SYMMETRY OF THE COULOMB FIELD
 AND ITS APPLICATIONS

By

RAMESH G. KULKARNI
Bachelor of Science
Karnatak University Dharwar, Mysore State, India 1963

Master of Science
Karnatak University Dharwar, Mysore State, India 1965

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1971

Thesis Approved:

PREFACE

In this thesis, the symmetries of the relativistic, non-relativistic and relativistic Symmetric Coulomb fields are studied. The symmetry properties are used to evaluate certain radial integrals involving multipole operators. The wavefunctions in Fock-Bargmann space and Momentum space are obtained. As an application of the Symmetric Hamiltonian to a problem of experimental interest, Stark effect was studied. The results show that for medium electric field strengths the agreement between the calculations and the experiment is good.

I would like to thank Dr. N. V. V. J. Swamy for his suggestion of the problem and his patient guidance during the course of this work. The financial help from Atomic Energy Commission, Government of India, during the early phase of this work is greatfully acknowledged. I would like to thank the Department of Physics, Oklahoma State University, for the financial help in the form of a teaching assistantship, and Mrs. Janet Sallee for typing the manuscript. Finally special thanks go to my wife for her understanding and encouragement.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. SYMMETRY OF THE COULOMB FIELD 6
A. Non-Relativistic Coulomb Problem 6
B. Relativistic Coulomb Problem 10
III. FOCK-BARGMANN SPACE, MOMENTUM SPACE WAVE FUNCTION OF SYM- METRIC HAMILTONIAN. 30
A. Fock-Bargmann Space. 30
B. Momentum Space Wave Functions of the Relativis- tic Symmetric Hamiltonian. 36
C. Coefficients Connecting Free Field and Stark Wave Functions in Coordinate Space 47
D. Coefficient Connecting Free Field and Stark Wave Functions in the Fock-Bargmann Space 51
IV. EVALUATION OF CERTAIN RADIAL INTEGRALS USING SYMMETRY PROPERTIES OF THE COULOMB FIELD 58
A. Involving Bound State Wave Functions 67
B. Involving Continuum State Wave Functions 87
C. Systematics of Operator Algebra 97
V. STUDY OF STARK EFFECT 102
A. Review of Recent Experimental Work 102
B. Group Theory of Hydrogen Atom in a Constant Electric Field 104
C. First Order Stark Effect 107
D. Second Order Stark Effect، 119
E. Calculation and Results. 123
VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK. 147
SELECTED BIBLIOGRAPHY 153
APPENDIX. 158

LIST OF TABLES

Table Page
I. Stark Shift Calculations for $\mathrm{n}=2, \mathrm{Z}=4$. 125
II. Stark Shift Calculations for $n=3, Z=1$ and $Z=3$. 126
III. Level Crossing Fields for $n=3, Z=1$ and $Z=3$. 129
IV. Level Crossing Fields for $n=4, Z=2$ 131
V. Parameter for First Order Stark Effect 137
VI. Parameters for Experimental and Theoretical Stark Shiftsfor Rb^{85} and Cs^{133}. 141
VII. Parameter for Quadratic Stark Effect in Alkali Atoms 142

LIST OF FIGURES

Figure Page

1. Domain of γ for $0(4,1)$ Group. 19
2. The First Order Stark Shift for $\mathrm{n}=2, \mathrm{Z}=4$ 127
3. The First Order Stark Shift for $\mathrm{n}=3, \mathrm{Z}=1$ and $\mathrm{Z}=3$. 128
4. The First Order Stark Shifts for $\mathrm{n}=4, \mathrm{Z}=2$ 130
5. The First Order Stark Shifts for $n=5, Z=2$ 133
6. The First Order Stark Shifts for $n=6, Z=3$ and $\mu=\frac{1}{2}$. 134
7. Z Dependence of the Transition $\left(2 P_{3 / 2}^{1 / 2} \rightarrow 2 P_{1 / 2}^{1 / 2}\right.$) on the Elec- tric Field. 135
8. The First Order Stark Shifts for $\mathrm{n}=3, \mathrm{Z}=1$ and $\mathrm{Z}=3$Using Symmetric Hamiltonian 136
9. Experimental and Theoretical Stark Shifts of H_{β} and H_{γ} Lines . 139
10. Experimental and Theoretical Stark Shifts of $4686{ }^{\circ}$ Line of He II 140

CHAPTER I

INTRODUCTION

In the past few years dynamical groups and symmetries have played an increasing role in the understanding of quantum mechanical problems in atomic, nuclear and particle physics. (1) The investigation of the symmetries of simple exactly solvable quantum mechanical systems is necessary for the understanding of the appearance of these symmetries in elementary particle physics where the Hamiltonians are not too well known. Whereas the application of finite groups in molecular and solid state physics has long been known, ${ }^{(2)}$ it is only in the past decade that the importance of continuous Lie groups, compact as well as non-compact, has been recognized. Apart from the three dimensional rotation group $0(3)$, the existence of $0(4)$ symmetry: in the non-relativistic hydrogen atom was first pointed out by Fock ${ }^{(3)}$ who studied the Schrodinger equation in momentum space. Fock and Pauli explained successfully the appearance of accidental degeneracy in terms of this bigger symmetry. The connection between this accidental degeneracy and the separability of the Schrodinger equation in two different coordinate systems, spherical and parabolic, has been shown by Bargmann to be a deep group theoretic re1ationship.

Jauch and $\operatorname{Hil1}{ }^{(4)}$, as also Baker ${ }^{(5)}$, pointed out the $\mathrm{SU}(3)$ symmetry of the isotropic three dimensional harmonic oscillator. They demonstrated the invariance of the non-relativistic Hamiltonian with respect to uni-
tary unimodular transformations and later workers showed the explicit construction of the generators and the Lie algebra of the group of this Hamiltonian. Both of these simple atomic systems have the three dimensional rotation group $O(3)$ as a subgroup which fact makes it possible to represent the respective solutions in terms of angular momentum states. These group structures were studied, however, only for understanding the bound state energy spectrum but their other applications of use in experimental physics was not recognized. Interest in these groups and symmetries was renewed ${ }^{(6)}$ when the method of dynamical groups in understanding elementary particles and their interactions, proved successful especially because in the latter case the interactions and the Hamiltonians are almost unknown. Furthermore a re-study of these simple atomic systems led to a deeper understanding of the group representations themselves.

On the other hanḍ a more concrete use of these symmetries is being made. The $O(4)$ symmetry of the coulomb field, in conjunction with the Green's function method, was exploited by Lieber ${ }^{(7)}$ for the evaluation of the Bethe logarithm in Lamb shift and comparison with experiment. In nuclear structure calculations and the interpretation of the properties of excited states Elliott ${ }^{(8)}$ used the $S U(3)$ group extensively. It is a well known fact that the discovery of the Ω^{-}is mainly due to the Octet model of Gell Mann based on the $\operatorname{SU}(3)$ group. In all these cases even experimentally meaningful numerical results were obtained from group theory. It is for these reasons that a study of the group properties of the coulomb field and their applications have been taken up for study in this thesis.

The Hamiltonian introduced by Dirac to describe the relativistic
motion of the electron in the hydrogen atom does not partake of the symmetry of the non-relativistic hydrogen atom. An approximate Hamiltonian was introduced by Biedenharn and Swamy ${ }^{(9)}$ which removes this defect. This Symmetric. Hamiltonian has even a higher symmetry than the Schrodinger Hamiltonian and the error involved in the use of this is rather small in most cases of interest. It has the added merit of simplicity in practical applications in preference to the Dirac equation. This thus opened up the possibility of the study of the symmetry of the relativistic coulomb field, and its practical applications.

In Chapter II a review of the symmetry of the non-relativistic hydrogen atom is presented especially because its non-invariance group has been fully understood only recently. The invariance and non-invariance groups of the Dirac Hamiltonian as well as the Symmetric Hamiltonian are discussed and their irreducible representations classified. The group structure of the continuum states is also discussed.

In Chapter III we discuss a special Hilbert Space introduced by Bargmann and transformations in this which make it convenient to study the group properties of simple quantum mechanical systems like the coulomb field and the harmonic oscillator. In the spirit of the Dirac quantum mechanical Transformation Theory Pauling and Podolsky calculated the solutions of the Schrodinger equation for the hydrogen atom in momentum space as early as 1928. Later Fock and Bargmann developed the connection between the solutions in momentum space and group theory. The Symmetric Hamiltonian has also been studied in momentum space in this chapter. Bargmann and Park established the group theoretic connection between the solution s of the hydrogen atom in spherical and parabolic coordinates. This is brought out even more elegantly in Fock-

Bargmann space.

In 1962 Pasternack and Sternheimer evaluated certain radial integrals of importance in connection with certain selection rules in electromagnetic transitions by direct computation. Biedenharn and others, in their coulomb excitation studies, calculated by extensive use of contour integration techniques similar radial matrix elements in the basis of continuum states. It transpires, however, that both these results can be derived elegantly by means of an operator calculus based on the symmetry of the coulomb field. A comprehensive discussion of this forms the content of Chapter IV.

A practical application of the Symmetric Hamiltonian has been made to stụdy the relativistic Stark effect because in plasma physics the experimental Stark shifts are indirectly used for the measurement of the applied electric field and a quantum mechanical study of the relativistic Stark effect has not received much attention till now. For comparison use is also made of the exact Dirac Hamiltonian. Agreement of the theoretical calculations with experiment is discussed. This is done in Chapters V and $V I$.

REFERENCES

(1) E. P. Wigner, 'Group Theory', Aca. Press, N. Y. (1959). M. Gellmann, 'Eightfold Way', Report CTSL - 20 (Mar. 15, 1961). Weyl, H., 'Group Theory', Dover Pub., N. Y. (1950).
(2) Hamermesh, M., 'Group Theory', Addison and Wesley, N. Y. (1964). Herzberg, G., 'Molecular Spectra and Molecular Structure', D. Van Norstand Company, Inc., N. Y. (1950).
(3) V. Fock, Zeit. F. Physik, 98145 (1935).
(4) Jauch, J. M. and Hill, E. L., Phys. Rev., 57641 (1940).
(5) Baker, G. A., Phys. Rev., 103, 1119 (1956).
(6) A. O. Barut and H. Kleinert; Phys. Rev., 1561541 (1967).
A. O. Barut, P. Budini and C. Fronsdal, Proc. Royal Soc., A 291 106 (1966).
M. Bander and C. Itzykson, Rev. Mod. Phys., 38330 (1966). H. Bacry, Neuvo Cimento, 41 A 221 (1966).
(7) Lieber, M., Phys. Rev., 1742037 (1968).
(8) Elliott, J. P., Proc. Roy. Soc. London A 245128 (1958).
(9) Biedenharn, L. C. and Swamy, N. V. V. J., Phys. Rev., 133B, 1353 (1964).

SYMMETRY OF THE COULOMB FIELD

In this chapter we will discuss the symmetry of the Coulomb field. The Kepler problem has been the most extensively investigated one in dynamics and it is, like the hormonic oscillator, an exactly solvable central force problem in classical as well as quantum mechanics. Both have accidental degeneracies, that is, they are more degenerate than implied by their obvious geometrical invariance under the three dimensional rotation group SO(3).

In Section I we will discuss the symmetry of the non-relativistic Coulomb field as described by time independent Schrodinger equation with the Coulomb potential. Here we will develop the $0(4)$ (the four dimensional orthogonal group) symmetry of the problem, introduce Runge-LentzPauli vector \vec{A} and discuss the global method of Fock. Consequences of this symmetry will be reviewed.

In Section II a brief discussion of symmetry of the relativistic Kepler problem, as described by Dirac Coulomb Hamiltonian will be presented. Then we will investigate the symmetry and group structure of (approximate) relativistic Symmetric Hamiltonian introduced by Biedenharn and Swamy.

Section I

An explanation of the accidental degeneracy of the non-relativistic

Kepler problem was given as early as 1926 by Pauli ${ }^{(1)}$ by pointing out the existence of a hermitian form of the classical Runge-Lentz ${ }^{(2)}$ vector \vec{A}. Using the properties of \vec{A} he was able to find the energy levels of the hydrogen atom within the frame work of Heisenberg's matrix mechanics. Later in 1935 Fock ${ }^{(3)}$ showed that in momentum space one could project it steriographically on the surface of the unit sphere in a four dimensional space in such a way that the relevant integral equation becomes the eigenvalue equation for hyper spherical hormonics. We elaborate below this method which is some times referred to as the global method ${ }^{(4)}$.

The non-relativistic quantum mechanical Kepler problem in coordinate space for an attractive Coulomb potential is

$$
\begin{equation*}
\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}-\frac{\alpha z \hbar c}{r}\right) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi), \alpha=\frac{e^{2}}{\hbar c} \tag{1}
\end{equation*}
$$

According to Dirac's transformation theory, the three dimensional Fourier transform of the above equation gives the momentum space representation. The term $\frac{1}{r} \psi(\vec{r})$ gives rise to a convolution integral and we get

$$
\begin{equation*}
\left(\frac{p^{2}}{2 m}-E\right) \phi(\vec{p})=\frac{k}{2 \pi^{2} \hbar} \int \frac{d^{3} p \psi(q)}{|q-p|^{2}} \tag{2}
\end{equation*}
$$

Since in case of bound states E is negative and we introduce the quantity

$$
\begin{equation*}
P_{0}^{2}=-2 m E>0 \tag{3}
\end{equation*}
$$

and the energy dependent Fock variables

$$
\begin{array}{rlrl}
\xi_{1} & =\frac{2 \mathrm{p}_{\mathrm{o}} \mathrm{p}_{\mathrm{x}}}{\mathrm{p}_{\mathrm{o}}^{2}+\mathrm{p}^{2}} & \xi_{2} & =\frac{2 \mathrm{p}_{\mathrm{o}} \mathrm{p}_{\mathrm{y}}}{\mathrm{p}_{\mathrm{o}}^{2}+\mathrm{p}^{2}} \\
& =\sin \alpha \sin \theta \cos \phi & & =\sin \alpha \sin \theta \sin \phi \\
\xi_{3} & =\frac{2 \mathrm{p}_{\mathrm{o}} \cdot \mathrm{p}_{z}}{\mathrm{p}_{0}^{2}+\mathrm{p}^{2}} & \xi_{4} & =\frac{\mathrm{p}_{0}^{2}-\mathrm{p}^{2}}{\mathrm{p}_{0}^{2}+\mathrm{p}^{2}}=\cos \alpha \\
& =\sin \alpha \cos \phi &
\end{array}
$$

in polar form. With these coordinates $d \Omega=\sin ^{2} \alpha d \alpha \sin \theta d \theta d \phi$ and $\overrightarrow{d P}=\mathrm{dP}_{\mathrm{x}} \mathrm{dP}_{\mathrm{y}} \mathrm{dP}_{2}=\mathrm{P}^{2} \mathrm{dP} \cdot \sin \theta \mathrm{d} \theta \mathrm{d} \phi=\frac{1}{8 \mathrm{P}_{0}^{3}}\left(\mathrm{P}_{\mathrm{o}}^{2}+\mathrm{P}^{2}\right)^{3} \mathrm{~d} \Omega$ again changing the variables to

$$
\begin{equation*}
x_{i}=r \xi_{i} ;\left({ }_{i} \sum_{1}^{4} x_{i}^{2}=1\right) \tag{5}
\end{equation*}
$$

And using the Green's function approach Fock has shown that the appropriate integral equation is equivalent to a four dimensional Laplace equation

$$
\begin{equation*}
\frac{\partial^{2} U_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} U_{2}}{\partial x_{2}^{2}}+\frac{\partial^{2} U_{3}}{\partial x_{3}^{2}}+\frac{\partial^{2} U_{4}}{\partial x_{4}^{2}}=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{U}=\left(\gamma^{\mathrm{n}-1} \psi_{\mathrm{n}}(\alpha, \theta, \phi)\right)_{\gamma=1} \tag{7}
\end{equation*}
$$

The hyperspherical hormonics are

$$
\begin{equation*}
\psi_{\mathrm{n} \ell \mathrm{~m}}(\alpha, \theta, \phi)=\pi_{\ell}(\mathrm{n}, \alpha) Y_{\ell \mathrm{m}}(\theta, \phi) \tag{8}
\end{equation*}
$$

where $\pi_{\ell}(n, \alpha)$ are the solutions of the differential equations

$$
\begin{equation*}
\frac{d^{2} \pi \ell}{d \alpha^{2}}+2 \cot \alpha \frac{d \pi \ell}{d \alpha}-\frac{\ell(\ell+1)}{\sin ^{2} \alpha} \pi_{\ell}+\left(n^{2}-1\right) \pi_{\ell}=0 \tag{9}
\end{equation*}
$$

The π_{ℓ} functions also satisfy the ladder relations

$$
\begin{align*}
& -\frac{d \pi \ell}{d \alpha}+\ell \operatorname{ctg} \alpha \pi_{\ell}(n, \alpha) \tag{10.a}\\
& ={\sqrt{n}{ }^{2}-(\ell+1)^{2}}^{\pi_{\ell+1}(n, \alpha)} \\
& \begin{aligned}
\frac{d \pi \ell}{d \alpha} & +(\ell+1) \\
& \operatorname{ctg} \alpha \pi_{\ell}(n, \alpha) \\
& =\sqrt{n^{2}-\ell^{2}} \pi_{\ell-1}(n, \alpha)
\end{aligned} \tag{10.b}
\end{align*}
$$

According to Malkin and Manko the invariant group signified by Eqn. (5) is $0(4)^{(5)}$, whereas Equation (6) signifies that the non-invariance group is $0(4,2)$ non-compact group ${ }^{(7)}$. Next we briefly sketch the generators and Casimir invariants of the $O(4)$ group.

The $0(4)$ Group $(8,9,10)$
The generators of 0 (4) group are well known ${ }^{(6)},\left(L_{1}, L_{2}, L_{3}\right.$ and $\left.A_{1}, A_{2}, A_{3}\right)$. A commutes with $H\left(=-\frac{\hbar^{2} \nabla^{2}}{2 m}-\frac{\alpha z \hbar c}{r}\right)$ and if we normalize \vec{A} as

$$
\begin{equation*}
\overrightarrow{\mathrm{A}} \rightarrow(1 / \sqrt{-2 \mathrm{~m}}) \overrightarrow{\mathrm{A}} \tag{11}
\end{equation*}
$$

the quantum mechanical commutation relations lead to the Lie algebra of the generators

$$
\begin{align*}
& {\left[L_{i}, L_{j}\right]=\text { in } \varepsilon i j k L_{k} \quad \text { eijk is Levi chivitø̛a tensor. }} \\
& {\left[A_{\zeta}, A_{j}\right]=\text { in } \varepsilon i j k L_{k}} \tag{12}
\end{align*}
$$

the six operators \vec{L} and \vec{A} are, therefore, the infinitesimal generators of the O (4) group. The structure constants are simply $C_{i j}^{K}=i \varepsilon_{i j k}$ and form the condition for a semi-simple compact lie group. We can use the prescription given by Carton ${ }^{(11)}$ to get the invariants of the group. The two invariants are

$$
\begin{align*}
& A^{2}+L^{2}=N^{2}-1 \tag{13}\\
& \vec{L} \cdot \vec{A}=\vec{A} \cdot \vec{L}=0 \tag{14}
\end{align*}
$$

where N is the energy determining (principal) quantum number. The first invariant is called the Casimir invariant, because Casimir showed that $g^{\mu \nu} X_{\mu} X_{\nu}$ commutes with all X_{μ}, where

$$
g^{\mu \nu}=\sum_{\beta \lambda} C_{\mu \beta}^{\lambda} C_{\nu \lambda}^{\beta}
$$

and in our case $g^{\mu \nu}=\delta_{\mu \nu}$. The Equation (14) is the condition for a symmetric representation of the group.

Section II

This section deals with the symmetry of the relativistic Coulomb field. The Dirac Coulomb problem in general can be described by the time-dependent equation as

$$
\begin{equation*}
H \psi=\left(c \rho_{1} \vec{\circ} \cdot \vec{p}+\rho_{3} m_{0} c^{2}-\frac{\alpha z \hbar c}{r}\right) \psi=\text { in } \frac{\partial \psi}{\partial t} \tag{15}
\end{equation*}
$$

and for the stationary states by

$$
\begin{equation*}
H \psi=\left(c_{1} \vec{\sigma} \cdot \vec{p}+\rho_{3} m_{o} c^{2}-\frac{\alpha z \hbar c}{r}\right) \psi=E \psi \tag{16}
\end{equation*}
$$

where ρ and σ^{\prime} s are Dirac and Pauli 2×2 matrices ${ }^{12,13 \text {. The direct }}$ product of $\rho, \sigma_{i}=\alpha_{i}$, and of 1 and $\rho_{3}=\beta$. In other words the above equation is written in ρ space. The bound state solutions of this problem are well known ${ }^{14}$. For example in coordinate space

$$
\psi_{n c \mu}(r, \theta, \varphi)=\left(\begin{array}{ll}
g_{n k}(r) & x_{k}^{\mu}(\theta, \varphi) \\
-i f_{n k}(r) & x_{-k}^{\mu}(\theta, \theta)
\end{array}\right)
$$

where

$$
x_{k}^{\mu}=\sum_{\tau} C_{\mu-T, T_{1} \mu}^{l(()) \frac{1}{2} j(r)} y_{l}^{\mu-T}(\theta, \varphi) x_{1 / 2}^{\tau}
$$

are the basis functions of the irreducible representations of the spinorbit group $\operatorname{SU}(2) \times O(3)$ and

$$
\begin{align*}
& q_{n k}(r)=-\sqrt{\frac{r\left(2 \gamma_{k}+n^{\prime}+1\right)(1+t)}{n^{\prime}!4 N(N-x)\left\{r\left(2 r_{k}+1\right)\right\}^{2}}}\left(\frac{2 z}{N a_{0}}\right)^{3 / 2} e^{-\frac{2 r}{N a_{0}}} \\
& \left(\frac{2 z r}{N a_{0}}\right)^{k^{-1}}\left[-n_{1}^{\prime} F_{1}\left(\begin{array}{cc}
-n^{\prime}+1 \\
2 r_{k}+1
\end{array}, \frac{2 z r}{N a_{0}}\right)+(N-k), F_{1}\binom{-n^{\prime}}{2 r_{k}+1, \frac{2 z r}{N a_{0}}}\right] \\
& f_{n x}(r)=-\frac{1}{r\left(2 r_{k}+1\right)} \sqrt{\frac{r\left(2 r_{k}+n^{\prime}+1\right)(1-t)}{n!4 N(N-x)}}\left(\frac{2 z}{N a_{0}}\right)^{3 / 2} e^{-\frac{2 r}{N a}} \text { (18)} \tag{19}\\
& \left(\frac{2 z r}{N a_{0}}\right)^{r_{k}-1}\left[n_{1}^{\prime} F_{1}\left(\begin{array}{cc}
-n^{\prime}+1 \\
2 r_{k}+1, & \left.\left.\frac{2 Z r}{N a_{0}}\right)+(N-x), F_{1}\left(\begin{array}{c}
-n^{\prime} \\
2 r_{k}+1
\end{array}, \frac{2 z r}{N a_{0}}\right)\right]
\end{array}\right]\right.
\end{align*}
$$

The quantum numbers N, K and μ take the following values

$$
\begin{aligned}
N & =1,2,3,-\cdots, \\
\kappa & =-N,-N+1, \ldots-1,+1, \cdots, N-1, \\
\mu & =-|\kappa|+\frac{1}{2},-|\kappa|+3 / 2, \cdots-1 \kappa \left\lvert\,+\frac{1}{2} .\right.
\end{aligned}
$$

Since Dirac equation is invariant under Lorentz transformation, we would expect that these solutions must form basis functions for some irreducible representations of the Lorentz group. Lorentz group can again be classified as homogeneous Lorentz group and inhomogeneous Lorentz group. A most general transformation in a Minkowsky 4 space is called proper orthochronous inhomogeneous Lorentz group of which homogeneous Lorentz group is a subgroup ${ }^{15}$. Here we will develop some of the basic material to show that $\psi_{n K \mu}(\vec{r})$'s actually form the basis functions for the irreducible representation $\nu_{\frac{1}{2}, \sigma}$ of the proper orthochronous inhomogeneous Lorentz group, which is also called as Poincare group $\mathrm{P}(3,1)^{16}$. This is, of course, an external symmetry of the Coulomb problem. Since Poincare group is neither a semisimple (because it has an invariant subgroup) nor a simple group ${ }^{17,18,19}$, we will first construct the irreducible representations of a related simple noncompact group, and through contraction get the irreducible representations of $P(3,1)$ group. The simple noncompact group under reference here is the De Sitter group $0(4,1)$.

The gist as stated by Inonu and Wigner is the following: From a physical point of view we are primarily interested in the relations between the unitary irreducible representations of two groups which are related to each other through a contraction. One way (the one which we wi11 follow) of obtaining representations of the group obtained by contraction, from the representations of the contracted group, is to consider, together with the process of contraction, the limit of special
sets of representations.

The De Sitter Group and its Unitary Representations

The group of real homogeneous linear transformation of w, x, y, z, and t that leaves

$$
-t^{2}+\omega^{2}+x^{2}+y^{2}+z^{2}=\text { invariant }
$$

is the De Sitter group $0(4,1)$. The Lie algebra of $0(4,1)$ has ten basis elements which may be chosen as $\vec{M}=\left(M_{1}, M_{2}, M_{3}\right) \quad \vec{N}=\left(N_{1}, N_{2}, N_{3}\right)$ $\vec{P}=\left(P_{1}, P_{2}, P_{3}\right)$ and P_{0}. These satisfy the commutation relations

$$
\begin{align*}
& {\left[M_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} M_{m}} \\
& {\left[N_{k}, N_{\ell}\right]=-i \varepsilon_{k \ell m} N_{m}} \\
& {\left[P_{k}, P_{\ell}\right]=i \varepsilon_{k \ell m} M_{m}} \\
& {\left[M_{k}, N_{\ell}\right]=\left[N_{k}, \ell_{\ell}\right]=i \varepsilon_{k \ell m} N_{m}} \tag{20}\\
& {\left[M_{k}, P_{\ell}\right]=\left[P_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} P_{m}} \\
& {\left[P_{o}, N_{k}\right]=i P_{k} ;\left[P_{0}, P_{k}\right]=i N_{k}} \\
& {\left[P_{k}, N_{\ell}\right]=i \delta_{k \ell} P_{o}}
\end{align*}
$$

All the generators are assumed to be hermitian. Here we can distinctly recognize two sub-algebras. If we just choose \vec{M} and \vec{P}, then we have

$$
\begin{aligned}
& {\left[M_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} M_{m}=\left[P_{k}, P_{\ell}\right]} \\
& {\left[M_{k}, P_{\ell}\right]=\left[P_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} P_{m}}
\end{aligned}
$$

We readily see that this is the Lie algebra of a four dimensional orthogonal semi-simple compact Lie group $O(4)$, whereas \vec{M} and \vec{N} form a subalgebra, the Lie algebra of homogeneous Lorentz group $L(3,1) \simeq 0(3,1)$. It is well known that representation spaces $H_{j j}$, of $0(4)$ are $(2 j+1)$ $\left(2 j^{\prime}+1\right)$ dimensional and one can construct the unitary representation space of $0(4,1)$ by the direct sum of all representation spaces $H_{j j^{\prime}}{ }^{(20)}$.

$$
\begin{equation*}
H=\sum_{j}^{\Sigma}, \oplus H_{j j} \tag{21}
\end{equation*}
$$

In $H_{j j}$, one can choose a basis $\mid j, \mu, j^{\prime}, \mu^{\prime}>$ where $(\vec{M}+\vec{P})^{2},(\vec{M}-\vec{P})^{2}$, $\left(M_{3}+P_{3}\right)$ and $\left(M_{3}-P_{3}\right)$ are diagonal. The matrix elements of various operators are given by Dixmier ${ }^{(21)}$ and are reviewed by Strom ${ }^{(22)}$. $0(4,1)$ has two independent invariants, which are

$$
\begin{align*}
& G=P_{o}^{2}-P^{2}-\left(M^{2}-N^{2}\right) \tag{22}\\
& F=(\vec{M} \cdot \vec{P})-\left(P_{o} \vec{M}-\vec{P}_{0} \vec{N}\right)^{2}-(\vec{M} \cdot \vec{N})^{2} \tag{23}
\end{align*}
$$

The eigenvalues of these two operators can be used to lable the irreducible representations of the De Sitter group. There are two distinct classes of unitary representations of $0(4,1)$. They are continuous and discrete classes.

The Continuous Class

Let $\nu_{r \sigma}$ designate an irreducible representation, where r and σ are connected to the eigenvalues of the invariant operator. The three subclasses are
(1) The irreducible representation $\gamma_{r \sigma}$ with $r=1,2,3, \ldots \ldots$ and

$$
\sigma>0 \text { where } r=\min \left(j+j^{\prime}\right) .
$$

(2) The irreducible representation with $r=1 / 2,3 / 2, \ldots, \sigma>\frac{1}{4}$.
(3) For $\mathrm{r}=0$, with $\sigma>-2$ the representation $\nu_{o \sigma}$:

To see how these come about we need the complete matrix elements of all
the generators. Rather than writing the matrix elements, we have more

$$
\begin{aligned}
& \exp 1 \text { tidily } \\
& \frac{1}{2}\left(M_{3}-P_{3}\right)\left|j \mu j^{\prime} \mu^{\prime}\right\rangle=\mu\left|j \mu j^{\prime} \mu^{\prime}\right\rangle \\
& \frac{1}{2}\left(M_{3}+P_{3}\right)\left|j \mu j^{\prime} \mu^{\prime}\right\rangle=\mu^{\prime}\left|j \mu j^{\prime} \mu^{\prime}\right\rangle \\
& \frac{1}{2}\left(M_{ \pm}-P_{ \pm}\right)\left|j \mu j^{\prime} \mu^{\prime}\right\rangle=\sqrt{\left(j^{\prime}-\mu\right)(j \pm \mu+1)}\left|j^{\prime} \mu \pm 1, j^{\prime}\right\rangle \\
& \left.\left.\frac{1}{2}\left(M_{ \pm}+P_{ \pm}\right)\left|j \mu j^{\prime} \mu^{\prime}\right\rangle=\sqrt{\left(j^{\prime} \mp \mu^{\prime}\right)\left(j^{\prime} \pm \mu^{\prime}+1\right)} \right\rvert\, j \mu^{\prime} j^{\prime}+1\right)
\end{aligned}
$$

where

$$
M_{ \pm}=\left(M_{1} \pm i M_{2}\right) ; N_{ \pm}=\left(N_{1} \pm i N_{2}\right), P_{ \pm}=\left(P_{1} \pm i P_{2}\right)
$$

(24)

Those given above have the step up and step down operator structure similar to $\operatorname{SU}(2)$, on the other hand N_{+}, N_{-}, N_{3} and P_{o} give a complicated mixture of bases.

$$
\begin{aligned}
& N_{+}\left|j \mu j^{\prime} \mu^{\prime}\right\rangle=i\left\{\sqrt{(j+\mu+1)\left(j^{\prime}+\mu^{\prime}+1\right)} A_{j j} \left\lvert\, j+\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}+\frac{1}{2},\right. \\
& +\sqrt{(j-\mu)\left(j^{\prime}+\mu^{\prime}+1\right)} B_{j j^{\prime}}\left|j-\frac{1}{2}, \mu+\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right\rangle \\
& \left.+\sqrt{(j+\mu+1)\left(j^{\prime}-\mu^{\prime}\right)} C_{j j^{\prime}} \left\lvert\, j+\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right) \\
& \left.+\sqrt{(j-\mu)\left(j^{\prime}-\mu^{\prime}\right)} D_{j^{\prime}}\left|j-\frac{1}{2}, \mu+\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right\rangle\right\}
\end{aligned}
$$

$$
\begin{aligned}
& N_{-}\left|j \mu j^{\prime} \mu^{\prime}\right\rangle \\
& =i\left\{-\sqrt{(j-\mu+1)\left(j^{\prime}-\mu^{\prime}+1\right)} A_{j j^{\prime}}\right. \\
& \left|j+\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right\rangle \\
& +\sqrt{(j+\mu)\left(j^{\prime}-\mu^{\prime}+1\right)} B_{j^{\prime}}{ }^{\prime} \\
& \left|j-\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right\rangle \\
& +\sqrt{(j-\mu+1)\left(j^{\prime}+\mu^{\prime}\right)} C_{j^{\prime}} \\
& \left|j+\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu-\frac{1}{2}\right\rangle \\
& +\sqrt{(j+\mu)\left(j^{\prime}+\mu^{\prime}\right)} D_{j^{\prime}}, \\
& \left|j-\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& N_{3}\left|j \mu j^{\prime} \mu^{\prime}\right\rangle \\
&= \frac{i}{2}\left\{-A_{j j^{\prime}}\left[\sqrt{(j+\mu+1)\left(j^{\prime}-\mu^{\prime}+1\right)} \left\lvert\, j+\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right)\right. \\
&+\left.\sqrt{(j-\mu+1)\left(j^{\prime}+\mu^{\prime}+1\right)}\left|j+\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right\rangle\right] \\
&+ B_{j j^{\prime}}\left[-\sqrt{(j-\mu)\left(j^{\prime}-\mu^{\prime}+1\right)} \left\lvert\, j-\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right) \\
&\left.\left.+\sqrt{(j+\mu)\left(j^{\prime}+\mu^{\prime}+1\right)} \left\lvert\, j-\frac{1}{2}\right., \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right)\right] \\
&+ C_{j j^{\prime}}\left[\sqrt{(j+\mu+1)\left(j^{\prime}+\mu^{\prime}\right)} \left\lvert\, j+\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}-\frac{1}{2}\right) \\
&+\sqrt{\left.\left.(j-\mu+1)\left(j^{\prime}-\mu^{\prime}\right) \left\lvert\, j+\frac{1}{2}\right., \mu-\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right)\right]} \\
&+D_{j j^{\prime}}\left[-\sqrt{(j-\mu)\left(j^{\prime}-\mu^{\prime}\right)} \left\lvert\, j^{\prime}-\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right) \\
&+\sqrt{(j+\mu)\left(j^{\prime}-\mu^{\prime}\right)} \left\lvert\, j-\frac{1}{2}\right., \mu+\frac{1}{2}, j^{\prime}-\frac{1}{2},
\end{aligned}
$$

$$
\begin{align*}
& P_{0}\left|j \mu j^{\prime} \mu^{\prime}\right\rangle \\
& =\frac{i}{2}\left\{A_{j j}\left[\sqrt{(j+\mu+1)\left(j^{\prime}+\mu^{\prime}+1\right)} / j+\frac{1}{2}, \mu+\frac{1}{2} j^{\prime}+\frac{1}{2} \mu^{\prime}+\frac{1}{2}\right)\right\} \\
& \left.\left.-\sqrt{(j-\mu+1)\left(j^{\prime}+\mu^{\prime}+1\right)} \left\lvert\, j+\frac{1}{2}\right., \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right)\right] \\
& +B_{j j^{\prime}}\left[\sqrt{(j-\mu)\left(j^{\prime}-\mu+1\right)}\left|j-\frac{1}{2}, \mu+\frac{1}{2}, j^{\prime}+\frac{1}{2} \mu^{\prime}-\frac{1}{2}\right\rangle\right. \\
& \left.\left.+\sqrt{(j+\mu)\left(j^{\prime}+\mu^{\prime}+1\right)} \left\lvert\, j-\frac{1}{2}\right., \mu-\frac{1}{2}, j^{\prime}+\frac{1}{2}, \mu^{\prime}+\frac{1}{2}\right)\right] \\
& +C_{j j^{\prime}}\left[\sqrt{(i+\mu+1)\left(j^{\prime}+\mu^{\prime}\right)}\left|j+\frac{1}{2}, \mu+\frac{1}{2}, j^{\prime} \frac{1}{2}, \mu^{\prime} \frac{1}{2}\right\rangle\right. \\
& \left.+\sqrt{(j-\mu+1)\left(j-\mu^{\prime}\right)}\left|j+\frac{1}{2}, \mu-\frac{1}{2}, j^{\prime}-\frac{1}{2}, \mu^{\prime} \frac{1}{2}\right\rangle\right] \\
& +D_{j j^{\prime}}\left[-\sqrt{(j-\mu)\left(j^{\prime}-\mu^{\prime}\right)}\left|j-\frac{1}{2}, \mu+\frac{1}{2}, j-\frac{1}{2}, \mu^{\prime} \frac{1}{2}\right\rangle\right. \\
& \left.+\sqrt{(+\mu)\left(j^{\prime}-\mu^{\prime}\right)}\left|j-\frac{1}{2}, \mu-\frac{1}{2}, j-\frac{1}{2}, \mu^{+} \frac{1}{2}\right\rangle\right] \tag{28}
\end{align*}
$$

The constants $A_{j j} \prime{ }^{\prime} B_{j j} \prime, C_{j j} \prime$, and $D_{j j}$, are determined by commutation relations, unitarity and irreducibility conditions. They can be chosen as real and it turns out that ${ }^{(23)}$

$$
\begin{equation*}
D_{j j}=A_{j-\frac{1}{2}, j^{\prime}-\frac{1}{2}} \text {, And } C_{j j^{\prime}}=-B_{j+\frac{1}{2}, j^{\prime}-\frac{1}{2}} \tag{29}
\end{equation*}
$$

In terms of new parameters ℓ and n where $\ell=j+j^{\prime}+1$ and $n=j^{\prime}-j$ we can rewrite A, B, C and D as $A_{j j},=a_{\ell n}, B_{j j},=b_{\ell n}, C_{j j},=c_{\ell n}$ and $D_{j j}!=d_{\ell n}$. For continuous class that we gave above, these $a_{\ell n}$ and $b_{\ell n}$
are

$$
\begin{equation*}
a_{\ell n}=\sqrt{\frac{\left(l-r_{x}\right)(\ell+r+1)(\ell(\ell+1)+\sigma)}{(\ell-n)(\ell-n+1)(\ell+n)(\ell+n+1)}} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
b_{l n}=\sqrt{\frac{(\beta-n)(f+n+1)(n(n+1)+\sigma)}{(\ell-n-1)(\ell-n)(\ell+n)(\ell+n+1)}} \tag{31}
\end{equation*}
$$

and the values of invariants are given by for $\nu_{r \sigma}$

$$
\begin{align*}
& \langle G\rangle=-p(r+1)+2+\sigma \tag{32}\\
& \langle F\rangle=-r(r+1) \sigma \tag{33}
\end{align*}
$$

Figure 1 gives the domain of v.

Figure 1
Now we can consider the connection between $0(4,1)$ and the Poincare group $P(3,1)$. We consider the contraction by putting

$$
\begin{equation*}
\vec{P}=\lambda \vec{P} \quad p_{0}=\lambda p_{p} \tag{34}
\end{equation*}
$$

where now sma11 p's are the operators. With this substitution the commutation relations become

$$
\begin{equation*}
\left[p_{o}, \vec{p}\right]=1 \lambda^{2} \vec{N} \text { And }\left[p_{k}, p_{\ell}\right]=i \lambda^{2} M_{m} \varepsilon_{k \ell m} \tag{35}
\end{equation*}
$$

whereas all other commutation relations remain the same except that we have to replace p_{o} for P_{o} and p for P in Equation (20). In the limit $\lambda \rightarrow o, \vec{M}, \vec{N}, \vec{p}$ and p_{o} have the Lie algebra

$$
\begin{align*}
& {\left[p_{o}, \vec{p}\right]=0=\left[p_{k}, p_{\ell}\right]=\left[M_{k}, p_{o}\right],\left[p_{o}, N_{k}\right]=i p_{k}} \\
& {\left[M_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} M_{m},\left[N_{k}, N_{\ell}\right]=i \varepsilon_{k \ell m} N_{m} ;\left[p_{k}, N_{\ell}\right]=i \delta_{k \ell} p_{o}} \tag{36}\\
& {\left[M_{k}, p_{\ell}\right]=\left[p_{k}, M_{\ell}\right]=i \varepsilon_{k \ell m} p_{m}}
\end{align*}
$$

This is nothing but the Lie algebra of Poincare group $\mathrm{P}(3,1)$ or $0(3,1)$. The invariants are

$$
\begin{align*}
& G^{\prime}=p_{o}^{2}-\vec{p}^{2} \tag{37}\\
& F^{\prime}=\overrightarrow{M^{\prime}} \circ \vec{p}-\left(p_{o} \vec{M}-\vec{p} \times \vec{N}\right)^{2} \tag{38}
\end{align*}
$$

The physical meaning of these two invariants was discussed by Wigner ${ }^{\text {(19) }}$ and Pauli ${ }^{(15)}$. They show that G^{\prime} corresponds to the rest mass of the particle whereas F^{\prime} corresponds to the spin of the particle times the rest mass.

The relation between the quantum numbers for a particle in Dirac Collomb field N, k, and μ, and the eigenvalues of the operators given above are worked out by Fradkin ${ }^{(17)}$ and we will not repeat them here, because the dialation operator which he and (independently) Barut, intro-
duce, is a very complicated thing and in deriving its relationships to the operators we might lose the insight and elegance that the group theoretic approach is suppose to give.

Relativistic Symmetric Hamiltonian

It was pointed out in Section 1 that even though the dynamical symmetry group of Schrodinger Coulomb Hamiltonian and Dirac Coulomb Hamiltonian is the same, their invariant symmetry groups are different and that the bas is functions that span the complete Hilbert space of Schrodinger Coulomb Hamiltonian correspond to the irreducible representation $Y_{o \sigma}$ while that for Dirac Coulomb Hamiltonian correspond to the Irreducible representation $\nu_{\frac{1}{2} \sigma}$. It also should be noted that Dirac Coulomb problem does not belong to the invariant group $0(4)$, to which Schrodinger problem belongs. Beidenharn and Swamy introduced an approximate relativistic Hamiltonian ${ }^{(24)}$ in 1964. It was shown by Russians Mulkin and Manko ${ }^{(25)}$ and Fradkin and Kiefer ${ }^{(17)}$ in 1967 that this Hamiltonian has an advantage over both Dirac and Schrodinger representations in the sense the wavefunctions of this Symmetric Hamiltonian form the bases functions of irreducible representation $\gamma_{\frac{1}{2} \sigma}$ but unlike Dirac, its invariant subgroup is still the compact semi-simple Lie group 0 (4). This added advantage should clarify many of the symmetry effects and separate distinctly in to relativistic effects and spin effects. This point will be elaborated through out this thesis, whenever need arises. Following is a brief review of relativistic Symmetric Hamiltonian.

The Symmetric Hamiltonian approximates Dirac Hamiltonian with Coulomb with an error of the order of $(\alpha Z)^{2} / \alpha$, where α is Sommerfeld fine structure constant and κ is Dirac angular momentum quantum number.

