequency of interaction is governed by the energy properties of the
groups as well as by their geometrical properties,

The objectives of the present study are (1) to develop quan'l;vi-=
tative expressions for relétive frequency of interactioh of éréups in
solutions containing polar substances, (2) tb develop the necessary
energy parameters to describe group interactions in solutions of
alcohols and n-paraffins, and (3) to make comparisons with experi-

mental data,
A, Heat of Mixine
1. Surface Area as a Measure of Frequency

Consider a pure liquid in which each molecule to be composed of
characteristic groups, or radicals, These groups may be (1) CHﬁ;
(2) CH,, (3) OH, etc, Iet the number of groups of type v per molecule
be n& and the free surface aréa pef'group be s . That is, a molecule
may consist of n, groups Vv with Sy free surface area per group, n,

groups u with s, free surface area per group, etc, The total free

surface area of v groups in a molecule is then

A =ns (3-1)

A, =Z A (3=2)
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where the summation is taken over all the kinds of groups in the
molecule, The fractional area of the free surface belonging to group
u is

£ =A/EA | (3-3)

Fpr the moment, if preferential interactions due to energy;differences
are ignoréd, the probability‘of‘interaction of the groups would be
determihed entirely by the surface fractions and is taken proportional
to the free surface fraction in the liquid., Now consider a central
group v being surrounded by all kinds of groups in the pure liquid.
The fraction of the surface of group v interacting with group u in
the liquid is the same as the fraction of the overall surface belong-
ing to group u,.thgt is fu' ;
Let Auv denote the energy of intefaction betwéen group u and
group v per unit surface area of contact. The enefgy of interaction
betweeh the v groups in a speéified molecule and the u groups in the
liquid is |

Av(Au/zwAw)Auv ,

(3=4)

The energy of all interactions in which the v groups of a molecule

participate is

Az (A /5 A A | ‘ (3-5)

vu u ww o ouv

By summing the above expression over all groups and dividing by two to
avoid counting each interaction tﬁice; the to%aifenérgy of interaction

of all the groups of a molecule is
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3 Z\fAvZu(Au/zwA'w)}‘uv (3-6)

where all the v=v interactions must be counted twice. The sum extends
over all groups present in the molecule, For example, for a molecule

containing two types of groups of u and v, the total interaction ener-

gy is
A% A A A%
U uu + v uv + v Vv (3@6&)
(A +A )7 (A +4A )" (o +4)
u v u v u v

The total energy of interactions in one mole of liquid is obtained
simply by multiplying the total interaction energy of a molecule by
Avogadro's number, N, and this energy is identified with the energy of

vaporization into vacuum:

v_XN -
AUV = 2_zuzv(,tqu zwAw)xuv | (3-7)

.The concepts are extended to mixtures., The free surface area and
the surface area fraction of groups in solution may be found in a

similar way, The free surface area of group u in solution is given by

X A 3-8
Zxsh (3-8)
where x stands for mole fraction, The first subscript in a doubly
subscripted'quantity identifies a group; the second subscript a
molecule, The fraction of the surface area of all molecules in solu=

tion that belong to group u is found to be

£, = B s /5 E%A ' (3-9)

For one mole of mixture, the energy of vaporization into vacuum
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is

_AUVM:='g zj;kzuzv(XﬁxkAujAvk/zﬁzﬁxiAwi)Kuv (>-10)

To evaluate the enthalpy of mixing, the following mixing pro-
cesses are considered:

l. The components are mixed in the liquid state and the mixture

is vaporized into vacuum.

2, Each pure component with an amount equal to its mole fraction
in the mixture is vaporized at the same condition into vacu-
um, and the vapors are then mixed.

In the first case, the total energy change involves energy of
vaporization and energy of mixing., In the second process, the total
energy change is the energy of vaporization only, since there is no
energy of mixing of ideal gases. Thus, the difference of the total
energy changes between the two mixing processes is the energy of mix-
ing of the liquid solution, If any minor differences between inter-—
nal energy of mixing, AURE and heat of mixing, AH#& for liquid solu-
tions ére ignored, then the enthalpy of mixing is related to the ener-

gies of vaporization into vacuum by

ot ot = z.x, (aU"), - A (3-11)

The surface areas of the groups and of the molecules are calcu=
lated from Van der Waals radii and covalent radii of atoms, \Figure
2 shows the geometrical construction.

The atomic radii for carbon, hydrogen, and oxygen atoms are
taken from Gould (23) and are given in Table I, The sufface areas cof

groups thus computed are given in Table II. The detailed method of
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computation is given in everywhere (6, 51).

R, Ry
¢
Figure 2. Geometry of Bonded Atoms
TABLE I
ATOMIC RADII (23)

o 0
Atom R, Van der Waal's radius, A. L, Covalent radius, A.

C 1.70 0.77

H 1.20 0.28

0] 1.40 O0.74
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TABLE II

FREE SURFACE AREAS OF GROUPS

Group Bonded to 8 X 10_9, 5Q. cm./mole/group
CH2 Two carbons 1.35
CH2 One carbon, one oxygen 1.54
CH3 Carbon 2,13
CH3 Oxygen 2032
OH Carbon 1.30

The use of atomic surfaceé is a departure from the cross section
of Redlich, et al. Atomic surfaces appear to be more natural choices
for the development of a molecular model, since group dross sections
cannot be evaluated for the hydroxyl group and most other polar groups
as their group volumes are negative when evaluated from molal liquid

volumes.,
2, Local Concentration Due to Energy Differences

The foregoing treatment probably is suitable to account for the
frequency of group interaction either in mixtures in which all the
interaction energies are of comparable magnitude or at such high
temperatures that the thermal energy of motion suffices to upset any
preferential energy conditions. However, when the interaction ener-
gies between various group pairs are widely different, and the dif-

ferences are large compared with the thermal energy of motion, one
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would expect the high eﬁergy group pairs to interact preferentially,
The deciding factor for preferential interaction is the relative mag-
nitude of the interaction and thermal energies. |

To incorporate the preferential interaction due to interaction
energy differences, a pure liquid is first considered, ' Prigogine (43)
suggested that the external degree ef freedem of a chain molecule of
r-mers is 2r + 1. The average external degree of freedom per chain
link is (1/r)(2r + 1), which is approximately equal to 2, The
principle of equi-partition of energy states that the average energy
associated with each degree of freedom is 4kT. The thermal energy
of each chain-link or group is approximately kT,

As before, the 1nteract10n energy between group u and group v
per unit area of contact is denoted by Ay The thermal energy of u
group per unlt area is kT/s s and that of v group is kT/Sv' The
total thermal energy associated with the interaction energy, xuv’ is
then |

3 s
kT(-sl-u + -SJ; ) = (;“—J-CJSf)kT (3-12)

The probability‘of a v group ihteracting with a u group is then
assumed to depend on the ratio of this interaction energy to its
associated thermal energy. S

The probability of interaction is taken to be proportional to the
total surface of u groups weighted statistically by the Boltzmann

) ], that is

factor expl- (S Ts,
u

: 5.8 A
b o -] -

s _+s
u v
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This quantity when normalized leads to the expression of fractional

probability as

5.8 A s 8 A
(8B MY /s (=) XV _
Au exp[ (Su +_.sv) kT LWAW exp_!: (sw + sv)’ kT] (3-14)

The energy of interaction of the v groups of a molecule with all other

groups is given by
szu[:Au exP(-suvkuv/kTa/iwAw exP(-Swvhwv/kT)] kuv (3-15)

where by definition

S s
T

S =
s + s
uv u S

Sy 18 then a half of the harmonic mean of Sy and Sy
The energy of:all the interactions in one mole of pure liquid is

identified with the molal energy of vaporization into vacuum:
v N : : | .
-0’ =3 Zu}:v [AuAv expl-s N /RT)fE A exp( sw)\w/kT)] Ay, (316

Equation (3-16) reduces to Equation (3~7) when all si's are of compa=
rable mégnitude or when kT ié large compared with sA.

The same concepts are exteﬁded to mixtures, Thé fractional
probability of interaction of a central v group with a u group is

given by

ijjAuj exp(esuvkuv/kT? TEs %A exP(éskawv/kT) (3-17)

The total energy of all the interactions in one mole of mixturé

is identified with the molal energy of vaporization into vacuums
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M_N XA A exps, v/kT)
v zz ZEVJ;: z qu l;xp(— A wv/kT) (3-18)

Witiwi

The enthalpy of mixing is related to the energies of vaporization into

vacuum by Equation (3-11) in the same way as before,
B, Excess ¥ntropy and Fxcess Free Fpergy

Consider a liquid mixture contalnlng n,» Doy o o o groups and
ignore for the moment the preferential interactions due to energy
differences and focus attention on & central group v in the solution,
the probabiliﬁy of interaction of groups u and v would be equal to the
fractioﬁ of the surface area of all molecules in the solution that

belong to group u as given by Equation (3-9).

£, = szJAuJ /B xA (3-9)

The numbér of groups u required to cover this fraction of v's

surface is given by
Yy T fusv/su (3-19)
Thus, fhe group fraction of u about v is given by

_ .0 0

Y =ty APy
T,x,A .x.A . S

_ _ij_ui_,I) zm(__fa,m__,_s’.x)
Zh;ﬁxi wi Tu >:wZJ'.X'J'.Aw:i. ®n
X0

= Mzwzj’?jnw (3-20)

This is a bulk group fraction of u about v. The superscript o denotes
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- the bulk quantity., Similarly, the group fraction of v is

Z.Xx.n
v O E . e el
Yv (2 r.x.A / ( z.x.A .'s )’ EDHDIS 3 ¢! (3-21)
W3 W) Sy W J W u wJlJdw

If the preferential interactions due to energy differences are
taken into ac_count; the i_écal group fr‘actions Yl, Y2, e o o wWhich
differ from the bulk fractioné due to the specific interacﬁon of v
with other gr'oups can be evaluated in the same way.

The fraction of v's surface covered by u is given by Equation
(3-17) as |

- Z.X.A ; exp(-s T)
> ?V/k' (3-17)
ha Z.x.A . exp(—s ?\w/kT)‘

The number of groups u fequired to cover this fraction of surface is

Z.x.A exp(-s A __/kT)

kR

v oiiad uv uy (
n__ = 3-22)
uv s wzlxlA exp(-s.__A wv/kT)

The number of" group v is

s Z.XA . exp(-s ?\W/kT)
=5 2; A exp(-s va/kT) : (3-23)

v WJJWJ

i

and the total number of groups required to cover the surface of the

central group v is
Opy = >::lv.lnuv. : '(3‘“24)

Thus, the local group fraction of v is

Z.xA exp(-s - /kT)/s
= nV_V/Z n =T A exp(— )\wv/ij/S (3?25)

WJJWJ
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From thermodynamics, the molal entropy of mixing of an ideal

solution is

Mo

S =-RL.x 1n(xﬁ) (3-26)

Jd

and the partial molal entropy of mixing of i is

5 Mo

3 =-Blnlxy) 21

The same concept is extended to solution of groups. The partial
group entropy of mixing of v of an ideal group solution is given by
= Mo

5, = -Rln(_Yv°) (3-28)

and that of group solution is

= M
s, =-Rln(Y ) (3-29)
A partial group excess entropy is defined to be .the difference of

Equation (3-29) and Equation (3-28).

.st = -Rin(¥_/¥ °) (3-30)

Thus, the excess entropy of a mixture is the difference of the sum of
contributions to the mixture and to the pure components from partial

group excess entropies of groups in the solution,

SE

— Jig B - i)
= (zvzjxjnv 8, My - Lixi(zvzjxjnvsv)i . (3-31)

Having known AHM and SE, the excess free energy of the solution

can be calculated from the following thermodynamic relation:
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¢ = At - Ts® (3-32)
C. Application of Theory %o Alcohol-Paraffin Systems .

The proposed model was tested by using experimental data on heats
of mixing in n-alcohol-n-paraffin binary systems. These systems were
chosen for initial‘study because they possess only a few groups (CH,,
CHB, and OH) and because excellent data are available from the system-
aﬁic study of Savini; Wintérhalter, and Van Ness (48) and Van Ness, et
al. (56, 57)s The data are comprised of seven binary mixtures which
include three péraffins and five alcohols.

To predict the heats of mixing from Bquation (3-18), values for
the sufface areas of CH R CHE,.and OH groups are required, as are
values of the interaction energies. for CHé—CH R CH2-CHB, CH;—CH?,
CHé-OH, CH%-OH, and OH-OH group interactidns. The>surface areas
‘~were-Célculatéd from the geometrié model of the molecules involved'.
as discussed in the previous section and are listed in Table II.

The hydrocarbqn inﬁeféétion energy parameters»éCHz—CHz, CH2—
.CHB.," and 'c_}:13-cH3) were determined independently of th‘e"lr‘feat of mix-

ing data by applying Bquation (3-16) to experimental data on the
energies of vapofization at 30°C of the pure n—paraffihs propane
through decane, | |

Hééts of‘vaporization from API Project 44 tables (i) were

converted to AUV values by use ofithe generalized charts of Lyderson,
et al, (37) to account‘f0r‘compressibility‘factor and effect of pres-
‘sure.on enthalpy. A nonlinear regression was performed to determine
the values df the threé energy parameters which would give the least;

mean-squares fit of Equation (3-16) to the energies of vaporization.,
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Values of the resultant paremeters are given in Table IITa, and a
comparison of théiéalculated and experimental energies of vaporiza-
tion is shown in Table IV, The agreement is very good (maximum error
of 0,1%). However, this is not an exacting test of the model, since
numerous three-parameter models represent paraffin heats of vapor-
iﬁation accurately.

The remaining three energy parameters, CH2-OH, CH?—OH, and OH-OH,
were determined directly from heat of mixing data on the seven binary
mixtures, Nonlinear regression was used to determine the parameter
values, The previously determined hydrocarbon interaction energy
parameters from Table IIIa were used as fixed input to this calcula-
tion, Nine experimental points, spaced at 0.1 mole fraction intervals
from each of the seven,binary}miktures, were used. The resultant‘
parameters are shown in Table IIIb. The predicted heats of mixing,
based on these parameters, are compared with the experimental data in
‘Table V and in Figures 3 through 9. Also shown in fhese Figures
(dashed lines) are results of a modified version of the theory which
is discussed later. |

The energy parameter values in Table III were employed to calcu-
late excess free energies and entropies by Equation (3-31) and
Equation (3-32) for three alcohol-n-paraffin binary systems where
experimental data are available at the same temperature., The excess
free energy data of ethanol-n-hexane solution at 30°C were obtained
from extrapolation of Smitht's (52) data at 2500, using Wilson's equa~
tion (54). Since the Wilson equation has a built-in temperature de-
pendence and the range of extrapolation is.small, the data obtained

from the extrapolation should be adequate for the present study.
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Results of the free energy and entropy predictions are given in Table

VI and in Figures 10, 11, and 12.

TABLE ITI

GROUP INTERACTION ENERGY PARAMETERS

Interagtion Energy

Groups -\ x 107, cal./sq. cm.

a. Based on energies of vaporization

CH~CH, 1,731
OH,~CH, 1,406
CH,~CH, 911

© be Based on heats of mixing
CHZ-OH 2,174
CHB-OH 1,340
OH-OH _ 4,751




TABLE IV

HYDROCARBON INTERNAI, ENERGIES OF
VAPORIZATION AT 30°C

Energy of Vaporization, i
Hydrocarbon cal./g.-mole
Experimental¥* This Work3¥*

Propane 3,265 3,263

n-butane L,497 4,501
n-pentane 5,704 5,708
n~hexane 6,905 6,901
n—heﬁtane 8,090 8,085
n-octane 9,262 9,265
n-nonane 10,441 10,441
n-decane 11,615 11,616

% Based on heats of vaporization from Reference 1

¥¥* Based on energy parameters from Table IIla
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TABLE V

COMPARISON OF CALCULATED AND EXPERIMENTAL
HEATS OF MIXING AT 30°C

Mole AR @ 30°C, cale/g.~mole _Deviation

System Fraction

Alcohol Expt!l., (48) Calc'd, cal./ge-mole '_& .

Ool 112093 105.14.6 -7.14,7 . "'6,6‘

0.2 138,85 - 156,21 17.36 - 1265

Ethanol- Oul 151.15 169.83 18,68 1Ra4
n~hexane 0.5 144.83 152,40 757 i 5el
0.6 133427 126.37 =6,90 =542

007 -114059 95.14—1 "19.18 '=‘:|_,697

0.8 88.46 . 62440 =26,06 ~29.5

Oo 9 52!57 29 081 —22.76 “'LPB 03

0.1 130.67 108.27 -22014-0 "17.1

0.2 161.15 172.29 11.14 6.9

' 0.3 175.67 202,75 27.08 15.4
n-nonane 0.5 175.48 193,06 17.58 10.0
0.6 164442 164425 =0,17 =0,1

0.7 145.89 123.75 =-20,14 -13.8

009 714-.86 . . . 38005 "36.81 —Ll—902

0.1 127,21 103,96 =23.25 =18,3

002 157031 158.35 19014. 0.7

0.3 170.12 180,55 10.43 6.1

Propanol- O.l 170.19 181,05 10.86 bole
n-heptane 0.5 160,07 166,67 6,60 Lol
0.6 141,92 142,10 0.18 0.1

007 116061 » 110.714' -5087 _500

0.8 85,00 75422 =9.78  =11l.5

0.9 464,73 37.69 -9.04 =19.3

0.1 123.75 99.70 =24405 =19.4

0.2 151,92 151,11 ~0,81 =045

: 0.3 165,07 171.98 6.91 Lo2
Butanol- Oul 165,00 172.61 7.61 L6
n—heptane O.5 1514—0 50 159 .Ll-é Ll-o96 3 02
' 006 1314—-[!—2 136079 2037 108

0.7 107452 107.59 0,07 0.1

0.8 75438 74,01 =1.37 -1,8

0.9 39.16 37673 =1.43 =3.6
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37.08

Mole  AH'@30%C, cal./gemole . Devistion
System Fraction
: : Alcohol |Expt'l, (48)  Cale'd, cala/ge.—mole _Z&.
0.l 109,69 91.93 =17.76 ~16,2
0.2 132.31 133.99 . 1.68 1.3
0.3 141.85 148,23 6.38 Lo5
Pentanol- Ok 140,77 145.71 L9l 365
n-hexane 0.5 129.81 132.57 276 2.1
0.6 110,19 112,50 2431 2el
0.7 85.82 - 87.87 2,05 2ol
0.8 58446 60424 1.78 3.0
0.9 2942 30.71 1.29 bok
0.1 10644 80.44 26,00 =2 ot
062 123,08 - 118,10 =498 =0
003 129023 ) 131.59 2036 l.8
- Octanol~ Ok - 127,50 130,30 2.80 22
n—heptane 0.5 \ 118,99 119 .4—6 Oo47 Ok
0.6 103.85 102.20 ""1'065 '“106
0.7 82,28 80,52 =1,76 =2,1
0.8 - 56692 55672 =1,20 -2,1
0.9 28456 28,68 0.12 Ook
O.l 121.59 84091 —36068 "3002 o
0.2 142,31 131,08 =11,23 =79
003 1A-9093 151075 1082 11,2
Oc_:tanol— Oo-’-l- i 11-!-9 oll—z' 15-’4-083 50-’4—1 306
n-nonane 045 141.23 145440 - oLiel? 249
0.6 122,88 126.87 3.99 362"
0.7 - 9945 101,58 Re13 el
0.8 70,00 71.24 1.24 1.8
009 36013 . 0095 206

!