The behaviour of an electron in an attractive Coulomb field is described by the Hamiltonian

$$
\begin{equation*}
H_{D}=\rho_{1} \vec{\sigma} \cdot \vec{p}+\rho_{3} m_{o}-\frac{\alpha Z}{r} \quad \hbar=c=1 \tag{39}
\end{equation*}
$$

where ρ and $\sigma^{\prime} s$ are Dirac and Pauli 2×2 matrices with ρ_{3} diagonal. Biedenharn and Swamy introduced the Symmetric Hamiltonian (24)

$$
\begin{equation*}
\left.H_{S B}=\rho_{1} \sigma_{0} \vec{p}+\rho_{3} \mathrm{~m}_{0}-\frac{\alpha Z}{\mathrm{r}}+\rho_{2} \frac{\vec{\sigma} \cdot \vec{r}}{\mathrm{r}} \underset{\sim}{K}\left\{\left[1+\left(\frac{\alpha Z}{\mathrm{~K}}\right)^{2}\right]^{\frac{1}{2}}-1\right]\right\} \tag{40}
\end{equation*}
$$

where $\underset{k}{ }=\rho_{3}(\vec{\sigma} \cdot \overrightarrow{\mathrm{~L}}+1)$ is the Dirac operator。 $H_{D}=H_{s \beta}+H_{s f}$ where $H_{f s}$ is responsible for the fine structure of the energy levels of hydrogen atom. The states of the discrete spectrum of the symmetric Hamiltonian are characterized by the principle quantum number N, have the energy $E=M_{0} \sqrt{I+\left(\frac{\alpha Z)^{2}}{N}\right)^{2}}$ and are $2 N^{2}$ fold degenerate: The energy levels incidentally go over into the non-relativistic Bohr levels in the first approximation when a binomial expansion is made of the denominator. With $S_{I}=\operatorname{Exp}\left[-\frac{1}{2} \rho_{2} \vec{\sigma} \cdot \hat{r} \sin h^{-1} \frac{\alpha Z}{\underset{\sim}{K}}\right.$, the Hamiltonian $H_{S \beta}$ can be obtained as the transformation

$$
\begin{equation*}
H_{S B}=S_{1}^{2} H_{p}=S_{1}^{2}\left(\rho_{1} \vec{\sigma} \circ \vec{p}-\rho_{3} m_{o}\right) \tag{41}
\end{equation*}
$$

where H_{p} is the Dirac plane wave equation. Let us put $\tilde{H}=S_{1}{ }^{2} H_{p}=$ $\mathrm{S}_{1} \mathrm{H}_{\text {sym }} \mathrm{S}_{1}^{-1}$. Then we get the bound state eigenvalue problem as

$$
\begin{equation*}
\tilde{\mathrm{H}} \psi_{\mathrm{n} \kappa \mu}=\mathrm{E}_{\mathrm{N}} \psi_{\mathrm{NK} \mu} \tag{42}
\end{equation*}
$$

The solutions of the Equation (42) are worked out in reference (24) and
for continuous state by Chatterji ${ }^{(27)}$, and more accurdtely by Fradkin ${ }^{(28)}$. The normalized bound state wavefunction in spherical coordinates are

$$
\psi_{N K \mu}(r, \theta, \phi)=\left(\begin{array}{lll}
\left\{\frac{(\zeta+1) \varepsilon_{N}}{2\left(2 \zeta^{2}-1\right)}\right\}^{\frac{1}{2}} & F_{N \ell}(k r) x_{K}^{\mu} \tag{43}\\
\left\{\frac{(\zeta-1) \varepsilon_{N}}{2\left(2 \zeta^{2}-1\right)}\right\}^{\frac{1}{2}} & F_{N \ell}-(k r) i \varsigma_{\kappa} x_{-K}^{\mu}
\end{array}\right)
$$

These $\psi_{\mathrm{N}_{K} \mu}$'s are normalized such that

$$
\begin{equation*}
\left(\psi_{N_{\kappa} \mu}, S_{1}^{-2} \psi_{N_{\kappa} \mu}\right)=1 \tag{44}
\end{equation*}
$$

here

$$
\begin{aligned}
& \varepsilon_{N}=\frac{E_{N}}{m_{0}}=\frac{1}{\sqrt{1+\left(\frac{\alpha Z}{N}\right)^{2}}} \quad G=\varepsilon_{N} \sqrt{1+\left(\frac{\alpha Z}{K}\right)^{2}} \\
& F_{N \ell}\left(k_{b} r\right)=C_{N \ell} e^{-k_{b} r}\left(2 k_{b} r\right)^{\ell}{ }_{1} F_{1}\left(-N+\ell+1,2 \ell+2,2 k_{b} r\right)
\end{aligned}
$$

where $k_{b}=\frac{Z}{N a_{o}}, a_{o}$ is the first Bohr radius.

$$
\left.\mathrm{C}_{\mathrm{N} \ell}=\sqrt{\frac{T(\mathrm{~N}+\ell+1)}{2 \mathrm{~T}(\mathrm{~N}-\ell)[\mathrm{r} 2 \ell+2)]^{2}}}\left(\frac{2 Z}{\mathrm{Na}}\right)_{\mathrm{o}}\right)^{3 / 2} \text { and } \int \mathrm{F}_{\mathrm{N} \ell}{ }^{2}\left(\mathrm{k}_{\mathrm{b}} \mathrm{r}\right) \mathrm{r}^{2} \mathrm{dr}=1
$$

Symmetry and Invariant Properties of B.S. Hamiltonian

The total angular momentum operator \vec{J} and the Dirac operator \vec{K} commute with the Symmetric Hamiltonian.

$$
\begin{equation*}
[\overrightarrow{\mathrm{J}}, \tilde{\mathrm{H}}]=0=[\overrightarrow{\mathrm{K}}, \tilde{\mathrm{H}}] \tag{45}
\end{equation*}
$$

A generalized Coulomb helicity Lippman-Johnson ${ }^{(29)}$ operator in this case is given by

$$
\begin{equation*}
\tilde{\Lambda}=\left[m_{0}^{2}-\tilde{H}^{2}\right]^{-\frac{1}{2}}\left\{\rho_{3} \alpha Z \vec{\sigma} \cdot \hat{r} \tilde{H}-i \vec{K} \vec{\sigma} \cdot \vec{p}\right\} \tag{46}
\end{equation*}
$$

The commutation relations are

$$
\begin{equation*}
[\tilde{H}, \tilde{\Lambda}]=0=[\vec{J}, \tilde{\Lambda}]=[\overrightarrow{\mathrm{K}}, \tilde{\Lambda}]_{+} \tag{47}
\end{equation*}
$$

and $\tilde{\Lambda}^{2}+\overrightarrow{\mathrm{K}}^{2} \rightarrow \overrightarrow{\mathrm{~N}}^{2}$ where N^{2} is the operator given by

$$
\begin{equation*}
\overrightarrow{\mathrm{N}}^{2} \rightarrow(\alpha Z)^{2} \tilde{\mathrm{H}}^{2} /\left(\mathrm{m}_{0}^{2}-\tilde{\mathrm{H}}^{2}\right) \tag{48}
\end{equation*}
$$

Hence here we have an operator which explains the degeneracy w.r.t. sign of k, and operator \vec{J} which is generalization of $\overrightarrow{\mathrm{L}}$. The operator which corresponds to non-relativistic Runge-Lentz vector though complicated, is constructed by Swamy ${ }^{(24)}$. For $q^{\text {th }}$ component

$$
\begin{equation*}
(\vec{\Omega})_{q} \psi_{N K \mu}=\rho_{1} S_{1}^{-2}\left[\left(\frac{\vec{\sigma} \times \vec{L}}{2}\right)_{q}\left(\frac{1+\rho_{3}}{2}\right), \tilde{H}\right] \psi_{N_{K \mu}} \tag{49}
\end{equation*}
$$

An operator \vec{B} (K in their notation) can be defined as

$$
\begin{equation*}
\vec{B}=\vec{B}^{+}+\vec{B}^{-}+\vec{B} 11 \tag{50}
\end{equation*}
$$

where $(\vec{B}){ }_{q} \psi_{N K \mu}$ can be defined in terms of $(\Omega){ }_{q} \psi_{N K \mu}$. So the Lie algebra for bound states is,

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \varepsilon_{i j k} J_{k},\left[\vec{B}_{i}, \vec{B}_{j}\right]=i \varepsilon_{i j k} J_{k} \tag{51}
\end{equation*}
$$

the invariant relations happen to be

$$
\begin{equation*}
2 \vec{J} \cdot \vec{B}=\left(\tilde{N}-\frac{1}{2}\right) \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
(\vec{J}+\vec{B})^{2}=\tilde{N}^{2}-1 \tag{53}
\end{equation*}
$$

Equations (51) to (53) show that the invariant group to which Symmetric Hamiltonian belongs is 0 (4) but Equation (52) shows that the irreducible representation now is not $v_{\rho, \sigma}$ of $0(4,1)$ but that it is $\nu_{\frac{1}{2} \sigma}$. That is the basis functions do not belong to symmetric representation as is the case with non-relativistic Coulomb problem. This is, of course, the first order equation, but when we go to the quadrated equation then it should be $O(4)$ x $\operatorname{SU}(2,2)$, because $\operatorname{SU}(2,2)$ is the symmetry of the Dirac 15 operators.

Continuum State Wavefunction

It has been shown by Malkin and Manko, that for the positive energy states the symmetry of the Schrodinger equation in terms of generators

$$
\overrightarrow{\mathrm{A}}=\left(\sqrt{E^{2}-m_{0}^{2}-\tilde{H}^{2}}\right) \frac{1}{2}[(\overrightarrow{\mathrm{~L}} \times \vec{p}-\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{L}})+\alpha Z E \hat{r}]
$$

and \vec{L} is $\operatorname{SL}(2, C)$. This is because of the commutation relations

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k} \quad\left[L_{i}, A_{k}\right]=i \varepsilon_{i k \ell} A_{\ell} \tag{56}
\end{equation*}
$$

and most important

$$
\begin{equation*}
\left[A_{i}, A_{j}\right]=-i \varepsilon_{i j k} L_{k} \tag{57}
\end{equation*}
$$

an important - sign in Equation (57) distinguishes this Lie algebra from the Lie algebra of the bound state generators (Equation 12). The above algebra belongs to $\mathrm{SL}(2, \mathrm{C})$ generators. It should be noted that this group is isomorphic to the homogeneous orthochronous Lorentz group ${ }^{(30)}$.

The Casimir invariants are

$$
\begin{align*}
& C_{1}=\sum_{i}\left(\vec{L}_{i}+i \vec{A}_{i}\right)^{2}=-1-\frac{\alpha^{2} z^{2} E^{2}}{E^{2}-m_{0}^{2}} \tag{58}\\
& C_{2}=\sum_{i}\left(\vec{L}_{i}-i \vec{A}_{i}\right)^{2}=-1-\frac{\alpha^{2} z^{2} E^{2}}{E^{2}-m_{0}^{2}} \tag{59}
\end{align*}
$$

with

$$
\rho=\frac{2 \alpha Z E}{\sqrt{E^{2}-m_{0}^{2}}} 2 \alpha Z<\rho<\infty
$$

we can write C_{1} and C_{2} as

$$
\begin{align*}
& C_{1}=\left(\frac{m}{2}-1-\frac{1 \rho}{2}\right)\left(\frac{m}{2}+1-\frac{i \beta}{2}\right) \tag{60}\\
& C_{2}=\left(\frac{m}{2}-1+\frac{i \rho}{2}\right)\left(\frac{m}{2}+1+\frac{i \rho}{2}\right) \text { and } E>m_{0} .
\end{align*}
$$

Since the Dirac matrices γ_{i} commute with the Schrodinger Hamiltonian, the full symmetry of the equation is $\operatorname{SL}(2, C) X \operatorname{SU}(2,2)$ for continuum wavefunctions for $E>m_{0}$. Since in case of Symmetric Hamiltonian the second invariant $\vec{J} \cdot \vec{B} \neq 0$, as opposed to Schrodinger case, C_{1} and C_{2} here are slightly different. They are

$$
\begin{align*}
& C_{1}=\sum_{i}\left(\vec{J}_{i}+i \vec{B}_{i}\right)^{2}=-1-\frac{\alpha^{2} z^{2} E^{2}}{E^{2}-m_{0}^{2}} \tag{61}\\
& C_{2}=\sum_{i}\left(\vec{J}_{i}-i \vec{B}_{i}\right)^{2}=-2 i \tilde{N}-\frac{\alpha^{2} z^{2} E^{2}}{E^{2}-m_{0}^{2}} \tag{62}
\end{align*}
$$

Using the same ρ as above we can say that the whole space of the states
with energy E is decomposed in to two spaces H_{+}and H_{-}. Here H_{+}and H_{-} form the spaces of irreducible representations corresponding to the invariant operators

$$
\begin{equation*}
m_{0}=-1, \rho=i+\frac{2 \alpha Z E}{\sqrt{E^{2}-m_{0}^{2}}} \text { and } m=1, \rho=-1+\frac{2 \alpha Z E}{\sqrt{E^{2}-m_{0}^{2}}} \tag{63}
\end{equation*}
$$

Thus we see that in case of Symmetric Hamiltonian in case of bound states the invariant group is $0(4)$ and the dynamical group is $0(4,1)$. The wavefunctions form the bas is for irreducible representation. The continúum state wavefunctions, with proper choice of generators and their normalization, form irreducible representation of $\mathrm{SL}_{\mathrm{j}}(2, \mathrm{C})$. The dynamical group is at least as large as $\operatorname{SL}_{\mathrm{j}}(2, \mathrm{C}) \times \operatorname{SU}(2,2)$.

In the subsequent chapters the discussion of momentum space wavefunctions, Fock-Bargmann representation is given. The importance of generating function will be discussed.

Some important consequences of the symmetry relations are discussed in a different chapter.

REFERENCES

（1）W．Pauli，Zeit．F．Physik，36， 336 （1926）．
（2）L．C．Biedenharn，Phys．Rev．， 126845 （1962）．
（3）V．Fock，Zeit．F．Physik， 98145 （1935）．
（4）M．Bander and C．Itzykson，Rev．Mod．Phys． 38330 （1966）．
（5）S。P．Alliluev and Zh．Eskerin，J．E．T．P．， 6156 （1958）．
（6）Hamermesh，M．，＇Group Theory＇，Addison and Wesley，N．Y．（1964）．
（7）A。O．Barut and H．Kleinert，Phys．Rev．， 1561541 （1967）．
L．Hulthen，Zeit．F．Physik， 8621 （1933）．
P．Budini，Neuvo Cimento， 41 A 399 （1966）．
A．Bohm，Neuvo Cimento， 43 A 665 （1966）．
A．Sankarnarayan，Neuvo Cimento 44 B 273 （1966）．
E．C．G．Sudarshan and N．Mukanda，＂Lecture in Theoretical Physics＂， Vol． 8 B Ed．by W．E．Britten（Boulder，Col．）1966，p． 407.
H．Bacry，Neuvo Cimento， 41 A 221 （1966）．
（8）A．O．Barut，P．Budini and C．Fronsda1，Proc．Royal Soc．，A 291 106 （1966）．
（9）M．Gellmann and Y．Ne＇eman，Phy．Letters， 17148 （1965）．
（10）V．Bargmann，Zeit．F。Physik， 99576 （1936）．
（11）E．Cartan，＇Theory of Spinors＇，M．I．T．Press Cambridge，Mass． （1968）．
（12）Schweber，So，＇An Introduction to Relativistic Quantum Field Theory＇，Harper and Row，N．Y．（1962）．
（13）H．A．Bethe and Salpeter，E．E．，＇Quantum Mechanics of One and Two Electron Atoms＇，Aca。Press，Inc．，（1957）．
（14）Rose，M．E．，＇Relativistic Electron Theory＇，J。 Wiley and Sons， Inc．${ }^{\text {N }}$ New Yrk（1961）．
（15）W．Pauli，Cern Lecture Notes（56） 31.
（16）Racah，Go，Cern Lecture Notes，61－9－1961．
（17）D．M．Fradkin and Kiefer，H．M．，Phys．Rev．， 1801282 （1969）．
(18) Harish, Chandra, Proc. Roy. Soc,, A 371194 (1947).
(19) E. P. Wigner and Inonu, E., Proc. Nat. Aca. Sc. 39510 (1953).
(20) E. P. Wigner, 'Group Theory', Aca. Press, N. Y. (1959).
(21) Dixmeyer, J., Bull. Soc. Math De. Fr. 899 (1961).
(22) Strom, S., Arkiv F. Phys., 30455 (1965).
(23) Hermann, R., 'Lie Groups for Physicists', W. A. Benjamin, N. Y. (1966).
(24) Biedenharn, L. C. and Swamy, N. V. V. J., Phys. Rev., 133B 1353 (1964).
(25) Malkin and Manko, J. E. T. P., 28151 (1969).
(26) Malkin and Manko, Sov. J. of Nuc. Phy., 3267 (1966),
(27) Chatterji, D., Ph.D. Thesis, Duke Univ., (1965). Sheth, C. V., Ph.D. Thesis, Karnatak Univ., (1969).
(28) Fradkin, D. M., Phys. Rev., 135B 1085 (1964).
(29) B. A. Lippman and Johnson, M. H., Phys. Rev., 78329 (1950).
(30) Naimark, M. A., 'Linear Representations of Lorentz Group', English Trans. Ame. Math. Soc. (1957).
(31) Van Der Warden, 'Die Group Theoretische Methoden in der Quantenmechanik' (Springer, Berlin) (1932).

CHAPTER III

FOCK BARGMANN SPACE, MOMENTUM REPRESENTATION
OF SYMMETRIC HAMILTONIAN AND COEFFICIENTS
CONNECTING FREE FIELD AND STARK
WAVEFUNCTIONS OF HYDROGEN ATOM

In the first section we will discuss the vectors in Fock Bargmann: space, the integral kernel and its connection to the generating function of various spacial functions arising in quantum mechanics. We will distinguish between Green's functions arising in the Extended Hilbert space of ordinary quantum mechanics and the integral kernels in the Fock Bargmann space which is also a vector in Hilbert space.

In second section we will discuss momentum wavefunctions of the Symmetric Hamiltonian.

At the end of the chapter we will derive coefficients connecting free field and Stark wavefunctions of the hydrogen atom from the group theoretical points of view and compare it with recent published work. This will prove that the powerful techniques of group theory can also give quantitative results and a better understanding of the processes involved。

Section I

The states of a quantum mechanical system of n degrees of freedom are usually described by functions either in coordinate real space
$\left(q_{1}--q_{n}\right)$ or momentum space $\left(p_{1}--p_{n}\right)$. But the complex coordinates $\xi_{k}=\frac{1}{\sqrt{2}}\left(q_{k}+i p_{k}\right)$ and $\eta_{k}=\frac{1}{\sqrt{2}}\left(q_{k}-i p_{k}\right)$ play an important role not only in quantum field theory but also in classical mechanics. ${ }^{1-2}$ We can easily see that

$$
\xi_{k}=\eta_{k}^{*} \text { and } \eta_{k}=\xi_{k}^{*} ;\left[\xi_{k}, \xi_{l}\right]=0=\left[\eta_{k}, \eta_{t}\right]_{(1)}
$$

and

$$
\left[\xi_{K}, \eta_{L}\right]=\delta_{K L}
$$

Fork ${ }^{3}$ was the first to realize the importance of this combination coordinate system and as early as 1928, he introduced the operator solution for commutation relation $\left[\xi_{k}, \eta_{k}\right]=1$ as $\xi_{k}=\frac{\partial}{\partial \eta_{k}}$ in analogy with the Schrodinger operator solution ${\underset{K}{K}}^{p^{\prime}}=-i \frac{\partial}{\partial q_{K}}$ of the commutation vela$\operatorname{tion}\left[q_{k}, p_{k}\right]=i$ where k refers to a cartesian index. Barman (2) studied the function space on which the Fock solutions are realized. We call this Hilbert space (F_{n}) as Fock-Bargmann space. He also discussed the connection between this Hilbert space and ordinary Hilbert space $\left(H_{n}\right)$ of square integrable functions $\psi_{n}(q)$ or $\psi_{n}(p)$.

We summarize below some of the results peculiar to this Hilbert space F_{n}.

The complex variables Z_{i} and let $Z=\left(Z_{1}--Z_{n}\right)$ stand for a point in a complex n dimensional space C_{n}. Let $Z=x+i y$ where x and $y \in R_{n}$ the real n dimensional space. There exists a function $\rho_{n}(x, y)$ which is real and defines inner product in Fock-Bargmann Hilbert space F_{n}, that 15

$$
\begin{equation*}
(f, g)=\int f(z)^{*} g(z) p_{n}(x, y) d^{n} z \tag{2}
\end{equation*}
$$

The connection between two Hilbert spaces is given by

$$
\begin{align*}
& f(z)=\int A_{n}(z, q) \psi(q) d^{\eta} q \tag{3}\\
& d^{n} q=d q_{1} d q_{2} \cdots \cdot d q_{n}
\end{align*}
$$

Which is a unitary mapping of H_{n} on to F_{n}, which properly relates the operators ξ, η of H_{n} to $Z, \frac{\partial}{\partial Z}$ of F_{n}. So for any given Hamiltonian if we determine $\rho_{n}(x, y)$ and $A_{n}(z, q)$ then we have a complete knowledge of tilbert space F_{n} in terms of Hilbert space H_{n}. The volume element $d_{n}(Z)$ in F_{n} is connected to $\rho_{n}(x, y)$ by relation

$$
\begin{equation*}
d \mu_{n}(z)=\rho_{n}(x, y) d^{n} x d^{n} y \tag{4}
\end{equation*}
$$

The most important feature of the Fock-Bargmann space is in the fact that the basis vectors in this space are simplest orthonormal set of vectors.

$$
\begin{equation*}
U_{m}=\frac{\sum^{m} 1}{\sqrt{m_{1}!}} \quad \text { for one dimensional space } \tag{5}
\end{equation*}
$$

If f is an entire function in the n dimensional Fock-Bargmann space then f has the form
where m_{k} 's are integers.
Similar to closure property in the ordinary Hilbert space

$$
\begin{equation*}
\sum_{n} \psi_{n}(q) \psi_{n}\left(q^{\prime}\right)=\delta(q-q) \tag{4}
\end{equation*}
$$

here we have

$$
\int A_{n}(2, q) A_{n}^{*}(\omega, q) a^{n} q=e^{2 \cdot \omega^{*}}
$$

Which is also a vector in the Fock-Bargmann space. All other details of inequality, normalization, etc., are given in Bargmann's article and we will not repeat them here, with the exception of the linear harmonic oscillator which is here discussed to illustrate Bergman's ideas. In Section IV of this chapter we will make use of the wave functions in Fock-Bargmann space corresponding to hydrogen atom in the spherical and parabolic coordinates and show how clearly one can bring out the hidden Clebch-Gordqn connection between these two types of wave functions.

Fock-Bargmann Space Wave Functions
 for Harmonic Oscillator

The Hamiltonian for n identical uncoupled linear Harmonic oscillators after subtracting the zero point energy, is given by

$$
\begin{equation*}
\underset{\sim}{H}=\frac{1}{2} \sum_{k=1}^{n}\left(p_{k}^{2}+q_{k}^{2}-1\right)=\sum_{k=1}^{n} \eta_{k} \xi_{k} \tag{9}
\end{equation*}
$$

The wavefunctions in q space (coordinate space) are expressed in terms of Hermite polynomials

$$
\phi_{m}\left(q_{k}\right)=\left(2^{m} m / \sqrt{\pi}\right)^{-1 / 2} e^{-q_{k}^{2} / 2} H_{m}\left(q_{k}\right)_{(10)}
$$

$\tilde{H}=A_{n} H A_{n}^{-1}$ is the Hamiltonian in Z space and is equal to $\sum_{K} Z_{K} \frac{\partial}{\partial Z_{K}}$ This later expression is in fact part of the underlying philosophy of the Bergman approach. So the eigenvalue equation in Z space for the uncoupled Harmonic oscillators becomes

$$
\begin{equation*}
\tilde{H} f(z)=E f(z)=\sum_{k=1}^{n} z_{k} \frac{\partial f\left(z_{k}\right)}{\partial z_{k}} \tag{12}
\end{equation*}
$$

This reduces the analysis of \tilde{H} to a triviality. The eigenfunction are

$$
f_{m_{1}}\left(z_{k_{1}}\right)=\alpha_{m_{1}} z_{1}^{m} ; f=\sum_{m_{1} m_{2}} \alpha_{m_{1}} \cdots \alpha_{m_{n}} z_{1}^{m_{1}} \ldots z_{n(13)}^{m}
$$

And

$$
1+f(z)=\sum_{m_{1} m_{2} \ldots} \mid m / \alpha_{m_{1}} \ldots . \alpha_{m_{n}} Z_{1}^{m} \ldots \sum_{n}^{m}
$$

So eigenvalue

$$
=l=\left|m^{n}\right|=m_{1}+m_{2}+\cdots+m_{n}
$$

Here

$$
\begin{aligned}
& A_{n}(z, q)=\sum_{m} \psi_{m}^{*}(q) f_{m}(z) \\
&=C^{\prime} \exp \left\{-\frac{1}{2}\left(\sum_{k=1}^{n} z_{k}^{2}+q_{k}^{2}\right)+\sqrt{2} \Sigma_{k} z_{k}, q_{k}\right\}
\end{aligned}
$$

With $C^{\prime}=1 / T_{\text {It can be shown by straight }}^{n} / 4{ }_{\text {forward integration that }}$

$$
\begin{equation*}
f(z)=\int A_{n}(z, q) \psi(q) d q \tag{15a}
\end{equation*}
$$

and

$$
\psi(q)=\int A_{n}^{*}(z, q) f(z) d z
$$

Furthermore,
(15b)
the appropriate volume element is

$$
\begin{aligned}
d & \mu_{n}(z)=\rho_{n}\left(x_{i}, y_{i}\right) d x_{i} d y_{i} \\
& =C e^{-\sum_{i} z_{k}^{*} \cdot z_{k}} d x_{1} \ldots d x_{n} d y_{1} \ldots d y_{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(z)=\int \sum_{m} \psi_{m}^{*}(q) f_{m}(z) \psi_{n}(q) d q \\
& =\sum_{m} \int \psi_{m}^{*}(q) \psi_{n}(q) f_{m}(z) d q \\
& =f_{m}(z) \sum_{m} \int \psi_{m}^{*}(q) \psi_{n}(q) d q=f_{m}(z) \delta_{m n} \\
& =f_{m}(z)=\sum_{m_{1} \cdot m_{n}} \alpha_{m_{1}} \cdots \alpha_{m_{n}} z_{1}^{m} \ldots z_{n}^{m_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \psi(q)=\int \sum_{m} \psi_{m}(q) f_{m}^{*}(z) f_{n}(z) d \mu_{\nu}(z) \\
& =\sum_{m} \psi_{m}(q) \int_{m} f_{m}^{*}(z) f_{n}(z) d \mu_{\nu}(z)(17) \\
& =\sum_{m} \psi_{m}(q) \delta_{m n}=\psi_{m}(q)
\end{aligned}
$$

$$
\begin{aligned}
& \int A_{n}(z, q) A_{n}^{*}(\omega, q) d^{n} q \\
= & \int C^{\prime} C^{\prime \prime} e^{-1 / 2} \sum_{k}\left\{\left(z_{k}^{2}+q_{k}^{2}\right)+2 \sqrt{2} z_{k} q_{k}\right\} \\
& e^{-1 / 2} \sum_{k}\left\{-\left(\omega_{k}^{*}+q_{k}^{2}\right)-2 \sqrt{2} \omega_{k}^{*} q_{k}\right\} \\
& d q_{k}
\end{aligned}
$$

for $n=1$

$$
\begin{gathered}
\operatorname{For} n=1 \\
=\int c^{\prime} c^{\prime \prime} e^{-1 / 2\left(z_{k}^{2}+q_{k}^{2}\right)+\sqrt{2} z_{k} q_{k}-\frac{1}{2}\left(\omega_{k}^{*}+q_{k}^{2}\right)} \\
e^{-\sqrt{2} \omega_{k}^{*} q_{k}} d q_{k} \\
=\frac{1}{\sqrt{\pi}} \int e^{-\left(q_{k}-\frac{1}{\sqrt{2}}\left(z_{k}+\omega_{k}^{*}\right)^{2}\right.} e^{z_{k} \cdot \omega_{k}^{*} d q_{k}}=e_{k} z_{k} \omega_{k}^{*}
\end{gathered}
$$

The merit of the Bergman transformation is then that because of the simplicity of the structure of the Hamiltonian in this space, study of its symmetry properties becomes easy.

Section II

While discussing the symmetry of the coulomb field in Chapter II, we have indicated the importance of momentum space representation obtained by Fock to bring out the $0(4)$ symmetry of non-relativistic Coulomb problem. The wavefunctions obtained in this manner by Hock (5) agree with those evaluated directly using the Fourier Transform of hydrogenic wavefunctions in coordinate space by Pauling and Podolsky ${ }^{(6)}$ in the spirit of Dirac's transformation theory. A transformation of Schrödinger differential equation has been made by Hylleraas (7). The result being

$$
\begin{align*}
& \left(p^{2}-2 m E\right)^{2}\left[\frac{\partial^{2}}{\partial p_{x}^{2}}+\frac{\partial^{2}}{\partial p_{y}^{2}}+\frac{\partial^{2}}{\partial p_{z}^{2}}\right]+\left(p^{2}-2 m E\right)\left[\left(p_{x} \frac{\partial}{\partial p_{x}}\right.\right. \tag{19}\\
& \left.\left.+p_{y} \frac{\partial}{\partial p_{y}}+p_{z} \frac{\partial}{\partial p_{z}}\right)^{\prime}+12\right]+2 m\left(E+4 R_{\mathcal{L}}\right)=0 \\
& \text { The complexity }
\end{align*}
$$

not commute. The transformation of Symmetric Hamiltonian and its soletions in momentum space have been done by Swamp and Biedenharn ${ }^{(8)}$.

The momentum space equation in its complexity is in sharp contrast to the integral relationship of Fork, the essential difficulty in such transformations being the fact that the Coulomb potential is prescribed in coordinate space, The attempts at transforming the relativistic Dirac-Coulomb Hamiltonian and its solutions in momentum space have not met with as much success as the non-relativistic case. While Levy (9) has shown how the Dirac Hamiltonian for arbitrary potentials can be transformed into a momentum space integral equation, the solutions (10) even for the Coulomb potential cannot be obtained in closed form. In contrast to this situation, however, it turns out that the relativistic (approximate) Symmetric Dirac-Coulomb Hamiltonian ${ }^{(11)}$ can be transformed into momentum space straightforwardly and that this Hamiltonian has solutions in momentum space as simple as those in position space.

Representation of the Symmetric Hamiltonian in Momentum Space

In order to derive the momentum space Hamiltonian it is convenient to start from an inspection of the non-relativistic system. If we write the non-relativistic Schrodinger equation with the Coulomb potential as

$$
\left.\left(-\frac{1}{2 m} \vec{b}^{2}-\frac{\alpha z}{\gamma}\right) / N K \mu\right\rangle=E_{N R} / N R \mu=\frac{m}{2}\left(\frac{\alpha^{z}}{N}\right)^{2} / N R \mu
$$

the operator $1 / r$ can be expressed as

$$
\begin{equation*}
\left.\frac{1}{r}|N| c \mu\right\rangle=\left(\frac{1}{2 \alpha 2 m} \vec{p}^{2}+\frac{1}{2} \frac{m \alpha z}{N^{2}}\right)|N k \mu\rangle \tag{21}
\end{equation*}
$$

and this essentially defines a way of handling $1 / r$ in momentum space. From the Dirac rule ${ }^{(12)}$

$$
\begin{equation*}
(\vec{\sigma} \cdot \vec{p})(\vec{\sigma} \cdot \vec{r})=\vec{p} \cdot \vec{r}-1 \vec{\sigma} \cdot \vec{p} \times \vec{r} \tag{22}
\end{equation*}
$$

and writing $\vec{p} \times \vec{r}=-\vec{L}$ it can simply be shown that $\vec{\sigma} \cdot \vec{r}$ in momentum space is given by

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{r}=\stackrel{\rightharpoonup}{\sigma} \cdot \hat{p}\left\{\frac{\partial}{\partial h}+\frac{1-(\vec{\sigma} \cdot \vec{L}+1)}{p}\right\} \tag{23}
\end{equation*}
$$

where $\hat{p}=\frac{\vec{p}}{p}$, the unit vector. Equations (24) and (22) facilitate, writing $\vec{\sigma} \cdot \hat{r}=\vec{\sigma} \cdot \vec{r} \frac{1}{r}$, the expression of the "Coulomb Helicity Operator" in momentum space. We thus have

$$
\begin{align*}
& \bar{\sigma} \cdot \bar{A}|N \subset \mu\rangle \\
& =\frac{N}{\alpha Z_{m}}\left\{\left(\alpha z_{m}\right) i \sigma \cdot \beta\left(\frac{\partial}{\partial p}+\frac{1-(\bar{\sigma} \cdot \bar{L}+1)}{p}\right)\right. \\
& \left.\left(\frac{\bar{\beta}^{2}}{2 \alpha Z_{m}}+\frac{\alpha Z_{m}}{2 N^{2}}\right)+i \vec{\sigma} \cdot \vec{\beta}(\vec{\sigma} \cdot \bar{\Sigma}+1)\right\}\left(\mathrm{m}^{(2 \mu)}\right) \\
& =i S_{(\mathrm{c})} \sqrt{N^{2}-\mathrm{C}^{2}}|N K \mu\rangle \\
& \text { We also have the relation } \\
& \vec{\sigma} \cdot \hat{p} \bar{x}_{k}^{\mu}(\hat{\beta})=-\bar{x}_{-k}^{\mu}(\hat{\beta}) \tag{25}
\end{align*}
$$

where the bar of the spherical spinous signifies their being expressed as functions of the polar angles of the momentum vector. With the help of Equations (24) and (25) and introducing the variable

$$
\begin{equation*}
\theta=\left(\frac{N}{\alpha Z m}\right) p=\tan \alpha / 2 \tag{26}
\end{equation*}
$$

we get the 'recursion relation' connecting two radial momentum space
wavefunctions belonging to $\ell_{(k)}$ and $\ell_{(-\kappa)}$

$$
\begin{align*}
& \left\{\frac{1}{2}\left(\frac{\partial}{\partial \theta}+\frac{C+1}{\theta}\right)\left(1+\theta^{2}\right)-\theta C\right\} P_{N L}\left(C^{\prime}\right) \\
& \quad=S_{(-K)} \sqrt{N^{2}-C^{2}} P_{N(E)}(P) \tag{27}
\end{align*}
$$

$$
\begin{equation*}
\left[\frac{d}{d r}+\frac{1+k}{r}-\frac{\alpha z \epsilon}{k}\right] F_{N r}^{(k r)}(k)=\frac{k}{c}\left|\sqrt{N^{2}-k^{2}}\right| F_{M(P)}\left(z_{k}\right) \tag{13}
\end{equation*}
$$

for coordinate space radial wavefunctions.
(26729) With the substitutions ${ }_{A}$ the recursion relation (27) agrees with Equation (27) of Fock within a phase factor. $P_{N l}(p)=\cos ^{-4} \alpha / 2 \pi_{l}(n \alpha)$ (29) In order now to go to the relativistic case we need to replace the non-relativistic operator Equation (22) by

$$
\begin{equation*}
\frac{1}{r} \longrightarrow \frac{1}{2 \alpha z}\left(\vec{p}^{2}-\tilde{H}^{2}+m_{0}^{2}\right) \tilde{H}^{-1} \tag{30}
\end{equation*}
$$

where \tilde{H} is now the approximate relativistic Dirac-Coulomb Hamiltonian.
Now (choosing $\hbar=c=1$ as in RKP II.)

In \tilde{H} the factor H_{p} is already in momentum space. The operator S_{1}^{2} can be written

$$
\begin{align*}
S_{1}^{2} & =e^{-\rho_{2} \vec{\sigma} \cdot \hat{r}} \sin ^{-1} \frac{\alpha z}{k} \tag{32}\\
& =\sqrt{1+\left(\frac{\alpha z}{k}\right)^{2}}-\frac{\alpha z}{k} \rho_{2} \vec{\sigma} \cdot \hat{r}
\end{align*}
$$

13 A similar recursion relation existing between continuum state functions is given in Equation 25 of RKP I.

Now introducing the operator relation in Equation (30) and with the help of Equation (22) this can be transcribed into momentum space as

$$
\begin{aligned}
& S_{1}^{2}=\sqrt{1+\left(\frac{\alpha z}{E}\right)^{2}} \\
& -\frac{\alpha Z}{\underset{\sim}{k}} \rho_{2}\left[\vec{\sigma} \cdot \hat{\phi}\left(\frac{\partial}{\partial \beta}+\frac{1-\rho_{3} \frac{k}{z}}{p}\right)\right] \frac{1}{2 \alpha^{2}}\left(p^{2}-\tilde{H}^{2}+m^{2}\right) \hat{H^{2}}-1
\end{aligned}
$$

and we thus have the integral equation for the Symmetric Hamiltonian in

$$
\begin{aligned}
& \tilde{H}=\sqrt{1+\left(\frac{\alpha z}{K}\right)^{2}}-\frac{\alpha z}{k} \rho_{2}\left\{\vec{\sigma} \cdot \hat{p}\left(\frac{\partial}{\partial p}+\frac{1-\rho_{3} k}{p}\right)\right\} \\
& \times \frac{1}{2 \alpha z}\left(\vec{p}^{2}-\tilde{H}^{2}+m_{0}^{2}\right)^{2} \tilde{H}^{-1}\left(\rho_{1} \vec{\sigma} \cdot \vec{p}-\rho_{3}^{m}\right)
\end{aligned}
$$

Using the commutation relation

$$
\begin{align*}
& {\left[\vec{\sigma} \cdot \vec{p}, S_{1}^{2}\right]} \\
& =\frac{\alpha z}{k} \rho_{2}[\vec{\sigma} \cdot \vec{p}, \vec{\sigma} \cdot \hat{r}]_{+} \tag{35}\\
& =-2 \alpha 2 \rho_{1} \frac{1}{r}+2 \alpha=\frac{1}{\underset{r}{k}} \varphi_{2} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{p}
\end{align*}
$$

the integral equation can be written, after some operator-algebraic

$$
\begin{aligned}
& \left(\rho_{1} \vec{\sigma} \cdot \vec{p}-\rho_{3} m_{0}\right) \sqrt{1+\left(\frac{\alpha z}{k}\right)^{2} \tilde{H}} \\
& =\vec{p}^{2}+m_{0}^{2}+\left\{\left(\rho_{1} \vec{\sigma} \cdot \vec{p}+\rho_{3} m_{0}\right)\left(\frac{2}{k} \rho_{2} \vec{\sigma} \cdot \hat{p}\right)\right. \\
& \left.-i p \frac{1}{\underset{\sim}{k}} \rho_{3}\right\} \times\left(\frac{\partial}{\partial p}+\frac{1-\rho_{3} \hat{\sim}}{p}\right)\left(\vec{p}-\vec{H}^{2}+m_{1}^{2}\right)
\end{aligned}
$$

It is easy to see that this goes over into a free-field Dirac Hamiltonian in the limit $(\alpha z) \rightarrow 0$ if we remember that in this case $\overrightarrow{\mathrm{p}}^{2}+\mathrm{m}_{\mathrm{o}}{ }^{2} \neq \tilde{\mathrm{H}}^{2}$. In view of Hylleraas' equation for the non-relativistic case, this complicated Hamiltonian is not a surprising result.

Transformation of the Wavefunctions

An even simpler task than the transformation of the Hamiltonian happens to be the evaluation of the momentum space wavefunctions. The transformation of the solutions of the Dirac-Coulomb Hamiltonian has been attempted by Rubinowicz who only succeeded in expressing the momentum space radial functions in numerical form. The momentum space solution of the Symmetric Hamiltonian is given by the Fourier transform of the coordinate space solution

$$
\begin{equation*}
\Psi_{N+x \mu}(\vec{p})=\frac{1}{(2 \pi)^{3 / 2}} \int e^{-i \vec{p} \cdot \vec{r}} \psi_{N+2 \mu \mu}(\vec{r}) \tag{37}
\end{equation*}
$$

${ }_{\psi}^{(\vec{r})} \underset{N}{(\vec{r})}$ satisfies the eigenvalue equation

$$
\begin{align*}
\tilde{H} \Psi_{N+x \mu} & =\left\{e^{-\rho_{2} \vec{\sigma} \cdot \hat{\gamma} \operatorname{Sin}^{-1} \frac{\alpha Z}{\alpha}}\left(\rho \vec{\sigma} \cdot \vec{p}-\rho_{3} m_{0}\right)\right\} \underbrace{}_{N+x \mu}(\vec{r}) \tag{38}\\
& =E_{N} \Psi_{N+x, \mu}
\end{align*}
$$

The coordinate solution is given explicitly by Equation (51) of RKP II

$$
\eta_{N k \mu}(\vec{r})=\left(\begin{array}{cc}
A \chi_{x}^{\mu} F_{N(u x)}(R \varepsilon) \tag{39}\\
-i B \chi_{-k}^{\mu} & F_{N \bar{l}(x)}(k \varepsilon)
\end{array}\right)
$$

A and B being numerical functions of N and K. Since the Dirac operator $K=\rho_{3}(\vec{\sigma} \cdot \vec{L}+1)$ as well as the angular momentum operator have the same form in coordinate space and in momentum space (10) the spin angle functions in the two spherical spinors χ_{k}^{μ} and χ_{-k}^{μ} are form-invariant and $\underset{N k \mu}{(\vec{p})}$ can be written, The χ_{k}^{μ} now being functions of the polar angles of the momentum vector. The radial functions $M_{n l \bar{l}}$ and $M_{N l(-k) \ell(k)}$ are those evaluated by Podolsky and Pauling ${ }^{(7)}$.

$$
\begin{equation*}
\Psi_{N k \mu}(\vec{P})=\binom{A \chi_{k}^{\mu} M_{N((k) \bar{l}(x)}(p)}{-i B \chi_{-x}^{\mu} M_{N l(-x) \overline{l(-x)}}(p)} \tag{40}
\end{equation*}
$$

If one wishes to use the solutions of the Hermitian form of the Symmetric Hamiltonian in momentum space, however, more caution is needed. In the Fourier transformation, while the spin-angle part of the wavefunctions is carried over in a manner similar to the transformotion of $\Psi_{N k \mu}$ the radial integrals to be evaluated are of the more general type

$$
\begin{equation*}
M_{N(c x)(1-x)}^{(p)}=(-1)^{\frac{3(+2}{2}} \int_{0}^{\infty}(p r)^{-\frac{1}{2}} \int_{\left(+\frac{1}{2}\right.}(p r) f_{N((-x)}(r) r^{2} d \xi \tag{41}
\end{equation*}
$$

This is because in ψ_{s} there is a mixing of $\ell_{(k)}$ and $\ell_{(-k)}$ in each component of the column vector. We now proceed to evaluate this integral. Introducing the variables $\xi=2 \frac{\mathrm{r}}{\mathrm{N}} \mathrm{r} \equiv 2 \frac{\mathrm{Z}}{\mathrm{N}} \mathrm{r}$ and $\zeta=\frac{2 \mathrm{pr}}{\xi}$ we have

$$
\begin{align*}
F_{N((-x)}(r)= & a_{N((-x)} e^{-\xi_{1} / 2} \xi^{((-x)} L_{N+l(-x)}^{2 l(-x)+1}(\xi) \tag{42}\\
& \int_{0}^{\infty} F_{N e(-x)}^{2}(r) r^{2} d r=1
\end{align*}
$$

L_{a}^{b} is the associated Laguerre polynomial (7). Equation (42) now becomes

$$
\begin{equation*}
M_{N l \ell(-x)}=\frac{(-1)^{\frac{3 l+2}{2}} Q_{N e(-x)}^{\dot{D}^{l(-x)}+5 / 2} \int_{N+\frac{1}{2}} \int_{0}^{\infty} \sum_{0}^{\infty(-x)+3 / 2} e^{-\xi / 2},}{}, \tag{43}
\end{equation*}
$$

In order to evaluate the Hankel Transform, consider the infinite series

$$
\begin{align*}
& \square=\int_{0}^{\infty}\left\{\sum_{N=\ell(-k)+1}^{\infty} \frac{1}{(N+\varphi(-k))} \sum_{N+((-k)}^{2((-k)+1}\left(\sum_{1}^{\infty} t^{N-l(-x)-1}\right\}\right. \tag{44}\\
& \left.e^{-\xi / 2}(\xi)^{\ell(-x)+3 / 2}\right]_{l+\frac{1}{2}}\left(\frac{1}{2} C \xi\right) d \xi
\end{align*}
$$

(14)
which can be summed as

$$
\begin{aligned}
& U=(-1)^{l(-x)+\frac{3}{2} e(k)}\left\{\frac{a_{N(1-x)}}{\gamma_{N}^{3}} \frac{2^{l(-x)-l(k)-\frac{1}{2}}}{(l(l+3 / 2)}\right. \\
& \left.\frac{r(l(x)+e(k)+3) \zeta^{l}(1-t)^{e(k)-l(-x)+1}}{\bar{l}+l+3}\right\} \\
& , 2^{F_{1}} .
\end{aligned}
$$

where $2 f_{1}$ is given by
${ }^{14}$ This is given explicitly in reference 2 . In their derivation, however, there appears to be a difference in phase of between their Equation (22) and the step preceding it.

$$
\left.\begin{array}{rl}
& 2 F_{1}= \\
& 2 F_{1}\left(\frac{l(k)+\frac{i(1-x)+3}{2}, \frac{l(x)}{}+\frac{l(-x)+4}{2}}{l+3 / 2} ;-\xi^{2}\left(\frac{1-t^{2}}{1+t^{2}}\right)\right.
\end{array}\right)
$$

There are three cases to be considered now.
(a) $\ell_{(-k)}=\ell+1$ (k negative). By making use of the following reration between contiguous hypergeometric functions. (15)

$$
(b-a){ }_{2} f_{1}\binom{a, b ;}{c ; 2}+a_{2} f_{1}\binom{a+1, b}{c ; 2}=b{ }_{2} f_{1}\binom{a, b+1}{c ; 2}
$$

Equation (44) reduces to

$$
\begin{aligned}
J=B_{N l(k)}(+1 & \left\{\left(\frac{2 l+4}{2 l+3}\right) \frac{(1+t)^{2}}{\left(\zeta^{2}+1\right)^{l+3}\left[1-2 x t+t^{2}\right]^{l+3}}\right. \\
& \left.-\left(\frac{1}{2 l+3}\right) \frac{1}{\left[1-2 x t+t^{2}\right]^{l+2}}\right\}
\end{aligned}
$$

$$
\text { where } x=\frac{\zeta^{2}-1}{\zeta^{2}+1}
$$

(b) $\ell_{(-k)}=\ell$ (non-relativistic). This case has been treated by Podolsky and Pauling ${ }^{(6)}$ and we get

$$
\begin{equation*}
U=B_{\text {Nee }} \frac{1-t^{2}}{\left(\varphi^{2}+1\right)^{2+2}\left(1-2 \times t+t^{2}\right)^{4+2}} \tag{44b}
\end{equation*}
$$

(c) $\ell_{(-k)}=(\ell-1)$ (k positive). The hypergeometric function ${ }_{2} F_{1}$ in Equation (44a) is degenerate and gets summed as

$$
\begin{equation*}
U=B_{\text {Ne, }-1} \frac{(1-t)^{2}}{\left(q^{2}+1\right)^{2}+\left[1-2 x+k+l^{2}\right]} \tag{44c}
\end{equation*}
$$

Now with the help of following contiguous relations existing between the gegenbauer function

$$
C_{k-2}^{\gamma+1}(x)=C_{k}^{\gamma+1}(x)-\frac{(\gamma+k)}{\gamma} C_{k}^{\gamma}(x)
$$

$$
x C_{k-1}^{\gamma+1}(x)=C_{k}^{\gamma+1}(x)-\left(\frac{28+k}{2 k}\right) C_{k}^{\gamma}(x)
$$

we obtain after some manipulation ${ }^{(6)}$

$$
M_{N e,(+1}=(-1)^{\frac{e}{2}+1} \sqrt{\frac{8(N-e-2)}{N(N+C+1) \gamma_{N}^{3}}} \frac{(2 e+3)!}{r(l+3 / 2)} .
$$

$$
\begin{aligned}
x \frac{\varphi^{l}}{\left(\varphi^{2}+1\right)^{l+3}}\{ & \left\{\frac{2 l+4}{2 l+3}\right)\left(2+\frac{2}{x}\right) C_{N-l-2}^{l+3}(x) \\
& -\left(\frac{-1-1}{2 l+3}\right)\left(\frac{2}{1-x}\right) C_{N-l-2}^{l+2}(x) \\
- & \left.\left(\frac{2 l+4}{2 l+3}\right)\left(\frac{N}{l+2}+\frac{N+l+2}{(l+2) N}\right) C_{N-l-2}^{l+2}(x)\right\} \\
M_{N l l}= & (-1)^{l / 2} \sqrt{\frac{2(N-l-1)!}{N(N+l)!\gamma_{N}^{3}}} \frac{(2 l+2)!}{r(l+3 / 2)} \\
& \frac{\varphi^{l}}{\left(\varphi^{2}+1\right)^{l+2}}\left(\frac{N}{l+1}\right) C_{N-l-1}^{l+1}(x)
\end{aligned}
$$

$$
\begin{aligned}
& M_{N, l, l-1}(x) \\
& =(-1)^{\frac{l}{2}-1} \sqrt{\frac{(N-l)!}{2 N(N+l-1)!\gamma_{N}^{3}}} \frac{(2 l+1)!}{r(l+3 / 2)} \frac{C^{l}}{\left(\zeta^{2}+1\right)^{l+1}} \\
& \\
& =\left\{\left(2-\frac{2}{x}\right) C_{N-l}^{l+1}(x)+\left(\frac{N+l}{l x}-\frac{N}{l}\right) C_{N-l}^{l}(x)\right\}
\end{aligned}
$$

Because of 'Parseval's Theorem' in Hankel Transforms ${ }^{(16)}$ we have

$$
\begin{align*}
& \int_{0}^{\infty} F_{N e}(r) F_{N l(-x)}(r) r^{2} d r=\delta_{l l(x)} \\
= & \int_{0}^{\infty} M_{N l i(-x)}(p) M_{N l e(x)}(p) p^{2} d p \\
= & -\sqrt{\frac{N^{2}-x^{2}}{N^{2}}} \text { for } l \neq l(-x) \tag{46}
\end{align*}
$$

Section III

$$
\begin{gathered}
\text { Discussion of the Connection Between Field } \\
\text { Free Wave Function and the Stark Wave } \\
\text { Functions of the Hydrogen Atom* }
\end{gathered}
$$

In a recent paper Tarter derived an expression for the coefficients connecting the non-relativistic wavefunctions of hydrogen atom in sherical and parabolic coordinates. Tarter's derivation is a mathematical expression of one set wavefunctions in terms of the other, or stated more precisely, an evaluation of the transformation coefficients connetting the representation of the state vector in Hilbert space in two different representations, in accordance with Dirac's transformation
theory although this was done in slightly different form by Rojansky ${ }^{\text {(19) }}$ several years before Tarter's work. It is the purpose of this section to bring out group theoretical meaning of this mathematical connection which has to do with the peculiar symmetry of the Coulomb field.

* A paper with this title has been submitted for publication

In Chapter II we have discussed, in detail, the $0(4)$ symmetry of the non-relativistic Coulomb field. Let \vec{A} be Runge Lent vector and \vec{L} the angular momentum operator obeying the commutation relations given in Equations (12) of Chapter II. From the viewpoint of the $0(4)$ group these commutation relations are the Lie algebra satisfying the six generators of the group L_{i} and A_{i}. Then we can define two generators \vec{L}_{1} and \vec{L}_{2} by

$$
\vec{L}_{1}=\frac{1}{2}(\vec{L}+\vec{A}) \quad \text { and } \quad \vec{L}_{2}=\frac{1}{2}(\vec{L}-\vec{A})
$$

Where L_{i} are the required elements of the Lie algebra of $0(3)$ and

$$
\begin{gather*}
{\left[L_{1 i}, L_{1}\right]=i \epsilon_{i j k} L_{1 k} \quad\left[L_{2 i}, L_{2 j}\right]=i \epsilon_{i j k} L_{2 k}} \tag{47}\\
{\left[L_{1 i}, L_{2 j}\right]=0}
\end{gather*}
$$

Equations (47) mean that the decomposition of the symmetry group ${ }^{(20,21)}$ $0(4) \rightarrow O(3)(x) O(3)$ is possible. The eigenvalues of $L_{i z}$ and L_{i}^{2} are

$$
\begin{aligned}
& l_{1}\left(l_{1}+1\right)=l_{2}\left(l_{2}+1\right) \rightarrow \frac{N-1}{2}\left(\frac{N-1}{2}+1\right) \\
& L_{12} \rightarrow \frac{n_{1}-n_{2}+m}{2} \quad L_{2} \rightarrow \frac{n_{2}-n_{1}+m}{2}
\end{aligned}
$$

Where N is the energy determining principal quantum number. The wavefunctions of the Schrodinger equation for Coulomb field in spherical coordinates are simultaneous eigenfunction of $L^{2}, ~ H$ and L_{z}. Whereas those in parabolic coordinates diagonalize H, A_{z} and L_{z}. Furthermore,

$$
\overrightarrow{\mathrm{L}}_{1}+\overrightarrow{\mathrm{L}}_{2}=\overrightarrow{\mathrm{L}}
$$

and because of this we get the result that the connection is just a quantum mechanical vector addition and, therefore, transformation coff-
ficients are essentially Clebsch-Gordan coefficients'. 'Let $\phi_{n \ell m}(r, \theta, \phi)$ be the wavefunctions in spherical coordinates and $\phi_{n_{1}} n_{2}(\xi, \eta, \phi)$ be those in parabolic coordinates, then

$$
\phi_{n \ell m}(r, \theta, \varphi)=\sum_{\mu_{1} \mu_{2}} C_{\mu_{1} \mu_{2} m}^{l_{1} l_{2} l} \phi_{n, n_{2} m}(\eta, \eta, \varphi)
$$

The different quantum numbers are explicitly given below

$$
\begin{aligned}
& l_{1}=l_{2}=\frac{1}{2}(n-1)=\frac{n_{1}+n_{2}+\left|m_{1}\right|}{2} \\
& \mu_{1}=\frac{n_{1}-n_{2}+m}{2} \quad \mu_{2}=\frac{n_{2}-n_{1}+m}{2}
\end{aligned}
$$

Hence, $\mu_{1}+\mu_{2}=m$. The Clebsch-Gordan coefficients can be expressed in terms of a hypergeometric function: ${ }^{(22)}$

$$
\begin{gather*}
C_{\mu_{1}}^{l_{1} l_{2} l}=(-1)^{l_{2}+\mu_{2}}\left[\frac{\left(l+l_{1}-l_{2}\right)!}{\left(l-l_{1}+l_{2}\right)!} \frac{\left(l_{1}+l_{2}-l\right)!(l-m)!}{\left(l+l_{2}+l+1\right)!(l+m)!}-\right. \\
\left.\frac{\left(l_{2}-\mu_{2}\right)!(2 l+1)}{\left(l+\mu_{1}\right)!\left(l_{2}+\mu_{2}\right)!}\right]^{\frac{1}{2}} \frac{1}{\sqrt{\left(l_{2}-\mu_{2}\right)!}} \frac{\left(l+l_{2}+\mu_{1}\right)!}{\left(l,-l_{2}-\mu_{2}\right)!} \\
\cdot f_{2}\left(-l+l_{1}+l_{21}, l_{1}-\mu_{1}+1,-l-m ; 1\right) \tag{48}\\
l_{1}-l_{2}-m+1,-l-l_{2}-\mu_{1},
\end{gather*}
$$

If we use the recursion relation (23)

$$
\begin{equation*}
3 F_{2}\binom{a, a^{\prime},-N ;}{c^{\prime}, 1-N-c,}=\frac{(c+a)_{N}}{(c)_{N}} 3 F_{2}\binom{a, c^{\prime}-a^{\prime},-N ; 1}{c^{\prime}, c+a,} \tag{49}
\end{equation*}
$$

and apply it twice it is easy to arrive at the result

$$
\begin{align*}
& { }_{3} F_{2}\binom{-l, n_{2}+|m|+1,-l+m ; 1}{m+1,-l-n_{2}} \\
& =\frac{n_{1}!\left(m+n_{1}\right)!\left(n_{1}+n_{2}\right)!}{\left(n_{1}+m+1\right)!n_{1}!\left(n_{1}-l+m\right)!} \\
& \text { - }{ }_{3} F_{2}\binom{t+m+1,-n_{2},-<+m_{;} ;}{m+1,-n_{1},-n_{2},} \tag{50}
\end{align*}
$$

A comparison with the Tarter's Equation (22) establishes the equivalence

$$
\begin{equation*}
C_{\mu_{1} \mu_{2} m}^{l_{1} l_{2} l}=(-1)^{\left(-m-n_{2}\right.} A_{n l_{m}}^{n_{1} n_{2}} \tag{51}
\end{equation*}
$$

Where $A_{n}{ }_{n} 1^{n} 2$ are the expansion coefficients evaluated by Tarter. The following few useful relations follow readily from the well known symmetry properties of the Clebsch-Gordan coefficients.

$$
A_{n l m}^{n_{1} n_{2}}=(-1)^{1-m} A_{n l m}^{n_{2} n_{1}}
$$

$$
A_{n \ell m}^{n_{1} n_{2}}=(-1)^{-(l+m)}, A_{n \ell-m}^{n_{2} n_{1}}
$$

$$
\begin{aligned}
C_{\mu_{1}-m,-\mu_{2}}^{l_{1} l_{2} l} & =(-1)^{l-m}\left(\frac{n}{2 l+1}\right)^{\frac{1}{2}} A_{n l m}^{n_{1} n_{2}} \\
& =\left(\frac{n}{2 l+1}\right)^{\frac{1}{2}} A_{n e m}^{n_{2} n_{1}}
\end{aligned}
$$

In the next section we will show that wavefunctions have the simplest possible form in the Fock-Bargmann space. This is because in the latter mapping the complicated mathematical solutions for the hydrogen atom can be written as simple polynomial in the Z variables.

Section IV

In this section we apply the results derived in Section I to nonrelativistic Coulomb problem. We have shown in Section I that in Z space $\mathrm{U}_{\mathrm{m}}=\mathrm{N}_{\mathrm{m}} \mathrm{Z}^{\mathrm{m}}$ form a complete orthonormal set. N_{m} the normalization factor depends upon the domain of Z and the choice of appropriate volume element $d \mu_{\nu}(Z)$. If $|Z|<1$ the disk, then $d \mu_{\nu}(Z)$ can be chosen as

$$
\begin{equation*}
d \mu_{\gamma}(z)=\frac{\gamma}{\pi}\left(1-z^{*} \cdot z\right)^{\gamma-1} d z \quad \gamma \neq 0 \tag{53}
\end{equation*}
$$

This choice shows that (with $Z=r e^{i \theta}$)

$$
\begin{equation*}
\int d M_{\gamma}(z)=\frac{\gamma}{\pi} \int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right)^{\gamma-1} r d r d \theta=1 \tag{54}
\end{equation*}
$$

And

$$
\begin{align*}
\left\langle u_{m} \mid u_{n}\right\rangle & =\int N_{m}^{*}\left(z^{m}\right)^{\forall} N_{n}\left(z^{n}\right) d \mu_{r}(z) \\
& =\delta_{m n} \frac{r(m+1) r(r+1)}{r(r+m+1)} N_{m}^{*} N_{n} \tag{55}\\
\therefore N_{m} & =(r+m)_{m}^{\frac{1}{2}}
\end{align*}
$$

Then we have an orthonormal set in Fock-Bargmann space as

$$
u_{m}(z)=\binom{r+m}{m}^{\frac{1}{2}} z^{m} \text { with } \mid z 1<1
$$

The corresponding q space wavefunctions are
where $L_{m}^{\gamma}(q)$ is the associated Laugerre polynomial. So

$$
\begin{equation*}
A(z, q)=\sum_{m} \phi_{m}(q) u_{m}(z)=\frac{e^{-q_{2}\left(\frac{1+z}{1-2}\right)}}{(1-z)^{p+1}} \tag{57}
\end{equation*}
$$

is the transformation kernel. The hydrogenic wavefunctions in parabolic coordinates are given by

$$
\begin{align*}
& \psi_{n, n_{2} m}\left(\xi, \eta_{1} \varphi\right)=\frac{\sqrt{2}}{n^{2}} \frac{1}{(|m|)!} \sqrt{\frac{(n,+m \mid)!}{n_{1}!}\left(n_{1}+1\right)!} \\
& \cdot L^{|m|}(\alpha \xi) e^{-\frac{1}{2} \alpha \xi}(\alpha \xi)^{\frac{|m|}{2}} \cdot \frac{1}{(|m|)!} \sqrt{\frac{\left(n_{2}+n \mid\right)!}{n_{2}!}} \tag{58}\\
& \cdot\left(n_{2}+1\right)!L_{n}^{|m|}(\alpha \eta) e^{-\frac{1}{2} \alpha \eta}(\alpha \eta)^{\frac{|m|}{2}} \frac{1}{\sqrt{2} \pi} e^{\mid m \phi}
\end{align*}
$$

with $q_{1}=\alpha \xi$ and $q_{2}=\alpha n$ we get

$$
\begin{equation*}
\psi_{n, n m}(1, \eta, \phi)=\frac{1}{\sqrt{\pi} n^{2}}\left(n_{1}+1\right)!\left(n_{2}+1\right)!e^{i m \phi} \phi_{n_{1} n_{2}}\left(q_{1}, q_{2}\right) \tag{59}
\end{equation*}
$$

The corresponding Fock-Bargmann wavefunctions are

$$
\begin{align*}
& U_{n_{1} n_{2}}\left(z_{1} z_{2}\right) \\
& \quad=\sqrt{\frac{\left(n_{1}+|m|\right)!}{n_{1}!(|m|)!}} \sqrt{\frac{\left(n_{2}+|m|\right)!}{n_{2}!(|m|)!}} z_{1}^{n_{1}} z_{2}^{n_{2}} \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
d M_{m}\left(z_{i} z_{2}\right)=\left(\frac{m m 1}{\pi}\right)^{2}\left[\left(1-z_{i}^{*}, z_{2}\right)\left(1-z_{2}^{*} z_{2}\right)^{m-1}\right]^{m-1} d z_{2} \tag{61}
\end{equation*}
$$

The above Equation (60) shows the simplicity of wavefunctions in PockBergman space:

The hydrogenic wavefunctions in the spherical coordinates are

$$
\begin{align*}
& \psi_{n \in m}(S, \theta, \phi)=\left\{\left(\frac{22}{n a_{0}}\right)^{3} \frac{(n-1-1)!}{2 n((n+l)!)^{3}}\right\}^{\frac{1}{2}} \tag{62}\\
& \bullet e^{-\frac{1}{2} \rho} \rho^{\ell} L_{n-1-1}^{2 l+1}(\rho) y_{1}^{m}(0, Q)
\end{align*}
$$

The corresponding Fock-Bargmann wavefunctions in this case are

$$
\begin{align*}
& V_{n \ell m}\left(t_{1}, t_{2}\right)=\sqrt{\frac{(n+l)!}{(l l+1)!(n-1)!}} t_{1}^{n-1-1} \sqrt{\frac{(2 l)!}{(l+m)!(1-m)!}} t_{2}^{l+m} \tag{63}\\
& =\sqrt{\frac{(n+l)!(2 l)!}{(2 l+1)!(n-l-1)!(l+m)!(l-m)!}\left\{\frac{t_{2}}{\sqrt{1-t_{2}^{2}}}\right\}^{l+m} t_{1}^{n-l-1}} \\
& |t|<1 \\
& \left|t_{a}\right|<1 \\
& =\sqrt{\frac{(n+\ell)!}{(2 l+1)}} \tag{64}\\
& \left|t_{i}^{\prime}\right|<\infty \\
& \sum_{k=0}^{\ell+m}(-1)^{k} \frac{\left(\frac{l+m}{2}\right)_{k}}{k!} t_{1}^{n-l-1} t_{2}^{l+m+2 k}
\end{align*}
$$

Which are also polynomials in a complex space of t_{1} and t_{2}. The ClebschGordan theorem is a connection between the wavefunctions $U_{n_{1} n_{2}}\left(Z_{1} Z_{2}\right)$ and $\stackrel{V}{n \ell m}\left(t_{1} t_{2}\right)$

$$
\begin{equation*}
v_{n l m}\left(t_{1}, t_{2}\right)=\sum_{\mu_{1} \mu_{2}} C^{\frac{n-1}{2}, \frac{n-1}{2}, l} \mu_{\mu_{2} m} U_{n_{1} n_{2}}\left(z, z_{2}\right) \tag{65}
\end{equation*}
$$

To prove this we use the inductive method. First we assume Aquatron (65) holds good. Then we derive relation between t_{1}, t_{2} and Z_{1}, Z_{2}, and show that they must be linear combinations ${ }_{1}=f\left(Z_{1}-Z_{2}\right)$ and $t_{2}=f\left(Z_{1}+Z_{2}\right)$, let

$$
V_{n e_{m}}\left(t_{1}, t_{2}\right)=\sum_{\mu_{1} \mu_{2}} C_{\mu_{1} \mu_{2}, m}^{\frac{n-1}{2} \frac{n-1}{2} l} U_{n, n_{2}}\left(z_{1} z_{2}\right)
$$

we can expand $C_{\mu_{1}, \mu_{2}, m}^{\frac{n-\ell}{2}} \frac{n-\ell}{2}$ in terms of $3 F_{2}$ function, then

$$
\begin{aligned}
& C_{\mu_{1}}^{\frac{n-1}{2}, \frac{n-1}{2}, l}=(-1)^{\frac{n-1}{2}+\mu_{2}}\left[\frac{(n-l-1)!(l-m)!\left(\frac{n-1}{2}-\mu_{2}\right)!}{(n+e)!(l+m)!\left(\frac{n-1}{2}+\mu_{1}\right)!}\right. \\
& \left.\frac{(2 l+1)}{\left(\frac{n-1}{2}+\mu_{2}\right)!\left(\frac{n-1}{2}-\mu_{2}\right)!}\right]^{\frac{1}{2}} \frac{\left(l+\frac{n_{1}}{2}+\mu_{1}\right)!}{\left(n-m_{n}-1\right)!}-{ }_{3} F_{2}\binom{\left(-1, n_{2}+1,-l-m_{2}\right) 1}{\left(6 n_{1},-n_{1}-m_{j}\right)} \\
& \therefore U_{n \ell m}\left(t_{1}, t_{2}\right)=\sum_{\mu_{1} \mu_{2}}(-1)^{n_{2}+m} \frac{\left(l+n_{2}+m\right)!}{(n-1-m)!} \\
& {\left[\frac{(n-1-l)!(l-m)!(2 l+1)}{(n+l)!(l+m)!\left(n_{1}+m\right)!\left(n_{2}+m\right)!}\right]^{\frac{1}{2}}} \\
& \sqrt{\frac{\left(n_{1}+m\right)!\left(n_{2}+m\right)!}{n_{1}!n_{2}!m!m!}} 3 F_{2}\binom{-l, n_{2}+1,-l-m, 1}{-m+1,-n_{1}-m_{1}} \text {. } \\
& z_{1}^{n_{1}} z_{2}^{n_{2}}
\end{aligned}
$$

Expanding $3 F_{2}$ and interchanging summations and summing over n_{1} and n_{2}. It can be shown that

$$
\begin{align*}
& v_{n e m}\left(t_{1}, t_{2}\right)=\sum_{k=0} \sqrt{(n-1-1)!(l+m)!} \\
& \quad(-1)^{k} \frac{\left(\frac{1}{2}(l+m)\right)!}{(l-m)!(2 l+1)!(n+e)!(2 m)!}\left(z_{1}-z_{2}\right)^{n-1-1}\left(z_{1}+z_{2}\right)^{l+m+k} \\
& =\sqrt{\frac{(n-l-1)!(1+m)!}{(n+e)!(l+1)!(2 m)!}}\left(z_{1}+z_{2}\right)^{l+m}\left(z_{1}-z_{2}\right)^{n-l-1} \tag{67}\\
& \quad \cdot \sum_{k=0}^{(l+m) / 2}\left(\frac{(l-m)!}{2}\right)!\left[\frac{1}{\left(\frac{l+m}{2}-k\right)!k!}\right]\left(z_{1}+z_{2}\right)^{k}
\end{align*}
$$

Which are again vectorsin Fock-Bargmann space; but the variables here are the linear combinations of Z_{1} and Z_{2}. Thus, the theorem is established. Papov and Peremolov extended this to continuous solutions and established a connection between Coulomb scattering phase shifts and complex Clebsch-Gordan coefficients. Here we should note that the domain of their variables is entirely different than the one given in Section IV of this chapter:(24)

REFERENCES

(1) Tarter, C. B., J. Math. Phy., 113192 (1970).
(2) Bargmann, V., Comm. on Pure and App. Math, 14187 (1961). Bargmann, V., Rev. Mod. Phy. 34829 (1962).
(3) V. Fock, Zeit. F. Physik, 49 339 (1928).
(4) Messiah, 'Quantum Mechanics', Vol. II North Holland Pub. Company, N. Y.
(5) V. Fock, Zeit. F. Physik, 98145 (1935).
(6) Podolsky, B. and Pauling, L., Phys. Rev., 34109 (1929).
(7) E. Hylleraas, Zeit. F. Physik, 74216 (1930).
(8) Swamy, N. V. V. J., Bull. Ame. Phy. Soc., 9436 (1964).
(9) M. Levy, Proc. Royal Soc; A 204 145 (1950).
(10) A. Rubinowicz, Phys. Rev., 731330 (1948).
(11) Biedenharn, L. C., and Swamy, N. V. V. J., Phys. Rev., 133B 1353 (1964).
(12) Dirac, P. A. M., 'Quantum Mechanics', Oxford Univ. Press (1947).
(13) Footnote
(14) Footnote
(15) Batemann Manuscript Project, 'Higher. Transcendantal Functions', McGraw Hill, N. Y. (1953), Vol. I p. 103.
(1.6) Snedden, I. N., 'Fourier Transforms' (McGraw Hill, N. Y., 1951), p. 59 .
(17) Schiff, L. I., 'Quantum Mechanics' (McGraw Hill, N. Y., 1955)。
(18) Merzbacher, E., 'Quantum Mechanics', J. Wiley and Sons, N. Y., 3rd ed. (1969).
(19) V. Rojansky, Phys. Rev., 331 (1929).
(20) Park, D., Zeit. F. Physik, 159155 (1960).
(21) Ref. 4 of Chapter II.
(22) Rose, M. E., 'Multipole Fields', Wiley, N. Y. (1955), Appendix B.
(23) Bailey, W. N., 'Generalized Hypergeometric Series (Cam. Tracts 32 Cambridge) 1935.
(24) Popov, V. S. and Peremolov, A,, J. E. T. P., 27967 (1968).

CHAPTER IV

EVALUATION OF CERTAIN RADIAL INTEGRALS USING
SYMMETRY PROPERTIES OF THE COULOMB FIELD*

In this chapter we discuss some physical applications of the symmetry properties of the Coulomb field by evaluating certain radial integrals which are of importance in determining selection rules in Coulomb excited transitions. In Section I we derive some of the very often used relations between certain basic sets of operators like $\underset{\sim}{K}, \hat{Z} \cdot(\vec{\sigma} \times \vec{L}), \vec{\sigma} \cdot \vec{a}, \vec{\sigma} \cdot \hat{r} \frac{1}{r q} i p_{r}$, and $2 \underset{\sim}{m}$.

In Section II we discuss the radial matrix elements involving the bound state wave functions. Here we give a group theoretic derivation of Pasternack Sternheimer ${ }^{(1)}$ result along with certain recusion relations between the expectation values of various multipole operators ${ }^{(2)}$.

In Section III we discuss the radial integrals involving continuous state wave functions and establish certain difference equations between the various matrix elements of multipole operators. A possible extention to higher multipoles and the Symmetric Hamiltonian is suggested at the end of the chapter.

[^0]
Section I

The Derivation of the Set of Useful Operator Relations

Here we will derive nearly all operator relations between the frimary operators

$$
{\underset{\sim}{K}}_{1}=\vec{\sigma} \cdot \vec{L}+1, \Omega_{0}=\hat{Z} \cdot(\vec{\sigma} \times \vec{L}), \vec{\sigma} \cdot \vec{a}, \vec{\sigma} \cdot \hat{r} \text {, etc. }
$$

To prove $\left[k_{1}, \Omega_{0}\right]=\Omega_{0}$ we consider $\left[\vec{\sigma} \cdot \overrightarrow{\mathbb{L}}, \hat{z} \cdot(\vec{a} \times \vec{I}]_{+}\right.$. And noting that for all i and $j,\left[\sigma_{i}, L_{j}\right]=0$ and $\left[\sigma_{x}, \sigma_{y}\right]=i \sigma_{z}$ we get $\left[\vec{\sigma} \cdot \vec{I}, \Omega_{0}\right]_{+}=-\Omega_{0}$ $\left[\vec{\sigma} \cdot \vec{L}+1, \Omega_{0}\right]_{+}=+\Omega_{0}$ where $\Omega_{0}=\cdot \hat{Z} \cdot(\vec{\sigma} \times \vec{l})$

To prove

$$
\begin{equation*}
\left[\Omega_{0}, 1-2 \underset{\sim}{K}\right]_{+}=0 \tag{2}
\end{equation*}
$$

From 1 we have $2\left[\Omega_{0}, \underset{\sim}{K}\right]_{+}=2 \Omega_{0}$ and $\left[\Omega_{0}, 1\right]_{+}=2 \Omega_{0}\left[\Omega_{0}, 1-2 K\right]_{+}=0$.

$$
\left[\frac{1}{r^{q}}, i p_{r}\right]=q / r^{q+1}=\left[\frac{1}{r^{q}},[r, m \stackrel{H}{\sim}]\right]
$$

$$
\left[\frac{1}{r^{q}}, p_{r}^{2}\right]=-\frac{2 q}{r^{q+1}} i p_{r}+q(q+1) \frac{1}{r^{q}+2}=\left[\frac{1}{r^{q}}, 2 m+1\right]
$$

$$
\begin{equation*}
\left[i p_{r}, 2 m \stackrel{+1}{\sim}\right]=\left[i p_{r},\left(p_{r}^{2}+\frac{K_{1}^{2}-K_{1}}{r^{2}}-\frac{2 \alpha Z m)}{r}\right)\right] \tag{4}
\end{equation*}
$$

$$
=\frac{2 \alpha Z m}{r^{2}}+\frac{2\left(k_{1}-k_{1}^{2}\right)}{r^{3}}
$$

$$
\begin{equation*}
=[[r, m \underset{\sim}{H}], 2 m \underset{\sim}{H}] \tag{5}
\end{equation*}
$$

This is because ip r_{r} commutes with $p_{r}{ }^{2}$ and the angular operators K_{1} and $K_{1}{ }^{2}$. It does not commute with r and functions of r. Let us consider

$$
\frac{1}{2}\left[\frac{1}{r^{q}} i \dot{p}_{r}, 2 m \underset{\sim}{H}\right]=\frac{1}{2} \frac{1}{r^{q}}\left[i p_{r}, 2 m \underset{r}{H}\right]+\frac{1}{2}\left[\frac{1}{r^{q}}, 2 m \underset{\sim}{H}\right] i p_{r}
$$

and substituting the values we get,

$$
=\frac{\alpha Z_{m}}{r^{q+2}}+\frac{q}{r^{q}+1} p_{r}^{2}+\frac{q(q+1)}{2} \frac{1}{r^{q}+2} i p_{r}+\frac{k_{1}-k_{1}^{2}}{r^{q}+3}{ }^{(6)}
$$

But we know that

$$
P_{r}^{2}=2 m \underset{\sim}{H}+\frac{k_{1}-k_{1}^{2}}{r^{2}}+\frac{2 \alpha Z m}{r}
$$

and

$$
\frac{1}{r^{q+2}} i p_{r}=\frac{q+2}{2} \frac{1}{r^{q}+3}+\frac{1}{2(q+1)}\left[2 m \underset{\sim}{H}, \frac{1}{r^{q+1}}\right]
$$

substituting these it leads to

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{1}{r^{q}}[r, m H], 2 m H\right]+\frac{q}{4}\left[\frac{1}{r q+1}, 2 m-H\right. \\
= & \frac{q}{r q+1}(2 m H)+\frac{2 q+1}{r q+2} \alpha Z m+(q+1)\left\{\frac{q(q+2)}{4}+\left(k-k_{1}^{2}\right)\right\} \frac{1}{r+3}
\end{aligned}
$$

Since $\vec{\sigma} \cdot \hat{r}$ and K_{1} anticommute we get

$$
\left[\vec{\sigma}, \hat{r}_{,}\left(k_{1}-k_{1}^{2}\right)\right]=\left[\vec{\sigma} \cdot \hat{r}_{1}, k_{1}\right]-\left[\vec{\sigma} \cdot r^{\prime}, k_{1}^{2}\right]=2 \vec{\sigma} \cdot \hat{r} k_{1(7)}
$$

and hence we get

$$
[\vec{\sigma}, \hat{r}, 2 m \underset{\sim}{H}]=-2 \vec{\sigma} \cdot \hat{r}^{\prime} K_{1} \frac{1}{r^{2}}
$$

Now

$$
\begin{aligned}
& {\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}-1}, 2 m \underset{\sim}{H}\right]} \\
& =-2 \vec{\sigma} \cdot \hat{r} k_{1} \frac{1}{r^{q+1}}+\vec{\sigma} \cdot \hat{r}\left\{-2(q-1) \frac{1}{r^{q}} i p_{r}+\frac{q(q-1)}{r^{q+1}}\right\}^{(8)}
\end{aligned}
$$

or multiplying through out from left by $\frac{\overrightarrow{0} \cdot \hat{r}}{2(q-1)}$ we get

$$
\frac{\vec{\sigma} \hat{r}}{2(q-1)}\left[2 m \stackrel{H}{\sim}, \frac{\vec{\sigma}, \hat{r}}{r^{q}-1}\right]=\frac{1}{r^{q}} i p_{r}+\left\{\frac{k_{1}}{q-1}-\frac{q}{2}\right\} \frac{1}{r^{q}+1}
$$

And multiplying with $\frac{\vec{\sigma} \cdot \hat{\gamma}}{2(q-1)}$ from right we get

$$
\frac{1}{2(q-1)}\left[2 m H \frac{H}{r^{q} \cdot \hat{r}}\right] \overrightarrow{\sigma_{1}} \hat{r}=\frac{1}{r^{q}} i p_{r}-\left\{\frac{k_{1}}{q-1}+\frac{q}{2} \int_{r} \frac{1}{q+1(9)}\right.
$$

or we can use this relation to replace $\frac{1}{\mathrm{r}^{7}} \mathrm{ip}_{p_{\rho}}$ by (a commutator with Hamilton) $\vec{x} \cdot \vec{r}$ and a power of r.

Now we consider

$$
\begin{aligned}
& {\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{q}-1} i p_{r}, 2 m \underset{\sim}{H}\right]=\vec{\sigma}, \hat{r}\left[\frac{1}{r^{q}-1} i p_{r}, 2 m \underset{\sim}{H}\right]} \\
& +[\bar{\sigma}, \hat{r}, 2 m \underset{\sim}{H}] \frac{1}{r^{q-1}} i p_{r} \\
& =\frac{2(q-1)}{r^{q}} \bar{\sigma} \cdot \hat{r} p_{r}^{2}+\frac{2 \alpha Z_{m}}{r^{q}+1} \vec{\sigma}, \hat{\gamma}+\left\{\begin{array}{l}
\left.q(q-1)-2 k_{1}\right\} \\
2 \vec{\sigma} \cdot \hat{r}
\end{array}\right\} \frac{1}{r^{q+1}} i p_{r}
\end{aligned}
$$

and using the similar techniques we $+\frac{2 \sigma \cdot \hat{\gamma}}{\gamma-q+2}\left(K_{1}-K_{1}^{2}\right)$

$$
\begin{aligned}
& \vec{\sigma} \cdot \vec{r}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{q-1}} i p_{r}, 2 m \stackrel{H}{H}\right] \\
& =\vec{\sigma} \cdot \hat{r}\left\{q(q-1)+2 k_{1}\right\} \frac{1}{2 q}\left[2 m-H, \frac{\vec{\sigma} \cdot \vec{r}}{r^{q}}\right]+\frac{2(q-1)}{r^{q}} \cdot 2 n H \\
& +2 \alpha z m(2 q-1) \frac{1}{r^{q}+1}+\frac{1}{2 q}(q-1)(q+1)(q-2 k,)(q+2 k)(10) \\
& r^{r+2}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& {\left[2 m \underset{\sim}{H}, \vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}} i p_{r}\right] \vec{\sigma} \cdot \vec{r}} \\
& =\frac{2 \alpha Z m}{r^{q+2}}+\frac{2 q}{r^{q+1}} p_{r}^{2}+\left\{q(q+1)+2 k_{1}\right\} \frac{1}{r^{q+2}} i p_{r} \\
& -\frac{2 k_{1}}{r^{q}+3}\left(k_{1}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{q(q-1)-2 k_{1}\right\} \frac{1}{2 q}\left[2 m \underset{\sim}{H}, \frac{\overrightarrow{\sigma_{1}} r}{r q}\right] \overrightarrow{\sigma_{1}} \cdot \boldsymbol{r} \\
& +2(q-1) \frac{1}{r^{q}} 2 m \underset{\sim}{H}+2 \alpha Z m(2 q-1) \frac{1}{n^{q}+1} \\
& +\frac{1}{2 q}(q-1)(q+1)\left(q-2 k_{1}\right)\left(q+2 k_{1}\right) \frac{1}{r^{q}+2} \\
& {\left[\vec{\sigma}, \vec{a}, \frac{1}{n^{q}}\right]=\left[\frac{\vec{\sigma}, \vec{r}}{k^{2}}\left(2 z m+i p_{n} k-\frac{k_{1}^{2}}{r}\right), \frac{1}{n^{q}}\right]} \\
& =-\frac{q}{k^{2}} \vec{\sigma} \cdot \vec{r} k, \frac{1}{r^{q+1}} \\
& {\left[\vec{\sigma} \cdot \vec{a}, \vec{\sigma} \cdot \vec{\gamma} \frac{1}{r q}\right]=\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \vec{r} \frac{1}{r^{q}}-\vec{\sigma} \cdot \vec{r} \frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a}}
\end{aligned}
$$

since $\quad \vec{\sigma} \cdot \vec{a}=\frac{\vec{\sigma} \cdot \vec{r}}{k^{2}}\left(2 z_{m}+i p_{r} k_{1}-\frac{1}{r} k_{1}^{2}\right)$
we get

$$
\begin{equation*}
\left[\vec{\sigma} \cdot \vec{a}, \vec{\sigma} \cdot \vec{r} \frac{1}{r^{q}}\right]=\frac{1}{k^{2}(q-1)}\left[\frac{1}{r^{q-1}}, 2 m \underset{\sim}{H}\right] \tag{13}
\end{equation*}
$$

We now derive the commutation relation which we used very often in our analysis of operator technique for radial matrix elements. By these relations we can bring Ω_{0} to the extreme right or extreme left of the given operator.

$$
\begin{aligned}
& {\left[\vec{\sigma}, \vec{a} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}}, r_{0}\right]} \\
& =\left[\frac{1}{k^{2}}\left(\alpha Z_{m}-\frac{1}{r^{q}} i p_{r} k-\frac{1}{r^{q}+1} k_{1}^{2}\right), r_{0}\right]
\end{aligned}
$$

using the relation $\left[K_{1}, \Omega_{0}\right]$ and $\left[K_{1}{ }^{2}, \Omega_{0}\right.$] we get

$$
\begin{align*}
& {\left[\overrightarrow{\vec{a}} \cdot \vec{a} \overrightarrow{\vec{a}} \cdot \hat{r} \frac{1}{r^{q}}, r_{0}\right]} \\
& =\frac{1}{k^{2}}\left\{\frac{q-1}{x^{q}+1}-\frac{1}{n^{q}} i_{r}\right\} \Omega_{0}\left(1-2 k_{1}\right) \tag{14}\\
& =\frac{1}{2 k^{2}(q-1)}\left[\frac{1}{r^{q-1}}, 2 m \sim\right] \quad \Omega_{0}\left(1-2 k_{1}\right)+\frac{q-2}{2 k^{2}} \frac{1}{r q+1} \Omega_{0}(1-2 k)
\end{align*}
$$

where in the second step we have replaced $\frac{1}{q^{q}} i_{r}$ by the appropriate Hamiltonian commutator with $1 / p_{0} q-1$ and a power of r.

Many times we need the commutator with $\vec{\sigma} \cdot r$ out side the bracket.
So we derive that result also i.e.,

$$
\begin{aligned}
& {\left[\vec{r}, \vec{a} \vec{\sigma}, \hat{r} \frac{1}{r^{Q}}, \Omega_{0}\right]} \\
& =\frac{1}{k^{2}} \Omega_{0}(1-2 k)\left\{\frac { 1 } { 2 (q - 1) } \left[\frac{\vec{q} \cdot \hat{p}, 2 m t]}{r \hat{r-1}}, 2 \vec{\sigma} \cdot \vec{r}\right.\right. \\
& \left.-\left(\frac{k_{1}}{2-1}+\frac{2-q}{2}\right) \frac{1}{r^{q+1}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The other relation similar to } 14 \text { and } 15 \text { is } 16 .
\end{aligned}
$$

$$
\left[\omega_{0}, \frac{1}{p^{q} q} \vec{\sigma}, \cdots \vec{\sigma}, \vec{a}\right]=\frac{1}{k^{2}}\left\{\frac{1}{r^{q} q} i p_{r}-\frac{1}{r^{q+1}}\right\}(1-2 k,)^{(16)}
$$

And here too $\frac{1}{\gamma^{q}} i p_{r}$ or $\vec{\sigma} \cdot \hat{r} \frac{1}{\gamma^{q}} 1 p_{r}$ can be replaced by appropriate commatater bracket and a power of r.

By expansion of $\vec{\sigma} \cdot \vec{a}$ and using (4) we get,

$$
\frac{k^{2}}{r^{q}} \vec{\sigma} \cdot \hat{r} \cdot \vec{\sigma} \cdot \vec{a}=\frac{\alpha Z m}{r^{q}}+\frac{1}{r^{q}} i p_{n} k_{1}-\frac{1}{r^{q+1}} k_{1}^{2}
$$

$$
\begin{equation*}
=\frac{\alpha Z m}{r q}+\left(\frac{q k_{1}}{2}-k_{1}^{2}\right) \frac{1}{r q+1}+\frac{k_{1}}{2(q-1)}\left[2 m \sim 1, \frac{1}{r^{q-1}}\right] \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& k^{2} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}} \\
= & \frac{\alpha Z m}{r^{q}}+\left(\frac{q k_{1}}{2}-k_{1}^{2}\right) \frac{1}{r^{q+1}}+\frac{1}{2(q-1)}\left[\frac{1}{r^{q-1}}, 2 m \underset{\sim}{H}\right] k_{1}^{(18)}
\end{aligned}
$$

Taking the matrix element of this operator between $\psi_{N \kappa \mu}$ and $\psi_{N_{\kappa} \mu}$
and replacing $\stackrel{1}{\boldsymbol{n}^{q+1}}$ using Pasternack result we get

$$
\begin{aligned}
& k a_{l+1}\langle l+1| \frac{1}{r^{q} q}|l\rangle \\
&= \frac{2 z_{m}(q-2)}{(q-1)(l+q / 2)}\left\{l-\frac{q}{2}+\frac{3}{2}\right\}\left\langle\frac{1}{r^{q}}\right\rangle-\frac{k^{2}(q-2)(l+1)}{(q-1)\left(l+\frac{q}{2}\right)}\left\langle\frac{1}{r^{q-1}(1 q)}\right\rangle \\
& \quad a_{l+1}=\sqrt{N^{2}-(l+1)^{2}}
\end{aligned}
$$

Expanding $\vec{\sigma} \cdot \vec{a} \frac{1}{\gamma^{q}}$ and using (8) we get

$$
\begin{aligned}
& \vec{\sigma} \cdot \vec{a} \frac{1}{r^{q}}=\frac{\vec{\sigma} \cdot \hat{r}}{k^{2}}\left\{\frac{\alpha Z_{r}}{r^{q}}-\frac{q k_{1}}{2} \frac{1}{r^{q+1}}-\frac{q}{q-1} \frac{k_{1}{ }^{2}}{r^{q+1}}\right\} \\
& +\left[1 / 2(\xi-1) k^{2}\right]\left[\frac{\sigma, r^{\prime}}{r^{2}-2}, 2 m \forall\right]
\end{aligned}
$$

Taking the matrix element between $\psi_{N-K \mu}^{r-a n d} \psi_{N K \mu}$ we get

$$
\begin{align*}
& \left(\frac{q}{q-1}\right)(l+1)\left(l+\frac{1}{2}+\frac{q}{2}\right)\langle l+1| \frac{1}{r^{q}}|l\rangle \\
& \quad-\alpha z_{m}\langle l+1| \frac{1}{r^{q}}|l\rangle \\
& =k a_{l+1}\langle l| \frac{1}{r^{q}}|l\rangle=k a_{L+1}\left\langle\frac{1}{r^{q}}\right\rangle_{(20} \tag{20}\\
& {\left[\vec{\sigma} \cdot \vec{a} \overrightarrow{\sigma_{1}} \cdot \vec{a}, \Omega_{0}\right]=\frac{1}{k^{2}} \Omega_{0}\left(1-2 k_{1}\right)} \tag{21}
\end{align*}
$$

$$
\begin{equation*}
\left[\vec{\sigma}, \vec{a}, \Omega_{0}^{2}\right]=2 k, \vec{\sigma}, \vec{a} \tag{22}
\end{equation*}
$$

By taking matrix element of few of the derived operators we get many relations between the matrix elements or expectation values to illustrate we give the following relations.