" TABLE 'VI

COMPARISON OF PREDICTED AND EXPERIMENTAL EXCESS
FREE ENERGIES AND EXCESS ENTROPIES_AT'BOOC

33

& cal./e.—mole 5B cal./e.=mole
System Fraction : L _
Alcohol Expt'l. Calc'd, Dey, Expt'l, Dev.
- 0.1 152.80 19244 39.64
0.2 244,80 304441 59.61
0.3 300.99 361.69 60.70
Ethanol-  O.4 329.74 379.16  L9.42
n-hexane 005 334070 366.08 31.38
(52) 0.6 317.35 328,58 11.23
0.7 277.69 270.85 =6.84
0.8 214,30 - 195.83 <=18.47 '
0,9 - 123,92 105,37 =18.55
1.0 0.00 0,00 0.00
O.1 15944 185.35' 25.91 =38,78 -39.87
002 251099 299036 47037 "104089 "'31083
0.3 309.99 361,06 51,07 -=150.37 =25.93
Ethanol- O.4 340456 382,56 42,00 =178,70 + =20,05
n-heptane 0.5 - 347,38 372,00 24,62 =190.72 =14¢25
(56) 0.6 330,88 335,15  L4.27 -185.89 -9.57
0.7 290.75 276.32 =14.43  =164.30 =611
0.8 226,64 198,92 =27.,72 =126,79 =2,97
009 132.82 105090 —26.92 "'72.20 '='0099
1.0 0.00 0.00 0,00 0,00 0,00
O.l 114'7014—0 178086 31014—6 -20-78 . "'5l-l-o:u+
0.2 230,17 28594 55.77 =73.59 =54,02
0.3 279.76 342,04, 62,28 =110,20 =51.33
Propanol- 0.4 304435 359,98 55,63 =134.68 © =l .28
n-heptane 0,5 307.38 348,15 40,77 =147.99 =33.52
(57) Oub 289479 312,35 22,56 =148.54 =21.76
. 007 251.61 256980 5.19 "135030 . “’10,981
0.8  191.54 184,63 =7.01 =106.85 =2,62
0.9 108,67 98.35 =10.32 -62,17 +1o45
1.0 0,00 . 0,00 0,00 0,00 0.00
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1. Representation of Excess Properties
2

Figure 3 through Figure 9 show that by using three parameters
based on the data of heats of mixing, reasonable agreement between
theory and data is obtained for the seven binary systems., The asym-
metry of the heat of mixing curves is correctly reflected by the model.
The maximum values of AHM seems to be well represented by the theory
except for ethanol mixtures, Best agreement occﬁrs for the mixtures
of higher moleculaf weight components in the region of high alcohol
concentrations. Least satisfactory agreement is found at low alcohol
concentrations, where the model predicts consistently low values of
sHY,

Figures 10 through 12 show that the excess free energies and the
excess entropies calculated fram the set of energy parameters deter-
mined from energies of vﬁporization of n-paraffins and the heats of
mixing data give a qualitative representation of the experimental
excess entropies énd free energies, The model fails to reflect the
positive values of.excess entropy at low alcohol concentrations, The
positive TSE values shown at low concentrations are due to the break-
ing of hydrogen bonds and the resulting gain in orientational free-
dom of the alcohol molecules., Since this breaking of hydrogen bonds
is purely due to a dilution effect, it is significant At low alcohol

concentrations.

2. Surface Energies of Group Pairs

The values of the interaction energy parameters/of Table III are



45

shown graphically in Figure 13. As expected the OH-OH interaction,
where hydrogen bonding may occur; is by far the strongest ‘interaction
in the solution. However, when an OH group interacts with a hydro-
carbon group, it behaves very éimilarly to a CH2 groupg, The energies
of CHZ-Cﬁérand CH,-CH, interactions appear in Figure 13 to be quite

different. However, the values shown are in terms of energy per unit

v

surface area, The energies per group pair may be obtained from these

values by multiplying by the surface area per group and are as follows:

cal./mole/group
OH,~CH, 1,940
CH,~CH, 2,337

In contrast, the value for OH-OH is 6,176 cal./mole/group.

Since the model has a bﬁilt—in température dependence, these
energy parameters could be considered, to a good approximation, to be
independent of temperature over a small interval, which means that
parameters obtained from data at one temperature may be used with
reasonable confidence to predict properties at some other temperature
not too far awéy.

In principle, the three interaction energy parameters involving
the hydroxyl group (or, in fact, all six parameters) could be deter-
mined from data on energies of vaporization of pure n—-alcohols. How-
ever, this was not attempted for the reason that any inaccuracies in
the parameters and defficiencies in the theory would be magnified in-
to excessively large errors in heats Qf mixing when all the energy
parameters were determined from energies of vaporization. Thus, the

remaining three energy parameters, CHy—OH, CH;-OH, and OH-OH were
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determined directly from the heat of mixing data.

3. Alcohol Internal Energies of Vaporization

In order to verify the attempt just mentioned, the previously
determined energy parameters in Table III were used to predict the:
internai energieé of vaporization of the normal alcohols and to cam~

pare with experimental data in Table VII., As expected, the agreement

is poor.
TABLE VII
ALCOHOL INTERNAL ENERGIES OF VAPORIZATION AT 30°C
- BASED ON ENERGY PARAMETFRS IN TABLE III
| A0V, cal./g.~mole " Deviation

Alcohol Exptl, Calc'da %
Methanol 8,233 4»195 ~49.0
Ethanol 9,378 5,503 -41.3
Propanol 10,492 6,65 36,6
Butanol 11,575 - - - - 7,791 -32.7
Pentanol 12,672 8,923 =29,6

*Based on heats of vaporization from Reference 20,

The experimental internal energies of vaporization of n-alcohols
at 3000 were converted from the heats of vaporization at 25°C given by

Gjaldbaek and Niemann (20). They had collected the heats of



48

vaporization data from several sources, The data reported at 25°¢C
were converted to 30°C according to the following equation suggested

by Hougen, Waston, and Ragatz (31).

H l.o hand T 0.38
2 _ [ r2
e "(1. 5 Tﬂ) (3-33)

The heat of vaeporization of butanol used by Gjaldbaek and Niemann
seems to be small., The value used here was a smoothed value from a
plot of internal energies of vaporization versus carbon number on the
alcohoi molecules as'shown in-Figure 14. The value of ll 575 eal;/g.—
mole for butanol used in this work is within the range of" reported
experimental values° | |

Values of the three energy parameters 1nvolv1ng the hydroxyl
group were also evaluated performlng a nonllnear regre331on to obtain
a least-mean-squares fit of Equatlon (3—;6) to the energ1es of vapor-
ization of alcohols. Values of the energy parameters so obtained are

as follows:

ACHQLOH ‘ -1,463 x 1077 cal./sq. cm.
Aot <o ~1,805 x 107 cal./sq. cm.
NOH-OH ~10,265 x 1077 cald/sq. cm.

A comparlson of the calculated and experimental energies of vaporiza-
tion is shown in Table VIII.

The agreement is very good, but the resultant energy parameters
represent poorly the heats of m1x1ng and excess prOpertles. Thus, the
possibility of determining properties of hlghly non=1dea1 mlxtures

from pure component properties is not achieved in the. present work.
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However, it is important to realize that this possibility is contained
in the group solution theory, This possibility will continue to offer
a worthwhile objective for further development of the theory in future

investigations.

TABLE VIII

AICOHOL INTERNAL ENERGIES OF VAPORIZATION AT 30°C:
RESULTS OF FITTING EQUATION (3-16) TO THE DATA

v

AU”, cal,/g.-mole Deviation
Alcohol Expt'l. (20) Galctd, %
Methanol 8,233 8,288 0.67
Ethanol 9,378 9,366 -0.13
Propanol . 10,492 10,460 ~0.30
Butanol 11,575 11,581 0,05
Pentanol 12,672 12,717 0.35

Le Application to Partially Miscible Systems

Heéts of mixing data for methanol-n-hexane and methanol-n-
heptane mixtures at 30°C are available in literature from Savini,
Winterhalter, and Van Ness (49). These systems show partial misci-
bility at BOOC. However, there is no way to test the applicability of
the model to the partially miscible systems directiyvby héats of mix@
iﬁg data,

When a binary mixture is partially miscible, there exist two
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points with a common tangent on the plot of free energy of miking
versus mole fraction if the free energy of mixing is treatéd as a con-
tinuous function (47). The campdsitions of the two points represent
the phase comp051tlons in equlllbrlum.

To see whether the proposed model is appllcable to the partially
miscible systems, the free energies of mixing of methanol-n-hexane

mixture are calculated from the following equation:

At = G 4 RTzixiln(xi)' (3-34)

by using the energy parameters in Table III, A plot of free energy
versus mole fraction of the system is shown in Figure 15. Apparently
there exists a common tangent. The predicted two phases in equilii~
brium have compositions of 0,02 and 0,745 mole fractions of methanol,
The actual phase compositions in equilibrium at 30°C are 0,330 and
0.745 mole fractions of methanol. The proposed model predicts one
phase composition exéctly but fails to predict the other. Therefore,

the application of the model to partially miscible systems is not

recommended,
E, Modified Model--OH-OH Tpteraction as Function of OH Group Surface
Soncentration

The inability of the model to fit adequately the data at low
alcohol concentrations led to further study in this region. Energy
parameters for hydroxyl interactions were re-evaluated with only data
below O.4 mole fraction alcohol. The results were qualitatively sim-
ilar to those in Figures 3 through 9; that is, the shape of the cur#e

was not correctly reproduced, However, a study treating the
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hydroxyl-hydroxyl interaction as a function of OH group surface con-
centration has made a substantial improvement of the model in repre-
sentaﬁion of heats of mixing data at low aicéhoi concentrétioné.

If all the energy parameters in Table III except OH-OH inter-
actions are used along with heat of mixing data, values of the OR-OH
interaction energy for various concentrations can be calculated by
Equations (3-11) and (3-18). Figure lé}shows a plot of the calcuiated
OH-OH interaction energies versus OH gréup surface concentration on
the semi-logarithmic scale. This figure shows that the OH-OH inter-
action energy may be represented empirically as a linear function of
the logarithm of OH group surface concentration, This finding sug-

gests the following form for OH-OH interaction energy.

Where stH is OH group surface concentration as percent of total group
surface area in solution,

The constants Bl and B2 in Equation (3-34) can be determined from
the intercept and the slope of the plot in Figure 16.‘ However, in
order to have values for the two constants which provide an optimum
fit of the model to the experimental heat of mixing data, a non-linear
regression was performed to evaluate the two constants by fitting
the model to heat of mixing data (48) on seven paraffin-alcohol binary
systems at 30°C. The other two energy parameters involving OH group
interaction, i.e., CH,~OH and CHé-OH, were re-determined at the same
time, The hydrocarbon interaction energy‘parameters from Table IITa

were again used as fixed input to this calculation. The resultant

values are shown in Table IX, The predicted heats of mixing are
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compared with the data in Table X, The results are also shown in
dashed line in Figures 3 through 9 to compare with experimental data

and with the results based on energy parameters in Table III.

TABLE IX

GROUP INTERACTION ENERGY PARAMETERS INVOLVING OH GROUP
INTERACTION DETERMINED FROM HEAT OF MIXING DATA

WITH OH-OH INTERACTION AS A FUNCTION OF
OH GROUP SURFACE CONCENTRATIONS

Groups Interaction Energy, -\ x 107 s cal,/sq.cm.
OH-QH 8671 + 641 1n, (£ o)
OH--C'H2 2266

OH- CH3 841




TABIE X

PREDICTED HEATS OF MIXING AT BOOC BASED ON
ENERGY PARAMETERS IN TABLE IX

Mole  ___AH', cal./gemole = __ Devistion

System Fraction

Alconol Expt'l, (48)  Calc'd, cal./ge-mole & _

0L 42,86 42,23 -0.63 =1.5
W02 61.53 63.00 1.47 244
.03 72.76 73491 1.15 1.6
04 81,51 82.06 0.55 0.7
.05 88,60 89.12 0.52 0.6
075 102.56 104 442 1.86 1.8
.10 112,93 11745 Le52 4,0
o125 121,47 128,62 7.15 5.9
EthanOl"' 015 1.._28 014'2 13801[0» 9 -72 7 06
n-hexane 175 133.96 146.20 12.24 9.1
20 138,85 152.93 14.08 10.1
<30 149.42 168.79 19.37 13.0
40 151,15 170.46 19.31 12.8
«50 144.83 161.01 16,18 11.2
.60 133.27 12.42 9.15 6.9
70 114.59 116,09 1.50 1.3
'80 88.14.6 83 006 "5.14‘0 "6.1
.90 52457 44,16 -8.41
01 46.57 46,87 0.30 0.6
.02 70,01 75624 5423 7¢5
<03 84,01 91.30 7«29 8.7
) .014‘ 914'071 101066 6.95 703
.05 103.56 109.43 5.87 5.7
075 119.74 124,38 L o6l 3.9
.10 130,67 136.51 5.84 Lob
125 140,14 146,92 6,78 L.8
Ethanol-: .. .15 148,34 155.88 754 5.1
n-nonane 175 155.48 163.53 8.05 542
«20 161.15 169.94 8479 54
30 175.67 184,78 -~Qell 542
40 179.42 184.97 555 3.1
050 l75ol+8 173 oll "2037 “'lollr
+60 164 442 151,13 =13.29 -8.1
070 145089 120073 "25 olé "1702
«80 118,08 83,70 -34.38 -29.1

.90 74 .86 L2434 =32.52 =434



TABLE X (Continued)

| Mole AR, cal./g.~mole Deviation
System Fraction T '

Alcohol Expt'l. (48) Calc'd, cal./ge—mole _Z%_

+OL 4534 LTl =0,60 -1.3
002 67 .66 67459 ~=0,07 =01
<03 82,61 79.98 -2.,63 =342
No' 90492 288,61 =2.31 =2.5
005 98088 95071 _3017 : “302
0075 115 007 110061 -Ll-oLl-é ‘-3 .9
.10 127.21 123,19 =4 402 =342
0125 136098 BLI-OO2 -2096 "202
Propanol— 015 lzl—ll-o97 114—3 30 "’1067 =1,2
n~heptane o175 151,66 151,18 =0,48 =0.3
«20 157.31 157.80 0.49 "0.3
4O, 170.19 175.29 5.10 3.0
«50 160.07 165492 5.85 3.6
.6 141,92 14725 5.33 3.8
«70 116,61 120,53 3692 3ol
.80 85.00 864,65 1.65 1.9
<90 46,73 46630 =043 -0.9
01 43476 4,,30 Oe54 +1.2
.02 L 65477 66,80 1.03 1.6
.03 79.60 78.86 - =0.74 -0.9
0L 89,72 87.16 =2.56 -2,8
<05 9774 93492 -3.82 =349
0075 112040 107096 "'Ll-ollll- _’ll-oo
olo 123 075 119 069 "Ll-oOé ‘“‘3 03
0125 132077 129068 "“3 009 '3203
Butanol- .15 140.37 138.16 =2421 -1.6
n~heptane 175 146.80 145429 -1,51 -1.0
«20 151.92 151,20 =0,72 =0.5
030 165 007 1614-0 55 "'O . 52 ‘“O 03
40 165.00 164474 =0.26 =0,2
«50 154450 154,67 0.17 0.1
«60 134.42 136.20 1.78 1.3
«70 107.52 110,63 3.11 2.9°
«80 75.38 78.93 3455 L7
90 39.16 4185 2.69 6.9



TABLE X (Continued)
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Mole AHM, Gal,/g.~mole Deviation v
System- - Fraction - :

Alcohol Expt'l. (48)  Cale'ds calu/gemole %

-Ol l+2a57 41.90 "0067 "106

002 61077 60.59 "'1018 “109

.03 73410 " TO4T -2.63 =3.6

<04 8142 77.58 -3.84 =47

<05 87.92 83456 ~4.¢36 =5.0

0075 100039 96.15 _l+.21+ "4.2

.lO 109069 106053 —3 016 ‘-2.9

o125 117.00 115,16 ~1.84 -1.6

Pentanol~ .15 123,21 122,28 -0,93 -0.8
n~hexane <175 128,06 128,09 0.03 0.0
«20 132,31 132,73 0442 0.3