We have the operator

$$
\begin{aligned}
& \vec{\sigma}, \hat{r}\left[\frac{\vec{\sigma}, \hat{r}}{r q-1} i p_{r}, 2 m \underset{\sim}{H}\right] \\
& =\vec{\sigma} \cdot \hat{r}\left\{q(q-1)+2 k_{1}\right\} \frac{1}{2 q}\left[2 m \underset{\sim}{H}, \frac{\vec{\sigma} \cdot \hat{r}}{r^{q-1}}\right] \\
& +2(q-1) \frac{1}{r^{q}} 2 m \underset{\sim}{H}+2 \alpha Z m(2 q-1) \frac{1}{r^{q+1}} \\
& +\frac{(q-1)(q+1)}{q^{q}+1} \frac{q^{2}-4 k_{1}^{2}}{2 q^{2}} \equiv \underset{\text { setting } q+2}{2 q+2} \underset{\text { and taking }}{0}
\end{aligned}
$$

letting $\mathrm{q} \rightarrow \mathrm{q}-1$ and taking the expectation values between

$$
\left\langle\psi_{N K K}\right| \vec{\sigma} \cdot \hat{r} \hat{d}\left|\psi_{N K \mu}\right\rangle
$$

we get

$$
\begin{align*}
& q(q-2)\left(l+\frac{1}{2}+\frac{q}{2}\right)\left(l+\frac{3}{2}-\frac{q}{2}\right)\langle l+1| \frac{1}{r^{q+1}}|l\rangle \\
&-(q-1)(2 q-3) \times Z m\langle l+1| \frac{1}{r^{q}}|l\rangle \tag{23}\\
&+ K^{2}(q-2)(q-1)\langle l+1| \frac{1}{r^{q}}|l\rangle=0 \\
& \text { (where } q=0, \text { or any integer). }
\end{align*}
$$

(where $q=o$, or any integer).

$$
\begin{aligned}
& \text { Pasternack }{ }^{(3)} \text {.Result (1937) } \\
& q\left\langle\frac{1}{r^{q+2}}\right\rangle=-\frac{k^{2}(q-1)}{\left(1+\frac{1}{2}+\frac{q}{2}\right)\left(l+\frac{1}{2}-\frac{q}{2}\right)}\left\langle\frac{1}{r^{q}}\right\rangle \\
& +\frac{\alpha Z m(2 q)}{(1+1 / 2+q / 2)(1+1 / 2-q / 2)}\left\langle\frac{1}{r^{q+1}}\right\rangle
\end{aligned}
$$

We have the operator

$$
\begin{aligned}
& \begin{array}{l}
k^{2} \vec{\sigma}, \vec{a} \cdot \vec{\sigma}, r \frac{1}{r^{q}}=\frac{\alpha z m}{r^{q}}+\left(\frac{q}{2} k-k_{1}^{2}\right) \frac{1}{r^{q+1}}+\frac{1}{2(q-1)^{2}}\left[\frac{1}{r^{q}-1} \cdot 2 m+1\right] \\
\text { so }\left\langle\psi_{1}, 0,0\right.
\end{array} \\
& \text { so }\left\langle\psi_{N K \mu}, \stackrel{\sim}{\sim} \psi_{N K \mu}>\right.\text { gives } \\
& k a_{l+1}\langle l+1| \frac{1}{r^{q}}|l\rangle \\
& =-\alpha Z_{m}\left\langle\frac{1}{\gamma q}\right\rangle+(l+1)\left\{(l+1)-\frac{q}{2}\right\}\left\langle\frac{1}{r q+2}\right\rangle^{(25)}
\end{aligned}
$$

To express $\vec{\sigma} \cdot \hat{r}$ (some powers of φ) as the commutators of power of r with the Hamiltonians.

Putting $q=1$ in the relation (10) we get

$$
\begin{equation*}
2 \vec{\sigma} \cdot \hat{r} \frac{\alpha Z_{m}}{r^{2}}=\left[\vec{\sigma} \cdot \hat{r} i i_{r}, 2 m \underset{\sim}{H}\right]+k_{1}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r}, 2 m \underset{\sim}{H}\right] \tag{26}
\end{equation*}
$$

Thus we see that $2 \vec{\sigma} \cdot \hat{r} \frac{\alpha Z m}{\gamma^{2}}$, can be completely put as a $\vec{\sigma} \cdot \hat{r} \frac{1}{\gamma^{q}}$ commutation with Hamiltonian.

$$
\begin{aligned}
& \hat{\text { Putting } q=2 \text { we have }} \hat{r^{\prime}}\left\{\frac{2}{r^{2}} 2 m \underset{\sim}{H}+6 \alpha Z_{m} \frac{1}{r^{3}}+3\left(1-k_{1}\right)\left(1+k_{1}\right) \frac{1}{r^{4}}\right\} \\
& =\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r} i p_{r}, 2 m \underset{\sim}{H}\right]+\frac{1+k_{1}}{2}\left[\frac{\bar{\sigma} \cdot \hat{r}}{r^{2}}, 2 m \underset{\sim}{+1}\right]^{(27 a)}
\end{aligned}
$$

Combining this result appropriately with (26) we get

$$
\begin{align*}
& \vec{\sigma} \cdot \hat{r}\left\{\frac{2 \alpha \neq m}{r^{3}}+\frac{\left(1-k_{1}\right)\left(1+k_{1}\right)}{r^{4}}\right\} \\
& \left.=\frac{1}{3}\left[\vec{\sigma}, \hat{r} \frac{1}{r} i p_{r}, 2 m \underset{\sim}{H}\right]+\frac{1}{6}\left(1+k_{1}\right)\left[\frac{\sigma, \hat{r}}{r}, 2 m \underset{\sim}{H}\right]{ }_{\sim}^{(22 k H}\right) \tag{276}
\end{align*}
$$

Taking the appropriate matrix element of (27b) we get

$$
\begin{aligned}
2 \alpha z m & \langle l+1| \frac{1}{r^{3}}|l\rangle-l(l+2)\langle l+1| \frac{1}{r^{4}}|l\rangle \\
& =0
\end{aligned}
$$

Putting $q=3$ in the Equation 10 and eliminating using the result
27 we get

$$
\begin{aligned}
& -\frac{1}{3 \alpha z_{m}^{2}} k_{1}\left[\frac{\vec{\sigma}, \hat{r}^{\prime}}{r}, 2 \mathrm{mH}\right]\left(2 m H_{\sim}\right)^{2}+\vec{\sigma}_{\cdot} \hat{r}^{\prime} \\
& \left\{5 \alpha z m \frac{1}{r^{4}}-\frac{1-k_{1}^{2}}{\alpha Z m} \frac{1}{r^{4}} 2 m \frac{H}{\sim}+\frac{2}{3}(3-2 k)(3+2 k) \frac{1}{r^{5}}\right\} \\
& =\frac{1}{2}\left[\sigma, \hat{r} \frac{1}{r^{2}} i_{r}, 2 m+H_{r}\right]+\left(\frac{3+k_{1}}{6}\right)\left[\frac{\sigma_{r}, \hat{r}}{r^{3}}, 2 m H\right] \\
& -\frac{1}{3 \alpha Z_{m}}\left[\hat{\sigma}, \hat{r} \frac{1}{r} i p_{r}, 2 m \underset{\sim}{H}\right] 2 m H
\end{aligned}
$$

$$
\begin{align*}
& \text { And this leads to the relation between matrix elements as } \tag{28}
\end{align*}
$$

$$
\left.\left\{5 N^{2}-l(l+2)\right\}\langle l+1| \frac{1}{r^{4}}|l\rangle-\frac{2}{3} \frac{\alpha Z m}{k^{2}}(2 l-1)(2 l+5)\langle l+1| \frac{1}{r^{5}} \right\rvert\, l(29)
$$

Following the same procedure as above one can build appropriate operators which will lead relations between the $\left.\langle\ell+1| \frac{1}{N^{q}} \right\rvert\, \ell>^{\prime}$ s of higher values.

Section 1 I

Bound States

As shown earlier the vector invariant characteristic of the O (4) group to which the non-relativistic Coulomb field belongs, is the Runge-Lentz-Pauli vector \vec{a}. Since the radial matrix element discussed here pertains to a particular subspace of Hilbert space corresponding to principal quantum number N we shall choose the invariant pseudo scalar
"Coulomb helicity operator" as ${ }^{(4)}$

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{a}=\frac{1}{k_{\beta}^{2}} \vec{\sigma} \cdot \hat{r}\left\{\alpha z m+i p_{r} k_{j}-\frac{1}{r} k_{1}^{2}\right\} \tag{30}
\end{equation*}
$$

and

$$
(\vec{\sigma}, \vec{a}) \psi_{N L \mu}=\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \hat{r}\left\{\alpha z_{m}+i p_{n} k_{\sim}-\frac{1}{r} k_{1}^{2}\right\}_{N L^{\prime}} F_{c^{3}}^{\mu}
$$

or

$$
\begin{align*}
& (\vec{\sigma}, \vec{a}) \psi_{N k \mu}=\frac{1}{k_{B}^{2}}\left\{\alpha z_{m}-i i_{r} k_{1}-\frac{k_{2}^{2}}{r}\right\} F_{M} x_{-k}^{\mu} \\
& \because \quad=-\frac{i}{k_{B}} a_{K} F_{N(-K)}{ }^{i} x_{-k}^{\mu} \\
& =-\frac{\beta}{k_{B}} a_{K} \psi_{N-c \mu} \tag{32}
\end{align*}
$$

Where we define

$$
\begin{align*}
& \psi_{N-c \mu}(r, \theta, Q)=F_{N(--k)}(n) i x_{-k}^{\mu}(\theta, \theta)(\theta) \\
& a_{C}=\left|\sqrt{N^{2}-k^{2}}\right| ; k_{B}=\frac{\alpha Z_{m}}{N} \tag{34}
\end{align*}
$$

And the radial momentum operator

$$
\begin{align*}
& \beta_{n}=\frac{1}{2}(\bar{n}, \bar{\beta}+\bar{\beta} \cdot \bar{r}) \longleftrightarrow-i\left(\frac{\partial}{\partial r}+\frac{1}{n}\right) \tag{35}\\
& {\left[n, \beta_{n}\right]=i} \tag{36}
\end{align*}
$$

We write the non-relativistic Hamiltonian as

$$
\begin{align*}
\underset{\sim}{H} & =\frac{\overrightarrow{p^{2}}}{2 m}-\frac{\alpha z}{r} \tag{37}\\
& =\frac{p_{r}{ }^{2}}{2 m}+\frac{k_{1}^{2}-k_{1}}{2 m r^{2}}-\frac{\alpha Z}{r} \tag{38}
\end{align*}
$$

Where α is the Sommerfeld fine structure constant and we choose

$$
(\hbar=c=1) .
$$

As a preliminary to the understanding of the Pasternack result we shall give some important operator relationships which are built out of $\vec{\sigma} \cdot \vec{a}, \vec{\sigma} \cdot \hat{r}, \quad \hat{Z} \cdot(\vec{\sigma} \times \vec{L})$ and $\underset{\sim}{K}$.

We can easily see that

$$
\begin{equation*}
\left[i p_{r}, r q\right]=q r^{q-1} \text { for any integer } q \tag{39}
\end{equation*}
$$

And

$$
\begin{equation*}
\left.\left[p_{n}^{2}, r^{q q}\right]=-q(q-1)\right)^{q q-2}-2 q q^{q-1} i_{n} \tag{40}
\end{equation*}
$$

Now we consider the commutation of r^{-q} with 2 mH ,

$$
\left[r^{-q}, 2 m \mu\right]=\left[r^{-q}, p_{r}^{2}+\frac{\bar{L}^{2}}{r^{2}}-\frac{2 \alpha Z_{m}}{r^{2}}\right](41)
$$

therefore we get

$$
\begin{equation*}
\left[n^{-q}, 2 m p t\right]=q(q+1) \tilde{q}^{-q-2}-2 q r^{-q}-\psi_{r} . \tag{42}
\end{equation*}
$$

Taking the expectation value of Equation (42) between the bound state eigenfunction $\mid N(m\rangle$ we get

$$
\begin{equation*}
\left\langle n^{-q-\gamma}\left\langle p_{x}\right\rangle=\frac{q}{2}\left\langle r^{-q-1}\right\rangle\right. \tag{42a}
\end{equation*}
$$

Also consider

$$
\begin{align*}
{\left[i p_{r}, 2 m \underset{\sim}{H}\right] } & =\left[i p_{r},\left(p_{r}^{2}+\frac{k_{1}^{2}-K_{1}}{r^{2}}-\frac{2 \alpha Z m}{r}\right)\right] \\
& =\left[[r, m \underset{\sim}{H}], 2 r H_{\sim}^{H}\right] \\
& =\frac{2 \alpha Z m}{r^{2}}+\frac{2\left(k_{1}-K_{1}^{2}\right)}{r^{3}} \tag{43}
\end{align*}
$$

So we get

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{1}{r q}[r, m H\right. \\
= & \frac{\alpha Z m}{r q+2}+\frac{q m H}{r^{q}+1} p_{r}^{2}+\frac{q(q+1) \frac{1}{2}\left[\frac{1}{r^{q} q} i p_{r}, 2 m+1\right.}{r} i p_{r}+\frac{K_{1}-K_{1}^{2}}{r q+3(44)}
\end{aligned}
$$

and substituting $P_{r}^{2}=2 m+1+\frac{K_{1}-K_{1}^{2}}{r^{2}}+\frac{2 \alpha Z m}{r}$
and $\frac{1}{r q+2} i p_{r}=\frac{q+2}{2} \frac{r}{r^{q+3}}+\frac{1}{2(q+1)}\left[2 m H \frac{1}{r^{q+1}}\right]$

$$
\begin{align*}
& \frac{1}{2}\left[\frac{1}{r^{q}} i p_{r}, 2 m \underset{\sim}{H}\right]=\frac{1}{2}\left[\frac{1}{r^{2} q}[r, m+1], 2 m+H\right. \\
= & \frac{q}{4}[2 m+1 \\
\sim & \left.\frac{1}{r^{q}+1}\right]+\frac{(2 q+1) \times Z m}{r q+2} \tag{45}\\
+ & (q+1)\left\{\frac{q(q+2)}{4}+k_{1}-k_{1}^{2}\right\} \frac{1}{r^{q+3}}+\frac{q}{r^{q+1}} 2 m+1
\end{align*}
$$

or more importantly

$$
\frac{1}{2}\left[\frac{1}{r^{q}}[r, 2 m+\underset{\sim}{\sim}], 2 m \underset{\sim}{H}\right]+\frac{q}{4}\left[\frac{1}{r^{q}+1}, 2 m H\right]
$$

$$
2 q_{m} E_{n}\left\langle\frac{1}{r q+1}\right\rangle+(2 q+1) \propto Z m\left\langle\frac{1}{r^{q+2}}\right\rangle+(q+1)\left\{\begin{array}{l}
\left.\frac{q(q+2)}{4}+l(l+1)\right\}(46) \\
\left\langle\frac{1}{r q+3}\right\rangle=0
\end{array}\right.
$$

i.e

$$
\left(l+1+\frac{q}{2}\right)\left(l-\frac{q}{2}\right)\left\langle r^{-q-3}\right\rangle
$$

$$
=\frac{2 q+1}{q+1} \frac{z}{a_{0}}\left\langle r^{-q-2}\right\rangle-\frac{q}{q+1} \frac{z^{2}}{n a_{0}^{2}}\left\langle r^{-q-1}\right\rangle_{(47)}
$$

where q is either positive or negative integer or zero. So we see that without any appeal to the properties of the contiguous relations of the hydrogenic wave functions we can get the recursion relation by purely operator algebra.

The invariant operator $\underset{\sim}{K} 1$ anticommutes with $\vec{\sigma} \cdot \hat{r}$ and $\vec{\sigma} \cdot \vec{a}$. Using this property the following operator relations are easily established

$$
\begin{align*}
& {[\vec{\sigma} \cdot \hat{r} ; \beta]=2 k, \vec{\sigma} \cdot \hat{r} \frac{1}{r^{2}} \quad \text { where } \beta=2 m \mathrm{H}} \tag{48}\\
& \frac{\vec{\sigma} \cdot \hat{r}}{2(q-1)}\left[\beta, \frac{\vec{\sigma} \cdot \hat{r}}{r^{q-1}}\right]=\frac{1}{r^{q}} i p_{r}+\left(\frac{k_{1}}{q-1}-\frac{q}{2}\right) \frac{1}{r^{q+1}} \tag{49}\\
& (q \neq 0, q \neq 1)
\end{align*}
$$

And

$$
\begin{aligned}
& {\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{q-1}} i p_{r}, \beta\right]+\left[\frac{q(q-1)+2 k_{1}}{2 q}\right]\left[\frac{\sigma \cdot \hat{r} \cdot \hat{r}}{r}, k\right]} \\
& \begin{aligned}
=\vec{\sigma} \cdot \hat{r} & \left\{2(q-1) \frac{1}{r^{q} \beta}+2 \alpha z z_{m}(2 q-1) \frac{1}{r^{q}+1}\right. \\
& +\frac{1}{2 q} \frac{\left.\left(q^{2}-1\right)^{2}\right)}{\left.r^{2}+4 k^{2}+2\right)}
\end{aligned}
\end{aligned}
$$

Taking the matrix element
we obtain the following recursion relation for the bound state radial matrix elements which is of frequent use in the rest of the thesis.

$$
\begin{align*}
& q(q-2)\left(l+\frac{1}{2}-\frac{q}{2}\right)\left(l+\frac{3}{2}-\frac{q}{2}\right)\langle l+1| \frac{1}{n^{q q 2}}|l\rangle \\
& -\alpha z_{m}(q-1)(2 q-3)\langle l+1| \frac{1}{r^{q}}|l\rangle \\
& +k_{B}^{2}(q-2)(q-1)\langle l+1| \frac{1}{r^{q}-1}|l\rangle=0 \tag{51}
\end{align*}
$$

where q is positive integer or zero. The angular operator $\Omega_{0} \equiv \hat{\mathbf{Z}}$. ($\overrightarrow{o x} \vec{L}$)
changes k to $-k-1$ without affecting the radial part of the function $\Psi_{N K \mu}$ and it commutes with $\underset{\sim}{\beta}$, while it anticommutes with $\left(2{\underset{\sim}{N}}_{1}-1\right)$. The operators $\vec{\sigma} \cdot \vec{a} \Omega_{0}$ and $\Omega_{0} \vec{\sigma} \cdot \vec{a}$ raise or lower the ℓ values or more prescicely κ values of the operand and $\Psi_{N \kappa \mu}$ respectively. The angular operators $\vec{\sigma} \cdot \hat{r} \Omega_{0}$ and $\Omega_{0} \vec{\sigma} \cdot \hat{r}$ preserve the ' ℓ value of the radial function while changing K_{1} to $K_{1}+1$ and $K_{1}-1$ respectively. For completeness we give below what these operators do to the bound state wave functions $\Psi_{N K \mu}$ and $\Psi_{N-K \mu}$ respectively, confining our attention to say $j=1-\frac{1}{2}$.

$$
\begin{aligned}
& \vec{\sigma} \cdot \vec{a} \psi_{N K \mu}=-i \frac{a_{K}}{k_{B}} \psi_{N-k \mu} \text { where } a_{1 C}=\left|\sqrt{N^{2}-C^{2}}\right|_{(52)} \\
& \left.\vec{\sigma} \cdot \vec{a} \Omega_{0} \Psi_{N K \mu}=i \frac{a_{L+1}}{k_{B}} \sqrt{(L+1)} C_{\mu}^{\left(-\frac{1}{2}\right.} \right\rvert\, l+\frac{1}{2}
\end{aligned} \Psi_{N(L+1, \mu}{ }_{(53)} . ~ \$
$$

$$
\Omega_{0} \overrightarrow{\sigma_{1}} \vec{a} \Psi_{N K \mu}
$$

$$
\begin{equation*}
=i \frac{a_{L}}{k_{B}} \sqrt{l(2 L-1)} C_{\mu \circ \mu}^{\left.l-\frac{1}{2} \right\rvert\, l-\frac{3}{2}} \Psi_{N+(c-1) \mu} \tag{54}
\end{equation*}
$$

$$
\begin{aligned}
& \Omega_{0} \Psi_{N C \mu}=\sqrt{l(2 l+1)} C_{\mu 0 \mu}^{l-\frac{1}{2}} 1 l+\frac{1}{2} \Psi_{N-(k+1) \mu} \\
& \vec{\sigma} \cdot \hat{r} \Omega_{0} \Psi_{N K \mu}=-i \sqrt{l(2 l+1)} C_{\mu 0 \mu}^{\left(-\frac{1}{2}\right.} 1 l+\frac{1}{2} F_{N L(k)}^{(r)} X_{k+1(56)}^{\mu} \\
& \Omega_{0} \vec{\sigma} \cdot \hat{r}^{\prime} \Psi_{N L \mathcal{L}}=\sqrt{l(2 l-1)} C_{\mu 0}^{l-\frac{1}{2} 1\left(-\frac{3}{2}\right.} F_{N L(C)} X_{L-1}^{\mu}
\end{aligned}
$$

And the relation for $\Psi_{N-K \mu}$ are

$$
\begin{align*}
& \vec{\sigma} \cdot \vec{a} \Psi_{N-k \mu}=-i \frac{a_{-c}}{k_{B}} \Psi_{N M C \mu} \\
& \Omega_{0} \Psi_{N-c \mu}=-\sqrt{L(2 l-1)} C_{\mu 0 \mu}^{1-\frac{1}{2} \left\lvert\,\left(-\frac{3}{2}\right.\right.} \Psi_{N K-1 \mu(58 b)} \\
& \vec{\sigma}, \vec{a} \Omega_{0} \Psi_{N-c \mu}=\frac{i a_{L-1}}{k_{B}} \sqrt{l(2 l-1)} C_{\mu}^{l-\frac{1}{2} 11-\frac{3}{2}} \\
& \Psi^{N} N-(k-1) \mu \\
& \Omega_{0} \sigma_{\cdot} \vec{a} \Psi_{N-k \mu}=\frac{i a_{6}}{k_{B}} \sqrt{l(2 l+1)} C_{\mu 0 \mu}^{\left(-\frac{1}{2} 1\left(+\frac{1}{2}\right.\right.} \Psi_{N-(k+1)(60)} \\
& \Omega_{0} \bar{\sigma}_{1} \hat{r} \Psi_{N-c \mu}=\sqrt{l(2 l+1)} C_{\mu 0 \mu}^{\left(-\frac{1}{2} 1 l+\frac{1}{2}\right.} F_{N(-1} \chi_{-k-1}^{\mu} \\
& \vec{\sigma} \cdot \hat{r} \Omega_{0} \Psi_{N-K \mu} \\
& =-\sqrt{l(2 L-1)} C_{\left.\mu 0{ }_{\mu}^{l-\frac{1}{2}} \right\rvert\, l-\frac{3}{2}} f_{N L-1}{ }_{-K+1}^{\mu} \tag{62}
\end{align*}
$$

${ }_{N-K \mu}$ are defined by $\Psi_{N-K \mu}=F_{N \ell(-\kappa)}{ }^{i \cdot \chi_{-K}^{\mu}}$ with the help of these results we now proceed to a formal proof of the Pasternack Sternheimer result.

Proof for the Vanishing of $\langle\ell+1| \frac{1}{r^{2}}|\ell\rangle$
Consider the matrix element

$$
\left(\Psi_{N-k-2, \mu}\left\{\vec{\sigma} \cdot \bar{a} \Omega_{0}\right\}^{0}\left\{\Omega_{0} \vec{\sigma} \cdot \hat{r}\right\}^{\prime} \frac{1}{r^{2}} \vec{\sigma}_{1} \cdot \vec{a} \Psi_{N K+1 \mu}\right)_{k 63}
$$

If we take k positive it is then easy to see that the above equation leads to

$$
\begin{equation*}
\sqrt{(l+2)(2 l+3)} C_{\mu 0}^{l+\frac{3}{2}} 1 l+\frac{1}{2} \frac{a_{1+1}}{k_{B}^{2}}\langle l+1| \frac{1}{r^{2}}|l\rangle \tag{64}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& \Omega_{0} \frac{1}{r^{2}} \vec{\sigma} \cdot \hat{r} \\
&=\frac{1}{k_{B}^{2}} \Omega_{0} \cdot \bar{a} \\
&= \frac{1}{r^{2}}\left\{\alpha Z_{m}+i p_{r} k-\frac{1}{r} k^{2}\right\}(6) \\
& \frac{1}{r^{2}} \vec{\sigma} \cdot \hat{r} \cdot \vec{\sigma} \cdot \vec{a} \Omega_{0} \tag{66}\\
&+\frac{1}{k^{2}}\left(\frac{1}{r^{2}} i p_{r}-\frac{1}{r^{3}}\right)\left(1-2 k_{1}\right) \Omega_{0}^{(6)}
\end{align*}
$$

where we made use of the commutation relation between Ω_{0} and $K_{1}, 1 / \gamma_{0} q$ and $i p_{r}$ by means of the Equations 10 and 16 (Section I). We see that

$$
\begin{align*}
& \left(\frac{1}{r^{2}} i \beta_{n}-\frac{1}{r^{3}}\right)=\frac{1}{2}\left[E, \frac{1}{r}\right] \text { and } \tag{67}\\
& \vec{\sigma} \cdot \hat{r} \frac{1}{r^{2}}=\frac{1}{2 \alpha z_{m}}\left[\frac{1}{2}[\tilde{r}, \hat{r}, \xi], E\right] \tag{68}
\end{align*}
$$

The operator under consideration is then

$$
\begin{aligned}
& \left\{\vec{\sigma} \cdot \vec{a} \Omega_{0}\right\}^{0}\left\{\Omega_{0} \vec{\sigma}, \hat{r}\right\}^{1} \frac{1}{r^{2}} \vec{\sigma}, \vec{a} \\
& =\frac{1}{2}\left[\beta, \frac{1}{r}\right]\left(1-2 \alpha_{1}\right)+\frac{1}{2 \alpha z_{m}}\left[\frac{1}{2}[\bar{\sigma}, \hat{r} \cdot \hat{R}] \cdot \hat{\sigma} \cdot \vec{\sigma} \cdot \vec{a}\right.
\end{aligned}
$$

Hence the matrix element

$$
\begin{equation*}
\left(\Psi_{N-k-2, \mu} \Omega_{0} \bar{\sigma} \cdot \hat{r} \frac{1}{r^{2}} \hat{\sigma} \cdot \hat{a} \Psi_{N K+1}\right) \tag{70}
\end{equation*}
$$

The right hand side vanishes because it is the matrix element of commutators with the Hamiltonian and the expectation value of the commutator of any operator with the Hamiltonian taken with respect to the eigenstates of the latter, vanishes. Hence the left hand side vanishes and we get

$$
\langle l+1| \frac{1}{r^{2}}|L\rangle=0
$$

For the next step we consider the operator

$$
\begin{equation*}
\left(\vec{\sigma} \cdot \vec{a} \Omega_{0}\right)^{\prime}\left(\Omega_{0}, \vec{\sigma} \cdot \hat{r}\right)^{2} \frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a} \tag{71}
\end{equation*}
$$

The matrix element of this operator between $\Psi_{N-(\kappa+2) \mu}$ and $\Psi_{N \kappa+1 \mu}$ is

$$
\begin{align*}
& \left(\Psi_{N-k-2, \mu}, \vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \vec{r}\right. \tag{72}\\
& \left.\frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a} \Psi_{N k+1 \mu}\right)^{(72)} \\
& =i \frac{a_{l+2}}{k_{\beta}{ }^{2}} \sqrt{((l l+3)(l+3)}(2 l+5) \sum_{\mu 0 \mu}^{\left.l+\frac{1}{2}\right)\left(t \frac{3}{2}\right.} C_{\mu 0 \mu}^{l+\frac{3}{2}} 1\left(+\frac{1}{2}\right.
\end{align*}
$$

$$
\begin{equation*}
(l+2) a_{l+1} C_{\mu 0 \mu}^{l+\frac{5}{2}} 1 l+\frac{3}{2} \int_{0}^{\infty} F_{N L+2} \frac{1}{r^{q}} f_{N L} r^{2} d r \tag{73}
\end{equation*}
$$

Since Ω_{0} commutes with the Hamiltonian we can factor out $\Omega_{0}{ }^{2}$ by using the commutation relation

$$
\begin{equation*}
\left[\vec{\sigma} \cdot \bar{a}, \Omega_{0}^{2}\right]=2 k, \bar{\sigma} \cdot \vec{a} \tag{74}
\end{equation*}
$$

and also

$$
\begin{gather*}
\vec{\sigma}, \hat{r} \Omega_{0} \Omega_{0} \bar{\sigma}, \hat{r}=\underset{\sim}{\underset{\sigma}{x}}=\Omega_{0}^{2}+2 k \tag{75}\\
{\left[\vec{\sigma}, \vec{a} \vec{\sigma} \cdot \hat{r}, \vec{\sigma}, \hat{r} \Omega_{0} \Omega_{0} \bar{\sigma}, \hat{r}\right]=0} \tag{76}
\end{gather*}
$$

The operator can now be written as

The procedure hereafter consists of the following general steps. We exband $\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r}$, take Ω_{0} to the extreme right and replace $\frac{1}{\gamma^{q}} i_{r}$ or $\vec{\sigma} \cdot \hat{r} \frac{1}{\gamma^{q}} i_{r}$ by appropriate commutators with the Hamiltonian and reduce the operator, after picking out commutators with H, to a sum of terms like (afactor). So the operator becomes Operator $\left.\equiv \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r}\left\{\frac{1}{r^{q} \bar{\sigma} \cdot \hat{r}} \frac{\hat{\sigma}}{r^{q+1}}\right)\left(1-2 k_{1}\right)\right\}^{2} \Omega_{0} \frac{1}{k^{2}}\left(\frac{1}{q^{q}} i p_{r}\right.$

$$
\frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}=\frac{1}{k_{B}^{2}}\left(\frac{\alpha Z m}{r^{q}}+\frac{1}{r^{q}} i p_{r} k_{1}-\frac{k_{1}^{2}}{r^{q+}}\right)^{78)}
$$

and rearranging the terms we get

$$
\begin{aligned}
& \text { Operator } \equiv \underset{\sim}{\mathscr{D}} \frac{\vec{\sigma} \cdot \hat{Q} \vec{\sigma} \cdot \hat{r}}{k_{B}^{2}}\left\{\frac{\alpha Z m}{r^{q}}+\frac{1}{r^{q}} i p_{r}\left(1-k_{1}\right)\right. \\
& \text { Now } \left.\left.\left(1-k_{1}^{2}\right) \frac{1}{r^{q}+1}\right\}\right\}_{0}^{(79)} \\
& \vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}} i p_{r}\left(1-k_{1}\right) \\
& =\frac{1}{2(q-1)}\left[\beta, \frac{\vec{\sigma} \hat{r}}{r^{q}}\right]\left(1-k_{1}\right)+\vec{\sigma} \hat{r}\left(\frac{q}{2}-\frac{k_{1}}{q-1}\right) \frac{1-k_{1}}{q+1}
\end{aligned}
$$

$$
\alpha Z_{m} \vec{\sigma}, r^{n} \frac{1}{r^{2}}=\frac{1}{2}\left[\frac{1}{2}[\overrightarrow{\sigma, r, \beta}] \beta, \beta\right]
$$

we get when $q=2$, the operator

$$
\begin{aligned}
& \underset{\sim}{0} \equiv \underset{\sim}{\sim} \vec{\sigma} \cdot \vec{a} \frac{1}{2(q-1) k_{B}^{2}}\left[2 m \stackrel{H}{\sim}, \frac{\vec{\sigma} \cdot \hat{r}}{r^{q}-1}\right]\left(1-k_{1}\right) \Omega_{0} \\
& +\frac{\vec{\sigma}, \vec{a}}{K_{\beta^{2}}} \vec{\sigma} \cdot \hat{r}\left\{\frac{\alpha Z m}{r^{q}}+\frac{q-2}{2}\left(\frac{(q-1)-(q-3) k}{q-1}\right.\right. \\
& \left.\left.-\frac{2 k_{1}{ }^{2}}{q-1}\right) \frac{1}{r^{q+1}}\right\} \Omega_{0}
\end{aligned}
$$

gives $\vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega_{\sigma} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{2}} \vec{\sigma} \cdot \vec{a}$

$$
\begin{equation*}
=0 \underset{Q}{\sigma} \cdot \vec{a}-\frac{1}{2 k_{B}^{2}}\left[2 m \underset{\Gamma}{H} \cdot \frac{\vec{\sigma} \cdot \hat{r}}{r}\right]^{r}\left(1-k_{1}\right) \Omega_{0} \tag{81}
\end{equation*}
$$

$+\underset{\sim}{\infty} \frac{\vec{\sigma} \cdot a}{\alpha} \frac{1}{2}\left[\frac{1}{2}\left[\hat{\sigma}_{\sigma}, \hat{r}, \underset{\text { and }}{\beta}\right], \underset{\sim}{\beta}\right] \Omega_{0}$

left hand side as zero so we have

$$
\langle l+2| \frac{1}{r^{2}}|l\rangle=0
$$

When $q=3$

Numerically this leads to

$$
\alpha z m\langle l+2| \frac{1}{r^{3}}|l+1\rangle-\frac{(l+1)(l+3)}{2}\langle l+2| \frac{1}{r^{4}}|l+1|(82)
$$

which is seen to be zero from relation 16. Therefore operatorwise we

$$
\begin{align*}
& \text { ge. } \hat{r}\left\{\frac{\alpha z_{m}}{r^{3}}-\frac{k_{-}^{2}-1}{2} \frac{1}{r^{4}}\right\} \\
& =\frac{1}{3}\left\{\left[\vec{\sigma}, \vec{r} \frac{1}{r} i p_{r}, \beta\right]+\left(\frac{k_{1}+1}{2}\right)\left[\frac{\sigma_{1}, \overrightarrow{r^{3}}}{r^{2}}, \hat{R}\right]\right. \\
& -\frac{1}{\alpha z_{m}}\left[\vec{\sigma}, \vec{r} i p_{r}, \beta\right] 2 m \underset{\sim}{H} \\
& \left.-2 k_{1}\left[\frac{\sigma, \vec{r}}{r}, \beta\right]\right\}
\end{align*}
$$

Collecting all terms we get

$$
\begin{align*}
& \text { Operator }=\underset{\sim}{D} \frac{\sigma_{\cdot} \cdot a}{k_{B}^{2}}\left\{\frac{1}{4}\left[\beta, \frac{\sigma_{1}^{2} r}{r^{2}}\right]\left(1-k_{i}\right)\right. \\
& +\frac{1}{3}\left[\vec{\sigma}, \hat{r} \frac{1}{r} i p_{r}, \beta\right]+\frac{k_{n}+1}{6}\left[\frac{\vec{\sigma}, \vec{r}}{r^{2}}, \beta\right] \\
& \left.-\left(\frac{1}{3 \alpha z m}\left[F, \hat{r} i p_{r}, \beta\right]+\frac{2}{3} k_{\sim}\left[\frac{\sigma, r}{r}, \beta\right]\right) \beta\right\}_{0} \tag{84}
\end{align*}
$$

Since all are commutators with the Hamiltonian the matrix element vanish. So we get

$$
\langle L+2| \frac{1}{r^{3}}|l\rangle=0
$$

We thus see that the operator

$$
\vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega_{0} \vec{\sigma} \cdot \vec{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a}
$$

leads to

$$
\langle l+2| \frac{1}{r^{q}}|l\rangle=0_{\text {when } q^{\prime}=2,3 .}
$$

Proof for $\left.\langle\ell+3| \frac{1}{\gamma^{q}} \right\rvert\, \ell>$ for $q=2,3,4$
Now consider the operator

$$
\begin{equation*}
\left(\sigma, a \Omega_{0}\right)^{2}\left(\Omega_{0} \bar{\sigma}, \tilde{r}\right)^{3} \frac{1}{r^{2}} \bar{\sigma} \cdot \bar{a} \tag{85}
\end{equation*}
$$

The matrix element of this operator

$$
\begin{align*}
& \left(\Psi_{N-k-2 \mu}\left(\vec{\sigma} \cdot \bar{a} \Omega_{0}\right)\left(\Omega_{0} \vec{\sigma} \cdot \hat{r}\right)^{3} \frac{1}{r^{2}} \vec{\sigma} \cdot \vec{a} \Psi_{N K+\mu \mu}\right) \\
& =-i k_{B}^{-3} a_{l+1} a_{l+2} a_{l+3}(l+2)(l+3)(2 l+5)(2 l+7) \sqrt{(l+4)} \\
& \text { - } C_{\mu}^{l+\frac{3}{2}} 11+\frac{5}{2}, C_{\mu 0}^{l+\frac{5}{2}} 1 l+\frac{7}{2}, C_{\mu}^{l+\frac{7}{2}} 1 \mu^{l+\frac{5}{2}} \\
& \text { - } C_{\mu}^{l+\frac{5}{2} \cdot 1} 0{ }_{\mu}^{l+\frac{3}{2}} \quad C_{\mu}^{l+\frac{3}{2}} 1 l+\frac{1}{2}\left\langle\left(l+3\left|\frac{1}{r q}\right| l\right\rangle\right. \\
& =\text { (numerical factor) }\left\langle\left. 1+3 / \frac{1}{n^{9}} \right\rvert\, l\right\rangle \tag{86}
\end{align*}
$$

Now we consider

$$
\begin{aligned}
& \vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a}\left(\Omega_{0} \Omega_{0} \vec{\sigma} \cdot \hat{r}\right) \Omega_{0} \vec{\sigma} \cdot \hat{r} \\
& \quad \Omega_{0} \vec{\sigma} \hat{r} \frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a} \\
& =\vec{\sigma} \cdot \vec{a} \Omega_{0} D\left(\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \Omega_{0}\right) \vec{\sigma} \cdot \hat{r}\left(\Omega_{0} \vec{\sigma} \cdot \hat{y} \frac{1}{r^{q} \vec{\sigma}} \overrightarrow{(\vec{\theta})},\right.
\end{aligned}
$$

We bring Ω_{0} in the first bracket to the left while in the second bracket to the right using the relations 14 and 15 (Section II) that is,

$$
\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \Omega_{0}=\Omega_{0} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{\gamma}+\left(i p_{r}+\frac{1}{r}\right) \Omega_{0}\left(2 k_{1}-1\right)
$$

$$
\begin{aligned}
& \Omega_{0} \frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}=\frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a} \Omega_{0}+\frac{1}{K_{B}^{2}}\left(1-2 K_{1}\right)_{(88)} \\
& \left(\frac{1}{r_{c}^{q}} i p_{r}-\frac{1}{r^{q}+i}\right) \Omega_{0}
\end{aligned}
$$

$$
\begin{align*}
& \vec{\sigma} \cdot \vec{a} \Omega_{0} \underset{\sim}{\sim} \\
& \Omega_{0}\{ \left.\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r}+\frac{1}{k_{B}^{2}}\left(i p_{r}+\frac{1}{r}\right)\left(2 k_{1}-1\right)\right\} \vec{\sigma} \cdot \hat{r} \tag{89}\\
& \cdot\left\{\frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}+\frac{1}{k_{B}^{2}}\left(1-2 k_{1}\right)\left(\frac{1}{r_{q}^{q}} i p_{r}-\frac{1}{r^{q+1}}\right)\right\} \Omega_{0} \\
&= \vec{\sigma} \cdot \vec{a} \underset{\sim}{\sim} \sigma^{\prime}\left\{\vec{\sigma} \cdot \vec{a} \frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}+\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{1}{r^{q}} i k_{r}-\frac{1}{r^{q}+1}\right)\right. \\
&+\frac{1}{k_{B}^{2}}\left(i k_{r}+\frac{1}{r}\right) \frac{1}{r^{q}}\left(2 k_{1}-1\right) \vec{\sigma} \cdot \vec{a} \tag{90}\\
&\left.+\frac{1}{k_{B}^{4}} \vec{\sigma} \cdot \hat{r}\left(i k_{r}+\frac{1}{r}\right)\left(\frac{1}{r^{\eta}} i p_{r}-\frac{1}{r^{q+1}}\right)\left(4 k_{1}^{2}-1\right)\right\} \Omega_{0}
\end{align*}
$$

Now $\quad \frac{1}{r^{q}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}=\frac{1}{k_{B}^{2}}\left\{\frac{\alpha Z m}{r q}+\left(\frac{q}{2} k_{1}-k_{1}^{2}\right) \frac{1}{r \xi+1}\right\}$
and

$$
-\frac{1}{2 k_{B}^{2}(q-1)}\left[\frac{1}{r \xi-1}, \underset{\sim}{\beta}\right]{\underset{\sim}{N}}^{K_{1}}
$$

$$
\left(\frac{1}{r \varepsilon} i p_{r}-\frac{1}{r \xi+1}\right)=\left(\frac{q-2}{2}\right) \frac{1}{r q+1}+\frac{1}{2(q-1)}\left[\beta, \frac{1}{r \delta+1}\right]
$$

In the third term

$$
\frac{1}{r^{\xi}} i p_{r}+\frac{1-q}{r^{\delta+1}}=\frac{2-q}{2} \frac{1}{r^{\xi}+1}+\frac{1}{2(\xi-1)}\left[\underset{\sim}{\beta}, \frac{1}{r^{\xi-1}}\right]
$$

and also

$$
\hat{\sigma} \cdot \hat{r}\left(i p_{r}+\frac{1}{r}\right)\left(\frac{1}{r^{\xi}} i p_{r}-\frac{1}{r^{\xi}+1}\right)=\vec{\sigma} \cdot \hat{r}\left(-\frac{1}{r^{\xi}} p_{r}^{2}-\frac{q}{r^{\delta+1}} i p_{r}+\frac{q}{r^{\xi+2}}\right)
$$

Now using the relations 8 and 10 we get

$$
\begin{aligned}
& =\left\{\frac{1}{2(q-1)}\left[\beta, \vec{\sigma}, \hat{r} \frac{1}{r^{2}} i_{r}\right]+\frac{1}{4}\left[\vec{\sigma}, \hat{r} \frac{1}{r_{g}^{\prime} \cdot}, \vec{N}\right]+\frac{k_{1}}{2 g(q-1)}\left[\frac{\beta_{N}}{,}, \frac{\vec{r}}{r^{2} \cdot \hat{r}}\right]\right\} \\
& +\vec{\sigma} \cdot \hat{r}\left\{\frac{\alpha z m}{q-1} \frac{1}{r \xi+1}+\frac{q(3-\xi)}{4 r^{\xi+2}}-\frac{k_{1}^{2}}{\xi} \frac{1}{r^{\xi}+1}\right\}
\end{aligned}
$$

Hence the operator

$$
\begin{align*}
& =\vec{\sigma} \cdot \vec{a} \nabla^{\prime}\left\{\vec{\sigma} \cdot \vec{a} \frac{1}{2 k_{B}^{2}(1-\xi)}\left[\frac{1}{r q}, \vec{\sim}\right] \underset{\sim}{k_{1}}+\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \vec{a} \frac{1}{\alpha(\xi-1)} .\right. \\
& \text {. }\left[\underset{\sim}{\beta}, \frac{1}{r_{\xi}^{\xi-1}}\right]\left(1-2 k_{1}\right)+\frac{1}{k_{B}^{2}} \frac{1}{2(\xi-1)}\left[\beta, \frac{1}{r \delta-1}\right]\left(2 k_{1}-1\right) \vec{\sigma} \cdot \vec{a} \\
& +\frac{1}{R_{B}^{2}}\left(\frac{1}{2(\xi-1)}\left[\underset{\sim}{\beta}, \vec{\sigma}, \hat{v} \frac{1}{\gamma \varepsilon} i p_{r}\right]+\frac{1}{4}\left[\frac{\bar{\sigma} \cdot \hat{r}}{r \xi}, \underset{\sim}{\beta}\right]\right. \\
& \left.\left.+\frac{k_{1}}{2 \vec{\sigma}(\xi-1)}\left[\ddot{\sim} \beta, \vec{\sigma} \cdot \hat{r} \frac{1}{r \xi}\right]\right)\left(4 k_{1}^{2}-1\right)\right\} \Omega_{0} \\
& +\vec{\sigma} \cdot \vec{a} \nabla_{\sim}^{\prime}\left\{\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{\alpha 2 m}{r \varepsilon}+\left(\frac{\xi k_{1}}{2}-k_{1}^{2}\right) \frac{1}{r^{\delta+1}}\right)\right. \\
& +\frac{\vec{\sigma} \cdot \vec{a}}{k_{B}^{2}} \frac{(\xi-2)}{2} \frac{(1-2 K J)}{r^{\xi+1}}+\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{\xi-2}{2}\right) \frac{1-2 k_{1}}{r^{\xi+1}} \vec{\cdot} \cdot \vec{a} \\
& +\frac{1}{k_{B}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{\varepsilon-2}{2}\right) \frac{1}{r \xi+1}\left(1-2 k_{1}\right) \vec{\sigma} \cdot \vec{a} \\
& \left.+\vec{\sigma} \cdot \hat{r}\left(\frac{\alpha 2 m}{\varepsilon^{-1}} \frac{1}{r^{i}+1}+\left(\frac{\varepsilon(3-\varepsilon)}{4}-\frac{k_{1}^{2}}{\xi}\right) \frac{1}{r^{2}+2}\right)\left(4 k_{1}^{2}-1\right)\right\} \Omega_{0} \tag{91}
\end{align*}
$$