«30 141.85 141.85 0.00 0.0

OLPO J-Ll»oo77 13901-}6 "'1031 “009

«50 129.81 128,67 =1.14 =0.9

60 110.19 111,43 1.24 1.1

.70 85.82 89.07 3425 3.8

.80 58.46 6258 Le12 740

90 29.42 32,70 3.28 “11.1

QD1 L2.43 42,03 -0.40 =0.9

02 62.33 62459 0.26 O.4

' 003 73.66 72.87 “0.79 "‘l.l

OOLP 81.23 79039 "‘1081+ "203

005 87012 81+035 "’2077 "3-2

075 98.39 93.93 =L L6 =lo5

«10 106 .44 10134 =5.10 =48

«125 112,53 107 .24 =5429 =Lo7

Octanol- 15 117,08 111,88 -=5,20 =4 oly
n~heptane 175 120.43 115.45 =4 498 =hel
«20 123,08 118,06 =5.02 =4l

030 129023 121008 '"8015 “'603

.1.1,0 127.50 ll5.l+l “'12009 —905

«50 118,99 103.82 =15,17 =12.7

.60 103.85 87.99 =15.86 -15.3

70 82,28 69.03 =13.25 =16.1

080 56.92 l+7o7l "9.21 -16o2

«90 28,56 2456 =4 ,00 =14.0
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Mole __.A.H_M.a.&al..ég.:mglg__ —Deviation
System Fraction
Alcohol [Expt'l, (48) Calc'd,  cale/ge.-mole _%_
001 Llj'l-029 Llj-l-063 003[-1- 008
.02 67,66 T1l.14 3.48 561
«03 81.35 85464 Lo29 5.3
04 91.29 he51 3422 365
.05 98.77 100,78 2,01 2,0
0075 112023 111085 "0038 O-3
«10 121.59 120,09 -=1.50 =12
o125 128,83 126,73 =2410 =1l,6
Octanol- 15 134 .24 132,10 =214 =1.6
n-nonane 175 138,82 136,38 =2kl =1,8
«20 142,31 139,68 2463 =1.8
030 M9093 11-!-4077 “'5016 "“301-1- .
40 1942 139.77 =9065 =65
«50 141,23 127.33 -13.90 =9.8
060 122.88 109020 "“13068 ‘“llol
70 9945 86459 =-12,86 =12,9
9.80 70-“) 60.1-1-2 "'9058 ““-13.7
-90 360-13 31038 "Ll-e75 “’1301
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Both Table X and Figures 3 through 9 show that the agreement
between theory and data has been substantially improved at lower
alcohol concentrations with the modification that OH-OH interaction
energy is a lineaf'functionmof logarithmic surface concenﬁration of
OH group in solution., The shape of the heat ofvmixing curves is
correctly reflected by the model with the use of energy parameters in
Table IX,

Again energy parameters in Table IX were used to calculate the
internal energies of vaporization of pure alcohols. The calculated
internal energies of vaporization are compared with experimental data
in Table XI. In view of the accuracy of pure alcohol heats of
vaporizatioﬁ data, the agreement is encouraging,

However, energy parameters in Table IX fail to represent

adequately the excess entropies and excess free energies,

TABLE XT

INTERNAL ENERGIES OF VAPCRIZATION OF ALCOHOLS BASED
ON ENBRGY PARAMETERS IN TABLE IX

Energy of Vaporization, @ 3000, i Deviaticn
Alcohol cal,/ga=mole
jmen Calculated X
Methanol 8,233 8,165 ~0,8
Ethanol 9,378 9,595 263
Propanol- 10,492 10,773 2.7
Butanol 11,575 11,929 3.l
342

Pentanol 12,672 13,077




X, Summary

A new group interaction theory is presented and applied to-polar
substances, The theory accounts,‘to a first approximation, for the'
effect of the strength of group interactions on the probability of
interaction., The probability of interaction between two groups is
considered to depend both on the magnitude of the intefaction energy
between the groups and on the free surface afeas of the groups. The
surface areas are calculated from a realistic geometric model of the
molecules involved, The model is shown to provide satisfactory
qualitative representation of excess properties of n-alcohol-n-
paraffin systems with reasonable values used for group interaction
energies. Unsatisfactory results from this and other models (22, 46)
at low alcohol concentrations suggests the need for future study of
the nature of dilute polar solutions,.

A substantial improvement in predicting heats of mixing at low
alcohol concentrations wﬁs obtained by the modified model which treats
the OH-OH interaction energy as a function of OH group surface concen-
tration in solution., However, this energy paraméter modification is

an empirical with no theoretical justification,



CHAPTER IV
THE QUASI-IATTICE THEORY

Previous investigators have applied group solution (13) and
association-type (46, 58) models to the description of alcohol-
paraffin systems., However, no similar résults have appeared for the
quasi-lattice theory (2, 25). The work in this chapter examines the
quasi~lattice model in its ability to describe the excess enthalpy
and free energy of alcohol-paraffin systems.

The quasi-lattice theory advanced by Guggenheim (25) and Barker
(2), re~expressed in canonical partition function of group inter;
actions, is used in the present study. The present equations serve
as a convenient basis for further development and use in cell-theory

calculations (12).
A, “The Quasi-Tattice Theor

Basically; the quasi=lattice theory considers each moleqple iin
solution to be composed of a number (ri) of segments (or groups)
placed on well-defined lattice sites., Bach type of segment v pos-
sesses a number (zv) of contact points, where it interacts with
adjacent segments, For example, a pentane molecule could be consid-
ered to consist of two methyl segments and three methylene segments,
The configurational energy of the solution is the sum of contributions

from interactions between pairs of adjacent segments.

AD
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Guggenheim' (25) developed the quasi-lattice theory of molecules
of different sizes and occupying different number of lattice sites.
Segments of the same molecule interact in the same.way. Barker (2)
extended Guggenheim's theory to allow each molecule to have different
kinds of segments, Barker's results are in terms of grand partition
functions. In the following, Guggenheim'!s results are re—expressed,
still allowing each molecule to have more than one kind of segment.
The present results are in the canonical form and appear to be well
suited for further development into the language of the cell-theories
(12).

- The configurational energy E of é lattice solution is completely
determined by a set of numbers Nﬁv that represents the numbers of
contacts between segments of types u and v. The canbnical partition

function is given by

Q=2 g exp(~E/kT) - (4-1)
Nuv . .

where g denotes the degeneracy of the configuration describedéby the
!
set of Nuv Se |
Let Aﬁv stand for the energy of interaction between an u segment

and a v segment, Then,

—_ 1 -
E= Zﬁzﬁzu Nuv)‘uv : (4-2)

The degeneraty g has so far not been evaluated rigorously for
3=-dimensional lattices, However, several approximations have been
developed. Following Guggenheim (25) and assuming that

1. ln(gZ/ZNl is homogeneous of "degree zero" in the N''s,
i
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1

2. the free energy is a continuous function of E in the neigh=
borhood of B = 0; that is, 1n(g) reduces to 1n(g*) when E = Q.

3. the conditions for maximizing Q with respect to N, are
equivalent to conditions of a '"quasi-chemical equilibrium,"

the degeneracy g will have the following expression

Nﬁu! e ! 2Nuv

In(g) = 1n(g*) + £ In(5=) + £ & InE——) (4=3)
w N ! uv N3¢
uu N I 2uv

uv

The values of g and Nﬁv are related to the corresponding values

(denoted by asterisks) in the athermal theories of Flory and Huggins

(17). Thus.
Nx = (zinlilmizu)(zin;erizv)/zwzi(niNizw) (L=,
v, = 300,V 55 () (4-5)

where ni denotes the number of u groups in a molecule i,
As usual in statistical thermodynamics, the sum of Equation (4~1)
is replaced by its maximum term, In order to pick the maximum, we

differentiate with respect to Nuv and set the derivative equal to zero,

3 :
o Lg exp(-E/kT)] = 0 (4=6)
uv
Upon performing the indicated operation, bearing in mind that all the
asterisked quantities are independent of Nuv’ the following expression

is obtained,

= = 4 exp(~2q1_/kT) (4-7)

uu vv
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where the exchange enefgy Q&v is defined by

Qﬁv = Aﬁv - %(Aﬁu +'A¢v) o (-8)

Equation (4~7)4expresses the well-known quasi=-chemical relation that
is contained in the approximation of Equation (4-3).

In the evaluation of the Nﬁv's, Equation (4~7) is combined with

the following stoichiometric equations of contact points.
i i
2 N +725#uNﬁv - z::'I.Nlnuzu (4-9)

In a solution containing n t&pes of segments there are n(n-1)/2
equations like Equation (4~7), and n equations like Equation (4~9),
making up a total sysﬁem‘of n(n+1)/2 equations, corresponding to
exactly the same number of Nﬁv's. There are Just as many equations
as unknowns.

In the}following applications of the theory, the exchange ener-
gies Qﬁv are considered to‘be adjustablg parameters. The geometric
factors z and z, are taken from previous results by other investi-
gators. The N _1s are fixed by Equations (4=7) and (4~9) for
specified values of Ni.

The excess enthalpy of the solution is expressed in terms of the

v Y

1= - v>u(ZiN1(_)uj; - N_ ) (4=10)

uv: uv

where the superscript oi denotes the assembly of N" molecules of i
(pure liquid),
Based on the thermodynamic relations, the entfopy of solution is

evaluated from the canonical partition function as follows:



5 = k() | 4k 1n(Q)

C (411)
= k In(g)
Similarly, the entropy of pure liquid i is
5, =k 1n(g®t) (4-12)
The entropy of mixing of the solution is then given by
s" = k In(g) - k z,In(g™) (4-13)

Combining Equation (4-3) and BEquation (4=13), the entropy of mixing

of the solution is expressed in terms of the Nﬁv by

M N it e Ol O3y
& n—E)

) nz, laEEUCT] W uv
T g#0L o v#u N INE DA ol poi,
i ‘ uu’ Cuv

‘ oi
<N ) = 3% -
+ (In2) I X vaéu[(Nuv NE D) - 5 (N NuV )1 (-14)
For an ideal solution, the entropy of mixing is given by
s - ik 5N, In(x. ) (4=15)
i1 i
Thus, the excess entropy of the solution is given by
‘ ﬁE ' N OI'N* 01
gt ’r[ uu Uy
= 1n - % In(=2 - )
k erg*01) Z:v-7-4u ( N N Not! Nﬁt!

+ (2) 55, [, -N) = (007 - 1% )]

"f ZiNiln(xi) (4-16)

66
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The excess free energy is obtained upon combining Equafions (4=10)

and (4-16)
L (4~17)

For specified values of Ni, the Nﬁv's are fixed by Equations
(4-7) and (4—9), However, it is hard to solve the N 's directly
from tﬁe n(wHl)/2 simultaneous equations in the form of Equations
(4-7) and (4~9). To make the solution easier, the following technique
of change variables is employed.

If the substitutions

w in (4-~182)
N, = MK X exp(—Q'u v/kT), (4~18b)

are made, the quasi-chemical relation of Equation (4-7) are auto-
matically satisfied, the the stoichiometric equations of Equation
(4=9) become

Z, Nln Z
Xn X exp(mQ' /kT) = %"l““'ig | (4=19)

where X!s are new variables to be solved from the n(ntl)/2 simul-
taneous equations, In the present study of alcohol-n-paraffin solu-

tions, if the type of contact points is specified in the manner of

Barker (2), Equation (4=19) becomes

-0 /KT - /KT -0l /KTy _ 5 a
L (X, + Xe Vo 4 x 6 Oy + Xgo (e /K] 2 0l

x(xHe%H/kT+xo+xIe I/kT+xs ~Bs/kTy %n

aZ
070
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xI(x]f‘OﬁI/ kT xoe‘QE)I/ kT X+ xse‘ois/ kT = % n?zi

x (6B 4 x BT 4 /T 4 g ) < P ey )

where xé = mole fraction alcohol

xb = mole fraction n~-paraffin
H, 0, I, S = hydroxyl hydrogen, hydroxyl oxygen, alkyl, and
paraffin solvent groups respectively.
Combining Equations (4-10) and (4~18), the excess enthalpy of the

solution is expressed in terms of new variables X's by
HY = ZRIL (LX) - x KXD) exp(-04y/RT) (=0gyy/RT)
+ (LK, - x XXT) exp(-0/RT) (-0f/RT)
+ (XX - xa’%x% ) exp(-04y/RT) (-1 /RT)
+ XXy exp(-Qfg/RT) (-0 /RT) |
+ XX exp(~QLe/RT) (-4 /RT)
+ XX exp(-oiS‘/RT)(-oI'S/RT) (4-21)

where X'1s in Equation (4~21) are found by solving Equation (4~20)

for the special case of x; = 1.0.
Application A ol-P fin S s

In the present work, the type and number of contact points were

specified in the manner of Goates, et al, (21, 22), Bach paraffin
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molecule was considered to contain only paraffin-type ségments, S,
with two contact points on each methylene group and three on each
methyl group. The alcohols weré divided into a hydroxyl hydrogen
segment, H, a hydroxyl oxygen segment, O, and paraffin type segments,
I. The H segments were specified to have a single contact point, O
segments two and paraffin-type contacts specified as they were for the
n-paraffins.

With the segments and contact points specified as in Table XII,
the exchange energies, Q', were evéluated by fitting the model to
experimental data, In the present case, six exchange energies arise;
0-H, 0-I, 0-S, B~I, H-S, and I-S, In past studies, certain exchange
energies have been neglected by reasoning that their magnitudes (or
the numbér of contacts) might be expected to be small, Results have
been found to be sensitive to the choice of energy values retained as
significant (21).

Five separate choices of energy parameters wére evaluated in
the present study, For each choice of barameters, a non~-linear re-
gression was performed to evaluate the parameter values which re-
sulted in a least-squares fit to heat of mixing data (48) on eight
paraffin-alcohol systems at 30°C, The five choices of energy
parameter sets and their values are shown in Table XIII,

The consideraﬁions that led to these choices are as follows:
Parameter set A, in which only the O-H and I-S energies were consid-
efed conforms to Goates, et al, (21) choice for describing cyclo-
héxane—alcohol systeméT Set B, which appears mofe reasonable on a
physical basis, was previously evaluated for the‘cyclohexane—ethanol

system with unsatisfactory results (21), Set C was tried as a
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possible improvément on B, although the I-S interaction energy was
expected~fo be small, Set D is similar to that used by Goates, et

al, (22) in aromatic-alcohol systems, where interactions of the O and
H sites wi£h>paraffin segments on the alcohol were neglected.v Set E
placed no restrictions on the energy parameters, allowing all six
parameters to be regressed, The ability of the energy parameter sets
to represent the heat of mixing data improved from A to E, Set A was
markedly inferior, set B and set C comparable and somewhat poorer

than set D, which in turn was marginally inferior to E.

TABLE XTI

NUMBER AND TYPE OF CONTACT POINTS,
SITES AND COORDINATION NUMBERS

Component nyzy NaZq NyZp NgZg Z rq r,
Ethanol 1 2 5 - L3¢ 3 -
Propanol 1 2 7 - 4 4 -
Butanol 1 2 9 - 4 5 -
Pentanol 1 2 11 - A 6 -
Octanol 1 2 17 - L 9 -
n-hexane - - - 1 I - 6
n-heptane - - - 16 L - 7
n-nonane - - - 20 4 - 9

%* The coordination number, z, is given by Zunuzu =rz - (2r - 2)




TABLE XIII
INTERACTION ENERGY PARAMETERS* AT 30°C

Set 2 % s Q1 Bs G 1 O s

2,756 | 0 0. 0- 0 2

A

B -3,173 (~R24 = =-22)) (-284, = -28,) 0
c -3,161 (<194 = -194) (<317 = =317) <1
D. -3,175 =91 0 216 0o . <1
E ~3,748 -251 -253 -257 -465 <1

* cal./ge~mole

Discussi Rest

The results of fitting the quasi-lattice theory to the heat of
mixing data by using the energy parameters set E in Table XIII are
shown in Table XIV and for the purpose of ease in comparison, in
Figures 17 through 24; these systems are the ones employed in least-
squares regression to evaluate the energy parameters, Figures 17
through 24 show the degree to which the energy parameters of set E
are capable of representing the data, Parameter set D produced re=-
sults essentially identical to set E for heat of mixing, For compari-
son, results from set B and from the local surface group contribution
. model in previous chapters are shown in Figures 17land 2L, These
+ figures show that reasonable agreement between the theory and the
‘experimental'heat of mixing data is obtained for thé eight binary

systems, The asymmetry of the heat of mixing curves is correctly



reflected by the theory, The quasi-lattice theory predicts consist=
ently low values of heat~of-mixing at low alcohol concentrations,
Similar results have been reported for several other models (13, 22,
46) in representation of alcohol systems, Again, this inadequacy at
low alcohol concentrations is felt to be a fault of the model and not
of the interaction parameters used,

The energy parameter values in Table XIII were employed to
represent the excess free energies and entropies for the systems in
Figures 17 through 24 for which such data are available, Results
are given in Figures 25 through 27. Results based on parameter set
E are also given in Table XV to compare withigxperimental data., The
predicted excess properties shown in these fiéures appear quite
sensitive to selection of the energy parameter éet. Parameter set E
produces the best representation of the free energies and entropies.

Goates, et al, (21) obtained a value of ~3,200 cal./g.-molg for
the O-H exchange energy based on heat-of-mixing data for the cyclo-
hexané—ethanol system. This is in general agreement with the O-H
energy values obtained in the present work., No direct comparisons

are available for the other energy parameters from this study.



TABLE XTV

HEATS OF MIXING OF ALCOHOL-PARAFFIN SOLUTIONS
AT 30°C BASED ON QUASI-IATTICE THECRY
ENERGY PARAMETER SET E

73

Mole VAHM, call./ge.=mole Deviation

System Fraction :
Alcohol Expi'l. Calc'd, cal./g.-mole &
.01 42,86 26,43 -16.43 -38,3
«02 61.53 L4 73 -16,80 =273
003 72.76 58083 "13 093 ““1901
04 81.51 70.27 =11.24 =13.8
005 88060 79085 "8075 "909
075 102,56 98.40 ~Le16 =Ll
«10 112,93 111,96 -0.97 =08
e 125 121 .47 122,50 1.03 0.8
Ethanol- "~ el5 128.42 130445 2.03 1.6
n~-hexane «175 133.96 137.15 3.19 2oy
(48) «20 138,85 142,02 3,17 2.3
«30 149.42 153.28 3.86 2.6
40 151.15 154450 3e35 242
«50 144.83 147.81 2.98 2,0
60 133,27 136,94 3.67 2.8
.70 114.59 115,777 1.18 1.0
«80 88.46 88,07 =0.39 =04t
090 52057 Ll—9082 "2075 "5-2
01 43465 27.08 ~16.57 -38.0
«025 71.24 54439 ~16.85 =23.6
005 93 olo 81-]-.40 "8-70 _903
0075 110.124— 1014-09/4— "'5020 "‘407
.10 120.63 120.06 -0057 -005
_ «20 147.10 153.67 6457 heb
Ethanol~ «30 159.62 167,02 7 o140 L6
n-heptane 40 161.86 168,36 6,50 L40
(56) .50 156467 163420 6453 he2
.60 145,00 148.39 339 2¢3
J70 126,45 127,37 0492 0.7
80 99.85 97470 -2.15 =242
090 60062 . 56p76 "’3 086 "6el+
«95 33.89 32,40 =149 =l ol
0975 17095 16.21 "‘107‘!— “‘9.7



TABLE XIV (Continued)

T

Mole AH o cal,/g.=mole Deviation
System Fraction ‘

Alcohol Expt'le Calc'd, gale/se=mole _Z_
.Ol h6057 28@Oh -18053 “39&8
002 70.01 hgoOh “20.97 “BOoO
003 81#-00.1 65.92 "'.18o09 "*2.105
QOLI- 9l+o7l 79099 "lz-l—o72 "1505
«05 103.56 92,01 -11.55 -11,1
- 075 119.74 115.87 =387 =342
.10 130,67 133.76 3609 2.4
<125 140414 147,66 Te52 Sely
Ethanol- 15 148,34 158.68 10.34 7.0
n-nonane 175 155.48 167,29 11.81 7.6
(48) «20 161.15 174459 1344 8.3
30 175.67 190.30 1463 8.3
«40 179.42 193.64 14.22 709
«50 175.48 186,21 10,73 6.1
60 164442 170.87 645 3.9
.70 145.89 147432 143 1.0
080 118008 .113.89 "'ll-olg “'305
090 7LI-086 66.29 -8657 "ll.ll-
.01 4534 26480 =18.54 =40,9
002 67.66 11-5.91 “21075 "'320.1
«03 82,61 60.81 =~21.80 =-26.4
0L 90,92 72496 -17.96 =19.8
-05 98088 83.22 “‘15066 "1508
«075 115,07 103429 -11,78 =1062
«10 127.21. 118,00 =9.21 =7 62
o125 136.98 129,08 =7+90 =5.8
0-15 11!—4097 1370 83 "7 olz-l— “'ll--og
Propanol- 4175 151.66 Uy 7l ~6,92 ~lyob
n-heptane «20 157.31 15044y -6.87 =Loky
(48) .30 170,12 161,65 -8447 =540
40 170.19 161,69 -8,50 =540
050 .160.07 153 070 -6037 ‘=‘490
.60 ]..’-+l.92 138039 ""'3053 *205
070 116.6.1 1160311- ‘00‘27 "092
«80 85,00 86.48 1.48 T 1.7
«90 46,73 48,48 175 37



TABLE XIV (Continued)

(5]

Mole  __ AHY, cal/gemole  ___ Deviation
System Fraction ‘

Alcohol — Fxpt'l. Calc!d. cala/ge=mole _Z.
001 "-I-B 076 26.51 "17025 "390.}4-
002 65077 "+5 033 "200Llll- "‘3101
.03 79460 60,00 -19.60 =246
04 89,72 71.96 =17.76 =19.8
005 97 074 82 oOl "15 073 —1601
075 112,40 101.51 -10.89 =9.7
.10 123475 115.76 ~7.99 =6k
o125 132477 126,42 -6435 =48
Butanol- .15 140,37 134499 -5.38 3.8
n—heptane 0175 11.;6.80 MloBl "5 o"+9 =3 07
(48) «20 151,92 146465 ~5.27 =345
30 165,07 156425 -8,82 =543
40 165,00 155,07 ~9.93 -6.0
«50 154450 145453 ~-8497 -5.8
«60 13442 129.50 =L e92 =346
«70 107.52 106.96 -0.56 =065
«80 75.38 78.07 2469 3.6
«90 39.16 L2475 3659 962
<01 L2457 25457 -17.00 ~-39.9
002 61.77 "-1-3012 ‘-18065 -30.2
.03 73410 56447 -16,.63 =22.8
.O-’+ 810-’-]-2 67 023 “’Mol9 “’17 o"-l-
05 o 87,92 76425 -11.67 ~13.3
0075 100.39 93 031 "7008 “'7 oo
010 . 109.69 105.58 "'l-l-oll _307
o125 117.00 114.96 -2.04 =17
Pentanol- 15 123.21 122,01 -1,20 - =140
n"’hexane .175 128006 127 037 "’Oc 69 "005
(48) 20 132,31 13145 ~0.86 -0,6
030 :U-I-lo‘85 138.6}4- "‘3 021 =2 03
o}-l-o :U-I-O 077 13}4-096 “5 081 "l-l-ol
50 129,81 125,68 =l ¢13 =342
.60 110.19 109 039 . =.0°80 ==O°7
.70 85,82 88.65 2.83 363
080 580’-{-6 614'.11 5065 906
.90 29,42 33.86 hobdy  15.1



TABLE XIV (Continued)
Mole AHM,vggJ,(g;-ngg Deviation
System Fraction N

Alcohol  Exph'l. Cfalc'd, cala/ge-mole _Z_
001 1-!—2014-3 25014—0 -17003 “'1+O.l

002 62 .33 1-!—3 [} 17 “‘19 016 “’30 07

003 73 066 56 080 -16 986 '=’22.9

0L 81.23 67.83 =13.40 =16,.5

005 87012 77 007 “10.05 "11.5

075 98.39 94451 3,88 =349

«10 106 44 107.12 0.68 0.6

o125 112,53 116.36 3.83 EA
Octanol~ 015 117 .08 123, 07 5699 5.1
n-heptane o175 120.43 128,52 8,09 6.7
- (48) ¢20 123,08 13194 8486 742
30 129,23 137.12 7489 6.1

40 127.50 132.87 537 Lo
50 118,99 121,10 2,11 1.8
«70 82,28 83.14 0.86 1,0

«80 56492 58482 . 1,90 3.3
90 28,56 3145 2.89 10.1

001 LIJ-I—029 26 036 -17 093 -1-1—005

«02 67 .66 L5.78 ~-21.88 =32,3

.03 81.35 61,10 =20625 =24.9

oOL 91.29 73472 ~17.57 =1942

<05 98.77 8l by -14.33 =14o5

075 112,23 105.21 =T7.02 =642
10 121,59 120,20 -1,39 -1.1

o125 128,83 131,70 2.87 242

Octanol~ W15 134,24 140440 6,16 L ob
n-nonane o175 138.82 14677 7495 547
(48) «20 142,31 151.73 9eh2 6.6
30 149.93 160424 10,31 6.9

«40 149.42 156445 7403 bo'7
50 141.23 13.76 2053 1.8

60 122,88 124468 1.80 1.5
270 9945 100,28 0,83 . 0.8

.80 70,00 70.48 0.48 0.7

90 36,13 36456 0043 1.2
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Figure 17. Heat of Mixing in the Ethanol-n-Hexane System at 30°¢c by the Quasi-Lattice Model
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Figure 18, Heat of Mixing in the Ethanol-n~-Heptane System at 30°C by the Quasi-Lattice Model
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Figure 19. Heat of Mixing in the Ethanol-n-Nonane System at 30°%¢c by the Quasi-Lattice Model
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Figure 20. Heat of Mixing in the Propanol-n-Heptane System at 3000 by the Quasi-Lattice Model
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Figure 21. Heat of Mixing in the Butanol-n~Heptane System at 30°¢ by the Quasi-Lattice Model .
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Figure 23. Heat of Mixing in the Octanol-n-Heptane System at BQQC.by the Quasi-Lattice Model
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TABLE XV

PREDICTED EXCESS FREE ENERGIES AND EXCESS ENTROPIES

AT BOOC BASED ON QUASI-IATTICE THEORY

ENERGY PARAMETER SET E

Mole G", cal./g.~mole 15" cal./ecmole
System Fraction )
Alcohol Expt'ls Galc'ds Deva Expt'l, Calc'da Dev,
0L 19.90 23.88 3.98 2¢53
<02 38.41 4348l 5e43 0.88
OO"-I- 71097 79013 7016 -8087
005 87030 9l+098 7068 "'15 .ll+
.lO 152.80 161.84 9.0'}4- "'ll-9088
Ethanol- .20 24/, 480 254431 9.51 ~112,30
n~hexane 430 300.99 310.61 9462 =157.35
(52) o40 329.74 338442 8,68 -183.95
.50 334,70 341.08  6.38 ~193.30
- «70 277.69 279.18 149 -163.45
80 214,30  213.28 -1.02 ~125,26
090 123.92 1210'}4-3 "2.[]-9 "71068
<01 22.23 23473 1.50 2142 334 -18,08
.05 93.66 95.06 l.-’+0 —0056 "10065 -10009
075 128,76  127.96 =0.80  -18.62  =23,01 =439
«10 15944 159477 0.33 -38.78  =39,72 =0.94
«20 251,99 258,68 6.69 =104.,89 =105,02 -0,13
EthanOl— 30 309099 315,15 5.16 =150.37 _]-1-1—8.12 2025
n~heptane .40 340456 348,71 - 8,15 =178.70 =180.35 =1.65
(56)  «50  347.38 352,38 5,00 =190.72 -189.17 1.55
.60 330,88 336,76  5.88 -185,88 -188,37 -2.49
70 290475 294 o149 3474 =164,30 =167.11 =2.81
_080 226.611- 227.03 0039 _126.79 -129031 “2,52
090 132.82 130033 "2.49 "72020 "'73 056 -1036
.95 72075 69022 —30)53 -38087 _36082 +2005
975 38,00 36,40 =169 =20014  =20,17 0,03
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TABLE XV (Continued)

Mole __G° cali/eemole IS4, cals/gemole
System Fraction R
Alcohol 11, Calc'd, Dev, BExpt'ls Calc'ds, Dg
.01 21.28 19075 "1053 23.81 7005 '“16576
02 40421 39.04 =1,20 27,08 6.86 20,22
+05 87.21 9194 .73 1121 -8.72 -19.93
075 119,52 123.27 3.75 4499 =19,98 =14.99
. 10 147.40 153453 6.13 -20,78 =35653 14475
Propanol- .20 230.17 243429 13.12 -73.59 =92.8L =19.25
n~heptane 430 279,76 299,13 19,37 =110,20 =137.48 —=27.28
(57) 40" 304435 324,71 20,36 -134.68 =163.02 -28.,34
«50 307.38 326,36 18,98 =147.99 ~172.65 —24.66
«60 289.79 305,23 15444  =148.54 -166.84 -18.30
.70 251,61 262,72 11,11 =135.31 =146.39 -11,08
«80 191,64  199.14  7.50 ~106.85 =112,66 =~5.81
.90 .108.67 312003 3.36 —62.,17 "'63055 “1038
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The magnltudes of the 1nteract10n energy parameters in Table XITI
dlsplay two unexpected features, First, for set D, the O-S 1nten-
action energy is a positive number, contrary to the usual 31gn for
such exchange energies, No physical explanation is offered for this
occurrence, Second, the values of the O-5 and O-I energies in set E
differ by more than might be expected, It is possibly a reflectioh of
the altered chemical nature of the methylene groups adJacent to a

hydroxyl. It might be profitable in future work to consider the o=
| methylenes to be a separate group species, However, it has been found
that the quasi-lattice theory does not require a unique set of para—‘
meters for representation of the heat—of-m1x1ng data. Rather, 1t
appeare the response surface (in terms of sum-of-squares.of deviations)
is rather shallow, and a considerable range of parameter sets may pro-
duce essentially equivaient,representatioh of the experimental data.:
This makes assigning.physical significance to small differences in
enefgies a tenuous proposition.

Previous models-which have been applied to alcohol-paraffin
Asystemé inelude the local surface group contribution model (13), the
associationvmodeis‘of Renon and Prausnitz (46) and Wiehe and Bagley
(58). The models are listed in order of their generality. The local
surface group contribution model appears most general; it requires no
information specific to a given binary molecular pair, only intef»
action energies between group pairs. In this regard, the group
contribution model is more general in form than the quasi-lattice
theory, which requires a priori specification of segments and contact
points. The continuous linear association model studied by Renen

and Prausnitz requires one parameter specific to eachgbinary system,
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and the model of Wiehe and Bagley contains two such parameters,

In their ability to represent the excess properties of alcohol=-
paraffin systems, the continuous linear association model seems
superior to the others, This might be expected in view of the pres-
ence of the adjustable parameter specific to each system. The Wiehe-
Bagley model, while providing excéllent fit to free energies for
various systems, produces an inferior description of excess enthal-
pies (58). The quasi-lattice model predicts excess enthalpies with
better accuracy than the local surface group contribution model
developed in the previous chapter,

While the calculations of the present work are all at a single
temperature, 3o°C, the usefulness of the energy parameters reported

here can be extended by means of the Helmholtz equation

oT T2 | | (4-22)

In this manner the excess free energy and phase equilibrium proper-
ties can be estimated at other temperatures if not far from the base
value,

A possibility exists that representation of alcohol-paraffin
excess properties by the quasi-lattice model could be improved by a
choice of energy parameters other than those studied here, Also, the
number of segments might be varied; such a modification was employed
by Jones, et al. (34), to obtain an improved fit to heats-of-mixing in
alkane-benzene systems, Using the segment, contact point, and ex-

change energies given herein, the quasi-lattice model appears to

provide a less accurate description of the alcohol-paraffin systems
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than it does for the alcohol-aromatic, paraffin-aromatic, and alcohol-
cycloparaffin systems studied in previous literature,

With the segments and contact points specified as in Table XII,
the coordination number has a value of 4. This value seems to be
small for 1iquids. For liquids, the coordination number varies in
the neighborhdod of from 8 to 12 (15). In order to test the effect
of the value of coordination number to the application of the theory,
a value of 10 was chosen for the coordination number and several
choices of contact points‘were made as shown in Table XVI. In Table
XVla the number of contact points was specified in the same manner
as that in Table XII. In Table XVIb the numbers of contact points of
hydroxyl hydrogen and hydroxyl oxygen segments remain the same as
before, but the contact points of paraffin-type segments were speci-
fied in the manner as that employed by Jones, et al. (34), In Table
XVIc, the H segments were specified to have a single cqntact point O
| segments‘8, and paraffin-type segments 8 6n each methylene group and
9 on each methyl group. With these changes the results have not been
affected in the appiication of the model to alcohol-paraffin systems;
results were essentially identical to those obtained by using the
values in Table XIT. In this regard, the model séems to Be insensi-

tive to the choice of contact points and coordination number,



TABLE XVI

NUMBER AND TYPE OF CONTACT POINTS AND SITES

WITH COORDINATION NUMBER EQUAL 10

Component

T2y %0 n7%1 5?5 Z t
a. Contact Points Specified as Table XTI
Ethanol 1 2 5 - 10 75
Propanol 1 2 7 - 10 1.00
Butanol 1 2 9 - 10 1.25
Pentanol 1 2 11 - 10 1.50
Octanol 1 2 17 - 10 2425
n-Hexane - - - 14 10 1.50
n-Heptane - - - 16 10 1.75
n-Nonane - - - 20 10 2.25
b. Contact Points Specified as that by Jones (31)
Ethanol 1 2 10 - 10 1.375
Propanol 1 2 12 - 10 1.625
Butanol 1 2 14 - 10 1.875
Pentanol 1 2 16 - 10 2,125
Octanol 1 2 22 - 10 2,875
n-Hexane - - - 19 10 2.125
n~Heptane - - - 21 10 2.375
n-Nonane - - - 25 10 2.875
ce Contact Points of Oxygen and Methylene = 8

Ethanol 1 8 17 - 10 3
Propanol 1 8 25 - 10 4
Butanol 1 8 33 - 10 5
Pentanol 1 8 41 - 10 6
Octanol 1 8 65 - 10 9
n-Hexane - - - 50 10 6
n-Heptane - - - 58 10 7
n-Nonane - - - T4 10 9
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D,  Summary

Reasonable representation of excess thermodynamic properties of
alcohol-paraffin binary systems has been obﬁained using the Quasi-
lattice model, Results were found to be sensitive to the choice of
exchange energies regarded as significant but hot to the choice of
coordination number and contact points. Description of excess
properties by the quasi-lattice theory was superior to that of the

local surface group solution model proposed in the previous chapter,



CHAPTER V
THE ONE DIMENSIONAL LATTICE MODEL

The thermodynamic properties of liquid mixtures coﬁtaining polar
substances show considerable complexity in their dependence on concen-
tration. The local surface group contribution model which relates
the heat of mixing of solutions of alcohol in n-paraffin solvents with
the group interaction between two groups occurring in the solutions
and the free surface area of the groups, predicts the heat of mixing
of solutions of alcohol-paraffin binary systems with some success.
However, the'model is intuitive and difficult to extend to excess
entropy and excess free energy of solutions.

In this chapter, the model has been restructured into a more
‘ fonmal framework. This facilitates the use of statisticai mechani-
cal methods in evaluating the complete expression for the canonical
partition function of the system as determined by the interaction
energies between group pairs in the solution and free surface area of
the groups in the system., This leads to the development of the one-
dimensional lattice model withou£ using the quasi-lattice picture of

the liquid.
A, Develo M,

For the development, assumptions are made as follows:

1. The principle of "independent action of groups" advanced by

95
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Langmuir (36) is valid.

2. The interaction energy between groups is a function only of
the identity of the groups involﬁed: |

3. The interaction energy can be expressed in terms of a contact
‘surfééé.énergy density., :

Le vThe surface area of all like groups can be lumped.