We see that the first six terms are commutators with the Hamiltonian and do not pose any difficulty. The term to be worried about is

$$
\begin{aligned}
& \frac{1}{R_{B}^{2}} \vec{r} \cdot \vec{a}\left\{\frac{\alpha 2 m}{\gamma \varepsilon}+\left(\frac{\xi}{2} k_{1}-k_{1}^{2}\right) \frac{1}{r \varepsilon+1}+\frac{q-\alpha}{\alpha}\left(1-2 k_{1}\right) \frac{1}{r \xi}+1\right\} \\
& +\frac{1}{k_{B}^{2}}\left(\frac{2-\beta}{2}\right) \frac{1}{r^{8}+1}\left(2 k_{1}-1\right) \stackrel{\sigma}{n}_{n}^{a} \\
& +\frac{\sigma_{1} \hat{r}}{R_{B}^{4}}\left\{\frac{\alpha 2 m}{\varepsilon-1} \frac{1}{r^{g+1}}+\left(\frac{q(s-\xi)}{4}-\frac{k_{1}^{2}}{\varepsilon}\right) \frac{1}{r^{\xi}+2}\right\}\left(4 k_{1}^{2}-1\right)
\end{aligned}
$$

Making use of commutation relation between $\vec{\sigma} \cdot \vec{a}$ and $\frac{1}{q}$ this can be written as

$$
\begin{aligned}
& \frac{1}{k_{0}^{2}} \vec{\sigma} \cdot \vec{a}\left\{\frac{\alpha 2 m}{r \varepsilon}+\left[(q-2)+\frac{6 k_{1}}{2}-k_{1}^{2}\right] \frac{1}{r \delta}+1\right\} \\
& +\frac{\vec{\sigma}_{\cdot} \hat{r}}{k_{p}^{4}}\left\{\left(\frac{\varepsilon(\xi-3)}{4}+\frac{(\xi+1)(q-2)}{2} k_{1}+\left[2(\xi+1)+\frac{1}{\xi}\right] k_{1}^{2}\right.\right. \\
& \left.\left.-\frac{4 k_{1}^{2}}{\varepsilon}\right)\right\} \frac{1}{r^{\varepsilon}+2} \\
& f \frac{\alpha 2 m\left(4 k_{1}{ }^{2}-1\right)}{\varepsilon-1} \frac{1}{r^{8+1}}
\end{aligned}
$$

Now

$$
\begin{aligned}
\vec{r} \cdot \vec{a} \frac{1}{r q}= & \frac{\vec{\sigma} \cdot \hat{r}}{k_{B}^{2}}\left\{\frac{\alpha 2 m}{r \xi}-\left[\frac{\xi}{2} k_{1}+\left(\frac{q}{\xi-1}\right) k_{1}^{2}\right] \frac{1}{r \xi+1}\right\} \\
& +\frac{1}{2(\xi-1)} \frac{1}{k_{B}^{2}}\left[\frac{\vec{r} \cdot \hat{r}}{r^{\varepsilon}-2}, \beta_{\sim}\right]
\end{aligned}
$$

We therefore pick out few more commutators with Hamiltonian namely,

$$
\frac{1}{k_{B}^{4}} \frac{\alpha \sum m}{2(\xi-1)}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{\delta}-2}, \vec{\beta}\right]+\frac{1}{R_{B}^{4} 2 q}\left[\frac{\vec{r} \cdot \hat{r}}{r_{\delta}-1}, \vec{\sim}\right]\left((q-2)+\frac{\delta}{2} k_{1}-k_{1}^{2}\right)
$$

and absorb all the factors multiplying $\vec{\sigma} \cdot \hat{r}$ as

$$
\begin{align*}
& \frac{1}{k_{B}^{4}} \vec{r} \cdot \hat{\gamma}\left\{\frac{(\alpha 2 m)^{2}}{\gamma^{8}}+\alpha 2 m\left(\frac{q^{2}-3 q+1}{\varepsilon-1}+\frac{5-2 q}{\varepsilon-1} k_{1}^{2}\right) \frac{1}{\gamma^{q}+1}\right. \\
& \left.+(q-3)\left(\frac{q}{4}-\frac{q^{2}+4}{4 q} k_{1}^{2}+\frac{k_{1}^{2}}{\varepsilon}\right) \frac{1}{\gamma^{\delta}+2}\right\} \tag{92}
\end{align*}
$$

Collecting different terms we get

$$
\begin{aligned}
& \text { Operator }=\vec{\sigma} \cdot \vec{a} \underset{\sim}{\approx}\left\{\left(\sum_{i} \text { commutators }\right)\right. \\
& +\frac{\vec{\sigma} \cdot \hat{r}}{R_{B}+}\left\{\frac{(\alpha 2 m)^{2}}{r q}+\alpha 2 m\left(\frac{q^{2}-3 q+1}{q-1}+\frac{5-2 q}{q-1} k_{1}^{2}\right) \frac{1}{r q+1}\right. \\
& \left.\left.+(q-3)\left[\frac{\varepsilon}{4}-\frac{q^{2}+4}{4 q} k_{1}^{2}+\frac{k_{1}}{q}\right] \frac{1}{\gamma q+2}\right\}\right\}-\Omega_{0}
\end{aligned}
$$

for $q=2,3,4$, Equation (92) can also be written as commutation with the Hamiltonian. Thus the operator

$$
\left(\sigma \cdot a \Omega_{0}\right)^{2}\left\{\left(\Omega_{0} \vec{\sigma} \cdot \hat{r}\right)^{3} \frac{1}{r^{q}} \vec{\sigma} \cdot \vec{a}\right\}
$$

happens to be

$$
\begin{equation*}
\sigma^{\prime \prime} \vec{\sigma} \cdot \vec{a}\left(\sum_{i} \theta_{\delta_{i}}\right) \Omega_{0} \tag{94}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \quad \mathscr{D}^{\prime \prime}=\vec{\sigma} \cdot \hat{r} \Omega_{0} \underset{\sim}{D} \Omega_{0} \sigma^{\prime} \hat{r} \\
& \theta_{q 1}=-\frac{1}{2 k_{\beta}^{2}(q-1)} \vec{\sigma} \cdot \vec{a}\left[\frac{1}{r^{q-1}} \cdot \beta\right] \underset{\sim}{k_{1}} \\
& \theta_{q_{2}}=\frac{\beta}{k_{B}^{2} 2(q-1)} \vec{\sigma} \cdot \vec{a}\left[\frac{1}{r^{q}-1}, \beta\right](2 k-1) \\
& \theta_{q_{3}}=-\frac{1}{k_{B}^{2} 2(q-1)}\left[\frac{1}{r q-1}, \beta\right]\left(2 k_{\sim}-1\right) \vec{\sigma} \cdot \vec{a} \\
& \theta_{q_{4}}=-\frac{1}{k_{B}^{4} 2(q-i)}\left[\hat{\sigma} \cdot \hat{r} \frac{1}{r^{q-1}} i p_{r} \cdot \beta_{\sim}\right]\left(4 k_{1}^{2}-1\right) \\
& \theta_{q 5}=\frac{1}{4 k_{B}^{4}}\left[\frac{\sigma \cdot \hat{r}}{r^{q}}, \beta\right]\left(4 k_{1}^{2}-1\right) \\
& O_{q 6}=-\frac{1}{k_{\beta}^{4} 2 q(q-1)} k_{1}\left[\frac{\bar{\sigma} \cdot \hat{r}}{r^{q}}, \beta\right]\left(4 k_{1}^{2}-1\right) \\
& \theta_{q 7}=\frac{\alpha Z m}{k_{B}^{4} 2(q-1)}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r q-2}, \beta\right] \underset{\sim}{K_{1}} \\
& \theta_{q 8}=\frac{1}{k_{B}^{4} 2 q}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{q}-1}, \beta\right]_{\sim}^{k_{1}}\{(q-2) \\
& \left.+\frac{q k_{1}}{2}-k_{1}^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2,9}^{\text {For } q=2}=\frac{\left(k_{1}^{2}-1\right)}{6 k_{B}{ }^{4}}\left[\vec{\sigma}, \hat{r} \frac{1}{r} i p_{r}, \beta\right] \\
& \theta_{2,10}=\frac{\left(1+k_{1}\right)}{12} \frac{\left(k_{1}^{2}-1\right)}{k_{B}{ }^{4}}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{2}}, E\right] \\
& \theta_{2,11}=\frac{\left(\alpha Z_{m}\right)^{2}}{k_{B}{ }^{4}}\left[\frac{\sigma_{\cdot} \cdot \hat{r}}{2 \alpha Z_{m}}\left(i p_{r}-\frac{k_{1}}{r}\right), \beta\right] \\
& \theta_{2,12}=\frac{\left(1-k_{1}^{2}\right)}{3 k_{\beta}^{4}}\left[\frac{\vec{\sigma} \cdot \hat{r}}{2 \alpha z_{m}}\left(i p_{r}-\frac{1}{\gamma}\right) \cdot \beta \cdot\right]_{(97)}^{\beta} \\
& \theta_{3,9}=\frac{\alpha Z_{m}}{6 k_{B}^{4}}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r} i p_{r}, \beta\right] \\
& \theta_{3,10}=\frac{\alpha Z m}{12 k_{B}^{4}}\left(1+k_{1}\right)\left[\frac{\sigma_{1} \cdot r}{r^{2}}, \beta\right] \\
& \theta_{3,11}=-\frac{1}{3 k_{B}^{4}}\left[\frac{\sigma \cdot \hat{r}}{2}\left(i p_{r}-\frac{k_{1}}{r}\right), \beta \underset{\sim}{\beta}\right. \\
& O_{4,9}=\frac{1-k_{1}^{2}}{30}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}} i p_{r}, \beta\right] \\
& Q_{4,10}=\frac{\left(1-k_{2}^{2}\right)\left(6+k_{1}\right)}{120}\left[\frac{\hat{\sigma} \cdot \hat{r}}{r^{4}}, \beta\right]
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{4,12}=\frac{\alpha z m\left(3+k_{1}\right)}{30}\left[\frac{\vec{r} \cdot \hat{r}}{r^{3}}, \beta\right] \\
& \theta_{4,13}=-\frac{1}{15}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r} i p_{r}, \beta\right] \underset{\sim}{\beta} \\
& \theta_{4,14}=-\frac{1}{30}\left(1+k_{1}\right)\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{2}}, \beta\right] \underset{\sim}{\beta} \\
& \theta_{4,15}=\frac{1}{15 \alpha z m}\left[\vec{\sigma} \cdot \hat{r} i p_{r}, \beta\right]{ }_{\sim}^{\beta} \beta_{\sim}^{2} \\
& O_{4,16}=\frac{1}{15 \alpha z_{m}} k_{1}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r}, \beta\right] \underset{\sim}{\beta}{ }^{2}
\end{aligned}
$$

Thus we see that

$$
\begin{aligned}
& \langle l+1| \frac{1}{r^{2}}|l\rangle=0 \\
& \langle l+2| \frac{1}{r^{2}}|l\rangle=0
\end{aligned}
$$

$$
\begin{align*}
& \langle l+2| \frac{1}{r^{3}}|l\rangle=0 \\
& \langle l+3| \frac{1}{r^{q}}|l\rangle=0 \tag{99}\\
& \text { for } q=2,3,4.4 .
\end{align*}
$$

And by induction, for bound states, we get

$$
\begin{equation*}
\langle l+L| \frac{1}{r^{q}}|l\rangle=0 \tag{100}
\end{equation*}
$$

$2 \leq q \leq L+1$.
Section III

Continuum States

The radial part of continuum solutions of the Hamiltonian is derived from bound state functions by analytic continuation which essentially consists in the discrete quantum number N going over to complex number -in where n is any positive number, not necessarily an integer and by replacing the Laguerre polynomials by Laguerre functions defined through Cauchy integrals. The continuous functions are normalized such that

$$
\begin{equation*}
\int_{0}^{\infty} F_{\eta \ell}(r) F_{\eta^{\prime}}(r) r^{3} d r \tag{101}
\end{equation*}
$$

Introducing the wave number $k_{c}=\frac{\alpha \mathbb{Z} m}{\eta}$ and appropriately modifiting the operator equations and confining our attention to say $j=\left(1-\frac{1}{2}\right)$

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{a} \Psi_{\eta x \mu}=-\frac{i}{k_{c}}|k+i \eta| \Psi_{\eta-x, \mu} \equiv-\frac{i}{k_{c}} a_{k} \psi_{\eta-x \mu} \tag{102}
\end{equation*}
$$

$$
\begin{align*}
& \Omega_{0} \Psi_{\eta x \mu}=\sqrt{l(x l+1)} C_{\mu}^{e-\frac{1}{2}, 1, \ell+\frac{1}{2}} G_{\eta} \Psi_{\eta-(x+1) \mu} \tag{103}\\
& \vec{\sigma} \cdot \vec{a} \Omega \Psi_{\eta x \mu}=\frac{i a_{l+1}}{R_{c}} \sqrt{((2 l+1)} C_{\mu_{1}, 0, \mu}^{e-\frac{1}{2}, 1, l+\frac{1}{2}} \Psi_{\eta x+1, \mu} \tag{104}\\
& \operatorname{lo}_{0} \vec{\sigma} \cdot \vec{a} \underline{Y}_{\eta x \mu}=\sqrt{l(2 l-1)} \frac{i a_{l}}{k_{c}} C_{\mu, 0, \mu}^{0-\frac{1}{2} \cdot 1,1-3 / 2} \Psi_{\eta_{, K-1} \mu} \tag{105}
\end{align*}
$$

It is important to note that, while the operator relationships derived In Sections I and II are valid here also, caution has to be exercised in taking matrix elements as some of the radial integrals are likely to be singular.

To begin with let us consider the matrix element
which can be written as

This matrix element is evaluated to be

$$
\begin{align*}
& i \sqrt{(l+2)(2 l+3)} C^{l+3 / 2,1, l+1 / 2} \\
& \left.\cdot\left\{\frac{a_{l+1}}{k_{c}}<l+1\left|\frac{1}{r^{2}}\right|(\rangle-\frac{a_{l+2}}{k_{c}}<l+2\left|\frac{1}{r^{2}}\right| \ell+1\right\rangle\right\} \tag{108}\\
& =(\text { a numerical factor })\left\{\frac{a_{l+1}}{k_{c}}\langle l+1| \frac{1}{r^{2}}|l\rangle\right. \\
& \left.-\frac{a_{l+2}}{R_{c}}\langle l+2| \frac{1}{r^{2}}|l+1\rangle\right\}
\end{align*}
$$

Now consider the difference operator

$$
\begin{equation*}
\Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{2}} \vec{\sigma} \cdot \vec{a}-\vec{\sigma} \cdot \vec{a} \frac{1}{r^{2}} \vec{\sigma} \cdot \hat{r} \Omega_{0} \tag{109}
\end{equation*}
$$

Taking Ω_{0} in the first term to the extreme right we get

$$
\begin{align*}
& =\left(\frac{1}{r^{2}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a}-\vec{\sigma} \cdot \vec{a} \frac{1}{r^{2}} \vec{\sigma} \cdot \hat{r}\right) \Omega_{0} \\
& \tag{110}
\end{align*}
$$

Applying Equations 16 and 4 of Section I we get

$$
\begin{equation*}
=-\frac{1}{R_{c}^{2}}\left[\frac{1}{r}, \beta\right] \Omega_{0}-\frac{1}{2 k_{c}^{2}}\left[\beta_{\sim}, \frac{1}{r}\right]\left(2 k_{1}-1\right) \Omega_{0} \tag{111}
\end{equation*}
$$

Hence the operator

$$
\begin{align*}
& \left(\vec{\sigma} \cdot \vec{a} \Omega_{0}\right)^{0}\left\{\Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{2}} \overrightarrow{\sigma_{1}} \vec{a}-i t_{s} A d j\right\} \\
& =\frac{1}{2 k_{c}^{2}}\left[\frac{1}{r}, \beta_{\sim}\right]\left(\frac{1-2 k_{1}}{2}\right) \Omega_{0} \tag{112}
\end{align*}
$$

The matrix element therefore vanishes and we get the difference equation

$$
\begin{equation*}
\left.\left.\frac{a_{l+1}}{k_{c}}<\ell+1\left|\frac{1}{r^{2}}\right| \ell\right\rangle-\frac{a_{l+2}}{k_{c}}<l+2\left|\frac{1}{r^{2}}\right| \ell\right\rangle=0 \tag{113}
\end{equation*}
$$

which has a solution

$$
\begin{align*}
\langle l+1| \frac{1}{r^{2}}|\ell\rangle & =\frac{(\operatorname{const}) k_{c}}{a_{\ell+1}} \tag{114}\\
& =\frac{\operatorname{const} k_{c}}{1 \ell+1+i \eta \mid} \tag{115}
\end{align*}
$$

To evaluate $\left.\langle\ell+2| \frac{1}{r^{3}} \right\rvert\, \ell>$ we consider the operator

$$
\begin{align*}
\left(\vec{\sigma} \cdot \vec{a} \Omega_{0}\right)
\end{align*}\left\{\begin{array}{r}
\Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}} \vec{\sigma} \cdot \vec{a} \tag{116}\\
\\
\left.-\vec{\sigma} \cdot \vec{a} \frac{1}{r^{3}} \vec{\sigma} \cdot \vec{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0}\right\}
\end{array}\right.
$$

Its matrix element

$$
\left(\psi_{\eta-k-2 \mu} \vec{\sigma} \cdot \vec{a} \Omega_{0}\left\{\left(\Omega_{0} \vec{\sigma} \cdot \hat{r}\right)^{2} \frac{1}{r^{3}} \vec{\sigma} \cdot \vec{a}-i+s d y\right\} \psi_{\eta_{k+1 \mu}}\right)
$$

gives

$$
\begin{aligned}
& \frac{1}{k^{2}}\left((+2)(2 l+5) \sqrt{(l+3)(2 l+3)} C \begin{array}{l}
l+3 / 2,1, l+\frac{1}{2} \\
\mu, 0, \mu
\end{array}\right. \\
& C_{\mu, 0, \mu}^{l+5 / 2,1, \ell+3 / 2} C_{\mu, 0, \mu}^{l+3 / 2,1, \ell+5 / 2}\left\{a_{l+1} a_{l+2}\langle\ell+2| \frac{1}{r^{3}}|\ell\rangle\right. \\
& \left.-a_{e+2} a_{0+3}\langle\varphi+3| \frac{1}{r^{3}}|e+1\rangle\right\}
\end{aligned}
$$

The following steps will show how the operator reduces to a commutator with Hamiltonian

Let OO 2 $=$ L.H.S operator - R.H.S. operator.

As we have already taken care of the left side of the operator we deal only with the right side of the operator.

$$
\begin{align*}
\text { Right operator } & =\vec{\sigma} \cdot \vec{a} \Omega_{0} \overrightarrow{\sigma_{0}} \cdot \vec{a} \frac{1}{r_{3}} \overrightarrow{\sigma_{u}} \hat{r} \Omega_{0} \overrightarrow{\sigma_{0}} \hat{r} \Omega_{0} \tag{117}\\
= & \vec{\sigma} \cdot \vec{a} \Omega_{0}\left\{\Omega_{0} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}}\right. \\
& \left.+\frac{\Omega_{0}}{k_{c}^{2}}\left(\frac{2}{r^{4}}-\frac{1}{r^{3}} i p_{Y}\right)\left(1-2 K_{1}\right)\right\} \vec{\sigma} \cdot \hat{r} \Omega_{0} \tag{118}
\end{align*}
$$

Here the underlined part is handled by the rule (12) of Section I.

$$
\therefore R \cdot O=\overbrace{\sim}\left\{(\vec{\sigma} \cdot \vec{a})^{2} \frac{1}{r^{3}}+\frac{1}{k_{c}^{2}} \overrightarrow{\sigma_{0}} \vec{a} \vec{\sigma}_{1} \hat{r}\left(\frac{2}{r_{4}}-\frac{1}{r^{3}} i p_{r}\right)\left(1+2 k_{1}\right)\right\} \Omega_{0}
$$

So the complete operator becomes

$$
\begin{align*}
O_{2}= & \approx \\
& -\vec{\sigma} \cdot \vec{\sigma} \cdot \vec{a} \frac{1}{r^{3}} \vec{\sigma} \cdot \vec{a}+\frac{\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{\gamma}}{k_{c}^{2}}\left(\frac{1}{r^{3}} i p_{r}-\frac{1}{r^{4}}\right)\left(1-2 k_{1}\right) \\
& \vec{a} \cdot \vec{a} \frac{1}{r^{3}}+\frac{1}{k_{e}^{2}} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r}\left(\frac{2}{r^{4}}-\frac{1}{r^{3}} i p_{r}\right) \tag{119}\\
& \left.\left(1+2 k_{1}\right)\right\} \Omega_{0}
\end{align*}
$$

Using relation 12 of Section I this reduces to

$$
\begin{equation*}
0_{N^{2}} \equiv \infty \frac{\overrightarrow{\sigma_{1}} \vec{a} \overrightarrow{\sigma_{1}} \hat{r}}{2 k_{c}^{2}}\left\{\frac{1}{r^{3}} i p_{r}+\left(\frac{k_{1}}{2}-3 / 2\right) \frac{1}{r^{4}}\right\} \Omega_{0} \tag{120}
\end{equation*}
$$

and using relation 8 , operator becomes

$$
\begin{align*}
& O_{2}=\underset{\sim}{\infty} \frac{\vec{\sigma} \cdot \vec{a}}{2 k_{c}^{2}}\left[2 m \underset{\sim}{H}, \frac{\vec{\sigma} \cdot \hat{r}}{r^{2}}\right] \Omega 0 \tag{121}\\
& \therefore\left(\Psi_{\eta-x-2 \mu}, \sim_{2} \Psi_{\eta x+1 \mu}\right)=0
\end{align*}
$$

We then get a difference equation

$$
\begin{equation*}
\frac{a_{l+1} a_{l+2}}{k_{c}^{2}}\langle\ell+2| \frac{1}{r^{3}}|\ell\rangle-\frac{a_{l+3} a_{l+2}}{k_{c}^{2}}\langle l+3| \frac{1}{r_{3}}|\ell+1\rangle=0 \tag{123}
\end{equation*}
$$

Which has a solution

$$
\begin{align*}
& \langle l+2| \frac{1}{r_{3}}|l\rangle=\frac{\text { cont } k_{e}^{2}}{a_{l+1} a_{l+2}} \\
& =\frac{\text { cost } R_{c}^{2}}{|l+1+i \eta||l+2+i \eta|} \tag{124}
\end{align*}
$$

The Derivation for $\langle\ell+3| \frac{1}{r^{4}}|\ell\rangle$
The operator which leads to this matrix element is

And the matrix element

$$
\begin{align*}
& \left(\Psi_{\eta-x-2 \mu}, \sim_{\sim}^{O} \Psi_{\eta x+1 \mu}\right) \tag{126}\\
& \text { yields (\# numerical factor) } \\
& \left.=\#\left\{\left.\frac{a_{l+1} a_{l+2} a_{l+3}}{R_{c}^{3}}\langle l+3| \frac{1}{r_{4}}|\ell\rangle-\frac{a_{l+4} a_{l+3} a_{l+2}}{R_{e}^{3}}\langle l+4| \frac{1}{r_{4}} \right\rvert\, 0+1\right)\right\}_{(1}
\end{align*}
$$

And now we shall prove that the matrix element vanishes. Consider (125)

$$
\begin{aligned}
& \vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{4}} \vec{\sigma} \cdot \vec{a} \\
&-\vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a} \frac{1}{r^{4}} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{r} \cdot \hat{r} \Omega_{0} \\
&= L_{0}-R_{p} \cdot O_{p} \\
& \equiv L_{e f t} \text { operator }- \text { Right operator } \\
&= \vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega_{\sim} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \Omega_{0} \vec{r} \cdot \hat{r} \Omega_{0} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{4}} \overrightarrow{\sigma_{0}} \cdot \vec{a} \\
&-\vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a}\left\{\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \frac{1}{r^{4}} \Omega_{0}\right. \\
&\left.+\frac{1}{k_{c}^{2}}\left(\frac{1}{r^{4}} i p_{r}-\frac{3}{r^{5}}\right) \Omega_{0}\left(1-2 k_{1}\right)\right\}
\end{aligned}
$$

Where the relation 14 of Section II is used in the right hand side.

$$
\begin{align*}
& \left.=\vec{\sigma} \cdot \vec{a} \Omega_{0} \Omega \sim \sim \Omega_{0} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r}+\frac{1}{k_{c}^{2}}\left(i p_{r}+\frac{1}{r}\right) \Omega_{0}\left(2 k_{1}-1\right)\right\} \text {. } \\
& \vec{\sigma} \cdot \hat{\gamma}\left\{\frac{1}{r^{4}} \vec{\sigma} \cdot \hat{r} \vec{\sigma} \cdot \vec{a} \Omega_{0}+\frac{1}{R_{c}^{2}}\left(\frac{1}{r^{4}} i p_{r}-\frac{1}{r^{5}}\right)\left(1-2 k_{1}\right) \Omega_{0}\right\} \\
& -\left\{\vec{a} \cdot \vec{a} \Omega_{0} \vec{r} \cdot \vec{a} \vec{r} \cdot \vec{a} \approx \underset{\sim}{\infty} \frac{1}{r^{4}}-r_{0} \vec{\sigma} \hat{v} \Omega_{0}\right. \\
& +\vec{\sigma} \cdot \vec{a} \Omega_{0} \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \underset{\sim}{\sim} \frac{1}{R_{c}^{2}}\left(\frac{3}{r^{5}}-\frac{1}{r^{4}} i p_{r}\right) \\
& \left.\cdot\left(1+2 K_{1}\right) \Omega_{0} \vec{\sigma} \cdot \hat{\gamma} \Omega_{0}\right\} \tag{129}
\end{align*}
$$

Define ${\underset{\sim}{\mathcal{Z}}}^{\prime \prime \prime}=\vec{\sigma} \cdot \hat{r} \Omega_{0} \underset{\sim}{\underset{\sim}{\sim}} \Omega_{0} \vec{\sigma} \cdot \hat{\mathrm{r}}$ which commutes with $\underset{\sim}{K_{1}}, 2 \mathrm{mH}$, and therefore with $(\vec{\sigma} \cdot \vec{a})^{2}$. So the right operator becomes

$$
\begin{align*}
R O \equiv & \vec{\sigma} \cdot \vec{a}{\underset{\sim}{\sim}}^{\prime \prime}\left\{(\sigma \cdot a)^{2} \frac{1}{r^{4}} \vec{\sigma} \cdot \hat{r} \Omega_{0}+\frac{1}{R_{c}^{2} r^{4}}\left(1-2 k_{1}\right) \vec{\sigma} \cdot \hat{r} \Omega_{0}\right\} \\
& +\vec{\sigma} \cdot \vec{a} \Omega \cdot \sigma \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \Omega_{0}\left\{\frac{3}{r^{5}}-\frac{1}{r^{4}} i p_{r}\right\} \\
& \cdot\left(3-2 k_{1}\right) \vec{\sigma} \cdot \hat{r} \Omega_{0} \tag{130}
\end{align*}
$$

The latter term can be modified by switching Ω_{0} and $\vec{\sigma} \cdot \vec{a} \quad \vec{\sigma} \cdot \hat{r}_{\text {a }}$ then we get the right operator as

$$
\begin{align*}
&=\vec{\sigma} \cdot \vec{a}{\underset{\sim}{r}}^{\prime \prime}\left\{\vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \vec{a} \frac{1}{r^{4}} \vec{\sigma} \cdot \hat{r}+\frac{1}{k_{c}^{2}}\left(1-2 k_{1}\right) \frac{1}{r^{4}} \vec{\sigma} \cdot \hat{r}\right. \\
&+\vec{\sigma} \cdot \vec{a}\left(\frac{3}{r^{5}}-\frac{1}{r^{4}} i p_{r}\right)\left(3+2 K_{1}\right) \\
&\left.+\left(i p_{r}+\frac{1}{r}\right)\left(\frac{3}{r_{5}}-\frac{1}{r^{4}} i p_{r}\right)\left(3-2 K_{1}\right)\left(2 K_{1}-1\right) \overrightarrow{\sigma_{0}} \hat{r}\right\} \Omega_{0} \tag{131}
\end{align*}
$$

As already illustrated in Section II

$$
\begin{equation*}
\text { Left op }=\vec{\sigma} \cdot \vec{a} \sigma^{\prime \prime}\{\operatorname{eqns}(96)+\operatorname{eqn}(99)\} \Omega_{0} \tag{132}
\end{equation*}
$$

Therefore the complete operator

$$
\equiv \operatorname{eqn}(132)-\operatorname{eqn}(131)
$$

Using the technique similar to that for bound states and leaving the relevant commutators with Hamiltonian, the part that matters becomes

$$
\begin{aligned}
& \overrightarrow{0} \cdot \vec{a} \sigma^{\prime \prime}\left\{\frac{1}{k_{c}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{\alpha 2 m}{r^{4}}+\left(2 k_{1}-k_{1}^{2}\right) \frac{1}{r^{5}}\right)+\frac{2}{k_{c}^{2}} \vec{r} \cdot \vec{a} \frac{1}{r^{5}}\left(1-2 k_{1}\right)\right. \\
& -\frac{1}{R_{c}^{2}} \frac{1}{r^{5}}\left(2 k_{1}-1\right) \overrightarrow{\sigma \cdot \vec{a}}+\vec{\sigma} \cdot \hat{r}\left(\frac{\alpha Z m}{3} \frac{1}{r^{5}}-\frac{4+k_{1}^{2}}{4} \frac{1}{r 6}\right) \\
& \left.\left(4 k_{1}^{2}-1\right)\right\} \Omega_{0} \\
& -\vec{\sigma} \cdot \vec{a} \overbrace{N}^{\prime \prime}\left\{\frac{1}{k_{c}^{2}} \vec{\sigma} \cdot \vec{a}\left(\frac{\alpha 2 m}{r^{4}}+\left(3+4 k_{1}-2 k_{1}^{2}\right) \frac{1}{r^{5}}\right)\right. \\
& +\overrightarrow{\sigma_{1}} \hat{r}=\frac{1}{k_{c}^{2}}\left(1+2 k_{1}\right) \frac{1}{r^{4}} \\
& +\vec{\sigma} \cdot \hat{\gamma}\left(\frac{\alpha 2 m}{3} \frac{1}{r^{5}}-\frac{1}{4}\left(k_{1}^{4}+2 k_{1}-8\right) \frac{1}{r^{6}}\right) . \\
& \left.\cdot\left(3+2 k_{1}\right)\left(2 k_{1}+1\right)\right\}-\Omega_{0}
\end{aligned}
$$

This further reduces to

$$
\begin{aligned}
& \text { - }\left(2 K_{1}+1\right) \Omega_{0}
\end{aligned}
$$

$$
\begin{equation*}
=\theta_{\sim}^{\prime \prime} \vec{\sigma} \cdot \vec{a} \frac{1}{k_{c}^{4}}\left\{\frac{1}{6}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}} i_{r}, \beta\right]-\left(\frac{k_{1}+6}{6}\right)\left[\beta_{\sim}, \frac{\vec{\sigma} \cdot \hat{r}}{r^{4}}\right]\right\} . \tag{135}
\end{equation*}
$$

Thus the complete operator in the form of commutators with Hamiltonian can be written as

$$
\begin{align*}
& \left(\vec{\sigma} \cdot \vec{a} \Omega_{0}\right)^{2}\left\{\left(\Omega_{0} \vec{\sigma}_{\cdot} \hat{r}\right)^{3} \frac{1}{r^{4}} \vec{\sigma} \cdot \vec{a}-\text { Its Adj}\right\} \\
& ={\underset{\sim}{D}}^{\prime \prime} \vec{\sigma} \cdot \vec{a}\left(\sum_{i}\left(\Theta_{4, i}^{c}\right) \Omega_{0}\right. \tag{136}
\end{align*}
$$

where

$$
\begin{aligned}
& O_{4,1}^{c}=-\frac{\vec{\sigma} \cdot \vec{a}}{6 k_{c}^{2}}\left[\frac{1}{r^{3}}, \beta\right] \underset{\sim}{k_{1}} \\
& O_{4,2}^{c}=\frac{\vec{\sigma} \cdot \vec{a}}{6 k_{c}^{2}}\left[\frac{1}{r^{3}}, \underset{\sim}{\beta}\right]\left(2 k_{1}-1\right) \\
& O_{4,3}^{c}=\frac{1}{6 k_{c}^{2}}\left[\frac{1}{r^{3}}, \underset{\sim}{\beta}\right] \vec{\sigma} \cdot \vec{a}\left(2 k_{1}+1\right) \\
& O_{4,4}^{c}=\frac{1}{6 k_{c}^{4}}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}} \dot{p}_{r}, \underset{\sim}{\beta}\right]\left(1-4 k_{\sim}^{2}\right) \\
& O_{4,5}^{c}=\frac{1}{4 k_{c}^{4}}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{4}}, \underset{\sim}{\beta}\right]\left(1-4 k_{1}^{2}\right) \\
& O_{4,6}^{c}=\frac{7}{24 k_{c}^{4}}\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{4}}, \vec{\sim}\right]\left(1-4 k_{1}^{2}\right) \\
& O_{4,7}^{c}=\frac{k_{1}-1}{3 k_{c}^{2}} \vec{\sigma} \cdot \vec{a}\left[\frac{1}{r^{3}}, \underset{\sim}{\beta}\right]
\end{aligned}
$$

$$
\begin{aligned}
& O_{4,8}^{c}=\frac{1}{6 k_{c}^{4}}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{4}} i p_{r}, \vec{\sim}\right]\left(3+2 k_{1}\right)\left(2 k_{1}+1\right) \\
& O_{4,9}^{c}=\frac{1}{24 R_{c}^{4}}\left(6+k_{1}\right)\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{4}}, \vec{\sim}\right]\left(3+2 k_{1}\right)\left(2 k_{1}+1\right) \\
& O_{4,10}^{c}=-\frac{3}{4 k_{e}^{4}}\left[\frac{\vec{\sigma}_{n} \hat{r}}{\gamma^{4}},{\underset{\sim}{\beta}}_{\beta}^{c}\right]\left(2 k_{1}+3\right)\left(2 k_{1}+1\right)
\end{aligned}
$$

$$
O_{4,11}^{C}=\frac{1}{6 k_{c} 4}\left[\vec{\sigma} \cdot \hat{r} \frac{1}{r^{3}} i p_{r}, \beta \underset{\sim}{\beta}\right]\left(2 k_{1}+1\right)
$$

$$
\begin{equation*}
\Theta_{4,12}^{C}=\frac{1}{6 k_{e}^{4}}\left(\frac{k_{1}+6}{4}\right)\left[\frac{\vec{\sigma} \cdot \hat{r}}{r^{4}}, \bar{\beta}\right]\left(2 k_{1}+1\right) \tag{137}
\end{equation*}
$$

Thus we get the difference equation

$$
\langle l+3| \frac{1}{r^{4}}|l\rangle \frac{a_{l+1} a_{l+2} a_{l+3}}{k_{c}^{3}}-\frac{a_{l+2} a_{l+3} a_{l+4}}{k_{c}^{3}}\langle l+4| \frac{1}{r_{4}}|l+1\rangle=0
$$

Which has the solution

$$
\begin{equation*}
\langle e+3| \frac{1}{r^{4}}|l\rangle=\frac{\text { cost } k_{e}^{3}}{|\ell+1+i \eta||e+2+i \eta||\ell+3+i q|} \tag{138}
\end{equation*}
$$

Thus we have proved that in the continuum case

$$
\begin{aligned}
& \langle l+1| \frac{1}{r^{2}}|\ell\rangle=\frac{\text { corr Re }}{|\ell+1+i \eta|} \\
& \langle\ell+2| \frac{1}{r^{3}}|\ell\rangle=\frac{\text { const } k_{c}^{2}}{|\ell+1+i \eta||\ell+2+i \eta|}
\end{aligned}
$$

$$
\begin{equation*}
\langle\ell+3| \frac{1}{r^{4}}|\ell\rangle=\frac{\text { const }}{(\ell+1+i \eta)|\ell+2+i \eta||\ell+3+i \eta|} \tag{139}
\end{equation*}
$$

And by induction as it would be indicated in Section IV we get the general result

$$
\begin{equation*}
\langle l+L| \frac{1}{r^{L+1}}|l\rangle=\frac{\text { cons } k_{c}^{L}}{\mid \ell+1+i \eta) \cdots-|l+L+i \eta|} \tag{140}
\end{equation*}
$$

Section IV

Systematics of Operator Algebra

The general result for bound states arises from the matrix element

$$
\begin{equation*}
(\overbrace{N-x-2, \mu}\left(\overrightarrow{\sigma_{0}} \vec{a}_{0} \Omega_{0}\right)^{L-1}\left(\Omega_{0} \vec{\sigma} \hat{r}\right) \frac{1}{r q} \vec{\sigma} \cdot \vec{a} \Psi_{\omega x+1 \mu}) \tag{141}
\end{equation*}
$$

Which will give us

$$
\begin{equation*}
\# k_{B}^{-L}\langle l+L| \frac{1}{r q}|\ell\rangle \tag{142}
\end{equation*}
$$

and the numerical factors will inclube (2L-1) C.G. coefficients and many other ℓ dependent terms.

The parallel result for the continuum basis states arises from the matrix element
 into a sum of commutators with the Hamiltonian notices in $\langle\ell+3| \frac{1}{\mathrm{r}}|\ell\rangle$, for bound states as well as continuum states, show that the general resuit would be too complicated to write down.

We notice, for instance, that the invariant operator that multiplies the whole sum of commutators with the Hamiltonian in the cases studied is seen to follow a systematic pattern,

When the operator in the second parenthesis multiplying the The operator multiplying invariant Ω_{0} is the entire sum is

$$
\begin{align*}
& \vec{O} \hat{\gamma} \text { II } \\
& \vec{\theta} \hat{\theta} \Omega_{0} \vec{\sigma} \hat{\gamma} \\
& \theta=\overrightarrow{\sigma_{1}} \hat{r} \Omega_{0} \Omega_{0} \vec{\sigma}_{r} \hat{r} \\
& =\vec{\sigma} \cdot \hat{\gamma} \Omega_{0} \vec{\sigma} \cdot \hat{\gamma} \vec{\sigma} \cdot \hat{\gamma} \Omega_{0} \overrightarrow{0}_{0} \hat{\gamma} \\
& \vec{\sigma} \cdot \hat{\gamma} \Omega_{0} \vec{\sigma} \cdot \hat{\gamma} \Omega_{0} \stackrel{\rightharpoonup}{\sigma} \cdot \hat{\gamma} \\
& \vec{\sigma} \cdot \hat{\gamma}\left(\Omega o \sigma_{1} \hat{\gamma}\right)^{L-1} \\
& \mathbb{1}=\vec{\sigma} \cdot \hat{r} \mathbb{1} \mathbb{1} \vec{\sigma}, \hat{r} \\
& \dot{\theta}=\stackrel{\rightharpoonup}{\sigma} \cdot \hat{\gamma} \Omega_{0} \sigma \Omega_{0} \stackrel{\overrightarrow{0}}{\hat{\sigma}} \hat{\gamma} \\
& =\left\{\hat{\sigma} \cdot \hat{\gamma} \Omega_{0} \sigma \cdot \hat{\gamma} \Omega_{0} \sigma \cdot \hat{r}\right\} . \\
& \left\{\begin{array}{c}
\text { Its } A d_{j} \\
-\cdots,
\end{array}\right. \\
& \underset{\sim}{\mathcal{S}}=\left\{\vec{\sigma} \cdot \hat{r}\left(\Omega_{0} \vec{\sigma} \cdot \hat{r}\right)^{L-1}\right\}\{1, t s A x\} \tag{144}
\end{align*}
$$

Secondly Ω_{0}. happens to multiply the whole sum on the right. Thirdly one of the important intermediate steps is to manipulate

$$
\begin{equation*}
\Omega_{0} \vec{\sigma} \cdot \vec{a} \cdot \vec{r} \frac{1}{r q} \text { and } \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \hat{r} \frac{1}{r q} \Omega_{0} \tag{145}
\end{equation*}
$$

Such that Ω_{0} can be moved to the right or left as required and at the ultimate stage one gets a linear combination of recursion relations.

The essential point to be noted in our demonstration here is that the symmetry of the Coulomb field permits the construction of a variety of angular operators, the matrix elements of which lead to interesting relationships among radial integrals and peculiar selection rules. We collect below, for completeness, the different relations that were proved
by the operator technique in the preceding chapters.

1. Pasternack's three term recursion relation between the bound state expectation values.
2. A three recursion relation between $\left.\langle\ell+1| \frac{1}{r^{q}} \right\rvert\, \ell>$'s.
3. Pasternack and Sternheimer result that $\frac{\mathrm{r}}{\mathrm{q}}|\mathrm{l} \ell+\mathrm{L}| \frac{1}{\mathrm{q}}|\ell\rangle=0$

$$
\begin{array}{ll}
\text { a. } \quad\langle l+1| \frac{1}{r^{2}}|l\rangle=0,\langle l+2| \frac{1}{r^{2}}|\ell\rangle=0 \\
\text { b. } & \langle l+2| \frac{1}{r^{3}}|l\rangle=0 \\
\text { c. } & \langle l+3| \frac{1}{r^{3}}|l\rangle=0,\langle l+3| \frac{1}{r^{2}}|l\rangle=0 \\
\text { d. } & \langle l+3| \frac{1}{r^{4}}|l\rangle=0
\end{array}
$$

4. For continuum case

$$
\begin{aligned}
& \langle\ell+1| \frac{1}{r^{2}}|\ell\rangle=\frac{\text { const } k_{c}}{|\ell+1+1 \eta|} \\
& \left\langle\left. e+2+\frac{1}{r^{3}} \right\rvert\, \ell\right\rangle=\frac{\text { const } k_{c}^{2}}{|\ell+1+i \eta||\ell+2+i \eta|}
\end{aligned}
$$

and

$$
\langle e+3| \frac{1}{r_{4}}|\ell\rangle=\frac{\text { const }}{|e+1+i \eta| \mid(1+2+i \eta| | l+3+i \eta \mid} \frac{k_{c}^{3}}{(l)}
$$

It has been proved elsewhere that the zero energy loss limit simplifies the radial integrals considerably. Symmetry helps in the most convenient, though not the most general, evaluation of such integrals.

It is to be emphasized that the radial integrals can be evaluated more simply by actual calculations using the generating functions of the generalized Laguerre polynomials and this derivation, which develops an operator calculus, is not meant to be a substitute but seeks to interpret the result: The key invariants that go to make up the basic units
are \vec{I} and \vec{a} which underlie the $O(4)$ invariant group structure of the non-relativistic Coulomb field. Out of these basic units, systems of complicated operators can be built whose matrix elements, evaluated in the basis of the eigenstates of the Coulomb Hamiltonian (discrete or continuum), vanish giving rise to useful selection rules and transition probabilities.