Suppose a solution containing n types of groﬁps has n, numbers of

1
group 1 with surface area §1s 1, numbers of groups 2 with surface area
Y and so on, The total lumped area of group 1 is nySqs of group 2

is n,s,, and that of group u is n.S,e Let Auv denote the total over-
lapping surface area of contact between group u and group v, and Kuv
be the corresponding interaction energy per unit area of overlap.

Then, the sum of the overlapping surface area of group v is equal to

the total lumped area of group v. This is expressed in equation as

2A, +Z A =ns (5-1)

There will be a total of n simultaneous equations of Equation (5-1)
for a solution containing n types of groups.
The total interaction energy of the system is the sum of contri-

butions from interactions between pairs of groups in the system,

E=§ T A A (5=2).

uSy Cuvuv

Define an interchange energy qu by

P 300, + 0) (5-3)
or’
My = Gy 20, + 2, (5-4)
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Substitution of Equation (5~4) into Equation (5~2) produced an ex-

pression in terms of qu for the energy of the system

— 0 41
E=E +3554 0 (5-5)
where
O _ 1 -
E° = 4 s A (5-6)

E° is a constant for a system of specified molecular composition and
is independent of Auv'

Let g(Auv) denote the number of ways of arrangement of lumped
areas nlsl, NySns o e o nnsn‘correSpondlng to fixed values of over-
lapping areas between different types of groups, A12, A13, o o o

A Then, the contribution of these configurations to the canoni-

n-1n®

cal partition function is
g(A ) exp(-E/kT)

- The canonical partition function of the syStem for given Jumped areas
is the sum of all possible ways of arrangement. This is expressed

in equation as:

Q‘(nl’ Doy o e o Ty T) = exp(—Eo/ kT) >:A uf(Au'V) exp(-%E‘ZrA quuv/ kT.) -7

Since the only configuratiénal contributions due to inter-group action
are included in Q, the Q is a aonfiguratibnal partition function,

To evaluate g(Auv), the lumped areas are divided into identical
pieces (like poker chips) each with two sides and each side of unit
area, Then there are in S, pieces of type 1, and 2n S5 pieceé of

1 2
type 2, etc. The pieces are envisioned as being stacked together
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into a column as follows:

* o @ » ® & O & o

The number of contacts of the type 1=1 in this column is equal to
All’ and that of the type 3-2 in this column is equal to A12‘
Similarly, the number of contacts of the type u-v in this column will
be equal to A e | '

By doing so, a one-dimensional adsorpted gas problem results
which can be solved exactly in statistical mechanics., The number of
possible arrangements of the column for specified values of nS:s
NyShs o o e and A12’ AlB’ e o o based on the one-dimensional lattice

gas theory is given (16, 30) by

= (nyoy/2)t
gla,,) =T‘rf{ (ns,/2 - 3, Auv)!‘qu;V[(Aliv/z)"!] } o

For a system containing two types of groupsj Equation (5-8) reduces

to
(nlsl/Z)! (n282/2)}

2
(nlsl/2 - 24501 (nys,/2 - 3A.5)! (%_A_lz)z

g(AIZ) = (5-8a)

For a system containing three types of groups, Equation (5-8) becomes
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’ (3n,s.)!
PR PY {&-23) = Tingsy - (A, +A5)/2T1 GA )T GAL,)!

(%nzsz)! |
x [3nys, = (4, + A3)/2]! (34,,)! (’%Azs')!

(%n383)!
x [3ngs5 = (A5 +4,3)/2)1 (3A5)! (34,5)! (5-8b)

Having a known g-function, evaluation of the canonical partition
function, Q, can proceed, but the sum is difficult., In statistical
mechanics, 1In(Q) is of interest rather than Q itself, and the log-
arithm of a sum, as mentioned in previous chapter, is frequently
approximated by logarithm of the largest term in the sum. Therefore,
the partitidn function is evaluated with the maximum term in the sum
found by setting the derivative of the logérithm of the partition

function with respect to Auv equal to zero.-

aln Q(nl, nz, o o .1 nn, T)

=0 (5-9)
A
One obtains
A A
M(%A )2 = exp(ZSquuv/kT’) (5~10)
uv’
where s = Susv/(su + Sv) is a factor empirically inserted into the

above equation to maintain conSistency of the thermal energy associ=-
ated with the interchange energy’qu. In a solution containing n

types of groups, there are in(n - 1) simultaneous equations of Equa~
tion (5-10). Values of the A ,'s evaluated from Equation (5-10) are

the most probable values for system of specified values of
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N;815 NySps o o o IS o

To evaluate the Auv's BEquation (5-10) is combined with Equation
(5-1) to make up a total of #n(n + 1) equations corresponding exactly
to the number of the unknown Auv's°
| Using the results of Equétions (5-8) and (5~-10), the thermody-
namic functioﬁs for the solution may be calculated in terms of the
most probable case o{ group interactions,

The enthalpy iségiven by

KT?[

dln Q(nl, n,

S & o o nn, T)]— .
aT V,n

HaU

= Eo + %ZUZVA Q (5“'1-1)

uv uv

The entropy is given by
] :
5 - kT[aln Q(nl, n2, . o . nni T)]
. 3T V,n

+ k ;n Q(nl, Dys o o o By T)

k 1n g(A ) (5-12)

and the free energy is given by

G NA =-kT].rlQ(nl, n2, e o o l'ln, T)

- 041
= -leng(Auv) + E° + EZuZVAquuv (5=13)

The trivial differences between Gibbs free energy, G, and Helmholtz
free energy, A, and between enthalpy, H, and internal energy, U, have

been neglected,

By setting all components except one equal to zero, the
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thermodynamic functions for the pure camponents of the solution may
be found, If an ideal solution of groups is defined as a mixture of
grouﬁs with no interaction between groups, then the changes in the
thérmodynamic functions on mixing, and hence the changes in excess of
those for an ideal solution may be calculated. Thus, the excess

enthalpy of the solution is expressed in terms of the Auv by

E ~ 01
H = v;ﬁ(Auv - ;jAuv)qu (5-14)

= g

where the superscript oi denotes the quantity of pure component i,

The excess entropy is given by

g(a ) g(A ¥
SE = k[1n uv = - 1n uN;bi
gg(Auv) gg(Auv)

*o1 *01
1 1
=vk25.l:ln (.A.VV + %Auv)'. (AW + 34 N

3% 1At 1 oi '1011
(Avv f EAﬁV)° (Avv + EAuv)°

2 *
1 1 :
Ant At . (EAuv); (EAuv)!
BTN A SRS e
s e SR gy’ ey

where the quantities with * are ideal solution d_uantities°

The excess free energy is obtained upon combining Equations

(4-14) and (=15).
¢® = 1 - 1s® (5-16)
B, A jcatio | Model to A ol=-Paraffin Systems

The proposed model was tested again by using excess properties of

the n—alcohol-n-paraffin binary systems, mentioned previously. In
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prediction of the excess properties by this model, values for the
surface areas of all groups and that for the interaction energies for
all possible interactions betwéen group pairs are required., The sur-
face areas of the groups (calculated from geometricvmodels of mole-
cules) listed in Table II were used in this model. The interaction
energies were evaluated by the same process used in the previous
chapter to fit the model to experimental data; thét is; the hydro-
carbon interaction energy parameters (QHZ—CHZ,-CHZ—CHB, and CHS—CHS)
were determined by application of the model to data on the energies
of vaporization of the pure n-paraffins propane through decane, the
remaining three energy parameters (CHS—OH, CH,~OH, and OH-OH) were
determined from heat of mixing data on the eight binary mixﬁures.
Non-linear regression was again used to determine the energy parameter
values which would give the least-mean-squares fit of the model to the
data.

| Values of the resultant energy parameters for the hydrocarbon
interactions are given in Table XVIIa,and a comparison of the calcu-
latéd and experimental energies of vaporization is shown in Table

XVIII, The agreement is very good with a maximum deviation of 0.05%.
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TABLE XVIT.

GROUP INTERACTION ENERGIES FCR ONE~
- DIMENSIONAL IATTICE MODEL

(?roups Interaction Energy, -\ x 107 cal./sq. cm.
a. Based on energies of vaporization
CH2-CH2 1, 718
CH2-0H3 1,433
CH3-CH3 934
b. Based on heats of mixing
CH2-OH 2,894
CHB—OH. 3,231
OH-OH 8,283
c. Based on heats of mixing
CH,~OH C 2,050.8
'CHB—OH 3,216.6
OH-OH 952502 +.253,2 1n(f )




104

TABLE XVIII

HYDROCARBON INTERNAL ENERGIES OF. VAPORIZATION AT 30°C
CAICULATED FROM ONE~DIMENSIONAL LATTICE MODEL

v

T rizati U =

Hydrocarbon Deviation

i 3# 03¢ ~aboe

Experlmentgl Calculated g
Propane 3,265 3,26l -0.,02
n~Butane Ly 497 by 498 0,01
n~-Pentane 55704 5,707 0.05
n-Hexane 6,905 P 6,902 _ -0,05
n-Heptane 8,090 8,087 -0.04
n-Octane 9,262 9,266 0.05
n-Nonane 10,441 10,442 . 0.01
n-Decane -, 11,615 11,614 -0,01

% Based on heats of vaporization from Reference 1.
% Based on energy parameters from Table XVIIa,

The interaction energy parameters involving the OH group
determined directly from heat of miking data on the eight binary mix—
tures are given in Table XVIIb and Table XVIIc, The energy parametérs
in Table XVIIb are the resultant values from a nonlinear regression,
: treating the OH—QH interaction as constant. The parameters in Table
iXVIIc are that with treating the OH-OH interaction as a function of
OH group surface concentration. In both regressions, the previously
determined hydrocarbon interaction energy parameters from Table XVIIa
were used as fixed input to the calculations., The predicted heats of
mixing based on the parameters in Table XVIIb and Table XVIIc are
compared with experimental data in Figures 28 through,35., The dashed

lines in these figures are results from parameters in Table XVIIb.
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The predicted heats of mixing from parameters in Table XVIIc are ex-
pressed as solid lines in these figures, Table XIX shows‘the c;m-
parison of results based on the parameters in Table XVIIc with experi-
mental data.

The energy parameter values in Table XVII were employed to
predict excess free energy and excess entropy for alcohol-paraffin
systems where data are available at the same temperature. The pre-
dicted excess free energies and excess entropies for three binary
systems from Equations (5-15) and (5-16) based on energy parameter
values in Table XVIIa and Table XVIIc are compared with experimental
data in Table XX, Comparison of the predicted results with déta is .
also shown in Figures 36, 37, and 38 for ethanol-n-hexane, ethanol-n-
heptane, and propanol-n-heptane systems, respectively (using energy
parameters from Table XVIIE)° The energy parameter values in Table
XVITb gave a qualitative representation of.heat of mixing but were
nofvable to represent the excess free energies and the excess en-
tropies for the three sysﬁems. |

From known excess free energies, the phase equilibrium
» prop?;ties of the system can be predicted. This can be done by
| sevefai methods such as differentiation of the analytical G-E
éxpression, graphical differentiation, or evaluation from parametric
o expressions such as Wilson's equation (39) or Redlich and Kister's
equation (31). The & expression developed in this chapter (Equation
5-16) is too complicated to perform the differentiation with respect
to the number of moles of the components in solution to obtain the
activity cdefficient, In the preéent work Wilson's two parameter

equation was employed.,



HEATS OF MIXING OF ALCOHOL-PARAFFIN SOLUTIONS AT 30°C

TABLE XIX

CALCULATED FROM ONE~DIMENSIONAL LATTICE MODEL
WITH ENERGY PARAMETERS IN TABLE XVIIc
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Mole AHM , cale/s.-mole Deviation
System Fraction ,
Alcohol Expt'l. Calc'd, cale/ge-mole %

.01 42.86 28,62 =14 .24 -33,2
.02 61,53 L7.14 -14.39 -23 44
.03 72,76 61.50 -11,26 =-15.5
«Oh 81,51 7330 -8.21 -10.1
005 88.60 83 036 —5 0214. "5.9
075 102,56 103.56 1.00 1.0
.10 112,93 119,10 6.17 565
«125 121.47 131.52 10,05 8.3
Bthanol- 15 128,42 141.61 13,19 10.3
n"’hexane . 175 -133 096 lll-9 . 86 15 . 90 110 9
(48) 20 138,85 156,58 17.73 12.8
«30 149442 171.85 L2243 15,0
40 151,15 17334 22,19 4.7
«50 144.83 164434 19.51 13.5
060 133,27 146.53 13,26 9.9
70 114.59 120,80 6,21 5eli
080 88.14-6 87.66 _0080 ""019
090 52057 l+7035 ""5'22 “‘909
025 Tl 564,52 =-14.72 =20.6
005 93.10 86.35 -6075 -'702
075 110.14 10746 ~-2,68 =2t
«10 120,63 123,75 3.12 2.6
«20 147,10 163.37 16,27 11,0
Ethanol- <30 159.62 179,92 20,30 12.7
n~-heptane 40 161.86 182,06 20,20 12.5
(56) .50 156.67 173.14 16,47 10.5
.60 145,00 154,81 9.81 6.8
70 12645 127.95 1.50 1.2
.80 99.85 93.04 | -6.81 -6,.8
«90 60.62 50,31 =10.31 =17.0
.95 33.89 26,08 -7.81 -23,0
975 17.95 13.26 -L.69 =26,1



TABLE XIX (Continued)
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_Aﬂli_s:ai-,&.:mle_

Mole ——Deviation
System Fraction

Alcohol Expt'l. Calc'd, cals/ge-mole _Z%

002 70.01 57037 -'12.614- “26.6

.0/4- 924-071 80.55 -11-#.16 "15.0

005 103 .56 91. 85 "llo 71 -‘1_-'.03

075 119.74 114.65 -5.09 =L el

.10 130.67 132,32 1.65 1.3

«125 140.14 146.56 642 Leb

Ethanol~ 15 148.34 158,22 9.88 6.7
n-nonane 175 155.48 167.85 12,37 8,0
(48) «20 161.15 175.79 o664 9.1
30 175.67 194459 18,92 10,8

40 179.42 197.82 18.40 10.2

50 175.48 188.93 1345 77
.60 164442 169.58 5.16 3.1

070 11-#5089 11-#0059 "'5030 "3.6

.80 118,08 102,37 -15.71 -13.3

090 71-[-086 55.22 -19.614. —2602

002 67066 47.91 "19075 -2902

003 82.61 62.14-8 "20.13 “’214-014-
«O4 90.92 Thel2 ~16,50 -18.1

005 98.88 814-.58 —114’.30 “11-}.5
0075 115007 10/4-.89 —10.18 -8.8

.10 127.21 120442 -6.79 ~543
) 0125 ' 136.98 132077 "’Z-l-ozl “‘3 al
Propanol- 15 144,97 12,75 =222 =1.5
n-heptane <175 151.66 150.86 -0,80 -0.5
(48) «20 157.31 15742 0,11 0.l
«30 170.12 171.98 1.86 1.1

40 170.19 172,79 2,60 1.5

«50 160,07 163,26 3.19 2.0

60 141,92 145,11 3.19 242

«70 116,61 119.32 2.71 2.3

.80 85,00 86.40 1.40 1.6

L4673 L6.61 -0,12 =0,2

.90
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TABLE XIX (Continued)

Mole AHM, cal,./g.~-mole Devjation
System Fraction '
Alcohol  Exphll, Calc'd, cal./go-mole %
.01 43076 28058 "'15018 “'3467
.02 6577 L6497 -18.80  =28.6
+03 79.60 61,10 -18,.50 =23.2 -
<04 89.72 72460 -17.12 -19,1
- #05 97.74 82,33 -15.41 -15.8
075 112,40 101.61 -10,79 ~-9,.6
«10 123.75 116,17 ~7.58 ~6.1
o125 132,77 127.58 -5.19 -3,9
Butanol-~ «l5 140.37 136.68 -3.69 =2.6
n~-heptane o175 146,80 143.95 -2,85 -1.9
(18) «20 151.92 149.73 -2.19 ~Lak
«30 165,07 - 161.64 =3.43 =2.1
./+O 165.00 160061 "4039 “2.7
«50 154450 150,12 4038 =2,8
«60 134042 132,00 =242 -1,8
«70 107.52 107.35 -0.17 =0.2
+80 75.38 ‘ 76.85 L1.47 2,0
«90 39.16 LO,97 1.81 Lo6
.01 42457 27.05  =15.52  =36.4
002 61.77 [-Ill-oo5 “'17072 "’28.7
003 73.10 56094 "’16016 “"22.1
04 81.42 67,30 =-14.12 =17.3
.05 87092 75.96 "11096 “1306
0075 100039 92078 “'7.61 "7b6
.lO 109069 105013 “'4056 "34:02
o125 117.00 114,53 =247 =2,1
Pentanol~ 15 123,21 121,78 =1.43 =1,2
n—-hexane 0175 128,06 127.35 =0,71 -0.6
. (14,8) 020 132031 131056 "0075 “'006
<30 141.85 138.53 =332 =2.3
o40 140,77 134652 =6,25 Lol
50 129,81 123,02 =6,79 =542
060 llOol9 105090 ‘"4029 “‘309‘
070 85 ° 82 81+ 033 “’1049 : -~ ‘=lo7
080 58046 59012 . 0066 lel
Le9.