REFERENCES

(1) S. Pasternàk and Sternheimer, R. M., J. Math. Phys., 3 1280 (1962).
(2) Biedenharn, McHale and Thaler, Phys. Rev., 100376 (1955).
(3) S. Pasternack, U. S. Nat. Acad. Sci., 2391 (1937).
(4) Biedenharn, L. C. and Swamy, N. V. V. J., Phys. Rev., 133B 1353 (1964).
(5) J. T. Reynolds, D. S. Onley, L. C. Biedenharn, J. Math. Phys. 5 411 (1964). Epstein, S. and B. Kennedy, WIS-TCI Report 191. Feinberg, G., Phys. Rev., 1121637 (1958).
(6) L. C. Biedenharn and P. J. Brussard, 'Coulomb Excitation', Oxford Uni. Press, London, 1964 Chapter III, Section VI and VII. L. Armstrong, Jr., Phys. Rev. (3rd series) 31546 (1971).

CHAPTER V

STUDY OF STARK EFFECT

The hydrogen atom in an electric field is perhaps the simplest quantum mechanical problem for which there is no known exact solution. The solution of this problem has application in several areas in solid state physics, such as field controlled photo generation of carriers in solids, trap controlled mobilities, field ionization in plasma physics where the problem can be reduced to a bound charge under the influence of an electric field. Historically the effect of a uniform electric field first observed experimentally by Stark ${ }^{2}$ in 1913 on the Balmer series of hydrogen. Even though Voigt ${ }^{3}$, as early as 1899, had tried to see the effect on sodium D lines without much success. For the frequency shift Stark gave the following formula

$$
\Delta v\left(n_{1} n_{2} m\right)=.068 n\left(n_{1}-n_{2}\right) \varepsilon
$$

where ε is in Kilo volt per centimeter.
Later experiments by Sjogram and Kasiner ${ }^{4}$ gave a value of 0.0642 for the numerical factor. The range of the electric field used by them was . 6 to 1.0 million volt $/ \mathrm{cm}$. The year that Bohr proposed his theory of the hydrogen spectrum Epsetein and Schwarzchild ${ }^{5}$ explained the Stark effect in terms of quantized orbits. Later in 1926 after the introduction of wave mechanics Schrodinger ${ }^{6}$ and Epstein solved the non-relativistic Schrodinger equation for the hydrogen atom in a constant electric
field in parabolic coordinates and offerred a satisfactory theory of the non-relativistic Stark effect.

A comprehensive review up to 1935 is available in Condor and Shortly ${ }^{7}$ and on up to 1957 in Bethe and Salpeter. ${ }^{8}$

In recent years there has been a renewed interest in the experimental study of the Stark effect, connected with the direct effect of the electric fields on the electron density distributions in atoms. This interest has been stimulated by the development of methods for detecting small splittings of atomic levels, which are of the order of $10^{-4} \mathrm{~cm}^{-1}$ in the optical range and 10^{-7} in the radiofrequency range, and a very widespread use of the Stark effect in the spectroscopic method of studying plasma. ${ }^{9}$

The direct classical method of studying the Stark effect is to observe the shift of the centers of gravity of absorption and emission lines of atoms in an electric field. ${ }^{10}$ The recent methods of atomic beams propagated perpendicular to the direction of observation of emission and absorption, instead of the observation of vapors, have increased the sensitivity by the factor of 1,000 , and the Stark shifts can be observed for as small a field as 10^{3} to 10^{5} volt/cm. All purely optical methods permit the observation of the frequency shifts of transitions associated with two optical terms, the shift being equal to the sum of energy shifts in upper and lower terms. The novel radiospectroscopic techniques which has a resolution of $10^{-7} \mathrm{~cm}^{-1}$ are used to measure the shifts between the sublevels of a given term.

The double radio-optical resonance has made it possible to use the high resolving power of the radiospectroscopic methods to study the Stark effect in excited states of the atoms ${ }^{11,12 \text {. In this method the }}$
radio frequency transitions between the sublevels of the excited state are observed by means of polarization of the scattered resonant light. Some technical difficulties of the double radio-optical resonance method are eliminated in the method of level crossing ${ }^{14}$, a change in the angular distribution of the intensity of resonance florescence when the levels are split by an amount larger than the natural width, is observed. In the beat method ${ }^{15}$ one observes an anomalous increase in the depth of modulation of the exciting term which are split in the electric field. Only the natural widths of terms put the limit to the sensitive ity of these methods. $16-18$

Recently quite a few theoretical and experimental papers ${ }^{19-22}$ have appeared on the Stark effect due to high frequency alternating fields. But in this work we study only the Stark effect of a uniform electric field. As the above reference to various literature shows the field of study is very current and experimental advances have necessitated the effort to improve the accuracy of the existing theoretical calculations.

Section I

Group Theory of Hydrogen Atom in a Constant Electric Field

In this section we derive classical invariants of hydrogen atom Hamiltonian in constant electric field for a non-relativistic case. It has been elaborated in Chapter II that non-relativistic. Kepler problem admits two vector invariants $\overline{\mathrm{L}}$ and $\overline{\mathrm{A}}$. It was discussed in Chapter II that the degeneracy of the bound state spectrum is due to the O (4) group structure of the non-relativistic Coulomb Hamiltonian and the Schrodinger equation for hydrogen atom ${ }_{\wedge}^{\text {is }}$ separable in parabolic and polar coordinates. It is interesting to note that even when a uniform electric field is
applied, the Hamiltonian is still separable in parabolic . coordinates. It is therefore tempting to probe from the symmetry and group theory point of view why it should be so. The classical discussion of the derivation of the invariants was given by Edmond ${ }^{23}$ on suggestion of Lippmann. Edmond shows that $\vec{L} \cdot \vec{E}$ and $\vec{C} \cdot \vec{E}$, where \vec{C} is a generalization of Runge-Lentz-Pauli vector, are the constants of motion. \vec{C} is explicitly given by

$$
\begin{equation*}
\left.\vec{C}=\vec{A}-\frac{1}{2 z e}[\vec{r} x \vec{E}) \times \vec{r}\right] \tag{1}
\end{equation*}
$$

where \vec{r} is the radius vector.
He also derived some interesting classical relations. They are:

$$
\begin{align*}
& \frac{d}{d t} \vec{C}=\frac{3}{2 z e m} \vec{L} \times \vec{E} \tag{2}\\
& \vec{L} \cdot \vec{C}=\frac{r^{2}}{2 z e} \vec{E} \cdot \vec{L} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{C}} \cdot \overrightarrow{\mathrm{r}}=\mathrm{r}-\left(\frac{\mathrm{L}^{2}}{\mathrm{Ze}^{2} \mathrm{~m}}\right) \tag{4}
\end{equation*}
$$

The last equation is a generalization of the Kaplerian equation of motion in the Coulomb field.

To translate this simple classical picture of invariants into quantum mechanics we have to use proper operators for \vec{A} and \vec{L}, because of the basic non-commutativity of x_{i} and $p_{x i}$. The appropriate quantum mechanical \vec{C} happens to be

$$
\begin{equation*}
\overrightarrow{\mathrm{C}}=\left[\hat{\mathrm{r}}+\frac{1}{2 \mathrm{e}^{2} \mathrm{~m}}(\overrightarrow{\mathrm{~L}} \overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{L}})-\frac{1}{2 \mathrm{ze}}(\overrightarrow{\mathrm{r} \times \mathrm{E}}) \times \overrightarrow{\mathrm{r}}\right] \tag{5}
\end{equation*}
$$

If without loss of generality, we take $\vec{E}=\hat{z} F+0 \cdot \hat{x}+0 \cdot \hat{y}$ where F is constant, measuring the strength of the external uniform.electric field, then

$$
\begin{align*}
& C_{x}=\left[\frac{x}{r}+\frac{1}{Z e^{2} m}\left[\left(L_{y} p_{z}-L_{2} p_{y}\right)-i h p_{x}\right]-\frac{1}{2 Z e}\left(r^{2} \cdot 0-x z\right) F\right] \tag{6}\\
& C_{y}=\left[\frac{y}{r}+\frac{1}{Z e^{2}}\left[\left(L_{z} p_{x}-L_{x} p_{z}\right)-1 h p_{y}\right]-\frac{1}{2 Z e}\left(r^{2} \cdot 0-y_{z}\right) F\right] \tag{7}\\
& C_{z}=\left[\frac{z}{r}+\frac{1}{2 e^{2} m}\left[\left(L_{x} p_{y}-L_{y} p_{x}\right)-1 h p_{z}\right]-\frac{1}{2 Z e}\left(r^{2}-z^{2}\right) F\right] \tag{8}
\end{align*}
$$

and

$$
\underset{\sim}{H}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}-\frac{\mathrm{Ze}^{2}}{\mathrm{r}}-\mathrm{Fez}
$$

in the non-relativistic Hamiltonian. It can be seen that,

$$
\begin{align*}
& {\left[C_{Z}, \underset{\sim}{H}\right]=0} \tag{9}\\
& {\left[L_{z}, \underset{\sim}{H}\right]=0} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\left[C_{z}, L_{2}\right]=0 \tag{11}
\end{equation*}
$$

We therefore note that L_{Z} and C_{Z} can be used as the constants of the motion. The other commutators are complicated functions of $\vec{C}, \overrightarrow{\mathrm{~L}}$, \vec{r}, and \vec{E} and it is not easy to see the Lie algebra from these operators. For completeness we give below the commutation relations.

$$
\begin{aligned}
& {\left[C_{x}, L_{x}\right]=\text { in } \frac{1}{2 Z e} x y F=i h x(\vec{r} x \vec{E})_{x}} \\
& {\left[C_{x}, L_{y}\right]=\text { in }\left[C_{z}+\frac{F}{2 Z e}\left(y^{2}+z^{2}\right)\right]} \\
& {\left[C_{x}, L_{2}\right]=-i h C_{y}} \\
& {\left[C_{y}, L_{x}\right]=-i h\left[C_{z}-\frac{F}{2 Z e}\left(x^{2}+z^{2}\right)\right]}
\end{aligned}
$$

$$
\begin{align*}
& {\left[C_{y}, L_{y}\right]=-i h \frac{x y}{2 Z e} F=\text { ih } y(\overrightarrow{r x E})_{y}} \\
& {\left[C_{y}, L_{z}\right]=\text { ih } C_{x}} \\
& {\left[C_{z}, L_{x}\right]=\text { ih } C_{y}} \\
& {\left[C_{z}, L_{y}\right]=-i h C_{x}} \\
& {\left[C_{z}, L_{z}\right]=0=\text { ih } Z(\overrightarrow{r x E})_{z}} \tag{I2}
\end{align*}
$$

$=$
Equations (12) definitely show that the invariant group is much larger than $O(4)$. In fact the commutation relations become complicated functions of the five vectors \vec{C}, \vec{L}, ($p \times \vec{E}$) ($\vec{r} \times \vec{E}$), and \vec{E}. In polar coordinates we can not see clearly what might be the actual group but Barut and Kleinhart ${ }^{24}$, using operator representations in parabolic coordinates and also making use of their dialation operator have shown, under the perturbation scheme, that the hydrogen atom under the influence of dipole type of perturbation belongs to $0(4,2)$ group.

Section II

The First Order Stark Effect

The Stark cal perturbation theory was applied successfully as early as 1926 by Schrodinger in his fourth communication, ${ }^{25}$ when he developed quantum
mechanical perturbation theory. The relativistic Stark effect was discussed by Kramers ${ }^{26}$ in the classical sense in 1920. Schlapp ${ }^{27}$ calculated some Stark shifts using Darvin wave functions and Rojansky ${ }^{28}$ treated the relativistic Stark effect in 1929. But his calculations were not accurate because wave functions he used for the calculation did not include all the degenerate wave functions for the given energy level. In 1955 Luder ${ }^{29}$ calculated accurately the first order Stark shifts and the Stark intensities for hydrogen in Pauli approximation. In these earlier papers the complicated Dirac wave functions were always approximated in the calculations. Moreover the experimental error was too large to demand very accurate calculations. As it is mentioned in the introduction, recently the experimental accuracy has been increased by four orders of magnitude, and also the availability of fast computers with vast memory makes it feasible for a very accurate calculations of the first order Stark shifts and the other related quantities of experimental interest. We use here the Dirac wave functions, symmetric Hamiltonian wave functions and compare the result with Luder's calculations and with the experimental results.

The theory of the first order Stark effect is well known (Bethe ${ }^{8}$). The Dirac Hamiltonian with Coulomb field and the uniform electric field is given by

$$
\begin{equation*}
H \psi=\left(\rho_{1}, \vec{\sigma} \cdot \vec{p}+\rho_{3} m_{0} C^{2}-\frac{\mathrm{Ze}^{2}}{r}-e \phi\right) \psi=E \psi \tag{13}
\end{equation*}
$$

The second order equation, to sufficient approximation and with $\phi=-\mathrm{ZF}$ will be

$$
H=\frac{\frac{p^{2}}{2 m_{0}}-\frac{z e^{2}}{r}}{H_{0}}-\frac{\frac{p^{4}}{8 m_{0}^{3} c^{2}}-\frac{2 e^{2}}{4 m_{0}^{3} c^{2} r^{3}} \vec{\sigma} \cdot \vec{L}}{H_{1}} \pm \underset{H_{2}}{\underset{-}{ } F}+\underbrace{\frac{e}{4 m_{0}^{2} c^{2}}(\sigma[P, 2] F)}_{H_{3}}
$$

Let us designate the first two terms as H_{0}, third and fourth terms as H_{1}, ezF' as H_{2} and remaining terms as H_{3}.
H_{0} is the non-relativistic Schrodinger Hamiltonian for the Coulomb field. H_{1} is the spin orbit coupling term and H_{2} is perturbation due to the external electric field. In his paper Schrodinger, using the parabolic coordinates and neglecting H_{1} and H_{3} showed through perturbation calculations that

$$
\begin{align*}
E_{o+2}= & -\frac{e^{2}}{2 a_{o}}\left(\frac{Z}{n}\right)^{2}+\frac{3}{2} \text { ea } a_{o} \frac{n}{Z} n_{F} \\
& -\frac{1}{32} \frac{\left(e a_{o} F\right)^{2}}{e^{2} / 2 a_{o}}\left(\frac{n}{Z}\right)^{4}\left\{17 n^{2}-3 n_{F}^{2}-9 m_{\ell}^{2}+19\right\}+\ldots \tag{15}
\end{align*}
$$

Here a_{o} is the first Bohr orbit for hydrogen and $n_{T}=\left(n_{1}-n_{2}\right)$ is the so called electric quantum number. The above equations works well when the electric field is large so that the splitting in the energy level is large compared to the spin orbit splitting.

If H_{2} and H_{3} are neglected then using Pauli's two component wave equation we see that

$$
\begin{equation*}
E_{o+1}=-\frac{e^{2}}{2 a_{0}}\left(\frac{z}{n}\right)^{2}-\frac{\alpha^{2} e^{2}}{2 a_{0}}\left(\frac{z}{n}\right)^{4}\left(\frac{n}{j+\frac{1}{2}}-3 / 4\right) \tag{16}
\end{equation*}
$$

We notice that the spin orbit splitting (to the first approximation) goes as Z^{4} whereas the first order Stark splitting varies as Z^{-1}. For hydrogen, for $n=2$, the field for which the spin orbit splitting and the Stark splitting are of the same order of magnitude is 3×10^{3} volt/ cm and it drastically increases to 10^{5} volt/cm for $Z=2$, and 0.810^{6} volt/cm for $Z=3$. Experimentally we can not produce electric field more than 10^{7} or 10^{8} volt/cm, and hence for high Z values $(Z>5)$ we
need a very accurate treatment of the problem. As $\Delta \mathrm{E}_{\mathrm{s.0}}$ becomes equal to $\Delta E_{e \cdot f}$ the problem is really complicated and neither ℓ nor j or k is a good quantum number. Only n and μ are good quantum numbers and one has to use degenerate perturbation theory. Depending upon values of these n and μ we will have $2(n-\mu)$ dimentional matrices which have to be diagonalize to get the energy eigenvalues and the eigenvectors. The eigenvectors would be a mixture of all values according to the Kramer's degenerate perturbation theory. The details of the theory are worked out in the Ruder's paper.

The Dirac wave functions are given by

$$
\begin{equation*}
\psi_{N \times \mu}^{\theta}(r, \theta, \phi)=\binom{9_{n x}(r) \chi_{\kappa}^{\mu}(0, \phi)}{-i f_{n x}(r) \chi_{-x}^{\mu}(\theta, \alpha)} \tag{17}
\end{equation*}
$$

Where

$$
\left.\begin{array}{rl}
g_{n x}(r)= & -\frac{1}{\left.\sqrt{r\left(2 \gamma_{k}+1\right.}\right)} \sqrt{\frac{r\left(2 \gamma_{k}+n+|k|+1\right)(1+\epsilon(n, k)}{r\left(2 \gamma_{k}+1\right)(n-k)!4 N\left(N-x_{k}\right)}} \\
& e^{-\frac{z r}{N a_{0}}\left(\frac{2 z r}{N a_{0}}\right)^{\gamma_{k}-1}} \cdot\left\{-(n-k), f_{1}\left(\begin{array}{c}
-n+k+1 \\
2 \gamma_{k}+1,
\end{array}, \frac{2 z_{k}}{N a_{0}}\right.\right.
\end{array}\right)
$$

and

$$
\begin{aligned}
& f_{n x}(y)=-\frac{1}{\sqrt{\Gamma\left(2 \gamma_{x}+1\right)}} \sqrt{\frac{r\left(2 \gamma_{k}+n-k+1\right)(1-t(n, k))}{\Gamma\left(2 \gamma_{k}+1\right)(n-k)!4 N(N-x)}} \\
& \text { - } e^{-\frac{2 \varepsilon}{N a_{0}}}\left(\frac{22 \varepsilon}{N a_{0}}\right)^{r_{k}-1} \cdot\{(n-k) . \\
& \left.f_{1}\left(\begin{array}{c}
-n+k+1 \\
2 r_{k}+1,
\end{array} \frac{2 z \varepsilon}{N a_{0}}\right)+(N-x) F_{1}\left(\begin{array}{ll}
-n+k \\
2 r_{k}+1, & \frac{\alpha z \varepsilon}{N a_{0}}
\end{array}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \gamma_{k}= \pm \sqrt{|x|^{2}-(\alpha z)^{2}} \quad|x| \equiv k \\
& N(n, k)=N=\sqrt{n^{2}-2(n-R)\left(R-\sqrt{R^{2}-(\alpha 2)^{2}}\right.} \\
& \epsilon(n, k)=\frac{1}{1+\left(\frac{\alpha z}{n-R+\gamma_{k}}\right)^{2}} \\
& A_{1}\binom{a}{b ; x}=1+\frac{a}{b} x+\frac{a(a+1)}{b(b+1) 2!} x^{2}+\cdots \\
& g_{n k} \text { and } f_{n k} \text { are tabulated by Payne }{ }^{30} \text { for various values of } n \text { and } k \text {. }
\end{aligned}
$$

The Hamiltonian including perturbation is

$$
\mathrm{H}=\mathrm{H}_{0}^{\prime}+\mathrm{V}
$$

where

$$
H_{o}^{\prime}=H_{o}+H_{1} \text { of Eqn. } 14
$$

and

$$
v=-F e z
$$

where F is a constant. e is the charge on the electron and z is the distance in the z direction, Ze is the charge on the nucleus.

Then the matrix elements of the Hamiltonian are

$$
\begin{equation*}
\left.H_{k k}^{\mu \mu^{\prime}}=\left.\left\langle\psi_{\mathrm{nK} \mu}^{\mathrm{L}}(r, \theta, \phi)\right| H\right|_{\mathrm{n} \kappa^{\prime} \mu^{\prime}} ^{\mathrm{D}}\right\rangle^{\mathrm{D}} \tag{19}
\end{equation*}
$$

The H_{o}^{\prime} part gives the diagonal matrix elements whereas

$$
\begin{equation*}
\left\langle\psi_{\mathrm{nk} \mu}^{\mathrm{D}}(\mathrm{r}, \theta, \phi)\right| \mathrm{r}\left|\psi_{\mathrm{nK} '^{\prime}}^{\mathrm{D}}{ }^{\mathrm{D}}(\mathrm{r}, \theta, \phi)\right\rangle \tag{20}
\end{equation*}
$$

part gives off diagonal elements.

The Evaluation of the Off Diagonal Elements

$$
\text { Since } x_{k}^{\mu}(\theta, \phi)=\sum_{\tau} C_{\mu-\tau}^{\ell(k)}{\underset{\tau}{1 / 2} j(\kappa)}_{\mu}^{Y_{l(\kappa)}^{\mu-\tau}}(\theta, \phi) X_{\frac{1}{2}}^{\tau}
$$

And we can write Fez as $\mathrm{Fer} \cos \theta$. Substituting in Equation (20) we get

$$
\begin{aligned}
& \left.F e<\psi_{\omega k \mu}^{D}(r, \theta, \varphi)|V| \psi_{N k^{\prime} \mu^{\prime}}^{\infty}(r, d, d)\right\rangle \\
& =\left[g_{n x}(r)<\chi_{k}^{\mu} 1+i f_{n k}<\chi_{-k}^{\mu} \mid\right] r \cos \theta\left[g_{n k^{\prime}} \chi_{x^{\prime}}^{\mu^{\prime}}\right] \\
& \left.-i f_{n k^{\prime}} \chi_{-x^{\prime}}^{\mu^{\prime}}\right]
\end{aligned}
$$

$$
\begin{gather*}
=\left[\int_{0}^{\infty} g_{n k}(r) g_{n k^{\prime}}(r) r^{3} d \xi+\int_{0}^{\infty} f_{n k^{\prime}}(r) f_{n k^{\prime}}(r) r^{3} d \xi\right] \\
\left.\cdot<\chi_{k}^{\mu}|\cos \theta| \chi_{k^{\prime}}^{\mu^{\prime}}\right\rangle \tag{21}
\end{gather*}
$$

because

$$
\left\langle\chi_{-x}^{\mu}(\theta, d)\right| \cos \theta\left|\chi_{k^{\prime}}^{\mu^{\prime}(\theta, d)}\right\rangle=\left\langle\chi_{k}^{\mu}(\theta, d)\right| \cos \theta\left|\chi_{-k^{\prime}}^{\mu^{\prime}}(\theta, \phi)\right\rangle
$$

The angular part is evaluated using the Racah algebra and Wigner Eckert theorem.

$$
\begin{align*}
& \left\langle x_{k}^{\mu}\right| y_{1}^{0}\left|x_{k^{\prime}}^{\mu^{\prime}}\right\rangle \\
& =\delta_{\mu \mu^{\prime}} C_{\mu^{\prime} \circ \mu(k)}^{j(k) / j(k)}\left\langle j^{\prime}(k)\left\|y_{1}\right\| j(k)\right\rangle \\
& \sum_{\tau} C_{\mu}^{\prime}(k) \quad 1 \quad l\left(K^{\prime}\right) \tag{22}\\
& \text { The results are listed below. }
\end{align*}
$$

$$
\begin{align*}
\left\langle x_{k_{f}}^{\mu}\right| \cos \theta\left|x_{k_{i}}^{\mu}\right\rangle & =\frac{\sqrt{j_{i}^{2}-\mu^{2}}}{2 j} \text { if } j_{f}-j_{i}=-1 \\
& =\frac{\sqrt{\left(j_{i}+1\right)^{2}-\mu^{2}}}{2\left(j_{i}+1\right)} \text { if } j_{f}-j_{i}=+1 \\
& =\frac{-\mu}{2 j_{i}\left(j_{i}+1\right)} \text { if } j_{f}-j_{i}=0 \\
& =0 \quad \text { if } \quad k_{i}=k_{f} \tag{23}
\end{align*}
$$

Evaluation of Dirac Radial Integrals

The radial integrals involved are

$$
\begin{aligned}
& \int_{0}^{\infty} g_{n c}(r) g_{n k^{\prime}}(r) r^{3} d r+\int_{0}^{\infty} f_{n k c}(r) f_{n c k}(r) r^{3} d r \\
& =c\left(n, r_{k}, k, N_{k}\right) c\left(n r_{k^{\prime}}, k^{\prime}, N\left(n, k^{\prime}\right)\left\{\int_{0}^{\infty} E-\right.\right. \\
& \left.(n-k) \phi_{1}(k)+(N(n, k)-k) \phi_{2}(k)\right][-(n-k) \\
& \left.\phi_{1}\left(k^{\prime}\right)+\left(N\left(n, k^{\prime}\right)-k^{\prime}\right) \phi_{2}\left(k^{\prime}\right)\right] r^{3} d r \\
& +\sqrt{\frac{(1-\epsilon(n, k))(1-\epsilon(n, k))}{(1+\epsilon(n, k))(1+\epsilon(n, k)} \int_{0}^{\infty}\left[(n-k) \phi_{1}(k)+(N-k)\right.} \\
& \left.\left.\phi_{2}(k)\right]\left[\left(n-k^{\prime}\right) \phi_{1}\left(k^{\prime}\right)+\left(N_{k^{\prime}}-k^{\prime}\right) \phi_{2}\left(k^{\prime}\right)\right] r^{3} d r\right\}
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
C\left(n, \gamma_{k}, N(n, k)\right) \\
=\frac{1}{\sqrt{\Gamma\left(2 \gamma_{k}+1\right)}} \sqrt{\frac{\Gamma\left(2 \gamma_{k}+n-k+1\right)(1+\epsilon(n, k)}{\Gamma\left(2 \gamma_{k}+1\right) \Gamma(n-k+1) \cdot 4 \cdot N(n-1)}} \\
\phi_{1}(x)=e^{-\frac{Z_{r}}{N a_{0}}}\left(\frac{2 z r}{N a_{0}}\right)^{\gamma_{k}-1}, F_{1}\binom{-n+k+1}{2 \gamma_{k}+1 ; \frac{2 z_{r}}{N a_{0}}} \\
\phi_{2}(k)=e^{-\frac{Z_{r}}{N a_{0}}}\left(\frac{2 z_{r}}{N a_{0}}\right)^{\gamma_{k}^{-1}}, F_{1}\left(\begin{array}{c}
-n+k \\
2 \gamma_{k}+1,
\end{array}, \frac{2 z_{r}}{N a_{0}}\right) \tag{26}
\end{array}\right)
$$

By replacing k by $\kappa^{\prime}, N(n, k)$ by $N\left(n, k^{\prime}\right)$, and γ_{K} by $\gamma_{K^{\prime}}$, one can easily write $\phi_{1}\left(\kappa^{\prime}\right), \phi_{2}\left(\kappa^{\prime}\right)$ and $C\left(n, r_{k^{\prime}}, k^{\prime}, n\left(n, k^{\prime}\right)\right)$ so the general integrals
involved are of the type (apart from constant multiplying them)

$$
\begin{array}{r}
\int_{0}^{\infty} \phi_{1}(r) \phi_{1}\left(K^{\prime}\right) r^{3} d r, \int_{0}^{\infty} \phi_{1}(r) \phi_{2}\left(K^{\prime}\right) r^{3} d r \\
\int_{0}^{\infty} \phi_{2}(K) \phi_{1}\left(k^{\prime}\right) r^{3} d r \tag{27a}
\end{array}
$$

and $\quad \int_{0}^{\infty} \phi_{2}(K) \phi_{2}\left(K^{\prime}\right) r^{3} d r$
Let us denote them by I_{11}, I_{12}, I_{21}, and I_{22}. We have then

$$
\begin{aligned}
& I_{\prime \prime} \\
& =\int_{0}^{\infty} e^{-\frac{Z r}{N a_{0}}}\left(\frac{2 Z r}{N a_{0}}\right)^{\gamma_{k}-1}, F_{1}\left(\begin{array}{c}
-n+k+1 \\
2 \gamma_{k}+1 ;
\end{array} ; \frac{2 Z_{r}}{N a_{0}}\right) \\
& e^{-\frac{Z r}{N a_{0}}}\left(\frac{2 Z r}{N\left(n, k^{\prime}\right) a_{0}}\right)^{\gamma_{k}^{\prime}-1}, F_{1}\binom{-n+k^{\prime}+1}{2 \gamma_{k}^{\prime}+1 ; \frac{2 Z_{r}}{N a_{0}}} \\
& r_{d r}{ }_{(28)}
\end{aligned}
$$

When we expand both ${ }_{1} F_{1}(\underset{\beta}{\alpha} ; x)$ functions as the power series as

$$
\begin{aligned}
1_{1}\binom{\alpha}{\beta ; x} & =1+\frac{\alpha}{\beta} x+\frac{\alpha(\alpha+1)}{\beta(\beta+1)^{2}!} x^{2}+\cdots \\
& =\sum_{s=0} \frac{(\alpha)_{s}}{(\beta)_{s} s!} x^{s} \\
,_{1}\binom{\alpha^{\prime}}{\beta^{\prime} ; x^{\prime}} & =\sum_{q=0} \frac{\left(\alpha^{\prime}\right)_{q}}{\left(\beta^{\prime}\right)_{q} q!}\left(x^{\prime}\right)^{q}
\end{aligned}
$$

After substitution and integration and changing the dummy summation

$$
\begin{align*}
& I_{\text {variables we get }}=\left(\frac{2}{N(n, k) a_{0}}\right)^{\gamma_{k}-1}\left(\frac{2}{N\left(n, k^{\prime}\right) a_{0}}\right)^{\gamma_{k^{\prime}}-1} \sum_{s=0}^{\infty}\{C(s) \\
& \left.\quad\left(\frac{1}{\lambda}\right)^{\gamma_{k}+\gamma_{k}^{\prime}+2+s} \cdot \Gamma\left(\gamma_{k}+\gamma_{k}^{\prime}+s+2\right)\right\}_{(2}
\end{align*}
$$

$$
C(s)=\sum_{q=0}^{s} A(s-q) B(q) ; A(s-q)=\frac{(\alpha)_{s-q}}{\left(2 \gamma_{k}^{\prime}+1\right)(s-q)!}\left(\frac{2}{N_{k} a_{i}}\right)^{s-q}
$$

and

$$
\begin{aligned}
& B(q)=\frac{\left(\alpha^{\prime}\right)_{q}}{\left(2 \gamma_{k}^{\prime}+1\right)_{q} q!}\left(\frac{2}{N_{k}^{\prime} a_{0}}\right)^{q} ; A(0)=1 \\
& \lambda=\left(\frac{1}{N(n, k)}+\frac{1}{N\left(n, k^{\prime}\right)}\right) \frac{1}{a_{0}} ; B(0)=1=C(0)
\end{aligned}
$$

In a similar way we can evaluate I_{22}, I_{12}, and I_{21}. Substituting these into the Equation (24) we arrive at

$$
\begin{aligned}
& \int_{0}^{\infty} g_{n k}(r) g_{n k}(r) r^{3} d r+\int_{0}^{\infty} f_{n k}(r) f_{n k^{\prime}}(r) r^{3} d r \\
& =C\left(n, \gamma_{k}, k, N(n, k)\right) C\left(n, \gamma_{k}^{\prime}, k^{\prime}, N\left(n, k^{\prime}\right)\right) \\
& {\left[\left\{(n-k)\left(n-k^{\prime}\right) I_{11}+(N(n, k)-k)\right.\right. \text {. }} \\
& \left(N\left(n, k^{\prime}\right)-K^{\prime}\right) I_{22}-(n-k)\left(N\left(n, k^{\prime}\right)-k\right) I_{12} \\
& \left.-\left(n-k^{\prime}\right)(N(n, k)-k) I_{21}\right\} \\
& +\sqrt{\frac{(1-\epsilon(n, k))\left(1-\epsilon\left(n, k^{\prime}\right)\right)}{(1+\epsilon(n, k))\left(1+\epsilon\left(n, k^{\prime}\right)\right)}}\left\{(n-k)\left(n-k^{\prime}\right) I_{11}\right. \\
& +\left(N_{k}-K\right)\left(N_{k^{\prime}}-K^{\prime}\right) I_{22}+(n-K)\left(N_{1 k^{\prime}}-K^{\prime}\right) I_{12} \\
& \left.\left.+\left(n-k^{\prime}\right)\left(N_{k}-k\right) I_{21}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& { }_{V k^{\prime}}^{\text {fence }}{ }_{c k^{\prime}}^{\mu \mu^{\prime}}=\left\langle\psi_{N L \mu}^{D}(r, \theta, \varphi)\right| V\left|\psi_{N k^{\prime} \mu}^{D}(r, \theta, \phi)\right\rangle \\
& =\sum_{\tau} F e \delta_{\mu \mu^{\prime}} C_{\mu}^{j(k)}!^{j}{ }^{j\left(k^{\prime}\right)} C_{\mu-\tau}^{l(k)} \|^{l}\left(l^{\prime}\right) \\
& \left\langle j^{\prime}\left(k^{\prime}\right)\left\|y_{1}\right\| j(k)\right\rangle \cdot C\left(n, \gamma_{k}, k, N_{k}\right) \\
& c\left(n, \gamma_{k}^{\prime}, k^{\prime}, N_{k^{\prime}}\right)\left[\left(1+\sqrt{\frac{(1-\epsilon)\left(1-t^{\prime}\right.}{(1+\epsilon)\left(1+\epsilon^{\prime}\right)}}\right)(n-k)\right. \\
& \left.\left(n-R^{\prime}\right) I_{11}+\left(N_{k}-k\right)\left(N_{11}^{\prime}-k^{\prime}\right) I_{22}\right) \\
& -\left(1-\sqrt{\frac{(1-\epsilon)\left(1-t^{\prime}\right)}{(1+\epsilon)\left(1+t^{\prime}\right)}}\right)\left((n-k)\left(N^{\prime}-k^{\prime}\right) I_{12}\right. \\
& \left.\left.+\left(n-k^{\prime}\right)(N-k) I_{21}\right)\right] \tag{32}
\end{align*}
$$

where

$$
\varepsilon^{\prime}=\varepsilon\left(n, k^{\prime}\right) \quad \varepsilon=(n, k) \quad N^{\prime}=N\left(n, k^{\prime}\right), \text { etc. }
$$

Equation (32) gives the off diagonal elements of the energy matrix.

The Diagonalization of the Energy Matrix

Let

$$
\phi_{i}(r, \theta, \phi)=\sum_{k} a_{i k} \psi_{n K \mu}^{D}(r, \theta, \phi)
$$

where the summation is over $k a_{\text {Ak }}$'s are chosen such that

$$
\left\langle\phi_{i}(r, \theta, \phi)\right| H\left|\phi_{j}(r, \theta, \phi)\right\rangle=E_{i} \delta_{i j}=E_{n}^{(0)}+\Delta E_{n}^{(1)}+\Delta E_{n}^{(f s)}
$$

and

$$
\left\langle\psi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}
$$

Since the Hamiltonian is Hermitian we can use Jocobi method to diagona-
lize it. Diagonalization has been carried by using a standard available subroutine from the computer library, through which roots and vectors are available.

Application of Relativistic Symmetric Hamiltonian to Stark Effect

As it is discussed in Chapter II, the approximate relativistic
Symmetric Hamiltonian is given by

$$
\mathrm{H}_{\mathrm{sym}}=\mathrm{H}_{\mathrm{D}}+\mathrm{H}_{\mathrm{ff}}
$$

where H_{D} is the Dirac Coulomb Hamiltonian and

$$
\mathrm{H}_{\mathrm{ff}}=\rho_{2} \frac{\overrightarrow{\vec{\sigma} \cdot \vec{r}}}{\mathrm{r}} \kappa\left(\sqrt{\left.I+\frac{\alpha(z}{k}\right)^{2}}-1\right)
$$

The Hamiltonian for the electron in the Coulomb field with the upperturbed symmetric Hamiltonian is

$$
\begin{align*}
\mathrm{H} & =\mathrm{H}_{\text {sym }}-\mathrm{FeZ} \tag{33}\\
& =\mathrm{H}_{\text {sym }}+\mathrm{V} \tag{34}
\end{align*}
$$

The wave functions of the symmetric Hamiltonian are

$$
\psi_{N L \mu}^{s}=\left(\begin{array}{ll}
g_{n k}^{s}(r) & \dot{x}_{k}^{\mu}(\theta, \varphi) \tag{35}\\
-i f_{n k}^{s}(r) & x_{-k}^{\mu}(\theta, \varphi)
\end{array}\right)
$$

wheres refers to the Symmetric Hamiltonian wave function.
And

Here

$$
\zeta=\varepsilon_{N} \sqrt{1+\left(\frac{\alpha Z}{k}\right)^{2}} \quad \varepsilon_{N}=\frac{E_{N}}{m}=\frac{1}{\sqrt{1+\left(\frac{\alpha Z}{n}\right)^{2}}} ; \bar{\ell}(\kappa)=\ell(-\kappa)
$$

We have

$$
\begin{equation*}
\mathrm{H}_{\mathrm{sym}}\left|\psi_{\mathrm{nK} \mu}^{\mathrm{s}_{1}}(\mathrm{r}, \theta, \phi)\right\rangle=\mathrm{E}_{\mathrm{N}}\left|\psi_{\mathrm{nK} \mu}^{\mathrm{s}}(\mathrm{r}, \theta, \phi)\right\rangle \tag{36}
\end{equation*}
$$

We treat V as the perturbation and we have to evaluate

$$
\begin{equation*}
\left.\mathrm{v}_{K K^{\prime}}^{\mu \mu^{\prime}}=\left.\left\langle\psi_{\mathrm{nK} \mathrm{\mu}}^{\mathrm{s}}(\mathrm{r}, \theta, \phi)\right| \mathrm{v}\right|_{\mathrm{nK} \mu^{\prime} \mu^{\prime}} ^{\mathrm{s}},(r, \theta, \phi)\right\rangle \tag{37}
\end{equation*}
$$

The evaluation is similar to exact Dirac case, but for the fact that radial integrals are easier to evaluate. In fact integrals are same as the one encountered in non-relativistic calculations. The diagonalization is also similar.

Section III

The Second Order Stark Effect

When we are considering the transition between nondegenerate states, the contribution from the first order effect is zero and we go for the second or higher order corrections to the energy shifts. In actuality even for the hydrogen atom, as in the hydrogen maser ${ }^{(37)}$, the energy levels are split due to the hyperfine structure. In the case of the alkali atoms such splitting can be observed in the optical range. The

$$
\begin{aligned}
& \text { second order correction is given by } \\
& \qquad \Delta E_{n}^{(2)}=\sum_{m}^{\prime}\left|V_{n m^{\prime}}\right|^{2} /\left(E_{n}^{(0)}-E_{m}^{(0)}\right) ; V_{n m^{\prime}}=\left\langle\psi_{n}\right| V\left|\psi_{m^{\prime}}\right\rangle_{(38)}
\end{aligned}
$$ The prime on the sum means $n \neq m$. If many matrix elements are surviving, then the correct second order correction is obtained by diagonalization of

$$
\begin{equation*}
\left|\sum_{m}^{\prime} \frac{V_{n m} V_{m n^{\prime}}}{E_{n}^{(0)}-E_{m}^{(0)}}-\Delta E_{n}^{(2)} \delta_{n n^{\prime}}\right|=0 \tag{39}
\end{equation*}
$$

If the second order perturbation matrix does not connect the degenerate states by way of one or more intermediate states m, i.e., if

$$
\sum_{m} \frac{V_{n m} V_{m n^{\prime}}}{E_{n}^{(0)}-E_{m}^{(0)}}=0
$$

when $n \neq n^{\prime}$ then Equation (39)leads to (38)which is the simple formula for the quadratic Stark effect. In the first section we evaluated $V_{n n}^{K \kappa}$, , which in the general case becomes

$$
\begin{align*}
& \left.f_{e}<\psi_{N k \mu,}, Z \psi_{N k^{\prime} \mu^{\prime}}\right\rangle=\sum_{\tau} F_{e} f_{\mu \mu}, C_{\mu}^{j(k)} \mid j\left(k^{\prime}\right) \tag{40}\\
& C_{\mu-\tau}^{e(k)} \mid e\left(x^{\prime}\right)
\end{align*}
$$

Where $R_{n n^{\prime}}^{K K^{\prime}}(r)$ is the part involving the radial integral

$$
\begin{aligned}
& R_{n n^{\prime}}^{x x^{\prime}}(r)=C\left(n, \gamma_{k}, k, N(n, k)\right) C\left(n^{\prime}, \gamma_{k}^{\prime}, k^{\prime}, N\left(n, k^{\prime}\right)\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& +\left((N(n, k)-k)\left(N\left(r_{1}^{\prime}, k^{\prime}-z^{\prime}\right)\right) I_{d^{\prime}}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\left(n^{\prime}-x^{\prime}\right)(N(n, k)-x) I_{\alpha}^{\prime}\right]\right\}
\end{aligned}
$$

$I_{11}^{\prime}, I_{22}^{\prime}, I_{21}^{\prime}$ and I_{12}^{\prime} are defined in (27.a) wherein we have to replace $n k^{\prime} \mu$ by $n^{\prime} \kappa^{\prime} \mu^{\prime}$. In the Pauli approximation these reduce to

$$
\begin{align*}
& \left\langle n_{j} \mu_{j}\right| z\left|n^{\prime} j-1, \mu_{j}\right\rangle=R_{n n^{\prime}}^{\dot{j}(r)} \sqrt{j^{2}-\mu^{2}} \\
& \left\langle n_{j} \mu_{j}\right| z\left|n_{j}^{\prime} \mu_{j}\right\rangle=R_{n n^{\prime}}^{j j^{\prime}}(r) \mu_{j} \tag{42}\\
& \left\langle n_{j} M_{j}\right| z\left|n_{j+1}^{\prime} \mu_{j}\right\rangle=R_{n n^{\prime}}^{j_{j}+1}(r) \sqrt{\left(j_{i}+\right)^{2}-\mu_{j}^{2}}
\end{align*}
$$

Here $R_{n n^{\prime}}^{j j j^{\prime}}(r)$ include the reduced matrix element $\left\langle j\left(n^{\prime}\right)\left\|y_{1}\right\| j(k)\right\rangle$ and the radial part. They are independent of μ_{j}. Using these results we get

$$
\begin{equation*}
\Delta E_{n}^{(2)}=\left(A+B \mu_{j}^{2}\right) e^{2} F^{2} \tag{43}
\end{equation*}
$$

with

$$
\begin{align*}
& A=\sum_{n^{\prime}}^{\prime}\left\{R_{n n^{\prime}}^{j_{i, j+1}}(r) \frac{(j+1)^{2}}{E_{n j}^{(0)}-E_{n^{\prime} j+1}^{(0)}}+\frac{\dot{R}_{n n^{\prime}}^{j_{j-1}^{\prime}}(r) \dot{j}^{2}}{E_{n j}^{(0)}}-E_{n^{\prime}}^{(0)}\right] \\
& B=\sum_{n^{\prime}}^{1}\left\{\frac{R_{n n^{\prime}}^{\dot{j}}(\gamma)}{E_{n_{j}}^{(0)}-E_{n_{j}^{\prime}}^{(0)}}-\frac{R_{n n^{\prime}}^{j}(\gamma)}{E_{n j}^{(0)}-E_{n^{\prime} j+1}^{(0)}}-\frac{R_{n n^{\prime}}^{j_{j}-1}}{E_{n_{j}}^{(0)}-E_{n_{j}}^{(0)}+1}\right\} \tag{44}
\end{align*}
$$

In the present work we have not attempted to calculate A and B using exact Dirac Function for two reasons. Firstly for atoms of low atomic numbers, as will be shown in Section IV, the difference between the values of the matrix elements calculated by exact Dirac and Pauli approximation is very small even in the first order $\left(\sim 10^{-6} \mathrm{~cm}^{-1}\right.$ for $\mathrm{z}=1$, $n=2, k=+1$ term). So in the second order, required accuracy can be attained by using Pauli approximation. On the other hand for high Z values where relativistic effects might be pronounced we need to include
the other sensitive effects like screening, electron correlation, hyperfine splitting, etc. For the same reason calculations of the oscillator strength $f_{m n}$ or the transition probability are deferred.