«90 29,42 30,86 Lol
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TABLE XTX (Continued)

Mole oM cal./geomole  ___ Deviation
System Fraction
Alcohol Expt'l, - Calc'd, calo/ge=mole _Z.
.Ol l-|-2.l-|-3 26.63 "15.80 “'37.2
002 62 033 LI-B 0114- "19 019 "30 o 8
03 73466 55elils -18,22 =2L 7
04 81,23 65.18 -16.05 -19.8
<05 87.12 73619 -13,.93 -16.0
0075 98039 88038 "'l0.0l “'1002
.10 106444 99.12 =7432 =649
0125 112053 106098 -5055 “4-9
Octanol- 015 117.08 112,77 =431 =3.7
n-heptane o175 120.43 116,98 =345 - =249
(l.|.8) 020 123 008 119 ° 93 -3 [} 15 "'2 ° 6
«30 129.23 122,87 =6,36 =4 o9
40 127,50 116.51 -10.99 =8,6
«50 118.99 104431 =14.68  =12.3
60 103.85 88,07 -15.78 =1542
.70 . 82.28 68989 "13039 "“'1603
«80 56492 47451 =941 -1645
090 28056 24014-3 —l-l-ol3 "'114-05
01 41 429 . 28454 =15.75 =3546
«02 67.66 46,82 -20,84 =-30.8
.03 81.35 60466 -20.69 =254
<04 91.29 71.75 -19.54 =214
005 98077 91001 —17.76 "18.0
075 112.23 - 9891 -13.32 =11,9
«10 121,59 - 111,98 -9.61 =7.9
125 128,83 121.87 ~6496 =5
Octanol- 15 134424 129.46 =478 =3.6
n~nonane o175 138.82 135425 =357 =2.6
(48) «20 142,31 139.60 ~2,71 =1.9
030 M9093 111-6.54 "3039 “’202
ol-l-o 1ZI-9 ol-|-2 Mlo97 o “'7014-5 “500
050 114—1.23 129.60 "‘11063 “‘8.2
.60 122088 lll.l.l.l '11014-7 ""9-3
.70 99445 88,63 -10,82 =10.9
«80 70,00 62,10 =7.90 =113

.90 36,13 3241 =3.72 =10.3
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EBEESSOFREE ENERGIES AND ENTROPIES OF ALCOHOL~PARAFFIN AT
307C PREDICTED FROM ONE~DIMENSIONAL LATTICE MODEL
WITH ENERGY PARAMETERS IN TABLE XVIIa AND c

Mole __G, cal./gemole  ___TS". cal./ge-mole
System Fraction :
Alcohol Expt'l. Calc'd. Dev. [Expt'l. Caletd. Deve
.01 19.90 Rl o7 Lo57 Lo16
«02 38441 L2774 L33 Le4O
.03 55.71 58449 2,78 3.02
«OL 71.97 7257 0,60 0.73
05 87.30 94466 736 -11,30
075 115.53 127.68 12,15 =-27.71
.lO 152080 165037 12057 "'Ll-6026
Ethanol- «20 241,80 250,92 6.12 =94 34
. n=hexane L30 300.99 299,26 =-1.73 =127,40
(52) 40 329074 320,63 -=9.,11 ~147.28
050 334470 319,16 =15,54 -154.82
60 . 317.35 206,78 —20457 =150.25
«70 277.69 254,19 =23,50 ~-133.39
«80 214,30 191.25 =23.05 -103.59
090 123092 107.07 "‘16.85 "59073
.01 22,23 25,94 3.71 21,42 3.50 =17.92
005 93066 91090 -1076 _0056 ""5055 '“Ll-o99
.10 15944 172.58 1By =38.78 =48.83 -10,05
20 251.99 260421 12,22 =104.89 =100.85 4o OL
Ethanol- 430 309,98 317.39 Tebl =150,37 =137.48 +12.89
n~heptane L40 340656 342,44 1.88 -=178,70 -=-160.38 +18.32
- (56) 50 347.38 343,30  =4.08 =190.72 =170.16 +20.56
.60 330,88 321,61 =9.,27 =185,88 =166,80 +19,08
70 290,75 277,66 =13.09 =164,30 =149,71 +lk.59
080 226.6[4. 210.73 —15 091 -126.79 -117 070 -*'9009 .
090 -132082 ]-19..13 "’13.69 ""72.20 “‘68.82 +3038
.O:L 21.28 21-!—057 3.29 23.81 l-l-ol-l-g "19032
202" l-l-oo2/+ l-l-2o9/+ 2070 27008 l-l-096 -22,12
05 87.21 85,32 -1.89 11,21 =074 =11.95
«10 147 40 159.58 12,18 -=20.78 =39.15 -18.37
«20 230.17 239.85 9.68 =73,59 -=82.43 -8.84
Propanol- .30 279,76 283,50 3e7h -=110,20 =111,52 =1,32
n-heptane 40 304e35 301,22 =3.,13 =134.68 =128.43 +6,25
(57) 50 307.38  297.41  =9.97 -147.99 -=134.,15 +i3.8L
.60 289.79 274,27 =15,52 =148.54 =129,15 +19.39
+70 251,61 232,88 -18,73 -=135.31 =113.57 +R1.74
.80 191.64 173,61 =18,03 -106.,85 =87.22  +19.63
090 108067 9602L|- -120143 "'62017 "14'9063 +12051+
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The two parameters evaluated by fitting Wilson's equation

& = —RT[xiln(xi f A12x2) -+-x21n(/\21x.1 + x2)] (5-17)

to the predicted excess free energies are shown in Table XXI, These

parameters are defined as

L
v

Ay = = exp - [(A], - AL,)/RT] - (5-18)
Vv
1

exp - [(A, - M,)/RT] (5-19)

Aoy =

N R

where vg = molar liquid volume of pure i,

Moo Mll = interaction energies of type 1-2 and 1-1,
respectively

In general A, # A, > whereas Al, = Al .

TABLE XXT

WILSON PARAMETERS AT 30°C

System ’ A12 A21
Ethanol-n-Hexane 0.,0261 0.3514
Ethanol-n-Heptane © 0,0234 0.2558

Propanol-n~Heptane 0,0278 0.4479
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The two parameters so obtained were used to calculate the

activity coefficients according to the following equations

In vy, =-Inx, + A .x.) + 212 AZi (5-20)
Y1 <= 1 1252 x? x, + A12x2 21 ! + x,
g A : -
12 b
In v —-—ln( + ALK, ) - X - - ] (5-21)
* 21 1 1 3i;+ A12x2 A21x1 t X, .

Equations (5~20) and (5-21) are derived from Equation (5-17) by using
the rigorous relation between activity coefficient andﬂexcess Gibbs
energy.

From known actiﬁity coefficients the phase equilibrium compo-

sitions can be readily found from the equation of equilibrium,

o Ly;P = xiPlvlyl exp[ vy (P - P; )/RT] (5-22)
where 8. = vapor phase fugacity coefficient of component i

v; = fugacity coefficient of pure i at system temperature and
pressure Pg

vi = molar liquid volume of component i at the system tempera-

ture
P = total vapor pressure of the system
g = vapor pressure of pure component i at system temperature

exp[v (P - P, )/RT] = Poynting correction factor to the standard
state fugacity of component i
The predicted phase compositions from Equation (5-22) are compared

with experimental data in Table XXII and in Figures 39 through 41.

o



TABLE XXII

PREDICTED VAPCR COMPOSITIONS OF ALCOHOL AT 30°C

12,

Liquid Mole Vapor Mole
System Fraction Alcohol Fraction Alcohol

x Expt'l, Calc'd.

0.01 0.089 0.147

0.02 0.139 0,188

0.03 0.170 0,206

0,04 0,190 0,215

0.05 0,205 0.221

0,10 0,239 0.232

0.20 0,258 0.238

Ethanol- 0.30 0,265 00243
n-Hexane 0,40 04270 0,249
(52) 0,50 0.275 0,258
0.60 0.283 0,271

0,70 0,297 0.293

0.80 0324 0,334

0,90 0.398 0.437

0.95 0.511 0.571

0.01 0,319 0.388

0.05 0.471 0,500

0,10 0.503 0.512

0,20 0.531 0.518

0.30 0.542 0,522

Ethanol- 0.40 O0«547 0.527
n-Heptane 0,50 0.554 0.534
(56) 0.60 0.555 O0.545
0.70 0,571 0.563

0,80 04597 0.596

0.90 0.658 0.677

0695 0.741 0.771

0.975 0.824 0.856
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TABLE XXII (Continued)

Liquid Mole ' Vapor Mole

System Fraction Alcohol — Fraction Alcohol
x Expt'l. : Calc'd,

0.01 0.125 0.152

0,02 0.166 0,197

0.04 0.199 0.227

0.10 0.238 0.247

0420 04270 0.256

n-Heptane 0.40 0,296 0.273
(57) 0450 0,308 ' 0.287
0,60 0.322 0,306

0,70 - 06343 04337

0.80 0.382 ‘ 0.392

0.90 0,482 0,516

0.975 0.781 0,783

The. energy parameter values in Table XVIIa and XVIIc were also
employed to predict internal energies of vaporization of pure alcohol

at BOOC. Results are compared with experimental data in Table XXIIT,
Discussi Res S

Table XVIII'shows that very good agreement is obtained between
the model and experimental data on internal energies of vaporization
at 3000 of the pure n~paraffins propane thfough decane,

Figures 28 through 38 show that reasonéble agreement between
theory and data is obtained for the alcohol-n—paraffin binary systems.
The set of energy parameters in Table XVIIb, in which the OH-OH inter—

action is considered to be constant, gives only qualitative
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representation of heats of mixing and fails to represent the excess
free energies and excess entropies, The asymmetry of the heat of mix-
ing curves is reflected by the model with this set of energy para-
meters, However, the quantitative deviation between the model and

data is significant, as shown by dashed lines in Figures 28 through 35.

TABLE XXIII

INTERNAL ENERGIES OF VAPORIZATION OF ALCOHOLS AT BOOC
PREDICTED BY ONE~DIMENSIONAL ILATTICE MODEL

Alcohol : , e

‘ R "G lotd, et Deviation
Methanol 8,233 9,106 10.6
Ethanol 9,387 10,190 8.6
Propanol 10,492 11,315 7.8
Butanol 11,575 12,441 7.5
Pentanol 12,672 13,569 7.1

* Based on heats of vaporization from Reference 20.
3¢ Based on energy parameters from Table XVIIa and c.

Reasonable agreemept between the model and the experimental heat
of mixing data is obtained for the eigh£ binary systems with the use
of energy parameters in Table XVIIc, in which the OH-OH interaction
energy is considered to be a function of OH group surface concentra-
tion in the solution. As shown by solid lines in Figures'28 through

35, the asymmetry of the heat of mixing curves is correctly reflected
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by the model, However, the model predicts consistently low values of
heat of mixing at low alcohol concentrations, Here again,,this in-
adequacy at low alcohol concentrations is felt to be a fault of the
model and not of the interaction parameters used,

The excess free energies and excess entropies predicted from this
set of energy parameters are compared with data in Figufes 36 through
38, These three figures show that reasonable agreement between the
model and the experimental excess free énergies is obtained for the
three binary_systems'with the use of energy parameters in Table XVIIc,

The excess entpppies of alcohol-n-paraffin binary mixtures
exhibit positive values at low alcohol concentrations and negative
values at'higher alcohol concentrations. This behavior is reflected
by the modei. .As mentioned in Chapter III, the‘positive excess en—
tropies shown at low alcohol concentrations are due to the breaking
of hydrogen bonds and the resulting gain in orientational freedom of
the groups on alcohol molecules, The negative values of excess en-
tropy at higher alcohol concentrations are due to the tendency of the
alcohol molecules to cluster together (2). This behavior might be
qualitétively reflected by the surface concentration dependent ex-
pression of the OH-OH group interaction energy, ie.e., MNOH-OH = B1 +
len(fSOH)."At 16wer alcohol concentrations, the absolute values of
OH-OH interaction energy has a smaller ﬁalue as can be seen in the
sﬁrface concentration dependent expression.  This results in the
interactions between the OH groups and all groups other than OH being
more probable; that is, more hydrogen bonds have been broken and the
OH groups have gained more orientational freedom, At higher alcohol

concentrations the OH-OH interaction has higher values, and that makes
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the OH groups cluster together., Thus, the more rapid breaking of

hydrogen bonds at low alcohol concentration than is predicted by the

Son?*
The three hydrocarbon energy parameters obtained in this model

basic model can be, in part, compensated by using Ay oy = F(

as shown in Table XVIIa are in agreement with the energy values ob-
tained in the local surface group contribution model as shown in
Table ITIa, However, the values of energy parameters involving OH
group interaction for the two models are quite different. 3

As expected, the OH-OH interaction is by far the stroﬁgest
interaction in the solution, Since a different means of breaking
down molecules into constituent groups is used for quasi-lattice
theory and thig model, a comparison of energy parameters from these
two studies is not feasible.

Like the local surface group contribution model, ihe one-
dimensional lattice model developed in this chapter appears to be one
of the most general of the models which have been applied to alcohol-
paraffin systems, since it requires no information specific to”a given
binéry molecular pair but only interaction energies between group
pairs. In cbntpést, the quési;lattiée theofy requires a priori
Specificatioﬁ of:segments and contactlpoints.

The quasi-lattice and the oneidimensional iattice_model are
1 comparéble in*predicting excess free energies, Howéver,‘fhe quasi-
lattice model'ﬁredicts excess enthalpies with beﬁter accuracy thén
the one—dimepsional lattice model and the local group contribution
model, The éne-dimensional lattice model represents the excess prop-
erties with ﬁefter accuracy than the local surface group contribution

mOdelo
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D, Summary

A group contribution model is developed ﬁith the use of
statistical mechanicél methods. The model is shown to prbvide satis-
factory representation of excess properties in alcohol-~n=paraffin
systems, The one-dimensional lattice model predicts exceés properties
with bettef accuracy than that by the local surface group contribution
model of Chapter III, but is marginally inferior to the quasi-lattice

theory.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The present study consists of the development of liquid solution
theories based on the group contribution concept and of the applica-
tion of these theories to solutions containing polar substances. The
major observations and conclusions drawn from the study are presented,
along with recommendaﬁions for future study, in the following sections,

The first model developed based on group methods (the local .
surface group contribution model) takes into account the effects of
both the strength-;f group interactions and the group free surface
areas on the probability of interaction, This model was applied to
alcohol~n-paraffin binary éystems. Analysis of the results shdws
that the model provides satisfactorj qualitative representation of
excesé £hermodynamic properties in eight binary mixtures of alcohols
andvnrparaffins.

The second group contribution.model, expressed in the framework
of stétisticai mechanics, was developed by expressing the canonical
partition function in terms of gr;ﬁp interéctions and free surface
areas of groups. A.one-dimensionél lattice model resulted when ﬁhe
lumped surface areas of identical groups were dividéd into identical
pieces. These pieces were envisioned as being arranged in a column
and the configurational contributions to the canonical partition

function were evaluated by summing all possible arrangements of this
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columh. Analysis of the results shows that the one-dimensionai lat="

tice model is able to represent the excess thermodynamic properties

of alcohol-n-paraffin bihary mixtures provided the interaction energy
between hydroxyl groups is considered to bé a function. of fhe hydroxyl
group surface concentration, 1'

The third model (the well-known quasi-lattice model) was re-
expressed in tepms of the canonical partition fhnction of group inter-
actions and applied to the data on the eight binary mixtures of alco~-
- hols and n-paraffins, Reasonable representation of excess therﬁo;
dynamic properties of alcohol-n-paraffin binary systems was obtained.
Results were found to be sensitive to the choice of exchange energies
regarded as significant butvnot to the choice of coordination number
and contact points, o “

In all three models, analysis of group interaction energy
pérameteré reveals that the vaiue of hydroxyl group interaction energy
is far iérger‘than the othér interaction energies. This result is
interpreted as an indication that the three models correctly reflect
the existence of hydrogen bonds in‘the alcohdlrnrparaffin solutions,
However, the breaking of hydrogen bonds at low alcohol concentrations
apparently occurs moré rapidly than these models reflect, All three
models predict consistently low values of heat-of—mixing‘énd inade-
quately represent the excess free energies and entropies at low
alcohol concentratioﬁs. Although this can be.compensated, in part,
by using the interaction energy between hydroxyl groups as a function
of the hydroxyl group surface concentration, the conclusion is drawn
that the inability of the models to'adequately describe solution

behavior at low alcohol concentrations is a fault-of the models and
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not of the interaction parameters employed.

Of the three models, the local surfece group contribution model
and the one~-dimensional lattice model are of equivalent generality and
are more general in form than the quasi-lattice model; the former
require only information on interaction energies between group pairs,
while the quasi—laftice model requires additional a priori specifi-
cation of contact points, However, in their ability to represent the
excess properties of alcohol-n—~paraffin systems, the quasi-lattice
model predicts excess thermodynamic properties with a better accuracy
than the other two models and is the recommended model for present

appllcatlons. The one-dimensional lattice model is superior to the
local surface group contribution model, S

The developments of this study were d1rected at representatlon
of the properties of solutions containing polar substances., This
objective was achieved by applying the three models to the eight
alcohol-n~paraffin binary‘ﬁixiures. In.fhis study; a maximum of six
1nteract10n energy parameters were used for each of the three models
to represent the excess thermodynamlc properties of these systems,

In fact, the six energy parameters could be used to predict the excess
properties of systems other than the eight on which the parameters are
based, This is the power of the generality of group methods; once
information on any pair interaction is determined, it is applicable to
the same type of interaction in any other system.

The local surface group contribution model was applied po the
partially miscible system methanol-n-hexane, The model predicts the 5
- existence of the two phases but it fails: to predicf the phase compoe

sitions correctly. Thus, application of the model to partially



136

miscible systems is not recommended.

The complexitj of group interactions in polar solutions is
reflected by only semi-quantitative agreement of the models with
experimentsl data. This suggested that more work is needed in dé—>
veloping group contfibution models to represent excess thermodynamic
prOperties of solutions containing polar substances., From this
study, the following recommendations are made as guidelines for
future work: |

1. The inability of the models to fit adequately the data at
low alcohol concentrations suggests the need for future
study of>thé nature of diluie polar solutions, Future
investigations into the theory shéuld be directed at finding
the fundamental criteria of group orientation ana inter—-
actions,

2. A possible modification to improve the representation of
éxcesg properties of the three models would be to consider
the(xfmethylene groups separately from other group species
and/of to treaf separately the groups on different molecules,

3.. Fram the chemical similarity of methyl and methylene groups,

| a.relation between their interaction energies should be

1 evaluated, so that the required energy~§arameters cpuld be
reduced to half, This would considerably simplify calcu=
lations, | |

L. Two- or three-dimensional models should bé developed, which

‘could provide more realistic description of polar solutions,
5¢ The use of group surfaéé areas instead of the number of

contact points in the quasi-lattice model could possibly
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improve'the model for representation 6fwtﬁé excess properties
of polar solutions; The use of group surface areas would be
more natural and reglistic,

The possibility of determining properties of highly nonideal
mixtures ffom pure camponent properties. is not achieved in
the present study., However, the possibility is contained
in the gfoup solution theory, Future investigations into
the theory should be directed to this objective,
Experimental excess free energy and entropy data for the
present interest are.available for only three binary mix-
tures, Fér better analysis of the models, more data are
needed, Data for multicomponent systems are also desirable

to test the generality of ‘the models,
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APPENDIX .
COMPUTER PROGRAM

The non-linear regression computer program used in this study was
written in FORTRAN IV by R, M. Baer at Chevron Research Corporation.
It is a fully generalized program in that the only additional input
required for its use in a particular problem are:

l. the particular equation‘togbe fitted, and

- 2. data, including the assignment of program control variables,
The program is limited to a maximm of three hundred data points,
twelve variables, and.twenty parameters, The program consists of one
main program an& four sﬁﬁroutinés, The.brief description of the -
function of each of the five routines is presented in the following

sections,
Main Program

DKNAME is an embedding program for subroutine GAUSS. Its
- function is to read in all input data reQuired for the calculations,
The major calculational subroutine GAUSS is called by this program

after having read in all required data.
Subroutine GAUSS

GAUSS is the major calculational subroutine, Its function is to

]

determine the optimum values of parameters for a least-sum-of--squares
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fit to the data and to print out the resultant parameters, the speci-
fied and calculated va}ues.of variables, the percent deviation for each
‘ déta point, and average.and maximum deviations. The dependent Vafiable
calculation subroutine, partial derivative, and matrix solution sub-
routines are called by this subroutine at the appropriate time during

the iterative search for the parameter values,
Subroutine YCOMP

YCOMP.- is the only gubroutine to be modified for each particular
problem, YCOMP contains the correlating equation to which the data
afe to be fitted and calculates the value of the dependent variable’
for each data point using successive estimates of the parameters as

determined in the GAUSS and partial derivative subroutines,
Subroutine DERIV

DERIV is employed to estimate the values of partial derivatives
of the éorfeiating‘equation by a difference method, The result is
used to establish fhé barameter valﬁes for the succeeding itération
by GAUSS‘K It is called by GAUSS during the iterations of the search

procedure,
Subroutine SOLV

SOLV is to solve a matrix formed by GAUSS for the determination
of the parameter values for the next iteration, It is called by

GAUSS during the interations of the search procedure.

Program Specifications
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A listing of the non=linear regression computer program is pre-
sented at the end of Appendix A, The input data requirements and for-

mat are discussed in the following sections..
Input Data Cards

The input data cards required for the program are arranged in

the following order:
3 Program Coptro rj

This card épntains the 12 generai‘control variables, in 1216
format, which control the operation of the program, Each variable
and its allowable values are discussed below:

MM(1) = number of data points

MM(2) = total.number of variables—dependent and independent

variables

MM(3) = numbér of parameters

MM(A) = lhmit>6n-number of iferations. A value of 15 is

ﬁéualiy.éufficient for convergence, .

MM(5) = if negative, skips reading of Z(i,N) values from input

| (see below) |

MM(6) = -1 give results of calculations for each iteration

= O give final results only
= 1 give results for only the first and last iterations
MM(7) = 0 to have a parabolic fit

1 to have a linear fit

MM(8) = 1 for input

MM(9) = 1 to print input data as part of oufput



= 0 to bypass this printing
MM(10) = -1 records each matrix

=.0 bypasses the recording of matrix

I

1l records first matrix only

MM(11) = number of problems in the run

MM(12) = if negative, prints the final solution only
CARD 2-5; Parameter Fstimates

‘~The_second through fifth data cards are the initial estimates of
parémetér‘vélues in,6F12.d format, Thé makimuﬁ number of parameters
is twenty. The twenty-first through twenty-fourth fields are used as
follows: ' o |

B(21) = tolerance on convergence (0.0001 is recommended)

B(22) = blahk..'It is used internally in DERIV subroutine

B(23) = limit on‘magnitude of iteration changes (1.0 is .

‘recommended) | : |
B(24) = used to control éntry point in YCOMP for mﬁltiple program
. runé or for other purposesﬁ‘ | |

The program readsl24‘vaiues regardless of the number of pérameters
actually used,. |

The remainiﬁg cards contain the independent énd dependgnt‘
~ variables of each data pointiread in by'variable name Z(i,N) in

a format Spec;{iéd in a card preceeding these data cards.
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10
11

100
13
14
15

20
21

30

PROGRAM LISTING

EC FORTGCLG
TeSYSIN DD *

EMBEDDING PROGRAM FOR GAUSS
DIMENSION B(24)2 2(12+300)» MM(12)
DIMENSION FMT(18)

COMMON NUMBER»BsZ
COMMON /COMA/ MM
COMMON /COMB/ JJ

READ (592) (MM(J)sJ=1512)

FORMAT (1216)

NUMBER=MM(1)

NSET=MM({2)

JJ=MM(3)

IF (NUMBER) 44510

WRITE (695)

CALL EXIT . : .

FORMAT (40HO GAUSS INPUT ZERO» PROGRAM STOP
READ(5911) (B(J)sJ=1y24)

FORMAT(6F1244)

READ (55100) (FMT(I)s1=1s12)

FORMAT (18A4)

IF (MM(5)) " 15414,14

FORMAT (4F12412)

READ (5sFMT)I((Z(JsN)»JI=19NSET) N=1+sNUMBER)

CALL GAUSS

IF (MM(B)=2) 30+20+30

WRITE (6+21)

FORMAT (40HO0 GAUSS CONVERGENCE

MM(8)=1

MM(11)=MM(11)=~1

IF (MM(11)) 191,14

END

SUBROUT INE GAUSS

DIMENSION A(20921)sB(24)’BMIN(ZO)’BSTART(ZO).C(ZOol)’X(ZOoI)'"

JOB (10169+551-78~387893)9'Ce Me KUO!yMSGLEVEL=1)»CLASS=A

/1HY)

/7)

X 2(12+300)+DEL(20)+E{20)sMM(12)sRECORD(100)sCY(300)sFP(20+300)

COMMON NUMBER B2
COMMON /COMA/ MM
COMMON /COMB/ JJ
COMMON /COMC/ CY
COMMON /COMD/ FP
COMMON /COME/ A»CsM
EQUIVALENCE (AsX)
NUMBER = MM(1)

NSET = MM(2)

JJ = MM(3)
LIMIT = MM{4).
NULL = MM(12)
MM(12) = MM(12) + 1
IDNTFC = MM(12)
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DECKOOl0
DECK0020

DECKO0030
DECK0040
DECK0050
DECKO0060
DECK0070
DECK0080
DECK0090
DECKO100
DECKOl1l0

- DECKO120
" DECKO130

DECKO0140
DECKO150

DECKO170
DECKO175
DECK0180
DECKO190
DECK0200
DECK0201 .
DECK0210
DECK0220
DECK0230
DECK0240
DECK0250

GAUS0030
GAUS0040

. GAUS0050

GAUS0060
GAUSO0061
GAUS0062
GAUS0063
GAUS0064
GAUS0065
GAUS0070

- GAUS0490

GAUS0500
GAUS0510
GAUS0520
GAUS0530
GAUS0540

 GAUS0550



® 3o

11

12

13
14
15
16

17

TZERO = 1.0

SCALE 1 = 0.2

SCALE 2 = 1.5

SCALE 3 = 140

ToLl = B(21) ;
X NORM = 0.0

MARK P = 0

KKPATH = -]

NODOWN = 0

NN = O

NNPARA = 0

NPATH = 1

NTZERO = -1

SUMSQ = 0,0

T = 0,0

X3 = 34,0

X2 = 240

Y2 = 240

Y3 = 3,0

IF (LIMIT = 100) 2447447

IF (TOL1) 420942051

DO & J=lyJJ

BMIN{J) = B(J)

BSTART (J) = B(J)

X NORM = X NORM + B(J)#*#2
DEL(J) = 0.05%ABS (B(J))

IF (DEL{J)) 49394

DEL(J) = 0405

CONTINUE -

WRITE (695}

FORMAT (51H1 GAUSSIAN PARAMETER SUBROUTINE
WRITE (69412} (MM(L)» L=1s12)
WRITE (6»108) (BlJ)y J = 1924)
IF (MM(9)) 400969400

IF (MM(8) = 1) 798047

IF (B(23)) 8989430

JPARA = -]

"MPATH = -1

T = 0,0

MM(8) = 2

WRITE(6+59)

DO 9 J=1,yJJ

BSTART{(J) = B(J) -

SQLAST = SUMSQ

SUMSQ = 0.0

NTZERO = NTZERO + 1

NN = NN+1

IF (NN = LIMIT) 12412411
MM(8) = =2

GO TO 80 '
CALL YCOMP

DO 17 N= 1»NUMBER

YC = CY(N) :
DELY = Z(NSETsN) =~ YC
SUMSQ = SUMSQ + DELY##2
IF (NULL) 17+13,13

IF (MM(6)) 14917914

IF (N=1) 16915416

WRITE (65410)

WRITE (69+18) NsYCeZINSETsN)sDELY
MARK P = 1 ' '
CONTINUE

RECORD(NN) = SUMSQ
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GAUS0570
GAUS0580
GAUS0590
GAUS0600
GAUS0610
GAUS0620
GAUS0640
GAUS0650
GAUS0660
GAUS0670
GAUS0680
GAUS0690
GAUS0700
GAUS0710
GAUS0720
GAUSO0730
GAUS0740
GAUS0750
GAUSO0760
GAUS0780
GAUS07%0
GAUSO0810
GAUS0820
GAUS0830
GAUS0840
GAUSO0850
GAUS0860
GAUS0870
GAUS0880
GAUS0900
GAUS0910
GAUS0930
GAUS0940
GAUS0960
GAUS0980
GAUS1000
GAUS1010
GAUS1020
GAUS1030 -
GAUS1040

*GAUS1050

GAUS1060
GAUS1070
GAUS1090
GAUS1100
GAUS1110
GAUS1120
GAUS1130
GAUS1150

. GAUS1160

GAUS1180
GAUS1181
GAUS11l90
GAUS1200
GAUS1210
GAUSl1220

 GAUS1230

GAUS1240
GAUS1250
GAUS1260
GAUS1270
GAUS1280
GAUS1290



40

45

47

49

53
54

56
57

59
58
60

62
63
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FORMAT (1694E1847) GAUS1300

GO TO 440 GAUS1310
IF (NN = 1) 20+22%30 . GAUS1330
IF (SUMSQ-SQMIN} 21921+27 GAUS1360
NDOWN = 1 . GAUS1370
SQMIN = SUMSQ : GAUS1380
DO 24 J=1sJJ GAUS1390
BMIN(J) = B(J) o GAUS1400
_IF (MPATH) 301,200+38 GAUS1410
IF (NDOWN) 2852829 GAUS1430
NDOWN = -1 GAUS1440
IF (MPATH) 301,200,436 GAUS1450
IF (MM(6)) 32532431 GAUS1470
MM(6) = O GAUS1480
IF (MM{10)) 2052033 GAUS1490
MM(10) = O GAUS1500
GO TO 20 GAUS1510
TZERO = TZERO#SCALEL GAUS1530
NTZERO = -1 GAUS1540
DO 39 J=1l,yJJ : GAUS1560
B(J) = BMIN(J) . GAUS1570
BSTART(J) = BMIN(J) ‘ GAUS1580
Y1l = SQMIN GAUS1600
X1l = 040 GAUS1610
JPARA = -1 GAUS1620
MPATH = ~1 GAUS1630
GO TO 301 ‘ GAUS1640
SUM2 = SUM1 GAUS1660
SUM1 = SUMSQ GAUS1670
NNPARA = 0 GAUS1680
IF (SUM1 - SUM2) 19545519 ' GAUS1690
TZERO = SCALE1#TZERO _ GAUS1710
NDOWN = 0 ‘ GAUS1720
T = 0.0 o GAUS1730
GO TO 8 GAUS1740
LIMIT = 99 ' , GAUS1760
GO TO 2 GAUS1770
T = =0a5%( (X1%#X1=X2#X2)%(Y1=Y3)~(X1¥X1~X3%X3)* (Y1~ Y211/ ' GAUS1800
((X1=X3)%#(Y1l=-Y2)-(X1~ x2)*(v1 Y3)) , GAUS1810
MPATH = 1 3 ' - GAUS1830
JPARA = -1 : , : ' ' . GAUS1840
NNPARA = 1 . o . .. GAUS1B50. .
NDOWN. = 0 . : - , , o - GAUS1860
GO TO 366 . . ‘ GAUS1870
WRITE (6+54) SR oo GAUS1890
FORMAT (24HO OVER-UNDERFLOW S GAUS1900
MM(8) = -1 _ " GAUS1910
MM(10) = -1 : o - GAUS1920
GO TO 301 . T o : ,GAUS1930
WRITE (6557) o ‘ A GAUS1960
FORMAT (24HO MATRIX IS SINGULAR N _ . GAUS1970
MM(8) = -1 : e . GAUS1980
MM(10) = -1 4 PR o " GAUS1990
GO TO 301 ' ‘ ‘ ) GAUS2000
FORMAT (114HOCYCLE SUM OF SQUARES ***********************GAUSZOZO
X 93 3K B 3 WK NI N PARAMETERS -I»i******i************************// ) GAU52030
FORMAT (169 F1845) 5ElBo6/(E429 6+4E1B46)) Co ' GAUS2040
DO 66 J=lyeJdJ : : GAUS2090
BTEST = B(J)~BSTART(J)~DEL(J) : o GAUS2100
IF (BTEST) 63363,62 s ' o GAUS2110
B(J) = BSTART(J) + DEL(J) , C ‘ GAUS2120
CONTINUE : ‘ GAUS2130

BTEST = BiJ) ~ BSTART(J) + DELtI GAUS21 46



65
66

67
69

80
82

81

90
91

92
93

94
98

95

96

97
971

972

99

100

x**********'l-***********************'******************************//
X7) : A

101
X
X

103

104

IF (BTEST) 65965466 .

B(J) = BSTART(J)-DEL(J)

CONTINUE

MPATH = -1

DO 69 J=lsdJ

BSTART(J) = B(J)

GO TO 10

IF (NULL) 1000+82+82

AV = 040

AVl = 0,0

AV2 = 0,0

YMAX = 0.0

ZMAX = 040

ZZMAX = 040

DO 81 J=1lsJdJ

B(J) = BMIN(J)

N =1

DO 90 J=1ysJJ .

WRITE (6+91) JeB(J)
FORMAT (4H B I2s El4.5)

WRITE (69100}

WRITE (6+93) :
FORMAT (82HONUMBER Y -OBSERVED Y CALCULATED
DELTA Y PCT DEVIATION 777} :
CALL YCOMP

YC = CY(N)

DELY = YC - Z(NSETsN)

RATIO = 10040 * (DELY / Z(NSETsN})

ABSRAT = ABS (RATIO) ’

AV = AV 4+ DELY .