If the energy $\mathrm{E}_{\mathrm{n}}(\mathrm{o})$, for one or more levels is close to $\mathrm{E}_{\mathrm{n}}^{(0)}$, the second order correction to the energy of the level n is large, as $E_{n}^{(0)}$ $\mathrm{E}_{\mathrm{n}}(\mathrm{O})$ is in the denominator, we cannot use Equation (38) and the shift of the energy level must be found by exact diagonalization of the matrix of the operator ($H_{0}^{\prime}+\underset{\sim}{V}$). For two closely spaced nondegenerate levels $\mathrm{E}_{1}^{(0)}$ and $\mathrm{E}_{2}^{(0)}$ (with $\mathrm{E}_{1}^{(0)}>\mathrm{E}_{2}^{(0)}$), this leads to the stationary values

$$
\begin{aligned}
& E_{1}=+\frac{1}{2} \sqrt{\left(E_{1}^{(0)}-E_{2}^{(0)}\right)^{2}+4\left|V_{12}\right|^{2}} \\
& E_{2}=-\frac{1}{2} \sqrt{\left(E_{1}^{(0)}-E_{2}^{(0)}\right)^{2}+4\left|V_{12}\right|^{2}}
\end{aligned}
$$

The origin from which the energy is measured is at $\frac{1}{2}\left(\mathrm{E}_{1}^{(0)}-\mathrm{E}_{2}^{(0)}\right)$. If $2\left|V_{12}\right| \ll E_{1}^{(0)}-E_{2}^{(0)}$ then the energy values

$$
E_{2}=\frac{1}{2}\left(E_{1}^{(0)}-E_{2}^{(0)}\right) \pm \frac{\left|V_{1} 2\right|^{2}}{\left(E_{1}^{(0)}-E_{2}^{(0)}\right)}
$$

are the same as given by the second order perturbation theory for the non degenerate levels, whereas for $2\left|V_{12}\right| \gg E_{1}^{(0)}-E_{2}^{(0)}$ the values $V_{12}=E_{1}=-E_{2}$ are the same as given by first order perturbation theory and hence a linear effect is predicted. For the intermediate cases we find the mixture of both the first order and the second order effects. The application of electric field sometimes removes the forbiddenness of the transition. To see this let us consider the two states $\psi_{1}^{(0)}$ and $\psi_{2}^{(0)}$ with energies $E_{1}^{(0)}$ and $E_{2}^{(0)}$ described above. Let their wavefunctionsin electric field be ψ_{1} and ψ_{2}, respectively. Let as fur-
ther suppose that there is a third non-degenerate state $\psi_{3}^{(0)}$ with energy $\mathrm{E}_{3}^{(\mathrm{o})}$ which is connected only with the state $\psi_{1}^{(0)}$. In the absence of electric field $\psi_{1}=\psi_{1}^{(0)}$ and $\psi_{2}=\psi_{2}^{(0)}$ and the spectrum consists of a single line, When the field is applied, each of the state ψ_{1} and ψ_{2} becomes the mixture of the unperturbed states $\psi_{1}^{(0)}$ and $\psi_{2}{ }^{(0)}$. Therefore there will be two lines in the spectrum with frequencies $\omega_{1}=\frac{E_{3}^{(0)}-E_{1}}{h}$ and $\omega_{2}=\frac{E_{3}^{(0)}-E_{2}}{h}$. The intensity of the ω_{1} line is practically independent of the electric field. Whereas that of the line ω_{2} is propor-
 the appearance of the line with frequency ω_{2} is regarded as a sign that the forbiddenness of the transition is removed.

Section IV

Calculation and Results

The first order Stark shifts are calculated for $n=2,3,4,5$, and 6 for the atoms with atomic numbers $z=1,2, \ldots \ldots \ldots \ldots .9,29,39,49,59,69$, 79,89 and 99 (and are stored on that tape). The values for the electric fields used are dependent upon the Z values such that the fine structure splitting and the Stark shifts are of the same order of magnitude. The dimensionality of the matrix, which is to be diagonalized, depended on the values of n and μ. For example $n=3$ and $\mu=\frac{1}{2}, k$ can take values $-3,+1,-2,+2,-3$. Hence we had a 5×5 matrix to be diagonalized. Fir $n=6, \mu=\frac{1}{2}, 3 / 2,5 / 2,7 / 2$ and $9 / 2$, the matrices were $11,9,7,5$, and 3 dimensional and the energy level splits into 36 components. Even after the application of the electric field the energy levels ($n \times \mu$) and (nk- μ) are not separated hence the energy levels for μ and $-\mu$ are still degenerate. This phenomena gives an added important tool to the experi-
mentalist and has been abundantly used in the Stark shift measurements by the level crossing method and the method of beats．

For low values of the atomic number the difference between the cal－ culations of the energy shift using the exact Dirac and Pauli approxima－ tions as is to be expected，is of the order of 10^{-3} to $10^{-8} \mathrm{~cm}^{-1}$ ，and hence we were not able to show the difference on the graph．Table I gives the calculations for various values of the field for $n=2$ and $Z=4$ 。 The energy level with $K=-n$ and $\mu=$（ $n-\frac{1}{2}$ ）is not affected by the electric field．So we take its energy as the reference level and calculate the shifts of other sub－levels for a given n value．

Figures． 2 through 6 give the splittings of different terms．In Figure 2，we have graphed the splitting of $n=2$ and $Z=4$ term。 The electric fields used for the calculations range from 0.0 to $351.4 \mathrm{Kv} / \mathrm{cm}$ in a step of $50 \mathrm{Kv} . \mathrm{cm}^{-1}$ ．The fine structure splitting is of the order of $93.3542 \mathrm{~cm}^{-1}$ 。 In the electric field the K degeneracy is broken and $2 \mathrm{~S}_{\frac{1}{2}}^{\frac{1}{2}}$ and $2 \mathrm{P}_{\frac{1}{2}}^{\frac{1}{2}}$ states separate out．We notice that there is no level crossing here．But if one applies a magnetic field parallel to the electric field then $P_{3 / 2}(\mu=-3 / 2)$ level will cross $P_{\frac{1}{2}}\left(\mu=\frac{1}{2}\right)$ term and one can use the level corssing method to study the shifts．

In Figure 3，we have graphed $\mathrm{n}=3$ terms for $\mathrm{Z}=1$ as well as $\mathrm{Z}=3$ ， for the field strength 0 to 700 and 0 to 70,000 volts cm^{-1} respectively． Sample calculations for these cases are given in Table II（see also at the end of the Appendix）．Table III gives the field strengths at which rbe various levels cross．

In Figure 4，we have graphed $\mathfrak{n}=4$ for $Z=2$ ，for the field strength 0 to 3500 volts cm^{-1} ．Table IV gives the field strength at which dif－ ferent levels cross．Figure 5 is drawn for $\mathrm{n}=5$ and $\mathrm{Z}=2$ ．Here we

TABLE I
STARK SHIFT CALCULATIONS FOR $n=2, Z=4$

j	μ	K	F Million Volt cm^{-1}	Stark Shift Using Dirac Wave Functions cm^{-1}	Stark Shift Luder's Calculations cm^{-1}
3/2	$\frac{1}{2}$		0.2	0.294231	0.294461
			0.4	1.171366	1.172346
			0.6	2.615130	2.617216
			0.8	4.599243	4.602874
			1.0	7.089028	7.094558
			1.2	10.043625	10.051319
			1.4	13.418507	13.428542
$\frac{1}{2}$	$\frac{1}{2}$	-1	0.2	- 89.796186	- 89.745283
			0.4	- 86.546617	- 86.494786
			0.6	- 83.612549	- 83.560100
			0.8	- 80.992480	- 80.939678
			1.0	- 78.676516	- 78.623625
			1.2	- 76.647472	- 76.594715
			1.4	- 74.882425	- 74.829977
$\frac{1}{2}$	1/2	-1	0.2	- 97.206534	- 97.158236
			0.4	-101.333210	-101.286590
			0.6	-105.711072	-105.666219
			0.8	-110.315251	-110.272252
			1.0	-115.12094	-115.079953
			1.2	-120.104668	-120.065689

TABLE II
STARK SHIFT CALCULATIONS FOR $n=3, z=1$ and $z=3$

$\mathrm{n}=3$							
$z=1$				$z=3$			
$\begin{gathered} \mathrm{F} \\ \mathrm{volt} / \mathrm{cm} \end{gathered}$	$\begin{gathered} \text { Exact Dirac } \\ \mathrm{cm}^{-1} \end{gathered}$	$\begin{gathered} \text { Liuden's Work } \\ \mathrm{cm}^{-1} \end{gathered}$	Symmetric Hamiltonian cm^{-1}	$\begin{gathered} F \\ \text { Kvol } / \mathrm{cm} \end{gathered}$	$\begin{gathered} \text { Exact Dirac } \\ \mathrm{cm}^{-1} \end{gathered}$	Luden's Work cm^{-1}	Symmetric Hamiltonian cm^{-1}
$j=5 / 2 \quad \mu=1 / 2 \quad k=(-3)$							
100.4	. 0106138	. 0106138	. 033873	10	. 164407	. 164430	. 16693234
200.8	. 0336720	. 0336720	. 0667746	20	. 606753	. 606834	. 333864
300.2	. 0623209	. 0623225	0.1001620	30	1.238854	1.239033	. 500797
401.6	. 0942006	. 0942023	0.1335493	40	1.998812	1.999106	. 6677293
502.0	. 128098	. 12810132	0.166936	50	2.851092	2.851529	. 834661
$j=5 / 2 \quad \mu=3 / 2 \quad(\kappa=-3)$							
100.4	. 0717517	. 07175615	. 017638	10	. 0126984	. 0126980	. 0881902
200.8	. 0223443	. 0223448	. 0352761	20	. 0485502	. 0485499	. 176380
301.2	. 0399033	. 0399037	. 0529142	30	. 102377	. 102381	. 264570
401.6	. 0582793	. 0582797	. 0705523	40	. 168795	. 168805	. 352760
502.0	. 0770098	. 0770115	. 0881904	50	. 243659	. 243668	. 440951

Figure 2. The First Order Stark Shift for $n=2, Z=4$

Figure 3. The First Order Stark Shift for $n=3, Z=1$ and $Z=3$

TABLE III
LEVEL CROSSING FIELDS FOR $n=3, z=1$, and $z=3$

j	μ	(κ)	j^{\prime}	μ^{\prime}	$\left(\kappa^{\prime}\right)$	$Z=1$	$Z=3$
$3 / 2$	$\frac{1}{2}$	(2)	$3 / 2$	$3 / 2$	$(+2)$	100.0 volt cm	
$3 / 2$	$\frac{1}{2}$	(2)	$5 / 2$	$5 / 2$	(-3)	350.0 volts $/ \mathrm{cm}$	$7.75 \times 10^{4} \times 10^{4}$ volts/cm

Figure 4. The First Order Stark Shifts for $n=4, Z=2$

TABLE IV
LEVEL CROSSING FIELDS FOR $\mathrm{n}=4, \mathrm{Z}=2$

j	μ	κ	j^{\prime}	μ^{\prime}	κ^{\prime}	Level Crossing Fields
$5 / 2$	$\frac{1}{2}$	(-3)	$5 / 2$	$5 / 2$	$(+3)$	$1120.0 \mathrm{volts} / \mathrm{cm}$
$5 / 2$	$\frac{1}{2}$	$(+3)$	$7 / 2$	$7 / 2$	(-4)	$1130.0 \mathrm{volts} / \mathrm{cm}$
$5 / 2$	$3 / 2$	$(+3)$	$7 / 2$	$7 / 2$	(-4)	$1500.0 \mathrm{volts} / \mathrm{cm}$
$5 / 2$	$\frac{1}{2}$	$(+3)$	$7 / 2$	$5 / 2$	(-4)	$2425.0 \mathrm{volts} / \mathrm{cm}$
$5 / 2$	$\frac{1}{2}$	(-3)	$7 / 2$	$7 / 2$	(-4)	$2650.0 \mathrm{volts} / \mathrm{cm}$

can notice the complexity of the splitting. In Figure 6, we draw the splitting for $\mathrm{n}=6$ and $\mathrm{Z}=3$. However, only $\mu=\frac{1}{2}$ terms are graphed as the inclusion of all the 36 levels will lead to no understandable and clear picture. In Figure 7 we show the effect of electric field on the transition $\left(2 P_{3 / 2}^{1 / 2} \rightarrow 2 P_{1 / 2}^{1 / 2}\right)$ as a function of Z.

From Figures. 2 through 6 we see that the term ($j=n-\frac{1}{2}, \mu=n-\frac{1}{2}$) does not have first order Stark effect. Hence to study the effect of an electric field on terms like $2 P_{3 / 2}^{3 / 2}, 3 D_{5 / 2}^{5 / 2}, 4 f_{7 / 2}^{7 / 2}, 5 g_{9 / 2}^{9 / 2}$ and $6 h_{11 / 2}^{11 / 2}$ we have to use the second order perturbation calculations.

Figure 8 shows the energy level shifts which are calculated by using the Symmetric Hamiltonian. Because of the 0 (4) symmetry there is no spin orbit splitting and the shifts are very linear. Junge and Steubing ${ }^{31,32}$ have experimentally measured Stark shifts in 10π component of H_{β} line and 18π component of H_{γ} line. Table V gives comparison of experimental and theoretical values of proportionality constant a. Between 5000 and $12000 \mathrm{v} / \mathrm{cm}$ the shift is linear. In Figure 9a we have plotted the results for 10π component of H_{β} and in $9 b$ we plotted 18π component of H_{γ}. For fields below $5000 \mathrm{v} / \mathrm{cm}$ the shift is quadratic than linear. The experimental results of Kessner who used fields from 48 $\mathrm{kv} / \mathrm{cm}$ to $98 \mathrm{kv} / \mathrm{cm}$ agree with non relativistic calculations of Schrodinger and Epstein.

Steubing and Gunther have done Stark shift measure on HeII 4686 (3)
line. The field strength in their experiment varies from 50 to 110 $\mathrm{kv} / \mathrm{cm}$. In Figure 10 we give the calculated and experimental results. In this case the difference in the results from Dirac and Symmetric Hamiltonian is very small.

Steubing and Hengevoss ${ }^{34}$ have done similar measurements on 2.11

Figure 5. The First Order Stark Shifts for $n=5, Z=2$

Figure 6. The First Order Stark Shifts for $\mathrm{n}=6$, $Z=3$ and $\mu=\frac{1}{2}$

Figure 7. $\left.Z \begin{array}{l}\text { Dependence of the Transition }\left(2 P_{3 / 2}^{1 / 2}\right. \\ \text { on the Electric Field }\end{array} \rightarrow 2 P_{1 / 2}^{1 / 2}\right)$

Figure 8. The First Order Stark Shifts for $n=3, Z=1$ and $Z=3$ Using Symmetric Hamiltonian

TABLE V

PARAMETER FOR THE FIRST ORDER STARK EFFECT

n	n_{f}	$\mathrm{n} \cdot \mathrm{n}_{\mathrm{f}}$	First Order Stark Constant in\qquad		Experimental
			Dirac	Symmetric	
2	1	2	. 05631	. 052788	
3	2	6	. 06317	. 055645	
			. 06497	. 055445	
	1	3	. 06545	. 067181	
			. 0624		
			. 06450	. 05855	
4	3	12	. 06421	. 05706	
	2	8	. 06421	. 06659	. 06449
			. 06411	. 05945	
	1	4	. 06439	. 06682	. 06428
			. 06423	. 06082	
			. 06402	. 05739	
5	4	20	. 06395	. 05815	
	3	15	. 06395	. 06619	. 06402
			. 06385	. 05981	
				. 06662	
	2	10	. 06453	. 06111	
				. 05849	
	1	5	. 06421	. 06605	
				. 06629	
				. 05988	
				. 06186	

strong π and σ components of HeII 3203 line. Range of the field here again was 50 to $110 \mathrm{kv} / \mathrm{cm}$. The proportionality constant is 6.402 $\mathrm{cm}^{-1} / \mathrm{Mv} . \mathrm{cm}^{-1}$. Level splitting in deuteron were measured by Steubing
 as 6.44 and $6.48 \mathrm{~cm}^{-1} / \mathrm{Mv}_{\mathrm{cm}} \mathrm{cm}^{-1}$. Steubing and Lebowsky have done the measurements of shifts in crossed electric and magnetic fields ${ }^{36}$ 。

The linear Stark effect is possible only in hydrogen and hydrogen like atoms, and hence the range of its validy is limited. For all nondegenerate energy levels the contribution from first order Stark effect is zero. The phenomena of hyperfine structure lifts the degeneracy even for hydrogen like atoms with nonzero nuclear spin. . The Lamb shift also eliminates the degeneracy between $2 \mathrm{~S}_{\frac{1}{2}}$ and $2 \mathrm{P}_{\frac{1}{2}}$ states. In addition to this intrinsic difficulty the experimenters prefer to use the levels like $2 \mathrm{P}(3 / 2,3 / 2)$ or $3 \mathrm{D}(5 / 2,5 / 2)$ which give linear shifts in Paschen Back effect. Hence most of the recent experimental work reported in the literature is of the second order Stark effect. Table VI gives such calculations and measurements. Level splitting in Li_{i} was observed by Budick, Marcus and Novick ${ }^{14}$. Following is the brief description of their experiment.

The Lithium atoms in the form of a beam are excited by resonance radiation (transition $3 P-2 S$) and are in a magnetic field. At a field strength 915 G the sub-levels $2 \mathrm{P}_{3 / 2}(\mu=-3 / 2)$ and $2 \mathrm{P}_{\frac{1}{2}}\left(\mu=\frac{1}{2}\right)$ cross This is registered as the resonance behavior of the intensity of fluorescence at angle 90° with the direction of the exciting radiation. When the constant electric field E, parallel to the magnetic field H, is applied, the sub-levels $2 \mathrm{P}_{3 / 2}$ and $2 \mathrm{P}_{1 / 2}$ are unequally shifted and cross at a different value of the magnetic field. Actually there are

Figure 9. Experimental and Theoretical Stark Shifts of H_{β} and H_{γ} Lines

Figure 10. Experimental and Theoretical Stark Shifts of $4686 \AA$ Line of He II

TABLE VI
EXPERIMENTAL AND THEORETICAL STARK SHIFTS FOR Rb AND Cs in Mc/(kv/m) ${ }^{2}$

Nucleus	State	(cal)	(cal)	(expt)	Exptal。 crossing fields $(\mathrm{kv} / \mathrm{cm})$		
Rb^{85}	$6^{2} \mathrm{P}_{3 / 2}$	3.34	-.494	-0.521	0.021	8.77 10.95	0.1 .8
Rb^{87}	$6^{2} \mathrm{P}_{3 / 2}$	3.34	-0.494	-0.521	.021	14.3	
Cs^{133}	$7^{2} \mathrm{P}_{3 / 2}$	9.03	-1.05	1.077	.043	11.07 13.5	.02
Cd	$5^{3} \mathrm{P}_{1}$	8.5	1.3	1.70	.07		
Hg	$6^{3} \mathrm{P}_{1}$	5.5	0.92	1.57	.06		

TABLE VII
PARAMETER FOR QUADRATIC STARK EFFECT IN ALKALI ATOMS

Atom	Transition	Observed Value γ	Method of Observation	$\begin{gathered} \text { Calculated } \\ \gamma \\ \hline \end{gathered}$
Li^{7}	$\begin{aligned} & 2 p-2 s \\ & 3 p-2 s \\ & 2 p-4 s \end{aligned}$	$\begin{aligned} & +(4 \pm 2) 10^{-7} \\ & -(1.4 \pm 0.3) 10^{-4} \\ & -(1.9 \pm 0.4) 10^{-4} \end{aligned}$	Shift of the centre of gravity of absorption line	$\begin{aligned} & 2.7 \times 10^{-7} \\ & 1.1 \times 10^{-4} \\ & 1.5 \times 10^{-4} \end{aligned}$
Na^{23}	$\begin{aligned} & 3 \mathrm{p}_{\frac{1}{2}}-3 \mathrm{~s} \\ & 3 \frac{\mathrm{p}}{+3 / 2} \rightarrow 3 \mathrm{~s} \end{aligned}$	$\begin{aligned} & -7.6 \times 10^{-7} \\ & -4.1 \times 10^{-7} \end{aligned}$	Atomic Beam Method	$\begin{aligned} & -7.4 \times 10^{-7} \\ & -4.1 \times 10^{-7} \end{aligned}$
	$3{ }_{3}^{ \pm}+\frac{1 / 2}{}+3 \mathrm{~s}$	-11.1×10^{-7}		-10.6×10^{-7}
	$3 \pm \frac{+3 / 2}{+3 / 2} \rightarrow 3 s$	4.1×10^{-7}	Double Refraction Method	10.6×10^{-7}
	$3{ }_{3}^{ \pm 1 / 2}+3 \mathrm{~s}$	11.0×10^{-7}		10.6×10^{-7}
K^{39}	$\begin{aligned} & 5 p-4 s \\ & 6 p-4 s \\ & 4 s(F=2) \\ & 4 s(F=1) \end{aligned}$	$\begin{gathered} -3.4 \times 10^{-6} \\ -1.6 \times 10^{-4} \\ -(2.53 \pm .25) \times \\ 10^{-12} \\ -(2.21 \pm 0.17) \\ 10^{-12} \end{gathered}$	Shift of center of gravity of absorption line Level crossing method	$\begin{aligned} & -3.3 \times 10^{-5} \\ & -1.8 \times 10^{-4} \\ & -3.1 \times 10^{-12} \\ & -3.0 \times 10^{-12} \\ & -3.3 \times 10^{-12} \end{aligned}$
Rb^{85}	$5 \mathrm{p}-5 \mathrm{~s}$	$-(2.0 \pm .2) \times 10^{-6}$	Radiospectroscopic method	$\begin{aligned} & -0.9 \times 10^{-6} \\ & -2.0 \times 10^{-6} \end{aligned}$
	$5 \stackrel{+3 / 2}{\mathrm{p}_{3 / 2}}-5 \mathrm{~s}$	$-(1.8 \pm .2) \times 10^{-6}$		$\begin{aligned} & 0.6 \times 10^{-6} \\ & 1.8 \times 10^{-6} \end{aligned}$
	$5{ }^{ \pm}+1 / 2-5 \mathrm{~s}$	$-(3.0 \pm .4) \times 10^{-6}$		$\begin{aligned} & 1.9 \times 10^{-6} \\ & 2.9 \times 10^{-6} \end{aligned}$
Cs^{133}	$\begin{aligned} & 7 p-6 s \\ & 7 \mathrm{p}_{3 / 2}^{ \pm 1 / 2}-6 s \end{aligned}$	-1.18×10^{-4} -1.46×10^{-4}	```Comparison with Hyperfine Structure Splitting```	$\begin{aligned} & -1.17 \times 10^{-4} \\ & -1.63 \times 10^{-4} \\ & -2.3 \times 10^{-6} \end{aligned}$
	$6 \pm 3 / 2$	$-(4.0 \pm .8) \times 10^{-6}$		-4.0×10^{-6} -3.8×10^{-6}
	$6{ }_{3 / 2}^{ \pm 1 / 2}-6 s$	$-(6.2 \pm 1) \times 10^{-6}$		$\begin{aligned} & 4.9 \times 10^{-6} \\ & 5.9 \times 10^{-6} \\ & 6.0 \times 10^{-6} \end{aligned}$

TABLE VII (Continued)

Atom	Transition	Observed Value γ	Method of Observation	Calculated γ
$\mathrm{C}_{\mathrm{s}}^{133}$	$6 p_{1 / 2}-6 s$	$-(3.8 \pm .6) \times 10^{-6}$	Level Crossing method	$\begin{aligned} & -3.1 \times 10^{-6} \\ & -3.8 \times 10^{-6} \\ & -3.4 \times 10^{-6} \end{aligned}$
	$\begin{aligned} & 6 \mathrm{~s}(\mathrm{~F}=4) \text { to } \\ & 6 \mathrm{~s}(\mathrm{~F}=3) \end{aligned}$	$-(.76 \pm .01) \times 10^{-10}$	Radiospectroscopic method	$\begin{aligned} & -0.82 \times 10^{-10} \\ & -0.79 \times 10^{-10} \\ & -0.99 \times 10^{-10} \end{aligned}$

Table VII gives comparison of observed and calculated constants for the quadratic Stark shift $\Delta \nu$ of frequencies of transitions in Alkali metal atoms. The constant γ is defined by the relation $\Delta \nu=\gamma \varepsilon^{2}$ where $\Delta \nu$ is in $\mathrm{cm}^{-1}, \varepsilon$ in $\mathrm{kv} / \mathrm{cm}$ and γ is in $\left.\mathrm{cm}^{-1} / \mathrm{kv} / \mathrm{cm}\right)^{2}$.
two possible crossings, i.e., of $P_{1 / 2}^{1 / 2}$ and $P_{1 / 2}^{-1 / 2}$ with $\mathrm{P}_{3 / 2}^{-3 / 2}$. Hence one can measure the shifts in the levels in terms of magnetic field. It was found that the size of the shift measured with the change in the magnetic field has the relation $\Delta H=(.056 \pm .011) \varepsilon^{2}$. H is in gauss and ε in $\mathrm{kv} / \mathrm{cm}$. This result is in good agreement with the theoretical results

$$
\Delta \mathrm{H}=.048 \varepsilon^{2}
$$

For completeness we reproduce here (in Table VII) the table given by Bounch, Bruevich and Khodov which gives a comparison of observed and calculated constants for the quadratic Stark shifts.

REFERENCES

(1) J. Stark and Wendt, Ann. der Physik, 43991 (1914).
(2) Voigt, Ann. der Physik, 69291 (1899).
(3) Sjorgen, K., Zeit. F. Physik, 77290 (1932).

Kassner, L., Zeit. F. Physik, 81346 (1933).
(4) Epstein; P. S., Ann. der Physik, 50489 (1916). Schwarzchild, Sitzber Berliner Akad. 548 (1916).
(5) Schrodinger, E., Ann, der Physik, 80457 (1926). Epstein, P. S., Phys. Rev., 28695 (1926).
(6) E. U. Condon and Shortley, G. H., 'Theory of Atomic Spectra', Cambridge Uni. Press, London (1933).
(7) H. A. Bethe and Salpeter, E. E., 'Quantum Mechanics of One and Two Electron Atoms', Aca. Press., Inc. (1957).
(8) Griem, H. R., 'Plasma Spectroscopy', McGraw Hill Company; N. Y. (1964).
(9) J. Stark, 'Handbuck der Physik', 21399 (1927).
(10) S. E. Frisch, 'The Optical Spectra of Atoms', Moscow (1963).
(11) E. N. Froston, D. Kleppner and N. F. Ramsey, Phys. Rev. Letters, 1322 (1964).
(12) J. E. Blamont, Ann. Physik 235 (1957).
(13) O. V. Konstantinov and V. I. Parel, J. E. T. P., 18195 (1964).
(14) E. B. Aleksandrov and V. P. Kozlov, Opt. Spectr. 16289580 (1964).
(15) A. Corney and G. W. Series, Proc. Phys. Soc., 83208 (1964).
(16) B. Budick, S. Marcus and R. Novick, Phys. Rev. 140 A 1041 (1965).
(17) B. Budick, H. Bucka, R. Goshan, A. Landmann, Andr. Nivick, Bull. Amer. Phys. Soc., 8352 (1963).
(18) A. Khadjavi, W. Happer Jr., and A. Lurio, Phys. Rev. Lett. 17463 (1966).
(19) C. T. Townes and A. Schawlow, 'Microwave Spectroscopy', McGraw Hill, N. Y.
(20) S. H. Autler and C. H. Townes, Phys. Rev., 100703 (1955).
(21) W. Heitler, 'Quantum Theory of Radiation', Oxford Univ. Press (1954).
(22) E. B. Aleksandrov, et al., J. E. T. P. Lett. 353 (1966).
(23) Redmond, P. J., Phys. Rev., 133 B 1352 (1964).
(24) A. O. Barut and H. Kleinert, Phys. Rev. 156 1541 (1967).
(25) Schrodinger, E., Ann. der Physik 81109 (1926).
(26) Kramers, H. A., Zeit. F. Phys., 3199 (1920).
(27) Schlapp, R., Proc. Roy. Soc. A 119313 (1928).
(28) V. Rojansky, Phys. Rev., 331 (1929).
(29) Luder, W. G., Ann. der Phys., 6 20 (1951). See also Elyshevich and V. I. Tkacheva, Opt. Spect. 261 (1969). See also Elyshevich and V. I. Tkacheva, Opt. Spect. 255 (1968).
(30) Payne, W. B, Thesis, Louisiana State Univ. (1955).
(31) W. Steubing and Junge, W., Ann. Phys. 6108 (1949).
(32) W. Steubing and A. Kiel, Zeit. F. Phys., 115150 (1939).
(33) W. Steubing and Guther, R., Ann. Phys. 15246 (1955).
(34) W. Steubing and Hengevoss, J. Ann. Phys. 7 192 (1958).
(35) W. Steubing and Hengevoss, J., Zeit. F. Phys. 15120 (1958).
(36) W. Steubing, A. Kiel and F. Stople, Zeit. F. Phys., 112560 (1939).
(37) W. Steubing and Lebowsky, Zeit. F. Phys. 15364 (1958).
(38) A. M, Bonch-Bruevich and V. A. Khodovoi, Sov. Phys. USP 10637 (1967).

CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this work we have taken up the problem of nonrelativistic, relativistic and approximate relativistic p-e system to study the symmetries. In doing so it has been found that the classification of the bases for the irreducible representations of the groups $0(4), 0(4,1)$ and $\operatorname{SU}(2,2) x$ $O(4)$ to which p-e bound system belongs shows a cohesive connection. The relativistic $p-e$ bound system has wave function which are solutions of the well known Dirac equation. These form the bases for the $\gamma_{\frac{1}{2}} \sigma$ irreducible reoresentation of the $0(4,1)$ group. On the other hand Schrodinger coulomb problem belongs to the invariant group 0 (4) and the noninvariant group $0(4,2)$. Its solutions form the basis functions for the γ_{0}, σ irreducible representation of the group $0(4,1)$.

The most interesting thing from the symmetry point of view is that the relativistic symmetric Hamiltonian, even though it has the invariant group $0(4)$ and the dynamical group of $\operatorname{SLj}(2, \mathrm{c}) \otimes \operatorname{SU}(2,2)$ has solutions that also form the basis functions for the irreducible representation $\gamma_{\frac{1}{2}}, \sigma_{0}$ In other words the approximate symmetric Hamiltonian introduced by Biedeharn and Swamy does incorporate the spin without losing the inveriant group structure of the nonrelativistic Hamiltonian. This aspect of it might be of use to the particle physicists who have the problem of incorporating relativistic invariance into successful SU(3) group for elementary particles.

We have also been able to arrive at the solutions of the relativistic symmetric Hamiltonian in the momentum space, in closed form, in contrast to the solutions of Dirac Coulomb Hamiltonian in the momentum space, whose wave functions can only be obtained numerically. The complexity of the Schrodinger differential equation in the momentum space or its counter part, the symmetric Hamiltonian, is due to the fact that the Coulomb potential is prescribed in coordinate space, and in the quantum mechanics the operators $\underset{\sim}{X}$'s and p 's do not commute. In spite of this the wave functions of the relativistic symmetric Hamiltonian in the momentum space are in closed form. They are related to the momentum space wave functions of the Schrodinger equation in the limiting process. The relativistic symmetric Hamiltonian itself goes over in to free field Dirac Hamiltonian (plane wave equation) in the 1 imiting process ($\alpha \mathrm{Z}$) $\rightarrow 0$.

The structure of the nonrelativistic Hamiltonian for Coulomb field or for that matter even the harmonic oscillator, is very simple in the Fock-Bargmann space which is a complex mixture of both coordinate and momentum spaces. Thus we took advantage of the simplicity of the structure of the Hamiltonian and the wavefunctions in this space to study certain properties. The parabolic and the spherical wavefunctions for the nonrelativistic Coulomb problem were obtained in the Fock-Bargmann space and it has been shown that they are connected through the Clebsch-Gordan theorem.

It is also possible to establish the Clebsch-Gordan connection of he free field (external electric field) and Stark wavefunctions of the hydragen atom in the coordinate space by direct evaluation of the transformation coefficients in accordance with the Dirac Transformation Theory. Using the symmetry properties one can give a group theoretical
derivation of this result as it is done in this thesis. The proof on the lines of the Transformation Theory uses the contiguous relations between the hypergeometric functions of variables in the coordinate space which one can not generalize to wave functions in other spaces. On the other hand the symmetry arguments and the proof along group theoretical lines is independent of coordinate and one immediately knows that Clebsch-Gordan connection holds good in momentum and Fock-Bargmann spaces as well.

This result is valuable for the relativistic symmetric Hamiltonian。 This Hamiltonian has very complicated structure in parabolic coordinates. It is difficult to solve as an eigen equation. But the existence of the vector invariants J and K, and the $0(4)$ invariance of the Hamiltonian immediately leads us to the conclusion that its wavefunctions in the parabolic coordinates must be connected to the wavefunctions in the spherical coordinates through the Clebsch-Gordan theorem. The deep practical interest in expressing the wavefunctions in parabolic coordinates consists in its applicability to study the Stark affect.

The symmetry property can also be used to evaluate certain radial integrals involving multipole operators, of interest in electric and magnetic transitions, and bound state wavefunctions of the nonrelativistic Coulomb problem. We have been able to derive the Pasternack recursion relation for the expectation values and the Pasternack Sternheimer result for the vanishing of certain radial matrix elements using 0 (4) x $S U(2)$ group generators. Thus the properties which were thought to be accidental due to the structure of the radial wavefunctions has a deeper group theoretic meaning.

In case of the continuum state wavefunctions we were able to obtain
the numerical values of the matrix elements up to a constant using the operator techniques. The operators which lead to these matrix elements follow a systematic trend. These operators can be reduced to a sum of commutation relations between multipole operators and the Hamiltonian whose matrix elements with respect to appropriate basis functions vanish giving the desired result.

As an application of the Symmetric Hamiltonian to a problem of experimental interest the study of Stark effect was taken up. The calculations obtained using relativistic Symmetric Hamiltonian wavefunctions and Dirac wavefunctions were compared with Luder's work and with the experimental results of Steubing and Junge on H and H lines. The theoretical and experimental values of first order Stark Shifts in various components of HeII 4686 line were also compared. The results show that for field strengths $5000 \mathrm{v} / \mathrm{cm}$ to $12000 \mathrm{v} / \mathrm{cm}$ the Stark shift is linear but for fields below $5000 \mathrm{v} / \mathrm{cm}$ the shift is more quadratic than linear, which is as it should be, because at low fields (as is described in Chapter V, Section 3) the linear Stark effect goes over into the quadratic Stark effect for levels which are very close. The calculations using Pauli wavefunctions agree very well with experimental results for hydrogen lines but for HeII and LiIII the discrepancy is noticeable. The first structure splitting which varies as the fourth power of the atomic number becomes quite large as Z increases whereas first order Stark effect varying approximately as Z^{-1} gets smaller. Hence, the fields for which the fine structure is nullified get larger.

The shifts are also dependent on n. As n increases the fine structure splitting becomes small whereas the Stark shifts get larger. For fairly high Z therefore, and for $\mathrm{n}=6$ or 7 the situation becomes so
complicated that without very accurate calculations (accuracy about $10^{-5} \mathrm{~cm}^{-1}$) one cannot tell certainly which level is crossing only on the basis of experimental work.

Figures 9 and 10 show that Symmetric Hamiltonian gives reliable shifts for medium electric field strengths. One difference between the results obtained using the Symmetric Hamiltonian and those of the exact Dirac Hamiltonian, of advantage in experimental work, is that the shifts vary linearly with the applied field. In this respect there is an additional superiority over the non-relativistic, where also the shifts are linear, in as much as they are dependent on the j value of the state. Thus, we conclude that the effect of symmetry is to linearize the shifts without suppressing their \mathbf{j} dependence or spin dependence.

The use of Stark shifts to measure the electric fields is a standard technique in experimental plasma physics. One usually uses the shifts in the Balmer lines. Because of the presence of other ions the shape of Stark component is distorted and depends on the density of electrons in the plasma at the point of observation. An accurate Stark profile calculation, therefore, gives valuable information not only on the electric field but also on the electron density and the temperature of the plasma which are of immense importance in controlling thermonuclear reaction. In short accurate first order Stark shifts do give valuable information on energy levels of hydrogen like atoms in electric fields of experimental importance,

Suggestion for Further. Work

If it is possible to describe spin orbit interaction in the frame work of Symmetric Hamiltonian, to a first order approximation, it will
then be possible to study by numerical methods how close one can predict the actual level shifts using the Symmetric Hamiltonian wavefunctions. Group theoretical study of the hydrogen atom in the electric field itself is an interesting problem, to which not much attention has been paid. A more difficult problem would be the study of hydrogen atom in crossed electric and magnetic fields, especially with respect to its relation to the invariance and non-invariance groups and the energy spectrum.

Second and higher order Stark shifts in levels like $2 \mathrm{P}(3 / 2,3 / 2)$, $D(5 / 2,5 / 2)$ or on other lines in alkali atoms can be calculated on the basis of the Symmetric Hamiltonian. This basis is suited for such calculations because of the simple structure of the radial functions as compared to Dirac wavefunctions. The theoretical study of Stark shifts of the impurity levels in solids needs lots more attention than has been given, as also the study of electroabsorption of Wanier excitons in semi-conductors.
E. B. Aleksandrov, et, al. J. E. T. P. Lett. 3 53 (1966).
E. B. Aleksandrov and V. P. Kozlov. Opt. Spectr. 16289580 (1964).
S. P. Alliluev and Zh. Eskerin, J. E. T. P, 6156 (1958).
L. Armstrong Jr, Phys. Rev. (3rd series) 31546 (1971).
S. H. Autler and C. H. Townes. Phys. Rev. 100703 (1955).
H. Bacry. Neuvo Cimento, 41 A 221 (1966).

Bailey, W. N. "Generalized Hypergeometric Series, Cam. Tracts 32 Cambridge 1935.

Baker, G. A. Phys. Rev. 103, 1119 (1956).
M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966).
A. O. Barut and H. Kleinert. Phys. Rev. 156, 1541 (1967).
A. O. Barut, P. Budini and C. Fronsdal. Proc. Royal Soc. A 291106 (1966).
V. Bargmann. Zeit. F. Physik, 99576 (1936).

Bargmann, V. Comm. on Pure and App. Math 14, 187 (1961).
Bargmann, V. Rev. Mod. Phy 34,829 (1962).
Batemann Manuscript Project 'Higher Transcendantal Functions' McGraw-Hill N. Y., 1953, Vol. 1 p, 103.
H. A. Bethe and Salpeter, E. E. 'Quantum Mechanics of One and TW Electron Atoms' Aca. Press. Inc. (1957).
L. C. Bledenharn. Phys. Rev. 126, 845 (1962).
L. C. Biedenharn and P. J. Brussard. "Coulomb Excitation", Oxford Uni. Press London 1964 Chapt. III, Sec. L \& 7.

Biedenharn, McHale and Thaler. Phys. Rev. 100, 376 (1955).
Biedenharn, L. C. and Swamy, N. V. V. J. Phys. Rev. 133B 1353 (1964).
J. E. Blamont. Ann. Physik 2, 35 (1957).
A. M. Bonch-Bruevich and V. A. Khodovoi. Sov. Phys. USP 10, 637 (1967).
A. Bohm. Neuvo Cimento 43, A 665 (1966).
B. Budick, H. Bucka, R. Goshan, A. Landmann and R, Nivick. Bull. Amer. Phys. Soc. 8, 352 (1963).
B. Budick, S. Marcus and R. Novick. Phys. Rev. 140, A 1041 (1965).
P. Budini. Neuvo Cimento 41, A 399 (1966).
E. Cartan, 'Theory of Spinors', M.I.T. Press, Cambridge, Mass.

Chatterji, D. Ph.D. thesis, Duke Univ. (1965).
E. U. Condon and Shortley, G. H. 'Theory of Atomic Spectra', Cambridge Univ. Press, London (1933).
A. Corney and G. W. Series. Proc. Phys. Soc. 83, 208 (1964).

Dirac, P. A. M. 'Quantum Mechanics', Oxford Univ. Press (1947).
Dixmeyer, J. Bull. Soc. Math De. Fr. 899 (1961).
Elyshevich and V. I, Tkacheva, Opt. Spect. 26, 1 (1969).
Elyshevich and V. I. Tkacheva. Opt. Spect. 25, 5 (1968).
Elliott, J. P. Proc. Roy. Soc. London A 245 128 (1958).
Epstein, P. S. Phys. Rev. 28695 (1926).
Epstein, P. S. Ann. Der Physik 50489 (1916).
Epstein, S. and B. Kennedy. WIS-TCI Report 191.
Feinberg, G. Phys. Rev. 1121637 (1958).
V. Fock. Zeit. F. Physik 98145 (1935).
V. Fock, Zeit. F. Physik 49339 (1928).

Fradkin, D. M. Phy. Rev. 135B 1085 (1964).
D. M. Fradkin and Kiefer, H. M. Phy. Rev. 1801282 (1969).
S. E. Frisch. 'The Optical Spectra of Atoms' Moscow (1963).
E. N. Froston, D. Kleppner and N. F. Ramsey. Phys. Rev. Letters 1322 (1964).
M. Ge11mann. 'Eightfold Way' Report CTSL - 20 (Mar 15, 1961).
M. Gellmann and Y. Ne'Eman. Phy, Letters 17, 148 (1965).
H. R. Griem. 'Plasma Spectroscopy', McGraw Hill Company, N. Y. (1964).
M. Hamermesh. 'Group Theory', Addison and Wesley, N. Y. (1964).

Harish Chandra. Proc. Roy. Soc. A. 371194 (1947).
W. Heitler. 'Quantum Theory of Radiation', Oxford Univ. Press (1954).

Hermann, R. 'Lie Groups for Physicists', W. A. Benjamin, N. Y. (1966).
Herzberg, G. 'Molecular Spectra and Molecular Structure', D. Van Norstand Company, Inc., N. Y: (1950),
L. Hulthen. Zeit. F. Physik 86, 21 (1933).
E. Hylleraas. Zeit. F. Physik 74, 216 (19.).

Jauch, J. M. and E. L. Hill. Phys. Rev. 57, 641 (1940).
Kassner, L. Zeit. F. Physik 81, 346 (1933).
A. Khadjavi, W. Happer, Jr., and A. Lurio. Phys. Rev. Lett. 17, 463 (1966).
O. V. Konstantinov and V. I. Parel. J. E. T. P. 18, 195 (1964).

Kramers, H. A. Zeit. F. Phys. 3, 199 (1920).
M. Levy. Proc. Royal Soc. A 204, 145 (1950).

Lieber, M. Phys. Rev. 174, 2037 (1968).
Luder, W. G. Ann. Der Phys. 6, 20 (1951).
Malkin and Manko. J. E. T. P. 28, 151 (1969).
Malkin and Manko. Sov. J. of Nuc. Phy . 3, 267 (1966).
Merzbacher, E. 'Quantum Mechanics', J. Wiley, N. Y., 3rd Ed. (1969).
Messiah. 'Quantum Mechanics', Vol: II North Holland Pub. Company, N. Y.
Naimark, M. A. 'Inear Representations of Lorentz Group', English Trans. Ame. Math. Soc. (1957).

Park, D. Zeit. F. Physik, 159, 155 (1960).
S. Pasternack. U.S. Nat. Acad. Sci. 23, 91 (1937).
S. Pasternack and Sternheimer, R. M. J. Math. Phys. 3, 1280 (1962).
W. Pauli. Zeit. F. Physik 36, 336 (1926).

W．Pauli．Cern Lecture Notes（56） 31.
Payne，W．B．Thesis，Louisiana State University（1955）．
Podolsky，B．and Pauling，L．Phys．Rev．34， 109 （1929）．
Popav，V．S．and Peremolov，A．J．E．T．P．27， 967 （1968）．
Racah，G．Cern Lecture Notes 61－9－1961．
Redmond，P．J．Phys．Rev． 133 B 1352 （1964）．
J．T．Reynolds，D．S．Onley，L．C．Biedenharn．J．Math．Phys．5， 411 （1964）．

V．Rojansky．Phys．Rev．33， 1 （1929）．
Rose，M。E．＇Multipole：Fields＇，Wiley，N．Y．（1955）Appendix B．
Rose，M．E．＇Relativistic Electron Theory＇，J．Wiley and Sons，Inc．， New York（1961）．

A．Rubinowicz．Phys．Rev．73， 1330 （1948）．
A．Sankarnarayan．Neuvo Cimento 44，B 273 （1966）．
Schiff，L．I．＇Quantum Mechanics＇（McGraw Hill，New York（1955））．
Schlapp，R．Proc．Roy．Soc．A 119313 （1928）．
Schrodinger，E．Ann．Der．Physik 81109 （1926）．
Schrodinger，E．Ann．Der Physik 80457 （1926）．
Schwarzchild，Sitzber Berliner Akad． 548 （1916）．
Schweber，S．＇An Introduction to Relativistic Quantum Field Theory＇， Harper and Row，N．Y．（1962）．

Sheth，C．V．Ph．D．Thesis Karnatak University， 1969.
Sjorgen，K。 Zeit．F．Physik． 77 290（1932）．
Snedden，I．N．＇Fourier Transforms＇，（McGraw Hill，N．Y．1951）p． 59.
J。Stark．＇Handbuck Der Physic＇ 21399 （1927）．
J．Stark and Wendt．Ann．Der Physik 43991 （1914）．
W．Steubing and Hengevoss．J．Ann．Phys． 7192 （1958）．
W．Steubing and Hengevoss，J．Zeit．F．Phys： 15120 （1958）．
W．Steubing and Guther，R．Ann．Phys． 15 246（1955）．
W. Steubing and Junge, W. Ann. Phys. 6108 (1949).
W. Steubing and A. Kiel. Zeit. F. Phys, 115150 (1939).
W. Steubing, A. Kiel and F. Stople. Zeit: F. Phys. 112560 (1939).
W. Steubing and Lebowsky. Zeit. F. Phys. 15364 (1958).