Avl = AVl + RATIO

Av2 = Av2 + ABSRAT ‘ )

WRITE (6595) NsZ(NSETsN) s YCsDELY»RATIO

FORMAT (I59E23e59E17e¢592E1945)

ABSVAL = ABS (DELY)

IF (YMAX = ABSVAL) 96+96,97

YMAX = ABSVAL

YYMAX = DELY

MARK = N

IF (ZMAX~ABSRAT) 9714971,972

ZMAX = ABSRAT ’

ZZMAX = RATIO

MARK1 = N

N = N+1

IF (N - NUMBER) 98,9899 :
D = NUMBER . ;
AV = AV/D . :

AVl = AV1/D

AvV2 = AV2/D

RTMNSQ = SQRT (SUMSQ/DY

WRITE (6,100)
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GAUS2150
GAUS2160
GAUS2170
GAUS2190
GAUS2200
GAUS2210
GAUS2220
GAUS2260
GAUS2270
GAUS2280
GAUS2290
GAUS2300
GAUS2310
GAUS2320
GAUS2330
GAUS2340
GAUS2350
GAUS2360
GAUS2370
GAUS2380
GAUS2390
GAUS2410
GAUS2420
GAUS2430
GAUS2450
GAUS2451

. GAUS2460

GAUS2470
GAUS2480
GAUS2490
GAUS2500
GAUS2510
GAUS2520
GAUS2530
GAUS2540
GAUS2550
GAUS2560

. GAUS2570

GAUS2580
GAUS2590
GAUS2600
GAUS2610
GAUS2620
GAUS2630
GAUS2640
GAUS2660
GAUS2670
GAUS2680
GAUSZ2690

<GAUS2700

GAUS2710

FORMAT (11 BHOM M5 855966533 393630 3063696330 6063 39003 03 H I 9 % KR AR AR RRGAUS2T20

WRITE (6+101) AVyAV1sAV2 : ‘
FORMAT (30H0 AVERAGE DEVIATION - El4e5y

20H AVERAGE PCT DEV El445)

20H AVE ABS PCT DEV El445)
WRITE (6»103) YYMAX sMARK . )
FORMAT (30HO MAXIMUM DEVIATION } "El4e5916)
WRITE (6+104) ZMAXsMARK] " . L
FORMAT (30HO MAXIMUM PCT DEV : El4e5916)
WRITE (6+105) RTMNSQ

GAUS2730
GAUS2740
GAUS2750
GAUS2760

. GAUS2770

GAUS2780
GAUS2790
GAUS2800
GAUS2810
GAUS2820

GAUS2830



105
107

108

109
110

111
112
114
200
201
202
203

301

302
305

313

317
318

316

319
320

322
323
324
328
331

335
336

338
340
350

354

FORMAT (30HO ROOT MEAN SQUARE DEVIATION El4.5)

FORMAT ( 21HO AT ITERATION I3s 24Hs THE SUM OF SQUARES IS
E16¢7/ 22H0 FOR PARAMETER VALUES /1HO//(6E2047))

FORMAT (5F2045)

FORMAT (/7)

FORMAT (120s F20.8)

WRITE (6+5)

IF (MM(8) + 2) 1144111,114

WRITE (65112)

FORMAT (30HO EXCEEDED ITERATION LIMIT ’7)
GO TO 999

IF (MM(8) - 1) 99948+999

IF (NDOWN) 2015201,202

T = T*SCALE]

GO TO 203

T = T*SCALE2

MPATH = 0

JPARA = JPARA + 1

GO TO 366

MPATH = 0

NDOWN = 0

DO 305 M=1lsJJ

C(Ms1l) = 040

DO 305 N=lsJJ

A(MsN) = 0.0

CALL DERIV

CALL YCOMP

DO 313 N = 1,NUMBER

DO 313 K = 14JJ

C(Ksl) = C(Ksl) + FP(KsN) * (Z(NSETsN) = CY(N))
DO 313 J = KsJJ

A(KsJ) = A(K»J) + FP(KsN) * FP(JsN)
IF (NTZERO) 318,+318,317

TZERO = 1.0

T = TZERO

DO 316 1=2,JJ

11=1-1

DO 316 J=1,11

AlLyd) = AlJs 1)

IF (MM(10)) 319,331,319

WRITE (649320) NN

FORMAT (19HO MATRIX» ITERATION 13)
MMPATH- = 0 .
DO 323 I=1»JJ . ‘
WRITE (65324) (AlTsd)y Jx19aJJ)
FORMAT (9E1345) ‘
DO 328 I=ly4J

WRITE (64324) C(Iy1)

IF (MMPATH) 350433145350 '

DO 340 I=1sJJ

DENOM = ABS (A(Is1))

DO 336 J=2sJJ

IF (DENOM-ABS (A(IsJ))) 33543364336
DENOM = ABS (A{IsJ)) '

CONT INUE

DO 338 K=1lsJdJ

AllsK) = A(I-K)/DENOM*SCALEB

C{Isl) = C(Iy1)/DENOM*SCALE3

MMPATH = 1

IF (MM(10)) 322,350,322

DD = 1.0

IF (MM(8)) 99923545354

CALL SOLV
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GAUS2840
GAUS2860
GAUS2870
GAUS2880
GAUS2890
GAUS2900
GAUS2910
GAUS2920
GAUS2930
GAUS2940
GAUS2950
GAUS2970
GAUS2990
GAUS3000
GAUS3010
GAUS3020
GAUS3030
GAUS3040
GAUS3050
GAUS3070
GAUS3080
GAUS3090
GAUS3100
GAUS3110
GAUS3120
GAUS3170
GAUS3160
GAUS3210
GAUS3220
GAUS3230
GAUS3240
GAUS3250
GAUS3300
GAUS3310
GAUS3320
GAUS3340
GAUS3350

- GAUS3360

GAUS3370

. GAUS3390

GAUS3410

. GAUS3420

GAUS3430
GAUS3440
GAUS3450
GAUS3460
GAUS3480
GAUS3490
GAUS3500

"GAUS3520

GAUS3530
GAUS3540
GAUS3550
GAUS3560
GAUS3570
GAUS3580

- GAUS3590
- GAUS3600

GAUS3620
GAUS3630
GAUS3650
GAUS3660
GAUS3670



GO TO (351+53+56)y M
351 IF (MM(6)) 3523639352
352 WRITE (69353) X l)y JImleud)
353 FORMAT (13HO_DELTA B(J) /(9E1345))
363 Y NORM = 0.0
DO 364 - JU=1lsJJ
364 Y NORM = Y NORM + X(Jyl)¥¥2
IF (Y NORM — X NORM) 36693661365 '
365 T = 0,5%SQRT (X NORM)/SQRT (Y NORM)
X1 =T
366 DO 367 J=1,yJJ
367 B(J) = BSTART(J) + T¥X(Jsl)
371 DO 376 J=lsJJ
IF (B(J)) 372,374,372
372 XX = ABS ((B(J) = BSTART(J))/B(J))
GO TO 375 | '
374 XX = ABS (B(J) = BSTART(J))
375 IF (XX-TOL1l) 3769376,378
376 CONTINUE
MM(8) = 2
© GO .TO 80
378 IF (MM(T7)) 60+379+60
379 IF (NDOWN) 10,10,380
380 IF (JPARA) 10510949
400 IF (NULL) 694015401
401 WRITE (6+100)
IF (MM(5)) 40694034403
403 WRITE (6+402)
402 FORMAT (15H OBSERVATIONS//)
DO 404 N=1»NUMBER

404 WRITE (64+405) No (Z(JyN)s J=x1,12)
405 FORMAT (I1438E1445/(E18e597E1445))
406 WRITE (645) IDNTFC
GO TO 6 :
410 FORMAT ( 60HO DATA Y COMP : Y 0BS
XRENCE )

411 FORMAT (I6sF20+7)
412 FORMAT (1216)
420 TOL1 = 0.0001
GO TO 1 .
430 IF (B(23) = 140) 431,848
431 T ZERO = B(23)

WRITE (61433) ' TZERO - 5 '
433 FORMAT ( 30HO VECTOR SCALE FACTOR = B(23)s El2e4//)
GO TO 8 : -

440 IF (NULL) 446+4410441
441 N SPIN = N SPIN + 1
442 IF(MARK P) 444+4434444
443  IF (N SPIN =~ 15) 445044445444
444 N SPIN = O .
WRITE (6+59)
44% WRITE (6458) - NN» SUMSGQs (B(J)s Jx1lsJJ).
446 X3 = X2 . _
X2 = X1
Xl =T
Y3 = Y
Y2 = vl
Yl = SUMSQ
IF (NNPARA) 40419440
999 WRITE (6+991)
DO 990 J=1sNN
990 WRITE (6+405) Je¢ RECORD(J) - .
991 FORMAT ( 28HO RECORD OF SUM OF SQUARES /7 )
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GAUS3680
GAUS3690
GAUS3700
GAUS3710
GAUS3730
GAUS3740
GAUS3750
GAUS3770
GAUS3780
GAUS3790
GAUS3800
GAUS3810
GAUS3820
GAUS3830
GAUS3840
GAUS3850
GAUS3860
GAUS3870
GAUS3880
GAUS3890
GAUS3900
GAUS3920
GAUS3940
GAUS3960
GAUS3980
GAUS3990
GAUS3991
GAUS4000
GAUS4010
GAUS4030
GAUS4040
GAUS4050
GAUS4060
GAUS4070

DIFFEGAUS4080

GAUS4090
GAUS4100

" GAUS4110

GAUS4130
GAUS4140
GAUS4160
GAUS4170
GAUS4180
GAUS4190
GAUS4200
GAUS4220
GAUS4230
GAUS4240

| GAUS4250

GAUS4260
GAUS4270
GAUS4280
GAUS4290

'GAUS4300

GAUS4310
GAUS4320
GAUS4330
GAUS4340
GAUS4350
GAUS4360
GAUS4370
GAUS4380
GAUS4390



993

1000

11

Crrere e

crrivee
3
4

2

Crreny

5

Crresen

40

50

200

99

FORMAT (24H0 MINIMIZING PARAMETERS /7)
WRITE (69993)

WRITE (64+108) (BMIN(J)y J=1sJJ)
RETURN

END

SUBROUTINE SOLV

DIMENSION A(20921)s C(2041) LOC(20)s CK(20)
COMMON /COMB/ JJ

COMMON /COME/ AsCoM

M =]

NP = JJ+ 1

DO 11 I = 1sJJ

CK(I) = Q.

A(IsNP) = C(Isl)

DO 50 I = 1sJJ

Ip =1+ 1

FIND MAX ELEMENT IN I'TH COLUMN.
AMAX = O

DO 2 K = 1yJJ

IF (AMAX —= ABS(A(K»I))) 30292

IS NEwW MAX IN ROW PREVIOUSLY USED AS PIVOT
IF (CK(K)) 49492

LoC(I) = K

AMAX = ABS(A(K»I))

CONTINUE

IF (ABS(AMAX)eLEsleE-12)GO TO 99
MAX ELEMENT IN I'TH COLUMN IS AlL»sI)
L,= LOC(D)

CK(L) = 1,

PERFORM ELIMINATIONe L IS PIVOT ROWs A(LsI) IS PIVOT ELEMENT,

DO 50 J = 1,yJJ

IF (L=J) 615096

F = =A(Jsl) /7 A(LsI])

DO 40 K = IPsNP

A(JsK) = A(J9K) + F * A(L,sK)
CONTINUE

DO 200 I = 1yJJ

L = LOC(I)

A(I+1) = A(LsNP) / AlLsI)
RETURN

M =3

RETURN

END

'

SUBROUTINE DERIV

DIMENSION 8(24)92(12s300)oCY(300)oFP}ZO-BOO)-H(ZO)-Y(300)‘

COMMON NUMBER»B»Z
COMMON /COMB/ JJ
COMMON /COMC/ CY
COMMON /COMD/ FP
IF (B(22)) 2Dy1,+20

1 B(22) = 1.

DO 7 J = 1sJy
TEST = ABS(B(J))
IF (TEST = 04001) 5656

5 H(J) = 04001

6

GO TO 7
H(J) = 00001 * TEST
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GAUS4400

. GAUS4410

GAUS4420
GAUS4450
GAUS4460

SOLvoolo
SOLV0020
SOLV0030
SOLV0040
SOLVO0050
SOLV0060
SOLVO0070
S0LV0080
SOLV0090
SOLVO0100
SOLVOllo0
SOLVOo120
S0LVO0130
SOLVO140
S0LVOl50
SOLVO160
sOLvOol70
SOLvOol80
SOLVO0190
SOLV0200
s0Lvo210
S0LV0220
S0LV0230
S0LV0240
SOLVO0250
SOLV0250
sSoLvo26l
SOLV0262
SOLV0270
SOLVO0260 .
S0LV0290

- SOLVO0300

SOLVO0310
SOLV0320
S0LVO0330
SOLV0340
SOLV0350
SOLVO0360

"DERIVO1O

DERIV020
DERIVO30
DERIV0O40
DERIVO50
DERIVO60
DERIVO70
DERIVO80
DERIVO90
DERIV100
DERIV11O
DERIV120
DERIV130

~DERIV140



21

22

3

10

CONTINUE

DO 22 J = 1sJJ
TEMP = B(J)

B(J) = TEMP + H({J)
CALL YCOMP

DO 21 N = 1sNUMBER
Y(N) = CY(N)

B(J) = TEMP - H(J)
CALL YCOMP

B(J) = TEMP

DO 22 N = 1sNUMBER
FPUJsN) = (Y(N) = CY(N))I/(2+ * H(J))
RETURN |

END-

SUBROUTINE YCOMP
DIMENSION B(24)92(12+300),CY(300}
COMMON /COMC/ CY
COMMON NUM»Bs2Z

QUASI-LATTICE THEORY

T=303,2

R=1987

QH=1,

00-8.

AHO0=04009

A00=043

AlIO=1le4

ETOH=EXP(-B(1)/(R*T))

ETHS=EXP{-B(2)/(R*T))

ETOS=EXP(~B(3)/(R*T))

ETIS=EXP(-B(4)/(R¥*T))

ETHI=ETHS

ETOI=ETOS

DO 1 N=1lsNUM

IF(NeEQoeleOReNeEQe1940ReNsEQe34eOReNeEQs52¢0ReNsEQe70+0RNeEQe88,

10ReNoEQe106+0ReNeEQel24) GO TO 5

XA=Z (34N)

XB=1le,-XA

GO TOl0

XA=]l,

XB=0e

QI=9, + Be4%2(19N)

QS=18e + 8e#Z(2sN)

AS1=(0Qe5%QS)%*0e5 - e

ASO0=AS1 : ,

AH = Q45%QH#*XA/ (AHO + AQO¥ETOH + AIO*ETHI '+ ASO¥ETHS):

AO = 0+5%QO*XA/(AH*ETOH .+ AOO + AIO¥ETOI. + ASO¥*ETOS)

Al = Q45%QI*XA/ (AH¥ETHI + AO*ETOIl + AIO + ASO*ETIS)

AS = 0.5%QS*XB/ (AH*ETHS + AO*ETOS + AI*ETIS +ASO0)

AAH = ABS(AH-AHO) i

AAQ = ABS(AO-AQ0)

AA]l = ABS(AI-AIO}

AAS = ABS(AS~ASO) . L
IF(AAHJLT«040001 oANDs AAOsLT4+0.000]1 o+ANDe AAIeLT+0.001 +AND.
1AAS«LT+0.001) GO TO 20 : . ’ o
AHO=AH ‘ : .
AQ0=AQ

AIO=AIl

ASO=AS

GO TO 10

20 IF(XAeNEsles) GO TO 30

.
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DERIV150
DERIV160
DERIV170
DERIV180
DERIV1SO
DERIV200
DERIV210
DERIVZ220
DERIV230
DERIV240
DERIV250
DERIV260
DERIV270
DERIV280



AHl1=AH
AO1=A0
All=Al
AHO=0.005
AOO0=0.025
Al0=0.09
AS0=AS1-0.2
GO TO 3
30 HE = —2¢#R#T*{ (AO*AH -XA*AQ1*AH1)#*
1AH1*AT1)*ETHI*ALOG{ETHI) + (AO*AI
2 AO®AS*ETOS*ALOG(ETOS) + AH¥AS*ETH
3 ALOGLETIS))

1 CY(N)=HE
RETURN
END
//GO«SYSIN DD *
<141 6 4 15 -1
-3049. =526, 29 1.2
040001
(6F1263)
le’ 4o # 01 le54
.
.
.
.

.
141 DATA CARDS
//

153

ETOH*ALOG(ETOH) + (AH*AI - XA*
- XA*AO1*AIl) *ETOI*ALOG(ETOI) + °
S*¥ALOG(ETHS) + AI®AS*ETIS#*

l.

2413 42.86



vJ

uv

NOMENCIATURE

total free surface area of groups of type v

ﬁotal free\éuiféce aréa of v groups in a component molecule J
total overlapping surface area of contact between groups u
and v

constant in Equation (3-34)

coefficien£s in Equation (2—2), k = i,’. . o b

totai interaction energy of solution

energy defined by Equation (5-6)

OH group surface concentration in solution, %

fractional free surface of group v in solution

excess free energy

partial excess ffee energy of component i

free energy of mixing

free energy of mixing of an ideal solution
degeneracy

Kexcess‘enthélpy

enthalpy of mixing

group intefaction contribution defined in Figure 3
Bdltzﬁahn's constant

covalent radius

Avogadro!s number

. mmber of molecules of component i

184



uv

uv

ol
N
uv

155

number of contact between segments u and v

number of contact between segments u and v in athermal theory,
defined by Equation (4~4)

number of contact between segments u and v in pure component
i liquid

number of carbon atoms in hydrocarbon radical R

number of groups of type v

number of groups of type v in component molecule i

number ‘'of atoms of type v in component J

number‘of group u required to cover the fractional surface of
central group v that interacted with group u in solution
number of group u required to cover the fractional surface of
central group v that interacted with group u in an ideal .
solution

system pressure

vapor pressure of pure componént i at system temperature
canonical partition function defined by Equations (4-1) and
(5~7) .

universal gas law constant; alkyl group in RX ﬁolecule; or
Van der Waal's radius

number of segments (groups) on a molecule i

entropy of solution

excess entropy

molal entropy of mixing

molal entropy of mixing of an ideal solution

partial molal entropy of mixing of an ideél solution

partial group excess entropy of v, defined by Equation (3-30)
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Sv ~ partial group entropy of mixing of v, defined by Equation
(3-29)

gﬂb - partial group entropy of mixing of v of an ideal solution,
defined by Bquation (3-28)

Sy - free surface area of group v

Suv -5, % vasu + sv), harmonic average of group surfaces of groups
u and v

T - absolute temperature

- - reduce temperature

AUM - energy of mixing

AUVM - energy of vaporization of one mole mixture

v -~ total volume of solution

vi -~ molar liquid volume of pure i

X - functional group in RX molecule

X, - variable defined by Bquation (4-18)

x5 - mole ffaction of component i

Yv - group fraction of group v

Ys - group fraction of v in ideal solution

s - vapor phase mole fraction of component i

2 - coordination number’

Z, -~ number of contact points of group v

Greek Symbols

Fv - activity coefficient of group v in a group solution

Fi - activity coefficient of group v in a standard group solution

Y —~ activity coefficient

activity coefficient of i at infinite dilution
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ys - activity coefficient of structural contributions defined by
Equation (2-4)

YG ~ activity coeff%cient of group contributions defined by
BEquation (2-5) |

A - Wilson parameters defined by Equations (5-18) and (5-19)

Auv ~ interaction energy between groups u and v per unit surface
area of contact, cal./sq.-cm.

A;v - interaction energy between groups u and v, cal./g—mole.

vg' - ﬁugacity coefficient of pure i at system temperature and
Vapor: pressure Pg

Qi - vapor phase fugacity coefficient of component i

Q,y  — exchange energy defined by Equation (5-3), cal./sq. cm.

Qe - exchange energy defined by Equation (4-8), cal./g-mole
Superscri

E - excess thermodynamic property

i - component i

L = liquid phase

M - thermodynamic mixing pfOpErty

o -~ ideal solution prOpert&

oi - pure component i |

s - structural contributions

G - group'contributions to activity coefficient
v - Vvaporization

* - athermal property
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Subseripts

a, b, c, d, e, f -~ types of ;nteraction defined in Figure 1

a - alcohol
H = hydroxyl hydrogen~segment
I - Eyﬁrocarbon segments in alcohol molecule
i, Jy k -~ components i, j, k
0 - hydroxyl oxygen segment
-~ paraffins
R ~ radical R
S N paraffiﬁ sdlvent segments

U, v, W - types of group
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