Strom, S. Arkiv F. Phys. 30455 (1965).
E. C. G. Sudarshan and N. Mukanda. Lecture in Theoretical Physics, Vol. 8 B Ed. by W. E. Britten (Boulder, Col. 1966, p. 407).

Swamy, N. V. V. J. Bull. Ame. Phy. Soc. 9436 (1964).
Tarter, C. B. J. Math. Phy. Il 3192 (1970).
C. T. Townes and A. Schawlow. 'Microwave Spectroscopy', McGraw Hill, N. Y.

Weyl, H. 'Group Theory', Dover Pub., N. Y. (1950).
E. P. Wigner. 'Group Theory', Aca. Press, N. Y. (1959).
E. P. Wigner and Inonu, E. Proc. Nat. Aca. Sc. 39, 510 (1953).

Van Der Warden. 'Die Group Theoretische Methoden in Der Quantenmechanik' (Springer Berlin) 1932.

Voigt: Ann. Der Physik, 69, 291 (1899).

Here we give the listing of computer programs used in the calculations reported in Chapter V. There are two mainline programs.

RGKU : In this program the metrix elements of the Stark interaction are calculated using the solutions of the Symmetric Hamiltonian. The matrices are diagonalized and the Stark shifts are printed in the units of (meter) ${ }^{-1}$.

RGKI : In this program the matrix elements are calculated using exact Dirac wavefunctions and the Pauli wavefunctions. The metrices are diagonalized and the Stark shifts are printed in the unit of (meter) ${ }^{-1}$.

The first program involves only one subroutine 'GIVENS'. Whereas the second program involves 3 subroutines, 'DIRACL', 'DGAMMA', AND 'GIVENS'. 'DGAMMA' calculates gamma functions in the radial integrals using the Bernouli numbers. Subroutine DIRACL calculates $E(n, k), N(n, k)$ and the radial integrals I_{11}, I_{12}, I_{21} and I_{22}.

GIVENS

The subroutine diagonalizes a given hermitian matrix and gives the roots and vectors.

All calculations are carried out in double precision.

PROGRAM RGKU


```
FCRTRAN IV G LEVEL 18 MAIN
```

```
0110
```

0110
0111
0111
0112
0112
0113
0113
0114
0114
0115
0115
C11E
C11E
0117
0117
0118
0118
0119
0119
0120
0120
0121
0121
0122
0122
0123
0123
0124
0124
0125
0125
0126
0126
C127
C127
0128
0128
0129
0129
0130
0130
0131
0131
0132
0132
0132
0132
0134
0134
0135
0135
C13t
C13t
0137
0137
C138
C138
C139
C139
0140
0140
0141
0141
0142
0142
0143
0143
0144
0144
0144
0144
0146
0146
0147
0147
RM(2*I-1,2*I)= VI* 2.* X(M 1*I2.*A(I)*CXI (I)- FI *BETA(II)
RM(2*I-1,2*I)= VI* 2.* X(M 1*I2.*A(I)*CXI (I)- FI *BETA(II)
X/BX 2(I)
X/BX 2(I)
RM(2*I-1, 2*I+1)={ AY(II-CY(I))* X(I)*VI / BX (I)
RM(2*I-1, 2*I+1)={ AY(II-CY(I))* X(I)*VI / BX (I)
RM(2*I* 2*I+2)= X(I)* (BY(I 1+DY(1 |) \#VI / 日X (I)
RM(2*I* 2*I+2)= X(I)* (BY(I 1+DY(1 |) \#VI / 日X (I)
91 CCATINUE
91 CCATINUE
M=2.0 * RMU
M=2.0 * RMU
N3 =2.*RMU + XN - 1.0
N3 =2.*RMU + XN - 1.0
L=1
L=1
DO 110 K=M ,N3
DO 110 K=M ,N3
DO 109 J=M.K
DO 109 J=M.K
ARRAY(L)= RM(J,K)
ARRAY(L)= RM(J,K)
109 L=L+1
109 L=L+1
DC 110 J=K,N3
DC 110 J=K,N3
110RM(J,K)=RM(K,J)
110RM(J,K)=RM(K,J)
800 FORMAT(1HO,/,7(1X,D16.8) /)
800 FORMAT(1HO,/,7(1X,D16.8) /)
DC 120 K=M,N3
DC 120 K=M,N3
120 WRITE (6, \&CO) (RM(K,J),J=M,N3)
120 WRITE (6, \&CO) (RM(K,J),J=M,N3)
CALL GIVENS { N,KEY,NSIZE,ARRAY,CRATCH,ROOT,VECT)
CALL GIVENS { N,KEY,NSIZE,ARRAY,CRATCH,ROOT,VECT)
DO 54 I = 1,N
DO 54 I = 1,N
ROOT (I) = ROOT (II \# ENCNV
ROOT (I) = ROOT (II \# ENCNV
54 WRITE \ 6,856) 12,N1,KI, IRMU,I,F,RODTIII
54 WRITE \ 6,856) 12,N1,KI, IRMU,I,F,RODTIII
856 FORMAT (2X, 312, 213,21 5x, D24.16))
856 FORMAT (2X, 312, 213,21 5x, D24.16))
DELF=FL(N1.1)*(10.0)**(IZ-1)
DELF=FL(N1.1)*(10.0)**(IZ-1)
F=F*2.0* DELF
F=F*2.0* DELF
K1=K1+1
K1=K1+1
IF | Kl.GE.7 IGO TO 122
IF | Kl.GE.7 IGO TO 122
GC TC 52
GC TC 52
122 CHAR = CHAR +1
122 CHAR = CHAR +1
IF I CHAR.GE.3 . I GO TO }3
IF I CHAR.GE.3 . I GO TO }3
GC TC 51
GC TC 51
34 RMU=RMU+1.0
34 RMU=RMU+1.0
IRMU = IRMU + 1
IRMU = IRMU + 1
IF(RMU.GT.ANI GO TO 125
IF(RMU.GT.ANI GO TO 125
GO TO 35
GO TO 35
125. N1 = N1-1
125. N1 = N1-1
IF (N1.LT.N2 I GO TC }13
IF (N1.LT.N2 I GO TC }13
GO TO }1
GO TO }1
130 STOP
130 STOP
END

```
    END
```


PROGRAM RGKI


```
FCRTRAN IV G LEVEL 18 MAIN
```



```
FORTRAN IV G LEVEL 12 MAIN
```

0115
0116
0117
0118
0119
0120
C1E1
0122
0123
0124
0125
0126
C 127
0128
C129
013 C
0131
0132
0133
0134
0135
0136
0137
013 e
0139
014 C
0141
0142
0143
0144
0145
$014 t$
0147
014 E
0145
0150
C151
0152
0153
0154
0155
0156
0157
0158
C15c
016 C
0161
Clez
0163
0164
0165
0166
0167
0168
C169
0170
0171

RML (2*I-1, 2*I-1) = RMLI 2*I , 2*1
91 CCATINUE
RM (2*N1-1, 2*N1-1) = (EAK (N1)-1) =5.10+05
RML $(2 * N 1-1,2 * N 1-1)=-0.5 *(A L F H A / A N) * * 2 *(1.0+0.25 *$ ENCNY)
$M=2.0$ RMU

L=1
DO $110 \mathrm{~K}=\mu$
DO $109 \mathrm{~J}=\mathrm{M}, \mathrm{K}$
UDRAY(L) = RML (J,K)
ARRAY(L) = RM(J,K)
L=L+1
DC $110 \quad \mathrm{~J}=\mathrm{K}, \mathrm{N} 3$
$R H_{L}(J, K)=R M L(K, J)$
110 RM(J,K)=RM(K,J)
53 CALL GIVEAS (N,KEY,NSIIE,ARRAY, CRATCH, ROOT,VECT)
CALL GIVENS I N,KEY,NSIZE, UCRAY,CRATCH,UDER,VECT I
UCERL(A) $=$ RML $(2 * N 1-1,2 * N 1-1$ (EE/(PLC*VL)
ROOTD(N) =RM (2*NL-1,2*N1-1)*E/(PLC*VL)
NM $=$ N1 -4
DC 54 Ix1, N
RCOT (II $=$ RCOT (II * E/IPLC*VL - RCCTD(A)
UOER (I) = UOER (I) * E/ I PLC* VL 1 - UDERL(N)
 RED (ILH,NM,KI,IRMU,I)= RCCT (II)
REDL (IIH,NM,KI,IRMU, I I = UDER (I)
54 WRITE 1 E, E56 I IZ,NI,KI,IRMU,I,F,ROOTIII, UDER (I)
855 FORMAT (1X,5I3, D14.7, 2022.14)
856 FCRMAT ($2 x, 312,213,315 x, 024.16$) 1
DELF $=$ FL(N1.1) *(10.0)**(12-1)
$F=F+$ DELF 2.0
$K 1=K 1+1$ If Kl.GE. 9 I GO TO 122
GO TK 52
122 CHAR $=$ CHAR + $1.0+$ SICMA
CHAR = CHAR - SIGMA
IF I CHAR.GE. 3 . I CD TO 34
GC TO 51
$34 \mathrm{RMU}=\mathrm{RMU}+1.0$
IRMU $=$ IRMU + 1
NMI $=2+$ N1
IFIRMU.GT.ANI GO TO 125
GO TO 35
125 DO $126 \mathrm{~J}=2$, NM 1
$\mathrm{JM}=\mathrm{J}-1$
OC $126 \mathrm{I}=1, \mathrm{JHI}$
IRMU $=\mathrm{J}$-I
$F=F L(N 1,1) *(10.0) * *(12-1)$
DELF $=F L(N 1,1) *(10.0) * *(12-1)$
IF I IRMU.GE.NII GO TO 126
DC $126 \mathrm{Kl}=1.9$
$F=F+D E L F * 2.0$
WRITE (6,856) IZH,NI,KI,IRMU,I,F, REDIIZH,NM,KI,IRMU,I) -
X REDL (I2H,N ${ }^{\prime}, K I$, IRMLII)
126 CCNTINUE
1125 N1 = M1-1

```
FORTRAN IV G LEVEL 18 MAIN
0172 IF (M1.LT.N2 ) GO TO 130
C17?
0174
C175
GO TC 14
130 STOP
END
```



```
    \(A B=I K J-1\)
    CO 15 IJK \(=1\), 3
    \(C D=1 J K-1\)
\(C P 111\)
    CP1 (1)=1.C
    ALP \(=1.0\)
    BET \(=1.0\)
        GK=2.*GKPII +1.0
        \(A L P I=-A N+F I+A B\)
    NIM4 \(=\) NIM3-I-J
    IF (NIM4.EQ.O) GO TC 19
        CC 40 IA \(=2\), NIM4
    ALP \(=A L P=A L P 1\)
    \(A L P 1=A L P 1+1.0\)
    日ET = BET * GK
    \(S O=I A\)
51 CALL DGAMMA \(S O\) RES. ERR
        CPI IA, = 1 ALP/CEET F RES II
    40 GK \(=G K+1\).
    42 ALPP \(=1.0\)
        EETP \(=1.0\)
    ALPPI \(=-A N+F I+A B+C D\)
        AET2 \(=2 . *\) GKP (J) +1.0
    CP 2 11) \(=1.0\)
    DO 5 C IB=2, NLM4
    \(\triangle L P P=\triangle L P P\) \# ALPPI
    BETP = BETP* AET2
    \(A L P P I=A L P P I+1.0\)
    \(00=18\)
```



```
    50 AET2 \(=A E T 2+1.0\)
    \(\operatorname{SCHM}=0 . C\)
    CSUM \(111=1.0\)
        CC 20 IS \(=1 . \mathrm{N}_{1} \mathrm{M}_{4}\)
        \(S=15\)
        IF ISIS E EQ. 1 I GO TO 31
    SLM \(=0.0\)
    DO 3C \(10=1,15\)
    \(05=10\)
    ISO = IS -IS +1
    30 SUM = SUM + CPII ISO 1 * CP2 101
    CSUR (IS \(=\) SUM * 2.0 /CNKZ(I)) \(=0(I S-1\) )
    31 CALL DGAYMA (GKP (I) + GKP (J) + S + 1.0 , RES, ERR J
    20 SUMM = SUMM + CSUM IIS) *RES / DLM II,J I** IS
    19 IF (AB-1.) 21.22 .22
    21 IF \(C O-1.0\) : \(23: 25.26\)
    \(23 C(I, 2)=C 123 *\) SUMM
    GO TO 15
    25 B(I) \(=\) C 123 (SUMM
    GC TC 15
    26 IF I. GE N1-1 I GC TC 14
126 D( I) = C123*SUMM
    GC TC 15
22 IF (CD-1.0) 27.20 , 15
27 C(I,il = C123*SUMM
    GC TC 15
    28 Al II \(=\) C123 * SUM
    GO TO 15
```



```
FCRTRAN IV G LEVEL 18 DGAMMA
\begin{tabular}{|c|c|c|}
\hline 0001 & & SLBRCUTINE CGAMMA ( \(\mathrm{XX}, \mathrm{GX}\), ERR ) \\
\hline \(0 \mathrm{CO2}\) & & IMPLICIT REAL* 8 ( A-H , C-2 \\
\hline 0003 & & COMMCN CONP CONM \\
\hline ccca & & CCMPCN 0 \\
\hline 0 CO 5 & & DIMENSION CONP (10), COAN (10) \\
\hline 0006 & & EIMEASIOA Ci61, CONS 1101 \\
\hline OCC 7 & & IF ( XX -57. \(16,6,4\) \\
\hline 0008 & 4 & ERR \(=2\). \\
\hline OCOS & & GX \(=1\). D 75 \\
\hline CCIC & & RETURN \\
\hline 0011 & 6 & \(\mathrm{X} \times \mathrm{XX}\) \\
\hline 0 Cl 2 & & RR = 1.0 D - 10 \\
\hline 0 Cl 13 & & \(E R R=0.0\) \\
\hline 0014 & & \(C X=1.0\) \\
\hline \(00^{15}\) & & IF ( \(\mathrm{x}-2.150,50,15\) \\
\hline OC16 & 10 & 1F ( \(\mathrm{x}-2.0\) ) \(110,110,15\) \\
\hline OC17 & 15 & \(x=x-1.0\) \\
\hline OC1E & & \(G X=G X * x\) \\
\hline OC19 & & G0 10 10 \\
\hline OC2C & 50 & \(J K=x\) \\
\hline 0 C 21 & & \(A X=J K\) \\
\hline 0 C 22 & & IF ( \(x\)-1. ) 60, 120, 110 \\
\hline 0 C 23 & 60 & IF ( X-PR) \(62,62,80\) \\
\hline 0 C 24 & 62 & \(V=A X-X\) \\
\hline 0025 & & IF ( Y. CE. 0.0 I GO TO 4C \\
\hline \(002 t\) & & \(A B \quad=-Y\) \\
\hline 0 C 27 & & GO 1063 \\
\hline 0028 & 40 & \(A B \quad=Y\) \\
\hline cocs & 63 & IF ( AB - -RR ) 130 , 130.64 \\
\hline \(00^{3} \mathrm{C}\) & 64 & IF (2.0-Y-RR) \(130,13 \mathrm{C}, 70\) \\
\hline 0031 & 70 & IF ( \(\mathrm{X}-1.0\) ) \(80,80,11 \mathrm{C}\) \\
\hline OC32 & 8 C & \(G X=G X / X\) \\
\hline OC? ? & & \(x=x+1\). \\
\hline CC34 & & CC TC 70 \\
\hline OC35 & 110 & \(y=x-1\). \\
\hline 0036 & & GY \(=-0.05149930\) * \(Y\) \\
\hline 0 O 37 & & DC 111 \(k=1,6\) \\
\hline OC3F & 111 &  \\
\hline 0039 & & \(G Y=1.0+G Y\) \\
\hline CC4C & & GX \(=\) GX* GY \\
\hline \(0 \mathrm{C4} 1\) & 120 & RETURN \\
\hline \(0 \mathrm{C4} 2\) & 130 & ERR \(=1\). \\
\hline \(00^{0} 3\) & & REILRN \\
\hline CC44 & & END \\
\hline
\end{tabular}
```


FORTRA	EVEL 18 GIVENS	
0015	1010	ROOT11) = All
OC16		[F (AROCIX.GT.0) VECT(1.1) $=1.0$
OC17		GO TO 1001
$0 \mathrm{C18}$	105	coat inue
	C	NSILE Aumber of elemeats in the array
0019		NSIZE $=(N *(N+1)\} / 2$
0 C 20		AML $=N-1$
$0 \subset 21$		NH2 $=N-2$
	C	PRELIMINARY BUSINESS. SCALE THE MATRIX 10 PREVENT DVERFLOWS.
	C	NCTE THAT If OVERFLOW CCCURS HERE, ALL IS LOST...
	C	HOWEVER, OVERFLCW IS CUITE URLIKELY.
	C	AN APPROPRIATE TEST IS NOT INCLUDED, SINCE IBM'S FORTRAN IV
	C	CONTAINS NO EASY WAY CF TESTING FOR OVERFLOW.
$0 \subset 22$	85	CONTINUE
0 C 23		AACPM $=0$.
CC24		$J=1$
0025		$k=1$
0 C 26	86	CO BO I=1, NSI2E
OC27		IF II.NE.JI GC TC Bl
0028		ANORM $=$ ANORM + A (I)**2/2.
0 C 29		$k=k+1$
OC3C		$J=3+K$
0 C 31		GO TO 80
OC32	$\begin{aligned} & 81 \\ & 80 \end{aligned}$	ANCRH $=$ ARORF + A(I)**2
OC3 3		CONTINUE
0 C 34.		ANCRM =CSGRT (ANCRM)*SQRT2
CC35		IF IANORN .EC.O.1 GC TC 1001
	C	SCALE MATRIX TO NORM OF 1. CVERALL SCALE FACTOR IS ANCRM.
$0 C 36$		CC 91. I=1, NSI2E
OC37	91	$A(I)=A(I) / A N O R N$
	C	TRICIA SECTION.
	C	triciagcaalization of sympetric matrix
OC38		$10=0$
0 C 39		$14=1$
CC4		IF INM2.EG.0) GC TC 201
0 C 41		DO 2CO J=1, NH^{2}
	CCC	J COUATS ROW OF A-MATRIX TO BE DIAGONALIZED
		IA START CF NON-CCDIAGCNAL ELEPENTS IN THE ROW
		IC INOEX OF CODIAgONAL ELEMENT ON RCW being codiagonalized.
0142		$I A=I A+J+2$
$0 \mathrm{CL}_{3}$		$10=10+J+1$
0044		$J P 2=J+2$
	C	SUm SQuares cf nca-ccoiagchal elements in roh J
$0 \subset 45$		$\boldsymbol{I I}=14$
$0 \mathrm{C4E}$		SUN $=0.0$
CC47		C0 $100 \quad \mathrm{I}=\mathrm{JP2}, \mathrm{~A}$
0 C 48		SUM $=$ SUM + A (II)**2
0049	100	$\boldsymbol{I I}=1 \mathrm{I}+\mathrm{I}$
CC5C		TENP $=A(I C)$
0051		IF ISUM.CT. SMALL) GO TO 11C
	C	AC transfermation necessary if all the non-Codiagonal
	C	elements are miny.
0052	120	E(J.1) = TEMP
CCE?		$A(E)=0.0$
0C54		go to 2CC
	C110	NOW COMPLETE The SUM of off-ciagonal souares
OC55		SLM =DSQRTISUM + TEMP**2I
	110	NEh CODIAGONAL ELEMEAI

```
GIVENS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{0056} & & B(J, 1) =-0SIGN(SUM, TENP) \\
\hline & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
\] & FIRST NON-ZERO ELEMENT OF THIS W-VECTDR FCRM REST OF THE H-VECTOR ELEMENTS \\
\hline \(0 \subset 57\) & & B(J+1.2) \(=\) OSQRT(11.0 + CAES(TEMP)/SUM)/2.0) \\
\hline OC5 8 & &  \\
\hline \(0 C 59\) & & \(I I=I A\) \\
\hline 0 C6C & & CO 130 IxJP2,N \\
\hline OCE1 & &  \\
\hline \multirow[t]{3}{*}{\(0 C 62\)} & 130 & \(11=11+1\) \\
\hline & C & FORM P-VECTOR AND SCALAR. P-VECTOR = A-MATRIX*W-VECTOR. \\
\hline & C & SCALAR \(=W\)-VECTOR*P-VECTCA. \\
\hline \multirow[t]{2}{*}{OC6?} & & \(A K=0.0\) \\
\hline & c & IC LCCATION OF NEXT CIAGONAL ELEMENT \\
\hline 0064 & & IC \(=10+1\) \\
\hline 0065 & & \(\mathrm{Jl}=\mathrm{J}+1\) \\
\hline 0 066 & & CC. 190 İJl, \\
\hline 0 C67 & & \(J J=10\) \\
\hline 0068 & & TEMP \(=0\). \\
\hline \multirow[t]{4}{*}{cc6s} & & CC 180 IIxJlin \\
\hline & C & I RUNS over the nca-ierc p-elements \\
\hline & C & II RUNS OVER ELEMENTS OF W-VECTOR \\
\hline & C & change incrementing mece at the ciagonal elements \\
\hline 0076 & &  \\
\hline 0071 & & If (II.LT.I) GO TO 210 \\
\hline CC72 & 14 C & \(J J=J J+1 I\) \\
\hline \(0 \subset 72\) & & GO 10180 \\
\hline OC74 & 210 & JJ= JJ +1 \\
\hline \multirow[t]{2}{*}{CC7E} & 180 & CONTINUE \\
\hline & C & BUILC UP THE K-SCALAR (AK) \\
\hline 0 Cl 7 & & \(A K=A K+T E M P * B(I .2) ~\) \\
\hline \multirow[t]{2}{*}{\(0 \subset 77\)} & & B(ITI) \(=\) TEMP \\
\hline & c & MOVF IC TO TOP OF NEXT A-MATRIX PROW: \\
\hline \multirow[t]{2}{*}{CC7E} & 190 & \(I C=I C+I\) \\
\hline & C & FORM THE Q-VECTOR \\
\hline 0 C 79 & & Co \(150 \quad \mathrm{I}=\mathrm{Jl}\), N \\
\hline \multirow[t]{3}{*}{CC8} & 150 &  \\
\hline & c & TRANSFORM THE REST OF THE A-matrix \\
\hline & C & JJ Start-1 OF THE REST OF THE A-MATRIX \\
\hline \multirow[t]{3}{*}{OCE 1} & & \(J J=10\) \\
\hline & C & move h-vector into the cle a-matrix locaticns to save space \\
\hline & C & I RUNS OVER THE SIENIficant elements of the w-vector \\
\hline 0 CB 2 & & DO \(1 \in 0 \quad[=J 1, N\) \\
\hline 0 CB 3 & & \(A(J J)=E(1,2)\) \\
\hline CC84 & & DC \(170 \quad \mathrm{II}=\mathrm{JI}, \mathrm{I}\) \\
\hline OCS & & \(J J=J J+1\) \\
\hline 0086 & 170 &  \\
\hline \(0 \subset 87\) & 160 & \(J J=J J+J\) \\
\hline \multirow[t]{2}{*}{oces} & 200 & continue \\
\hline & C & move last cooiagonal element dut into its proper place \\
\hline CC8S & 201 & continue \\
\hline CCOC & & B(N-1,1) \(=\) A(NSILE-1) \\
\hline \multirow[t]{3}{*}{ccal} & & A(ASILE -1) \(=0.0\) \\
\hline & C & Shift all ceoiagcnal elements down one place to take aovantage \\
\hline & C & OF FORWARO INDEXING (I.E. FIRSt codiagonal element must ee zerol. \\
\hline cc92 & & DC \(205 \mathrm{~J}=1\).NMI \\
\hline 0 CS 3 & & NMJ \(=\mathrm{N}-\mathrm{J}\) \\
\hline 0094 & 205 & \(B(N M J+1,1)=B(N M J, 1)\) \\
\hline 0095 & & \(B(1,1)=0\). \\
\hline
\end{tabular}
```



```
FORTRAN IV G LEVEL
\begin{tabular}{|c|c|c|}
\hline 0179 & \multirow[t]{4}{*}{760} & \(\mathrm{E}(\mathrm{J}, 2)=\mathrm{B}(\mathrm{J}+1,1)\) \\
\hline 0180 & & B(J,3) = A J Jupl - ARCCT \\
\hline 0181 & & \(B(J, 4)=B(J+2,1)\) \\
\hline \multirow[t]{2}{*}{0182} & & TEMP = ELIM1/B(J+1, 1) \\
\hline & C & SAVE factor for seccac iteration. mark it as case 2 \\
\hline 0183 & & (TM \(=\) (ITEMP/2)*2* \\
\hline 0184 & & ( \((\mathrm{J}, 5)=1 \mu\) \\
\hline 0185 & & ELIM1 \({ }^{\text {a }}\) ELIM2 - TEMP* (J.3) \\
\hline 0186 & & ELIM2 \(=-\) TEMP \(*\) B \((J+2,1)\) \\
\hline C187 & 75 C & continue \\
\hline 018 C & & IFIDABS(ELIMI).LE.DELTA) ELIMI = DSIGN(DELTA.ELIMI) \\
\hline 0189 & & E(N,2) = ELIM1 \\
\hline C15C & & \(B(N, 3)=C\). \\
\hline 0191 & & \(\mathbf{8 ( N , 4 )}=0\). \\
\hline C192 & & \(\mathrm{E}(\mathrm{N}-1,4)=0\). \\
\hline 0193 & & ITER = 1 \\
\hline \multirow[t]{2}{*}{C194} & & If (IA.NE.0) GO TO 800 \\
\hline & C & BACK SUBSTITUTE TC GET THIS VECTCR \\
\hline 0195 & 790 & \(\mathrm{L}=\mathrm{N}+1\) \\
\hline C196 & & CO \(780 \mathrm{~J}=1 . \mathrm{N}\) \\
\hline C197 & & L - L - 1 \\
\hline \multirow[t]{2}{*}{0198} & 780 &  \\
\hline & & E(L,4)I/B(L,2) \\
\hline \multirow[t]{2}{*}{C15c} & & GC TC (E2C.PCC). ItER \\
\hline & C & SECOND ITERATION. IBOTH ITERATICNS FOR REPEATED-RCCT VECTCRSI \\
\hline 0200 & 82 C & ITER = ITER + 1 \\
\hline 0201 & 89C & ELIMI = VECIII,II \\
\hline 0202 & & CO \(830 \mathrm{~J}=1 . \mathrm{NM} 1\) \\
\hline C2C? & & \(T H=B(J, 5)\) \\
\hline 0204 & & ITEMP = MDC(ITM, 21 \\
\hline \multirow[t]{2}{*}{C205} & & IF (ITEMP.NE.O) GO TO 840 \\
\hline & C & CASE DNE. \\
\hline 0206 & 850 & VECT(J, II = ELIMI \\
\hline 0207 & & ELIM = VECT(J+1,I) - ELIMI* Cl (J,5) \\
\hline \multirow[t]{2}{*}{0208} & & GO T0 83C \\
\hline & C & CASE TWO. \\
\hline C2Cs & 84. & VECTIJ,I) \(=\operatorname{VECT}(J+1,1)\) \\
\hline 021 C & & ITEMP \(=(1\) TM/2)*2 \\
\hline 0211 & & ELIM \(=\) ELIMI - VECT(J+1, I)*TEMP \\
\hline C212 & 83 C & CENTINUE \\
\hline 0213 & & VECTIN,II = ELIMI \\
\hline \multirow[t]{2}{*}{C214} & & GC TC 790 \\
\hline & C & CRIHCGOAALILE THIS REPFATEC-RCOT VECTCR TO Cthers with ihis root \\
\hline 0215 & 800 & If (IA.EO.O) GO TO 885 \\
\hline 0216 & & CC \(860 \mathrm{Jl}=1.10\) \\
\hline 0217 & & \(K=1-J I\) \\
\hline 0218 & & TEMP \(=0\). \\
\hline 0219 & & [C \(870 \mathrm{~J}=1, \mathrm{~N}\) \\
\hline 022 C & 87 C & TENP = TEMP + VECT(J,I)*VECT(J,K) \\
\hline 0221 & & CO \(880 \mathrm{~J}=1, \mathrm{~N}\) \\
\hline 0222 & 88 C & VECT(J,I) = VECT(J,I) - TEPP*VECT(J,K) \\
\hline 0223 & 860 & CONTINUE \\
\hline \multirow[t]{2}{*}{0224} & 885 & GO T0 (890.900), ITER \\
\hline & C & normalize the vecter \\
\hline 0225 & 900 & TEMP \(=0\). \\
\hline 0226 & & CC \(910 \mathrm{~J}=1, \mathrm{~N}\) \\
\hline 0227 & 910 & TEMP \(=\) TEMP + VECT(J,I) \({ }^{\text {P }}\) - 2 \\
\hline 0228 & & TEMP \(=1.0 /\) DSQRTITEMP) \\
\hline
\end{tabular}
```


in Volts/Meter
$0.1 C C 4000 \operatorname{COCCOCOCOD} 07$ 0.1004000000000000007 C. 1004000000000000007 0.1004000000000000007 0.1004000000000000007 $0.1004000000000000 D 07$
$0.10 C 4$ COOCCOOOCCCOD 07 0.1004000000000000007 0.1004 C000000000000 07 $0.10 C 4 \operatorname{cooccccccc} 007$ 0.3012000000000000007 C. 3012000000000000007 C. 3C12000CC00000000 07 0.3012000000000000007 $0.3 \mathrm{Cl} 2 \operatorname{coO} \mathrm{Cc} 0 \mathrm{CcCO} 0 \mathrm{O}$ 0.3012000000000000007 0.3012000000000000007 $0.3 C 12000 \mathrm{CC00000000} 07$ 0.3012000000000000007 C. 5020C0000000CCCOD 07 0.5020000 CC 0000000007 0.50200000 C 0000000007 $0.502 \cos \operatorname{ccccccc} 007$ $0.5020000 \mathrm{COC0000000} 07$ 0.502CC000000000000 07 0.5020000 Cc 0000000007 0.5020000000000000007 0. Ec2CCCOCCCCCCCOD 07 $0.7028 \operatorname{coOCOCCOOCOOD} 07$ $0.7 \mathrm{C2} 8 \mathrm{COO} 000000000007$ C. 7C28ccccceccco000 07 $0.7028 \mathrm{C00} 000000000007$ 0.7028000000000000007 $0.7028 \mathrm{COOC000000000} 07$ 0.7028000000000000007 0.7 C 28 CCOCCOCOCCCCD 07 0.7028 COOOCOOOCOOOO 07 $0.5036 C 00 C C 0000000007$ $0.90360000 C 0000000007$ 0.9036000000000000007 $0.9036 \operatorname{cccccccc} 000 \mathrm{D} 07$ $0.90360000 C 0000000007$ 0.9036000000000000 D 07 0.9 C ECCOCCCCCCCCD 07 0.90360000 C 0000000007 c. 9036C000C00000001 07 C. 11 C4400CCCCCCCCCD 08 0.1104400000000000008 0.1104400000000000008 0.11 C 4400 COCO 00000008 $0.11 C 4400000000000008$ 0.1104400 ccc 000000008 0.1104400000000000008 C. $11 \mathrm{C4} 400000000000008$ 0.1104400 CCCOOOOOOD 08 0.1305200000000000008 C. 13C520CCCCCOCCCOD 08 0.1305200000000000008 C.13C52000000000000 08 0.1305200 CO 00000000 O8 C. 13052006000000000 o8 $0.13052000 \operatorname{coO} 0 \operatorname{cccco} 08$ 0.1305200000000000 D 08 C. 13C520cccccoccced 08

Dirac (Meter) ${ }^{-1}$
Luden (Meter) ${ }^{-1}$

0.150600000000000000 OB 0.17068000000000000 OB c. 19076 cococoocccod ob 0.1004000000000000007 c. 1004000000000000 D 07 c. 10 C 4 COCCC00000000 07 0.1004000000000000007 0.1004000000000000007 0.1004000000000000007 0.1004000000000000007 $0.3012 \operatorname{coccccococod} 07$ 0.3012000000000000007 c. 3012000000000000007 $0.30120000 \mathrm{COO000000} 07$ 0.3012000000000000007 c. 3012 coccccoococoo 07 0.3012000060000000007 0.5020000000000000007 c. 502ccoocccooccooo 07 0.5020000000000000007 $0.5020 \mathbf{0} 0000000000007$ 0.5020000000000000007 c.50200000000000000 07 0.502 CCOOCCOCOCOOOD 07 0.7028000000000000007 0.7 C280000000000000 07 c. 1C28C000000000000 07 0.7028000000000000007 c. 7C28 000000 coco0000 07 0.702800000000000007 0.7028000000000000007 c. $5 \mathrm{C} 36 \mathrm{ccoc} \operatorname{cocccoc} 0007$ $0.90360000 \mathrm{C00000000} 07$ c. 9C36C000c00000000 07 0.9036000 C 0000000007 0.9036000000000000007 c.9036cocceccococco o7 0.9036000 ccco000000 07 $0.11 C_{4400300000000008} 08$ c. $11044000 \operatorname{coc} 0 c c ⿻ 08$ 0.1104400000000000008 0.1104400000000000008 0.1104400000000000008 0.1104400000000000008 c. 11 C 4400 ccococccod 08 0.13052000000000000 08 0.1305200 cc 0000000 D 08 0.1305200000000000008 0.1305200000000000008 0.13 C5200cccoococod 08 $0.13052000 \mathrm{CO0000000} 08$ 0.1305200000000000008 0.15 coccoccc 0 cocod ca 0.1506 c 0000000000008 c. 1506000000000000008 c. 1506 c coccooo000000 08 0.15060000000000000 OA $0.15 \mathrm{C6C00000000000D} 08$ $0.1506 \mathrm{Co0000000} \mathrm{COODO} 08$ $0.10 \mathrm{C4} 000000000000007$ c.1ccacooccceccccoo 07 0.10 C 4 Cc 0000000000007 0.1004000000000000007 c. 10 C40000000000000 07 c. $3 \mathrm{C} 12 \operatorname{coccccccc} 000$ o7 0.3012000000000000007
-0.83865589939441638004 -C. 9672 C 29612130020004 -0.2958980619050540023 0.3322465385580435003 $0.21772 C 0199824292003$ 0.9095270970393904002 -0.3247729216609150002 -0.16682598967915770 03 -0.2988910597257782003 -C. 4525573036235664003 $0.10988 \in 1407764256004$ $0.7313606225939 C 02003$ $0.34759 t 5466848575003$ -0.3821714827138931002 -C.42390E1443711184D 03 -0.8119649936850183003 -0.1219604327553650004 0.1869218491394073004 0.1245427579012699004 0.6046329650972038 D 03 $-0.3819524547806941 \mathrm{D} 02$ -0.6809791832668707C 03 -C.13255851532919120 04 -0.1989995613155653004 0.2640110413503600004 0.1759564231581753004 0.86170 E96666184810 03 -C.38189376526046540 02 -0.93806:52920441330 03 $-0.18401 C 8843461378 D 04$ -0.2760896884339629004 0.3411180122026941004 0.2273725518729072004 C. 1118751593360547004 -0.3818689195695333002 -0.11951514629670420 04 -0.2354264740412356004 -0.3531970906194998004 C.418232C72C2232530 04 0.2787898423973005004 0.1375880969482940 C 04 -0.38185261775041 COD 02 -0.14522426384722350 04 -C. 2868434 8C76733290 04 -0.43C31228899643750 04 0.4953524341760203004 0.3302077520483173004 0.1632973014157964004 -C. 381844858271 C6580 02 -0.170932608277C2560 04 $-0.3382612353168894 \mathrm{C} 04$ -C. 5074317920526955004 0.5724743780965684004 0.3816260332977632004 C. 18900t64898371320 04 -0.3818414228409529002 -0.1966429714653641004 -0.38967544796055C90 04 -0.58455383701983370 04 C. 2378570319893770003 0.1086683202050626003 -0.1663900364632718002 $-0.1489668217748404 \mathrm{C} 03$ - C. 2781120585934259003 0.7514551479727961003 0.3655998526259791003

24911
0.3012000000000000077 0.30120000000000000 0.3012000000000000 D 0.5020000 cccoonoood 07 0.5020000000000000007 0.5020000000000000 D 0.5020000000000000 D 07 0.5020000000000000 D
07
0.5020000000000000 D
07 0.7 C 28 COOCc 000 cocod 07 0.7028000000000000 D 07 0.7028000000000000007 $0.7 \mathrm{C28C00} \mathrm{CCOCOC000D} 07$ 0.7028000000000000007 0.9036000000000000 D of $0.90360000 \mathrm{COO00000D} 07$ 0.9036000000000000007 0.9036000 C 00000000 o7 0.9036000000000000007 0.1104400000000000008 c. $1114400 c \mathrm{Cc} 000000000$ 0.1104400000000000008 0.11644000000000000 08 0.1104400000000000 D OB 0.1305200000000000 D OB c. 13 C 5200 cccoc 000 D 0 $0.1305200 \mathrm{COCO000000} 08$ 0.1305200000000000008 $0.1305200 \mathrm{cc} C \operatorname{coc} 0000$ ob 0.15060000000000000 08 c. 15060000000000 COD 08 0.1506 COOCOOOOOOOOD 0 O 0.1506 COOOOOOOOONOD 0 B c.15c6cooccccococod ob 0.10040000000000000 of C. 1004000000000000 D 07 0.1004000000000000 D 07 0.3012000000000000007 0.30120000 CO 000000007 0.3012000000000000007 0.5020000000000000007 0.5 C 2 Cc 000000000000 of 0.5020000000000000007 c. 7 C 28 COOOOOCOCCOOD o7 0.7028000 c000000000 07 0.7028000000000000007 $0.5036 \operatorname{coccccococod} 07$ 0.90360000 CO 000000007 0.90360000c00000000 07 $0.11 \mathrm{C4400} \mathrm{CO} 0000000$ 08 0.1104400000000000008 c. 1104400000000000 D 08 0.1305200000000000008 C. 1365200000000000008 $0.13 \mathrm{C5200cc} 000 \mathrm{co000} 08$ 0.1506000000000000 D 08 0.1506000000000000008 0.1506000000000000008 0.3012000000000000007 0. 5020c000cccoccooo 07 0.7028000000000000007 0.9036 C000000000000 07 0.11 c 440000 COCCOOOD 0 O 0.13052000000000000 ob 0.1506000000000000008 0.1706800000000000008 0.19076000000000000 08

-0.16659728718688710	02	-0.16659136467613280	02
-0.40586651645344680	03	-0.4058694876381196D	03
-0.79170969591080210	03	-0.7917157940542828D	3
0.12655118760638870	04	0.12655299268241500	04
0.62265571826766240	03	0.62266236589848990	03
-0.16661505851661790	02	-0.16660916067659250	02
-0.66292439065943470	03	-0.66292950236913750	03
-0.1305778053990565D	04	-C.13057552815336170	04
0.17796478421734640	04	0.17796730161674790	04
0.87973555342084730	03	0.8797443354087882 D	03
-0.1666203341865912D	02	-C.16661C9098377638D	02
-0.92000314320088360	03	-0.92001075302204120	03
-0.1819914006544742D	04	-0.18199383647239300	04
0.22938061778014530	04	0.22938284737991730	04
0.11368216746379620	04	0.1136832946103764 D	04
-0.16662024101475250	02	-C. 16661442553394730	02
-0.1177089246273274D	04	-0.11770989990893290	04
-0.2334072680380195D	04	-0.2334104170432547D	04
0.28079751505604940	04	C.2808014210980851D	04
0.139391 c888382932D	04	0.1393924291742267 D	04
-0.1666219057328995D	02	-0.16661615593824540	02
-0.14341784372222610	04	-0.14341903342688460	04
-0.28482416303430220	04	-0.28482798971552400	04
0.33221494424096310	04	0.33221556223773300	04
0.16510017828869170	04	0.1651017673260998 D	04
-0.1666217644396238D	02	-0.1666160886641592D	02
-0.1691269304201938D	04	-C.16912637C3067806D	04
-0.3362415894667851D	04	-0.33624612958317160	04
0.3836326942485059 D	04	C. 38363802407733170	04
0.19080936590926720	04	0.19081116788992 C6D	04
-0.16662338019581510	02	-0.16661422725766900	02
-0.1948361148064024D	. 04	-C.19483776936335490	04
-0.3876593718752032D	04	-0.3876645899155177D	04
0.12178175200661640	03	C. 1217824914392549 D	03
-0.10415818212088200	02	-0.10415354798082260	02
-0.1356649338924326D	03	-0.13566557458159510	03
0.37875910733244380	03	C. 37876150271133520	03
-0.10413971162168310	02	-0.104137839796C2160	02
-0.39264411563915200	03	-0.3926464126815554D	03
0.63583078593388200	03	C. $635835113 \mathrm{C8231390}$	03
-0.10413865425623950	02	-0.10413678651209920	02
-0.64971585871372370	03	-C.64971981231425890	03
0.89291619215044190	03	0.892921898809 C 288 D	03
-0.10413844832684840	02	-0.10413658670382570	02
-0.90680122362216940	03	-C. 90680683398502880	03
0.11500056695363020	04	0.11500133075572080	04
-0.10413909381255510	02	-0.10413724035257470	02
-0.116389082994149CD	04	-C.11638¢8097271099D	04
0.14070975664614230	04	0.1407106583584566 D	04
-0.10413783038733530	02	-C. 10413598713232200	02
-0.14209827500055540	04	-0.14209913984786250	04
0.16641902312943710	04	0.16642011793728450	04
-0.10413741830037910	02	-0.1041355872876011D	02
-0.16780756082048170	04	-0.16780859140530230	04
0.19212839446032890	04	0.19212962713767770	04
-0.10413785749580710	02	-0.10413t04076951740	02
-0.19351691330391910	04	-0.19351810964678880	04
0.33223372060572730	03	0. 33224 t5385580435D	03
0.10988258266414050	04	0.10988 E14C77642560	04
0.1869160573437344 D	04	0.18692184913940730	04
0.26400310066868550	04	C. 26401104135036000	04
0.34110788093779700	04	0.34111801220269410	04
$0.41822075 C 64117090$	04	0.41823307202232530	04
0.49533792314475870	04	$0.49535243417602 C 30$	04
0.57245767788076770	04	0.5724743780965684 D	04
-0.11786268030400030-		C. 25098639215686270	

VITA

Ramesh G．Kulkarni

Candidate for the Degree of
Doctor of Philosophy

Thesis：SYMMETRY OF THE COULOMB FIELD AND ITS APPLICATIONS

Major Field：Physics

Biographical：
Personal Data：Born February 22，1943，in Shirahatti B．K．，Belgaum， Mysore State，India；Father，Gurunath R．Kulkarni and Mother， Rukminibai G。Kulkarni．Married to Shailaja Y．Prabhu on July 4，1969。

Education：Graduated from B．K．Model High School，Belgaum，Mysore Stare，India in 1959．Attended R．L，Science Institute， Belgaum，India and received Bachelor of Science degree from Karnatak University，Dharwar May，1963，with a major in physics．Received Master of Science degree from Karnatak University in May，1965，with a major in nuclear physics． Completed the requirements for Doctor of Philosophy of Okla－ homa State University，July， 1971.

Professional Experience：Research Fellow under the Atomic Energy Commission Government of India research project 1965－67． Graduate Teaching Assistant at Physics Department，Oklahoma State University，1967－71。

[^0]: * Paper with this title has been published in J. Math. Phys. 11, 1165 (1970).

